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Swarm systems consist of large numbers of agents that collaborate autonomously. With
an appropriate level of human control, swarm systems could be applied in a variety of
contexts ranging from urban search and rescue situations to cyber defence. However, the
successful deployment of the swarm in such applications is conditioned by the effective
coupling between human and swarm. While adaptive autonomy promises to provide
enhanced performance in human-machine interaction, distinct factors must be considered
for its implementation within human-swarm interaction. This paper reviews the
multidisciplinary literature on different aspects contributing to the facilitation of adaptive
autonomy in human-swarm interaction. Specifically, five aspects that are necessary for an
adaptive agent to operate properly are considered and discussed, including mission
objectives, interaction, mission complexity, automation levels, and human states. We distill
the corresponding indicators in each of the five aspects, and propose a framework, named
MICAH (i.e., Mission-Interaction-Complexity-Automation-Human), which maps the
primitive state indicators needed for adaptive human-swarm teaming.
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1 INTRODUCTION

Recent technological advancements have enabled the realization of swarm systems that can include
large numbers of robots. Using local communication and distributed coordination, these robots can
achieve complex global behaviors that can be utilized in a wide range of applications. However, fully
autonomous swarms that are free from human supervision are hard to realize due to technological
and ethical impediments. Technologically, although artificial intelligence could surpass human
intelligence in a number of applications, it is not expected to outperform general human intelligence
in the near future (Fjelland, 2020); the success of fully autonomous swarm operations in dynamic and
complex environments and in the absence of human oversight remains a vision for a reasonably
distant future. Ethically, full autonomy can be undesirable due to the responsibility and
accountability issues (Nothwang et al., 2016; Wachter et al., 2017). Therefore, the use of a
human-in-the-loop model is still an important bridge to ensure the safety of operations,
especially for critical and sensitive applications in medicine and military (O’Sullivan et al., 2019;
de Ágreda, 2020; Verdiesen et al., 2021). Human-swarm systems will remain the most feasible path,
at least for the foreseeable future, for adopting swarm systems in real environments.

In human-swarm interaction (HSI), humans and swarms need to act as a team to optimize
common mission objectives. The human and the swarm are assigned complementary roles with the
aim of combining their skills efficiently and in a manner that achieves mission goals. Generally, there
are three types of autonomy in HSI, namely, the fixed autonomy, human-based flexible autonomy,
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and agent-based adaptive autonomy. Fixing the level of
autonomy within the swarm produces a rigid system in which
the human can experience undesirable workload levels. This
situation applies regardless of the level of autonomy that the
swarm exhibits. If the level of autonomy is low, the human carries
most of the load, with the end result of overloading the human. In
contrast, if the swarm’s level of autonomy is high, the human
could become underloaded. Both situations are undesirable as
they can lead to difficulties in sustaining human situational
awareness (SA) and to decreases in human performance
(Endsley and Jones, 1997) and engagement level (Endsley,
2017). In the long term, fixed autonomy has been criticized
for the associated skill degradation (Hilburn, 2017).

To realize effective interaction, humans and the swarm need to
coordinate their actions throughout the mission to maintain
acceptable levels of workload while ensuring that the tasks are
performed effectively. This coordination can be assigned to the
human or to a coordinating agent. Designating the human for the
coordination can be time-consuming and potentially unsafe
in situations where the human operator is naturally
overloaded because of task demands (Chen and Barnes, 2014).
In addition, task delegation to a human’s hands is subjective and
depends on human factors that reach beyond the realm of
workload (e.g., emotional stress). Some operators would place
more constraints on automation at the expense of time, while
others might place fewer constraints on the automation at the risk
of the automation’s behavior possibly diverging from the
operator’s intent (Miller et al., 2005).

To overcome the aforementioned challenges, the coordination
can be performed by an adaptive agent at the interface between
the human and the swarm to facilitate the interaction by
monitoring and managing the states of different entities in the
system. The agent decides whether the level of autonomy should
be increased or decreased based on the state of the mission as
assessed by certain input indicators. The accurate assessment of
the mission is important to avoid sudden changes that can be
inappropriate or annoying for the human (Chen and Barnes,
2014). Effective and efficient HSI calls for intelligent agents
capable of adaptively and dynamically allocating the functions
required to perform a given mission between humans and
the swarm.

Adaptive autonomy (Abbass et al., 2014b; Hentout et al., 2019;
Onnasch and Roesler, 2020; Tanevska et al., 2020) has been
attracting increasing interest in the literature of human-
automation interaction (HAI) and human-robot interaction
(HRI) as a flexible autonomy scheme that acknowledges the
dynamic and uncertain nature of the interaction. In adaptive
autonomy, the functions required to achieve a mission are
identified in advance. For example, if the mission is to drive a
vehicle from its current location to a goal, the functions to achieve
this mission could include the following: 1) an environment
monitoring function, 2) a current car-state estimation
function, 3) a hazard detection function, 4) a route planning
function, 5) a vehicle dynamic function, and 6) a vehicle steering
function.

An artificial intelligence (AI) agent is responsible for the
adaptive control that dynamically allocates these functions to

the human and the autonomous vehicle(s) based on the current
requirements of the task and the states and capabilities of its
potential performers (humans and machines). Adaptive
autonomy has demonstrated its ability to enhance the
performance of the overall human-machine interaction and
mission (Chen and Barnes, 2014). This enhancement is
attributed to its ability to reconcile conflicting requirements
within the interaction (e.g., to make best use of the
automation while ensuring that the human does not lose
situational awareness or his/her level of engagement). The
function of adaptive autonomy can be described by two
questions: when and how. The when question is concerned
with evaluating the current state of the overall system-of-
systems to determine whether an adaptation is needed. The
how question is concerned with generating new task
assignments and corresponding user interface changes. Such a
requirement comes with a few challenges that include
determining how to dynamically adjust the level of autonomy
of different players, how to strengthen mutual trust, and which
mechanisms are required to facilitate situational awareness (SA)
of the players (Humann and Pollard, 2019; Cavanah et al., 2020).
The adaptive AI agent needs to form its own contextual
awareness in order to be able to decide when adaptation is
needed. Such contextual awareness requires continuous
assessment of the states of different components in the overall
system. Therefore, the main focus of the paper is placed on the
indicators that will enable the AI agent to answer the when
question.

In a taxonomy of triggers for adaptive autonomy, Feigh et al.
(2012) proposed five categories: operator, system, environment,
task/mission, and spatio-temporal triggers. Their work offered a
high-level overview of the adaptive agent without delving into the
indicators required for each type of trigger. Moreover, a swarm
context is a decentralized context; designing the adaptive agent
for decentralized applications is a research area that is in its
infancy. We will fill this gap by distilling from the literature the
list of indicators that could provide state assessment of different
components in HSI. The aim of this paper is to identify and fuse
together different categories of indicators needed for adaptive
autonomy in HSI, and to study how the state of each component
can be quantified using synthesized indicators from the literature.
Five categories of indicators are identified for adaptive autonomy
in HSI; three of these categories (mission complexity, human state
indicators, and mission performance) have been used in adaptive
human-machine interaction, while the other two categories
(interaction indicators and swarm automation indicators) have
been used in studies for HSI. Due to the enormous literature in
each of these categories, this paper reviews the featured literature
and summarizes only representative studies to show different
ways to operationalize each category of indicators.

In Section 2, we present a framework for adaptive autonomy
that facilitates the realization of effective HSI. In Section 3, we
distill five groups of indicators that are necessary for an adaptive
agent to operate properly. These five classes of indicators are then
discussed in detail in Sections 4–8. In Section 9, we present the
MICAH framework that combines the five types of indicators,
and illustrate an walkthrough example with discussions on the
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working scenarios, followed by conclusion and future work in
Section 10.

2 FRAMEWORK FOR ADAPTIVE
AUTONOMY IN HUMAN-SWARM
INTERACTION
Despite the increasing interests in deploying swarms in real-life
applications, humans will remain a critical part of the
autonomous control loop due to legal/ethical concerns and
practical considerations, at least for the foreseeable future
(Nothwang et al., 2016). A framework for adaptive autonomy
in HSI brings together both human and swarm agents to optimize
the performance of the overall system. The framework aims to
achieve seamless and adaptive interaction between humans and
the swarm to maximize mission objectives. To accomplish this
goal, a significant number of state indicators is needed for the
accurate evaluation of the state of different components in the
overall system.

Conventional adaptive systems trigger adaptation processes in
specific situations or for particular tasks (Feigh et al., 2012). These
systems resume the default setting once the trigger is no longer
active. However, as the situation and context evolve, the once-
adequate adaptation strategy applied by conventional adaptive
systems may become inadequate (Fuchs and Schwarz, 2017). To
address this problem, dynamic adaptations based on a diverse set
of indicators are required. However, these indicators are normally
spread across different fields. For example, to assess the human

mental states, the indicators would come from cognitive
psychology, behavioral psychology and human factors (Debie
et al., 2019). Meanwhile, to assess the success of an autonomous
decision, the indicators would come from system engineering,
control theory, and AI.

In this paper, we synthesize from this wide interdisciplinary
literature those groups of indicators required to provide state
assessment for the adaptive AI agent. A conceptual diagram of the
framework is presented in Figure 1 for the adaptive AI agent.

The adaptation strategy of the adaptive AI agent can be viewed
as two high-level steps: a monitoring and state assessment step
followed by an adaptation step. The adaptive agent could take
many forms, including a rule-based system, neural network, or
other forms of symbolic and non-symbolic approaches. Below is
an example of how the indicators could support the adaptive AI
agent based on real implementations from our previous work
(Abbass et al., 2014a; Abbass et al., 2014b; Harvey et al., 2018).

Psycho-physiological sensors collect the cognitive information
of the human operator, which is then transformed into a series of
human state indicators, including workload, fatigue and focused
attention indicators (Debie et al., 2019). Integrated with
information of the current task and system states, these
human state indicators are used by the adaptive AI agent to
decide whether to adapt or not. For example, high workload and
fatigue may compromise the performance of the human operator,
so the system could increase the autonomy level of the swarm or a
subgroup of the swarm to allow the human operator to only focus
on the most critical task. In another case, the lack of cognitive
attention of a human may cause serious consequences, especially

FIGURE 1 | Framework for adaptive autonomy in HSI.
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in emergency situations. Therefore, the system could lower the
autonomy level of the swarm or a subgroup of the swarm and
update interaction modes and visualization to maintain the
human states within a safe range.

3 INDICATORS FOR ADAPTIVE
HUMAN-SWARM INTERACTION SYSTEMS

In this section, we will first use a scenario to explain adaptive
autonomy in an HSI context and then discuss the components
and requirements for a good set of indicators.

3.1 Human-Swarm Scenario
Consider a search-and-rescue (SAR) scenario where victims are
spatially spread in an urban area after an earthquake. An
uninhabited aerial vehicle (UAV) remotely operated by a
human pilot is used to guide a swarm of uninhabited ground
vehicles (UGVs). Each UGV has a camera and a laser imaging,
detection and ranging (LIDAR) sensor. The sensors on the UGVs
are used to detect victims and to retrieve and move them to drop-
off/collection locations in order to offer them first aid services
before transporting them to a hospital. The mission objective is to
maximize the number of victims retrieved within the allowed
time frame.

The victims may move to other locations as they search for
rescuers or appear and disappear at any time due to noise in the
sensors. The human UAV operator has better sensing
technologies in his/her UAV and is thus better able to assess
the presence or absence of victims in an area. However, the nature
of the UAV does not allow it to access areas that the UGVs can
access. The swarm of UGVs is able to more closely approach the
victims in order to better identify them. The swarm will always be
attracted to the closest victim, but the human may be able to
suggest better routes by considering the general disposition of
victims and their future movements. Nevertheless, latency in the
communication between the UAV and UGVs could cause delays
that reduce the worthiness of information. Human control of the
system, therefore, could lead to sub-optimal behavior when over-
use causes network overload, and an increase in human workload
could result in an increase in human error.

In summary, high levels of autonomy throughout the mission
are undesirable because the swarm can make errors in the
identification of victims and may act on biased local
information alone. At the same time, low levels of autonomy
will increase human workload, causing an increase in human
errors and an increased network load. The role of adaptive
autonomy in this scenario is to balance the load on the
human and the autonomous system to ensure that the overall
system of systems acts efficiently and effectively.

3.2 Different Requirements
Different components within the interaction can have unique
requirements for autonomy adaptation. To begin with, the
success of the mission is the ultimate goal of the interaction
and the primary purpose for forming a team of humans and a
swarm. Therefore, mission performance indicators are crucial to

ensure a successful mission. In the scenario above, a high rate of
collection is a signal that the current distribution of
responsibilities between the human operators and the swarm
of UGVs is appropriate. On the other hand, a low rate of victim
collection is a signal that some improvement is necessary, but it
does not provide, on its own, sufficient information regarding the
source of the problem, that is, whether the problem lies in the
swarm, the human, or their interaction.

Swarm automation indicators could offer information on how
well the swarm is performing. For instance, if the swarm is found
to be in a chaotic state, breaking apart or experiencing a high
number of collisions, it is an indication that the swarm is one of
the contributors to the low performance. However, whether more
or less human intervention is needed to return the swarm to a
stable state is a question for which the answer requires
information from the interaction indicators.

Indicators of the effectiveness of the interaction between
human and swarm provide information regarding whether the
increase in human involvement in one task causes an increase in
the rate of victim collection. If so, then giving less autonomy to
the swarm might be considered to improve the results. However,
such a setting can overwhelm the human. Therefore, we need to
keep an eye on the human cognitive states to ensure that they
remain within the desirable range. Otherwise, if the human
continues to be overloaded for a prolonged amount of time,
the performance of the team risks degradation unless some
amount of work is lifted from the human. However, which
task to offload from the human is a non-trivial question. This
decision has to be based on an understanding of how each task is
contributing to human workload, as well as the potential effects of
different task assignments on the experienced workload.
Fortunately, this information can be obtained from the
analysis of task complexity using task complexity indicators.

Following this discussion, we contend that these five categories
or components (mission performance, swarm automation,
interaction, human cognitive states, and task complexity) are
of crucial importance to the adaptive agent. Thus, the
corresponding classes of indicators are considered for state
assessment within our framework. In the next sections, we
discuss each of these classes of indicators.

4 MISSION PERFORMANCE

Automation equips an automaton with functions to process and/
or execute tasks. The level of automation, therefore, represents an
agent’s capacity to perform a task, while autonomy expresses “the
freedom to make decisions” (Abbass et al., 2016) afforded by the
opportunity that exists to allow an agent to act. Autonomy carries
negative risks when the capacity of an agent, that is, automation,
is conceptually less than the capacity required to perform a task
given an opportunity within a mission.

The primary aim of the team composed of the human and the
swarm is to perform the mission successfully, which calls for
indicators to allow the team to monitor progress towards the
mission’s objective(s) in order to take corrective actions and/or
adapt accordingly. We distinguish between how to measure

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 9 | Article 7459584

Hussein et al. Adaptive Human-Swarm Teaming Indicators

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


effectiveness (achieving mission success) and efficiency
(achieving the success using minimal resources/time) of the
system performance in HSI. While mission effectiveness
indicators are success indicators for the HSI in achieving
mission objectives, mission efficiency is more about how
competent the human and the swarm are in achieving these
objectives. Details of mission effectiveness and efficiency metrics
are discussed in the following subsections.

4.1 Mission Effectiveness
Mission effectiveness is considered as a factor of assessing how
well an HSI achieves the mission. Olsen and Goodrich (Olsen and
Goodrich, 2003) emphasize the importance of verifying mission
effectiveness in designing an appropriate model of HSI. In the
literature, various metrics are chosen to measure mission
effectiveness. Generally, the overall goal is to maximise
mission effectiveness, but the exact measurements chosen
would depend on the nature of the mission. Below, we give
examples of metrics proposed in the literature to measure the
effectiveness of typical HSI missions, namely, SAR and
navigation.

Under the umbrella of the National Institute of Standards and
Technology (NIST), Jacoff et al. (2001a) and Jacoff et al. (2001b)
proposed a list of quantitative and qualitative metrics to evaluate
the performance of a team of humans and a group of autonomous
ground vehicles in an SAR mission. These metrics were the
number of localized victims, the number of found obstacles,
the number of packages supplied to victims (such as first aid
kits, radios, or food and water), and quality of communication
with humans. These metrics add reward points to the overall
measure of mission effectiveness. Points are lost when the team
causes damage to the surrounding environment, victims, or
themselves. The three primary metrics used for effectiveness
were as follows: recovery rate, representing percentage of
victims localized vs. number within the debris; accuracy rate,
the percentage of the number of correctly localized victims from
the total number of localized victims; and the total damage
relating to victims and the environment.

In navigation missions, Steinfeld et al. (2006) introduced five
key measures of effectiveness: percentage of navigation tasks
successfully completed, area coverage, deviation from a
planned route, obstacles that were successfully avoided, and
obstacles that were not avoided but could be overcome.

Focusing on SAR missions with a time-critical requirement,
Crandall and Cummings (Crandall and Cummings, 2007)
conducted an HSI scenario where mission effectiveness was
evaluated through two measurements: the number of objects
collected (OC) and the number of robots remaining (RR) at
the end of the mission.

Chien et al. (2012) proposed a list of measurements used to
evaluate the effectiveness of the interaction between humans and
a group of autonomous robots. These measurements are the
number of victims rescued, the distance travelled and the
percentage of area covered.

Harriott et al. (2014) introduced metrics to monitor the
progress of a mission: area coverage and mode error or total
damage. They also proposed a metric for resource collection to

represent the progress of a foraging mission. They used Eq. 1 to
measure resource collection as follows:

Si(t + 1) � Si(t) −N × e (1)
where a resource (i) with size (S) is collected through time steps
(t). e > 0 represents the amount of resources to be reduced by an
agent, and N is the number of agents within re metres of the
location of the resource. Low values for Si(t + 1) result from high
rates of resource collection, which correspond to greater mission
effectiveness.

4.2 Mission Efficiency
Mission efficiency aims to minimize usage of resources and time
without compromising mission success.

In SAR missions, Jacoff et al. (2001a) and Jacoff et al. (2001b)
used time to complete as a measure of mission efficiency, such
that if the time stayed within set limits, then the team would
receive extra points; otherwise, the team would lose points.

Steinfeld et al. (2006) introduced three efficiency metrics
regarding time: mission completion time, operator time,
and average time for extracting obstacles or average time
to complete all sub-tasks. Chien et al. (2012) introduced the
“event timeline” concept to also indicate the operator’s time,
in a similar manner to operation loading (Jacoff et al.,
2001a).

Following this discussion, it is evident that many metrics can
be used for both effectiveness and efficiency. The difference lies in
the definition of mission objectives and the scarcity of the
resources. For instance, in an SAR mission, swarm power
consumption can affect the effectiveness of the mission if the
battery life of the robots is limited such that robots will not be able
to progress after depleting the power. On the other hand, if power
is a non-scarce resource, then power consumption becomes a
metric of efficiency.

4.3 General Metrics for Mission
Performance
We conclude this section with a set of common metrics that can
be used in various missions for evaluating mission performance.

(1) Mission Effectiveness Metrics
• Percentage of mission completion,
• Total damage to the human-swarm system (e.g., number of
robots damaged),

• Mission constraints satisfaction, and
• Number of undesired states (e.g., obstacles encountered).

(2) Mission Efficiency Metrics
• Total completion time,
• Time for completion of individual sub-tasks, and
• Resource depletion (e.g., power consumption).

These indicators introduced above are distilled to form the
fusion sub-tree presented in Figure 2, where both measures of
effectiveness and measures of efficiency form the two dimensions
to measure mission performance.
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5 SWARM AUTOMATION LEVEL

The automation level of the swarm represents its capacity at a
certain moment in time to complete its task without a need for
human intervention. Finding effective metrics for the analysis of a
swarm, as stated by Kolling et al. (2016), remains an open
research problem. We will use the concepts of human
dependence and neglect benevolence to combine and
summarize the various metrics present in the literature.

Human dependence is a renaming of what Crandall et al.
(2005) called neglect tolerance in their work, which is slightly
different from the common definition of neglect tolerance in the
literature (Olsen and Goodrich, 2003; Crandall and Cummings,
2007). To preserve consistency both within this paper and with
the literature, we will use human dependence as a measure of the
extent to which a robot is in immediate need of human
intervention.

Human dependence corresponds to the composition of two
different sub-metrics: neglect tolerance, which describes how the
performance of the robot decreases while it is being neglected,
and interaction efficiency, which describes how the performance
of the robot increases when a human starts interacting with it
after a period of neglect. Both of these measurements are
correlated to the level of automation of the robot (e.g., a high
automation robot will not suffer much from being neglected but
could also experience reduced gains from human interaction), the
complexity of the current situation, and previous history of
interaction/neglect. The performance of a robot can then be
described by the following equation:

P(π, C, t) � PI(π, C, ton, TN), if interacting
PN(π, C, toff), otherwise{ (2)

where P denotes performance, PI denotes performance while the
human is interacting with the robot, PN denotes performance
while the human is neglecting the robot, π denotes the current
level of autonomy, C denotes the complexity of the situation, ton
and toff denote the times since the start of the current interaction/
neglect, and TN denotes the time the robot had been neglected
before the start of the current interaction.

Some useful metrics to estimate situation complexity C of the
swarm can be found in Manning et al. (2015), and they are listed
below:

• Cohesion: Evaluating the connectivity level of the swarm.
• Diffusion: Assessing the convergence and separation of
swarm members.

• Centre of Gravity: Aiming to minimize the distance from
the central point to other points in the spatial distribution of
the swarm.

• Directional Accuracy: Measuring the accuracy between the
swarm’s movement and the desired travelling path.

• Flock Thickness: Measuring the swarm’s density.
• Resource Depletion: Qualifying the irreversible
consumption of limited resources by swarm members.

• Swarm Health: Evaluating the current status of the swarm.

In particular, swarm health is an important aspect for
determining the difficulties faced by the swarm, and it can be
decomposed by following the analysis by Harriott et al. (2014)
into the following sub-components:

• Number of stragglers: studied by Parrish et al. (2002) as the
number of fish of a school that have a distance of at least five
body lengths from any other fish. This sub-component can
reflect difficulties encountered by the swarm caused by
obstacles in the environment or conflicting commands.

• Subgroup number and size: as explained by Navarro and
Matía (2009), the number and size of subgroups can vary
due to obstacles or as a way to perform the task more
efficiently. In a swarm, subgroups can be identified and
measured using clustering algorithms.

• Collision count: also studied by Parrish et al. (2002), this is
the number of collisions between members of the swarm. If
a collision avoidance system is in place, this could be the
number of times this system had to intervene.

The other factor that is relevant to automation in an HSI
system is neglect benevolence, which is a consequence of the fact
that a swarm needs some time to stabilize after receiving an

FIGURE 2 | Examples of useful indicators for mission success.
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instruction before being ready to receive further instructions. In
Nagavalli et al. (2014), this concept is formally defined and
analyzed, leading to a complex algorithm for finding the
optimal intervention time that requires computing the
convergence time for the swarm with inputs given at different
times. In practice, it may be possible to estimate the current value
of neglect benevolence empirically by utilizing the time since the
last human intervention and the factors that Walker et al. (2012)
reported to be influenced by neglect benevolence: directional
accuracy and cohesion. These two factors are both among those
already used to compute the situation complexity.

The concepts introduced in this section are composed in
Figure 3, showing how they can be combined to build an
estimation of the swarm automation level.

6 INTERACTION INDICATORS

The interaction between human and swarm refers to both the
communication approach and the control methods that allow for
exchange of their intent information and actions. It is natural that
some of the factors that influence the swarm as mentioned above
would also influence the interaction such as level of autonomy
and neglect benevolence. A major challenge in HSI is the
escalating complexity that could result from an increase in
swarm size and task demands.

As the size of the swarm increases, the human must monitor
and control an increasingly large group with massive numbers of
interactions. For example, the human ability to control the swarm
in a supervisory/manual control task would be severely limited by
the cognitive capacity of human operators (Olsen Jr and Wood,

2004). Some modern techniques to control a swarm, on the other
hand, use scalable control methods rather than controlling
individual members and can maintain the workload at similar
levels as the size of the swarm varies (Kolling et al., 2012;
Pendleton and Goodrich, 2013). Nevertheless, the complexity
of a problemmay arise from the number and the structure of sub-
tasks, which may require the division of a large swarm into
smaller teams or the use of multiple swarms of heterogeneous
entities. In these cases, introducing indicators for the effectiveness
and efficiency of the interactions existing between a human
operator and multiple high-level intelligent agents, each
controlling a swarm, is important as both a form of detection
tool for indication of whenmore or less automation is needed and
as a diagnostic tool to understand the success (or otherwise) of
the team.

There are three fundamental metric classes used in HSI
introduced by Crandall and Cummings (2007): interaction
efficiency, neglect efficiency, which reflects the efficiency of the
agents performing the task without the attention of the human
operator, and attention allocation efficiency, which captures the
efficiency with which the human operator allocates his/her
attention among multiple agents. These three metric classes
are dependent on one another and also dependent on the level
of autonomy that the influential AI and swarm component
possess.

Interaction efficiency comprises different metrics discussed in
the literature. The most popular metric is the interaction time,
which is the amount of time needed for a human to manage one
single entity in a multi-agent setting (Crandall et al., 2005). When
dealing with multiple entities in the environment, this metric can
be extended to Kerman (2013):

FIGURE 3 | Metrics for swarm automation.
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IEm � f(N(t)) × interaction time, (3)
where IEm is the interaction efficiency for multiple agents and
N(t) is the number of agents the human interacts with at time t.
The f(N(t)) term denotes a function describing the relationship
between the number of agents and the time needed to manage the
system (and the swarm controlled underneath). In the simplest
case, this relationship might be linear with respect to the increase
in the number of agents: f(N(t)) = N(t).

Neglect efficiency can be assessed by the neglect tolerance
expressed by the amount of time an agent can be ignored before
the error exceeds a threshold (Goodrich and Olsen, 2003). The
neglect time has a direct relationship to the preservation of
acceptable performance (Weitian Wang et al., 2018).
Improving the neglect time is one goal of a successful HRI
system, whereby the agent has enough capability to deal with
the task. While we discussed neglect tolerance in the automation
indicators, we still mention this metric here because it has an
indirect impact on reducing the interaction effort.

Interaction effort provides information on how a particular
interface design affects the overall effectiveness of the interaction.
Interaction effort is defined both physically by the interaction
time (Weitian Wang et al., 2018) and cognitively through the
cognitive effort (Olsen and Goodrich, 2003) of sub-task choices,
information requirement of the new situation after a choice,
planning, and intent translation. When interacting with multiple
agents, the interaction effort can be estimated indirectly via
neglect tolerance and fan-out (the maximum number of agents
the human is able to control effectively):

IEft � neglect tolerance

Fan − out − 1
(4)

Attention allocation efficiency includes the situational
awareness of the human with respect to the system and the
environment (Zahabi et al., 2020). In a human-swarm
interaction, this metrics consist of the switching time, and the
time the human takes to decide to which agent in the swarm to
switch his/her attention. When a human operates on a swarm
with multiple substructures, the human must neglect some and
prioritize his/her attention on controlling one agent to fulfil a
corresponding sub-objective. Attention allocation efficiency
captures this part of the interaction, where attention switching
is occurring.

Intervention metrics are used to estimate the cognitive and
physical efforts of a human when interacting with an autonomous
agent. Interventions (Connolly et al., 2020; Chita-Tegmark and
Scheutz, 2021) are unplanned interactions, as opposed to planned
interactions in normal modes of operation. The intervention
metrics include the average number of interventions over a
time period, the time required for interventions, and the
effectiveness of intervention (Scholtz et al., 2003; Senft et al.,
2017). The efficiency of the interaction can also be evaluated
through the ratio of intervention time to autonomy time (Yanco
et al., 2004; Senft et al., 2017). For example, if the operator needs
1 min to give an instruction to agents and the agents then
complete the task in 10 min, the ratio is 1:10.

This group of metrics has a strong connection to the level of
autonomy that the swarm component possesses. In a shared
control situation where there is a possibility for negotiation
between human and automation, it is essential to identify
extra measures such as the percentage of requests for
assistance created by controlling agents (DelPreto et al., 2020;
Kerzel et al., 2020), the percentage of requests for assistance
created by the human operator, and the number of insignificant
interventions by the human operator (Steinfeld et al., 2006).

Communication metrics capture those factors impacting the
communication channels between the human and the swarm
including latency and bandwidth, especially in the case of
teleoperation or remote interaction with a large swarm. The
problem of limited bandwidth was mentioned in McLurkin
et al. (2006) in an attempt to design an effective interface for
HSI, in which the centralized user interface is responsible for
human command broadcasting, as well as integrating the
information of the whole swarm in order to visualize them for
the human operator. Kolling et al. (2016) reported a series of HSI
experiments with different bandwidths. The findings supported
the claim that the higher bandwidth offered larger capacity for
multiple robots’ states acquisitions in a time step. An increase in
latency caused degradation of interactions (Steinfeld et al., 2006;
Walker et al., 2012). The problems mentioned above affect the
effectiveness and the efficiency of the HSI because they impact the
asynchrony of interaction among swarm members and delays in
the bidirectional interactions. One solution for these problems
may be a predictive display using swarm dynamics and
bandwidth information.

The relationship between the interaction metrics discussed
above and the effectiveness and efficiency metrics of automation
are summarized in Figure 4.

7 HUMAN COGNITIVE STATES

Integrating human cognitive states into adaptive systems is a
critical step towards effective and efficient HSI, for two reasons.
First, real-time assessment of human cognitive states, such as
cognitive workload, fatigue and attention, enables the system to
adjust itself to maintain the human states within a safe envelope.
This approach is particularly useful in scenarios where human
mistakes caused by overload or underload and fatigue could
potentially result in hazardous consequences. Second, human
cognitive states can be translated into meaningful guidance for
adaptation (e.g., swarm level of autonomy). It becomes pertinent
to the adaptive HSI system to have a clear understanding of
human cognitive states.

In HSI, the cognitive state of a user is a combination of
variations among several interrelated constructs, including
workload, attention, fatigue, and stress, to cite a few. However,
to the best of our knowledge, there is currently no specific
research on the cognitive state assessment in the context of
HSI. Therefore, we discuss three types of measures for general
human cognitive state assessment, followed by suggestions for
HSI design.
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Subjective measures are mainly in the form of questionnaires.
They provide useful information on the self-assessment by a
subject regarding the context of the question. This could range
from pure collection of demographic data used to segment the
subject population or identify confounding factors in the analysis
to opinions on a matter of interest, including self-assessment of
emotions. While this form of data gathering is unavoidable in
certain contexts, its reliance on self-assessment by a user biases
the results due to factors including personality, memory, social
attitudes, and each user’s own understanding of the framing of
the questions (Galy et al., 2018). Moreover, these measures
cannot be collected continuously to provide the level of
temporal resolution necessary for real-time usage.

Performance measures are based on the overt performances of
users such as error rate, reaction speed, and task completion time.
These measures are objective and can be continuously collected in
real time, but only if they are carefully designed and integrated
into the task (Mansikka et al., 2018). However, due to their task-
dependent nature, these measures could disrupt users and be
accompanied by low user acceptance.

Physiological measures include electroencephalography
(EEG), event-related potential (ERP), Galvanic skin response
(GSR), heart rate (HR), heart rate variability (HRV),
electromyogram (EMG), eye movements (fixations, saccades,
gaze, and blinks), pupil diameter, and respiration (Charles and
Nixon, 2019). Each of these measures reflects a type of body
response to cognitive manipulations. Table 1 summarizes the
measures and a few of their functions.

Among these modalities, EEG/ERP represents the most
promising modality due to its high temporal resolution,
accuracy, and sensitivity to dynamic changes of the cognitive
states. The advantages of using physiological measures are as
follows: they are objective metrics that do not rely on user
perception, and they therefore support reliable measurements;
multiple physiological measures can be integrated to provide a
multidimensional profile of user states (Charles and Nixon,
2019); the collection of physiological data can be managed in
an unobtrusive manner that does not directly interfere with user
tasks; they are purely indicators that form implicit measures that
are not based on an overt performance (Charles and Nixon,
2019); and last but not least, they are continuous data sources that
naturally support real-time adaptation and dynamic control
(Dehais et al., 2020).

Although the collection of physiological data often requires
special signal acquisition devices (e.g., EEG recording devices),
the rapid development of related technologies such as sensing
technology (e.g., portable EEG cap with dry sensors) has made
collecting data no longer a major concern. Moreover, practical
issues related to the use of physiological signals in real-life
scenarios have received increasing attention. For example,
missing data or data disruption is a critical issue in practical
applications, and machine learning models are proposed to

FIGURE 4 | An example of a set of interaction indicators.

TABLE 1 | Physiological measures and a few of their functions.

Modalities Functions (sensitive to)

EEG/ERP Variations in mental workload (P300)
Low/high-level perceptual and cognitive processes
Alertness and task engagement

GSR Arousal, stress and frustrations
HR/HRV Cognitive demands, time restrictions, and uncertainty

Attention, mental workload, and arousal
EMG Motor preparation for movements and emotion
Eye movements Task demands and fatigue
Respiration Task demands and arousal
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address this data reconstruction problems (El-Fiqi et al., 2021). In
addition, research on decoding and interpreting the collected
physiological data towards meaningful cognitive indicators are
developing fast, and the current results do indicate a promising
future. For example, real-time EEG-based cognitive state
assessment systems have been proposed and tested for user’s
workload, fatigue, and attention in different application scenarios
(Debie et al., 2019; Ladouce et al., 2019; Wu et al., 2020). A recent
study demonstrates that it is feasible to establish profiles of the
user motivations through EEG (Liu et al., 2021). In another study,
the neural correlates of trust in human-autonomy interaction are
identified, which allows for real-time assessment of human trust
in automation (Min Wang et al., 2018). Furthermore, automatic
recognition of the user identity is achieved with high recognition
rate via EEG biometric systems (Wang et al., 2019; Wang et al.,
2020). Integrating these cognitive state indicators for workload,
fatigue, attention, and potentially motivation, along with the user
identity will generate a dynamic user profile to support adaptive
control.

In summary, in an HSI setting, a user needs to at least monitor
the cloud where the swarm is embedded with significant attention
load. It seems pertinent to rely on physiological measures when
designing cognitive indicators for adaptive HSI systems. Each
measure has its own bias and is unlikely to be useful on its own in
general situations. This situation calls for the need to use multiple
modalities (Debie et al., 2019) and engineer fusion techniques to
design appropriate informative pictures of human cognitive states
in real time.

8 MISSION COMPLEXITY

Mission complexity indicates the overall level of effort needed by
both humans and swarm to perform the mission. In a
teleoperation scenario, mission complexity is in the hands of a
human alone. In a shared control scenario, mission complexity is
distributed between the humans and the swarm. In essence, it is
the responsibility of the adaptive agent to decide how to distribute
the functions during function reallocation. In this section, and
without loss of generality, we examine this component of mission
complexity that is assigned to the human; thus, while the previous
section examined indicators of workload, this section examines
causes of workload, that is, mission complexity. At zero-level
autonomy, the component assigned to a human is simply the
overall mission complexity of the HSI. For a fully autonomous
system that does not require any human oversight or interaction,
themission complexity component assigned to the human is zero.
Between these two extremes, the component assigned to the
human, and therefore influencing human workload, is general
enough to cover the overall mission complexity concept.

Mission complexity influences the amount of mental workload
that a mission will potentially require from a human. Because
human workload can negatively hinder the success of a mission
that relies on collaboration between the human and the swarm,
the continuous monitoring and adaptation of mission complexity
becomes crucial. Although human workload can be measured
directly using psycho-physiological techniques, as discussed in

Section 7, mission complexity is distinct in two ways. First,
mission complexity considers only workload associated with
the mission, such that if a portion of the workload
experienced by a human is related to some factors external to
the mission, this portion will not be accounted for by mission
complexity. Second, complexity metrics play a diagnostic role by
identifying how each task contributes to the overall mission-
related workload. This is particularly important to the adaptive
agent as it provides the required information on how a certain
adaptation could potentially result in a desirable workload level.
In this section, we first discuss different factors of complexity, and
then, we show how these factors form the three components of
mission complexity.

8.1 Factors of Complexity
Both objective and subjective factors can impact the mission
complexity for, and therefore the performance of, a human
(Maynard and Hakel, 1997). Objective factors can stem from
the task structure, the interface, or the environment, while
subjective factors stem from human experience, skills, and
self-confidence. The main focus of this section is the objective
factors of mission complexity. We will divide these factors into
three groups, depending on whether they are caused by the
swarm, the interface, or the structure of the mission.

8.1.1 Swarm Characteristics
Within a team setting, properties of the teammates—the
swarm—can considerably impact mission complexity. Two
basic swarm characteristics have been identified in the
literature as affecting human mental workload: the level of
autonomy and size. The level of autonomy of a swarm was
shown to be an important source of complexity. Ruff et al.
(2002) studied the workload associated with different levels of
autonomy while navigating a group of four UAVs. They found
that manual control resulted in the highest level of workload.
Riley and Endsley (2004) found the same result in robot-assisted
search and rescue missions. Mi and Yang (2013) argued that these
results also generalize to swarm operation. However, increasing
the level of autonomy as in semi-autonomous swarms does not
lead to the omission of workload. In principle, this setting
requires considerable cognitive resources as the human has to
understand a plethora of information arriving from the swarm
(Cummings, 2004) in order to maintain a high level of situational
awareness (Endsley, 2017).

The size of the swarm can also result in increasing workload
requirements, particularly in manual control settings (Ruff et al.,
2002). Scalable control methods, rather than controlling
individual members, reduce the sensitivity of workload to
swarm size. For instance, Kolling et al. (2012) proposed two
methods for controlling the swarm in a foraging task: selection
and beacon. They showed that the number of human instructions
did not change significantly across different swarm sizes.
Pendleton and Goodrich (2013) also used three control
methods in a foraging task: leader, predator, or stakeholder.
They found that using these control methods does not result
in a significant change in the workload across different swarm
sizes. It is worth mentioning that in real environments, scalable
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control methods would reduce but not eliminate the effect of
swarm size on mission complexity. Performance drops
encountered by individual robots or sub-swarms would require
human intervention (Wang and Wang, 2017). The frequency of
such events is impacted by swarm size leading to increased
complexity.

8.1.2 The Interface
The interface between the team players, with the human on one
side and the swarm on the other side, can contribute to mission
difficulty. Interface complexity can stem from the activated
swarm control method, the information presented, and the
display technology used. Irrespective of the level of autonomy
of the swarm and the number of swarm members, the active
control method can affect the complexity of the interface. For
example, Pendleton and Goodrich (2013) found that both control
by a leader and by a stakeholder result in lower workload than
control by a predator.

Information presentation decisions with respect to the amount
and level of information presented are another source of interface
complexity. The amount of information affects cognitive load
such that too little information results in increasing uncertainty
and leads humans to integrate information from other sources
such as their own assumptions, which could increase cognitive
load (Van Der Land et al., 2013). Excessive information, on the
other hand, makes the human overwhelmed with a large quantity
of data that may exceed their cognitive capacity (Roundtree et al.,
2019). The impact of the level of information was also examined
by previous works. Riley et al. (2010) argued that low-level
information negatively impacts operators’ cognitive load, as
they must process it to build higher levels of SA (Riley and
Strater, 2006). In contrast, swarm-level information enables the
human to make sense of swarm behaviors leading to effective
collaboration (Hussein et al., 2020a). Finally, communication
issues impose limits on the amount and speed of information
exchange between the human and the swarm. These issues can
lead to increased complexity in scenarios where human actions
might be based on outdated or incomplete information about the
swarm (Hepworth et al., 2021).

8.1.3 Task Structure
The structure of the mission and how it is executed is a third
source of complexity. For instance, the existence of tasks that are
executed concurrently adds to the human workload by increasing
the information load (Liu and Li, 2012). Chen and Barnes (2014)
argued that switching between tasks can increase workload due to
the possible interference between task-related information. This
interference increases if tasks are similar with respect to stimuli,
processing stages, or required responses (Harriott, 2015). It has
been found that a human may require upto 7 s to recover task-
related SA when switching between tasks (Chen and Barnes,
2014). Problem-space factors can also impact the complexity of a
task. For example, obstacle density affects the complexity of
navigation tasks (El-Fiqi et al., 2020), whereas conflicting
evidence affects the complexity of a decision-making task
(Hussein et al., 2020b).

8.2 Components of Complexity
Throughout the mission, a human can be involved in three types
of activities: action execution, SA formation, or SA restoration.
These classes of activities will be considered as the main
components that constitute mission complexity.

8.2.1 Action Execution
The number of actions a human needs to perform depends on the
level of autonomy of the swarm, the control method, and the size
of the swarm. At low levels of autonomy, the human has to
execute a variety of actions at both low and high levels, e.g., tele-
operated navigation and target identification, respectively. As the
level of autonomy increases, a human becomes mainly
responsible for mission-level tasks, while the swarm takes over
control of low-level tasks. The scalability of the control method
used will determine how frequently a certain type of action needs
to be performed in relation to the number of swarmmembers. For
instance, the task of identifying regions of interest in the
environment will be performed a fixed number of times.
However, identification of targets found by each swarm
member will be repeated a number of times proportional to
the number of swarmmembers. Thus, the total number of actions
a human needs to perform will be the product of types of different
actions, multiplied by the frequency of executing each type of
action.

8.2.2 Situational Awareness Formation
While supervising the swarm within a mission, the human needs
to attend to and integrate the incoming information to acquire
the SA. The complexity of SA formation comes from the amount,
level, and quality of the information presented. As the amount of
information increases, the human will need to exert more effort to
perceive these pieces of information. For example, presenting the
health level of each swarm member can be more mentally
demanding than presenting the average and standard
deviation of the health of the swarm as a whole. Moreover, if
the information is presented in a primitive form, the human
needs to integrate it with previous pieces of information to
understand the situation. Information quality issues will
require additional effort from the human to estimate and
account for potential uncertainty in the data.

8.2.3 Situational Awareness Restoration
As the number of concurrent tasks and interruptions increases,
the human will more often need to leave a certain task for a while
to execute other tasks or respond to active interruptions. When
switching back to the old task, a human needs to exert effort to
restore the SA of the task and to catch up with any updates that
took place while executing other tasks. The difficulty of restoring
the SA will increase as the similarity between the tasks increases
due to possible interference. Thus, the complexity of restoring SA
is a function of both the number of concurrent tasks and the
similarity between tasks.

The concepts introduced in this section are composed in
Figure 5, showing how they can be combined to build an
estimation of the mission complexity.
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9 ALL IN ONE: THE
MISSION-INTERACTION-COMPLEXITY-
AUTOMATION-HUMAN FRAMEWORK
In Sections 4–8, we presented the five types of indicators that
need to be brought together for the adaptive AI agent to manage
the interaction in HSI systems. Figures 2–5 summarize how such
indicators can be calculated from the raw data. The context the
HSI system is operating within may necessitate replacing and/or
augmenting the particular metrics that we discussed.
Nevertheless, all five types are necessary, and the inter-
dependencies among them need to be clearly defined to ensure
an effective design of the adaptive AI agent. We named this
framework with the acronymMICAH, and a visual summary of it
is presented in Figure 6.

The five types of indicators can be summarized in the
following way, with the letter contributing to the abbreviation
MICAH underlined:

• Mission performance is the ultimate objective of the system
and should never be disregarded. It can be measured by
effectiveness and efficiency metrics.

• Interaction provides a quantification of the productivity of
the interaction between the human and the swarm.
Monitoring interaction indicators helps to evaluate the
current interaction mode.

• Mission Complexity provides diagnostic information on the
objective factors that contribute to the workload imposed on
the human, hence suggesting avenues for reducing the
workload if necessary.

• Automation level analyses the performance of the
swarm and its need for human intervention, which
are fundamental inputs to correctly set the level of
autonomy.

• Human cognitive states assess the mental conditions of
the human, determining, for example, if they are
overloaded or underloaded to allow the system to
adapt accordingly.

The following is a walk through the SAR scenario described in
Section 3.1 to demonstrate the overall operation of the
framework. Consider the current level of autonomy is set such
that the human is responsible for prioritizing search regions and
identifying victims based on images captured by the UGVs, while
path planning is assigned to the swarm. Table 2 lists the specific
indicators selected for each component of MICAH in this
scenario. In the beginning of the mission, the mission
performance is satisfactory and the human workload level is
within an acceptable range, i.e., high Pcollection and medium
Lworkload. These assessments indicate that the current HSI
setting is appropriate and that no adaptation is required.

Then, the swarm starts navigating through a narrow corridor
with obstacles scattered along it. The mission effectiveness and
efficiency start declining (i.e., Pcollection is getting low and Ttask is
getting high) due to the difficulty of navigating through obstacles.
This decline in mission performance activates the adaptive
control module, but does not specify the cause of the problem
(the human or the swarm), and hence the desirable direction of
adaptation. Swarm automation indicators provide more of the
required information, as they indicate poor swarm performance
due to the increase in collision counts Ncollision and number of
stragglers Nstraggler. These changes are accompanied with an
increase in the mission complexity indicator Nrequest. Thus, the
adaptive control logic switches path planning from the swarm to
the human. A lower-level control method is activated, which
allows for both controlling the swarm as a whole and controlling
individual UGVs if required. The interface changes accordingly to
present low-level information.

The efficacy of the intervention of the human is monitored.
There is a positive change in performance after human
intervention (i.e., δinterven is high) which shows that the human
is able to support the swarm operation. The swarm starts to cross
to the other side of the narrow corridor into a space with more
degrees of freedom where Nstraggler and Ncollision start decreasing.
After the successful navigation through the narrow corridor, the
human workload level Lworkload exceeds the safety level. The
adaptive control module is activated again, and a decision is

FIGURE 5 | Components of mission complexity.
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made to switch the path planning responsibility back to the
swarm. The monitoring continues till the end of the scenario
so that adaptation can be activated as needed.

Regarding the adaptive agent, there are various techniques that
can be used to implement its functionality. For instance, the agent
can be built as a set of IF-THEN rules by relying entirely on
domain experts to identify when and how adaptation should be
performed. In many situations, there could be some vagueness in
the language used for defining these rules. Fuzzy logic can be
useful in these situations as it allows for some vagueness in
defining the rules and tolerates uncertainty in the values of the
metrics (Mittal et al., 2020). However, it can be a challenging task
for a domain expert to generate these sets of rules in the first place,
as this process requires thinking into how to make an adaptation
decision based on all the different combinations of values for the
five indicators.

Machine-learning techniques can leverage training data to
assist with building an adaptive logic agent. The data can be
collected by simulations in advance to compile a set of examples
of how values of the MICAH metrics can be mapped into an

appropriate level of autonomy. These examples can be then used
to train a model for adaptive logic in a supervised learning setting.
Alternatively, the adaptive logic agent can be trained using trial
and error in a reinforcement learning (RL) setting. For instance,
the inputs to the RL adaptive agent would consist of both the
metrics used for the five indicators and the current task
assignment (i.e., the level of autonomy). Meanwhile, the
output of the RL agent would be a set of discrete actions
representing the task assignment for the next time frame. The
RL agent would be requested to produce an action each τminutes
or as triggered by emergency situations. The RL agent can be
employed within a series of (possibly simulated) missions to learn
a useful adaptation policy via interaction with the environment.
By properly designing the reward function, the RL agent can learn
policies for various objectives (e.g, maximizing the performance
or balancing the load between the human operator and the
swarm). To bootstrap the model parameters, inverse
reinforcement learning can be employed to learn from
demonstrations by a domain expert (Arora and Doshi, 2021;
Nguyen et al., 2021).

10 CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework that extends existing
concepts of adaptive systems to fit swarm systems in order to
achieve effective and efficient HSI. We brought together literature
from different fields including HRI, HSI, task complexity, and
psycho-physiological techniques to identify and discuss classes of
indicators that convey complementary information that is
significant for effective adaptive autonomy.

The adaptive AI agent includes two phases: monitoring and
assessment; and adaptation. We focused this paper on the first
phase. The mapping from state assessment to a certain adaptation
is by no means trivial and will be the focus of our future extension
of this work, wherein we will aim at designing the technical details
of the adaptation systems based on the proposed framework. The
use of human experiments will represent an invaluable source for
learning and evaluating adaptation strategies. However, to obtain
sufficient data that span the state space, human experiments
would be very costly in terms of their financial and temporal
needs. Hence, the use of models that closely capture the relevant
system aspects can be quite effective in this scenario to obtain the
required data (Hussein and Abbass, 2018). In this way, different
adaptation strategies can be explored and tested in the simulation
platform using techniques like reinforcement learning. This

FIGURE 6 |MICAH: categories of indicators used for adaptation in HST.

TABLE 2 | Selected indicators for the SAR scenario.

Categories Indicators Notations

Mission performance Victim collection rate Pcollection

Time for completion of individual sub-tasks Ttask
Interaction Change in performance after interventions δinterven
Complexity Number of assistance requests received from the swarm Nrequest

Swarm automation level Number of UGV stragglers Nstraggler

Collision count Ncollision

Human cognitive states Cognitive workload level Lworkload
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approach would enable the mapping from mission states to
adaptation actions based on the learned (long-term) rewards
associated with these actions.

To validate the effectiveness of this framework, it will be
instantiated and evaluated in a dynamic environment similar
to the scenario described in Section 3.1. Depending on the
specifics of the test scenario, one or more metrics will be used
from each class of indicators to inform the adaptation decision.
To evaluate the monitoring and assessment phase, it will be
necessary to investigate the contribution of each class of
indicators to the dynamic adaptation. Hence, a simple rule-
based adaptation manager will be implemented in which each
class of indicators will be added incrementally, starting with no
indicators (base-line system with static task allocation) and
ending with an adaptation manager that uses all five classes of
indicator. The corresponding change in performance can then be
used to determine the added value of each class of indicators or
lack thereof. The second phase, adaptation, can similarly be tested
by comparing the performance of the AI-based adaptation
manager to a rule-based adaptation manager, given the same
input data.

It is worth mentioning that obtaining data for the five
indicators may not always be a straightforward process. For
example, to assess the swarm automation level, it is implicitly
assumed that the adaptive AI agent can observe the state of the
swarm and its operational environment. In remote environments,
the quality of these observations can drop significantly due to, for
example, limited bandwidth. In these situations, statistical
summaries of information about the state of the swarm can be
calculated at the swarm side before sending it (Nunnally et al.,
2012). This approach may require efficient algorithms for
evaluating the swarm state or the environmental features in
question and electing a swarm member to communicate the
information back to the adaptive AI agent.

The accurate interpretation of human cognitive states based
on the psychophysiological data remains a challenge due to the
difficulties in discriminating mental states (e.g., attention,
workload, and fatigue) in real settings (Lohani et al., 2019).
However, continuous research promises increasing utility of
the physiological measurements in the near-real-time
estimation of the cognitive states.

When one data source becomes unavailable, reliance onmulti-
modality becomes a necessity (Lahat et al., 2015; Debie et al.,
2019). Moreover, multi-modal fusion techniques offer more
robust indicators and resilience to noise, data loss, and
missing information (Wagner et al., 2011). By learning the

relationships between data from the five indicators, techniques
to infer missing data from the existing data can be used
(Srivastava and Salakhutdinov, 2012).

Last, but not least, it is anticipated that the adaptive AI agent
will have a learning component that dynamically learns from the
data provided by the MICAH framework. For example, changes
in the EEG data of a human cannot always be interpreted without
context and normally differ from one subject to another. The
adaptive AI agent may use association rule mining in continuous
domains (Wang et al., 2016) to associate changes in task and
mission complexity with changes in particular user EEG
indicators. In addition, as discussed in Section 9, the
functionality of the adaptive control agent can be implemented
through multiple ways, including a set of rules, fuzzy logic,
reinforcement learning and other machine learning techniques.
Among these methods, rule-based or decision tree-based
methods have advantages in improving the transparency and
explainability of decisions made by the adaptive control agent
(Dorigo et al., 2021). Methods based on deep learning algorithms,
on the other hand, are able to make full use of the available data
and have the potential in providing more effective and robust
representations for adaptive control (Benosman, 2018). In our
future study, we will consider both directions in the
implementation and validation of the MICAH framework in
practical applications.
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