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Spatiotemporal distribution, trend, 
forecast, and influencing factors 
of transboundary and local air 
pollutants in Nagasaki Prefecture, 
Japan
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Venkataraman Sivasankar 4 & Sangyeob Kim 5*

The study of PM2.5 and NO2 has been emphasized in recent years due to their adverse effects on public 
health. To better understand these pollutants, many studies have researched the spatiotemporal 
distribution, trend, forecast, or influencing factors of these pollutants. However, rarely studies have 
combined these to generate a more holistic understanding that can be used to assess air pollution and 
implement more effective strategies. In this study, we analyze the spatiotemporal distribution, trend, 
forecast, and factors influencing PM2.5 and NO2 in Nagasaki Prefecture by using ordinary kriging, 
pearson’s correlation, random forest, mann–kendall, auto-regressive integrated moving average and 
error trend and seasonal models. The results indicated that PM2.5, due to its long-range transport 
properties, has a more substantial spatiotemporal variation and affects larger areas in comparison 
to NO2, which is a local pollutant. Despite tri-national efforts, local regulations and legislation have 
been effective in reducing NO2 concentration but less effective in reducing PM2.5. This multi-method 
approach provides a holistic understanding of PM2.5 and NO2 pollution in Nagasaki prefecture, which 
can aid in implementing more effective pollution management strategies. It can also be implemented 
in other regions where studies have only focused on one of the aspects of air pollution and where a 
holistic understanding of air pollution is lacking.

Studies have attributed the increase in air pollution to rapid urban development and modernization1. Over the 
years, much emphasis has been placed on the analysis of PM2.5 (particulate matter with a diameter of 2.5 μm or 
less) and NO2 (Nitrogen Oxide) due to the adverse effects on public health2–4, global climate5,6 and long-range 
transport, particularly for PM2.5

7. As a result of public health and environmental implications, countries and 
international organizations have engaged in regulating and monitoring PM2.5 and NO2 concentrations. For 
instance, the World Health Organization (WHO) air quality guidelines established in 2005 were revised and 
released on September 22, 2021. These new guidelines come from decades of research showing that air pollu-
tion’s health effects result from high exposure and very low concentrations8. Therefore, the guidelines of 2005 
recommended that the annual average of PM2.5 and NO2 concentrations should not exceed 10 and 40 μg/m3 
(21 ppb), respectively. The 2021 guidelines reduce these recommendations to 5 and 10 μg/m3 (5 ppb) for PM2.5 
and NO2, respectively.

The analysis and monitoring of PM2.5 and NO2 are essential to assess the effectiveness of mitigation strate-
gies and compliance with standards. Currently, monitoring stations reliably and accurately measure PM2.5 and 
NO2 concentrations. However, monitoring is often difficult as PM2.5 and NO2 measurements are only done at 
some locations due to the high costs of installation, maintenance, and management of monitoring stations. As 
a result, detailed information about the spatiotemporal distribution, trend, and climatic and temporal effect of 
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PM2.5 and NO2 is often lacking in locations with few monitoring stations. Therefore, the need exists, in these 
locations, to implement a multi-method approach that could predict PM2.5 and NO2 where it is not measured 
and generate fine-grain spatial distribution data, examining the changes of PM2.5 and NO2 concentration over 
time and understand the climatic and temporal effects on PM2.5 and NO2 concentrations. This information is 
critical for identifying areas (hotspots) that do not comply with international pollution concertation standards, 
quantitatively evaluating the air quality policy, and assessing the risks to human health9. Furthermore, empiri-
cal models are required to describe the general features of the spatial patterns of PM2.5 and NO2, trends, and 
influencing factors10,11.

In Japan and many regions of the world, studies have only focused on the spatiotemporal distribution, trend, 
forecast, or influencing factors of PM2.5 and NO2

12,13. However, rarely studies have combined these to generate 
a more holistic understanding that can help identify health risk areas, influencing factors, pollution trends, 
and the efficacy (or lack thereof) of policy interventions11. For instance, in Nagasaki Prefecture, most of the 
studies have only focused on either the health impact caused by air pollutants14–16, the long-range transport 
of air pollutants from the Asian continent17–19, or the effects of climatic variables and the spatial and temporal 
distribution of PM2.5

20. Although these studies provide essential information, a multi-method approach is nec-
essary to understand better the distribution, factors, and current and future trends of PM2.5 and NO2 pollution 
in Nagasaki Prefecture.

This study used a multi-method approach to analyze PM2.5 and NO2 data in Nagasaki Prefecture from 2013 
to 2021. This study aims (1) to estimate PM2.5 and NO2 pollution variability in unmeasured areas using ordinary 
kriging, (2) to identify and analyze the correlation of the major climatic and temporal factors that influence PM2.5 
and NO2 pollution in Nagasaki Prefecture via Pearson’s correlation and random forest feature selection and (3) 
to conduct a trend and forecast analysis of PM2.5 and NO2 based on fitting loess, automated auto-regressive inte-
grated moving average (ARIMA) and error trend and seasonal models (ETS). Using a multi-method approach, we 
provide a broader analysis and understanding of the spatiotemporal distribution, forecast, trend, and influencing 
factors of pollutants which is crucial for the improvement, development, and assessment of mitigation strategies 
and for identifying health risk areas. Furthermore, this proposed multi-method approach can be used in other 
regions where studies have only focused on one of the aspects of air pollution and where a holistic understand-
ing of air pollution is lacking.

Policy background.  As a result of the rapid economic development of the Northeast Asian sub-region and 
the resulting environmental problems, China, Japan and Korea have held a Tripartite Environment Ministers 
Meeting (TEMM) annually since 199921. This meeting aims to strengthen environmental cooperation among 
these countries and address environmental problems at the domestic, regional, and global levels. At the 15th 
Tripartite Environment Ministers Meeting in 2013, the Tripartite Policy Dialogue on Air Pollution (TPDAP) 
was established and started in 201421. The objective of the establishment of the TPDAP was to coordinate efforts 
among the three countries to address the air pollution problem by developing cooperation initiatives and sharing 
information about air pollution policy implementation and impacts. The 3rd TPDAP in 2016 established two 
working groups to share air pollution information (Fig. 1).

The establishment of the Tripartite Policy Dialogue on Air Pollution (TPDAP) has resulted in reducing air 
pollution in the three countries (Table 1).

Results
PM2.5 and NO2 spatiotemporal distribution.  The years that had the maximum mean average level of 
PM2.5 concentration were 2014 and 2016, with 16.2 and 14 μg/m3, respectively. The minimum mean average 
concentrations in 2020 and 2021 were 10.4 and 9.7  μg/m3, respectively (Table  2). There have been dynamic 
temporal variations of PM2.5 concentration with respect to a yearly minimum, maximum, and mean during the 
study period. These variations are also expressed in the year’s seasons, with Winter and Spring being the seasons 
with the highest PM2.5 concentrations. For each year of the study period, 2013–2021, Spring had the highest 
concentration of PM2.5 (Table S2). Amidst these variations, there is an indication of a declining trend of PM2.5 
concentration from 2013 to 2021.

Regarding the spatial distribution of PM2.5 concentration, there is also yearly variation as to the hotspot of 
PM2.5 (Fig. 2). However, to a great degree, the most affected area is the westernmost part of Nagasaki Prefecture, 
as illustrated by the PM2.5 spatial distribution maps of 2015, 2016, 2017, and 2018.

Concerning NO2, the maximum mean average level of NO2 concentrations was in 2013 and 2014 at 6.3 ppb. 
The minimum mean average concentrations were in 2020 and 2021, with 4.7 and 4.4 ppb, respectively (Table 2). 
The box plots indicated minimal temporal variations of NO2 concentration during the study period (Fig. 3). Win-
ter and Spring are the seasons with the highest NO2 concentration, with Winter being the season with the highest 
NO2 concentrations for each year, except for 2013 when Spring had the highest concentration (Table S2). The 
spatial distribution of NO2 indicated that the hotspots have remained in the same location over the years (Fig. 3). 
The high concentration of NO2 is located in Sasebo and Nagasaki, the two largest cities of Nagasaki Prefecture.

Pearson’s correlation and Random forest.  Pearson’s correlation results indicated that meteorological 
factors influence PM2.5 and NO2 concentrations in Nagasaki Prefecture (Fig. 4). In the case of PM2.5, the factors 
had weak positive, negative, and mixed correlation results. The factors negatively correlated with PM2.5 were 
the southern oscillation index, average temperature, maximum temperature, minimum temperature, average 
humidity, and minimum humidity, with the southern oscillation index having the most substantial influence 
among these factors. On the other hand, minimum wind speed and sunlight time had a positive correlation. The 
other factors had mixed results in some stations having positive, negative, and no correlation. For NO2, some 
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factors had a strong positive and negative correlation, with others having a weak positive and negative correla-
tion. Average temperature, maximum temperature, minimum temperature, average humidity, and minimum 
humidity had a strong negative correlation, with average local pressure and average sea level pressure having 
a strong correlation. On the other hand, the southern oscillation index, rain maximum 10 min, average wind 
speed, and sunlight time had a weak negative correlation, with maximum wind speed and maximum instanta-
neous wind speed having a weak positive correlation. The other factors had mixed results, with some stations 
having positive, negative, or no correlation.

Figure 1.   Tripartite Policy Dialogue on Air Pollution working groups one and two.

Table 1.   Significant policies implemented by China, Japan, and Korea to improve air quality.

Country Policy Targeted sources Impact Research

Japan

Since the introduction of the "Compre-
hensive Policy Effort on PM2.5" in 2013, 
policies and measures were introduced 
that fall under three categories:
-Domestic measures
-International cooperation
-Reinforcing scientific knowledge

-Stationary
-Vehicles
-Vessels
-Open burning
-NH3
-Regional

Since 2013, the annual average of PM2.5 
concentration has decreased, with the 
number of occasions issuing public alerts 
on PM2.5 decreasing from 37 in 2013 to 
2 in 2017

Declining PM2.5 as a result of policy 
implementation:
2010–2018 declining PM2.5

22

2003–2018 declining PM2.5
23

China

Since the introduction of the "Action Plan 
on the Prevention and Control of Air 
Pollution" in 2013, significant policies and 
measures have been introduced which fall 
under five categories:
-Rule of law
-Scientific and Technological support
-Comprehensive emission reduction
-Innovative management
-Social participation

-Industry
-Energy sector
-Vehicles
-Non-point source pollution

The average concentration of PM2.5 in 
74 cities decreased by 42% from 2013 to 
2018. These cities are applying Ambient 
Air Quality Standard

Declining PM2.5 2013–201824 Declining 
PM2.5 2019–202025

Korea

Since the revision of the "Air Quality 
Preservation Act" in 2013 and the intro-
duction of "Comprehensive Plan on Fine 
Dust Management
Implementation" in 2017, strategic 
policies and measures have been imple-
mented which fall under four categories:
-Reduction of domestic emissions
-Public health
-International cooperation
-Solid foundation and communication

-Industry
-Transport
-Power generation
-Agriculture and daily surrounding
-Indoor air quality
-Regional

PM2.5 reduction from 2010 to 2019 has 
shown minimal changes each year, with 
the PM2.5 level decreasing by 2 μg/m3 in 
2018 from the level of 2017. This is due to 
the implementation of the comprehensive 
plan in 2017

PM2.5 decrease 2003–201726

PM2.5 decrease 2010–202027
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The RF model feature selection results at Tsushima, Goto, Daitou, Inasa, Obama, and Yoshii for PM2.5 and NO2 
are shown in (Fig. 5). These stations were selected based on their location, which are representative of the study 
area. Among the monitoring stations, the most important predicting factors for PM2.5 were Spring, maximin 
instantaneous wind speed one day, maximum instantaneous wind speed, humidity, sunlight time one day, and 
southern oscillation index. At the observation tower of Tsushima, Goto, Inasa, and Yoshii, Spring is among the 
three major predicting factors of PM2.5, with Spring being the primary predictor at Goto. Maximum instantane-
ous wind speed was among the three most important predictors for Goto, Daitou, Insas, and Yoshii and was the 
primary predictor at Tsushima. Maximum instantaneous wind speed was the main predictor for Daitou, Inasa, 
and Yoshii and the second most important predictor for Obama. Humidity was the main predictor of Obama 
and the third predictor at Goto. Southern oscillation index was only a significant predictor at Tsushima.

On the other hand, for NO2, the three most important predictors that were among the stations were average 
wind speed, minimum temperature one day, maximum instantaneous wind speed, average sea level pressure one 
day, average temperature one day, average sea level pressure three days, southern oscillation index seven days, 
average temperature, maximum temperature one day and average local pressure one day. Average wind speed 
was among the three main predictors in Tsushima, Goto, Daitou, Inasa, and Yoshii, and the main predictor in 
Goto. Minimum temperature was the major predictor in Tsushima and Daitou. In Goto and Daitou, maximum 
instantaneous wind speed was the second and third major predictor, respectively. Sea level pressure one day 
was the main predictor in Inasa and Yoshii. Average temperature one day, average sea level pressure three days, 
southern oscillation index seven days, average temperature, maximum temperature one day, and average local 
pressure one day were among the three most important factors in only one of the stations. The feature selection 
result from RF indicated that the factors influencing PM2.5 and NO2 concentrations in Nagasaki Prefecture vary 
depending on the location of the monitoring stations.

Tables 3 and 4 show the results of the random forest models for each of the 18 stations for PM2.5 and NO2, 
respectively. Model accuracy was evaluated using R2 and MSE. In the case of PM2.5, the result indicated that the 
accuracy estimates for the 18 stations are varied with R2 values in the range of 0.41–0.53 and MSE of 22.7–37.6 
for the training dataset and R2 values ranging from 0.16 to 0.33 and MSE 32.7–51.3 for the test dataset. The low 
values of R2, high values for MSE, and the high difference of R2 between the trained model and the test model 
indicated that the RF models constructed with these factors could not be used to predict PM2.5 concentrations.

Whereas, in the case of NO2, R2 was higher (Test: 0.354–0.735) than the R2 values of PM2.5; thus, the factors 
used in this study are a better predictor of NO2 concentration than PM2.5. However, the R2 values for most of the 
NO2 test models are still low to be used to predict NO2 concentrations, except for the results of Isahaya, which 
can be considered acceptable.

Trend and Forecast analysis.  At a 0.05 significance level, the Mann–Kendall test determined that PM2.5 
and NO2 in most of the monitoring stations had a monotonic trend and a negative slope (Table 5). The sta-
tions with no monotonic trend for PM2.5 were Shimabara, Oomura, Kawadana, Togitsue, MatsuuraShimachi, 
and Tsushima, and for NO2 were Yukiura, Tsushima, Iki, Obama, and Muramatsu. The stations that had the 
most significant magnitude of reduction for PM2.5 were Daitou (− 1.278 μg/m3), Fukuishi Jihai (− 1.178 μg/m3), 
and Kogakura (− 1.01 μg/m3), while Goto (− 0.43 μg/m3) had the lowest. For NO2, the most significant magni-
tude of reduction was observed in Fukuishi Jihai (− 0.78 ppb), Higashi Nagasaki (− 0.50 ppb), and Kogakura 
(− 0.49 ppb), and the lowest in Matsuura Shisamachi (− 0.12 ppb). Figures S1 and S2 represent the data decom-
position and tend for six monitoring stations.

The results of Holt-Winters and ARIMA forecast analysis are presented in Table 5, which indicated, based 
on the MAPE and RMSE, that model suitability to forecast PM2.5 and NO2 varies depending on the location of 
the monitoring station. For PM2.5, Isahaya, Kawadana, Matsuura Shisamachi, Tsushima, Iki, Obama, and Inasa 
ARIMA gave better results; ETS and Holt-Winters gave better results in the other monitoring stations. In the 
case of NO2, ETS and Holt-Winters gave better results in Daitou, Isahaya, Shimabara, Oomura, Matsuura Shisa-
machi, Tsushima, Iki, Goto, Inasa, Fukuishi Jihai, and Yoshii with ARIMA providing better results in the other 
stations. The highest MAPE for Holt-Winters for PM2.5 was in Shimabara (23.566), and the lowest was in Higashi 
Nagasaki (11.98). For ETS, the highest MAPE was in Yoshii (26.59), the lowest was in Muramatsu (14.25), and 

Table 2.   Annual descriptive statistics for PM2.5 and NO2.

PM2.5 NO2

Year Minimum Maximum Mean Minimum Maximum Mean

2013 6 24 12.6 2 26 6.3

2014 11 24 16.2 1 21 6.3

2015 8 19 13.7 2 21 6.1

2016 11 21 14 2 20 5.8

2017 10 19 12.9 2 20 6

2018 7 19 11.8 2 19 5.6

2019 8 18 11.8 0 18 5.8

2020 8 14 10.4 1 17 4.7

2021 7 14 9.7 1 15 4.4
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for ARIMA, the highest MAPE was in Kawadana (23.99), and the lowest was in Tsushima (12.63). For NO2, the 
highest RMSE for Holt-Winters was in Iki (43.77), the lowest was in Tsushima (10.18), and for ETS, the highest 
was in Oomura (15.84), and the lowest was in Fukuishi Jihai (7.83), and for ARIMA the highest was in Obama 
(32.75), and the lowest was in Kawadana (8.61).

Figure 6 shows the forecast results for PM2.5 and NO2 for six monitoring stations using the best model, ETS, 
Holt-Winters, or ARIMA (Table 5). PM2.5 for Tsushima, Inasa, Yoshii and Obama was forecasted with ARIMA, 
while Goto and Daitou were forecasted with Holt winters. The forecast of PM2.5 produced by ARIMA in Inasa 

Figure 2.   Spatiotemporal distribution of PM2.5 from 2013 to 2021 in Nagasaki Prefecture, Japan. Created with 
ArcMap 10.7 (https://​www.​arcgis.​com/​index.​html).

https://www.arcgis.com/index.html
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and Obama tends to converge to the mean. In Tsushima, the ARIMA model; in Goto, the Holt-Winters model; 
and in Daitou and Yoshii, the ETS model was able to replicate the trend and the seasonal components of the 
data for PM2.5. For NO2, Tsushima and Goto were forecasted with Holt-Winters, Obama was forecasted with 
ARIMA, and the other stations were forecasted with ETS. For NO2 ETS, Holt–Winters and ARIMA were able to 
replicate the data’s trend and seasonal components. However, the tendency of the data to converge towards the 
mean was not observed in the case of NO2.

Figure 3.   Spatiotemporal distribution of NO2 from 2013 to 2021 in Nagasaki Prefecture, Japan. Created with 
ArcMap 10.7 (https://​www.​arcgis.​com/​index.​html).

https://www.arcgis.com/index.html
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For PM2.5, in general, the future forecast indicates a negative trend. However, the future concentration of 
PM2.5 will remain above the 2021 WHO recommendations (5 μg/m3). Also, in most stations, the future con-
centrations will stay above or below the 2005 WHO recommendations (10 μg/m3), depending on the season, 
except for Daitou, which shows that the future concentrations will decline below the 2005 recommendations. 
For NO2, the forecast shows a very slight declining trend for the majority of the stations. Compared to the other 
stations in Yoshii, the decline is more consistent. For NO2, all the future forecasts are below the 2005 WHO rec-
ommendations (21 ppb). Also, for most stations, the NO2 concentration will be below or above the 2021 WHO 
recommendations (5 ppb), depending on the season. Yoshii and Obama are exceptions, as NO2 concentration 
levels are below the 2021 recommendations.

Discussion
Acknowledging that air pollution has adverse health effects, even at the lowest observed levels, is crucial for 
reconsidering current legislation and regulation. Thus, reducing the health impacts caused by the average annual 
exposure to NO2 and PM2.5 needs to be prioritized to address known inequities owing to economic activities, 
socioeconomic conditions, and increased vulnerability of the residential population8. Although regulation and 
legislation in Japan have effectively reduced PM2.5 and NO2 concentrations over the years, and it is considered 

Figure 4.   Heatmap represents the correlation between climatic factors and PM2.5 and NO2 air pollution data 
for 18 monitoring stations in Nagasaki Prefecture, Japan. * SOI = Souther Oscillation Index, LP = Average local 
pressure, SP = Average sea level pressure, Rain = Daily Precipitation, Rain1h = Maximum 1-h precipitation, 
Rain10m = Maximum 10 min precipitation, Temp = Average Temperature, Max.T = Maximum Temperature, 
Min.T = Minimum Temperature, Humid = Average humidity, Min.H = Minimum humidity, WindS = Average 
wind Speed, MWS = Minimum wind speed, MIWS = Maximum instantaneous wind speed, SUN = Sunlight time.
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one of the industrialized countries with low levels of these pollutants, the results indicate that the average annual 
concentrations of PM2.5 and NO2 exceeded the 2021 pollution concertation guidelines of WHO. In particular, 
PM2.5 annual average concentration exceeded the 2005 and 2021 pollution guidelines. The difficulty of regulat-
ing and reducing PM2.5 concentration in Nagasaki Prefecture is due to the long-range transport of PM2.5 from 
East Asia and Eurasia28.

As a result of the long-range transport characteristic of PM2.5, its spatial distribution and concentration vary 
throughout the study period as it is affected by climatic and temporal factors. For instance, Pearson’s correlation 
and the random forest feature selection indicated that the most important factors influencing PM2.5 were Spring, 
maximum instantaneous wind speed, humidity, sunlight time one day, and southern oscillation index. In Spring, 
PM2.5 concentrations are higher than in other seasons (Table S2). This is due to the changes in meteorological 

Figure 5.   RF feature selection for PM2.5 and NO2 of different monitoring stations in Nagasaki Prefecture, 
Japan.

Table 3.   Result of the random forest model for PM2.5 using hyperparameters of the optimum value.

Point (PM2.5) Train R2 Test R2 Train MSE Test MSE

Daitou 0.53 0.33 33.2 51.3

Isahaya 0.49 0.29 29.6 43.1

Shimabara 0.49 0.31 29.4 40.1

Oomura 0.50 0.28 24.5 32.7

Kawadana 0.50 0.27 23.6 33.0

Togitsue 0.49 0.22 23.5 35.9

Yukiura 0.47 0.18 24.0 35.1

Matsuura Shisamachi 0.47 0.25 28.8 37.1

Tsushima 0.43 0.16 35.2 61.5

Iki 0.43 0.18 37.6 61.2

Goto 0.41 0.16 32.7 51.1

Obama 0.47 0.27 22.7 29.4

Kogakura 0.47 0.24 29.7 39.2

Inasa 0.46 0.21 30.3 43.4

Muramatsu 0.48 0.23 24.6 36.1

Higashi Nagasaki 0.48 0.24 25.5 36.3

Fukuishi (Jihai) 0.47 0.23 36.0 53.1

Yoshii 0.46 0.23 26.7 32.1
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conditions, especially wind direction, which affects the long-range transport of PM2.5 from East Asia20. Maxi-
mum instantaneous wind speed was negatively correlated in some stations, showing that horizontal dispersion 
plays a role in Nagasaki Prefecture. However, maximum wind speed was positively correlated, indicating that 
PM2.5 pollutants are being transported from other areas29. This result is further reinforced by Fig. 2, which sug-
gests that from 2014 through 2021, the highest concentration of PM2.5 are located in the westernmost part of 
Nagasaki Prefecture. Several studies have indicated that PM2.5 is transported to Nagasaki Prefecture from East 
Asia; thus, the proximity of the westernmost part of Nagasaki’s Prefecture to East Asia, its downwind location, 
and the change of wind direction in Spring are the main reasons for high PM2.5 concentrations detected during 
the study period. The less affected areas are those located in the easternmost part, which is further away from 
East Asia. The wide distribution of PM2.5 and its spatial variability thought the study period makes it difficult to 
regulate and identify specific hotspots. Its wide distribution is also a cause for concern as it has health implica-
tions for many of the resident population in Nagasaki Prefecture. However, during the study period, as indicated 
by Table 2, Figs. 2, 3, and 5, there has been a decline in PM2.5 concentrations. This decline in PM2.5 in Nagasaki 
Prefecture is related to the decrease in PM2.5 concentrations in China and Korea. This reduction can be attributed 
to the changes in policy, technology, social, environmental, and economic factors in Japan, Korea, and China. For 
instance, the changes in environmental policies and the tri-national cooperation between these countries have 
generated positive results in reducing PM2.5 (see Section “Policy background” Table 1). Also, the restrictions on 
social and economic activities imposed due to the COVID-19 pandemic resulted in a notable reduction of PM2.5 
in 2020 and 2021. Although PM2.5 shows a declining trend, better local and regional strategies are needed to 
reduce PM2.5 further as the pollution levels are above the WHO guidelines amidst local and tri-national efforts.

As for NO2, the average annual concentration is below the 2005 pollution guidelines. However, the results 
indicated that the hotspots identified are above the WHO 2021 pollution concentration guidelines. NO2 pollu-
tion concentrations are also influenced by climatic and temporal factors, as indicated by Pearson’s correlation 
and random forest feature selection analysis. For NO2, average wind speed was negatively correlated due to the 
dilution and dispersion of pollutants. However, maximum wind speed and maximum instantaneous windspeed 
were positively correlated, which can be attributed to the notion that the NO2 plum is buoyant, but at higher wind 
speeds, the plum is brought down to ground level30. Temperature was negatively correlated with NO2; temperature 
is known to promote air convection, leading to pollution dispersion and dilution31. Average local pressure and 
average sea level pressure were positively correlated due to the low atmospheric boundary layer, which accom-
panies high pressure and prevents air pollutants’ vertical dispersion29. Sunlight time was negatively correlated to 
NO2; this can be attributed to the photochemical reactions of solar radiation, which reduced NO2 concentration. 
Amidst the influence of climatic factors on NO2, its spatial distribution remained constant throughout the study 
period with consistent hotspot areas, except for 2020, where the pollution concertation was the lowest and more 
dispersed with no visible hotspot. From 2013 to 2019 and 2021, hotspots were located in Nagasaki’s Prefecture 
major cities, Nagasaki, Sasebo, Isahaya, and Oomura. Nagasaki and Sasebo are the two largest cities in Nagasaki 
Prefecture with the highest concentrations of NO2 throughout the study period; this is because of the economic 
activities in the area associated with shipbuilding, power plants, machinery, and heavy industries and also the 
burning of fossil fuels, especially from the transport sector. The lowest concentrations of NO2 were in 2020–2021, 
as indicated by Table 2 and Fig. 3; this remarkable reduction of NO2 can be attributed to the restrictions imposed 
by the Japanese government on social and economic activities due to the COVID-19 pandemic. The reduction of 
NO2 in 2018–2019 could be due to the decommissioning of the Ainoura Power Station, a crude oil-fired power 

Table 4.   Result of the random forest model for NO2 using hyperparameters of the optimum value.

Point (NO2) Train R2 Test R2 Train MSE Test MSE

Daitou 0.709 0.564 4.865 7.979

Isahaya 0.803 0.735 2.458 3.393

Shimabara 0.725 0.542 1.411 2.181

Oomura 0.717 0.608 2.348 3.772

Kawadana 0.745 0.58 1.124 1.678

Togitsue 0.807 0.63 1.753 3.451

Yukiura 0.541 0.359 0.38 0.511

Matsuura Shisamachi 0.586 0.423 0.969 1.524

Tsushima 0.711 0.587 1.362 2.066

Iki 0.671 0.495 2.284 3.255

Goto 0.602 0.357 3.341 3.577

Obama 0.656 0.524 0.403 0.674

Kogakura 0.665 0.499 4.913 7.814

Inasa 0.51 0.354 9.396 8.8

Muramatsu 0.525 0.43 4.121 2.95

Higashi Nagasaki 0.735 0.654 3.156 4.635

Fukuishi(Jihai) 0.673 0.617 9.277 10.43

Yoshii 0.669 0.566 0.95 1.35
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plant. The more gradual decrease of NO2 during the study period, as indicated by the trend and forecast analysis, 
can be attributed, among other factors, to the stricter vehicle emission regulations implemented22 and also the 
regulation of emissions from stationary sources such as fossil fuel powerplants, electric and industrial boilers.

Pearson’s correlation and the random forest feature selection identified major factors influencing PM2.5 and 
NO2 and provided a good indication of the complex relationship between the significant climatic and temporal 
factors and PM2.5 and NO2 pollutants in Nagasaki Prefecture. However, the results indicate that the correlation 
and factors of importance that influence PM2.5 and NO2 vary depending on the monitoring station. These dif-
ferences observed in terms of correlation, factors of importance, tend, and model performance among the 18 
stations can be attributed to the varying unique characteristics of climatic, environmental, social, and economic 
factors in each location, which affect PM2.5 and NO2 concentrations. For instance, in the case of Goto, the major 
predictor of PM2.5 is Spring and humidity in Obama. This difference can be attributed to the location of these 
monitoring stations. Goto is located in the westernmost part of Nagasaki Prefecture, which is the area most 
affected by the long-range transport of PM2.5 from East Asia in Spring, as opposed to Obama, which is located 
in the easternmost part of Nagasaki Prefecture, which is the least affected by the seasonal changes. Although RF 

Table 5.   PM2.5 and NO2 Sen slope, Mann Kendal and Forecast of the monitoring stations in Nagasaki 
Prefecture, Japan.

Location Seasonal Sen slope
Correlated seasonal Mann-
Kendal MAPE trend STL ADF test Models MAPE RMSE

Daitou_PM2.5 − 1.278 0.001 0.1321 0.01 ETS(M,A,M) 15.1101 1.8093

Isahaya_PM2.5 − 0.697 0.012 0.1820 0.01 ARIMA(1,1,1)(2,0,0)[12] 16.6838 2.2761

Shimabara_PM2.5 − 0.626 0.151 0.1413 0.01 Holt-Winters’ additive method 23.5660 2.7902

Oomura_PM2.5 − 0.557 0.178 0.1515 0.04 ETS(M,A,A) 22.0190 2.4334

Kawadana_PM2.5 − 0.467 0.204 0.1516 0.03 ARIMA(1,0,1) with non-zero 
mean 23.9933 2.4873

Togitsue_PM2.5 − 0.581 0.081 0.1360 0.01 Holt-Winters’ additive method 21.0916 2.3016

Yukiura_PM2.5 − 0.574 0.045 0.1334 0.01 ETS(M,Ad,A) 21.9601 2.2308

Matsuura Shisamachi_PM2.5 − 0.605 0.188 0.1602 0.02 ARIMA(2,0,0)(0,0,1)[12] with 
non-zero mean 18.1827 2.0515

Tsushima_PM2.5 − 0.581 0.168 0.1701 0.01 ARIMA(0,1,1)(2,1,0)[12] 12.6324 1.5047

Iki_PM2.5 − 0.718 0.005 0.1547 0.01 ARIMA(0,0,0)(2,1,0)[12] with 
drift 19.8552 2.5151

Goto_PM2.5 − 0.429 0.014 0.1470 0.01 Holt-Winters’ additive method 18.1000 2.2244

Obama_PM2.5 − 0.542 0.064 0.1347 0.02 ARIMA(0,1,1)(1,0,0)[12] 17.3931 1.7036

Kogakura_PM2.5 − 1.014 0.001 0.1138 0.01 Holt-Winters’ additive method 12.5448 1.7062

Inasa_PM2.5 − 0.824 0.003 0.1173 0.01 ARIMA(1,1,1)(1,0,0)[12] 15.9630 1.9276

Muramatsu_PM2.5 − 0.865 0.002 0.1227 0.01 ETS(M,Ad,A) 14.2451 1.6485

Higashi Nagasaki_PM2.5 − 0.833 0.003 0.1108 0.01 Holt-Winters’ additive method 11.9808 1.5653

Fukuishi_Jihai_PM2.5 − 1.178 0.002 0.1400 0.01 ETS(M,A,M) 14.8669 1.8090

Yoshii_PM2.5 − 0.559 0.003 0.1414 0.01 ETS(M,A,A) 26.5897 2.5581

Daitou_NO2 − 0.414 0.003 0.2773 0.01 ETS(A,A,A) 8.6719 0.7435

Isahaya_NO2 − 0.218 0.028 0.4277 0.01 Holt-Winters’ additive method 34.2538 1.3374

Shimabara_NO2 − 0.162 0.032 0.1629 0.01 Holt-Winters’ additive method 30.5764 1.4037

Oomura_NO2 − 0.262 0.043 0.2977 0.01 ETS(A,A,A) 15.8421 0.8721

Kawadana_NO2 − 0.179 0.006 0.3297 0.01 ARIMA(1,0,0)(2,1,1)[12] with 
drift 8.6144 0.4449

Togitsue_NO2 − 0.194 0.007 0.3879 0.01 ARIMA(0,0,0)(0,1,1)[12] with 
drift 13.2104 0.8717

Yukiura_NO2 − 0.016 0.332 0.1968 0.01 ARIMA(0,0,1)(2,1,0)[12] 20.5383 0.4300

Matsuura Shisamachi_NO2 − 0.123 0.026 0.2012 0.01 Holt-Winters’ additive method 16.8278 0.5062

Tsushima_NO2 − 0.032 0.394 0.3543 0.01 Holt-Winters’ additive method 10.1772 0.4442

Iki_NO2 − 0.035 0.633 0.2060 0.01 Holt-Winters’ additive method 43.7718 1.3767

Goto_NO2 − 0.250 0.034 0.2290 0.01 Holt-Winters’ additive method 26.8487 0.6317

Obama_NO2 − 0.085 0.060 0.2679 0.01 ARIMA(1,0,0)(2,1,0)[12] 32.7484 0.6606

Kogakura_NO2 − 0.488 0.002 0.2506 0.01 ARIMA(1,0,0)(2,1,0)[12] with 
drift 21.6239 1.4213

Inasa_NO2 − 0.247 0.004 0.2993 0.01 ETS(A,A,A) 14.3113 0.8219

Muramatsu_NO2 − 0.145 0.296 0.2812 0.01 ARIMA(0,1,0)(0,1,2)[12] 21.0657 0.9726

Higashi Nagasaki_NO2 − 0.501 0.003 0.2849 0.01 ARIMA(0,1,1)(0,1,1)[12] 10.7545 0.6807

Fukuishi_Jihai_NO2 − 0.776 0.002 0.1526 0.01 ETS(M,A,M) 7.8342 1.2311

Yoshii_NO2 − 0.242 0.002 0.2727 0.01 ETS(A,A,A) 13.5204 0.3613
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was able to identify the major factors influencing PM2.5 and NO2, the model’s prediction of PM2.5 and NO2 can 
be further improved by including not only climatic and temporal factors but emission sources and factors related 
to human activities such as economic development, transportation, and energy utilization32. And in the case of 
PM2.5, including emission sources and human activity factors from China and Korea can improve the model’s 
predictive capabilities. Therefore, even though this study has generated valuable information on the spatiotem-
poral distribution, tend, influencing factors, and forecast of PM2.5 and NO2 in Nagasaki Prefecture, additional 
studies are needed to evaluate further the influence of social, environmental, economic, and technological factors 

Figure 6.   Models and Forecast of PM2.5 and NO2 for different monitoring stations in Nagasaki Prefecture, 
Japan. Blue and red lines represent the WHO PM2.5 and NO2 recommendations for 2005 and 2021, respectively.
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affecting the spatiotemporal distribution and trend of PM2.5 and NO2 in Nagasaki Prefecture. And also to assess 
the differences that exist (e.g., trend, influencing factors, etc.) among the monitoring stations.

Materials and methods
Study site.  Nagasaki Prefecture is located on the island of Kyushu (Fig. 7). The prefecture has an area of 
approximately 4,105 km2 with a population of 1,377,187. Nagasaki borders Saga Prefecture on the east and is 
surrounded by the Tsushima Straits, the Ariake Bay, and the East China Sea. Nagasaki air pollution is relatively 
low but is influenced by transboundary air pollution from Asia and Eurasia28,33,34. Studies conducted in Nagasaki 
have demonstrated that air pollution has adverse health effects, especially in children14,16. Moreover, 8.3 and 
29.6% of the population in Nagasaki Prefecture are less than or equal to 10 and more than or equal to 65 years 
of age, respectively. Therefore, they are considered vulnerable to air pollutants35. Although up until March 2012, 
Nagasaki Prefecture had no PM2.5 monitoring stations, the first two stations to record PM2.5 concentration were 
installed in Isahaya and Iki.

Air pollution datasets.  The monitoring station network in Nagasaki Prefecture has increased from four 
monitoring stations in March 2012 to 18 monitoring stations. The recorded data of these eighteen stations are 
available from the Nagasaki Prefecture Atmospheric Environment Information (http://​www.​pref.​nagas​aki.​jp/). 
PM2.5 and NO2 data is collected daily at one-hour intervals, from which monthly and annual averages are cal-
culated. Monitoring stations are located at municipal offices, elementary schools, and towers. We selected the 
2013–2021 PM2.5 and NO2 datasets because measurements of these pollutants were collected at each of the 18 
monitoring stations for each year of the study period. For this study, we calculated the monthly mean concen-
tration of PM2.5 and NO2 for each of the 18 monitoring stations. In Japan, NO2 concentrations are given in 
parts per billion (ppb) as opposed to PM2.5 measurements, which are given in micrograms per cubic meter (μg/
m3). Climatic data of Nagasaki from 2013 – 2021 were collected from the Japan Meteorological Agency website 
(Table 6).

Data processing and ordinary kriging.  For the 18 stations, we calculated the annual average for PM2.5 
and NO2 from the daily data collected in each monitoring station from 2013 to 2021. This resulted in nine data-
sets for PM2.5 and nine for NO2, which were used to implement ordinary kriging to predict the spatiotemporal 
distribution. The dataset for each year was divided into four seasons, Spring: March to May, Summer: June to 

Figure 7.   Study site and air pollution monitoring stations in Nagasaki Prefecture, Japan. Created with ArcMap 
10.7 (https://​www.​arcgis.​com/​index.​html).

http://www.pref.nagasaki.jp/
https://www.arcgis.com/index.html
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August, Autumn: September to November, and Winter: December to February, and summary statistics were 
calculated (Table S2).

Ordinary kriging.  Ordinary kriging (OK) interpolation is suitable for PM2.5 and NO2 concentration map-
ping as it is a commonly used geostatistical estimator in air pollution interpolation and is often referred to as 
the unbiased estimator36. Ordinary kriging models the unsampled value z*(x0 ) as a combination of neighboring 
observations n, Eq. (1),37:

where z*(x0) estimate value at x0, Z(xi) measure value at xi and λi weight is assigned for the residual of Z(xi).

Semivariogram.  We derived the experimental semi-variogram for the 18 datasets to determine the spatial auto-
correlation and the spatial structure of data points. The semi-variograms are expressed as a function of the dis-
tance between data points and explain the measured points’ spatial relationship, Eq. (2),38.

where γ(h) quantity function of increment h, N(h) numbers of pairs separated by the vector h, Z(xi) is the sam-
pled values at location xi and Z(xi + h) sampled measurements at location Xi + h.

In this study, we fitted the experimental semi-variogram to two theoretical semi-variogram models: expo-
nential and spherical, two of the most commonly used models39. The parameters determined were: range (a) 
the distance up until which the regionalized variable is auto-correlated, partial sill (c) which is the spatially 
structured part of the residuals, and the nugget (c0) the non-spatial variability40. The spherical and exponential 
models are defined by Eqs. (3) and (4) 41.

(1)z∗(x0) =
n

∑

i=1

�iZ(xi)

(2)γ(h) =
1

2N(h)

N
∑

i=1

[Z(xi + h)− Z(xi)]

(3)
Exponential Model

γ (h) = c0 + c

[

1− exp

(

−
3h

a

)]

Table 6.   Parameters for the random forest model. a www.​jma.​go.​jp. b www.​cpc.​ncep.​noaa.​gov/​produ​cts/​precip/​
CWlink/​daily_​ao_​index/​ao.​shtml. c www.​longp​addock.​qld.​gov.​au/​soi. *Time lag data (1–7 days past each day) 
was created for the climatic variables.

Type Parameter Symbol Unit (Daily) Location

Air pollutant
PM2.5 PM2.5 μg/m3 18 Point (Fig. 7)

NO2 NO2 ppb 18 Point (Fig. 7)

Climatic factors

Average local pressure LP hPa Data from

Average sea level pressure SP hPa Japan Meteorological

Daily Precipitation Rain mm Agency in Nagasaki1)

Maximum 1-h Precipitation Rain1h mm

Maximum 10 min Precipitation Rain10m mm

Average temperature Temp ℃

Maximum temperature Max.T ℃

Minimum temperature Min.T ℃

Average humidity Humid %

Minimum humidity Min.H %

Average wind speed WindS m/s

Maximum wind speed MWS m/s

Maximum instantaneous wind speed MIWS m/s

Sunlight time SUN h

Temporal factors

Wind direction WindD 8 Directions Nagasaki1)

Seasons Season 4 Seasons Japan

Japan Day Day Holiday or not Japan

Arctic Oscillation index AOI 6 Rank NOAA CPC2)

Southern Oscillation Index SOI Positive or negative Queensland3)

http://www.jma.go.jp
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
http://www.longpaddock.qld.gov.au/soi
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Cross validation.  The model’s prediction ability of the unsampled PM2.5 and NO2 locations was conducted 
using cross-validations to calculate the mean error (ME), standard mean error (SME), root mean square error 
(RMSE), root mean square standard error (RMSSE) and average standard error (ASE). We analyzed the cross-
validation results for both spherical and exponential models; the model with better results was selected for 
interpolating PM2.5 and NO2 (Table S1). The RMSE and RMSSE are defined by Eqs. (5) and (6), respectively42.

where N number of validation points, Z(xi) measured value and Z*(xi) standard values being Z1(xi) and Z2(xi).
A RMSE closer to 0 and a RMSSE closer to 1 depict that the parameters and fitting model are excellent and 

the kriging estimators are robust.

Pearson’s correlation and random forest.  Pearson’s correlation analysis was conducted for each of the 
18 monitoring stations to produce a heatmap depicting the correlation between major climatic and temporal 
factors and PM2.5 and NO2 pollutants (Table 6). We then used random forest (RF) to identify the most important 
climatic and temporal factors influencing PM2.5 and NO2 in each of the 18 stations43. The factors identified were 
then used to construct the RF models for each of the 18 stations to make PM2.5 and NO2 predictions. For each 
of the 18 stations, the random forest models were trained with 80% and validated with 20% of the respective 
monitoring station data. The RF model was then evaluated using the root mean square error (R2) and the mean, 
standard error (MSE). Random forest modeling is a type of ensemble learning method used for classification 
and regression analysis. It is well known to have advantages in terms of accuracy, robustness, and computa-
tional efficiency compared to other models44. The RF model was constructed using the open-source machine 
learning library scikit-learn*2 on Python. Next, the categorical factors were converted into dummy or indicator 
factors using the Python Pandas method (get dummies) (Tables 6 and 7). Furthermore, 7-day time lag data was 
added to the climatic factors to confirm the influence of past dependent factors. Finally, hyperparameters were 
determined with the ranges and steps indicated in (Table 8) using the grid-search technique for optimal model 
construction.
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Table 7.   Categorical rank from the continuous data of AOI.

Rank AOI

−AAA​  < − 2

−AA − 2 to − 1

−A − 1–0

 +A 0–1

 +AA 1–2

 +AAA​ 2 < 

Table 8.   Hyperparameters of the random forest grid search.

Parameter Range Step

Max_depth 3–7 1

Min_sample_leaf 2–30 2

n_estimators 10–150 10

Mas_features Auto
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Trend and forecast analysis.  R statistical software was used to conduct the trend and forecast analysis (R 
Core Team, 2022). For the trend analysis, monthly mean concentrations for PM2.5 and NO2 were utilized. The 
csmk.test function was used to conduct the Mann–Kendall test for trend detection. Equation (7) gives Mann–
Kendall Statistics S, Variance V(S), and standardized test statistics Z45,46.

where xj and xi time series and n number of data points in the time series. Where tp number of ties up to sample 
p. A positive Z value signifies a rising trend, a negative Z signifies a descending trend for the data period.

The sens.slope function was used to calculate the Sen’s slope which indicated the magnitude of the trend. 
Equation (8) gives the slope for all data pairs and Eq. (9) the median of the n values of Ti, Sen’s slope estimator 
(Qi)47.

where Ti slope and xj and xk data values at time j and k.

A positive Qi signifies a rising trend; a negative Qi signifies a declining trend over time.
Both Mann–Kendall and Sen’s slope consider the seasonality of the data. The trend package in R was used to 

do the correlated seasonal Man-Kendall test and the seasonal Sen’s slope tests48. Both functions do not operate 
on missing data; therefore, the tsclean function in the forecast package was used49,50. To obtain the trend of PM2.5 
and NO2, we decompose the time series data into a trend, seasonal and irregular components by using the stl 
(seasonal decomposition of time series by LOESS) function developed by William Cleveland51,52. The stl function 
from the stats package was used to fit the loess to the data and the tsclean function in the forecast package was 
used to identify and replace outliers and missing values before applying the stl function. Then the stl function 
from the stats package was used to fit the loess to the data. The mean absolute percentage error (MAPE) and root 
mean square error was computed to determine if the component after the LOESS decomposition had satisfactorily 
captured the PM2.5 and NO2 data information. The goodness of fit of the trend line was determined by checking 
the residuals; this was done by using the checkresiduals function from the forecast package.

Both exponential smoothing and ARIMA models were evaluated for the forecast analysis. These methods 
have been used to perform air pollution forecast analysis and, in some cases, have performed better than deep 
learning methods. First, the Augmented Dickey-Fuller test (ADF Test) was performed to ensure the stationar-
ity of the time-series data53. Once stationarity was confirmed, the two models were trained and tested with the 
2013–2019 and the 2020–2021 pollutants datasets, respectively. Next, validation was performed using the test set 
whereby the mean absolute percentage error (MAPE) and root mean square error were computed to determine 
if the EST and ARIMA had satisfactorily captured the information of the PM2.5 and NO2 data. The models with 
the lowest AIC were then used to do the forecasting of both PM2.5 and NO2.

Exponential smoothing (ES) forecasting methods and models.  Brown, Winter and Holt introduced the exponen-
tial smoothing54. Gardner55 extensively reviews the various ES methods. The exponential smoothing forecasting 
formulation consists of the forecast method and the statistical model. The forecast method uses an algorithm to 
produce a point forecast which is a prediction of a single value whereas the forecast statistical model is a process 
which generated an entire probability distribution with several values which when averaged generates a point 
forecast and provides prediction intervals with a level of confidence54.

The exponential smoothing forecasting method is based on the idea that the forecast produced are weighted 
averages of past observations, with the weight associated to each observation exponentially decreasing as the 
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observation gets older54,55. Model formulations are of component (recursive) form and error correction form54. 
The error correction form is derived from the rearrangement of the equation in the component form. This error 
correction form uses the state space approach to exponential smoothing method since it consists of a measure-
ment (observed) equation and a state (transition) equation. These two equations with their error distribution 
constitute a specified statistical model know as state space model. Since all observations and state variables uses 
the same error process it is called "single source of error" (SSOE) or "innovation" and more specifically known 
as "innovation state space model. The single source of error (SSOE) was formulated by Snyder56.

Pegels provided classification of the trend and the seasonal patterns depending on whether they are additive 
(linear) or multiplicative (nonlinear)56. The family of exponential smoothing forecasting methods can be system-
atically described as a combination of level, trend, and seasonality54,58,59. Each one can be of either an additive 
character or multiplicative character. The trend component can be classified as having no trend, additive trend, 
additive damped trend, multiplicative trend, and multiplicative damped trend55,57–59. The simplest classification 
is the single exponential smoothing (SES) method, which considers only the constant level model and uses data 
with no trend or seasonality. This method consists of a forecast and smoothing equations for the level. The Holt 
linear trend method, also known as Double Exponential Smoothing (DES), consist of a forecast equation, and 
two smoothing equations: a level equation and a trend equation.

The Holt-Winters seasonal method, also known as the triple exponential smoothing (TES), consist of a fore-
cast equation and three smoothing equations: a level equation, trend equation, and seasonality equation. The 
family classification of exponential smoothing generates a combination of 15 exponential smoothing methods 
with different components58,59. Rearranging the terms in the different components for each of the 15 exponen-
tial smoothing methods (i.e., level component, trend component, and seasonal component), generate an error 
correction form model for each of the 15 methods with each having an additive or a multiplicative error model 
thus producing a total of 30 error models. These error-correction form models, also known as "innovative" state 
space models, are labeled as ETS ( ; ; ), representing Error, Trend, and Seasonal. The forecast equation is the 
measurement equation, and the smoothing equations becomes the state equation, with both having the same 
source of error54.

Of the 15 exponential smoothing methods, six were considered here. These are the Holts linear trend method, 
Holt linear damped trend, Holt-Winters additive, Holt-Winters additive damped, Holt-Winters multiplicative, 
and Holt-Winters multiplicative damped component. These six methods are converted to their error correction 
components form with their respective additive and multiplicative error correction model, yielding 12 error 
correction models. These 12 error correction models were used for model selection (Table S3).

The innovative state space model forecasting for each univariate time series was generated using the ets() 
function in the forecast package in R49,58. Two procedures using ets() function for model selection were used: the 
automatic selection and the manual selection of a model. The automatic selection of the ETS models provides 
options for which models to be evaluated and selects the most appropriate model given the data. The model 
option used was model = "ZAZ" where the first Z represents either additive or multiplicative error, the second 
Z represents automatic selection in which the choices are no seasonality, additive seasonality, or multiplicative 
seasonality, and the A represents an additive trend. Based on this "ZAZ" option, 12 models were evaluated from 
the 30 error models available. Selection of the best-fitted model from the 12 models was based on the mini-
mization of the corrected Akaike Information Criterion (AIC), which avoids over-fitting by considering both 
goodnesses of fit and model complexity.

The manual model selection procedure used was selecting the hw() function from the forecast package in 
R. This function selects the Holt-Winters additive model, which corresponds to the ETS(A;A;A) in the ets () 
function which stands for additive error, additive trend, and additive seasonality55. The Ljung–Box Q test was 
used for residual diagnostics to determine whether the residuals were white-noise sequences. The Box.test was 
used from the stata package in R.

The ARIMA models.  Slutsky, Walker, Yaglom, and Yule first articulated autoregressive (AR) and moving aver-
age (MA) models. Box & Jenkins integrated the existing knowledge formulating ARIMA, known as the Box-Jen-
kins approach60. An autoregressive model (AR) assumes the forecasted value is a linear combination of the past 
values of the variable, and moving average models (MA) assumes a linear combination of past forecasting errors. 
Combining these two models, AR and MA, produces an ARMA model. If the time series is non-stationary then 
the series are differenced to create stationarity before modeling, then the I is introduced in the ARMA. The I in 
an ARIMA model represents the integration parameter produced by differencing. The non-seasonal ARIMA 
models have parameters p, d, and q. The p represents the lag order of the autoregression, the d is the order of the 
differencing, and the q is the order of the moving average for the non-seasonal part. The seasonal ARIMA, also 
known as SARIMA, incorporates an additional set of terms, like the ARIMA models, that considers the seasonal 
effects. The seasonal parameters incorporated are P, D, Q, and m. The P, D, and Q represent the lag order of the 
autoregression, the order of the differencing, and the order of the moving average for the seasonal part, and the 
m represents the number of periods in each season. Box et al. and Chatfield61,62 expressed the AR(p), MA(p), and 
ARMA (p, q), mixed seasonal ARMA(p,q)(P,Q)m, ARIMA(p,d,q), and mixed seasonal ARIMA -SARIMA(p,d,q)
(P,D,Q)m models.

ARIMA forecast was done using the automatic ARIMA algorithm for model selection using the auto.arima() 
function from the forecast package in the R program49,50. Two procedures were used in the automatic selection. 
The first method used the default settings (restricted models), and the second was full model selection. Sometimes 
running the full model selection will produce a different optimal model54.
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Data availability
The data supporting this research’s findings is provided in the supplementary materials. The raw data used for 
the study is also available from the corresponding author upon reasonable request.
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