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Abstract: Wildfires play a dual role in ecosystems by providing ecological benefits while posing catas-
trophic events; they also inflict non-catastrophic damage and yield long-term effects on biodiversity,
soil quality, and air quality, among other factors, including public health. This study analysed the key
determinants of wildland fires in Spain using openly available spatial data from 2008 to 2021, includ-
ing fire perimeters, bioclimatic variables, topography, and socioeconomic datasets, at a resolution of
1 km2. Our methodology combined principal component analysis (PCA), linear regression analysis,
and one-way analysis of variance (ANOVA). Our findings show that scrub/herbaceous vegetation
(average 63 ± 1.45% SE) and forests (average 19 ± 0.76% SE) have been highly susceptible to wildfires.
The population density exhibited a robust positive correlation with wildfire frequency (R2 = 0.88,
p < 0.0001). Although the study provides insights into some fire-related climatic drivers over Spain, it
includes only temperature- and precipitation-based variables and does not explicitly consider fuel
dynamics. Therefore, a more advanced methodology should be applied in the future to understand
the local specifics of regional wildfire dynamics. Our study identified that scrub/herbaceous areas
and forests near densely populated regions should be prioritised for wildfire management in Spain,
particularly under changing climate conditions.

Keywords: wildfires; land cover; driving factors; burned area; PCA

1. Introduction

Wildland fires are considered a natural phenomenon worldwide [1] and are one of
the major disasters that have altered the environmental conditions of the southern part
of Europe [2]. Wildland fires provide many ecological functions, including maintain-
ing ecosystem health, helping forest regeneration, and controlling insect outbreaks and
disease damage [3]. However, despite their ecological benefits, these fires can lead to
catastrophic events that result in the loss of biodiversity and forest resources. Moreover,
they pose significant socioeconomic challenges by causing infrastructure destruction and
endangering human life and health, particularly in densely populated regions [4,5]. In Euro-
Mediterranean (EU-MED) countries such as France, Greece, Italy, Portugal, and Spain, over
95% of fire incidents were caused by anthropogenic activities (such as purposefully, arson-
istically, or deliberately), and the remaining 5% are naturally caused by lightning and other
unknown factors [6,7]. However, over 60,000 fires occur in the EU-MED region each year,
consuming more than 500,000 hectares of land [8]. This indicates the enormous number of
land cover distributions lost to wildfires, altering their overall ecosystem functioning.

On a European basis, EU-MED countries have the highest frequency of fires and the
greatest number of burned areas because of extreme wildfire episodes [9–11], whereas Spain
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had the second-highest number of wildfire episodes after Portugal. Moreover, the impact
of climate change has altered the climatic conditions of the Mediterranean Basin, with
temperature increases in summers, a reduction in precipitation in springs and autumns, and
wetter and milder climates in winters [12–15]. As mentioned earlier, these circumstances
exacerbate high heatwave episodes, which in turn generate wildland fire ignitions, resulting
in severe fire activity and fatalities [16]. Nevertheless, studies have discovered that several
factors, such as meteorological variables, topographical characteristics, and factors related
to socioeconomic conditions, have an important role in increasing the frequency and
extent of wildland fires during wildfire seasons [17–19]. Hence, the annual burned areas
in Mediterranean countries of Europe have seen an increase over the past two decades,
attributed to intensified climate change coupled with other environmental factors [20].

Importantly, understanding the distribution of land use/cover (LUC) in the Mediter-
ranean region is critical because it could provide fire experts with a clear picture of how
wildfires might affect communities based on climate and human-induced factors influenc-
ing fire dynamics [21,22]. Over the decades, wildland fires have been changing the states
of LUC types in the Mediterranean basin [6]. Therefore, to gain insights into the trends
of wildfire occurrences, we analysed CORINE land-cover (CLC) maps of 2006, 2012, and
2018. These maps provide valuable information about the historical, present, and potential
future patterns of wildfires. Hence, accurate data can assist in understanding the current
situation and distribution of various land-cover types [21,22]. However, it is crucial to note
that not all land cover types are equally flammable, as [22] discovered that forests and
agricultural lands burn more than shrublands and grasslands due to the accumulation of
fuel loads, sources of fire ignition, and climatic circumstances. At the country level, Spain
has witnessed significant LUC changes as a result of human activity in recent years [23].

Machine learning techniques, such as principal component analysis (PCA), have
become crucial for understanding the underlying factors of wildfires [24,25]. In the realm
of wildfire research, these approaches are gradually gaining recognition and relevance.
Numerous studies have been conducted using PCA to determine the underlying factors
influencing fires [25,26]. Indeed, among the many algorithms available, PCA is becoming
a powerful tool for predicting the driving factors of wildland fires, the number of fires,
and burned areas at all levels [25,27–31]. Additionally, some authors have demonstrated
that the PCA model produces better results as compared to other approaches [29,30,32,33].
Consequently, PCA models have been widely employed in identifying wildfire drivers at
global and continental scales; however, there has been minimal research at the national and
provincial levels. Concisely, the motivation behind this research is to contribute to the body
of knowledge of leveraging artificial intelligence methods such as PCA to build appropriate
fire propagation measures and management strategies that would help mitigate the danger
of wildland fires in Mediterranean-type regions.

This paper presents a temporal, spatial, and statistical analysis of factors driving
wildfires across various LUC types and regions in Spain. The study explores the use of
PCA combined with linear regression and analysis of variance (ANOVA) to identify the
primary factors influencing wildfires within the area of study. The research sets three
objectives: (i) to analyse the spatial and temporal patterns of fire incidents and the extent
of burned areas, (ii) to determine which LUC types (agricultural areas, forests, others,
scrub/herbaceous vegetation and wetlands) are most susceptible to wildfires, and (iii) to
pinpoint the main factors driving wildfires at both national and provincial levels. The
Materials and Methods section provides detailed descriptions and information on the
datasets used. Consequently, this research aids in understanding the factors that drive
wildland fires, thereby enabling predictions of their behaviour and spread patterns for
specific periods and locations. This study offers insights that can inform the development
of effective fire suppression strategies, the establishment of emergency warning systems,
and the strategic allocation of resources to combat and suppress future wildfires.
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2. Materials and Methods
2.1. Study Area

The study areas comprise all autonomous communities of Spain with the exclusion
of the Canary Islands territory (UTM projection of ETRS89, latitude of 40.4637◦ N, and
longitude of 3.7492◦ W). Therefore, the remaining total land area of the study site was
approximately 498,497 km2. Figure 1 depicts the study area and land cover distribution
map of Spain and the percentage of each land cover type across the country. The climate of
the Iberian Peninsula of Spain varies considerably. It is characterised by moderate winter
cycles, extremely drier and unbearably hot in the summer period, and wetter and cooler in
the mountain areas. Annually, the average temperature ranges from 0 ◦C to 18 ◦C, annual
precipitation ranges from 150 mm to 2500 mm, and the average wind speed is 7.9 miles per
hour. As of the end of 2020, the demographic population density of Spain is estimated to be
66,229,715 people, with Andalucia having the highest population density of approximately
11,796,105 people residing in the region. Within study periods, our study discovered
3430 fire events, and these events damaged more than 867,500 hectares caused by wildfires
between 2008 to 2021. Notably, 266 wildfires were reported in 2012, resulting in the loss of
178,504 hectares of land. In addition, when considering land cover types, about 257 fires
occurred in 2017, destroying around 112,892 hectares of scrub/herbaceous vegetation.

Figure 1. Study area. The percentage of each landcover type per municipality is indicated in the
pie chart.

2.2. Data Sources
2.2.1. Bioclimatic, Socioeconomic, and Topographic Variables

Several studies have identified temperature and precipitation as critical factors af-
fecting moisture availability and fire propagation [25,34], with fuel moisture found to be
crucial to assessing fire danger [35] due to the positive response of fire activity, such as
fire frequency and spread, to increasing forest fuel dryness [36,37]. Therefore, this study
incorporates 19 bioclimatic variables (bio-1 to bio-19) from the WorldClim database [38,39],
with 11 variables describing temperature-related metrics and 8 variables related to pre-
cipitation. From our observations, the line graph shows that July and August experience
the highest peak temperatures, averaging 23 ◦C. Additionally, Shuttle Radar Topography
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Mission (SRTM V.2.1) [40] elevation data at ~30 s (1 km2) spatial resolution of the Universal
Transverse Mercator (UTM) resolution grid was downloaded from WorldClim [38] and
processed in ArcGIS version 10.7 to obtain topographic features such as elevation and
distance from the streams in the study area. Table 1 shows the explanatory codes of the
19 bioclimatic variables, including elevation and streams.

Table 1. Explanatory code for bioclimatic, topographic, and socio-economic variables.

S/N Code Meaning Unit Source

Bioclimatic variables

1 bio1 Annual Mean Temperature ◦C WorldClim version 2.1

2 bio2 Mean Diurnal Range
(Mean of monthly (max temp—min temp))

◦C WorldClim version 2.1

3 bio3 Isothermality (Bio2/Bio7) (×100) % WorldClim version 2.1

4 bio4 Temperature Seasonality (standard deviation ×100) ◦C WorldClim version 2.1

5 bio5 Max Temperature of Warmest Month ◦C WorldClim version 2.1

6 bio6 Min Temperature of Coldest Month ◦C WorldClim version 2.1

7 bio7 Temperature Annual Range (BIO5-BIO6) ◦C WorldClim version 2.1

8 bio8 Mean Temperature of Wettest Quarter ◦C WorldClim version 2.1

9 bio9 Mean Temperature of Driest Quarter ◦C WorldClim version 2.1

10 bio10 Mean Temperature of Warmest Quarter ◦C WorldClim version 2.1

11 bio11 Mean Temperature of Coldest Quarter ◦C WorldClim version 2.1

12 bio12 Annual Precipitation mm/year WorldClim version 2.1

13 bio13 Precipitation of Wettest Month mm/month WorldClim version 2.1

14 bio14 Precipitation of Driest Month mm/month WorldClim version 2.1

15 bio15 Precipitation Seasonality % WorldClim version 2.1

16 bio16 Precipitation of Wettest Quarter mm/quarter WorldClim version 2.1

17 bio17 Precipitation of Driest Quarter mm/quarter WorldClim version 2.1

18 bio18 Precipitation of Warmest Quarter mm/quarter WorldClim version 2.1

19 bio19 Precipitation of Coldest Quarter mm/quarter WorldClim version 2.1

Topographic variables

20 elevation Elevation m WorldClim version 2.1

21 stream Distance to streams m WorldClim version 2.1

Socio-economic variables

22 population Population density People/km2 SEDAC database

23 life exp Life expectancy yearly Global data lab

24 hdi Human development index - Global data lab

25 gni Gross national income EUR Global data lab

26 income index Income index - Global data lab

In terms of topographic variables, hydrological analysis was performed on the ele-
vation data to obtain the stream order and distances of the fire points around the streams
across the study area. The elevation data were filled to raise the cells with shallow pixel
values and prevent broken streamlines. Subsequently, a flow-direction raster was created
using the filled elevation data, and areas with higher accumulations (areas greater than 1%
of the highest accumulation) corresponding to stream channels were obtained using the
flow-direction raster. Euclidean distances around the streamlines were obtained, and pixel
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values were extracted into the fire database to obtain the distance between each fire point
and the nearest stream channel.

Regarding socioeconomic variables, the population density data were acquired from
the Socioeconomic Data and Application Centre database (SEDAC—https://sedac.ciesin.
columbia.edu/, accessed on 19 June 2023), a data centre in NASA’s Earth Observing System
Data and Information System (EOSDIS). The data provide a gridded population density
raster at a 1 km2 resolution. The population ranges from 2010 to 2020, with a 5-year gap.
The data consists of the world’s population density derived from the country’s census
counts and adjusted to match the total population of the United Nations country totals [41].
The raster files were masked to Spain, and each cell value corresponding to the population
density of each year was extracted into a point feature of the burned areas to obtain the
corresponding population density. Compared to raster data, vector data, such as point
features, allow further analysis and comparison of population densities across the years
and use the figures to understand the relationships between wildland fires and population.
Each population year within the fire period was selected as the corresponding period. For
example, the 2010 population was used for all fires between 2008 and 2011. This allowed
for an objective representation of the population density across wildland fire occurrences
over the study period. In addition, life expectancy, human development index (HDI),
gross national income (GNI), and income index were obtained from Global Data Lab
(https://globaldatalab.org/, accessed on 19 June 2023). These variables are within the
study period spanning from 2008 to 2021.

2.2.2. Fire Dataset Acquisition and Processing

The spatial wildfire data used for this analysis on the European scale were obtained
from the European Forest Fire Information System (EFFIS database—https://effis.jrc.ec.
europa.eu/, accessed on 19 June 2023) as provided by [42]. The collection and documen-
tation of forest fires across European countries date back to the 1970s. Still, the lack of
harmonisation of these datasets has limited a collaborative approach to regional wildfire
prevention [43]. As a result, the EFFIS was developed as a collaborative effort by the
European Commission services (Directorate General Environment and the Joint Research
Centre) and the relevant fire services across the countries (forest fires and civil protection
services) to provide data needed by agencies such as the European Parliament and the
European Commission Services [2]. The fire dataset in the EFFIS database is a comprehen-
sive analysis that covers the complete forest management cycle, including fire prevention
and post-fire damage analysis, and receives comprehensive forest fire information from
countries across European and Mediterranean regions [6]. The study period for fire record
information is 14 years (2008–2021), which comprises burned area per hectare (ha), sources
of ignition, start and end dates, size of the fire occurrence, and location of each wildfire.
The UTM resolution was readjusted to 1 km2 resolution to be consistent with the other
datasets used in this project. The limitation in the use of this dataset is the exclusion of
small-size fires as the data do not capture fires with burned areas below 30 Ha. How-
ever, while only a fraction of the total number of fires is mapped in the EFFIS dataset, the
burned areas of size larger than 30 ha represent 75% to 80% of the total EU burned areas
(http://effis.jrc.ec.europa.eu/about-effis/data-license/, accessed on 19 June 2023), thus,
making it suitable to assess country-level fire behaviour.

2.2.3. Land Cover Classification

The land cover maps for 2006, 2012, and 2018 were obtained from the Coperni-
cus website (https://land.copernicus.eu/pan-european/corine-land-cover, accessed on
19 June 2023). The CORINE Land Cover (CLC) database is a European Programme coordi-
nated by the European Environment Agency (EEA) that provides consistent information
on land cover and land cover changes across Europe. Initially, the original data were
masked to Spain and reclassified from 15 classes at level 2 and 44 land-cover types at levels
3 to 7 using map algebra with incorporated Python function code in ArcGIS version 10.7.

https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
https://globaldatalab.org/
https://effis.jrc.ec.europa.eu/
https://effis.jrc.ec.europa.eu/
http://effis.jrc.ec.europa.eu/about-effis/data-license/
https://land.copernicus.eu/pan-european/corine-land-cover
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Furthermore, individual classes were dissolved to obtain five reclassified land cover types.
The polygon was rasterised to extract cell values corresponding to the land-cover type in
the fire database. To this end, we reclassified land use and land cover types into five distinct
classes: agricultural areas, forests, scrub/herbaceous vegetation, wetland, and others (see
Table 2 for complete details and information).

Table 2. CORINE and reclassified land-cover types.

S/N Reclassified Land-Cover Type CORINE Land-Cover Type

1 Agricultural area

Non-irrigated and permanent irrigated land, rice fields, vineyards, fruit trees and
berry plantations, olive groves, pastures, annual crops associated with permanent

crops, agriculturally dominant land with significant natural vegetation, and
agro-forestry areas.

2 Forest Broad-leaved forest, coniferous forest, and mixed forest.

3 Others Built-up areas, beaches, dunes, sands, bare rocks, sparsely vegetated areas, burnt
areas and glaciers, and perpetual snow.

4 Scrub/herbaceous vegetation Natural grasslands, moors and heathland, sclerophyllous vegetation, and
transitional woodland shrubs.

5 Wetland Inland and salt marshes, peat bogs, salines, and intertidal flats

Source: Copernicus.

2.3. Methods

We developed a methodology to examine the temporal and spatial patterns of wildfires
in Spain, focusing on the frequency of fires and the extent of burned areas. A flowchart of
the stepwise methodology is presented in detail in the diagram below (Figure 2). Initially,
the process involved consolidating all datasets into a unified database to define criteria for
fire size, enabling the evaluation of burned areas and fire counts. We conducted spatial
and statistical analyses on historical bioclimatic variables, wildfire perimeters from 2008 to
2021, CORINE land cover data for 2006, 2012, and 2018 at six-year intervals, population
density figures for 2010, 2015, and 2020 at five-year intervals, and digital elevation model
(DEM) data. Linear regression and one-way ANOVA were employed for all datasets to
investigate variable correlations. Then, PCA was applied in the second phase to establish
connections between dependent and independent variables. Data processing, analysis, and
visualisation were performed using ArcGIS version 10.7 and R software version 4.3.1.

Figure 2. A Stepwise methodology flowchart.
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2.4. Statistical Analysis

For statistical analysis, we used PCA to determine the association between the depen-
dent variable (fire perimeter data) and the independent variables (bioclimatic variables,
CORINE land cover, elevation, distance to stream, life expectancy, HDI, GNI, income index,
and gridded population data). In this study, PCA was employed to gain insights into and
identify the drivers of wildland fires in Spain. Hence, PCA is a useful method that allows
the interpretation of variance within the original data to effectively lower the dimensional-
ity of the datasets. Additionally, we used a linear regression model to make predictions
among the predictors and explanatory variables to test for statistical relationships. These
statistical analyses and PCA tests were performed using R software version 4.3.1 [44] using
the following library packages: ggrepel, ggplot2, factoextra, FactoMineR, janitor, lubridate,
magrittr, pcaMethods, raster, and tidyverse.

3. Results
3.1. Trends in Number of Fires and Burned Areas

The number of fires and the size of burned areas in Spain due to wildfires varied consid-
erably across the study period, both within different land-cover types and regions. Generally,
the total number of fires increased significantly within the study period from 32 fire events
in 2008 to 850 in 2021 (Figure 3 left, Appendix A: Table A2). Specifically, scrub/herbaceous
vegetation accounts for the highest number of fires across the various land-cover types with a
mean of 153 ± 37 (1 standard error of the mean), as shown in Appendix A: Table A2). Forests
have the second highest number of wildfires, with a mean of 47 ± 12, while agriculture
stands at a mean of 31 ± 8 fires (Appendix A: Table A2). The highest number of wildfires
in a single year per land-cover class occurred in scrub/herbaceous vegetation, with a total
of 528, accounting for ~62% of the total wildfires in 2021 (Appendix A: Table A2). Relat-
edly, scrub/herbaceous vegetation has the highest burned areas through the study period
with a mean of 36,552 ± 7239 ha, with forest and agriculture areas having mean values of
11,397 ± 2381 ha and 9456 ± 2608 ha, respectively (Appendix A: Table A3), having second
and third highest burned areas within the study period. The highest total burned area was
in 2012, with a total area of 178,504 ha (Appendix A: Table A3, Figure 3 right). The total
burned areas significantly differ on the scrub/herbaceous land compared to other land cover
classes, with other land cover classes showing interrelatedness in the extent of yearly burned
areas. However, when the proportion is considered, scrubland significantly differs from all
the land cover classes, while the proportion of forest burned is not different from agricultural
lands but differs significantly from other land cover classes, as revealed by the corresponding
letter in the boxplots. Similar to the highest number of fires per year per land-cover type, the
highest burned area per year also occurred in the scrub/herbaceous vegetation with a total of
101,727 ha, making ~57% of total burned areas in 2012 (Appendix A: Table A3).

Figure 3. Change in number of fires (for fires with burned area ≥ 30 Ha) per year by land cover (left)
and burned areas (right) per year by land cover classes in Spain through the study period (2008–2021).



Land 2024, 13, 762 8 of 24

Expectedly, others (land cover class as described in Table 2 and wetland land category
are the land cover types with the lowest burned areas (see Appendix A: Table A3, for
complete details and information) and number of fires (Appendix A: Table A2), respectively.
Additionally, during the study period (2008–2021), the year 2017 had the second-highest
total burned areas of 129,434 ha. Notably, both 2012 and 2017 correspond to the period
of El Nino events, which resulted in the increase in temperatures across Spain (Figure 3
right). Overall, ~63% of total wildfires in Spain occurred in scrub/herbaceous vegetation;
forest areas are responsible for ~19%, while agricultural areas accounted for ~13% of total
wildfires in Spain (Appendix A: Table A2).

The number of fires per month shows two distinct periods of high wildfires, specifically
during spring (February to April) and summer (July to October), as shown in Figure 4,
left. This depicts that major fire events are not limited to the summer period when there is
less rainfall and intense heat but in the late winter and early spring when the temperature
is relatively low. This can also be attributed to the increasing winter temperature, which
favours fire events across different land-cover classes in Spain. Furthermore, while March
has the highest number of wildfire events within the study period, with a total of 648, the
distribution across the study period is positively skewed, as shown in Figure 5, with more
fires, on average, occurring during the summer periods.

Figure 4. Boxplot of distribution of total burned areas in Spain by land cover types (left) and
proportion of land cover burned (right) through the study period (2008–2021). The land cover types
whose means are statistically different at α = 0.05 are in different letters, while colour transparency
denotes a difference in median values.

The monthly burned areas show the concentration of large fires towards the summer
periods (from July to October). Unlike the number of fires that show two distinct periods,
the monthly burned areas’ distribution shows a higher number of burned areas in the
summer, which peaks in August (Figure 5, right). Therefore, while the summer and spring
seasons drive the number of wildfires, the size of fires is more favoured during the summer.

The number of fires and the extent of burned areas were not evenly distributed across
all regions in Spain (Figure 6). Hence, some areas experienced a higher number of fire events
than others. Moreover, weather patterns across different regions of Spain also vary signifi-
cantly, which can further complicate the management and prevention of fires. Interestingly,
autonomous communities such as Principado de Asturias, Galicia, and Castilla y León have the
highest number of fire events, with 754, 732, and 576 fires, respectively (Appendix A: Table A4,
Figures 7 and 8). However, provinces like Galicia, Castilla y León, and Andalucía have the high-
est burned areas with a total of 170,370 ha, 168,845 ha, and 115,384 ha, respectively (Figure 9).
The total burned areas per region did not reveal the complete information about burned areas,
as some autonomous regions are considerably more extensive in size compared to others. The
larger burned areas may be due to the size of the region; therefore, the percentage of region
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burned areas across the study period (2008–2021) was calculated using Equation (1). The result
shows Cantabria, Principado de Asturias, and Galicia as having the highest burned areas rel-
ative to the region’s size (Figure 9). This is important, especially when compared to the total
burned area; Cantabria has a total burned area of 34,450, less than Galicia, Castilla y León, and
Andalucía (regions with the highest total burned area), but higher in proportion. This is due to
the size, which is considerably smaller. While we observed differences in burned proportion
across Spain regions, further studies could explore the difference in burned proportion based on
the available wildland and compare the results with ours to understand variations. Similarly,
regions like Castilla y León and Andalucía have a higher total burned areas; however, the
proportion, relative to the size, is lower (Figure 9; Table A4).

Figure 5. The seasonality of fire activity of the total number of fires per month (left) from January to
December (the line showing two distinct periods of an increasing number of wildfires) and the total
burned area per month (right). For each month, we have the distribution of a historical number of
fires over 2008–2021 (14 periods per month). The data describe fires with burned area ≥ 30 ha.

Figure 6. Distribution of monthly fire frequencies (top) and burned areas (bottom) in Spain (red
dots represent observations while outliers are in blue). For each month, we have a distribution of
a historical number of fires and burned areas over 2008–2021. The burned areas whose means are
statistically different at α = 0.05 are in different letters.
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Figure 7. Temporal sequence of the total number of fires (fires with burned area ≥ 30 ha) per region
during the study period from 2008 to 2021, with each colour denoting the specific fire count for
each region.

Figure 8. Spatial pattern of the number of fires per region between 2008 and 2021 in the study area.

While further exploring the relationship between burned areas and the number of fires
in each region, we found a moderate relationship, which shows that the extent of burned
areas is not necessarily dependent on the number of fire events within a particular region.
For example, 51,595 ha of land cover was burned in Aragon, corresponding to 49 fire events,
while Cantabria, with a total of 450 fires, had just 34,450 ha of burned areas. Additionally,
regression analysis between the number of fires and burned areas per region (Figure 10
shows a significant relationship, with the number of fires explaining 74% of variations in
burned areas with an R2 of 0.74 and a p-value of 0.001. However, when the number of fires
is examined while factoring the land cover types, it explains 77% of the variation in yearly
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burned areas within the regions with an R2 of 0.77 and p-value < 0.001 (Figure 11) and 85%
variation in monthly burned areas with an R2 of 0.85 and p-value < 0.001 (Figure 12).

Figure 9. Spatial distribution of total burned area (in percentage) per region between 2008 and 2021
in the study area.

Figure 10. Regression relationship between the number of fires and burned areas per region (point
shows the total burned areas within each region) and regression formulae and scale has been log
transformed to address heteroskedasticity. The blue line shows the regression line while the shaded
grey area represents the standard error.
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Figure 11. Regression relationship between the yearly burned areas and the number of fires factoring
different land cover types (points and colours show the land cover types). The blue line shows the
regression line while the shaded grey area represents the standard error.

Figure 12. Regression relationship between the monthly burned areas and the number of fires
factoring different land cover types (points and colours show the land cover types; the blue line
shows the regression line while the shaded grey area represents the standard error).

We calculated the percentage of burned areas in each municipality per year, as shown
in Table A4 and Figure 9.

%BA =
∑ BAry

Ar
× 100 (1)

where

%BA = percentage of burned area in each region;
BAry = Burned areas in each region per year;
Ar = Area of a region in hectares.
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3.2. Wildfire Variability

Andalucía, Cataluña, and Comunidad de Madrid are the regions with the highest
population, with a mean population of 11,884,485, 11,365,403, and 9,834,728, respectively.
While this does not directly relate to wildfires, population within points of fire occurrences
will better describe the influence on wildfires. Therefore, the total population within
1 km2 grids (spatial resolution of the gridded population data) of fire points was used
to analyse the relationship between the number of fires, burned areas, and population.
A strong association was found between the total population and the number of fires,
showing population as a significant driver of wildfires in Spain. Examining the relationship
between population and the total number of fires per year through linear regression, an R2

of 0.88 and a p-value of <0.001 show a significant positive relationship with population,
explaining 88% variations in yearly wildfires in Spain (Figure 13), showing the importance
of increasing population to fire frequency.

Figure 13. Regression relationship between total population and number of fires per year (point
shows the total number of fires in each year). The number of fires refers to fires with a burned
area ≥30 ha. The blue line shows the regression line while the shaded grey area represents the
standard error.

Based on our findings across the different land cover classes, a high relationship was
observed between burned areas and the number of fires across each period. The number of
fires was found to significantly influence burned areas across each land cover type, with a
p-value < 0.001 (Appendix A: Table A7). Furthermore, two years, corresponding to 2012
and 2017, witnessed a significant increase in burned areas during the period of study, with
p-values of 0.001 and 0.03, respectively (Appendix A: Table A7 highlighted). This is due to
the significant increase in temperature and drought events within these two years. This
reveals the importance of temperature change in driving the extent of burned areas across
Spain, with increasing temperature significantly increasing the burned areas.

On a monthly basis, there was an observed variability in the extent of burned areas and
the number of fires (refer to Figure 5). The relationship between both, across different land
cover classes, shows that the monthly fire ignition across different land cover classes signif-
icantly influenced burned areas, with a p-value < 0.001 (Appendix A: Table A8). While a
strong relationship was observed between monthly number of fires and burned areas across
different land cover classes with an R2 of 0.74, June, July, and August are months with larger
burned areas, with p-values of 0.03, 0.01, and 0.009, respectively (Appendix A: Table A8
highlighted). This further reinforces the importance of the summer periods, characterised by
rising temperatures and decreased rainfall, in influencing the spread of fires post-ignition.
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3.3. Factors That Influence Wildfires

The biplot of PCA results showed different driving factors in wildland fires in various
regions of Spain. Generally, the first three principal components account for approximately
80% of the total variability in the wildfire dataset (Appendix A: Table A7). Our results identi-
fied key drivers of wildfires based on land cover (Figure 14a), burned areas (Figure 14b), and
number of fires (Figure 14c). To begin, on the one hand, the land cover distribution shows
a difference in fire drivers. Fires in wetlands are driven by temperature-related variables
(annual mean temperature, mean diurnal range, max temperature of warmest month, mean
temperature of wettest quarter, mean temperature of driest quarter, mean temperature of
warmest quarter, and mean temperature of coldest quarter). On the other hand, wildfires
in scrub/herbaceous vegetation were mainly driven by elevation and temperature (i.e.,
temperature seasonality and temperature annual range). Population density, elevation, and
stream variables influence fires in all the land cover types except wetlands. In agricultural
areas, temperature-related variables are primarily the main drivers of fires. Specifically, the
analysis shows a temperature-driven increasing burned areas, with elevation contributing
to the rising burned areas as seen in Figure 14a. Small areas respond to all bioclimatic
variables, with growing burned areas favoured by temperature variables (temperature
seasonality, temperature annual range, minimum temperature of coldest month, and mean
temperature of coldest quarter) and elevation (Figure 14b). To this end, the number of fires
shows differences in drivers for increasing reoccurrence of wildfire events. To obtain the
number of wildfire recurrences, the fire dataset was spatially joined to know the count of
overlapping fire polygons, thus examining the number of times a polygon was burned
within the study period. From the analysis, small recurrent fires (1–3 times) are influenced
by all variables (Figure 14c). However, Precipitation-related variables were observed to
influence the increasing recurrence of fires within the study period.

Figure 14. Bi plot of PCA result. (a) Land cover type, (b) the mean of burned areas in hectares, (c) the
number of fires for the study area for the period of 14 years (2008–2021).

4. Discussion

A combination of climatic, socioeconomic, and topographic variables has been signifi-
cantly influencing the occurrence of fires and the extent of burned areas in Spain [23,25,32,45–47]
and other Mediterranean countries such as Greece [48], the south-eastern part of France [30],
Italy [31], and Portugal [29]. Regions in Spain show a large variability in the wildfire patterns
and the extent of burned areas across different land cover types. Our study focused on the
analysis of wildfire variability across different land cover types in Spain within the study
period (2008–2021), where autonomous communities of Castilla y León, Galicia, and Andalucía
experienced the most burned areas, with 17,0162 ha, 168,845 ha, and 115,379 ha, respectively.
Based on the analysis of the land cover dynamics in relation to wildfire activity, we found
that scrub/herbaceous vegetation (encompassing grassland, sclerophyllous vegetation, and
transitional woodland-shrubs after reclassifying land cover types) and forests are susceptible
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to most wildfires in Spain. This is in line with the study on wildfires in the European Mediter-
ranean region [6] showing that forests experienced a more frequent occurrence of fires than
other LUC types. This finding also closely aligns with a recent study conducted by [49] in
Italy, which suggests that shrubland and forests, particularly coniferous forests, are prone to
burning within the Mediterranean biome. The increased risk is attributed to such factors as
species composition, fuel accumulations, and the impact of drier and hotter climate conditions
during the fire seasons. Furthermore, our study demonstrated that agricultural-related land
cover types, i.e., agricultural landscapes, were not affected by large fires across the regions
in Spain. This is evident when comparing the landcover types of regions with the highest
burned areas, which reveals an inverse relationship between burned areas and the percentage
of agricultural areas across three regions (Galicia, Castilla y León, and Andalucía). This result
supports the study [45], which asserted that agricultural-related fires might be becoming less
significant in Spain.

Population density is identified as one of the key socioeconomic factors impacting
wildfires in the framework of our study, which is in agreement with previous studies
conducted in Spain [50]. We found a positive correlation between yearly dynamics of
population and the number of fires, as well as monthly population and burned areas,
confirming the role of human factors as drivers of fire dynamics [17,50].

In our study, we used Principal Component Analysis (PCA). Recently, PCA has been
applied to investigate the diverse drivers of wildfires, encompassing climatic, socioeconomic,
and topographical factors on different eco-biome types around the world [25,29,30,49]. Many
studies have compared the patterns of association between wildfires and environmental [17,51]
or human-caused [23,52] drivers of wildfires in the EU-MED region. For example, Montoya
et al. [25] used PCA to determine the drivers of wildfires in different eco-biome types in
Mexico, and results showed that grasslands, hydrophilic vegetation, and temperate forests
had the highest burned areas, accounting for 42% of the total land cover areas. PCA was
used to identify specific fire regime zones in south-eastern France and found that wildfire
drivers in the research area are based on fuel loads, population density, topography, and
inadequate fire-fighting capacity [30]. Similarly, Jiménez-Ruano et al. [28] identified regions
of fire activity in Spain using PCA and Ward’s hierarchy clustering models based on the
spatial-temporal framework of their key fire characteristics. PCA was applied in Portugal [29]
to identify the most vulnerable locations for wildfires, revealing that wildfires are more likely
to occur in the central and southernmost areas of Portugal in the future. However, while many
machine learning algorithm methods like PCA coupled with different mathematical models
have been commonly employed to identify wildfire drivers or predict burned areas using
climate, socioeconomic, and topographic factors (some of which are listed in this study), few
studies have considered these factors combined [53,54].

In our modelling work, we considered the temperature- and precipitation-related
bioclimatic drivers of fire events. The summer months in Spain over the last decades
have witnessed a major increase in extreme heat waves and drought conditions [55,56].
Our analysis showed that fires are driven by population, elevation, distance to streams,
and extreme precipitation-related variables such as the precipitation of the wettest month,
the precipitation of the driest month, the precipitation of the wettest quarter, and the
precipitation of the coldest quarter. More specific analysis is needed to understand the
impacts of precipitation since fuel dynamics was not explicitly analysed in this study.
On the one hand, decreasing precipitation in combination with other weather variables
could lead to lower fuel moisture. On the other hand, the increasing precipitation favours
forest growth and biomass accumulation through increased photosynthesis [57], leading
to a higher fuel load in the forest landscapes. Therefore, we need to track precipitation
dynamics in high temporal frequency. Fuel availability and dry conditions make the
forest susceptible to fire ignition during wildfire seasons, especially in the presence of a
large population density, which has been found to relate positively to the number of fires.
Temperature-related variables, especially extreme events such as temperature seasonality,
temperature annual range, minimum temperature of the month, mean temperature of the
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coldest quarter, and maximum temperature of the warmest month, were found significant
in explaining the extent of burned areas across different land covers. It is evident that Spain
experienced a notable temperature increase during the summer months (between June and
September), with an average temperature of 23 ◦C (Appendix A: Figure A1).

In order to fully estimate the impacts of weather dynamics on wildfire, a more sophis-
ticated methodology should be applied, including an assessment of evapotranspiration
rates [58] based on a number of climatic variables, e.g., temperature, precipitation, wind
speed, and relative humidity [59]. Although our study used simplified methods, based
only on the temperature- and precipitation-based bioclimatic indicators, it still captures
climate impacts on the persistently high summer burned areas in Spain over the study
period. Obviously, weather drives fire-favourable conditions being combined with human
ignitions, which result in extensive burned areas during fire season [60]. The years 2012
and 2017 recorded the highest burned areas. The extreme drought conditions of 2012 [61]
and the intense summer heat of 2017 in Southern Europe [62,63] resulted in a significantly
higher burned area in these two periods as compared to the average burned areas over
the study period. Furthermore, the yearly number of fires showed an abrupt increase in
2019. Prior to 2019, the number of fires and burned areas (except the years with extreme
temperature and drought events) has reduced, and this can be attributed to efficiency in
emergency response [64] and successful risk prevention in some regions within Spain [65].
However, several studies [2,53] have predicted an increase in wildfire activities resulting
from climate change and an increase in fuel load due to socio-economic activities. To
explain the sudden increase in the number of fires and burned areas within Spain in recent
years, more factors should be analysed, including human activities and fuel dynamics.

In future work, our study would use a more advanced methodology, such as a
processed-based wildfire model [66,67], to take into account interactions of several fire-
related variables. Moreover, deep analysis of local dynamics using expert knowledge across
Spain should be performed, while our study proposed a large-scale simplified framework
based on openly available datasets for weather, land cover, and population density.

5. Conclusions

Wildfire activity in Spain is driven by both biophysical factors and human activities.
Notably, the frequency and intensity of these wildfires vary depending on the type of
land cover in different regions of the country. Our findings show that scrub/herbaceous
vegetation (average 63 ± 1.45% SE) and forests (average 19 ± 0.76% SE) have been highly
susceptible to wildfires. The population density exhibited a robust positive correlation with
fire frequency (R2 = 0.88, p < 0.0001). Our study identified that scrub/herbaceous areas and
forests near densely populated regions should be prioritised for wildfire management in
Spain, particularly under changing climate conditions.
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Appendix A

Table A1. Population density per region for the years 2010, 2015, and 2020 (Source: SEDAC).

Region 2010 2015 2020

Andalucía 12,018,458 11,838,892 11,796,105
Aragon 2,090,960 2,039,021 2,009,465

Cantabria 906,758 880,430 863,829
Castilla-La Mancha 3,150,617 3,192,516 3,278,849

Castilla y Leon 3,984,571 3,739,480 3,547,574
Cataluña 11,257,884 11,322,140 11,516,185

Comunidad de Madrid 9,759,432 9,800,253 9,944,499
Comunidad Foral de Navarra 1,017,229 1,006,902 1,007,139

Comunidad Valenciana 7,576,683 7,671,928 7,853,461
Extremadura 1,669,162 1,573,393 1,498,768

Galicia 4,275,564 4,000,854 3,784,052
Islas Baleares 1,588,246 1,675,667 1,786,431

La Rioja 497,134 494,062 496,160
Pais Vasco 3,447,363 3,261,408 3,118,903

Principado de Asturias 1,723,194 1,598,815 1,498,964
Region de Murcia 2,121,432 2,163,402 2,229,332

Total 67,084,689 66,259,164 66,229,715

1. In the abstract section, please change "only temperature and precipitation-based" to 
"only temperature- and precipitation-based”. 

2. In Section 2.2.1, the last paragraph should read: "Table 1 shows the explanatory codes 
of the 19 bioclimatic, topographic, and socio-economic variables." 

3. On the Table 1 header, please add a comma after "bioclimatic," so it should read: 
"bioclimatic, topographic, and socio-economic variables." 

4. In section 2.2.3, please add wetland as part of the land cover types “agricultural areas, 
forests, scrub/herbaceous vegetation, wetland, and others.” 
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Figure A1: Seasonal trend in average monthly temperature. Changes during the summer 
period correspond to increasing burned areas in the summer period (source: World Bank 
Climate Knowledge Bank). 
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Figure A1. Seasonal trend in average monthly temperature. Changes during the summer pe-
riod correspond to increasing burned areas in the summer period (source: World Bank Climate
Knowledge Bank).
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Table A2. Number of fires across different land-cover types in Spain between 2008 and 2021. Land
cover types whose means are statistically different at (α = 0.05) are in different letters.

Year Agriculture Forest Scrub/Herbaceous
Vegetation Wetlands Others Total

Total % Total % Total % Total % Total %

2008 7 21.88 4 12.50 20 62.50 NA NA 1 3.13 32
2009 18 11.18 38 23.60 101 62.73 NA NA 4 2.48 161
2010 4 5.00 15 18.75 57 71.25 NA NA 4 5.00 80
2011 24 7.92 56 18.48 210 69.31 NA NA 13 4.29 303
2012 21 7.89 56 21.05 170 63.91 NA NA 19 7.14 266
2013 21 16.94 26 20.97 59 47.58 NA NA 18 14.52 124
2014 9 14.52 10 16.13 40 64.52 NA NA 3 4.84 62
2015 18 15.93 24 21.24 67 59.29 NA NA 4 3.54 113
2016 16 12.70 24 19.05 78 61.90 1 0.79 7 5.56 126
2017 41 12.81 56 17.50 207 64.69 NA NA 16 5.00 320
2018 12 11.76 18 17.65 67 65.69 2 1.96 3 2.94 102
2019 51 12.23 83 19.90 261 62.59 NA NA 22 5.28 417
2020 88 18.76 74 15.78 282 60.13 2 0.43 23 4.90 469
2021 108 12.71 180 21.18 528 62.12 2 0.24 32 3.76 850

Mean 31 ± 8 b 13 ± 1.20 c 47 ± 12 b 19 ± 0.76 b 153 ± 37 a 63 ± 1.45 a 0.5 ± 0.23 b 0.24 ± 0.15e 12 ± 3 b 5 ± 0.79 d 245 ± 59.07

%—Percentage.

Table A3. Burned areas (Ha) across different land-cover types in Spain between 2008 and 2021. Land
cover types whose means are statistically different at (α = 0.05) are in different letters.

Year Agriculture Forest Scrub/Herbaceous
Vegetation Wetlands Others Total

Total % Total % Total % Total % Total %

2008 1990 20.61 3547 36.74 4036 41.81 NA NA 81 0.84 9654
2009 13,686 16.52 28,683 34.63 39,954 48.24 NA NA 498 0.60 82,821
2010 271 1.36 2045 10.27 14,552 73.08 NA NA 3045 15.29 19,913
2011 2689 4.45 9133 15.11 45,908 75.97 NA NA 2697 4.46 60,427
2012 33,643 18.85 23,811 13.34 101,727 56.99 NA NA 19,323 10.82 178,504
2013 9143 24.53 6691 17.95 13,504 36.23 NA NA 7935 21.29 37,273
2014 1750 7.93 3467 15.72 16,406 74.38 NA NA 433 1.96 22,056
2015 2844 44.71 6513 10.23 28,284 44.45 NA NA 390 0.61 63,636
2016 6898 14.35 8978 18.67 27,470 57.14 52 0.11 4680 9.73 48,078
2017 5721 4.42 24,805 19.16 81,359 62.86 NA NA 17,549 13.56 129,434
2018 717 5.78 3087 24.88 8089 65.20 243 1.96 271 2.18 12,407
2019 13,369 23.88 11,308 20.20 29,203 52.16 NA NA 2102 3.75 55,982
2020 6477 10.37 5698 9.12 46,919 75.11 439 0.7 2935 4.70 62,468
2021 7583 8.89 21,793 25.55 54,320 63.69 13 0.02 1577 1.85 85,286

Mean 9456 ± 2608 b 15 ± 2 bc 11,397 ± 2381 b 19 ± 2.2 b 36,552 ± 7239 a 59 ± 3.3 a 187 ± 45 b 0.2 ± 0.14 c 4537 ± 1614 b 7 ± 1.68 c 61,996 ± 12,060

%—Percentage.
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Table A4. Burned area per region in hectares.

S/N Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

1 Andalucía 1695 11,460 72 1817 11,566 1535 8673 13,162 2715 19,007 2860 5295 20,581 14,946 115,384
2 Aragon 2498 21,425 NA 200 9095 NA NA 14,904 1324 240 30 1209 577 93 51,595
3 Cantabria NA 91 562 919 4037 299 263 582 308 2056 1284 8109 3684 12,256 34,450
4 Castilla y León 4489 19,379 4284 8804 32,568 9634 1553 7562 7861 30,866 1610 7624 3654 28,957 168,845
5 Castilla-La Mancha 525 5286 NA 570 11,281 3053 5448 1087 1690 4830 326 4523 1691 5668 45,978
6 Cataluña NA 7278 121 553 21,026 671 1150 1149 846 626 NA 7045 56 2487 43,008
7 Comunidad de Madrid NA 41 NA NA 2033 766 NA NA 156 NA NA 3593 1203 43 7835
8 Comunidad Foral de Navarra NA 1086 86 NA 1151 NA 922 85 3617 306 75 1168 1163 3819 13,478
9 Comunitat Valenciana 53 3096 5496 1870 64,972 1141 1013 2510 6277 2003 3532 929 563 592 94,047
10 Extremadura 170 3533 105 1370 2278 3595 1271 11,228 4211 4887 737 1987 7070 4020 46,462
11 Galicia 145 4439 7433 36,574 7950 14,032 519 8056 18,248 48,347 1306 4556 14,735 4030 170,370
12 Illes Balears NA NA 323 1920 NA 2481 NA NA NA 69 NA NA 436 5 5234
13 La Rioja NA NA NA NA NA NA NA 166 NA 53 NA NA NA 416 635
14 Pais Vasco NA 2099 501 NA 27 NA 51 NA NA NA 34 133 69 33 2947
15 Principado de Asturias NA 3608 497 5466 10,520 66 1045 2912 565 16,144 613 9811 6471 7921 65,639
16 Region de Murcia 79 NA 433 364 NA NA 148 233 260 NA NA NA 515 NA 2032

NA indicates the absence of fire.

Table A5. Yearly number of fires per region.

S/N Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

1 Andalucía 7 13 1 12 16 11 15 8 8 19 15 15 56 39 235
2 Aragon 1 10 NA 2 5 NA NA 2 5 2 1 6 6 9 49
3 Cantabria NA 2 6 8 33 5 2 5 2 25 23 81 56 202 450
4 Castilla y León 17 57 14 63 62 29 8 26 29 63 13 56 41 98 576
5 Castilla-La Mancha 1 9 NA 3 9 4 4 3 5 8 2 11 19 16 94
6 Cataluña NA 7 1 3 10 3 2 2 3 3 NA 7 4 16 61
7 Comunidad Foral de Navarra NA 2 1 NA 4 NA 1 1 1 4 2 24 15 82 137
8 Comunidad de Madrid NA 1 NA NA 3 2 NA NA 1 NA NA 4 5 2 18
9 Comunitat Valenciana 1 5 4 4 8 4 7 4 6 3 4 2 5 5 62
10 Extremadura 1 2 1 8 11 8 7 8 15 27 11 25 42 44 210
11 Galicia 3 27 41 160 39 54 5 32 46 104 17 36 106 62 732
12 Illes Balears NA NA 3 3 NA 2 NA NA NA 1 NA NA 3 2 14
13 La Rioja NA NA NA NA NA NA NA 1 NA 1 NA NA NA 2 4
14 Pais Vasco NA 1 1 NA 1 NA 1 NA NA NA 1 3 3 6 17
15 Principado de Asturias NA 25 6 36 65 2 9 20 2 60 13 147 104 265 754
16 Region de Murcia 1 NA 1 1 NA NA 1 1 3 NA NA NA 4 NA 12

NA indicates the absence of a fire event.
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Table A6. Relationship between burned areas and number of fires across different land cover,
factoring the different years (highlighted years have a significant relationship between burned areas
and number of fires at (α = 0.05)). The strength of statistical significance at α = 0.05 is represented by
the * symbol where * represent weak significance and *** represent strong significance.

Std. Error t-Value p-Value

Intercept 5551.07 0.191 0.849400
Number of fires 18.92 8.943 1.53 × 10−11 ***

2009 7871.16 1.631 0.109919
2010 7850.77 0.068 0.945999
2011 7951.44 0.155 0.877557
2012 7925.12 4.078 0.001183 ***
2013 7859.53 0.383 0.703180
2014 7848.77 0.233 0.816526
2015 7856.83 1.282 0.206525
2016 7451.88 0.576 0.567475
2017 7964.80 2.230 0.030751 *
2018 7448.47 −0.273 0.786475
2019 8055.93 −0.583 0.562479
2020 7619.64 −0.582 0.563473
2021 8050.81 −1.585 0.119937

R2 = 0.77

Table A7. Relationship between burned areas and number of fires across the different land cover,
factoring the different months (highlighted months have a significant relationship between burned
areas and the number of fires at (α = 0.05)). The strength of statistical significance at α = 0.05 is shown
by the * symbol where * represent weak significance and *** represent strong significance.

Std. Error t-Value p-Value

Intercept 6369.97 −0.241 0.81056
Number of fires 24.12 8.067 4.52 × 10−10 ***

February 9751.56 −0.856 0.39675
March 9389.23 −1.179 0.24512
April 9071.18 −0.666 0.50937
May 9536.77 0.011 0.99146
June 9546.32 2.212 0.03243 *
July 9086.72 2.666 0.01084 *

August 9195.12 2.748 0.00881 **
September 9079.80 0.855 0.39722

October 9648.61 1.140 0.26075
November 8990.46 −0.013 0.98984
December 9540.90 −0.251 0.80301

R2 = 0.74

Table A8. Principal component proportion of variables.

PC1 PC2 PC3

Eigen value 3.1171 2.1374 1.8138
Variance proportion 0.4417 0.2077 0.1495

Cumulative proportion 0.4417 0.6493 0.7988

Eigen Vectors

PC1 PC2 PC3

bio_01 −0.26107 −0.2047 0.07949
bio_02 −0.21309 0.195398 −0.03959
bio_03 −0.06702 −0.24503 0.074376
bio_04 −0.14305 0.357966 −0.10285
bio_05 −0.27611 0.075055 −0.03163
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Table A8. Cont.

Eigen Vectors

PC1 PC2 PC3

bio_06 −0.14448 −0.38913 0.096607
bio_07 −0.1817 0.309396 −0.08949
bio_08 −0.19443 −0.211 0.243545
bio_09 −0.24586 −0.05895 −0.0395
bio_10 −0.28584 −0.0387 0.02777
bio_11 −0.20106 −0.32872 0.114453
bio_12 0.212475 −0.17779 −0.2721
bio_13 0.145219 −0.19 −0.35575
bio_14 0.259897 −0.07402 0.143008
bio_15 −0.18383 −0.05831 −0.34313
bio_16 0.153736 −0.18453 −0.35577
bio_17 0.273353 −0.0883 0.078039
bio_18 0.267866 −0.13356 0.049617
bio_19 0.149444 −0.18057 −0.36546

elevation 0.15051 0.334696 −0.17638
population −0.05943 −0.11166 0.036238

stream 0.05364 0.070701 0.03835
life exp 0.140634 0.135563 0.156159

hdi 0.188716 0.017598 0.256821
gni 0.18264 0.046171 0.276279

income index 0.18206 0.047027 0.273631
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