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Abstract— As a promising candidate to complement traditional
biometric modalities, brain biometrics using electroencephalog-
raphy (EEG) data has received a widespread attention in recent
years. However, compared with existing biometrics such as finger-
prints and face recognition, research on EEG biometrics is still
in its infant stage. Most of the studies focus on either designing
signal elicitation protocols from the perspective of neuroscience or
developing feature extraction and classification algorithms from
the viewpoint of machine learning. These studies have laid the
ground for the feasibility of using EEG as a biometric verification
modality, but they have also raised security and privacy concerns
as EEG data contains sensitive information. Existing research
has used hash functions and cryptographic schemes to protect
EEG data, but they do not provide functions for revoking
compromised templates as in cancellable template design. This
paper proposes the first cancellable EEG template design for
privacy-preserving EEG-based verification systems, which can
protect raw EEG signals containing sensitive privacy information
(e.g., identity, health and cognitive status). A novel cancellable
EEG template is developed based on EEG features extracted
by a deep learning model and a non-invertible transform. The
proposed transformation provides cancellable templates, while
taking advantage of EEG elicitation protocol fusion to enhance
biometric performance. The proposed verification system offers
superior performance than the state-of-the-art, while protecting
raw EEG data. Furthermore, we analyze the system’s capacity
for resisting multiple attacks, and discuss some overlooked but
critical issues and possible pitfalls involving hill-climbing attacks,
second attacks, and classification-based verification systems.

Index Terms—EEG biometrics, brain biometrics, verification
system, privacy-preserving, cancellable biometrics, non-invertible
transformation, template protection.

I. INTRODUCTION

ONVENTIONAL biometric techniques such as finger-
print and face recognition share vulnerabilities in terms
of confidentiality and robustness against circumvention [1]
since these biometric traits are observable and can be illegally
obtained or forged without the user’s awareness, e.g., via high

Manuscript received 24 February 2022; revised 29 June 2022 and 8
August 2022; accepted 12 August 2022. Date of publication 5 September
2022; date of current version 29 September 2022. This work was supported
by the Australian Research Council Discovery Grant DP200103207. The
associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Issa Traore. (Corresponding author: Jiankun Hu.)

Min Wang and Jiankun Hu are with the School of Engineering and
Information Technology, University of New South Wales, Canberra, ACT
2612, Australia (e-mail: maggie.wangl @adfa.edu.au; j.hu@adfa.edu.au).

Song Wang is with the School of Computing, Engineering and Mathematical
Sciences, La Trobe University, Melbourne, VIC 3086, Australia (e-mail:
song.wang @latrobe.edu.au).

Digital Object Identifier 10.1109/TIFS.2022.3204222

, and Jiankun Hu

, Senior Member, IEEE

- ~
7/ EEG Acquisition ¥,

£\

pmm———— =~
7 Signal Pre-Processing \‘

Filtering

Artifact Removal
e ) Segmentation 7

-

SEGEL
Elicitation
Protocols

[ —

o e

Decision-making

~,
Feature Extraction

1 1 \

: IFeatures 1

1 :{Sensiﬁve) :

1 I 1 1

I 1

: Classification : : :

1 I 1 1

/ \ /

.. - ———————— - —, \n _________ —/

Decision
Fig. 1. A typical structure of EEG-based biometric systems.

resolution photography [2], [3]. The need for stronger security
has given birth to brain biometrics based on electroencephalog-
raphy (EEG) signals. Meanwhile, the rapid development of
brain-computer interface, neuroscience, and sensor technology
has created an environment where EEG is readily available
for biometric applications. Potential advantages of EEG bio-
metrics include its robustness against circumvention, support
for liveness detection, continuous verification, and cognitive
information indicators [4], [5]. A typical EEG-based biometric
recognition system consists of four major modules: signal
acquisition, pre-processing, feature extraction, and decision-
making, as illustrated in Fig. 1. During data acquisition, EEG
signals, captured by sensors from the user’s scalp while he or
she engages with the elicitation protocol, are transmitted to the
processing unit. Since raw EEG data are usually contaminated
with noise and artifacts, it is necessary to preprocess the raw
data to enhance signal quality. Then discriminant features are
extracted from the preprocessed EEG and fed into a decision-
making module.

So far, most studies on EEG biometrics have focused on the
improvement of the signal acquisition, feature extraction, and
decision-making modules. The acquisition of EEG biometrics
requires to specify the corresponding signal elicitation pro-
tocols, among which the resting protocol is favorable due to
its convenience and minimum requirements for data collection.
Ongoing EEG under the resting state protocol does not involve
external stimulation to or active response from the user during
data acquisition, thus minimizing the impact of cognitive state
changes on signal stability [6], [7]. It also supports operation
in a continuous and unobtrusive manner. Alternative protocols
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include the volitional tasks, e.g., the pass-thoughts and various
event-related potential (ERP) protocols [8]. The decision-
making is achieved by template comparison or classification
based on supervised learning models. Template comparison is
adopted in many studies as an effective and solid decision-
maker in both identification and verification scenarios [7], [8],
[9], [10]. Other studies view identification or verification as a
classification problem and explore different machine learning
models, such as discriminant analysis [11], [12], support
vector machines, and neural networks [5], [13]. However, user
verification is not merely a classification problem, but also
entails security considerations. Classification accuracy does
not necessarily reflect real biometric performance. Unfortu-
nately, many studies fail to differentiate the two concepts.
We will discuss this issue in Section VI.

A more serious concern is that EEG biometric systems
without privacy-preserving mechanisms would pose a huge
threat to user privacy. EEG signals contain sensitive infor-
mation about the user’s cognitive and emotional states and
health conditions [14]. A recent study examining EEG tem-
plates (features) used in biometric applications confirmed that
personal characteristics regarding age and gender, as well
as information related to medication intake and neurological
disorders, can be inferred from the templates [15]. These
findings highlight the need to apply privacy-preserving mecha-
nisms to protect user templates when deploying EEG biometric
systems. However, the issue of protecting EEG biometric
systems from privacy and security breaches has not been fully
resolved. The contributions of this study are summarized as
follows:

o A cancellable template design is proposed to attain a

privacy-preserving EEG-based verification system.

o An innovative transformation is designed to generate
cancellable templates from EEG features encoded by a
deep neural network via a non-invertible transform. The
proposed transformation is tailored for EEG biometrics
allowing for elicitation protocol fusion to enhance verifi-
cation performance, while providing template protection.

« A new concept of second attacks is introduced to examine
the possibility of breaking into a system using pre-
obtained solutions after the system has revoked the com-
promised template.

o Pre-image and hill-climbing attacks are widely used
criteria to assess cancellable biometrics. We reveal that
these criteria do not fully apply to security assessment of
cancellable biometrics. Hence, we re-define the concept
of pre-image attacks suitable for cancellable biometrics.

o Extensive experiments are carried out to evaluate the
effects of pre-image and hill-climbing attacks. The results
demonstrate that cancellable template design based on
many-to-one mapping is inherently resistant to these
attacks, which is contrary to the common understanding
in the field.

o In-depth analysis is conducted on pitfalls involved in
the evaluation procedure of supervised learning-based
verification systems.

The rest of this paper is organized as follows. Section II

reviews the state of the art on EEG biometrics and protection
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mechanisms. Section III presents the proposed methodology.
Section IV describes the experimental design, followed by
results in Section V and security analysis and discussion in
Section VI. The conclusion and future directions are summa-
rized in Section VII.

II. RELATED WORK
A. EEG Biometrics

EEG under the resting state has been investigated for
biometric applications for over a decade and recent studies
on the permanence issue suggested that the resting state pro-
tocol presents an effective and robust condition for biometric
recognition [6], [9]. In the resting state elicitation protocol, the
user remains relaxed with eyes closed (EC) or eyes open (EO)
without performing any particular task. The rationale behind
it, besides its implementation simplicity, is the neurophysio-
logical evidence which indicates that ongoing EEG under the
resting state carries unique identity information (e.g., those
related to heritability and personality factors) [16]. In addition,
EEG signals present large intra-user variations that could
hinder the biometric performance. In order to improve system
performance and robustness, the fusion of multiple elicitation
protocols is adopted. In many works, this is achieved by
decision-level fusion through voting schemes [8]. Another way
for protocol fusion is to mix the EEG data collected under
different elicitation protocols to create a data set that contains
the generalized unique pattern of each user [13]. This strategy
has been adopted in many EEG biometrics studies to account
for the intra-class variability, especially methods based on
supervised learning models [12].

Regarding feature extraction, different methods are pro-
posed considering the various characteristics of EEG signals.
Based on whether the relationship information between signals
of different channels is captured or not, we can categorize
EEG features into univariate features and bivariate features.
The univariate features are extracted from single channels
of signals considering signal characteristics in the time and
frequency domains. Popular ones include the coefficients of
autoregressive (AR) models [9], [17], fuzzy entropy [18], and
power spectral density (PSD) features [7], [9], which reflect
time-dependency, dynamic complexity, and spectral character-
istics of EEG, respectively. On the other hand, the bivariate
features are based on brain connectivity which captures the
interactive or structural information between EEG channels.
Different statistical and effective metrics have been used for
establishing connectivity between EEG channels, including the
Pearson’s correlation [5], [19], Granger causality [20], spectral
coherence [7], and phase synchronization indices [10], [19].
Moreover, graph features extracted from the brain connec-
tivity networks are also proposed for EEG biometrics [10],
[21]. Recent findings suggest that, compared with univari-
ate features, bivariate features are more robust against the
intra-user variations across sessions, thus improving biometric
performance [5], [10]. The result also shows that the phase
synchronization, especially the p index, is a sound metric to
estimate EEG connectivity for biometric applications. Feature
extraction based on deep learning model is also proposed [22],
[23], [24].



3352

For classification in EEG biometrics, existing methods
can be categorized into comparison-based classification and
supervised learning-based classification. In verification, the
comparison-based methods predict the class label (genuine
user or impostor) of a probe template by calculating its similar-
ity to one or multiple reference templates of the claimed user.
The similarity was defined by the Euclidean distance [21],
Mahalanobis distance [7], Manhattan distance [9], cosine
similarity [9], [17], and cross-correlation [8]. Template com-
parison is straightforward and computationally fast, yielding
interpretable results. The performance depends on the discrim-
inative capacity of the template. Recent studies also explored
different machine learning algorithms for classification in EEG
biometrics. Popular classifiers include the linear discriminant
analysis (LDA) [11], [12], [17], support vector machines
(SVMs) [17], and deep neural networks such as multilayer per-
ceptron (MLP) and convolutional neural networks (CNNs) [5],
[13]. In these methods, training is an essential step that fits the
model to a training dataset. The performance of the model not
only depends on the capability of the model itself, but also
relies on the training procedure and a good training dataset.

B. Privacy-Preserving Mechanisms

Non-invertible transformation design for biometric systems
renders a vital privacy-preserving mechanism for biometric
template protection. This type of method applies a one-
way transformation to biometric data such that an adversary
cannot retrieve the original biometric data, even if the stored
template is compromised. The comparison or classification
of the enrolled template and the probe is carried out in the
transformed domain to protect the original biometric data from
leakage. He et al. [25] studied the potential of hashing EEG
features for verification. Multi-variate autoregressive coeffi-
cients were extracted as features from multi-channel EEG
signals and then hashed by the fast Johnson-Lindenstrauss
algorithm to obtain compact hash vectors. A naive Bayes
probabilistic model was used for decision-making based on the
EEG hash vectors. Applying cryptographic hashing to biomet-
rics induces variation, as any slight change to the input would
completely alter the hash value produced. Bajwa et al. [26]
proposed a key generation method with EEG biometrics. The
PSD features were extracted from EEG signals using the
discrete Fourier transform and discrete wavelet transform,
followed by a Neurokey generation procedure which involves
feature selection, binarization and hashing. The term ‘can-
cellable’ is used in this study to mean that a user’s Neurokey
can be changed by using the EEG collected in a different cog-
nitive task, if the user’s biometric information is compromised.
However, such ‘cancellable biometrics’ cannot protect raw
EEG data containing sensitive information. Furthermore, the
choice of tasks is limited and different tasks would have vastly
different performance [27]. Damasevicius et al. [28] developed
a cryptographic verification scheme for EEG biometrics using
fuzzy commitment and the error-correcting Bose-Chaudhuri-
Hocquenghem codes. Although this method protects data
privacy, it is not equipped with cancellability to revoke
compromised templates. Cognitive biometric cryptosystems
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based on EEG are also proposed [29]. Cancellable biometric
templates based on non-invertible transforms offer a solution
to EEG data protection as well as template revocability [30],
[31], [32], [33]. To the best of our knowledge, there has
been no cancellable EEG template design reported. In EEG
biometric systems, most of the work is based on classification
models, where it is infeasible to integrate cancellability. Once
the model is compromised, the input can be estimated by
genetic algorithms so that the system is cracked.

III. METHODOLOGY

In this section, we design a cancellable template to pro-
tect EEG biometric data. The proposed privacy-preserving
EEG verification system consists of four main components:
signal acquisition, feature extraction, feature transformation,
and comparison, as illustrated in Fig. 2. In the enrollment
stage, EEG signals are collected from each user under the
signal elicitation protocol and fed into the feature extraction
module, which encodes signals into feature vectors. Then the
transformation module takes the features as the input and
creates a cancellable template with a user-associated key. This
template is a binary representation, and will be stored in
the database. In the verification stage, a probe template is
generated following the same procedure and the comparison
algorithm then outputs a decision to accept or reject the user.

A. Signal Elicitation Protocol

The resting state EEG elicitation protocol is adopted for
signal acquisition. To be specific, two conditions are included,
namely the EO and EC states. The user is asked to stay
relaxed with eyes closed or eyes open, while the spontaneous
EEG signals are recorded. EEG signals present time-varying
and non-stationary characteristics, and are sensitive to the
cognitive states of the subject, which may affect the bio-
metric performance. Therefore, in order to improve stability,
researchers often consider elicitation protocol fusion to get a
richer dataset that contains signals in diverse states. We adopt
the basic idea of elicitation protocol fusion [13]. However,
instead of decision-level fusion with majority voting or directly
mixing data collected under different protocols to form training
and testing sets as in the existing research, as shown is
Fig. 3 (a) and (b), we embed data fusion naturally in the
transformation process, as illustrated in Fig. 3 (c). The benefits
of our design are twofold: 1) the entropy of extracted fea-
tures increases, thus the reliability of the biometric system is
enhanced, due to the elicitation protocol fusion; and 2) secure
cancellable templates are generated at the same time without
extra computational costs. Details of the transformation is
presented in Section III-C.

B. Feature Extraction

The state-of-the-art feature extraction method [23], [24] is
adopted in our study, where a siamese CNN model is designed
to derive discriminative features from the raw EEG time series.
The siamese network, as illustrated in Fig. 4, contains two
identical CNN subnetworks that share the same architecture,
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parameters and weights. Any parameter updates are mirrored
across both subnetworks during the learning process. The input
of the siamese network is a pair of signals (s1, s») and the final
layers in the subnetworks output encodings (vi, v2), where
the Euclidean distance between the two encodings, Dil,VZ’

is computed to adjust the weights of the subnetworks. The
contrastive loss function is adopted for backpropagation since
it is suitable for evaluating how well the siamese network
differentiate the input pairs by minimizing distance between
encodings derived from signals of the same class and max-
imizing distance between encodings derived from signals of
different classes. The contrastive loss is computed as:

1 1
L', V2, y)=(1- y)ED‘Z,l’Vz + YE{max((), m — D‘z,l’vz}z,
M

where y is the label associated with the input pair, with
1 meaning a matching pair (two signals are from the same
subject) and 0 a non-matching pair (two signals are from

The proposed privacy-preserving EEG-based verification system.

TABLE I
CONFIGURATION OF THE CNN SUBNETWORKS

Layer Filters /Units Kernel Activation
Conv 16 (1, 5) ReLu
MaxPooling - (1, 3) -
Conv 32 (1, 5) ReLu
MaxPooling - (1, 3) -
Conv 64 (1, 3) ReLu
MaxPooling - (1, 3) -
Conv 128 (1, 3) ReLu
MaxPooling - (1, 3) -
Dropout (0.5) - - -
Flatten - - -
Dense D - ReLu
i jf#—> ConvNet
Signal st y Encodings v!

Share weights Contrastive loss
2 S L(vhviy)
—» ConvNet

Encodings v?

Signal s

Fig. 4. Siamese network for feature extraction.

different subjects), and m is the margin that defines the
baseline for distance for which pairs should be classified as
dissimilar (m=1). The configuration of the CNN subnetworks
is presented in Table I. After training, the model will be used
as a feature extractor to derive a feature vector of length D
(here we set D = 1000) from an input signal.

The Adam optimizer with a learning rate of Se-4 is used
for training the siamese network. The batch size is 256,
and an early stopping regularization monitoring the validation
accuracy with patience of 50 epochs is adopted to avoid over-
fitting. To train this feature extractor, we split the available
subjects into a training set consisting of two-thirds of the
subjects and a testing set comprising the remaining subjects,
upon which the verification performance is evaluated.

C. Feature Transformation

Let v; and v, denote the feature vectors extracted from
EEG signals collected under the two elicitation protocols. The
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proposed transformation takes the input of v; and v, and
generates a secure cancellable template t, as illustrated in
Fig. 3 (c). Both feature vectors have a length of D.

At the enrollment stage, each user is assigned a user key k
(the key is stored along the template in the database), which
is used as the random seed to generate a random permutation
of the integers 1 to D, as follows:

p = randperm(k, D), 2)

where the randperm(seed,integer) is a random permutation
function defined on a Pseudorandom number generator
(PRNG) which can adopt any generic PRNG algorithm,
e.g., the Mersenne Twister algorithm. Then a permuted
(re-arranged) version of the feature vector v is obtained and
the Hadamard product of it and v; is calculated, as follows:

T G)
c=vVjovs. “)

A vector r is then generated by projecting vector ¢ with a
matrix M, as follows:

r=c-M, 5)

where M is a user-specific random projection matrix with
more rows than columns to form an underdetermined system
of equations, thus making the transformation non-invertible.
Finally, the real-valued vector r is encoded into a binary
template t through the 8-bit Gray code. The coding process
first converts a real vector into a decimal vector which is then
converted into the Gray code according to the code book, as in
Algorithm 2. The binary template t is stored in the system for
comparison purposes.

EEG is a continuous signal in nature and a moving win-
dow of short length is usually applied to segment the data
sources into frames for preprocessing and feature extraction.
It is natural to use the multiple frames captured during data
collection, instead of a single frame, to generate a more
stable template. Let F, and F; denote the number of frames
collected during enrollment and verification, respectively. Each
frame corresponds to a vector r¢, hence, for F vectors, ry
(where f = 1,---,F) are obtained. The final template
generated by the transformation module is the Gray encoding
of the average of these vectors. The complete transformation
procedure is summarized in Algorithm 1. The number of
frames is adjustable in accordance with application scenarios
and requirements.

D. Transform-Based Comparison

To verify a user, one or more frames of EEG signals are
captured from the user and a probe template is generated
following the same procedure as in the registration stage. The
Hamming distance is used for comparing the probe template
and the reference template (both are binary representations),
as follows:

dp(ty, t) = sum(ty @ t,), (6)

where the symbol @ denotes element-wise XOR. Finally, the
distance is normalized (percentage of bits that differ) and
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Algorithm 1 Transform

Input : feature vectors from F frames
Vi1, V2 ERD,f: 1,---,F
user identity u

Output: template t

if enrollment then

| initialize a key k,

else

| retrieve the key k,

end

compute p < randperm(k,, D)

compute M <« rand(k,,[D, dD]),0 € (0, 1)

for f =1to F do

permutation v/f’1 <~ vr1(p)

e NN N R W N -

[
>

Hadamard product ¢y < v} ;o vy
projection ry <— ¢y -M

end

compute r < (Z?zl rp)/F

encoding t < GrayCode(r, 8-bit)

-
B W N =

Algorithm 2 GrayCode

Input : real vector r; bit M
Output: binary code t

1T < r/max(r))

21 <1 —mean(r))

31 < normedf(r,0, std(r)))
4

5

r<r
r < rx (M)

6 d < round(r)

7dd==2M) «2M _|

8t <« dec2ge(d, M)

compared with a pre-defined threshold 6 to make a decision,
as follows:

(N

. accept, if dy(ty,t,) <0
0= .
reject, otherwise

In the analysis, the threshold € is automatically adjusted to
obtain the equal error rate (EER), which is defined as the
error rate when the false match rate (FMR) equals the false
non-match rate (FNMR). The FMR reflects the percentage of
probe templates in which impostors are incorrectly accepted,
and the FNMR reflects the percentage of probe templates in
which genuine users are incorrectly rejected [34].

Remarks: The proposed transformation provides a concise
and elegant solution to the generation of secure and cancellable
templates. (i) If a template is compromised, the associated
user key can be replaced and a new template can therefore be
generated with this new key. (ii) Every time the user key is
updated, the random permutation in (3) and the Hadamard
product in (4) provide a different set of variables for the
random projection in (5). Since the projection matrix is rank-
deficient for every set of variables, it is insufficient to inverse
the computation, making the system resistant to the ARM.
(iii) The transformation takes advantage of EEG signal
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TABLE II
DATABASES
Databases |#Subj. #Ch Protocols Samp. rate #Sess Devices
SEEDiv | 15 62 Movie  200Hz 3 ESI NeuroScan'
BED 21 14 EO EC 256 Hz 3 Emotiv EPOC+}
MMIDB | 109 64 EO EC 160 Hz 1 Unclear

Tmedical-grade  consumer-grade

elicitation protocol fusion such that the entropy and reliability
of the feature vectors are enhanced. (iv) The encoding proce-
dure is a quantization process alleviating the impact of EEG
uncertainties associated with the complexity and variability of
brain dynamics.

IV. EXPERIMENTAL DESIGN
A. Database and Pre-Processing

Evaluation of the proposed method utilizes three pub-
licly available databases, which are the EEG Motor Move-
ment/Imagery Database (MMIDB) [35], BED database [36],
and SEEDiv database [37]. The MMIDB database provides
EEG signals collected from 109 subjects in two resting
states, EC and EO, and motor imagery tasks including physi-
cally opening/closing fists/feet and imagining opening/closing
fists/feet without actual body movement. Data acquisition
was performed using a BCI2000 system [38] equipped with
64 electrodes with a sampling rate of 160 Hz. The recorded
signal is referenced to the earlobes. The BED database con-
tains EEG recordings from 21 individuals under multiple
signal elicitation protocols in three sessions. The signals were
captured using Emotiv Epoc+, an inexpensive consumer-grade
device. The EEG recordings under the resting with eye-open
(EO) and eye-closed (EC) protocols are used in this study.
The SEEDiv database contains EEG recordings of 15 subjects
while watching movie clips in three sessions. This database
was originally collected for EEG-based emotion recognition,
where the movie clips were used as visual stimuli to induce
happiness, sadness, fear and neutral emotions from the sub-
jects. We selected recordings under the neutral emotion for this
study. Table II summarizes the details of the three databases.

For signal preprocessing, we apply the Harvard auto-
mated processing pipeline for EEG (HAPPE) [39] to remove
noise and artifacts originating from muscle and eye move-
ment. It consists of four standard steps, including filtering
([8 30] Hz), bed channel detection and interpolation, arti-
fact component rejection, and common average referencing.
The HAPPE pipeline is adopted due to its effectiveness in
preprocessing data that are heavily contaminated with noise
and artifacts. The alpha and beta bands ([8§ 30] Hz) are
selected since EEG content in these two bands contains
most inter-person discriminative characteristics according to
existing findings [10], [23]. A downsampling to 100 Hz,
128 Hz and 80 Hz is also applied for SEEDiv, BED, and
MMIDB respectively, to improve computational efficiency in
the subsequent feature extraction step, considering the Nyquist
Shannon sampling theorem. The preprocessed signal is then
segmented into two-second frames, so that each frame contains
62, 14, and 64 two-second time series, respectively, for the
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SEEDiv, BED, and MMIDB databases. Finally, we format
the signal frames into an unidimensional representation that
concatenates signal time series of each channel.

B. Evaluation Procedures

1) Signal Acquisition Protocols: Two resting state proto-
cols, EO and EC, are selected from databases MMIDB and
BED for evaluation. For transformation, when signals under
two protocols are available, we enable the transformation-
embedded protocol fusion scheme, hence, the input of the
transformation module, v; and v, are feature vectors extracted
under the two protocols, respectively. When only one protocol
is applied, the feature vector will be divided into two parts of
equal length (first half and second half), v; and v, to fed into
the transformation module. For SEEDiv database, the Neutral
protocol is selected since the database does not provide data
under resting states and Neutral is the most relevant one that
available in it.

2) Handcrafted Features: We select four representative
types of handcrafted features for comparison, which are
the reflection coefficients of AR models, band power, fuzzy
entropy, and graph features based on the EEG functional
connectivity networks. These four types of features capture
the time-dependency, power spectral characteristics, dynamic
complexity, the functional connectivity characteristics of EEG
signals, respectively. They are classic and important EEG
features in time, frequency, and space domains, and have been
widely used for EEG biometric applications. In the following
analysis, we refer to them as AR, PSD, FuzzEn, and Graph,
respectively.

o« AR: An AR model describes the time-varying processes
in EEG by specifying that the value of the timeseries
at a certain time depends linearly on its own previous
values and on a stochastic term (white noise), i.e., s(f) =
Zle O;s(t — i) + &(t), where @ is the coefficients of the
AR model. In this study, we use an AR model of order
5 to fit the signal timeseries, and derive the reflection
coefficients as features using the Burg method [40]. The
final feature vector has a length of 5 x N, where N is the
number of channels.

o« PSD: We estimate the power spectral density of EEG
signals using a non-parametric approach based on the fast
Fourier transform. This approach is selected because it
directly corresponds to the physical interpretation in terms
of EEG rhythms [7]. Based on the PSD, the average band
power over the delta, theta, alpha, beta, and gamma bands
are extracted as features. The length of the final feature
vector is 5 x N, where N is the number of channels.

o FuzzEn: Entropy quantifies the amount of uncertainty
in the EEG amplitudes. Among the existing entropy
estimation methods such as approximate entropy and
sample entropy, we select the FuzzEn [18], which was
shown to be a more reliable measure than others for
biological data, since the uncertainty at the boundaries
between classes can provide a shade of ambiguity [41].
The final feature vector has a length of N, the number of
channels.
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o Graph: The p-index, a phase synchronization measure
based on Shannon entropy, is used for computing the
functional connectivity from the beta band (13-30) multi-
channel EEG signals. This index and frequency band are
selected based on previous findings [10]. The calculation
of p is based on the relative phase of two signals,
Ar(t) = I (1) — r, (1)) mod 27, where by, (1) and
¢x; (1) are the instantaneous phases of signals x;(#) and
x; (1), respectively, calculated by Hilbert transform. For
EEG signals of N channels, we compute the p connectiv-
ity on every two channels to construct an N x N network,
on which nodal and global features are extracted. The
features include pagerank centrality for each node, tran-
sitivity, modularity, network characteristic path length,
global efficiency, network radius and diameter. The final
feature vector has a dimension of N + 6, where N is the
number of channels.

3) Verification Performance: We test the proposed transfor-
mation on different feature extraction methods, and compare
the transformed-domain performance with its corresponding
performance in the non-transformed domain. Manhattan dis-
tance is used for comparison in the non-transformed domain
where the features are real-valued. The non-invertible trans-
formation often needs to reset the order or position of the
feature set, which is likely to weaken the discriminant power
of the feature set and introduce extra intra-user variations,
thus affecting biometric performance [42]. A good cancellable
template design should enhance the security of the template
without compromising the biometric performance. The non-
transformed domain performance is used to show whether and
to what extent the proposed transformation has an impact on
biometric performance.

C. Cross-Session Evaluation

Two experimental setups are considered, the within-session
evaluation uses data collected in one session for enrollment
and verification, and the cross-session evaluation tests verifi-
cation performance using data collected in a different session
than the one used for enrollment. The cross-session stability is
important for practical EEG biometric systems. In the cross-
session setup, the siamese model is trained using input pairs
generated within and across sessions in the training subject set,
and the verification performance is evaluated by comparing
data of each user in the third session against that in the first
session. Then through the proposed transformation method,
the features extracted from each user during the enrollment
stage (session 1) are transformed into a reference template
which is then stored in the system. During the verification
stage (session 3), the same feature extractor and transform are
used to derive probe templates which are compared with the
reference templates to compute the EER performance.

V. RESULTS

Let F, and F; denote the number of consecutive frames
involved in a template during enrollment and verification,
respectively. The verification performance is measured by the
EER.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE III

WITHIN-SESSION VERIFICATION PERFORMANCE EER (%). ALL
METHODS ARE WITH THE SAME FRAME CONFIGURATION
(Fe =10 AND F; =5)

MMIDB database

Non-transformed Transformed domain

Features -
EO EC EO EC Fusion

AR 9.51 9.83 9.58 11.73 3.47
PSD 22.31 23.64 19.12  18.21 8.43
FuzzyEn 14.81 17.5 13.62  15.83 7.68
AR+PSD+FuzzyEn | 8.23 8.67 3.53 4.87 2.41
Graph 1.89 6.37 1.32 2.44 1
HandcraftedAll 3.04 5.28 2.12 4.42 0.46
DeepExtractor 2.65 7.68 2.54 7.24 4.27

BED database

Non-transformed Transformed domain

Features -
EO EC EO EC Fusion
AR 27.53 23.75 26.9 18.86 229
PSD 10.59 13.6 11.6 12.29 9.47
FuzzyEn 17.81 16.14 21.15 1776~ 2097
AR+PSD+FuzzyEn | 11.25 10.39 1296  8.97 10.53
Graph 2.81 6.18 5.5 7.05 6.83
HandcraftedAll 5.34 5.89 5.1 6.33 5.67
DeepExtractor 0.86 0.42 0.86 0.94 0

SEEDiv database

Non-transformed Transformed domain

Features
Neutral Neutral
AR 9.89 5.93
PSD 5.78 4.56
FuzzyEn 11.46 11.24
AR+PSD+FuzzyEn 3.38 3
Graph 0.08 0.34
HandcraftedAll 0.93 1.23
DeepExtractor 0 0

A. Performance in the Lost Key Scenario

The lost key scenario is considered the worst case as the
user loses his/her parameter key. This means that the attacker
can take this advantage to penetrate the verification system.
In order to simulate this scenario, we use the same parameter
key to generate the permutation vector p in (3) and projection
matrix M in (5) for all users in the transformation module.
Table III presents within-session verification performance EER
(%). All methods are with the same frame configuration
(Fe = 10 and Ft = 5). Table IV summarizes the cross-
session verification performance EER (%) under the same
frame configuration (F, = 10 and F; = 5). The corresponding
DET plots are summarized in Fig. 5 and Fig. 6. From the
results, we can observe that the proposed cancellable template
design (DeepExtractor+transformation) demonstrates a supe-
rior verification performance while protecting the raw EEG
biometrics.

Comparing the results of elicitation fusion (embedded in
the transformation) with those of single elicitation protocols,
we can see an improvement in the verification performance for
most of the cases, which shows the effectiveness of embedding
the protocol fusion in the transformation for enhancing the
verification performance. The results also show that, although
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TABLE IV
CROSS-SESSION VERIFICATION PERFORMANCE EER (%). ALL METHODS ARE WITH THE SAME FRAME CONFIGURATION (F, = 10 AND F; = 5)
BED database SEEDiv database
Features Non-transformed Transformed domain Non-transformed Transformed
EO EC EO EC Fusion Neutral Neutral
AR 38.26 37.4 35.25 39.77 38 29.7 35.52
PSD 39.61 27.07 43.55 36.21 36.1 38.09 34.38
FuzzyEn 37.91 35.35 44.87 41.6 44.65 38.59 41.37
AR+PSD+FuzzyEn 32.56 28.83 37.86 27.31 32.08 28.58 29.34
Graph 39.39 37 43.87 41.36 41.33 38.56 39.99
Handcrafted All 32.94 31.92 38.55 34.28 36.52 28.13 30.24
DeepExtractor 8.59 11.91 6.78 11.57 3.75 1.29 0.14
DeepExtractor-UserSpecific (mean) 1.43 0.17 1.59 0.54 0.15 0.91 0.91
FNMR (%) when FMR=0
DeepExtractor 98.61 99.32 98.37 98.62 97.5 31.1 0.14
DeepExtractor-UserSpecific (mean) 4.53 4.52 3.81 4.19 0.5 1.67 1.42
Within-session Within-session Within-session Cross-session Cross-session
o 4 (MMIDB-Fusion) © (BED-Fusion) © (SEEDiv-Neutral) ° (BED-Fusion) o 4 (SEEDiv-Neutral)
E Handcrafted E Handcrafted E Handcrafted E Handcrafted E Handcrafted
.r.,‘; DeepExtractor % DeepExtractor % DeepExtractor ‘.L.,; DeepExtractor % DeepExtractor
E 05 E 05 E 05 g 05 ; 05
8 3 3 8 8
& % 0.5 1 & % 0.5 1 & % 0.5 1 & fo 0.5 1 & % 0.5 1
False match rate False match rate False match rate False match rate False match rate
Fig. 5. DET curves of Handcrafted and DeepExtractor in the transformed domain for within-session and cross-session evaluation.
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Fig. 6.
evaluation.

the proposed method uses resting state protocols and Deep-
Extractor features, the transformation itself is not confined
to specific signal elicitation protocols or features. In high-
security scenarios, it is often required to have a very low
FMR. Therefore, we also report the FNMR of the proposed
method when FMR=0 in Table IV. Comparing results in non-
transformed and transformed domains, we can notice that
the proposed transformation reduces FNMR under the same
conditions. However, it is observed that the FNMR is relatively
high on the BED database, although it is reasonable on the
SEEDiv database. This issue can be easily addressed by some
practical approaches, for example, using user-specific models
and thresholds. A significant improvement is observed with
user-specific models and comparison thresholds. When the
system is operating at an extremely secure level (FMR=0),
the DeepExtractor-UserSpecific provides FNMRs of 3.81%,

©04 (MMIDB-EO) 04 (BED-EO) ©04 (SEEDiv-Neutral) 04 (BED-EO)
© © © ©
_E Non-transformed E Non-transformed ; Non-transformed E Non-transformed
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o o o o
<04 704 = 04 = 04
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Eo2 £o2 Eo2 Eo2
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DET curves of DeepExtractor in both non-transformed and transformed domains under EO and EC protocols for within-session and cross-session

4.19%, and 0.5% for EO, EC, and state fusion on BED
database, and 1.42% on SEEDiv database. The results indicate
that the proposed method works well with high usability (low
FNMR) when operating at high security level (FMR=0) in the
classical user authentication scenario. The corresponding EER
is also improved.

B. Decidability Analysis

Biometric verification is essentially a decision task to dis-
criminate the user from impostors. In this analysis, we adopt
the decidability index d’ [43] to measure the discriminant
capacity of the designed cancellable template. The d’ is
defined as:

d' = (Mintra = Minte) N e + 52002 ®)
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Fig. 7. Decidability analysis of DeepExtractor with and without transform. Distributions of the genuine distances and impostor distances, and the corresponding

decidability index d’.

where (Mintra, Sintra) and (Mjnzer, Sinter) denote the mean and
standard deviation of the comparison distances between user
samples and the comparison distances between user samples
and impostor samples, respectively. For each user, we generate
a genuine distance distribution by comparing every possible
pair of the user samples, and an impostor distance distribution
by comparing each user sample with each sample of other sub-
jects. Fig. 7 presents the distance distributions of the proposed
method, DeepExtractor+transform (with and without coding),
and its non-transformed version, DeepExtractor, under EO
protocol on databases MMIDB and BED, and under Neutral
protocol on database SEEDiv. The results of transformation
without Gray code encoding are also presented to provide
a better visual comparison of the corresponding real-valued
distributions in the non-transformed domain. The observation
is that the proposed transformation enhances system decidabil-
ity, reducing the overlap between the genuine and impostor
distance distributions. Without the coding component, it still
provides the same level of decidability as the original system
without transformation.

C. Revocability and Diversity

The revocability and diversity criteria specify that tem-
plates generated from the same biometric features by different
parameter keys should have no correlation. To evaluate the
capacity of the proposed cancellable template design in terms
of revocability and diversity, we follow the common practice
in relevant studies [44] and calculate the pseudo-impostor
distances. For each user, 50 additional transformed templates
(i.e., the pseudo-impostor) are generated from the first feature
template using different parameter keys. A pseudo-impostor
distance distribution can then be obtained by comparing the
original user templates with the pseudo-impostor templates

of the same user. Fig.8 shows the pseudo-impostor distance
distribution of the proposed method, along with the genuine
and impostor distance distributions. The results show that the
pseudo-impostor distance distribution has almost no overlap
with the genuine distance distribution, and at the same time,
having significant overlap with the impostor distance distribu-
tion. In other words, the system satisfies the revocability and
diversity requirements.

D. Unlinkability

For a cancellable biometric template design, the unlinkabil-
ity property requires that the transformed templates originated
from the same EEG data of the same subject are as different as
those from different subjects [45]. To evaluate the unlinkability
of the proposed method, we adopted two measures, i.e., the
score/distance-wise linkability D, (d) (a local measure) and
system overall linkability D2 (a global measure) [45], which
are popular tools for unlinkability assessment in cancellable
biometrics research. The calculation of D..(d) and DZ* is
based on the mated and non-mated sample score/distance
distributions. The mated sample score/distance is obtained
by comparing two templates generated from the same EEG
data using different parameter keys. The non-mated sample
score/distance is obtained by comparing two templates gen-
erated from the EEG of different subjects using different
parameter keys. We followed the same procedure in a recent
study [44] and generated six transformed databases using
six different keys. The value range of D..(d) and DZ’ is
[0, 1] with O indicating fully unlinkable and 1 indicating
fully linkable. Fig. 9 presents the analysis results, where we
tested the proposed method ‘DeepExtractor+transformation’
on the three databases. The proposed method provides high
unlinkability, with very low global linkability indices around
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Fig. 8. Revocability and diversity analysis of DeepExtractor+transform. Distributions of the genuine, impostor, and pseudo-impostor distances.

0.01-0.05. With the complete transformation, the mated and
non-mated distance distributions are highly overlapped. It is
also observed that the Gray code encoding helps reduce
the difference between the mated and non-mated distribu-
tions. This is because the scaling and normalization steps in
Gray code encoding process enhances data consistency, and
meanwhile, the coding procedure is a quantization process
alleviating the impact of EEG uncertainties associated with
the brain dynamics.

VI. SECURITY ANALYSIS AND DISCUSSION

A. Attacks via Record Multiplicity (ARM)

A cancellable biometric template design allows distinct
transformed templates {y;,y2, - ,¥n} to be generated from
the same raw biometric template x by applying different
transformation parameters {k1, k2, - - - , k,}. ARM refers to the
attack that aims to retrieve the raw biometric template x by
correlating multiple transformed templates {yi,y2, - ,¥a},
assuming that these transformed templates as well as infor-
mation about the transformation method F and corresponding
parameters {ki, ko, - - - , k,} are available [46].

The resistance of the proposed method to the ARM attack
is guaranteed by the non-invertible transformation with three
key points, i.e., random projection, random permutation and
Hadamard product. First of all, the random projection proce-
dure y = x - M in (5) provides one-time-pad security so that
each individual y; cannot be reversed to obtain x, as proved
and demonstrated in previous studies [47]. However, the
random projection itself is exposed to ARM because a unique
solution can be determined by solving a well-defined system of
linear equations {y; = F(x, k;)},i = 1,2,---,n. To address
this issue, the random permutation and Hadamard product
operation is performed before the random projection. Note that
the input of the random projection is actually the Hadamard
product of vy and permutation of v| as in ¢ = perm(vy, p)ova,
where vi and v, are two feature vectors; see (3) and (4).
For different values of k in (3), the random permutation and
Hadamard product would produce different sets of variables
for the random projection-based linear equations, thus a well-
defined system of linear equations cannot be established. Since

the projection matrix M is rank-deficient for every set of
variables, it is insufficient to inverse the computation in (5).

Below is a representative example to show how the pro-
posed method protects the system from the ARM attack. For
demonstration purposes, we use low dimensional real vectors
vi = [v11, 012, 013, 14] and v2 = [v21, 022, 023, V24] tO repre-
sent the real-valued feature vectors under protection. Suppose
that the feature vectors are vi = [0.19,0.54, 0.37,0.84] and
vp = [0.59, 0.18,0.04, 0.92]. Given two transformation para-
meters k1 = 1 and k» = 10, we can produce two sets of per-
mutations p; = [3,4, 1, 2] and p> = [2, 3, 4, 1] and projection
matrices M| = [0.15, 0.40; 0.09, 0.54; 0.19, 0.42; 0.35, 0.69]
and M, = [0.50,0.17;0.22,0.09; 0.20, 0.69; 0.76, 0.95].
Applying the proposed transformation, we can get two trans-
formed templates t; = [0010001110100010] and t, =
[1010001000100011], which are the codes of real vectors r| =
[0.22,0.51] and r = [0.31, 0.25], respectively. Now, suppose
that an adversary gets ti, tz, k1, k2, knows the transformation
function, and wants to retrieve v; and v. The first step taken
by the adversary would be to decode the binary templates
into the corresponding real values, which can be possible in
the worse case, assuming that the adversary is able to collect
massive amounts of encoded data and get the distribution of
the values through statistical tools. Suppose that the estimated
real vectors are r{ = [0.2,0.5] and r, = [0.3, 0.2], then the
key step is to solve the following equations:

0.2 = 0.15013021 + 0.09014022 + 0.19011023 + 0.35012024
0.5 = 0.4v13021 + 0.54v14022 4 0.42011023 + 0.69012024
0.3 = 0.5012021 + 0.22013022 4+ 0.2014023 + 0.7601 1024
0.2 =0.17012021 + 0.09013022 + 0.69014023 + 0.9501 1024

However, the above is an ill-posed problem in that there
is no unique solution and the solution is highly sensitive to
changes in the estimated f. Using Matlab pseudo-inverse func-
tion, we get v; = [0.39,0,0.85,0.16] and v, = [1,0, 1,0].
However, the cosine sirpilarity of the estimated value and
ground truth value is W = (.44, which indicates that the
obtained value is far from the true biometric data. Our analysis
shows that if a transformed template stored in the database is
compromised, it reveals no clue about the original biometric
data. Even in the worst-case scenario where multiple sets of
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Fig. 9. Unlinkability analysis of DeepExtractor+Transformation. The mated and non-mated distance distributions and the linkability measures.

templates and the corresponding parameter keys are exposed,
it would be highly unlikely to retrieve the true biometric data
from infinite solutions.

B. Pre-Image Attacks

The original definition of a pre-image attack on a crypto-
graphic hash function refers to an attacker trying to determine
an input that has a specific hash value. A cryptographic
hash function f(-) should resist attacks on its pre-image,
that is, given y, it is difficult to find x such that y
f(x). Such a definition does not fully apply in the context
of transformation-based (i.e. non-cryptographic) cancellable
design schemes. Strictly speaking, for a transformation-based
cancellable design, it is possible to find an input x given y such
that y = f(x). However, it will be of little value if the solution
x is not the original biometric feature under protection and the
compromised template is revoked. Considering the properties
of transformation-based cancellable schemes, we therefore
redefine the pre-image attack as follows:

Given a transformed template y, it is difficult to find a
solution X such thaty = f(x,K) = f(x0, K) and x = X,
where f(-) is the transformation function with parameter key
K, and xq is the original biometric feature.

The proposed transformation is a many-to-one mapping
function, and we have demonstrated in the ARM attack
analysis that it would be difficult to find the real input
in a systematical way. In the following hill-climbing attack
analysis, Case I can also be considered as a pre-image attack.
We will show that the solution found by the hill-climbing
attack is far away from the real input, and therefore, the
solution becomes insignificant once the compromised template
is revoked.

C. Hill-Climbing Attacks

This refers to an adversary exploiting the comparison
scores/distances to generate synthetic biometric data that

Hill-climbing attack - Case |

Feature |v1,v2 -
. Transformation
extraction

ARM attack

[ 1

v 1

t . s
Comparison

Fig. 10. Hill-climbing attacks on the system.

Decision
maker

)

would allow a false acceptance [48]. In the context of can-
cellable biometrics, the hill-climbing attack can be launched
in two ways, as illustrated in Fig. 10. Case I — the adversary
submits and tries to obtain feature vectors v; and vp as in
the conventional non-cancellable context [48]. Case II — the
adversary submits and tries to obtain template t stored in the
system. Hill-climbing attacks are a threat to conventional non-
cancellable biometric systems as the adversary is able to get
a synthetic feature vector that is very close to the true feature
vector and compromise the system with it. However, this is
not necessarily true for cancellable biometric systems. In the
following, we will demonstrate that cancellable biometric
systems, especially those based on many-to-one mapping, are
naturally resistant to hill-climbing attacks.

The Nelder-Mead algorithm was used to implement the hill-
climbing attack. It is a downhill simplex method that is among
the most well-known algorithms for derivative-free optimiza-
tion [48]. The evaluation of the objective function F(-) repre-
sents the difference between the input probe and the reference
template. The process ends either when the minimum value of
the objective function is equal to or less than the system thresh-
old (here we set the threshold to the EER operating point)
or when the maximum number of attempts is reached (here
set to 20,000). The system’s vulnerability to hill-climbing
attacks is measured by the success rate (SR), defined as the
percentage of users whose accounts are compromised within
20,000 attempts. The efficiency of the attack is measured by
Ngyt, the average number of attempts required to successfully
crack an account. We run the hill-climbing attack on two
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methods, DeepExtractor+transform and Graph+transform. The
SR of hill-climbing attack on DeepExtractor+transformation
is 0, and result of the hill-climbing attack on Graph+transform
is presented in Fig. 11. The hill-climbing attack failed to break
the DeepExtractor+transformation because the dimension of
DeepExtractor feature is large (D=1000) and the algorithm
was not able to converge and to find a solution within the
maximum number of attempts (20,000). We can see that it is
possible to find a solution to temporarily break in user accounts
with hill-climbing attacks [49], [50]. At the EER operating
point, the SR of hill-climbing attacks is around 0.899 and
0.358 in Cases I and II, respectively. It is also worth noting
that when adjusting the system operating threshold towards a
lower FMR, the SR and efficiency of launching hill-climbing
attacks decrease significantly.

Now, let us assume the adversary has successfully found a
solution to pass the system through the hill-climbing attack.
We will demonstrate that this solution will fail once the
system changes the cancellable template. Let to denote the
transformed template stored in the system before attack; and
Vi, V2, and f() denote the feature vectors and template obtained
through the hill-climbing attack.

In Case I, the adversary obtained an estimated solution
v1 and V, that generates a template close enough to ty to
pass the system. To defend, the system will replace the
compromised template to with a new one t; using a new set of
transformation parameters. Let t; denote the probe template
generated from the estimated v; and Vv, with the same new
transformation parameters. We now demonstrate that £; is not
a valid solution for t;. In our experiment, there were 98/109
users (SR=0.899 at operating point of EER) whose original
templates were successfully attacked by hill-climbing attacks.
For each of those 98 users, we replaced the compromised
template with a new one using a new key and tested whether
the probe generated from the obtained solution using the new
key is able to match the new template. To have a reliable
analysis, we randomly generated 200 keys for each user,
which yields a total number of 19600 (98 x 200) tests. The
results in Table V show that it is highly unlikely (0/19600)
that the t; (generated from the adversary’s obtained solution)
can match the corresponding true template t; (generated from
the true feature vectors) to break in the account. A further
examination shows that the hill-climbing solution {V{, ¥5} is
far away from the true feature vectors {vi, v2}, with a very low
similarity score of 0.193 £ 0.004. This is because the proposed
transformation is a many-to-one mapping and irreversible
function, thus it is hard to hit the true solution through hill-
climbing. Our results prove that even if a temporary solution is
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TABLE V

RESULTS FOR ATTACKING THE SYSTEM USING HILL-CLIMBING
SOLUTIONS AFTER THE COMPROMISED TEMPLATES ARE
REVOKED (GRAPH+TRANSFORMATION)

. R . . #Success/#Tests
Solution similarity | comparison scores (distance)
(SAR)
Case I | 0.193 & 0.004 0.489 + 0.025 0/ 19600
Case IT| 0.219 + 0.036 0.781 £ 0.036 0 /7800

found, it is unlikely that this fake solution can pass the system
after the compromised template is revoked.

In Case II, the adversary obtained ty, which is an approx-
imation of tgp. To defend, the system can simply replace
the compromised tp with a new template t; using a new
set of transformation parameters. In our experiment, there
were 39/109 users (SR=0.358 at the operating point of EER)
whose original templates were successfully attacked by hill-
climbing attacks. For each of those 39 users, we replaced
the compromised template with a new one using a new key
and tested whether the obtained solution can match the new
template to break in the account again. To have a reliable
analysis, we randomly generated 200 keys for each user, which
yields a total number of 7800 (39 x 200) tests. The results in
Table V show that the hill-climbing solution t is not similar
to any of these new templates (with a low similarity score of
0.219 £ 0.036), and none of them can successfully match the
new templates. Since to neither reveals clues about the raw
biometric data nor correlates with the new template, obtaining
to through hill-climbing attacks would be meaningless.

Hill climbing attacks have also been investigated in other
cryptography-based privacy-preserving biometrics comparison
schemes [3]. Our cancelable template design follows a dif-
ferent path: Instead of increasing the difficulty of finding the
solutions leading to the match of the template, our many-to-
one mapping scheme allows attackers to find many solutions
where the genuine feature is hidden within. Little additional
information is provided to the attackers to filter out the true
solution.

D. Second Attack Rate - an Extension to the Classical Lost
Key Scenario Analysis

Spawned from hill-climbing attacks is a new concept, which
we call Second Attacks. Tt is defined as an attempt to break
into a system using pre-obtained solutions after the system
has revoked the compromised templates. Accordingly, the
Second Attack Rate (SAR) is the success rate of these second
attack attempts. Here we examine three ways to obtain a valid
solution to break in a user account.

« Mathematical solutions. Assume that the attacker acquires

the user template ¢ and knows the transformation function
F, then it is possible to find a solution X such that
t = F(x).

o Public data solutions. Assume that the attacker has a
public database X, then for a system with a non-zero
FMR, it is likely to find X that can pass the system by
testing each data.

o Computational solutions via hill-climbing attacks.
Assume that an attacker can submit x to the system and
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TABLE VI
SAR RESULTS UNDER THREE TYPES OF SOLUTIONS

Graph+transformation

Solution Solution similarity | comparison score (dist.)| #Tests |SAR
Mathematical | 0.167 + 0.129 0.497 £ 0.025 109%x200( 0
Public data 0.033 £ 0.005 0.499 £ 0.025 109x200( 0
Computational | 0.193 + 0.004 0.489 £ 0.025 98x200 | 0
DeepExtractor+transformation

Solution Solution similarity | comparison score (dist.)| #Tests |SAR
Mathematical | 0.154 £ 0.052 0.499 £ 0.034 109x200| 0O
Public data 0.047 £ 0.008 0.496 £ 0.031 109x200( 0
Computational - - 0 0
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between classification and biometric verification. In the fol-
lowing analysis, we take the LDA and SVM, two popular
classifiers widely used in EEG biometrics, as an example to
show that user verification is not merely a classification prob-
lem, and the standard evaluation procedure for classification
systems based on supervised learning (SL) models are not
fully applicable to the evaluation of user verification systems.
Assuming that the database has N subjects, the standard
evaluation procedure for SL-based systems is illustrated in
Algorithm 3.

get the corresponding comparison score/distance, then it
is possible to find x that can pass the system.

Table VI summarizes the performance of the proposed
cancellable biometrics design in terms of SAR using the
aforementioned three types of solutions. An interesting finding
is that the computational solution obtained through the hill-
climbing attack is not better than the public data solution or the
mathematical solution. This finding validates our hypothesis
from an experimental point of view that a good cancellable
biometrics design based on many-to-one mapping is inherently
resistant to hill-climbing attacks.

E. Entropy and Brute Force Attacks

There are two types of formal proof techniques in data
security. One refers to the provable security in cryptography
which depends on the reduction into a problem’s complexity.
The problem in our paper does not belong to this category.
Another formal proof is related to the information-theoretic
leakage, which is virtually about the conditional probability
related to the information leakage. As our feature variables
are real numbers in an under-defined system of nonlinear
equations, it has theoretically infinite number of solutions,
leading to the zero conditional probability of finding the
genuine feature. Therefore, we provided a close to the worst-
case information leakage estimation based on the search space
of the encoded input feature (binary), which is the brute force
attack-based entropy.

A brute force attack attempts to guess the elements of the
original EEG feature vectors v; and v, through exhaustive
search. We analyze the search space to show the likelihood
of finding the secret successfully from the search space. In the
proposed system, both v; and v, have a length of D X n bits,
where we have D = 1000 and n = 8 in our experimental
setup. Therefore, the number of trials needed to attack the
system would be 2809 which is computationally expensive.
In actual deployment, the settings of D and n can be adjusted
according to the requirements. For example, a larger D can
further enhance the security level, however, it is worth noting
that a larger D also implies a higher computational cost or
less efficiency in data collection. There is a trade-off between
performance, security and system efficiency.

F. Pitfalls in the Evaluation Procedure of Supervised
Learning-Based Verification Systems

Many papers on EEG biometrics treat verification as a
pure classification problem without considering the differences

Algorithm 3 Standard Evaluation for Classification

1 predictions = []

2forn=1to N do

3 | re-label data of subject n as 1 (user)

re-label data of other subjects as O (intruder)
train-test-split (80%, 20%) (or 5-fold cross-validation)
SL model < SL model training on train set

7 | predictions «<— SL model testing on test set

8 end

9 accuracy < confusion matrix (predictions, ground truth)

A A

In the context of user verification, the evaluation process
described above has two major issues. 1) Training a binary
SL model requires samples from both classes, and the way it
splits train/test sets has provided the model with all intruders’
data during the training phase. This is incorrect because no
data from any test intruder should be seen by the verification
system until the system is tested. The correct procedure
should separate the intruder set from the user set, as applied
in [11]. Adopting the basic idea of separating user and intruder
sets, we suggest a more reliable evaluation procedure for
EEG-based verification system (i.e., Algorithm 4). 2) Verifica-
tion systems based on SL classification models (e.g., LDA and
SVM) do not have a system operating threshold. An individual
classification model is trained for each user, and the overall
system performance is embodied as a pair of FMR and FNMR.
The ROC curve and EER are reported in some studies, but
such ROC or EER is a measure to examine the output of the
classifier, not the ROC or EER of the verification system.

Table VII reports the results of PSD features with LDA and
SVM classifiers under the two evaluation procedures in dif-
ferent settings. The first observation is that the standard clas-
sification evaluation procedure gives false high performance,
especially the FMR, because it erroneously feeds intruder
data to the model during the training phase. In addition, the
performance of classification-based verification systems relies
on a good training set. With less training data (a smaller
number of users in the system dropped from 80 to 30),
the performance would degrade. Another concern is that the
80%-20% data split, a very common setup in classification
tasks, may be too lax for testing an verification system. For
example, given a database where each subject has 60 samples,
the 80-20 split means 48 samples are used for registration
(which would take a while for data collection) and only
12 samples are used for positive testing. Our results show
that reducing the split ratio (from 80% to 33%) also degrades
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Algorithm 4 Evaluation Procedure for Supervised
Learning-Based Verification

1 Split database into user set U and intruder set

2 IntruderTests <« intruder set /

3 predictions = []

4 for u=1to U do

5 | re-label data of subject u as 1 (user)

re-label data of other subjects as O (non-user)
train-test-split (80%, 20%) (or 5-fold cross-validation)
SL model < SL model training on train set
UserTests < testing data of label 1

10 | predictions <— SL model testing on UserTests

11 | predictions <— SL model testing on IntruderTests

12 end

13 accuracy <— confusion matrix (predictions, ground truth)

o e 3

TABLE VII

RESULTS (%) UNDER DIFFERENT EVALUATION PROCEDURES FOR
CLASSIFICATION-BASED SYSTEMS

Method Evaluation Accuracy FMR FNMR EER (classi.)
PSD+SVM Classi. (80%) 99.56 0.37 7.80 1.68
PSD+SVM Authen. (80%, 80 users) 96.73 323 875 4.06
PSD+SVM Authen. (33%, 80 users) 96.34 344 1294 4.7
PSD+SVM Authen. (33%, 30 users) 95.37 4.58 10.33 5.89
PSD+LDA Classi. (80%) 97.16 276 11.16 7.80
PSD+LDA Authen. (80%, 80 users) 91.46 852 1146 9.58
PSD+LDA Authen. (33%, 80 users) 89.74 10.09 17.38 1291
PSD+LDA Authen. (33%, 30 users) 77.51 22.52 18.50 21.65

The number in parentheses indicates the split ratio for training set.

performance. We hope to use this demonstration to rectify the
misconception of many existing studies evaluating classifier-
based verification systems.

VII. CONCLUSION

In this study, we proposed a cancellable biometrics scheme
for privacy-preserving EEG-based verification systems. To be
specific, an innovative non-invertible transformation was
designed to generate cancellable templates from EEG features
extracted by a deep learning model while taking advantage
of signal elicitation protocol fusion to enhance biometric per-
formance. The results demonstrated that the proposed method
provides a superior verification performance than the state-of-
the-art, prevents the leakage of the sensitive information con-
tained in the EEG data, and is secure against the ARM attack,
pre-image attack, hill-climbing attack, and brute force attack.
In particular, we examined two ways to perform hill-climbing
attacks, and demonstrated that the solution found through
hill-climbing attacks would fail once the system revokes the
compromised template. In other words, cancellable biometric
systems, especially those based on many-to-one mapping, are
naturally resilient against hill-climbing attacks. We also intro-
duced the concept of second attacks for cancellable biometric
systems. Finally, we discussed the evaluation procedure of
supervised learning-based verification systems and the pitfalls
involved. Our future work will further this line of research to
explore the possibility of integrating cryptographic schemes
into verification systems [49].
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