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A B S T R A C T   

This study aims to analytically assess the time-dependent failure of corrosion-induced mild steel pipes by 
employing two fracture failure criteria: the fracture toughness-based criterion and the stress-based criterion. The 
investigation intends to identify the influential factors that impinge upon the assessment of failure probability 
within this context. It is found that there is a linear relationship between the ratio of wall thickness to inner 
radius and the probability of failure and that between the internal pressure and the probability of failure. 
Notably, the influence on the evaluation of failure probability by the ratio of wall thickness to inner radius is 
more prominent than the internal pressure. It is also found that a comprehensive criterion is necessary for 
evaluating the fracture resistance of corroded mild steel pipes, which considers both initial fracture toughness 
and ultimate stress. These findings can provide theoretical evidence for pipe engineers to develop maintenance or 
repair strategies in mild steel pipes. The significance of this paper is the development of an analytical framework 
for predicting the probability of failure of corroded mild steel pipes, considering the complexities of elastic- 
plastic fracture mechanics.   

1. Introduction 

Pipes play a pivotal role in various sectors, serving as critical infra
structure for transporting fluids, for example, oil, gas, water and 
chemicals, over long distances, and facilitating economic growth, 
resource utilisation and societal wellbeing. It is important to note that 
pipelines also present challenges and risks, such as potential leaks or 
spills. Proper maintenance and repair are essential to ensure the integ
rity and safety of pipelines, as well as to protect the environment and 
communities along their routes. Time-dependent assessments of pipe 
reliability can provide guidance for establishing maintenance and repair 
strategies. Therefore, it is of practical significance to thoroughly inves
tigate failure mechanisms, establish suitable stochastic models and 
develop effective time-dependent methods to predict the failure of 
pipelines. 

Narrow and sharp corrosion damage is considered more critical than 
blunt damage because it acts as an initial crack and facilitates subse
quent fractures in pipes. Pitting corrosion is a prevalent mode of failure 
observed in metallic pipes, for example, cast iron, ductile iron and steel. 
Research findings indicated that cast-iron pipes exhibit the highest po
tential for failure attributed to corrosion, followed by steel pipes [1]. 

The occurrence of corrosion pits in pipes weakens their structural 
integrity and, thus, leads to fluids loss [2]. Research conducted by 
Ref. [3] revealed that corrosion pitting constituted 51 % of all water pipe 
failures in a network, while fitting failure and mechanical damage 
accounted for 26 % and 6 % of failures, respectively. 

Unlike brittle pipes, the fracture behaviour of steel pipes is a pro
gressive process with a steady crack growth during which plastic 
deformation occurs around the defect or damage. It is necessary to assess 
the failure probability of steel pipes using elastic-plastic fracture me
chanics (EPFM)-based methods. Additionally, the fracture resistance of 
steel pipes depends on the extent of crack propagation and the size of 
defects or damages. Thus, the employed failure criterion must be peri
odically updated at different time points throughout the whole process 
of evaluating pipe reliability. Therefore, accurate predictions of fracture 
failure of corroded steel pipes necessitate stochastic models developed 
based on actual inspection databases. Moreover, the identification of 
factors exerting influence on pipe deterioration becomes an essential 
component for the formulation of such stochastic models [4]. By iden
tifying these significant factors, the number of variables required and 
the associated data collection costs can be reduced, leading to a more 
accurate stochastic model [5]. 
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Numerous models have been proposed to assess the failure proba
bility of corroded brittle pipes, such as those by Refs. [6,7]; and [8]. 
However, there is still a lack of stochastic models that incorporate the 
failure criterion based on EPFM and account for the general nonsta
tionary and non-Gaussian characteristics of related variables. For 
example, the residual resistance model [9], developed to evaluate the 
failure of corroded steel pipes, requires three-dimensional characteris
tics of corrosion pits. Although this information can be obtained using 
specialised inspection tools, such as ‘pigs’, the associated computational 
cost is considerable. To overcome this limitation [10], developed a total 
in-plane stress model based on the mean and standard deviation of 
dependent variables. However, its accuracy and efficiency are affected 
by the linearity and Gaussianity of limit state functions since its solution 
is based on the second-moment method. Therefore, this model is not 
available for highly nonlinear or/and non-Gaussian stochastic processes. 
Further [11], developed a residual strength model, in which the 
remaining pipe strength is characterised by a lognormal distribution. 
However, this model does not consider the effects of the 
corrosion-pitting rate, a factor that introduces considerable un
certainties and exerts a substantial influence on the evaluation of 
corrosion-induced failure, as demonstrated by Ref. [12]. 

In this paper, both a fracture toughness-based model and a stress- 
based model are employed to evaluate the corrosion-induced fracture 
failure of steel pipes subjected to longitudinal damage. The initial 
fracture toughness of four grades of mild steel pipes is determined by a 
new and simple test method [13]. Additionally, the nonstationary and 
non-Gaussian properties of material properties (e.g., yield stress σys(t)
and ultimate stress σut(t)) and load effects (e.g., internal pressure P(t)) 
are considered when assessing the fracture failure probability of 
corroded steel pipes. Moreover, the variables that exert significant in
fluence on fracture failure are identified. The primary contribution of 
this paper is developing an analytical prediction framework for the 
failure probability of corroded steel pipes, considering the nonstationary 
and non-Gaussian properties of variables alongside Elastic-Plastic 
Fracture Mechanics (EPFM). Furthermore, the developed method can 
contribute to the further application of ductile fracture criteria in the 
time-dependent assessment of structural integrity. The significance of 
this paper is that it can provide theoretical evidence for pipe engineers to 
develop maintenance or repair strategies for steel pipes. 

2. Corr oded mild steel pipes 

As illustrated in Fig. 1, a corroded steel pipe with an external surface 
damage is subjected to an internal pressure P(t). The corrosion pit is 
idealized as semi-elliptical, in which both the corrosion pit depth a(t)
and length 2c(t) are time dependent. Stochastic models used to predict 
the pipe failures is commonly based on historical data containing 

various correlated variables [14], including pipe-intrinsic (e.g., pipe 
age, diameter, length, and materials), environmental (e.g., soil types, 
precipitation, seasonality, and chemical substances), and operational (e. 
g., internal pressure, pH values, and maintenance practices). The main 
variables causing pipe failure are pipe diameter, age, internal pressure, 
material, and wall thickness [1]. While certain variables remain pre
dominantly static, others are time-dependent, e.g., precipitation and 
internal pressure [15]. Besides, there is a deterministic relationship 
between the structural response and these variables. Although some 
studies have been conducted for assessing the failure probability of steel 
pipes by time-dependent reliability methods, they are mainly focus on 
discrete processes, e.g., Weibull and Poisson distributions [16–18]. In 
this paper, continuous characteristics of stochastic processes are 
considered. 

The corrosion-induced reduction in pipeline wall thickness d(t) can 
exhibit uniform or localized patterns. Contrary to the common 
assumption of a constant rate of thickness loss throughout the service 
life, it usually follows a nonlinear trajectory. Specifically, the corrosion 
rate is initially high and then experiences a gradual decrease or stabi
lization. In this research, a power-law relationship proposed by Ref. [19] 
was employed to describe the corrosion pit depth a(t) as follows: 

a(t)= k(t)tγ(t) (1)  

where k(t) represents multiplying constant and γ(t) represents expo
nential constant. For the corrosion of steel in soil conditions, k(t) and γ(t)
have the mean values of 0.3 and 0.6, and coefficients of variation of 0.3 
and 0.2, respectively [10]. 

The internal pressure P(t) was modelled as a Gumbel process [20, 
21]. Its mean and variance can be expressed as E[P(t)] = λ(t)+0.5772ξ(t)
and Var[P(t)] = π2

6 ξ2(t), in which ξ(t) and λ(t) are scale and location 
parameters, respectively. The third and fourth moments of the Gumbel 
process P(t) are α3P(t)= 1.139 and α4P(t)= 5.4, respectively. The cor
relation coefficient function of P(t) is assumed as ρP(ti, tj) = exp[ −
((ti − tj)/LP)

2
], where ti and tj are any two time points and LP represents 

the correlation length. 
Additionally, the yield stress σys(t) and ultimate stress σus(t) can be 

modelled as Lognormal processes with the correlation of coefficients 
being 0.07 and 0.05, respectively [20,21]. The inner radius R(t) and wall 
thickness d(t) of a pipe can be modelled as normal processes with the 
correlation of coefficients being 0.001 and 0.015, respectively [20–23]. 
The related variables and their probabilistic distributions are presented 
in Table 1. It should be noted that the yield stress σys(t) and ultimate 
stress σus(t) presented in Table 1 are the mechanical properties of grade 
G250 steel. The corresponding mechanical properties for other three 
grades of mild steel (i.e., G350, PT460NR and A516-70) studied in this 
study are provided in Table 2. 

3. Analytical time-dependent reliability method 

In the assessment of pipe failures, a failure criterion should be 
established first. Based on the time-dependent reliability theory, this 
criterion can be expressed in the form of a limit state function G[X(t)] as 
follows: 

Fig. 1. Illustration of corrosion-induced pipe failure with external sur
face damage. 

Table 1 
Probabilistic distributions of relevant variables.  

Symbol Mean Standard deviation Distribution 

P(t) (MPa) 17.31 + 0.5772*(0.2* t0.1) 1.2825*(0.2* t0.1) Gumbel 
σys(t) (MPa) 336 23.52 Lognormal 
σus(t) (MPa) 447 22.35 Lognormal 
R(t) (mm) 188 0.188 Normal 
d(t) (mm) 12 0.18 Normal 
k(t) 0.30 0.30 Normal 
γ(t) 0.60 0.20 Normal  
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G[X(t)]=G[L, aL,t] = aL(t) − L(t) (2)  

where L(t) denotes the load effect or structural response at time t, aL(t)
denotes an acceptable barrier or structural resistance at time t. Thus, the 
probability of structural failure pf (t) can be written in the form of limit 
state function G[X(t)] as follows: 

pf (t) =P{G[X(t)]≤ 0}=P[L(t) ≥ aL(t)] (3) 

Equation (3) is a typical upcrossing (outcrossing) problem, which is 
known as first passage probability. In this theory, only the first 
upcrossing event is relevant to the structural failure, and the structure is 
seen as failure when the first upcrossing event occurs, i.e., G[X(t)]≤ 0. 
There is an upper bound for pf (t), which can be written as follows [24, 
25]: 

pf (t) ≤ pf (0) +
∫ T

0
ν(t)dt (4)  

where pf (0) denotes the (instantaneous) probability of failure at time t=
0, which can be solved by classical time-independent methods, e.g., 
First-Order Reliability Method (FORM)/Second-Order Reliability 
Method (SORM), and ν(t) represents the outcrossing rate. 

The key step in determining the probability of failure pf (t) is to 
calculate the outcrossing rate ν(t). An analytical method [26]; Zhang 
et al., 2023(b)), named PHI2++ method, is employed in this paper to 
calculate ν(t). Based on the theory of a two-component parallel system 
model [27], if the probability of more than one outcrossing event 
occurred in [t,t+Δt] is considered negligible when Δt→0, the out
crossing rate υ(t) can be defined as follows 

υ(t) = lim
Δt→0

P[G[X(t)]> 0∩G[X(t + Δt)] ≤ 0]
Δt

(5) 

Then, based on the FORM, Equation (5) can be written as follows 
[28]: 

υ(t) = lim
Δt→0

Φ2
[
βH− M(t), − βH− M(t + Δt), ρβH− M

(t,t + Δt)
]

Δt
(6)  

where Φ2[] is the bivariate cumulative normal distribution function, 
βH− M(t) is the high order moments-based reliability indexes, and 
ρβH− M

(t, t+Δt) is the correlation coefficient function between βH− M(t)
and βH− M(t + Δt). 

Since the limit state function G[X(t)] cannot satisfy the requirements 
G[X(t)]> 0 and G[X(t+Δt)] ≤ 0 at the same time when Δt = 0, thus 

lim
Δt→0

P[] = 0, i.e., lim
Δt→0

Φ2[βH− M(t), − βH− M(t + Δt), ρβH− M
(t, t + Δt)]= 0. 

Therefore, when Δt is close to zero, Equation (6) is a limit of indetermi

nate form, i.e., lim
Δt→0

0 /0. Besides, lim
Δt→0

∂Φ2 [βH− M(t),− βH− M(t+Δt),ρβH− M
(t,t+Δt)]/∂Δt

∂Δt/∂Δt 

exist when Δt∕=0. Thus, based on the L’Hopital’s rule [29], υ(t) in 
Equation (6) can be re-written as follows: 

υ(t)= lim
Δt→0

∂Φ2
[
βH− M(t), − βH− M(t + Δt), ρβH− M

(t, t + Δt)
]

∂Δt
(7) 

According to Ref. [28]; Φ2[x, y,ρ] has the mathematical properties as 
follows: 

∂Φ2[x, y,ρ]
∂y

=∅[y]Φ
[

x − ρy
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√

]

(8a)  

∂Φ2[x, y,ρ]
∂ρ =

∂2Φ2[x, y,ρ]
∂x∂y

=
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√ ∅ [y]∅
[

x − ρy
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√

]

(8b)  

where ∅[] and Φ[] are standard normal probability density function and 
cumulative distribution function, respectively. Thus, based on Equations 
(8a-b), the outcrossing rate υ(t) in Equation (6) can be further expressed 
as follows [26]; Zhang et al., 2023(b)): 

υ(t)= − ∅ [βH− M(t)]
∂[βH− M(t)]

∂t
Φ

⎡

⎢
⎢
⎣ −

∂[βH− M (t)]
∂t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M (t,t)
∂t2

√

⎤

⎥
⎥
⎦

+ ∅ [βH− M(t)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M
(t, t)

∂t2

√

∅

⎡

⎢
⎢
⎣

∂[βH− M (t)]
∂t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M (t,t)
∂t2

√

⎤

⎥
⎥
⎦

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M
(t, t)

∂t2

√

∅[βH− M(t)]

⎧
⎪⎪⎨

⎪⎪⎩

∅

⎡

⎢
⎢
⎣

∂[βH− M (t)]
∂t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M (t,t)
∂t2

√

⎤

⎥
⎥
⎦ −

∂[βH− M (t)]
∂t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M (t,t)
∂t2

√ Φ

⎡

⎢
⎢
⎣

−

∂[βH− M (t)]
∂t̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M (t,t)
∂t2

√

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

Table 2 
Mechanical and fracture parameters of mild steels [13].  

Steel grade E (GPa) σys (MPa) εys (× 10− 3) σus (MPa) n α δIc (mm) 

G250 208 336 9.822 447 6.65 6.08 0.674 
G350 207 333 9.549 437 7.30 5.85 0.540 
PT460NR 204 401 11.363 521 6.67 5.91 0.577 
A516-70 209 398 11.608 543 5.45 6.05 0.736  

Table 3 
Summary of all scenarios for βH− M(t) [26,30].  

E(t) α3Z(t) α4Z(t) βH− M(t) β2(t)

(0, + ∞) ( − ∞, + ∞) (9 + 4α2
3Z(t)

3
,48
) β(1)

H− M(t) ( − ∞, + ∞)

( − ∞,0) (0, + ∞) β(4)
H− M(t) ( − P2(t), − P1(t))

β(1)
H− M(t) ( − P2(t), + ∞)

( − ∞,0) β(3)
H− M(t) ( − P2(t), − P1(t))

β(1)
H− M(t) ( − ∞, − P1(t))

( − ∞, + ∞) [5 + 4α2
3Z(t)

3
,
9 + 4α2

3Z(t)
3

]
β(2)

H− M(t) ( − P1(t), − P2(t))
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=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∂2ρβH− M
(t, t)

∂t2

√

∅[βH− M(t)]Ψ[x(t)] (9)  

where Ψ[x(t)] = ∅[x(t)] − x(t)Φ[− x(t)] with x(t) =
∂[βH− M(t)]

∂t /

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∂2ρβH− M

(t,t)
∂t2

√

, 
βH− M(t) is high order moments-based reliability index which can be 
determined from Table 3, and ρβH− M

(t, t) is autocorrelation coefficient 
function which can be determined from Table 4. Determination of 
related parameters in Tables 3 and 4 is summarized in Appendix I. 

4. Applications and analysis 

In this section, the failure probability of corrosion-induced mild steel 
pipes is assessed by the analytical time-dependent reliability method 
illustrated in Section 3. Four grades of mild steel, i.e., G250, G350, 
PT460NR and A516-70, are employed in this study. The related me
chanical properties and fracture toughness parameters of these mild 
steel are obtained by the traditional tensile test and the developed new 
fracture toughness test, respectively. A fracture toughness-based and a 
stress-based stochastic model is employed in the worked example 1 and 
2, respectively. Additionally, the effects of material properties, wall 
thickness, and internal pressure on the evaluation of fracture failure 
probability are analysed and discussed. 

4.1. Worked example 1 

4.1.1. Description of the problem 
For ductile materials, such as mild steels, plastic deformation occurs 

around the crack tip, and material resistance increases as the crack 
propagates. As a result, EPFM-based parameters, such as J-integral and 
crack tip opening displacement (δ), should be employed to characterize 
the fracture behaviour of ductile materials. The J-integral is a measure of 
the energy required to propagate a crack in a material and is used to 
characterize the resistance to crack growth [31]. It considers both the 
elastic and plastic deformations around the crack tip and provides a 
more comprehensive assessment of the fracture toughness of ductile 
materials, particularly in the presence of plastic deformation [32]. 
Furthermore, the fracture behaviours of ductile materials predicted by 
δ-based criteria exhibit a strong agreement with experimental observa
tions [33]. 

In the fracture mechanics, fracture failure is considered to occur 
when the fracture driving force exceeds the fracture resistance [34]. 
Thus, in the context of crack tip opening displacement (δ), the criterion 
of fracture failure for corroded steel pipe can be expressed as follows: 

δ(t) ≥ δR(t) (10)  

where δ(t) is the fracture driving force represented by crack tip opening 
displacement and δR(t) is the fracture resistance represented by 
acceptable crack tip opening displacement. 

Based on Equation (10), fracture failure occurs when δ(t) ≥ δR(t). 
The probability of corroded mild pipe failure pf (t) can be determined 
from Equation (3) with fracture driving force δ(t) replacing L(t) and 
fracture resistance δR(t) replacing aL(t), which are determined below. 

4.1.1.1. Fracture driving force δ(t). There is a relationship between 
J-integral and crack tip opening displacement (δ) as follows [35–37]: 

δ(t)=
J(t)

m(t)σY(t)
(11)  

where σY(t) is the effective yield stress (i.e., an average of yield stress 
σys(t) and ultimate stress σus(t)), and m(t) represents a plastic constraint 
factor. When the ratio of yield stress to ultimate stress is greater than or 
equal to 0.5, i.e., σys(t) /σus(t) ≥ 0.5, the value of m(t) can be determined 
as follows [38]: 

m(t)=A0 − A1
σys(t)
σus(t)

+ A2

[
σys(t)
σus(t)

]2

− A3

[
σys(t)
σus(t)

]3

(12)  

where A0 = 3.62, A1 = 4.21, A2= 4.33 and A3= 2.00 for the CT speci
mens. 

J(t) can be expressed as a sum of an elastic part Jel(t) and plastic part 
Jpl(t) as follows [39]: 

J(t)= Jel(t) + Jpl(t) (13) 

with 

Jel(t)=
K2(t)

E′ (14)  

where K(t) represents stress intensity factor and E′ denotes effective 
elastic modulus, e.g., E′ = E for plane stress condition and 
E′ = E /(1 − ν2) for plane strain condition. 

In current practice, the initial fracture toughness under the mode-I 
loading conditions is widely employed to quantitatively evaluate the 
material resistance to fracture initiation and the subsequent crack 
propagation in the failure assessments of engineering structures [40]. 
Therefore, the stress intensity factor under the mode-I loading condi
tions, denoted as KI, is employed in this research. One typical failure 
case of corroded pipes is caused by internal pressure with external 
surface damage [7,41]. In this case, the stress intensity factor KI at any 
point of a semi-elliptical corrosion pit can be expressed as follows [42]: 

KI(t) = σs(t)

̅̅̅̅̅̅̅̅̅̅̅̅

π a(t)
Q(t)

√

g
[

a(t)
c(t)

,
a(t)
d(t)

,
d(t)
R(t)

, ∅ (t)
]

(15)  

Q(t)= 1+ 1.464
[

a(t)
c(t)

]1.65

(16)  

where σs(t) represents the applied stress, a(t) is the depth of pit, c(t) is 
half-length of pit, d(t) is the wall thickness of pipe, R(t) is the inner 
radius of pipe, ∅(t) is the parametric angle of semi-elliptical pit with 
0≤ ∅(t)≤ π, Q(t) is the shape factor for semi-elliptical pit, and g[] is the 
influence coefficient which can be determined as Appendix II. As the 
fracture failure of corroded pipe is caused by internal pressure, the 
applied stress σs(t) can be expressed by Barlow’s formula as follows 
[12]: 

σs(t)= σhoop(t) = P(t)R0(t) / d(t) (17)  

where σhoop(t) represents the hoop stress, P(t) is the internal pressure, 
and R0(t) is the outer radius of pipe. Hoop stress can lead to the fracture 
of pipe with a longitudinal defect or damage, which is a main reason of 
pipe failure. 

The plastic part Jpl(t) can be expressed as follows [43]: 

Jpl(t) =αε0σ0L(t)h
[

2∅(t)
π ,

a(t)
c(t)

,
a(t)
d(t)

,
d(t)
R(t)

, n
][

P(t)
P0(t)

]n+1

(18)  

where α and n represent the multiplying and exponential constant in the 
Ramberg–Osgood model, σ0 denotes reference stress which is usually 
determined as yield stress, i.e., σ0 = σys, ε0 represents the strain ac

Table 4 
Summary of all scenarios for ρβH− M

(t, t+Δt) [26]; Zhang et al., 2023(b)).  

O(t, t + Δt) h3(t)h3(t + Δt) h4(t)h4(t + Δt) ρβH− M
(t, t + Δt)

(0, + ∞) ( − ∞, + ∞) (0, + ∞) ρ(1)
βH− M

(t, t + Δt)
( − ∞,0) (0, + ∞) ρ(4)

βH− M
(t, t + Δt)

ρ(1)
βH− M

(t, t + Δt)
( − ∞,0) ρ(3)

βH− M
(t, t + Δt)

ρ(1)
βH− M

(t, t + Δt)
( − ∞, + ∞) ( − ∞,0) ρ(2)

βH− M
(t, t + Δt)
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cording to the reference stress σ0, L(t) represents the characteristic 
length of pipe, i.e., L(t)= 2c(t), P0(t) represents the limit pressure under 
the fully plastic condition (i.e., n = ∞), which can be determined from 
P0(t) = σ0d(t) /R(t), and h(t) represents the normalised fully plastic 
J-integral, which can be determined as Appendix II. 

Thus, J(t) (i.e., in Equation (13)) can be determined as follows: 

J(t)=
π
E′

a(t)
Q(t)

σ2
s (t)g

2(t) + αε0σ0L(t)h(t)
[

P(t)
P0(t)

]n+1

(19) 

Furthermore, based on Equation (11), Equation (19) can be deter
mined as follows: 

δ(t)=
π
E′

a(t)
Q(t)

σ2
s (t)g2(t)

m(t)σY(t)
+ αε0σ0

L(t)h(t)
m(t)σY(t)

[
P(t)
P0(t)

]n+1

(20)  

where m(t), g(t), σs(t) and h(t) are determined from Equation (12), 
(A2.1), (17) and (A2.2), respectively. 

4.1.1.2. Fracture resistance δR(t). Fracture toughness is a critical prop
erty of ductile materials, which can be used to measure the fracture 
resistance to crack propagation. It is crucial in assessing the ability of a 
material to withstand crack initiation and growth under various loading 
conditions [44]. The initial fracture toughness is often employed in 
evaluating structural performance and quality assurance of engineering 
components [40]. 

In this paper, a new and simple test method (Zhang et al., 2023(a)) is 
employed for determining the initial fracture toughness of four grades of 
mild steel, i.e., G250, G350, PT46NT and A516-70. Based on this newly 
developed test method, the initial fracture toughness can be determined 
solely by the mechanical properties obtained from tensile tests. Specif
ically, this method is developed based on an established correlation 
between critical strain energy density and initial fracture toughness. 
There is a constant relationship between the crack tip opening 
displacement at fracture initiation (δic) and the average elongation 
length (lc), i.e., δic = Rclc. Rc = 3.068 and lc can determined from tensile 
tests. Additionally, the accuracy of this method has been verified by both 
unloading compliance (UC) method and developed Digital Image 
Correction (DIC) technique-based method. For example, there is a high 
level of agreement between the initial fracture toughness values ob
tained from the proposed method and the DIC-based tests, i.e., less than 
5 % in the deviation value. 

The critical value of fracture resistance, i.e., δIc, is obtained as shown 
in Table 2, which will be used as the critical barrier for assessing the 

failure probability of corroded steel pipes. Besides, the mechanical pa
rameters required for determining the driving force δ(t) are also pre
sented in Table 2. 

4.1.2. Results and analysis 
In this Section, based on the probabilistic distributions of variables 

provided in Tables 1 and 2, PHI2++ method [26]; Zhang et al., 2023(b)) 
is employed to calculate the outcrossing rate for four grades of mild steel 
(G250, G350, PT46NR, and A516-70). Since the accuracy and efficiency 
of PHI2++ method have been thoroughly verified by different ap
proaches in Ref. [26]; Zhang et al., 2023(b)), this paper does not repeat 
the verification process. Additionally, the influences of correlation 
lengths of stochastic process on the determination of probability of 
failure pf (t) are studied. 

The obtained results of probability of failure pf (t) are presented in 
Fig. 2. Based on Fig. 2(a), it was found that the probability of failure of 
G250 steel is lower than that of G350 steel. Since the initial fracture 
toughness δIc(t) (i.e., fracture resistance) of G250 steel is larger than that 
of G350, thus, it has less probability of fracture failure than G350 steel. It 
was also found that the both the probability of failure pf (t) of PT460NR 
and A516-70 steel are much smaller than those of G250 and G350 steel. 

Fig. 2. Probability of failure of worked example 1: (a) G250 and G350 steel and (b) PT460NR and A516-70 steel.  

Fig. 3. Effect of correlation lengths on the probability of failure of worked 
example 1. 
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For example, when the time equals to 150 years, the failure probability 
of G250 and G350 steel are 0.453 and 0.614, respectively. However, 
these values of PT460NR and A516-70 steel are nearly equal to zero. 
Both PT460NR and A516-70 are not only mild steel but also boiler plate 
steel, typically used in the construction of boilers and high-pressure 
vessels. Therefore, boiler plate steel exhibits a remarkable capacity to 
withstand high-pressure in pipeline applications, while maintaining a 
low probability of failure. As shown in Table 2, compared with G250 and 
G350 steel, both PT460NR and A516-70 steel exhibit a substantially 
higher yield stress and ultimate stress, which make them can endure a 
high level of hoop stress. This observation suggests that stress has a 
significant role in the assessment of structure reliability of mild steel. 
Consequently, the reliability evaluation of mild steel necessitates a 
comprehensive criterion, such as combining initial fracture toughness 
with ultimate stress, rather than relies solely on one parameter. 

Furthermore, to investigate the impacts of the bandwidth of sto
chastic process on the probability of failure, it is crucial to consider the 
correlation lengths. In order to assess this, the correlation length (LP) of 
the internal pressure P(t) was set to three distinct values: 0.5, 1.0, and 
1.5 years. The corresponding results are presented in Fig. 3. It is 
observed that as the correlation length increases (i.e., transitioning from 
0.5 to 1.0 and 1.5 years), there is a noticeable decrease in the probability 
of failure. This decrease can be attributed to the widening of the band
width of stochastic process. With an increase in the correlation length, 
the bandwidth decreases, resulting in reduced correlation among out
crossing events. Consequently, the occurrence probability of outcrossing 
decreases with lower probability of failure. 

4.1.3. Sensitivity analysis 
In this section, the effects of radius, wall thickness and material 

properties on the calculation of failure probability are analysed. To 
study the effects of wall thickness on the calculation of probability of 
failure pf (t), the mean value of original wall thickness, denoted as d(t), is 
systematically reduced to 0.98* d(t), 0.96* d(t), 0.94* d(t) and 0.92* 
d(t). The resulting probability of failure pf (t) is presented in Fig. 4(a). It 
can be seen that pf (t) experiences a substantial increase as the wall 
thickness decreases, which is consistent with the research findings re
ported by Refs. [45,46]. Similarly, to investigate the effects of internal 
pressure, the mean value of internal pressure P(t) is systematically 
increased to P(t)/0.98, P(t)/0.96, P(t)/0.94 and P(t)/0.92. The corre
sponding results are illustrated in Fig. 4(b). It was found that the 
probability of failure significantly increases with increasing of internal 

pressure. It makes sense that the increase of internal pressure will result 
in a higher fracture driving force δ(t), as illustrated in Equation (20), 
which leads to an increase in probability of failure. 

It is important to note that the changes in the radius of a pipe does 
not necessarily correspond to proportional changes in the wall thickness. 
Therefore, it is better to study the ratio effect of wall thickness to inner 
radius, i.e., d(t)/R(t), on the evaluation of probability of failure pf (t). 
Furthermore, to make a comparison of effects between the d(t)/R(t) and 
internal pressure P(t) on the evaluation of probability of failure pf (t), a 

Fig. 4. Sensitivity analysis on the probability of failure of worked example 1: (a) wall thickness and (b) internal pressure.  

Table 5 
Effect of d(t)/R(t) on the probability of failure of worked example 1.  

Wall thickness 
d(t) (mm) 

d(t)/R(t)(×
10− 2)

d(t)/R(t)
reduced (%) 

Time 
(year) 

Time 
reduced (%) 

d(t) 6.383 0 149.052 0 
0.98* d(t) 6.255 2.0 134.555 9.726 
0.96* d(t) 6.128 4.0 120.625 19.072 
0.94* d(t) 6.000 6.0 107.257 28.041 
0.92* d(t) 5.872 8.0 95.283 36.074  

Fig. 5. Effect comparison of d(t)/R(t) and internal pressure on the probability 
of failure of worked example 1. 
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detailed (mathematical) relationship between d(t)/R(t) and pf (t) as well 
as P(t) and pf (t) should be studied. Based on the results presented in 
Fig. 4(a), the reduced ratios of wall thickness d(t) to inner radius of pipe 
R(t), i.e., d(t)/R(t), are calculated as shown in Table 5. At the same time, 
reduced time corresponding to the probability of failure with a value of 
0.4 are calculated. Subsequently, the relationship between time reduced 
(i.e., probability of failure increased) and d(t)/R(t) reduced is plotted in 
Fig. 5. It can be observed that there is a nearly linear relationship be
tween d(t)/R(t) and pf (t). For example, a reduction of 1.0 % in the ratio 
d(t)/R(t) will cause an increase of 4.523 % in pf (t). 

Similarly, based on the results presented in Fig. 4(b), the increased 
internal pressure P(t) and time reduced corresponding to the probability 
of failure pf (t) with a value of 0.4 are calculated, as shown in Table 6. 
Subsequently, the relationship between the internal pressure increased 
and time reduced (i.e., probability of failure increased) is plotted in 
Fig. 5. It was found that there is also a nearly linear relationship between 
pf (t) and P(t). For instance, an increase of 1.0 % in the P(t) will cause an 
increase of 3.641 % in pf (t). Consequently, based on Fig. 5, the ratio of 
wall thickness to inner radius d(t)/R(t) has a more substantial influence 
than internal pressure P(t) on the evaluation of pf (t). 

4.2. Worked example 2 

4.2.1. Description of the problem 
Based on the results of reliability analysis in the worked example 1, 

initial fracture toughness δIc(t) is not effective enough for evaluating the 
material resistance to fracture initiation. The limiting (or ultimate) 
stress also plays an essential role in the assessment of material resistance 
[10]. Therefore, this section primarily focuses on using the same 
analytical time-dependent method to evaluate the probability of failure 
in corroded mild steel pipes, employing the stress-based fracture failure 
criterion. When assuming that the pipes are uniformly loaded and sup
ported along their length, only the hoop stress is of interest. Hoop stress 
can cause a longitudinal defect or damage, which is a main reason of 
pipe failure. Thus, in the context of stress, the fracture failure criterion of 
corroded steel pipe can be expressed as follows [47]: 

σhoop(t) ≥ σus(t) (21)  

where σhoop(t) is the fracture driving force represented by hoop stress 
and σus(t) is the fracture resistance represented by the ultimate stress. 

Based on Equation (21), fracture failure occurs when σhoop(t) ≥ σus(t). 
The probability of corroded mild pipe failure pf (t) can be determined 
from Equation (3) with fracture driving force σhoop(t) replacing L(t) and 
fracture resistance σus(t) replacing aL(t). The hoop stress σhoop(t) can be 
determined as follows [12]: 

σhoop(t) =P(t)R0(t) / d(t) (22)  

where P(t) is the internal pressure, R0(t) is the outer radius of pipe, and 
d(t) is the wall thickness. The probabilistic distributions of P(t), R0(t), 
d(t) and σus(t) are presented in Tables 1 and 2 

4.2.2. Results and analysis 
According to the stress-based fracture failure criterion, i.e., Equation 

(21), the obtained probability of fracture failure for four grades of mild 

steel pipes is presented in Fig. 6. The mean values of internal pressure 
P(t) and wall thickness d(t) are 17.31 + 0.5772*(0.2* t0.1) and 12, 
respectively. The correlation length of P(t) is 1.0 year. According to 
Fig. 6, it was found that the probability of fracture failure increases with 
an increase in the ultimate stress. 

Additionally, the impacts of the bandwidth of stochastic process on 
the probability of failure are studied. Like worked example 1, the cor
relation length (LP) of the internal pressure P(t) was set to three distinct 
values: 0.5, 1.0, and 1.5 years. The corresponding results for the grade 
PT460NR steel are presented in Fig. 7. It is also observed that there is a 
noticeable decrease in the probability of failure as the correlation length 
increases, i.e., transitioning from 0.5 to 1.0 and 1.5 years. 

To further investigate the failure criteria regarding the evaluation of 
fracture failure probability, a comparison is made between the proba
bility of fracture failure obtained from the energy-based (i.e., initial 
fracture toughness) and the stress-based (i.e., ultimate stress) fracture 
failure criteria, as shown in Fig. 8. The results indicate that the proba
bility of failure obtained from the stress-based criterion is significantly 
higher than that obtained from the energy-based criterion. For instance, 
as shown in Fig. 8(a), the stress-based criterion predicts a failure 

Table 6 
Effect of internal pressure on the probability of failure of worked example 1.  

Internal pressure P(t)
(MPa) 

P(t) increased 
(%) 

Time 
(year) 

Time reduced 
(%) 

P(t) 0 149.052 0 
P(t)/0.98 2.041 137.101 8.018 
P(t)/0.96 4.167 125.243 15.974 
P(t)/0.94 6.383 113.290 23.993 
P(t)/0.92 8.696 101.930 31.614  

Fig. 6. Comparison of probability of failure among different grades of steel of 
worked example 2. 

Fig. 7. Effect of correlation lengths on the probability of failure of worked 
example 2. 
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probability of 1.0 for G250 steel at 60 years, whereas the energy-based 
criterion indicates a failure probability close to zero. Similarly, in Fig. 8 
(c), the stress-based criterion predicts a failure probability of 1.0 at 100 
years for PT460NR steel, whereas the energy-based criterion indicates a 
failure probability close to zero. 

Based on the above analysis, the stress-based fracture failure crite
rion tends to provide a conservative evaluation on the reliability of 
corroded mild steel pipes. This is because that the effects of strain 
hardening around the crack tip is not considered. Unlike brittle mate
rials, fracture failure in ductile materials does not occur at the limiting 
stress, i.e., ultimate stress. Crack tip blunting caused by the strain 
hardening effect can increase the material resistance to fracture initia
tion. Therefore, depending solely on the stress-based fracture failure 
criterion is not sufficiently effective for evaluating the reliability of mild 
steel pipes. 

4.2.3. Sensitivity analysis 
In this section, according to the stress-based fracture failure crite

rion, the effects of radius, wall thickness and material properties on the 
calculation of failure probability are analysed. Like the sensitivity 
analysis conducted in Section 4.1.3, the mean value of original wall 
thickness, denoted as d(t), is systematically reduced to 0.98* d(t), 0.96* 
d(t), 0.94* d(t) and 0.92* d(t) to study the effects of wall thickness d(t)
on the calculation of the probability of failure. The calculation results for 
the grade of PT460NT steel are presented in Fig. 9(a), in which the mean 
of internal pressure P(t) is 17.31 + 0.5772*(0.2* t0.1). The results 
illustrated in Fig. 9(a) indicate that the probability of fracture failure 
increases as the wall thickness decreases. Additionally, to investigate the 
effects of internal pressure P(t) on the evaluation of failure probability, 
the mean value of internal pressure P(t) is systematically increased to 
P(t)/0.98, P(t)/0.96, P(t)/0.94 and P(t)/0.92. The corresponding results 
for the grade of PT460NR steel are presented in Fig. 9(b), in which the 

Fig. 8. Comparison of probability of failure between stress-based and fracture toughness-based fracture failure criteria: (a) G250, (b) G350, (3) PT460NR and (4) 
A516-70. 
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mean value of wall thickness is 12 mm. The results illustrated in Fig. 9(b) 
also show that the probability of fracture failure significantly increases 
with the increase of internal pressure P(t). 

Furthermore, the reduced ratios of wall thickness d(t) to inner radius 
of pipe R(t), i.e., d(t)/R(t), are calculated based on the results presented 
in Fig. 9(a). The reduced time corresponding to a probability of failure of 
0.4 is calculated and is shown in Table 7. Then, a plot depicting the 
relationship between the reduction in time and the reduction in d(t)/R(t)
is presented in Fig. 10. A nearly linear relationship exists between d(t)/
R(t) and the probability of failure. For example, a 1.0 % reduction in the 
d(t)/R(t) ratio results in a 4.125 % increase in the probability of failure 
pf (t). 

Similarly, based on the results in Fig. 9(b), the increased internal 
pressure P(t) and the corresponding reduced time for a probability of 
failure of 0.4 are calculated and presented in Table 8. Subsequently, the 
relationship between the internal pressure increased and the time 
reduced is plotted in Fig. 10. A nearly linear relationship was observed 
between the probability of failure and internal pressure P(t). For 
instance, a 1.0 % increase in internal pressure P(t) results in a 2.97 % 
increase in the probability of failure. Consequently, same as the sensi
tivity analysis conducted according to the fracture toughness-based 
fracture failure criterion, the ratio of wall thickness to inner radius d(t)/
R(t) has a more essential influence on the evaluation of the probability of 
failure than the internal pressure P(t). 

5. Further discussion 

Based on the reliability analysis results of worked example 1 and 2, it 
is evident that the evaluation of material resistance to fracture initiation 
in mild steel cannot solely rely on initial fracture toughness or ultimate 
stress. For example, under the fracture toughness-based criterion, 
although PT460NR steel exhibits a lower crack tip opening displacement 

Fig. 9. Sensitivity analysis on the probability of failure of worked example 2: (a) wall thickness and (b) internal pressure.  

Table 7 
Effect of d(t)/R(t) on the probability of failure of worked example 2.  

Wall thickness d(t) (mm) d(t)/R(t) (× 10− 2) d(t)/R(t) reduced (%) Time (year) Time reduced (%) 

d(t) 6.383 0 78.071 0 
0.98* d(t) 6.255 2.0 71.078 8.957 
0.96* d(t) 6.128 4.0 64.312 17.623 
0.94* d(t) 6.000 6.0 58.437 25.149 
0.92* d(t) 5.872 8.0 52.187 33.154  

Fig. 10. Effect comparison of d(t)/R(t) and internal pressure on the probability 
of failure of worked example 2. 

Table 8 
Effect of internal pressure on the probability of failure of worked example 2.  

Internal pressure P(t)
(MPa) 

P(t) increased 
(%) 

Time 
(year) 

Time reduced 
(%) 

P(t) 0 78.072 0 
P(t)/0.98 2.041 72.907 6.616 
P(t)/0.96 4.167 68.118 12.750 
P(t)/0.94 6.383 62.758 19.615 
P(t)/0.92 8.696 57.933 25.795  
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at fracture initiation compared to G350 steel, its probability of failure is 
lower due to higher yield and ultimate stress. Furthermore, in compar
ison to the fracture toughness-based criterion, the stress-based fracture 
failure criterion tends to provide a conservative evaluation of structural 
reliability, as it does not consider the strain hardening effects. Therefore, 
for a comprehensive assessment of material resistance of mild steel 
structures, a criterion that integrates initial fracture toughness with ul
timate stress should be developed. 

In general, the fracture failure types of pipes can be classified into 
three groups, i.e., circumferential fracture, longitudinal fracture, and 
bell splitting fracture. However, one of limitations in this study is that 
the employed stochastic model illustrates pipes restricted to the internal 
water pressure, therefore, only the longitudinal fracture failure type is 
considered. Although the longitudinal fracture failure is the prominent 
failure type in both small-diameter and large-diameter pipes [48,49], it 
is necessary to consider the failure probability caused by other fracture 
types. Furthermore, the primary component of the fracture driving force 
is considered to be the hoop stress caused by internal pressure. However, 
it is important to note that stress generated by other types of loading 
effects, such as soil weight and traffic loading, which were not consid
ered may also play a significant role in evaluating the fracture failure of 
mild steel pipes [10]. Therefore, it is necessary to take these loading 
effects into consideration in the future studies. 

In this study, only compact-tension (CT) specimens were used to 
determine the fracture driving force and material resistance for evalu
ating the probability of failure. Therefore, it cannot be ensured that the 
crack tip conditions, such as constraints, stress concentration and plastic 
deformation, are similar between the CT specimens and full-scale pipes. 
As such, further investigations involving different types of specimens, e. 
g., single-edge-bend and single-edge-notch tension, are necessary to 
enhance the efficiency of stochastic models and the accuracy of failure 
prediction. 

6. Conclusion 

In this paper, the corrosion-induced failure of mild steel pipes has 
been evaluated by an analytical time-dependent reliability method, 
based on both fracture toughness-based and stress-based stochastic 
models. The nonstationary and non-Gaussian properties of material 
properties and load effects are considered for assessing the probability of 
pipe failure. The effects of correlation lengths of stochastic process on 
the evaluation of failure probability have been studied. Moreover, the 
factors affecting the probability of failure are identified and discussed. It 

has been found that the probability of corrosion-induced pipe failure 
increases as the correlation lengths of stochastic processes decrease. It 
has also been found that there is a linear relationship between changes 
in the ratio of wall thickness d(t) to inner radius R(t) and the probability 
of failure pf (t). There is also a linear relationship between changes in the 
internal pressure P(t) and the probability of failure pf (t). Furthermore, 
d(t)/R(t) has been found to play a more significant role in the evaluation 
of the probability of failure than P(t). Moreover, a comprehensive cri
terion is necessary for evaluating the material resistance to fracture 
initiation in corroded mild steel, such as incorporating initial fracture 
toughness with ultimate stress. The significance of this paper lies in its 
ability to analytically predict the failure probability of corroded mild 
steel pipes, considering both nonstationary and non-Gaussian properties 
of related variables and elastic-plastic fracture mechanics. It can be 
concluded that the findings can serve as theoretical evidence for pipe 
engineers to develop maintenance or repair strategies for mild steel 
pipes. 
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APPENDIX I 

Determination of related parameters in Table 2 is shown as follows [26]; Zhang et al., 2023(b)): 

β(1)
H− M(t)=

[
̅̅̅̅̅̅̅̅̅
D(t)

√
−

C(t)
2

]1/3

−

[
̅̅̅̅̅̅̅̅̅
D(t)

√
+

C(t)
2

]1/3

+
h3(t)
3h4(t)

(A1.1)  

β(2)
H− M(t)= 2

̅̅̅̅̅̅̅̅̅̅̅̅

−
E(t)

3

√

cos
[

θ(t) + π
3

]

+
h3(t)

3h4(t)
(A1.2)  

β(3)
H− M(t)= 2

̅̅̅̅̅̅̅̅̅̅̅̅

−
E(t)

3

√

cos
[

θ(t) − π
3

]

+
h3(t)

3h4(t)
(A1.3)  

β(4)
H− M(t)= − 2

̅̅̅̅̅̅̅̅̅̅̅̅

−
E(t)

3

√

cos
[

θ(t)
3

]

+
h3(t)
3h4(t)

(A1.4) 

with 

C(t)= −
2
27

[
h3(t)
h4(t)

]3

+
h3(t)
3h2

4(t)
−

β2(t)
k(t)h4(t)

(A1.5a)  
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D(t)=
[

E(t)
3

]3

+

[
C(t)

2

]2

(A1.5b)  

θ(t) = arccos

{
− C(t)

2[ − E(t)/3]3/2

}

(A1.5c)  

P1(t) = k(t)h4(t)

{

2[ − E(t)/3]3/2
+

2
27

[
h3(t)
3h4(t)

]3

−
h3(t)
3h2

4(t)

}

(A1.5d)  

P2(t) = k(t)h4(t)

{

− 2[ − E(t)/3]3/2
+

2
27

[
h3(t)

3h4(t)

]3

−
h3(t)
3h2

4(t)

}

(A1.5e) 

Determination of related parameters in Table 3 is shown as follows [26,30]: 

ρ(1)
βH− M

(t, t+Δt)=
[
̅̅̅̅̅̅̅̅
L(t)

√
−

J(t)
2

]1/3

−

[
̅̅̅̅̅̅̅̅
L(t)

√
+

J(t)
2

]1/3

−
h3(t)h3(t + Δt)
9h4(t)h4(t + Δt)

(A1.6)  

ρ(2)
βH− M

(t, t+Δt)= − 2
̅̅̅̅̅̅̅̅̅̅̅̅̅

−
O(t)

3

√

cos
[
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3

]

−
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√
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[

ω(t) − π
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]

−
h3(t)h3(t + Δt)
9h4(t)h4(t + Δt)

(A1.8)  

ρ(4)
βH− M

(t, t+Δt)= 2
̅̅̅̅̅̅̅̅̅̅̅̅̅

−
O(t)

3

√

cos
[

ω(t)
3

]

−
h3(t)h3(t + Δt)
9h4(t)h4(t + Δt)

(A1.9) 

with 

(J)=
2

729

[
h3(t)h3(t + Δt)
h4(t)h4(t + Δt)

]3

−
1
54

h3(t)h3(t + Δt)
h2

4(t)h2
4(t + Δt)

−
ρZ(t, t + Δt)

6k(t)k(t + Δt)h4(t)h4(t + Δt)
(A1.10a)  

L(t)=
[

O(t)
3

]3

+

[
J(t)

2

]2

(A1.10b)  

ω(t)= arccos

{
− J(t)

2[ − O(t)/3]3/2

}

(A1.10c)  

APPENDIX II 

g[] is the influence coefficient which can be determined as follows [47]: 

g(t)=

(

g1 + g2
a(t)
c(t)

+

{

g3 + g4
a(t)
c(t)

+ g5

[
a(t)
c(t)

]2
}[

a(t)
d(t)

]2

+

{

g6 + g7
a(t)
c(t)

+ g8

[
a(t)
c(t)

]2
}[

a(t)
d(t)

]4
)

exp
[

g9
d(t)
R(t)

]

(A2.1)  

where gi(i= 1,2,…, 9) denotes the coefficients corresponding to the locations along the semi-elliptical corrosion pit. In this study, to obtain a 
maximum value of KI(t), the measurement point is selected as the deepest location of pit, i.e., ∅(t) = π /2. Thus, g1 = 0.983, g2 = − 0.028, g3 = 2.806, 
g4 = − 4.077, g5 = 1.580, g6 = 0.000, g7 = − 1.217, g8 = 0.776, and g9 = 0.160. 

h(t) represents the normalised fully plastic J− integral, which can be determined as follows [50]: 

h(t)= λ1(t)exp
{
[a(t) / d(t)]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[a(t)/d(t)][R(t)/d(t)]

√ }
+ λ2(t)exp

{√
3cos[β(t)]

}
+ λ3(t)exp

{
[c(t)/a(t)][a(t)/d(t)]2cos[β(t)]

}
+ λ4(t) (A2.2) 

with 

λ1(t)= 0.13[d(t)/a(t)]2 cos[β(t)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos[β(t)]/n

√
(A2.3a)  

λ2(t)= 0.61461
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c(t)/a(t)

√
(A2.3b)  

λ3(t)= 11.6742n[a(t)/d(t)]2{cos[β(t)]}2 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c(t)/a(t)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d(t)/R(t)

√
(A2.3c)  

λ4(t)= − 0.53016 (A2.3d)  

where β(t) is the angle between the damage and pipe axis, with β(t) = 0◦ for the longitudinal damage. It should be noted that Equation (18) is valid 
when 0.025 ≤ d(t) /R(t) ≤ 0.1, 0.2 ≤ a(t) /d(t) ≤ 0.8, 0.4 ≤ a(t) /c(t) ≤ 1.5 and 3≤ n ≤10. 
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