
RE PORT

Growth of brown trout in the wild predicted by embryo
stress reaction in the laboratory

Jonas Bylemans1,2 | Lucas Marques da Cunha1 | Laetitia G. E. Wilkins1,3 |

David Nusbaumer1 | Anshu Uppal1 | Claus Wedekind1

1Department of Ecology and Evolution,
Biophore, University of Lausanne,
Lausanne, Switzerland
2University of Savoie Mont Blanc, INRAE,
CARRTEL, Thonon-les-Bains, France
3Max-Planck Institute for Marine
Microbiology, Bremen, Germany

Correspondence
Claus Wedekind
Email: claus.wedekind@unil.ch

Funding information
The Swiss National Science Foundation,
Grant/Award Numbers: 31003A_159579,
31003A_182265

Handling Editor: Andrea Kirkwood

Abstract

Laboratory studies on embryos of salmonids, such as the brown trout

(Salmo trutta), have been extensively used to study environmental stress and

how responses vary within and between natural populations. These studies are

based on the implicit assumption that early life-history traits are relevant for

stress tolerance in the wild. Here we test this assumption by combining

two data sets from studies on the same 60 families. These families had been

experimentally produced from wild breeders to determine, in separate

samples, (1) stress tolerances of singly kept embryos in the laboratory and

(2) growth of juveniles during 6 months in the wild. We found that growth in

the wild was well predicted by the larval size of their full sibs in the laboratory,

especially if these siblings had been experimentally exposed to a pathogen.

Exposure to the pathogen had not caused elevated mortality among the

embryos but induced early hatching. The strength of this stress-induced

change of life history was a significant predictor of juvenile growth in the wild:

the stronger the response in the laboratory, the slower the growth in the wild.

We conclude that embryo performance in controlled environments can be a

useful predictor of juvenile performance in the wild.

KEYWORD S
0+ juvenile, embryo, growth, hatching, larvae, life history, maternal environmental effects,
salmonids, stress-induced, trout

INTRODUCTION

Salmonids are not only charismatic fish of high ecological
and socioeconomic relevance but also excellent models
for experimental research, especially in early develop-
mental stages. External fertilization and the lack of
parental care allow for full-factorial in vitro fertilization

under controlled conditions. Embryos can then be raised
in separate groups or singly in multiwell plates to study,
for example, family-specific growth and mortality under
different environmental conditions or life-history decisions
such as the timing of hatching. This allows for estimating
the genetic and maternal environmental effects on embryo
mortality (Houde et al., 2013, 2016) or developmental
problems (Evans & Neff, 2009). Embryo performance can
then be linked to parental characteristics to learn moreJonas Bylemans and Lucas Marques da Cunha are co-first authors.
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about, for example, the information content of sexual
signals (Huuskonen et al., 2011; Janhunen et al., 2011;
Neff & Pitcher, 2005; Wedekind et al., 2008), the genetic
quality of dominant males (Jacob et al., 2007), or the
fitness consequences of different female reproductive strat-
egies (Jacob et al., 2010; Kekäläinen et al., 2010). Embryo
performance can also be studied under different envi-
ronmental conditions. Large numbers of independent
replicates then allow for estimating the relevance of
environmental factors and the evolutionary potential
of populations to adapt to them. The latter is typically
revealed in two- or three-way interactions between
parental and environmental factors on embryo perfor-
mance. Environmental factors that have been studied
on embryos of experimentally produced families include
increased temperatures in the context of climate change
(Burt et al., 2012; Muñoz et al., 2014), different types of
chemical pollutants (Marques da Cunha et al., 2019;
Nusbaumer, Marques da Cunha, & Wedekind, 2021), pol-
lution by nanoparticles (Clark et al., 2016; Yaripour
et al., 2021), organic pollution (Nusbaumer, Garaud,
et al., 2021; Wedekind et al., 2010), and pathogens (Clark
et al., 2014; Pompini et al., 2013; von Siebenthal
et al., 2009; Wilkins et al., 2017). Such experimental
designs can make mandatory ecotoxicological tests on fish
more informative (Wedekind et al., 2007). Full-factorial
crosses can even be used to estimate the variance compo-
nents of commercial traits in farmed salmon (Colihueque,
2010; Ødegård et al., 2011), to study the effects of sperm
cryopreservation (Nusbaumer et al., 2019), or to describe
microbial symbionts on different hosts (Wilkins
et al., 2016). Factorial breeding within and between
populations and monitoring of embryo performance have
also been used to study the causes of phenotypic differenti-
ation among populations (Aykanat et al., 2012) or to deter-
mine hybrid vigor as an indicator of inbreeding depression
(Clark, Stelkens, & Wedekind, 2013; Stelkens et al., 2014).

Most studies that are based on factorial breeding
designs have focused on embryos or larvae and ignored
later developmental stages, with few exceptions: Juveniles
that resulted from experimental breeding have been raised
in captivity to study genotype-by-environmental effects
(Evans et al., 2010), genetic aspects of life history (Forest
et al., 2016), maternal environmental effects in different
temperature environments (Thorn & Morbey, 2018), or
effects of enriched versus nonenriched environments
(Yaripour et al., 2020). Studies on juveniles released into
the wild and recaptured later are scarce and, so far,
generally suffer from low sample sizes because of low
recapture rates (von Siebenthal et al., 2017; Wedekind
et al., 2008). Consequently, the conclusions drawn from
laboratory studies on experimentally produced families
assume that the observed reactions reveal effects that

are also relevant in the wild. This assumption is still
poorly backed up.

Here we combine data from two studies on brown
trout (Salmo trutta) that were done in separate samples
from the same 60 families. These families had been
experimentally produced in two full-factorial breeding
blocks using gametes collected from wild-caught males
and females. The breeders were sampled from a stream
that represents a mostly pristine environment within
the Swiss Plateau (Marques da Cunha et al., 2019;
Nusbaumer, Marques da Cunha, & Wedekind, 2021)
and a population that shows no signs of elevated
inbreeding (Clark, Stelkens, & Wedekind, 2013;
Stelkens et al., 2014). One sample of freshly fertilized
eggs per each of the 60 families was used in a controlled
laboratory environment to study embryo growth and
stress tolerance (Wilkins et al., 2017). The other sample
was incubated under hatchery conditions and stocked in a
natural streamlet at early larval stages following routine
procedures of the local fishery authorities. Approximately
6 months later, a significant number of these fish could be
successfully sampled at the end of their first summer, as
revealed by molecular markers. Parental assignments and
molecular sexing could then be applied to study
sex-specific inbreeding depression in the wild (Bylemans
et al., 2024). Here we combine the findings on the
embryos (Wilkins et al., 2017) with the findings on
the juveniles (Bylemans et al., 2024) to test how the
outcomes of laboratory studies on embryos correlate
with juvenile performance in the wild.

MATERIALS AND METHODS

The experiments started with male and female brown
trout being caught shortly before the spawning season
from the Rotache stream (a tributary of the Aare River; see
Stelkens et al. [2012] for a description of the genotypes
and phenotypes of this and neighboring populations).
They were kept in the Fischereistützpunkt Reutigen and
regularly checked for ovulation until the eggs of 12 females
could be stripped and fertilized with milt of 10 males to
create two full-factorial breeding blocks (6 × 5 each) on
the same day. See Wilkins et al. (2017) for a detailed
description of the procedure. Fin clips were collected and
stored in 70% ethanol at −20�C for genetic analyses.

Before fertilization, total egg weight per female was
determined and four eggs per female were frozen in
liquid nitrogen for later analyses of the carotenoids
astaxanthin, capsanthin, lutein, and zeaxanthin as described
in Wilkins et al. (2017). After fertilization and egg harden-
ing (>2 h), photos of each family (eggs in monolayer in
individual Petri dishes) were taken to later count the eggs
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and determine the average egg weight per female (total egg
weight/egg count).

A subset of 24 fertilized eggs per family was
transported to the laboratory and raised singly (each egg
in its own 2-mL well of a 24-well plate) in a climate
chamber under controlled experimental conditions to
assess the effects of egg carotenoids on the tolerance of
embryos to the bacterium Pseudomonas fluorescens. A
bacterial strain was used that had previously been found
to reduce embryo growth and affect hatching time but
would not significantly elevate mortality (Clark, Stelkens, &
Wedekind, 2013; Clark, Wilkins, & Wedekind, 2013). The
details of the bacterial culture and exposure are provided by
Wilkins et al. (2017). Briefly, half of the embryos per family
received 0.2 mL standardized water with 2 × 106 bacterial
cells per well to a final water volume of 2 mL/well, the
other half received 0.2 mL standardized water only
(sham controls). The treatment happened either 18 days
post fertilization (DPF; first breeding block) or 49 DPF
(second breeding block) to also test for virulence effects
of the timing of pathogen exposure (as reported in
Wilkins et al., 2017).

Shortly before hatching was expected to start, eight
embryos per family were sacrificed for a study on
carotenoid consumption (Marques da Cunha
et al., 2018). All remaining eggs were checked daily to
record individual hatching time and to take photos of
the freshly hatched larvae. These photos were used to
determine hatchling length (Lhatching) and hatchling
yolk-sac volume (YShatching). Because hatchling size is
likely to vary with the timing of hatching, larval length
and yolk-sac volume were again measured for each
larva 14 days past hatching (DPH; L14DPH and
YS14DPH, respectively). This could be done in a sample
of 815 larvae (mean ± SD per family = 13.6 ± 1.8;
after five larvae whose measurements of larval growth
per loss of yolk sac over these 14 days exceeded 3 SDs
from the global mean had been excluded as outliers).
Larval length at 75 DPF, the day when all larvae had
hatched (and 11 days after the very first hatching), was
calculated by linear extrapolation as

L75DPF ¼ Lhatching + 75−Dhatching
� �

L14DPH −Lhatching
� �

=14,

ð1Þ

where Dhatching is the number of days from fertilization
to hatching and L14DPH the larval length at 14 DPH.
Analogously, yolk-sac volume at 75 DPF was deter-
mined as

YS75DPF ¼YShatching + 75−Dhatching
� �

YShatching −YS14DPH
� �

=14:

ð2Þ

The remaining 1925 eggs (mean ± SD number per
full-sib family = 32.1 ± 14.8) were incubated from the
day of fertilization under routine hatchery conditions in
the cantonal Fischereistützpunkt Reutigen at constant
8.5�C and stocked in the Mühlibach streamlet (tributary
to the Rotache; 46.804459� N, 7.690544� E) at 105 DPF,
that is, in early March at a late yolk-sac stage when
emergence from gravel would usually happen and larvae
would start exogenous feeding.

In late August (281 DPF, i.e., nearly 6 months after
release into the wild), electrofishing was used to sample
brown trout juveniles from the Mühlibach streamlet,
as reported in Bylemans et al. (2024). The fish were
narcoticized (0.075 g/L tricaine methanesulfonate buff-
ered with 0.15 g/L NaHCO3) and photographed on a
weighing scale to later extract fork length and weight.
Fin clips were collected and stored in 70% ethanol
at 4�C for genetic analyses. The adult breeders and
375 wild-caught juveniles were genotyped at 13 micro-
satellite loci and a sex-linked locus as described in
Palejowski et al. (2022). The parental assignment was
based on the full-likelihood approach implemented in
Colony version 2.0.6.5 (Jones & Wang, 2010) with a
threshold of 0.98. In total 301 of the 375 juveniles could
be assigned to 56 of the 60 experimental families (range
1–17, mean ± SD = 5.3 ± 3.1; see Bylemans et al. [2024],
who also provide a comparison between the juveniles
identified as captive bred and as wild-born).

Statistical analyses were done in JMP Pro17. F-tests
were used to compare means. Linear mixed-effect models
(LMMs) were used to evaluate the relationship between
laboratory-based measures (means per sib group and
treatment) and the sizes of their full sibs caught from
the wild. Dam and sire identities were included as random
effects. Despite the full-factorial breeding, the limited
number of recaptured juveniles per family did not allow
for the inclusion of dam × sire interaction effects in the
LMMs or to reliably estimate family-specific recapture
rates. Treatment effects were tested using the mean
difference in response variables (control—exposed to
P. fluorescens) as predictors of juvenile size in the wild.
The breeding block was added as a fixed factor to addi-
tional models (Appendix S1) because the timing of the
experimental exposure to P. fluorescens could potentially
affect embryo growth and the timing of hatching.
Collinearity between predictor variables was evaluated
using Pearson correlation coefficients to avoid the inclu-
sion of highly correlated predictor variables (i.e., jrj >0.5)
within the same model (Dormann et al., 2013). Spearman
correlation coefficients (rs) were used to test for correla-
tions between recapture rates in the wild and embryo per-
formance in the laboratory, based on means per parent
(after averaging over sib-group families).
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RESULTS

Juvenile body length was on average 7.1 times larger than
larval body length at 75 DPF and was well predicted by
mean larval length and mean yolk-sac volume of their
full sibs at 75 DPF (Table 1; Figure 1a; Appendix S1:
Figure S1). Juvenile sex did not significantly affect these
correlations (Appendix S1: Table S1). Juvenile body
length was also positively correlated to mean egg weight
(LMM; F1,8.975 = 6.1, p = 0.04; Appendix S1: Table S2a,
Figure S2) but not significantly to the carotenoid content
of the eggs (Appendix S1: Table S2b).

In separate tests of larvae that had or had not been
stressed with P. fluorescens, the average days of hatching
in the laboratory did not predict juvenile body length in
the wild (Appendix S1: Table S3). However, the experi-
mental stress induced a change in the mean hatching
date that was a good predictor of growth in the wild: the
stronger the stress response in the laboratory, the less
the juveniles grew in the wild (Figure 1b; Table 2). Adding
breeding blocks and mean larval length as factors to the
LMM did not change this conclusion (Appendix S1:
Table S4).

Larval length at 75 DPF was a significant predictor
of juvenile size about 6 months later, whether the
larvae had been raised under stress conditions (LMM;
F1,38.11 = 6.5, p = 0.01; Appendix S1: Table S5a) or under

nonstress conditions (LMM; F1,21.41 = 5.0, p = 0.04;
Appendix S1: Table S5b). The stress-induced reduction in
larval length at 75 DPF was not a significant predictor of
juvenile size in the wild (Appendix S1: Table S5c).

Recapture rates per dam could not be predicted from
average larval length (rs = −0.39, n = 12, p = 0.21),
yolk-sac volume (rs = 0.06, p = 0.86), or stress-induced
difference in hatching time (rs = −0.36, p = 0.25), and
none of the analogous correlations for recapture rates per
sire were significant (average larval length: rs = 0.33,
n = 10, p = 0.35; yolk-sac volume: rs = 0.22, p = 0.54;
stress-induced difference in hatching time: rs = −0.30,
p = 0.39).

DISCUSSION

The high recapture rates that Bylemans et al. (2024)
reported made it possible, arguably for the first time, to
statistically link a large-scale laboratory study on fish
embryos (Wilkins et al., 2017) with the performance of
their juvenile siblings in the wild. All parental fish
were well represented among the recaptured juveniles.
Bylemans et al. (2024) reported that the recapture rates
could not be predicted from inbreeding coefficients. We
found that the recapture rates were also not correlated to
any larval size measures or stress-induced hatching in
the laboratory. However, we found that juvenile growth
in the wild could be well predicted by measures taken in
the laboratory. Egg size, larval length, and yolk-sac
volumes were all significantly correlated with juvenile
size (after taking possible parental effects into account).
These correlations did not seem to be sex-specific,
although Bylemans et al. (2024) found that the female
juveniles suffered more inbreeding depression and were
on average smaller than males. Because Wilkins et al.
(2017) had quantified egg carotenoid content, we could
also test for correlations between carotenoids and
juvenile growth but did not find them to be significant.
However, with only 12 dams, our sample size was
limited for this type of analysis. It also remains to be
shown what other maternal environmental effects could
play a role here. Females may differ, for example, in how
they supply their eggs with innate immunity proteins and
antibodies (Li & Leatherland, 2012), and variance in
maternal stress can influence glucocorticoid levels in eggs
that then affect offspring development (Sopinka et al., 2017).

Wilkins et al. (2017) experimentally challenged
embryos by exposing half of them to a bacterial path-
ogen that did not cause increased mortality but reduced
growth and induced precocious hatching. This pathogen-
related effect on hatching time was a good predictor of
juvenile growth in the wild. Juveniles grew less if their

TAB L E 1 Linear mixed model on juvenile length as predicted

by (a) larval length at 75 days post fertilization (DPF), that is, about

6 months before the juvenile were caught), and (b) yolk-sac volume

per family at 75 dpf (using means per treatment and family each).

Effects df F
Variance

component p

(a) Larval length

Fixed effects

Larval length 1, 22.55 6.3 0.02

Random effectsa

Dam 20.0 ± 10.1 0.05

Sire 2.8 ± 3.0 0.35

Residual 79.9 ± 6.7

(b) Yolk sac

Fixed effects

Yolk-sac volume 1, 14.2 10.4 0.006

Random effectsa

Dam 13.4 ± 8.4 0.11

Sire 4.0 ± 3.4 0.25

Residual 79.9 ± 6.7

Note: Parental identities were included as random factors.
aREML unbounded variance components ± SE, Wald p-values.

4 of 8 BYLEMANS ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4303 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [16/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



siblings had shown a stronger reaction to the experi-
mental stress in the laboratory than other sib groups.
The analogous effects of pathogen-induced reduction
in growth were not statistically significant, but the
correlation between larval size and juvenile size
seemed strongest in the pathogen-exposed group.

The timing of hatching has been demonstrated to be a
good indicator of perceived stress in salmonids and other
taxa. The nearby presence of an infected egg and even

water-borne cues emitted from infected eggs can induce
early hatching in brown trout (Pompini et al., 2013),
other salmonids (Wedekind, 2002), and other lower
vertebrates (Warkentin et al., 2001). Induced early hatching
could also be observed in response to other types of stress
such as simulated danger of desiccation (Wedekind &
Müller, 2005), a simulated or actual attack by a predator
(Gomez et al., 2023; Warkentin, 2005), or exposure to
chemical stressors (Lieke et al., 2021). The response
of infected embryos can, however, differ in direction.
Sometimes, exposure to pathogens induces early hatching
(Pompini et al., 2013; Warkentin et al., 2001; Wedekind, 2002),
sometimes it delays hatching (Clark et al., 2014; Nusbaumer,
Marques da Cunha, & Wedekind, 2021). This difference
in reaction is not understood yet but could be linked to
the virulence of an infection.

Measuring family-specific fitness is notoriously diffi-
cult (Carlson & Seamons, 2008) and often based on
strong assumptions, especially in laboratory studies. We
found that key variables that are typically used in labora-
tory studies on embryos, such as larval growth or
stress-induced change in life history, were good predic-
tors of how siblings of these embryos grew in the wild
during their first spring and summer. Our findings
support the implicit assumption of numerous studies,
namely that the effects of environmental challenges, as
measured under laboratory conditions, can serve as

TAB L E 2 Linear mixed model on juvenile length as predicted

by stress-induced difference in hatching date under laboratory

conditions, that is, difference between mean hatching date under

control conditions and mean hatching date after exposure to

Pseudomonas fluorescens.

Effects df F
Variance

component p

Fixed effects

Difference in
hatching date

1154.9 5.4 0.02

Random effectsa

Dam 30.4 ± 14.5 0.04

Sire 3.4 ± 2.9 0.23

Residual 79.0 ± 6.7

Note: Parental identities were included as random factors in all models.
aREML unbounded variance components ± SE, Wald p-values.

F I GURE 1 Juvenile length after 6 months in wild predicted by larval characteristics in laboratory. (a) Juvenile length versus mean

larval length per family at 75 days post fertilization (DPF), for male (blue symbols) and female juveniles (red symbols). (b) Mean juvenile

length per family versus stress-induced difference in mean hatching date of their full sibs in the laboratory. Regression lines illustrate

direction of correlations. See Table 1 for statistics that take parental effects into account. The photos show a freshly hatched larva still partly

in its egg membrane (photo credit: Manuel Pompini) and an average-sized juvenile after its first spring and summer in the wild

(photo credit: Claus Wedekind).
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valuable predictors of family-specific performance in the
wild and, hence, of the evolutionary potential of fish
populations.
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