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ABSTRACT Real time location systems (RTLSs) are becoming more relevant in a more data driven economy
and society due to their wide range of application cases. When the location of an object needs to be tracked
with high accuracy, ultra wideband (UWB) technology is usually the best option. Nevertheless, UWB ranging
estimates are not completely immune to some sources of error such as non line of sight (NLOS) or multipath
conditions. Thus, this paper proposes a real-time classification model based on machine learning (ML)
to predict if received ranging estimates are in line of sight (LOS) or NLOS conditions and discard those
in NLOS. However, it is also shown that classifying measurements as LOS or NLOS does not guarantee
detecting inaccurate ranging estimates, since LOS measurements can also yield large errors. As an example,
the ranging root mean square error (RMSE) of the data labelled as LOS in a UWB based localization system
database in the literature is of 0.714 m, significantly higher than the theoretical accuracy of a UWB system.
Thus, a novel ML-based classification model is proposed to predict the magnitude of the ranging error. After
applying the proposed classification model in the same data, the ranging RMSE of those ranging samples
classified as most accurate is of only 0.183 m, significantly lower than the best RMSE we can obtain on the
classical LOS/NLOS classification approach.

INDEX TERMS DWMI1000, machine learning, random forest, ranging errors, real time location system,
ultra wideband.

I. INTRODUCTION

Industry 4.0 is revolutionizing the way companies manu-
facture and deliver their products. Among all the recently
emerging technologies, real-time location systems (RTLSs)
are gaining relevance in industrial and home use. RTLSs
can enable the autonomous operation of vehicles and robots
to improve the productivity and flexibility of production
networks [1], [2], [3] and measure the trajectories of assets
for data analytics [4]. Apart from the productivity advantages,
RTLSs can also be used to enhance the safety of people at
work [5], [6] or at home with ambient assisted living (AAL)
applications [7].
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There are many technologies which can be used for
the development of an RTLS. Most of them are based on
radio-frequency technology since it makes the identification
and tracking of objects and people an easy task [6]. The
most common radio-frequency-based technology is global
navigation satellite system (GNSS). However, it lacks the
necessary accuracy in many applications, especially in
indoor environments [8]. For real-time tracking in indoor
environments, other radio-frequency-based RTLSs such as
bluetooth low energy (BLE), ultra wideband (UWB) or Wi-Fi
have better accuracy [9].

An RTLS based on radio-frequency technology contains
two main elements: anchors and tags. Anchors are fixed
sensors at known locations, whereas tags are moving sensors
with unknown positions. The positions of tags are calculated
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by means of ranging estimates between each anchor and
tag. Those ranging estimates can be obtained using time,
angle or power information. The problem of radio-frequency-
based RTLSs is their sensitivity to non line of sight
(NLOS) conditions and multipath effects, usually caused
by congested environments with metallic objects. This is
especially true in factories. In fact, huge errors in ranging
estimates may occur under NLOS and multipath conditions,
with negative consequences in the localization accuracy.
Among the mentioned technologies, UWB presents more
robustness against NLOS and multipath conditions [10].
However, UWB can still have bad ranging estimates, which
need to be detected and discarded or corrected.

There are several methods to detect bad ranging estimates.
For example, previous knowledge of moving constraints
can be used as in [11]. By calculating the variance of
the difference between consecutive ranging estimates in a
sliding window and comparing it with a threshold, bad
ranging estimates can be detected. However, the threshold
with which to compare the variance is dependent on the
maximum velocity of the tracked object, which must be
known. Moreover, the known maximum velocity must be low.
That is the reason why the proposal of [11] is thought for
indoor robots moving at 1 m/s. In other scenarios, it cannot
be known if a sudden change in a ranging estimate is the result
of a bad measurement or the consequence of a high moving
velocity.

Other possibility is to combine inertial measurement unit
(IMU) data with UWB ranging estimates and detect bad
ranging estimates using the Mahalanobis distance as in [12].
However, this approach needs to add extra sensors and have
an excellent model of the noise of these sensors.

In recent years, machine learning (ML) techniques have
gained popularity in order to improve the accuracy of
UWB-based RTLSs. The advantage of ML techniques
is that bad ranging estimates can be detected on time
only with the information extracted from the received
signal. No extra sensors or previous knowledge of moving
constraints are necessary. In order to detect bad ranging
estimates, References [13], [14], [15], [16], [17], and [18]
propose ML models that predict if received signals are in
line of sight (LOS) or NLOS conditions. Others propose
to further separate NLOS measurements making multiclass
classifications [19], [20], [21]. However, the main focus of
the mentioned proposals [13], [14], [15], [16], [17], [18],
[19], [20], [21] is to improve the classification performance
of UWB ranging estimates. None of them focuses on their
real-time applicability. If the proposed models are to be
applied in an actual RTLS, the classification time per sample
should be lower than the time between two consecutive
measurements.

Knowing the importance of real-time applicability, other
proposals measure the time spent per sample [22], [23],
proving that ML classification models can be used in
an RTLS. These classification models separate LOS and
NLOS [23] and LOS, NLOS and multipath conditions [22].
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The problem of LOS/NLOS classifications [13], [14], [15],
[16], [17], [18], [23] or their derivations [19], [20], [21],
[22] is that not all NLOS measurements give bad ranging
estimates. The severity of NLOS conditions are not equal
in different environments, and some of them might actually
give acceptable accuracy. Thus, if such a classification model
is used in an RTLS, some accurate ranging estimates can
be discarded, which can imply a reduction in accuracy.
Moreover, some LOS measurements can be incorrectly
labelled if an unexpected reflection distorts the measurement.
This also would imply a reduction of accuracy.

A better approach than the LOS/NLOS classification is to
make a regression to predict the ranging error, as in the case
of [21]. However, their regression model is highly dependent
on the LOS, Hard-NLOS or Soft-NLOS condition. Thus, for a
correct application of a regression, a previous classification is
needed, making necessary the use of additional calculations,
increasing the computing time and reducing the real time
applicability.

As an alternative to the state of art, the contributions of this
paper are twofold. First, if LOS/NLOS classification were
necessary with UWB measurements, we propose a novel
classification model that works in real-time and performs
better than [23]. We choose [23] as reference because it
is the only work proposing an LOS/NLOS classification
model while taking into account the computational burden.
Although our proposal obtains better performance, one of the
findings of this manuscript is that accurately detecting NLOS
does not guarantee detecting all bad ranging estimates. Thus,
the main contribution of this paper is a novel classification
model that separates ranging estimates as Good, Medium or
Bad, which is a more suitable classification for an RTLS.
Up to the authors’ knowledge, this is the first time that
such a classification model is proposed. Moreover, we prove
that the proposed model makes a good trade-off between
performance and real-time applicability. The results show that
the processing time is so short that the proposed classification
model can be applied in real-time.

The rest of the article is organized as follows. Section II
shows how our proposed ML classification models can
be used in an RTLS and describes the proposed models.
Section III describes the followed methodology, including the
used data and evaluation criteria. Finally, Section IV shows
and discusses the obtained results and Section V gives the
final conclusions.

II. RTLS WITH PROPOSED CLASSIFICATION MODELS

The proposed ML-based classification models are intended to
be used with DWM 1000 modules of Qorvo-Decawave. These
modules can be configured to calculate ranging estimates
among them with the two way ranging (TWR) algorithm [24].
This algorithm consists of measuring the propagation time
between two transceivers configured as a tag and an anchor.
With the measured propagation time and the known speed
of light, the distance between each anchor and tag can be
estimated.

VOLUME 12, 2024



M. Arsuaga et al.: Novel Classification Method to Predict the Accuracy of UWB Ranging Estimates

IEEE Access

FIGURE 1. Basic architecture of radio-frequency-based RTLS using time of
flight (ToF) measurements.

With the configured UWB transceivers, an RTLS such as
the one shown in Figure 1 can be set up. In the figure, there
can be seen some anchors represented as grey cubes and
a tag as a blue sphere. During the operation, anchors and
tags run the TWR algorithm among them to compute all the
ranging estimates. The ranging estimates are represented as
7i j,n for the calculated distance at time instant i between tag
Jj and anchor n. Since the positions of anchors are previously
known, the position of tag j at time i, p;. j» can be computed
using the anchors’ positions along with the ranging estimates
between all anchors and tag j at time instant i.

At least four ranging estimates are needed at the same
time to calculate the three-dimensional position of a tag.
This position is calculated as the intersecting point among
four known spheres. Ideally, the position of the tag can be
algebraically calculated by solving the corresponding equa-
tion system [25]. However, in the real world, measurements
are noisy and statistical approaches such as the least-square
method or extended Kalman filter are preferred [26].

The least-square method and extended Kalman filter work
well when sensors have Gaussian noise [27], [28]. This is
usually the case with UWB ranging estimates under LOS
conditions. Nevertheless, multipath and NLOS conditions
can produce unexpected errors that do not follow a Gaussian
distribution. If these bad ranging estimates enter in the
positioning algorithm, the provided position can have a
considerable error. In order to obtain an accurate positioning
performance, early detection of bad ranging estimates is
crucial so that they do not affect the final position estimate.

In order to improve the positioning accuracy, this paper
proposes an ML-based classification algorithm to detect and
discard bad ranging estimates on time. Figure 2 shows the
flow chart of an RTLS with our proposed classification
model. The RTLS first uses the TWR algorithm to calculate
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FIGURE 2. Flow chart of an RTLS that classifies ranging estimates
according to the magnitude of the distance error and discards the worst
of them.

TABLE 1. UWB parameters used in classification models.

Ranging parameters
RANGE Ranging estimates between anchor and tag
FP_INDEX First path index
RSS Received signal strength of the frame

RSS_FP Received signal strength of the first peak
FP_POINT1 First path amplitude point 1
FP_POINT2 First path amplitude point 2
FP_POINT3 First path amplitude point 3
STDEV_NOISE Standard deviation of noise
CIR_POWER Channel impulse response power
MAX_NOISE Maximum reported noise

RXPACC Preamble accumulation count

Configuration parameters
CHANNEL_NUMBER Number of the UWB channel used for com-
munication
FRAME_LENGTH Frame length
PREAMBLE_LENGTH Preamble length
BITRATE Bit rate for the data portion of the frame
PRFR Pulse repetition frequency
PREAMBLE_CODE Preamble code chosen according the UWB
channel and pulse repetition frequency

the ranging estimates between each tag and anchor as
well as other parameters related to the received signal
characteristics. All these parameters are shown in Table 1 and
are denoted as ranging parameters. The ranging algorithm
can sometimes have some errors that produce inconsistent
data such as negative ranging estimates. Thus, all negative
ranging estimates are discarded with a pre-filter as proposed
by [2]. Then, those ranging estimates pass through our
proposed classification model to be classified and let the
positioning algorithm decide to include them or not. The
classification model uses the ranging parameters defined in
Table 1 as well as some configuration parameters related
to the transmitted signal characteristics such as the channel
number. The configuration parameters that the classification
model uses are also shown in Table 1. Finally, the positioning
algorithm calculates the position of tag j at time i, p; ;, using
the best ranging estimates.

A. PROPOSED ML CLASSIFICATION MODELS
The main contribution of this paper is an ML-based
classification model to detect bad ranging estimates in an
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RTLS. This classification model classifies received UWB
ranging estimates as Good, Medium or Bad according to
the ranging error magnitude. Usually, DW1000 transceivers
obtain ranging errors under 15 cm in clear LOS conditions,
as in the case of [29], [30]. Thus, measurements with an error
of less than 15 cm are categorized as Good in this research
work. Nevertheless, under more challenging conditions it
might be difficult to obtain enough ranging estimates of good
quality. For this reason, if necessary, we will accept those
ranging estimates with an error up to twice the Good class
threshold, i.e. 30 cm. In fact, it might also be possible to
obtain errors of this magnitude under optimal conditions,
as [30] obtained a maximum error of 28.5 cm. Thus, we will
label ranging estimates with an error between 15 and 30 cm
as Medium class. Finally, measurements with a greater error,
exceeding 30 cm, are categorized as Bad and shall be
discarded. Note that we could have defined a classification
model of more levels or even made a regression model.
Nevertheless, a trade-off between model performance and
real-time applicability is needed.

If it were necessary to classify UWB measurements as
LOS or NLOS, we also propose an ML-model that predicts
if measurements are LOS or NLOS. Although each of the
models are trained to classify different class types, both of
them are generated following the same process described in
the following subsections.

1) USED PARAMETERS

For the creation of ML models, the parameters of Table 1 are
used. Most of these parameters can be easily obtained with
DWM1000 transceivers.

2) CLASSIFICATION MODEL

The proposed ML models use a Random Forest classification
introduced by Breiman in [31]. The concept of these models
is based on an ensemble in which multiple classifiers are
combined in order to solve a more complex problem and
improve model performance. The classifiers that create this
ensemble are decision tree type. Each of this is trained with
a slightly different sample of the training data. The results
obtained from these individual trees will determine the final
prediction.

3) HYPERPARAMETER TUNING

The cross-validation technique is used for model tuning and
selection. This method is used for evaluating ML models,
which is based on dividing the training data set into k subsets.
In this way the accuracy of the model is measured in a more
realistic way.

Each ML model has a set of hyperparameters [32] that
serve to fit the model to the data. Both the model built and
the results obtained will depend to some extent on the values
assigned to these hyperparameters. These values should be
set before training and will depend on the profile of the
data being analyzed. There are different techniques for the
selection of these values. The technique used in this case
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is the grid search, as it is a very exhaustive and easy to
implement method. This method is based on the search for
the optimal values of the hyperparameters by analyzing all
possible combinations of these. The selected values will be
those with which the best results are obtained. First, a broad
and exhaustive range of parameters is selected. For each
combination of these values, a Random Forest classification
model is trained and evaluated using the cross-validation
technique. It is important to assign a metric on which
to base the choice of the combination of hyperparameters
that gives the most accurate results. As it can be deducted
from the description of grid search, this technique needs
many computations, especially if the search space is large.
As random forest models usually work reasonably well with
default settings [32], the search space is small and the grid
search becomes a good option for hyperparameter tuning in
our case.

The Random Forest model has the following hyperparam-
eters to be tuned:

o num trees: refers to the number of decision trees that will
build the final predictive model.

« mtry: the number of predictors to sample at each split.

o min node size: minumun number of instances in terminal
node.

o splitrule: The rule by which each split is considered in a
tree, the impurity measure to separate to one class from
another in the target variable.

The num trees hyperparameter value selection will be
based on testing with different numbers of trees within the
search space, selecting the value with which the best results
are obtained. Once the number of trees has been selected,
a search is carried out by testing different combinations
between the other three hyperparameters. The combination
of values to be selected will be the one with which the best
results are achieved.

4) FEATURE SELECTION

The success of a model resides in the quality of the data from
which it will learn. If irrelevant and noisy features compose
the data, ML algorithms could predict results less accurate
and difficult to understand. Feature selection is the process of
identifying a subset of features to be used in model building.
These techniques allow simplifying the models in order to
make them more interpretable, decrease training time and
help to reduce model overfitting.

The technique used is called Recursive Feature Elimination
(RFE) [33], an efficient algorithm whose objective is the
selection of a subset composed of the most relevant attributes
for the construction of the predictive model being worked
on. RFE works iteratively by removing the least significant
parameter in each step. The importance of each feature is
gauged by assessing the performance drop of the model
when compared between the full set of features and a model
excluding a particular feature. In a model encompassing p
features, RFE generates p submodels, yielding p importance
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TABLE 2. Constant features.

Feature Value
FRAME LENGTH 39
PREAMBLE LENGTH 4096
BITRATE 110
PRFR 64

evaluations. After removing the least important feature, it is
important to reassess the new set of features, as the feature
importance can change substantially in each iteration.

The reason for choosing the RFE method is its good per-
formance with an acceptable computational burden compared
to other techniques such as Filter Methods, regularization
techniques and Best Subset Selection [34], [35]. Filter
Methods require very little computational power, but usually
have a poor performance. On the other side of the spectrum
is the Best Subset Selection, which is a brute force method
that tests all possible subsets from a given set of features.
Regularization techniques are less burdensome than the Best
Subset Selection, but add a new hyperparameter to tune.

lll. METHODOLOGY

A. USED DATA

For the training of reliable ML models, extensive mea-
surements must be made. The work of [23] published
a large database with high variety of conditions. As the
measurements were taken with DWMI1000 transceivers,
we use their published database to train our proposed
ML-based classification models. This will also allow a fairer
comparison with the algorithm proposed by [23].

The database of [23] was obtained with UWB mea-
surements between a tag and eight anchors. The UWB
localization system was tested in four different environments
and in six different UWB channels to avoid data over-fitting.
The tested environments consisted of an apartment, a house,
an industrial facility and an office, each one containing spe-
cific multipath propagation characteristics. This abundance
of measurement conditions helps the proposed models to
be effectively used under different conditions such as a
new environment. In all these experiments, the eight UWB
anchors were placed at known fixed locations, and the tag
was placed at many different locations, resembling a human
walking path. All in all, 491 040 data samples were obtained.
These data contain 26 variables and the parameters of Table 1
are among them.

1) DATA CURATION
In order to start working with the data and apply ML
algorithms to them, the first step is to make sure that the data
are in the right form. A pre-process is performed for this,
which consists of checking the existence of null or missing
values, constant columns or any outlier. It can be seen that
there are four columns with constant values, shown in Table 2.
On the other hand, the variables TAG_ID, ANCHOR_ID,
X_TAG, Y_TAG, Z_TAG, X_ANCHOR, Y_ANCHOR and
7Z_ANCHOR are removed. Some of these features have been
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FIGURE 3. NLOS and LOS in training and test set.

used in the error calculation by obtaining the real ranging
value. The rest are anchor and tag identification numbers that
do not provide information to get the predictions.

It is also noted that some measurements have negative
values of the RANGE column, which would have been auto-
matically removed by the pre-filter mentioned in Section II.
Thus, we filter out these values, leaving the data set with only
positive RANGE values.

After applying the above mentioned pre-filter, the final
data set to work with contains 482 361 rows and the
13 features described in Table 1.

2) DATA SUBSETS

Once the database is in the right form, it is used for the
training and validation of ML models. For the validation of
the ML models, it is necessary to have a subset of the data
set that has not been used creating the model, i.e., this subset
will be composed of observations from which the model has
not learned. For this purpose, the data set is divided into a
training subset (70% of the data) and a test subset (30% of the
data).

For the model to learn based on all types of measurements,
it is important that the training and test subsets contain
balanced classes. In the case of LOS/NLOS classification,
Figure 3 shows the number of observations corresponding
to each class in training and test subsets. All in all, 43% of
observations are LOS and 57% NLOS.

Another important characteristic of the training and test
subsets is that the distribution of the environments is as
homogeneous as possible. Figure 4 shows how a similar
distribution has been maintained in both subsets.

For the generation of the Good/Medium/Bad classifier,
another separation of the data set is made to maintain similar
proportions of the target feature in each of the subsets.
Figure 5 shows how in the present case the data set is
imbalanced. The Bad class is the class for which more
information is available, so the model will detect bad ranging
estimates better than others. This is not a problem since the
objective of the proposed ML model is to reliably detect and
discard bad ranging estimates.
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TABLE 3. Confusion matrix.

Prediction | Positive Negative
Positive True positive (TP) False positive (FP)
Negative False negative (FN)  True negative (TN)

B. PERFORMANCE EVALUATION

In order to carry out the feature selection and the hyperpa-
rameter tuning, it is necessary to define the metric to be used.
This metric will indicate the quality of the results and will be
the base for the decisions to be made.

The data set is not balanced in any of the models, since the
proportions of the different classes are not the same. For this
reason, the selected metric is the F1-score. This metric takes
values between zero and one and combines the Precision or
Positive Predictive Value (PPV) and Recall or True Positive
Rate (TPR) metrics by means of the harmonic mean. The
Precision measures the quality of the model and the Recall
metric reports the amount that the Machine Learning model
is able to identify correctly. These values can be calculated
by means of the confusion matrix, shown in Table 3.

TP
PPV= — (D
TP + FP
TP
TPR= ———— (2)
TP + FN
2.PPV - TPR
Fl="———— 3)
PPV + TPR

Unlike the LOS/NLOS classification model, the proposed
classification model based on the distance error of ranging
estimates deals with a multiclass classification. In this
case, the confusion matrix needs a slight modification to
represent all three classes: Good, Medium and Bad. This
confusion matrix contains 3 x 3 elements to show how
each sample belonging to these classes have been classified.
In order to obtain the classification performance metrics
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from a 3 x 3 confusion matrix, the evaluation must be
performed in three steps. First, the Good class is considered
the positive case and Medium and Bad classes are negatives.
Making this assumption, precision, recall and Fl-score are
calculated for the Good class. Second, the Medium class is
considered positive and Good and Bad negatives to calculate
the performance metrics for the Medium class. Third, the
same is done with the Bad class. Once the values of Precision,
Recall and F1 are calculated for each of the classes, the
average of these is obtained.

Although the F1-score is a suitable parameter to evaluate a
classifier, we must not forget that the proposed classification
model is intended to select the best ranging estimates.
Thus, we will evaluate the proposed model with ranging
error metrics obtained for each predicted class. Given a
set of ranging samples classified in a certain class, its
average ranging error, the standard deviation of the ranging
error, the ranging root mean square error (RMSE) [36], the
maximum ranging error in 95% of cases and the absolute
maximum ranging error are going to be calculated.

IV. RESULTS

A. LOS/NLOS CLASSIFICATION

Once the methodology described above has been defined,
it has been applied to the data set. Firstly, the ability to predict
whether a measure is of NLOS or LOS type is studied using
the total of the input variables of the data set. Subsequently,
these results have been improved by using a reduced set of
variables, obtaining a more flexible and simpler model.

1) HYPERPARAMETER TUNING

The first hyperparameter to be set for the generation of
the classification model consists of the number of decision
trees that will constitute the Random Forest model. The
cross-validation technique is used for model tuning and
selection. In this case, the training data set is divided into
10 folds.

Figure 6 shows the values of the F1 metric measured for
different values of the num trees hyperparameter. When using
cross-validation, there will be 10 score values, one for each
iteration. The values shown in the graph are the average of
the 10 F1-scores calculated with each fold. On the one hand,
the F1-score obtained with the training data set with which the
model is created is observed. On the other hand, the F1-score
obtained with the validation set of each iteration has been
evaluated. Figure 6 shows that with the construction of a few
trees the F1 value tends to converge. Although it also shows
that adding more trees is not detrimental to the results, the
computation time increases considerably when adding more
trees. For these reasons it is decided to set the number of trees
to 200.

Once the number of trees to be used has been fixed, the next
step is the grid search for the rest of the hyperparameters. This
way of selecting the optimal values of the hyperparameters
allows performing a sensitivity analysis of them. As seen with
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the hyperparameter num trees, Figure 7 shows that the model
is also strongly influenced by other hyperparameter values.
Nevertheless, it can also be seen that not all of them affect in
the same way the results, being the model more sensitive to
some hyperparameters than to others.

First, the influence of the splitting rule used during tree
construction is evaluated. The subgraph on the left of Figure 7
shows obtained results when using the Gini rule [37], with
which the best results are obtained. The right subgraph shows
the results for the case in which the Extratree splitting rule
is used in the construction of the trees. This rule shows two
main differences compared to other methods based on sets
of trees, which are that it divides the nodes by choosing the
cut points completely randomly and that it uses the entire
learning sample.

The Gini splitting rule consists of selecting among all the
splits of the candidate variables (mtry), the one that minimizes
the Gini impurity. As shown, the greater the number of
variables to be taken into account in each division, better
results will be obtained by the model. Finally, it is observed
that the model is not as sensitive to the hyper parameter that
will determine the complexity of the decision trees (min node
size) as it is to mtry and num trees. Despite the difference
being smaller, it is observed that the best results are obtained
with low values.

Table 4 shows the values selected for each hyperparameter,
with which the predictive classification model will be built.
By means of these hyperparameters the model obtains an
F1 of 0.9382 through cross-validation. On the other hand,

VOLUME 12, 2024

TABLE 4. Selected hyperparameters in NLOS/LOS classification.

num trees mtry min node size  splitrule
Tuned value 200 10 1 Gini
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FIGURE 8. Feature importance in NLOS/LOS classification.

the time needed to build the complete model will be
263.19 seconds.

2) FEATURE SELECTION

In order to interpret the predictive model more accurately,
the importance of each input feature is studied to make the
predictions. The purpose of this analysis is to eliminate
the most irrelevant features, thus improving the accuracy of
the model. Figure 8 shows the importance of each feature.

The feature selection process was carried out by means
of this analysis. As mentioned above, the technique used
was RFE, which reduced the number of input features of
the classification model. Figure 9 shows the F1 obtained
by repeated cross-validation in the model created in each
iteration. In all these models, the number of input features
shown on the x-axis is used. It is observed that when 7 or
more features are used, the accuracy of the model remains at
similar values. With this set of features the F1 obtained in the
cross-validation phase is 0.9399982. Using these 7 variables,
the other 6 that are eliminated do not contribute any additional
value to the model, since the accuracy does not improve
significantly.

This new reduced subset consists of the features shown
in Figure 10. It also shows the importance of each of
these features in the new classification model created.
As mentioned above, the RFE can substantially change the
importance of some features, as is the case in Figure 8 and
Figure 10.

3) MODEL PERFORMANCE

The final results obtained with both the total features (TF)
and the selected features (FS) are shown in Table 5, where the
positive class refers to NLOS type measures. The two models
were created with the same training data set. Subsequently
both have been tested with the test data set, composed of
144 708 measurements. All the work has been run on a
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FIGURE 10. Selected subset feature importance for NLOS/LOS
classification.

PC with an Intel(R) Core(TM) i5-7500 CPU @3.40GHz
processor using 8GB of RAM.

The results obtained are very similar, improving a bit
the accuracy of the model composed by the reduced set of
features. Although the prediction times obtained are low and
it does not seem that there is a great improvement, this can
become an essential aspect if a more complex model or larger
quantities of measurements to predict were available. The
reduced model is able to predict 58 823 measurements per
second.

4) COMPARISON WITH LITERATURE

Once the results obtained from the Random Forest models
have been analyzed, they have been compared with those
presented by [23]. The results of [23] are obtained using raw
channel impulse response (CIR) data from the measurements
and the best fitting model to these data is a convolutional
neural network (CNN). Table 6 shows the metrics obtained
with our proposal compared to [23].

As it can be observed, our classification model performs
better in Accuracy, Precision, Recall and F1 score. The
sample prediction time is a bit more difficult to compare,
since we did not use the same computation platform as [23].
Their proposal was tested in various platforms, being the
most similar to our set-up the Intel i7-2670QM CPU with
8 threads and 8 GB of RAM. With that set-up, they needed
28.6 ws per sample. In their best case, with an i7-6700HQ
CPU with 8 threads and 16 GB of RAM, they needed 19.8 s
per sample. However, sending raw CIR data can be time
demanding. Thus, if their classification model was applied

33666

TABLE 5. NLOS/LOS classification performance.

Metric TF FS
True Positive 76995 77230
False Positive 3059 3201
True Negative 59 183 59 041
False Negative 5471 5236
Accuracy 94.1% 94.2%
Precision 93.9% 93.9%
Recall 94.2% 94.3%
Fl1 94.0% 94.1%

Sample Prediction time ~ 17.5 us  17.0 us

TABLE 6. NLOS/LOS classification performance compared with literature.

Metric FS (RF) [23]
Accuracy 94.2% 87.4%
Precision 93.9% 85.9%
Recall 94.3% 89.4%

F1 94.1% 87.6%
Sample Prediction time ~ 17.0 us  28.6-19.8 us

in real time, the time needed to send raw CIR data to
the central processing unit should also be considered. Even
without taking into account this setback of [23], our proposed
classification model runs faster.

B. CLASSIFICATION PROPOSAL

Sometimes, accurately detecting NLOS situations does not
guarantee detecting bad ranging estimates. In fact, this is
the case with the used database as it can be observed
in Figure 11, where the cumulative distribution functions
(CDFs) of ranging errors are plotted. Blue squares represent
data samples of measurements labelled as LOS, while orange
triangles show the samples labelled as NLOS. Thus, it can
be seen which the ranging accuracy of each group would be
if a perfect classification accuracy was obtained. It is noted
that the ranging accuracy of ranging estimates are not very
different under LOS or NLOS.

For further analysis, some statistics of these errors are
shown in Table 7. The columns, from left to right show the
average ranging error, the standard deviation of the ranging
error, the ranging RMSE, the maximum ranging error in 95%
of cases and the absolute maximum ranging error. These
statistics confirm what has been observed in Figure 11: there
is no significant difference in the obtained errors between
the LOS and NLOS measures. Thus, we can conclude that
labelling UWB measurement samples as LOS or NLOS
presents some problems. NLOS conditions can produce low
or large distance errors depending on the severity. Moreover,
measurements thought to be in LOS conditions can have
sometimes bigger errors because of an unexpected reflection
of the signal. Thus, detecting LOS or NLOS conditions is not
always interesting in a UWB-based RTLS.

In order to put the focus on the identification of
those measurements performed with a higher error, the
Good/Medium/Bad classification model is proposed to be
applied. As mentioned above, the steps followed to generate
the model are the same as the previous model, obtaining the
results described below.
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FIGURE 11. Cumulative distribution function (CDF) of the ranging errors
separating LOS and NLOS measurements.

TABLE 7. LOS and NLOS error description.

Ly oy RMSE, ¢ (P=95%) Max,
LOS 0.558 0.445 0.714 0.991 9.295
NLOS 0.511 0.546 0.748 1.441 7.639

1) HYPERPARAMETER TUNING

Although the input data set is the same as in the previous
model, in this case the feature to be predicted is different.
Therefore, the new generated model varies, and with it the
hyperparameters that generate it.

Figure 12 shows the F1 obtained by repeated cross-
validation for the different numbers of trees that would form
the model. In this case, selecting 250 trees, the F1 obtained
converges, obtaining a maximum validation F1 of 0.74.

Once this value is fixed, a grid search of the rest of the
hyper parameters is performed. Figure 13 shows the results
obtained, where the values described in Table 8 are selected.
Through these values, the final classification model is created
using the total set of training data.

2) FEATURE SELECTION

In this model, each of the features will have the importance
shown in Figure 14. In order to reduce the set of variables,
keeping only those that really provide information, the
feature selection process is repeated. During this phase, the
least important features will be removed in each iteration,
evaluating the quality of the created model with different
amounts of variables.

Figure 15 shows the results obtained in the RFE. In this
case, the best results are obtained with 13, 12 and 11 features.
The difference of the obtained performance among these
three cases is minimal, so the model can be done without the
2 less important features. These two features are FP_INDEX
and STDEV_NOISE.
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TABLE 8. Selected hyperparameters in error classification.

num trees mtry minnode size  splitrule
Tuned value 250 12 1 Gini

3) MODEL PERFORMANCE

As with the previous model, the model has been evaluated
using the test data set. In addition, the results using the
total set of the variables and the reduced subset selected by
feature selection have been compared. Table 9 and Table 10
show the confusion matrices with the total set of variables
and with the feature selection respectively. In these tables,
each cell represents how many samples have been classified
in each class. The title of the column represents which
class the samples belong to, whereas the rows tell which
class they have been classified to. Taking these data, the
Precision, Recall and F1-score are calculated as described in
Section III-B and shown in Table 11.

Taking the results with the total set of features, it can be
concluded that 87.9% of the test samples have been predicted
correctly. The Bad class had the best performance, with an F1
score of 93.1%, followed by the Good class with 80.0% and
the Medium class with 69.9%. The measures that may affect
more significantly in the accuracy of the positioning system
are the Bad measures that have been predicted as Good. In this
case these measures are 0.9% of the total Bad samples, which
is a really low value.

Using the reduced set of features, the correctly predicted
measurements are increased to 88.1%. As before, the
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TABLE 9. Error classification model confusion matrix.

Prediction Good | Medium Bad
Good 16 207 1676 846
Medium 1672 14 824 1930
Bad 3898 7506 | 96 148

measurements with a higher error that have been detected as
Good represent only the 0.9% of the data.

As expected, the class that better predicts the model is the
class of Bad measures. The reason for this is that the amount
of measures available in this class is greater than the rest.
As a result, the model possesses more information about the
behavior of these measures type and therefore has a better
knowledge of them. Thus, they are predicted more accurately.

All in all, eliminating the least relevant features has
been beneficial for the classification model. All metrics
are similar or slightly better. Moreover, the most important
result is that the RFE reduces the sample prediction time
without negatively affecting the classification performance.
By reducing the sample prediction time from 31.2 us to
29.9 us, it is possible to predict 1393 more samples per
second with the reduced model than with the one that uses
the whole set of features. It is also important to remark that
such a reduced sample prediction time allows the real-time
applicability of the proposed model.

Focusing on the predictions obtained by the model, the aim
is to analyze the measures that would be maintained once
those predicted as Bad have been discarded. To this end, the
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TABLE 10. Error classificacion model confusion matrix after feature
selection.

Prediction Good | Medium Bad
Good 16 312 1643 864
Medium 1673 15111 1978
Bad 3792 7252 | 96 082

TABLE 11. Error classification performance.

Metric TF FS

Accuracy 87.9% 88.1%

Precision 85.5% 85.6%

Recall 77.8% 78.3%

F1 81.0% 81.4%

Sample Prediction time ~ 31.2 us  29.9 us
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FIGURE 16. CDF of the ranging errors of measurements classified as
Good, Medium and Bad.

results of the model obtained using the reduced set of features
have been used, since it is the one with which the best results
have been achieved.

Figure 16 shows the CDFs of the measurements classified
as Good, Medium or Bad. Blue squares represent samples
predicted as Good, orange triangles represent samples
predicted as Medium and yellow circles represent sam-
ples predicted as Bad. Unlike Figure 11, each group of
measurements has a different magnitude of ranging errors.
Thus, it can be concluded that using an ML model to
classify ranging estimates according to their error magnitude
is feasible and effective.

For further analysis of the proposed classification model,
Table 12 shows ranging error metrics of each group of
measurements classified as Good, Medium or Bad. The
format of the error metrics is the same as in Table 7. As it can
be observed in Table 12, our proposed classification model,
even with an accuracy of 88%, can effectively predict the
accuracy of the ranging estimates. Those ranging estimates
predicted as Good have an RMSE of 0.183 m, whereas those
predicted as Medium 0.265 m. However, if measurements
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TABLE 12. Error metrics of measurements predicted in each category.

hr or RMSE, ¢ (P=95%) Max,
Good 0.106  0.149 0.183 0.286 4.499
Medium  0.236  0.121 0.265 0.345 4.459
Bad 0.658  0.520 0.839 1.298 9.305

were classified as LOS or NLOS with an accuracy of 100%
and those in LOS were selected, Table 7 shows that an
RMSE of 0.714 m would have been obtained. Focusing on
those measurements classified as Bad, the obtained RMSE
is 0.839 m, bigger than the RMSE of 0.748 m that present
those measurements in NLOS. Finally, it is remarkable that if
those measurements predicted as Good are chosen, an error
lower than 0.286 m is obtained in 95% of cases. This
number is significantly better than the one obtained with LOS
measurements, where an error lower than 0.991 m is obtained
in 95% of cases, even if the LOS/NLOS classifier had an
accuracy of 100%.

V. CONCLUSION

This paper has proposed two ML classification models to
detect bad UWB ranging estimates using parameters given
by the DWM1000 module of Qorvo-Decawave. The first
proposed model classifies ranging samples as LOS or NLOS.
The obtained classification results are better than those of the
literature while guaranteeing the real-time applicability.

Although the proposed model that classifies ranging
estimates as in LOS or NLOS performs better than the state
of art, one of the main findings of this paper is that traditional
LOS/NLOS classification approaches are not effective to
select the best ranging estimates for an RTLS. Not all
NLOS measurements give bad ranging estimates and many
LOS measurements can be incorrectly labelled because of
unexpected reflections. Using a public database, we have
shown that classifying measurements as LOS and NLOS do
not have significant difference in ranging error statistics.

If ranging estimates are to be classified in an RTLS, their
ranging error should be estimated rather than the LOS or
NLOS condition. The final position estimate provided by an
RTLS is directly influenced by the ranging errors of UWB
measurements. Thus, this paper has also proposed a classi-
fication model that estimates if received ranging estimates
are Good, Medium or Bad according to the distance error in
the ranging estimate and demonstrated its feasibility. High
classification accuracy and F1 score have been obtained,
with a sample prediction time of 29.9 us, guaranteeing the
real-time applicability of the proposed classification model.
Moreover, if those measurements predicted as Good are to be
used in an actual RTLS, a ranging RMSE of 0.183 m would
have been obtained.
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