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Measuring inbreeding and its consequences on fitness is central for many areas
in biology including human genetics and the conservation of endangered species.
However, there is no consensus on the best method, neither for quantification of
inbreeding itself nor for the model to estimate its effect on specific traits. We simulated
traits based on simulated genomes from a large pedigree and empirical whole-genome
sequences of human data from populations with various sizes and structures (from the
1,000 Genomes project). We compare the ability of various inbreeding coefficients (F )
to quantify the strength of inbreeding depression: allele-sharing, two versions of the
correlation of uniting gametes which differ in the weight they attribute to each locus and
two identical-by-descent segments-based estimators. We also compare two models: the
standard linear model and a linear mixed model (LMM) including a genetic relatedness
matrix (GRM) as random effect to account for the nonindependence of observations.
We find LMMs give better results in scenarios with population or family structure.
Within the LMM, we compare three different GRMs and show that in homogeneous
populations, there is little difference among the different F and GRM for inbreeding
depression quantification. However, as soon as a strong population or family structure
is present, the strength of inbreeding depression can be most efficiently estimated only
if i) the phenotypes are regressed on F based on a weighted version of the correlation of
uniting gametes, giving more weight to common alleles and ii) with the GRM obtained
from an allele-sharing relatedness estimator.

inbreeding | inbreeding depression | population structure

Inbreeding is the result of mating between relatives and is often associated with reduced
fitness, a phenomenon called inbreeding depression (ID) and which was observed in
many different species such as humans (1, 2), other animals (3–6), and plants (7).

Many different methods have been developed for inbreeding quantification and there is
no consensus on which one is the best (8–14). The classical approach was first proposed
by Sewall Wright in 1922 and makes use of pedigrees (called hereafter FPED) (15).
With the advances in sequencing technologies, genomic-based inbreeding coefficients
(hereafter called Fgenomic) have been developed. Among these, some coefficients rely on
the comparison between observed and expected heterozygosity such as FHOM (16, 17),
the expected allele-sharing between individuals such as FAS (13), or on the correlation
between uniting gametes such as FUNI (18). In addition to estimating the realized
inbreeding coefficient and requiring no prior knowledge of the pedigree of the population,
these genomic estimates are simple and straightforward to compute and do not require
whole-genome sequencing (WGS) data; a few thousand SNPs are usually sufficient for
reliable inbreeding estimation in humans (10). However, they also have a disadvantage:
They usually require quadratic moments of allelic proportions (except for FAS). These
moments have expectations that are complex functions of allele probabilities and
coancestry coefficients, leading to biased estimates (13). Another inbreeding coefficient
was proposed by McQuillan et al. (19): FROH uses runs of homozygosity (ROHs),
long homozygous stretches as a proxy for identical-by-descent (IBD) segments within
individuals (19). A model-based approach relying on hidden Markov models has also
been developed for detecting IBD segments (20) by identifying homozygous-by-descent
(HBD) segments. This model is the basis for many other model-based IBD segment
detection methods such as BCFTools (21), BEAGLE (22), and RZooRoH (23). The
inbreeding coefficient estimated with these model-based approaches will be called FHBD
from now on. One advantage of these methods is that they can be used when very few
individuals are sampled, as the reference is the genome of the individual rather than the
variation in the population at each variable site. However, it has been shown that these
coefficients, and especially FROH, are sensitive to SNP density and the parameters used to
search for ROHs or HBD segments. There is no consensus on what is the most suitable
set of parameters at present (24, 25).

How to quantify ID, although central to conservation genetics for decades (14, 26)
(more details and references in SI Appendix for this paper), is still debated. This debate

Significance

Inbreeding depression is the
reduction of individuals’ fitness
caused by inbreeding and is
traditionally quantified via
(generalized) linear regressions of
the phenotype on the inbreeding
coefficient. While this approach
might be adequate for
homogeneous populations, it
could lead to a biased estimation
of the strength of inbreeding
depression in structured
populations. In this manuscript,
we compare the classical linear
model approach to a mixed
model accounting for population
structure by including genomic
relationship matrices. We address
two additional questions: i) Which
inbreeding coefficient is most
suitable for estimating inbreeding
depression? ii) Which relatedness
matrix allows for the best
correction for structure? We
compare eight different
inbreeding coefficients and three
different relatedness matrices in
populations of various sizes and
structures.

Author affiliations: aDepartment of Ecology and
Evolution, University of Lausanne, Lausanne 1015,
Switzerland; bPopulation Genetics and Genomics group,
Swiss Institute of Bioinformatics, University of Lausanne,
Lausanne CH-1015, Switzerland; and cDepartment of
Biostatistics, University of Washington, Seattle WA 98195

Author contributions: B.S.W. and J.G. designed research;
E.L. and J.G. performed research; E.L. and J.G. analyzed
data; and E.L., B.S.W., and J.G. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
jerome.goudet@unil.ch.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2315780121/-/DCSupplemental.

Published April 30, 2024.

PNAS 2024 Vol. 121 No. 19 e2315780121 https://doi.org/10.1073/pnas.2315780121 1 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
en

tr
e 

de
 D

oc
 F

ac
ul

te
 M

ed
ec

in
e 

on
 M

ay
 3

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
15

5.
10

5.
12

5.
86

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2315780121&domain=pdf&date_stamp=2024-04-25
https://orcid.org/0000-0003-4951-9332
https://orcid.org/0000-0002-4883-1247
https://orcid.org/0000-0002-5318-7601
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jerome.goudet@unil.ch
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2315780121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2315780121/-/DCSupplemental


includes two subquestions: Which statistical model should be
employed? And which F ? Regarding the model, the classical
approach consisted of the use of linear regression of the
phenotypes on the inbreeding coefficient (LM). However, other
models have been utilized, such as generalized LMs (GLMs) with
various link functions. In 2019, Nietlisbach et al. (11) compared
different models and found that the common GLM with logit
link did not allow for accurate ID strength estimation. They
propose using GLM with logarithm link functions. Ultimately,
the type of model is largely dependent on the distribution of the
trait.

Regarding the choice of which F is more accurate for quan-
tifying ID, many studies have demonstrated that Fgenomic yields
better results than FPED (27–30). However, some studies found
FUNI to be more accurate than FROH (12), while others found
that FROH provided the best estimates of ID (11, 27, 29, 31).
In 2020, Caballero et al. (9) used simulations and included
several populations with different histories: They found that the
optimal F actually depends on how large is the population. FROH
did a better job at quantifying ID in populations with small
effective size while FUNI was better at predicting ID estimates
in populations with large effective sizes. This result was later
confirmed by Alemu et al. (8) who used SNP-array empirical
cattle data for several groups of allelic frequencies and concluded
that FUNI and FGRM (FI and FIII , respectively in ref. 18) are
better at quantifying homozygosity at rare alleles while FROH
and FHOM are better for alleles at intermediate frequencies
and correlate better with whole-genome homozygosity. Indeed,
recessive deleterious alleles, which are thought to be responsible
for ID, should segregate at low frequencies in large populations
as a result of purifying selection. On the contrary, in small
populations, drift can increase the frequency of deleterious
recessive alleles to intermediate frequencies, making FROH and
FHOM more suitable for detecting ID. Indeed, in the simulations
conducted by Yengo et al. (12), rare alleles always caused negative
effects on fitness (referred to as DEMA, for Directional Effect of
Minor Alleles). The authors showed that FHOM (and thus FAS
since they have similar properties) is sensitive to DEMA while
FUNI and FROH are not. They also showed via simulations that all
estimates of ID are somewhat sensitive to population structure,
FUNI being the least affected. They recommend estimating
ID using linkage disequilibrium (LD) score and minor allele
frequency (MAF) bins, and summing the ID estimates from
these bins as an overall estimate of ID for the trait.

In this paper, we simulated traits based on both simulated
and empirical WGS human data from populations with varying
sizes and structures. We show that some F are more sensitive
to population structure and DEMA than others. We confirm
only some of Yengo et al. (12) results. Importantly, we show
that accounting for the nonindependence of observations with
a mixed model via an allele-sharing based genomic relationship
matrix (GRM) (rather than the standard GCTA GRM) and using
a modified version of FUNI which gives more weight to common
alleles resolves most of the issues raised by Yengo et al. (12).

Results
All the figures presented in the main text picture the scenario
where allele additive effect sizes and dominance coefficients are
proportional to MAF and where there is a directional additive
effect of minor alleles (DEMA) (i.e., the ADD & DOM &
DEMA scenario from SI Appendix, Table S1 and Fig. S1). The
results for the other scenarios are shown and discussed in SI
Appendix, Figs. S10–S17 and Tables S3–S6).

Simulated Pedigrees. Fig. 1 presents the ID strength estimates
(b, see Materials and Methods) for the different inbreeding
coefficients (F ), with two regression models in the PEDIGREE
populations. The first column shows b estimated with the simple
LM and the second column shows b estimated with LMM
including the allele-sharing GRM as a random factor (LMMAS).
The first row shows results for the complete PEDIGREE
population (n = 11,924). The second row shows results for a
reduced sample size of the PEDIGREE population (n = 2,500,
meant to match the size of the 1KG WORLD population) where
subsampled individuals were chosen completely randomly. The
third row also shows results for a reduced sample size of the
PEDIGREE population (n = 2,500) but these individuals were
selected to represent the entire spectrum of inbreeding values. The
violin plots show b estimates distributions among the simulation
replicates (100 replicates for the complete population, 10,000
replicates for both subsampled populations). The solid dark gray
line is the true strength of ID (b = −3). The dashed red line
represents the absence of ID (b = 0), indicating that ID was not
detected in any replicate above this line. RMSE values associated
with both models and populations are shown in Table 1.
Strikingly, in the PEDIGREE population, all F resulted in a
biased estimation of b with the simple LM, whatever the sample
size (Fig. 1A,C, and E and Table 1). The inclusion of a GRM as a
random factor allowed for the correction of nonindependence of
observations and greatly improved b estimation (Fig. 1 B, D, and
F and Table 1). In the complete PEDIGREE population, we see
little difference between the three GRMs we tested (Fig. 1B vs. SI
Appendix, Fig. S6 A and B and Table 1): all F yielded efficient (we
use efficient to describe an estimate with low RMSE, thus which is
unbiased and has low variance) estimates of b when used inside a
LMM, except for FU

UNI that slightly overestimates the strength of
ID while FPED slightly underestimates it. This suggests that large
sample sizes (here 11,924 individuals) combined with a mixed
model allow efficient ID estimation regardless of the F used. The
three mixed models, however, perform less efficiently when the
sample size is reduced, as we demonstrate with both subsampled
PEDIGREE populations (n = 2,500): many replicates produced
estimates above zero for b (Fig. 1 D and F and SI Appendix
Fig. S6 C–F and Table 1). RMSEs were particularly large for
FPED, FHBD100KB , and FROH100KB with the mixed model using the
unweighted GCTA GRM (LMMGCTAU ) (SI Appendix, Fig. S6D
and Table 1). Additionally, increasing the variance of subsampled
individuals’ F (i.e., ranged subsampling) led to better estimates
of bwith reduced variance among replicates compared to random
subsampling (Fig. 1 D vs. F : SI Appendix, Fig. S6 C vs. E and
D vs. F and Table 1). To assess the performance of the different
models with even smaller sample sizes, often seen in wild and
nonmodel species, we simulated pedigrees with only 50, 100,
250, and 500 individuals (SI Appendix, Fig. S7). With all sample
sizes, the simple LM produces biased estimates (SI Appendix, Fig.
S7 A, E, I, and M ). Including a GRM improved the estimation
of b, but less so than for larger pedigree sizes (SI Appendix, Fig.
S7 B–D, F–H, J–L, and N–P). The lowest RMSE was obtained
with LMMAS, but the difference with both GCTA-based GRMs
was marginal.

1,000 Genomes Project. Fig. 2 illustrates the estimates of ID
strength (b) for the different inbreeding coefficients (F ), when
using either a LM or a LMM for two subsets of the 1,000
Genomes Project: East-Asian ancestry (EAS) and African ancestry
(AFR), as well as for the entire world population (WORLD).
It has the same structure as Fig. 1. RMSE values associated
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Fig. 1. Comparison of the estimation of ID strength (b) among different F estimates and two models in the PEDIGREE population. Each column represents
a regression model. The first column depicts the simple linear regression (LM), and the second column depicts the LMM with the allele sharing relatedness
matrix as a random component (LMMAS). The first row represents the complete simulated population (11,924 individuals, A and B). The second row shows the
random subsampling (2,500 individuals, C and D). The third row shows the ranged subsampling (2,500 individuals, E and F ). Inbreeding estimates presented
in this graph are FPED, FAS, FUUNI, F

W
UNI, FHBD100KB , FROH100KB , FHBD1MB , and finally FROH1MB . For A and B, violin plots show the distribution of the ID strength

estimates (b) among the 100 simulation replicates. For C–F, violin plots represent the distribution of the ID strength estimates (b) for the 10,000 simulation and
subsampling replicates (100 subsampling replicates for each of the 100 simulation replicates). The solid dark gray line is the true strength of ID (b = −3). The
dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above this line. Note that all panels are in log10 scale
and that all replicates converged.

with both models and populations can be found in Table 2.
Interestingly, we see little difference between LM and LMM
and the different GRMs when there is no structure among the
samples even with small sample sizes (EAS: Fig. 2 A and B vs.
SI Appendix, Fig. S8 A and B and Table 2; AFR: Fig. 2 C and
D vs. SI Appendix, Fig. S8 C and D and Table 2). Similarly to
what was observed for the PEDIGREE population, when some

structure exists (population structure in the WORLD population
compared to family structure in the PEDIGREE population),
the simple LM fails to accurately estimate the strength of ID,
regardless of the F (Fig. 2E and Table 2). In contrast to the
pedigree population showing no difference between the three
GRMs (Fig. 1 and SI Appendix, Fig. S6), the most efficient
estimates of b are obtained only with the LMMAS model and
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Table 1. RMSE on b estimate in the PEDIGREE population
Model Population FPED FAS FUUNI FWUNI FHBD100KB FROH100KB FHBD1MB FROH1MB

LM PEDIGREE (complete) 34.82 22.71 10.17 4.17 19.93 22.22 17.4 17.44
LMMAS PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMMGCTAW PEDIGREE (complete) 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11
LMMGCTAU PEDIGREE (complete) 1.58 1.28 1.85 0.88 1.08 1.12 1.08 1.08

LM PEDIGREE (random sub) 33.84 22.20 10.41 4.47 19.53 21.72 17.24 17.28
LMMAS PEDIGREE (random sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMMGCTAW PEDIGREE (random sub) 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57
LMMGCTAU PEDIGREE (random sub) >1,000 2.75 3.44 1.78 >1,000 >1,000 >1,000 >1,000

LM PEDIGREE (ranged sub) 15.22 11.04 3.46 1.61 9.58 10.52 8.13 8.15
LMMAS PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMMGCTAW PEDIGREE (ranged sub) 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58
LMMGCTAU PEDIGREE (ranged sub) >1,000 1.69 2.05 1.24 >1,000 >1,000 1.53 1.54

These values are for the complete ADD & DOM & DEMA scenario. See SI Appendix, Tables S3–S6 for the other scenarios.

with FW
UNI in the highly structured WORLD population (Fig. 2F

vs. SI Appendix, Fig. S8 E and F and Table 2). In fact, the models
including the GCTAW and GCTAU matrices cannot efficiently
estimate b with any of the inbreeding coefficients: even though
b with FW

UNI are unbiased, the variance is very large (Fig. 2F
and SI Appendix, Fig. S8 and Table 2). In addition, several
replicates did not converge when both GCTAW and GCTAU
models were used which was never the case with the GRMAS.
Numbers of such replicates are indicated in the figures’ legend
and in SI Appendix, Tables S7–S9. Similarly to what was done
for the PEDIGREE population, we subsampled individuals from
the WORLD population to test the different models with smaller
sample sizes (50, 100, 250, and 500, as shown in SI Appendix,
Fig. S9). The results are very similar to those observed in the
large WORLD population. Unsurprisingly, the simple LM fails
to adequately quantify ID with all sample sizes (SI Appendix,
Fig. S9 A, E, I, and M ), and the most efficient estimation of b
is obtained using LMMAS and FW

UNI (SI Appendix, Fig. S9 C,
G, K, and O). Here, mixed models using either LMMGCTAW or
LMMGCTAU fail to accurately quantify bwith anyF (SI Appendix,
Fig. S9 C, D, G, H, K, L, O, and P).

Comparing Inbreeding Coefficients. With both the LM and
LMMAS models in the three populations from the 1,000
Genomes Project (EAS, AFR, and WORLD, Fig. 2 A–F ) and
for the LM in the PEDIGREE population, FAS is consistently
underestimating the strength of ID, particularly when there is
strong structure (WORLD: Fig. 2 E and F ). It is because DEMA
is included in the model and strongly influences the quantifica-
tion of ID by FAS. In the absence of a DEMA, FAS produces
efficient estimates (SI Appendix, Figs. S10–S13). In addition,
FAS is sensitive to the dominance effects being proportional to
MAF but to a lesser extent and in the opposite direction (SI
Appendix, Fig. S10 vs. S11). Concerning the other SNP-based
F, FU

UNI is constantly overestimating the strength of ID and is
the most sensitive to population structure: its variance is much
larger compared to FW

UNI in the structured WORLD population
and with all models (Fig. 2F and Table 2). Interestingly, the
variance of FU

UNI is affected only when allele effect sizes and/or
dominance coefficients are proportional to MAF, but not by
DEMA (SI Appendix, Figs. S10–S17). In contrast, FW

UNI is the
least sensitive to allele effect sizes or dominance coefficients
proportional to MAF and DEMA (SI Appendix, Figs. S10–S17),

which makes it the most appropriate F for estimating ID (Fig. 2F
and Table 2). Since the difference between FW

UNI and FU
UNI is

the weight given to rare and common alleles, we conducted the
same analyses (including the re-estimation of both F and GRMs
estimation) on the WORLD population but excluding loci with
MAF < 0.05 and showed that there is no difference betweenFW

UNI
and FU

UNI when rare alleles are removed (SI Appendix, Fig. S18).
Concerning the F calculated from ROHs and HBD segments,
there is not much difference between PLINK and BCFTools
except for the variance among b estimates, which is slightly
smaller with BCFTools compared to PLINK (Fig. 2 A–F and
Table 2). In addition, focusing on recent inbreeding by including
only large segments (here larger than 1MB) yielded better results
in the WORLD population (Fig. 2F ). Since BCFTools is a
model-based HBD approach, there is no mandatory length
requirement. In light of this, we also estimated FHBD based on
HBD segments without any size restrictions, and the results are
similar to those obtained using FHBD100KB (SI Appendix, Fig.
S19). We also quantified ID with ROHs and HBD segments
larger than 5MB but it did not improve the estimation of b
(SI Appendix, Fig. S19).

Comparing Genetic Relatedness Matrices. Since we identified
FW

UNI as the best inbreeding coefficient to quantify ID, Fig. 3
contrasts the four different models for this coefficient in the
four populations: each panel corresponds to one population.
As mentioned above, there is almost no difference among the
different GRMs in the extremely large complete PEDIGREE
population (Fig. 3A and Table 1) and between any of the models
in the two homogeneous populations (EAS and AFR) (Fig. 3 B
and C and Table 2). However, in the highly structured WORLD
population, LMMAS gives the most efficient result due to its
smaller variance and RMSE (Fig. 3D and Table 2).

Distribution of Additive and Dominance Effects. We found a
difference between the three LMMs only because the scenario
presented in the main text includes effect sizes and dominance
coefficients proportional to causal markers’ MAF as well as
DEMA. When none of these three parameters are included, there
is little difference between the three LMMs (SI Appendix, Fig.
S10 B, F, J, and N vs. C, G, K, and O vs. D, H, L, and P and
Tables S3–S6). Additional simulations were conducted without
additive and dominance coefficients proportional to loci’s MAF

4 of 11 https://doi.org/10.1073/pnas.2315780121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
en

tr
e 

de
 D

oc
 F

ac
ul

te
 M

ed
ec

in
e 

on
 M

ay
 3

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
15

5.
10

5.
12

5.
86

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2315780121#supplementary-materials


F PED
F AS

F UNIu
F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100

LM

1K
G

: E
AS

 (n
 =

 5
04

)

A

b 
( l

og
10

  s
ca

le
)

F PED
F AS

F UNIu
F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100

LMMAS
B

b 
( l

og
10

  s
ca

le
)

F PED
F AS

F UNIu
F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100

1K
G

: A
FR

 (n
 =

 6
61

)

C

b 
( l

og
10

  s
ca

le
)

F PED
F AS

F UNIu
F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100
D

b 
( l

og
10

  s
ca

le
)

F AS
F UNIu

F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100

1K
G

: W
O

R
LD

 (n
 =

 2
,5

04
)

E

b 
( l

og
10

  s
ca

le
)

F AS
F UNIu

F UNIw

F HBD10
0K

B

F ROH10
0K

B

F HBD1M
B

F ROH1M
B

−100

−10

0

10

100

F

b 
( l

og
10

  s
ca

le
)

Fig. 2. Comparison of the estimation of ID strength (b) among different F estimates and two models in the three populations from the 1,000 Genomes project.
Each column represents a regression model. The first column depicts the simple linear regression (LM) and the second column depicts the LMM with the
allele-sharing relatedness matrix as a random component (LMMAS). The three rows correspond to the three populations from the 1,000 Genomes project:
EAS on A and B, AFR on C and D, and WORLD on E and F. Inbreeding estimates presented in this graph are FAS, FUUNI, F

W
UNI, FHBD100KB , FROH100KB , FHBD1MB ,

and finally FROH1MB . Violin plots show the distribution of the ID strength estimates (b) among the simulation 100 replicates. The solid dark gray line is the true
strength of ID (b = −3). The dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above this line. Note
that all panels are in log10 scale and that all replicates converged.

and DEMA to assess their impact on ID detection. These other
scenarios are explored and discussed in details in SI Appendix,
Figs. S10–S17.

Finally, we also investigated i) the effect of the LDMS
stratification method proposed by Yengo et al. (12) (SI Appendix,
Figs. S10–S17) but found that it improves results only with
the simple LM and not as much as the LMMAS model and
ii) the effect of using intermediate frequencies causal loci

(SI Appendix, Fig. S20) which reduced the variance in b estimates
for all inbreeding coefficients.

Application to an Empirical Dataset. As an illustration of our
methods, we analyze adult mass and bill depth of a metapop-
ulation of house sparrows in northern Norway using a dataset
from Niskanen et al. (32) (analyses for other morphological
traits are given in SI Appendix). For mass (Table 3), the slope
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Table 2. RMSE on b estimate in the three 1,000 Genomes Project populations: EAS, AFR, and WORLD
Model Population FAS FUUNI FWUNI FHBD100KB FROH100KB FHBD1MB FROH1MB

LM EAS 5.55 4.9 4.86 7.14 7.93 6.19 10.58
LMMAS EAS 5.67 4.68 4.64 7.41 8.22 6.12 10.39
LMMGCTAW EAS 5.67 4.68 4.64 7.28 8.06 6.11 10.39
LMMGCTAU EAS 5.48 4.74 4.71 7.1 7.87 6.18 10.57

LM AFR 5.93 4.81 4.81 6.03 7.21 7.21 13.12
LMMAS AFR 5.15 4.07 4.07 5.46 6.2 7.15 13.1
LMMGCTAW AFR 5.15 4.07 4.07 >1,000 >1,000 7.16 13.1
LMMGCTAU AFR 5.78 4.42 4.42 5.92 6.93 7.2 13.11

LM WORLD 32.91 142.95 62.21 67.42 59.15 107.67 169.73
LMMAS WORLD 8.63 8.34 4.17 9.15 10.97 8.78 14.6
LMMGCTAW WORLD 9.84 >1,000 >1,000 11.19 13.92 >1,000 >1,000
LMMGCTAU WORLD 18.18 >1,000 >1,000 27.52 26.91 >1,000 >1,000

These values are for the complete ADD & DOM & DEMA scenario. See SI Appendix, Tables S3–S6 for other scenarios.

associated with FW
UNI is b = −2.39, P = 0.02 in the simple

LM. The model the authors of the paper used (32) is a LMM
with the island and year nested in islands as random effects
and results in b = −1.98, P = 0.05. Using only GRMAS as
a random effect makes the slope steeper and more significant:

b = −2.86, P = 0.007. If we include theGRMAS, the island, and
year nested in island (the full model), the results are very similar to
using GRMAS only: b = −2.85, P = 0.006. For bill depth, the
slope associated with FW

UNI is positive (Table 3) and significant for
the LM (b = 0.27, P = 0.039), which suggests the presence of
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Fig. 3. Comparison of the ID strength estimates (b) with FWUNI in the four populations with four different models. The four models are i) the simple linear
regression (LM), ii) the LMM with the allele-sharing relatedness matrix as a random factor, iii) the LMM with the weighted GCTA relatedness matrix as a random
factor, and iv) the LMM with the unweighted GCTA relatedness matrix as a random factor. Panel A shows the simulated PEDIGREE population, panel B the EAS
population, panel C the AFR population and finally panel D the WORLD population. Note that all panels are in log10 scale. Also note that LMM did not converge
for some replicates (yielding estimated b values above 1,000 or below −1,000). Percentages of replicates which did not converge: panel D (WORLD): 21% for
GRMGCTAW ; 20% for GRMGCTAU .
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Table 3. Analysis of adult mass and bill depth from 1,786 adult sparrows
Mass Int. Sex FWUNI VI VY:I VA VE PF
LM 33.0 −1.39 −2.39 4.59 0.02
LMMAS 34.3 −1.41 −2.86 1.56 3.02 0.007
LMM 32.9 −1.38 −1.98 0.15 0.27 4.27 0.050
LMMFull 34.3 −1.40 −2.85 0.01 0.17 1.45 2.92 0.006

Bill depth Int. Sex F VI VY:I VA VE PF
LM 8.1 0.04 0.27 0.08 0.039
LMMAS 8.1 0.03 0.22 0.04 0.04 0.106
LMM 8.1 0.04 0.24 0.00 0.01 0.07 0.068
LMMFull 8.1 0.03 0.23 0.00 0.01 0.04 0.04 0.084

LM: simple linear model with sex and FWUNI as explanatory variables. LMMAS : LMM with sex and FWUNI as fixed effects and GRMAS as random effect. LMM: linear mixed model with sex
and FWUNI as fixed effect and island and year nested in island as random effects. LMMFull: LMM with sex and FWUNI as fixed effects and island, year nested in island and GRMAS as random
effects. VI : variance component of island effect; VY:I: variance component for year nested in island; VA : additive variance; VE : residual variance; PF : P-value for the slope b of FWUNI to be 0.

outbreeding depression for this trait. With the LMMAS, however,
the slope is shallower and not significant (b = 0.22, P = 0.106).
Including islands and years (nested in islands) as random effects
shows a similar pattern, and the full model makes the slope for
FW

UNI shallower and its P-value larger.

Discussion
By analyzing the phenotypes of a large simulated pedigreed
polygamous population with strong family structure as well as
subsets of the 1,000 genomes project (33), we demonstrated
that, despite population or family structure, ID strength can
be efficiently estimated if the data are analyzed with a mixed
model including the genomic relationships among individuals
as a random effect. While the use of a relationship matrix as a
random factor in mixed models for quantitative genetics analyses
is standard (34), and GRMs have been used for the estimation
of heritability (18, 35–37) and in GWAS (18, 37–41) for a long
time, it is seldom used to quantify ID [see McQuillan et al. (42)
for a notable exception; we did not discover any follow-up papers
using a similar approach until Nishio et al. (43) who used the
GCTA based GRM in 2023, although Stoffel et al. (44) use a
model with breeding values as random effects]. We evaluate the
ability of the LMM approach (including different GRMs) to
quantify ID and compare it to the classical LM. First, we show
that for most scenarios, ID is better estimated with LMM than
with a simple LM and second, compared to other GRMs in
LMM, the allele sharing–based GRM provides the most efficient
results, especially for small sample sizes and samples with a high
family or population structure. In addition, among the several
inbreeding estimators tested, FW

UNI proved to be the most reliable
coefficient to quantify ID. We further confirm these results with
an empirical dataset and show that using the LMMAS and FW

UNI
can significantly alter the results of ID quantification compared
to using a simple LM.

We observed trivial differences among the different models
when there is no population structure (i.e., in the EAS and
AFR populations). However, as soon as there is some structure
(the WORLD and PEDIGREE populations) the classical LM
completely fails to estimate b regardless of the inbreeding
coefficient used. This result is concordant with Yengo et al.
(2017) (12) where the authors quantified ID using a simple
LM and demonstrated that FHOM (whose properties are very
similar to FAS), FU

UNI and two different FROH were sensitive to

population structure. As for the comparison of three LMMs,
they perform equally when the population structure is weak
(familial structure in the PEDIGREE population and weak
population structure in EAS and AFR) or when there are
very large sample sizes (11,924 individuals from the complete
PEDIGREE population). Although samples of this size are
common for research on humans, they will seldom be found
in wild populations. We therefore subsampled the PEDIGREE
population to 2,500 individuals in order to investigate the effect
of a smaller sample size and the range of inbreeding of the samples.
We used two types of subsampling: i) random subsampling
where individuals were chosen completely randomly and ii)
ranged subsampling where individuals were chosen to maximize
the range of F in the sampled population. As expected, when
we subsampled individuals from the PEDIGREE population,
RMSE values associated with b estimation increased slightly for
both LMMAS and LMMGCTAW mixed models and we failed to
detect ID in some replicates. Accordingly, despite improving
the estimation of b relative to the LM, the LMMAS model
lacks power with smaller sample sizes (50, 100, 250, 500, and
2,500 individuals): it failed to detect ID by estimating b ≥ 0 in
26% of replicates and several thousands of individuals would
be required to detect ID efficiently (i.e., in all replicates) as
Keller et al. (26) and Caballero et al. (45) previously pointed out.
With the LMMGCTAU mixed model, all inbreeding coefficients
but FAS and FUNI had convergence issues, suggesting that the
LMMGCTAU mixed model is the least robust of the three mixed
models. As expected, randomly subsampling individuals leads to a
larger variance of b estimates compared to the ranged subsampling
scheme, indicating that maximizing the variance of samples’ F
improves the estimation of b, although it is not obvious how such
sampling could be done in nonmonitored natural populations.

When we add a strong population structure in addition to
small sample size (2,504, 500, 250, 100, and 50 individuals) from
the highly structured WORLD population), we observe striking
differences between the three different GRMs. The LMM
including the allele-sharing–based GRM (LMMAS) resulted in
the most efficient estimations of b. In addition, the mixed models
with both GRMGCTAU and GRMGCTAW did not converge for a
high percentage of replicates (compared to 0% for LMMAS)
emphasizing that LMMAS is the best model for quantifying
ID in highly structured populations and that it can also be
applied to small sample sizes. This is because the allele-sharing–
based GRM is a better estimator of kinship compared to both
GCTA matrices (10, 46). Indeed, what the GRMAS estimates
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is the actual kinship in the population, based on how many
alleles individuals share. In contrast, what both GRMGCTAW and
GRMGCTAU estimate is a combination of individual kinship,
their mean kinship with the other individuals, and the overall
mean kinship in the population [see Equation 3 in Goudet et al.
(46)]. Consequently, since the kinship itself is better estimated
with GRMAS, the nonindependence of observations (and thus
the population structure) is better accounted for with LMMAS
which leads to better b estimates. Importantly, the inclusion of a
GRM in the ID estimation model is not limited to simple LMs.
Even though we used only LMs in this study, any type of GLM
can incorporate a GRM as a random factor. Consequently, this
method can be applied to any trait distribution. Furthermore, by
including the GRM-based random factor, the nonindependence
of observations is better accounted for than by including the
population as a random factor, and no prior knowledge of the
population structure is required.

Comparing F. Concerning the different inbreeding coefficients,
we found FW

UNI to be the best F for quantifying ID. Indeed,
FW

UNI was the only coefficient we tested which was not sensitive
to either additive and dominance effect sizes being proportional
to MAF or DEMA resulting in the least biased estimation of
b. On the contrary, we found that FU

UNI was influenced by
the dominance effect sizes being proportional to MAF and
by population structure. In FU

UNI estimation, the rare alleles
associated with large dominance effect sizes add noise in the
estimation of b. Similarly, when there is population structure,
rare alleles which have a strong influence on FU

UNI are likely to be
private alleles which will strongly bias population-specific allelic
frequencies and eventually FU

UNI estimation. Importantly, FU
UNI

performed as well as FW
UNI when we filtered on MAF > 0.05

for F and all GRMs estimation. This is because FU
UNI uses the

average of ratios, which results in loci with small MAF strongly
influencing the outcome. When these rare loci are filtered out, the
estimated F is no longer biased. This explains why Yengo et al.
(12) found that FU

UNI was the best F for quantifying ID with a
homogeneous subset of the UK biobank dataset: They filtered on
MAF > 0.05 leading to FU

UNI estimation not being influenced
by rare alleles with strong additive and/or dominance effect sizes.
Concerning FAS, we found that it was very sensitive to DEMA.
This result is also concordant with Yengo et al. (12) who found
that FHOM (with properties very similar to FAS) was sensitive to
DEMA. In this paper, the authors explain that this sensitivity
is due to FHOM (and thus FAS) correlating strongly with minor
allelic count which will create a spurious association with ID
in the presence of DEMA. However, FAS resulted in the most
efficient estimates of b when DEMA was not included in the
model, suggesting that it is the best F to estimate inbreeding for
neutral regions, as was argued by Zhang et al. (13). Finally, we
found that ROHs and HBD segments based F , namely FROH
and FHBD, performed poorly: underestimating the strength of ID
(positive b) or displaying very large variance among replicates.
This result is in contradiction with Kardos et al. (29, 47) and
Nietlisbach et al. (11) who found that FROH and FHBD were
better at quantifying ID compared to SNPs-independent basedF .
However, Alemu et al. (8) and Caballero et al. (9) showed
the best F actually depends on the history of the population.
Indeed, they showed that FROH and FHBD and to a lesser
extent FHOM were better at quantifying homozygosity at loci
with common alleles. On the contrary, FU

UNI was better at
quantifying homozygosity at rare alleles. Alemu et al. (8) and

Caballero et al. (9) propose that in populations with low effective
sizes, selection is weaker and deleterious alleles may be able to
reach intermediate frequencies as a result of drift. Therefore both
FROH and FHBD (and FHOM in their analyses) should perform
better in such populations. In our study, the standard scenario
(with no ADD, no DOM, and no DEMA) mimics what happens
in such small populations and we found that FROH, FHBD,
and FAS (which has similar properties to FHOM) performed
better than FU

UNI (which is the FUNI they tested) in the highly
structured WORLD population and to a lesser extent in the
family structured PEDIGREE population. With homogeneous
populations, we do not observe any difference between these
inbreeding coefficients. Nevertheless, this is consistent with
Alemu (8) results, as they used families which consequently create
structure. On the contrary, in populations with a large effective
size, selection maintains deleterious alleles at low frequencies
which explains why Yengo et al. (12) found that FUNI was the
best F with the large UK biobank dataset and this is consistent
with what we have found with the ADD & DOM & DEMA
scenario which mimics what happens in populations with large
effective sizes.

Conclusion
We showed that the more efficient method for estimating ID is
to use a mixed model with an allele-sharing-based relatedness
matrix as a random component but FW

UNI as the inbreeding
coefficient to predict ID. The most commonly used GRM
(GRMGCTAU ) results in biased and highly variable estimates of
b in structured populations. We stress that even if the results are
greatly improved by using the allele-sharing GRM and FW

UNI, the
variance among replicates is still large and we failed to detect ID
in several replicates (b̂ ≥ 0) in the highly structured WORLD
population (for all sample sizes) as well as in the small and
slightly admixed AFR population. Therefore, detecting ID of the
magnitude commonly found and that we simulated requires very
large sample sizes with several thousand individuals, particularly
in structured populations. Unfortunately, this might be hardly
feasible for wild and/or endangered populations.

Materials and Methods

All scripts used in this manuscript can be found on GitHub.

Simulated Pedigrees. We simulated a polygamous pedigree from a dioecious
population with overlapping generations (hereafter called PEDIGREE) using
custom R scripts. The population started from 500 founders (equal numbers of
males and females) and followed a polygamous mating system: Female fertilities
per time interval were drawn from a Poisson distribution with parameter� = 1,
mortality rate per time interval was set to 0.5, and only 10% of the males were
allowed to reproduce at each time step. Matings were recorded for 25 time steps,
resulting in a pedigree of 11,924 individuals (over 25 time steps).

In order to simulate the genotypes of the individuals, we proceeded in two
steps. We used the mspms wrapper to the msprime software (48) to simulate
the two haplotypes containing L = 650,000 loci for each founder individual.
The L loci were uniformly distributed along a constant recombination map 20M
long. For each reproduction event, the number of cross-overs was first drawn
from a Poisson distribution and then randomly positioned along the genome.
The nonfounder genotypes were then obtained by drawing two gametes: one
from each parent. For each gamete, the allele at the first locus is selected at
random between the two alleles of the parent. The alleles at the next loci along
the chromosome are copied from the chromosome with the chosen allele at
the first locus until a recombination event occurs, at which point the alleles are
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copied from the other chromosome until the next crossing-over or the end of
the chromosome.

In order to investigate the effect of using more realistic smaller sample sizes,
we subsampled 2,500 individuals from the PEDIGREE population. We performed
two types of subsampling: i) a random subsampling where individuals were
subsampled completely randomly, ii) a stratified subsampling where we sought
to retain the widest range of inbreeding coefficients in the subsampled
population. Consequently, for this stratified subsampling individuals with FWUNI
≥ 0.2 were always included and individuals with FWUNI < 0.2 were randomly
selected until the population reached the desired size. 100 replicates were
performed for each subsampling. To test the methods with even smaller sample
sizes, we simulated smaller pedigree (resulting in 50, 100, 250, and 500
individuals) with lower numbers of founders (8, 16, 40, and 80, respectively).

1000 Genomes. In order to extend our conclusions to smaller sample sizes
and populations with stronger structure (which are common in wild and/or
endangered species), we used empirical data from phase 3 from the 1,000
Genomes project (33). We considered i) a small sample from a homogeneous
population with a small effective size represented by 504 individuals from
the superpopulation with East-Asian ancestry (EAS), ii) a small sample from
a population with some admixture and larger effective population sizes
represented by 661 individuals from the superpopulation with African-ancestry
and admixed individuals (AFR) and finally iii) a larger sample from a population
with larger effective size and with genetic structure (global FST = 0.083)
comprising all the 2,504 individuals (hereafter called WORLD) and represented
by five superpopulations: individuals with EAS, AFR, European ancestry (EUR),
admixedAmericanancestry (AMR), andfinallySouth-Asianancestry (SAS).Amore
detailed description of the samples can be found at the 1,000 Genomes Project
website. To extend our findings to even smaller sample sizes, we subsampled the
WORLD populations to 50, 100, 250, and 500 individuals. In each subsampling,
we ensured that the entire range of F was covered and that similar numbers of
individuals were subsampled from each continent.

Simulated Traits. We simulated traits based on Eq. 1 following ref. 12: we
consider a trait y whose phenotype is partly determined by the genotypes at Lc
causal loci with h2 = 0.8. We assume these loci to be biallelic, with one allele
encoding for an increase in the trait value (the plus allele) and the other encoding
for a decrease in trait value (the minus allele). Dominance was also considered
since ID occurs only if there is directional dominance: when heterozygotes at
loci encoding for the trait are closer on average to the homozygote for the plus
allele (34). If gene effects are purely additive or if dominance is not directional,
there is no ID. Finally, we assume no epistasis between loci and no genotype-
environment interaction.

For individual j, yj is the individual trait value (its phenotype), calculated as
the sum of allelic and genotypic effects over causal loci, an environmental effect
and �, the average trait value among all individuals. At locus l, xjl is the minor
allele count (MAC) ∈ {0, 1, 2} of individual j. al represents the additive effect
size of the alternate allele at locus l. dl is the dominance effect size, the deviation
of the heterozygous genotype from the mean of the two homozygotes. Finally, �j
is the environmental contribution to the phenotype of individual j, drawn from
a normal distribution.

yj = � +

Lc∑
l=1

xjlal +
Lc∑
l

xjl(2− xjl)dl + �j. [1]

The strength of ID b was set to−3 in all simulations, as in Yengo et al. (12).
The value corresponds to an average reduction in trait value of 0.75 SD for an
offspring resulting from a mating between full-siblings.

We used Eq. 1 to simulate traits with varying architectures. To avoid causal
markers with extremely low frequencies, we first excluded loci with MAF ≤
0.01 for both the EAS and AFR populations and loci with MAF ≤ 0.001 for
both the PEDIGREE and WORLD populations. We then simulated traits using
1,000 randomly chosen SNPs (after MAF filtering). We initially drew both the
raw (i.e., unscaled) additive effect sizes of the alternate allele and the raw
dominance effect sizes from a uniform [0, 1] distribution (other distributions

were explored with almost no effect on the results). As we expect alleles causing
ID to be counterselected and thus removed or maintained at a low frequency
(proportionally to their detrimental effect), the raw effect sizes were scaled
inversely to MAF aj = rawaj/pj to mimic purifying selection. We also scaled
the dominance effects inversely to the locus expected heterozygosity dj =

rawdj/(2pj(1− pj)). In addition, we attributed the same sign to the effect sizes
of all minor alleles in order to include what Yengo et al. (12) called DEMA (12).
However, in order to investigate the effect of the parameters mentioned above,
we also simulated traits where the additive and dominance effect sizes were
left unchanged aj = rawaj and dj = rawdj and without DEMA. A summary of
all the simulated scenarios can be found in SI Appendix, Table S1. In addition,
graphical representation of the additive effect sizes and dominance coefficients
distribution under these different scenarios can be found in SI Appendix, Fig. S1.

Individual Inbreeding Coefficients. We estimated individual inbreeding
coefficients using several methods whose properties were recently described
in detail in Zhang et al. (13). Regarding the figures and tables presented in
the main text, we do not filter on MAF for any of the F estimates. We use one
allele-sharing-based estimator of inbreeding, hereafter called FAS and described
in refs. 13 and 46:

FASj =

∑L
l=1(Ajl − ASl)∑L
l=1(1− ASl)

, [2]

where Ajl indicates the identity of the two alleles an individual j carries at locus l:
one for homozygous and 0 for heterozygous andASl is the average allele-sharing
proportion at locus l for pairs of individuals j, k, j 6= k.

Then, we compare two versions ofFUNI (initially described in ref. 18) and which
measure the correlation between uniting gametes. The first version (hereafter
called FUUNI) is the original FUNI (18) measured as the average of ratios over SNPs
(which attributes equal weight (1/L) to all loci and results in loci with rare alleles
having larger influence on the estimated F):

FuUNIj
=

1
L

L∑
l=1

x2
jl − (1 + 2pl)xjl + 2p2

l

2pl(1− pl)
. [3]

Similarly to Eq. 1, xjl ∈ {0, 1, 2} is the MAC of individual j at locus l and pl is
the derived allele frequency at locus l.

The second version (hereafter called FWUNI) is a modified version of FUNI which
measures the ratio of averages (rather than the average of ratios) and thus gives
more weight to loci with larger expected heterozygosity (i.e., with MAF close
to 0.5). We are not aware of other investigations using the ratio of averages
estimator FWUNI in the context of ID estimation.

FwUNIj
=

∑L
l=1(x

2
jl − (1 + 2pl)xjl + 2p2

l )∑L
l=1 2pl(1− pl)

. [4]

We also used four identical-by-descent (IBD) segments based F. We identified
runs of homozygosity (ROHs) with PLINK (17) and default parameters. We also
modeled homozygous-by-descent (HBD) segments with BCFTools (21). For both
methods, we selected ROHs or HBD segments based on their size: either larger
than 100Kb:FROH100KB

andFHBD100KB
or larger than 1Mb:FROH1MB

andFHBD1MB
.

For both methods, the inbreeding coefficients were simply estimated as the
fraction of genome falling within ROHs or HBD segments.

Finally, in the PEDIGREE population, we used the pedigree-based inbreeding
coefficient: FPED (15).

All inbreeding coefficients were estimated separately for each population of
the 1,000 Genomes Project (EAS, AFR, WORLD) and using only the polymorphic
SNPs in each population and population-specific allelic frequencies (for both
FUNI). Consequently, the same individual might have different Fgenomic in
the EAS and the WORLD population. This influenced only trivially the IBD
segments-based inbreeding coefficients (FROH and FHBD) but influenced greatly
FAS (though the rank of inbreeding among individuals was perfectly conserved)
and both FUNI (for which the rank of inbreeding among individuals was
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not conserved). Comparison among the different inbreeding coefficients per
population can be found in SI Appendix, Figs. S2–S5). More details can be found
in ref. 13.

Estimation of ID: b. We estimated the strength of ID (hereafter defined as b)
using two different models. In the first model, b was estimated as the slope
of regression of phenotypes on the different inbreeding coefficients with a
classical LM:

b̂LM = Cov(Y, F)/Var(F), [5]

where Y is the vector of trait values and F is the vector of individual inbreeding
coefficient estimates.

In the second model, we estimate b as the fixed effect coefficient associated
with the inbreeding coefficient in the following LMM:

Y = bX + !+ �, [6]

where Y is the vector of trait values, X is a matrix with two columns, the first
containing ones and the second the individual inbreeding coefficients,! is the
random component of the mixed model with! ∼ N(0, �K), K being the GRM
and � the additive variance component. Finally, � is the individual residual
variance and is defined as � ∼ �2In. From this, b is estimated as follows:

b̂LMM = (X′V−1X)−1X′V−1Y [7]

with V = �K + �2In (49). We compared three GRMs we estimated using all
loci (no MAF filtering). The first mixed model included a GRM derived from allele
sharing (10), hereafter called LMMAS. We used the R Hierfstat (50) package to
estimate K and the R gaston package (51) to estimate V and b. We could not
use GCTA software to run the mixed model for this GRM because its leading
eigenvalue is negative which the Choleski decomposition algorithm used for
matrix inversion in GCTA cannot handle (it requires a positive definite matrix),
while the Schur decomposition algorithm used in gaston can. We note that
the GCTA GRM is not positive definite (one eigenvalue is 0), but the matrix to
invert in the mixed model is not the GRM itself but V = �K + �2In which
becomes positive definite and can be inverted if the heritability is smaller
than one.

The second mixed model used the GCTA weighted GRM (10, 52). Similarly
to FWUNI, this matrix uses the ratio of averages. For this model, we used GCTA
and the R SNPrelate package to estimate the GRM. We then used the R gaston
package for estimating V and b with the LMM.

Finally, the third mixed model used the GCTA unweighted GRM (18) which
(similarly to FUUNI) utilizes the average of ratios and thus gives equal weight to

all loci. For this model, we used GCTA to estimate the GRM. We then estimated
V and b with the LMM implemented in the R gaston package.

Note that the average information-restricted maximum likelihood (AIREML)
fitting method we used in the LMM is an iterative procedure and should result in
unbiased estimates. In some cases, the model did not converge and gave highly
biased b. For each scenario, regression model, and population, the number of
replicates which did not converge can be found in SI Appendix, Tables S7–S9.

Application to an Empirical Dataset. A metapopulation of house sparrows
(Passerdomesticus) from several islands in Northern Norway has been monitored
since 1993 and Niskanen et al. (32) investigated ID on several traits and made
available phenotype and genotype data on more than 3,100 adult individuals.
The dataset is ideal to illustrate our method as individuals belong to many
islands and the data contain slight genetic structure and some individuals are
highly related (see SI Appendix for further details).

We used only morphological phenotypes, as they can be analyzed with LMs.
We removed information from nonautosomes (scaffold 32) but otherwise kept
all SNPs to avoid biases when filtering for minor allele frequencies and LD (46).
We filtered out individuals who were not present as adults in one of the eight
studied islands, as was done in the original analysis (32). The dataset used for
analysis contained 1,786 individuals genotyped at 181,529 SNPs. We compared
the results of a simple LM with Sex and FWUNI as explanatory variables, to the

LMMAS model with Sex and FWUNI as fixed effects. We also present two additional
LMMs: one with island and year nested in island as random effects, as done
in the original article, and a “full” mixed model with all the random effects
mentioned above. Estimates for the LMs were obtained with the lm function of
R, while estimates for the mixed models were obtained with the lmer function
of the lme4 package or the lmm.aireml function of the gaston package if the
model contained a GRM. To test whether b, the slope associated with FWUNI,
was significantly different from 0, we used the score.fixed.linear function of the
gaston package.

Data, Materials, and Software Availability. Previously published data were
used for this work (33).
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