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Abstract
El Niño episodes are part of the El Niño-Southern Oscillation (ENSO), which is the strongest driver of interannual climate
variability, and can trigger extreme weather events and disasters in various parts of the globe. Previously we have described
a network approach that allows to forecast El Niño events about 1 year ahead. Here we evaluate the real-time forecasts of
this approach between 2011 and 2022. We find that the approach correctly predicted (in 2013 and 2017) the onset of both
El Niño periods (2014-2016 and 2018-2019) and generated only 1 false alarm in 2019. In June 2022, the approach correctly
forecasted the onset of an El Niño event in 2023. For determining the p-value of the 12 real-time forecasts, we consider 2 null
hypotheses: (a) random guessing where we assume that El Niño onsets occur randomly, and (b) correlated guessing where we
assume that in the year an El Niño ends, no new El Niño will start. We find pa ∼= 0.005 and pb ∼= 0.015, this way rejecting
both the null hypotheses that the same quality of the forecast can be obtained by chance. We also discuss how the network
algorithm can be further improved by systematically reducing the number of false alarms. For 2024, the method indicates the
absence of a new El Niño event.

1 Introduction

The El Niño-Southern Oscillation (ENSO) (Dijkstra 2005;
Clarke 2008; Sarachik and Cane 2010; Wang et al. 2017;
Timmermann et al. 2018; McPhaden et al. 2020) can be con-
sidered as a quasi-oscillation of the Pacific ocean-atmosphere
system, consisting of irregular warm (“El Niño”) and cold
(“La Niña”) deviations from the long-term mean. Strong
El Niño episodes can lead to extreme weather events (like
extreme rainfall and droughts) in various parts of the globe
(Davis 2001; Wen 2002; Kovats et al. 2003; Donnelly et al.
2007; Corral et al. 2010; McPhaden et al. 2020). To mitigate
at least some of the adverse societal and economic impacts,
early forecasts of El Niño events are thus highly desirable.

To forecast El Niño events, many state-of-the-art coupled
climate models, as well as a variety of statistical approaches
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(Cane et al. 1986; Penland and Sardeshmukh 1995; Tziper-
man et al. 1997; Fedorov et al. 2003; Galanti et al. 2003;
Kirtman 2003; Chen et al. 2004; Palmer et al. 2004; Luo
et al. 2008; Chen and Cane 2008; Chekroun et al. 2011; Saha
et al. 2014; Chapman et al. 2015; Feng et al. 2016; Lu et al.
2016;Rodriguez-Mendez et al. 2016;Meng et al. 2018;Note-
boom et al. 2018; Ham et al. 2019; DeCastro et al. 2020;
Petersik and Dijkstra 2020; Hassanibesheli et al. 2022), have
been suggested, and monthly updated overviews of the latest
operational forecasts (consistingof 17dynamical and9 statis-
tical methods) are available from the International Research
Institute for Climate and Society (IRI 2023a). While these
forecasts are quite successful at shorter lead times, they have
limited anticipation power at larger lead times. In particular,
they generally fail to overcome the so-called “spring barrier”
(see, e.g., Webster 1995; Goddard et al. 2001), which short-
ens their typical warning time to around 6 months (Barnston
et al. 2012; McPhaden et al. 2020) (see also the discussion
in Tippett et al. 2020).

In 2012, an alternative forecasting approach (Ludescher
et al. 2012, 2013) (see also Ludescher et al. 2014) has been
suggested, which is based on complex-networks analysis
(Tsonis et al. 2006; Yamasaki et al. 2008; Donges et al. 2009;
Gozolchiani et al. 2011; Dijkstra et al. 2019; Fan et al. 2021;
Ludescher et al. 2021). The approach analyses the strength
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Fig. 1 The structure of the climate network. Each of the 14 grid points
in the “El Niño basin” (red circles) is linked to each of the 193 grid
points outside this domain (blue circles). The green rectangle denotes
the Niño3.4 region

of the cooperativity represented by the mean link strength
S(t) in a Pacific climate network, and gives an alarm when S
crosses a fixed threshold, predicting a new El Niño episode
to come in the following year. The optimal threshold � was
determined in a learning period between 1950 and 1980. In
the period between 1981 and 2011, this threshold�was used
to hindcast the presence (alarm) or absence (no alarm) of a
new El Niño event in the following year. After the threshold
is fixed, there is no free parameter in the approach.

Theprocedure to split the knowndata (at that timebetween
1950 and 2011) into a learning phase and a hindcasting phase
is necessary for statistical forecasting methods and aims to
reduce the risk of an overfitting to spurious precursors. But
the mere fact that each algorithm, when being developed,
can only make “predictions” of events that have already
occurred automatically introduces a certain “publication”
bias, because only those algorithms that are successful in
both the learning and hindcasting phase will be considered
and published.

The true test for statistical forecasts are real-time forecasts.
For the climate network approach, the period of real-time
forecasts started in 2011. Herewe evaluate the real-time fore-
casts of the network approach. First, in Section 2,we describe
how El Niño-events are classified by the Oceanic Niño Index
(ONI) and list the ONI values between 2011 and present.
Next, in Section 3, we briefly describe the climate network
approach. In Sections 4 and 5, we analyse its real-time fore-
casts between 2011 and present and determine the statistical
significance of the forecast. In Section 6, we describe an
improvement of the algorithm, which is based on the false
alarm statistics.

2 Data

The ENSO phenomenon is quantified by the Oceanic Niño
Index (ONI), which is defined as the three-month running-
mean sea surface temperature (SST) anomalies in the
Niño3.4 region (see Fig. 1) and is a principal measure for
monitoring, assessing, and predicting ENSO.

An El Niño-episode is said to occur when the index is
at least 0.5°C above the average for a period of at least 5
months. Table 1 shows the ONI between 2012 and present,
as communicated by the National Oceanic and Atmospheric
Administration (NOAA) (CPC 2023). The El Niño periods
are in boldface. The table shows that there were no El Niño
periods in 2012, 2013, 2017, 2020, 2021, and 2022. In May
2023, an El Niño started and is still ongoing at the time of
writing.

3 The climate network approach

The structure of the climate network consideredhere is shown
in Fig. 1. The network is based on a combination of the

Table 1 Oceanic Niño Index
(ONI) 2012 - present (data from
CPC 2023)

Year DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ

2012 −0.9 −0.7 −0.6 −0.5 −0.3 0.0 0.2 0.4 0.4 0.3 0.1 −0.2

2013 −0.4 −0.4 −0.3 −0.3 −0.4 −0.4 −0.4 −0.3 −0.3 −0.2 −0.2 −0.3

2014 −0.4 −0.5 −0.3 0.0 0.2 0.2 0.0 0.1 0.2 0.5 0.6 0.7

2015 0.5 0.5 0.5 0.7 0.9 1.2 1.5 1.9 2.2 2.4 2.6 2.6

2016 2.5 2.1 1.6 0.9 0.4 −0.1 −0.4 −0.5 −0.6 −0.7 −0.7 −0.6

2017 −0.3 −0.2 0.1 0.2 0.3 0.3 0.1 −0.1 −0.4 −0.7 −0.8 −1.0

2018 −0.9 −0.9 −0.7 −0.5 −0.2 0.0 0.1 0.2 0.5 0.8 0.9 0.8

2019 0.7 0.7 0.7 0.7 0.5 0.5 0.3 0.1 0.2 0.3 0.5 0.5

2020 0.5 0.5 0.4 0.2 −0.1 −0.3 −0.4 −0.6 −0.9 −1.2 −1.3 −1.2

2021 −1.0 −0.9 −0.8 −0.7 −0.5 −0.4 −0.4 −0.5 −0.7 −0.8 −1.0 −1.0

2022 −1.0 −0.9 −1.0 −1.1 −1.0 −0.9 −0.8 −0.9 −1.0 −1.0 −0.9 −0.8

2023 −0.7 −0.4 −0.1 0.2 0.5 0.8 1.1 1.3 1.6 1.8 1.9 2.0
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networks introduced byYamasaki et al. (2008) andGozolchi-
ani et al. (2011), who studied cooperative phenomena during
El Niño events. The nodes of the network consist of 14 grid
points in the “El Niño basin” (red circles) (Gozolchiani et al.
2011) (which roughly covers the Niño1, Niño2, Niño3, and
Niño3.4 regions), and 193 grid points outside this domain
(blue circles) (Yamasaki et al. 2008).

The green rectangle denotes the Niño3.4 region where
the ONI is calculated. The grid points are the nodes of the
climate network and are characterized by their surface air
temperature (SAT) anomaly. The SAT data are obtained from
the NCEP Reanalysis 1 dataset (Kalnay et al. 1996; NCEP-
NCAR 2023).

Each node inside the El Niño basin is linked to each node
outside the basin. The link strength between two nodes (i.e.,
the strength of the teleconnections between them) at a given
time t is determined from the values of their time-lagged
cross-correlation (see Appendix A) for which we consider
time lags between 0 and 200 days. For each pair of nodes
i and j , we determine, for the given time t , the maximum,
the mean, and the standard deviation around the mean of the
absolute value of the cross-correlation function, and define
the link strength Si j (t) as the difference between the maxi-
mum and the mean value, divided by the standard deviation.
Accordingly, Si j (t) describes the link strength relative to
the underlying background noise (signal-to-noise ratio). By
averaging over all individual links in the network at a given
instant t , one obtains the mean link strength S(t), which

is the crucial entity in the climate network approach (for
details, see Gozolchiani et al. 2011; Ludescher et al. 2013)
and Appendix A). The variation of S(t) with time t can be
considered as ameasure of theway the cooperativity between
the equatorial “El Niño basin” and the rest of the tropical
and subtropical Pacific region changes with time t . S(t) has
a remarkable property: it typically decays during an El Niño
event (Ludescher et al. 2013) and rises in the year before an
event starts. This rise of S(t) can be used as a precursor for
the event (Ludescher et al. 2013, 2014).

The optimized algorithm involves an empirical decision
threshold �. Whenever S crosses � from below while the
most recent ONI is below 0.5°C, the algorithm sounds an
alarm and predicts the start of a new El Niño episode in the
following year. Otherwise, it predicts the absence of a new
El Niño event.

In the learning phase between 1950 and 1980, all thresh-
olds above the temporalmeanof S(t)were considered and the
optimal ones, i.e., those ones that lead to the best predictions
in the learning phase, were determined. �-values between
2.815 and 2.834 lead to the best performance (Ludescher
et al. 2013), with a false alarm rate of 1/20.

In the hindcasting phase (1981-2011) (see Fig. 2, where
� = 2.82), the performance of these thresholds was tested;
thresholds between 2.815 and 2.826 gave the best results.
Figure 2 shows that the alarms were correct in 75% and the
non-alarms in 86% of all cases. For �-values between 2.827
and 2.834, the performance was only slightly weaker.

Fig. 2 The forecasting scheme. We compare the average link strength
S(t) in the climate network (red curve) with the decision threshold
� = 2.82 (horizontal line) and the ONI (right scale), between January
1981 and December 2011. When the link strength crosses the thresh-
old from below and the last available ONI is below 0.5°C, we give an
alarm and predict that a new El Niño episode will start in the follow-
ing calendar year. Periods with an ONI greater or equal to 0.5°C for
less than 5 months, i.e., periods that do not satify the definition of an
El Niño are shown in light blue. The El Niño episodes (when the ONI
is greater or equal 0.5°C for at least 5 months) are displayed in dark

blue. Correct predictions are marked by green arrows and false alarms
by dashed arrows. The early false alarms in February 1994 and July
2004 are followed by at least one ONI value equal or above 0.5°C in the
same year. We would like to note that in the shown hindcasting period
of the algorithm, the temporal distance between two El Niño onsets is
at least 2 calendar years. However, this does not hold in general since
in the learning phase (1950-1980, here not shown, see, e.g., the table in
CPC 2023), there were 3 instances where an El Niño onset was directly
followed by a 2nd onset in the following calendar year
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Fig. 3 The real-time forecasts.
Same as Fig. 2, but for the
period between January 2011
and December 2023. As in
Fig. 2, the false alarm (in 2019)
is followed by at least one ONI
value equal to or above 0.5°C
(highlighted in light blue) in the
same year. Only alarms until
2022, where the outcome is
known, are marked by arrows

4 Real-time forecasts between 2011
and present

Figure 3 shows the forecasts of the network approach
between 2011 and 2022. In 4 years (2013, 2017, 2019, and
2022) the algorithm predicted the onset of a new El Niño
event in the following calendar year. Only the alarm of 2019
was a false alarm. The present El Niño started in May 2023,
so the alarm given in June 2022 was also correct.

In 8 years (2011, 2012, 2014, 2015, 2016, 2018, 2020,
2021) the approach did not give an alarm and thus correctly
predicted the absence of a new El Niño in the following year.
This is true also for 2014, since in 2015 no new El Niño
episode, separated from the foregoing one by at least oneONI
value below 0.5, started. Also these forecasts of the absence
of a new El Niño event are far from being trivial as a compar-
ison with the official forecasts by the International Research
Institute for Climate and Society (IRI 2023b) shows:

(i)While the climate network approach already inDecem-
ber 2011 indicated the absence of a new El Niño in 2012, the
CPC/IRI consensus probabilistic ENSO forecast provided in
August and September 2012 75 and 65 percent probabil-
ity, respectively, for the presence of El Niño conditions in
December 2012 (NDJ).

(ii) In spring 2017, most dynamical and statistical mod-
els falsely predicted an event in 2017. For instance, the vast
majority of the ensemble members of the North American
Multimodel forecasted, in April 2017, positive anomalies,
while the actual SSTA turned out to be negative (Tippett
et al. 2020).

Indeed, according to Tippett et al. (2020), climate mod-
els tend to predict warming when initialized after observed
warming conditions and cooling when initialized after
observed cooling conditions, and thus failed to capture the
correct direction of ENSO evolution in half of the 8 springs
between 2011 and 2018.

Next, we turn to the question whether the real-time
forecasts of the climate network approach are statistically sig-
nificant, i.e., whether the same performance can be obtained
by random guessing or not.

5 Statistical significance of the forecasts

For obtaining the statistical significance of a given configu-
ration K0 containing N forecasts with nc correct alarms and
n f false alarms, one has to determine the probability w0 that
a configuration with the same number nc of correct alarms
and the same number n f of false alarms can be obtained by
guessing. In addition, one has to consider all configurations
K1, K2, . . . , Km with a better or equal quality of forecast and
determine the corresponding probabilities w1, w2, . . . , wm .
Then the probability p that by guessing the same or better
forecasts can be made is given by

p =
m∑

i=0

wi , (1)

p is called the p-value. When p is below 0.05, the forecasts
are called statistically significant at a 0.05 level; when p is
below 0.01, the forecasts are called highly significant.

To obtain the p-value, we consider 2 different null
hypotheses, HR and HC . In the first null hypothesis HR we
assume that the given forecast configuration can be obtained
by randomly guessing with the climatological El Niño onset
probability. This is a priori justified since our algorithm
allows the occurrence of 2 or more subsequent El Niño onset
alarms (see the alarms in 1993 (correct alarm) and 1994 (false
alarm) (Fig. 2)), and the observed (1950-2023) temporal dis-
tance between 2 El Niño onsets is between 1 and 5 years,
see, e.g., the table in CPC 2023). In the second more strin-
gent null hypothesis HC we go one step further and take into
account that the El Niño onsets are correlated, in particular
in the hindcasting and forecasting phase (1981-2023) we are
interested in, 2 El Niño onsets are separated by at least one
calendar year.

5.1 Uncorrelated random guessing

For obtaining the probabilities wi , we first need to deter-
mine the occurrence probability q of the onset of El Niño
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episodes. In the 43 years between January 1981 and 2023,
12 El Niño episodes started, so the occurrence probability is
q = 12/43 ∼= 0.279.

First we focus on the occurrence of new El Niño episodes
in the period between January 2012 and December 2023.
Denoting years where a new event started by + and years
where no new event started by−, the observed configuration
of years with and without new El Niño events is

(−,−,+,−,−,−,+,−,−,−,−,+), (2)

where the most left symbol refers to 2012 and the right-most
symbol to 2023 where a new El Niño episode started in May.
Note that in the El Niño episode between 2014 and 2016,
the years 2015 and 2016 are “-” years, since no new El Niño
event started during them. For the period between 2012 and
2023, the network approach predicted the configuration

(−,−,+,−,−,−,+,−,+,−,−,+), (3)

whichdiffers from theobserved configurationonly in the year
2020 (+ instead -), where a new event was falsely predicted
to come.

There are 9 possible configurations where one of the −
signs in the observed configuration (2) is changed into a +
sign, and all have the same quality of forecast. Accordingly,
the probability of randomly guessing one of these 9 config-
urations is w0 = 9q4(1 − q)8.

There is only one better forecast possible: the probability
w1 of randomly guessing the observed configuration (2) is
w1 = q3(1 − q)9. Accordingly, the p-value of the real-time
forecasts is

p = 9q4(1 − q)8 + q3(1 − q)9. (4)

This yields, with q = 12/43,

p ∼= 5.1 × 10−3, period 2011 − present, (5)

which is well below the high-significance threshold p =
10−2.

When we consider both the hindcasting and forecast-
ing period (January 1981 - December 2023) the p-value is
obtained in exactly the same way, but there are more con-
figurations to be considered. In the 43 years between 1981
and 2023, 12 new El Niño episodes started. In the 42 target
years between 1982 and 2023, the network algorithm cor-
rectly forecasted 9 of these events and gave 3 false alarms.
Accordingly, the hit rate α+ defined as the number of correct
alarms nc divided by the number of events, is 9/12, while the
false alarm rate, defined as the number of false alarms n f

divided by the number of non-events, is 1/10. Thus the rate
α− of correctly predicted non-events is (30−3)/30 = 9/10.

Both numbers, α+ and α− quantify the performance of the
algorithm. The probability of randomly guessing a configu-
ration with nc correct events and n f false events is given by

w =
(
12

nc

)(
30

n f

)
qnc+n f (1 − q)42−nc−n f . (6)

The binomial coefficients describe the number of ways nc
events can be chosen out of 12 events and n f false events out
of 30 non-events; q = 12/43 as above.

We need to determine w for all configurations with a sim-
ilar or better predictive power. A natural measure for the
predictive power is P = (α+ + α−) − 1, which is 1 when
the forecast is perfect and 0 when the forecast is purely ran-
dom. Here, P = (3/4 + 9/10) − 1 = 0.65.

Accordingly, for estimating the p-value of our forecast,we
take into account all configurations with a higher or equal
predictive power, i.e., (nc = 8, n f = 0), (nc = 9, n f =
0, 1, 2, 3), (nc = 10, n f = 0, 1, . . . , 5), (nc = 11, n f =
0, 1, . . . , 8), and (nc = 12, n f = 0, 1, . . . , 10). For each of
these combinations of (nc, n f ), we determinew from (6) and
sum up (1) the obtained probabilities. The result is

p ∼= 3.0 × 10−5, period 1981 − present. (7)

5.2 Correlated random guessing

Figures 2 and3 show that between1981and2023, subsequent
El Niño onsets do not occur: in the year in which an El Niño
period ends, no new El Niño starts afterwards. Accordingly,
the El Niño onsets are anticorrelated. If in December of any
year between 1981 and present, ElNiño conditions prevailed,
then these conditions either continued throughout the next
year (as in 2015) or ended in the next year. Accordingly, the
probability q2 that after a December with El Niño conditions,
a new El Niño event will start in the following year is 0. This
considerably modifies the guessing procedure and leads to a
higher p-value than in the case of purely random guessing. In
the more realistic case of a small non zero probability q2, the
p-valuewill be between the p-value for randomguessing and
the p-value for q2 = 0. Here we focus solely on the strongly
anticorrelated case q2 = 0, since its p-value serves as an
upper bound for both correlated and random guessing. In the
absence of El Niño conditions in December, a new El Niño
event will start in the following year with probability q1. For
simplicity, we confine ourselves to the forecasting phase.

In the following, we denote a year with an El Niño onset
by N and add the index 1 or 2 for the duration of the event.
A year where no new El Niño event starts is denoted by 0.
Then the observed configuration is

(0, 0, [N2, 0], 0, [N1, 0], 0, 0, 0, N1), (8)
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where the brackets mark the correlated complexes of N and
0. The probability for guessing correctly this configuration
is

w1 = q31 (1 − q1)
6. (9)

The network algorithm yielded

(0, 0, [N2, 0], 0, [N1, 0], f , 0, 0, N1), (10)

where f denotes the false alarm. A false alarm can happen
only in those years that do not belong to an N0 complex.
There are 6 configurations with one false alarm, i.e.

p = 6q41 (1 − q1)
5 + q31 (1 − q1)

6. (11)

Between 1981 and 2023, therewere 12 “0”-years followed
by an El Niño period “N”, and 17 “0”-years followed by a
“0” year, i.e., non El Niño onset years. Thus q1 = 12/29,
yielding w1 ∼= 0.003 and p ∼= 0.015. Accordingly, even
whenwe compare the climate network forecastswith those of
strongly correlated random guessing, the network forecasts
are significant at the 0.015 level.

6 Further improvement of the climate
network algorithm based on the false
alarm characteristics

Figures 2 and 3 show that all false alarms in the hindcasting
and forecasting period (1994, 2004, and 2019) are followed
by at least one ONI value equal or above 0.5°C in the same
calendar year. This suggests that there may be only a low
chance that an alarm is correct when the ONI does not stay
below0.5°C for the rest of the year.Accordingly, an improved
algorithm (version 2) based on this feature may consist of 2
steps. (i) In the first step, a (preliminary) alarm is given when
S crosses the threshold from below, indicating the possible
appearance of an El Niño event in the following year. This
alarm can occur at any time in a calendar year. (ii) When
the ONI stays below 0.5°C until the end of December, this
alarm is confirmed. Otherwise, the alarm is withdrawn and
the absence of an El Niño onset is predicted for the following
year.

When applying version 2 of the algorithm to the period
between 2011 and 2022, all forecasts turn out to be correct,
resulting in p-values p ∼= 1.1 × 10−3 for random guessing
and p ∼= 2.9 × 10−3 for correlated guessing.

Figure 3 shows that in January 2023, the mean link
strength S(t) crossed the threshold �, giving a preliminary
alarm. However, since an El Niño started afterwards, the ONI
did not stay below 0.5°C until December 2023. Therefore,
this preliminary alarm is withdrawn, indicating the absence

of an El Niño onset in 2024. Since there were 3 missed
El Niño events between 1981 and 2023 and 30 correct pre-
dictions for the absence of a new El Niño, the probability for
the absence of an El Niño onset in 2024 is 30/33 ≈ 90.9%.

7 Applying the climate network approach
to ocean temperatures

So far, the climate network to forecast the onsets of El Niño
events or their absence has been constructed only based on
surface air temperatures (SATs). An advantage of this phys-
ical quantity is the long data length. For instance, the NCEP
Reanalysis 1 starts in the year 1948. Ocean datasets with high
temporal resolution become available only with the advent
of regular satellite and buoy observations since about 1980.

We test the performance of our climate network approach
based on the ocean temperatures provided by the NCEP
Global Ocean Data Assimilation System (GODAS) reanal-
ysis (Behringer et al. 1998). Since the resolution of the
GODAS reanalysis does not coincide with the 7.5° grid reso-
lution of the climate network based on the NCEP Reanalysis
1 (see Fig. 1), we use a 5° resolution to match the SAT net-
work as closely as possible. We also adapted the algorithm to
pentad (5-day) time resolution since this is the highest avail-
able resolution of this dataset. Figure 4 shows the results
based on the potential temperature at 5-meter depth, which
is the dataset’s uppermost level. Since our climate network
approach has already been validated on SAT data and the
ocean data is too short for a reasonable splitting into a learn-
ing and hindcasting phase, we show a direct fit to the data.We
find that version 2 of the climate network algorithm adapted
to the GODAS data leads to 10 alarms, 8 of which turned out
to be correct. All major El Niños are also predicted with this
data set. In contrast, 2 small El Niño are now not predicted
(1994 and 2018), but the 2006 El Niño is predicted addition-
ally. Calculating the p-value as described in Section 5.1 leads
to p ∼= 1.1 × 10−4.

8 Conclusions

In summary, we have evaluated the quality of the real-time
El Niño forecasts made by the climate network approach.
We have used two null hypotheses to determine the statisti-
cal significance of the forecasts and found that the forecast is
at least significant at the 0.015 level, this way clearly reject-
ing the null hypothesis that the same performance might be
obtained by random or correlated guessing.We are not aware
of any other method that allows, within a period of 12 years,
a similar quality of real-time forecasts with a lead time of
about 1 y.

123



Evaluation of the real-time El Niño forecasts...

Fig. 4 Forecasts based on ocean temperatures. Similar to Figs. 2 and 3,
but here the mean link strength S(t) is calculated from the potential
temparature at 5 meter ocean depth. The construction of the climate
network has been adapted to match the GODAS dataset: the climate
network grid resolution is now 5° and the temporal resolution of the

input data is 5 days. The figure shows version 2 of the forecasting algo-
rithm for the decision threshold � = 2.12. All major El Niños are also
predicted with the GODAS data set. In contrast, 2 small El Niños are
now not predicted (1994 and 2018), but the 2006 El Niño is predicted
additionally

The climate network approach suggests that the emer-
gence of cooperativity between the El Niño basin and the
rest of the Pacific is an important prerequisite for the devel-
opment of an El Niño event in the following year. We can
speculate that the westerly wind bursts are more effective in
initiating a large scale El Niño event when the Pacific is in a
cooperative state, and this would explain the success of the
complex network approach. But, a detailed analysis remains
for future work.

The high prediction skill of the forecast and its long
lead time should allow early mitigation methods. One of the
advantages of the network approach is that it does not con-
tain a freely choosable fit parameter. The underlying climate
network was introduced in a different context and indepen-
dently of any El Niño forecasting well before it was used to
forecast El Niño events. Also the parameters used in the cal-
culation of the link strengths had beenfixed before (Yamasaki
et al. 2008). The only new parameter in the algorithm, the
threshold �, was fixed in the learning phase (Ludescher
et al. 2013). The reanalysis (NCEP) temperature data can
be easily obtained from (NCEP-NCAR 2023). Since also the
calculation of the link strengths is straightforward and not
computationally demanding, the network approach can be
easily used to obtain real-time El Niño forecasts, which is an
additional advantage besides the long lead time.

The climate network-based approach discussed here fore-
casts the onset or absence of an ElNiño event in the following
calendar year with high accuracy. The approach can be com-
bined (Ludescher et al. 2023a) with additional statistical
forecasting methods for the magnitude (Meng et al. 2020)
and type (Ludescher et al. 2023b) of an event. This way,
the events’s risk potential can be estimated much in advance,
and thus,more time becomes available to plan and implement
adapted mitigation measures.

So far, the climate network approach has been applied
only to forecasting the onset of an El Niño episode. It is an
open question, how to extend it to early forecast also La Niña
episodes. The majority of El Niño episodes, in particular the
strong ones, are followed by a La Niña in the consecutive
year, so here, the forecast is more straightforward. But often,
2-year or even 3-year La Niña episodes, like the one between
2020 and 2023, occur, and the challenge is to predict both
the onset and the length of a La Niña episode. We think
that a combination of the climate network approach with
deterministic approaches that can take advantage of ENSO’s
quasi-oscillatory nature may be instrumental in developing
an early forecasting approach for La Niña episodes.

Appendix A: Calculation of themean link
strength in the network approach

This Appendix follows closely (Ludescher et al. 2014). For
the prediction of the onset of El Niño events or non-events
we use the cooperative behavior of the atmospheric temper-
atures in the Pacific as a precursor. To obtain a measure for
the cooperativity, we consider the daily surface atmospheric
temperature anomalies (SATA) between January 1950 and
December 2023 at the grid points (“nodes”) of a Pacific net-
work, see Fig. 1.

We analyse the time evolution of the teleconnections
(“links”) between the temperatures at nodes i inside the
“El Niño basin” and nodes j outside the basin. The strengths
of these links are represented by the strengths of the cross
correlations between the temperature records at these sites
(Yamasaki et al. 2008).

The prediction algorithm (Ludescher et al. 2013, 2014) is
as follows:
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(1) At each node k of the network shown in Fig. 1, the daily
atmospheric temperature anomalies Tk(t) (actual tem-
perature value minus climatological average for each
calendar day, see below) at the surface area level is deter-
mined. For the calculation of the climatological average,
the leap days have been removed. The data have been
obtained from the National Centers for Environmental
Prediction/National Center for Atmospheric Research
Reanalysis I project (Kalnay et al. 1996; NCEP-NCAR
2023).

(2) For obtaining the time evolution of the strengths of the
links between the nodes i inside the ElNiño basin and the
nodes j outside we compute, for each 10th day t in the
considered time span between January 1950 andDecem-
ber 2023, the time-delayed cross-correlation function
defined as

C (t)
i, j (−τ)= 〈Ti (t)Tj (t−τ)〉−〈Ti (t)〉〈Tj (t−τ)〉

√〈(Ti (t)−〈Ti (t)〉)2〉 ·
√

〈(Tj (t−τ)−〈Tj (t−τ)〉)2〉

and

C (t)
i, j (τ )= 〈Ti (t−τ)Tj (t)〉−〈Ti (t−τ)〉〈Tj (t)〉

√〈(Ti (t−τ) − 〈Ti (t−τ)〉)2〉 ·
√

〈(Tj (t)−〈Tj (t)〉)2〉

where the brackets denote an average over the past 365
d, according to

〈 f (t)〉 = 1

365

364∑

m=0

f (t − m).

We consider time lags τ between 0 and 200 d, where a
reliable estimate of the background noise level can be
guaranteed.

(3) We determine, for each point in time t , the maximum,
the mean, and the standard deviation around the mean
of the absolute value of the cross-correlation function
|C (t)

i j (τ )| and define the link strength Si j (t) as the differ-
ence between the maximum and the mean value, divided
by the standard deviation. Accordingly, Si j describes the
link strength at day t relative to the underlying back-
ground noise (signal-to-noise ratio) and thus quantifies
the dynamical teleconnections between nodes i and j.

(4) To obtain the desired mean strength S(t) of the dynam-
ical teleconnections in the climate network, we simply
average over all individual link strengths.

(5) Finally, we compare S(t) with a decision threshold �.
When the link strength S(t) crosses the threshold from
below and the last available ONI at that time t is below
0.5°C, we give an alarm and predict that an El Niño
episode will start in the following calendar year.

We like to add that for the calculation of the climatolog-
ical average in the learning phase, all data within this time
window have been taken into account, while in the prediction
phase, only data from the past up to the prediction date have
been considered.
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