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The World Health Organization highlights the urgent need to address the global
threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of
bacterial response to antibiotics and their virulence state is crucial for the
effective treatment of bacterial infections. However, current methods for
investigating bacterial antibiotic response and metabolic state are time-
consuming and lack accuracy. To address these limitations, we propose a
novel method for classifying bacterial virulence based on statistical analysis of
nanomotion recordings. We demonstrated the method by classifying living
Bordetella pertussis bacteria in the virulent or avirulence phase, and dead
bacteria, based on their cellular nanomotion signal. Our method offers
significant advantages over current approaches, as it is faster and more
accurate. Additionally, its versatility allows for the analysis of cellular
nanomotion in various applications beyond bacterial virulence classification.
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1 Introduction

According to the World Health Organization (WHO), the spread of antibiotic-resistant
bacteria is currently one of the biggest threats to global health, food security, and
development (World Health Organization, 2023). Without action, even minor
infections or injuries can become life-threatening, as was the case in the pre-antibiotic
era a century ago. At present, several factors contribute to the spread of resistant bacterial
strains, with the misuse and overuse of antibiotics playing a predominant role. The use of
broad-spectrum antibiotics, which are effective against a wide variety of microorganisms,
further accelerates the spread of antibiotic-resistant species. These types of drugs are
routinely used in medical centers worldwide since antibiotic sensitivity tests, which
determine the susceptibility of a bacterial strain to different antibiotics, can take
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anywhere from 24 h for common germs to several days for bacteria
such as Bordetella, the causative agent of whooping cough (Li et al.,
2019). Unfortunately, their use is necessary to initiate treatment for
newly admitted patients with bacterial infections before the
completion of sensitivity tests, which are based on sufficient cell
growth of the pathogenic microorganism and, therefore, can take
several days to week. To reduce the time delay between patient
admission and identification of the most appropriate antibiotic,
numerous options exist, but none have been widely implemented in
hospitals thus far. One promising option for the rapid determination
of bacterial sensitivity to antibiotics involves detecting the
nanometric scale oscillations that characterize all living
organisms (Kasas et al., 2015).

Detecting nanometer-scale oscillations in living organisms
offers a promising method for determining cell viability. These
low amplitude oscillations were initially detected using atomic
force microscopy (AFM) (Binnig et al., 1986). The method
involves attaching the organism of interest to a microfabricated
cantilever and recording its oscillations over time in the presence of
various chemicals in the analysis chamber (Longo et al., 2013).
AFMs are extremely sensitive devices that can detect cantilever
displacements with sub-Angstrom resolution. Consequently, they
can monitor bacterial nanomotion that is 1–2 orders of magnitude
larger than the instrument’s detection limit.

Numerous studies involving bacteria, yeast, plant, and
mammalian cells have demonstrated that monitoring the
nanomotion of living cells holds promise as a label-free method
for assessing life-death transitions (Longo et al., 2013; Kasas et al.,
2015; Pleskova et al., 2023a; b; Starodubtseva et al., 2023; Villalba
et al., 2022). The exact origin of the nanomotion signal is still
unclear. Various factors such as flagella, ion channel activity, or
conformational changes in surface proteins can induce these small
oscillations. Despite the mysterious nature of the nanomotion
signal’s origin, several independent research teams have proposed
promising applications based on nanomotion analysis.

One of the primary and most straightforward applications is the
development of rapid and label-free antimicrobial sensitivity tests
for pathogenic bacteria (or yeasts) (Stupar et al., 2017; Mustazzolu
et al., 2019; Villalba et al., 2022; 2023; Radonicic et al., 2023). In this
approach, the organism of interest is exposed to different antibiotics,
and its nanomotion is monitored over time. Such a device allows for
antibiotic sensitivity tests to be completed within 1–3 h (Villalba
et al., 2018). Nanomotion analysis has also been proposed for
monitoring cancer cell sensitivity to chemicals (Wu et al., 2016;
Stupar et al., 2021) and as a chemistry-independent life detector for
extraterrestrial life research (Lissandrello et al., 2014; Kasas
et al., 2015).

Cellular nanomotion patterns not only reflect the life/death state
of an organism but also provide insights into its metabolic activity
level and, in some cases, bacterial virulence. It is known that
Bordetella pertussis, the bacteria responsible for whooping cough
can adopt different states of virulence, such as being avirulent or
virulent. Each virulence phase involves the expression of specific
genes. Virulence factor genes (such as adhesins and toxins) are
expressed during a virulent state (Cotter and Jones, 2003).
Meanwhile, avirulent metabolism may be involved in bacterial
survival, transmission, and/or persistence (Moon et al., 2017).
This bacterium exhibits distinct nanomotion patterns in its

virulent and avirulent states. These patterns are characterized by
variations in cantilever displacements. This observation strongly
suggests that nanomotion signals carry significant information
about the studied organism. So far, nanomotion data have been
analyzed primarily through variance and displacement distribution
histograms. However, to fully harness the information embedded in
nanomotion signals and achieve precise classifications (such as
distinguishing between life and death states), a more rigorous
approach is required.

From a statistical perspective, the task of identifying the
virulence state represented by a given nanomotion recording
can be viewed as a clustering-classification problem. Clustering
methods play a critical role in various domains, including data
analysis, machine learning, and pattern recognition. These
methods aim to group data points together based on their
inherent characteristics or similarity measures. Traditional
clustering algorithms, such as k-means and hierarchical
clustering, are widely used (Ester et al., 1996; Hahsler et al.,
2019; Hahsler and Piekenbrock, 2022). More advanced
approaches include density-based clustering, model-based
clustering (Hastie and Tibshirani, 1996; Fraley and Raftery,
2002; Scrucca et al., 2016), random forests (Breiman, 2001;
Breiman et al., 2022), and spectral clustering (Ng et al., 2002).
In our analysis, we employed Gaussian mixture models, which
are commonly used and numerically implemented in various
software packages (Fraley and Raftery, 2002; Scrucca et al., 2016;
Scrucca, 2022). These clustering methods offer valuable tools for
grouping similar nanomotion recordings and aiding in the
classification of virulence states.

In this work, we introduce a novel artificial intelligence
(AI)-based method for analyzing cellular nanomotion signals.
This AI approach is a versatile technique applicable to the
analysis of nanomotion observations across various organisms.
To illustrate the method, we present its application on analyzing
living B. pertussis in two different virulence phases, and
dead bacteria.

2 Materials and methods

2.1 Bacteria culture preparation and
conditions

In this study, two strains of B. pertussis were selected: an
avirulent phase-locked mutant B. pertussis 537 (Relman et al.,
1990), and the reference strain B. pertussis Tohama I. The
bacteria were cultured from frozen stocks on Bordetella agar
plates supplemented with 15% (v/v) horse blood (BD Difco).
Colonies were incubated for 72 h at 37°C and subsequently
regrown for 48 h on a fresh agar plate under the same conditions.

To initiate the liquid culture, an agar plate was inoculated into a
30 mL volume of Stainer-Sholte (SS) liquid medium (Stainer and
Scholte, 1970) in a 50 mL flask. The flask was incubated at 160 rpm
and 37°C for 24 h. The bacterial liquid culture was then subjected to
centrifugation at 8500 rpm for 5 minutes and thoroughly washed three
times with phosphate-buffered saline (PBS, pH 74) (Sigma-Aldrich).
Finally, the pellet was resuspended in SS liquid medium to achieve a
final concentration of 106–108 colony-forming units/ml (CFU/ml).
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We determined if the culture is viable or not by measuring the
optical density (OD) of the liquid culture after 24 h: ODwill remain low
(less than 0.2) if the cells do not grow; and will increase to at least 1–1.5
(at 650 nm) if the cells are in good shape and grow. Because PBS is
documented as a harmless buffer, we did not consider measuring the
viability of the cells between the washing and the cell adhesion steps.

Two different protocols have been used to verify the viability of
the cells after the attachment procedure (including washing steps).
The first consisted of staining the bacteria with live/dead stain
(propidium iodure and syto9) and the second of applying
mechanical force to detach the cells and place them on a fresh
agar plate to assess their growth after 24 h at 37°C.

To evaluate the B. pertussis virulence phase cells were grown on
Bordet-Gengou agar medium (Difco) plates containing 15%
defibrinated sheep blood. Plates were incubated 48 h at 37°C. The
colony hemolytic phenotype was associated to the release of
adenylate cyclase-hemolysin toxin (ACT) by cells expressing the
virulence phase. ACT is one of the principal virulence factor
produced by B. pertussis (Carbonetti et al., 2005).

2.2 Cantilever functionalization

For the measurements, rectangular AFM cantilevers (model: SD-
qp-CONT tip-less cantilevers, NanoandMore, GmbH,Germany)with a
nominal resonance frequency of 32 kHz and a force constant of 0.1 N/
m were selected. These cantilevers were held in place using silicon
support chips (SD-Align, Nanosensors, NanoWorld AG).

To enable the attachment of cells, the cantilevers were
functionalized with adhesive molecules. This involved covering the
sensor with a drop of 0.1% (w/v) poly-L-lysine solution (Sigma-Aldrich)
for a duration of 5 min. After that, the cantilevers were removed from
the poly-L-lysine drop and allowed to air dry for a few minutes.
Subsequently, they were incubated with the B. pertussis suspension
for 40 min at 37°C. Prior to placing the cantilever with the adhered
bacteria in the analysis chamber, three washes with PBSwere performed
to remove the loosely bound cells.

Cantilever functionalization is a very important and challenging
step in the sample preparation protocol. The cross linking molecule
has to be harmless to the microorganism of interest, relatively
unspecific to permit the attachment of various bacterial species
and strong enough to permit liquid exchange during measurements.
In our case the cantilevers were covered with an aqueous polylysine
solution that crosslinks the negative charges of the Si3N4 surface and
the bacterial cell wall. Functionalization and attachment were
checked by imaging the cantilever with an optical microscope
before and after the measurement.

Functionalization protocols such as the one used in this study
can be found in several published works that required the adhesion
of bacteria to surfaces or cantilevers (Oh and Hinterdorfer, 2018;
Lisandrello et al., 2014; Vadillo-Rodríguez et al., 2004; Villalba
et al., 2022).

2.3 Data acquisition

The nanomotion measurements were performed using an AFM-
based nanomotion device developed at the Laboratory for Physics of

Living Matter at Ecole Polytechnique Federale de Lausanne (EPFL,
Lausanne, Switzerland) (Venturelli et al., 2021). The analysis
chamber of the AFM nanomotion device was filled with SS liquid
medium at room temperature, which had been filtered previously
using a 0.22 µm pore size filter. Data recording commenced after a
few minutes of placing the cantilever on the detector to allow for
stabilization of the liquid inside the analysis chamber.

For data acquisition, LabVIEW software from National
Instruments (Venturelli et al., 2020) was utilized to configure the
parameters and handle the data acquisition process. The deflection
signal was recorded over a duration of 30 min, with a sampling
frequency of 20 kHz.

2.4 Machine learning classification of the
nanomotion

The methodology employed in this study involves machine
learning (ML) and artificial intelligence (AI) techniques to
classify nanomotion data. The general approach is to divide a
longer observation into shorter strands and train a classification
algorithm using various ML/AI methods on these strands. We used
Model Based Clustering (MDA) (Fraley and Raftery, 2002; Scrucca
et al., 2016; Scrucca, 2022) and Random Forest (RF) (Breiman, 2001;
Breiman et al., 2022). The trained algorithm is then employed to
classify new observations (Kweku, 2021).

To obtain a trained classification algorithm, several steps are
followed. First, the data undergoes preprocessing to prepare it for
analysis. Next, dimension reduction techniques are applied to reduce
the complexity of the data while retaining essential information. We
used Functional Principal Components (FPCA) method for dimension
reduction. Finally, the classifier is trained using appropriate ML/AI
algorithms.Once the classifier is trained, it can be applied to classify new
observations. Our approach for classifying a new observation is novel
and described in detail in the corresponding section below.

In the result section, we provide a more detailed description of
the steps involved in the classification process. It should be noted
that the method outlined below can be applied to nanomotion
observations from multiple bacterial states, denoted as K states. To
maintain clarity and establish a connection with the example of
classifying B. pertussis nanomotion, we will present the method
specifically for the case where K = 3. The three states will be referred
to as Virulent (V), Avirulent (AV), and Dead (D).

2.5 R packages and functions used

In addition to basic R, specialized R packages were used for the
functional data work (smoothing and FPCA), and clustering/
discriminant analysis work. For smoothing and creating FPCs, R
package “fda” was used. The functions used for data smoothing
were: create. bspline.basis, fdPar, smooth. basis, and eval. fd.
Selection of the smoothing parameter was done using a cross-
validation approach. Function pca. fd was used to compute the
FPCs. Package “mclust” was used for clustering, discriminant, and
classification work with the MDA method. Function mclustBIC was
used to determine the clusters for checking the internal consistency
and external variability. Function MclustDA was used to train the
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classifier. Package randomForest was used for the RF classification
and prediction method.

3 Results

The setup of the AFM-based nanomotion detection and an image
of the cantilever used in this work are presented in Figures 1A, B.

3.1 Preprocessing of the experimental data

The process commences with the partitioning of observations from
all states (all experimental data) into shorter segments, termed as
‘strands’. We then randomly select strands from each state for the
purpose of training the classification algorithm. These selected strands
undergo scaling and smoothing to enhance the identification of trends.
Subsequently, outlier strands are detected in each strand category and
eliminated from the training set. Next, dimension reduction is done
through the Functional Principal Components Analysis (FPCA). The
FPCs scores will serve as data for all subsequent analyses. The final step
involves assessing the strands from each state for internal consistency
and external variability. For effective machine learning classification, it
is crucial that data from the same state exhibits sufficient similarity
(internal consistency), while data from different states demonstrates
noticeable differences (external variability). More detailed explanations
of the preprocessing steps follow.

Step 1: Segmentation of Experimental Observations: Assuming
access to cantilever displacements (5-min or similar length
observations of the displacement record - nanomotion) from all
metabolic states of the target organism, it’s likely that these records
will be extensive. As such, computational handling without high-
powered computers may be challenging. Therefore, we recommend
dividing these observations into shorter, more computationally
manageable segments, referred to as chunks or strands. We
divided 5 min long experimental observations into 5 s long
chunks/strands.

Step 2: Random Sampling for Classifier Training: To enhance
computational efficiency, a reasonable number of chunks are
randomly selected from each state to be used for training the
classifier. For our process, we utilized 30 training chunks from each
state (total of 90 strands). These 90 strands were our initial training set.
The following steps were performed on these training data.

Step 3: Scaling of Training Strands: For the purpose of classifying
the bacterial state, our focus was the nanomotion pattern, rather
than its magnitude. Hence, we advise scaling the training strands.
This is achieved by dividing all displacements within each strand by
their respective standard deviation (or range).

Step 4: Smoothing Training Chunks: Employ a functional data
smoother, such as B-splines, to smooth the training chunks. This
step aids in understanding the general pattern of the signal and
reduces computational time for subsequent steps. Smoothing
unveils common features and patterns in the data more
effectively than raw displacement records.

Step 5: Outlier Identification and Removal: Outlier strands, which
noticeably differ from the majority of the data, should be identified and
removed. As the similarity of data within a state significantly influences
classifier accuracy, the removal of outlier strands is recommended, since
these can obscure the data pattern. Outliers can be detected by
calculating the 25th and 75th quantiles of strand values. The
Interquartile Range (IQR) is the difference between these percentiles.
Any observation (strand) with a minimum value below the 25th
percentile minus 1.5 times the IQR or a maximum value above the
75th percentile plus 1.5 times the IQR is considered an outlier. Outliers
can arise upon external perturbations such as opening or closing a door,
floating particles into the analysis chamber that crosses the laser beam
during the measurement or any electrical or mechanical disturbance.

Step 6: Dimension reduction. In the dimension reduction step, the
remaining training strands are subjected to FPCA to reduce their
dimensionality. FPCA is used to capture the main sources of
variation in the data by representing the observations in terms of

FIGURE 1
(A) Setup for AFM-based nanomotion detection: An I shaped cantilever (1) with living bacteria attached to its surface (in green). Bacterial nanomotion
induces cantilever oscillations that are detected through the deflections of the laser beam (2) reflected off the end of the cantilever. (B) Optical
microscope image of the cantilever holding chip (left) an I shaped cantilever (right) with B. pertussis attached to it. Only the very end of the lever is visible
since this part is gold coated, the rest of the lever is transparent.
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functional principal components (FPCs). These FPC’s scores are
then used as the data in place of the original displacement
training set. Several FPCs which explain a good portion of the
total variability (typically 85%–99%) in the training data are used for
further analysis.

Step 7: Checking internal consistency and external variability. After
dimension reduction, it is important to check the internal
consistency of the training data (selected FPC’s scores) and the
external variability between the training data from different states.
Internal consistency refers to the similarity of observations within
the same state, while external differences refer to the degree of
dissimilarity between observations from different states. This check

ensures that the classification methods can effectively distinguish
between the different states.

A flow chart based on the steps one to seven is included
in Figure 2.

To assess internal consistency, a clustering algorithm can be
employed to determine if the observations from a given state form
one cluster. On the other hand, observations fromdifferent states should
form separate clusters, indicating external variability. In this study, a
model-based clustering method that fits a mixture of Gaussian
distributions was used. Specifically, the Mclust 5 procedure in R was
utilized (Fraley and Raftery, 2002; Scrucca et al., 2016; Scrucca, 2022).
To evaluate the clustering models, the Bayesian Information Criterion
(BIC) developed by Schwartz (Schwarz, 1978) was used as a criterion.
BIC helps in selecting the most appropriate model by balancing model
complexity and goodness of fit. This step ends the preprocessing stage of
the AI analysis.

3.2 Training of the classifiers

Once the data preprocessing is completed, the next step is to
train the classification/discrimination algorithm on the FPC
scores. In this study, we used Model Based Clustering (MDA)
and Random Forest (RF) methods. Specifically, we used the
Gaussian Mixture Modeling for Model-Based Clustering,
Classification, and Density Estimation R package Mclust
(Scrucca et al., 2016; Scrucca, 2022). The Mclust package
automatically selects the best classification or discrimination
model based on the BIC. For the Random Forest work we
used the R package randomForest (Breiman et al., 2022).

3.3 Classification of a new observation

To classify a new observation based on its nanomotion, the
observation is divided into shorter strands, similar to the training
data. A reasonable number of test strands (we recommend at least
30) are randomly sampled from the new observation for classification.
The trained classifier is then applied to each test strand, and the result
(assigned state) is recorded. The frequencies of the assigned states are
computed, and the most frequent state is assigned to the entire
nanomotion observation. Specifically, the steps of this method are:

Step 1: Divide the new observation, which can be, for example,
5 min long, into shorter strands, such as 5 s strands. In this case, you
would have 60 strands of 5 s each.

Step 2: Apply the trained classifier to each of the 60 strands
individually. Use the classifier to predict the state (virulent,
avirulent, or dead) for every strand.

Step 3: Record the predicted state by the classifier for each
strand. Keep track of the states predicted for all 60 strands.

Step 4: Compute the frequencies of all the predicted states, that is
determine how many times each state was assigned by the classifier
among the 60 strands.

Step 5: Assign the state with the highest frequency as the
classification for the entire new nanomotion observation. If, for
example, “virulent” was the most frequently predicted state among
the 60 strands, assign the entire nanomotion observation as “virulent”.

FIGURE 2
Flow chart of the steps leading to a trained classifier described in
Section 3.1.
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A flow chart based on the steps one to five above is included
in Figure 3.

We used this classification method with MDA and RF classifiers.
This approach considers the variability within the new observation
and provides a quite robust classification method for the entire
nanomotion observation. The accuracy of the classifier for
individual 5 s strands and for the new observations is discussed in
the section on the analysis of the B. pertussis nanomotion below.

Our approach resembles “voting” classification approaches
(Cornelio et al. 2021, or Anton et al. 2023), where several
classifiers are applied, and the predicted class is one predicted by
the largest number of the classifiers. In turn, we divide the
observation into many smaller chunks and apply the same
classifier to each chunk. Then, the class predicted most often is
the assigned class for the entire observation.

3.4 Analysis of the Bordetella pertussis
nanomotion

In the B. pertussis example, the nanomotion samples consisted
of 4 experimental replicates for each of the three states: virulent,
avirulent, and dead. Each experimental replicate was a 5 min
observation of the nanomotion.

To prepare the data for training the classification algorithm, each 5-
min observation was divided into 60 strands of 5 s each. This resulted in a
total of 240 strands per state, with 4 replicates for each state. From these
strands, a random selection of 30 chunks per statewasmade, resulting in a
total of 90 training chunks. These training chunks were further
preprocessed and then used to train the classification algorithm. In
Figure 4, a plot is shown with nanomotion data from the three states
of the bacteria. The plot contains 12 randomly sampled strands from each
state. The measurements are plotted in standard deviation units.
Visualization of the displacement for different states helps to assess the
internal similarity and external variability of the B. pertussis nanomotion.

3.5 Smoothing

To perform smoothing, a penalized 20-basis spline method was
selected. This method is a standard choice for the data which is not
periodic. The smoothed data was then subject to dimension
reduction process.

3.6 Dimension reduction

Dimension reduction using FPCA was performed on the scaled
and smoothed training data. We selected the top 6 FPCs which
explained 98% of the total variability.

3.7 Outlier identification and removal

After obtaining the FPCs, outlier strands were identified and
removed from the avirulent and dead samples using the technique
described in the previous section. No outliers were identified among
the virulent strands. Six outlier strands were removed from the
avirulent sample, and nine outlier strands were removed from the
dead sample. The remaining 30 strands from the virulent sample,
24 strands from the avirulent sample, and 21 strands from the dead
sample were used for further analysis and training of the classifier.

3.8 Checking internal consistency and
external differences

The clustering analysis usingMclust package confirmed one cluster
per state for the virulent and avirulent strands, which indicated internal
consistency within those states. The analysis showed two clusters for the
dead strands, with the majority (86%) classified to the main cluster
suggesting some variation within the dead state but still maintains
reasonable internal consistency. There were three clusters identified for
the data containing all training samples, which confirmed external
variability needed for the discriminant analysis to work well.

3.9 Training of the classifiers

We used the Mclust (for MDA) and randomForest (for RF) R
packages for training of the classifiers. The best model selected by
Mclust was VEI-3 type.

FIGURE 3
Flow chart of the steps leading to classification of a new
observation following Section 3.3.
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3.10 Performance of the classifiers on the
5 s strands

The performance of the trained classifiers was evaluated by
testing their accuracy on 150 randomly sampled 5 s strands. The
strands were sampled from all 5 s strands which were not used in the
training sample. The true state of each strand was noted, and the
trained classification algorithms were used to predict their states.
There were 55 virulent, 44 avirulent, and 51 dead strands among the
150 used for evaluation of the clarifiers. The resulting accuracy is
summarized in Table 1 and Table 2.

The overall error rate estimated using the 10-fold cross-
validation method was found to be 26.84% for the MDA and
27.40% for the RF. This high overall error rates suggested that
important information contained in the 5-min record was lost when
reducing it to a 5 s strand.

3.11 Classification of a new 5-min
observation

Classification of long (e.g., 5 min) observations has its own
challenges. To build a classifier for such a long observation is
prohibitive in computational time and requires very powerful
machines. On the other hand, the classification of a 5-min
observation based on one 5 s strand is not accurate, as we see

above. In response to these considerations, a better classification
method was developed specifically for new 5-min observations.
This method was described in section 3.3. The assessment of the
accuracy of this method was evaluated by constructing a test
observation from a given state of bacteria. This test observation was
created by randomly sampling sixty 5 s strands from the test set of
strands. The trained classifier was then used to classify the state of each
of the 60 individual strands. This process was repeated 200 times for
each state, resulting in a total of 200 test classifications/predictions per
state. The state with the highest frequency was predicted for a given 5-
min test observation. We obtained perfect classification results using
both classifiers (MDA and RF). That is all 200 of the 5-min long
observations (random sets of sixty 5 s strands) were classified correctly
for every state. The success of this method can be attributed to the
statistical similarity among strands from the same state and enough
variability among the strands from different states. The use of multiple
strands from (possibly) different experimental replicates helped
account for the internal variability within each state.

To further assess the performance of theMDA and RF classifiers we
created the ROC curves, presented in Figure 5B. For the ROC curves we
looked at the three states separately, that is predicted one state against the
other two states combined. Based on the areas under the ROC curves
(AUC) both methods performed similarly for the dead and virulent
states. MDA was slightly better than the RF for the avirulent state.

This high accuracy demonstrates the effectiveness of the
classification algorithm and suggests that the nanomotion patterns

FIGURE 4
Displacement of the 12 example strands from the three states: virulent (black), avirulent (red), and dead (green). The horizontal axis shows the “index”
which is the proxy for time. On the vertical axis we have displacement in the units of standard deviations.

TABLE 1 Accuracy of the MDA classifier on the 5 s strands.

Predicted state

Virulent cells Avirulent cells Dead cells

True state Virulent cell 55 0 0

Avirulent cells 2 35 7

Dead cells 0 4 47
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captured by the AFM-based measurements contain significant
information for distinguishing between different states of bacteria.
Based on these findings, it is reasonable to conclude that this group
classification method can be successfully applied to nanomotion

classification of other states, bacteria, or organisms with similar
degrees of internal consistency and external variability.

In addition, we performed a limited study of the performance of
both classification methods for varying strand lengths: 2.5 s, 7 s, and 9 s.

TABLE 2 Accuracy of the RF classifier on the 5 s strands.

Predicted state

Virulent cells Avirulent cells Dead cells

True state Virulent cell 55 0 0

Avirulent cells 1 31 12

Dead cells 2 5 44

FIGURE 5
(A) The ROC curves for the prediction of individual 2.5 sec strands (left column) and for the vote method (group prediction approach, right column).
For the MDA (top row) and RF (bottom row). In the group prediction column, top row the black curve (invisible) is identical to the green one (covers the
black ROC curve). In the bottom row, group prediction column the black and red curves are identical to the green one and covered by it. The AUC in the
legends of all ROC curves plots stands for Area Under the Curve. (B) The ROC curves for the prediction of individual 5 sec strands (left column) and
for the votemethod (group prediction approach, right column). For theMDA (top row) and RF (bottom row). In the group prediction column, in both rows
the black and red curves are identical to the green one which covers them. The AUC in the legends of all ROC curves plots stands for Area Under the
Curve. (C) The ROC curves for the prediction of individual 7 sec strands (left column) and for the vote method (group prediction approach, right column).
For the MDA (top row) and RF (bottom row). In the group prediction column, in both rows the black and red curves are identical to the green one which
covers them. The AUC in the legends of all ROC curves plots stands for Area Under the Curve. (D) The ROC curves for the prediction of individual 9 sec
strands (left column) and for the vote method (group prediction approach, right column). For the MDA (top row) and RF (bottom row). In the group
prediction column, bottom row (RF) the black and red curves are identical to the green one which covers them. In the group prediction MDA graph, the
black curve is identical to the green one which covers it. The AUC in the legends of all ROC curves plots stands for Area Under the Curve.
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Figures 5A-D show the ROC curves for the prediction of individual
strands and a new 5min observation using strands of varying lengths
(from 2.5 to 9 s), with MDA and RF methods. Both MDA and RF
perform reasonablywell. TheRF algorithmperforms better in predicting
the class of the individual strands and in the vote method for the 2.5 and
the 9 s strands (larger AUC). The difference is in the prediction of the
avirulent state. The MDA predicts the class of the virulent and dead
states for individual strands slightly better than the RF for all strands
lengths. However, the RF is better in predicting the avirulent state with
all strand lengths. Since the objective is classification of a new 5min
strand, the RF shows a more robust performance.

4 Discussion

Determining the optimal length of individual strands is an
important aspect to consider. Shorter strands may capture specific
dynamics or local patterns, while longer strands may provide a more
comprehensive representation of the overall nanomotion. Finding a
balance between the length of strands and computational feasibility is
crucial. Similarly, determining the minimum number of strands
required for accurate classification of a 5-min observation is an
important consideration. It may depend on the complexity of the
data and the level of variability between states. Further investigation and
experimentation can help determine the optimal length and number of
strands for effective classification.

The selection of the training set is another important aspect.
While having more strands in the training set can improve the
accuracy of the classifier, it also increases computational challenges.
Finding the right balance between the number of training strands
and computational efficiency is essential. It would be valuable to
explore different scenarios and assess the impact of varying the
number of training strands from each state on the performance of
the classifier.

Additionally, considering the likelihood of each state (prior
probability) occurring in the population when selecting the number
of training strands can be beneficial. If certain states are more prevalent
or have different levels of variability, adjusting the training set
composition accordingly may lead to improved classification
performance.

5 Conclusion

AFM-nanomotion is a very efficient tool to assess the sensitivity
of bacteria against antibiotics. Up to now, live-dead classification
was essentially relying on the nanomotion variance signal. More
recently, it was demonstrated that the nanomotion signal also
contains information on the metabolic state of the cells.
However, classification of metabolic states is much more
challenging than distinguishing life-dead states.

In this contribution, we propose a novel method for classifying
bacterial virulence based on statistical analysis of nanomotion
recordings. As a proof-of-concept, we could successfully classify
living B pertussis bacteria in the virulent or avirulence phase, and
dead state, based on their cellular nanomotion signal. Our method
offers significant advantages over current approaches, as it is faster and
more accurate.

With the fast-paced development of the artificial intelligence,
computational methods based on our ideas should make the
classification of nanomotion faster, more accurate and applicable
to various biological or medical studies. In particular, ML/AI
methods could be used in various studies of the nanomotion and
in other applications.
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