
Citation: Dong, J.; Goodman, N.;

Rajagopalan, P. A Review of Artificial

Neural Network Models Applied to

Predict Indoor Air Quality in Schools.

Int. J. Environ. Res. Public Health 2023,

20, 6441. https://doi.org/10.3390/

ijerph20156441

Academic Editor: Paul B. Tchounwou

Received: 19 June 2023

Revised: 17 July 2023

Accepted: 22 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Review

A Review of Artificial Neural Network Models Applied to
Predict Indoor Air Quality in Schools
Jierui Dong 1,2,* , Nigel Goodman 1,2,3 and Priyadarsini Rajagopalan 1,2

1 Sustainable Building Innovation Lab., School of Property, Construction and Project Management,
RMIT University, Melbourne, VIC 3000, Australia; nigel.goodman@anu.edu.au (N.G.);
priyadarsini.rajagopalan@rmit.edu.au (P.R.)

2 HEAL National Research Network, Canberra, ACT 2601, Australia
3 National Centre for Epidemiology and Population Health, The Australian National University,

Canberra, ACT 2601, Australia
* Correspondence: s3972118@student.rmit.edu.au

Abstract: Background: Indoor air quality (IAQ) in schools can affect the performance and health
of occupants, especially young children. Increased public attention on IAQ during the COVID-19
pandemic and bushfires have boosted the development and application of data-driven models, such as
artificial neural networks (ANNs) that can be used to predict levels of pollutants and indoor exposures.
Methods: This review summarises the types and sources of indoor air pollutants (IAP) and the
indicators of IAQ. This is followed by a systematic evaluation of ANNs as predictive models of IAQ
in schools, including predictive neural network algorithms and modelling processes. The methods
for article selection and inclusion followed a systematic, four-step process: identification, screening,
eligibility, and inclusion. Results: After screening and selection, nine predictive papers were included
in this review. Traditional ANNs were used most frequently, while recurrent neural networks (RNNs)
models analysed time-series issues such as IAQ better. Meanwhile, current prediction research mainly
focused on using indoor PM2.5 and CO2 concentrations as output variables in schools and did not
cover common air pollutants. Although studies have highlighted the impact of school building
parameters and occupancy parameters on IAQ, it is difficult to incorporate them in predictive models.
Conclusions: This review presents the current state of IAQ predictive models and identifies the
limitations and future research directions for schools.

Keywords: indoor air quality; schools environment; neural network algorithms; artificial neural
networks; predictive model

1. Introduction
1.1. Background

Air pollution exacerbated by climate change is a major challenge to public health.
For example, heatwaves and wildfires increase human exposure to air pollution and
unpredictable health risks [1–4]. Current research has shown that air pollution is associated
with respiratory diseases, such as asthma and allergies [5], inflammatory bowel diseases [6],
and lung cancer [7]. The projected impact of wildfires includes a doubling of heat-related
deaths, increased hospitalizations for asthma, pneumonia, and cardiovascular effects,
and increased mortality and hospitalizations associated with ozone [8]. During wildfires,
the combined effect of high temperature and air pollution is more than what would be
expected from the sum of their individual effects [9]. Parry et al. [10] demonstrated that
air pollution modifies the association between heatwaves and hospital admissions for
cardiovascular disease. Meanwhile, the health impacts of climate change are still likely
to be underestimated. For example, climate change and global warming modify the
availability and distribution of plant-derived allergens such as more intense and prolonged
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pollen seasons, increasing in the severity and alteration of the seasonality of symptoms of
allergic rhinitis and asthma [11].

As a vulnerable population, children are more susceptible to air pollution. Children
will likely experience much higher personal exposure, even at the same pollutant concen-
trations as adults [12], because infants and children inhale and retain larger amounts of
air pollution per unit of body weight than adults [13]. Therefore, the National Ambient
Air Quality Standards set by the United States Environmental Protection Agency (EPA)
set stricter limits on the concentration of carbon monoxide (CO), nitrogen oxides (NOx),
particle matter (PM), and sulfur dioxide (SO2) for children [14]. However, the World Health
Organization (WHO) found that there are still excess deaths at low concentrations of these
pollutants [15,16]. Currie et al. [17] pointed out that lowering the thresholds for acceptable
air pollution levels may be a prudent and necessary step toward improving population
health, especially among children.

People spend 90% of their time indoors [18], and children spend up to 1075 hours
in classrooms each year [19]. Indoor air quality (IAQ) in schools can be further compli-
cated by factors including location, occupancy rates, space allocation, teaching activities,
the presence of mould, and ventilation [20–24].Classrooms could be potential important
sources of exposure to bioaerosols such as allergens, fungi species, bacteria and viruses
especially influenza and SARS-CoV-2. Low levels of exposure might still cause adverse
health outcomes [25,26] and spread of epidemic diseases. Another concern is that class-
rooms are often inadequately ventilated [27,28], which results in health risks and reduces
academic performance [29]. Airborne disease transmission of respiratory viruses has
drawn significant attention in indoor bioaerosol research since the COVID-19 outbreak.
Site-specific strategies are necessary due to the characteristics of school buildings [30],
while also taking into account the socio-economic consequences of health and performance
effects on children.

1.2. Sources of Indoor Air Pollutants (IAP) in Schools

Similar to other building types (e.g., residential, commercial), there are many different
sources of IAP in schools, including CO, black carbon (BC), NOx, SO2, PM, ozone (O3),
and volatile organic compounds (VOCs) [31,32]. These can be derived from ambient air
pollution, including traffic [33–35], factory emissions [36], wood smoke, or from indoor
sources, such as furniture [37,38], building materials [39], fragrance products [40,41], and
human activities. IAP in schools is also influenced by teaching activities and equipment [42].
Concentrations can depend on the location, local climate, and nearby sources, as well as
potential sinks, including the proximity and extent of urban greenspace [43,44]. Compared
to other regions of the world, the concentrations of key pollutants (e.g., PM2.5) in Australian
cities are generally lower although occasional exceedances in ozone and PM2.5 can occur
during extreme pollution events, such as bushfires, dust storms, or heatwaves [45]. In
Australia, the 24-hour threshold of PM2.5 defined by the National Environment Protection
Measure (Air NEPM) [46] is 25 µg/m3, the same as WHO standards. However, during
bushfires, the concentrations of PM2.5 measured in Sydney exceeded 100 µg/m3 and could
reach 500 µg/m3, which is four times higher than the guideline [47]. Therefore, IAP caused
by extreme climate events needs to be treated with extra attention.

1.3. Influencing Factors

Many factors can affect IAQ, with complex connections between them. These factors
can be divided into the physical conditions within a building and its operation. Physical
conditions include factors such as materials, room size, window-to-wall ratio, and air
tightness of the building envelope, while the operation mainly refers to the ventilation
system, such as ventilation method (mechanical and natural ventilation), supply air tem-
perature and humidity, air exchange rate, and human activities [39,48,49]. IAQ in schools
is specifically influenced by occupant density and activities. First, as school schedules
and students gather, CO2 concentrations subsequently increase. Second, the frequent
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movement of students in and out of classrooms leads to the re-suspension of airborne
particles [20], which makes IAQ more unpredictable. Third, school activities and materials
may produce uncommon pollutants, such as chemistry experiments, art tools, chalk dust,
and printing [44,50,51].

The effects of these factors are complicated since they interact with each other and
have a synergistic effect on IAQ [52]. For example, based on pollutant monitoring data from
major EU cities, Spiru et al. [53] found that, compared to naturally ventilated buildings,
mechanically ventilated buildings reduce indoor PM2.5 concentrations but increase the
concentrations of indoor NO2. Meanwhile, factors such as climate, cultural context, building
characteristics and interior design features influence user behaviours [54,55], which also
affect IAQ.

1.4. Evaluation of IAQ

Existing research typically uses two types of indicators: indicators based on one
or more pollutant concentrations, such as a combination of several different pollutant
concentrations, including PM2.5, VOCs and NO2, and indicators of IAP exposure levels or
health effects.

1.4.1. Indicators Based on Pollutant Concentrations

One of the most popular indicators is carbon dioxide (CO2) concentration [56,57].
Research on schools showed that CO2 concentration is associated with sick building syn-
drome (SBS) [58] and affects academic performance [59]. However, there is very limited
evidence that CO2 levels below 5000 ppm influence health symptoms, and the results on
the effects of moderate CO2 levels on human cognitive performance are not consistent [60].
These findings are likely due to inadequate ventilation elevating the concentrations of other
harmful pollutants (e.g., VOCs) along with CO2 levels [61]. Indoor CO2 can be much higher
than outdoor mainly due to production by humans, especially in crowded buildings, such
as schools. Although the total CO2 generation rate of adults is approximately 18%–54%
higher than that of children, the difference between adults and children was not significant
at low activity levels, such as sedentary [62]. Meanwhile, many studies used the concen-
trations of PM2.5, PM10, NO2, O3, CO, VOCs, and fungi to describe IAQ, both in schools
and other buildings [21,63–67]. Considering the relationship between pollutant emissions
and environmental parameters such as temperature and humidity [68,69], some research
added those environmental parameters to IAQ indicators [70–74], while others presented
them as contextual factors. However, there is a lack of clear consensus on which or what
combination of pollutant parameters should be used to describe IAQ [75].

1.4.2. Indicators of Health Effects and Exposure Levels

Many studies have further focused on the health risks of people exposed to IAP.
Carslaw et al. [76] defined a novel method named secondary product creation potential
(SPCP) for ranking indoor VOCs in terms of potentially harmful product formation. Al-
though this sequencing can vary with room characteristics and ventilation type, it shows
great potential for identifying the potential hazards of VOCs. Baloch et al. [77] used the
total VOCs score as the sum of five VOCs (formaldehyde, benzene, naphthalene, limonene
and tetrachloroethylene) to elevate the multi-exposure in the classroom. However, this
indicator did not cover other common IAPs, such as PM2.5. Taking into account exposure
levels, thresholds, and cumulative exposures, López et al. [78] calculated and compared
10 different CO2-based IAQ indicators, including the mean CO2 concentration, the mean
concentration above a threshold value, the percentage of time spent in a concentration
range, and cumulative exposures greater than a threshold value. However, the exposure
limit values (ELVs) for IAP defined by WHO, European Commission, and authorities in
11 countries varied widely, even by order of magnitude for the same averaging exposure
periods [75].
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For health risks, Logue et al. [79] combined available disease incidence and disease
impact models for specific pollutant-disease combinations with data on measured con-
centrations to estimate the disability-adjusted life-years (DALYs) lost due to inhalation of
indoor pollutants. DALYs are a composite indicator of disease and injury burden, capturing
both premature mortality and the prevalence and severity of ill health [80]. Furthermore,
Cony Renaud Salis et al. [75] proposed three IAQ indicators (Short-Term Exposure Limit,
Long-Term Exposure Limit, and IAQ-DALYs) to calculate the acute and chronic effects sep-
arately. Another health indicator is peak expiratory flow rates (PEFR), which is commonly
used for ambulatory evaluation of asthma [81], as well as air pollutant concentration [82]
and exposure levels [83]. For the health risk analysis of IAP exposure, characteristics of
the indoor environment and pollutants need to be included, as well as vulnerability, which
includes sensitivity (personal characteristics such as age, gender, race, socioeconomic status,
pre-existing disease) and adaptive capacity (individual or community-based coping and
adapting mechanisms) [84]. Schibuola et al. [85] specifically examined the exposure of
children in school by hazard index (HI) and cancer risk (CR), which derived from the
US EPA [86]. However, they only calculated the risk from CO2 and PM as the measured
concentrations of CO, ozone, and VOCs were below the limits. It probably underestimates
the health risk in school, because IAPs such as benzene, polycyclic aromatic hydrocarbons,
and ozone, do not have a safe exposure threshold [16,87].

1.5. Machine Learning Predictive Models

Predictive models can help and account for future uncertainties, especially for predict-
ing air pollution patterns and health effects in the context of climate change. Predictive
research related to indoor environments involves several scientific fields. Predictive models
can be divided into physics-related building simulation (Computational Fluid Dynamics,
CFD) and mathematics-related machine learning algorithms [88]. CFD can provide de-
tailed predictions of airflow [89], heat transfer [90] and contaminant transportation and
distribution [91]. In addition, CFD can be used to study the spread and propagation of
viruses in different scenarios [92]. However, CFD modelling requires detailed information
about the indoor space to represent the location digitally using a fine grid, which means
it requires substantial computational costs. In contrast, as a data-driven method, ma-
chine learning predictive models skip the time-consuming physical equations and derive
associations between features from the dataset. Due to fast calculation times and high
accuracy, machine learning has been used to assess the built environment, including in
models that simulate building loads [93], building energy efficiency [94–96], occupancy
rates [97], thermal comfort [98], as well as IAQ [99,100]. Wei et al. [99] concluded that the
three most commonly used machine learning algorithms for predicting IAQ are Artificial
Neural Networks (ANNs), Regression models, and Decision Tree-based models. They
compared the effectiveness of those three algorithms simultaneously and found that ANNs
were better for predicting nonlinear problems, such as IAQ. This finding has also been
confirmed in other research on predicting IAQ [101,102].

ANNs is a data-driven algorithm based on the interconnected structure of neurons. It
works on three layers (input layer, hidden layer, and output layer). The predicted output
of the neural network is compared with the actual value. Based on the error, the weights
assigned to each neuron are changed and then fed into the neural network again until the
error is acceptable [103]. Even early ANNs using the back propagation (BP) algorithm
with one hidden layer can fit continuous functions of arbitrary complexity [104]. Challoner
et al. [105] used ANNs to predict indoor concentrations of PM2.5 and NO2 and found that
the prediction of NO2 concentration was more accurate than PM2.5, suggesting that the
correlation between input variables and output variables determines the performance of
the models. For indicators of non-pollutant concentrations, Xie et al. [106] used ANNs to
predict a health-related IAQ indicator, PIAQ, defined as the percentage of occupants in the
sampling area of the office building with two or more persistent symptoms calculated for
SBS. The input variables included six indoor air pollutants (CO2, PM2.5, HCHO, TVOCs,
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bacteria, and fungi) and three indoor comfort variables (temperature, relative humidity,
and wind speed). With the development of machine learning, an increasing number of
ANNs variants, such as convolutional neural networks (CNNs) [107,108] and recurrent
neural networks (RNNs) [109,110], are being applied to IAQ research problems. As a data-
driven approach, the effectiveness of an ANNs greatly depends on the training dataset.
This paper reviews IAQ prediction research using neural network algorithms in schools,
including classrooms and daycare centres where children gather. The review summarises
data collection and factor selection in modelling processes and explores the status and
limitations of IAQ prediction in schools. Finally, this paper discusses how predictive models
can enhance IAQ in terms of smart building management and recommends potential
research directions for the use of ANNs to study IAQ in schools.

2. Materials and Methods

This review was guided by the protocols outlined in the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) statement [111], and included a four-
step systematic data collection process (identification, screening, eligibility, and inclusion).
As the evaluation was conducted by a single reviewer, we did not register our review, or
specifically assess bias among the articles.

2.1. Identification

To carry out this review, the keywords “indoor air quality”, “indoor air pollution”,
“predict* OR forecast*”, “neural network”, and “model* OR algorithm*” were used to
search in Web of Science, Scopus, and PubMed.

2.2. Initial Screening

In this step, review articles and conference review papers were excluded. Conference
proceedings were also excluded as they were on topics unrelated to the intended target of
this review.

2.3. Eligibility

In the eligibility phase, research on IAQ of school buildings was expected to be retained.
The following criteria were used to exclude studies based on their title and abstract:

1. Studies not directly related to IAQ but examining parameters such as temperature,
humidity, occupancy, phytoremediation using plants, outdoor pollution, energy opti-
mization, medical diagnosis, and sensor design;

2. Studies reporting data from residential buildings, commercial buildings, offices, agri-
cultural buildings, industry, underground environments, laboratories, kitchens, and
hospitals (i.e., not in schools);

3. Studies focusing on the link between one specific pollution source, such as VOCs (e.g.,
from furniture emissions), radon (e.g., from rock and soils), NO2 (e.g., from traffic
emissions), and indoor levels of pathogens and viruses (e.g., COVID-19);

4. Studies focusing on the effect of IAQ, such as teaching performance and diseases,
such as asthma.

Based on the full text, studies where buildings are represented as simple square or
two-dimensional models were excluded. These models are difficult to validate and ignore
the influence of building factors in IAQ problems. In addition, articles with the same
models published by the same authors in multiple journals were screened, and articles
focused on IAQ prediction were retained.

3. Results
3.1. Results of the Review Process

Figure 1 depicts the process and results of implementing this review. Publication dates
were set before 15 May 2023, and non-English papers were excluded. The search resulted
in 134 publications in Web of Science, 160 in Scopus, and 12 in PubMed. After removing
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duplicate papers, 191 articles remained for screening. In the initial screening, 13 articles
were removed, and 178 articles remained for the eligibility phase. Based on the title and
abstract, 156 articles were removed in the eligibility step. Then, based on the full text,
13 articles were removed. Finally, nine articles were selected for inclusion in this review.
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3.2. Algorithms

Table 1 lists the details of the predictive models in the nine papers. The algorithms
used in the articles are summarised, including traditional ANNs and RNNs.

Table 1. Basic information on predictive models in schools.

# Authors Year Location Algorithms Data Source Data Duration

1 Rastogi et al. [112] 2020 University, India Traditional ANNs Field data 14 months,
working hours

2 Kim et al. [113] 2022 Child day care centres, Korea Traditional ANNs Field data 1 month
3 Marzouk et al. [114] 2022 University, Egypt Traditional ANNs Field data 2 months

4 Elbayoumi et al. [115] 2015 4 Schools, Palestine Traditional ANNs Field data 8 months,
working hours

5 Hu et al. [116] 2021 School, China RNNs Field data 27 days
6 Zhang et al. [48] 2022 University, USA Traditional ANNs Field data 2 weeks

7 Sharma et al. [117] 2021 University, India Traditional ANNs,
RNNs(LSTM) Field data 32 days,

working hours
8 Cho et al. [118] 2022 School, Korea Traditional ANNs Simulation data 7.3 hours
9 Chen et al. [119] 2018 University, Singapore Traditional ANNs Field data 15 days
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3.2.1. Traditional Artificial Neural Network

Traditional artificial neural networks are designed to emulate neuronal structures in
the human brain. It includes an interconnected series of layers, including an input layer, a
hidden layer, and an output layer. Each layer is composed of several interconnected nonlin-
ear processing components called neurons or nodes to extract features of the dataset [120].
When input variables are received, the neurons continuously adjust the weights and biases,
and iterate according to the error between output and target value until convergence [121].
The dataset is usually divided into a training set, a validation set, and a test set. The training
set is for training the weights and biases, while the validation set is for determining when
to stop training to avoid overfitting. The test set is used to evaluate the performance of
the predictive model. In addition, ANNs predictive models can quantify the extent to
which these input variables affect the output variables [122]. For IAQ research, the output
is the indicator that describes IAQ (e.g., CO2 and PM2.5 concentration) and the input is the
variables that affect IAQ (e.g., outdoor parameters, occupancy rates). A total of eight papers
used traditional ANNs to predict IAQ, including research comparing multiple algorithms.
These variables are summarised in Section 3.3.3.

3.2.2. Recurrent Neural Network

As one of the variants of ANNs, the structure of RNNs is similar with ANNs, with
the difference that the neurons of RNNs also receive their own state information and pass
it around. In other words, RNNs neurons receive input variables at this moment and the
information of previous data. Therefore, it is particularly suitable for analysing time-series
relationships [123], such as NO2 and PM concentrations, which vary due to factors such as
human behaviours and seasonal change [124].

However, RNNs with large time spans suffer from the “vanishing and exploding
gradient problem” [125]. To address these issues, Hochreiter et al. [126] proposed Long
Short-Term Memory (LSTM). The neurons of LSTM are more complex, containing “forget
gate”, “input gates”, “output gates”, and cell state functions. The gates function as the
controller of the information, i.e., the information to be added or removed is controlled
through the gates. The forget gate is used for deciding what information in the cell state
to keep or throw away. The input gate helps decide which values are to be updated (i.e.,
the information we want the network to memorise by cell states). The output gate tells
about the information the hidden state will remember [117]. In research comparing neural
network algorithms, LSTM achieved the best performance in predicting IAQ [127,128], yet
those research were not set in schools. It can be noticed from the model structure that LSTM
has more computational parameters compared to RNNs and thus has a slower learning
speed [129]. Therefore, Sharma et al. [117] simplified the LSTM structure when predicting
CO2 and PM2.5 by removing the forget gate to reduce the execution time.

3.3. Modelling

This section reviews the modelling process of the predictive model, including data
collection, factor selection, and variables (Table 2). Due to the different locations, building
characteristics, and monitoring conditions, this review focuses on the common features of
predictive models for schools, and the differences are also analysed.

3.3.1. Data Collection

Table 1 shows that the data sources include field monitoring and simulation data. For
data-driven prediction models, data from actual field sampling provides more informa-
tion [48]. However, it is usually limited by building conditions and monitoring costs [114],
such as monitoring over a large time span or multiple scenarios [118]. Simulation tech-
niques, on the other hand, can obtain data from different scenarios of the same building.
For example, Cho et al. [118] set up 241 scenarios of varying HVAC systems, including
heating, cooling, heat recovery, recirculation, and ventilation, for a total of 200,000 samples.
Moreover, in their subsequent training, the input variables used to predict IAQ included
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different scenarios and metabolic rates, which are difficult to obtain from field monitoring.
However, the simulation models assume and ignore some parameters, such as air change
rate and occupancy density, leading to the need for further validation of the effectiveness
of such models [118].

Table 2. Information of modelling process in prediction models.

# Authors Factor Selection

Variables

Output
(Indoor)

Input
Indoor

Parameters
Outdoor

Parameters
Building

Characteristics Occupancy Time

1 * Rastogi
et al. [112]

Grey Relational
Analysis PM2.5, PM10 PM2.5, PM10 - - - -

2 * Kim
et al. [113] - CO2, PM2.5,

VOCs
T, H, CO2,

PM2.5, VOCs - - - Hour,
day

3 Marzouk
et al. [114] - CO2, T, H AP T, H, WS, WD - - -

4 Elbayoumi
et al. [115]

Univariate
Analysis

PM2.5,
PM2.5-10

CO2, RH, CO, PM2.5, PM2.5-10,
T, WS, RH VR - -

5 * Hu
et al. [116]

Sensitivity Tests,
Correlation
Coefficient

CO2, PM2.5
PM2.5, T, RH,
CO2, VOCs - - - -

6 Zhang
et al. [48]

Principal
Component

Analysis

PM2.5, PM10,
NO2, O3

Generate new principal component from the original data

7 * Sharma
et al. [117]

Pearson
Correlation
Coefficient

CO2, PM2.5 NO2, CO, T, H WS, WD
No. of fans,
Room size,
Floor no.

- -

8 * Cho
et al. [118]

Stepwise Linear
Regression

PMV, CO2,
PM2.5, PM10

AP, T, RH, CO2,
PM2.5, PM10

-
Multiple HVAC

system
parameters

PMV, No. of
people, Clothing

insulation,
Metabolic rate

-

9 * Chen
et al. [119] - CO2, VOCs,

HCHO
CO2, VOCs,

HCHO - - -
Hour,

Day, Lag
length

T: temperature; H: humidity; RH: relative humidity; VR: ventilation rate; PMV: predicted mean vote; AP: air
pressure; WS: wind speed; WD: wind direction; *: use time series data.

The duration of monitoring varies from 7.3 hours [118] to over 1 year [112], which
means the data include information on diurnal variations and seasonal changes. Since the
routine in school buildings is fixed, the monitoring time or simulation time was chosen for
working hours [112,115,117,118].

3.3.2. Factor Selection

To improve the performance of predictive models, factor selection is often used to
remove irrelevant factors or redundant factors for training datasets. Factor selection in the
nine papers reviewed can be divided into: select indicators influencing IAQ, i.e., output
variables, and select input variables for predictive models. In Table 2, Rastogi et al. [112]
used Grey Relational Analysis for screening pollutants that have the most significant
impact on IAQ. They measured six indoor parameters (temperature, humidity, CO2, CO,
PM2.5, PM10) and screened PM2.5 and PM10 as the output of the predictive model. Other
papers selected input variables, and the methods included sensitivity tests, correlation
analysis, and Principal Component Analysis (PCA). For example, Sharma et al. [117]
used the Pearson correlation coefficient to calculate the correlations between pollutants
and environmental parameters (temperature, humidity, wind direction, etc.) and then
developed models for predicting CO2 and PM2.5, respectively. Elbayoumi et al. [115] used
univariate analysis and included ambient parameters, seasonal variation, number of people,
and teaching activities as influences on PM concentrations. In this study, sensitivity analysis
was used for prediction in different seasons because the weights of the input variables
change according to the season. However, teaching activities were not included in input
variables due to the limitation of data collection. Hu et al. [116] set four cases with different
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combinations of input parameters and found the accuracy was better using only historical
concentration data. Notably, they also used sensitivity analysis to calculate the time length
of the input variables and found a better accuracy using five timesteps (t, t−1. . .t−4, per
hour). In the face of numerous influencing factors, Zhang et al. [48] used PCA to reduce
the dimensionality of their dataset, which consisted of 23 factors. They found that over 90%
of the variance in the data can be explained by four principal components for both PM2.5,
PM10, and NO2, while five principal components were identified for ozone. Moreover, the
error of their model with PCA is lower than the traditional predictive model, implying that
the original input variables may contain noise.

3.3.3. Variables

Table 2 shows the variables used for training, including output and input. Output
variables are the parameters used to represent IAQ. Among the output variables reported
in nine reviewed papers, PM2.5 concentration was used in seven sources, CO2 in six
sources, and PM10 in four sources. Concentrations of VOCs, NO2, O3, and formaldehyde
(HCHO) were also mentioned. Excluding simulation studies, pollutant concentrations were
obtained from real-time sensor monitoring. Most models conducted stepwise prediction
of pollutants concentrations [113,114,116,117,119] and used multiple variables as outputs,
while Rastogi et al. [112] and Elbayoumi et al. [115] used daily average PM2.5 and PM10 as
the output variables.

The pollutants and corresponding concentrations reported as outputs in each table
are summarised in Table 3. It should be noted that most of the papers, except for number
3 [114] and number 6 [48], used line graphs to represent pollutant concentrations. Therefore,
the maximum and minimum values in the table are imprecise. Zhang et al. [48] monitored
11 classrooms, and the maximum and minimum values shown in the table are based on the
average concentration in each classroom. During the modelling process, the concentrations
of output variables were normalised. However, the model performance outside the extreme
range is not validated. For example, the maximum CO2 concentration in [114] is 551 ppm,
while in other papers, it exceeded 1000 ppm [112,116,117,119].

As mentioned earlier, numerous influencing factors lead to various input variables.
In these nine papers, the input variables can be divided into four categories: indoor
parameters, outdoor parameters, building characteristics, occupancy, and time (Table 2).
All the papers used indoor parameters as the main input variables, while outdoor data and
building characteristics are relatively scarce. For building-related factors, prediction studies
face different obstacles in data collection. For example, factors in number 7 (number of fans,
room size, and number of floors) are easy to obtain [117], while the natural ventilation rate
in number 4 was estimated based on indoor CO2 concentration and number of people [115].
Other interventions that modified the indoor environment were not collected, impacting the
model performance. For example, predictive model number 3, excluding the parameters
of the HVAC system, resulted in large errors during air conditioning operation [114]. The
simulation data compensates for this deficiency. Factors related to mechanical ventilation
or air conditioning systems were only used in research number 8, which was trained by
simulation data [118]. Due to the availability of data used in the simulation, number 8
was also the only study that used occupancy parameters as input variables. Although the
number of people, clothing insulation, and metabolic rate were assumed, this model can be
expected to use in real buildings.
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Table 3. Pollutants and corresponding concentrations reported as output variables in each of the
reviewed papers.

# Authors Pollutants
Concentrations

Min Max Average

1 * Rastogi et al. [112] PM2.5 <50 µg/m3 >300 µg/m3 -
PM10 <50 µg/m3 >350 µg/m3 -

2 * Kim et al. [113]
CO2 500 ppm 1500–2000 ppm -

PM2.5 <40 µg/m3 160 µg/m3 -
VOCs - 16,000 µg/m3 -

3 Marzouk et al. [114] CO2 393 ppm 551 ppm 448.7–477.9 ppm

4 Elbayoumi et al. [115] PM2.5 - - 104 ± 85 µg/m3

PM2.5–10 - - 350 ± 197 µg/m3

5 * Hu et al. [116]
CO2 300 ppm 1500 ppm -

PM2.5 - 280 µg/m3 -

6 Zhang et al. [48]

PM2.5 0.63 ± 0.12 µg/m3 5.08 ± 3.48 µg/m3 -
PM10 0.65 ± 0.13 µg/m3 5.45 ± 3.71 µg/m3 -
NO2 7.42 ± 3.26 ppb 55.58 ± 2.19 ppb -
O3 0.03 ± 0.23 ppb 26.11 ± 3.5 ppb -

7 * Sharma et al. [117]
CO2 <200 ppm 1200 ppm -

PM2.5 <150 µg/m3 300 µg/m3 -

8 * Cho et al. [118]
CO2

Simulation dataPM2.5
PM10

9 * Chen et al. [119]
CO2 500 ppm 1750 ppm -

VOCs 2.5 ppm 4 ppm -
HCHO - - -

*: use time series data.

3.4. Pollutants Patterns of Predictive Research in Schools

The trends in predicted pollutant levels may be similar within one building; however,
it is difficult to make general conclusions for all studies due to the multiplicity of influencing
factors, such as location, building structure, and monitoring conditions. Chen et al. [119]
predicted CO2, TVOC, and HCHO in different rooms (classrooms, offices, and computer
rooms) on the same floor and found TVOC was independent of room function, which
meant TVOC data from a single sensor could be applied to other rooms. Patterns of
HCHO in different rooms were not correlated; thus, the predictive models need to be
trained separately. The patterns of CO2 collected varied widely by room type, i.e., the data
of similar rooms can be referenced. CO2 concentrations in offices and computer rooms
first increased and then decreased during working hours, while peaks in classroom CO2
occurred several times and at higher concentrations than in other rooms. It confirms the
necessity of providing guidelines based on specific patterns of IAP in schools.

4. Discussion and Future
4.1. Limitation of IAQ Prediction in Schools

The vulnerability of children and the health risk of pollution exposure in classrooms
are well recognised. However, a limited amount of research has been conducted to predict
IAQ for schools, and even less published research has examined specific pollutants in
classrooms. For example, further causes of dangerous exposures levels affecting students’
health are those related to the natural emission of radon gas, which typically accumulates
in poorly ventilated classrooms, while chemicals substances (i.e., cyanoacrylate, lead, cad-
mium, nickel) might be contained in school materials [21]. Due to the lack of enforcement
guidelines, the predictive models did not focus on specific pollutants in school scenarios.
Therefore, the air quality guidelines in schools need to be updated and generalised to
develop predictive models.

It should be noted that the impact of extreme weather events was also not discussed
as a scenario or variable in the nine papers reviewed. This means that these predictive
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models were primarily used under conditions of more regular climatic scenarios, and
findings are probably not valid for extreme weather events, such as wildfires and dust
storms. Two of the nine reviewed papers used outdoor parameters, such as temperature,
pollutants concentration, and wind data from a public historical weather database [114,117].
Considering the trend of climate change, the combination of climate or weather prediction
models may be more advantageous for IAQ prediction than using historical data. However,
there is a research gap in how IAQ prediction models respond to climate hazards and create
safe indoor environments.

4.2. Modelling Process

Current neural network models for predicting IAQ vary widely regarding algo-
rithm structure and selection of variables. Most of the research has used traditional
ANNs [48,112–115,117–119], while RNNs may be more advantageous for time-series prob-
lems [116]. The differences in school location, season, monitoring costs, and the building
itself caused inconsistent results in the choice of variables in the nine papers. Most studies
used PM2.5 and CO2 concentrations as output variables because existing guidelines and
standards already set limits on them. A few studies included NO2 [48], which is mainly
derived from daily traffic emissions. On the other hand, the input variables vary more
because the influences of indoor pollution sources are more complex and uncertain. For
example, indoor pollutant components and concentrations in schools located in high-traffic
areas are significantly different from those in suburban areas, resulting in differences in
both input and output variables and weights in predictive models. If input variables with
low correlation are selected, it will cause data noise and decrease the performance of the
model [48].

The modelling process is not yet standardised and is limited by building conditions
and data availability. Frequent sampling and long-term monitoring typically mean higher
costs, leading to challenges in the widespread use of IAQ predictive models. For data
that are difficult to collect, such as personnel data (e.g., clothing insulation, metabolic
rate), the corresponding simulation inputs can be used as the training dataset. In addition,
the development of an algorithmic framework can help reduce data dependency. For
instance, Tariq et al. [130] developed a framework for predicting pollutant concentrations
in subway stations by combining transfer learning (TL) and neural networks. The study
involved building a pre-training model with a well-measured subway station dataset
and subsequently fine-tuning it with lesser data from other subway stations, ultimately
providing well-performing prediction models for four subway stations. This TL framework,
combined with pre-training and fine-tuning, can reduce the dependence on data collection.
However, TL research applied to IAQ prediction is still in the beginning stages.

4.3. Performance and Aim of Predictive Models

The performance of black-box models is usually indicated by the difference between
the predicted and actual values. Hu et al. [116] raised the problem of matching computa-
tional speed with dynamic control systems; however, their research still focused on the
accuracy of the predictive model rather than the environmental benefits of the model. In
fact, The models are rarely used in actual buildings due to the constraints of cost and
building access, which results in current research being limited by monitoring costs [131]
and computational costs [132]. Sharma et al. [117] built an IAQ platform (including mon-
itoring, prediction, and control) by incorporating user ratings to verify the effectiveness
of the platform. However, there is no data related to subsequent changes in pollutant
concentration. How to calculate the benefits of the prediction model and how to assess the
degree of air quality improvement is yet to be studied.

Predictive models can be used for similar rooms in a building to reduce the cost of
installing and operating multiple sensors [133]. However, this should be performed with
caution as sensors have the capacity to report localised trends that may be underestimated
in models, especially for the non-uniform air pollution caused by photocopiers or paints.
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Furthermore, models can be combined with dynamic control systems to improve IAQ.
For example, Hu et al. [116] aimed to avoid unsatisfactory pollutant peaks by combining
a predictive model and dynamic control, concluding that the key to solving the system
control delay is to ensure that the delay time interval of dynamic prediction is less than the
sampling interval of data collection. Warning and control signals require more investment in
building management systems. Sharma et al. [117] developed an Android application called
IndoAirSense (IAS) for predicting IAQ in classrooms. IAS provides real-time pollutant
levels from sensors and prediction of pollutant concentrations, as well as user alerts and
suggestions to improve IAQ. However, such an intelligent system that includes monitoring,
prediction, and control needs to face not only the problem of prediction accuracy but also
the coordination between building functions, such as ventilation system responsiveness,
user activities, and outdoor air quality events. In other words, improving IAQ by predictive
models requires alignment between predictive model performance and control system.

5. Conclusions

Predictive models are useful in improving IAQ. In this paper, we reviewed studies on
the prediction of IAQ in schools based on neural network algorithms. The conclusions of
this paper are as follows:

1. IAQ is currently described by the concentration of pollutants, exposure levels and
health risks. In predictive models for schools, the concentration of PM2.5, CO2, PM10.,
VOCs, NO2, O3, and formaldehyde were used to represent IAQ. Other common
pollutants, such as CO, SO2, and bioaerosols, were ignored. IAQ predictive models in
schools have not yet covered the pollutants mentioned in the guidelines;

2. Traditional ANNs and their variant RNNs were applied to predict IAQ. Traditional
ANNs was the most used, while RNNs was more suitable for analysing time-series
problems such as predicting IAQ. Algorithmic frameworks, such as TL, have the
potential to reduce the data cost of predictive models;

3. Many factors affect IAQ in schools (e.g., ambient environment, schedules, number of
occupants, and teaching activities). However, field data were sparse, and occupancy
parameters were only used in predictive models trained by simulation data, which
requires further validation. Future research could focus on how to use both field data
and simulation data to develop predictive models;

4. Climate models and weather forecasts provide data that have a high potential for
IAQ prediction, especially for long-term climate change and extreme weather events.
Currently, ambient prediction results have not yet been applied to indoor prediction
for schools;

5. The concentrations of indoor pollutants may be similar in rooms with comparable
functions, pollutant characteristics, and sources, which offers the possibility of re-
ducing the frequency and number of field measurements. Further work is required
to assess the correlation between pollutants and the potential for reducing monitor-
ing costs.
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