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Abstract— As a promising candidate to complement traditional1

biometric modalities, brain biometrics using electroencephalog-2

raphy (EEG) data has received a widespread attention in recent3

years. However, compared with existing biometrics such as finger-4

prints and face recognition, research on EEG biometrics is still5

in its infant stage. Most of the studies focus on either designing6

signal elicitation protocols from the perspective of neuroscience or7

developing feature extraction and classification algorithms from8

the viewpoint of machine learning. These studies have laid the9

ground for the feasibility of using EEG as a biometric verification10

modality, but they have also raised security and privacy concerns11

as EEG data contains sensitive information. Existing research12

has used hash functions and cryptographic schemes to protect13

EEG data, but they do not provide functions for revoking14

compromised templates as in cancellable template design. This15

paper proposes the first cancellable EEG template design for16

privacy-preserving EEG-based verification systems, which can17

protect raw EEG signals containing sensitive privacy information18

(e.g., identity, health and cognitive status). A novel cancellable19

EEG template is developed based on EEG features extracted20

by a deep learning model and a non-invertible transform. The21

proposed transformation provides cancellable templates, while22

taking advantage of EEG elicitation protocol fusion to enhance23

biometric performance. The proposed verification system offers24

superior performance than the state-of-the-art, while protecting25

raw EEG data. Furthermore, we analyze the system’s capacity26

for resisting multiple attacks, and discuss some overlooked but27

critical issues and possible pitfalls involving hill-climbing attacks,28

second attacks, and classification-based verification systems.29

Index Terms— EEG biometrics, brain biometrics, verification30

system, privacy-preserving, cancellable biometrics, non-invertible31

transformation, template protection.32

I. INTRODUCTION33

CONVENTIONAL biometric techniques such as finger-34

print and face recognition share vulnerabilities in terms35

of confidentiality and robustness against circumvention [1]36

since these biometric traits are observable and can be illegally37

obtained or forged without the user’s awareness, e.g., via high38
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Fig. 1. A typical structure of EEG-based biometric systems.

resolution photography [2], [3]. The need for stronger security 39

has given birth to brain biometrics based on electroencephalog- 40

raphy (EEG) signals. Meanwhile, the rapid development of 41

brain-computer interface, neuroscience, and sensor technology 42

has created an environment where EEG is readily available 43

for biometric applications. Potential advantages of EEG bio- 44

metrics include its robustness against circumvention, support 45

for liveness detection, continuous verification, and cognitive 46

information indicators [4], [5]. A typical EEG-based biometric 47

recognition system consists of four major modules: signal 48

acquisition, pre-processing, feature extraction, and decision- 49

making, as illustrated in Fig. 1. During data acquisition, EEG 50

signals, captured by sensors from the user’s scalp while he or 51

she engages with the elicitation protocol, are transmitted to the 52

processing unit. Since raw EEG data are usually contaminated 53

with noise and artifacts, it is necessary to preprocess the raw 54

data to enhance signal quality. Then discriminant features are 55

extracted from the preprocessed EEG and fed into a decision- 56

making module. 57

So far, most studies on EEG biometrics have focused on the 58

improvement of the signal acquisition, feature extraction, and 59

decision-making modules. The acquisition of EEG biometrics 60

requires to specify the corresponding signal elicitation pro- 61

tocols, among which the resting protocol is favorable due to 62

its convenience and minimum requirements for data collection. 63

Ongoing EEG under the resting state protocol does not involve 64

external stimulation to or active response from the user during 65

data acquisition, thus minimizing the impact of cognitive state 66

changes on signal stability [6], [7]. It also supports operation 67

in a continuous and unobtrusive manner. Alternative protocols 68
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include the volitional tasks, e.g., the pass-thoughts and various69

event-related potential (ERP) protocols [8]. The decision-70

making is achieved by template comparison or classification71

based on supervised learning models. Template comparison is72

adopted in many studies as an effective and solid decision-73

maker in both identification and verification scenarios [7], [8],74

[9], [10]. Other studies view identification or verification as a75

classification problem and explore different machine learning76

models, such as discriminant analysis [11], [12], support77

vector machines, and neural networks [5], [13]. However, user78

verification is not merely a classification problem, but also79

entails security considerations. Classification accuracy does80

not necessarily reflect real biometric performance. Unfortu-81

nately, many studies fail to differentiate the two concepts.82

We will discuss this issue in Section VI.83

A more serious concern is that EEG biometric systems84

without privacy-preserving mechanisms would pose a huge85

threat to user privacy. EEG signals contain sensitive infor-86

mation about the user’s cognitive and emotional states and87

health conditions [14]. A recent study examining EEG tem-88

plates (features) used in biometric applications confirmed that89

personal characteristics regarding age and gender, as well90

as information related to medication intake and neurological91

disorders, can be inferred from the templates [15]. These92

findings highlight the need to apply privacy-preserving mecha-93

nisms to protect user templates when deploying EEG biometric94

systems. However, the issue of protecting EEG biometric95

systems from privacy and security breaches has not been fully96

resolved. The contributions of this study are summarized as97

follows:98

• A cancellable template design is proposed to attain a99

privacy-preserving EEG-based verification system.100

• An innovative transformation is designed to generate101

cancellable templates from EEG features encoded by a102

deep neural network via a non-invertible transform. The103

proposed transformation is tailored for EEG biometrics104

allowing for elicitation protocol fusion to enhance verifi-105

cation performance, while providing template protection.106

• A new concept of second attacks is introduced to examine107

the possibility of breaking into a system using pre-108

obtained solutions after the system has revoked the com-109

promised template.110

• Pre-image and hill-climbing attacks are widely used111

criteria to assess cancellable biometrics. We reveal that112

these criteria do not fully apply to security assessment of113

cancellable biometrics. Hence, we re-define the concept114

of pre-image attacks suitable for cancellable biometrics.115

• Extensive experiments are carried out to evaluate the116

effects of pre-image and hill-climbing attacks. The results117

demonstrate that cancellable template design based on118

many-to-one mapping is inherently resistant to these119

attacks, which is contrary to the common understanding120

in the field.121

• In-depth analysis is conducted on pitfalls involved in122

the evaluation procedure of supervised learning-based123

verification systems.124

The rest of this paper is organized as follows. Section II125

reviews the state of the art on EEG biometrics and protection126

mechanisms. Section III presents the proposed methodology. 127

Section IV describes the experimental design, followed by 128

results in Section V and security analysis and discussion in 129

Section VI. The conclusion and future directions are summa- 130

rized in Section VII. 131

II. RELATED WORK 132

A. EEG Biometrics 133

EEG under the resting state has been investigated for 134

biometric applications for over a decade and recent studies 135

on the permanence issue suggested that the resting state pro- 136

tocol presents an effective and robust condition for biometric 137

recognition [6], [9]. In the resting state elicitation protocol, the 138

user remains relaxed with eyes closed (EC) or eyes open (EO) 139

without performing any particular task. The rationale behind 140

it, besides its implementation simplicity, is the neurophysio- 141

logical evidence which indicates that ongoing EEG under the 142

resting state carries unique identity information (e.g., those 143

related to heritability and personality factors) [16]. In addition, 144

EEG signals present large intra-user variations that could 145

hinder the biometric performance. In order to improve system 146

performance and robustness, the fusion of multiple elicitation 147

protocols is adopted. In many works, this is achieved by 148

decision-level fusion through voting schemes [8]. Another way 149

for protocol fusion is to mix the EEG data collected under 150

different elicitation protocols to create a data set that contains 151

the generalized unique pattern of each user [13]. This strategy 152

has been adopted in many EEG biometrics studies to account 153

for the intra-class variability, especially methods based on 154

supervised learning models [12]. 155

Regarding feature extraction, different methods are pro- 156

posed considering the various characteristics of EEG signals. 157

Based on whether the relationship information between signals 158

of different channels is captured or not, we can categorize 159

EEG features into univariate features and bivariate features. 160

The univariate features are extracted from single channels 161

of signals considering signal characteristics in the time and 162

frequency domains. Popular ones include the coefficients of 163

autoregressive (AR) models [9], [17], fuzzy entropy [18], and 164

power spectral density (PSD) features [7], [9], which reflect 165

time-dependency, dynamic complexity, and spectral character- 166

istics of EEG, respectively. On the other hand, the bivariate 167

features are based on brain connectivity which captures the 168

interactive or structural information between EEG channels. 169

Different statistical and effective metrics have been used for 170

establishing connectivity between EEG channels, including the 171

Pearson’s correlation [5], [19], Granger causality [20], spectral 172

coherence [7], and phase synchronization indices [10], [19]. 173

Moreover, graph features extracted from the brain connec- 174

tivity networks are also proposed for EEG biometrics [10], 175

[21]. Recent findings suggest that, compared with univari- 176

ate features, bivariate features are more robust against the 177

intra-user variations across sessions, thus improving biometric 178

performance [5], [10]. The result also shows that the phase 179

synchronization, especially the ρ index, is a sound metric to 180

estimate EEG connectivity for biometric applications. Feature 181

extraction based on deep learning model is also proposed [22], 182

[23], [24]. 183
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For classification in EEG biometrics, existing methods184

can be categorized into comparison-based classification and185

supervised learning-based classification. In verification, the186

comparison-based methods predict the class label (genuine187

user or impostor) of a probe template by calculating its similar-188

ity to one or multiple reference templates of the claimed user.189

The similarity was defined by the Euclidean distance [21],190

Mahalanobis distance [7], Manhattan distance [9], cosine191

similarity [9], [17], and cross-correlation [8]. Template com-192

parison is straightforward and computationally fast, yielding193

interpretable results. The performance depends on the discrim-194

inative capacity of the template. Recent studies also explored195

different machine learning algorithms for classification in EEG196

biometrics. Popular classifiers include the linear discriminant197

analysis (LDA) [11], [12], [17], support vector machines198

(SVMs) [17], and deep neural networks such as multilayer per-199

ceptron (MLP) and convolutional neural networks (CNNs) [5],200

[13]. In these methods, training is an essential step that fits the201

model to a training dataset. The performance of the model not202

only depends on the capability of the model itself, but also203

relies on the training procedure and a good training dataset.204

B. Privacy-Preserving Mechanisms205

Non-invertible transformation design for biometric systems206

renders a vital privacy-preserving mechanism for biometric207

template protection. This type of method applies a one-208

way transformation to biometric data such that an adversary209

cannot retrieve the original biometric data, even if the stored210

template is compromised. The comparison or classification211

of the enrolled template and the probe is carried out in the212

transformed domain to protect the original biometric data from213

leakage. He et al. [25] studied the potential of hashing EEG214

features for verification. Multi-variate autoregressive coeffi-215

cients were extracted as features from multi-channel EEG216

signals and then hashed by the fast Johnson-Lindenstrauss217

algorithm to obtain compact hash vectors. A naive Bayes218

probabilistic model was used for decision-making based on the219

EEG hash vectors. Applying cryptographic hashing to biomet-220

rics induces variation, as any slight change to the input would221

completely alter the hash value produced. Bajwa et al. [26]222

proposed a key generation method with EEG biometrics. The223

PSD features were extracted from EEG signals using the224

discrete Fourier transform and discrete wavelet transform,225

followed by a Neurokey generation procedure which involves226

feature selection, binarization and hashing. The term ‘can-227

cellable’ is used in this study to mean that a user’s Neurokey228

can be changed by using the EEG collected in a different cog-229

nitive task, if the user’s biometric information is compromised.230

However, such ‘cancellable biometrics’ cannot protect raw231

EEG data containing sensitive information. Furthermore, the232

choice of tasks is limited and different tasks would have vastly233

different performance [27]. Damaševičius et al. [28] developed234

a cryptographic verification scheme for EEG biometrics using235

fuzzy commitment and the error-correcting Bose-Chaudhuri-236

Hocquenghem codes. Although this method protects data237

privacy, it is not equipped with cancellability to revoke238

compromised templates. Cognitive biometric cryptosystems239

based on EEG are also proposed [29]. Cancellable biometric 240

templates based on non-invertible transforms offer a solution 241

to EEG data protection as well as template revocability [30], 242

[31], [32], [33]. To the best of our knowledge, there has 243

been no cancellable EEG template design reported. In EEG 244

biometric systems, most of the work is based on classification 245

models, where it is infeasible to integrate cancellability. Once 246

the model is compromised, the input can be estimated by 247

genetic algorithms so that the system is cracked. 248

III. METHODOLOGY 249

In this section, we design a cancellable template to pro- 250

tect EEG biometric data. The proposed privacy-preserving 251

EEG verification system consists of four main components: 252

signal acquisition, feature extraction, feature transformation, 253

and comparison, as illustrated in Fig. 2. In the enrollment 254

stage, EEG signals are collected from each user under the 255

signal elicitation protocol and fed into the feature extraction 256

module, which encodes signals into feature vectors. Then the 257

transformation module takes the features as the input and 258

creates a cancellable template with a user-associated key. This 259

template is a binary representation, and will be stored in 260

the database. In the verification stage, a probe template is 261

generated following the same procedure and the comparison 262

algorithm then outputs a decision to accept or reject the user. 263

A. Signal Elicitation Protocol 264

The resting state EEG elicitation protocol is adopted for 265

signal acquisition. To be specific, two conditions are included, 266

namely the EO and EC states. The user is asked to stay 267

relaxed with eyes closed or eyes open, while the spontaneous 268

EEG signals are recorded. EEG signals present time-varying 269

and non-stationary characteristics, and are sensitive to the 270

cognitive states of the subject, which may affect the bio- 271

metric performance. Therefore, in order to improve stability, 272

researchers often consider elicitation protocol fusion to get a 273

richer dataset that contains signals in diverse states. We adopt 274

the basic idea of elicitation protocol fusion [13]. However, 275

instead of decision-level fusion with majority voting or directly 276

mixing data collected under different protocols to form training 277

and testing sets as in the existing research, as shown is 278

Fig. 3 (a) and (b), we embed data fusion naturally in the 279

transformation process, as illustrated in Fig. 3 (c). The benefits 280

of our design are twofold: 1) the entropy of extracted fea- 281

tures increases, thus the reliability of the biometric system is 282

enhanced, due to the elicitation protocol fusion; and 2) secure 283

cancellable templates are generated at the same time without 284

extra computational costs. Details of the transformation is 285

presented in Section III-C. 286

B. Feature Extraction 287

The state-of-the-art feature extraction method [23], [24] is 288

adopted in our study, where a siamese CNN model is designed 289

to derive discriminative features from the raw EEG time series. 290

The siamese network, as illustrated in Fig. 4, contains two 291

identical CNN subnetworks that share the same architecture, 292
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Fig. 2. The proposed privacy-preserving EEG-based verification system.

Fig. 3. Signal elicitation protocol fusion.

parameters and weights. Any parameter updates are mirrored293

across both subnetworks during the learning process. The input294

of the siamese network is a pair of signals (s1, s2) and the final295

layers in the subnetworks output encodings (v1, v2), where296

the Euclidean distance between the two encodings, D2
v1,v2 ,297

is computed to adjust the weights of the subnetworks. The298

contrastive loss function is adopted for backpropagation since299

it is suitable for evaluating how well the siamese network300

differentiate the input pairs by minimizing distance between301

encodings derived from signals of the same class and max-302

imizing distance between encodings derived from signals of303

different classes. The contrastive loss is computed as:304

L(v1, v2, y) = (1− y)
1

2
D2

v1,v2 + y
1

2
{max(0, m − D2

v1,v2}2,305

(1)306

where y is the label associated with the input pair, with307

1 meaning a matching pair (two signals are from the same308

subject) and 0 a non-matching pair (two signals are from309

TABLE I

CONFIGURATION OF THE CNN SUBNETWORKS

Fig. 4. Siamese network for feature extraction.

different subjects), and m is the margin that defines the 310

baseline for distance for which pairs should be classified as 311

dissimilar (m=1). The configuration of the CNN subnetworks 312

is presented in Table I. After training, the model will be used 313

as a feature extractor to derive a feature vector of length D 314

(here we set D = 1000) from an input signal. 315

The Adam optimizer with a learning rate of 5e-4 is used 316

for training the siamese network. The batch size is 256, 317

and an early stopping regularization monitoring the validation 318

accuracy with patience of 50 epochs is adopted to avoid over- 319

fitting. To train this feature extractor, we split the available 320

subjects into a training set consisting of two-thirds of the 321

subjects and a testing set comprising the remaining subjects, 322

upon which the verification performance is evaluated. 323

C. Feature Transformation 324

Let v1 and v2 denote the feature vectors extracted from 325

EEG signals collected under the two elicitation protocols. The 326
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proposed transformation takes the input of v1 and v2 and327

generates a secure cancellable template t, as illustrated in328

Fig. 3 (c). Both feature vectors have a length of D.329

At the enrollment stage, each user is assigned a user key k330

(the key is stored along the template in the database), which331

is used as the random seed to generate a random permutation332

of the integers 1 to D, as follows:333

p = randperm(k, D), (2)334

where the randperm(seed,integer) is a random permutation335

function defined on a Pseudorandom number generator336

(PRNG) which can adopt any generic PRNG algorithm,337

e.g., the Mersenne Twister algorithm. Then a permuted338

(re-arranged) version of the feature vector v1 is obtained and339

the Hadamard product of it and v2 is calculated, as follows:340

v′1 = v1(p) (3)341

c = v′1 ◦ v2. (4)342

A vector r is then generated by projecting vector c with a343

matrix M, as follows:344

r = c ·M, (5)345

where M is a user-specific random projection matrix with346

more rows than columns to form an underdetermined system347

of equations, thus making the transformation non-invertible.348

Finally, the real-valued vector r is encoded into a binary349

template t through the 8-bit Gray code. The coding process350

first converts a real vector into a decimal vector which is then351

converted into the Gray code according to the code book, as in352

Algorithm 2. The binary template t is stored in the system for353

comparison purposes.354

EEG is a continuous signal in nature and a moving win-355

dow of short length is usually applied to segment the data356

sources into frames for preprocessing and feature extraction.357

It is natural to use the multiple frames captured during data358

collection, instead of a single frame, to generate a more359

stable template. Let Fe and Ft denote the number of frames360

collected during enrollment and verification, respectively. Each361

frame corresponds to a vector rf , hence, for F vectors, r f362

(where f = 1, · · · , F) are obtained. The final template363

generated by the transformation module is the Gray encoding364

of the average of these vectors. The complete transformation365

procedure is summarized in Algorithm 1. The number of366

frames is adjustable in accordance with application scenarios367

and requirements.368

D. Transform-Based Comparison369

To verify a user, one or more frames of EEG signals are370

captured from the user and a probe template is generated371

following the same procedure as in the registration stage. The372

Hamming distance is used for comparing the probe template373

and the reference template (both are binary representations),374

as follows:375

dH (tq, tr ) = sum(tq ⊕ tr ), (6)376

where the symbol ⊕ denotes element-wise XOR. Finally, the377

distance is normalized (percentage of bits that differ) and378

Algorithm 1 Transform
Input : feature vectors from F frames

v f,1, v f,2 ∈ R
D, f = 1, · · · , F

user identity u
Output: template t

1 if enrollment then
2 initialize a key ku

3 else
4 retrieve the key ku

5 end
6 compute p← randperm(ku, D)
7 compute M← rand(ku, [D, δD]), δ ∈ (0, 1)
8 for f = 1 to F do
9 permutation v′f,1 ← v f,1(p)

10 Hadamard product c f ← v′f,1 ◦ v f,2

11 projection r f ← c f ·M
12 end
13 compute r← (

∑F
f=1 r f )/F

14 encoding t← GrayCode(r, 8-bit)

Algorithm 2 GrayCode
Input : real vector r; bit M
Output: binary code t

1 r← r/max(r))
2 r← r − mean(r))
3 r← normcd f (r, 0, std(r)))
4 r← r
5 r← r ∗ (2M )
6 d← round(r)
7 d(d == 2M )← 2M − 1
8 t← dec2gc(d, M)

compared with a pre-defined threshold θ to make a decision, 379

as follows: 380

ô =
{

accept, if dH (tq , tr ) ≤ θ

reject, otherwise
. (7) 381

In the analysis, the threshold θ is automatically adjusted to 382

obtain the equal error rate (EER), which is defined as the 383

error rate when the false match rate (FMR) equals the false 384

non-match rate (FNMR). The FMR reflects the percentage of 385

probe templates in which impostors are incorrectly accepted, 386

and the FNMR reflects the percentage of probe templates in 387

which genuine users are incorrectly rejected [34]. 388

Remarks: The proposed transformation provides a concise 389

and elegant solution to the generation of secure and cancellable 390

templates. (i) If a template is compromised, the associated 391

user key can be replaced and a new template can therefore be 392

generated with this new key. (ii) Every time the user key is 393

updated, the random permutation in (3) and the Hadamard 394

product in (4) provide a different set of variables for the 395

random projection in (5). Since the projection matrix is rank- 396

deficient for every set of variables, it is insufficient to inverse 397

the computation, making the system resistant to the ARM. 398

(iii) The transformation takes advantage of EEG signal 399
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TABLE II

DATABASES

elicitation protocol fusion such that the entropy and reliability400

of the feature vectors are enhanced. (iv) The encoding proce-401

dure is a quantization process alleviating the impact of EEG402

uncertainties associated with the complexity and variability of403

brain dynamics.404

IV. EXPERIMENTAL DESIGN405

A. Database and Pre-Processing406

Evaluation of the proposed method utilizes three pub-407

licly available databases, which are the EEG Motor Move-408

ment/Imagery Database (MMIDB) [35], BED database [36],409

and SEEDiv database [37]. The MMIDB database provides410

EEG signals collected from 109 subjects in two resting411

states, EC and EO, and motor imagery tasks including physi-412

cally opening/closing fists/feet and imagining opening/closing413

fists/feet without actual body movement. Data acquisition414

was performed using a BCI2000 system [38] equipped with415

64 electrodes with a sampling rate of 160 Hz. The recorded416

signal is referenced to the earlobes. The BED database con-417

tains EEG recordings from 21 individuals under multiple418

signal elicitation protocols in three sessions. The signals were419

captured using Emotiv Epoc+, an inexpensive consumer-grade420

device. The EEG recordings under the resting with eye-open421

(EO) and eye-closed (EC) protocols are used in this study.422

The SEEDiv database contains EEG recordings of 15 subjects423

while watching movie clips in three sessions. This database424

was originally collected for EEG-based emotion recognition,425

where the movie clips were used as visual stimuli to induce426

happiness, sadness, fear and neutral emotions from the sub-427

jects. We selected recordings under the neutral emotion for this428

study. Table II summarizes the details of the three databases.429

For signal preprocessing, we apply the Harvard auto-430

mated processing pipeline for EEG (HAPPE) [39] to remove431

noise and artifacts originating from muscle and eye move-432

ment. It consists of four standard steps, including filtering433

([8 30] Hz), bed channel detection and interpolation, arti-434

fact component rejection, and common average referencing.435

The HAPPE pipeline is adopted due to its effectiveness in436

preprocessing data that are heavily contaminated with noise437

and artifacts. The alpha and beta bands ([8 30] Hz) are438

selected since EEG content in these two bands contains439

most inter-person discriminative characteristics according to440

existing findings [10], [23]. A downsampling to 100 Hz,441

128 Hz and 80 Hz is also applied for SEEDiv, BED, and442

MMIDB respectively, to improve computational efficiency in443

the subsequent feature extraction step, considering the Nyquist444

Shannon sampling theorem. The preprocessed signal is then445

segmented into two-second frames, so that each frame contains446

62, 14, and 64 two-second time series, respectively, for the447

SEEDiv, BED, and MMIDB databases. Finally, we format 448

the signal frames into an unidimensional representation that 449

concatenates signal time series of each channel. 450

B. Evaluation Procedures 451

1) Signal Acquisition Protocols: Two resting state proto- 452

cols, EO and EC, are selected from databases MMIDB and 453

BED for evaluation. For transformation, when signals under 454

two protocols are available, we enable the transformation- 455

embedded protocol fusion scheme, hence, the input of the 456

transformation module, v1 and v2, are feature vectors extracted 457

under the two protocols, respectively. When only one protocol 458

is applied, the feature vector will be divided into two parts of 459

equal length (first half and second half), v1 and v2, to fed into 460

the transformation module. For SEEDiv database, the Neutral 461

protocol is selected since the database does not provide data 462

under resting states and Neutral is the most relevant one that 463

available in it. 464

2) Handcrafted Features: We select four representative 465

types of handcrafted features for comparison, which are 466

the reflection coefficients of AR models, band power, fuzzy 467

entropy, and graph features based on the EEG functional 468

connectivity networks. These four types of features capture 469

the time-dependency, power spectral characteristics, dynamic 470

complexity, the functional connectivity characteristics of EEG 471

signals, respectively. They are classic and important EEG 472

features in time, frequency, and space domains, and have been 473

widely used for EEG biometric applications. In the following 474

analysis, we refer to them as AR, PSD, FuzzEn, and Graph, 475

respectively. 476

• AR: An AR model describes the time-varying processes 477

in EEG by specifying that the value of the timeseries 478

at a certain time depends linearly on its own previous 479

values and on a stochastic term (white noise), i.e., s(t) = 480∑p
i=1 θi s(t − i)+ ε(t), where θ is the coefficients of the 481

AR model. In this study, we use an AR model of order 482

5 to fit the signal timeseries, and derive the reflection 483

coefficients as features using the Burg method [40]. The 484

final feature vector has a length of 5×N , where N is the 485

number of channels. 486

• PSD: We estimate the power spectral density of EEG 487

signals using a non-parametric approach based on the fast 488

Fourier transform. This approach is selected because it 489

directly corresponds to the physical interpretation in terms 490

of EEG rhythms [7]. Based on the PSD, the average band 491

power over the delta, theta, alpha, beta, and gamma bands 492

are extracted as features. The length of the final feature 493

vector is 5× N , where N is the number of channels. 494

• FuzzEn: Entropy quantifies the amount of uncertainty 495

in the EEG amplitudes. Among the existing entropy 496

estimation methods such as approximate entropy and 497

sample entropy, we select the FuzzEn [18], which was 498

shown to be a more reliable measure than others for 499

biological data, since the uncertainty at the boundaries 500

between classes can provide a shade of ambiguity [41]. 501

The final feature vector has a length of N , the number of 502

channels. 503
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• Graph: The ρ-index, a phase synchronization measure504

based on Shannon entropy, is used for computing the505

functional connectivity from the beta band (13-30) multi-506

channel EEG signals. This index and frequency band are507

selected based on previous findings [10]. The calculation508

of ρ is based on the relative phase of two signals,509

�φr (t) = |φxi (t) − φx j (t)| mod 2π , where φxi (t) and510

φx j (t) are the instantaneous phases of signals xi (t) and511

x j (t), respectively, calculated by Hilbert transform. For512

EEG signals of N channels, we compute the ρ connectiv-513

ity on every two channels to construct an N×N network,514

on which nodal and global features are extracted. The515

features include pagerank centrality for each node, tran-516

sitivity, modularity, network characteristic path length,517

global efficiency, network radius and diameter. The final518

feature vector has a dimension of N + 6, where N is the519

number of channels.520

3) Verification Performance: We test the proposed transfor-521

mation on different feature extraction methods, and compare522

the transformed-domain performance with its corresponding523

performance in the non-transformed domain. Manhattan dis-524

tance is used for comparison in the non-transformed domain525

where the features are real-valued. The non-invertible trans-526

formation often needs to reset the order or position of the527

feature set, which is likely to weaken the discriminant power528

of the feature set and introduce extra intra-user variations,529

thus affecting biometric performance [42]. A good cancellable530

template design should enhance the security of the template531

without compromising the biometric performance. The non-532

transformed domain performance is used to show whether and533

to what extent the proposed transformation has an impact on534

biometric performance.535

C. Cross-Session Evaluation536

Two experimental setups are considered, the within-session537

evaluation uses data collected in one session for enrollment538

and verification, and the cross-session evaluation tests verifi-539

cation performance using data collected in a different session540

than the one used for enrollment. The cross-session stability is541

important for practical EEG biometric systems. In the cross-542

session setup, the siamese model is trained using input pairs543

generated within and across sessions in the training subject set,544

and the verification performance is evaluated by comparing545

data of each user in the third session against that in the first546

session. Then through the proposed transformation method,547

the features extracted from each user during the enrollment548

stage (session 1) are transformed into a reference template549

which is then stored in the system. During the verification550

stage (session 3), the same feature extractor and transform are551

used to derive probe templates which are compared with the552

reference templates to compute the EER performance.553

V. RESULTS554

Let Fe and Ft denote the number of consecutive frames555

involved in a template during enrollment and verification,556

respectively. The verification performance is measured by the557

EER.558

TABLE III

WITHIN-SESSION VERIFICATION PERFORMANCE EER (%). ALL
METHODS ARE WITH THE SAME FRAME CONFIGURATION

(Fe = 10 AND Ft = 5)

A. Performance in the Lost Key Scenario 559

The lost key scenario is considered the worst case as the 560

user loses his/her parameter key. This means that the attacker 561

can take this advantage to penetrate the verification system. 562

In order to simulate this scenario, we use the same parameter 563

key to generate the permutation vector p in (3) and projection 564

matrix M in (5) for all users in the transformation module. 565

Table III presents within-session verification performance EER 566

(%). All methods are with the same frame configuration 567

(Fe = 10 and Ft = 5). Table IV summarizes the cross- 568

session verification performance EER (%) under the same 569

frame configuration (Fe = 10 and Ft = 5). The corresponding 570

DET plots are summarized in Fig. 5 and Fig. 6. From the 571

results, we can observe that the proposed cancellable template 572

design (DeepExtractor+transformation) demonstrates a supe- 573

rior verification performance while protecting the raw EEG 574

biometrics. 575

Comparing the results of elicitation fusion (embedded in 576

the transformation) with those of single elicitation protocols, 577

we can see an improvement in the verification performance for 578

most of the cases, which shows the effectiveness of embedding 579

the protocol fusion in the transformation for enhancing the 580

verification performance. The results also show that, although 581
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TABLE IV

CROSS-SESSION VERIFICATION PERFORMANCE EER (%). ALL METHODS ARE WITH THE SAME FRAME CONFIGURATION (Fe = 10 AND Ft = 5)

Fig. 5. DET curves of Handcrafted and DeepExtractor in the transformed domain for within-session and cross-session evaluation.

Fig. 6. DET curves of DeepExtractor in both non-transformed and transformed domains under EO and EC protocols for within-session and cross-session
evaluation.

the proposed method uses resting state protocols and Deep-582

Extractor features, the transformation itself is not confined583

to specific signal elicitation protocols or features. In high-584

security scenarios, it is often required to have a very low585

FMR. Therefore, we also report the FNMR of the proposed586

method when FMR=0 in Table IV. Comparing results in non-587

transformed and transformed domains, we can notice that588

the proposed transformation reduces FNMR under the same589

conditions. However, it is observed that the FNMR is relatively590

high on the BED database, although it is reasonable on the591

SEEDiv database. This issue can be easily addressed by some592

practical approaches, for example, using user-specific models593

and thresholds. A significant improvement is observed with594

user-specific models and comparison thresholds. When the595

system is operating at an extremely secure level (FMR=0),596

the DeepExtractor-UserSpecific provides FNMRs of 3.81%,597

4.19%, and 0.5% for EO, EC, and state fusion on BED 598

database, and 1.42% on SEEDiv database. The results indicate 599

that the proposed method works well with high usability (low 600

FNMR) when operating at high security level (FMR=0) in the 601

classical user authentication scenario. The corresponding EER 602

is also improved. 603

B. Decidability Analysis 604

Biometric verification is essentially a decision task to dis- 605

criminate the user from impostors. In this analysis, we adopt 606

the decidability index d ′ [43] to measure the discriminant 607

capacity of the designed cancellable template. The d ′ is 608

defined as: 609

d ′ = (mintra − minter )/
√

(s2
intra + s2

inter )/2 (8) 610
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Fig. 7. Decidability analysis of DeepExtractor with and without transform. Distributions of the genuine distances and impostor distances, and the corresponding
decidability index d ′.

where (mintra , sintra ) and (minter , sinter ) denote the mean and611

standard deviation of the comparison distances between user612

samples and the comparison distances between user samples613

and impostor samples, respectively. For each user, we generate614

a genuine distance distribution by comparing every possible615

pair of the user samples, and an impostor distance distribution616

by comparing each user sample with each sample of other sub-617

jects. Fig. 7 presents the distance distributions of the proposed618

method, DeepExtractor+transform (with and without coding),619

and its non-transformed version, DeepExtractor, under EO620

protocol on databases MMIDB and BED, and under Neutral621

protocol on database SEEDiv. The results of transformation622

without Gray code encoding are also presented to provide623

a better visual comparison of the corresponding real-valued624

distributions in the non-transformed domain. The observation625

is that the proposed transformation enhances system decidabil-626

ity, reducing the overlap between the genuine and impostor627

distance distributions. Without the coding component, it still628

provides the same level of decidability as the original system629

without transformation.630

C. Revocability and Diversity631

The revocability and diversity criteria specify that tem-632

plates generated from the same biometric features by different633

parameter keys should have no correlation. To evaluate the634

capacity of the proposed cancellable template design in terms635

of revocability and diversity, we follow the common practice636

in relevant studies [44] and calculate the pseudo-impostor637

distances. For each user, 50 additional transformed templates638

(i.e., the pseudo-impostor) are generated from the first feature639

template using different parameter keys. A pseudo-impostor640

distance distribution can then be obtained by comparing the641

original user templates with the pseudo-impostor templates642

of the same user. Fig.8 shows the pseudo-impostor distance 643

distribution of the proposed method, along with the genuine 644

and impostor distance distributions. The results show that the 645

pseudo-impostor distance distribution has almost no overlap 646

with the genuine distance distribution, and at the same time, 647

having significant overlap with the impostor distance distribu- 648

tion. In other words, the system satisfies the revocability and 649

diversity requirements. 650

D. Unlinkability 651

For a cancellable biometric template design, the unlinkabil- 652

ity property requires that the transformed templates originated 653

from the same EEG data of the same subject are as different as 654

those from different subjects [45]. To evaluate the unlinkability 655

of the proposed method, we adopted two measures, i.e., the 656

score/distance-wise linkability D↔(d) (a local measure) and 657

system overall linkability Dsys↔ (a global measure) [45], which 658

are popular tools for unlinkability assessment in cancellable 659

biometrics research. The calculation of D↔(d) and Dsys↔ is 660

based on the mated and non-mated sample score/distance 661

distributions. The mated sample score/distance is obtained 662

by comparing two templates generated from the same EEG 663

data using different parameter keys. The non-mated sample 664

score/distance is obtained by comparing two templates gen- 665

erated from the EEG of different subjects using different 666

parameter keys. We followed the same procedure in a recent 667

study [44] and generated six transformed databases using 668

six different keys. The value range of D↔(d) and Dsys↔ is 669

[0, 1] with 0 indicating fully unlinkable and 1 indicating 670

fully linkable. Fig. 9 presents the analysis results, where we 671

tested the proposed method ‘DeepExtractor+transformation’ 672

on the three databases. The proposed method provides high 673

unlinkability, with very low global linkability indices around 674
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Fig. 8. Revocability and diversity analysis of DeepExtractor+transform. Distributions of the genuine, impostor, and pseudo-impostor distances.

0.01-0.05. With the complete transformation, the mated and675

non-mated distance distributions are highly overlapped. It is676

also observed that the Gray code encoding helps reduce677

the difference between the mated and non-mated distribu-678

tions. This is because the scaling and normalization steps in679

Gray code encoding process enhances data consistency, and680

meanwhile, the coding procedure is a quantization process681

alleviating the impact of EEG uncertainties associated with682

the brain dynamics.683

VI. SECURITY ANALYSIS AND DISCUSSION684

A. Attacks via Record Multiplicity (ARM)685

A cancellable biometric template design allows distinct686

transformed templates {y1, y2, · · · , yn} to be generated from687

the same raw biometric template x by applying different688

transformation parameters {k1, k2, · · · , kn}. ARM refers to the689

attack that aims to retrieve the raw biometric template x by690

correlating multiple transformed templates {y1, y2, · · · , yn},691

assuming that these transformed templates as well as infor-692

mation about the transformation method F and corresponding693

parameters {k1, k2, · · · , kn} are available [46].694

The resistance of the proposed method to the ARM attack695

is guaranteed by the non-invertible transformation with three696

key points, i.e., random projection, random permutation and697

Hadamard product. First of all, the random projection proce-698

dure y = x ·M in (5) provides one-time-pad security so that699

each individual yi cannot be reversed to obtain x, as proved700

and demonstrated in previous studies [47]. However, the701

random projection itself is exposed to ARM because a unique702

solution can be determined by solving a well-defined system of703

linear equations {yi = F(x, ki )}, i = 1, 2, · · · , n. To address704

this issue, the random permutation and Hadamard product705

operation is performed before the random projection. Note that706

the input of the random projection is actually the Hadamard707

product of v2 and permutation of v1 as in c = perm(v1, p)◦v2,708

where v1 and v2 are two feature vectors; see (3) and (4).709

For different values of k in (3), the random permutation and710

Hadamard product would produce different sets of variables711

for the random projection-based linear equations, thus a well-712

defined system of linear equations cannot be established. Since713

the projection matrix M is rank-deficient for every set of 714

variables, it is insufficient to inverse the computation in (5). 715

Below is a representative example to show how the pro- 716

posed method protects the system from the ARM attack. For 717

demonstration purposes, we use low dimensional real vectors 718

v1 = [v11, v12, v13, v14] and v2 = [v21, v22, v23, v24] to repre- 719

sent the real-valued feature vectors under protection. Suppose 720

that the feature vectors are v1 = [0.19, 0.54, 0.37, 0.84] and 721

v2 = [0.59, 0.18, 0.04, 0.92]. Given two transformation para- 722

meters k1 = 1 and k2 = 10, we can produce two sets of per- 723

mutations p1 = [3, 4, 1, 2] and p2 = [2, 3, 4, 1] and projection 724

matrices M1 = [0.15, 0.40; 0.09, 0.54; 0.19, 0.42; 0.35, 0.69] 725

and M2 = [0.50, 0.17; 0.22, 0.09; 0.20, 0.69; 0.76, 0.95]. 726

Applying the proposed transformation, we can get two trans- 727

formed templates t1 = [0010001110100010] and t2 = 728

[1010001000100011], which are the codes of real vectors r1 = 729

[0.22, 0.51] and r2 = [0.31, 0.25], respectively. Now, suppose 730

that an adversary gets t1, t2, k1, k2, knows the transformation 731

function, and wants to retrieve v1 and v2. The first step taken 732

by the adversary would be to decode the binary templates 733

into the corresponding real values, which can be possible in 734

the worse case, assuming that the adversary is able to collect 735

massive amounts of encoded data and get the distribution of 736

the values through statistical tools. Suppose that the estimated 737

real vectors are r̂1 = [0.2, 0.5] and r̂2 = [0.3, 0.2], then the 738

key step is to solve the following equations: 739⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2 = 0.15v13v21 + 0.09v14v22 + 0.19v11v23 + 0.35v12v24

0.5 = 0.4v13v21 + 0.54v14v22 + 0.42v11v23 + 0.69v12v24

0.3 = 0.5v12v21 + 0.22v13v22 + 0.2v14v23 + 0.76v11v24

0.2 = 0.17v12v21 + 0.09v13v22 + 0.69v14v23 + 0.95v11v24

740

However, the above is an ill-posed problem in that there 741

is no unique solution and the solution is highly sensitive to 742

changes in the estimated r̂. Using Matlab pseudo-inverse func- 743

tion, we get v̂1 = [0.39, 0, 0.85, 0.16] and v̂2 = [1, 0, 1, 0]. 744

However, the cosine similarity of the estimated value and 745

ground truth value is vv̂ᵀ
‖v‖2‖v̂‖2 = 0.44, which indicates that the 746

obtained value is far from the true biometric data. Our analysis 747

shows that if a transformed template stored in the database is 748

compromised, it reveals no clue about the original biometric 749

data. Even in the worst-case scenario where multiple sets of 750
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Fig. 9. Unlinkability analysis of DeepExtractor+Transformation. The mated and non-mated distance distributions and the linkability measures.

templates and the corresponding parameter keys are exposed,751

it would be highly unlikely to retrieve the true biometric data752

from infinite solutions.753

B. Pre-Image Attacks754

The original definition of a pre-image attack on a crypto-755

graphic hash function refers to an attacker trying to determine756

an input that has a specific hash value. A cryptographic757

hash function f (·) should resist attacks on its pre-image,758

that is, given y, it is difficult to find x such that y =759

f (x). Such a definition does not fully apply in the context760

of transformation-based (i.e. non-cryptographic) cancellable761

design schemes. Strictly speaking, for a transformation-based762

cancellable design, it is possible to find an input x given y such763

that y = f (x). However, it will be of little value if the solution764

x is not the original biometric feature under protection and the765

compromised template is revoked. Considering the properties766

of transformation-based cancellable schemes, we therefore767

redefine the pre-image attack as follows:768

Given a transformed template y, it is difficult to find a769

solution x such that y = f (x, K ) = f (x0, K ) and x = x0,770

where f (·) is the transformation function with parameter key771

K , and x0 is the original biometric feature.772

The proposed transformation is a many-to-one mapping773

function, and we have demonstrated in the ARM attack774

analysis that it would be difficult to find the real input775

in a systematical way. In the following hill-climbing attack776

analysis, Case I can also be considered as a pre-image attack.777

We will show that the solution found by the hill-climbing778

attack is far away from the real input, and therefore, the779

solution becomes insignificant once the compromised template780

is revoked.781

C. Hill-Climbing Attacks782

This refers to an adversary exploiting the comparison783

scores/distances to generate synthetic biometric data that784

Fig. 10. Hill-climbing attacks on the system.

would allow a false acceptance [48]. In the context of can- 785

cellable biometrics, the hill-climbing attack can be launched 786

in two ways, as illustrated in Fig. 10. Case I – the adversary 787

submits and tries to obtain feature vectors v1 and v2 as in 788

the conventional non-cancellable context [48]. Case II – the 789

adversary submits and tries to obtain template t stored in the 790

system. Hill-climbing attacks are a threat to conventional non- 791

cancellable biometric systems as the adversary is able to get 792

a synthetic feature vector that is very close to the true feature 793

vector and compromise the system with it. However, this is 794

not necessarily true for cancellable biometric systems. In the 795

following, we will demonstrate that cancellable biometric 796

systems, especially those based on many-to-one mapping, are 797

naturally resistant to hill-climbing attacks. 798

The Nelder-Mead algorithm was used to implement the hill- 799

climbing attack. It is a downhill simplex method that is among 800

the most well-known algorithms for derivative-free optimiza- 801

tion [48]. The evaluation of the objective function F(·) repre- 802

sents the difference between the input probe and the reference 803

template. The process ends either when the minimum value of 804

the objective function is equal to or less than the system thresh- 805

old (here we set the threshold to the EER operating point) 806

or when the maximum number of attempts is reached (here 807

set to 20,000). The system’s vulnerability to hill-climbing 808

attacks is measured by the success rate (SR), defined as the 809

percentage of users whose accounts are compromised within 810

20,000 attempts. The efficiency of the attack is measured by 811

Natt , the average number of attempts required to successfully 812

crack an account. We run the hill-climbing attack on two 813



WANG et al.: CANCELLABLE TEMPLATE DESIGN 3361

Fig. 11. The SR and Natt of the hill-climbing attack on the system
(Graph+transform).

methods, DeepExtractor+transform and Graph+transform. The814

SR of hill-climbing attack on DeepExtractor+transformation815

is 0, and result of the hill-climbing attack on Graph+transform816

is presented in Fig. 11. The hill-climbing attack failed to break817

the DeepExtractor+transformation because the dimension of818

DeepExtractor feature is large (D=1000) and the algorithm819

was not able to converge and to find a solution within the820

maximum number of attempts (20,000). We can see that it is821

possible to find a solution to temporarily break in user accounts822

with hill-climbing attacks [49], [50]. At the EER operating823

point, the SR of hill-climbing attacks is around 0.899 and824

0.358 in Cases I and II, respectively. It is also worth noting825

that when adjusting the system operating threshold towards a826

lower FMR, the SR and efficiency of launching hill-climbing827

attacks decrease significantly.828

Now, let us assume the adversary has successfully found a829

solution to pass the system through the hill-climbing attack.830

We will demonstrate that this solution will fail once the831

system changes the cancellable template. Let t0 denote the832

transformed template stored in the system before attack; and833

v̂1, v̂2, and t̂0 denote the feature vectors and template obtained834

through the hill-climbing attack.835

In Case I, the adversary obtained an estimated solution836

v̂1 and v̂2 that generates a template close enough to t0 to837

pass the system. To defend, the system will replace the838

compromised template t0 with a new one t1 using a new set of839

transformation parameters. Let t̂1 denote the probe template840

generated from the estimated v̂1 and v̂2 with the same new841

transformation parameters. We now demonstrate that t̂1 is not842

a valid solution for t1. In our experiment, there were 98/109843

users (SR=0.899 at operating point of EER) whose original844

templates were successfully attacked by hill-climbing attacks.845

For each of those 98 users, we replaced the compromised846

template with a new one using a new key and tested whether847

the probe generated from the obtained solution using the new848

key is able to match the new template. To have a reliable849

analysis, we randomly generated 200 keys for each user,850

which yields a total number of 19600 (98 × 200) tests. The851

results in Table V show that it is highly unlikely (0/19600)852

that the t̂1 (generated from the adversary’s obtained solution)853

can match the corresponding true template t1 (generated from854

the true feature vectors) to break in the account. A further855

examination shows that the hill-climbing solution {v̂1, v̂2} is856

far away from the true feature vectors {v1, v2}, with a very low857

similarity score of 0.193± 0.004. This is because the proposed858

transformation is a many-to-one mapping and irreversible859

function, thus it is hard to hit the true solution through hill-860

climbing. Our results prove that even if a temporary solution is861

TABLE V

RESULTS FOR ATTACKING THE SYSTEM USING HILL-CLIMBING
SOLUTIONS AFTER THE COMPROMISED TEMPLATES ARE

REVOKED (GRAPH+TRANSFORMATION)

found, it is unlikely that this fake solution can pass the system 862

after the compromised template is revoked. 863

In Case II, the adversary obtained t̂0, which is an approx- 864

imation of t0. To defend, the system can simply replace 865

the compromised t0 with a new template t1 using a new 866

set of transformation parameters. In our experiment, there 867

were 39/109 users (SR=0.358 at the operating point of EER) 868

whose original templates were successfully attacked by hill- 869

climbing attacks. For each of those 39 users, we replaced 870

the compromised template with a new one using a new key 871

and tested whether the obtained solution can match the new 872

template to break in the account again. To have a reliable 873

analysis, we randomly generated 200 keys for each user, which 874

yields a total number of 7800 (39× 200) tests. The results in 875

Table V show that the hill-climbing solution t̂0 is not similar 876

to any of these new templates (with a low similarity score of 877

0.219 ± 0.036), and none of them can successfully match the 878

new templates. Since t̂0 neither reveals clues about the raw 879

biometric data nor correlates with the new template, obtaining 880

t̂0 through hill-climbing attacks would be meaningless. 881

Hill climbing attacks have also been investigated in other 882

cryptography-based privacy-preserving biometrics comparison 883

schemes [3]. Our cancelable template design follows a dif- 884

ferent path: Instead of increasing the difficulty of finding the 885

solutions leading to the match of the template, our many-to- 886

one mapping scheme allows attackers to find many solutions 887

where the genuine feature is hidden within. Little additional 888

information is provided to the attackers to filter out the true 889

solution. 890

D. Second Attack Rate - an Extension to the Classical Lost 891

Key Scenario Analysis 892

Spawned from hill-climbing attacks is a new concept, which 893

we call Second Attacks. It is defined as an attempt to break 894

into a system using pre-obtained solutions after the system 895

has revoked the compromised templates. Accordingly, the 896

Second Attack Rate (SAR) is the success rate of these second 897

attack attempts. Here we examine three ways to obtain a valid 898

solution to break in a user account. 899

• Mathematical solutions. Assume that the attacker acquires 900

the user template t and knows the transformation function 901

F , then it is possible to find a solution x̂ such that 902

t = F(x). 903

• Public data solutions. Assume that the attacker has a 904

public database X , then for a system with a non-zero 905

FMR, it is likely to find x̂ that can pass the system by 906

testing each data. 907

• Computational solutions via hill-climbing attacks. 908

Assume that an attacker can submit x to the system and 909
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TABLE VI

SAR RESULTS UNDER THREE TYPES OF SOLUTIONS

get the corresponding comparison score/distance, then it910

is possible to find x̂ that can pass the system.911

Table VI summarizes the performance of the proposed912

cancellable biometrics design in terms of SAR using the913

aforementioned three types of solutions. An interesting finding914

is that the computational solution obtained through the hill-915

climbing attack is not better than the public data solution or the916

mathematical solution. This finding validates our hypothesis917

from an experimental point of view that a good cancellable918

biometrics design based on many-to-one mapping is inherently919

resistant to hill-climbing attacks.920

E. Entropy and Brute Force Attacks921

There are two types of formal proof techniques in data922

security. One refers to the provable security in cryptography923

which depends on the reduction into a problem’s complexity.924

The problem in our paper does not belong to this category.925

Another formal proof is related to the information-theoretic926

leakage, which is virtually about the conditional probability927

related to the information leakage. As our feature variables928

are real numbers in an under-defined system of nonlinear929

equations, it has theoretically infinite number of solutions,930

leading to the zero conditional probability of finding the931

genuine feature. Therefore, we provided a close to the worst-932

case information leakage estimation based on the search space933

of the encoded input feature (binary), which is the brute force934

attack-based entropy.935

A brute force attack attempts to guess the elements of the936

original EEG feature vectors v1 and v2 through exhaustive937

search. We analyze the search space to show the likelihood938

of finding the secret successfully from the search space. In the939

proposed system, both v1 and v2 have a length of D× n bits,940

where we have D = 1000 and n = 8 in our experimental941

setup. Therefore, the number of trials needed to attack the942

system would be 28000, which is computationally expensive.943

In actual deployment, the settings of D and n can be adjusted944

according to the requirements. For example, a larger D can945

further enhance the security level, however, it is worth noting946

that a larger D also implies a higher computational cost or947

less efficiency in data collection. There is a trade-off between948

performance, security and system efficiency.949

F. Pitfalls in the Evaluation Procedure of Supervised950

Learning-Based Verification Systems951

Many papers on EEG biometrics treat verification as a952

pure classification problem without considering the differences953

between classification and biometric verification. In the fol- 954

lowing analysis, we take the LDA and SVM, two popular 955

classifiers widely used in EEG biometrics, as an example to 956

show that user verification is not merely a classification prob- 957

lem, and the standard evaluation procedure for classification 958

systems based on supervised learning (SL) models are not 959

fully applicable to the evaluation of user verification systems. 960

Assuming that the database has N subjects, the standard 961

evaluation procedure for SL-based systems is illustrated in 962

Algorithm 3.

Algorithm 3 Standard Evaluation for Classification

1 predictions = []
2 for n = 1 to N do
3 re-label data of subject n as 1 (user)
4 re-label data of other subjects as 0 (intruder)
5 train-test-split (80%, 20%) (or 5-fold cross-validation)
6 SL model ← SL model training on train set
7 predictions← SL model testing on test set
8 end
9 accuracy ← confusion matrix (predictions, ground truth)

963

In the context of user verification, the evaluation process 964

described above has two major issues. 1) Training a binary 965

SL model requires samples from both classes, and the way it 966

splits train/test sets has provided the model with all intruders’ 967

data during the training phase. This is incorrect because no 968

data from any test intruder should be seen by the verification 969

system until the system is tested. The correct procedure 970

should separate the intruder set from the user set, as applied 971

in [11]. Adopting the basic idea of separating user and intruder 972

sets, we suggest a more reliable evaluation procedure for 973

EEG-based verification system (i.e., Algorithm 4). 2) Verifica- 974

tion systems based on SL classification models (e.g., LDA and 975

SVM) do not have a system operating threshold. An individual 976

classification model is trained for each user, and the overall 977

system performance is embodied as a pair of FMR and FNMR. 978

The ROC curve and EER are reported in some studies, but 979

such ROC or EER is a measure to examine the output of the 980

classifier, not the ROC or EER of the verification system. 981

Table VII reports the results of PSD features with LDA and 982

SVM classifiers under the two evaluation procedures in dif- 983

ferent settings. The first observation is that the standard clas- 984

sification evaluation procedure gives false high performance, 985

especially the FMR, because it erroneously feeds intruder 986

data to the model during the training phase. In addition, the 987

performance of classification-based verification systems relies 988

on a good training set. With less training data (a smaller 989

number of users in the system dropped from 80 to 30), 990

the performance would degrade. Another concern is that the 991

80%-20% data split, a very common setup in classification 992

tasks, may be too lax for testing an verification system. For 993

example, given a database where each subject has 60 samples, 994

the 80-20 split means 48 samples are used for registration 995

(which would take a while for data collection) and only 996

12 samples are used for positive testing. Our results show 997

that reducing the split ratio (from 80% to 33%) also degrades 998
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Algorithm 4 Evaluation Procedure for Supervised
Learning-Based Verification

1 Split database into user set U and intruder set I
2 IntruderTests← intruder set I
3 predictions = []
4 for u = 1 to U do
5 re-label data of subject u as 1 (user)
6 re-label data of other subjects as 0 (non-user)
7 train-test-split (80%, 20%) (or 5-fold cross-validation)
8 SL model ← SL model training on train set
9 UserTests ← testing data of label 1

10 predictions← SL model testing on UserTests
11 predictions← SL model testing on IntruderTests
12 end
13 accuracy ← confusion matrix (predictions, ground truth)

TABLE VII

RESULTS (%) UNDER DIFFERENT EVALUATION PROCEDURES FOR

CLASSIFICATION-BASED SYSTEMS

performance. We hope to use this demonstration to rectify the999

misconception of many existing studies evaluating classifier-1000

based verification systems.1001

VII. CONCLUSION1002

In this study, we proposed a cancellable biometrics scheme1003

for privacy-preserving EEG-based verification systems. To be1004

specific, an innovative non-invertible transformation was1005

designed to generate cancellable templates from EEG features1006

extracted by a deep learning model while taking advantage1007

of signal elicitation protocol fusion to enhance biometric per-1008

formance. The results demonstrated that the proposed method1009

provides a superior verification performance than the state-of-1010

the-art, prevents the leakage of the sensitive information con-1011

tained in the EEG data, and is secure against the ARM attack,1012

pre-image attack, hill-climbing attack, and brute force attack.1013

In particular, we examined two ways to perform hill-climbing1014

attacks, and demonstrated that the solution found through1015

hill-climbing attacks would fail once the system revokes the1016

compromised template. In other words, cancellable biometric1017

systems, especially those based on many-to-one mapping, are1018

naturally resilient against hill-climbing attacks. We also intro-1019

duced the concept of second attacks for cancellable biometric1020

systems. Finally, we discussed the evaluation procedure of1021

supervised learning-based verification systems and the pitfalls1022

involved. Our future work will further this line of research to1023

explore the possibility of integrating cryptographic schemes1024

into verification systems [49].1025
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