
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

RYear : 2024 

 

 
Using genomics to measure the extent and consequences of 

inbreeding 

 
Lavanchy Eléonore 

 
 
 
 
 
 
Lavanchy Eléonore, 2024, Using genomics to measure the extent and consequences of 
inbreeding 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_7447169ECAA87 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



 
 

Département d’Ecologie et Evolution 
 
 
 

Using genomics to measure the extent and consequences of inbreeding 
 
 
 

Thèse de doctorat ès sciences de la vie (PhD) 
 

présentée à la 
 

Faculté de biologie et de médecine  
de l’Université de Lausanne 

 
par 

 
 

Eléonore LAVANCHY 
 

Biologiste diplômée de l’Université de Lausanne 
 
 
 

Jury 
 

Prof. Sven Bergmann, Président 
Prof. Jérôme Goudet, Directeur de thèse 

Prof. Roman Arguello, Expert 
Prof. Daniel Wegmann, Expert 

 
 
 

Lausanne  
(2024) 

  



UNIL lUniversité de Lausanne Ecole Doctorale
Doctorat ès sciences de la vie

Robinson-Rechavi

Goudet

Arguello

Wegmann

Faculté de biologie
et de médecine

Imprimatur
Vu le rapport présenté par le jury d'examen, composé de

Président.e

Directeur.trice de thèse

Expert.e.s

Monsieur

Monsieur

Monsieur

Monsieur

Marc

Jérôme

Roman

Daniel

Prof.

Prof.

Prof,

Prof.

le Conseil de Faculté autorise I'impression de la thèse de

Eléonore Lavanchy

Master - Maîtrise universitaire ès Sciences en comportement, évolution et conservation,
Université de Lausanne

intitulée

Using genomics to measure the extent
and consequences of inbreeding

Lausanne, le 12 avril 2024

pour le Doyen
de la Faculté de biolog ie et de médecine

Prof. Marc Robinson-Rechavi



 2 

Table of contents 

Table of contents ........................................................................................................................ 2 

Remerciements ........................................................................................................................... 4 

Summary .................................................................................................................................... 6 

Résumé ....................................................................................................................................... 7 

General Introduction .................................................................................................................. 9 

Thesis Outline .......................................................................................................................... 18 

Chapter I: Effect of reduced genomic representation on using runs of homozygosity for 

inbreeding characterization ...................................................................................................... 20 

Chapter II: Detecting inbreeding depression in structured populations .......................... 37 

Chapter III: Too big to purge: no evidence of purging in the islands of the European barn 

owl (Tyto alba) .................................................................................................................. 66 

Chapter IV: Inbreeding depression in the Swiss barn owl (Tyto alba) population ......... 94 

General Discussion .......................................................................................................... 117 

References (General Introduction and Discussion) ......................................................... 123 

Supplementary Material Chapter I ......................................................................................... 129 

Supplementary Material Chapter II ................................................................................. 154 

Supplementary Material Chapter III ............................................................................... 195 

Supplementary Material Chapter IV ............................................................................... 209 

Annex I ............................................................................................................................ 217 

Annex II ........................................................................................................................... 265 



 3 

Annex III ......................................................................................................................... 269 

Annex IV ......................................................................................................................... 281 

  



 4 

Remerciements 

J’aimerai en premier lieu remercier mon superviseur, Jérôme Goudet. Merci de m’avoir 

supervisée avec patience, merci de m’avoir fait confiance en me laissant de la liberté 

scientifique. Mais le plus grand merci concerne ton humanité: merci de m’avoir écoutée, 

encouragée et soutenue dans les moments difficiles. Si j’ai réussi à arriver jusqu’ici c’est en 

grande partie grâce à toi, Merci. 

Je remercie ensuite chaleureusement mon comité de thèse : merci au président Sven Bergmann 

ainsi qu'aux experts Roman Arguello et Daniel Wegmann pour le temps consacré à la lecture 

de ma thèse. 

Un énorme merci aux membres du groupe Goudet que je ne remercierais jamais assez. Au cours 

de ces 5 années ils ont été comme une deuxième famille qui m’a toujours aidée dans les périodes 

difficiles, qui m’a accompagnée et aidé à grandir en tant que scientifique mais aussi en tant 

qu’être humain. Merci à mes deux mentors originels qui m’ont accueillie en tant que toute 

nouvelle PhD : Ana Machado et Tristan Cumer. Merci à Ana qui a été mon exemple : qui m’a 

accueillie au sein du groupe à mon arrivée, qui m’a appris les bases la gestion d’un PhD et m’a 

soutenue lors de mes premières années de thèse. Merci à Tristan qui m’a accompagnée en tant 

que collègue tout au long de ces cinq années, qui m’a (presque) tout appris, qui a relu 

l’intégralité des textes que j’écrivais lors de la première moitié de mon doctorat et qui a toujours 

été disponible pour discuter et m’aider lorsque j’avais le moindre problème malgré son emploi 

du temps plus que chargé. Merci à Alexandros Topaloudis, pour son humour incroyable, son 

soutien quotidien et les discussions scientifiques intéressantes. Merci à Isabela do O avec qui 

j’ai immédiatement accroché et dont la gentillesse est difficilement égalable. Merci de m’avoir 

écoutée et soutenue dans les périodes difficiles, d’avoir pris sur toi des charges de travail 

lorsque tu savais que j’étais stressée, d’avoir relu beaucoup de mes textes et d’avoir toujours 

été disponible pour tenter de régler mes problèmes scientifiques. Merci à Clara Castex pour ton 

inébranlable jovialité, pour m’avoir toujours écoutée et soutenue, sans jugement, quel que soit 

le moment où j’arrive dans ton bureau ! Merci à Anna Hewett qui est arrivée sur ma fin de thèse 

et qui a largement contribué à l’avancée rapide de mon dernier chapitre. Merci d’avoir collaboré 

avec moi sur ce dernier chapitre, de m’avoir expliqué plusieurs concepts scientifiques et de 

m’avoir proposé ton aide pour soulager ma charge de travail lors de cette fin de thèse. Merci à 

Hugo Corval pour ton humanité et ton calme qui sont agréables dans notre bureau ! Merci 



 5 

d’avoir toujours été disponible pour discuter quel que soit le sujet. Merci à Angelica Pulido 

pour m’avoir écoutée parler des difficultés et du stress de fin de thèse et pour m’avoir 

encouragée et remonté le moral. 

Merci au reste de mes amis de l’UNIL qui tout comme mon groupe ont largement égayé ces 5 

années et m’ont apporté un soutien inconditionnel : ma « chosen family » : Julie Guenat, Giulia 

Perroud et Sagane Dind qui m’accompagnent depuis le master, avant même le début de ma 

thèse, merci aussi à Aijuan Liao, Miya Pan, Kaï-Hsiu Chen, Thu Nguyen, Laurie Ançay, Estelle 

Millet, Kim Schalcher, Anne-Lyse Ducrest, Molly Baur, Sarah Schmidt, Camille-Sophie 

Cozzarolo, Iris Prigent ainsi que celles et ceux que j’ai probablement oublié (désolée) : vous 

êtes des personnes incroyables. Merci aussi à mes amis en dehors de l’UNIL, pour vos 

encouragements et votre amitié: Fanny Tang, Julia Landrein, Line Martin et Sandra Bonvin. 

Merci à ma famille : Noémie Lavanchy, Christiane Meister et Laurent Lavanchy de m’avoir 

soutenue dans mon choix d’étude mais aussi de m’avoir rassurée et constamment rappelé que 

si c’était trop dur pour moi je pouvais arrêter à tout moment et que c’était OK. Merci de m’avoir 

écoutée me plaindre et de m’avoir fait à manger à pleins d’occasions (c’est important). 

Finalement, je voudrais remercier particulièrement Christian de Guttry pour m’avoir 

accompagnée tout du long de cette aventure : lors du choix de continuer sur une thèse, d’avoir 

discuté de longs moments avec moi de quel sujet serait intéressant, d’avoir relu l’intégralité de 

mes textes scientifiques lors de ma première année. Merci de m’avoir toujours soutenue 

inconditionnellement, de m’avoir remonté le moral dès que je me sentais désemparée et d’avoir 

littéralement assuré le 99% des tâches lors des derniers mois de ma thèse. Sans toi, cette 

aventure aurait n’aurait pas été pareil. Merci 

  



 6 

Summary 

Inbreeding can have negative effects on individuals, a phenomenon called inbreeding 

depression. It can occur as a result of mating between close relatives such as siblings and 

cousins but also as a result of mating between more distant relatives. The latter is often observed 

in populations with few individuals. Due to human activities, both the number of species as 

well as the number of individuals within populations is declining. The ability to quantify the 

inbreeding of individuals and its effects is therefore crucial for conserving biodiversity. In this 

thesis, we first evaluated methods for inbreeding and inbreeding depression quantification. We 

then applied these methods to study the inbreeding status of the European barn owl (Tyto alba) 

using genome-wide sequencing data. 

Sequencing the complete genome of many individuals can be expensive and many popular and 

cheaper methods exist for sequencing small fractions of the genome. First, we compared two 

methods for quantifying individual inbreeding based on genomic data. We demonstrated that 

although the popular method can be used when the genome has been sequenced at high density, 

it produces biased estimates at low densities. On the contrary, a less popular and more 

computationally demanding method gave accurate results with genomic data at both high and 

low densities. We then proposed a new statistical method for quantifying inbreeding depression 

strength in data with a strong genomic structure. We suggested taking into account the genetic 

relatedness among all the individuals and showed that it allows meaningful estimation of 

inbreeding depression when the standard method results in highly biased estimations. 

We then studied genome-wide sequencing data from 502 barn owls from all around Europe. 

We demonstrated that populations living on islands are more inbred and enriched in deleterious 

variants mostly because of smaller effective population sizes resulting in lower selection 

efficiency. Finally, we combined genomic and phenotypic data from 3,085 barn owls from 

Switzerland and we quantified the negative effect of inbreeding on bill length in barn owls 

juveniles. 

This thesis highlights that inbreeding quantification must be done using accurate data and 

methods. It becomes even more apparent when it comes to humans’ health or the conservation 

of endangered species (which are particularly susceptible to inbreeding). 
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Résumé 

La consanguinité est le résultat de croisements entre individus apparentés. Malgré le fait que 

ses effets délétères sur les individus sont documentés depuis longtemps, elle reste, chez 

l’humain, une pratique courante dans certaines cultures. C’est aussi un phénomène commun 

chez d’autres espèces : avec l’augmentation constante des pressions anthropogéniques sur les 

populations sauvages ces dernières années– telle la dégradation des habitats, par exemple –, la 

taille de nombreuses populations diminue drastiquement. Cela conduit à une augmentation de 

la parenté entre les individus, et donc à une augmentation de la consanguinité moyenne des 

populations. 

Il est important de pouvoir correctement quantifier le degré de consanguinité ainsi que ses effets 

dans une population. Dans la première partie de cette thèse, nous évaluons différentes méthodes 

pour estimer le degré de consanguinité des individus, ainsi que pour mesurer ses conséquences. 

La plupart des méthodes existantes sont basées sur des marqueurs moléculaires. Séquencer 

l’intégralité du génome d’un individu coûte cher, et il existe plusieurs procédés permettant de 

n’en séquencer qu’une partie. Nous comparons la capacité à détecter de la consanguinité entre 

une méthode facile à utiliser et très populaire et une autre méthode moins utilisée et plus 

compliquée à mettre en place. Nous montrons que les deux méthodes fonctionnent très bien 

lorsque l’intégralité du génome est séquencée. En revanche, lorsque la fraction de génome 

séquencée est faible, seuls les résultats obtenus avec la seconde méthode sont pertinents. Nous 

proposons ensuite une nouvelle approche statistique pour estimer l’effet de la consanguinité sur 

des données contenant une forte structure génétique. Nous proposons de prendre en compte la 

parenté entre tous les individus. Nous comparons différentes méthodes pour calculer cette 

parenté, ainsi que différentes méthodes pour estimer le degré de consanguinité des individus. 

Nous montrons que notre approche permet d’estimer correctement l’effet de la consanguinité 

dans un jeu de données contenant de la structure génétique, ce qui n’est pas le cas avec la 

méthode classique. 

Dans la seconde partie de cette thèse, nous utilisons des données génomiques d’effraies des 

clochers (Tyto alba) afin de quantifier la consanguinité de différentes populations européennes. 

Nous montrons que les populations des îles sont plus consanguines que celles vivant sur le 

continent, et que cette consanguinité est principalement due à la petite taille de leurs populations 

et à leur plus forte isolation. Finalement, nous quantifions l’effet négatif de la consanguinité 
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dans la population suisse et montrons qu’elle est liée à une réduction de la taille du bec chez les 

jeunes effraies. 

En résumé, cette thèse démontre l’importance d’utiliser de bonnes données et méthodes pour 

estimer la consanguinité ainsi que ses effets négatifs. Cela est particulièrement important 

lorsque les enjeux concernent la santé des êtres humains ou l’évaluation du risque d’extinction 

de populations ou d’espèces menacées. 
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General introduction 

Diversity in Nature 

Nature is characterized by an extreme diversity. The International Union for Conservation of 

Nature (IUCN) reported 2,130,023 species in December 2021, consisting of 73,883 vertebrates, 

1,491,386 invertebrates, 423,373 plants, and 141,381 fungi and protists. While these numbers 

may seem large, they represent less than 5% of the current estimates of the number of living 

species on Earth [65, 94]. The estimated species number exceeds 8.75 million, ranging from 

“simple” photosynthetic unicellular organisms to extremely complex multicellular organisms 

such as giant squids found in the ocean, succulent plants surviving in deserts or us humans. In 

addition to interspecific diversity, there is also considerable diversity within species, although 

it is not always entirely apparent. Both genetics and environment can contribute to an 

individual’s observable physical characteristics, known as phenotype, including (but not limited 

to) appearance and behavior. For instance, the capacity of humans to taste the bitterness of the 

phenylthiocarbamide chemical compound is so strongly genetically determined that it was used 

as a sort of paternity test during the middle of the 20th century [7]. On the contrary, the southern 

subspecies of the gaudy commodore butterfly (Precis octavia sesamus) found in West Africa 

exists in two completely different morphs: a blue winter morph and an orange summer morph 

(figure 1). The temperature at which the larva develops entirely determines the adult morph 

[32]. 

 

Figure 1: The seasonal morphs of the gaudy commodore butterfly (Precis octavia sesamus). The left panel 
represents the blue winter morph while the right panel shows the orange summer morph. Both images were 
taken from Wikipedia and are credited to Purves M. and Svdmolen respectively. 

By Purves, M., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17974716 By Svdmolen - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=3217692

The gaudy commodore winter morph
Precis octavia sesamus

The gaudy commodore summer morph
Precis octavia sesamus



 10 

However, the constant anthropogenic pressures such as habitat reduction, increased hunting 

pressure and rapid climatic changes, lead to significant reduction in both inter- and intraspecific 

diversity and more generally in many population sizes [12, 13, 11, 71]. Decreases in population 

size can lead to population crash and eventually extinction. Indeed, population size is linked to 

population fitness via the interplay of drift strength and selection efficiency. In large 

populations, selection overcomes drift: it maintains deleterious alleles at low frequencies and 

increases the frequency of beneficial mutations. When the population size is reduced, drift can 

overcome the effect of selection if the strength of selection is lower than 1/2Ne. As a result, 

deleterious alleles may rise in frequency [44] or even reach fixation [28]. In addition to lowering 

the overall population fitness by increasing the frequency of deleterious alleles, a small 

population size also leads to higher relatedness among individuals. This, in turn, increases the 

probability of mating between related individuals. 

Inbreeding 

The term inbreeding refers to the mating of related individuals. It can occur when these 

individuals are closely related (i.e., the time of coalescence between both parents is short), such 

as when siblings or cousins mate, which will be hereafter referred to as consanguineous mating. 

The process of breeding using closely related individuals is extremely prevalent in domestic 

species, where breeders select animals with similar phenotypes (hence often closely related) for 

the purpose of producing offspring with the preferred phenotypes [77, 52]. The practice of 

consanguineous mating is also prevalent in humans and has even been encouraged in some 

periods and regions, including the Habsburg family in Europe between 1450 and 1750 [9] or in 

north and sub-Saharan Africa, the Middle East, and west, central, and south Asia today [3]. 

Inbreeding may also occur in small isolated populations as a result of more ancient relatedness 

(i.e. the time of coalescence between both parents is long). In this regard, island populations 

are perfect examples: they are often colonized in few events and their gene flow with other 

populations is restricted. Consequently, most of their members are descended from the same 

ancestors. Such levels of more ancient inbreeding have been observed in the black-footed rock 

wallaby of Barrow Island in Western Australia [26], the island populations of platypus off the 

coast of South Australia [29], the barn owl in Crete and Cyprus in Europe [57] and the hihi 

passerine in New-Zealand [24]. In fact, since all organisms descended from a common ancestor, 

all individuals are ultimately related. As a result, all measures of inbreeding describe an 

individual’s inbreeding status with respect to a base population. This base population can be 
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the last known ancestor [95], a putative founder population [96] or the current population itself 

[93]. 

Regardless of whether inbreeding occurs through recent or ancient coalescence events, its effect 

on individuals is the same: it increases the proportion of genome which is autozygous in inbred 

individuals [16]. Yet, the coalescence time is relevant because the more ancient it is, the smaller 

the fraction of the genome that is autozygous [91]. Here, I would like to emphasize that there 

is a difference between being homozygous and being autozygous. A homozygous individual 

carries two copies of the same allele at a locus regardless of which ancestral allele they come 

from. If both copies of the allele actually come from the same ancestral allele, then the 

individual is both homozygous and autozygous at this locus and both alleles are identical-by-

descent (IBD). On the contrary, if an individual carries two copies of the same allele but these 

copies do not come from the same ancestral allele, then the individual is homozygous at this 

locus but not autozygous and the two alleles are said to be identical-by-state (IBS). This 

difference is illustrated in figure 2. 

 

Figure 2: The difference between identical-by-descent (IBD) and identical-by-state (IBS). The figure 
depicts a biallelic locus in which a blue and a red allele are segregating. In the first generation, we have 

IBD IBS

1

1 1 2 3

1

1

1

1

2

2

3

3

individual 1.1 individual 1.2

individual 2.1 individual 2.2

individual 3.2individual 3.1

Generation 1

Generation 2

Generation 3



 12 

two individuals: individual 1.1 is heterozygous and carries one copy of the red allele (1) and one copy of the 
blue allele (1). Individual 1.2 is homozygous and carries two copies of the blue allele (2 and 3). The two 
individuals mate and produce two offspring (2.1 and 2.2) and both are heterozygous. The first parent (1.1) 
transmitted the same red allele (1) to both of them. On the contrary, the second parent (1.2) transmitted a 
different blue allele to both offspring (individual 2.1 received the blue allele (2) while individual 2.2 inherited 
the blue allele (3)). These two siblings mate and create two new offspring (individuals 3.1 and 3.2). The 
first siblings (3.1) received the red allele (1) from both parents. Since both of these red alleles came from 
the same ancestral red allele (1) (from individual 1.1), individual 3.1 is both homozygous and autozygous at 
this locus and its two red alleles are IBD. Individual 3.2 received two blue alleles (2 and 3). However, these 
blue alleles do not originate from the same ancestral allele (despite coming from the same ancestor 1.2). 
Consequently, individual 3.2 is homozygous at this locus but not autozygous and its alleles are IBS. Of 
course, this is only because our base population are individuals 1.1 and 1.2 and the two blue alleles in 
individual 3.2 would eventually be IBD if we go back in time long enough. 

Inbreeding depression and purging 

Increase in inbreeding has been linked to fitness reduction in many taxa [15, 87, 62, 43, 40, 44, 

68, 86, 24, 35] - a phenomenon called inbreeding depression and which was first documented 

by Darwin in plants [18]. Inbreeding depression is stronger for tightly linked fitness-related 

traits such as survival in sheep [86], killer whales [43] and hihi [24] or life-time breeding 

success in red deers [40], hihi [24] and helmeted honeyeater [35]. However, inbreeding 

depression has also been observed in morphological traits such as human height [62] and house 

sparrow mass and bill length [68]. The major mechanism responsible for inbreeding depression 

was identified in 2009 by Charlesworth and Willis [14]. Even though selection actively acts 

against deleterious alleles, recessive deleterious alleles are difficult to eliminate since they are 

only expressed in homozygous individuals. Consequently, these alleles often segregate at low 

frequencies in populations [73]. As mentioned above, inbreeding increases autozygosity (and 

hence homozygosity) which will lead to the expression of these recessive deleterious alleles in 

inbred individuals, thereby reducing their fitness. Traditionally, inbreeding depression is 

measured as the difference in fitness (or any trait) between inbred and outbred individuals: the 

slope of a (generalized linear) regression of the focal trait on the individuals’ inbreeding 

coefficients. 

Paradoxally, even though inbreeding can lead to fitness reduction, long-term inbreeding and 

small population size can also lead to the elimination of recessive deleterious alleles - a 

phenomenon called purging [31, 30, 25, 78]. As mentioned above, inbred individuals have 

reduced fitness, hence reducing their chance of transmitting their alleles to the next generation. 

If the majority of the population is inbred, most deleterious alleles segregating within the 

population will be expressed and hence eliminated by selection. Since selection efficiency is 

directly related to allele deleteriousness, purging usually occurs for highly deleterious alleles 
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[31]. Therefore, even populations that have undergone purging may still be enriched in mildly 

and lowly deleterious alleles and susceptible to inbreeding depression [31, 30, 25, 47]. 

How to measure inbreeding 

Due to the devastating effects inbreeding can have on individuals, quantifying it and its 

consequences is crucial. Inbreeding is often measured at the individual level through inbreeding 

coefficients - denoted F. The first method for quantifying inbreeding was proposed by Sewall 

Wright in 1922. He suggested counting the number of loops in pedigrees [95] (the pedigree-

based inbreeding coefficient is called FPED). FPED measures the probability that two alleles 

within an individual are IBD [58] (in respect to the pedigree founders). While this approach is 

still valid today, it presents two major disadvantages: i) it requires an active record of all mating 

events, which is difficult to achieve in practice, particularly in wild populations, and ii) what 

FPED really measures is the expected probability that an allele is IBD. Indeed, during meiosis, 

because of Mendelian segregation and recombination stochasticity, the genomes of individuals 

are not composed of exactly 25% of each grandparent’s genome and there is randomness in 

which part of these grandparents’ genomes they will receive. The “true” (i.e. genomic-based) 

average coancestry between full-siblings is 0.25 (as estimated with the pedigree) but its 95% 

confidence interval spans between 0.204 and 0.296 [33, 38, 85]. The difference between the 

expected fraction of genome that is IBD and the fraction that is actually IBD is illustrated in 

figure 3. 

 

Figure 3: The difference between pedigree-based and genomic-based inbreeding coefficients. This figure 
represents the mating between full siblings (2A and 2B) and the results in their corresponding offspring (3A). 
In the left part of the chart, the family genealogy is shown, for counting loops: there are two possible loops, 
topping with the two grandparents (1A and 1B). On the right side of the figure, two different offspring 
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possibilities can be seen based on different allele segregation and recombination events. Chromosomes are 
represented by colored rectangles. The chromosomes of individuals 2A, 2B, and 3A are mosaics of the 
chromosomes of their ancestors (1A and 1B). 

With the advancement in sequencing technologies, it is now possible to sequence individual 

genomes and, therefore, measure the “true” genomic inbreeding coefficient of individuals. 

Numerous studies showed that genomic measures of inbreeding are better than pedigree-based 

for the reasons mentioned above [41, 45, 1]. However, many different approaches have been 

proposed to measure genomic-based inbreeding coefficients: i) relying on the correlation 

between uniting gametes [96], the mean allele-sharing of individuals [93] or the comparison 

between observed and expected heterozygosity [75]. While correlations between different 

measures are acceptable in homogeneous populations, they are low (and even negative) in 

populations with strong genetic structure [99]. The underlying reason is that the inbreeding 

estimates mentioned above (except for the allele-sharing-based estimate) rely on allelic 

frequencies, and the allelic frequencies of subpopulations may differ greatly from those of the 

metapopulation. In addition, all these measures actually treat each position of the genome 

independently, but we know that DNA is transmitted from parents to offspring via large 

chromosomal chunks. Consequently, McQuillan and collaborators proposed in 2008 to use 

large homozygous segments within individuals’ genomes - called runs of homozygosity 

(ROHs) - as a proxy for IDB segments [63]. 

Runs of homozygosity 

There is evidence that ROHs are good proxies for detecting IBD segments within an individual 

[51, 39]. By quantifying the fraction of genome within ROHs, one can estimate a ROHs-based 

inbreeding coefficient (FROH) [63]. In addition, their distributions (i.e. lengths and numbers) 

can be used to infer populations’ history and past demography [63, 46, 69, 10]. Indeed, the 

length of two IBD segments (and hence a ROH) is directly linked to the time of coalescence 

between both segments [91, 85]. The presence of long ROHs in a population indicates 

consanguineous mating. Conversely, a population with a large number of small ROHs indicates 

ancient relatedness among individuals, which may reflect a small effective population size or 

past bottlenecks. This is illustrated in figure 4 (from Ceballos et al. 2018, Nature reviews 

genetics [10]). 
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Figure 4: The demographic history of six diverse hypothetical populations is represented in the upper 
part of the plot. Figure (and legend) are from Ceballos et al. 2018, Nature reviews genetics [10]. 
Representative pedigrees are indicated by dark blue lines connecting individuals (dots), loops show 
inbreeding and the population size is represented by the width of the light blue areas. Thus, bottlenecks 
are shown by a narrowing, which necessarily reduces the number of ancestral lineages that are present in 
the population; conversely, larger populations contain more ancestral lineages. Admixture is shown by 
a confluence of two hitherto separate populations and mating between the pedigree lineages therein. The 
consequences of each demographic scenario are illustrated below: schematic chromosomes showing the 
typical distribution of runs of homozygosity (ROH) in each and at the bottom a plot of the sum total length 
of ROH (SROH) versus the total number of ROH (NROH) expected in each scenario. As can be seen, the 
burden of ROH relates to the size of the population, with smaller populations having more and longer 
ROH than larger populations. Admixture brings together different haplotypes and typically reduces the 
number of ROH to very few short ROH, whereas bottlenecks increase the number of ROH, which are 
typically still relatively short. Consanguinity, on the other hand, adds a small number of very long ROH 
for those who are the offspring of cousin marriage, thus also increasing the variance in the sum of ROH, 
visible as a right shift in the NROH versus SROH plot. Some populations are both bottlenecked and 
practice consanguineous marriage, hence having many short and some long ROH, resulting in the 
highest burden of ROH. 

On the importance of simulated data in biology 

Quantifying specific parameters (such as inbreeding levels here) in order to better understand 

populations and their histories is the core of applied biology. To develop, improve, and test 

methods for parameter estimation, it is necessary to know what the true value of the parameter 

we are trying to quantify is. With empirical data, this is obviously not possible. Therefore, 

researchers have used simulated data (e.g. genomic or phenotypic) for which they set the true 

value of the parameters in order to test methods. Importantly, generating meaningful simulated 

data requires a thorough understanding of the underlying biological mechanisms (such as the 
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transmission of genetic material through generations in our case). However, as thorough our 

understanding is, simulations will never perfectly mimic what happens in nature. Consequently, 

it is also important to validate methods with empirical data. 

The barn owl 

The barn owl (Tyto sp.) is a nocturnal raptor found on all continents except Antarctica [48, 20, 

92]. The species consists of several subspecies that are distributed throughout the continents. 

The common barn owl clade (Tyto alba) is widespread in Africa and throughout Europe 

(including its islands) [57, 56, 17, 92] and there is low genetic structure within the European 

mainland populations [56, 17]. This wide distribution with various population sizes makes it 

ideal to investigate and compare inbreeding levels of individuals. Barn owls live in open 

habitats (such as fields) [84] and feed mostly on small rodents [80]. During the breeding season 

(which lasts from March to October), barn owls produce large broods (up to a dozen eggs), 

primarily fed by the male as the female warms the eggs and chicks until they are old enough to 

keep themselves warm [81, 88, 67]. Afterwards, the female assists with feeding. For more than 

30 breeding seasons, a portion of the Swiss barn owl population has been the subject of a long-

term study. In the study area, mating events are recorded. Several morphological traits, such as 

color, mass, wing, tarsus, and bill length are also measured and blood samples are collected 

from each bird caught in the study area (illustrated in figure 5). 
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Figure 5: The barn owl (Tyto alba). Top panel: An adult barn owl returns to its nest box with its prey. 
Bottom left panel: The wing length of an adult barn owl is being measured in the field. Bottom right panel: 
The weight of a juvenile barn owl is being measured in the field. 

© Jeremy Bierer © Daniel Aubort

© Alex Labhardt
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Thesis outline 

In this thesis, I combine simulated and empirical data to study the quantification and 

consequences of inbreeding and inbreeding depression. In the first part, we compare software 

and statistical methods for quantifying both inbreeding and inbreeding depression. In the 

second half of this thesis, we used empirical barn owl (Tyto alba) data to estimate individuals’ 

inbreeding status and inbreeding depression strength. 

Throughout chapter one, we compare two approaches for identifying runs of homozygosity 

(ROHs): a fast and widely used observational-based approach and a more computationally 

challenging and less widely used model-based approach. We simulate whole-genome 

sequencing (WGS) data and examine the accuracy of both methods in identifying IBD segments 

when various fractions of the genome are available. The results suggest that both methods 

perform accurately with high-density genomic data. Although observational approaches are 

commonly used, they tend to overestimate the number of large ROHs and underestimate the 

number of small ROHs when small portions of the genome are available. Model-based 

approaches, however, perform well even with small fractions of the genome. 

In the second chapter, we propose and test a novel method for quantifying inbreeding 

depression in populations with a strong genetic structure. We propose using the genetic 

relatedness matrix (which summarizes the kinship between individuals) to account for the non-

independence of such data in (general) linear models. We compare different relatedness 

matrices and inbreeding coefficients and show that the most commonly used matrix performs 

poorly under these conditions. We demonstrate, however, that another matrix (based on allele-

sharing) can be used to correct for structure and provide accurate estimates of inbreeding 

depression strength. 

In the third chapter, we examine the inbreeding status of 502 barn owls from various European 

populations. More specifically, we compare mainland populations with islands populations 

both in terms of inbreeding levels and enrichment in deleterious alleles. We demonstrate that 

island populations are more inbred than mainland populations, and this inbreeding is primarily 

caused by ancient relatedness due to small effective sizes. In addition, we show that islands’ 

populations are enriched in deleterious alleles, indicating a lower selection efficiency and a 

stronger effect of drift. 
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Lastly, in chapter four of this thesis, we quantify the effect of inbreeding depression on various 

traits in the Swiss barn owl population. We find evidence for moderate inbreeding depression 

in juveniles, suggesting that they are more vulnerable to inbreeding depression than adults. 
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1  |  INTRODUC TION

Inbreeding is defined as mating between relatives and has 
been observed across many taxa including humans (Bittles & 

Black,  2010; Ceballos et al.,  2018), livestock (Forutan, Ansari 
Mahyari, et al.,  2018; Kim et al.,  2013; Peripolli et al.,  2017, 
2018), wild animal populations (Åkesson et al.,  2016; Huisman 
et al.,  2016; Kardos et al.,  2018; Keller & Waller,  2002) and 
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Abstract
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are 
increasingly used to measure inbreeding and mostly estimated on SNP arrays and 
whole-genome sequencing (WGS) data. However, some softwares recurrently used 
for their estimation assume that genomic positions which have not been genotyped 
are nonvariant. This might be true for WGS data, but not for reduced genomic repre-
sentations and can lead to spurious IBD segments estimation. In this project, we simu-
lated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for 
three populations with different sizes and histories. We compare the results of IBD 
segments estimation with two softwares: runs of homozygosity (ROHs) estimated 
with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. 
We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH re-
quires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coef-
ficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/
Mb for RZooRoH. We also show that in populations with simple demographic histo-
ries, distribution of ROHs and HBD segments are correctly estimated with both SNP 
arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities 
above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD seg-
ments with SNPs densities above 11 SNPs/Mb. However, in a population with a more 
complex demographic history, RZooRoH resulted in better distribution of IBD seg-
ments estimation compared to PLINK even with WGS data. Consequently, we advise 
researchers to use either methods relying on excess homozygosity averaged across 
SNPs or model-based HBD segments calling methods for inbreeding estimations.
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plants (Kariyat & Stephenson, 2019; Keller & Waller, 2002; Zhang 
et al., 2019). Its quantification and the understanding of its dele-
terious consequences – called inbreeding depression – are central 
in many areas of biology, from human genetics to conservation 
biology (Keller & Waller, 2002). Indeed, increase in genome auto-
zygosity has been associated with diseases, such as schizophre-
nia (Keller et al., 2012; Lencz et al., 2007) and Alzheimer's disease 
(Ghani et al.,  2015; Nalls et al.,  2009) as well as fitness costs in 
animals (Åkesson et al.,  2016; Huisman et al.,  2016) and plants 
(Menges, 1991; Zhang et al., 2019).

Individual levels of inbreeding are quantified with inbreeding 
coefficients (F). Traditionally, inbreeding was measured by count-
ing the size and number of loops in pedigrees (FPED) (Wright, 1922) 
a method with several downsides: (i) it estimates the expected in-
dividual coefficient which can differ from the realized individual 
coefficient due to recombination stochasticity and Mendelian seg-
regation (Carothers et al., 2006; Franklin, 1977; Hill & Weir, 2011); 
(ii) it assumes founders of the pedigree are unrelated and nonin-
bred; (iii) pedigrees must be correctly recorded which is extremely 
difficult in wild populations, although genetic data might be used 
to (re)construct links (Huisman,  2017; Jones & Wang,  2010). 
With the advancements in high throughput sequencing tech-
nologies it became possible to estimate with sufficient accuracy 
genomic-based F, and several studies have shown molecular esti-
mates to be more accurate than pedigree-based estimates (Alemu 
et al., 2020; Kardos et al., 2015; Keller et al., 2011; Wang, 2016). 
Many different genomic-based F have been proposed, such as 
FHOM (Chang et al., 2015), FAS (Weir & Goudet, 2017), FUNI and FGRM 
(both described in Yang et al., 2011) but there is still no consen-
sus on which is the most accurate (Alemu et al., 2020; Caballero 
et al., 2020; Goudet et al., 2018; Nietlisbach et al., 2019; Yengo 
et al., 2017). These estimates quantify average excess single nucle-
otide polymorphism (SNP) homozygosity or correlation between 
uniting gametes and treat all SNPs independently. However, par-
ents transmit DNA to their offspring in large chromosomal seg-
ments rather than each base independently. Consequently, it has 
been suggested that measures of inbreeding should be based 
on identical-by-descent (IBD) segments rather than individual 
SNPs (McQuillan et al., 2008). Hence, a new F was proposed by 
McQuillan et al.,  (2008). This coefficient intends to quantify the 
proportion of IBD segments in the genome. From this point on-
ward, we will call the true fraction of genome within IBD seg-
ments: FIBD and its estimations (i) FROH when estimated from runs 
of homozygosity (ROHs) with observational-based approaches 
and (ii) FHBD when estimated from homozygous-by-descent (HBD) 
segments from model-based approaches.

McQuillan et al.  (2008) proposed to use ROHs, long consec-
utive homozygous segments, as a proxy for these IBD segments. 
ROHs were first described by (Broman & Weber,  1999) and 
shown to be ubiquitous in humans (Ceballos et al., 2018; Gibson 
et al.,  2006; Pemberton et al.,  2012) and across many different 
taxa (Kardos et al., 2018; Liu et al., 2020; Saremi et al., 2019). FROH 
is calculated as the proportion of the genome within ROHs and 

several studies demonstrated that it was a reliable estimator of 
inbreeding (Alemu et al., 2020; Caballero et al., 2020; Nietlisbach 
et al., 2019). In addition to quantifying inbreeding, distribution of 
IBD segments (i.e., lengths and numbers) can inform about a pop-
ulation's past demography and history (Ceballos et al., 2018; Kirin 
et al., 2010; Pemberton et al., 2012): long segments reflect recent 
coalescence events while smaller segments indicate more distant 
coalescence and, if in high proportion, a history of small effective 
population size. Finally, IBD segments can be used for identify-
ing rare deleterious recessive variants responsible for deleterious 
phenotypes by homozygosity mapping, which in short compares 
islands of IBD segments between affected and unaffected individ-
uals (Alkuraya, 2013; Hildebrandt et al., 2009; Stoffel et al., 2021; 
Wang et al., 2009).

Two different methods for IBD segments detection are re-
currently used in the literature: observation and model-based 
approaches (Ceballos et al.,  2018). The most common method 
is a fast observation-based method (Ceballos et al.,  2018) im-
plemented in PLINK (Chang et al.,  2015; Purcell et al.,  2007). It 
makes use of a sliding window to identify continuous homozy-
gous stretches, with a minimum size defined by the user, used 
as proxy for IBD segments. The other family of methods is 
model-based, and has been implemented in RZooRoH (Bertrand 
et al., 2019; Druet & Gautier, 2017, 2022), BEAGLE (Browning & 
Browning, 2010) and BCFTools (Narasimhan et al., 2016). It relies 
on hidden Markov models (HMM) and directly infers HBD seg-
ments from the genotypes by considering the distance between 
two markers, the mutation rate and even the recombination map 
if available. Consequently, these methods do not require a min-
imum threshold on segment length. HMM methods are compu-
tationally demanding (Ceballos et al., 2018) and a previous study 
suggested that PLINK outperformed HMM methods both in terms 
computation time and ROHs detection accuracy with simulated 
whole-genome-sequencing (WGS) data (Howrigan et al.,  2011). 
However, few HMM methods were available at that time and the 
authors did not investigate the robustness of PLINK to genotyp-
ing errors. Observation-based approaches were designed for WGS 
data and assume that the region between two SNPs are entirely 
homozygous. However, many studies performing ROHs analyses 
with PLINK used reduced genomic representation techniques: 
often SNP arrays (Bjelland et al., 2013; Bosse et al., 2012; de Jong 
et al., 2020; Forutan, Mahyari, et al., 2018) where specific SNPs, 
chosen based on their position, effect on phenotype or minor al-
lele frequency (MAF), are targeted and genotyped. ROHs have 
also been called with restriction-site associated DNA sequencing 
(RAD-sequencing) data, by cutting the genome near enzymes cut-
ting sites and selecting and sequencing fragments based on their 
size. With both SNP arrays and RAD sequencing, only a fraction 
of the genome is sequenced resulting in a partial representation of 
the total polymorphism. Since PLINK assumes that genomic posi-
tions not included in the SNPs set are nonvariant, we expect that it 
will falsely consider nonsequenced heterozygous loci as homozy-
gous which can lead to spurious ROHs detection. On the contrary, 
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the HMM approach from Leutenegger et al.  (2003), which mod-
els the genome as a mosaic of HBD and non-HBD segments and 
from which most current model-based approaches follow, was 
initially developed for SNP arrays. These models do not treat 
nonsequenced genomic regions as homozygous but as missing 
data. However, model-based approaches are rarely used for de-
tecting IBD segments with reduced genomic data (but see Alemu 
et al., 2020; Duntsch et al., 2021; Sole et al., 2017). In addition, no 
precise benchmarking with large sample size has been performed 
on comparing how the different methods behave with these re-
duced genomic data compared to WGS data and precise guidelines 
such as which method is suitable with which data are missing.

In addition to the fraction of genome captured, we hypothe-
size that the effective size and level of polymorphism in a pop-
ulation might also affect the capacity of the different methods 
to accurately detect IBD segments. Small and inbred populations 
tend to harbour higher numbers of long such segments easier to 
accurately detect with reduced representations as the missing po-
sitions are more likely to be homozygous. Larger populations will 
tend to harbour many small IBD segments (Ceballos et al., 2018; 
Kirin et al.,  2010) harder to detect when only a fraction of the 
polymorphism is available since these small segments require lots 
of nearby SNPs to reach the minimum density threshold for an 
accurate detection (Kardos et al.,  2015; Sole et al.,  2017; Zhang 
et al.,  2015). On the other hand, larger populations will harbour 
higher levels of polymorphism and thus higher numbers of SNPs 
resulting in an increased SNPs density for the same fraction of 
genome sequenced with RAD-sequencing.

Here, we use simulated data to compare the performance of 
PLINK and RZooRoH with two reduced genomic representations – 
SNP arrays and RAD-sequencing – and WGS. We compare both soft-
wares output to the true IBD segments extracted from the simulated 
data. We hypothesize that the quality of detection depends on SNP 
density. In addition, since model-based approaches take into account 
the distance between each SNP, we predict that they will perform 
better when dealing with sparse data (Druet & Gautier, 2017). We 
show that both detection methods can be used to correctly estimate 
IBD segments with SNP arrays and RAD-sequencing providing that 
a sufficient proportion of the genome has been sequenced. This pro-
portion varied between IBD segments detection methods and pop-
ulation sizes: the model-based method implemented in RZooRoH as 
well as the large population require a substantially smaller fraction 
of the genome to obtain correct inbreeding and distribution of IBD 
segments estimates.

2  |  MATERIAL S AND METHODS

All scripts used in this project are available on GitHub: https://github.
com/Eleon​oreLa​vanch​y/ROHsR​educe​dRep. A general workflow of 
the study can be found in Figure 1 and additional details about the 
simulations and analyses performed can be found in the Supporting 
Information.

2.1  |  Simulations

We simulated two hermaphroditic populations (N  =  1000 and 
N = 10,000) using SLiM3, a forward-in-time individual-based simula-
tion software (Haller & Messer, 2019). We used a “non-Wright-Fisher” 
model with nonfixed population sizes and overlapping generations 
(Haller & Messer, 2019). Population size was regulated via a patch 
carrying capacity where individuals were removed based on their 
overall fitness at the end of each simulation cycle. Individuals' fitness 
decreased with age which varied between 0 and 3: older individuals 
had higher probabilities to die. Individuals were able to reproduce 
from the age of 1 and selfing was not allowed. For each individual, 
its mate was chosen among the other individuals based on their age 
(with older individuals less likely to be chosen) and on their pedigree-
based coancestry with the focal individual (related individuals had 
higher chances to be chosen). This resulted in a population mostly 
practicing random mating but ensured that some inbreeding would 
occur at each generation. We simulated 10 replicates for both popu-
lation sizes and each simulation lasted for 1000 reproductive cycles. 
We used a human-like genetic map with a nonhomogenous recom-
bination rate simulated with FREGENE as described in Chadeau-
Hyam et al. (2008). This resulted in genomes of 3000 centimorgans 
(cM). Individuals from both populations carried 30 chromosomes 
each 100 Mb long. The burnin were performed via recapitation in 
msprime (Kelleher et al., 2016). All mutations were added at the end 
of the simulation (after the burnin) based on a human-like mutation 
rate of 2.5 x 10−8 per site per generation (Nachman & Crowell, 2000).

At the end of the entire simulation process, we performed a ran-
dom stratified sampling to ensure that the individuals used in sub-
sequent analyses would cover the entire range of inbreeding. We 
are aware that this scheme is rare and hard to apply empirically but 
it allowed us to investigate whether the entire spectra of inbreed-
ing was correctly estimated. Whenever possible, we subsampled 
20 individuals with FPED between 0 and 0.1, 20 individuals with FPED 
between 0.1 and 0.2, 20 individuals with FPED between 0.2 and 0.3, 
20 individuals with FPED between 0.3 and 0.4 and 20 individuals with 
FPED between 0.4 and 0.5. The average (±SD) number of sampled 
individuals per replicate were 87.3 ± 5.03 for the small population 
and 67.40 ± 4.09 for the large population. The lower number of indi-
viduals subsampled in the large populations are because they con-
tained fewer individuals with high F. At the very end, the mean (±SD) 
number of SNPs per simulated population was 1.6 x 106 ± 2.0 x 104 
SNPs for the small populations and 1.6 x 107 ± 1.7 x 105 SNPs for the 
large populations.

2.2  |  SNPs subsampling

In order to investigate the effect of reduced genomic representa-
tions on identical-by-descent (IBD) segments estimation, we mim-
icked different sequencing techniques by subsampling SNPs from 
whole-genome data. We simulated both RAD-sequencing and two 
SNP arrays of different sizes.
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RAD-sequencing uses restriction enzymes to digest the genome 
in small fragments, which are then selected on size and sequenced 
(Andrews et al., 2016). Consequently, these fragments are not ho-
mogenously distributed along the genome. For this purpose, we ran-
domly selected 500 base-pair (bp) fragments (Andrews et al., 2016) 
using bedtools version 2.29 (Quinlan,  2014). Afterwards, SNPs 
within these windows were subsampled using --bed function from 
VCFTools (Danecek et al., 2011). Given that the proportion of the 
genome sequenced with RAD-sequencing varies greatly depending 
on the organism and on the restriction enzymes used, we varied this 
number of fragments so that they covered between 0.05% and 10% 
of the genome, and between 0.002% and 1%, for the small and the 

large populations respectively. We did so because these percent-
ages resulted in similar SNPs densities between the small and large 
populations and because SNPs density is an accurate indicator for 
the accuracy of runs of homozygosity (ROHs) or homozygous-by-
descent (HBD) segments detection (see results). In addition, we sub-
sampled different percentages of genome (resulting in different SNP 
densities) between PLINK and RZooRoH. This is because RZooRoH 
requires smaller SNP densities compared to PLINK to reach the same 
accuracy of IBD segments estimation. We performed 100 replicates 
for each RAD-sequencing subsampling percentage.

To simulate SNP array sequencing, we mimicked two arrays ini-
tially developed for cattle and widely used for ROHs analyses: the 

F I G U R E  1  General workflow of the study. Simulations were first performed in SLiM3. Within one population, each chromosome shared 
the same pedigree. Burnin, recapitation and mutation overlay were then performed in msprime. Single nucleotide polymorphism (SNP) 
subsampling was performed with bedtools for RAD-sequencing and homemade python script for both arrays. Runs of homozygosity 
(ROHs) were called with PLINK and homozygous-by-descent (HBD) segments with RZooRoH. For distribution of ROHs and HBD segments, 
segments were divided into six length classes. The true identical-by-descent (IBD) segments were extracted from simulated TreeSequences. 
Fractions of genomes correctly and incorrectly assigned within and outside IBD segments were then estimated as the overlap between 
ROHs or HBD segments and these true IBD segments
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Illumina BovineSNP 50 beadchip (~50,000 SNPs) hereafter “small 
array” - and the Illumina BovineHD BeadChip – (~777,000 SNPs) 
hereafter “large array”. Common features of both arrays are the ho-
mogenous distances between SNPs and the focus on common SNPs, 
hence, we first filtered our WGS data on MAF 5%. We then selected 
windows with size corresponding to the median distances between 
SNPs in the real arrays – 40 kb for the small array and 3 kb for the 
large array – and selected the SNP with higher MAF within each 
window (if at least one SNP was present). We use the term “small 
array” for what is usually considered as a medium-density array in 
the literature.

2.3  |  IBD segments estimation: ROHs And 
HBD segments

We compared two methods for IBD segments detection to inves-
tigate whether we observe a difference in their capacity to han-
dle reduced genomic data. We chose one observational-based 
approach – the --homozyg method, implemented in PLINK (Chang 
et al.,  2015) – and one model-based approach – the RZooRoH 
method, implemented as a R package (Bertrand et al., 2019; Druet 
& Gautier,  2017, 2022). PLINK makes use of a sliding window to 
identify homozygous segments, used as a proxy for IBD segments. 
Consequently, PLINK results will be called ROHs. On the contrary, 
RZooRoH models autozygous segments directly from the genotypes 
and its results will be referred to as HBD segments.

For ROHs detection with PLINK, we varied parameters accord-
ing to the SNP density in the reduced data set as proposed by Kardos 
et al.  (2015) and performed by Duntsch et al.  (2021). In particular, 
we varied the window size (--homozyg-window-snps) as well as the 
minimum SNP density (--homozyg-density) and number of SNPs 
(--homozyg-snps) required for a homozygous segment to be called 
a ROH. We required lower numbers of SNPs for low SNPs densi-
ties data sets. We also varied the maximum number of heterozygous 
SNPs allowed in a ROH (--homozyg-het). On the contrary, we fixed 
some parameters: we authorized 1 heterozygous SNPs per window 
(--homozyg-window-het = 1), maximum 1 Mb in between two ad-
jacent SNPs (--homozyg-gap = 1000) and a minimum ROH size of 
100 kb (--homozyg-kb = 100). These parameters were consistent for 
every replicate per subsampling method. A more precise description 
and justification of how each parameter value was chosen accord-
ing to the SNP density can be found in the Supporting Information 
(pages 3 to 5; Table S1 and Table S2; Figure S8 and Figure S9).

We called HBD segments with the RZooRoH package version 
0.3.1 with a four HBD classes model with rates (R) equals 10, 100, 
1000 and 10,000 for the HBD classes and 10,000 for the non-HBD 
class. These HBD classes correspond to different coalescence event 
ages: the rate corresponds to the expected number of generations 
since the coalescence event divided by 2 (i.e., 5, 50, 500 and 5000 
generations ago, respectively). For each of these classes, the ex-
pected length of the HBD segments are defined as 1/R [in M]: 10 cM, 
1 cM, 0.1 cM and 0.01 cM. Even though we chose a model with few 

HBD classes, we expect that these classes cover all IBD segments 
length as the variances associated to these average lengths are ex-
tremely large (Speed & Balding, 2015). We used a value of 5 x 10−5 
for genotype uncertainty, which represents the probability that any 
allele mutated in one of the ancestors in the last 1000 reproductive 
events: #meiosis x mutation rate = 1000 x 2 x 2.5 x 10

−8.

2.4  |  SNPs-independent measures of 
inbreeding: FHOM

To test the performance of a SNPs-independent based F, we esti-
mated FHOM, implemented in the --het method from PLINK for all 
SNPs densities presented for RAD-sequencing in this manuscript 
and for WGS. FHOM, FROH and FHBD have different definitions and 
different assumptions about the ‘base-population’. FHOM aims at 
identifying excess homozygosity relative to a random-mating popu-
lation. FROH aims at identifying IBD segments relative to an ancient 
“base-population” and the minimum length threshold chosen will set 
how far this base-population is (in coalescence time) compared to 
our current population. Finally, FHBD does not use a minimum size 
threshold but identifies IBD SNPs by including the allelic frequencies 
into the emission probabilities of the HMM.

2.5  |  True IBD segments

We compared the estimations obtained from both softwares and 
all fractions of genome subsampled to the true fraction of genome 
within IBD segments. We choose to consider a segment IBD if both 
haplotypes coalesced less than 100 reproductive cycles ago (inde-
pendently of their length). Since we have overlapping generations 
and four age classes in our model, these 100 time-steps correspond 
to 25 generations. In supplementary material, we also benchmark 
PLINK and RZooRoH results with IBD segments coalescing less 
than 1000 time-steps (i.e., 250 generations) ago to account for more 
ancient coalescence events. This was done with the tmrca method 
from the tskit module in python.

2.6  |  Statistical analysis

For PLINK, we estimated individual ROHs-based inbreeding co-
efficient (FROH) as the proportion of the genome within ROHs: 

FROH =
∑

LengthROH

genome length
 (McQuillan et al.,  2008). For RZooRoH, we esti-

mated FHBD as the average of posterior HBD probabilities across all 
markers in the data set (the @realized) as suggested in the RZooRoH 
documentation. We then compared these to the true fraction of ge-
nome within IBD segments (FIBD).

Since distribution of IBD segments can inform about the popu-
lation history (Ceballos et al., 2018), we divided these segments into 
six length classes following Kirin et al. (2010): (i) between 100 kb and 
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2 Mb (i.e., between 0.1 cM and 2 cM), (ii) between 2 Mb and 4 Mb (i.e., 
between 2 cM and 4 cM), (iii) between 4 Mb and 6 Mb (i.e., between 
4 cM and 6 cM), (iv) between 6 Mb and 10 Mb (i.e., between 6 cM 
and 10 cM), (v) between 10 Mb and 16 Mb (i.e. between 10 cM and 
16 cM) and (vi) larger than 16 Mb (i.e., larger than 16 cM). Distribution 
of IBD segments are represented as the mean total length per indi-
vidual among simulation and subsampling replicates. For the sake of 
comparison and because we can benchmark these with the true dis-
tributions of IBD segments, we used these length classes with both 
softwares even if they are traditionally used with PLINK as RZooRoH 
models and partitions HBD segments according to the rates chosen 
when constructing the model. Consequently, with RZooRoH we used 
the “most probable” distribution of HBD segments detected with the 
Viterbi algorithm rather than the average SNP probabilities of belong-
ing to any length class. We then compared these distributions to the 
distribution of true IBD segments extracted from the tree sequences.

We use four metrics to evaluate the accuracy of ROHs detection 
for each subsampling technique: (i) the fraction of genome correctly 
assigned within IBD segments (true-IBD), that is, ROHs or HBD seg-
ments which were detected and which were IBD; (ii) the fraction 
of genome correctly assigned outside IBD segments (true-non-IBD), 
that is, genomic regions which were not classified as ROHs nor HBD 
segments with neither softwares and were not IBD segments; (iii) 
the fraction of genome inappropriately assigned within IBD seg-
ments (false-IBD), that is, genomic regions which were classified 
as ROHs or HDB segments but were not IBD; (iv) the fraction of 
genome inappropriately assigned outside IBD segments (false-non-
IBD), that is, IBD segments which were not assigned as ROHs nor 
HBD segments. We compared ROHs and HBD segment estimation 
to the true IBD segments for every individual in every replicate, 
subsampling method and simulation. We then averaged individual's 
fractions among simulation and subsampling replicates to obtain one 
measure per subsampling event.

2.7  |  Additional simulations

We performed an additional batch of simulations based on a real, 
57 years deep, cattle pedigree from Walloon beef cattle. We used 
a genetic map estimated from male Holstein cattle by Qanbari 
and Wittenburg  (2020). In the simulation, a domestic population 
(Ne = 1500) got separated from a large wild population (Ne = 50,000) 
10,000 generations ago with a migration rate of 3 x 10−5 (Frantz 
et al., 2020). To mimic the strong selective pressure which occurred 
during breed formation 200 generations ago and which resulted in 
high levels of inbreeding (Frantz et al., 2020), 200 individuals were 
randomly selected from the domestic population and used as found-
ers for the rest of the simulation. The remaining 200 generations 
were then simulated in SLiM3 from these 200 founders. As the real 
pedigree was only covering the last 57 years, a first round of simula-
tions was run to obtain 200 generations-deep simulated pedigree, 
which was then used to complete the real pedigree by assigning a 
genealogy from the simulated pedigree to each founder from the 

real pedigree. At the end, only the individuals from the real pedigree 
were kept for the analyses.

Since we showed with the first batch of simulations that the ac-
curacy of ROHs detection with RAD-sequencing depends on the 
proportion of genome subsampled, we only mimicked SNP arrays-
like subsampling for these simulations. We did so as previously de-
scribed. At the end of the sliding windows process, we obtained a 
lower number of SNPs than expected as some windows did not con-
tain any SNPs. Additional SNPs were chosen randomly (but still with 
MAF >0.05) to account for empty windows and to reach the same 
number of SNPs as in real arrays.

Concerning IBD segments detection, we used the same pa-
rameters as we did for the small and large populations with PLINK 
and both SNP arrays. However, with WGS data we increased the 
maximum number of heterozygous SNPs authorized in a ROH 
(--homozyg-het) to 64 to optimize distribution of ROHs estimation. 
Concerning RZooRoH, we used the exact same model as before. For 
this cattle-like population, we compare the estimations obtained 
from both softwares to IBD segments coalescing less than 1000 
(rather than 100) time-steps ago (independently of their length). This 
is because in this population, a large part of the inbreeding comes 
from old coalescence events: we show in Figure S10 than there is 
poor concordance between both softwares estimation and IBD seg-
ments coalescing less than 100 reproductive cycles ago.

2.8  |  SNP density

We calculated SNP densities with VCFtools (Danecek et al., 2011) 
method: --SNPdensity as the number of SNPs per each windows of 
1 Mb. We then estimated the mean SNP density of each replicate as 
the mean density among the windows.

3  |  RESULTS

3.1  |  FROH and FHBD

We used simulated genomes to investigate the influence of differ-
ent sequencing techniques, IBD calling methods and population 
size on IBD segments detection. Figure 2 shows the correlation (r2) 
between FIBD (the true fraction of genome within IBD segments 
coalescing less than 100 reproductive cycles ago and calculated 
from simulated data) and its estimations: FROH (estimated with 
PLINK, Figure 2a,c) or FHBD (estimated with RZooRoH, Figure 2b,d) 
according to SNP density as well as the absolute difference be-
tween the estimated FROH or HBD and FIBD according to the same SNP 
density. Figure 2 shows FROH and FHBD can be correctly estimated 
with reduced genomic representations providing that a sufficient 
fraction of the genetic variation is captured. To retain conserved 
ranking among individual F (represented by a correlation of one 
between FROH or HBD and FIBD), PLINK (Figure  2a,c; Table  S3) re-
quired a SNP density of 22 SNPs/Mb, 11 times higher compared to 
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RZooRoH (Figure 2b,d; Table S3) which only required two SNPs/
Mb. Interestingly, these minimum SNP densities were similar be-
tween the two population sizes suggesting that SNP density might 
be a key metric for assessing the accuracy of FIBD. With a SNP 
density below 20 SNPs/MB, PLINK resulted in negative correla-
tions between FROH and FIBD in the small population (Figure  2a). 
On the other hand, correlations were always higher than 0.5 with 
RZooRoH (Figure 2b,d). We should stress that the conservation of 
inbreeding ranks does not imply a correct estimation of the “abso-
lute” value of the inbreeding coefficient. Indeed, with both soft-
wares and populations, FROH and FHBD are constantly slightly above 
FIBD (estimated with segments coalescing less then 100 time-steps 
ago) even when the SNP density increases (Figure  2a–d). PLINK 
did not detect ROHs with SNP densities below 10 SNPs/Mb, re-
sulting in FROH of zero for all individuals (Figure  S1a). RZooRoH 
always detected HBD segments, independently of the SNP den-
sity we tested. The variance among subsampling replicates was 
large and the rank of individuals' inbreeding was poorly conserved 
for SNP densities below 1 SNPs/Mb (Figure  2b,d; Figure  S1b). 
We show in the Supporting Information that FHOM, an estimator 
of inbreeding coefficient relying on the difference between the 

observed and expected heterozygosity under Hardy–Weinberg 
yielded similar results to RZooRoH for the same SNPs densities 
(Figure S2; Table S3).

Concerning medium and high SNP densities (both SNP arrays and 
WGS), we see little effect of the sequencing method or the software 
used on FROH or FHBD estimation: inbreeding coefficients estimates 
were always consistent with FIBD (Figure 3, r2 > 0.97). All sequencing 
methods resulted in slightly higher inbreeding coefficients, espe-
cially both arrays, but the rank of inbreeding was always conserved 
among individuals (Figure 3; Table S3). Interestingly, with PLINK and 
at similar densities a homogeneous spacing between SNPs (the SNP 
arrays) resulted in better correlations with FIBD compared to RAD-
sequencing in the small population (Figure 3a,c; Table S3).

3.2 | Distribution of ROHs and HBD segments

Figure 4 shows distribution of ROHs and HBD segments among the 
different length classes as the mean per individual (among simulation 
and subsampling replicates) total ROHs or HBD segments length 
falling within each length class. Horizontal black lines represent our 

F I G U R E  2  Correlation (r2) and 
difference between FIBD and FROH (panels 
a and c) or FHBD (b and d) estimated with 
RAD-sequencing data according to 
single nucleotide polymorphism (SNP) 
density in the reduced data set for both 
the small (a and b) and large (c and d) 
populations. Pearson's correlations were 
estimated per simulation and subsampling 
replicate. The difference was calculated 
by subtracting FIBD from FROH or FHBD per 
simulation and subsampling replicate. (a) 
Small population; runs of homozygosity 
(ROH) have been called with PLINK. (b) 
Small population; homozygous-by-descent 
(HBD) segments have been called with 
RZooRoH. (c) Large population; ROHs 
have been called with PLINK. (d) Large 
population; HBD segments have been 
called with RZooRoH.
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gold standard: the true mean (among simulation replicate) individual 
total IBD segment lengths estimated from simulated data for each 
length class. Bar plots represent the mean (among simulation and 
subsampling replicate) difference between the estimated distribu-
tions (ROHs or HBD segments) and the truth (IBD segments). Thus, 
bar plots above the horizontal black segment indicate an overesti-
mation while bar plots below the segment an underestimation. In 
addition, the y-axis starts at 0 indicating than no IBD segments of 
the particular length class has been detected if the bar reaches the 
bottom of this axis. Compared to the true distribution of IBD seg-
ments (relative to a reference population from 100 reproductive 
cycles ago), almost all sequencing methods and both softwares re-
sulted in higher mean length of ROHs or HBD segments falling into 
the smaller length class (Figure 4). At similar SNPs densities (i.e. with 
both SNP arrays), this overestimation was stronger for RZooRoH 
compared to PLINK, especially in the small population. However, 
there is no such overestimation in the small population when we 

compare these distributions to older true IBD segments which coa-
lesced less than 1000 reproductive cycles ago suggesting that these 
segments are not wrongly identified, they simply come from older 
coalescence events (Figure S3).

With WGS, we can correctly estimate distribution of ROHs and 
HBD segments larger than 2 Mb (Figure 4). In addition, both SNP 
arrays, allowed correct estimation of total lengths of ROHs and 
HBD segments larger than 4 Mb in the small populations and larger 
than 2 Mb in the large population (Figure 4). These results suggest 
that medium and high SNPs density datasets can be confidently 
used for ROHs and HBD segments detection with both PLINK and 
RZooRoH.

Concerning RAD-sequencing, PLINK allowed the correct estima-
tion of distribution of ROHs with a SNP density around 22 SNPs/
Mb (Figure  4a,c). On the other hand, RZooRoH yielded accurate 
distribution of HBD segments with a SNP density of 11 SNPs/Mb 
and seven SNPs/Mb in the small and large populations, respectively 

F I G U R E  3  Comparison between runs of homozygosity (ROH) or homozygous-by-descent (HBD) estimated with different sequencing 
methods on the y-axis and identical-by-descent (IBD) segments (the true fraction of genome within IBD segments coalescing less than 100 
time-steps ago) on the x-axis. Each point represents one individual (for one subsampling replicate within one simulation replicate). The black 
line represents the equality line (x = y). Blue points represent individuals from the small population and orange from the large population. 
Within these two colour categories, a change in shade represents an increase in single nucleotide polymorphism (SNP) density (fraction of 
genome subsampled indicated between the parentheses for RAD-sequencing). (a) Small population; ROHs were called with PLINK. Please 
note than points for the small array and whole-genome sequencing (WGS) perfectly overlap. (b) Small population; HBD segments were called 
with RZooRoH. Please note than points for both arrays perfectly overlap. (c) Large population; ROHs were called with PLINK. Please note 
than points for the large array and WGS (almost) perfectly overlap. (d) Large population; HBD segments were called with RZooRoH.
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(Figure 4b,d). For lower SNP densities, RZooRoH tended to merge 
small adjacent HBD segments into larger ones (Figure 4d).

We also investigated ROHs calling accuracy with PLINK and the 
default parameters for all reduced genomic representations. We 
show in the Supporting Information that similarly to what was ob-
served in Figure 2, FROH can be correctly estimated with SNP densi-
ties higher than 22 SNPs/Mb (Figure S4 and Figure S5). However, the 
distribution of ROHs are always biased with a large overestimation 
of small IBD segments and underestimation of large IBD segments 
even with both SNP arrays (Figure S6). These results emphasize the 
importance of fine-tuning PLINK parameters when working with re-
duced genomic representations.

3.3  |  Fraction of genome assigned within and 
outside IBD segments

Figure 5 shows the mean fraction of genome which has been cor-
rectly (true-non-IBD and true-IBD) and incorrectly (false-non-IBD 
and false-IBD) assigned to ROHs or HBD segments. Concerning 
RAD-sequencing, PLINK resulted in high fractions of genome incor-
rectly assigned to ROHs (false-IBD) (Figure  5a,c, left column). On 
the other hand, RZooRoH resulted in 90 and 95% of the genome 
correctly assigned within our outside IBD segments with 2% (SNP 
density = 11 SNPs/Mb) and 0.125% (SNP density = 7 SNPs/Mb) of 

the genome sequenced in the small and large populations respec-
tively (Figure 5b,d, right column). Concerning SNP arrays and WGS, 
the “incorrectly” assigned ROHs and HBD segments were mostly 
false positive (false-IBD). However, we show in Figure S7 that these 
false positive become true positive when compared to IBD seg-
ments which coalesced less than 1000 reproductive cycles ago. This 
indicates that these fragments come from coalescence events older 
than 100 reproductive cycles ago. In the large population, RZooRoH 
still resulted in a few false-positive when compared to distribution 
of IBD segments from less than 1000 reproductive cycles ago, with 
both the large array and WGS (Figure S7d).

3.4  |  Cattle simulations

Figure  6 shows the comparison of FROH and FHBD estimates, dis-
tribution of ROHs and HBD segments and fractions of genome 
correctly assigned within and outside IBD segments (coalesc-
ing less than 1000 reproductive cycles ago) for WGS and both 
SNP arrays in the cattle population. For this population, we con-
sider IBD segments coalescing less than 1000 reproductive cy-
cles ago because the major part of inbreeding comes from ancient 
coalescence events and both softwares resulted in poor IBD seg-
ments estimation when compared to segments coalescing less 
than 100 reproductive cycles ago (Figure  S10). In this population, 

F I G U R E  4  Comparison of distribution of runs of homozygosity (ROHs) (a and c) and homozygous-by-descent (HBD) segments (b and d) 
between the different sequencing methods and the true distributions of identical-by-descent (IBD) segments (defined as segments which 
coalesced less than 100 reproductive cycles ago). Black horizontal lines correspond to the total length of IBD segments per individual 
(y-axis) falling into the different length classes (x-axis). Bar plots show the mean (± SD) difference between the mean total length of IBD 
segment and their estimation (ROHs and HBD segments) for each sequencing method. Bar plots below the horizontal black line indicate an 
underestimation while bar plots above the horizontal black line indicate an overestimation of the total length of segments. Mean (± SD) are 
among individuals, simulation and subsampling replicates. (a) Distribution of ROHs from the small population; ROHs were called with PLINK. 
(b) Distribution of HBD segments from the small population; HBD segments were called with RZooRoH. (c) Distribution of ROHs from the 
large population; ROHs were called with PLINK. (d) Distribution of HBD segments from the large population; HBD segments were called 
with RZooRoH
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PLINK resulted in perfect estimation of the inbreeding coefficient 
(Figure 6a; r2(FROH WGS,FIBD) = 0.999; r2(FROH LARGE ARRAY,FIBD) = 0.993; 
r2(FROH SMALL ARRAY,FIBD) = 0.996) but biased distribution of ROHs even 
with WGS (Figure 6c). Compared to the true distribution of IBD seg-
ments (coalescing less than 1000 reproductive cycles ago), PLINK 
identified higher numbers of ROHs smaller than 16 Mb (bar plots 
above the horizontal line) and fewer ROHs larger than 16 Mb (bar 
plots below the horizontal line) (Figure 6c). On the other hand with 
RZooRoH the correlation between FHBD and FIBD were slightly lower 
(Figure 6d: r2 (FHBD WGS,FIBD) = 0.937, r2(FHBD LARGE ARRAY,FIBD) = 0.983; 
r2(FHBD SMALL ARRAY,FIBD)  =  0.955) but distribution of HBD segments 
were closer to the true distribution of IBD segments (Figure  6f). 
Similar to previous observations, RZooRoH detected fewer small 
HBD segments (<2 Mb) with the small and to a lesser extend the 
large SNP array. Finally, concerning the fraction of genome correctly 
and incorrectly assigned to IBD segments, 83, 88 and 91% of the 
genome were correctly assigned within or outside ROHs with PLINK 
using the small array, large array and WGS, respectively (Figure 6b). 
With RZooRoH, 84, 87 and 85% of the genome were correctly as-
signed within or outside HBD segments with the small array, the 
large array and WGS (Figure 6e). With both arrays and softwares, 
the wrongly assigned fraction of genome was mainly false-negative 
(false-non-IBD) but both softwares resulted in a few false-positive 
(false-IBD) with WGS data (Figure 6b,e).

4  |  DISCUSSION

4.1  |  Summary

We investigated the capacity of WGS, SNP arrays and RAD-
sequencing to perform IBD segments analyses using either the 
observational-based runs of homozygosity (ROHs) calling approach 
implemented in PLINK (Chang et al.,  2015) or the model-based 
homozygous-by-descent (HBD) segments calling approach imple-
mented in RZooRoH (Bertrand et al., 2019; Druet & Gautier, 2017).
We show that both methods can be used with medium to high SNPs 
density data sets in simulations with constant population sizes and 
proportion of inbreeding. However, for RAD-sequencing, PLINK 
required a SNP density above 22 SNPs/Mb to keep the ranking 
among individuals FROH and correct estimates of distribution of 
ROHs. On the other hand, RZooRoH only required a SNP density 
of 11 SNPs/Mb to obtain correct distribution of HBD segments 
and the rank of individual inbreeding coefficients FHBD was con-
served when the SNP density was above 2 SNPs/Mb. We also show 
that in the cattle population, PLINK did not estimate distribution 
of IBD segments as accurately as RZooRoH even with WGS data. 
Finally, we show in Supporting Information that FHOM, a non-IBD 
segments-based estimate of individual F, is as accurate as FHBD es-
timated with the model-based approach for the same SNP density.

F I G U R E  5  For each sequencing method, fraction of genome correctly assigned outside identical-by-descent (IBD) segments (true-non-
IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD segments (false-non-IBD) and incorrectly assigned 
within IBD segments (false-IBD) are represented. Values are averaged among individuals as well as both simulation and subsampling 
replicates. (a) Small population; runs of homozygosity (ROHs) were called with PLINK. (b) Small population; HBD segments were called with 
RZooRoH. (c) Large population; ROHs were called with PLINK. (d) Large population; homozygous-by-descent (HBD) segments were called 
with RZooRoH
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4.2  |  PLINK vs. RZooRoH

With WGS and in the small and large populations, the two soft-
wares yielded similar results concordant with the true IBD seg-
ments (extracted from simulated data as IBD segments which 
coalesced less than 100 reproductive cycles ago) for all segments 
larger than 2 Mb. We showed that both methods, but especially 
RZooRoH, identify a larger number of small IBD segments (<2 Mb) 
than the truth. However, we also show that these segments 
come from more ancient coalescence events. It makes sense that 
RZooRoH identifies a higher number of smaller HBD segments 

compared to PLINK since it has no constraint on HBD minimum 
segments size. From the formula presented in Thompson  (2013), 
the length of the IDB segment in centimorgans (cM) l is a simple 
function of the number of generations g since the coalescence 
event:l = 100∕2g, our PLINK threshold corresponds to 0.1 cM 
(100 kb) in humans and thus coalescence events 500 reproduc-
tion events ago on average (with a very large variance [Speed & 
Balding, 2015]).

It is important to remember that even with WGS, IBD segment 
detection is still challenging. Beside the IBD segments detection 
method, many parameters can influence the result of IBD segments 

F I G U R E  6  Comparison of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) segment detection with whole-genome 
sequencing (WGS) and both single nucleotide polymorphism (SNP) arrays in the cattle population and for both identical-by-descent (IBD) 
segment detection methods. (a) Comparison of FROH estimated with PLINK on WGS data and both SNPs arrays with regard to the true 
fraction of genome within IBD segments (coalescing less than 1000 reproductive cycles ago): FIBD. (b) Fraction of genome correctly assigned 
outside IBD segments (true-non-IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD segments 
(false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) for WGS and both SNP arrays. ROHs were called with PLINK. (c) 
Comparison of distribution of ROHs with WGS and both arrays with regard to the true distribution of IBD segments (coalescing less than 
1000 generations ago). Horizontal black lines represent the true mean (among simulation replicates) individual total length of IBD segments 
estimated from simulated data for each length class. Bar plots represent the mean (among simulation and subsampling replicate) difference 
between the estimated distributions (ROHs) and the truth (IBD segments). ROHs were called with PLINK. (d) Comparison of FHBD estimated 
with RZooRoH on WGS data and both SNP arrays with regard to the true fraction of genome within IBD segments (coalescing less than 
1000 generations ago): FIBD. (e) Fraction of genome correctly assigned outside IBD segments (true-non-IBD), correctly assigned within IBD 
segments (true-IBD), incorrectly assigned outside IBD segments (false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) 
for WGS and both arrays. HBD segments were called with RZooRoH. (f) Comparison of distribution of HBD segments with WGS and both 
arrays with regard to the true distribution of IBD segments (coalescing less than 1000 generations ago). Horizontal black lines represent the 
true mean (among simulation replicate) individual total length of IBD segments estimated from simulated data for each length class. Bar plots 
represent the mean (among simulation and subsampling replicate) difference between the estimated distributions (HBD segments) and the 
truth (IBD segments). HBD segments were detected with RZooRoH
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calling. For instance, a minimum size threshold can be chosen. 
However, it has been shown with simulations that small segments can 
also result from recent coalescence events (Speed & Balding, 2015), 
thus neglecting smaller regions might lead to an underestimation of 
the inbreeding status of the individual or the population. Another 
important parameter is whether mutations (and sequencing errors) 
should be considered by allowing heterozygous SNPs in IBD seg-
ments and how many heterozygous markers are to be allowed can 
greatly differ among studies. To summarize, no consensus exist now-
adays on which method and parameters are the best and further 
investigation is needed.

In this project, we used the true IBD values for parameter op-
timization with PLINK, not available with empirical data. We note 
that previous studies used WGS as the “gold-standard” and/or high 
coverage assembly data for parameters optimization (Duntsch 
et al., 2021; Meyermans et al., 2020; Mueller et al., 2022). Mueller 
et al., (2022) showed adapting parameters allow to get similar re-
sults between WGS and reduced genomic representations with 
smaller fractions of genomes: the authors used PLINK to call 
ROHs with RAD-sequencing, then tested ROHs calling with sev-
eral different settings for three individuals for which they also 
had WGS data and extracted the settings which best conserved 
the rank of inbreeding found with WGS. We want to stress that 
WGS data might not be available or might not result in accurate 
IBD segments detection as observed with our cattle population. 
Finally, varying settings need to be done with caution: different 
settings can increase the number of ROHs detected but also the 
likelihood of noncorrect calls and maybe bias the individuals in-
breeding ranking (Meyermans et al., 2020).

4.3  |  Estimation of FROH and FHBD

With WGS, both arrays and when a large portion of the genome is 
sequenced with RAD-sequencing, ranks of inbreeding were always 
conserved among individuals. Our results are consistent with Kardos 
et al. (2018) who showed (see Supporting Information) that FHBD es-
timated with 10,000 loci, and a home-made script based on a likeli-
hood ratio method (adapted from Pemberton et al., 2012), are similar 
to FHBD estimated with WGS in an inbred wild wolf population.

With RAD-sequencing, accurate results of the fraction of ge-
nome within IBD segments depends on the fraction of genome 
sequenced, which drastically differ between both softwares. 
RZooRoH required a fraction of the genome 11 times smaller com-
pared to PLINK for conserved ranking of inbreeding estimates 
among individuals. It is expected that model-based approaches 
perform better with low SNPs-densities as the distances between 
SNPs are taken into account in the model (Bertrand et al.,  2019). 
Hence, we strongly recommend RZooRoH when working with re-
duced genomic data. Nevertheless, when the SNPs density is suffi-
cient, the conservation of inbreeding ranks was observed with both 
softwares and is consistent with other studies: Duntsch et al. (2021) 
compared ROHs and HBD segments estimates from PLINK and 

RZooRoH with RAD-sequencing, a custom-made array and WGS 
in few hihi (Notiomystis cincta; a nonmodel bird species) individuals. 
They found conserved individual inbreeding ranks with all reduced 
representations.

In the cattle population and with both SNP arrays, FROH and FHBD 
estimates were lower than FIBD. The missing portion of inbreeding 
was coming from small IBD segments with more ancient coalescence 
events. Indeed, recent inbreeding is easier to capture: with lower 
marker density you are not able to capture small segments (Druet & 
Gautier, 2017). This is supported by Sole et al. (2017) who compared 
SNP arrays of different sizes in cattle and showed that all arrays cap-
ture the same levels of recent inbreeding but higher densities allow 
older inbreeding to be captured.

Inbreeding coefficients are used for inbreeding depression stud-
ies, which are key for understanding the evolution of populations 
and for conservation managements in endangered species (Lynch & 
Walsh, 1998). If the rank of individuals' F is conserved, it ensures that 
the direction of the correlation between inbreeding estimates and 
phenotypes (the sign of the regression slope), and thus the general 
effect of inbreeding on the trait, is correctly estimated. However, 
underestimating the inbreeding coefficients can lead to an overes-
timation of the magnitude of inbreeding depression (the regression 
slope absolute value will be steeper). We showed in Supporting 
Information that FHOM performed as well as model-based RZooRoH 
approach with similar SNPs densities. This last result is consistent 
with another study which showed that 5000 markers are suffi-
cient to obtain genomic kinship values similar to pedigree estimates 
(Goudet et al., 2018). Hence, we strongly advise to use SNP inde-
pendent measures (i.e., not based on IBD segments) or model-based 
HBD segments approaches for inbreeding studies when SNP density 
is low. However, it is important to keep in mind that FHOM can only 
be used if the number of individuals is large enough to allow correct 
estimation of the allelic frequencies.

4.4  |  Distribution of ROHs and HBD segments

Distribution of IBD segments are used to describe the demographic 
history of the populations (Ceballos et al., 2018; Kirin et al., 2010) 
as it is possible to link the length of an IBD segment to the number 
of generations back to the common ancestor (Thompson, 2013). 
Our study suggests that with both WGS and SNP arrays, length 
of ROHs and HBD segments values are correctly estimated. On 
the contrary, with RAD-sequencing, length of ROHs and HBD seg-
ments should not be trusted at low SNP densities, meaning that 
age estimation for these segments is currently impossible. In the 
cattle population and with WGS data, RZooRoH resulted in more 
accurate distribution of HBD segments compared to PLINK. This 
was not the case in the constant sizes population simulations. This 
difference is due to the more complex demographic history of the 
cattle population which underwent both a strong bottleneck and 
intense selective pressures. We hypothesize that the difference 
observed between both softwares is due to the way they handle 
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heterozygous SNPs. RZooRoH uses the probability of observing 
a heterozygous SNP in an HBD segment per base-pair, automati-
cally adapting the number of heterozygous SNPs allowed in an 
HBD segments to its size. This is not the case with PLINK. Hence, 
manually increasing the maximum number of heterozygous SNPs 
allowed in a ROH will merge small adjacent ROHs belonging to the 
same IBD segment into a larger one; but might also increase the 
number of false positives. Consequently, we advise researchers to 
use model-based approaches when working with populations with 
complex demographic history.

As we expect all the bias mentioned above to be similar among 
populations, relative comparisons between populations genotyped 
with the same sequencing method lead to reliable results as shown by 
Kirin et al. (2010): these authors used the HGDP data set genotypes 
(from 2009) with Illumina 650Y product and PLINK and compared 
distribution of ROHs among various human populations. The popu-
lations undergoing contemporaneous inbreeding such as West and 
South Asians and Oceanians harboured a higher fraction of genome 
within long ROHs while populations from central America harboured 
lower numbers of large ROHs but higher numbers of small ROHs, 
consistent with an history of ancient small effective population size. 
Similarly, Mastrangelo et al.  (2016) compared distribution of ROHs 
estimated with PLINK from three dairy cattle breeds genotyped with 
the “small array” (Illumina BovineSNP 50 beadchip) to compare the 
different breeds and to assess their inbreeding status. The authors 
found that Italian Holstein individuals harboured a high number of 
short ROHs suggesting that inbreeding in this breed is mostly caused 
by ancient relatedness within the population rather than recent mat-
ing between relatives. Individuals from two local breeds Modicana 
and Cinisara harboured a high number of large ROHs, suggesting re-
cent mating events between relatives. The authors concluded that 
the implementation of a monitored breeding programme aimed at 
reduced consanguinity was necessary in these local breeds.

With WGS, both SNP arrays and high SNPs density RAD-
sequencing, we obtained correct assignment of the genome within 
and outside IBD segments above 90%. The remaining incorrectly 
assigned regions correspond mostly to IBD segments with older 
coalescence times or segments in between adjacent IBD segments. 
This trend indicates that IBD regions are correctly detected with 
medium to high densities and thus suggests that they can be confi-
dently used for homozygosity mapping studies.

4.5  |  Effect of population size

Population size influenced the minimum proportion of genome re-
quired: the larger population required a smaller fraction of genome 
to obtain accurate IBD estimation. However, the larger popula-
tion harboured higher genetic variation and thus a higher number 
of SNPs. Consequently, we were more likely to have SNPs in the 
subsampled regions with RAD-sequencing. Since the simulations 
scheme forced mating between related individuals and since we 
performed a random stratified individual sampling independently 

of the effective size of the population, we do not expect distribu-
tion of IBD segments to reflect both populations “true” distributions. 
Consequently, in this study we cannot quantify the true effect of 
population size (other than the number of SNPs) on IBD segments 
detection. To disentangle these effects, one could vary the mutation 
rate so that both populations have similar SNP densities.

4.6  |  Limitations

We want to stress that the fractions of the genome sequenced 
used in the present study are indicative and do not correspond to 
“true” proportion of genome sequenced needed to obtain meaning-
ful results. They come from simulated data and this fraction will be 
lower after quality filtering with empirical data, especially for RAD-
sequencing and WGS where genotyping rates are lower. In addition, 
we did not include the effect of allele dropout when we simulated 
RAD-sequencing, which could influence the accuracy of IBD seg-
ments detection. Indeed, individuals heterozygous at restriction 
sites might appear homozygous which can bias further popula-
tion genetic inferences, especially in large populations (Arnold 
et al., 2013; Gautier et al., 2013). Finally, we did not include in this 
project the method for IBD segments detection based on the odds 
ratio comparison of the likelihood of the genotype if autozygous or 
allozygous (Broman & Weber, 1999; Pemberton et al., 2012) but we 
expect that this method can handle reduced genomic representa-
tions since it takes linkage disequilibrium into account.

4.7  |  Conclusion

Using simulated data, we compared FROH and FHBD estimates as well 
as distribution of ROHs and HBD segments to the true IBD (from 
simulated data and calculated as segments which coalesced less 
than 100 reproductive cycles ago). FROH and FHBD can be correctly 
estimated with all sequencing methods when the SNP density is 
above 22 SNPs per Mb with PLINK and above two SNPs per Mb 
with RZooRoH. With lower SNPs densities, FHOM, a genomic esti-
mate of inbreeding coefficients not based on ROHs, is as accurate 
as the model-based estimate, for a fraction of the computing time. 
We would therefore recommend using independent SNPs-based 
genomic estimates such as FHOM for inbreeding quantification with 
reduced genomic representation, unless the number of individuals 
analysed is too small to allow a correct estimation of the popula-
tion alleles frequency or mean coancestry. Regarding distribution 
of ROHs and HBD segments, even though the majority of the ge-
nome is correctly assigned within and outside IBD segments, both 
softwares failed to capture IBD segments with older coalescence 
times at low densities. This still allows comparing populations 
analysed with the same methodology but prevents comparing dis-
tribution of ROHs or HBD segments from studies using different 
reduced genomic methods. In addition, in a population with a more 
complex demographic history, only RZooRoH resulted in accurate 
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800  |    LAVANCHY and GOUDET

distribution of HBD segments with WGS data. To conclude, we 
find little advantages in using IBD segments-based estimates of 
inbreeding at low SNPs densities and show that only model-based 
approaches can be used for distribution of HBD segments quanti-
fication at such low SNP densities and in populations with complex 
demographic histories.
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Detecting inbreeding depression in structured 

populations 

Abstract 

Measuring inbreeding and its consequences on fitness is central for many areas in biology 

including human genetics and the conservation of endangered species. However, there is 

no consensus on the best method, neither for quantification of inbreeding itself nor for 

the model to estimate its effect on specific traits. We simulated traits based on simulated 

genomes from a large pedigree and empirical whole-genome sequences of human data 

from populations with various sizes and structure (from the 1,000 Genomes project). We 

compare the ability of various inbreeding coefficients (F) to quantify the strength of 

inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes 

which differ in the weight they attribute to each locus and two identical-by-descent 

segments-based estimators. We also compare two models: the standard linear model 

(LM) and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as 

random effect to account for the non-independence of observations. We find LMM give 

better results in scenarios with population or family structure. Within the LMM, we 

compare three different GRM and show that in homogeneous populations, there is little 

difference among the different F and GRM for inbreeding depression quantification. 

However, as soon as a strong population or family structure is present, the strength of 

inbreeding depression can be most efficiently estimated only if (i) the phenotypes are 

regressed on F based on a weighted version of the correlation of uniting gametes, giving 

more weight to common alleles and (ii) with the GRM obtained from an allele-sharing 

relatedness estimator. 

Introduction 

Inbreeding is the result of mating between relatives and is often associated with reduced 

fitness, a phenomenon called inbreeding depression (ID) and which was observed in 

many different species such as humans [43, 7], other animals [39, 18, 31, 17], and plants 

[51]. 

Many different methods have been developed for inbreeding quantification and there is 

no consensus on which one is the best [2, 6, 14, 36, 50, 52, 11]. The classical approach 



 39 

was first proposed by Sewall Wright in 1922 and makes use of pedigrees (called hereafter 

FPED) [47]. With the advances in sequencing technologies, genomic-based inbreeding 

coefficients (hereafter called Fgenomic) have been developed. Among these, some 

coefficients rely on the comparison between observed and expected heterozygosity such 

as FHOM [8, 40], the expected allele sharing between individuals such as FAS [52] or on 

the correlation between uniting gametes such as FUNI [48]. In addition to estimating the 

realized inbreeding coefficient and requiring no prior knowledge of the mating behavior 

of the population, these genomic estimates are simple and straightforward to compute 

and do not require whole-genome sequencing (WGS) data; a few thousand SNPs are 

usually sufficient for reliable inbreeding estimation in humans [14]. However, they also 

have a disadvantage: they usually require quadratic moments of allelic proportions 

(except for FAS) which are complex functions of sample allelic frequencies and 

coancestry coefficients [52] and can lead to biased estimates. Another inbreeding 

coefficient was proposed by McQuillan et al. (2008): FROH uses runs of homozygosity 

(ROHs), long homozygous stretches as a proxy for IBD segments within individuals [33]. 

A model-based approach relying on hidden Markov models (HMM) has also been 

developed for detecting IBD segments [28] by identifying homozygous-by-descent 

(HBD) segments. This model is the basis for many other model-based IBD segments 

detection methods such as BCFTools [35], BEAGLE [3] and RZooRoH [12]. The 

inbreeding coefficient estimated with these model-based approaches will be called FHBD 

from now on. One advantage of these methods is that they are not sensitive to poorly 

estimated allele frequencies, particularly in terms of rank of inbreeding conservation (i.e. 

which individuals are the most and less inbred), which can be very valuable when only a 

few individuals are available. However, it has been shown that these coefficients, and 

especially FROH, are sensitive to SNP density and parameters used, and there is no 

consensus on what is the most suitable set of parameters at present [34, 27]. 

How to quantify ID, although central to conservation genetics for decades [23, 11] (more 

details and references in the detailed introduction section in supplementary material), is 

still debated. This debate includes two sub-questions: which statistical model should be 

employed ? And which F ? Regarding the model, the classical approach consisted of 

using linear regression of the phenotypes on the inbreeding coefficient. However, other 

models have been utilized, such as Generalized Linear models (GLMs) with various link 

functions. In 2019, Nietlisbach et al. [36] compared different models and found that the 

common GLM models with logit link did not allow for accurate inbreeding depression 
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strength estimation. They propose using GLM with logarithm link functions. Ultimately, 

the type of model is largely dependent on the distribution of the trait. 

Regarding the choice of which F is more accurate for quantifying ID, many studies have 

demonstrated that Fgenomic yields better results than FPED [24, 4, 20, 15]. However, some 

studies found FUNI to be more accurate than FROH [50], while others found that FROH 

provided the best estimates of ID [24, 20, 36, 42]. In 2020, Caballero et al. [6] used 

simulations and included several populations with different histories: they found that the 

optimal F actually depends on how large the population is. FROH did a better job at 

quantifying ID in populations with small effective size while FUNI was better at predicting 

ID estimates in populations with large effective sizes. This result was later confirmed by 

Alemu et al. [2] who used SNP-array empirical cattle data for several groups of allelic 

frequencies and concluded that FUNI and FGRM (FI and FIII respectively in [48]) are 

better at quantifying homozygosity at rare alleles while FROH and FHOM are better for 

alleles at intermediate frequencies and correlate better with whole-genome 

homozygosity. Indeed, recessive deleterious alleles, which are thought to be responsible 

for inbreeding depression, should segregate at low frequencies in large populations as a 

result of negative selection. On the contrary, in small populations, drift can increase the 

frequency of deleterious recessive alleles to intermediate frequencies, making FROH and 

FHOM more suitable for detecting ID. Indeed, in the simulations conducted by Yengo et 

al. [50], rare alleles always caused negative effects on fitness (referred to as DEMA, for 

Directional Effect of Minor Alleles). The authors showed that FHOM (and thus FAS since 

they have similar properties) is sensitive to DEMA while FUNI and FROH are not. They 

also showed via simulations that all estimates of ID are somewhat sensitive to population 

structure, FUNI being the least affected. They recommend estimating ID using Linkage 

Disequilibrium (LD) score and Minor Allele Frequency (MAF) bins, and summing the 

ID estimates from these bins as an overall estimate of ID for the trait. 

In this paper we simulated traits based on both simulated and empirical WGS human data 

from populations with varying sizes and structure. We show that some F are more 

sensitive to population structure and DEMA than others. We confirm only some of Yengo 

et al. [50] results. Importantly, we show that accounting for the non-independence of 

observations with a mixed model via an allele-sharing based genomic relationship matrix 

(GRM) (rather than the standard GRM from GCTA) and using a modified version of FUNI 
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which gives more weight to common alleles resolves most of the issues raised by Yengo 

et al. [50]. 

Material and Methods 

All codes used in this manuscript can be found on GitHub. 

Simulated pedigrees 

We simulated a polygamous pedigree from a dioecious population with overlapping 
generations (hereafter called PEDIGREE) using custom R scripts. The population started 

from 500 founders (equal numbers of males and females) and followed a polygamous 

mating system: female fertilities per time interval were drawn from a Poisson distribution 

with parameter λ = 1, mortality rate per time interval was set to 0.5, and only 10% of the 

males were allowed to reproduce at each time step. Matings were recorded for 25 time 

steps, resulting in a pedigree of 11,924 individuals (over 25 time steps). 

In order to simulate the genotypes of the individuals, we proceeded in two steps. We used 
the mspms wrapper to the msprime software [22] to simulate the two haplotypes 

containing L = 650,000 loci for each founder individual. The L loci were uniformly 

distributed along a constant recombination map 20M long. For each reproduction event, 

the number of cross-overs was first drawn from a Poisson distribution and then randomly 

positioned along the genome. The non-founder genotypes were then obtained by drawing 

two gametes: one from each parent. For each gamete, the allele at the first locus is 

selected at random between the two alleles of the parent. The alleles at the next locus 

along the chromosome are copied from the chromosome with the chosen allele at the first 

locus until a recombination event occurs, at which point the alleles are copied from the 

other chromosome until the next crossing-over or the end of the chromosome. 

To investigate the effect of using more realistic smaller sample sizes, we subsampled 

2,500 individuals from the PEDIGREE population. We performed two types of 

subsampling: i) a random subsampling where individuals were subsampled completely 

randomly, ii) a stratified subsampling where we sought to retain the widest range of 

inbreeding coefficients in the subsampled population. Consequently, for this stratified 
subsampling individuals with 𝐹$!"#	≥ 0.2 were always included and individuals with 𝐹$!"# 

< 0.2 were randomly selected until the population reached the desired size. 100 replicates 

https://github.com/EluLava/DetectingID
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were performed for each subsampling. We also simulated smaller pedigrees (50, 100, 

250 and 500 individuals) with lower numbers of founders (8, 16, 40, 80 respectively). 

1,000 genomes 

In order to extend our conclusions to smaller sample sizes and populations with stronger 

structure (which are common in wild and/or endangered species), we used empirical data 

from phase 3 from the 1,000 Genomes project [44]. We considered i) a small sample 

from a homogeneous population with a small effective size represented by 504 

individuals from the super-population with East-Asian ancestry (EAS), ii) a small sample 

from a population with some admixture and larger effective population sizes represented 

by 661 individuals from the super-population with African ancestry and admixed 

individuals (AFR) and finally iii) a larger sample from a population with larger effective 

size and with strong genetic structure (global FST = 0.083) comprising all the 2,504 

individuals (hereafter called WORLD) and represented by five super-populations: 

individuals with East-Asian ancestry (EAS), African ancestry (AFR), European ancestry 

(EUR), admixed American ancestry (AMR) and finally South-Asian ancestry (SAS). A 

more detailed description of the samples can be found at the 1,000 Genomes Project 

website. To extend our findings to even smaller sample sizes, we subsampled 

the WORLD populations to 50, 100, 250, and 500 individuals. In each subsampling, 

we ensured that the entire range of F was covered and that similar numbers of 

individuals were subsampled from each continent. 

Simulated traits 

We simulated traits based on equation 1 following [50]: we consider a trait y whose 

phenotype is partly determined by the genotypes at Lc causal loci with h2 = 0.8. We 

assume these loci to be bi-allelic, with one allele encoding for an increase in the trait 

value (the plus allele) and the other encoding for a decrease in trait value (the minus 

allele). Dominance was also considered since inbreeding depression (ID) occurs only if 

there is directional dominance: when heterozygotes at loci encoding for the trait are closer 

on average to the homozygote for the plus allele [30]. If gene effects are purely additive 

or if dominance is not directional, there is no ID. Finally, we assume no epistasis between 

loci and no genotype-environment interaction. 

https://www.internationalgenome.org/
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For individual j, 𝑦% is the individual trait value (its phenotype), calculated as the sum of 

allelic and genotypic effects over causal loci, an environmental effect and µ, the average 

trait value among all individuals. At locus l, 𝑥%& is the minor allele count (MAC) ∈

	{0, 1, 2} of individual j. 𝑎& represents the additive effect size of the alternate allele at 

locus l. 𝑑& is the dominance effect size, the deviation of the heterozygous genotype from 

the mean of the two homozygotes. Finally, 𝜖% is the environmental contribution to the 

phenotype of individual j, drawn from a normal distribution. 

𝑦% = 𝜇 + ∑ 𝑥%&𝑎&'(
&)* + ∑ 𝑥%&'(

& 32 − 𝑥%&5𝑑& + 𝜖% (1) 

The strength of inbreeding depression b was set to −3 in all simulations, as in Yengo et 

al. [50]. The value corresponds to an average reduction in trait value of 0.75 standard 

deviation for an offspring resulting from a mating between siblings. 

We used equation 1 to simulate traits with varying architectures. To avoid causal markers 

with extremely low frequencies, we first excluded loci with MAF ≤ 0.01 for both the 

EAS and AFR populations and loci with MAF ≤ 0.001 for both the PEDIGREE and 

WORLD populations. We then simulated traits using 1,000 randomly chosen SNPs (after 

MAF filtering). We initially drew both the raw (i.e. unscaled) additive effect sizes of the 

alternate allele and the raw dominance effect sizes from a uniform [0, 1] distribution 

(other distributions were explored with almost no effect on the results (results not 

shown)). As we expect alleles causing ID to be counter selected and thus removed or 

maintained at a low frequency (proportionally to their detrimental effect), the raw effect 

sizes were scaled inversely to MAF 𝑎% 	= 	 𝑟𝑎𝑤+%/𝑝% to mimic negative selection. We 

also scaled the dominance effects inversely to the locus expected heterozygosity 𝑑% 	=

	𝑟𝑎𝑤,%/(2𝑝%(1 − 𝑝%)). In addition, we attributed the same sign to the effect sizes of all 

minor alleles in order to include what Yengo et al. [50] called Directional Effect of Minor 

Alleles (DEMA) [50]. However, in order to investigate the effect of the parameters 

mentioned above, we also simulated traits where the additive and dominance effect sizes 

were left unchanged 𝑎% 	= 	 𝑟𝑎𝑤+% and 𝑑% 	= 	 𝑟𝑎𝑤,% and without DEMA. A summary of 

all the simulated scenarios can be found in table S1. In addition, graphical representation 

of the additive effect sizes and dominance coefficients distribution under these different 

scenarios can be found in figure S1. 
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Individuals inbreeding coefficients 

We estimated individual inbreeding coefficients using several methods whose properties 

were recently described in detail in Zhang et al. [52]. Regarding the figures and tables 

presented in the main text, we do not filter on MAF for any of the F estimates. We use 

one allele-sharing-based estimator of inbreeding, hereafter called FAS and described in 

[46, 52]: 

𝐹-.! =
∑ 0-!"1-#"2
$
"%&
∑ (*1-#")$
"%&

(2) 

where 𝐴%& indicates the identity of the two alleles an individual j carries at locus l: one for 

homozygous and 0 for heterozygous and 𝐴.& is the average allele sharing proportion at 

locus l for pairs of individuals j, k, j ≠ k. 

Then, we compare two versions of FUNI (initially described in [48]) and which measure 

the correlation between uniting gametes. The first version (hereafter called 𝐹!"#5  is the 

original FUNI [48] measured as the average of ratios over SNPs (which attributes equal 

weight (1/L) to all loci and results in loci with rare alleles having larger influence on the 

estimated F): 

𝐹UNIj
5 = *

'
∑

6!"
' 1(*789")6!"789"

'

89"(*19")
'
&)* (3) 

Similarly to equation 1, 𝑥%& 	 ∈ 	 {0, 1, 2} is the MAC of individual j at locus l and 𝑝& is the 

derived allele frequency at locus l. 

The second version (hereafter called 𝐹!"#$  is a modified version of FUNI which measures 

the ratio of averages (rather than the average of ratios) and thus gives more weight to loci 

with larger expected heterozygosity (i.e. with MAF close to 0.5). We are not aware of 

other investigations using the ratio of averages estimator 𝐹!"#$  in the context of ID 

estimation. 

𝐹UNIj
$ =

∑ :6!"
' 1(*789")6!"789"

';$
"%&

∑ 89"(*19")$
"%&

(4) 

We also used four Identical-by-descent (IBD) segments-based F. We identified runs of 

homozygosity (ROHs) with PLINK [40] and default parameters. We also modelled 
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Homozygous-by-descent (HBD) segments with BCFTools [35]. For both methods, we 

selected ROHs or HBD segments based on their size: either larger than 100Kb: 

FROH.100KB and FHBD.100KB or larger than 1Mb: FROH.1MB and FHBD.1MB. For both 

methods the inbreeding coefficients were simply estimated as the fraction of genome 

falling within ROHs or HBD segments. 

Finally, in the PEDIGREE population, we used the pedigree-based inbreeding 

coefficient: FPED [47]. 

All inbreeding coefficients were estimated separately for each population of the 1,000 

Genomes Project (EAS, AFR, WORLD) and using only the polymorphic SNPs in each 

population and population-specific allelic frequencies (for both FUNI). Consequently, 

the same individual might have different Fgenomic in the EAS and the WORLD population. 

This influenced only trivially the IBD segments-based inbreeding coefficients (FROH and 

FHBD) but influenced greatly FAS (though the rank of inbreeding among individuals was 

perfectly conserved) and both FUNI (for which the rank of inbreeding among individuals 

was not conserved). Comparison among the different inbreeding coefficients per 

population can be found in supplementary material (figures S2 – S5). More details can 

be found in [52]. 

Estimation of inbreeding depression: b 

We estimated the strength of ID (hereafter defined as b) using two different models. In 

the first model, b was estimated as the slope of regression of phenotypes on the different 

inbreeding coefficients with a classical linear model (LM): 

𝑏'<> = 𝐶𝑜𝑣(𝑌, 𝐹)/𝑉𝑎𝑟(𝐹) (5) 

where Y is the vector of trait values and F is the vector of individual inbreeding 

coefficients estimates. 

In the second model, we estimate b as the fixed effect coefficient associated with the 

inbreeding coefficient in the following linear mixed model (LMM): 

𝑌 = 	𝑏𝑋	 + 	𝜔 + 	𝜖 (6)
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where Y is the vector of trait values, X is a matrix with two columns, the first containing 

ones and the second the individual inbreeding coefficients, ω is the random component 

of the mixed model with ω ∼ N (0, τ K), K being the genomic relationship matrix (GRM) 

and τ the additive variance component. Finally, ϵ is the individual residual variance and 

is defined as ϵ ∼  σ2 In. From this, b is estimated as follows: 

𝑏'<<G = (𝑋=𝑉1*𝑋)1*𝑋=𝑉1*𝑌 (7) 

with V = τ K + σ2In [10]. We compared three GRMs we estimated using all loci (no 

MAF filtering). The first mixed model included a GRM derived from allele sharing [14], 

hereafter called LMMAS. We used the R Hierfstat [13] package to estimate K and 

the R gaston package [1] to estimate V and b. We could not use GCTA  software to run 

the mixed model for this GRM because its leading eigenvalue is negative which the 

Choleski decomposition algorithm used for matrix inversion in GCTA cannot handle (it 

requires a positive definite matrix), while the Schur decomposition algorithm used in 

gaston can. We note that the standard GRM is not positive definite (one eigenvalue is 

0), but the matrix to invert in the mixed model is not the GRM itself but V = τ K + σ2In 

which becomes positive definite and can be inverted if the heritability is smaller than 

one. 

The second mixed model used the GCTA weighted GRM matrix [14, 45]. Similarly to 

𝐹!"#$ , this matrix uses the ratio of averages. For this model, we used GCTA and the R 

SNPrelate package to estimate the GRM. We then used the R gaston  package for 

estimating V and b with the LMM. 

Finally, the third mixed model used the GCTA unweighted GRM matrix [48] which 

(similarly to 𝐹!"#5 ) utilizes the average of ratios and thus gives equal weight to all loci. 

For this model, we used GCTA to estimate the GRM. We then estimated V and b with the 

LMM implemented in the R gaston package. 

Note that the Average Information-Restricted Maximum Likelihood (AIREML) fitting 

method we used in the LMM is an iterative procedure and should result in unbiased 

estimates. In some cases, the model did not converge and gave highly biased b. For each 

scenario, regression model and population, the number of replicates which did not 

converge can be found in tables S7 – S9. 



 47 

Application to an empirical dataset 

A metapopulation of house sparrows (Passer domesticus) from several islands in 

Northern Norway has been monitored since 1993 and Niskanen et al. [38] investigated 

inbreeding depression on several traits and made available phenotype and genotype data 

on more than 3,100 adult individuals. The data set is ideal to illustrate our method as 

individuals belong to different islands, the data contains slight genetic structure and some 

individuals are highly related (see supplementary materials for further details). 

We used only morphological phenotypes, as they can be analyzed with Linear Models. 

We removed information from non-autosomes (scaffold 32) but otherwise kept all SNPs 

for both 𝐹!"#$  and the GRMAS estimations to avoid biases when filtering for minor allele 

frequencies and LD [46]. We filtered out individuals who were not present as adults in 

one of the eight studied islands, as done in the original analysis [38]. The data set used 

for analysis contained 1,786 individuals genotyped at 181,529 SNPs. We compared the 

results of a simple LM with Sex and 𝐹!"#$  as explanatory variables, to the LMMAS model 

with Sex and 𝐹!"#$  as fixed effects. We also present two additional linear mixed models: 

one with island and year nested in island as random effects, as done in the original article, 

and a “full” mixed model with all the random effects mentioned above. Linear models 

were carried out with the lm function of R, while the mixed models were carried out with 

the lmer function of the lme4 package or the lmm.aireml function of the gaston 

package if the model contained a GRM. To test if b, the slope associated with 𝐹!"#$  was 

significantly different from 0, we used the score.fixed.linear function of the gaston 

package. 

Results 

All the figures presented in the main text picture the scenario where alleles additive effect 

sizes and dominance coefficients are proportional to MAF and where there is a directional 

additive effect of minor alleles (DEMA) (i.e. the ADD & DOM & DEMA scenario from 

table S1) (see figure S1). The results for the other scenarios are shown and discussed in 

supplementary material (figures S10 – S17, tables S3 – S6). 
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Simulated pedigrees 

Figure 1 presents the inbreeding depression (ID) strength estimates (b, see the methods 

section) for the different inbreeding coefficients (F), with two regression models in the 

PEDIGREE populations. The first column shows b estimated with the simple LM and 

the second column shows b estimated with LMM including the allele-sharing GRM as a 

random factor (LMMAS). The first row shows results for the complete PEDIGREE 

population (n = 11,924). The second row shows results for a reduced sample size of the 

PEDIGREE population (n = 2,500, meant to match the size of the 1KG WORLD 

population) where subsampled individuals were chosen completely randomly. The third 

row also shows results for a reduced sample size of the PEDIGREE population (n = 

2,500) but these individuals were selected to represent the entire spectrum of inbreeding 

values. The violin plots show b estimates distributions among the simulation replicates 

(100 replicates for the complete population, 10,000 replicates for both subsampled 

populations). The solid dark grey line is the true strength of ID (b = -3). The dashed red 

line represents the absence of ID (b = 0), indicating that ID was not detected in any 

replicate above this line. Root mean square error (RMSE) values associated with both 

models and populations are shown in table 1. Strikingly, in the PEDIGREE population, 

all F resulted in a biased estimation of b with the simple LM, whatever the sample size 

(figure 1, panels A, C and E; table 1). The inclusion of a GRM matrix as a random factor 

allowed for the correction of non-independence of observations and greatly improved b 

estimation (figure 1, panels B, D, and F; table 1). In the complete PEDIGREE population, 

we see little difference between the three GRMs we tested (1, panel B vs figure S6, panels 

A and B; table 1): all F yielded efficient (we use efficient to describe an estimate with 

low RMSE, thus which is unbiased and has low variance) estimates of b when used inside 

a LMM, except for 𝐹!"#5  that slightly overestimates the strength of ID while FPED slightly 

underestimates it. This suggests that large sample sizes (here 11,924 individuals) 

combined with a mixed model allow efficient ID estimation regardless of the F used. The 

three mixed models, however, perform less efficiently when the sample size is reduced, 

as we demonstrate with both subsampled PEDIGREE populations (n = 2,500): many 

replicates produced estimates above zero for b (figure 1, panels D and F; figure S6, panels 

C to F; table 1). RMSE were particularly large for FPED, FHBD.100KB and FROH.100KB with 

the mixed model using the unweighted GCTA GRM matrix (LMMGCTAu) (figure S6, panel 

D; table 1) but that is because most subsampled individuals FPED, FHBD.100KB and 

FROH.100KB were close to zero. Additionally, increasing the variance of subsampled 
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individuals’ F (i.e. ranged subsampling) led to better estimates of b with reduced variance 

among replicates compared to random subsampling (figure 1, panels D vs F: figure S6, 

panels C vs E and D vs F, table 1). In order to assess the performance of the different 

models with even smaller sample sizes, which are common for wild and non-model 

species, we simulated pedigrees with 50, 100, 250, and 500 individuals (figure S7). With 

all sample sizes, the simple LM produces biased estimates (figure S7, panels A, E, I, and 

M). Including a GRM improved the estimation of b, but not as well as it did for large 

sample sizes (figure S7, panels B, C, D, F, G, H, J, K, L, N, O and P). The lowest RMSE 

was obtained with LMMAS, but the difference with both GCTA-based GRMs was 

marginal. 
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Figure 1: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and two models in the PEDIGREE population. Each column represents a regression model. The first 
column depicts the simple linear regression (LM) (panels A, C and E) and the second column depicts the 
linear mixed model with the allele sharing relatedness matrix as a random component (LMMAS) (panels B, 
D and F). The first row represents the complete simulated population (11,924 individuals, panels A and 
B). The second row shows the random subsampling (2,500 individuals, panels C and D). The third row 
shows the ranged subsampling (2,500 individuals, panels E and F). Inbreeding estimates presented in this 
graph are FPED, FAS, 𝐹()*+ , 𝐹()*, , FHBD.100KB, FROH.100KB, FHBD.1MB and finally FROH.1MB. For panels A and B, 
violin plots show the distribution of the inbreeding depression strength estimates (b) among the 100 
simualtion replicates. For panels C to F, violin plots represent the distribution of the inbreeding depression 
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strength estimates (b) for the 10,000 simulation and subsampling replicates (100 subsampling replicates 
for each of the 100 simulation replicates). The solid dark grey line is the true strength of ID (b = -3). The 
dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate 
above this line. Note that all panels are in log10 scale. 

Table 1: RMSE on b estimate in the PEDIGREE population. These values are for the complete ADD & 
DOM & DEMA scenario. See tables S3 – S6 for the other scenarios. 

Model PEDIGREE FPED FAS 𝑭𝑼𝑵𝑰𝒖  𝑭𝑼𝑵𝑰𝒘  FHBD.100KB FROH.100KB FHBD.1MB FROH.1MB 
LM Complete 34.82 22.71 10.17 4.17 19.93 22.22 17.4 17.4 
LMMAS Complete 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11 
LMMGCTAW Complete 1.62 1.27 1.89 0.87 1.07 1.12 1.11 1.11 
LMMGCTAU Complete 1.58 1.28 1.85 0.88 1.08 1.12 1.08 1.08 
LM Random sub 33.84 22.20 10.41 4.47 19.53 21.72 17.24 17.28 
LMMAS Random sub 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57 
LMMGCTAW Random sub 4.01 2.97 3.82 1.83 2.57 2.73 2.56 2.57 
LMMGCTAU Random sub >1,000 2.75 3.44 1.78 > 1,000 > 1,000 > 1,000 > 1,000 
LM Ranged sub 15.22 11.04 3.46 1.61 9.58 10.52 8.13 8.15 
LMMAS Ranged sub 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58 
LMMGCTAW Ranged sub 2.09 1.82 2.13 1.26 1.61 1.67 1.58 1.58 
LMMGCTAU Ranged sub >1,000 1.69 2.05 1.24 > 1,000 > 1,000 1.53 1.54 

1,000 Genomes Project (1KG) 

Figure 2 illustrates the estimates of ID strength (b) for the different inbreeding 

coefficients (F), when using either a LM or a LMM for two subsets of the 1,000 Genomes 

Project: EAS and AFR, as well as for the entire world population. It has the same 

structure as figure 1. Root mean square error (RMSE) values associated with both models 

and populations can be found in table 2. Interestingly, we see little difference between 

LM and LMM and the different GRMs when there is no structure among the samples 

even with small sample sizes (EAS: figure 2, panel A and B vs figure S8, panels A and 

B; table 2; AFR: figure 2, panel C and D vs figure S8, panels C and D; table 2). Similarly 

to what was observed for the PEDIGREE population, when some structure exists 

(population structure in the WORLD population compared to family structure in the 

PEDIGREE population), the simple LM fails to accurately estimate the strength of ID, 

regardless of the F (figure 2, panel E; table 2). In contrast to the pedigree population 

showing no difference between the three GRMs (figure 1 and figure S6), the most 

efficient estimates of b are obtained only with the LMMAS model and with 𝐹!"#$  in the 

highly structured WORLD population (figure 2, panel F vs figure S8 panels E and F; 

table 2). In fact, the models including the GCTAw and GCTAu matrices cannot efficiently 

estimate b with any of the inbreeding coefficients: even though b with 𝐹!"#$  are unbiased, 

the variance is very large (panel F; figure S8, table 2). In addition, several replicates did 

not converge when both GCTAw and GCTAu models were used which was never the case 
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with the GRMAS. Numbers of such replicates are indicated in the figures’ legend and in 

supplementary tables S6 – S8. Similarly to what was done for the PEDIGREE 

population, we subsampled individuals from the WORLD population to test the different 

models with smaller sample sizes (50, 100, 250 and 500, as shown in figure S9). The 

results are very similar to those observed in the large WORLD population. 

Unsurprisingly, the simple LM fails to adequately quantify inbreeding depression with 

all sample sizes (figure S9 panels A, E, I and M), and the most effective estimation of b 

is obtained using LMMAS and 𝐹!"#$ . (figure S9 panels C, G, K and O). Both GCTA-based 

models completely fail to accurately quantify b with any F (figure S9 panels C, D, G, H, 

K, L, O and P). 
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Figure 2: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and two models in the three populations from the 1,000 Genomes project. Each column represents a 
regression model. The first column depicts the simple linear regression (LM) (panels A, C and E) and the 
second column depicts the linear mixed model with the allele-sharing relatedness matrix as a random 
component (LMMAS) (panels B, D and F). The three rows correspond to the three populations from the 
1,000 Genomes project: EAS on panels A and B, AFR on panels C and D and WORLD on panels E and 
F. Inbreeding estimates presented in this graph are FAS, 𝐹()*+ , 𝐹()*, , FHBD.100KB, FROH.100KB, FHBD.1MB and 
finally FROH.1MB. Violin plots show the distribution of the inbreeding depression strength estimates (b) 
among the simulation 100 replicates. The solid dark grey line is the true strength of ID (b = -3). The dashed 
red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above 
this line. Note that all panels are in log10 scale. 
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Table 2: RMSE on b estimate in the three 1,000 Genomes Project populations: EAS, AFR and WORLD. 
These values are for the complete ADD & DOM & DEMA scenario. See tables S3 – S6 for other scenarios.  

Model 1 KG FAS 𝑭𝑼𝑵𝑰𝒖  𝑭𝑼𝑵𝑰𝒘  FHBD.100KB FROH.100KB FHBD.1MB FROH.1MB 
LM EAS 5.55 4.9 4.86 7.14 7.93 6.19 10.58 
LMMAS EAS 5.67 4.68 4.64 7.41 8.22 6.12 10.39 
LMMGCTAW EAS 5.67 4.68 4.64 7.28 8.06 6.11 10.39 
LMMGCTAU EAS 5.48 4.74 4.71 7.1 7.87 6.18 10.57 
LM AFR 5.93 4.81 4.81 6.03 7.21 17.21 13.12 
LMMAS AFR 5.15 4.07 4.07 5.46 6.2 7.15 13.1 
LMMGCTAW AFR 5.15 4.07 4.07 > 1,000 > 1,000 7.16 13.1 
LMMGCTAU AFR 5.78 4.42 4.42 5.92 6.93 7.2 13.11 
LM WORLD 32.91 142.95 62.21 67.42 59.15 107.67 169.73 
LMMAS WORLD 8.63 8.34 4.17 9.15 10.97 8.78 14.6 
LMMGCTAW WORLD 9.84 > 1,000 > 1,000 11.19 13.92 > 1,000 > 1,000 
LMMGCTAU WORLD 18.18 > 1,000 > 1,000 27.52 26.91 > 1,000 > 1,000 

Comparing inbreeding coefficients 

With both the LM and LMMAS models in the three populations from the 1,000 Genomes 

Project (EAS, AFR and WORLD, panels A – F) and for the LM in the PEDIGREE 

population, FAS is consistently underestimating the strength of ID, particularly when there 

is strong structure (WORLD: figure 2, panels E and F). It is because DEMA is included 

in the model and strongly influences the quantification of ID by FAS. In the absence of a 

DEMA, FAS produces efficient estimates (figures S10 – S13). In addition, FAS is sensitive 

to the dominance effects being proportional to MAF but to a lesser extent and in the 

opposite direction (Figure S10 vs. Figure S11). Concerning the other SNP-based F, 𝐹!"#5  

is constantly overestimating the strength of ID and is the most sensitive to population 

structure: its variance is much larger compared to 𝐹!"#$  in the structured WORLD 

population and with all models (figure 2, panel F; table 2). Interestingly, the variance of 

𝐹!"#5  is affected only when allele effect sizes and/or dominance coefficients are 

proportional to MAF, but not by DEMA (Figures S10 – S17). In contrast, 𝐹!"#$  is the 

least sensitive to allele effect sizes or dominance coefficients proportional to MAF and 

DEMA (figures S10 – S17), which makes it the most appropriate F for estimating ID 

(figure 2, panel F; table 2). Since the difference between 𝐹!"#5  and 𝐹!"#$  is the weight 

given to rare and common alleles, we conducted the same analyses (including the re-

estimation of both F and GRMs estimation) on the WORLD population but excluding 

loci with MAF > 0.05 and showed that there is no difference between both 𝐹!"# when 

rare alleles are removed (figure S18). Concerning the F calculated from ROHs and HBD 

segments, there is not much difference between PLINK and BCFTools except for the 

variance among b estimates, which is slightly smaller with BCFTools compared to 
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PLINK (figure 2, panels A – F; table 2). In addition, focusing on recent inbreeding by 

including only large segments (here larger than 1MB) yielded better results in the 

WORLD population (figure 2, panel F). Since BCFTools is a model-based approach, 

there is no mandatory length requirement for HBD segments. In light of this, we also 

estimated FHBD based on HBD segments without any size restrictions, and the results are 

similar to those obtained using FHBD.100KB (figure S19). We also quantified inbreeding 

depression with ROHs and HBD segments larger than 5MB but it did not improve the 

estimation of b (figure S19). 

Comparing genetic relatedness matrices 

Since we identified 𝐹!"#$  as the best inbreeding coefficient to quantify ID, figure 3 

contrasts the four different models for this coefficient in the four populations: each panel 

corresponds to one population. As mentioned above, there is almost no difference among 

the different GRM matrices in the extremely large complete PEDIGREE population 

(figure 3, panel A; table 1) and between any of the models in the two homogeneous 

populations (EAS and AFR) (figure 3, panels B and C; table 2). However, in the highly 

structured WORLD population, LMMAS gives the most efficient result due to its smaller 

variance and RMSE (figure 3, panel D; table 2). 
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Figure 3: Comparison of the inbreeding depression strength estimates (b) with 𝐹()*,  in the four populations 
with four different models. The four models are: i) the simple linear regression (LM), ii) the linear mixed 
model with the allele sharing relatedness matrix as a random factor (LMMAS), iii) the linear mixed model 
with the weighted GCTA relatedness matrix as a random factor (LMMGCTAw), and iv) the linear mixed 
model with the unweighted GCTA relatedness matrix as a random factor (LMMGCTAu). Panel A shows the 
simulated PEDIGREE population, panel B the EAS population, panel C the AFR population and finally 
panel D the WORLD population. Note that all panels are in log10 scale. Also note that LMM did not 
converge for some replicates (yielding estimated b values above 1,000 or below -1,000, not shown in the 
graph). Percentages of replicates which did not converge: panel D (WORLD): 21% for GMRGCTAw 20% 
for GRMGCTAu. 

Distribution of additive and dominance effects 

We found a difference between the three linear mixed models only because the scenario 

presented in the main text includes effect sizes and dominance coefficients proportional 

to causal markers’ MAF as well as DEMA. When none of these three parameters are 

included, there is little difference between the three linear mixed models (figure S10, 

panels B, F, J, N vs panels C, G, K, O vs panels D, H, L, P; tables S3 – S6). Additional 

simulations were conducted without additive and dominance coefficients proportional to 
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loci’s MAF and DEMA to assess their impact on ID detection. The individual and 

pairwise effects of additive and dominance coefficients being proportional to MAF and 

DEMA (the other scenarios of table S1) are explored and discussed in details in 

supplementary material and figures S10 – S17. 

Finally, we also investigated i) the effect of the LDMS stratification method proposed by 

Yengo et al. [50] (figures S10 – S17) but found that it improves results only with the 

simple LM and ii) the effect of using intermediate frequencies causal loci (figure S20) 

which reduced the variance in b estimates for all inbreeding coefficients. 

Application to empirical data 

As an illustration of our method, we analyzed adult mass and bill depth of a 

metapopulation of house sparrows in northern Norway using a dataset from Niskanen et 

al. [38] (analyses for other morphological traits are given in supplementary material). 

For mass (table 3), the slope associated with 𝐹!"#$  is b = −2.39 and its associated p-value 

= 0.02 in the simple LM. The models the authors of the paper used [38] is a linear mixed 

model with the island and year nested in islands as random effects and results in b = 

−1.98 and a associated p-value = 0.05. Using only GRMAS as a random effect makes the 

slope steeper and more significant: b = −2.86, p-value = 0.007. If we include the GRMAS, 

the island and year nested in island (the full model), the results are very similar: b = 

−2.85, p-value = 0.006. For bill depth, the slope associated with 𝐹!"#$  is positive (table 3) 

and significant for the LM (b = 0.27, p-value = 0.039), which suggests the presence of 

outbreeding depression for this trait. With the LMMAS, however, the slope is shallower 

and not significant (b = 0.22, p-value = 0.106). Including islands and years (nested in 

islands) as random effects show a similar pattern and the full model makes the slope for 

𝐹!"#$  shallower and its p-value larger. 
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Table 3: Analysis of adult mass and bill depth from 1,786 adult sparrows. LM: simple linear model with 
Sex and 𝐹()*,  as explanatory variables. LMMAS: linear mixed model with sex and 𝐹()*,  as fixed effects 
and GRMAS as random effect. LMM: linear mixed model with sex and 𝐹()*,  as fixed effects and island 
and year nested in island as random effects. LMMFULL: linear mixed model with sex and 𝐹()*,  as fixed 
effects and island, year nested in island and GRMAS as random effects. VI: variance component of island 
effect; VY:I: variance component for year nested in island; VA: additive variance; VE: residual variance; PF: 
p-value for the slope b of 𝐹()*,  to be 0. 

Mass Int. Sex F VI VY:I VA VE PF 
LM 33.0 -1.39 -2.39    4.59 0.02 
LMMAS 34.3 -1.41 -2.86   1.56 3.02 0.007 
LMM 32.9 -1.38 -1.98 0.15 0.27  4.27 0.050 
LMMFULL 34.3 -1.40 -2.85 0.01 0.17 1.45 2.92 0.006 
         
Bill depth Int. Sex F VI VY:I VA VE PF 
LM 8.1 0.04 0.27    0.08 0.039 
LMMAS 8.1 0.03 0.22   0.04 0.04 0.106 
LMM 8.1 0.04 0.24 0.00 0.01  0.07 0.068 
LMMFULL 8.1 0.03 0.23 0.00 0.01 0.04 0.04 0.084 

Discussion 

By analyzing the phenotypes of a large simulated pedigreed polygamous population with 

strong family structure as well as subsets of the 1,000 genomes project [44], we 

demonstrated that, despite population or family structure, inbreeding depression 

estimates can be efficiently estimated if the data are analyzed with a mixed model 

including the genomic relationships among individuals as a random effect. While the use 

of a relationship matrix as a random factor in mixed models for quantitative genetics 

analyses is standard [30], and genomic relationship matrices (GRMs) have been used for 

the estimation of heritability [48, 25, 49, 19] and in GWAS [9, 48, 29, 26, 16, 19] for a 

long time, the application of LMM including GRMs to quantify inbreeding depression is 

seldom used (In 2012, McQuillan and collaborators [32] employed the GenABEL R 

package developed for GWAS in order to run inbreeding depression models including an 

IBD-based kinship matrix; we did not discover any follow-up papers using a similar 

approach until Nishio et al. [37] who used the GCTA-based GRM in 2023, although 

Stoffel et al. [41] used a model with breeding values as random effects). To our 

knowledge, we are the first to evaluate the ability of the LMM approach (including 

different GRMs) to quantify ID and compare it to the classical LM. First, we show that 

for most scenarios, ID is better estimated with LMM than with a simple LM and secondly, 

compared to other GRMs in LMM, the allele-sharing based GRM provides the most 

efficient results, especially for small sample sizes and samples with a high family or 
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population structure. In addition, among the several inbreeding estimators tested 𝐹!"#$  

proved to be the most reliable coefficient to quantify inbreeding depression. 

We observed trivial differences among the different models when there is no population 

structure (i.e. in the EAS and AFR populations). However, as soon as there is some 

structure (the WORLD and PEDIGREE populations) the classical linear model (LM) 

completely fails to estimate b regardless of the inbreeding coefficient used. This result is 

concordant with Yengo et al. (2017) [50] where the authors quantified ID using a simple 

linear model and demonstrated that FHOM (whose properties are very similar to FAS), 𝐹!"#$  

and two different FROH were sensitive to population structure. As for the comparison of 

three linear mixed models (LMM), they perform equally when the population structure 

is weak (EAS and AFR) and with very there is large sample sizes (11,924 individuals 

from the complete PEDIGREE population). Although samples of this size are common 

for research on humans, they will seldom be found in wild populations. We therefore 

subsampled the PEDIGREE population to 2,500 individuals in order to investigate the 

effect of a smaller sample size and the range of inbreeding of the samples. We used two 

types of subsampling: i) random subsampling where individuals were chosen completely 

randomly and ii) ranged subsampling where individuals were chosen to maximise the 

range of F in the sampled population. As expected, when we subsampled individuals 

from the PEDIGREE population, RMSE values associated with b estimation increased 

slightly for both LMMAS and LMMGCTAw mixed models and we failed to detect ID in 

some replicates. Accordingly, even with 2,500 individuals, we lack power and several 

thousands of individuals would be required to detect ID efficiently as Keller et al. and 

Caballero et al. previously pointed out [23, 5]. With the LMMGCTAu mixed model, all 

inbreeding coefficients but FAS and FUNI had convergence issues, suggesting that the 

LMMGCTAu mixed model is the least robust of the three mixed models. As expected, 

randomly subsampling individuals lead to a larger variance of b estimates compared to 

the ranged subsampling scheme, indicating that maximizing the variance of samples’ F 

improves the estimation of b, although it is not obvious how such sampling could be done 

in non-monitored natural populations. It is unlikely that the sample sizes we used (2,500 

individuals) will be found in many wild species, particularly in endangered populations 

where monitoring inbreeding and inbreeding depression is critical. Therefore, we re-

simulated small pedigrees (of 50, 100, 250, and 500 individuals). Interestingly, all three 

LMM models were almost as efficient with small sample sizes as they were with 

pedigrees that were subsampled but the simple LM completely failed to accurately 
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estimate b. In part, this can be attributed to the relatively weak familial genetic structure 

(the PEDIGREE population has relatively weak family structure compared to the 

WORLD strong population structure). Additionally, the sampled individuals are highly 

inbred which makes the detection of inbreeding depression easier. 

When we add a strong population structure in addition to small sample size (2,504, 500, 

250, 100 and 50 individuals) from the highly structured WORLD population), we observe 

striking differences between the three different GRMs. The linear mixed model including 

the allele-sharing based GRM (LMMAS) resulted in the most efficient estimations of b. 

In addition, the mixed models with both GRMGCTAu and GRMGCTAw did not converge for 

a high percentage of replicates (compared to 0% for LMMAS) emphasizing that LMMAS 

is the best model for quantifying inbreeding depression in highly structured populations 

and that it can also be applied to small sample sizes. This is because the allele-sharing 

based GRM matrix is a better estimator of kinship compared to both GCTA matrices [14, 

46]. Indeed, what the GRMAS estimates is the actual kinship in the population, based on 

how many alleles individuals share. In contrast, what both GRMGCTAw and GRMGCTAu 

estimate is a combination of individual kinship, their mean kinship with the other 

individuals and the overall mean kinship in the population (see equation 3 in Goudet et 

al. [46]). Consequently, since the kinship itself is better estimated with GRMAS, the non-

independence of observations (and thus the population structure) is better accounted for 

with LMMAS which leads to better b estimates. Importantly, the inclusion of a GRM in 

the ID estimation model is not limited to simple linear models. Even though we used only 

linear models in this study, any type of generalized linear model can incorporate a GRM 

as a random factor. Consequently, this method can be applied to any trait distribution. 

Furthermore, by including the GRM-based random factor, the non-independence of 

observations is better accounted for than by including the population as a random factor, 

and no prior knowledge of the population structure is required. 

Comparing F 

Concerning the different inbreeding coefficients, we found 𝐹!"#$  to be the best F for 

quantifying ID. Indeed, 𝐹!"#$  was the only coefficient we tested which was not sensitive 

to neither additive and dominance effect sizes being proportional to MAF nor DEMA 

resulting in the least biased estimation of b. On the contrary, we found that 𝐹!"#5 was 

influenced by the dominance effect sizes being proportional to MAF and by population 
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structure. In 𝐹!"#5  estimation, the rare alleles associated with large dominance effect sizes 

add noise in the estimation of b. Similarly, when there is population structure, rare alleles 

which have a strong influence on 𝐹!"#5  are likely to be private alleles which will strongly 

bias population-specific allelic frequencies and eventually 𝐹!"#5  estimation. Importantly, 

𝐹!"#5  performed as well as 𝐹!"#$  when we filtered on MAF > 0.05 (for F and all GRMs 

estimation). This is because 𝐹!"#5  uses the average of ratios, which results in loci with 

small MAF strongly influencing the outcome. When these rare loci are filtered out, the 

estimated F is no longer biased. This explains why Yengo et al. [50] found that 𝐹!"#5  was 

the best F for quantifying inbreeding depression with a homogeneous subset of the UK 

biobank dataset: they filtered on MAF > 0.05 leading to 𝐹!"#5  estimation not being 

influenced by rare alleles with strong additive and/or dominance effect sizes. Concerning 

FAS, we found that it was very sensitive to DEMA. This result is also concordant with 

Yengo et al. [50] who found that FHOM (with properties very similar to FAS) was sensitive 

to DEMA. In this paper, the authors explain that this sensitivity is due to FHOM (and thus 

FAS) correlating strongly with minor allelic count which will create a spurious association 

with inbreeding depression in the presence of DEMA. However, FAS resulted in the most 

efficient estimates of b when DEMA was not included in the model, suggesting that it is 

the best F to estimate inbreeding for neutral regions, as was argued by Zhang et al. [52]. 

Finally, we found that ROHs and HBD segments-based F, namely FROH and FHBD, 

performed poorly: underestimating the strength of inbreeding depression (positive b) or 

displaying very large variance among replicates. This result is in contradiction with 

Kardos et al. [20, 21] and Nietlisbach et al. [36] who found that FROH and FHBD were 

better at quantifying inbreeding depression compared to SNPs-independent based F. 

However, Alemu et al. [2] and Caballero et al. [6] showed the best F actually depends 

on the history of the population. Indeed, they showed that FROH and FHBD and to a lesser 

extent FHOM were better at quantifying homozygosity at loci with common alleles. On 

the contrary, 𝐹!"#5  was better at quantifying homozygosity at rare alleles. Alemu et al. 

[2] and Caballero et al. [6] propose that, in populations with low effective sizes, 

selection is weaker and deleterious alleles may be able to reach intermediate frequencies 

as a result of drift. Therefore, both FROH and FHBD (and FHOM in their analyses) should 

perform better in such populations. In our study, the standard scenario (with no ADD, no 

DOM and no DEMA) mimics what happens in such small populations and we found that 

FROH, FHBD and FAS (which has similar properties to FHOM) performed better than 𝐹!"#5  

(which is the FUNI they tested) in the highly structured WORLD population and to a 
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lesser extent in the family structured PEDIGREE population. With homogeneous 

populations, we do not observe any difference between these inbreeding coefficients. 

Nevertheless, this is consistent with Alemu and collaborators’ [2] results, as they used 

families which consequently create structure. On the other hand, in populations with a 

large effective size, selection maintains deleterious alleles at low frequencies which 

explains why Yengo et al. (2017) found that FUNI was the best F with the large UK 

biobank dataset and this is consistent with what we have found with the ADD & DOM 

& DEMA scenario which mimics what happens in populations with large effective sizes. 

Conclusion 

In this paper, we showed that the more efficient method for estimating inbreeding 

depression is to use a mixed model with an allele-sharing-based relatedness matrix as a 

random component but 𝐹!"#$ , as the inbreeding coefficient to predict inbreeding 

depression. The most commonly used GRM (GRMGCTAu) results in biased and highly 

variable estimates of b in structured populations. We stress that even if the results are 

greatly improved by using the allele-sharing GRM and 𝐹!"#$ , the variance among 

replicates is still large and no inbreeding depression is detected in several replicates (b ≥ 

0) in (all sample sizes for the) highly structured WORLD population as well as in the 

small and slightly admixed AFR population. Therefore, detecting efficiently inbreeding 

depression of the magnitude commonly found and that we simulated requires very large 

sample sizes with several thousand individuals, particularly in structured populations. 

Unfortunately, this might be hardly feasible for wild and/or endangered populations. 
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Too big to purge: no evidence of purging in the islands 

of the European barn owl (Tyto alba) 

Abstract 

An important aspect of assessing endangered levels and managing conservation is the 

study of inbreeding status, identifying its origin as well as assessing the mutation load in 

wild populations. In this study, we used 502 barn owls from continental and island 

populations across Europe. In addition to comparing inbreeding status, we determine 

whether inbreeding is due to non-random mating or high co-ancestry within the 

population. We show that islands have higher levels of inbreeding than continental 

populations, and that this is mainly due to small effective population sizes rather than 

recent consanguineous mating. We assess the probability that a region is autozygous 

along the genome and show that this probability decreases as the number of genes present 

in that region increases. Finally, we look for evidence of reduced selection efficiency and 

purging in island populations. Among island populations, we found an increase in 

numbers of both neutral and deleterious minor alleles, possibly as a result of drift and 

decreased selection efficiency but we found no evidence of purging. 

Introduction 

Mutations are the ultimate source of variability in nature, serving as the foundation for 

evolution and natural selection. However, only a handful of mutations are beneficial for 

the fitness of an organism, whereas the majority of mutations are neutral or deleterious 

[41, 39, 20, 34]. Despite the effects of natural selection, deleterious mutations may still 

persist within populations. There are two main reasons for this persistence: (i) stochastic 

segregation of alleles (called drift), which can result in partially deleterious mutations 

being transmitted by chance and persisting through generations, and (ii) the recessive 

nature of many deleterious mutations, which render them invisible to selection when 

present in a single copy [8, 28]. In natural populations, the persistence and expression of 

such deleterious effects can be highly detrimental, although the contribution of each of 

these processes is still mostly uncharacterised in the wild. 

Inbreeding (caused by mating between related individuals) can occur from mating among 

closely related individuals (recent coalescence events), as well as from more ancient 
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coalescence events (even when the population practices random mating [40]), such as a 

historical population bottleneck, which reduces the effective population size [6]. In the 

case of recent coalescence events, individuals usually inherit significant portions of their 

genomes that are identical-by-descent (IBD), transmitted by the same common ancestor 

[61]. 

As a result of inbreeding, the homozygosity load increases, and deleterious recessive 

effects are expressed, which can eventually result in reduced fitness - referred to as 

inbreeding depression [5, 54, 35, 46, 48]. While inbreeding depression negatively 

impacts population fitness, it can paradoxically serve as a mechanism for “purging” 

deleterious mutations. On the one hand, selection may be able to eliminate these 

deleterious recessive alleles from the population through purging [28, 68, 58, 27]. The 

effectiveness of purging is determined by the dominance and deleterious effect associated 

with each allele: highly deleterious and recessive alleles are more easily purged [25]. On 

the other hand, while long-term inbreeding and bottlenecks can result in the purging of 

highly deleterious recessive alleles, the purging of mildly deleterious alleles is more 

challenging [25, 23, 42, 28, 15, 64]. Indeed, even though a reduction in population size 

can lead to purging, it will also reduce the strength of natural selection and increase the 

effect of genetic drift [10, 19, 37, 21]. Consequently, an increase in inbreeding can result 

in complex deleterious alleles’ distributions with a decrease of highly deleterious alleles 

and an increase of mildly and lowly deleterious alleles [25, 23, 42, 67, 19]. 

There is considerable interest in studying the IBD segments shared between individuals 

for various purposes, such as inferring demography and population structure [56, 33], as 

well as identifying deleterious alleles with causal implications [49]. It should be noted, 

however, that accurate IBD segments determination typically requires phased genetic 

data, a computationally intensive and challenging task, particularly for non-model 

organisms. In contrast, detecting IBD segments within individuals is a much simpler task 

that does not require phased data (since we are examining homozygous segments within 

an individual, we do not need to know which copy of the chromosome each allele came 

from). In 2008, McQuillan et al. proposed looking for long stretches of homozygosity in 

polymorphic regions of the genome [48] as proxy for IBD segments within individuals. 

While short homozygous segments are likely to be homozygous by chance, the 

probability that long such segments are identical purely by chance is low, thereby 

increasing the likelihood that they are IBD. McQuillan et al. introduced the term “Runs 
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of Homozygosity” (ROHs) to describe these long homozygous stretches and showed that 

they are an informative proxy for an individual’s inbreeding status [48]. The distribution 

and length of these ROHs can also provide insight into the historical demographic 

processes of a population [6]. Indeed, the length of an IBD segment is linked to the time 

of coalescence [63, 61]. As a result, populations where individuals carry long ROHs may 

indicate recent consanguineous mating, whereas populations with many short ROHs may 

suggest an older previous bottleneck event [48, 6]. 

A common method for identifying ROHs involves a windows-based approach, in which 

consecutive homozygous regions are identified. This method is implemented in PLINK 

[55, 7]. To improve IBD segment identification accuracy, model-based approaches 

employing hidden Markov models (HMMs) were developed, such as BCFTools [50] 

and RZooRoH [2]. IBD segments identified with model-based approaches will be 

hereafter called Homozygous-by-Descent (HBD) segments [17, 2, 18]. ROHs (or HBD 

segments) have been extensively studied in the wild for inbreeding characterization [62, 

27, 36], inbreeding depression estimation [38, 62], demographic history inference [51] 

and homozygosity mapping [62]. 

The barn owl (Tyto alba) is a widely distributed nocturnal raptor found throughout 

Europe both on the mainland and on islands. Europe’s ecological history has been marked 

by significant climatic fluctuations, most notably during the last glacial maximum (LGM) 

approximately 20,000 years ago [22, 30]. As a result, many species, including barn owls, 

were forced to migrate to warmer southern regions during this period [31, 32]. Previous 

research has identified three refugia in southern Europe: i) the Iberian Peninsula [1, 4, 

11], ii) the Levant and Anatolia [1, 4, 11] and finally iii) Italy and Greece [11] from which 

Europe was re-colonized when the climate warmed again [44, 11]. Like most 

recolonization, the recolonization of Europe by the barn owl probably occurred with 

bottlenecks at the front of the colonization side, followed by population expansion. This 

scenario has been shown to lead to an increased number in deleterious mutations per 

individual and a reduction in selection efficiency due to the smaller effective population 

size both with simulated data [52] and with empirical data such as out-of-Africa human 

expansion [29, 47] and salmons postglacial recolonization [59]. However, since the barn 

owl recolonized populations are on average geographically close to refugia populations 

(everything is happening at the European scale at most) and as there is strong direct gene 

flow between most recolonized populations and refugia populations [11], the deleterious 
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enrichment is likely not as strong as what we observed for human out-of-Africa 

colonization of Europe. 

Water bodies can act as barriers to barn owl dispersal and gene flow [4, 44, 45, 11]. 

Consequently, islands populations exhibit increased isolation [45, 44, 12] along with 

higher levels of inbreeding [45, 12] compared to continental populations. This reduced 

gene flow in conjunction with a smaller population size can also reduce the effectiveness 

of natural selection. Because of its unique demography, which includes a variety of 

population sizes, and well-studied recolonization history, the barn owl is well suited for 

studying the effect of effective population size, inbreeding, and purging in the wild. 

In this study, we analyze 502 high-quality sequenced genomes of barn owls from 19 

different populations throughout Europe. We characterize the inbreeding status and 

landscape of HBD segments by using HBD segment-based inbreeding coefficients and 

distributions (i.e. how many small and large segments an individual or population 

contains). Island populations and, to a lesser extent, populations outside of refugium have 

experienced the founder effect through colonization. As a result, we expect their effective 

population sizes to be smaller, resulting in a reduction in selection efficiency. Hence, we 

hypothesize that deleterious mutations are more prevalent within islands and in 

recolonized populations. In addition, we look for evidence of purging of highly 

deleterious alleles in these same populations. 

Materials and Methods 

All codes used in this chapter can be found on GitHub. 

Sampling, sequencing, and genotyping 

We used 502 barn owls (Tyto alba) from 19 populations for this project (details in table 

S1 and Figure 1): 346 individuals from Switzerland (CH), 15 from Grand-Britain (GB), 

12 from Ireland (IR), 11 from continental Greece (GR) and the Aegean islands (AE) each, 

10 from Denmark (DK), Israel (IS), Portugal (PT), Italy (IT), Crete (CT), Cyprus (CY), 

East canary (EC) and West canary (WC) each, 6 from Georgia (GE), 5 from France (FR), 

Serbia (SB) and the Ionian islands (IO) each, 3 from Morocco (MA) and Corsica (CO) 

each (details on sample sex and location can be found in table S1). Figure 1 shows the 

502 sample locations; samples from continental populations are shown in purple and 

https://github.com/EluLava/InbreedingTytoalbaEurope2023
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individuals from island populations in blue. We further split the continental populations 

into: refugium populations, defined as populations which were present during the last 

glacial maxima and recolonized populations. Based on previous work about 

recolonization of Europe after the last glacial maxima [1, 4, 11, 44], we separated 

refugium populations as PT, MA, IT, GR and IS and recolonized populations as CH, FR, 

DK and SB. Although the Mediterranean islands were suitable habitats during the last 

glacial maxima [44], we excluded all islands from the comparison for refugia and 

recolonized populations due to their small size which could bias the results. 

Figure 1: Map of samples’ locations. Continental samples are shown in purple and island samples in blue. 

For genomic data generation, we followed the same procedure as described in [44] and 

only used non-sexual chromosomes (details about the genotypic data generation are 

described in Annex I of this thesis). Briefly, we extracted DNA from blood and tissue 

samples with the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany). We then 

carried out whole-genome resequencing at the Lausanne Genomic Technologies Facility 

(GTF, University of Lausanne, Switzerland) using Illumina HiSeq 2500 PE high-

throughput sequencing. Regarding the bioinformatics pipeline, we trimmed and aligned 
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raw reads to the reference genome (described in [44]) using Trimommatic (v0.39) [3] 

and BWA-MEM (v.0.7.17) [43]. We then performed ‘Base quality score recalibration’ 

(BQSR) with high-confidence calls from GATK and according to the procedure 

recommended for non-model species for which no set of “true variants” is available. We 
then called haplotypes with GATK’s (v4.2.6.1) HaplotypeCaller method and performed 

diploid joint-calling. 

Variants were filtered following GATK ‘best practice’ procedure. VariantFiltration with 

GATK was used to apply the following filters to SNPs in the call set: QD < 2.0, FS > 

60.0, MQ < 40.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, SOR > 

3.0. Afterwards, an additional ‘mappability’ filter was performed following: these 

guidelines. To summarize, the rationale behind is to discard any regions for which 

the mapping quality was low. To this end, we split the reference genome into 150 bp 

regions (with one base-pair sliding-windows) and mapped these regions back to the 

reference genome where they came from. Regions for which the fraction of 

perfectly (and uniquely) mapping ‘reads’ was lower than 90% were then excluded 
with VCFTools [13]. We then filtered individuals on genotypes’ depth (GD) with 

BCFTools (v.1.15.1) [14]. We set all individuals’ genotypes with GD < 5 and > mean 

individual depth plus three times it’s standard deviation to missing. We then filtered 

out any site with minor allele count (MAC) < 3 and fraction of missing 
individuals’ genotypes > 0.10 with BCFTools. Finally, we only kept bi-allelic SNPs 

because it was needed for the R package we used for HBD segments characterization: 

RZooRoH [2]. We ended up with 14,093,173 bi-allelic high-quality SNPs. 

HBD segments identification 

HBD segments were called on autosomes using the RZooRoH package (v.0.3.1) [17, 2, 

18]. Our model included 13 HBD classes and 1 non-HBD class with rates (R) of 2, 4, 8, 

16, 32, 64, 128, 256, 502, 1024, 2048, 4096 and 8192 for the HBD classes and 8192 for 

the non-HBD class [17]. These HBD classes correspond to different coalescence event 

ages and the rate corresponds to the expected number of generations since the 

coalescence event divided by two. We considered the ‘most probable HBD segments’ 
estimated by RZooRoH Viterbi algorithm for HBD segments distributions analyses. 

HBD segment distributions were then obtained by quantifying the mean (among 

individuals) sum of HBD segment lengths falling into the autozygous HBD classes. We 

https://lh3lh3.users.sourceforge.net/snpable.shtml
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considered a HBD class as autozygous if the rate was less than 1024 (i.e. if the 

coalescence event occurred during the last 512 generations). 

To take the recombination rate along the genome into account, we used recombination 

maps built with Lep-MAP3 [57] and described in Annex I of this thesis. We interpolated 

the genetic positions of our SNPs between each SNP present in the recombination map 

via a linear model. If no map was available for a specific super scaffold, we assumed a 

constant recombination rate of 2x10−8 (the average recombination rate between adjacent 

base pairs among the rest of the super scaffolds). 

Estimating inbreeding coefficients 

The FHBD inbreeding coefficient is defined as the average probability (among markers) 

to belong to a HBD segment and were obtained with the cumhbd function from the 

RZooRoH package with a T value of 1024. This value means that only HBD segments 

coalescing less than 512 generations ago are considered autozygous (i.e. IBD). 

FAS is an allele-sharing-based estimator of inbreeding described in [66, 69]. It 

corresponds to the average allele-sharing for an individual (taking value 1 if the 

individual is homozygous and 0.5 if heterozygous at a specific locus), scaled by the mean 

allele-sharing between individuals of the population. Consequently, FAS was estimated 

separately in each population. In addition, since the Swiss population (CH) contained 

related individuals, we only considered individuals with relatedness < 0.05 for estimating 

the mean between individuals allele-sharing for this population (the list of unrelated 

individuals can be extracted from table S1). 

Probability of belonging to an HBD segment 

We followed [62] to estimate the probability of belonging to an HBD segment along the 

genome. For this analysis, we excluded any super-scaffold with less than 10,000 SNPs. 

The probability to belong to an HBD segment was first estimated for each variant position 

as the sum of probabilities to belong to any HBD class estimated from the hbdp object 

from the output of the zoorun function from the RZooRoH R package. Average 

probabilities were then estimated via 20Kb overlapping sliding windows of 100Kb with 

the windowscanr R package. 
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Nucleotide diversity & Effective population size 

The nucleotide diversity π was estimated with the pi.dosage function from the 

hierfstat R package. The effective population size (Ne) was then estimated as π 

divided by the mutation rate (µ = 4.6x10−9 [60]). To obtain confidence intervals, we 

divided the genome in 1Mb segments and performed 1,000 bootstraps for each 

population separately. 

Variant annotation 

Variant annotation was performed with SnpEff [9] on the filtered complete dataset. 

Since Tyto alba SnpEff database was not available, we built the database first. We used 

the build method of SnpEff on the NCBI latest version of the Tyto alba assembly. 

Variant annotation was then performed with the eff method from SnpEff after filtering 

sites with missing data greater than 10%. Bi-allelic variants were classified into four 

categories using SNPEff: neutral, lowly deleterious, mildly deleterious, and highly 

deleterious. The neutral variants consist of changes to non-coding regions (including 

pseudo-genes), UTR regions or regions where it is difficult to predict the impact of the 

variant. Lowly deleterious variants refer to mutations that are harmless or unlikely to 

alter protein behavior, including synonymous mutations, nonsynonymous variants that 

change one or more amino acids but have similar properties to the originals, or changes 

in start (or stop) codons into different start (or stop) codon types. Mildly deleterious 

variants included mutations that may affect protein effectiveness, such as changes in the 

amino acid sequence leading to altered protein properties. Finally, highly deleterious 

mutations concerned variants that have a large (disruptive) impact on the protein, 

probably resulting in truncation or loss of function. The highly deleterious variants 

included, for example, loci implicated in protein-protein interactions (i.e. amino acids 

which are in contact within the same protein, possibly involved in structural 

conformation), rare amino acids that are likely to result in protein loss of function, 

variants mutating stop (or start) codons into non-stop (or non-start) codons (and vice 

versa). A more detailed description of these four categories can be found in the SNPEff 

documentation. 
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Accumulation of minor alleles 

To examine whether our different populations are enriched in (expected homozygous) 

minor alleles, we used the RXY and R2XY statistics described in [16]. 

These statistics aim at detecting an asymmetry in the number of minor alleles between 

two groups of genomes (X and Y) and count how many of these alleles (LXnotY) or expected 

homozygous alleles (L2XnotY) are present in one group of genomes, but not the other and 

are formally defined as follow: 

𝐿>?@AB = ∑ 3𝑑>C /𝑛>C 531 − 𝑑BC /𝑛BC 5C  (1) 
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with 𝑑>C  and 𝑛>C  being respectively the number of (global) minor alleles and the total 

number of (haploid) genomes at site i in population X and 𝑑BC  and 𝑛BC   the number of 

minor alleles and the total number of (haploid) genomes at site i in population Y. The 

ratios between the two groups of populations are then calculated as: 

𝑅>B =
'-012/
'/012-
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𝑅>B8 = '-012/
'
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'  (4) 

We estimated both statistics for variants included in exons only and for each allele 

category (neutral, highly deleterious, moderately deleterious and lowly deleterious) 

separately. To account for different demographic histories and structure within each 

group of populations [16, 68, 27], we further divided these ratios by the same ratios 

estimated for intergenic variants only: 
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Consequently, the 𝑅>B=  and 𝑅′>B8  statistics reported in the results section show an 

enrichment (if R < 1) or depletion (if R > 1) of (homozygous) minor alleles in population 

Y compared to population X in regards to what was observed for intergenic mutations. If 

natural selection has been as efficient in both populations, 𝑅>B=  and 𝑅′>B8  should be equal 

to one. Similarly, if selection has been as efficient for lowly, mildly and highly 

deleterious alleles, the 𝑅>B=  and 𝑅′>B8  ratios should be the same for each mutation 

category. 

For this analysis, we compared the enrichment in minor allele rather than derived allele 

because we could not polarize our data. In order to avoid any bias due to sampling, minor 

alleles were estimated globally via 1,000 bootstraps by sampling only unrelated 

individuals. The allele which was identified as the minor allele in the majority of the 

bootstraps was used as the minor allele for this site. Polarization of a subset of 1,373,932 

of the variants has been performed for another paper [44]. We used this subset to confirm 

whether the minor allele we identified corresponded to the inferred derived allele. Both 

methods identified the same allele for 87% of the sites. This fraction linearly decreased 

with minor allele frequency (being at 95% for sites with MAF < 0.05 and at 0.53 for sites 

with MAF between 0.45 and 0.5, illustrated in figure S1). As the majority of deleterious 

alleles are likely to be at low frequencies [53], we believe that the minor allele may be 

used as a proxy for the derived allele for this analysis. 

Results 

Inbreeding status 

Individual inbreeding coefficients are shown in table S2. Figure 2 shows different metrics 

representing the level of inbreeding and coalescence time of parental relatedness in the 

different populations and population types (i.e. continental and island populations). The 

mean HBD segment based inbreeding coefficient was significantly higher for islands 

populations (mean FHBD = 0.101) compared to continental populations (mean FHBD = 

0.041) (Wilcoxon rank test; W = 3486, p-value < 2.2e-16; large effect size: 0.525), 

(Figure 1, panel A). Interestingly the difference between continental and island 

populations starts showing with coalescence events older than 16 generations ago 

(corresponding to HBD class 4) (figure S2). Inbreeding coefficients distribution per 

population can be found in figure S3. There is little difference between the inbreeding 

coefficients for populations from continental refugium (mean FHBD = 0.041; median FHBD 
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= 0.039) and continental recolonized (mean FHBD = 0.041; median FHBD = 0.032, figure 

S4 panel A) but the distributions are still significantly different (W = 10’063, p-value = 

0.01275; effect size: 0.122, considered small). 

Panel B from Figure 2 contrasts individuals’ HBD segments-based inbreeding 

coefficient: FHBD to allele-sharing individual inbreeding coefficients: FAS. FHBD is the 

same as shown in panel A. FAS represents the within individuals matching of alleles 

relative to the mean allele matching between individuals in the population. 

Fundamentally, this is a measure of how much alleles are associated at random in 

individuals (if FAS is close to zero) rather than the same variant associated more often 

than expected by chance (if FAS > 0). Individuals below the line for which FAS is higher 

than FHBD are subject to population structure (it indicates that the population is not 

homogeneous). On the contrary, individuals for which FHBD is higher than FAS are inbred 

but their inbreeding comes from ancient coalescence events (such as ancient population 

relatedness due to small effective population) rather than recent mating between relatives. 

In figure 2 panel B, we show that all individuals coming from island populations are 

above the identity line with an FHBD higher than FAS. This indicates that their inbreeding 

mostly comes from ancient relatedness likely due to small effective population size 

because of island isolation. In addition, among island populations, individuals from GB 

are closest to the identity line reflecting this island’s larger size and thus higher 

population size. Within island populations, the most FHBD inbred individuals come from 

CT, CY and EC. Four island individuals harbor low FHBD and negative FAS values (one 

from EC, one from CT, one from CY and finally one from AE). Finally, two island 

individuals (one from EC and one from GB) show very high FHBD and FAS suggesting 

that they come from mating between closely related individuals. Concerning continental 

populations, there is no strong difference between refugium populations and re- 

colonized populations (except the Swiss individuals) (figure S4 panel B). Most Swiss 

individuals cluster below the identity line indicating the presence of unaccounted 

structure. Indeed, individuals in this population belong to families. If we get rid of family 

structure by trimming individuals with allele-sharing relatedness above 0.05, Swiss 

individuals are drawn closer the line (figure S5). Fourteen Swiss individuals are close to 

the identity line and truly inbred with high values of both FAS and FHBD. This is 

concordant with FPED (described in SM) values obtained for the Swiss individuals (figure 

S6). PT individuals cluster closely together and close to the identity line. GE individuals 

cluster together with FHBD between 0.05 and 0.1 and FAS around -0.15. Concerning the 
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remaining continental populations, the three MA samples are below the identity line. We 

also observe few inbred individuals (Greeks, one Portuguese and one French) towards 

the top right part of the graph and the remaining individuals are non-inbred with FHBD 

around 0.05 and FAS around 0. 

Panel C shows the mean number of HBD segments (NHBD) according to the mean length 

of all HBD segments (SHBD) for each individual. Inbred individuals (individuals with 

higher FHBD) have more HBD segments but also longer segments. Island individuals have 

on average slightly more HBD segments compared to continental populations and longer 

HBD segments. Panel D shows HBD segments distribution for the island and continental 

populations. Very few long HBD segments (inbreeding events occurring in the last 8 

generations) were found in either continental or island populations, suggesting that there 

is almost no recent inbreeding. However, island populations displayed a higher sum of 

lengths for medium-sized HBD segments coalescing between 16 and 128 generations (g) 

ago. Interestingly, refugium populations were slightly enriched in HBD segments 

coalescing 64g and 128g ago while recolonized populations were enriched in HBD 

segments coalescing 8g and 512g ago (figure S4 panel C and D). The increased sum of 

length of HBD segments coalescing 8g ago in the continental and refugia populations are 

driven by the few inbred Swiss individuals. FHBD and HBD segments distribution 

estimations per population can be found in supplementary materials (figures S3 and S7). 
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Figure 2: (For all panels, continental populations are shown in purple and island populations in blue) A: 
FHBD distributions from continental and island populations. FHBD considers a marker as autozygous if 
the coalescence event is up to 512 generations ago. B: scatter plot of FHBD against FAS. Each point 
represents one individual and its shape indicates which population it comes from. The black line is 
the identify line (x = y). C: number of HBD segments (NHBD) as a function of the mean length of HBD 
segments (SHBD) in base-pair. Each point represents one individual and its shape indicates which 
population it comes from. D: HBD segments distributions from continental populations and island 
populations. The y-axis represents the mean sum of length (among individuals) falling into the 
different categories of HBD segments (represented in the x-axis). 

Effective population size 

We also estimated the effective size Ne per population (table 1). The absolute values are 

very large but the relative comparisons should still be valid. On average, continental 

populations show higher Ne estimations compared to island populations (except the GE 

population, which is composed of related individuals, thus decreasing Ne estimation, the 

AE population, which has very strong gene flow with the GR population, and the CY 

populations). Within island populations, IR, followed by CT displayed the lowest Ne 

estimation. On the contrary, the AE and CY populations showed the highest Ne. 

Concerning continental populations, the refugium populations displayed the higher Ne 

estimation (except IT). 
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Table 1: Effective population sizes (Ne). Ne were estimated as the nucleotide diversity π divided by the 
mutation rate, estimated as 4.6x10−9. We performed 1,000 bootstraps for all populations. Standard-error 
(SE) around the Ne mean indicates the variation among the different bootstraps. 

Population Type Population Mean Ne SE 
Continent PT 473,082 4,071 
Continent MA 466,349 3,911 
Island AE 458,560 3,901 
Continent IS 458,533 3,868 
Continent GR 457,446 3,873 
Continent CH 451,904 3,895 
Continent DK 451,414 3,934 
Continent IT 448,065 3,920 
Island CY 447,006 3,800 
Continent SB 446,922 3,891 
Continent FR 444,904 3,938 
Island WC 434,992 3,734 
Island IO 434,633 3,788 
Island GB 431,543 3,747 
Island EC 429,092 3,662 
Island CO 427,304 3,882 
Island CT 420,824 3,541 
Island IR 420,654 3,679 
Continent GE 367,102 3,388 

Probability of belonging to an HBD segment 

Figure 3 shows the probability of belonging to an HBD segment (of any class) along the 

genome (estimated as 100kb windows) as proposed in [62]. Probabilities are shown per 

super-scaffolds in panel A and the mean density function among all super-scaffolds is 

shown in panel B. For the vast majority of the genome, the probability to belong to an 

HBD segment is low (< 0.1). However, few super-scaffolds (such as super-scaffold 22) 

and specific genomic regions (such as the very beginning of super-scaffold 3) show 

particularly high HBD probabilities. We show in panel C that gene rich windows are very 

unlikely to be autozygous. Finally, we report regions with extremely high (HBD islands) 

and low (HBD deserts) HBD probabilities in tables S3 and S4. HBD islands were 

identified as windows in the top 2.5% of HBD probabilities. Similarly, HBD deserts were 

identified as the bottom 2.5% windows with lower HBD probabilities. Gene ontology 

enrichment analyses in HBD segments islands and deserts reveal no specific enrichment 

in these regions. We also investigated the genes present at the beginning of super-scaffold 

3 (with the highest probabilities to be HBD) but could not identify any pattern. 
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Figure 3: A: Probability to belong to an HBD segment coalescing less than 512 generations ago along the 
different super-scaffolds. Probabilities were estimated via overlapping sliding windows of 100 (+20) Kb. 
Blank spaces correspond to regions where no SNPs were present. B: Density of probability to belong 
to an HBD segment, all super-scaffolds included. The code to obtain this figure was obtained from M. 
Stoffel GitHub. C: Probability that a 100Kb window is HBD according to the number of 
genes in this window. 

Accumulation of minor alleles 

Figure 4 panels A to D show the number of minor alleles per variants category (A: 

Neutral; B: Lowly deleterious, C: Moderately deleterious; D: Highly deleterious) in 

continental populations versus island populations. Island populations were significantly 

enriched in minor alleles for all variants categories (Wilcoxon rank sum tests; Neutral: 

W = 6537.5, p-value < 2.2e-16, effect size = 0.414, considered moderate; Lowly 

deleterious: W = 7022.5, p-value < 2.2e-16, effect size = 0.396, , considered moderate; 

Moderately deleterious: W = 6907.5, p- value < 2.2e-16, effect size = 0.400, considered 

moderate; Highly deleterious: W = 8084, p-value = 1.189e-15, effect size = 0.357, 

considered moderate). This enrichment was still present when we controlled for 

individual genetic diversity (by dividing the count of minor alleles by the number of 

polymorphic sites per individual) (figure S8, panels A to D). Interestingly, the lower tails 

of the islands violin plots always contained the individuals from GB and IR, suggesting 

that their minor allele counts are more similar to continental populations than to those 

from the other islands. Concerning the enrichment of each of these categories in respect 

to their enrichment in intergenic mutations, we consider a ratio significant if the standard 
errors around its estimation do not overlap with one. The 𝑅=>B ratio (continents/islands) 

were not significantly different from one for all mutation types (panel E). This shows that 

island populations are similarly enriched in all allele categories compared to intergenic 

regions. Panels F to I show the number of homozygous minor alleles per variants category 

(F: Neutral; G: Lowly deleterious, H: Moderately deleterious; I: Highly deleterious) in 

continental populations versus island populations. Island populations were also 

significantly enriched in homozygous minor alleles for all variants categories (Wilcoxon 

rank sum tests; Neutral: W = 4034.5, p-value < 2.2e-16, effect size = 0.505, , considered 

large; Lowly deleterious: W = 4482, p-value < 2.2e-16, effect size = 0.489, , considered 

moderate; Moderately deleterious: W = 4314.5, p-value < 2.2e-16, effect size = 0.495, 

considered moderate; Highly deleterious: W = 5269.5, p-value < 2.2e-16, effect size = 

0.460, considered moderate), even after correction for individual genetic diversity (figure 

https://github.com/mastoffel/sheep_roh
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S8, panels E to H). The 𝑅′>B8 	ratios (continent/islands) were not significantly different 

from one for all homozygous minor alleles. 

 

Figure 4: Distribution of minor alleles in continental versus islands populations. Minor alleles effects were 
classified with SNPeff. A: Count of neutral minor alleles. B: Count of lowly deleterious minor alleles. 
C: Count of moderately deleterious minor alleles. D: Count of highly deleterious minor. E: 𝑅89:  ratio of 
minor alleles in continental populations compared to island populations scaled by the same ratio for SNPs 
located in intergenic regions. 𝑅89:  < 1indicates that islands populations are more enriched in minor alleles 
of the focal category compared to their enrichment for neutral intergenic alleles. On the contrary, 𝑅89:  > 1 
indicates that islands populations are depleted in minor alleles of the focal category compared to their 
enrichment for intergenic alleles. F: Count of homozygous neutral minor alleles. G: Count of homozygous 
lowly deleterious minor alleles. H: Count of homozygous moderately deleterious minor alleles. I: Count 
of homozygous highly deleterious minor alleles. J: 𝑅′89;  ratio of minor alleles in continental populations 
compared to island populations. 𝑅′89;  < 1 indicates that islands populations are more enriched in 
homozygous minor alleles of the focal category compared to their enrichment for neutral homozygous 
intergenic alleles. On the contrary, 𝑅′89;  > 1 indicates that islands populations are depleted in homozygous 
minor alleles of the focal category compared to their enrichment for homozygous intergenic alleles. For 
violin plots, continental populations are shown in purple and island populations in blue. 

Similarly to figure 4, figure 5 panels A to D show the number of minor alleles per variants 

category (A: Neutral; B: Lowly deleterious, C: Moderately deleterious, D: Highly 

deleterious) in continental refugium populations (during the last glacial maxima) versus 

continental recolonized populations. Recolonized populations were significantly 
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depleted in minor alleles for all variants categories (Wilcoxon rank sum tests; Neutral: 

W = 16067, p-value < 2.2e-16, effect size = 0.512, considered large; Lowly deleterious: 

W = 15998, p-value < 2.2e-16, effect size = 0.508, considered large; Moderately 

deleterious: W = 15997, p-value < 2.2e-16, effect size = 0.508, considered large; Highly 

deleterious: W = 15151, p-value < 2.2e-16, effect size = 0.453, considered large). 

However, this is solely due to the higher genetic diversity of refugium populations and 

this depletion disappeared when we correct for individual genetic diversity (by dividing 

the count of minor allele by the individual number of polymorphic sites) (figure S9, 

panels A to D). Concerning the 𝑅>B=  ratios (refugium/recolonized), it was significantly 

higher than one for neutral minor alleles, possibly reflecting the lack of neutral genetic 

diversity in recolonized populations. On the contrary, 𝑅>B=  ratios were not significantly 

different from one for all types of deleterious minor alleles (panel E), indicating that 

recolonized continental populations are as enriched in deleterious minor alleles compared 

to intergenic minor variants. Panels F to I show the number of homozygous minor alleles 

per variants category (F: Neutral; G: Lowly deleterious, H: Moderately deleterious; I: 

Highly deleterious) in refugium populations versus recolonized populations. Recolonized 

populations were also significantly enriched in homozygous minor alleles for all variants 

categories (Wilcoxon rank sum tests; Neutral: W = 12796, p-value = 9.64e-10, effect size 

= 0.300, considered small; Lowly deleterious: W = 12364, p-value = 3.005e-08, effect 

size = 0.272, considered small; Moderately deleterious: W = 12540, p-value = 7.688e-

09, effect size = 0.283, considered small; Highly deleterious: W = 11056, p-value = 

0.0001399, effect size = 0.187, considered small). Similarly to what we observed for the 

count of minor alleles, this depletion disappeared when we divided the number of 

homozygous minor alleles by the individual genetic diversity for all categories of alleles 

(figure S9, panels E to H). Concerning the 𝑅′>B8  ratios (refugium/recolonized), 

recolonized populations were less enriched than refugium populations in minor 

homozygous alleles for neutral as well as lowly and mildly deleterious variants but the 

ratio was not significantly different from one for highly deleterious variants (panel J). 
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Figure 5: Distribution (among individuals) of minor alleles in continental refugium populations versus 
recolonized (after the last glacial maximum) populations. Minor alleles effects were estimated with 
SNPeff. A: Count of neutral minor alleles. B: Count of lowly deleterious minor alleles. C: Count of 
moderately deleterious minor alleles. D: Count of highly deleterious minor alleles. E: 𝑅89:  ratio of minor 
alleles in refugium populations compared to recolonized populations. 𝑅89:  < 1 indicates that recolonized 
populations are enriched in minor alleles of the focal category compared to their enrichment for supposedly 
neutral introns alleles. On the contrary, 𝑅89:  > 1 indicates that recolonized populations are more depleted 
in minor alleles of the focal category compared to their enrichment for introns alleles. F: Count of 
homozygous neutral minor alleles. G: Count of homozygous lowly deleterious minor alleles. H: Count of 
homozygous moderately deleterious minor alleles. I: Count of homozygous highly deleterious minor 
alleles. J:	 𝑅′89;  ratio of minor alleles in refugium populations compared to recolonized populations 
compared to the baseline enrichment for supposedly neutral introns alleles. 𝑅′89;  < 1 indicates that 
recolonized populations are enriched in homozygous minor alleles of the focal category compared to their 
enrichment in homozygous introns alleles. On the contrary, 𝑅′89;  > 1 indicates that recolonized populations 
are more depleted in homozygous minor alleles of the focal category compared to their enrichment in 
homozygous introns alleles. For violin plots, refugium populations are shown in pink and recolonized 
populations in light blue. 

Discussion 

In this study, we examine the inbreeding status and origin of barn owls across Europe 

and compare continental and island populations. Our findings indicate that island 

populations have higher FHBD compared to continental populations and the inbreeding of 

island individuals is largely a result of ancient coalescence events since 1) FHBD is higher 
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than FAS which indicates that the populations mostly practice random mating but are still 

enriched for identical-by-descent (IBD) segments and 2) homozygous-by-descent (HBD) 

segment distributions demonstrate that island populations exhibit higher numbers of 

small fragments indicating more ancient coalescence events [63, 61]. These results are 

consistent with the rank of the estimated Ne, as well as previous studies which showed 

that the population from CT showed higher inbreeding compared to CY, AE, GR and IS, 

mostly practiced random mating (FIS = -0.018) and was enriched in small ROHs [45] and 

that both populations from the Canary islands are less heterozygous than PT and MA and 

mostly practice random mating (FIS = -0.015 and -0.030) [12]. Typically, island 

populations are more inbred due to their smaller size, isolation, and colonization often by 

a small number of individuals [40]. Interestingly, the GB and IR populations had more 

HBD segments for the same fraction of genome being autozygous compared to other 

island populations indicating that even though the fraction of genome within HBD 

segments is the same, their fragments are on average smaller and closer to the HBD 

segments distributions from continental populations. In addition, their number of minor 

alleles count matched the values estimated from continental populations better than 

values estimated from other islands populations. Their colonization is fairly recent 

compared to the other islands (it occurred after the last glacial maxima) [44]. In addition, 

the islands are the largest and exhibit homogeneous structure, consistent with an history 

of small Ne [44]. 

The majority of individuals from continental populations were sampled in Switzerland 

(CH), whose pedigree revealed family structure. This was further confirmed by the plot 

comparing FAS and FHBD: most CH individuals were below the one-to-one line. 

Additionally, we identified 14 inbred individuals that were the result of mating events 

between closely related parents in accordance with the pedigree. The France (FR) 

population showed a higher mean FHBD and an enrichment in the HBD segment class due 

to recent coalescence events, and a lower Ne estimate. Inbreeding and Ne estimates were 

probably biased because one individual (out of five) was strongly inbred, resulting in a 

high mean FHBD and recent HBD segment sum of lengths. We observed unexpected 

results for the population from Georgia (GE) which displayed very low Ne and negative 

FAS. This is most likely due to these samples being full-siblings and therefore sharing 

more alleles than unrelated individuals, which will influence the estimation of π and Ne. 

As a result, their FAS is also affected: the sampled population’s average allele matching 

is exceptionally high, but because their parents are not closely related, they do not share 



 87 

many more homozygous sites than expected under random mating, which causes a low 

allele matching score multiplied by a very high relatedness average which leads to a 

negative FAS. 

Consequently, with the current samples, we cannot draw any conclusions about what the 

effective population size estimate as well as the origin of inbreeding in this population. 

However, the remaining analyses such as FHBD estimation as well as the count of minor 

alleles should not be biased. Compared to more northern continental populations, 

Portugal (PT), Morocco (MA) and Israel (IS) had higher Ne estimates and lower HBD 

segments sum of lengths. This is because these populations are the largest refugia [11]. 

Despite Italy was also identified as a refugium, its size is smaller, which may explain the 

smaller Ne and enrichment in small HBD segments. There was little difference in 

inbreeding levels between recolonized continental populations and refugium continental 

populations, which is likely due to constant and strong gene flow between both groups, 

as shown by the low FST (0.047) among populations [11]. 

The Ne values we estimated were too high. We believe that this is due to different factors. 

Firstly, the mutation rate we used was estimated in the collared flycatcher (Ficedula 

albicollis) and with only one family [60]. Our decision was based on the fact that we did 

not have an estimate of the mutation rate for barn owls. While the absolute Ne values we 

estimated cannot be used to draw any conclusions, relative comparisons between our 

populations should still be valid. The high values we obtained are probably also 

influenced by the strong connectivity among all our populations (the maximum FST is 

between CY and PT and is equal to 0.102 [11]). It is therefore likely that neighboring 

populations are exchanging large numbers of migrants per generation. It has been shown 

that strong gene flow can inflate populations-specific Ne estimation to the metapopulation 

Ne value [65]. Furthermore, the AE’s very high Ne estimate can also be attributed to the 

fact that this population barely differs from the large continental GR population (FST = 

0.014 [45]). Finally, CY showed a particularly high Ne compared to other islands. This is 

in agreement with previous studies, who determined that CY is the most diverse island 

in the Mediterranean Sea and has the strongest gene flow with the mainland [45]. 

The probability (averaged among individuals) that a genomic region is HBD varied along 

the genome but was generally quite low. This is especially true when compared to another 

species where the same probability was estimated: a Soay sheep population [62]. It is 

anticipated, however, that barn owl populations are less inbred than the Soay sheep which 
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is a small isolated population with high relatedness [62]. We further showed that, in barn 

owl, the probability of a region being HBD was strongly correlated with the number of 

genes in the region: regions with high gene density had a lower probability of being HBD. 

Therefore, there is a constraint on regions with high gene density to have lower 

homozygosity probabilities. This is in agreement with inbreeding depression theory, 

which predicts that homozygosity at a coding site will result in the expression of recessive 

deleterious alleles, thereby reducing the fitness of individuals [8]. As a result, selection 

will act to reduce homozygosity in these regions if they contain recessive deleterious 

alleles. There is no evidence that the high probability of belonging to an HBD segment 

at the beginning of Super-Scaffold 3 is biologically significant. The high probability of 

being HBD could be an artifact of the higher coverage of this region, which was twice as 

much than the rest of the genome (in both our data and the genome assembly. Indeed, 

higher coverage increases the chance of finding homozygosity, which in turn, increases 

the probability that a region is HBD. 

We showed that most inbreeding is due to small effective population sizes rather than 

mating between closely related individuals. According to [25], purging solely due to a 

reduction in population size has been shown to occur only when population size is small 

enough for drift to increase homozygosity and cause recessive deleterious alleles to be 

expressed in the majority of individuals [8], without being too small to prevent drift from 

overcoming selection. 

Our findings demonstrate that island populations were enriched in all types of minor 

alleles in terms of absolute numbers, probably because of drift and suggesting that 

selection has been less efficient at removing deleterious alleles in island populations. In 

addition, island populations were similarly enriched for all types of intragenic variants 

compared to intergenic mutations. This indicates that selection has also been less efficient 

at removing deleterious alleles in the smaller island populations for all types of 

deleterious mutations. It is interesting to note that even though it is not significantly 

different from one, the average ratio of continental and island populations for highly 

deleterious mutations is slightly higher than one. However, even if it was significant, it 

would be far from the values which have been reported as evidence for purging in the 

wild in mountain gorillas (𝑅>B=  = 0.8) [68] and alpine ibex (𝑅>B=  = 0.525) [27]. We should, 

however, note that the bottlenecks of these species were extremely severe compared to 

what occurred during the colonization of islands by barn owls: the mountain gorilla 



 89 

population size was estimated at around 800 individuals in 2015 [68] while the Ibex 

alpine Swiss population has been reintroduced from only 100 individuals with little 

subsequent gene flow [26]. We hypothesise that the islands populations we are studying 

are too large to allow for purging. Finally, we note that the same type of enrichment for 

all categories of deleterious alleles was also observed in humans out-of-Africa expansion 

[47, 52] but, similarly to what we report in this study, no sign of purging of highly 

deleterious alleles was detected [16]. 

Interestingly, all deleterious categories of minor alleles were depleted in recolonized 

continental populations compared to refugium populations. However, this depletion 

disappeared when we considered individual genetic diversity which is known to be higher 

in refugium [11]. Recolonized populations were significantly less depleted in neutral 

minor alleles compared to intergenic minor alleles (but the ratio was very close to 1) 

which probably reflects their lower genetic diversity. This pattern was, however, not 

observed for all types of deleterious mutations, which suggests that selection has been as 

efficient at removing deleterious alleles for all these categories. Overall, the depletion of 

minor alleles in recolonized populations goes against what has been reported in the 

literature [29, 52, 59]. However, this could be explained because the continental 

populations were recolonized long ago and are not at the extremities of range expansion 

anymore. In addition, there were multiple source populations for Europe mainland 

recolonization [11] which could reduce the expansion load [52]. Finally, recolonized 

continental populations have constant gene flow with the source populations (here the 

refugium), thus reducing the possibility that rare alleles will rise to high frequencies [51]. 

Finally, we want to stress that the different SNPEff categories we used could be biased. 

Indeed, it is very hard to merge different types of mutations into lowly, mildly or highly 

deleterious variants and be confident about their effect. Some authors have preferred to 

use more precise categories of variants such as Loss of functions variants (as proxy for 

highly deleterious mutations), synonymous mutations (as proxy for neutral or lowly 

deleterious variants) or non-synonymous mutations (as proxy for mildly deleterious 

variants) [51, 36]. 

Since we used the global minor allele as a proxy for the derived allele, our analyses of 

enrichment in deleterious alleles may be biased. Ideally, we should redo the SNP-calling 

with an outgroup and infer the derived state for as many sites as possible. There will still 

be many sites for which it is impossible to infer the ancestral and derived alleles (when 
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both alleles are present in the outgroup) and this would only enable us to analyze a subset 

of the variants. 

Conclusion 

In this study, we examined the inbreeding status and the HBD segments landscape of 

barn owl populations throughout Europe. Compared to continental populations, island 

populations are more inbred, and the inbreeding primarily results from a small effective 

population size rather than recent consanguinity. We show that the probability a region 

is autozygous diminishes with the number of genes present in this region. Finally, we 

show that in comparison to continental populations, island populations are enriched in all 

deleterious categories of minor alleles reflecting the lower efficiency of selection at 

removing deleterious alleles in smaller populations and an absence of purging. 
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Abstract 

Inbreeding and its negative effect on individuals is ubiquitous but examples of its effects 

in the wild are scarce. Our study combines high coverage and imputed low coverage data 

on 3,085 barn owls (Tyto alba) and quantifies the severity of inbreeding depression in 

juveniles and adults separately. Inbreeding appears to have a mild effect on juvenile bill 

length: a fully inbred individual’s bill length decreases by 10% compared with a non-

inbred individual. There was no association between bill length, nor any other 

morphological trait, and inbreeding status in adults, suggesting that inbreeding 

depression varies with age. 

Introduction 

Inbreeding depression is defined as a decrease in fitness in inbred individuals. The 

phenomenon has been extensively studied in theory [11] and observed empirically in 

several domestic species and in humans. For example, increased individual inbreeding 

coefficients leads to reduced milk production [5, 62, 22, 21] as well as reproductive 

ability [5, 22, 27, 62] in cattle. Similarly, in humans, inbreeding has been linked to a 

number of diseases, including Alzheimer’s disease [68, 52, 26] and Schizophrenia [40] 

as well as height reduction [49] and reduced fertility [60, 15]. Hence, given its ubiquity, 

the quantification of the extent of inbreeding depression in populations as well as 

understanding its underlying mechanisms has been a priority for the conservation of both 

wild and captive species. 

Two main hypotheses have been proposed to explain the mechanisms underlying 

inbreeding depression [11]. First, it can be due to the accumulation of (slightly) 

deleterious recessive alleles in a homozygous state [11]. Second, it can be due to loci 

with heterozygous advantage for which heterozygous individuals have a greater fitness 

than homozygous individuals. An important consequence of inbreeding is the increase in 

autozygosity (i.e. identical-by-descent (IBD) homozygosity) [72, 17, 48], which in both 

cases leads to a fitness disadvantage. Several (partially) recessive deleterious mutations 

are found to segregate at low to intermediate frequencies in natural populations [61]. Due 

to their recessive nature, their effect is only fully expressed when they are homozygous. 

Therefore, the number of expressed deleterious recessive mutations is positively 

correlated with the degree of inbreeding of individuals, and it is the accumulation of such 

mutations that contributes to the detrimental effects of inbreeding. In large populations, 
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selection maintains deleterious mutations at low frequencies. The effect of drift, however, 

is greatly increased in small populations and can result in an increase in the frequency of 

these mutations [39]. There has been significant evidence for the importance of 

heterozygous advantage in reducing inbred individual fitness in drosophila [11] and rice 

[46], but it may not be as important in other species, particularly since loci with 

heterozygous advantage are relatively scarce, and certainly rarer than segregating 

deleterious recessive mutations [11, 30]. 

How to quantify the direct effect of inbreeding on individuals’ fitness or phenotypes has 

been widely debated in the literature [41, 54, 74, 36, 1, 8]. A common approach consists 

in regressing the individual inbreeding coefficient on the trait using a (generalized) linear 

model and including covariates that might affect the trait (e.g. sex [66, 32, 15, 37] age 

[66, 15, 37] or relatedness structure such as in the second chapter of this thesis and in 

[55, 66, 56, 49]. Other approaches such as maximum likelihood estimation have also 

been proposed [54] but are rarely used in practice. 

To evaluate the strength of inbreeding depression, it is necessary to first estimate the level 

of individual inbreeding, which is quantified by inbreeding coefficients (denoted by F). 

Following the initial work of Sewall Wright with pedigree data [72] and with the 

advances of sequencing technologies, various methods have been proposed to assess the 

inbreeding status of individuals: i) comparing the expected and observed 

heterozygosities [10, 63], ii) studying the correlation between uniting gametes [73, 76] 

iii) quantifying the expected allele-sharing of individuals [28, 69] or iv) identifying the 

fraction of genome within IBD segments [50, 38, 23]. 

Until recently, there was no consensus on which is the best approach to quantify the 

effects of inbreeding on a given trait [1, 8, 74, 35, 36], with different studies presented 

conflicting results. Yengo et al. found that FUNI (a coefficient based on the correlation of 

uniting gametes) was the most accurate for quantifying inbreeding depression with 

human data [74]. On the contrary, several studies found that FROH (an inbreeding 

coefficient quantifying the fraction of genome within IBD segments) provided more 

accurate estimates of the strength of inbreeding depression using simulated data [41, 35, 

54]. Based on simulated data including various populations’ sizes and histories, 

Caballero et al. [8] concluded that population size determines the most appropriate 

inbreeding coefficient for measuring inbreeding depression strength. This conclusion was 

further confirmed using empirical cattle data [1]. Indeed, FUNI correlates better with 
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homozygosity at rare alleles while FROH correlates better with homozygosity at 

intermediate alleles. Selection is highly efficient in large populations (such as humans) 

and deleterious alleles are maintained at low frequencies. Consequently, FUNI provides a 

more accurate estimation of homozygosity for deleterious alleles in large populations. 

However, as the population size decreases, the influence of drift becomes stronger and 

can equalize the influence of selection. This results in deleterious alleles reaching 

intermediate frequencies and, in this case, FROH correlates better with deleterious allele 

homozygosity. 

As mentioned above, several studies have been conducted on inbreeding depression in 

populations that have been thoroughly studied with large data sets, such as domestic 

animals and humans [60, 41, 67, 5]. Detecting inbreeding depression in the wild, 

however, involves additional challenges: unless the strength of inbreeding depression is 

exceptionally high, a large number of samples would be required to detect inbreeding 

depression accurately (as shown in chapter II of this thesis and in [40, 8]) which is hardly 

feasible in natural populations, especially if they are endangered. In addition, large 

amount of phenotypic data (correctly linked to the genotypic data) are required which is 

also complicated to obtain in natural populations. Recent advancements in monitoring, 

sampling and sequencing resources have made this possible and recent studies showed 

an association between inbreeding and different traits such as breeding success decrease 

in deer [32], lower survival in both wolves [45] and whales [37], population growth 

decrease in ibex [7] and survival and growth vigor decrease in plants [75, 3, 33]. 

The barn owl (Tyto alba) is a nocturnal bird of prey widely distributed throughout 

Europe. Since the last glacial maximum, barn owls have colonized Switzerland from 

refuges in Portugal and Greece [18]. For over 30 years, a subset the Swiss population has 

been subjected to a long-term study, which involves collecting pedigree data, blood 

samples, and morphological data. A precise description of the data collection process was 

described in [25]. As birds can fly in and out of the study area quite easily, the pedigree 

of the birds is quite shallow and our current estimations suggest that 60% of the 

population is composed of migrants (i.e. birds born outside the study area). Overall, this 

population and the large amount of data collected through the years are ideal for studying 

inbreeding effects on phenotypes in the wild. 

In this paper, we use a combination of high and low coverages whole genome re-

sequencing data of 3,085 Swiss barn owls to study their inbreeding status as well as the 
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effect of inbreeding depression on different morphological traits such as tarsus and bill 

length and mass in both adults and juveniles separately. We found significant inbreeding 

depression for some traits on young individuals but not on adults. 

Material and Methods 

Sampling, sequencing and genotyping 

We sequenced a total of 3,085 barn owls (Tyto alba) sampled as part of a long- term 

study in South-Western Switzerland. 358 of these individuals were sequenced at high 

coverage (14X on average), herein referred to as the ‘reference panel’, and used to phase 

and impute the remaining 2,768 individuals sequenced at low coverage (on average 

1.91X). Annex I and II provide detailed descriptions of high-coverage genotyping and 

phasing respectively, while Annex III provides precise descriptions of low-coverage 

genotypes generation. Briefly, DNA was extracted from blood and tissue samples with 

the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) for both high and low 

coverages samples. Whole-genome re-sequencing was performed at the Lausanne 

Genomic Technologies Facility (GTF, University of Lausanne, Switzerland) using 

Illumina HiSeq 2500 PE high-throughput sequencing. We then trimmed and aligned raw 
reads to the reference genome [47] with Trimommatic (v0.39) [6] and BWA-MEM 

(v.0.7.17) [44]. 

Following read alignment, the pipeline differs for high and low coverage individuals. For 

the reference panel, we used the ‘Base quality score recalibration’ (BQSR) method as 
suggested in GATK best practices for non-model species. We then called haplotypes using 

GATK’s (v4.2.6.1) HaplotypeCaller method and performed diploid joint-calling [59]. We 

then filtered variants following GATK ‘best practices’ (QD < 2.0, FS > 60.0, MQ < 40.0, 

MQRankSum < -12.5, ReadPosRankSum < -8.0, SOR > 3.0) and performed an 

additional ‘mappability’ filter (described in [16] and adapted from these guidelines) to 

mask regions for which the mapping quality (to the reference genome) was low. We 
then filtered on individuals’ depth using BCFTools (v.1.15.1) [19]: we set any 

variant with individual depth < 5 and > the individual mean depth plus three times 

it’s standard deviation to missing and filtered out any site with minor allele count 

(MAC) < 5. We also filtered out any site with more than 5% (of individuals) missing 

data and any non-bi-allelic variant. We used such hard filters because these high 

coverage genotypes are then used for 

https://lh3lh3.users.sourceforge.net/snpable.shtml
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phasing and imputation of the low-coverage genotypes. Consequently, we need them to 

be of high quality. 

We then used these high-coverage genotypes to phase and impute the low-coverage 

genotypes. The procedure is described in detail in Annex III but to summarize, we first 

obtained genotypes likelihood for the low coverage individuals with BCFTools 

(v.1.15.1) mpilesup and call [43] at the varying position in the high coverage reference 

panel only. We then used the software GLIMPSE (v.1) [65] to phase and impute these 

variant positions. We used the first version of the software rather than the last available 

version because it is recommended for smaller reference panels on the website. In brief, 

in GLIMPSE, low-coverage individuals’ haplotypes are reconstructed as a combination 

of the closest haplotypes in the high-coverage reference panel and of the reconstructed 

low-coverage haplotypes. We show in Annex III that this method results in reliable 

genotype calls (correlation of genotypes for 32 individuals sequenced both at low and 

high coverages was 0.98 for 50,000 randomly selected SNPs). 

HBD segments identification 

Homozygous-by-descent (HBD) segments were called as described in the previous 

chapter. Briefly, we used genetic positions (i.e. we took recombination rate into account) 

and used the RZooRoH package (v.0.3.1) [23, 4, 24] with 13 HBD classes and 1 non-

HBD class with rates (R) of 2, 4, 8, 16, 32, 64, 128, 256, 502, 1024, 2048, 4096 and 8192 

for the HBD classes and 8192 for the non-HBD class [23]. For HBD segments 

distributions, we considered the ‘most probable HBD segments’ estimated by RZooRoH 

Viterbi algorithm and estimated the mean (among individuals) sum of HBD segments 

lengths falling into the different HBD classes. We considered a HBD class as identical-

by-descent (IBD) if the rate was lower or equal to 1024 (i.e. if the coalescence event 

occurred up to 512 generations ago). 

Estimating inbreeding coefficients 

We averaged the probability of belonging to a HBD segment in order to estimate the 

HBD segments-based inbreeding coefficient: FHBD (with the cumhbd function from the 

RZooRoH package with a T value of 1024). This value means that only HBD segments 

coalescing less than 512 generations ago are considered as IBD. We also estimated FAS, 
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an inbreeding coefficient relying on the average allele-sharing between individuals 

(scaled by the mean allele-sharing between individuals) [76] estimated as follow: 

𝐹-.! =
∑ 0-!"1-#"2
$
"%&
∑ (*1-#")$
"%&

 (1) 

where 𝐴%& corresponds the state of the two alleles an individual j carries at locus l: one 

for homozygous and 0 for heterozygous and 𝐴.& is the average allele sharing proportion 

at locus l for pairs of individuals j, k, j ≠ k. 

For inbreeding depression modelling, we used another inbreeding coefficient: FUNI 

initially described in [73] and modified in [76] which was shown to be the best inbreeding 

coefficients for estimating inbreeding depression in large populations (in chapter II of 

this thesis and in [1, 8, 74]). FUNI measures the correlation between uniting gametes and 

the modified version we used (here and in chapter II) gives less weight to rare alleles: 
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with xjl ∈ {0, 1, 2} being the minor allele count of individual j at locus l and pl being the 

derived allele frequency at the same locus. 

Estimating heritability and inbreeding depression 

We used the R package MCMCglmm for all statistical modelling. For each trait we 

modelled adults and juveniles separately under the assumption that parameters affecting 

the traits will differ between life stages. Firstly, we built standard generalised linear 

mixed models with fixed and random effects tailored to each trait and life stage (see table 

1 and supplementary material equations S1 – S6 for specific fixed and random effects). 

Next, to determine the effect of individuals’ inbreeding coefficient on the trait (i.e 

inbreeding depression) we fitted FUNI as a fixed effect (equations in supplementary 

material). Finally, to estimate heritability of traits we used the ‘animal model’ framework 

which uses a pedigree to relate individuals to their additive genetic values. We calculated 

narrow sense heritability as the proportion of phenotypic variance explained by additive 

genetic variance, as such: 

ℎ8 	= 	𝑉-	/	𝑉H (3) 
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Where VA and VP are the additive genetic variance and phenotypic variance respectively. 

All animal models were run with the standard following structure: 

𝑦	 = 	𝑋𝛽	 +	𝑍*𝑎	 +	𝑍I𝑢I 	+ 	𝑒 (4) 

Where, y is a vector of the trait measurements, X is an incidence matrix relating individual 

measures to the vector of fixed effects β. Z1 and Zr are incidence matrices relating 

individual measures to additive genetic and remaining random effects respectively; a is 

the relatedness matrix estimated from the pedigree; ur is a vector of additional random 

effects; and finally, e is a vector of residual effects. For juveniles, the animal model was 

incorporated into the existing model of inbreeding depression described above. In 

contrast, for adults we estimated inbreeding depression and heritability in separate 

models. This is because FUNI was not significant for adults and greatly reduced the 

sample size (our pedigree contained many more adults than we sequenced) which was 

not the case for juveniles. Table 1, below, describes the parameters included as fixed and 

random effects for each phenotypic trait and life stage. Details are also given on the 

number of MCMC iterations and the burn in used which we optimised through inspection 

of model convergence in trace plots and the effective sample size. 
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Table 1: Description of the parameters used in the MCMCglmm models used for heritability estimation. 
FUNI is the inbreeding coefficient. Sex is the sex of the individual. Rank is the rank of birth of the 
individual in the clutch. For juveniles, the age of an individual (in days) was included in the model with 
a Gompertz growth function as y = Asym * e(−b2 * b3x), where x is the age in days and the 3 
remaining parameters were estimated for each trait using the SSgompertz function in R. Pedigree 
represents the relatedness matrix estimated from the pedigree (i.e. the ARM). Individual ID represents 
a unique ID per individual to account for repeated measures across individuals. Observer ID is the person 
who took the measurement. Clutch ID is the ID of the clutch in which the bird was born and raised. 
Birth year is the year in which the individual was born. For adults, LastChickHatched refers to a binary 
parameter indicating whether the last chick of the clutch already hatched or not (i.e if the females is 
still sitting on the eggs). All models described in this table are fully described in equations S1 - S6. 

Trait Life Stage Fixed Effects Random Effects niterations nburnin 
Bill length Juveniles FUNI 

Sex 
Rank 
Age 

Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

250,000 50,000 

Bill length Adults Sex Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

1,000,000 50,000 

Mass Juveniles FUNI 
Sex 
Rank 
Age 

Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

250,000 50,000 

Mass Adults Sex 
LastChickHatched 
Sex:LastChickHatched 

Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

1,000,000 50,000 

Tarsus length Juveniles FUNI 
Sex 
Rank 
Age 

Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

250,000 50,000 

Tarsus length Adults Sex 
Rank 

Pedigree 
Individual ID 
Clutch ID 
Observer ID 
Birth Year 

1,000,000 50,000 
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Results 

Figure 1 shows the FHBD distribution of the population (panel A). The majority of the 

population estimates of FHBD are < 0.1, indicating less than 1% of strongly inbred 

individuals. Panel B presents FHBD versus FAS estimates; each point corresponds to one 

individual. FAS can be seen as a proxy of how much the alleles within an individual are 

associated at random. If FAS = 0 the individual comes from parents which kinship equals 

the average kinship of the population (i.e. the parents are probably unrelated so the 

individual is probably not inbred). On the contrary, if FAS > 0, the parents are more related 

than the average relatedness in the population (i.e. the parents are most likely related and 

the individual is probably inbred). Finally, if an individual shows a FAS < 0, it means that 

their parents are less related than the average of the population (i.e. the parents are likely 

unrelated and the individual could even be admixed). Consequently, comparing FAS and 

FHBD can indicate where inbreeding comes from. Panel B shows that the few individuals 

with FHBD > 0.1 also have FAS higher than zero, suggesting that their inbreeding is mostly 

due to mating between related parents and not to population’s small effective size. In 

addition, most individuals are below the identity line (i.e. FAS > FHBD) suggesting we have 

structure in our data. Indeed, when FHBD < FAS, it indicates that the individual is not 

autozygous at many sites but that its parents are more similar than the average of the 

population which indicates that there is population structure in our data set (the individual 

is part of a subgroup of the population). This is not surprising as our data set includes 

many families. Nevertheless, among the individuals below the line, several have high FAS 

and FHBD, indicating that we sampled few families which are inbred. Finally, we have 

some individuals with highly negative FAS values (and FHBD < 0.05). In comparison to 

the general population, these individuals’ parents are less related. Panel C shows the 

probability that a variant is autozygous along the genome. For most regions of the 

genome, this probability is low. Nevertheless, we have a very high peak at the beginning 

of Super-Scaffold 3 on around 400Kb. In this region, we did not identify any particular 

gene or gene enrichment. Other smaller peaks are often found at the beginning or end of 

super-scaffolds. 
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Figure 1: Inbreeding quantification. A: FHBD distribution B: FHBD according to FAS C: Probability 
that a marker belongs to an HBD segment (pHBD) along the genome, averaged in 100Kb sliding 
windows with 20Kb overlap. Alternating colors correspond to a change in super-scaffold. 

Figure 2 illustrates different representations of the distribution of HBD segments among 

the 3,085 samples. Panel A shows the total number of HBD segments for each individual 

according to the total length of these segments. First, most individuals have a small 

number of HBD segments (less than 300) and second, most individuals follow a linear 

trajectory. However, few individuals (16) have fewer segments than expected according 

to their sum of all HBD segments. These individuals are the result of matings between 

parents who are closely related and carry long HBD segments. In contrast, inbred 

individuals with many segments are more likely to derive from matings between 

relatively ancient relatives. Panel B shows the distribution of segments falling into the 

different HBD classes. This demonstrates that most individuals carry HBD segments that 

date from ancient coalescent events (256 and 512 generations on average) and very few 

HBD segments that date from recent coalesce events (less than eight generations ago). 

Finally, panel C shows the HBD segments carried by the three individuals with the most 
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and least inbred genomes. The least inbred individuals carry between one and six HBD 

segments all smaller than 1Mb. In contrast, the most inbred individual (M047568) has 

one HBD segment exceeding 26Mb. It should be noted, however, that most of the HBD 

segments in M047568 are much smaller (median length of HBD segments in M047568: 

312Kb; mean length of HBD segments in M047568: 1Mb). 

 

Figure 2: HBD segments distribution. A: Number of HBD segments according to sum of HBD 
segments per individual B: HBD segments distribution C: HBD segments distributions for the three 
less and more inbred individuals in the data set. 

Figure 3 shows the different morphological traits variance partitioning among the random 

effects of the MCMCglmm models for both juveniles and adults. Heritability values 

extracted from the same models are presented in table 2. Since it had no significant effect 

and was not available for most adults, FUNI was not included in the animal models for 

adults. The mean (across MCMC iterations) heritability (VA/VP ) of adults was always 

larger than that of nestlings. Similarly, larger heritabilities were observed from the 

distribution of the VA estimates from the different iterations of the MCMC chain (figure 

S1). The variation between iterations was quite large especially for tarsus length in adults 

(table 2 and figure S1). Concerning other random effects, the clutch in which the birds 

was born and grew (VClutch ID), which represents all the environment the bird was exposed 

to as a juvenile, such as its parents and how good hunters they were, was important for 

all three traits in juveniles, but only for tarsus length in adults. Similarly, the bird’s birth 

0 1 x 108 2 x 108 3 x 108

SHBD segments [bp]

0

200

400

600

N
H

BD
 s

eg
m

en
ts

A

1g
[50]

2g
[25]

4g
[12.5]

8g
[6.25]

16g
[3.13]

32g
[1.56]

64g
[0.78]

# generations back to the coalescence event
[expected mean HBD segments length in Mb]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
su

m
 o

f l
en

gt
h 

[M
b]

B

128g
[0.39]

256g
[0.20]

512g
[0.10]

0

5

10

15

M022906

898923

M032425

M032022

M047566

M047568

0 0.5 x 107 1 x 107 1.5 x 107 2 x 107 2.5 x 107

HBD segment length [bp]

C



 106 

year (VBirth Year) was always more influential in juveniles than in adults. With the 

exception of mass measurement in juveniles, who took the measurement (VObserver ID) had 

only a reduced effect. Next, we observe almost no effect of individual measurement 

(VIndividual ID the variance among repeated measures of the same individual) suggesting 

that the repeatability of our measurements is high (repeatability measured as the 

intraclass correlation coefficient (ICC) in adults is 0.667 (CI = [0.639; 0.694]) for bill 

length, 0.594 (CI = [0.554; 0.633]) for mass and 0.801 (CI = [0.768; 0.829]) for tarsus 

length). Finally, the residuals (VResiduals i.e. the fraction of variance not explained by our 

model) are the highest for the mass model in adults and for the tarsus length model in 

nestlings. 

 

Figure 3: Variance partitioning among the different random effects of our animal models for both nestlings 
and adults. The inbreeding coefficient FUNI was included in the models for nestlings but not for adults. 
Birth Year is the year in which the individual was born. Individual ID represents a unique ID per individual 
to account for repeated measures across individuals. Clutch ID is the ID of the clutch in which the bird was 
born and raised. Observer ID is the person who took the measurement. Residuals represent the variance 
not explained by our model. VA is the variance explained by the pedigree, i.e. the additive genetic variance. 
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Table 2: Heritability (h2) estimates for the different traits in both adults and juveniles. Heritability estimates 
were extracted from MCMCglmm models as additive variance divided by the total phenotypic variance: 
VA/VP . The inbreeding coefficient FUNI was included for juveniles only. 

Trait Life Stage Mean h2 95% prediction interval 

Bill length Juveniles 0.26 [0.19; 0.33] 
Bill length Adults 0.50 [0.41; 0.58] 
Mass Juveniles 0.04 [0.00; 0.07] 
Mass Adults 0.21 [0.09; 0.32] 
Tarsus length Juveniles 0.12 [0.07; 0.17] 

Tarsus length Adults 0.50 [0.31; 0.68] 

Figure 4 illustrates the inbreeding depression slope estimates (β) for the different 

phenotypes. Panel A shows morphological traits for both juveniles and adults. Inbreeding 

depression was detected only for bill length in juveniles (mean β = -17.13; 95% CI = [-

25.7205; -8.3872]). Hence, an individual with an inbreeding coefficient FUNI of 0 has, 

on average, a bill 1.71 mm longer than an individual with a FUNI of 1. This represents a 

10.6% decrease in bill length. Only the β estimate of bill length was negative for adults, 

but all CI overlapped with zero. Adults had particularly large CIs for both mass and tarsus 

length. It should be noted that although the CI around β estimates of mass and tarsus 

length overlapped with zero in juveniles, they were negative. Panel B shows fitness-

related traits for adults only. We did not detect inbreeding depression on any of these 

traits (the β estimates are positive and all CI overlapped with 0). 
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Figure 4: Inbreeding depression strength (β) estimates estimated with FUNI. A: for both juveniles and adults 
in the three morphological traits. Models correspond to equations S16, S18, S20, S22, S24 and S26 in 
supplementary material. B: Yearly fitness-related traits for adults only. Number of eggs laid is for females 
only while probability that an egg hatches is for both parents. Models correspond to equations S28 and S32 
in supplementary material. For both panels, sample sizes represent the number of observations. 

We ran models with and without pedigree information in both juveniles and adults and 

compared inbreeding depression quantification obtained with FUNI and FHBD (figure S2). 

We found that i) there is hardly any difference between the models including or excluding 

the pedigree and that ii) the CI for β estimated with FHBD are always larger than the 

estimates from FUNI, especially in adults. 

Furthermore, we would like to emphasize that we included rank (in birth) in the 

inbreeding depression model for tarsus length in adults because it had a significant 

influence on tarsus length. The majority of adults, however, are born outside of our study 

system, and their rank is unknown. Therefore, it greatly reduced the sample size and the 

range of FUNI covered. This resulted in β shifting from zero (when rank is not taken into 

account) to positive (when rank is included in the model) but did not change the 

significance. Comparison between both models (with and without rank can be found in 

figure S3). 
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Discussion 

In this paper, we first characterize the status and origin of inbreeding in the Swiss barn 

owl population and look for evidence of inbreeding depression. We first show that the 

majority of our samples have low levels of close inbreeding due to both their low fraction 

of genome within HBD segments [50, 9] low HBD segment total numbers [9, 53] and 

average length [42, 9]. In addition, we demonstrate that the few highly inbred individuals 

are clustered into families and are inbred because their parents are closely related. In 

contrast, we identified 16 outbred individuals with negative FAS values (< -0.05). The 

parents or grandparents of all but one of these individuals are unknown, and they may be 

either migrants from neighboring populations or offspring of a migrant and a local. We 

found that the probability of a marker being autozygous varied along the genome with an 

inflated value at the very beginning of Super Scaffold 3. It is likely that this peak is due 

to an assembly problem. In both the data used to generate the assembly and our data, we 

observe an inflated coverage in this particular area (the coverage in this region is on 

average twice as high as the coverage in the rest of the genome). This probably indicates 

an amplification of this particular region. As for the rest of the genome, the variation we 

observe may be the result of drift, selection, or recombination [58, 31]. However, it is 

more likely to be drift or selection, since we have considered the local recombination rate 

in our model. 

We found that heritability was always higher in adults than in juveniles. There is also 

evidence that heritability increases with age in other species, such as sheep for weight 

and hindleg length [70, 71]. In swans, heritability follows a quadratic curve: low in 

nestlings, almost zero in young adults, and high in older individuals [12]. It could be due 

to senescence and the accumulation of mutations acting at late life stages [51, 12]. 

However, increased heritability in adults is not always due to an increased additive 

genetic variance (VA) but could also be due to a decrease in phenotypic variance (VP), i.e. 

due to increased parental effects in juveniles [70]. Indeed, juveniles are more dependent 

on their environment because their parents feed them, whereas adults are solely 

responsible for feeding themselves and surviving. We found that the clutch in which the 

bird was born and raised, and hence the parental investment, had no effect on adults’ bill 

length and mass. On the contrary, it always explained at least 10% of the variance in 

juveniles. Adult tarsus length had 23% of its variance explained by clutch ID, which 

suggests that the juvenile environment is more important for tarsus growth than bill 
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growth. This conclusion is further supported by the fact that the rank at birth of an 

individual significantly impacts the length of the tarsus in adults. At the juvenile stage, a 

barn owl’s rank determines how much food is available. Barn owls lay their eggs 

asynchronously, and they hatch approximately every two to three days within a clutch. 

Therefore, the first born is larger and stronger than his siblings and will be able to access 

the food brought back by his parents more easily [64]. As a result, older siblings are able 

to feed and grow more rapidly. Bringing enough food for large clutches is only possible 

if the clutch is small or if the parents are extremely successful hunters. We also 

demonstrate that juveniles were more affected by the year in which they were born than 

adults were. The condition of the chicks in the nest is partly dependent on the severity of 

winters [2] or the summer weather as rainy weather conditions hinders the hunting 

success of parents [13]. Interestingly, the year of birth had very little effect on tarsus 

length at both life stages. It could be because the variance of year has already been 

absorbed by our clutch ID variable. Or it could be an ascertainment bias because all the 

individuals with small tarsus died regardless of the year they were born and we did not 

sample them. There was little variance explained by who measured the traits except for 

mass in juveniles. This is because half of the people used a scale for mass measurement 

in juveniles while the other half used a pesola. Regarding the fraction of variance not 

explained by our models, the residuals in adults were the highest for mass. This suggests 

that we have a poor model for mass. It could be explained partly because we cannot know 

whether an owl is fed when we weight it, and we estimated that an adult owl gains 

approximately eight percent of its weight after eating a prey. We also showed that 

variation among heritability estimates were higher for tarsus length in adults. This is 

likely due to the smaller sample size for tarsus length (n = 1,100 observations for 592 

individuals) compared to both bill length and mass (n = 3,321 for 1,860 individuals and 

n = 1,932 for 598 individuals respectively). This is because we included the rank (of 

birth) of individuals in the tarsus length model because its effect was significant (which 

was not the case for both bill length and mass). Since most of our adults are born outside 

our study system, we don’t know what their rank is and we had to remove many tarsus 

observations. 

We found that inbreeding significantly affects bill length in juveniles but not in adults. 

There is a possibility that this is the result of a smaller sample size and smaller range of 

F for adults or (and most likely) that these adults actually passed the first selection 

process: survival after leaving the nest, resulting in a lesser effect of inbreeding on 
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survivors due to the fact that individuals who were less fit did not survive [57, 66, 14]. A 

similar negative effect of inbreeding on bill length has previously been reported in house 

sparrows [56]. Concerning the other morphological traits, inbreeding has a negative 

effect on both mass and tarsus length in juveniles, but the effect is not significant. It may 

be that our models are less accurate for both of these traits (the residuals are large). In 

addition, the confidence intervals are just overlapping with zero and increasing the 

sample size could lead to their reduction and a significant effect of inbreeding depression. 

However, we cannot make any conclusions and certainly not that it would be significant 

if our models were more accurate or if we had more observations. Among adults, both 

mass and tarsus length estimates are positive, but non-significant and harbor large 

confidence intervals. It is probably due to the large residuals of the model for mass. For 

tarsus length, it could be a result of the smaller sample size and the smaller range of FUNI 

covered. β estimates for fitness-related traits in adults are close to zero, with very large 

CI. For the fitness-related traits, it is unexpected as we expect life-history traits such as

probability that an egg hatches to be more sensitive to inbreeding depression [56, 20].

However, it is likely because our sample sizes are very small (we only used 56 clutches

for the probability that an egg hatches). However, just like before we cannot conclude

that we would detect inbreeding depression with more observations.

The results of our study add to the growing body of literature where recent studies have 

documented more and more instances of inbreeding depression in the wild [66, 32, 37, 

29, 56]. For instance, a 10% increase in FROH has been shown to decrease survival by 

60% in Soay sheep [66]. Similarly, Kardos and collaborators [37] found that an increase 

of 14% in FROH decreased the probability of killer whales’ survival to 40 years by 71%. 

Other studies showed that lifetime breeding success was reduced by 84% for individuals 

from half-sibling mating in red deer [32] and by 88% for a 9% increase in homozygosity 

in the helmet honeyeater [29]. Our study reports relatively low inbreeding effects 

compared to what was found in these studies. It is probably because what we are reporting 

is a morphological trait, which usually has little bearing on fitness compared with 

survival or breeding success. This lesser effect of inbreeding on morphological traits 

compared to survival or breeding success has been reported previously in house sparrow 

[56] and mentioned in previous studies [39, 20]. A possible explanation is that

morphological traits may have a small individual effect on fitness but add up over an

individual’s lifetime to influence reproductive success [56, 34].
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Finally, in the supplementary material, we compare both FUNI and FHBD for inbreeding 

depression estimation. Even though we don’t know the true value of β here, the small CI 

around β, coupled with the fact that the owls we are studying come from a population 

with large effective size and numbers, suggests that FUNI is likely more reliable than FHBD 

in our population [1, 8]. 

Conclusion 

The Swiss barn owl population consists primarily of individuals with low inbreeding 

coefficients, however, there are a few individuals that are the result of mating between 

closely related parents. We show that increased levels of inbreeding lead to negative 

effects such as reduced bill length in juveniles, but not in adults, suggesting that 

inbreeding depression varies depending on the individual’s life stage. 
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Bensch. Severe inbreeding depression in a wild wolf Canis lupus population. Biology Letters, 
1(1):17–20, 2005. 

[46] L.J. Luo, Z-K. Li, H.W. Mei, Q.Y. Shu, R. Tabien, D. B. Zhong, C. S. Ying, J.W. Stansel, G.S. 
Khush, and A.H. Paterson. Overdominant Epistatic Loci Are the Primary Genetic Basis of Inbreeding 
Depression and Heterosis in Rice. II. Grain Yield Components. Genetics, 158(4):1755–1771, 2001. 

[47] A.P. Machado, T. Cumer, C. Iseli, E. Beaudoing, A-L. Ducrest, M. Dupasquier, N. Guex, K. Dichmann, 
R. Lourenço, J. Lusby, H-D. Martens, L. Prévost, D. Ramsden, A. Roulin, and J. Goudet. Unexpected 
post-glacial colonisation route explains the white colour of barn owls (tyto alba) from the british isles. 
Molecular Ecology, 31(2):482–497, 2021. 

[48] G. Malécot. Les mathématiques de l’hérédité. Masson, 1948. 
[49] R. McQuillan, N. Eklund, N. Pirastu, M. Kuningas, B.P. McEvoy, T .  Esko, T. Corre, G. Davies, M. 

Kaakinen, L-P. Lyytikäinen, K. Kristiansson, A.S. Havulinna, M. Gögele, V. Vitart, A. Tenesa, Y. 
Aulchenko, C. Hayward, A. Johansson, M. Boban, S. Ulivi, A. Robino, V. Boraska, W. Igl, S.H. Wild, 
L. Zgaga, N. Amin, E. Theodoratou, O. Polasek, G. Girotto, L.M. Lopez Cinzia Sala, J. Lahti, T. 
Laatikainen, I. Prokopenko, M. Kals, J. Viikari, J. Yang, A. Pouta, K. Estrada, A. Hofman, N. 
Freimer, N.G. Martin, M. Kähönen,  L. Milani, M. Heliövaara, E. Vartiainen, K. Räikkönen, C. 
Masciullo, J.M. Starr, A.A. Hicks, L. Esposito, I. Kolcíc, S.M. Farrington, B. Oostra, T. Zemunik, H. 



 115 

Campbell, M. Kirin, M. Pehlic, F. Faletra, D. Porteous, G. Pistis, E. Widén, V. Salomaa, S. 
Koskinen, K. Fischer, T. Lehtimäki, A. Heath, M.I. McCarthy, F. Rivadeneira, G.W. Montgomery, 
H. Tiemeier, A-L. Hartikainen, P.A.F. Madden, P. d’Adamo, N.D. Hastie, U. Gyllensten, A.F. 
Wright, C.M. Van Duijn, M. Dunlop, I. Rudan, P. Gasparini, P.P. Pramstaller, I.J. Deary, D. 
Toniolo, J.G. Eriksson, A. Jula, O.T. Raitakari, A. Metspalu, M. Perola, M-R. Järvelin, A. 
Uitterlinden, P.M. Visscher, J.F. Wilson on behalf of the ROHgen Consortium. Evidence of 
Inbreeding Depression on Human Height. PLoS Genetics, 8(7):e1002655, 2012. 

[50] R. McQuillan, A-L. Leutenegger, R. Abdel-Rahman, C.S. Franklin, M. Pericic, L. Barac-Lauc, N. 
Smolej-Narancic, B. Janicijevic, O. Polasek, A. Tenesa, A.K. MacLeod, S.M. Farrington, P. Rudan, C. 
Hayward, V. Vitart, I. Rudan, S.H. Wild, M.G. Dunlop, A.F. Wright, H. Campbell, and J.F. Wilson. 
Runs of Homozygosity in European Populations. The American Journal of Human Genetics, 
83(3):359–372, 2008. 

[51] P.B. Medawar. An unsolved problem of biology. H.K. Lewis and Company,1952. 
[52] M.A. Nalls, R.J. Guerreiro, J. Simon-Sanchez, J.T. Bras, B.J. Traynor, J.R. Gibbs, L.Launer, J. 

Hardy, and A.B. Singleton. Extended tracts of homozygosity identify novel candidate genes 
associated with late-onset Alzheimer’s disease. neurogenetics, 10(3):183–190, 2009. 

[53] T.N. Nguyen, N. Chen, E.J. Cosgrove, R. Bowman, J.W. Fitzpatrick, and A.G. Clark. Dynamics of 
reduced genetic diversity in increasingly fragmented populations of florida scrub jays, aphelocoma 
coerulescens. Evolutionary Applications, 15(6):1018–1027, 2022. 

[54] P. Nietlisbach, S. Muff, J.M. Reid, M.C. Whitlock, and L.F. Keller. Nonequivalent lethal equivalents: 
Models and inbreeding metrics for unbiased estimation of inbreeding load. Evolutionary Applications, 
12(2):266–279, 2019. 

[55] M. Nishio, K. Inoue, S. Ogawa, K. Ichinoseki, A. Arakawa, Y. Fukuzawa, T. Okamura, E.Kobayashi, 
M. Taniguchi, M. Oe, and K. Ishii. Comparing pedigree and genomic inbreeding coefficients, and 
inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genomics, 24(1):376, 2023. 

[56] A.K. Niskanen, A.M. Billing, H. Holand, I.J. Hagen, Y.G. Araya-Ajoy, A. Husby, B. Rønning, A.M. 
Myhre, P.S. Ranke, T. Kvalnes, H. Pärn, T.H. Ringsby, S. Lien, B-E. Sæther, S. Muff, and H. Jensen. 
Consistent scaling of inbreeding depression in space and time in a house sparrow metapopulation. 
Proceedings of the National Academy of Sciences, 117(25):14584–14592, 2020. 

[57] M. Olsson, A. Gullberg, and H. Tegelstr¨om. Malformed offspring, sibling matings, and selection 
against inbreeding in the sand lizard (Lacerta agilis). Journal of Evolutionary Biology, 9(2):229–242, 
1996. 

[58] T.J. Pemberton, D. Absher, M.W. Feldman, R.M. Myers, N.A. Rosenberg, and J.Z. Li. Genomic 
Patterns of Homozygosity in Worldwide Human Populations. The American Journal of Human 
Genetics, 91(2):275–292, 2012. 

[59] R. Poplin, V. Ruano-Rubio, M.A. DePristo, T.J. Fennell, M.O. Carneiro, G.A. Van der Auwera, D.E. 
Kling, L.D. Gauthier, A. Levy-Moonshine, D. Roazen, K. Shakir, J. Thibault, S. Chandran, C. Whelan, 
M. Lek, S. Gabriel, M.J Daly, B. Neale, D.G. MacArthur, and E. Banks. Scaling accurate genetic variant 
discovery to tens of thousands of samples. bioRxiv, 2018. 

[60] E. Postma, L. Martini, and P. Martini. Inbred women in a small and isolated Swiss village have fewer 
children. Journal of Evolutionary Biology, 23(7):1468–1474, 2010. 

[61] J.K. Pritchard. Are Rare Variants Responsible for Susceptibility to Complex Diseases? The American 
Journal of Human Genetics, 69(1):124– 137, 2001. 

[62] J.E Pryce, M. Haile-Mariam, M.E. Goddard, and B.J. Hayes. Identification of genomic regions 
associated with inbreeding depression in Holstein and Jersey dairy cattle. Genetics Selection Evolution, 
46(1):71, 2014. 

[63] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira, D. Bender, J. Maller, P. 
Sklar, P.I.W. De Bakker, M.J. Daly, and P.C. Sham. PLINK: A Tool Set for Whole-Genome 
Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 
81(3):559–575, 2007. 

[64] A. Roulin. Effects of hatching asynchrony on sibling negotiation, begging, jostling for position and 
within-brood food allocation in the barn owl, tyto alba. Evolutionary Ecology Research, 6:1083–1098, 



 116 

2004. 
[65] S. Rubinacci, D.M. Ribeiro, R.J. Hofmeister, and O. Delaneau. Efficient phasing and imputation of 

low-coverage sequencing data using large reference panels. Nature Genetics, 53(1):120–126, 2021. 
[66] M.A. Stoffel, S.E. Johnston, J.G. Pilkington, and J.M. Pemberton. Genetic architecture and lifetime 

dynamics of inbreeding depression in a wild mammal. Nature Communications, 12(1):2972, 2021. 
[67] N.A. Swinford, S.P. Prall, S. Gopalan, C.M. Williams, J. Sheehama, B.A. Scelza, and B.M. Henn. 

Increased homozygosity due to endogamy results in fitness consequences in a human population. 
Proceedings of the National Academy of Sciences, 120(43):e2309552120, 2023. 

[68] B.N. Vardarajan, D.J. Schaid, C. Reitz, R. Lantigua, M. Medrano, I.Z. Jiménez-Vélázquez, J.H. Lee, 
M. Ghani, E. Rogaeva, P. St George-Hyslop, and R.P. Mayeux. Inbreeding among Caribbean Hispanics 
from the Dominican Republic and its effects on risk of Alzheimer disease. Genetics in Medicine, 
17(8):639–643, 2015. 

[69] B.S Weir and J. Goudet. A Unified Characterization of Population Structure and Relatedness. Genetics, 
206(4):2085–2103, 2017. 

[70] A.J. Wilson, J.M. Pemberton, J.G. Pilkington, T.H. Clutton-Brock, D.W. Coltman, and L.E.B. 
Kruuk. Quantitative genetics of growth and cryptic evolution of body size in an island population. 
Evolutionary Ecology, 21(3):337, 2007. 

[71] A.J. Wilson and D. Réale. Ontogeny of additive and maternal genetic effects: Lessons from domestic 
mammals. The American Naturalist, 167(1):E23–E38, 2006. 

[72] S. Wright. Coefficients of Inbreeding and Relationship. The American Naturalist, 56(645):330–338, 
1922. 

[73] J.Yang, S.H. Lee, M.E. Goddard, and P.M. Visscher. GCTA: A Tool for Genome-wide Complex Trait 
Analysis. The American Journal of Human Genetics, 88(1):76–82, 2011. 

[74] L. Yengo, Z. Zhu, N.R. Wray, B.S. Weir, J. Yang, M.R. Robinson, and P.M. Visscher. Detection and 
quantification of inbreeding depression for complex traits from SNP data. Proceedings of the National 
Academy of Sciences, 114(32):8602–8607, 2017. 

[75] C. Zhang, P. Wang, D. Tang, Z. Yang, F. Lu, J. Qi, N.R. Tawari, Y. Shang, C. Li, and S. Huang. The 
genetic basis of inbreeding depression in potato. Nature Genetics, 51(3):374–378, 2019. 

[76] Q.S. Zhang, J. Goudet and B.S. Weir. Rank-invariant estimation of inbreeding coefficients. Heredity, 
128(1):1–10, 2022. 

  



117 

General discussion 

Throughout this thesis, we studied how to measure individual inbreeding and its effects 

on individuals’ phenotypes. We propose new methodological guidelines for researchers 

wanting to estimate inbreeding and inbreeding depression and we assess the inbreeding 

status of a large-scale wild metapopulation of barn owls. Inbreeding detection can be 

challenging, and we began by investigating which type of genomic data can be used with 

a common measure of inbreeding that relies on identical-by-descent (IBD) segments: 

runs of homozygosity (ROHs) [46, 43, 41, 63, 4]. We showed that the most popular 

software used to identify ROHs (PLINK [75]) can only be used if the genome has been 

sequenced at high-densities (namely with whole-genome sequencing and high-density 

SNP arrays). On the contrary, we found that a less popular method (RZooRoH [22]), 

can be applied at both high and low densities. Then, we compared the ability of different 

inbreeding coefficients (including but not limited to ROHs-based coefficients) to 

quantify the effects of inbreeding on phenotypic traits. We proposed a novel statistical 

method to take into account the non-independence of observations when quantifying 

inbreeding depression in populations with strong genetic structure. We showed that the 

quantification of inbreeding depression with non-independent data is greatly improved 

when a genetic relatedness matrix (GRM) based on allele-sharing is included in the 

(generalized linear) model. The most commonly used GRM, however, does not allow for 

an accurate estimation of the strength of inbreeding depression. After testing and 

comparing methods for both inbreeding and inbreeding depression quantification, we 

applied these methods to empirical data from the European barn owl (Tyto alba). We 

measured inbreeding and deleterious load in several barn owl populations of different 

sizes and looked for evidence of purging in island populations. We showed that island 

populations are more inbred than mainland populations and that this inbreeding is mostly 

due to ancient relatedness linked to islands’ smaller population sizes. Additionally, we 

demonstrated that none of our populations has undergone purging of deleterious alleles. 

Finally, we quantified the effect of inbreeding on different traits in the Swiss barn owl 

population and find that inbred juveniles have a smaller bill on average than those who 

are outbred. 
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Why measuring inbreeding and inbreeding depression ? 

In the first part of this thesis, we study how to accurately quantify inbreeding and its 

deleterious consequences and we show in chapters I and II that only the correct 

combination of data and methods can lead to reliable estimation of inbreeding and 

inbreeding depression. Several studies have shown that inbreeding is ubiquitous in nature 

[3, 37, 44, 19, 97] and how to accurately quantify it is an important topic and has been 

widely discussed in the literature [45, 41, 98, 42, 99, 6, 1]. As a result of climate change 

and the sixth biodiversity crisis [71, 12, 13, 11], a significant decrease in population sizes 

is occurring in nature which leads to an increase in inbreeding. Thus, it is essential to 

accurately quantify diversity and inbreeding in natural populations (as we do for the barn 

owl in chapters III and IV). It is crucial to identify endangered populations efficiently 

and develop appropriate conservation guidelines [27, 74]. Aside from being important 

for conservation, understanding inbreeding also plays an important role in human health 

since it has been linked to fertility reduction [72, 15], an increase in several diseases [49, 

10], and a reduction in quantitative traits related to stature [10, 62] and cognition [10]. 

Finally, inbreeding is particularly prevalent among domestic species such as chicken [66, 

50], cattle [64, 34, 77, 53], sheep [76, 60, 83], pigs [82, 37, 8] and aquacultures [55]. 

Besides feeding human populations, these species are also of great economic 

significance. Therefore, it is important to be able to manage their inbreeding load 

accurately in order to avoid population crash [59]. In fact, most domestic breeds today 

follow strict breeding programs in order to minimize inbreeding and its negative effects. 

When studying the inbreeding status of populations, ROHs are particularly useful 

because they provide both an estimate of an individual inbreeding coefficient and 

information regarding the origin of this inbreeding via their distributions [10, 46]. For 

instance, Mastrangelo et al. (2016) [61] compared ROHs distribution from three dairy 

cattle breeds and found that Italian Holstein individuals harbored a high number of short 

ROHs. This suggests that inbreeding in this breed is mostly caused by ancient 

relatedness. On the other hand, individuals from the Modicana and Cinisara breeds 

harbored a high number of large ROHs, suggesting recent mating events between 

relatives. The authors concluded that a monitored breeding program for reducing 

consanguinity in these local breeds was necessary. It is therefore crucial that ROHs 

distributions are correctly estimated if they are used for taking decisions. We show in 

chapter I that not all methods can be used with reduced genomic representations and this 
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is particularly important because they are very popular due to their lower price, especially 

in conservation studies where funds are often limited. 

Even though inbreeding can have deleterious consequences for individuals, it does not 

necessarily result in inbreeding depression or population extinction. In nature, 

populations with long-term small population sizes and high levels of inbreeding have 

been observed with little or no inbreeding depression [78, 2, 79]. Consequently, it is 

crucial not only to quantify inbreeding accurately, but also to determine whether a 

population (wild or domestic) suffers from inbreeding depression and requires active 

management. Indeed, we show in chapter II that inbreeding depression quantification can 

be strongly biased if the methods are not adapted. Identifying the type of management it 

requires is also important. It has been demonstrated that “simply” increasing the genetic 

diversity of a small potentially endangered population is not always the most effective 

method for population rescue and deep understanding of population history as well as the 

cause of inbreeding depression are needed [89, 36, 30]. 

The importance of methodology in biology 

Methodological studies are critical, but they are often overlooked. Indeed, scientific 

research aims to understand biological processes from which interpretations and 

conclusions can be derived. The conclusions drawn from these studies may serve as a 

basis for making important decisions. We mentioned above that many studies aim at 

examining potential conservation issues and conservation statuses of populations and 

species to propose adapted conservation strategies [61, 74] and we showed in chapters I 

and II that accurate estimation of inbreeding and inbreeding depression can only be 

achieved with specific combinations and of data and methods. As another example, 

biomedical research plays a significant role in human health via the development and 

commercialization of new drugs [21]. The conclusions reached by scientists must, 

therefore, be accurate if they are to be used to make decisions. And to reach accurate 

conclusions, we need a robust methodology and a deep understanding of both data and 

methods. Moreover, it is imperative that these methods and models are rigorously 

validated through methodological studies as we did in chapter I and II. Especially in 

today’s world where technology is ever-evolving, it is crucial to ensure that we have 

reliable methods in place to deal with the large quantity and various quality of data being 

generated. For instance, inappropriate conservation management based on erroneous 

results produced by wrong combinations of data and methods can be detrimental to 
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biodiversity or, on the contrary, a waste of resources. Consequently, it is crucial that the 

research methodology, interpretations, and conclusions are accurate and carefully 

examined. 

Implication for the barn owl 

This thesis contributes to the growing body of literature concerning the characterization 

of inbreeding as well as the detection of inbreeding depression in the wild [86, 40, 43, 

35, 68]. Even though barn owls are well studied, to our knowledge, we are the first to 

conduct such a large-scale assessment of their inbreeding status. We demonstrate that the 

European barn owl, despite increased inbreeding in island populations, displays high 

genetic diversity and low levels of inbreeding. Therefore, we confirm that this species 

is not endangered, as assessed by the International Union for conservation in 

Nature (IUCN) and does not require conservation measures. Despite its low inbreeding 

levels, we still detected inbreeding depression. In this context, inbreeding depression 

is not a concern: it only affects a small number of the Swiss barn owls’ population 

and will theoretically not results in the Swiss population extinction. This is an 

important consideration, as barn owls are keystone species as they help regulate 

populations of small rodents and can prevent overgrazing in ecosystems. 

Future works and limitations 

In this thesis, we studied many aspects related to inbreeding but there is a lot more that 

could be done with enough time and resources. In the first chapter, we tested two different 

approaches for identifying IBD segments. As I mentioned in the discussion, there is a 

third approach [5, 70] which we did not test, and it would be interesting to see how it 

handles reduced genomic representations. Furthermore, confirmation of our results with 

empirical data would be helpful, even though it is difficult to find individuals who have 

been sequenced twice at different densities. We could however use whole-genome 

sequencing and subsample reads to mimic other sequencing techniques. 

We proposed a novel approach for quantifying inbreeding depression in data with strong 

genetic structure in the second chapter. Firstly, the way we simulated inbreeding 

depression could be more realistic: we could simulate genetic data and attribute fitness 

values to specific loci to estimate individual fitness. Furthermore, we could explore 

different types of structure and try to find a minimum FST value from which taking the 

https://www.iucnredlist.org/search?query=tyto%20alba&searchType=species
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non-independence of data is necessary for quantifying inbreeding depression. This would 

give precise guidelines to researchers wanting to quantify inbreeding depression as to 

whether they need to account for structure or not. 

In the third chapter, we examine the degree of inbreeding in different barn owl 

populations and determine whether they are enriched in deleterious alleles. Since we 

were unable to polarize our data, we assumed that the minor allele was the deleterious 

allele. Ideally, it would be appropriate to redo all analyses (starting with the inclusion of 

out-groups in the genotyping) to allow for the polarization of our genomic data. As our 

group recently began studying the world barn owl phylogeny, we may be able to polarize 

our data by using their data. It would also be interesting to estimate the number of lethal 

equivalents, which is an alternative measure of genetic load (which does not require 

phenotypic data), in different populations of owls and compare them with populations on 

continental and island continents. In addition, it would be interesting to determine 

whether IBD segments are enriched or depleted in deleterious variants, and whether the 

results are the same for islands and continental populations. Finally, the effective 

populations’ sizes we estimated are not very realistic and, while we can still use the 

relative values for comparison, it would be better to have more accurate estimates, either 

based on a better mutation rate (which we could estimate based on the barn owl data 

presented in this thesis) or by using specialized software [23, 54, 90]. 

Finally, in the last chapter of this thesis, we look for evidence of inbreeding depression 

in the Swiss barn owl population. For fitness-related traits, such as egg hatching 

probability, we did not detect inbreeding depression. This may be due to the fact that our 

sample size is very small. As a matter of fact, we had to discard a large amount of data 

because many barn owl eggs were cross-fostered in the last decade and it was impossible 

to identify the original parents of each egg. For hatched eggs, this can be done by 

sequencing both the parents and the juvenile. However, it is impossible to do so for eggs 

that did not hatch. New observations are added to the database every season and by 

sequencing new parents and adding more recent observations, we should be able to re-

run these analyses with more observations. The initial sample selection included owls for 

which most of the phenotypic traits were known (including color, which was not used in 

this thesis but that other members of our groups are actively studying). Consequently, we 

did not sequence juveniles that died too early (before their plumage coloration could be 

assessed). We intend to sequence these individuals and perform inbreeding depression 



 122 

analyses on juvenile survival rates. We are also interested in modeling recapture 

probability (as a proxy for survival probability) according to individuals inbreeding 

coefficients. As a final point, we did not include any genetic relatedness matrix in our 

analysis. It could be interesting to see how including it (instead of the pedigree-based 

matrix) would influence heritability and inbreeding depression strength estimation. Since 

our data do not have a substantial structure and there is no difference between the simple 

linear model and the model including the pedigree-based relatedness matrix, we do not 

expect substantial change in inbreeding depression strength estimation. However, it could 

improve our heritability estimation by reducing the associated confidence intervals. 

Conclusion 

In conclusion, this thesis emphasizes the importance of using accurate data and methods. 

First, the type of data matters: we cannot use any inbreeding detection method with any 

type of data. When we have the correct data, we must then determine the most appropriate 

method to both quantify inbreeding and estimate its impact on individuals. Therefore, the 

software and the inbreeding coefficient we use are extremely important factors. After 

inbreeding has been accurately quantified, the next challenge is to estimate how it affects 

individuals’ traits. The analysis for inbreeding depression estimation must also be 

adapted to the studied population: the best inbreeding coefficient will actually depend on 

the population size and whether we should use the GRM will depend on whether our 

population is structured. Using the barn owl (Tyto alba) as a model organism, we 

demonstrate that with proper methods and data one can study inbreeding status and 

origin, as well as quantify inbreeding depression in populations. We confirm that the barn 

owl is not endangered but that inbreeding depression can still be found in its populations. 

In conclusion, this thesis contributed to a better understanding of the quantification of 

inbreeding and inbreeding depression, which are crucial for several fields such as 

conservation assessment, domestic populations management and humans’ health. 
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SUPPLEMENTARY MATERIAL & METHODS 

Simulations: small and large populations 

 

 The genetic map was simulated with FREGENE (Chadeau-Hyam et al., 2008) with 

default parameters to mimic a human-like recombination map. Input files with default 

parameters can be accessed while downloading the FREGENE software in 

Fregene/Example/data/. Only the <CHROMO_LENGTH> parameter was modified to simulate 

chromosomes with size of 100KB. 

 We performed two rounds of simulations with SLiM3 (Haller & Messer, 2019) to force 

all chromosomes from the same simulation replicate to have the same history/pedigree. For each 

simulation replicate, the aim of the first round was to generate the pedigree which was then 

“applied” 30 times (for 30 chromosomes) in the second round of simulations. In the first round 

of simulations, we used a non-Wright-Fisher model with overlapping generations: individuals 

ages varied between 0 and 3 years old. Ages were uniformly assigned to individuals at the first 

generation. The population size was regulated at each generation at the end of the simulation 

cycle: only Ne individuals (i.e. 1,000 for the small and 10,000 for the large population) with the 

higher relative fitness survived through the next generation. In addition to the density-

dependency fitness, individual fitness was relative to age: probability to survive to the next 

generation was 0.9 for 0-year old individuals, 0.7 for 1-year old individuals, 0.5 for 2-years old 

individuals and 0 for 3-years old individuals. A reproduction callback (which defines 
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reproduction events in SLiM3) was called at each generation: Ne individuals (i.e. 1,000 for the 

small and 10,000 for the large population) were sampled for reproduction (without replacement). 

Individual probabilities of being selected as a mate were age-dependent: 0 for 0 years old 

individuals, 0 for 1-year old individuals, 0.6 for 2-years old individuals and 0.4 for 3-years old 

individuals. For each of these Ne individuals, a mate was then selected among the other adults 

(i.e. older than 1-year old) of the population, creating one new individual in the population. For 

each potential mate, the probability of being chosen as a mate was equal to 10 times the 

relatedness (estimated with SLiM3) between the potential mate and the focal individual + 0.01 

multiplied by 0.6 for 2-years old individuals and 0.4 for 3-years old individuals. The first part 

was to ensure that some inbreeding occurred at each generation. Mating and death events were 

recorded for generation. During the second round of simulations, these mating and deaths events 

were applied to the 30 chromosomes (each with a different genetic map). 

 The burn-in were performed with python via recapitation in msprime (Kelleher et 

al., 2016), with a constant recombination rate of 1x10-8. Mutations were added at the end of the 

simulation based on a human-like mutation rate of 2.5x10-8. 

Simulations: cattle population 

 The genetic map from male Holstein cattle was obtained from a study from Qanbari & 

Wittenburg (2020). Chromosome sizes correspond to the true chromosome sizes from Bos 

Taurus. 
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 The history of the simulation was inspired by a paper from Frantz et al. (2020). For this 

population, we first simulated the burn-in with msprime: We simulated two populations: a wild 

population with 50,000 individuals and a domestic population with 1,500 individuals which split 

10,000 generations ago. The migration rate between both populations was constant and equal 

to3x10-5. During this burn-in, the recombination rate was constant and equal to 1x10-8. At the 

end of the burn-in, 200 individuals were randomly sampled to mimic the strong artificial 

pressure applied 200 generations ago during many current breeds creation. Individual metadata 

were modified to fit a non-Wright-Fisher model: half of the individual were assigned a female 

gender and the other half a male gender. Individual ages were randomly assigned between 0 and 

3 years old. 

 The last 200 generations were performed in SLiM3. Since our real pedigree only covered 

57 years maximum, we performed a first round of simulation and recorded all mating events. We 

then used this simulated pedigree to complete the real one: each founder of the real pedigree (i.e. 

each individual from which parents are unknown) was randomly linked to a simulated individual 

from the same generation, consequently receiving his genealogy (from the simulated pedigree). 

In other words, we used the simulated genealogies to complete the real ones. Afterwards, we 

trimmed this completed pedigree to keep only the individuals and mating events resulting in the 

individuals from the last generation of the real pedigree. Then, we ran a second round of 

simulations were we simply applied this new complete pedigree to all chromosome of the cattle 

genome in SLiM3. Finally, we used msprime to add all mutations with a mutation rate of 2.5x10-8 
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and to subsample the individuals from the last generation only. This corresponds to our WGS 

data for the cattle population. 

ROHs calling with PLINK: parameters optimization 

 The PLINK parameters used for ROHs calling varied according to the SNP density in the 

dataset. Hereafter are the list of the different parameters and how they were adjusted: 

- Window size (--homozyg-window-snp): the window size (in number of SNPs) was 

positively correlated with SNPs density: we used larger windows for higher SNP 

densities. More precisely in reduced densities datasets the window-size was chosen to 

correspond, on average, to a segment with length corresponding to our minimum size 

threshold: 100KB as proposed by Duntsch et al., (2021): 𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 =

𝑆𝑁𝑃 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100. However, we set a maximum threshold of 100 and a 

minimum threshold of 30 because using no minimum value resulted in low correlations 

between FROH RAD and FIBD (FIG S9). For WGS, we simply used 100. 

 

- Minimum SNP density (--homozyg-density): the minimum SNP density [per KB] 

required for a homozygous segment to be called a ROH. This parameter also positively 

correlated with SNP density: a smaller density was required for dataset with low 

densities. Concerning RAD-sequencing and both arrays, the minimum density was set to 

50KB. This means that at least one SNP must be present every 50KB. Concerning WGS, 
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we decided to include ROHs with at least 1 SNP for 100KB (from Purfield et al., (2012, 

2017); Stoffel et al., (2021) cited in Duntsch et al., (2021)). 

 

- Minimum number of SNPs per ROH (--homozyg-snp): we used the same value to what 

was set for the --homozyg-window-snp parameter. For RAD sequencing and SNP arrays, 

this threshold was chosen based on the mean SNP density in the dataset: #𝑆𝑁𝑃𝑠 =

𝑆𝑁𝑃 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 [
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 with a maximum value of 100 and a minimum value of 30. 

This value was equal to 100 for WGS. 

 

- Maximum distance in between two SNPs for them to be in the same ROH (--homozyg-

gap): this value was set to default parameter 1Mb for the all the datasets. Using a lower 

value resulted in a strong overestimation of small ROHs and an underestimation of large 

ROHs (FIG S10). 

 

- Maximum number of heterozygous SNPs per ROH (--homozyg-het): Since we have 

simulated data, we don’t need to account for sequencing errors, only for de novo 

mutations. For RAD-sequencing, we allowed for one heterozygous SNP per ROH. 

Concerning both SNP arrays, we allowed for 0 heterozygous SNPs since the SNPs have 

been filtered on MAF and should not contain any de novo mutations. Finally, we 

authorized 8 heterozygous SNPs per ROH with WGS because it resulted in the best 

ROHs distributions estimation. This number is fairly high but is due to the simulated 
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data: we have many very rare variants which are normally filtered out during the quality 

control step during SNP calling with real data. 

 

- Minimum scanning window hit rate (--homozyg-window-treshold): we decided to keep 

the default parameter 0.05 as seen in many other studies (Ceballos et al., 2018; 

Ferenčaković et al., 2013; Meyermans et al., 2020) cited in Duntsch et al., (2021). 

 

- Maximum number of heterozygous SNPs per window (--homozyg-window-het): We 

authorized a maximum of two SNPs per window for RAD-sequencing and WGS and 0 

for both SNP arrays (because SNPs have been filtered on MAF > 0.05). 

 

ROHs calling with PLINK: parameters optimization; Cattle population 

As mentioned in the main text, we had to increase the number of heterozygous SNPs allowed in 

a ROH (--homozyg-het) to 64 with WGS data in the cattle population. This is because the 

inbreeding is strong in this population and resulted in very long IBD segments. Consequently, 

higher numbers of de novo mutation were likely to occur in these IBD segments. However, we 

did not vary the number of heterozygous sites allowed in a window (--homozyg-window-het) to 

ensure that these heterozygous sites would not be too close to each other in the same ROH. We 

want to stress that we were able to perform parameter optimization for WGS with PLINK 

because we have access to the true fraction of genome within IBD segments which is not the 

case with empirical data. 
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Table S1: PLINK parameters used for each sequencing technique for the small and large populations: 

+     

 

PARAMETERS RAD sequencing SNP arrays WGS 

Window size 

(--homozyg-window-snp) 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

100 

Minimum SNP density 

(--homozyg-density) 
50 50 100 

Minimum number of SNPs 

per ROH 

(--homozyg-snp) 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

100 

Maximum distance in 

between two SNPs for them 

to be in the same ROH 

(--homozyg-gap) 

1000 1000 1000 

Maximum number of 

heterozygous SNPs per ROH 

(--homozyg-het) 

1 0 8 

Minimum scanning window 

hit rate 

(--homozyg-window-treshold) 

0.05 0.05 0.05 

Maximum number of 

heterozygous SNPs per 

window 

(--homozyg-window-het) 

2 0 2 
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Table S2: PLINK parameters used for each sequencing technique for cattle population:  

 

PARAMETERS SNP arrays WGS 

Window size 

(--homozyg-window-snp) 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

100 

Minimum SNP density 

(--homozyg-density) 
50 100 

Minimum number of SNPs 

per ROH 

(--homozyg-snp) 

[
# 𝑆𝑁𝑃𝑠

𝐾𝐵
] ∗ 100 

 

Max = 100 

Min = 30 

100 

Maximum distance in 

between two SNPs for them 

to be in the same ROH 

(--homozyg-gap) 

1000 1000 

Maximum number of 

heterozygous SNPs per 

ROH (--homozyg-het) 

0 64 

Minimum scanning window 

hit rate 

(--homozyg-window-

treshold) 

0.05 0.05 

Maximum number of 

heterozygous SNPs per 

window 

(--homozyg-window-het) 

0 2 
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SUPPLEMENTARY RESULTS 

 
FIG S1: Comparison between FROH and FHBD estimated with reduced genomic data on the y axis 

according to FIBD (the true fraction of genome within IBD segments coalescing less than 100 reproductive 

cycles) on the x axis. Each point represents one individual (for one subsampling replicate within one 

simulation replicate). The black line represents the equality line (x = y). Blue points represent individuals 

from the small population and orangish from the large population. Within these two colors categories, a 
change in shade represents an increase in fraction of genome subsampled (indicated between the 

parentheses for RAD-sequencing). A: Subsampling was performed mimicking RAD-sequencing and 
ROHs were called with PLINK. B: Subsampling was performed mimicking RAD- sequencing and HBD 

segments were called with RZooRoH. C: Subsampling was performed mimicking SNPs arrays and ROHs 

were called with PLINK. D: Subsampling was performed mimicking SNPs arrays and HBD segments 

were called with RZooRoH. 
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FIG S2: Comparison between FHOM estimated with subsampled data mimicking RAD-sequencing (y axis) 

according to FIBD, the true fraction of genome within IBD segments coalescing less than 100 reproductive 

cycles ago (x axis). A: Small population, fraction of genome presented are the same as the fractions of 

genomes used for ROHs analyses with PLINK (minimum size 100KB) and RAD-sequencing in FIG 4 and 

S1A; B: Small population, fractions of genome presented are the same as the fractions of genomes used 

for HBD segments analyses with RZooRoH and RAD-sequencing in FIG 4 and S1B ; C: Large 
population, fractions of genome presented are the same as the fractions of genomes used for ROHs 

analyses with PLINK (minimum size 100KB) and RAD-sequencing in FIG 4 and S1A; D: Large 
population, fractions of genome presented are the same as the fractions of genomes used for HBD 

segments analyses with RZooRoH and RAD-sequencing in FIG 4 and S1B. 

  

RAD-Sequencing (3%)

SNP Density = 16 SNPs / Mb

RAD-Sequencing (4%)

SNP Density = 21 SNPs / Mb

RAD-Sequencing (10%)

SNP Density = 50 SNPs / Mb

RAD-Sequencing (0.05%)

SNP Density = 0.3 SNPs / Mb

RAD-Sequencing (0.15%)

SNP Density = 2.2 SNPs / Mb

RAD-Sequencing (2%)

SNP Density = 11 SNPs / Mb

RAD-Sequencing (0.004%)

SNP Density = 0.2 SNPs / Mb

RAD-Sequencing (0.008%)

SNP Density = 0.5 SNPs / Mb

RAD-Sequencing (0.125%)

SNP Density = 7 SNPs / Mb

RAD-Sequencing (0.25%)

SNP Density = 14 SNPs / Mb

RAD-Sequencing (0.4%)

SNP Density = 23 SNPs / Mb

RAD-Sequencing (1%)

SNP Density = 55 SNPs / Mb



12 

FIG S3: Comparison of ROHs (panels A and C) and HBD segments (panels B and D) distributions 

between the different sequencing methods and the true distributions of ‘older’ IBD segments (defined as 
segments which coalesced less than 1,000 reproductive cycles ago). Black horizontal lines correspond to 

total IBD segments lengths per individuals (y axis) falling into the different length classes (x axis). 

Barplots show the mean (± sd) difference between the mean total length of IBD segments and their 
estimation for each sequencing method. Barplots below the horizontal black line indicate an 

underestimation while barplots above the horizontal black line indicate an overestimation of the total 
length of segments. Mean (and sd) are among individuals, simulation and subsampling replicates. A: 

ROHs distributions from the small population; ROHs were called with PLINK. B: HBD segments 

distributions from the small population; HBD segments were called with RZooRoH. C: ROHs 
distributions from the large population; ROHs were called with PLINK. D: HBD segments distributions 

from the large population; HBD segments were called with RZooRoH. 
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FIG S4: Correlation between FROH estimated with RAD-sequencing and FIBD, the true fraction of genome 

within IBD segments (coalescing less then 100 reproductive cycles ago) according to SNP density in the 
reduced dataset for both the small and large population. ROHs were called with PLINK default 

parameters. A: Small population; B: Large population. 
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FIG S5: Comparison between FROH (called with PLINK default parameters) estimated with reduced 

genomic data on the y axis according to FIBD (the true fraction of genome within IBD segments coalescing 

less than 100 reproductive cycles ago)on the x axis. Each point represents one individual (for one 
subsampling replicate within one simulation replicate). The black line represents the equality line (x = y). 

Blue points represent individuals from the small population and orangish from the large population. 

Within these two colors categories, a change in shade represents an increase in fraction of genome 
subsampled (indicated between the parentheses for RAD-sequencing). ROHs were called with PLINK 

default parameters. Fractions of genome presented are the same as the fractions of genomes used for 

ROHs analyses with PLINK in FIG  4, S1 and S2. A: Small population B: Large population. 
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FIG S6: Comparison of ROHs (called with PLINK default parameters) distributions between the 

different sequencing methods and the true distributions of IBD segments (defined as segments which 
coalesced less than 100 reproductive cycles ago). Black horizontal lines correspond to total IBD 

segments lengths per individuals (y axis) falling into the different length classes (x axis). Barplots show 
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the mean (± sd) difference between the mean total length of IBD segment and their estimation for each 

sequencing method. Barplots below the horizontal black line indicate an underestimation while barplots 
above the horizontal black line indicate an overestimation of the total length of segments. Mean (and sd) 

are among individuals, simulation and subsampling replicates. ROHs were called with PLINK default 

parameters. Fractions of genome presented are the same as the fractions of genomes used for ROHs 

analyses with PLINK in FIG 4, S1, S2 and S5. A: Small population B: Large population. 
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FIG S7: Segments are considered IBD if they coalesce less than 1,000 reproductive cycles ago. For each 

sequencing method: fraction of genome correctly assigned outside IBD segments (true-non-IBD), 
correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD segments (false-

non-IBD) and incorrectly assigned within IBD segments (false-IBD) are represented. Values are 
averaged among individuals as well as both simulation and subsampling replicates. A: ROHs 

distributions from the small population; ROHs were called with PLINK. B: HBD segments distributions 

from the small population; HBD segments were called with RZooRoH. C: ROHs distributions from the 
large population; ROHs were called with PLINK. D: HBD segments distributions from the large 

population; HBD segments were called with RZooRoH. 
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FIG S8: ROHs have been called with PLINK and a maximum length allowed between two adjacent 

SNPs (--homozyg-gap) of 1000. --homozyg-window-snp and --homozyg-snp were dependent on the SNP 
density in the reduced dataset with a no minimum value and a maximum value of 100. A: Comparison 

between FROH estimated with RAD-sequencing on the y axis according to FIBD (the true fraction of genome 
within IBD segments coalescing less than 100 reproductive cycles ago) on the x axis. Each point 

represents one individual (for one subsampling replicate within one simulation replicate). The black line 

represents the equality line (x = y). Fractions of genome subsampled are indicated between the 
parentheses. Small population. B: Same as panel A but for the large population. C: Comparison of ROHs 

distributions from RAD-sequencing and the true distributions of IBD segments (defined as segments 

which coalesced less than 100 reproductive cycles ago). Black horizontal lines correspond to total IBD 

segments lengths per individuals (y axis) falling into the different length classes (x axis). Barplots show 

the mean (± sd) difference between the mean total length of IBD segment and their estimation for each 
sequencing method. Barplots below the horizontal black line indicate an underestimation while barplots 

above the horizontal black line indicate an overestimation of the total length of segments. Mean (and sd) 
are among individuals, simulation and subsampling replicates. Small population. D: Same as panel C but 

for the large population 

 

Adapting the --homozyg-snps and --homozyg-window-snps parameters influences the estimation 

of FROH, leading even to a negative correlation between FROH and FIBD for the large population 

and the smaller SNP density. These parameters do not seem to strongly influences the ROHs 
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distributions estimation expect concerning the smaller ROHs class where we see a strong 

overestimation. 
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FIG S9: ROHs have been called with PLINK and a maximum length allowed between two adjacent SNPs 

(--homozyg-gap) of 200. --homozyg-window-snp and --homozyg-snp were dependent on the SNP density 
in the reduced dataset but with a minimum value of 30 and a maximum value of 100. A: Comparison 

between FROH estimated with RAD-sequencing on the y axis according to FIBD (the true fraction of genome 
within IBD segments coalescing less than 100 reproductive cycles ago) on the x axis. Each point 

represents one individual (for one subsampling replicate within one simulation replicate). The black line 

represents the equality line (x = y). Fractions of genome subsampled are indicated between the 
parentheses. Small population. B: Same as panel A but for the large population. C: Comparison of ROHs 

distributions from RAD-sequencing and the true distributions of IBD segments (defined as segments 
which coalesced less than 100 reproductive cycles ago). Black horizontal lines correspond to total IBD 

segments lengths per individuals (y axis) falling into the different length classes (x axis). Barplots show 

the mean (± sd) difference between the mean total length of IBD segment and their estimation for each 
sequencing method. Barplots below the horizontal black line indicate an underestimation while barplots 

above the horizontal black line indicate an overestimation of the total length of segments. Mean (and sd) 

are among individuals, simulation and subsampling replicates. Small population. D: Same as panel C but 

for the large population 

 

Reducing the --homozyg-gap parameter does not influence the estimation of FROH, but strongly 

influences the ROHs distributions estimation. No long ROHs are detected when this parameter is 
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too small and there is a strong overestimation of small ROHs. Long IBD segments are probably 

split in small adjacent ROHs. 
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FIG S10: Comparison of ROHs and HBD segments detection with WGS and both SNPs arrays in the 
cattle population and for both PLINK and RZooRoH. A: Comparison of FROH estimated with PLINK with 

WGS and both SNPs arrays in regards to the true fraction of genome within IBD segments (coalescing 

less than 100 reproductive cycles ago).B: Fraction of genome correctly assigned outside IBD segments 
(true-non-IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD 

segments (false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) with WGS and both 
arrays. ROHs were called with PLINK C: Comparison of ROHs distributions with WGS and both arrays 

in regards to the true distribution of IBD segments (coalescing less than 100 reproductive cycles ago). 

Horizontal black lines represent the true mean (among simulation replicate) individual total IBD 
segments lengths estimated from simulated data for each length class. Barplots represent the mean 

(among simulation and subsampling replicate) difference between the estimated distributions (ROHs) and 
the truth (IBD segments). ROHs were called with PLINK. D: Comparison of FHBD estimated with 

RZooRoH with WGS and both SNPs arrays in regards to the true fraction of genome within IBD segments 

(coalescing less than 100 reproductive cycles ago). E: Fraction of genome correctly assigned outside 
IBD segments (true-non-IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned 

outside IBD segments (false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) with 
WGS and both arrays. HBD segments were called with RZooRoH F: Comparison of HBD segments 

distributions with WGS and both arrays in regards to the true distribution of IBD segments (coalescing 

less than 100 reproductive cycles ago). Horizontal black lines represent the true mean (among simulation 

replicate) individual total IBD segments lengths estimated from simulated data for each length class. 

Barplots represent the mean (among simulation and subsampling replicate) difference between the 
estimated distributions (HBD segments) and the truth (IBD segments). HBD segments were detected with 

RZooRoH. 
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true-non-IBD

true-IBD

false-non-IBD

false-IBD

true-non-IBD

true-IBD

false-non-IBD

false-IBD

SMALL ARRAY

SNP Density = 21 SNPs / Mb

LARGE ARRAY

SNP Density = 308 SNPs / Mb

WGS

SNP Density = 5350 SNPs / Mb

SMALL ARRAY

SNP Density = 21 SNPs / Mb

LARGE ARRAY

SNP Density = 308 SNPs / Mb

WGS

SNP Density = 5350 SNPs / Mb
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Table S3: Summary of the relationship between true fraction of genome within IBD segments (which 
coalesce less than 100 reproductive cycles ago) and inbreeding coefficients (F) estimated different 

sequencing methods: i) FROH estimated with PLINK ii) FHBD estimated with RZooRoH and iii) FHOM. For 

each replicate, the correlation is estimated as the Pearson correlation between FROH or FHBD and FIBD and 

the slope and intercept are extracted from the linear model: 𝐹𝑅𝑂𝐻 𝑂𝑅 𝐻𝐵𝐷  ~ 𝐹𝐼𝐵𝐷. This table presents the 

mean (±sd) among replicates. For RAD-sequencing, the numbers in parentheses indicate the percentage 

of genome sequenced. 

 
Sequencing 

method 
F estimate Correlation ± sd Intercept ± sd Slope ± sd 

 

     

RAD (0.05%) 
FHBD 0.932 ± 0.013 -0.02 ± 0.014 0.993 ± 0.046 

FHOM 0.897 ± 0.014 -0.064 ± 0.007 1.061 ± 0.015 

     

RAD (0.15%) 
FHBD 0.975 ± 0.005 -0.01 ± 0.009 0.987 ± 0.031 

FHOM 0.959 ± 0.006 -0.065 ± 0.007 1.062 ± 0.016 

     

 RAD (2%) 
FHBD 0.995 ± 0.001 0.045 ± 0.005 0.945 ± 0.014 

FHOM 0.99 ± 0.002 -0.065 ± 0.007 1.062 ± 0.016 

     

Small array FHBD 0.996 ± 0 0.193 ± 0.004 0.804 ± 0.014 

     

Large array FHBD 0.997 ± 0.001 0.203 ± 0.004 0.79 ± 0.014 

     

WGS FHBD 0.998 ± 0 0.147 ± 0.003 0.849 ± 0.008 

     

RAD (3%) 
FROH -0.415 ± 0.106 0.027 ± 0.004 -0.015 ± 0.005 

FHOM 0.994 ± 0.001 -0.065 ± 0.007 1.063 ± 0.016 

     

RAD (4%) 
FROH 0.984 ± 0.005 0.129 ± 0.009 0.672 ± 0.051 

FHOM 0.994 ± 0.001 -0.065 ± 0.007 1.062 ± 0.016 

     

RAD (10%) 
FROH 0.996 ± 0.001 0.262 ± 0.005 0.766 ± 0.01 

FHOM 0.995 ± 0.001 -0.065 ± 0.007 1.063 ± 0.016 

     

Small array FROH 0.997 ± 0 0.091 ± 0.003 0.891 ± 0.012 

     

Large array FROH 0.998 ± 0 0.135 ± 0.003 0.86 ± 0.012 

     

WGS FROH 0.999 ± 0 0.087 ± 0.003 0.918 ± 0.006 

     

 

     

RAD (0.002%) 
FHBD 0.846 ± 0.035 0.106 ± 0.018 0.891 ± 0.071 

FHOM 0.758 ± 0.022 -0.014 ± 0.002 1.017 ± 0.011 

     

RAD (0.008%) 
FHBD 0.914 ± 0.019 0.104 ± 0.012 0.892 ± 0.05 

FHOM 0.851 ± 0.017 -0.013 ± 0.001 1.009 ± 0.007 

     

RAD (0.125%) 
FHBD 0.993 ± 0.002 0.104 ± 0.003 0.891 ± 0.012 

FHOM 0.987 ± 0.002 -0.013 ± 0.001 1.011 ± 0.006 

     

Small array FHBD 0.999 ± 0 0.047 ± 0.001 0.946 ± 0.006 

     

Large array FHBD 0.999 ± 0 0.212 ± 0.001 0.782 ± 0.004 
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WGS FHBD 0.999 ± 0 0.171 ± 0.001 0.825 ± 0.004 

     

RAD (0.25%) 
FROH 0.241 ± 0.149 0.018 ± 0.002 0.009 ± 0.006 

FHOM 0.993 ± 0.001 -0.013 ± 0.001 1.012 ± 0.006 

     

RAD (0.4%) 
FROH 0.993 ± 0.002 0.101 ± 0.005 0.831 ± 0.02 

FHOM 0.995 ± 0.001 -0.013 ± 0.001 1.012 ± 0.005 

     

 RAD (1%) 
FROH 0.998 ± 0.001 0.168 ± 0.005 0.864 ± 0.008 

FHOM 0.998 ± 0 -0.013 ± 0.001 1.012 ± 0.005 

     

Small array FROH 0.999 ± 0 0.014 ± 0.001 0.96 ± 0.005 

     

Large array FROH 0.999 ± 0 0.065 ± 0.001 0.932 ± 0.005 

     

WGS FROH 0.999 ± 0 0.036 ± 0.001 0.963 ± 0.005 

     

 
  



 
 

25 
 

REFERENCES 
 

Ceballos, F. C., Hazelhurst, S., & Ramsay, M. (2018). Assessing runs of Homozygosity: A 

comparison of SNP Array and whole genome sequence low coverage data. BMC 

Genomics, 19(1), 106. https://doi.org/10.1186/s12864-018-4489-0 

Chadeau-Hyam, M., Hoggart, C. J., O’Reilly, P. F., Whittaker, J. C., De Iorio, M., & Balding, D. 

J. (2008). Fregene: Simulation of realistic sequence-level data in populations and 

ascertained samples. BMC Bioinformatics, 9(1), 364. https://doi.org/10.1186/1471-2105-

9-364 

Duntsch, L., Whibley, A., Brekke, P., Ewen, J. G., & Santure, A. W. (2021). Genomic data of 

different resolutions reveal consistent inbreeding estimates but contrasting homozygosity 

landscapes for the threatened Aotearoa New Zealand hihi. Molecular Ecology, 30(23), 

6006–6020. https://doi.org/10.1111/mec.16068 

Ferenčaković, M., Hamzić, E., Gredler, B., Solberg, T. R., Klemetsdal, G., Curik, I., & Sölkner, 

J. (2013). Estimates of autozygosity derived from runs of homozygosity: Empirical 

evidence from selected cattle populations. Journal of Animal Breeding and Genetics, 

130(4), 286–293. https://doi.org/10.1111/jbg.12012 

Frantz, L. A. F., Bradley, D. G., Larson, G., & Orlando, L. (2020). Animal domestication in the 

era of ancient genomics. Nature Reviews Genetics, 21(8), 449–460. 

https://doi.org/10.1038/s41576-020-0225-0 

Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward Genetic Simulations Beyond the 

Wright–Fisher Model. Molecular Biology and Evolution, 36(3), 632–637. 

https://doi.org/10.1093/molbev/msy228 

Kelleher, J., Etheridge, A. M., & McVean, G. (2016). Efficient Coalescent Simulation and 

Genealogical Analysis for Large Sample Sizes. PLOS Computational Biology, 12(5), 

e1004842. https://doi.org/10.1371/journal.pcbi.1004842 

Meyermans, R., Gorssen, W., Buys, N., & Janssens, S. (2020). How to study runs of 

homozygosity using PLINK? A guide for analyzing medium density SNP data in 

livestock and pet species. BMC Genomics, 21(1), 94. https://doi.org/10.1186/s12864-020-

6463-x 

Purfield, D. C., Berry, D. P., McParland, S., & Bradley, D. G. (2012). Runs of homozygosity and 

population history in cattle. BMC Genetics, 13(1), 70. https://doi.org/10.1186/1471-2156-

13-70 

Purfield, D. C., McParland, S., Wall, E., & Berry, D. P. (2017). The distribution of runs of 

homozygosity and selection signatures in six commercial meat sheep breeds. PLOS ONE, 

12(5), e0176780. https://doi.org/10.1371/journal.pone.0176780 

Qanbari, S., & Wittenburg, D. (2020). Male recombination map of the autosomal genome in 

German Holstein. Genetics Selection Evolution, 52(1), 73. 

https://doi.org/10.1186/s12711-020-00593-z 

Stoffel, M. A., Johnston, S. E., Pilkington, J. G., & Pemberton, J. M. (2021). Genetic 

Architecture and Lifetime Dynamics of Inbreeding Depression in a Wild Mammal. 

Nature Communications, 12(1), 2972. https://doi.org/10.1038/s41467-021-23222-9 

 



154 

Supplementary Material Chapter II: Detecting 

inbreeding depression in structured populations 

Authors: Eléonore Lavanchy, Bruce S. Weir and Jérôme Goudet 

Detailed introduction 

Inbreeding depression, the decrease in mean phenotypic value in inbred individuals, is a 

phenomenon pervasive in humans, domestic and wild animals and plants [55, 25, 14]. 

Inbreeding has been associated with various diseases and is the result of mating between 

relatives. It has been observed in a wide range of taxa such as humans [2, 10], livestock 

[41, 28], wild animal populations [25] and plants [25, 57]. The effect of inbreeding on 

individuals’ genomes is to increase homozygosity: since related individuals share higher 

genetic similarity, their offspring are likely to harbor higher fractions of homozygous 

identical-by- descent (IBD) genomic regions. On the one hand, mating between closely 

related individuals such as siblings or first-degree cousins results in strong inbreeding, also 

referred to as ‘recent inbreeding’. For instance, the mating of closely related individuals is 

encouraged in domestic species, as part of the artificial selection of the process of 

domestication is mating individuals with similar phenotypes of economic interest [35, 40]. 

Nonetheless, recent inbreeding also occurs in wild isolated populations especially those 

with extremely small effective sizes [24, 13] and in various human populations where 

mating with relatives is culturally encouraged [3]. On the other hand, more moderate and 

remote inbreeding may occur because of ancient relatedness between the parents, which is 

often observed in populations with small effective sizes or ancient founder effect. This 

type of inbreeding has been observed in humans, notably in the individuals with East Asian 

ancestry from the 1,000 Genomes Project [17] but also happens in wild [47] and domestic 

[35] populations with small sizes.

What is inbreeding depression ? 

Inbreeding is often associated with reduced fitness, a phenomenon called inbreeding 

depression (ID), in many different species such as humans [9, 8], other animals [44, 20, 

33], and plants [57]. Charlesworth and Willis suggested two specific mechanisms by 

which increased homozygosity leads to a reduction in population fitness [12]. The first 

mechanism is heterozygous advantage where heterozygotes are at an advantage. Inbred 
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individuals have higher chances of being homozygous, thus they will tend to have lower 

fitness. This mechanism has been characterized in drosophila [12] but is likely to be of 

lesser importance in other species [12, 19]. The second mechanism involves partially 

recessive deleterious alleles which, when only present in one copy, have little effect and 

are therefore undetected by natural selection. Hence, selection can only act upon them 

when they are in the homozygous state. For partially recessive deleterious alleles, the 

strength of selection is weak, even in the homozygous state. As a result, many of these loci 

are segregating at low frequencies in populations [43]. For non-inbred individuals, the 

effect on fitness is minimal: they might carry some of these alleles in homozygous form 

by chance, but since most of these alleles are only partly detrimental, the individuals’ 

overall fitness is hardly impacted. Conversely, the more inbred an individual is, the 

higher is its proportion of genome in the homozygous state, increasing the likelihood of 

a large quantity of partially deleterious alleles in a homozygous state. As these alleles 

accumulate, their deleterious effects will have a significant impact on the fitness of inbred 

individuals. In populations with small sizes, these marginally recessive alleles can easily 

reach intermediate frequencies [25] or even fixation [16] since the effect of drift will be 

much stronger. Moreover, individuals will tend to share more co-ancestry in these small 

populations, resulting in a large accumulation of these deleterious recessive alleles in the 

homozygous state. 

Why measuring inbreeding ? 

Since it can have disastrous effects on populations, quantifying inbreeding and its 

deleterious consequences is of the utmost importance. In humans, for example, researchers 

were able to link inbreeding with many deleterious phenotypes [51, 42] which led to a 

better understanding of the underlying mechanisms involved in these traits. Quantifying 

inbreeding is also essential for monitoring endangered and small isolated populations. If 

their inbreeding status is high, we can expect a decline of the population in future 

generations. To avoid this issue, strict breeding programs which aim at reducing the overall 

inbreeding load of the population can be implemented [29, 46, 48]. 

How to quantify inbreeding ? 

Many different methods have been developed for inbreeding quantification and there is no 

consensus on which one is the best [1, 7, 18, 39, 56, 58]. The classical approach was first 

proposed by Sewall Wright in 1922 and makes use of pedigrees (called hereafter FPED) 
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[53]. FPED corresponds to the probability that two alleles are IDB (a definition proposed 

by Malécot in 1948 [32]) and rely on the genealogy of the population. Consequently, its 

estimation is only possible in populations where matings are actively recorded (i.e. mainly 

human and domestic populations). Furthermore, what FPED measures is the expected 

inbreeding coefficient, which can be very different from the realized coefficient due to 

recombination stochasticity and random segregation of alleles. With the advances in 

sequencing technologies, genomic-based inbreeding coefficients (hereafter called Fgenomic) 

have been developed. Among these, some coefficients rely on the comparison between 

observed and expected heterozygosity such as FHOM [11, 45], the expected allele sharing 

between individuals such as FAS [58] or on the correlation between uniting gametes such 

as FUNI [54]. In addition to estimating the realized inbreeding coefficient and requiring no 

prior knowledge of the mating behavior of the population, these genomic estimates are 

simple and straightforward to compute and do not require whole-genome sequencing 

(WGS) data; a few thousands SNPs are usually sufficient for reliable inbreeding estimation 

in humans [18]. However they also have a disadvantage: they usually rely on allelic 

frequencies (except for FAS) and therefore if these frequencies have not been correctly 

estimated, this will affect the estimation of these coefficients. Additionally, these 

coefficients treat each SNP independently, whereas in nature DNA is transmitted from 

parents to offspring in large chromosomal chunks. In order to take this into account, 

McQuillan et al. (2008) proposed a new inbreeding coefficient: FROH which uses runs of 

homozygosity (ROHs) long homozygous stretches as proxy for IBD segments within 

individuals [36]. A model-based approach relying on hidden Markov models (HMM) has 

also been developed for detecting IBD segments [31] by identifying homozygous-by-

descent (HBD) segments. This model is the basis for many other model-based IBD 

segments detection methods such as BCFTools [38], BEAGLES [4] and RZooRoH [15]. 

The inbreeding coefficient estimated with these model-based approaches will be called 

FHBD from now on. One advantage of these methods is that they do not rely on allelic 

frequencies which can be very valuable when only a few individuals are available. 

However, it has been shown that these coefficients and especially FROH are sensitive to 

SNPs density and parameters sets and no consensus on what is the best set of parameters 

exists nowadays [37, 30]. 

  



 157 

How to quantify inbreeding depression 

How to quantify inbreeding depression, although central to conservation genetics for 

decades [25] is still debated. This debate includes two sub-questions: which statistical 

model should be utilized ? And which inbreeding coefficient ? Regarding the model, the 

classical approach consisted of using linear regression of the phenotypes on the inbreeding 

coefficient. However, other models have been used, such as maximum likelihood and 

Generalized Linear models (GLMs) with various link functions. In 2019, Nietlisbach et al. 

[39] compared different models and found that the common GLM models with logit link 

did not allow for accurate inbreeding depression strength estimation. They propose using 

maximum likelihood estimation or GLM with logarithm link functions. 

Effect of sample size 

Except for humans and domestic species where genetic and phenotypic data are available 

for several thousands of individuals [56, 50, 34, 44, 49], ID studies in the wild are usually 

performed on smaller sample sizes varying between 100 and few thousands individuals 

[20, 25, 26, 23]. Consequently, we may not be able to detect inbreeding depression in many 

wild populations (unless the effect is very strong). Indeed Keller et al. [27] stressed that 

to detect the effect of deleterious alleles with small effects (and FROH), very large sample 

sizes of thousands of individuals are needed. 

Review of what has been done so far 

An unresolved issue is which inbreeding coefficient is more accurate for quantifying 

inbreeding depression. In 2011, Keller et al. [27] performed simulations mimicking past 

human demography and compared different inbreeding coefficients. The authors showed 

that FROH retains more individual variation compared to SNPs-independent measures of 

inbreeding and correlates best with homozygous mutation load which they suggest is likely 

to make it the best F for quantifying inbreeding depression. However, the authors stress 

that to detect the effect of deleterious alleles with small effects, very large sample sizes are 

needed. In 2015, Kardos et al. [21] also performed simulations and compared the ability 

of FPED, FROH and FHOM to capture the true proportion of genome within IBD segments. 

They found similar results to [27]: FPED is outperformed by all Fgenomic and among the 

Fgenomic they tested, FROH performed better. In 2016, Bérénos et al. [5] used pedigrees and 

several Fgenomic and showed that genomic based coefficients of inbreeding detect more 
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inbreeding depression compared to FPED. In 2017, Yengo et al. [56] used a homogeneous 

subset of the UK biobank dataset (individuals of European ancestries exclusively, and with 

kinships less than 0.05) to simulate traits and compare various F. The results they found 

contradicted Kardos et al. [21]: they found FUNI to be the best coefficient to estimate ID 

and that FROH-based estimates of ID tended to be overestimated and showed higher 

standard error. In addition, one aspect discussed in this paper but not elsewhere as far as 

we know, is the spurious effect that directional additive effect can have on estimates of 

inbreeding depression (what the authors called DEMA, for Directional Effect of Minor 

Alleles). For a trait linked to fitness, we expect most new mutations to have detrimental 

effects, diminishing the value of the trait. Selection will tend to remove these detrimental 

alleles or maintain them at low frequencies. Many low frequency alleles would then be 

detrimental, leading to a negative DEMA. The authors showed that FHOM (and thus FAS 

since they have similar properties) is sensitive to DEMA while FUNI and FROH are not. 

They also showed via simulations that all estimates of inbreeding depression are somewhat 

sensitive to population structure, FUNI being the least affected. They recommend 

estimating inbreeding using Linkage Disequilibrium (LD) score and Minor Allele 

Frequency (MAF) bins, and to sum the ID estimates from these bins as an overall estimate 

of ID for the trait. In response to this article, Kardos and coauthors [22] argued that FUNI 

yielded better results than FROH because of to the method Yengo et al. [56] used to 

compare the performance of the different Fs and that FROH is preferable for studying 

inbreeding depression. In 2019, Nietlisbach et al. [39] published a paper using simulations 

and compared the capacity of different Fs to quantify ID. They used the inbreeding load 

as the gold standard and found that FROH was the coefficient which showed the highest 

correlation with inbreeding load. In 2020, Caballero et al. [7] used simulations and 

included several populations with different histories: they found that the best F actually 

depends on the size of the population. FROH did a better job at quantifying ID in population 

with small effective size while FUNI was better at predicting ID estimates in populations 

with large effective sizes. However, the authors stressed that the error in ID estimates were 

large in all situations. Finally, in 2021, Alemu et al. [1] used SNPs-array empirical cattle 

data for several groups of allelic frequencies and found that FUNI and FGRM are better at 

quantifying homozygosity at rare alleles while FROH and FHOM are better for alleles at 

intermediate frequencies and correlate better with whole-genome homozygosity. 

Consequently, the authors suggest that the history of the population will play a key role in 

determining which F is best to estimate ID. Indeed, recessive deleterious alleles which 

should be those responsible for inbreeding depression are expected to segregate at low 
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frequencies in large populations due to negative selection. On the contrary, in small 

populations, drift can increase these deleterious recessive alleles frequencies to reach 

intermediate frequencies which would make FROH and FHOM better suited to detect ID. 

Summary of what we did, found and propose 

In this paper we simulated traits based on simulated as well as empirical WGS human data 

from populations with various sizes from the 1,000 Genomes project. We show that some 

F are more sensitive to population structure and DEMA than others. We confirm only 

some of Yengo et al. [56] results. Importantly, we show that accounting for the non-

independence of observations with a mixed model via an allele-sharing based genomic 

relationship matrix (GRM) and using a modified version of FUNI which gives more weight 

to common alleles resolves most of the issues raised by Yengo et al. [56]. 

Supplementary Material and methods 

Summary of the simulated scenarios 

Table S1 presents the different scenarios shown in these SM and the parameters associated 

with each scenario: namely whether the additive and dominance effect sizes were 

randomly assigned or proportional to MAF as well as whether the simulation scenario 

included DEMA (Directional Effect of Minor Alleles). Figure S1 depicts a graphical 

representation of the three parameters mentioned above. 

Table S1: Simulated scenarios used in this study. The first column corresponds to the scenario name and the 
three others indicate whether additive effect sizes (second column) and dominance coefficients (third 
column) were randomly as- signed or according to MAF and whether DEMA (third column) was included. 

Scenario Additive effect sizes Domiannce effect sizes DEMA 
Standard Randomly assigned Randomly assigned No 
ADD Proportional to MAF Randomly assigned No 
DOM Randomly assigned Proportional to MAF No 
DEMA Randomly assigned Randomly assigned Yes 
ADD & DOM Proportional to MAF Proportional to MAF No 
ADD & DEMA Proportional to MAF Randomly assigned Yes 
DOM & DEMA Randomly assigned Proportional to MAF Yes 
ADD & DOM & DEMA Proportional to MAF Proportional to MAF Yes 
ADD & DOM & DEMA Proportional to MAF Proportional to MAF Yes 



160 

Figure S1: Distribution of the additive effect sizes and dominance and dominance coefficients when 
proportional to MAF or randomly assigned in the absence and presence of DEMA. 
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LDMS Stratification 

For the SNPs-based inbreeding coefficients (i.e. FAS and both FUNI), we also investigated 

whether using the Linkage disequilibrium and minor allele frequency stratified inference 

(hereafter called LDMS stratification) proposed by Yengo et al. (2017) [56] improved the 

estimation of the inbreeding depression strength (b). For LDMS stratification, each F is 

estimated from each combination of 7 MAF bins and 4 LD bins, and the ID estimate is 

obtained as the sum of the partial regression coefficients of the trait on each of the 28 

inbreeding coefficients. The MAF and LD bins are defined as in [56]: MAF1: p ≤ 0.001; 

MAF2: 0.001 < p ≤ 0.01; MAF3: 0.01 < p ≤ 0.1; MAF4: 0.1 < p ≤ 0.2; MAF5: 0.2 < p ≤ 

0.3; MAF6: 0.3 < p ≤ 0.4; MAF7: 0.4 < p ≤ 0.5, and LD bins correspond to the 4 quartiles. 

For EAS samples, since there are only 500 samples, we discarded MAF1 and made MAF2: 

p ≤ 0.01. Results for these analyses can be found in figures S10 – S17. 

MAF filtering 

In order to verify whether rare alleles were responsible for 𝐹!"#$  poor estimations of b, we 

did as Yengo et al. (2017) [56] and filtered the WORLD populations genomic data to keep 

only SNPs with MAF > 0.05 using BCFTools. We then re-estimated all F and GRMs 

on the newly filtered data set and re-simulated inbreeding depression. Results for this 

analysis can be found in figure S18. 

HBD segments without size selection 

When estimating IBD segments in the genome, an advantage of model-based approaches 

(such as BCFTools) is that there is no constraint on the minimum size of an HBD 

segment. However, since the coalescing events responsible for inbreeding depression are 

usually recent, we only considered segments larger than 100KB and 1MB in the main 

text. In supplementary figure S19, we also try to estimate ID with ROHs and HBD 

segments larger than 5Mb. We wanted to test whether using all HBD segments 

independently of their size would yield better b estimates. Consequently, in the WORLD 

population and from the output of BCFTools, we did not filter on size but rather on 

quality score. Indeed, the BCFTools output includes a quality score which gives an 

indication about how confident we are about an HBD segment being IBD. A minimum 

quality of 30 was used for filtering. Results for this analysis can be found in figure S19. 
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House sparrow data set analysis 

A metapopulation of house sparrows (Passer domesticus) from several islands in Northern 

Norway has been monitored since 1993 and Niskanen et al. [60] investigated inbreeding 

depression on several traits and made available phenotype and genotype data on more than 

3,100 adult individuals. The data set is ideal to illustrate our method as individuals belong 

to many islands and the data is slightly genetically structured (global FST = 0.028) and 

some individuals are highly related (14,288 pairs (» 1%) have allele-sharing kinships 

larger than 0.1, among which 3,453 (» 0.2%) are larger than 0.2). 

We used only morphological phenotypes, namely adult tarsus length, wing length, bill 

depth, bill length and mass, as they can be analysed with linear models. We removed 

information from non-autosome (scaffold 32) but otherwise kept all SNPs to avoid biases 

when filtering for minor allele frequencies and LD [59]. We filtered out individuals who 

were not present as adults in one of the eight studied islands, as was done in the original 

analysis [60]. The data set used for analysis contained 1,786 individuals genotyped at 

181,529 SNPs. We compared the results of a simple linear model with Sex and 𝐹!"#%  as 

explanatory variables, to the LMMAS linear mixed model with Sex and 𝐹!"#%  as fixed 

effects. We also analysed two additional linear mixed models to match the analyses carried 

out in Niskanen et al. [60], one with islands and years nested in islands as random effects, 

and a mixed model with these two random effects as well as the allele-sharing GRM. 

Niskanen et al. [60] ran a model with the pedigree relatedness matrix as random factor, 

but not with a GRM. Linear models were carried out with the lm function of R, while the 

mixed models were carried out with the lmer function of the lme4 package or the 

lmm.aireml function of the gaston package if the model contained a GRM. The 

lmm.aireml function accepts random factors only if they are in matrix form, we thus 

converted the factors islands and years:islands to matrices made of 0s and 1s, 0 if the two 

observations did not belong to the same group and 1 if they did. We checked that lmer and 

lmm.aireml gave the same results in models with no GRMs. Finally, to test if b, the slope 

associated with 𝐹!"#% , was significantly different from 0, we used the score.fixed.linear 

function of the gaston package for models with GRMs. 
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Supplementary Results and Discussion 

The following section contains all the supplementary figures and tables mentioned in the 

main text. 

 

Figure S2: Pairwise comparison among the different inbreeding estimates (F) in the simulated PEDIGREE 
population. F depicted in this figure are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. 

Figure S2 shows the comparison among the different inbreeding coefficients used in the 

PEDIGREE population. In general, we can see that there is a strong correlation between 

all Fgenomic, with the exception of 𝐹!"#$  and the other F. In addition, the non-genomic-based 

FPED has the lowest correlation with all the other F. 
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Figure S3: Pairwise comparison among the different inbreeding estimates (F) in the 1,000 Genomes Project 
EAS population. F depicted in this figure are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB.

Figure S3 shows the comparison among the different inbreeding coefficients used in the 

EAS population. With no structure in the population, there is a good correlation between 

all Fgenomic. Even though the absolute values of the F are different, the rank of inbreeding 

is always conserved among individuals (i.e. the most inbred individuals are the most inbred 

for all F). 
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Figure S4: Pairwise comparison among the different inbreeding estimates (F) in the 1,000 Genomes Project 
AFR population. F depicted in this figure are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB.

Figure S4 shows the comparison among the different inbreeding coefficients used in the 

AFR population. In this population too, there is a good correlation between all Fgenomic 

(especially the three SNPs-based F: FAS, 𝐹!"#$  and 𝐹!"#% ). 
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Figure S5: Pairwise comparison among the different inbreeding estimates (F) in the 1,000 Genomes Project 
WORLD population (all the individuals). F depicted in this figure are: FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, 
FHBD.1MB and FROH.1MB. 

Figure S5 shows the comparison among the different inbreeding coefficients used in the 

structured WORLD population. In this population as well, there is a good correlation 

between all Fgenomic except 𝐹!"#$  and the others. In addition, among the other F, the African 

samples are the ones with the lowest correlation. 
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Figure S6: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and the LMM including two different GRMs in the PEDIGREE population and with the ADD & DOM & 
DEMA scenario. The first column depicts the LMM including the GCTAw matrix (panels A, C and E) and 
the second column the linear mixed model with the GCTAu matrix (panels B, D and F). The first row shows 
the complete simulated population (n = 11,924 individuals) on panels A and B. The second row depicts the 
randomly subsampled population (n = 2,500 individuals) on panels C and D and the third row shows the 
ranged subsampled PEDIGREE population (n = 2,500 individuals) on panels E and F. Inbreeding estimates 
presented in this graph are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. For panels A 
and B, violin plots represent the distribution of the inbreeding depression strength estimates (b) among the 
simulated 100 replicates. For panels C to F, violin plots represent the distribution of the inbreeding 
depression strength estimates (b) among the 10,000 simulated and subsampling replicates (100 subsampling 
replicate for each of the 100 simulation replicates). The solid dark grey line is the true strength of ID (b = -
3). The dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any 
replicate above this line. Note that all panels are in log10 scale. 

Figure S6 presents the inbreeding depression (ID) strength estimates (b) for the different 

inbreeding coefficients (F), with two models in the PEDIGREE populations and with the 

ADD & DOM & DEMA scenario. The first and second columns depict b estimated with 

LMM using the weighed (LMMGCTAw) and unweighted (LMMGCTAU) GCTA matrices as 

random factors, respectively. The first row shows results for the complete PEDIGREE 

population (n = 11,924). The second row shows results for a reduced sample size of the 

PEDIGREE population (n = 2,500, meant to match the size of the 1,000 Genomes Project 

WORLD population) where subsampled individuals were chosen completely randomly. 

The third row also shows results for a reduced sample size of the PEDIGREE population 

(n = 2,500) but these individuals were selected to represent the entire spectrum of 

inbreeding statuses. The violin plots show b estimates distributions among the simulation 

replicates (100 replicates for the complete population, 10,000 replicates for both 

subsampled populations). The solid dark grey line is the true strength of ID (b = -3). The 

dashed red line represents the absence of ID (b = 0), indicating that we failed to detect ID 

in any replicate above this line. Root mean square error (RMSE) values associated with 

both regression models and populations are shown in main table 1. In the complete 

PEDIGREE population, we see little difference between the three GRMs we tested (figure 

1, panel B VS figure S6, panels A and B; table 1): all F yielded accurate estimates of b 

when used inside a LMM, except for 𝐹!"#$  that slightly overestimates the strength of ID 

while FPED slightly underestimates it. However, when the sample size is reduced to 2,500 

individuals, the strength of ID cannot be correctly estimated with FPED, FROH and FHBD 

and the LMMGCTAU model. In addition, only the ranged subsampling allowed correct 

estimation of b with both FROH.1MB and FHBD.1MB and the LMMGCTAU model. This 

confirms, first than LMMGCTAU is the least robust among the regression models we used, 
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and second that FROH and FHBD based on larger segments are better when studying 

inbreeding depression. 

 

Figure S7: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four simulated PEDIGREE populations of different sizes and with the ADD & DOM & 
DEMA scenario. Each column represents a regression model. The first column depicts the simple linear 
regression (panel A, E, I and M), the second column the linear mixed model with allele-sharing GRM matrix 
as random factor (panel B, F, J and N), the third column the linear mixed model with the GCTAw relatedness 
matrix as random factor (panel C, G, K and O) and finally the forth column represents the linear mixed 
model with GCTAu relatedness matrix as random factor (panel D, H, L and P). Inbreeding estimates compared 
in this figure are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. Each row depicts a 
simulated PEDIGREE population of different size: 50 individuals in the first row (panels A - D), 100 
individuals in the second row (panels E - H), 250 individuals in the third row (panels I - L) and 500 
individuals in the fourth row (panels M - P). Violin plots represent the distribution of the inbreeding 
depression strength estimates (b) among the 100 replicates. The solid dark grey line is the true strength of 
ID (b = -3). The dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in 
any replicate above this line. Note that all panels (A – P) are in log10 scale. 

Figure S7 presents the inbreeding depression (ID) strength estimates (b) for the different 

inbreeding coefficients (F), with the four models in smaller PEDIGREE populations and 

with the ADD & DOM & DEMA scenario. The first column depicts b estimated with the 

simple LM. The second column depicts LMMAS (using the allele-sharing-based GRM). 

The third column shows the model using the weighed (LMMGCTAw) GCTA matrix. The 

fourth column shows the model using the unweighted (LMMGCTAU) GCTA matrix. Each 
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row shows a different population size (50, 100, 250 and 500 individuals). The violin plots 

show b estimates distributions among the 100 simulation replicates. The solid dark grey 

line is the true strength of ID (b = -3). The dashed red line represents the absence of ID (b 

= 0), indicating that we failed to detect ID in any replicate above this line. For all sample 

sizes, we see little difference between the three GRMs we tested and 𝐹!"#%  always gives 

the best results. Inbreeding depression is easier to quantify in these small PEDIGREE 

population because the structure is weaker than the WORLD dataset and the individuals 

are very inbred. 



 171 

 

F P
ED F A

S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−100

−10

0

10

100

LMMGCTA
w

1K
G

: E
AS

 (n
 =

 5
04

)

A
b 

( l
og

10
  s

ca
le

)

F P
ED F A

S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−100

−10

0

10

100

LMMGCTA
u

B

b 
( l

og
10

  s
ca

le
)

F P
ED F A

S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−100

−10

0

10

100

1K
G

: A
FR

 (n
 =

 6
61

)

C

b 
( l

og
10

  s
ca

le
)

F P
ED F A

S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−100

−10

0

10

100
D

b 
( l

og
10

  s
ca

le
)

F A
S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−1000

−100

−10

0

10

100

1000

1K
G

: W
O

R
LD

 (n
 =

 2
,5

04
)

E

b 
( l

og
10

  s
ca

le
)

F A
S
F UN

Iu
F UN

Iw

F HB
D10

0K
B

F RO
H10

0K
B

F HB
D1M

B

F RO
H1M

B

−1000

−100

−10

0

10

100

1000
F

b 
( l

og
10

  s
ca

le
)



 172 

Figure S8: Comparison of the estimation of inbreeding depression strength (b) among different F 
estimates and the LMM including two different GRMs in the three populations from the 1,000 Genomes 
Project dataset and with the ADD & DOM & DEMA scenario. The first column depicts the LMM 
including the GCTAw matrix (panels A, C and E) and the second column the linear mixed model with 
the GCTAu matrix (panels B, D and F). The three rows show the three populations from the 1,000 
Genomes project: EAS on panels A and B, AFR on panels C and D and WORLD on panels E and 
F. Inbreeding estimates presented in this figure are: FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and 
FROH.1MB. Violin plots represent the distribution of the inbreeding depression strength estimates (b) among 
the 100 simulations replicates. The solid dark grey line is the true strength of ID (b = -3). The dashed 
red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above 
this line. Note that all panels are in log10 scale. 

Figure S8 presents the inbreeding depression (ID) strength estimates (b) for the different 

inbreeding coefficients (F), with two models in the three populations from the 1,000 

Genomes Project: EAS, AFR and WORLD and with the ADD & DOM & DEMA scenario. 

The first and second columns show b estimated with LMM respectively including the 

unweighted (LMMGCTAU) and weighed (LMMGCTAw) GCTA matrices as random factors. 

The first row shows results for the EAS population (n = 504), the second row shows results 

the AFR population (n = 661) and the third row shows results for the complete WORLD 

population (n = 2,504). The violin plots show b estimates distributions among the 

simulation replicates (100 replicates). The solid dark grey line is the true strength of ID (b 

= -3). The dashed red line represents the absence of ID (b = 0), indicating that we failed to 

detect ID in any replicate above this line. RMSE values associated with both regression 

models and the three populations are shown in main table 2. In the EAS homogeneous 

population, we see little differences among the three mixed models (figure 2, panel B VS 

figure S7, panels A and B; table 2). There is also little difference between the three LMM 

for the three SNPs-based F (i.e. FAS and both FUNI) in the AFR population (panels C and 

D). However, FROH and FHBD including smaller segments resulted in larger variance 

among b estimates with the LMMGCTAw model (panel C). This was not the case for both 

LMMAS and LMMGCTAU models. The variance among b estimates was larger for the AFR 

population compared to the EAS population. This might be explained by the fact that 

almost all individuals in the AFR population have a F close to 0. In the EAS population 

however, the variance in F is larger. The larger RMSE value may also be due to admixture 

in some AFR individuals for whom F estimation is more complex. 

Finally, none of the GCTA-based GRM yielded accurate estimation of b in the highly 

structured WORLD population. For this last reason, we select the allele-sharing GRM as 

the best GRM for estimating inbreeding depression. 
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Figure S9: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four subsampling of the WORLD population and with the ADD & DOM & DEMA scenario. 
Each column represents a regression model. The first column depicts the simple linear regression (panel A, 
E, I and M), the second column the linear mixed model with allele-sharing GRM matrix as random factor 
(panel B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as random 
factor (panel C, G, K and O) and finally the fourth column represents the linear mixed model with GCTAu 
relatedness matrix as random factor (panel D, H, L and P). Inbreeding estimates compared in this figure are 
FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. Each row depicts a subsampling of different 
size: 50 individuals in the first row (panels A - D), 100 individuals in the second row (panels E - H), 250 
individuals in the third row (panels I - L) and 500 individuals in the fourth row (panels M - P). Violin plots 
represent the distribution of the inbreeding depression strength estimates (b) among the 10,000 replicates 
(100 subsampling replicates and 100 simulation replicates for each subsampling). The solid dark grey line 
is the true strength of ID (b = -3). The dashed red line represents the absence of ID (b = 0), meaning that we 
failed to detect ID in any replicate above this line. Note that all panels (A - P) are in log10 scale. 

Figure S9 presents the inbreeding depression (ID) strength estimates (b) for the different 

inbreeding coefficients (F), with the four models in the smaller subsampled WORLD 

populations and with the ADD & DOM & DEMA scenario. The first column depicts b 

estimated with the simple LM. The second column depicts LMMAS (using the allele-

sharing-based GRM). The third column shows the model using the weighed (LMMGCTAw) 

GCTA matrix. The fourth column shows the model using the unweighted (LMMGCTAU) 

GCTA matrix. Each row shows a different population size (50, 100, 250 and 500). The 

violin plots show b estimates distributions among the 10,000 simulation replicates (100 

subsampling replicates and 100 simulations replicates for each subsampling). The solid 
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dark grey line is the true strength of ID (b = -3). The dashed red line represents the absence 

of ID (b = 0), indicating that we failed to detect ID in any replicate above this line. For 

all sample sizes, we see that the most efficient estimations of b are obtained with the 

LMMAS model. None of the GCTA-based GRM result in accurate estimation of b. We 

believe that this difference appears when the structure is strong and when most individuals 

have low inbreeding coefficients. 

 

 

Figure S10: Comparison of the estimation of inbreeding depression strength (b) among different F 
estimates and models in four different populations with the standard scenario: effect sizes and 
dominance coefficients randomly assigned to each causal marker and no DEMA. Each column 
represents a regression model. The first column depicts the simple linear regression (panel A, E, I and 
M), the second column the linear mixed model with allele sharing GRM matrix as random factor (panel 
B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as random 
factor (panel C, G, K and O) and finally the forth column represents the linear mixed model with GCTAu 
relatedness matrix as random factor (panel D, H, L and P). The first row depicts the complete simulated 
population (11,924 individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates 
compared in these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and 
FROH.1MB. The last three rows are the populations from the 1,000 Genomes Project: EAS in panels E, F, 
G and H, AFR in panels I, J, K and L and WORLD in panels M, N, O and P. Inbreeding estimates 
compared in these panels (E – P) are  FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 
𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin plots represent the distribution of the inbreeding depression 
strength estimates (b) among the 100 replicates. The solid dark grey line is the true strength of ID (b = 
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-3). The dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any 
replicate above this line. Note that all panels (A - P) are in log10 scale. 

Figure S10 presents the results of ID strength estimation for the standard scenario (additive 

effect sizes and dominance coefficients are randomly drawn and there is no DEMA). 

Corresponding RMSE values can be found in tables S3 – S6. In the complete pedigree 

population, we can see that all regression models (but especially the mixed models) and 

all inbreeding coefficients result in efficient estimates (we use efficient to describe an 

estimate with low RMSE, thus which is unbiased and has low variance) (panels A – D, 

tables S4 – S6). The most efficient estimate was 𝐹!"#%  The variance among b estimates 

was larger for the three populations of the 1,000 Genomes Project and some replicates 

resulted in estimated b above 0 (panels E – P). This is due to the smaller sample sizes. In 

both the EAS and AFR populations, FAS, both FUNI and FROH gave unbiased estimates for 

all models (panels E – L). However, LDMS-based F were always biased, especially for all 

the mixed models where they were centered around 0 (panels E – L, tables S4 – S6). We 

believe it is because the sample sizes we used were too small to correctly estimate allelic 

frequencies per MAF and LD bins. With this scenario, FAS (and FASLDMS in the simple LM 

model) gives the most efficient estimate of ID in the WORLD population (panels E – P, 

tables S4 – S6). In addition, the three LMM perform similarly. 

To conclude, when additive and dominance effects are uniform, and there is no DEMA, 

FAS results in efficient estimates of ID (even with a simple linear model and strong 

population structure: panel M). With a mixed model, it is possible to estimate ID 

correctly for all inbreeding coefficients, except for LDMS-based F. 
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Figure S11: Comparison of the estimation of inbreeding depression strength (b) among different F 
estimates and models in four different populations with the ADD scenario: effect sizes assigned 
proportional to the MAF of causal markers, dominance coefficients randomly assigned to causal 
markers and no DEMA. Each column represents a regression model. The first column depicts the simple 
linear regression (panel A, E, I and M), the second column the linear mixed model with allele sharing 
GRM matrix as random factor (panel B, F, J and N), the third column the linear mixed model with the 
GCTAw relatedness matrix as random factor (panel C, G, K and O) and finally the fourth column 
represents the linear mixed model with GCTAu relatedness matrix as random factor (panel D, H, L and 
P). The first row depicts the complete simulated population (11,924 individuals): PEDIGREE in panels 
A, B, C and D. Inbreeding estimates compared in these panels (A – D) are FPED, FAS, 𝐹!"#$ , 
𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three rows are the populations from the 
1,000 Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, K and L and WORLD in 
panels M, N, O and P. Inbreeding estimates compared in these panels (E – P) are  FAS, 𝐹!"#$ , 𝐹!"#% , 
FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin plots represent 
the distribution of the inbreeding depression strength estimates (b) among the 100 replicates. The solid dark 
grey line is the true strength of ID (b = -3). The dashed red line represents the absence of ID (b = 0), meaning 
that we failed to detect ID in any replicate above this line. Note that all panels (A – P) are in log10 scale. Also 
note that linear mixed models did not converge for some replicates (yielding estimated b values above 1,000 
or below -1,000. not shown if outside the graph limits). Percentages of replicates which did not converge: 
panel O (WORLD, GCTAw): 1%, for FAS.LDMS, 3% for 𝐹!"#.'()*$  and 1% for 𝐹!"#.'()*% ; panel P (WORLD, 
GCTAu): 3% for 𝐹!"#.'()*$  and 2% for 𝐹!"#.'()*% . 

Figure S11 presents the results of ID strength estimation for the ADD scenario (when the 

additive effects are inversely proportional to MAF, the dominance effects are independent 

of MAF and there is no DEMA). Corresponding RMSE values can be found in tables S3 

– S6. The simple LM results in biased b estimates with an overestimation of ID for all 
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inbreeding coefficients except both FUNI, which underestimate it (panel A, tables S4 – S6). 

The three mixed models, on the other hand, provide efficient estimates of inbreeding 

depression in the PEDIGREE population (panels B – D, tables S4 – S6). In the EAS 

population, all but the LDMS-based F are unbiased, but with a large variance and we see 

no improvement of using a LMM rather than a simple LM (panels E – H, tables S4 – S6). 

Interestingly, we see similar results for the AFR population but with lower variance (panels 

I – L, tables S4 – S6). All estimates in the WORLD population, however, are strongly 

biased with the simple LM: ID is underestimated with FAS and all FROH and overestimated 

with both FUNI (panel M, tables S4 – S6). For the WORLD population and the three LMM, 

FAS yields the most efficient estimation of b, especially in combination with the LMMAS 

model (for which the variance around b estimates is the smallest) (panels N – P, tables S4 

– S6). 

 

Figure S12: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the DOM scenario: effect sizes randomly assigned to causal 
markers, dominance coefficients assigned proportional to the MAF of causal markers and no DEMA. Each 
column represents a regression model. The first column depicts the simple linear regression (panel A, E, I 
and M), the second column the linear mixed model with allele sharing GRM matrix as random factor (panel 
B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as random factor 
(panel C, G, K and O) and finally the fourth column represents the linear mixed model with GCTAu 
relatedness matrix as random factor (panel D, H, L and P). The first row depicts the complete simulated 
population (11,924 individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates compared in 
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these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three 
rows are the populations from the 1,000 Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, 
K and L and WORLD in panels M, N, O and P. Inbreeding estimates compared in these panels (E – P) are 
FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin 
plots represent the distribution of the inbreeding depression strength estimates (b) among the 100 replicates. 
The solid dark grey line is the true strength of ID (b = -3). The dashed red line represents the absence of ID 
(b = 0), meaning that we failed to detect ID in any replicate above this line. Note that all panels (A – P) are 
in log10 scale. Also note that linear mixed models did not converge for some replicates (yielding estimated 
b values above 1,000 or below -1,000. not shown if outside the graph limits). Percentages of replicates which 
did not converge: panel K (AFR, GCTAw): 8%, for FAS.LDMS, 7% for 𝐹!"#.'()*$  and 4% for 𝐹!"#.'()*% ; panel 
O (WORLD, GCTAw): 1%, for FAS, 10% for 𝐹!"#$ , 1% for 𝐹!"#% , for, 6% for FHBD.100KB, 7% for FROH.100KB, 
8% for FHBD.1MB, 4% FROH.1MB, 22% for FAS.LDMS, 31% for 𝐹!"#.'()*$  and 31% for 𝐹!"#.'()*% ; panel P 
(WORLD, GCTAu) 10%, for FAS, 9% for 𝐹!"#$ , 2% for 𝐹!"#% , 7% for FHBD.100KB, 7% for FROH.100KB, 5% for 
FHBD.1MB, 2% FROH.1MB, 22% for FAS.LDMS, 31% for 𝐹!"#.'()*$  and 28% for 𝐹!"#.'()*% . 

Figure S12 shows the DOM scenario (where dominance effects are inversely proportional 

to MAF while additive effects are independent and there is no DEMA). Corresponding 

RMSE values can be found in tables S3 – S6. In the PEDIGREE population and with the 

simple LM, only 𝐹!"#%  gives efficient estimation of b; the other inbreeding coefficients are 

unbiased, but with large variance (panel A, table S3). For the same PEDIGREE population, 

the three mixed models reduce the variance around b estimates (panels B – D, tables S4 – 

S6). In the EAS and AFR populations, the results are similar to what we observed in figure 

S11: all the inbreeding coefficients are mostly unbiased but exhibit large variance 

(especially in the EAS population, panels E – L, tables S3 – S6). Concerning the WORLD 

population, the most efficient estimates of ID are obtained with FAS (except for the 

LMMGCTAU model, panels M – P, tables S3 – S6). With both GCTA GRM matrices, all F 

results in large variance around b estimates (panels O and P, tables S5 and S6). 

To conclude, LMMAS correctly estimates ID with the DOM scenario, in particular with 

FAS. However, we observe very large variance with smaller sample sizes: with some 

replicates overlapping with 0 in the WORLD population and many replicates in both the 

EAS and AFR populations. This is probably because the sample sizes are too small to 

estimate ID in these two populations. 
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Figure S13: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the DEMA scenario: effect sizes and dominance coefficients 
randomly assigned to causal markers and presence of DEMA. Each column represents a regression model. 
The first column depicts the simple linear regression (panel A, E, I and M), the second column the linear 
mixed model with allele sharing GRM matrix as random factor (panel B, F, J and N), the third column the 
linear mixed model with the GCTAw relatedness matrix as random factor (panel C, G, K and O) and finally 
the fourth column represents the linear mixed model with GCTAu relatedness matrix as random factor (panel 
D, H, L and P). The first row depicts the complete simulated population (11,924 individuals): PEDIGREE 
in panels A, B, C and D. Inbreeding estimates compared in these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , 
FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three rows are the populations from the 1,000 
Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, K and L and WORLD in panels M, N, 
O and P. Inbreeding estimates compared in these panels (E – P) are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, 
FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin plots represent the distribution of the 
inbreeding depression strength estimates (b) among the 100 replicates. The solid dark grey line is the true 
strength of ID (b = -3). The dashed red line represents the absence of ID (b = 0), meaning that we failed to 
detect ID in any replicate above this line. Note that all panels (A – P) are in log10 scale. Also note that linear 
mixed models did not converge for some replicates (yielding estimated b values above 1,000 or below -
1,000. not shown if outside the graph limits). Percentages of replicates which did not converge: panel G 
(EAS, GCTAw): 1% for FROH.100KB, 12% for FAS.LDMS; panel H (EAS, GCTAu): 2% for FAS.LDMS; panel K 
(AFR, GCTAw): 11%, for FAS.LDMS, 17% for 𝐹!"#.'()*$  and 14% for 𝐹!"#.'()*% ; panel L (AFR, GCTAu): 1% 
for 𝐹!"#.'()*$  and 1% for 𝐹!"#.'()*% ; panel P (WORLD, GCTAu) 1% for FHBD.100KB. 

Figure S13 shows the DEMA scenario (where both additive effects and dominance 

coefficients are independent of MAF but there is DEMA). Corresponding RMSE values 

can be found in tables S3 – S6. With the simple LM and in the large PEDIGREE 

population, only FUNI and to a lesser extent IDB segments-based F estimated with larger 
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segments (FHBD.1MB and FROH.1MB) yield unbiased estimation of b (panel A, table S2). 

Meanwhile, in the same large PEDIGREE population, the three mixed models allow 

efficient estimation of b with all F except 𝐹!"#$ , which overestimated the strength of ID 

(panels B – D, tables S4 – S6). In the three populations from the 1,000 Genomes Project 

and especially in the EAS and WORLD populations, FAS is constantly overestimating the 

strength of ID (panels E – P, tables S3 – S6). This is because DEMA is included in the 

simulations; FAS strongly correlates with the minor allele count (MAC) which makes it 

sensitive to DEMA [56]. Interestingly, LDMS stratification, allowed to get rid of the bias 

introduced by DEMA on FAS but it did not result in the most efficient estimation of b 

(panel M, table S3 – S6). Indeed, the lowest RMSE values are obtained with 𝐹!"#% , and 

both the LMMAS and LMMGCTAw models confirming that 𝐹!"#%  is robust to DEMA (tables 

S3 – S6). With both LMMAS and LMMGCTAw models, IDB segments-based F estimated 

with larger segments (FHBD.1MB and FROH.1MB) are just behind 𝐹!"#%  in term of efficiency 

(tables S3 – S6). 

 

Figure S14: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the ADD & DOM scenario: effect sizes and dominance 
coefficients assigned proportional to the MAF of causal markers and no DEMA. Each column represents a 
regression model. The first column depicts the simple linear regression (panel A, E, I and M), the second 
column the linear mixed model with allele sharing GRM matrix as random factor (panel B, F, J and N), the 
third column the linear mixed model with the GCTAw relatedness matrix as random factor (panel C, G, K 
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and O) and finally the fourth column represents the linear mixed model with GCTAu relatedness matrix as 
random factor (panel D, H, L and P). The first row depicts the complete simulated population (11,924 
individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates compared in these panels (A – D) 
are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three rows are the 
populations from the 1,000 Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, K and L and 
WORLD in panels M, N, O and P. Inbreeding estimates compared in these panels (E – P) are FAS, 𝐹!"#$ , 
𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin plots 
represent the distribution of the inbreeding depression strength estimates (b) among the 100 replicates. The 
solid dark grey line is the true strength of ID (b = -3). The dashed red line represents the absence of ID (b = 
0), meaning that we failed to detect ID in any replicate above this line. Note that all panels (A – P) are in 
log10 scale. Also note that linear mixed models did not converge for some replicates (yielding estimated b 
values above 1,000 or below -1,000. not shown if outside the graph limits). Percentages of replicates which 
did not converge: panel D (PEDIGREE, GCTAu): 1% for FROH.100K; panel G (EAS, GCTAw): 1% for 
FAS.LDMS; panel H (EAS, GCTAu): 1% for FAS.LDMS; panel K (AFR, GCTAw): 5%, for FAS.LDMS, 5% for 
𝐹!"#.'()*$  and 7% for 𝐹!"#.'()*% ; panel L (AFR, GCTAu): 1% for FAS.LDMS and 1% for 𝐹!"#.'()*$ ; panel O 
(WORLD, GCTAw): 1% for FAS, 5% 𝐹!"#$  and 3% 𝐹!"#% , 5% for FHBD.100KB, 8% for FROH.100KB, 6% for 
FHBD.1MB, 3% for  FROH.1MB, 28% for  FAS.LDMS, 32% for 𝐹!"#.'()*$  and finally 33% for 𝐹!"#.'()*% ; panel P 
(WORLD, GCTAu) 4% for FAS, 9% 𝐹!"#$ , 4% 𝐹!"#% , 3% for FHBD.100KB, 6% for FROH.100KB, 11% for FHBD.1MB, 
11% for FROH.1MB, 22% for  FAS.LDMS, 28% for 𝐹!"#.'()*$  and finally 32% for 𝐹!"#.'()*% . 

Figure S14 shows the ADD & DOM scenario (where both additive effects and dominance 

coefficients are proportional to MAF and there is no DEMA). Corresponding RMSE 

values can be found in tables S3 – S6. In the complete PEDIGREE population and with 

the simple LM, the strength of ID is underestimated by both FUNI and overestimated by 

all other F (panel A, table S3). Similarly to what was observed with the previous scenarios, 

both LMMAS and LMMGCTAw models allow efficient estimation of b with all the F (panels 

B and C, tables S4 – S5). However, the LMMGCTAU model results in biased estimation of 

b with the short IBD segments-based F (FHBD.100KB and FROH.100KB, panel D, table S5). 

Similarly to what was observed before, we see no difference between the four models 

(except for the LDMS-based F) in both the EAS and AFR homogeneous populations 

(panels E – L, tables S3 – S6). In the highly structured WORLD population however, the 

lowest RMSE values are obtained with the LMMAS model and especially with FAS (closely 

followed by 𝐹!"#%  panel N, tables S3 – S6). This is because DEMA is not included in this 

model and would strongly bias b estimation with FAS. RMSE values are much larger for 

all F with both GCTA matrices (panels O and P, tables S3 – S6). 
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Figure S15: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the ADD & DEMA scenario: effect sizes assigned proportional 
to the MAF of causal markers, dominance coefficients randomly assigned to causal markers and presence of 
DEMA. Each column represents a regression model. The first column depicts the simple linear regression 
(panel A, E, I and M), the second column the linear mixed model with allele-sharing GRM matrix as random 
factor (panel B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as 
random factor (panel C, G, K and O) and finally the fourth column represents the linear mixed model with 
GCTAu relatedness matrix as random factor (panel D, H, L and P). The first row depicts the complete 
simulated population (11,924 individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates 
compared in these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. 
The last three rows are the populations from the 1,000 Genomes Project: EAS in panels E, F, G and H, AFR 
in panels I, J, K and L and WORLD in panels M, N, O and P. Inbreeding estimates compared in these panels 
(E – P) are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 
𝐹!"#.'()*% . Violin plots represent the distribution of the inbreeding depression strength estimates (b) among 
the 100 replicates. The solid dark grey line is the true strength of ID (b = -3). The dashed red line represents 
the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above this line. Note that all 
panels (A – P) are in log10 scale. Also note that linear mixed models did not converge for some replicates 
(yielding estimated b values above 1,000 or below -1,000. not shown if outside the graph limits). Percentages 
of replicates which did not converge: panel G (EAS, GCTAw): 1% for FROH.100KB, and 16% for FAS.LDMS; 
panel H (EAS, GCTAu): 2% for FAS.LDMS; panel K (AFR, GCTAw): 13%, for FAS.LDMS, 13% for 𝐹!"#.'()*$  
and 15% for 𝐹!"#.'()*% ; panel L (AFR, GCTAu): 2% for FAS.LDMS and 1% for 𝐹!"#.'()*% ; panel O (WORLD, 
GCTAw): 1% for FAS, 2% 𝐹!"#% , 3% for FHBD.100KB, 1% for FROH.100KB, 7% for  FAS.LDMS, 14% for 𝐹!"#.'()*$  
and finally 19% for 𝐹!"#.'()*% ; panel P (WORLD, GCTAu) 1% for FROH.100KB, 2% for  FAS.LDMS, 4% for 
𝐹!"#.'()*$  and finally 2% for 𝐹!"#.'()*% . 

Figure S15 shows the results of ID strength estimation for the ADD & DEMA scenario 

(when the additive effects are inversely proportional to MAF, the dominance effects are 
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independent of MAF and there is presence of DEMA). Corresponding RMSE values can 

be found in tables S3 – S6. Similarly to what was observed in the previous figures with the 

simple LM, the strength of ID is underestimated by both FUNI and overestimated by all 

other F in the complete PEDIGREE population (panel A, table S3). The LMMAS and 

LMMGCTAU models allow for an efficient estimation of b with all F except 𝐹!"#$  which 

results in a lightly overestimated estimation of b (panels B and D, tables S3 – S6). As for 

the LMMGCTAw model, 𝐹!"#$  overestimates the strength of ID and the variance among b 

estimates was larger with both short IBD segments-based F (FHBD.100KB and FROH.100KB, 

panel C, table S6). In both the homogeneous EAS and AFR populations there are not much 

differences among the models (panels E – L, tables S3 – S6). However, in the WORLD 

population, the smallest RMSE are obtained with the LMMAS model (panel N, tables S3 – 

S6). 

 

Figure S16: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the DOM & DEMA scenario: effect sizes randomly assigned 
to causal markers, dominance coefficients assigned proportional to the MAF of causal markers and presence 
of DEMA. Each column represents a regression model. The first column depicts the simple linear regression 
(panel A, E, I and M), the second column the linear mixed model with allele-sharing GRM matrix as random 
factor (panel B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as 
random factor (panel C, G, K and O) and finally the fourth column represents the linear mixed model with 
GCTAu relatedness matrix as random factor (panel D, H, L and P). The first row depicts the complete 
simulated population (11,924 individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates 
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compared in these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. 
The last three rows are the populations from the 1,000 Genomes Project: EAS in panels E, F, G and H, AFR 
in panels I, J, K and L and WORLD in panels M, N, O and P. Inbreeding estimates compared in these panels 
(E – P) are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 
𝐹!"#.'()*% . Violin plots represent the distribution of the inbreeding depression strength estimates (b) among 
the 100 replicates. The solid dark grey line is the true strength of ID (b = -3). The dashed red line represents 
the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above this line. Note that all 
panels (A – P) are in log10 scale. Also note that linear mixed models did not converge for some replicates 
(yielding estimated b values above 1,000 or below -1,000. not shown if outside the graph limits). Percentages 
of replicates which did not converge: panel D (PEDIGREE, GCTAu): 10% for FPED, 25% for FHBD.100KB, 
31% for FROH.100KB, 4% for FHBD.1MB, 9% for FROH.1MB; panel G (EAS, GCTAw): 3% for FAS.LDMS, 8% for 
𝐹!"#.'()*$  and 8% for 𝐹!"#.'()*% . panel H (EAS, GCTAu): 3% for FAS.LDMS, 10% for 𝐹!"#.'()*$  and 10% for 
𝐹!"#.'()*% . panel K (AFR, GCTAw): 1% for FHBD.100KB, 2% for FROH.100KB, 15% for FAS.LDMS, 9% for 𝐹!"#.'()*$  
and 12% for 𝐹!"#.'()*% ; panel L (AFR, GCTAu): 1% for 𝐹!"#.'()*$  and 1% for 𝐹!"#.'()*% ; panel O (WORLD, 
GCTAw): 4% for FAS, 15% 𝐹!"#$ , 45% 𝐹!"#% , 16% for FHBD.1MB, 12% for FROH.1MB, 3% for 𝐹!"#.'()*$  and 3% 
for 𝐹!"#.'()*% ; panel P (WORLD, GCTAu) 15% for FAS, 28% 𝐹!"#$ , 26% 𝐹!"#% , 1% for FROH.100KB, 14% for 
FROH.1MB, 10% for FHBD.1MB, 2% for  FAS.LDMS, 13% for 𝐹!"#.'()*$  and finally 16% for 𝐹!"#.'()*% . 

Figure S16 shows the results of ID strength estimation for the DOM & DEMA scenario 

(when the additive effects are randomly assigned, the dominance effects are inversely 

proportional to MAF and there is presence of DEMA). Corresponding RMSE values can 

be found in tables S3 – S6. Interestingly, we find the opposite of previous findings with 

LM in the entire PEDIGREE population: both FUNI overestimate the strength of ID 

whereas all the other F underestimate it (panel A). Both LMMAS and LMMGCTAw models 

allow for efficient estimation of b with all the F (panels B and C, tables S4 – S5). With the 

LMMGCTAU however, the estimation of b for FPED and all IBD segments-based F was really 

poor. There is no difference between the four regression models for both homogeneous 

populations (panels E – L, tables S3 – S6). Concerning the WORLD population, the 

smallest RMSE values were only obtained with the LMMAS model, both GCTA matrices 

resulted in very large variances among b estimates (panels M – P, tables S3 – S6). 



 185 

 

Figure S17: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the ADD & DOM & DEMA scenario: effect sizes and 
dominance coefficients assigned proportional to the MAF of causal markers and presence of DEMA. Each 
column represents a regression model. The first column depicts the simple linear regression (panel A, E, I 
and M), the second column the linear mixed model with allele sharing GRM matrix as random factor (panel 
B, F, J and N), the third column the linear mixed model with the GCTAw relatedness matrix as random factor 
(panel C, G, K and O) and finally the fourth column represents the linear mixed model with GCTAu 
relatedness matrix as random factor (panel D, H, L and P). The first row depicts the complete simulated 
population (11,924 individuals): PEDIGREE in panels A, B, C and D. Inbreeding estimates compared in 
these panels (A – D) are FPED, FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three 
rows are the populations from the 1,000 Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, 
K and L and WORLD in panels M, N, O and P. Inbreeding estimates compared in these panels (E – P) are 
FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB, FROH.1MB, FAS.LDMS, 𝐹!"#.'()*$  and finally 𝐹!"#.'()*% . Violin 
plots represent the distribution of the inbreeding depression strength estimates (b) among the 100 replicates. 
The solid dark grey line is the true strength of ID (b = -3). The dashed red line represents the absence of ID 
(b = 0), meaning that we failed to detect ID in any replicate above this line. Note that all panels (A – P) are 
in log10 scale. Also note that linear mixed models did not converge for some replicates (yielding estimated 
b values above 1,000 or below -1,000. not shown if outside the graph limits). Percentages of replicates which 
did not converge: panel G (EAS, GCTAw): 4% for FAS.LDMS, 7% for 𝐹!"#.'()*$  and 13% for 𝐹!"#.'()*% ; panel 
H (EAS, GCTAu): 6% for FAS.LDMS, 6% for 𝐹!"#.'()*$  and 8% for 𝐹!"#.'()*% . panel K (AFR, GCTAw): 3% 
for FHBD.100KB, 1% for FROH.100KB, 12% for FAS.LDMS, 15% for 𝐹!"#.'()*$  and 12% for 𝐹!"#.'()*% ; panel L (AFR, 
GCTAu): 1% for 𝐹!"#.'()*$ , 1% for 𝐹!"#.'()*$  and 1% for 𝐹!"#.'()*% ; panel O (WORLD, GCTAw): 9% 𝐹!"#$ , 
21% 𝐹!"#% , 3% for FHBD.1MB, 6% for FROH.1MB, 1% for 𝐹!"#.'()*$  and 1% for 𝐹!"#.'()*% ; panel P (WORLD, 
GCTAu) 14% 𝐹!"#$ , 24% 𝐹!"#% , 13% for FROH.1MB, 6% for FHBD.1MB and finally 3% for 𝐹!"#.'()*% . 

Figure S17 shows the results of ID strength estimation for the ADD & DOM & DEMA 

scenario (when both the additive effects and dominance coefficients are inversely 
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proportional to MAF and there is presence of DEMA). Corresponding RMSE values can 

be found in tables S3 – S6. We find the same results as figure S16 with the LM in the 

complete PEDIGREE population: both FUNI are overestimating the strength of ID while 

all the other F are largely underestimating it (panel A), suggesting that this pattern is due 

to the combination of the dominance coefficients being proportional to MAF and the 

presence of DEMA. In this scenario however, the three mixed models allow an efficient 

estimation of b with all the F (panels B – D, tables S3 – S6). There is no difference between 

the four models for both homogeneous populations (panels E – L, tables S3 – S6). 

Concerning the WORLD population, the smallest RMSE values were achieved only with 

the LMMAS model and more specifically with 𝐹!"#%  (panels M – P, tables S3 – S6). The 

variance among b estimates however are still fairly large, suggesting that we lack power 

(i.e. the sample size is too small). Finally, both GCTA matrices resulted in biased b 

estimates (panels O and P, tables S5 and S6). 

To summarize, we show that ADD, DOM and DEMA largely increase the variance around 

b estimates (particularly when more than one parameter was used). 𝐹!"#$  and all IBD 

segments-based F were especially sensitive to the additive effect sizes being proportional 

to MAF. All F resulted in less accurate estimation of b when the dominance coefficients 

were proportional to MAF. Perhaps, this is because our current model is not accounting 

for dominance, despite knowing there is dominance. A possible solution not explored here 

might be to include an additional random factor with the dominance genomic relationships 

matrix [52]. Finally, FAS and to a lesser extent 𝐹!"#$  were strongly influenced by DEMA. 

This might be strange as Yengo et al. [56] showed that 𝐹!"#$  was robust to DEMA but we 

show in figure S18 that it might because they filtered on MAF < 0.05 in their analyses. 

 

Figure S18: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in the WORLD populations with the ADD & DOM & DEMA simulated scenario. SNPs have 
been filtered on MAF > 0.05: panel A shows the simple linear model; panel B shows the linear mixed model 
with the allele sharing relatedness matrix as random factor; panel C shows the linear mixed model with 
GCTAw relatedness matrix as random factor; panel D shows the linear mixed model with GCTAu relatedness 
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matrix as random factor. Violin plots represent the distribution of the inbreeding depression strength 
estimates (b) among the 100 replicates. The solid dark grey line is the true strength of ID (b = -3). The dashed 
red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate above this 
line. 

Figure S18 shows the results of ID strength estimation for the ADD & DOM & DEMA 

scenario (when both the additive effects and dominance coefficients are inversely 

proportional to MAF and there is presence of DEMA) but where SNPs have been filtered 

on MAF, excluding all SNPs with MAF < 0.05. We did this because the difference between 

extent 𝐹!"#$  and 𝐹!"#%  is the weight given to rare and common alleles. Consequently, we 

first filtered on MAF and then ran the same analyses (F and GRMs estimation, as well as 

inbreeding depression simulations) on the WORLD population. We see that there is no 

difference between 𝐹!"#$  and 𝐹!"#%  when rare alleles are removed. This is because 𝐹!"#$  

uses the average of ratios, which results in loci with small MAF strongly influencing the 

outcome. When these rare loci are filtered out, the estimated F is no longer biased. This 

explains why Yengo et al. (2017) [56] found that 𝐹!"#$  was the best F for quantifying 

inbreeding depression with an homogeneous subset of the UK bio-bank dataset: they 

filtered on MAF > 0.05 leading to 𝐹!"#$  estimation not being influenced by rare alleles with 

strong additive and/or dominance effect sizes. 

 

Figure S19: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
(including FHBD.QUAL with no minimum size threshold as well as FHBD.5MB and FROH.5MB) and statistical 
models in the WORLD populations with the ADD & DOM & DEMA scenario: effect sizes and dominance 
coefficients assigned proportional to the MAF of causal markers and presence of DEMA. Panel A shows the 
simple linear model; panel B shows the linear mixed model with the allele sharing relatedness matrix as 
random factor; panel C shows the linear mixed model with GCTAw relatedness matrix as random factor; 
panel D shows the linear mixed model with GCTAu relatedness matrix as random factor. Violin plots 
represent the distribution of the inbreeding depression strength estimates (b) among the 100 replicates. The 
solid dark grey line is the true strength of ID (b = -3). The dashed red line represents the absence of ID (b = 
0), meaning that we failed to detect ID in any replicate above this line. 

Figure S19 shows the result of ID strength estimation for the ADD & DOM & DEMA 

scenario (when both the additive effects and dominance coefficients are inversely 

proportional to MAF and there is presence of DEMA) but with three new F: FHBD.QUAL 
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where IBD segments were inferred using BCFTools and no size selection was performed, 

FHBD.5MB where HBD segments were called with BCFTools and selected if larger than 

5MB and FROH.5MB where ROHs were called with PLINK and selected if larger than 5MB. 

The results of FHBD.QUAL are similar to those obtained with FHBD.100KB Concerning the F 

based on segments larger than 5MB, focusing on recent inbreeding did not improved the 

quantification of b. 

 

Figure S20: Comparison of the estimation of inbreeding depression strength (b) among different F estimates 
and models in four different populations with the ADD & DOM & DEMA scenario: effect sizes and 
dominance coefficients assigned proportional to the MAF of causal markers and presence of DEMA. Causal 
loci have been selected with intermediate frequencies: MAF > 0.1 Each column represents a regression 
model. The first column depicts the simple linear regression (panel A, E, I and M), the second column the 
linear mixed model with allele sharing GRM matrix as random factor (panel B, F, J and N), the third column 
the linear mixed model with the GCTAw relatedness matrix as random factor (panel C, G, K and O) and 
finally the fourth column represents the linear mixed model with GCTAu relatedness matrix as random factor 
(panel D, H, L and P). The first row depicts the complete simulated population (11,924 individuals): 
PEDIGREE in panels A, B, C and D. Inbreeding estimates compared in these panels (A – D) are FPED, FAS, 
𝐹!"#$ , 𝐹!"#% , FHBD.100KB, FROH.100KB, FHBD.1MB and FROH.1MB. The last three rows are the populations from the 
1,000 Genomes Project: EAS in panels E, F, G and H, AFR in panels I, J, K and L and WORLD in panels 
M, N, O and P. Inbreeding estimates compared in these panels (E – P) are FAS, 𝐹!"#$ , 𝐹!"#% , FHBD.100KB, 
FROH.100KB, FHBD.1MB, and FROH.1MB. Violin plots represent the distribution of the inbreeding depression 
strength estimates (b) among the 100 replicates. The solid dark grey line is the true strength of ID (b = -3). 
The dashed red line represents the absence of ID (b = 0), meaning that we failed to detect ID in any replicate 
above this line. Note that all panels (A – P) are in log10 scale. Also note that all linear models converged for 
all replicates. 
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As mentioned in the introduction, Alemu et al. (2021) [1] and Caballero et al. (2020) [7] 

showed that the best F actually depends on the history of the population. Indeed, they 

showed that FROH and FHBD and to a lesser extent FHOM were more efficient at quantifying 

homozygosity at loci with common alleles. On the contrary, 𝐹!"#$  was better at quantifying 

homozygosity at rare alleles. The authors propose that in populations with low effective 

sizes, the strength of selection is diminished which can lead to deleterious alleles reaching 

intermediate frequencies because of drift. This means that both FROH and FHBD will 

perform better in such populations. On the contrary, in populations with large effective 

size, selection maintains deleterious alleles a low frequencies which explains why Yengo 

et al. (2017) found that FUNI was the best F with the large UK biobank dataset. 

Consequently, we simulated an additional scenario where intermediate frequencies causal 

loci were selected on MAF > 0.1 (figure S20). Firstly, this greatly reduced the variance 

around b estimates for all models and F. This suggests that it is much easier to detect 

inbreeding depression when the causal loci have higher frequencies. Secondly and as 

expected, it improved all IBD-segments based F (both FHBD and both FROH) in all 

populations except FROH.100KB and FHBD.100KB in the EAS population. This is because the 

EAS population has a small effective population size, resulting in large numbers of small 

IBD segments. Since inbreeding depression is mostly caused by recent coalescence events, 

including these smaller segments added noise in the models, leading to biased b estimates. 

This is consistent with previous studies who showed that only including larger fragments 

resulted in better inbreeding depression estimates [7, 6]. Finally, and surprisingly, 

excluding rare causal loci did not worsen 𝐹!"#%  estimation of b as we would have expected. 

This might be because we did not explicitly simulate small populations, but simply 

selected common causal loci. 

House sparrow morphological traits analyses 

All the traits but bill depth have a negative slope b for the effect of 𝐹!"#%  (table S3), hinting 

at the presence of Inbreeding depression for these traits. However, only bill length shows 

a strong and significant effect of 𝐹!"#%  on all analyses, with a slope b around -1. For tarsus 

length, the standard LM or the mixed model without GRM gave an estimated slope b of -

0.4 and -0.506 respectively, both non-significantly different from 0. With LMMAS, b = -

0.771 and the associated probability (p-value) is 0.047, while with the full model, b = -

0.699 and PF = 0.071. Thus, adding the GRMAS for this trait led to a steeper slope and 

smaller p-values. For wing length, we see the reverse pattern, including the GRMAS led to 



 190 

a shallower slope and larger, non-significant p-values. For bill depth, the only trait with a 

positive slope for the effect of inbreeding, adding the GRMAS makes the slope shallower 

and the p-value larger, while for mass, adding the GRMAS makes the slopes steeper and 

the p-value smaller. For all of these traits but bill length, analyses with or without the 

GRMAS would lead to different results and interpretations. Obviously, with empirical data, 

we cannot say which model is correct as we don't know the true value of the slope, but 

while the models we used are not as sophisticated as in the original publication, our 

conclusions for the presence of ID in models with GRMAS would have been different from 

those of Niskanen et al.: we find significant inbreeding depression for adult mass, bill 

length and possibly tarsus length. 

Table S2: Analyses of adults’ tarsus length, wing length, bill depth, bill length and mass from 1,786 adult 
sparrows. LM: simple linear model with Sex and 𝐹!"#%  as explanatory variables. LMMAS: linear mixed model 
with sex and 𝐹!"#%  as fixed effects and GRMAS as random effect. LMM: linear mixed model with sex and 
𝐹!"#%  as fixed effects and island and year nested in island as random effects. LMMFULL: linear mixed model 
with sex and 𝐹!"#%  as fixed effects and island, year nested in island and GRMAS as random effects. VI: variance 
component of island effect; VY:I: variance component for year nested in island; VA: additive variance; VE: 
residual variance; PF: p-value for the slope b of 𝐹!"#%  to be 0. 

Tarsus Int. Sex F VISL VY:ISL VA VE PF 

LM 19.443 0.074 -0.400    0.652 0.286 
LMMAS 19.503 0.081 -0.771   0.255 0.393 0.048 
LMM 19.459 0.073 -0.506 0.000 0.045  0.607 0.179 

LMMFULL 19.513 0.080 -0.699 0.000 0.028 0.245 0.373 0.071 

Wing Int. Sex F VISL VY:ISL VA VE PF 

LM 78.548 2.610 -1.695    3.073 0.037 
LMMAS 76.408 2.605 -1.437   1.645 1.304 0.068 

LMM 78.392 2.591 -1.405 0.274 0.069  2.825 0.087 
LMMFULL 76.331 2.614 -1.280 0.064 0.068 1.619 1.245 0.103 

Bill depth Int. Sex F VISL VY:ISL VA VE PF 

LM 8.125 0.035 0.265    0.076 0.039 

LMMAS 8.084 0.032 0.216   0.035 0.044 0.106 
LMM 8.118 0.035 0.238 0.001 0.006  0.071 0.068 
LMMFULL 8.073 0.034 0.227 0.000 0.005 0.036 0.039 0.084 

Bill length Int. Sex F VISL VY:ISL VA VE PF 

LM 13.75 -0.010 -1.172    0.285 0.000 
LMMAS 13.59 -0.013 -1.066   0.140 0.135 0.000 
LMM 13.68 -0.016 -0.953 0.017 0.020  0.254 0.000 
LMMFULL 13.60 -0.012 -1.002 0.007 0.009 0.124 0.135 0.000 

Mass Int. Sex F VISL VY:ISL VA VE PF 

LM 32.931 -1.387 -2.390    4.591 0.016 



191 

LMMAS 34.324 -1.414 -2.856 1.560 3.019 0.007 
LMM 32.939 -1.377 -1.983 0.149 0.269 4.269 0.050 
LMMFULL 34.341 -1.395 -2.851 0.099 0.172 1.445 2.915 0.006 

SI Dataset can be found on GitHub. 

Dataset S1 (TablesS3-S6_ID_EST_RMSE_SUPP_TABLES.xlsx) contains the RMSE for 

all scenarios and all populations per inbreeding coefficient. RMSE are across the 100 

simulation replicates. 

Dataset S2 (TablesS7-S9_ID_EST_RepConvergence_SUPP_TABLES.xlsx) contains the 

percentage of replicates which did not converge in the three LMM for all scenarios and all 

populations per inbreeding coefficient. Percentages are across the 100 simulation 

replicates. 
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Supplementary Material and Methods 

Trimming relatedness 

The 502 individuals were trimmed for allele-sharing based relatedness > 0.05 with a 

custom R script and the hierfstat R package. 187 individuals were left after 

relatedness trimming. 

Estimating additional inbreeding coefficients 

FPED was estimated as twice the diagonal of the kinship matrix minus 1. The kinship matrix 

was estimated with the kinship function from the kinship2 R package. 

Comparing minor and derived allele identification 

As mentioned in the main text, we compare the fraction of sites for which the minor allele 

(we identified by bootstrapping individuals) corresponds to the derived allele in a set of 

1,373,932 neutral sites. We show that the mean fraction of correct assignment is 87% but 

that this fraction decreases linearly with site’s MAF (figure S1). 
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Figure S1: Fraction of minor allele which correspond to the derived allele. Minor allele was estimated 
globally via 1,000 bootstraps by sampling only unrelated individuals. The size of the dots corresponds to the 
number of alleles in each MAF category. 

Supplementary Results 

 

Figure S2: Cumulative FHBD (estimated as the average (among variants) prob- ability that a variant belongs 
to an HBD segment coalescing less then 512 generations ago) distributions among the different HBD classes 
used in RZooRoH. Continental populations are colored in purple and island populations in blue. 

This plot shows the cumulative FHBD across the different HBD classes used in the 

RZooRoH model. We show that HBD segments coalescing less than 8 generations ago are 
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very rare and mostly present in the truly inbred individuals mentioned above. Difference 

between continental and islands populations start to show from HBD segments coalescing 

around 16 generations ago. Islands FHBD especially increase when coalescence events from 

64 generations are included. In the main text analyses, we only consider SNPs or segments 

HBD when they are included in the first 10 classes (from 1 generation ago to 512 

generations ago). 

 

Figure S3: FHBD (estimated as the average (among variants) probability that a variant belongs to an HBD 
segment coalescing less then 512 generations ago) distributions per population. Continental populations are 
colored in purple and island populations in blue. 

On average, islands populations show higher FHBD compared to continental populations. 

We detect few truly inbred individuals (resulting from mating between close relatives): 16 

from CH, 1 from PT, one from FR, one from GB and one from EC. Among continental 

populations, individuals from GE, SB and GR shows highest FHBD. Among island 

populations, individuals from AE and CY showed the lowest FHBD. 
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Figure S4: For all panels, refugia populations are shown in pink and recolonized populations in blue. A: 
FHBD distributions from refugia and recolonized populations. FHBD considers a marker as autozygous if the 
coalescence event is before 512 generations ago. B: scatter plot of FHBD against FAS. Each point represents 
one individual and its shape indicates which population it comes from. The black line is the identify line (x 
= y). C: number of HBD segments (NHBD) as a function of the mean length of HBD segments (SHBD) in base-
pair. Each point represents one individual and its shape indicates which population it comes from. D: HBD 
segments distributions from refugia populations and recolonized populations. The y-axis represents the mean 
sum of length (among individuals) falling into the different categories of HBD segments (represented in the 
x-axis). 

There is little (but significant) difference between continental refugium and recolonized 

populations FHBD distribution (Wilcoxon rank-sum test: W = 10’063, p-value = 0.01275; 

effect size: 0.122, considered small). For instance, there is no strongly inbred individuals 

in refugium populations. In addition, both refugium and recolonized populations are 

equally close to the FHBD and FAS identity line (except the Swiss individuals which are 

largely below). Refugium populations tended to have smaller HBD fragments for the same 

fraction of genome within HBD segments compared to recolonized populations (except 

for one inbred Greek individual). Finally, the refugium populations were slightly enriched 

in small HBD segments (coalescing 128 and 256 generations ago). On the contrary 

recolonized populations were enriched in both large (coalescing 8 generations ago) and 
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very small (coalescing 512 generations ago) HBD segments but the enrichment in large 

HBD segments is solely due to the few inbred Swiss present in the recolonized populations. 

 

Figure S5: FHBD according to FAS in the set of 187 unrelated individuals. Each point represents one individual 
and its shapes indicates the population it comes from. The black line represents the identify line (x = y). 
Continental populations are colored in purple and island populations in blue. 

This plot compares FHBD and FAS inbreeding coefficients with the unrelated set of 

individuals. Most individuals below the line have been removed or shifted towards the 

line, however few individuals are still below the line. We believe it is due to that fact that 

we did not filter on relatedness 0 (bur rather 0.05). In addition, the Swiss sample we have 

is much larger compared to other populations and is known to contain families. We also 

know that MA samples are somehow related. 
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Figure S6: Comparison between FHBD (estimated as the average (among variants) probability that a variant 
belongs to an HBD segment coalescing less then 512 generations ago) and FPED in the Swiss population 
(CH). 

This plot shows the comparison between the genetic observed FHBD and the expected FPED 

for the CH population. We show that there is a good correlation between both inbreeding 

coefficients (0.94). 
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Figure S7: HBD segments distributions per population. Populations order is as follow: CH, DK, FR, IS, PT, 
IT, MA, GE, SB, GR, AE, IO, CO, CT, CY, EC, WC, GB, IR. The y axis represents the mean sum of length 
(among individuals) falling into the different categories of HBD segments (represented in the x axis). 

We show HBD segments distributions among the different populations. In populations 

with small sample sizes, the peaks of mean sum of lengths are mostly driven by inbred 

individuals (namely in FR for HBD classes 5 and 6 and EC for HBD class 6 and 7). We 

observe that CT population has an especially high peak in the 8th HBD class coherent with 

its history of isolation and small effective population size. 
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Figure S8: Distribution of minor alleles in continental versus islands populations. Minor alleles effects were 
classified with SNPeff. A: Count of neutral minor alleles divided by the individual number of polymorphic 
sites. B: Count of lowly deleterious minor alleles divided by the individual number of polymorphic sites. 
C: Count of moderately deleterious minor alleles divided by the individual number of polymorphic sites. D: 
Count of highly deleterious minor alleles divided by the individual number of polymorphic sites. E: Count 
of homozygous neutral minor alleles divided by the individual number of polymorphic sites. F: Count of 
homozygous lowly deleterious minor alleles divided by the individual number of polymorphic sites. G: 
Count of homozygous moderately deleterious minor alleles divided by the individual number of polymorphic 
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sites. H: Count of homozygous highly deleterious minor alleles divided by the individual number of 
polymorphic sites. 

This plot shows the individual count of minor alleles divided by the individual number of 

polymorphic sites per variants category (A: Neutral; B: Lowly deleterious, C: Moderately 

deleterious; D: Highly deleterious; E: homozygous neutral; F: Homozygous lowly 

deleterious, G: Homozygous moderately deleterious; H: Homozygous highly deleterious) 

in continental populations versus island populations. Islands populations are significantly 

enriched in all types of minor alleles both for single copy and homozygous states (Neutral 

single copy: W = 6904, p-value < 2.2e-16 Lowly deleterious single copy: W = W = 7739, 

p-value < 2.2e-16; Mildly deleterious single copy: W = 7410, p-value < 2.2e-16; Highly 

deleterious single copy: W = 9167, p-value = 1.07e-12; Neutral homozygous: W = 6752, 

p-value < 2.2e-16; Lowly deleterious single copy: W = 6748, p-value < 2.2e-16; Mildly 

deleterious single copy: W = 6613, p-value < 2.2e-16; Highly deleterious single copy: W 

= 7555, p-value < 2.2e-16). 
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Figure S9: Distribution of minor alleles in refugium versus recolonized populations. Minor alleles effects 
were classified with SNPeff. A: Count of neutral minor alleles divided by the individual number of 
polymorphic sites. B: Count of lowly deleterious minor alleles divided by the individual number of 
polymorphic sites. C: Count of moderately deleterious minor alleles divided by the individual number of 
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polymorphic sites. D: Count of highly deleterious minor alleles divided by the individual number of 
polymorphic sites. E: Count of homozygous neutral minor alleles divided by the individual number of 
polymorphic sites. F: Count of homozygous lowly deleterious minor alleles divided by the individual 
number of polymorphic sites. G: Count of homozygous moderately deleterious minor alleles divided by the 
individual number of polymorphic sites. H: Count of homozygous highly deleterious minor alleles divided 
by the individual number of polymorphic sites. 

This plot shows the individual count of minor alleles divided by the individual number of 

polymorphic sites per variants category (A: Neutral; B: Lowly deleterious, C: Moderately 

deleterious; D: Highly deleterious; E: homozygous neutral; F: Homozygous lowly 

deleterious, G: Homozygous moderately deleterious; H: Homozygous highly deleterious) 

in refugium populations versus recolonized populations. There is no significant difference 

between both groups of populations for all types of minor alleles both for single copy and 

homozygous states (Neutral single copy: W = 8125, p-value = 0.9382; Lowly deleterious 

single copy: W = 8161, p-value = 0.9762; Mildly deleterious single copy: W = 8383, p-

value = 0.7924; Highly deleterious single copy: W = 6857, p-value = 0.0786; Neutral 

homozygous: W = 8518, p-value = 0.6583; Lowly deleterious single copy: W = 8334, p-

value = 0.8429; Mildly deleterious single copy: W = 8795, p-value = 0.4182; Highly 

deleterious single copy: W = 7331, p-value = 0.2583). 

Comparing populations in details 

When we zoom into the population-specific FHBD (Figure S2), mean sum of HBD lengths 

per HBD class (figure S6), and Ne estimation (table 1), the pattern differs among 

populations. Concerning islands populations, both the EC and WC populations displayed 

high FHBD (mean FHBD = 0.132 and 0.112 for EC and WC respectively, with large variance 

among individuals for the EC though), were enriched in HBD classes from 32g to 128g 

ago. Additionally, their Ne estimation was higher than the other islands. We found that the 

AE population had low HBD coefficients (mean FHBD = 0.061), very similar to those from 

GR, was slightly enriched in HBD segments coalescing 32g and 64g ago, and had very 

high Ne estimation, which were very similar to GR. The distribution of HBD segments in 

the IO population was very similar to that of the AE populations, but they had slightly 

longer sums of lengths for segments coalescing 256g ago. Additionally, individuals from 

the IO population displayed slightly higher FHBD values (mean FHBD = 0.081) and lower 

Ne estimates. In the CO population, FHBD coefficients were high (mean FHBD = 0.098) and 

the HDB segments distribution was highly enriched in segments coalescing 256 

generations ago. In addition, the Ne estimation for the CO population was among the 

lowest. From all the populations studied, CT appeared to be one of the most inbred with 
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low Ne, high FHBD values (mean FHBD = 0.134) and a substantial percentage of HBD 

segments from 128 generations ago. Compared to other islands, the CY population had 

lowest FHBD coefficients (mean FHBD = 0.073) and was enriched in HBD segments from 

64g and 128g ago. In addition, the CY Ne estimate was relatively high compared to those 

of the other islands. Finally, the IR and GB populations had high FHBD (mean FHBD = 0.104 

and 0.102 for GB and IR, respectively), the lowest Ne estimation, and were enriched for 

HBD segments dating back to 256g and 512g. 

Concerning continental populations, they displayed lower FHBD and higher Ne 

estimation. CH and DK individuals displayed low inbreeding coefficient. Concerning 

continental populations, they displayed lower FHBD and higher Ne estimation. CH and DK 

individuals displayed low inbreeding coefficients (mean FHBD = 0.040 and 0.041 

respectively), high Ne estimations, and were highly enriched in HBD segments that 

coalesced over 512 million years ago. In contrast to the other continental populations, the 

FR population had high values of FHBD (mean FHBD = 0.092) and was enriched in HBD 

segments that coalesced 16g, 32g, 256g and 512g ago. It showed, however, high Ne 

estimates comparable to those of the rest of the continental populations. In the IS, PT, and 

MA populations, there were low FHBD values (mean FHBD values are 0.042, 0.024, and 

0.011 for IS, PT, and MA, respectively), no enrichment in any HBD segment class, and a 

high estimated Ne value. The mean FHBD of the GE population was the highest among 

continental populations (mean FHBD = 0.069). Furthermore, compared with other 

continental populations, their sum of HBD segment lengths was also enriched for segments 

that coalesced between 64g and 128g ago (although they were still smaller than most island 

populations). In addition, they displayed an extremely low estimated Ne. The IT and SB 

populations had a mean FHBD of 0.046 and 0.054, respectively, and did not show any 

enrichment in any HBD segment classes. Similarly, their Ne estimation was very similar 

to the other recolonized continental populations. Finally, the GR population showed an 

average inbreeding coefficient value and a mean sum of HBD segment lengths (mean FHBD 

= 0.060). In addition, the GR Ne estimate was relatively large compared with other 

recolonized continental populations. 

The AE displayed the highest Ne estimation, very close to the one from GR. This is 

concordant with previous studies which showed that there is low FST between these two 

populations [1, 3]. Concerning the IO population, the Ne estimation was slightly lower 

compared to the AE population (but higher than GB, IR, CO and CT) and HBD segments 
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numbers and lengths were very similar to other island populations. Historically this 

population has been shown to be genetically close to GR as well [3]. The CY population 

also showed high Ne estimation and low FHBD distribution (compared to other islands). In 

addition, the number of HBD segments were the lowest among the island populations. The 

high diversity we found is consistent with previous studies and might be explained because 

this population is genetically close to the IS population [3, 1]. The populations from CT 

and CO displayed even lower Ne and higher numbers of HBD segments. CT especially 

showed inflated FHBD distribution. This is consistent with its small size and stronger 

isolation from the rest of the populations [3]. On the contrary, CO showed especially high 

number of small HBD segments suggesting no recent mating between closely related 

individuals but an history of small Ne and long-term isolation. The Canary islands 

populations (EC and WC) showed Ne estimation close other small islands namely CT and 

CO and relatively high FHBD estimation, especially with one inbred individual in the EC 

population. Similarly, their sum of HBD segments lengths were clustering with the other 

island populations. All these are consistent with their history of old colonisation and long-

term isolation [2]. Populations from DK, IT and SB displayed Ne, FHBD estimation and 

total numbers of HBD segments close to CH. This is not surprising as we know that there 

is shallow population differentiation between these populations (especially between CH 

and DK) [1]. The population from GR displayed similar statistics compared to the rest of 

central Europe (namely CH, FR, DK, IT and SB) and had very similar estimates to the AE 

population. Concerning the MA population, we estimated a high Ne and very low 

inbreeding coefficients. This is concordant with previous studies which found that this 

population is close to the PT population [2] known as the biggest population and a 

refugium during the last glacial maxima [1]. This is consistent with our results as it 

harbored the highest Ne and low FHBD in our analyses. In the MA population, we observed 

three individuals below the line in the FAS vs FHBD plot. These individuals are from the 

same family. Similar to what has been observed for the CH individuals, these individuals 

are shifted towards the line when we trim the data set for relatedness. Concerning the 

population from IS, we estimated a high Ne and a FHBD distribution as well as total number 

of HBD segments similar to what was observed for the CH, FR and DK populations. The 

high Ne is concordant with previous studies who found that the IS population is a reservoir 

of diversity [1, 3]. 
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Supplementary Material & Methods 

As mentioned in the material and methods section, we did no describe and present all the 

models in the main text. The following equations describe all the animal models used 

in this paper. Age (in days) for juveniles was modeled as a Gompertz function with 

parameters estimated from the full dataset. 

𝐵𝑖𝑙𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  β'𝐹$()%   +  β*Sex 

+ β+rank  +  β,;179.8  ∗  e-'.'*/ ∗ &.2*'
+,-B  +  α34567844

+ α6956:65;<=  +  α>?@48:48  +  αA=;BAC  +  αD4<8

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI

𝑀𝑎𝑠𝑠 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  𝛽'𝐹$()%   +  𝛽*𝑆𝑒𝑥 

+ 𝛽+𝑟𝑎𝑛𝑘  +  𝛽,;369.5  ∗  𝑒-,.,*T ∗ &.U2'
./0B  +  𝛼EFG)HIFF

+ 𝛼)(G)J)G$KL   +  𝛼MNOFIJFI   +  𝛼PL$QPR   +  𝛼SFKI

𝑀𝑎𝑠𝑠	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 ∗ β*𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑐𝑘𝐻𝑎𝑡𝑐ℎ𝑒𝑑

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹$()%

+ β*𝑆𝑒𝑥 + β+𝑟𝑎𝑛𝑘 + β,;719.5 ∗ 𝑒-*.*/,∗&.U2&
./0B

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 + β*𝑟𝑎𝑛𝑘

+ αEFG)HIFFα)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI

(S1) 

(S2) 

(S3) 

(S4) 

(S5) 

(S6) 
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𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹VWX

+ β*𝑆𝑒𝑥 + β+𝑟𝑎𝑛𝑘 + β,;179.8 ∗ 𝑒-'.'*/∗&.2*'
./0B

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝐹$()% + β*𝑆𝑒𝑥

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹VWX + 𝛽*𝑆𝑒𝑥

+ 𝛼EFG)HIFF𝛼)(G)J)G$KL + 𝛼MNOFIJFI + 𝛼PL$QPR + 𝛼SFKI 

𝑀𝑎𝑠𝑠 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  𝛽'𝐹VWX   +  𝛽*𝑆𝑒𝑥 

+  𝛽+𝑟𝑎𝑛𝑘  +  𝛽,;369.5  ∗  𝑒-,.,*T ∗ &.U2'
./0B  +  𝛼EFG)HIFF  

+  𝛼)(G)J)G$KL   +  𝛼MNOFIJFI   +  𝛼PL$QPR   +  𝛼SFKI 

𝑀𝑎𝑠𝑠	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹$()% + 𝛽*𝑆𝑒𝑥 ∗ 𝛽+𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑐𝑘𝐻𝑎𝑡𝑐ℎ𝑒𝑑

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑀𝑎𝑠𝑠	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹VWX + β*𝑆𝑒𝑥 ∗ 𝛽+𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑐𝑘𝐻𝑎𝑡𝑐ℎ𝑒𝑑

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹VWX

+ β*𝑆𝑒𝑥 + β+𝑟𝑎𝑛𝑘 + β,;719.5 ∗ 𝑒-*.*/,∗&.U2&
./0B

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 + β*𝐹!"#% + β+𝑟𝑎𝑛𝑘

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 + β*𝐹VWX + β+𝑟𝑎𝑛𝑘

+ αEFG)HIFF + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

  

(S7) 

(S8) 

(S9) 

(S10) 

(S11) 

(S12) 

(S13) 

(S14) 

(S15) 
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We also ran inbreeding depression models without the pedigree and with both 

inbreeding coefficients: 

𝐵𝑖𝑙𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  𝛽'𝐹$()%   +  𝛽*𝑆𝑒𝑥 

+  𝛽+𝑟𝑎𝑛𝑘  +  𝛽,;179.8  ∗  𝑒-'.'*/ ∗ &.2*'
./0B 

+  𝛼)(G)J)G$KL   +  𝛼MNOFIJFI   +  𝛼PL$QPR   +  𝛼SFKI 

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹VWX + β*𝑆𝑒𝑥

+ β+𝑟𝑎𝑛𝑘 + β,;179.8 ∗ 𝑒-'.'*/∗&.2*'
./0B

+ α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹!"#% + 𝛽*𝑆𝑒𝑥 + 𝛽+𝑟𝑎𝑛𝑘

+ 𝛼)(G)J)G$KL + 𝛼MNOFIJFI + 𝛼PL$QPR + 𝛼SFKI 

𝐵𝑖𝑙𝑙	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹VWX + 𝛽*𝑆𝑒𝑥 + 𝛽+𝑟𝑎𝑛𝑘

+ 𝛼)(G)J)G$KL + 𝛼MNOFIJFI + 𝛼PL$QPR + 𝛼SFKI 

𝑀𝑎𝑠𝑠 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  𝛽'𝐹!"#%   +  𝛽*𝑆𝑒𝑥 

+  𝛽+𝑟𝑎𝑛𝑘  +  𝛽,;369.5  ∗  𝑒-,.,*T ∗ &.U2'
./0B

+  𝛼)(G)J)G$KL   +  𝛼MNOFIJFI   +  𝛼PL$QPR   +  𝛼SFKI 

𝑀𝑎𝑠𝑠 𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 =  𝛽&  +  𝛽'𝐹VWX   +  𝛽*𝑆𝑒𝑥 

+  𝛽+𝑟𝑎𝑛𝑘  +  𝛽,;369.5  ∗  𝑒-,.,*T ∗ &.U2'
./0B 

+  𝛼)(G)J)G$KL   +  𝛼MNOFIJFI   +  𝛼PL$QPR   +  𝛼SFKI 

𝑀𝑎𝑠𝑠	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹$()% + 𝛽*𝑆𝑒𝑥 ∗ 𝛽+𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑐𝑘𝐻𝑎𝑡𝑐ℎ𝑒𝑑

+ α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑀𝑎𝑠𝑠	𝑎𝑑𝑢𝑙𝑡𝑠 = 𝛽& + 𝛽'𝐹!"#% + 𝛽*𝑆𝑒𝑥 ∗ 𝛽+𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑐𝑘𝐻𝑎𝑡𝑐ℎ𝑒𝑑

+ α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹!"#%

+ β*𝑆𝑒𝑥 + β+𝑟𝑎𝑛𝑘 + β,;719.5 ∗ 𝑒-*.*/,∗&.U2&
./0B

+ α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

(S16) 

(S17) 

(S18) 

(S19) 

(S20) 

(S21) 

(S22) 

(S23) 

(S24) 
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𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠 = β& + β'𝐹VWX

+ β*𝑆𝑒𝑥 + β+𝑟𝑎𝑛𝑘 + β,;719.5 ∗ 𝑒-*.*/,∗&.U2&
./0B

+ α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 + β*𝐹!"#%

+ β+𝑟𝑎𝑛𝑘 + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

𝑇𝑎𝑟𝑠𝑢𝑠	𝐿𝑒𝑛𝑔𝑡ℎ	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝑆𝑒𝑥 + β*𝐹VWX
+ β+𝑟𝑎𝑛𝑘 + α)(G)J)G$KL + αMNOFIJFI + αPL$QPR + αSFKI 

For the yearly fitness-related traits we only built models for adults and only for females 

for the number of eggs laid: 

#	𝑒𝑔𝑔𝑠	𝑙𝑎𝑖𝑑	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝐹𝑒𝑚𝑎𝑙𝑒 + β*𝐹!"#%

+ β+𝑇𝑎𝑟𝑠𝑢𝑠	𝑙𝑒𝑛𝑔𝑡ℎ + β,𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦 + βT𝐹𝑒𝑚𝑎𝑙𝑒	𝑎𝑔𝑒

+ 𝛼)(G)J)G$KL + 𝛼Y)QF	#X + 𝛼[FKI 

#	𝑒𝑔𝑔𝑠	𝑙𝑎𝑖𝑑	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝐹𝑒𝑚𝑎𝑙𝑒 + β*𝐹VWX
+ β+𝑇𝑎𝑟𝑠𝑢𝑠	𝑙𝑒𝑛𝑔𝑡ℎ + β,𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦 + βT𝐹𝑒𝑚𝑎𝑙𝑒	𝑎𝑔𝑒

+ 𝛼)(G)J)G$KL + 𝛼Y)QF	#X + 𝛼[FKI 

#	𝑒𝑔𝑔𝑠	𝑙𝑎𝑖𝑑	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝐹𝑒𝑚𝑎𝑙𝑒 + β*𝐹!"#%

+ β+𝑇𝑎𝑟𝑠𝑢𝑠	𝑙𝑒𝑛𝑔𝑡ℎ + β,𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦 + βT𝐹𝑒𝑚𝑎𝑙𝑒	𝑎𝑔𝑒

+ 𝛼EFG)HIFF + 𝛼)(G)J)G$KL + 𝛼Y)QF	#X + 𝛼[FKI 

#	𝑒𝑔𝑔𝑠	𝑙𝑎𝑖𝑑	𝑎𝑑𝑢𝑙𝑡𝑠 = β& + β'𝐹𝑒𝑚𝑎𝑙𝑒 + β*𝐹VWX
+ β+𝑇𝑎𝑟𝑠𝑢𝑠	𝑙𝑒𝑛𝑔𝑡ℎ + β,𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦 + βT𝐹𝑒𝑚𝑎𝑙𝑒	𝑎𝑔𝑒

+ 𝛼EFG)HIFF + 𝛼)(G)J)G$KL + 𝛼Y)QF	#X + 𝛼[FKI 

𝑃𝑟(ℎ𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = 1) = 𝑝𝑟𝑜𝑏𝑖𝑡-'(β& + β'𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦

+ β+𝐹𝑒𝑚𝑎𝑙𝑒𝐹$()% + β,𝑀𝑎𝑙𝑒𝐹$()% + αPL$QPR) 

𝑃𝑟(ℎ𝑎𝑡𝑐ℎ𝑖𝑛𝑔 = 1) = 𝑝𝑟𝑜𝑏𝑖𝑡-'(𝛽& + 𝛽'𝐽𝑢𝑙𝑖𝑎𝑛	𝑑𝑎𝑦

+ 𝛽+𝐹𝑒𝑚𝑎𝑙𝑒𝐹VWX + 𝛽,𝑀𝑎𝑙𝑒𝐹VWX + 𝛼PL$QPR) 
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Supplementary Results 

Figure S1 shows the different heritability (h2) estimates distribution (among the MCMC 

chain iterations) for the three morphological traits for both adults and juveniles. 

Heritability was always much higher for adults compared to juveniles and was the lowest 

for mass. 

 

Figure S1 : h2 estimates distribution (among the MCMC chain iterations) for the three morphological 
traits (bill length, mass and tarsus length) for adults and juveniles. Juveniles’ models included the 
inbreeding coefficient FUNI as a fixed effect but this was not the case for adults. 

Figure S2 shows the different β estimates for all the models we ran to quantify inbreeding 

depression for the five phenotypes: morphological traits bill length, mass and tarsus length 

and yearly fitness-related traits number of eggs laid (for females only) as well as 

probability that an egg hatches according to both parents inbreeding coefficient. For 

morphological traits, we compare juveniles and adults, FUNI and FHBD as well as including 

the pedigree in the model or not. For yearly fitness-related traits, we compare FHBD and 

FUNI as well as including the pedigree in the model versus the simple model for number of 

eggs laid in adults only. It is striking to note that there is little difference between the 

models including or excluding the pedigree. This is not surprising since our data does not 

contain a strong structure (although we do have family structure). The second striking 

result is that the CI for β estimated with FHBD are always larger than the estimates from 

FUNI and this is especially true for the binomial models (modeling the probability that an 

egg hatches according to the parents inbreeding coefficients, panel C) and to a lesser extent 

for adult morphological traits (panel B). Despite the fact that we cannot know the true 

value of β here, the smaller CI around β, coupled with the fact that the owls we are studying 

come from a population with large effect sizes and numbers, suggests that FUNI is likely 

more accurate than FHBD [1, 2]. 
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Figure S2: β estimates for all the inbreeding depression models A: β estimates in juveniles for the three 
morphological traits (bill length, mass and tarsus length) for both inbreeding coefficients: FUNI and FHBD and 
with and without including the pedigree as a random factor. Models correspond to equations S16, S1, S17, 
S7, S20, S3, S21, S10, S24, S5, S25 and S13. B: β estimates in adults for the three morphological traits (bill 
length, mass and tarsus length) for both inbreeding coefficients: FUNI and FHBD and with inbreeding 
depression model (with and without the pedigree). Models correspond to equations S18, S8, S19, S9, S22, 
S11, S23, S12, S26, S14, S27 and S15. C: β estimates in adults for the two fitness-related traits (number of 
eggs laid (for females only and with both inbreeding depression models) and probability that an eggs hatches 
(for both sexes, both inbreeding coefficients and with the simple inbreeding depression model only). These 
models correspond to equations S32, S33, S28, S30, S29 and S31. 

Figure S3 shows the difference between inbreeding depression models when the rank of 

the individual (in birth) is included or not for tarsus length in adults. Rank had a significant 

effect on tarsus length so we decided the include it in the model in the main text. However, 

this greatly reduced the sample size as well as the range of FUNI covered and changed the 

sign of the β estimate. Ideally, we would like to be able to include rank and increase our 

range of FUNI, however this is not possible with our data. The model including rank might 

be biased because the range of FUNI we cover is very small but the model without including 

rank might be biased because we lack an important covariate. Overall, it is not of striking 

importance since both models yield non-significant β but I would say I do not trust any of 

the model for reliable conclusion on the effect of inbreeding on tarsus length in adults. 
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Figure S3: Regression plot of tarsus length according to FUNI in adults. A: The mode does include the rank 
of the individual at birth as a covariate. B: the model does not include rank of the individual at birth as a 
covariate. 

Figure S4 shows the distributions of FUNI in juveniles and adults. Both distributions are 

significantly different (Wilcoxon rank test; W = 1421740, p- value = 0.001755) but what 

is really interesting is that we have more individuals with FUNI > 0.1 in juveniles compared 

to adults. 

 

Figure S4: FUNI distributions in juveniles (A) and adults (B). 
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Abstract

Homologous recombination is a meiotic process that generates diversity along the genome

and interacts with all evolutionary forces. Despite its importance, studies of recombination

landscapes are lacking due to methodological limitations and a dearth of appropriate data. In

fact, different methods of inference overcome different problems of inference. Linkage

mapping of familial data gives unbiased broad-scale estimates of recombination and

LD-based inference provides fine-scale data albeit depended on the effective population size

and acting selective forces. In this study we use an intersection of methods, on a family

dataset of whole genome sequences and elucidate the first owl recombination landscape for

the barn owl (Tyto alba). Using linkage mapping we refine the genome assembly to a

chromosome-level quality, and identify subtle heterochiasmy through fine-scale differences

in crossover placement and shuffling proportions between male and female barn owls.

Additionally, through fine-scale LD-based inference we show that the abundant variation in

recombination landscapes of different linkage groups is guided by their length and strongly

shapes the genetic diversity of the genome. Furthermore, we identify recombination hotspots

showing little evolutionary stability of the fine-scale recombination landscape through

population-level comparisons. Overall, this comprehensive analysis enhances our

understanding of recombination dynamics, genomic architecture, and sex-specific variation

in the barn owl, contributing valuable insights to the broader field of avian genomics.

Introduction
Recombination is a key feature of sexual reproduction that has multiple evolutionary

implications but its inference is often overlooked in non-model species. Homologous meiotic

recombination, hereafter recombination, is the reciprocal exchange of genetic material

between homologous chromosomes during the first meiotic division. The physical exchange,

called a crossover, generates the necessary tension between chromosomes to ensure their
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proper segregation in the daughter cells and its absence has been associated with

aneuploidy (Hassold et al., 2007; Koehler et al., 1996; Zelkowski et al., 2019; Zickler &

Kleckner, 2015).

Beyond contributing to the integrity of proper meiotic division, recombination can also have

evolutionary consequences by shuffling alleles between haplotypes thus affecting the

genomic composition of a population. This shuffling brings about evolutionary benefits

including faster adaptation to a changing environment and more efficient selection (Hill &

Robertson, 1966; Otto & Lenormand, 2002) . Despite its benefits, recombination can also

impede adaptation by breaking up beneficial combinations of alleles or increasing the rate of

mutations and chromosomal rearrangements (Arbeithuber et al., 2015; Barton &

Charlesworth, 1998; Halldorsson et al., 2019). Finally, because recombination rates vary

along the genomic sequence, they affect almost all genome-wide analyses. For instance,

genetic diversity along the genome will correlate with recombination rates due to the effect of

linked selection (Begun & Aquadro, 1992) and regions of low recombination can appear as

false positives in scans for selection based on differentiation (Booker et al., 2020). It is thus

important to know the position of crossovers in the genome and the frequency with which

they occur to be able to account for recombination variation and eliminate confounding with

other evolutionary forces.

However, quantifying recombination is a laborious task. One approach is linkage mapping,

the positioning of markers along the sequence with a distance proportional to the

recombination rate between them. This approach requires family data (or when available,

controlled crosses) and has been applied to several species so far providing both a reliable

measure of crossing over frequency (Brazier & Glémin, 2022; Kong et al., 2002; Stapley et

al., 2017). Linkage mapping can also quantify the differences in recombination rates

between sexes (i.e. heterochiasmy, Brekke et al., 2022; Johnston et al., 2017; Kong et al.,

2010). Unfortunately, linkage mapping requires family data which are only available in a few

study species (Peñalba & Wolf, 2020). Further, recombination rates estimated with this
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method are limited by the number of meioses observed, making it impossible to quantify it

accurately in small genomic windows with realistic sample sizes (Halldorsson et al., 2019).

To address this problem, additional approaches have been developed to estimate

recombination using whole genome sequences of tens of unrelated individuals (Auton &

McVean, 2007; Chan et al., 2012; Spence & Song, 2019). These methods model the

observed linkage disequilibrium (LD) between markers, assessing ancestral recombination

events that occurred in the coalescent history of the sample (N. Li & Stephens, 2003). This

approach, hereafter LD-based inference, has enabled the quantification of fine scale

recombination variation initially in humans (McVean et al., 2004; Myers et al., 2005).

However, because of the limited genomic resources required, LD-based inference of

recombination has also been applied to non-model species like birds, reptiles and fish

among others (ex. Kawakami et al., 2017; Schield et al., 2020; Shanfelter et al., 2019;

Singhal et al., 2015). Such fine-scale inferences have implicated the PRDM9 gene for the

location and evolutionary turnover of recombination hotspots (narrow regions of increased

recombination) of some species (Booker et al., 2017; Myers et al., 2010). Similarly LD-based

inference has shown that species that lack the PRDM9 gene show evolutionary conserved

hotspots in regions of accessible chromatin (Auton et al., 2013; Baker et al., 2017; Singhal et

al., 2015), or no hotspots at all (Kaur & Rockman, 2014; Smukowski Heil et al., 2015).

Despite the discoveries and benefits of quantifying fine-scale variation with few genomes,

LD-based inference has certain limitations. The method infers the population recombination

rate (rho), the product of the effective population size (Ne) and the recombination rate, a

caveat that has two major implications. It does not distinguish between crossing over in male

and female meioses and is affected by forces that change Ne and not the recombination rate

itself. This essentialy means that selection can confound estimates of recombination

(O’Reilly et al., 2008). To remedy this and while selection remains a confounding factor,

accounting for demography has been implemented in recent applications (Spence & Song,

2019). Even then, estimates of LD-based methods are often validated with a different
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estimate of recombination, for example linkage mapping (Axelsson et al., 2012; McVean et

al., 2004; Shanfelter et al., 2019; Wall et al., 2022).

Therefore, a combination of approaches is the preferred route to accurately infer the

recombination rates in the fine scale. However, such combinations will require both whole

genome sequencing data of unrelated individuals and family data, a doubly costly resource.

Especially since family data, beyond controlled crosses, are usually only available for

specific species. Family data may be disproportionately available for wild populations of

birds because their nesting behaviour can facilitate population monitoring and can be

exploited for the construction of long term pedigrees (Grant & Grant, 2002; Lack & Lack,

1958; Pemberton, 2008). Despite this opportunity for the generation of family data in birds,

we only have information about the recombination landscapes of very few genera. Most

information for the order comes from studies of pedigreed populations using linkage

mapping (Backström et al., 2010; Groenen et al., 2009; Hagen et al., 2020; Kawakami et al.,

2014; Peñalba et al., 2020; van Oers et al., 2014) and only two species benefit from both an

LD-based inference and a linkage-mapping approach: the zebra finch (Taeniopygia guttata)

and the collared flycatcher (Ficedula albicollis) (Kawakami et al., 2017; Singhal et al., 2015).

All these previous studies have shown that recombination in birds exhibits broad-scale

among-species variation, inconclusive patterns of sex-differences and the absence of the

PRDM9 gene. Firstly, rates of recombination inferred from linkage mapping tend to differ

between species despite a rather conserved avian karyotype. For example two members of

the passerine clade (collared flycatcher and the superb fairy-wren Malurus cyaneus) show

an unexplained twofold difference in genetic length among their largest syntenic

chromosomes (Kawakami et al., 2014; Peñalba et al., 2020). Further, birds show evidence

for lack of consistent patterns of heterochiasmy (Sardell & Kirkpatrick, 2019). Recent studies

(McAuley et al., 2023; Zhang et al., 2023) point at evidence for fine-scale differences in the

placement of crossovers between sexes, an observation overlooked when focusing on total

genetic lengths. Finally, birds lack the PRDM9 hotspot gene (Baker et al., 2017). While the

evolutionary stability of hotspots has been demonstrated in finches and flycatchers
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(Kawakami et al., 2017; Singhal et al., 2015), it is still unknown how to reconcile such

findings with evidence for broad scale variation. Importantly, the bird species for which

recombination rate variation has been studied so far all belong to the passerine order apart

from the economically important chicken (Gallus gallus). Therefore information from other

avian orders is lacking and the generality of such findings can be questioned.

Here, using both linkage mapping and LD-information we present the first recombination

landscape for a species of the owl order, the barn owl (Tyto alba). We use this species

because it has the highest quality genome assembly of an owl species (Ducrest et al., 2020;

Machado, Cumer, et al., 2022), a set of whole-genome sequences available from past

studies (Cumer, Machado, Dumont, et al., 2022a; Cumer, Machado, Siverio, et al., 2022;

Cumer et al., 2024; Machado, Cumer, et al., 2022; Machado, Topaloudis, et al., 2022) and a

long-term pedigreed population with an untapped genomic potential (Charmantier et al.,

2014; Sheldon et al., 2022). We capitalise on 176 genomes previously published along with

326 newly sequenced to build a high confidence variant set that spans the diversity of the

species across the Western palearctic. Specifically, we used linkage mapping on a dataset of

250 owls belonging to 28 families to identify linkage groups in the barn owl sequence

assembly, estimate the sex-averaged linkage map length and quantify sex-differences in

recombination. Additionally, we used an LD-based approach on 102 unrelated individuals

from three populations to infer fine-scale recombination rate variation and scale our results

using the estimates from the linkage map. Using these complementary resources we

quantify variation between sexes as well as substantial differences in fine scale patterns

among chromosomes and populations.

Results

We performed variant identification on 502 whole genome sequences sequenced in medium

to high coverage (mean=16, range=8 to 43). Samples originate from 19 distinct localities

spanning the Western Palearctic distribution of the species (Table S2). After filtering we
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retained 26,933,469 variants for the whole dataset and used a subset of those for each

analysis below (Table S4).

Linkage groups and recombination rate of the barn owl

After aggressively filtering the variant set we ordered 154,706 variants along the 38 largest

scaffolds of the genome assembly to create a linkage map for the barn owl. Based on

segregation of these markers in 250 individuals from 28 families, we identified 39 linkage

groups. The linkage groups identified correspond to scaffolds in the genome assembly for all

but two exceptions: Super-Scaffold 2 was split into two linkage groups and Super-Scaffold 3

and 49 were merged in one. The merge of two scaffolds involved one (49) with very few

markers and was not resolved (see Supplementary text). The genome assembly of the barn

owl therefore contains the sequence of 39 linkage groups out of 45 expected pairs of

autosomal chromosomes (Table S1). For these 39 linkage groups the final sex-averaged

linkage map spanned 2,066.81 centiMorgans (cM) over a physical sequence of 1,066 million

base pairs (Mb) representing 88% of the genome assembly. Therefore the genome average

estimate of recombination rate for the barn owl is approximately 1.94 cM/Mb.

The genetic length of linkage groups increases with their physical length (Figure 1A). Each

crossover per meiosis adds 50cM to the genetic length of a linkage group. The linkage

groups of the barn owl showed a genetic length between 50 and 100 therefore most barn

owl linkage groups recombine between once and twice per meiosis. While the slope of the

regression of the genetic length on the physical length is significantly positive (β = 0.417,p

=0.004), the intercept is less than the expected minimum of 50cM under one obligate

crossover per chromosome. Several linkage groups between 20 to 40 Mb long have an

inferred length of less than 50cM, implying less than a crossing over per meiosis.
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Subtle heterochiasmy

To infer heterochiasmy, we look at the sex-specific linkage map estimates (Figure S6 & Table

s1). Female barn owls have a 5% larger genetic map than male barn owls with a map length

of 2,124cM while the male map is 2,013cM. There appears to be no consistent pattern of

heterochiasmy at the linkage group scale (Figure 1B). To investigate potential differences in

localisations of crossovers we look at the positioning of inferred crossing over along the

length of all chromosomes (Figure 1C). Overall in the barn owl, crossovers tend to occur

closer to the linkage group ends than in the middle. However, males tend to recombine more

at the extremities of the linkage groups while females more towards the middle.

Because a crossover at the middle of the linkage group will shuffle more markers than a

distal crossover, we quantified the rate of intra-chromosomal shuffling ( _intra) as defined in𝑟

Veller et al., 2019. Briefly, this quantity measures the relative shuffling of alleles due to a

crossover along the length of the chromosome. Thus a crossover in the middle of the

chromosome shuffles more alleles than a distal one, and a chromosome with more markers

has a higher rate of shuffling than a small one. We estimated rates of intra-chromosomal

shuffling in males and females (Fig 1D). Despite recombining more often toward the distal

parts of the linkage groups, males show up to 50% higher intra-chromosomal shuffling for

larger linkage groups while females show higher rates in intermediate to smaller linkage

groups.
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Figure 1 - A linkage map for the barn owl sheds light in fine scale heterochiasmy
All plots in this figure are products of the linkage map dataset consisting of 250 individuals in 28
families, signified with the pedigree of owls symbol on the top right. A: Linkage mapping estimates of
sex-averaged genetic lengths for the linkage groups identified in the barn owl assembly plotted
against their physical length. Regression line is shown with prediction intervals (α=41.6, β=0.4171,
t=3.093, p=0.004). Colour intensity scales with linkage group physical lengths as in legend. B:
recombination map length (cM) of linkage groups for females plotted against the recombination map
length for males. Dashed line is the identity (y=x) line. Each dot represents one linkage group and the
colour intensity scales with their physical lengths. C: Density plot of male (blue) and female (orange)
crossover (CO) counts plotted along the distance from the LGs end. X-axis is in percentage of total
linkage group sequence. Density values are scaled so that they sum to 1. D: Differences between
sexes in rate of intrachromosomal shuffling (r intra) presented as a ratio (male r intra / female r intra)
for different LGs. Bars to the right of the black line coloured blue signify higher intra-chromosomal
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shuffling in males, while bars to the left of the black line coloured in orange correspond to linkage
groups with higher shuffling in females. LGs are ordered by decreasing physical length (larger LG on
top) as signified on the second y-axis on the right.

Fine scale variation among linkage groups

To investigate finer scale variation in recombination rates we turn to recombination rates

estimated from patterns of linkage disequilibrium (LD) (Figure S5). We estimated

recombination rates using pyrho in a set of variants identified along the whole genome 76

unrelated birds from Switzerland (CH). The total genetic length estimated from LD was 957

cM, 2.1 times less than the linkage map estimate for the same population. We scaled the

total length inferred from LD to equal that of the linkage mapping estimate, to account for the

confounding effect of Ne and compared the estimates in non overlapping 1 Mb windows. The

correlation at the 1 Mb scale was high (r = 0.88, 95% CI: 0.869 - 0.896) with pyrho showing

higher estimates in regions of low recombination as expected from our limited number of

meioses observed (Figure 2A).

The recombination landscape differed among chromosomes with different sizes (three

linkage group recombination landscapes highlighting differences in 10kb windows are shown

in Figure 2B). To further quantify this variation we looked at the proportion of genomic

sequences where recombination occurs. By ordering all 10kb windows for each linkage

group based on decreasing recombination rates we calculated the cumulative recombination

percentage that occurs in a cumulative percentage of sequence (Figure 2C). Overall, 80% of

recombination occurs in approximately 35% of the sequence (dashed grey line in Figure 2C).

However, there is substantial variation in the distribution of recombination among linkage

groups. To further quantify this skewness we used the Gini coefficient of recombination rates

for each chromosome. Briefly, the Gini coefficient corresponds to the area between each

curve in Figure 2C and the y=x line with smaller values showing an evenly spread landscape

of recombination and higher values a more concentrated one. The genome-wide average

Gini coefficient is 0.6 and the linkage group estimates varied between 0.37 and 0.70

(respectively marked with a blue square and a green triangle in Figure 2). Along with a
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linkage group of intermediate Gini coefficient (0.57, aquamarine diamond in Figure 2), their

landscapes are presented in Figure 2B. We found that the Gini coefficient depends on the

physical length of the linkage group with more evenly spread (and elevated) recombination

rates in smaller linkage groups and more concentrated landscapes in larger ones (Figure

2D) but the effect seems to diminish as the length increases further. The Gini coefficient also

correlates negatively and strongly with the average nucleotide diversity of the linkage group

with more concentrated recombination peaks leading to lower average nucleotide diversity

(Pearson’s r = -0.9, 95% CI: -0.947, -0.82) (Figure 2E). Overall, recombination rates vary

substantially among the different linkage groups of the barn owl assembly.
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Figure 2 - Variation of recombination among linkage groups.
As in figure 1, pedigree of owls symbol signifies results from linkage mapping. On this figure and later
figures the tree of owls shows results from pyrho along with the window resolution used next to it or
above it, here 1Mb and 10kb. A: Comparison of recombination rate estimates from linkage mapping
and LD inference for the Swiss population. The comparison is made in 1Mb windows to avoid
inaccurate linkage mapping estimates due to limited meioses observed. Axes are in the natural
logarithm of the value + 1 to limit values to 0. Regression line is shown with prediction intervals as
dashed lines (α=-0.285, β=1.2, t=62.92, p<0.001) B: The recombination frequency (cM/Mb) in 10kb
windows along the physical map of three example linkage groups. The dashed horizontal line is the
genome average recombination rate. These linkage groups represent linkage groups with different
recombination landscapes. The purple square linkage group has the most equally spread
recombination along its length, the blue diamond has an intermediate spread that corresponds to the
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genome average and the aquamarine triangle has the most punctuated landscape. C: Cumulative
sequence plotted against cumulative ordered recombination length for each linkage group (dark grey
curves) and genome-wide (grey dashed curve). The black dotted line is the identity (y=x) line. The
Gini coefficient corresponds to the area delimited by each curve and the identity line. D: The Gini
coefficient of recombination rates for each linkage group plotted against its physical length. Dashed
grey line is the genome average Gini coefficient. E: The Gini coefficient of recombination plotted
against the average nucleotide diversity of each linkage group. Dashed grey line is the genome
average Gini coefficient.

Identifying hotspots of recombination

Because birds lack the PRDM9 gene, recombination hotspots are expected to localise to

transcription start and end sites (TSS, TES respectively), as well as CpG islands (CGIs)

(Baker et al., 2017; Singhal et al., 2015). To verify this with the barn owl dataset, we used

estimates of recombination frequency in non-overlapping windows of 1’000 base pairs (1kb)

along the genome. Windows that were annotated to contain either a TSS or a TES

(n=30’224, 2.7% of windows) or contained a CGI spanning the whole window (n=13’841,

1.2% of windows) were identified and their recombination rate was divided by the average in

40kb upstream and 40kb downstream of the focal window (relative recombination rate in

80kb - RRR80). The results showed elevated recombination rates in the focal windows

compared to their vicinity (Figure 3A).

The partition of recombination rates along the sequence illustrated in Figure 2D supports the

existence of hotspots in the barn owl recombination landscape. We thus looked for

recombination hotspots at the kilobase resolution. We define local hotspots as 1kb windows

that exhibit 5 times the average recombination rate in 80kb around the focal window (RRR80

≥ 5, Figure 3B) and global hotspots as 1kb windows that show a recombination rate higher

than 10 times the genome average (RRR ≥ 10 - Figure 3C). In the Swiss population, we

identified a total of 3’949 local hotspots containing 1.8% of the total genetic length and 4’440

global hotspots containing 5.5%. 499 windows were annotated as both local and global

hotspots. Local hotspots were usually identified in regions of lower recombination rates

which are found towards the middle of linkage groups (Figure 1C) while global hotspots were

in peaks of recombination by definition, concentrated around the ends (example in Figure
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3D, Figure 3E). Both hotspot classes showed higher GC content distribution compared to the

genome average (Figure 3F) which supports their annotation. GC content was higher in

global hotspots than local ones.

Figure3. Hotspot characteristics of the barn owl in 1 kb windows.
All results on this figure are using pyrho in 1kb windows as signified with the tree of owls. A: Lacking
PRDM9, recombination is increased at the local regions around annotated transcription start and end
sites (TSS,TES, full line) as well as CpG islands (CGIs, dashed line). RRR80 is the recombination
rate of each 1kb window divided by the average in 80kb around. The lines show the average across
all identified elements. B: Local hotspots are defined as 1kb windows with a recombination rate at
least five times higher than the average in 80 kb around (RRR80 > 5). This example (which is an
average plot of all windows annotated as local hotspots) the focal window (aquamarine dot at position
0) would be annotated as a local hotspot. C: Global hotspots are defined as 1kb windows with a
recombination rate at least ten times the genome-wide average (RRR > 10). All windows right of the
dashed line are global hotspots. The RRR is given in log scale for better representation D: Example of
annotated global and local windows in linkage group (LG) 32. Aquamarine dots are local hotspots
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while the purple line shows ten times the global average and thus all windows above the line are
global hotspots as signified with the open purple circles. E: Violin plot of the location of all windows,
local and global hotspots relative to the end of the linkage group. Local hotspots are usually found
towards the middle of the linkage groups because they are identified in regions of lower background
recombination. On the other hand global hotspots are concentrated around the ends (as expected
from Fig 1C). Significance assigned through a Wilcoxon rank sum test. F: GC content is elevated in
both local and global hotspots. Significance assigned through a Wilcoxon rank sum test.

Low repeatability of fine-scale recombination landscapes
To quantify the change of the recombination landscape in the species we used three

populations from the Western Palearctic, Portugal (PT, n=13) and Great Britain (GB, n=13)

and Switzerland (CH, n=76) (Figure 4A). Because our sample size in Switzerland was far

greater than the other two and to test the replicability of our results, we randomly

subsampled two sets of 13 individuals from Switzerland, creating pseudo-replicate

populations (CH13, CH13_2). For Portugal and Great Britain genetic length estimates were

1271 and 1345 cM respectively. These estimates matched closely with the ones for the

subsampled sets from Switzerland which were 1327 and 1296cM respectively. For all

populations, we scaled the results so that the total genetic length would match that of the

linkage map estimate of 2067cM. After scaling, we compared all populations with the linkage

map in 1Mb windows along the genome and found that genome-average correlations were

higher than 0.8 (Figure S1). At finer scale however, recombination landscapes varied among

populations (An example landscape for all populations is presented at the 1kb scale for the

first five Mb of LG 32 (Figure 4B)), with estimates in Great Britain (GB) showing reduced

resolution at the finer scales (blue line in Figure 4B), probably because of reduced genomic

diversity due to low sample and historical effective population size (Table S3 & Figure S2,

see also Machado, Cumer, et al., 2022).

We quantified the divergence of the recombination landscapes as the correlation of

recombination rates on different window sizes (1kb and 100kb) among all pairs of

populations (Figure 4C). Two main patterns emerge from the comparison of population

landscapes. First, correlation of landscapes depended on the scale used, with smaller

windows showing smaller absolute values (above and below diagonal in Figure 4C). Second,
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in both scales, correlations of the full Swiss dataset (CH, n=76) with PT and GB were larger

than correlation from the subsampled Swiss datasets (CH13, CH13_2). However, as

expected the Swiss datasets (CH, CH13, CH13_2) resembled each other more closely

(Figure 4C and Figure S3). Concerning hotspots, datasets with smaller sample sizes

exhibited more local hotspots than the full Swiss dataset (Figure 4D). However, hotspot

overlap was poor between any pair and among all three populations (Figure 4D). This

pattern was replicated when comparing hotspot sharing among the Swiss datasets (Figure

S4). In fact CH and CH13 shared a lower percentage of local hotspots than did PT and CH.

In general, global hotspots showed higher values of sharing than local hotspots and more

consistent patterns of sharing.

233



Figure 4. Comparison of recombination landscapes between populations.
A: Map of sampled populations. Numbers correspond to genome-wide pairwise FST values (Machado,
Cumer, et al., 2022) B: Example of recombination landscape for 1kb windows in all datasets for the
first 5Mb of LG 32. Points above each plot show local hotspots for each population. Local hotspots are
identified as in Figure 3 (RRR80 >5). The dashed line is the line above which we defined global
hotspots (10 times the average for each population). C: Correlation matrix of recombination rates for 1
kb windows (above diagonal) or 100 kb windows (below diagonal). D: Venn diagram of local hotspot
counts within and between populations. Population codes are as follows: CH: full Swiss dataset
(n=76), PT: Portuguese dataset (n=13), GB: Great Britain dataset (n=13), CH13: undersampled first
Swiss dataset (n=13), CH13_2: undersampled second Swiss dataset (n=13).

Discussion

Recombination is a major mediator of evolution but we know little about the recombination

landscape of most species. In this study utilising an extensive whole-genome-sequencing

(WGS) dataset of a pedigreed population we apply two recombination inference methods,

linkage mapping and an LD-based approach to describe broad and fine scales of

recombination variation. We show how in the barn owl, heterochiasmy exists not on the

broad scale but rather in subtle, fine-scale differences in crossover placement and shuffling

proportions. Furthermore, despite few (1-2) crossovers per chromosome, we find large

variation in recombination rates among linkage groups that shapes the diversity landscape

and is only partially determined by their physical length. We show that on the kilobase scale,

recombination is increased in windows that contain transcription start and end sites and CpG

islands as expected from a species without PRMD9 (Baker et al., 2017). At the same time,

local hotspots are found in regions of lower average recombination (usually in the middle of

linkage groups) and exhibit lower GC ratio compared to global hotspots. Lastly, population

comparisons show sharing of only a few local hotspots despite low genetic differentiation

and high broad-scale recombination correlation. We discuss these results and their

implications below.

Linkage groups in the barn owl assembly

Complete genome assemblies are a precious resource that requires multiple sources of

information. Beyond read acquisition, assembling a genome requires an ordering process to
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orient the reads into scaffolds and the scaffolds into chromosomes. In-silico this can be

achieved using physical mapping of the reads (Burton et al., 2013; Lieberman-Aiden et al.,

2009), or through the use of linkage mapping (Fierst, 2015) although linking computationally

assembled scaffolds to karyotypic chromosomes will eventually require molecular

techniques such as FISH (Shakoori, 2017). The latest barn owl assembly was assembled

into super-scaffolds using optical genome mapping (BioNano) (Machado, Cumer, et al.,

2022). In this study we verified and improved the barn owl assembly by anchoring the largest

38 scaffolds into 39 linkage groups and revealed that the genome assembly of the barn owl

is of chromosome-level quality.

The karyotype of the barn owl contains 45 autosomal pairs (Belterman & De Boer, 1984;

Peona et al., 2018). This implies that the linkage map is still missing 6 autosomes. We note

that these elements might be partially present in the physical assembly since smaller

scaffolds with a few tens of identified markers that passed filtering could not be confidently

allocated to linkage groups. Regardless, the chromosomes missing are probably the

smallest six microchromosomes, or dot chromosomes, notoriously difficult to sequence and

assemble due to high GC content and reduced chromatin accessibility (Bravo et al., 2021;

Burt, 2002; Waters et al., 2021). Notably, such elements were only recently assembled in the

chicken genome (Huang et al., 2023) and are missing from most available bird reference

genomes (Peona et al., 2018). These elements will remain elusive until future studies make

use of advances in long-read technologies (Marx, 2023) to complete the reference genomes

of birds. In this endeavour, linkage mapping, when available, can be an invaluable tool.

Heterochiasmy beyond the broad strokes

Our results point at a fine scale variation in crossover placement between sexes that is

masked by broad scale differences. Consequently, this different placement of crossovers

between sexes leads to a differential shuffling of markers between sexes and among

chromosomes. Most avian studies of recombination to date have examined total genetic
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lengths in males and females and their results are inconclusive on a general pattern of

heterochiasmy in the class. For example male collared flycatchers exhibit higher genetic

lengths than females while in a recent study of the great reed warbler (Acrocephalus

arundinaceus) no large differences are found between sexes (Kawakami et al., 2014; Zhang

et al., 2023). On the other hand sparrows and great tits show a female dominated

recombination landscape (McAuley et al., 2023; van Oers et al., 2014). Only recently has

there been an appreciation of the fine-scale variation between sexes in studies of the great

reed warbler and the sparrow (McAuley et al., 2023; Zhang et al., 2023). This is an

important shift since such fine scale variation can impact effective genetic shuffling between

the sexes with implications for adaptive potential (Brekke et al., 2023; McAuley et al., 2023;

Veller et al., 2019). Although fine-scale information is not available for other bird species

making a comparison impossible at the moment, an emerging pattern is that broad scale

descriptions might not reveal the whole picture of heterochiasmy in birds and more thorough

quantification of sex-specific recombination is required.

Identifying the causes of such heterochiasmy is a complicated task and multiple factors can

affect recombination in each sex (Sardell & Kirkpatrick, 2019). Beyond mechanistic

processes (Brick et al., 2018; Kong et al., 2004; Phillips et al., 2015; Tease & Hultén, 2004)

and standing genetic variation (Halldorsson et al., 2019; Johnston et al., 2016; Kong et al.,

2008) heterochiasmy can also be adaptive. Of the hypotheses put forward, the meiotic drive

hypothesis (Brandvain & Coop, 2012) which examines female-specific evolution of

recombination rates to counteract the effect of meiotic drive, seems to provide a reasonable

explanation for the most typical pattern observed, the increased crossover frequency of

females closer to the centromeres and males closer to telomeres. The theory has also

received empirical support in some species (Johnston et al., 2017). In the barn owl, males

recombine more towards the edges of the linkage groups but all autosomal chromosomes in

the species are acrocentric or telocentric (Belterman & De Boer, 1984). Therefore we can

draw no conclusion on this pattern unless we know which end corresponds to the

centromere and which to the telomere. To our knowledge, in the avian clade, heterochiasmy
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has yet to be associated with centromeres and telomeres although a male-biassed

recombination at ends of linkage groups has been identified (this study and Zhang et al.,

2023). This lack of conclusive results can be linked with a poor genomic annotation of

centromeric and telomeric sequences in the genome assemblies. Future work should

concentrate on properly annotating available resources and looking for the possible causes

of fine-scale differences between sexes.

Variation among linkage groups

Our results show that barn owl linkage groups recombine at most twice per meiosis. This

result is in line with an expectation of one cross-over per chromosome (or chromosome arm)

and the generally small acrocentric (or telocentric) chromosomes in the barn owl karyotype

(<70Mb) (Coop & Przeworski, 2007). This finding contrasts with results for some bird

species. The biggest chromosomes of the chicken and the flycatcher approach 300cM in

genetic length, while studies in other passerines agree more with estimates of the barn owl

(Groenen et al., 2009; Kawakami et al., 2014). The source of this variation in the order is

unknown. Reasonable hypotheses include the localised suppression of recombination in

some species (for example through segregating structural variations like inversions) or

inter-specific variation in the strength of crossover interference (Kirkpatrick, 2010; Otto &

Payseur, 2019).

Some linkage groups showed evidence of less than one crossover per meiosis. On the one

hand this can be a true signal facilitated through less than one crossover per bivalent. The

absence of the obligate crossover can lead to aneuploidy which coupled with the linkage

groups’ intermediate size can probably generate severely deleterious consequences. On the

other hand this observation can be due to chromosome parts missing in the assembly or

filtered out during quality control, which can lead to missed distal crossovers. A larger

sample size and/or a more complete assembly that incorporates the distal parts of all

chromosomes might help identify the cause.
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In our study, recombination rates vary substantially between and within chromosomes. As

expected from the obligate cross-over mentioned above, smaller chromosomes tend to have

higher rates of recombination compared to longer chromosomes. Furthermore, longer

chromosomes show a more pronounced variation in recombination rates along their length.

Specifically, they tend to follow a U-shaped pattern, with reduced recombination in their

middle, regardless of centromere position. In our results, this effect seems to diminish with

increasing length implying that in the barn owl, even longer chromosomes would not further

impact the skewness of recombination rates. Recently a hypothesis has been put forward to

explain the dependence of recombination rate skewness and chromosome length, based on

the position of telomeres, centromeres and one crossover per chromosome (Brazier &

Glémin, 2022; Haenel et al., 2018). It is still unknown however, if this distinction between

high and low recombination regions follows a compartmentalisation of the genomic

sequence into active and inactive chromatin and how this broad scale pattern defines or is

guided by a fine-scale hotspot landscape (Hildebrand & Dekker, 2020; Jerkovic´ & Cavalli,

2021). Further, it is also unknown to what extent such variation extends to other species.

Even if the causes of such patterns within and between chromosomes remain a mystery

some of their consequences can still be glimpsed. The most striking consequence of the

unequal distribution of recombination rates along a specific length of sequence is the impact

it has on nucleotide diversity. In the linkage groups studied, the Gini coefficient correlates

very well with the average nucleotide diversity. Such an outcome is expected through the

action of linked selection (Begun & Aquadro, 1992; Charlesworth & Jensen, 2021). If

recombination is spread throughout the length of the sequence, alleles are uncoupled faster

from selected variants allowing an increase of standing variation. On the contrary, long

stretches of reduced recombination, through the action of linked selection lead to reduced

diversity (Charlesworth et al., 1993; Charlesworth & Jensen, 2021). This reduced diversity

can have multiple implications. It can impact homozygosity and lead to extended runs of

homozygosity (ROH), as seen in other studies through a positive correlation of ROH and

recombination rates (Hewett et al., 2023; T. J. Pemberton et al., 2012). Reduced diversity
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can also affect estimates of divergence between populations, measures often used to

identify local adaptation leading to biases and misleading inference (Booker et al., 2020;

Burri, 2017; Charlesworth, 1998). Therefore, such variation within and between

chromosomes should be accounted for, when attempting to infer processes that act on the

sequence. Nevertheless, tackling these issues requires a careful examination of resources.

For example, an LD-based map like the one we use in this study will always be influenced by

processes that impact LD like selection (Kim & Nielsen, 2004; O’Reilly et al., 2008).

Therefore, its use to correct for recombination when inferring selection will introduce biases.

On this end, other methodologies like the linkage map approach or sperm typing might prove

more useful despite being less broadly applicable (Peñalba & Wolf, 2020).

Hotspots & population comparison

A major distinction among the recombination landscapes of species studied thus far is the

presence or absence of the PRDM9 gene. PRMD9 directs the recombination machinery in

specific genomic regions through the generation of H3 lysine K3 tri-methylation marks

(H3K4me3). These marks attract the SPO11 protein which initiates the formation of double

strand breaks, the precursor to homologous recombination (Arter & Keeney, 2023; Lam &

Keeney, 2014). In species that lack the PRDM9 gene, including all birds, H3K4me3 marks

are concentrated in regions of accessible chromatin like promoter regions of genes (Baker et

al., 2017). Because these regions have an increased frequency of recombination and

co-localise with CpG islands (CGIs) and transcription start or end sites (TSS, TES), a

correlation of these genomic elements with recombination is often observed in species

without PRDM9 (Auton et al., 2013; Baker et al., 2017; Kawakami et al., 2017; Lam &

Keeney, 2015; Schield et al., 2020; Singhal et al., 2015). Our results illustrate a marked

increase around these regions, confirming the hypothesis that recombination is concentrated

in their close proximity.
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While recombination hotspots have been identified through the action of PRDM9, species in

which the gene is absent do not necessarily harbour hotspots (Kaur & Rockman, 2014;

Smukowski Heil et al., 2015). Usually the presence or absence of hotspots is inferred from

the skewness of recombination rates along the genome (Myers et al., 2005). For example in

humans a Gini coefficient of 0.8 shows a marked discrepancy between the hotspot and

non-hotspot regions of the genome (Kong et al., 2010; Myers et al., 2005). In Caenorhabditis

elegans the Gini coefficient is 0.278 and recombination is spread along the full genomic

sequence (Kaur & Rockman, 2014). Barn owl chromosomes harbour values across the

spectrum (between 0.36 and 0.7). However, a genome-wide Intermediate value inferred here

(0.6), is obviously harder to place in one or the other category so to verify the presence or

absence of hotspots in our dataset we turned to identifying them. However, recombination

hotspots are not clearly defined in the literature. Thus, we used two definitions for a hotspot,

local and global hotspots. Local hotspots are defined based on a relative increase (ex. 5x,

10x) of recombination rates compared to the surrounding region (Myers et al., 2005; Singhal

et al., 2015). We indeed identified local hotspots but they were mostly located in regions of

low recombination. Past simulation work of power of hotspot inference shows that this is

expected to be the case because power diminishes as recombination increases (Singhal et

al., 2015). On the other hand global hotspots defined following Halldorsson et al., 2019 were

found in different genomic regions than local ones. Both classes were supported by an

increase of GC content, either through the action of GC-biased gene conversion or through

their co-localisation with GC-rich regions as mentioned before (Eyre-Walker, 1993).

A last implication of missing the PRDM9 gene is the evolutionary stability of recombination

hotspots. The Zinc-finger domain of PRDM9 evolves quickly changing its target sequence

leading to differences in the localisation of hotspots between species and individuals

(Axelsson et al., 2012; Kong et al., 2010; Myers et al., 2010). On the other hand in its

absence the functional regions that ‘attract’ the recombination machinery remain stable for

sometimes millions of years leading to a stable fine-scale recombination landscape (Lam &

Keeney, 2015; Singhal et al., 2015). The local hotspots inferred in this study showed very
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small overlap between pairs of populations. Even when comparing subsets of individuals

from the same population (CH with CH13 and CH13_2) hotspot sharing was lower than

50%. This observation generates doubt about the biological usefulness of local hotspots in

this study setting. While some local and global hotspots coincide, and the GC content

increase provides support for the existence of some local hotspots, the set identified is

expected to harbour multiple false positives. Furthermore, since the number of hotspots

identified was higher in datasets with a smaller sample size, an effect of sampled genetic

diversity and inference noise cannot be ruled out.

Beyond hotspot sharing, the similarity of recombination landscapes was only validated at

broad scales. Our studied populations diverged after the last glacial maximum when they

expanded out of an iberian refugium (Cumer, Machado, Dumont, et al., 2022a; Machado,

Cumer, et al., 2022). This timescale coupled with the intermediate dispersal abilities of the

species has led to a shallow genetic differentiation (Altwegg et al., 2003; Machado, Cumer,

et al., 2022). This lack of a convergent fine-scale recombination landscape is not expected

from a species without PRDM9. However, we are cautious in interpreting such results as a

true divergence of the fine-scale recombination landscape. The dependence of inference on

the LD patterns and standing variation can confound results, especially in the finer scale

where statistical noise increases. Thus, whether this result supports a divergent fine-scale

landscape or method limitations remains unclear. Future work should be cautious when

using fine scale estimates in non-model species and might benefit from verification of either

the recombination itself or at least the noise around inference as illustrated here with the use

of subsampled datasets.

Conclusion
In this study we elucidated the recombination landscape of the barn owl genome. We used

two complementary approaches, linkage mapping and LD-based inference to overcome the

limitations of each method. We showed that sex-differences in recombination exist but only

beyond the broad scale and that variation among linkage groups is a significant determinant
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of diversity. Further, while we show the existence of hotspots in a species without PRDM9

we caution the use of fine-scale inferences and the expectation of the conservation of a

fine-scale recombination landscape between populations.

Methods

Samples and Sequencing

A total of 333 barn owl samples from Switzerland were sequenced for this study. In Eastern

Switzerland breeding of barn owls has been monitored for over 30 years with the installation

of nest boxes. During the breeding season, the nest boxes are controlled for occupancy

every 4 weeks. If a nest is discovered, a second visit is planned after all eggs have hatched

and a third visit at 55 days, right before the first chick finishes fledging and flies away from

the nest. Individuals are ringed and blood is extracted from their brachial vein. Adult parents

are also captured when possible and subjected to the same treatment. Using the ring

identifiers of parents and offspring and the fact that barn owls show rare extra-pair paternity

(Roulin et al., 2004) an observational pedigree has been constructed for the population.

Sequencing was spread throughout 2020 and 2021. 285 individuals belonging to families

based on pedigree information were sequenced in 2020 and 2021. Initially, to construct a

linkage map we attempted to sequence families that had many offspring and grandparent

information. Sample DNA was extracted from blood using DNeasyBlood & Tissue kit

(Qiagen) following manufacturer's instructions. Libraries were sequenced with Illumina Hiseq

4000. We increased the dataset of sequenced individuals by choosing 48 more samples of

owls that had the maximum number of descendants based on the field pedigree. We

sequenced these samples in 2021. DNA extraction was performed with DNeasyBlood &

Tissue kit (Qiagen) and sequencing was performed using Illumina NovaSeq 6000. All

sequencing took place at the Lausanne Genomic Technologies Facility (GTF, University of

Lausanne, Switzerland).
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Variant Discovery & Filtering

All available barn owl sequences were used for variant discovery. This included individuals

mentioned above and samples from previous sequencing efforts (Cumer, Machado,

Dumont, et al., 2022a; Cumer, Machado, Siverio, et al., 2022; Machado, Cumer, et al., 2022;

Machado, Topaloudis, et al., 2022) along with 6 samples from Georgia and 3 from the island

of Corsica (Table S2). In total 502 samples were processed through the variant discovery

pipeline described below. Raw reads were processed with trimmomatic v0.39 (Bolger et al.,

2014). Sequence adapters were removed and reads with a length less than 70bp were

excluded. Mapping was performed with BWA-MEM v0.7.17 (H. Li, 2013) on the barn owl

genome assembly (https://www.ncbi.nlm.nih.gov/nuccore/JAEUGV000000000) (Machado,

Cumer, et al., 2022)) and read groups were added with samtools v1.15.1 (H. Li et al., 2009) .

Since the GATK v4.2.6 (Auwera et al., 2013) pipeline was used for variant discovery, base

quality score recalibration (BQSR) was performed using a truth set previously published in

(Cumer, Machado, Dumont, et al., 2022b). GATK's Haplotype caller was run with default

parameters for each individual separately to generate individual gvcf files.

These files were merged and joint calling was performed on all individuals together using

GenotypeGVCFs. We initially identified 30,620,917 variants in the dataset. Filtering focused

on bi-allelic SNPs and consisted of the core technical filters suggested in the GATK pipeline,

a "mappability" mask and a manual individual depth filtering. Specifically, technical filters

included the following criteria: QD<2.0, QUAL<30, SOR>3.0, FS>60.0, MQ<40.0,

MQRankSum<-12.5 and ReadPosRankSum<-8.0. A further filtering was the exclusion of

regions of the genome where our ability to confidently map reads is limited (i.e. a

"mappability" mask) (Corval et al., 2023). Briefly, the reference genome was split into reads

of 150 base pairs (bp) with a sliding of 1bp. These artificial reads were mapped back to the

reference using bwa-mem. Regions of the sequence where less than 90% of the reads did

not map perfectly and uniquely were discarded by excluding variants using a bed file.

Variants were also filtered based on individual depth. A minimum and a maximum cutoff
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were applied. For the minimum cutoff, any genotype with less than five reads supporting it

was set to missing (Benjelloun et al., 2019). For the maximum, a distribution of autosomal

read depth per individual was extracted for a region (Super-Scaffold_1 and

Super-Scaffold_2) with a length of 133.5Mb. The mean and standard deviation of depth was

estimated and any genotype with a read depth of more than than three standard deviations

from the mean was set to missing to avoid the effect of repeated regions. After filtering

26,933,469 variants were kept.

Pedigree and relatedness

The pedigree from observational data was confirmed with genomic information from a subset

of the genome. SNPs from three scaffolds (Super-Scaffold_11,12, and 14) were filtered for

minor allele count (>5), missing data (<10%) and were pruned for linkage disequilibrium

using plink v.1.9 (Chang et al., 2015) with the command --indep-pairwise 100 10 0.1. This

filtering created a dataset with 91,874 SNPs. A genomic kinship matrix was calculated using

the Weir & Goudet, 2017 method as implemented in hierfstat (Goudet, 2005) R package.

The kinship from genomic data was compared with the pedigree kinship, calculated using

the kinship2 (Sinnwell et al., 2014) R package, and the pedigree was completed by manually

resolving the first and second degree links when those could be resolved. Both k1 and k2

statistics in SNPRelate were used to discern between relationships with the same kinship

value (ex. parent-offspring and siblings). A set of unrelated individuals was selected

automatically by pruning the genomic kinship table to only include individuals with a kinship

of less than 0.03125. This method left a subset of 187 unrelated individuals of which 76 were

from the Swiss population.

Linkage Mapping

Lep-MAP3 (LM3) (Rastas, 2017) was used to create a linkage map. A dataset of 250

individuals in 28 families was included where a family in LM3 is defined as a set of
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individuals around a unique mating pair. Most families had 4 offspring and 4 grandparents

but numbers differed and ranged from 2 to 8 offspring and from 0 to 4 grandparents. To run

LM3 a stringently filtered dataset of bi-allelic SNPs was used. Specifically, we removed

mendelian incompatibilities using bcftools’ mendelian plugin (Danecek et al., 2021) and

retained a minimum of 5% MAF and a maximum of 5% missing data. We also filtered out

SNPs that were less than one thousand base pairs (1kb) apart using VCFtools (Danecek et

al., 2011). The first step of the LM3 pipeline ParentCall was used to transform the data into

the appropriate LM3 format and the options halfSibs and removeNonInformative were

included. Data was filtered in LM3 using the Filtering2 command, to shrink the size of the

dataset. Specifically dataTolerance was set to 0.01 as suggested by the author and

missingLimit and familyInformativeLimit were set to 28. This meant that only variants that

were non-missing and informative in all families were kept. After filtering the dataset, we

retained 163,950 variants. We used SeparateChromosomes to identify the putative linkage

groups (LGs) based on a user-defined logarithm of odds (LOD) score cutoff. We selected a

LOD score of 15 (for a justification see Supplementary text - making a linkage map). Finally

OrderMarkers with the usePhysical option was executed. Ordering was repeated three times

and the output with the best Likelihood was selected for each linkage group. All three runs

were compared to test for variation in estimated genetic maps. We also tested the effect of

three mapping functions (Morgan's, Haldane's and Kosambi's) on the estimated genetic

maps (Figure S9).

245

https://www.zotero.org/google-docs/?RmLrQT
https://www.zotero.org/google-docs/?ZGMnDy
https://www.zotero.org/google-docs/?ZGMnDy


In linkage mapping certain markers might be erroneously mapped especially at the

extremities of the LGs. Thus all markers with a cM jump higher than 2 in a region of 100

markers around the ends of the LGs were filtered out. A homemade script inspired by

LepWrap (Dimens, 2022) was used. We also pruned the resulting Marey maps (plot of cM

position on physical position) by regressing the genetic order of markers with the physical

position order across a linkage group. Markers with an absolute residual value of more than

100 were removed to reduce noise in the resulting maps. Finally we fitted a generalised

additive model using the R Package mgcv (Wood, 2011) and scam (Pya & Wood, 2015)

forcing a monotonically increasing smoothing spline. This makes sure that the next cM

position will be bigger than the previous one and gives a better fit to the data (Figure S10).

Linkage disequilibrium recombination

To execute SMC++ (Terhorst et al., 2017) we followed the authors' instructions as presented

in the software's GitHub page (https://github.com/popgenmethods/smcpp). In summary,

missing data was re-coded using Plink2 (Chang et al., 2015) and the 5 samples with the

highest coverage were selected as distinguished individuals to be provided to SMC++. The

command vcf2smc was run for each distinguished individual. When executing `vcf2smc` the

mappability mask was excluded by using the -m option. The model was estimated using all

output files from the previous step and with a mutation rate of 4.6e-9 estimated from family

data of a collared flycatcher (Smeds et al., 2016). The csv-formatted estimate of

piecewise-constant effective population size in past generation intervals was used in

subsequent pyrho (Spence & Song, 2019) analyses.
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We ran pyrho with an unphased set of markers for 76 Swiss individuals. The first step in the

pyrho implementation was the pre-calculation of a two-locus likelihood look-up table. This

step takes into account the Ne estimates from SMC++ (Figure S2). For our Swiss samples

our number of diploid individuals was 76 and we used the Moran approximation with a size

of 200. After the inference of the lookup table the "hyperparameter" command was run to

estimate metrics on the performance of different window sizes and block penalties. The

authors' guidelines were followed on how to select the best combination of parameters.

Briefly we summed the Pearson correlation statistics outputted by pyrho and plotted their

total sum against the L2 values. The authors suggest

(https://github.com/popgenmethods/pyrho#hyperparam) that depending on the

implementation one might opt to choose the parameter combination that maximises the

correlation measures or minimises L2. In our case both conditions were satisfied with one

combination of parameters and we run pyrho with that set of parameters. A table of the

hyperparameter values for all populations can be found in Table S3. With the inferred

hyperparameters, recombination rate was estimated using the optimise command on vcfs

containing individual scaffolds which were previously filtered for singletons and a minimum

distance of 10bp between variants as in Wall et al., 2022.

Downstream analyses

Rate of intra-chromosomal shuffling was calculated from recombination rates inferred from

mapping distances following Veller et al., 2019. Recombination rate estimates from pyrho

were averaged across non-overlapping windows of different lengths using a custom script.

Windows of sizes 1kb, 10kb, 100kb and 1Mb were created from the reference sequence

using bedtools makewindows from bedtools v2.3 (Quinlan, 2014). These windows were

overlapped with the pyrho windows and the recombination rate in cM was calculated by

multiplying the recombination probability estimate with the length of each interval and then

translating this to cM using Haldane’s function. For each window, nucleotide diversity was
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calculated using VCFtools and the --window-pi command. Estimates were corrected for

masked nucleotides in each window. Sequence GC content was calculated using the

reference sequence and the bedtools nuc command. We annotated CpG islands using the

UCSC genome browser CpG island annotation tool cpg_hl (Kent et al., 2002) with default

parameters. The Gini coefficient was calculated using Desctools v.0.99 (Signorell, 2023).

Transcription start and end sites were annotated using the genome annotation from NCBI as

the first and last positions of the genomic sequence for each gene. Intersection of different

bed files was performed using bedtools. Local hotspots were annotated by dividing the

estimate of recombination rate in each focal window with the average recombination in 80kb

around (40 kb upstream and 40 kb downstream). Global hotspots were annotated as

windows with at least 10 times the genome average recombination rate.

Colour palette used is ‘mako’ from the R-package viridis v.0.6.4 and is consistent throughout

the figures (Garnier et al., 2023). Images of owls come from PhyloPic

(https://www.phylopic.org). Map in Figure 4A was made with tmap v3.3-4 (Tennekes, 2018)

using the Natural Earth high resolution dataset. Corrplot v.0.92 was used for correlation plot

in Figure 4C (Wei & Simko, 2021). Vioplot v0.4.0 was used to create the violin plot in Figure

4D (Adler et al., 2022). Tidyverse v.2 was used for data management (Wickham et al., 2019).

All analyses were executed in R v.4.3.1 (R Core Team, 2023) using the Rstudio IDE (Posit

team, 2022). Light figure modification was performed in Adobe Illustrator. Scripts with

commands used for data generation and downstream analyses can be found in

https://github.com/topalw/Chapter_A.
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Phasing of the Reference Panel 

Phasing of the SNPs 

The sampling, sequencing and genotyping of the SNPs are described in Annex I. The 

set of filtered variants was phased in two steps. First, individual variants were phased 

using a read-based approach in which reads covering multiple heterozygous sites were 

used to resolve local haplotypes. To do so, WhatsHap v1.4 [3] was run independently 

for each individual. We considered the mean recombination rate (estimated from maps 

described in Annex I) when phasing (--recombrate 2). All individuals belonging to one (or 

more) trio·s were phased with WhatsHap pedigree-mode. Parents which were present in 

more than one trios (which have more than one kid) were phased along with the kid who 

had the higher coverage. 

After the read-based phasing, we performed an additional step of filtering. We kept only 

bi-allelic SNPs, sites with minor allele count (MAC) > 5 and missing data < 5%. MAC 

and missingness were estimated on the set of unrelated individuals (with pairwise allele-

sharing kinship < 0.03125 which resulted in 187 individuals). After filtering, we ended up 

with 10,451,268 variants. 

Filtered variants were then statistically phased with Shape-It v4.1.2 [2]. This algorithm 

integrates local individual phase and applies an approach based on coalescence and 

recombination to statistically phase haplotypes and impute missing data. Using Shape-

It, we phased the 187 unrelated and 315 related individuals separately. The 187 unrelated 

individuals were phased together. Then each related individual was phased with the 

unrelated set separately to avoid any effect of family structure in the phasing panel. 

Shape-It was run following the manual’s instructions for better accuracy: the number 

of conditioning neighbors in the PBWT was set to 8, and the MCMC chain was run with 

10 burn-in generations, 5 pruning iterations, each separated by 1 burn-in iteration, and 10 

main iterations. 

Evaluation of the phasing 

To assess the quality of the phasing, we examined phase accuracy by using the switch-

error-rate metric [1]. When comparing two phasings for an individual’s variants, a switch 

error occurs when a heterozygous site has its phase switched relative to that of the previous 
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heterozygous site. Thus, for each individual, we compared the true local phasing, inferred 
either form the read-based approach or the trio approach (both from WhatsHap) and the 

statistical phasing of this individual’s variants statistically phased by Shape-It, with 

read-based/trio phase information ignored for the individual considered only (same version 

and parameters described in the previous paragraph). The final estimation of the switch 

error rate was done using the switchError code to compare both phasing sets (available 

on O. Delaneau GitHub) and is presented in figure 1.

Figure 1: Percentage of difference between WhatsHap and Shape-It phasing. 

The difference is bigger for individuals phased with trios but we show in figure 2 that it 

does not mean that trio-phased individuals are phased wrongly. We show in figure 2 that 

individuals phased with trios have longer phased-blocks and more SNPs in each block. 
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Figure 2: number of phased blocks and number of variants per blocks in individuals phased with read-based 
only and individuals phased with trios. 
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Authors : Tristan Cumer1,2, Eléonore Lavanchy1,2, Alexandros Topaloudis1,2, Anne-Lyse 

Ducrest1,2, Céline Simon1,2, Alexandre Roulin1,2, Jérôme Goudet1,2 

1 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland 

2 Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland 

This annex describes the low-coverage data generation for the 2,765 owls used in chapter 

III. It includes the sampling, the sequencing, the genotyping as well as the validation of

our low-coverage procedure with 32 individuals we sequenced at both high and low

coverage.

Authors contributions: the sampling, genotyping and validation were performed by TC, 

EL and AT. The DNA extraction and sample preparation were performed by A-LD and 

CS. EL, TC, AT and A-LD wrote the text and all co-authors provided feedbacks on each 

section. 
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Sampling 

We sequenced 2,820 owls from the pedigree population (fractions of the pedigree 

population sampled for sequencing per year are presented in figure 1). Samples were 

collected between 1986 and 2020 and we prioritized individuals with complete families 

that reproduced multiple times and for which phenotypic data were available. We also 

maximised the sampling of inbred individuals (based on the pedigree). Blood samples of 

the individuals were kept in a -80 degrees Celsius freezer since the time of sampling. 

For verification of sequencing performance we included 32 individuals that had already 

been sequenced at high coverage in the Reference Panel (described in Annex I & II). Ten 

of these individuals were sequenced three times each in low coverage, once per flow cell 

to quantify potential batch effects. We refer to these individuals as ‘triplicates’. The 22 

remaining samples used to verify the quality of low-coverage genotyping are called 

‘duplicates’. 

 

Figure 1: number of individuals (in gray) and number of individuals we sequenced (in blue) in the Swiss 
barn owl population per year. Year corresponds to ringing year (which differs from birth year for birds which 
were not born in our study area). Sampling stops in 2020 because the project started in 2021 when the field 
season was not over yet. 
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Blood was collected from each barn owl's brachial vein and stored in liquid nitrogen before 

being transferred to -80°C freezers. Genomic DNA was extracted from blood samples 

using the DNeasy Tissue Kit (Qiagen, Switzerland) and the Biosprint robot 96 (Qiagen, 

Switzerland) and stored at -20°C. We randomized the position of the DNA samples of the 

2,820 owls on 30 different 96-well plates. Every plate included two empty wells as a 

measure of contamination control. 

The DNA was quantified using Quant-it PicoGreen dsDNA Assay kit (Thermo Scientific, 

Switzerland). The DNA was diluted in 10 mM Tris-HCl to 1.5 to 2.5ng/µl. The libraries 

were prepared with plexWell 96 kits (SeqWell, USA) and sequenced using NovaSeq 6000 

(Illumina) at the genomic technologies facility of the University of Lausanne (GTF). After 

sequencing the samples on 3 different flow cells, the average coverage was 1.91X. 

Raw reads processing 

Raw reads were trimmed with Trimmomatic v.0.36 [1] and aligned to the reference barn 

owl genome [6] using BWA-MEM v.0.7.15 [5]. Qualibam v2.2.1 was then used to extract 

the mean coverage and the coverage of the Super-Scaffold 13 (belonging to the Z 

chromosome [6]). 

Sexing of the low coverage individuals 

Since males are diploid and females are haploid for the sexual (Z) chromosome, the ratio 

of mean coverages at the sexual Z chromosome (Super-Scaffold 13) over the autosomal 

region allowed us to infer the sex of individuals. We identified two distinct groups of 

individuals, with a ratio close to one for males and 0.5 for females (figure 2). 
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Figure 2: Sexing of the individuals based on whole genome sequencing. Left panel: Histogram of the ratio 
between the coverage of the sexual chromosome and the mean coverage along the genome. The vertical line 
at 0.65 depicts the threshold used to classify individuals as males or females. Right panel: plot of the mean 
coverage of the whole genome (WG) as a function of the mean coverage along the sexual chromosome. 
Individuals with a ratio lower than 0.65 were considered females (ZW, in pink), while individuals with a 
coverage higher are considered as males (WW, in green). 

Genotyping 

Description of the method 

We employed the GLIMPSE [7] software for the imputation and phasing of our low 

coverage individuals. GLIMPSE phases and imputes low coverage genotypes based on 
high coverage haplotypes (called the reference panel) and can only be applied on bi-allelic 

SNPs. We used the 502 owls sequenced at high coverage and described in Annexes I and 

II as the reference panel. We genotyped low-coverage individuals at the variant sites (and 
for the alleles) present in the reference panel only. We used the first version of GLIMPSE 

(v1.1.1) because it is more suitable for small reference panels (as indicated on 

the GLIMPSE website). Briefly, the GLIMPSE pipeline consists of four steps. 

The first step is called chunking (implemented in the GLIMPSE_chunk method) 

and consists of splitting the chromosome into chunks for efficient imputation and 

phasing. As chunks become smaller, the speed of the method increases, but the 

accuracy decreases. Based on both the amount of missing data and chromosome length, 

the GLIMPSE_chunk method is used to automatically estimate the best chunk size and 

split the chromosome. 

https://odelaneau.github.io/GLIMPSE/glimpse1/
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The second step of the pipeline consists of the phasing and imputation (implemented in 

the GLIMPSE_phase method) of the genomic chunks. Iterative improvements are made to 

low-coverage genotypes' likelihoods and phasing for each individual separately. In each 
iteration, GLIMPSE uses a slightly modified version of Shape-It v.4 for statistical 

phasing of the target low-coverage sample (using both the haplotypes present in the 

reference panel as well as other low coverage haplotypes). Next, the closest haplotypes 

(defined as the haplotypes sharing the highest amount of identical-by-descent (IBD) 

segments with the target haplotype) are identified from the reference panel and the other 

low-coverage imputed haplotypes with the positional Burrows–Wheeler transform 

(PBWT) algorithm. These closest haplotypes are then used for imputation of the target 

haplotype. The imputation is performed using a Hidden Markov Model (HMM) in which 

individual genotypes consist of two hidden states: the reference or the alternate allele. 

Emission probabilities depend on the alleles of the selected closest haplotypes, the target 

sample's posterior genotype likelihood (from previous iterations) and an error rate. The 

transition probabilities depend on the alleles of the selected closest haplotypes and the 

recombination probability. Within diploid individuals, each haplotype is imputed 

separately. The new iteration begins once the imputation has been completed. 

Once the phasing and imputation of the chunks are completed, the next step is to merge 

the different chunks without losing the phase information. This step is called ligation and 

is implemented in the GLIMPSE_ligate method. Ligation of adjacent chunks without 

losing phase information is possible because the chunks are slightly overlapping. 

The last step of the GLIMPSE pipeline is the haplotype identification (implemented in the 

GLIMPE_sample method). It identifies the most likely haplotype based on posterior 

genotypes’ likelihood and phase information. 

Description of the parameters we used 

We followed the GLIMPSE tutorial for genotyping, imputation and phasing of the 2,768 

unique individuals sequenced at low coverage. The tutorial provides a detailed explanation 

and examples of all the commands needed for genotyping, phasing, and imputation. The 

code we used for the owls is available on GitHub. 

To extract the variant positions as well as their corresponding alleles in the reference panel, 

we used the query method from BCFTools v.1.15.1 [2]. We then used BCFTools 

https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_b38.html#run_preliminaries
https://github.com/EluLava/PhD/tree/main/ANNEXES/ANNEX_III


 274 

mpileup and call methods [4] to determine low coverage individuals’ genotypes likelihood 

at each variant position identified in the previous step (with the -T and -C allele 

parameters). 

We performed chunking with the GLIMPSE_chunk method with default parameters (--

window-size 2000000 and --buffer-size 200000). Next, we conducted phasing and 

imputation with the GLIMPSE_phase method, with the maximum number of iterations (-

-burnin 100 and --main 15) and with a large effective population size parameter value (--

ne 10000). If a map was available, we took into account the recombination landscape (with 

the --map parameter) by including the recombination maps from Annex I. All individuals 

were considered diploid for the genotyping of the autosomes (see Annex IV for a precise 

description of the sequencing and genotyping of the sexual chromosome). We then ligated 

the different chunks with the GLIMPSE_ligate method and extracted the most likely 

haplotype with the GLIMPSE_sample method and the --solve parameter. 

As mentioned in the sampling section of this Annex, we selected 32 individuals which we 

sequenced at both high and low coverage in order to ensure that the genotypes we obtained 

with the GLIMPSE pipeline were reliable. Among these samples, 10 were sequenced three 

times at low coverage: once per flow-cell to control for potential batch effect and are herein 

referred to as ‘triplicates’. The 22 remaining individuals were sequenced once at low 

coverage and once at high coverage and are referred to as ‘duplicates’. As mentioned 

above, GLIMPSE uses the haplotypes with the higher fraction of IBD segments with the 

target sample for both phasing and imputation. Consequently, having the same individual 

in the reference panel and as a target for imputation would lead to biased results. Thus, we 

ran the GLIMPSE pipeline five times: once with the full reference panel (the 502 

individuals) and with the 2,768 unique low-coverage samples. This run generated the 

‘main’ data of the 3K owls: namely the data used in all subsequent analyses. We then 

removed the 22 duplicates from the reference panel, included them in the low-coverage 

set and ran the GLIMPSE pipeline again (with a reference panel of 480 individuals and a 

low coverage data set of 2,790 individuals). Since GLIMPSE also samples the closest 

haplotypes from the rest of the low-coverage set, we also ran GLIMPSE separately for the 

three sequencing of the triplicates (with a reference panel of 492 individuals and a low 

coverage data set of 2,778 individuals, called runs a, b and c). 
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Validation of the genotyping 

After genotyping, we randomly selected a subset of 50,000 SNPs to assess the correlation 

between dosages among the triplicates runs of GLIMPSE (runs a, b, and c). The 

correlations are shown in figure 3. Individual correlations are all above 0.99, indicating 

that: i) there is no batch effect in our sequencing design, and ii) there is high concordance 

between the GLIMPSE runs. 

 

Figure 3: correlation of dosages (from 50,000 SNPs) between the different runs of GLIMPSE including the 
triplicates in the low-coverage set. Panel A contrasts run a and run b. Panel B contrasts run a and run c and 
panel C contrasts run b and run c. Each point represents the correlation between two runs for one individual. 

We used the same subset of 50,000 SNPs to assess the correlation of dosages between high 

and low coverages. This assessment was conducted on 32 individuals (duplicates and 

triplicates together) and is shown in figure 4. Since we found virtually no difference 

between the dosages from the three runs of the triplicates, we selected genotypes from run 

a. There is a strong correlation, all above 0.94, between genotype dosage from high and 

low coverage, indicating that our low-coverage genotypes are reliable. 
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Figure 4: correlation of dosages (from 50,000 SNPs) for individuals sequenced at both high and low 
coverages. Each point represents the correlation for one individual. 

Next, we compare the kinship between each pair of individuals estimated from the 

pedigree and from genomic data (figure 5). The pedigree-based kinship was estimated 

using the function kinship from the kinship2 R package [8]. The genomic-based 

kinship was estimated with the beta.dosage() function from the hierfstat R package 

[3]. Overall, there is high consistency between both approaches. 
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Figure 5: Comparison of the genomic-based kinship estimated from GLIMPSE and 50,000 SNPS and the 
pedigree based kinship. Each point represents a pair of individuals. 

Due to Mendelian segregation and recombination, it is expected that genomic- based 

kinship will randomly vary around pedigree-based kinship [9]. Nevertheless, large 

differences between both approaches are not expected and could be caused by two different 

factors. One of the reasons is that the pedigree is incorrect or incomplete. Due to the fact 

that this population is a natural population, we cannot be certain that the parents we 

assigned to each offspring are their true parents. For the female, this is less likely than for 

the male, since the female is incubating the eggs for quite some time. Generally, when a 

male is seen visiting a nestbox, we assume that he is the father, but it is possible that he 

may simply be another prospecting male. Additionally, it is possible that some offspring 

are the result of extra-pair copulations. Another explanation for large differences between 

both kinships is that we did not sequence the individual we thought we sequenced. For 

purely genomic analyses, this is not a problem. However, it is a problem when phenotypic 

data are linked to genomic data. Therefore, we manually examined each pair of individuals 
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for which the difference between genomic and pedigree kinship was too high (documented 

in the following section). 

Samples removal 

We removed 5 pairs of samples because they were genomic twins. We also removed two 

additional individuals because they had weirdly high kinship with all the other individuals 

in the data set. 

Comparing genomic and pedigree kinship 

As mentioned above, we don’t expect big discrepancies between genomic and pedigree-

based kinship. We plot the subtraction of the genomic-based kinship to the pedigree 

kinship for each pair of individuals in figure 6 (mean difference = 0.001). 

 

Figure 6: Representation of the difference between the pedigree and genomic kinship. Each point represents 
a pair of individuals. 

If the genomic kinship is larger than the pedigree kinship, it indicates that our pedigree is 

missing links. This is likely to happen since the birds can nest outside our study area. We 

can’t really “fix” these links so we won’t focus on these here. What we are really interested 
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in is when the pedigree kinship is larger than the genomic kinship. This either means that 

we did not sequence the correct individual or that the pedigree is wrong. We manually 

investigated the 71 pairs of individuals for which the difference between the pedigree and 

genomic kinship was larger than 0.16 (the pairs above the dotted red-line in figure 6). 

These 71 pairs included 93 unique individuals. Manual investigation consisted in checking 

if the individuals really were who we thought they were by looking at their kinship with 

other individuals from the same family such as siblings or offspring from different 

clutches. If we could not confirm the identity of the samples, we removed them from any 

analyses that required the use of phenotypic data. If we could confirm their identity, we 

kept the sample. If we found that the pedigree was wrong, we tried to identify the true 

parents by looking for high kinship with other individuals of the data set. 

We could confirm that the individuals we sequenced really were who we thought they 

were for 76 individuals. We found that the pedigree was wrong in 50% of the cases. For 

half of these cases, we could fix the pedigree (by identifying the true parent). For 15 

samples, we could not confirm that the individuals we sequenced really were who we think 

they were and had to remove them from any analyses using phenotypic data. We also 

removed 2 samples because they looked like genomic twins. Finally, we identified a three 

way sample swap and subsequently corrected the link between genotypic and phenotypic 

data. Precise list of samples which were removed as well as a detailed description of 

each pair we investigate can be found in GitHub. Differences between pedigree and 

genomic kinship after sample removal and pedigree correction are presented in figure 7. 

https://github.com/EluLava/PhD/tree/main/ANNEXES/ANNEX_III/4.FixingThePedigree/3Kowls
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Figure 7: Representation of the difference between the pedigree and genomic kinship after the pedigree 
correction. Each point represents a pair of individuals. 
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This annex describes all the steps implicated in the genomic data generation related to the 

sexual chromosome (the Z chromosome) for both high (reference panel) and low coverage 

data sets. It includes the description of identification, genotyping, phasing (at both high 

and low coverage) and filtering of recombinant regions of the sexual chromosome. 

 

 

Authors contributions: TC identified the recombinant regions of the sexual chromosome. 

EL performed the genotyping (for both low and high coverage data sets) and the (read-

based) phasing of the low coverage samples. TC performed the phasing of the high 

coverage samples. AT performed the filtering. 
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Identification of the PseudoAutosomal Region 

In order to call the genotypes of the individuals in the Z chromosome, we first identified 

the pseudoautosomal region and the non-pseudoautosomal regions (PAR and non-PAR 

respectively). We extracted the coverage of each base pair for each individual along the Z 

chromosome (Super-Scaffold 13 and Super-Scaffold 42, [4]) using samtools depth 

(with the -Q 60 and -aa option) [3]. This coverage was then averaged in 5 kb windows and 

normalised by dividing the coverage of each window with the genome-wide average 

coverage of this individual (see Annex III for the calculation of the mean coverage of each 

individual). Finally, we computed a mean normalised coverage across all the individuals 

of each sex in each window. We then classified the windows as non-PAR or PAR based 

on their mean normalised coverage in males and females (figure 1); First, we discarded 

windows with a mean normalised coverage lower that 0.1 in females and 0.2 in males, or 

a mean normalised coverage higher than two in at least one sex. Then we classified as non-

PAR windows the ones with a female coverage 1.05 times (i.e. 5%) lower than in males 

(in orange in figure 1). PAR windows were identified as windows with a coverage in 

females similar to the coverage in males (in red in figure 1). 
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Figure 1: Mean normalised coverage in males and females for each 5kb window along the Z chromosome 
(Super-Scaffolds 13 and 42). Each dot represents one 5kb window. Red dots depict windows classified as 
PAR since the coverage was similar in males and females. Orange windows depict windows classified as 
non-PAR since the coverage was different between males and females. Windows with a mean normalised 
coverage lower than 0.1 in females and 0.2 in males, or a mean normalised coverage higher than two in at 
least one sexes are not represented in this figure. 

We finally identified PAR and non-PAR regions along the Z chromosome (Super-

Scaffolds 13 and 42) by merging adjacent windows into larger regions. Windows with a 

bad coverage surrounded by the same type of regions (either PAR or non-PAR) were 

included in a final merging step. Results of this classification are presented in table 1. 
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Table 1: Coordinate of PAR and non-PAR regions along the Super-Scaffolds 13 and 42. 

Chromosome Start Stop PAR/non-PAR 

Super-Scaffold_13 1 48838493 non-PAR 

Super-Scaffold_42 1 4415000 PAR 

Super-Scaffold_42 4415001 7364000 non-PAR 

Super-Scaffold_42 7364001 7389000 PAR 

Super-Scaffold_42 7389001 41426968 non-PAR 

 

SNPs calling on the Z for the Reference Panel  

For the scaffolds belonging to chromosome Z (Super-Scaffold 3 and Super-Scaffold 42), 

genotyping of samples was performed separately for PAR and non-PAR regions. PAR 

regions were called and phased as for the rest of the genome since both sexes are diploid 

(Annex I and II). The non-PAR region was called separately for male and female samples 

since there is a difference in ploidy. For female birds GATK’s Haplotypecaller v4.2.6 was 

run with a ploidy of 1, signifying haploid samples. Joint genotyping was performed 

separately in the two sexes for the non-PAR region using GATK’s GenotypeGVCFs [5] in 

accordance with the rest of the genome. Before merging the individuals of the two sexes, 

females were transformed to diploids by doubling the haploid genotypes. 

Quality control filters (QD < 2.0, QUAL < 30, SOR > 3.0, FS > 60.0, MQ < 40.0, 

MQRankSum < -12.5 and ReadPosRankSum < -8.0) were applied as for the rest of the 

genome along with the mappability mask (see Annex I). For the individual depth filter we 

filtered males as for the rest of the genome (minimum 5, maximum mean + 3 x SD - see 

Annex I) but modified female depth filters on the non-PAR region due to the different 

ploidy. Thus for the haploid female regions we set the minimum read depth to 2 and 

recalculated the mean and SD of the depth distribution using all SNPs in Super-Scaffold 

13 since as mentioned above all of this scaffold belongs to the non-PAR region and is thus 

haploid in females. A description of individual depth filters is given below (table 2). 
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Table 2: Individual depth filtering guide 

Sex/Region Ploidy Minimum 

depth 

Maximum 

depth 

Regions used to calculate 

mean and SD 

All/Autosomal genome 2 5 Mean + 3 SD Super-Scaffold_1, 

Super-Scaffold_2 
Male/Z chr 2 5 Mean + 3 SD Super-Scaffold_1, 

Super-Scaffold_2 

Female/Z chr PAR 2 5 Mean + 3 SD Super-Scaffold_1, 

Super-Scaffold_2 
Female/Z chr nonPAR 1 2 Mean + 3 SD Super-Scaffold_13 

SNPs calling on the Z for the Low coverage samples 

Sequencing, generation of BAM files, and extraction of variant positions for the Z 

chromosome were conducted as described in Annex III for the rest of the genome. 

Similarly to high coverage samples, PAR regions were genotyped and phased as 

autosomes since both sexes are diploid (described in Annex III).  

We followed the GLIMPSE website tutorial for the X chromosome in humans for 

genotyping, imputation and phasing of the non-PAR regions. Non-PAR regions were 
genotyped with BCFTools v.1.15.1 [1] mpileup and call methods [2] with ploidy 1 for 

females and 2 for males (defined with the --ploidy-file parameter). Variants were only 

called at variant positions in the reference panel (-T option) and for alleles present in the 
same panel (option -C allele). Imputation and phasing were performed with GLIMPSE 

v1.1.1. Chunking is the first step of the GLIMPSE pipeline and involves splitting the 

chromosomes into (overlapping) chunks. The size of these chunks is automatically 

estimated based on several parameters, including the amount of missing data and the length 

of the chromosome. This is implemented in the GLIMPSE_chunk method. We performed 

chunking exactly as described for the autosomes (in Annex III): with default parameters (-

-window-size 2000000 and --buffer-size 200000). For the imputation and phasing, we used 

GLIMPSE_phase with a burn-in of 100 (--burnin 100) and 15 main iterations (--main 15). 

We set the effective population size at 10,000 individuals (--ne 10000) and the ploidy at 1 

for females and 2 for males (defined with the --samples-file parameter). The next step is

https://odelaneau.github.io/GLIMPSE/glimpse1/tutorial_chrX.html
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ligation, which involves merging the different chunks together without losing the phase 

information. Ligation was performed with the GLIMPSE_ligate method for males and 

females separately: we first split the individuals according to their ploidy and ligated both 

sexes independently. Finally, we generated haplotype-level genomic information with the 

GLIMPSE_sample method. We identified the most likely haplotype (with the --solve 

option) for males and females separately. We then merged the VCFs of both sexes and 

manually modified females’ non-PAR regions from haploids to homozygous diploids. 
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