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Abstract

Many social interactions happen indirectly via modifications of the environment, e.g. through

the secretion of functional compounds or the depletion of renewable resources. Here, we

derive the selection gradient on a quantitative trait affecting dynamical environmental vari-

ables that feed back on reproduction and survival in a finite patch-structured population sub-

ject to isolation by distance. Our analysis shows that the selection gradient depends on how

a focal individual influences the fitness of all future individuals in the population through

modifications of the environmental variables they experience, weighted by the neutral relat-

edness between recipients and the focal. The evolutionarily relevant trait-driven environ-

mental modifications are formalized as the extended phenotypic effects of an individual,

quantifying how a trait change in an individual in the present affects the environmental vari-

ables in all patches at all future times. When the trait affects reproduction and survival

through a payoff function, the selection gradient can be expressed in terms of extended phe-

notypic effects weighted by scaled relatedness. We show how to compute extended pheno-

typic effects, relatedness, and scaled relatedness using Fourier analysis, which allow us to

investigate a broad class of environmentally mediated social interactions in a tractable way.

We use our approach to study the evolution of a trait controlling the costly production of

some lasting commons (e.g. a common-pool resource or a toxic compound) that can diffuse

in space and persist in time. We show that indiscriminate posthumous spite readily evolves

in this scenario. More generally, whether selection favours environmentally mediated altru-

ism or spite is determined by the spatial correlation between an individual’s lineage and the

commons originating from its patch. The sign of this correlation depends on interactions

between dispersal patterns and the commons’ renewal dynamics. More broadly, we suggest

that selection can favour a wide range of social behaviours when these have carry-over

effects in space and time.
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Author summary

Organisms continually modify their environment by extracting resources, releasing tox-

ins, or engineering habitats. These environmental modifications can have significant fit-

ness consequences on other organisms, including those living far away in space and the

distant future. To better understand the evolutionary relevance of such environmentally

mediated social interactions, we quantify natural selection on a trait that influences biotic

or abiotic environmental variables in a population composed of finite patches experienc-

ing isolation by distance, as is typical of taxa facing limited dispersal. Using Fourier analy-

sis, we show how selection on a trait due to its environmental effects can be understood in

terms of the way that a focal individual influences the fitness of all future individuals at all

spatial positions via a modification to the environment these individuals encounter,

whose importance depends on the relatedness between these and the focal. Simply put,

natural selection tends to favour traits whose environmental effects help (resp. harm) indi-

viduals that are more (resp. less) related than average, including those distantly in space

and time. In addition to allowing for a full quantification of directional selection, this

inclusive fitness perspective helps garner intuition for the evolution of environmentally

mediated social interactions in general and of spite in particular.

1 Introduction

Organisms continually interact with one another in ways that significantly impact their sur-

vival and reproduction. Such social interactions are incredibly diverse. Still, they can usefully

be classified as to whether they occur directly between individuals, such as grooming or fight-

ing over resources, or as to whether they are indirectly mediated by environmental modifica-

tions, such as through the depletion or enrichment of resources, or the release or

detoxification of pollutants [1]. Direct social interactions thus take place among contemporar-

ies who are physically close to one another, while environmentally mediated interactions can

extend much further in space and time. When environmental modifications have long-lasting

and long-ranging effects, indirect social interactions may occur between individuals whose

lifetimes show little or no overlap. This may lead to forms of trans-generational helping (e.g.

when the underconsumption of a slowly renewable resource ensures healthy stock mainte-

nance for future generations) or harming (e.g. when overconsumption leads to stock collapse

and poor harvest in the future).

An extreme form of trans-generational social behaviour is posthumous altruism, which is a

behaviour that results in a net reduction of the survival and/or reproduction of an actor to ben-

efit only recipients living beyond the actor’s death. Several models have explored the biological

scenarios that favour the evolution of posthumous altruism [2, 3]. But perhaps more striking is

posthumous spite, which is a behaviour that results in a net reduction of the survival and/or

reproduction of an actor to harm recipients that live only after the actor’s death. The condi-

tions that may favour posthumous spite remain unclear. Understanding this, and more gener-

ally the evolution of environmentally mediated social behaviour, requires describing how

selection shapes traits that underlie both direct and indirect social interactions.

The theory devoted to the evolution of quantitative traits influencing direct social interac-

tions is well established (see, e.g. [4–9]). One of the main contributions of this body of work

has been to highlight the importance of limited dispersal for determining how selection shapes

social traits in populations that are subdivided into finite groups and spatially structured [4, 5].

Under limited dispersal, stochastic demographic effects resulting from finite group (or patch
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or deme) size generate genetic associations, whereby individuals expressing the same traits

may be more or less likely to interact directly with one another than with individuals express-

ing alternative traits. The importance of such associations is enshrined in the fact that the

selection gradient on a quantitative trait can be expressed as a marginal (or gradient) form of

Hamilton’s rule [4, 5]. This gradient, which captures the first-order effects of selection, is suffi-

cient to determine the trait values towards which a population converges under mutation-lim-

ited evolution ([7], i.e. to characterise convergence stability [10]).

The marginal form of Hamilton’s rule is computationally attractive because all the neces-

sary information about interactions is summarized in pairwise relatedness coefficients evalu-

ated under neutrality (i.e. in the absence of selection or trait variation). This remarkable

simplification makes the selection gradient tractable under realistic demographic assumptions,

particularly in populations exhibiting isolation by distance (e.g. lattice models [5, 11, 12]). This

has opened the door to understanding the evolution of multiple types of direct social interac-

tions in such populations (e.g. helping and harming [13–20]; sex ratio [21]; and dispersal [11,

22–24]).

In contrast, modelling the evolution of social interactions mediated by abiotic or biotic

environmental variables is significantly more challenging in spatially structured populations.

This is because computing the selection gradient in this case also requires computing the joint

distribution of pairwise relatedness and environmental variables in the population (under neu-

trality [5, 25]). Generally, this distribution is the stationary solution to a high-dimensional sto-

chastic dynamical system that is difficult to analyse or, in some cases, even to characterise. The

challenge is apparent in models that allow for trait-driven changes in local demography. Even

in the island model of dispersal, where the spatial structure is only implicit [26], there is typi-

cally no analytical solution to the distribution of demographic states within groups. As a result,

evaluating the selection gradient on traits with effects on local demography and/or ecology is

computationally challenging (e.g. [25, 27–30]). This “curse of dimensionality” becomes even

more acute under isolation by distance, as the size of the state space on which relevant environ-

mental (or demographic) variables fluctuate blows up exponentially, with the selection gradi-

ent now requiring the distribution of states among as well as within groups (e.g. eq. 22 in [25]).

To circumvent this challenge, two approximations have been suggested. One is the pair

approximation developed for lattice-structured populations, where typically at most one indi-

vidual lives in sites connected by stepping-stone dispersal [31–38]. Pair approximation is

based on moment equations of the demographic state distribution that ignore third and

higher-order moments. Under this approximation, the selection gradient can be written in the

form of Hamilton’s marginal rule, thus allowing for a sharp understanding of some of the

effects of demography on the evolution of social behaviour ([19, 20] see also [39]). However,

pair approximation is not straightforward when considering arbitrarily complex dispersal pat-

terns (e.g. [40]), patches with more than one individual, or trait-driven environmental state

variables.

Another approximation relies on considering the dynamics of environmental state variables

to be deterministic with a stable fixed point, so that there are no environmental stochastic fluc-

tuations in the absence of genetic variation [41]. The selection gradient can then be readily

expressed as a marginal Hamilton’s rule with inter-temporal fitness effects arising through

trait-driven environmental modifications at different temporal distances. In addition to being

simpler to compute than the original problem, this decomposition allows the delineation

between a component of selection resulting from direct social interactions and a component

arising indirectly through changes in the environmental dynamics. So far, this approach has

been applied only to the island model—hence, in the absence of isolation by distance [41, 42].

For populations exhibiting isolation by distance, there exist general, marginal Hamilton’s rule
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like, formulas. These express the selection gradient in terms of inter-temporal and spatial

effects of trait expression on the fitness of all possible recipients [2, 43]. However, how envi-

ronmental modifications mediate the long-lasting and long-ranging fitness effects due to trait

expression remains implicit in these general formulas. To better understand selection resulting

from indirect social interactions via environmental feedback, fitness effects need to be

unpacked in terms of trait-driven environmental modifications at different temporal and spa-

tial distances.

Here, we do exactly that. We fully characterise the selection gradient on a trait that impacts

the deterministic dynamics of environmental state variables that can be abiotic or biotic, and

which feed back on the survival and reproduction of the evolving species in a general model of

isolation by distance. Using Fourier analysis, we express this gradient in terms of extended

phenotypic effects and relatedness coefficients scaled to local competition, both of which pro-

vide biological insights about the nature of selection and are straightforward to compute for a

wide range of classical evolutionary models (e.g. the Wright-Fisher model and the Cannings

model). We use our results to investigate the evolution of environmentally mediated helping

and harming through space and time, such as via the production of a lasting common-pool

resource or the release of a durable toxic compound. Our analyses indicate that indiscriminate

spite where individuals suffer a cost to harm others living in the future, even beyond the actor’s

death, readily evolves by natural selection. This result is in contrast with previous findings sug-

gesting that indiscriminate spite rarely evolves when it occurs through direct interactions.

More broadly, our model and results suggest that selection can favour a wide range of social

behaviours when these are mediated in space and time through environmental feedbacks.

2 Models

2.1 Spatial structure, life cycle, traits and environmental variables

We consider a population of homogeneous individuals subdivided among D homogeneous

patches (or demes or groups), each carrying N adult individuals (see Table 1 for a list of the

key symbols used). The population is censused at discrete demographic time steps between

which the following events occur in cyclic order: (a) reproduction and adult survival; (b) dis-

persal among patches; and (c) density-dependent regulation within patches such that each

patch contains N adult individuals at the beginning of the next demographic time step.

Patches are arranged homogeneously in d dimensions, with Dj patches in dimension

j 2 {1, . . ., d}. For example, under a lattice structure in a one-dimensional habitat, D = D1

patches are arranged on a circle, while in a two-dimensional habitat, D = D1 × D2 patches are

arranged on a torus. We denote byG ¼ fði1; i2; . . . ; idÞ : 0 � ij < Djg the set of all patches.

The fact that patches are arranged homogeneously means that, at a technical level, we can

endow the setG with an abelian group structure (see e.g. [44] for the use of such group struc-

ture in evolutionary biology), which will allow us to leverage techniques from Fourier analysis

on finite abelian groups (Box 1).

Each patch is characterized by a quantitative state variable representing a biotic or abiotic

environmental factor, which we refer to as an environmental state variable (e.g., density of a

common-pool resource or pollutant, habitat quality). Meanwhile, each individual in the popu-

lation is characterised by a genetically determined quantitative trait (e.g. consumption of a

resource, release of a pollutant, investment into habitat maintenance) that influences the envi-

ronment and the individual’s survival and reproduction. We are interested in the evolution of

this trait under the following three assumptions.
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1. Trait and environmentally mediated reproduction and survival. By expressing the evolving

trait, individuals can directly affect the survival and/or reproduction of any other individual

in the population. For example, individuals may engage in costly fights for resources in

other patches and return to their own patch to share these resources with patch neighbours.

The effects of trait expression on others are assumed to be: (a) spatially invariant, i.e. the

marginal effect of an individual from patch i ¼ ði1; i2; . . . ; idÞ 2 G on the survival and/or

reproduction of an individual in patch j ¼ ðj1; j2; . . . ; jdÞ 2 G only depends on the “dis-

tance” j − i between the two patches (where j − i is calculated from the abelian group

Table 1. Key general symbols.

D number of patches in the population (section 2.1)

N number of adult individuals per patch (section 2.1)

G set of patches in the population (section 2.1)

z• trait value of the focal individual, who lives in patch 0 and time t = 0 (section 2.2)

zk,t average trait of individuals other than the focal in patch k at time t (section 2.2)

nk,t environmental state variable in patch k at time t (section 2.2)

g transition map determining the dynamics of the environmental state variables (Eq 2)

w individual fitness function, i.e. expected number of successful offspring (including the surviving self)

produced by an individual over one demographic time step (Eq 1)

s(z) selection gradient (section 4)

sw(z) selection due to intra-temporal effects (section 4)

se(z) selection due to inter-temporal effects (section 4)

Rk,t relatedness coefficient between the focal individual and another individual from patch k, t (Eq 7)

mk probability that an individual disperses to a patch at distance k from its natal patch (section 2.1)

MðhÞ Fourier transform (Eq I.B in Box 1) of mk

�wkðhÞ conjugate of character function (Eq I.E in Box 1)

LkðFÞ inverse transform of F at k (Eq I.D in Box 1)

ek,t extended phenotypic effect of the focal individual on the environmental state variable in patch k at time t in

the future (Eqs 10 and 14)

ψk focal individual’s effect on the environmental state variable of patch k over one generation (Eq 12)

C(h) Fourier transform (Eq I.B in Box 1) of ψk

ck effect of the environmental state variable of one patch on the environmental state variable of another patch

at distance k over one generation (Eq 13)

CðhÞ Fourier transform (Eq I.B in Box 1) of ck

π individual payoff function (section 3.3.1)

λk coefficient of fitness interdependence through payoffs (Eq 20)

κk,t scaled-relatedness coefficient between the focal individual and another individual from patch k, t (Eq 19)

pk,t probability that a gene descending from the focal individual is in patch k at t > 0 steps in the future (Eq 22)

Key symbols from example section 3.4

B, αB parameters tuning the effects of the environmental variable on the payoff of the focal individual (Eq 25)

C, αC parameters tuning the effects of the trait z• of the focal individual on the payoff of the focal individual (Eq

25)

P commons production function (Eq 26)

� commons decay rate (Eq 26)

dk probability that a unit of commons moves to a patch at a distance k from its source patch (Eq 26)

DðhÞ Fourier transform (Eq I.B in Box 1) of dk

qk,t probability that a non-decaying unit of the commons modified in the focal patch is located in patch k, t
generations in the future (Eq 29)

O expected genetic value in units of payoffs of all the individuals in the future that are affected by a unit of the

commons in the focal patch (Eq 31)

https://doi.org/10.1371/journal.pcbi.1012071.t001

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 5 / 34

https://doi.org/10.1371/journal.pcbi.1012071.t001
https://doi.org/10.1371/journal.pcbi.1012071


operation, see Box 1); and (b) spatially symmetric, i.e. the marginal effect of an individual

from patch i on an individual in patch j is equal to the effect from j to i. We refer to these

two characteristics (a) and (b) together as spatial homogeneity. The survival and reproduc-

tion of an individual may also depend on the environmental state variable of each patch,

Box 1. Fourier analysis on finite abelian groups

We assume that the set of patchesG is endowed with an abelian group structure, which

allows us to consider more general spatial structures than just lattice models (e.g. hierar-

chical structures). The groupG is defined as the direct product,

G ¼ ZD1
� . . .� ZDd

; ðI:AÞ

where ZDj
¼ f0; . . . ;Dj � 1g is the additive group of integers modulo Dj. The groupG

then consists of the set of all vectors i = (i1, . . ., id) with ij 2 ZDj
together with addition

(where addition between two vectors is component-wise). On such a group, the Fourier

transform FðhÞ of function f at h 2 G is given by

FðhÞ ¼
X

k2G

fkwkðhÞ; ðI:BÞ

where the “character” function

wkðhÞ ¼
Yd

i¼1

exp
2pikihi

Di

� �

¼ exp 2pi
Xd

i¼1

kihi

Di

 !

; ðI:CÞ

with i ¼
ffiffiffiffiffiffiffi
� 1
p

, is defined for all h ¼ ðh1; . . . ; hdÞ 2 G and k ¼ ðk1; . . . ; kdÞ 2 G. Here,

we followed the convention of population genetics (e.g. [5, 46, 47]) and defined the Fou-

rier transform in terms of the character χk(h) (instead of its conjugate, given in Eq I.E,

which is more standard in mathematics and engineering). As such, the Fourier trans-

form of f gives the characteristic function of f when f is a probability distribution. For

instance, the Fourier transform MðhÞ ¼
P

k2GmkwkðhÞ is the characteristic function of

the dispersal distribution mk. The original function is recovered by using

fk ¼ LkðFÞ ¼
1

D

X

h2G
FðhÞ�wkðhÞ; ðI:DÞ

where LkðFÞ is the inverse transform of F at k 2 G, which is defined in terms of the

conjugate of χk(h):

�wkðhÞ ¼
Yd

i¼1

exp �
2pikihi

Di

� �

¼ exp � 2pi
Xd

i¼1

kihi

Di

 !

ðI:EÞ

(e.g. [82]). Another property that we use in our analysis is the orthogonality relation

between characters, i.e., the identity

X

k2G

�wkðiÞ�wkðjÞ ¼
X

k2G

�wkðiþ jÞ ¼

(
jGj ¼ D if iþ j ¼ 0

0 otherwise
ðI:FÞ

(see [82], p. 169).
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also in a spatially homogeneous way (i.e. the marginal effect of the environmental state vari-

able of a patch i on the survival and reproduction of an individual residing in patch j only

depends on the distance j − i, and is equal to the effect from j to i).

2. Dispersal. Each individual either stays in its natal patch or disperses to another patch. Dis-

persal occurs with non-zero probability so that patches are never completely isolated. We

assume that dispersal is spatially homogeneous, i.e. the probability of dispersal from one

patch i to another j depends only on the distance j − i = k between the two patches (spatial

invariance), and is equal to the probability of dispersing the distance i − j = −k (spatial sym-

metry). We can thus write mk = m−k for the probability that an individual disperses to a

patch at a distance k from its natal patch (with
P

k2Gmk ¼ 1).

3. Trait and environmentally mediated environmental dynamics. Through trait expression,

individuals can affect environmental state variables from one demographic time step to the

next. For example, the environmental variable may be a common-pool resource that indi-

viduals absorb locally, or a pollutant produced by individuals which then diffuses in the

environment. Such trait effects on the environment are also spatially homogeneous (i.e. the

marginal effect of an individual from patch i on the environmental state variable of patch j

only depends on the distance j − i and is equal to the effect from j to i). These trait-driven

environmental modifications can thus lead to inter-temporal, environmentally mediated

social interactions.

2.2 The focal individual, its fitness, and environmental dynamics

The spatial homogeneity underlying all processes described above means that the patch

indexed as 0 2 G can be taken as a representative patch, and that any individual in this patch

can be taken as a representative individual from the population. We refer to this patch and to

this individual as, respectively, the focal patch and the focal individual. In general, we refer to

patch k 2 G at time (or “generation”) t� 0 prior to the focal generation as patch “k, t”. Thus,

the focal patch corresponds to patch 0, 0. In the following, we introduce some notation to

describe trait and environmental variation in the population (see Fig 1C for a summary dia-

gram of our model). We denote by z• the realized value of the trait of the focal individual, and

by zk,t the realized average trait of individuals other than the focal individual living in patch k, t
[e.g. for a one-dimensional habitat, z1,1 is the average trait expressed in the adjacent patch

(patch 1) one time point before the focal generation]. Hence, z0,0 denotes the average pheno-

type among the patch neighbours of the focal individual in the focal generation (thus excluding

the focal from the average). We use z0;t ¼ ðz0;t; . . . ; zk;t; . . . ; zD� 1 ;t
Þ to denote the vector

collecting all such realized phenotypes inG in lexicographic order, finishing with position

D−1 = (D1 − 1, D2 − 1, . . ., Dd − 1). Finally, we use nk,t to denote the environmental state vari-

able in patch k, t; we collect the environmental state variables across all patches in the vector

n0;t ¼ ðn0;t; . . . ; nk;t; . . . ; nD� 1 ;t
Þ.

The fitness of the focal individual is determined by the function w : R� RD
� RD

! Rþ
such that

wðz�; z0;0;n0;0Þ ð1Þ

is the expected number of successful offspring (i.e. offspring that establish as adults, including

the surviving self) produced over one demographic time by the focal individual with trait z•,

when the trait average among other individuals at the different spatial positions is z0,0, and
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environmental state variables are n0,0. These state variables are obtained from the solution to

the system of equations

nk;t ¼ gðzk;tþ1;nk;tþ1Þ for all k 2 G; ð2Þ

where g : RD
� RD

! R is a transition map determining the dynamics of the environmental

state variables nk,t of all patches, which is a circular permutation of n0,t with nk,t as first

element [e.g. for a one-dimensional lattice where d = 1, n0,t = (n0,t, n1,t, . . ., nD−1,t), n1,t = (n1,t,

n2,t, . . ., n0,t), n2,t = (n2,t, n3,t, . . ., n0,t, n1,t), and so on]. The map g depends on (i) the traits in

the whole population expressed at the previous generation via zk,t+1 (recall that t goes back in

time), which is a circular permutation of the elements of z0,t+1 with zk,t+1 as first element [e.g.

for a one dimensional lattice, z0,t+1 = (z0,t+1, z1,t+1, . . ., zD−1,t+1), z1,t+1 = (z1,t+1, z2,t+1, . . ., z0,t+1),

z2,t+1 = (z2,t+1, z3,t+1, . . ., z0,t+1, z1,t+1), and so on]; and (ii) the environmental state variables

of all patches at the previous generation via nk,t+1. Due to the recursive nature of Eq (2), the

environmental state variables in the focal generation, n0,0, depend on the whole history of traits

zH = (z0,1, z0,2, . . .) expressed in the population prior to the focal generation. As a result, the fit-

ness of a focal individual may also depend on the traits expressed by all other previous individ-

uals across space and time. To make this dependence explicit, we write the fitness of the focal

individual as w(z•, z0,0, n0,0(zH)).

Fig 1. A model for environmentally mediated social interactions in space and time. Schematic description of our model for a one-

dimensional lattice habitat (see sections 2.1–2.2 for details). Each patch k 2 {. . ., D − 1, 0, 1, . . .} at time t 2 {0, 1, . . .} in the past is characterized

by an environmental state variable nk,t (represented here by a cloud, e.g. water level, concentration of a pollutant, density of a resource), and the

average trait value zk,t expressed by the individuals it carries (e.g. water absorption rate, detoxifying capacity, handling time; individuals

represented here as palms). The environmental state n0,0 of the focal patch k = 0 at time t = 0 depends on all environmental states and traits of

the previous generation according to the environmental map g (blue dashed arrows, Eq 2). In turn, the fitness of a focal individual with trait z•

(in yellow) depends on all environmental states and traits expressed in its own generation according to the fitness function w (orange arrows, Eq

1). The two functions g and w thus characterise how evolutionary and environmental dynamics interact with one another through dual

inheritance of traits and environmental state variables.

https://doi.org/10.1371/journal.pcbi.1012071.g001

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 8 / 34

https://doi.org/10.1371/journal.pcbi.1012071.g001
https://doi.org/10.1371/journal.pcbi.1012071


We make the additional assumption that in a monomorphic population where all individu-

als express the same resident phenotype z, the deterministic environmental dynamics

described by the map g have a unique hyperbolically stable equilibrium point, identical in each

patch, and satisfying

n̂ ¼ gðz; n̂Þ; ð3Þ

where z = (z, . . ., z) and n̂ ¼ ðn̂; . . . ; n̂Þ are vectors of dimension D whose entries are all equal

to trait value z and environmental state variable n̂, respectively. This is sometimes called the

spatially homogeneous or flat solution in multi-patch ecological systems (p. 235 in [45]). The

existence of such a solution entails that, in the absence of genetic variation, all patches con-

verge to the same environmental equilibrium n̂, which may depend on the resident trait z.

One useful property of a monomorphic population at such an equilibrium is that fitness must

be equal to one, i.e. wðz; z; n̂Þ ¼ 1 holds. This is because the total population size is constant,

and consequently, each individual exactly replaces itself on average.

The fitness function (1) and the recursion (2) assume that fitness and the environmental

dynamics can be written as functions of trait averages within patches. This said, this assump-

tion does not limit us to only considering situations where effects within patches are additive.

Indeed, because we are interested in convergence stability and thus in the first-order effects of

selection (i.e. the first-order effects of trait variation), Eqs (1) and (2) are sufficient to model

biological scenarios with arbitrary complicated non-additive traits effects among individuals

within and/or between patches, for instance through complementarity or antagonism. Just a

little care may be required when defining these expressions from an individual-based model

(p. 95 in [5]).

2.3 Evolutionary dynamics

We assume that the quantitative trait evolves through rare mutations of small phenotypic

effects, such that the evolutionary dynamics proceeds as a trait substitution sequence on the

state space Z � R (i.e. the process of “long-term evolution” for finite populations described in

[7]). We are interested in characterising convergence stable trait values, which are local attrac-

tors of the trait substitution sequence. To do so, we base ourselves on the first-order effects of

selection on the fixation probability of a mutant that arises as a single copy in a population

monomorphic for a resident trait value [7, 11, 12]. Technical details about our derivations can

be found in S1 Text and accompanying boxes. Our main findings are summarized below.

3 Results

3.1 Recipient-centered perspective: Intra- and inter-temporal fitness effects

A trait value z∗ 2 Z in the interior of Z is convergence stable when

sðz∗Þ ¼ 0 and
dsðzÞ
dz

�
�
�
�
�
z¼z∗

< 0 ð4Þ

holds, where the function

sðzÞ ¼ swðzÞ þ seðzÞ; ð5Þ

referred to as the selection gradient, can be written as the sum of two terms, given by

swðzÞ ¼
@wðz�; z0;0;n0;0ðzHÞÞ

@z�
þ
X

k2G

@wðz�; z0;0;n0;0ðzHÞÞ
@zk;0

Rk;0; ð6aÞ

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 9 / 34

https://doi.org/10.1371/journal.pcbi.1012071


and

seðzÞ ¼
X1

t¼1

X

k2G

@wðz�; z0;0;n0;0ðzHÞÞ
@zk;t

Rk;t ð6bÞ

(see Appendix A in S1 Text for a derivation). Here, all quantities are evaluated in a monomor-

phic population with all individuals expressing the resident trait value z, and the environmen-

tal state variable in all patches are at the environmental equilibrium n̂ (Eq 3). A trait value z*
satisfying condition (4) constitutes a candidate end-point of evolution. More specifically, z* is

a mode of the stationary phenotypic distribution under the trait substitution sequence (see eq.

A-5 in S1 Text and e.g. [7] for details). It is also possible for a mode of this distribution to lie

on the boundary of a closed trait space, e.g. of Z ¼ ½zmin; zmax� so that a mode sits at zmin and/or

zmax. For a mode to be at zmin, s(zmin)< 0 must hold, in which case zmin is convergence stable.

Similarly, if s(zmax)> 0 holds, then zmax is convergence stable and a mode of the stationary

phenotypic distribution.

Both sw(z) and se(z) depend on (i) marginal fitness effects, i.e. on derivatives of focal fitness

(that we interpret below), and (ii) the relatedness Rk,t between the focal individual and another

randomly sampled individual from patch k, t. Such relatedness coefficient is defined as

Rk;t ¼ lim
m!0

Qk;t �
�Qt

1 � �Q0

; ð7Þ

where μ is the mutation rate at the evolving locus; Qk,t is the stationary probability that an allele

sampled in the focal individual is identical by descent with a homologous allele sampled in

another individual chosen at random from patch k, t under neutrality (i.e. in a population

monomorphic for z); and �Qt ¼
P

k2G Qk;t=D is the average probability of identity by descent

between two homologous alleles sampled in two individuals living t generations apart. The

probability of identity by descent Qk,t, and thus the relatedness coefficient Rk,t, may depend on

the resident phenotype z, but we leave this dependence implicit for readability.

Relatedness Rk,t quantifies the extent to which an individual that is sampled from patch k, t
is more (when Rk,t > 0) or less (when Rk,t < 0) likely than a randomly sampled individual to

carry an allele identical by descent to one carried by the focal individual at a homologous

locus. To illustrate this notion, consider a Wright-Fisher process (where there is no adult sur-

vival and individuals are semelparous), which is the reference model for probabilities of iden-

tity by descent under isolation by distance (e.g. [5, 46, 47]). For this model, the relatedness

coefficients Rk,t for t = 1, 2, 3, . . . can be shown to be given by

Rk;t ¼
1

DN þM

X

h2Gn0

MðhÞt

1 � MðhÞ2
�wkðhÞ; ð8Þ

where M ¼
P

h2Gn0MðhÞ
2
=ð1 � MðhÞ2Þ and MðhÞ is the Fourier transform (or characteris-

tic function) of the mk probabilities (see Box 1 for definitions of Fourier transforms, character

functions χk(h), and their inverses �wkðhÞ; Appendix B in S1 Text for an example of the charac-

teristic function of a dispersal distribution; and [48] for a derivation of Eq 8). The relatedness

coefficient between two individuals in the same generation, Rk,0, is given by Eq (8) with t = 2

(i.e. Rk,0 = Rk,2 holds for all k). In a panmictic or randomly mixing population (where

mk = 1/D for all k), relatedness between any two individuals is zero (i.e. Rk,t = 0 for all k and all

t; as the Fourier transform reduces to MðhÞ ¼ 1 if h = 0 and 0 otherwise using property I.F in

Box 1). However, as soon as dispersal is non-uniform (i.e. if mk 6¼mj for some k 6¼ j), related-

ness varies among individuals from different patches according to spatial and temporal
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distance. In particular, when dispersal is limited so that individuals have a tendency to remain

in their natal patch, relatedness between the focal individual and individuals in the same patch

from the same generation increases (R0,0 > 0). Because the average relatedness is zero (i.e.
P

k2G Rk;t=D ¼ 0 holds from Eq 7), the focal individual must also be negatively related to indi-

viduals residing in at least one other patch (i.e. Rk,0 < 0 must hold for some k 6¼ 0). Which

patches those are depends on patterns of dispersal. Under short-range dispersal, the focal indi-

vidual tends to be positively related to individuals in patches nearby and negatively related to

individuals further away (Figs 2C and 3C). Under long-range dispersal, relatedness can be neg-

ative between individuals living in patches at intermediate distances (Figs 2D and 3D).

Fig 2. Dispersal distribution, relatedness, and scaled relatedness in a 1D lattice model under short and long-range

dispersal. Panels A-B: Dispersal distribution mk in a lattice-structured population in a one-dimensional habitat (with

D1 = 51). An offspring leaves its natal patch with probability 1 −m0 = m = 0.8 and disperses to a patch at a Manhattan

distance that follows a truncated binomial distribution (eq. A-7 in Appendix B.1 in S1 Text) with mean �λm ¼ 1:9 in

panel A, leading to short-range dispersal, and �λm ¼ 15 in panel B, leading to long-range dispersal. The distance

dispersed along each habitat dimension is uniformly distributed across all dimensions and directions (Appendix B.1 in

S1 Text for details). Panels C-D: Relatedness Rk,t for the dispersal distributions shown in panels A and B, respectively

(using Eq 8 with patch size N = 20 and no adult survival s ¼ 0). Panel C highlights how relatedness decays in time and

space, becoming negative away from the focal deme when dispersal is short-range. In contrast, in panel D, where

dispersal is long-range, relatedness is negative at intermediate and large distances, thus leading to a multimodal

distribution of relatedness values. Panels E-F: Scaled relatedness κk,t for the dispersal distributions shown in panels A

and B, respectively, under a Wright-Fisher model with fecundity effects (using Eq 21 with patch size N = 20). The trend

of scaled relatedness is similar as that for relatedness. See S1 Data for how to generate these figures using Mathematica.

https://doi.org/10.1371/journal.pcbi.1012071.g002
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In Eq (6), the derivative @w/@z• is the effect of a trait change in the focal individual on its

own fitness. Likewise, @w/@zk,t is the effect of a trait change in the whole set of individuals liv-

ing in patch k, t on the fitness of the focal individual. Such effect is weighted by relatedness Rk,t

in the expressions given by Eq (6). As such, sw(z) (Eq 6a) is the net effect of all intra-temporal

effects on fitness, while se(z) (Eq 6b) is the net effect of all inter-temporal effects (i.e. all effects

Fig 3. Dispersal distribution, relatedness, and scaled relatedness in a 2D lattice model under short and long-range

dispersal. Panels A-B: Dispersal distribution mk in a two-dimensional habitat (with D1 = D2 = 13). An offspring leaves

its natal patch with probability 1 −m0 = m = 0.8 and disperses to a patch at a Manhattan distance that follows a

truncated binomial distribution with mean �λm ¼ 1:5 in panel A, leading to short-range dispersal, and �λm ¼ 11 in

panel B, leading to long-range dispersal (see Appendix B.2 in S1 Text for details). Panels C-D: Relatedness Rk,0 from

the dispersal distributions shown in panels A and B, respectively (using Eq 8 with patch size N = 20 and no adult

survival s ¼ 0). Panels E-F: Scaled relatedness, κk,10 in panel E and κk,1 in panel F, from the dispersal distributions

shown in panels A and B, respectively, for a Wright-Fisher model (using Eq 21 with patch size N = 20). See S1 Data for

how to generate these figures using Mathematica.

https://doi.org/10.1371/journal.pcbi.1012071.g003
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within and between demographic periods, respectively). More broadly, Eq (6) consists in the

sum of effects on the fitness of a focal individual stemming from all individuals that currently

live (Eq 6a) or have lived (Eq 6b) in the population. Here, the focal individual is the recipient

of phenotypic effects, present and past (recipient-centered perspective). How past phenotypic

effects are mediated by environmental dynamics is left implicit in Eq (6), contained in Eq (6b)

through n0,0(zH). In the next section, we expose such environmental effects by unpacking

Eq (6b) and shifting from a recipient-centered to an actor-centered perspective.

3.2 Actor-centered perspective: Environmentally mediated extended

phenotypic effects

To understand natural selection on social traits, it is often helpful to see the focal individual as

the actor, rather than the recipient, of phenotypic effects [4, 5, 49]. To shift to this perspective,

we can leverage the space-time homogeneity of our model to see that @w/@zk,t in Eq (6) is

equivalent to the total effect of the focal individual on the fitness of the individuals in a patch at

distance k at t steps in the future, and that relatedness Rk,t (Eq 8) quantifies the extent to which

an individual sampled in a patch at distance k at t steps in the future is more (or less) likely

than a randomly sampled individual to carry an allele identical by descent to one in the focal

individual at a homologous locus [2]. These considerations readily lead to an actor-centered

perspective for selection on intra-temporal effects, sw(z) (Eq 6a).

For selection on inter-temporal effects, se(z), we further need to unpack the phenotypic

effects through the environmental dynamics in Eq (6b). To do so, we now let the time index

t� 0 denote time forward so that nk,t is the value of the environmental state variable in patch k

at t time steps in the future of the focal generation (t = 0), and likewise let zk,t denote the collec-

tion of population phenotypes at time t in the future. Environmental dynamics forward in

time are characterised by rewriting Eq (2) as

nk;tþ1 ¼

gðzRk;0;nk;0Þ for t ¼ 0

gðzk;t;nk;tÞ for t � 1;

8
<

:
ð9Þ

where zRk;0 is equal to zk,0 except that the component z0,0 in this vector is replaced with

zR0;0 ¼ z�=N þ ðN � 1Þz0;0=N, i.e. the average phenotype in the focal patch including the focal

individual (e.g. for a one-dimensional lattice, zRk;0 ¼ ðzk;0; zkþ1;0; . . . ; zD� 1;0; zR0;0; z1;0; . . . ; zk� 1;0Þ).

Eq (9) brings upfront the potential complexity of characterising the environmental conse-

quences of a trait change in the focal individual. This is because the trait of the focal individual,

z•, influences the environmental state variable of potentially any patch k over one generation,

nk,1, which can in turn have knock-on effects in the future on nk,2, nk,3, and so on throughout

space in an interactive way. To characterise such effects, we write

ek;t ¼
@nk;t

@z�
ð10Þ

for the extended phenotypic effect of the focal individual on the environmental state variable

in patch k at t generations in the future. Selection on inter-temporal effects se(z) (Eq 6b) can
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then be written in terms of these extended phenotypic effects as

seðzÞ ¼
X1

t¼1

X

k2G

X

j2G

ej� k;t
|ffl{zffl}

effect of focal
on environment

in j � k; t

�
@wðz�; z0;0;n0;0Þ

@nj;0
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
effect of environmental
perturbation in j � k; t

on fitness in k; t

� NRk;t
|ffl{zffl}

total genetic
value of k; t
for focal

ð11Þ

(see Appendix C.1 in S1 Text for a derivation). Eq (11) indicates that se(z) consists in the total

effect of the focal individual on the fitness of individuals in each patch k, t in the future, via a

change in the environmental state of possibly all patches j − k, t, where fitness is weighted by

their relatedness Rk,t to the focal individual. From the point of view of the focal individual,

relatedness Rk,t can then be thought of as the “genetic value” of an individual randomly sam-

pled in patch k, t in units of fitness. More specifically, Rk,t can be interpreted as the number of

units of its own fitness that the focal individual is willing to exchange with an individual from

patch k, t against one unit of theirs without changing the mutant’s probability of fixation at z*.
Selection thus favours the focal individual sacrificing some of its own fitness to increase

fitness in patch k, t when Rk,t > 0, and to decrease fitness when Rk,t < 0. How such sacrifice

impacts the environment encountered by recipients is quantified by the extended phenotypic

effect ej−k,t in Eq (11).

The remaining challenge is how to compute ek,t, given the complex repercussions that a per-

turbation has in time and space (i.e. how to quantify a perturbation in the coupled dynamical

system defined by Eq 9). We show in Appendix C.2 in S1 Text that this can be achieved

through Fourier analysis using the following building blocks. First, we let ψk be the focal indi-

vidual’s effect on the environmental state variable of patch k over one generation. Owing to

our space-time homogeneity assumptions, this effect can be calculated as

ck ¼
@gðzRk;0;nk;0Þ

@z�
¼

1

N
@gðzR

0;0
;n0;0Þ

@zR
0;0

for k ¼ 0

1

N
@gðzR

0;0
;n0;0Þ

@zk;0
otherwise:

8
>>>><

>>>>:

ð12Þ

In practice, the rightmost expression is often more useful than the expression between equal

signs in Eq (12) (as the rightmost expression only requires characterising the environmental

map gðzR0;0; n0;0Þ of the focal patch, e.g. Eq 26 below). Similarly, we let

ck ¼
@gðzRk;0; nk;0Þ

@n0;0
¼
@gðzR0;0;n0;0Þ

@nk;0
ð13Þ

be the effect of the environmental state variable of one patch on the environmental state vari-

able of another patch at distance k over one generation. With the above notation, and writing

C(h) and CðhÞ for the Fourier transforms of ψk and ck respectively, the extended phenotypic

effect can be efficiently computed as the inverse Fourier transform of CðhÞt� 1
CðhÞ ¼ E tðhÞ

(see Box 1 for the definition of inverse Fourier transforms), namely

ek;t ¼ LkðE tÞ ¼
1

D

X

h2G
CðhÞCðhÞt� 1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
EtðhÞ

�wkðhÞ: ð14Þ

The form of E tðhÞ indicates that ek,t can be considered a perturbation in the dynamics of an

environmental state variable that ripples into the future. This perturbation has its origin in a
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focal individual whose trait affects the environmental state variables of possibly multiple

patches over one generation (captured byC(h) in Eq 14). This one-generational change then

propagates through space over t − 1 generations owing to the environmental dynamics, finally

impacting the environment of individuals t generations downstream of the focal individual

(captured by CðhÞt� 1
in Eq 14). In Box 2, we generalize Eqs (11)–(14) to multi-dimensional

environmental dynamics, that is, when multiple environmental state variables can be affected

by the evolving trait and whose dynamics can interact with one another (e.g., metacommunity

dynamics).

Eq (11) together with Eqs (12)–(14) constitutes a basis to quantify and understand selection

on traits that have inter-temporal effects through the environment under isolation by distance.

These equations formalise the intuition behind inclusive fitness arguments for environmen-

tally mediated social interactions, saying that natural selection tends to favor traits whose envi-

ronmental effects benefit the fitness of relatives (i.e. individuals more likely to carry genes that

are identical by descent). Here, the fundamental currency is individual fitness, and its

exchange rate among individuals is given by relatedness. However, in many cases it is not fit-

ness that is directly impacted by traits or the environment, but rather some intermediate pay-

off, such as energy, the amount of prey caught, or the size of a breeding territory. In turn, this

payoff influences survival and reproduction, which together determine fitness. We next

explore such scenarios.

3.3 Payoff-mediated fitness: Scaled relatedness or the genetic value of

others in payoff units

3.3.1 Payoff and fitness. Following much of evolutionary game theory (see e.g. [8] for a

textbook treatment), we now consider cases where fitness depends on a payoff function sum-

marizing social interactions (e.g. a case where the energy that an individual accrues depends

on its foraging behaviour, the foraging behaviour of others, and how resources are distributed

in the environment). We let this payoff function be p : R� RD
� RD

! Rþ, such that π(z•,

z0,0, n0,0) is the payoff to the focal individual with phenotype z• when the collection of average

phenotypes among all other individuals is z0,0 and the collection of environmental state vari-

ables across all patches is n0,0. We assume that the fitness of this focal individual can, in turn,

be written as a function ~w : Rþ � Rþ � R
D� 1

þ
! Rþ of the payoff to self, the average payoff to

a patch neighbour, and the average payoff to an individual from each patch other than the

focal, i.e. as

wðz�; z0;0; n0;0Þ ¼ ~wðπðz�; z0;0;n0;0ÞÞ; ð15Þ

where

πðz�; z0;0; n0;0Þ ¼ ðpðz�; z0;0;n0;0Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

p�

; pðz0;0; z
n
0;0; n0;0Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p0

; . . . ; pðzk;0; z
R
k;0;nk;0Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
pk

; . . .Þ
ð16Þ

is a (D + 1)-dimensional vector collecting the payoff π• to the focal individual, the average pay-

off π0 to a patch neighbour, and the average payoff πk to an individual from each patch k 6¼ 0.

As an argument to π0 in Eq (16), we used zn0;0 to denote a vector that is equal to z0,0 except for

its first entry, which is given by zn0;0 ¼ z�=ðN � 1Þ þ ðN � 2Þz0;0=ðN � 1Þ, i.e. by the average

trait among the neighbours of a neighbour of the focal individual. This captures the notion

that the focal individual can influence the payoff of its neighbours.

Eq (15) allows individual fitness to depend on the payoff of all the individuals of its genera-

tion in an arbitrary way. This said, in most applications the survival and fecundity of an
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Box 2. Multi-dimensional environment

We generalize sw(z) and se(z) to the case where there are ne > 1 environmental state vari-

ables. We denote by nk;t ¼ ðn1;k;t; n2;k;t; . . . nne ;k;t
Þ the vector of such variables in patch k,

t (where ni;k;t 2 R is the value of the ith environmental variable). The fitness of the focal

individual is now given by

wðz�; z0;0;~n0;0Þ with w : R� RD
� RDne ! Rþ; ðII:AÞ

where~n0;0 is the value at t = 0 of~n0;t ¼ ðn0;t;n1;t; . . . ; nk;t; . . . ;nD� 1 ;t
Þ, whose elements

are solutions of

ni;k;tþ1 ¼ giðzk;t;~nk;tÞ for i ¼ 1; 2; ; ne and all k 2 G; ðII:BÞ

where gi is the transition map for environmental variable i. We assume that in a mono-

morphic population z, there is a hyperbolically stable fixed point to environmental

dynamics,

n̂i ¼ giðz; ~̂n Þ for i ¼ 1; 2; . . . ; ne; ðII:CÞ

where ~̂n ¼ ðn̂; . . . ; n̂Þ is a vector of dimension D whose entries are all given by

n̂ ¼ ðn̂1; . . . ; n̂ne
Þ. With fitness given by Eq (II.A), selection on intra-temporal effects

sw(z) remains unchanged, given by Eq (6a) with wðz�; z0;0;~n0;0ðzHÞÞ substituted for w(z•,

z0,0, n0,0(zH)). For selection on inter-temporal effects se(z), carrying out mutadis mutan-
dis the same calculations as we have for the one-dimensional case, yields

seðzÞ ¼
X1

t¼1

Xne

i¼1

X

j2G

X

k2G

ei;j� k;t

@wðz�; z0;0;~n0;0Þ

@ni;j;0
NRk;t; ðII:DÞ

where ei,k,t is the extended phenotypic effect on environmental variable i in patch k, t.
This is computed as the inverse transform

ei;k;t ¼
1

D

X

h2G
E i;tðhÞ�wkðhÞ; ðII:EÞ

where E i;tðhÞ is the i-th element of the vector~E tðhÞ ¼ ðE1;tðhÞ; E2;tðhÞ; . . . ; Ene;t
ðhÞÞ,

which is obtained from

~E tðhÞ ¼ CðhÞt� 1~CðhÞ: ðII:FÞ

Here, the community matrix C(h) has its ij-th element given by

CijðθÞ ¼
P

k2Gci;0 j;kwkðhÞ, where

ci;0 j;k ¼
@giðzR0;0;~n0;0Þ

@nj;k;t
ðII:GÞ

is the effect of environmental variable j in the focal patch on environmental variable i in

patch k, t. The vector C(h) has i-th element given byCi(h), which is the Fourier trans-

form of

ci;k ¼

1

N
@giðzR0;0;~n0;0Þ

@zR0;0
for k ¼ 0

1

N
@giðzR0;0;~n0;0Þ

@zk;0
otherwise:

8
>>><

>>>:

ðII:HÞ

Under the infinite island model of dispersal, where Rk,t = 0, ei,k,t = 0, and ci,0 j,k = 0 for

all k 2 G except k = 0, Eq (II.D) reduces to eqs. 15–16 of [41].
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individual depend only on its own payoff. In this case, fitness may be written as

~wðπÞ ¼ sðp�Þ|fflffl{zfflffl}
survival

þ
X

k2G

mk 1 � sR pkð Þ½ �
fðp�ÞP

j2Gmk� jf
R
ðpjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reproduction into spots left open by deaths

;
ð17Þ

where s : Rþ ! Rþ and f : Rþ ! Rþ are survival and fecundity functions, respectively, and

quantities with R as a superscript are defined so that sRðp0Þ ¼ sðp�Þ=N þ ðN � 1Þsðp0Þ=N is

the average survival in the focal patch, otherwise sRðpkÞ ¼ sðpkÞ for k 6¼ 0; and f
R
ðp0Þ ¼

fðp�Þ=N þ ðN � 1Þfðp0Þ=N is the average fecundity in the focal patch, otherwise f
R
ðpkÞ ¼ fðpkÞ

for k 6¼ 0. Suppose we set survival s to zero in Eq (17). In that case, we obtain the fitness func-

tion of the classical Wright-Fisher process (e.g. eq. 3 in [50], in the absence of environmental

effects and for a circular stepping-stone model). More generally, if s is a positive constant and

payoffs only influence fecundity f, Eq (17) implements a form of “death–birth” updating proto-

col (i.e. where individuals sampled at random to die are replaced by the offspring of selected

individuals according to payoff, e.g. [36, 51]). Conversely, a “birth-death” updating is obtained

by setting f to a positive constant and letting payoff influence survival s only. Eq (17) will con-

stitute a useful platform to explore more specific examples later, even though many of our

results hold for the more general relationship between payoff and fitness given by Eq (15).

3.3.2 Selection under payoff-mediated fitness. If fitness is of the form of Eq (15), the

selection gradient can be written as

sðzÞ /
@pðz�; z0;0; n0;0Þ

@z�
þ
X

k2G

kk;0

@pðz�; z0;0;n0;0Þ

@zk;0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ swðzÞ

þ
X1

t¼1

X

k2G

X

j2G

ek� j;t
@pðz�; z0;0; n0;0Þ

@nj;0
Nkk;t

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/ seðzÞ

;

ð18Þ

where

kk;t ¼

R0;0 � λ0

1

N � 1
þ

N � 2

N � 1
R0;0

� �

�
P

j2Gn0λjRj;0

1 �
P

j2GλjRj;0
if t ¼ 0 and k ¼ 0

Rk;0 � λk
1

N
þ

N � 1

N
R0;0

� �

�
P

j2GnkλjRj� k;0

1 �
P

j2GλjRj;0
if t ¼ 0 and k 6¼ 0

Rk;t �
P

j2GλjRj� k;t

1 �
P

j2GλjRj;0
otherwise;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð19Þ

and

λk ¼ �
@ ~wðpÞ
@pk

�
@ ~wðpÞ
@p�

ð20Þ

(see Appendix D in S1 Text for a derivation). To understand Eq (18), it is first useful to inter-

pret λk (Eq 20) as a coefficient of fitness interdependence through payoffs. Specifically, λk mea-

sures the effect on the fitness of the focal individual of a change in the payoff of an individual
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at a distance k, relative to the effect of the payoff of the focal individual on its own fitness.

When positive, λk can thus be interpreted as the strength of competition, as it indicates how

much an increase in the payoffs of an individual at distance k reduces the fitness of the focal

individual. With this in mind, the coefficient κk,t (Eq 19) can be thought of as a measure of

relatedness scaled to competition (or scaled relatedness for short, e.g. [7, 52, 53]; with Eq 19

extending to isolation by distance the formalization of this concept found in [54]). To see this,

suppose that the evolving trait helps current patch neighbours (i.e. such that @π(z•, z0,0, n0,0)/

@zk,0 > 0) and consider the numerator of κ0,0 on the first line of Eq (19). This numerator con-

sists in the relatedness R0,0 of a focal individual towards current patch neighbours, discounted

by an inclusive fitness effect through increased competition, which is due to the increase in

neighbours’ payoff caused by the focal individual helping them. The inclusive fitness effect

consists of three relatedness weighted fitness effects: (i) −λ0/(N − 1), which captures the

increase in competition experienced by the focal individual itself (where 1/(N − 1) is the fre-

quency of the focal individual among the neighbours of an individual it helps); (ii) −λ0(N − 2)

R0,0/(N − 1), which captures the increase in competition experienced by the relatives in the

focal patch that are distinct from the individuals the focal individual is helping directly; and

finally (iii) the total effect �
P

j2Gn0 λjRj;0, which captures the increase in competition experi-

enced by relatives in other patches. The other two lines of Eq (19) are interpreted similarly: the

relatedness towards neighbours from patch k, t discounted by an inclusive fitness effect on all

recipients experiencing a change in fitness stemming from the focal changing the payoff of

individuals in patch k, t (the denominator in Eq (19) standardizes these effects relative to the

inclusive competitive effects induced by the focal individual changing its own payoff). More

broadly, κk,t can be interpreted as the number of units of its own payoff that the focal individ-

ual is willing to exchange with a unit of payoff accruing to a randomly sampled individual

from patch k, t without changing the mutant’s probability of fixation at a singular value z*.
The scaled-relatedness coefficient κk,t can thus be seen as the genetic value of other individuals

in patch k, t relative to that of the focal individual in units of payoff. For (k, t) 6¼ (0, 0), κk,t

then measures the net social discount rate of temporally delayed and spatially extended fitness

effects [43].

From the considerations above, Eq (18) can be read as an inclusive fitness effect at the pay-

off level. That is, selection depends on how the focal individual influences its own payoff and

the payoff of all other individuals across patches, now and in the future, weighted by their

scaled relatedness κk,t. For recipients in the future (t� 1), payoff effects are mediated by how

the focal individual perturbs the environment in each patch (via ek−j,t in Eq 18), and in turn by

how such environmental perturbation influences payoffs (via @π/@nj,0 in Eq 18).

In Appendix E in S1 Text, we use Fourier analysis to compute scaled relatedness κk,t for the

fitness model given by Eq (17) and an arbitrary dispersal distribution mk. Our results are sum-

marized in Box 3. For example, we obtain that under a Wright-Fisher process,

kk;t ¼

�
1

DN � 1
if t ¼ 0

Dðpk;t � 1=DÞ
DN � 1

otherwise

8
>>><

>>>:

ð21Þ

holds, where

pk;t ¼ LkðM
t
Þ ¼

1

D

X

h2G
MðhÞt �wkðhÞ ð22Þ

is the probability that, under neutrality, a gene descending from the focal individual is in patch
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k at t> 0 steps in the future (which depends on the characteristic function MðhÞ of the dis-

persal distribution, Table 1). The collection of these probabilities, pt ¼ ðpk;tÞk2G, can thus be

seen as the distribution of a standard random walk on the set of patches with step distribution

characterized by the dispersal probabilities mk. When such a random walk leads to a

Box 3. Scaled-relatedness coefficients

With fitness given by Eq (17), we show in Appendix E in S1 Text that

kk;t ¼

LkðFÞ � ð1þ sÞ½s0fþ 2f
0
ð1 � sÞ�=ð2DÞ

N½s0fþ f
0
ð1 � sÞ� þ L0ðFÞ � ð1þ sÞ½s0fþ 2f

0
ð1 � sÞ�=ð2DÞ

if t ¼ 0

LkðGtÞ � ð1þ sÞ½s0fþ 2f
0
ð1 � sÞ�=ð2DÞ

N½s0fþ f
0
ð1 � sÞ� þ L0ðFÞ � ð1þ sÞ½s0fþ 2f

0
ð1 � sÞ�=ð2DÞ

otherwise;

8
>>>><

>>>>:

ðIII:AÞ

where as usual, all functions are evaluated at the resident trait value z, a prime denotes a

derivative, and LkðXÞ is the inverse Fourier transform of a function X(h) at k 2 G (Eq I.

D of Box 1). The functions F and Gt are defined as

FðhÞ ¼ �
ð1 � sÞ½s0f � f

0
2s�MðhÞ

1þ sþ ð1 � sÞMðhÞ
;

GtðhÞ ¼
ð1þ sÞ½s0fþ f

0
ð1 � sÞð1þMðhÞÞ�½sþ ð1 � sÞMðhÞ�t

1þ sþ ð1 � sÞMðhÞ
:

ðIII:BÞ

For fecundity effects under a Wright-Fisher process (s ¼ s0 ¼ 0), the above reduces to

F(h) = 0 and GtðhÞ ¼ f
0MðhÞt, which yields Eq (21) of the main text when f

0
¼ 1 (i.e. the

payoff is directly fecundity).

Using Eq (III.A), we also show in Appendix F in S1 Text that the summary statistic K,

for selection on environmentally mediated social interactions under local interactions

(Eq 24), is given by

K ¼
1

H

X

h2Gn0

ð1þ sÞ½s0fþ f
0
ð1 � sÞð1þMðhÞÞ�½sþ ð1 � sÞMðhÞ � Cð� hÞMðhÞ�Cð� hÞ

½1þ sþ ð1 � sÞMðhÞ�½1 � Cð� hÞ�½1 � Cð� hÞMðhÞ�
; ðIII:CÞ

where

H ¼ ðDN � 1Þ s0fþ f
0
ð1 � sÞ½ � �

X

h2Gn0

ð1 � sÞ½s0f � 2f
0s�MðhÞ

1þ sþ ð1 � sÞMðhÞ
: ðIII:DÞ

For fecundity effects under a Wright-Fisher process (s ¼ s0 ¼ 0) the summary statistic

K simplifies to

K ¼
1

DN � 1

X

h2Gn0

MðhÞCð� hÞ
1 � Cð� hÞMðhÞ

; ðIII:EÞ

while for survival effects (f
0
¼ 0), it simplifies to

K ¼
1

ðDN � 1Þ �
P

h2Gn0
ð1 � sÞMðhÞ

1þ sþ ð1 � sÞMðhÞ

X

h2Gn0

ð1þ sÞ½sþ ð1 � sÞMðhÞ � Cð� hÞMðhÞ�Cð� hÞ
½1þ sþ ð1 � sÞMðhÞ�½1 � Cð� hÞ�½1 � Cð� hÞMðhÞ�

: (III.F)

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 19 / 34

https://doi.org/10.1371/journal.pcbi.1012071


probability pk,t that is greater than under a uniform distribution (i.e. when pk,t > 1/D holds),

Eq (21) indicates that scaled relatedness κk,t is positive, so that selection favours environmental

transformations that increase payoffs in patch k, t. Conversely, selection favours environmen-

tal transformations that decrease payoffs in patches where pk,t is smaller than under a uniform

distribution (i.e. when pk,t < 1/D holds). Which patches are those depends on the dispersal dis-

tribution (compare Fig 2E with Fig 2F for short and long-range dispersal in a 1D lattice, and

Fig 3E with Fig 3F for short and long-range dispersal in a 2D lattice).

The selection gradient (18) recovers previous results of social evolution theory, which pro-

vides a robustness check of our calculations. To see these connections, assume that there are

no ecologically meditated interactions, that is, that @π(z•, z0,0, n0,0)/@n0,0 = 0 holds, that −C(z)

= @π(z•, z0,0, n0,0)/@z• < 0 is a net payoff cost to self, and that Bk(z) = @π(z•, z0,0, n0,0)/@zk,0 is a

payoff benefit to individuals at distance k, which is typical of models under the heading of the

evolution of “cooperation” or “altruism”. Further, suppose that individuals interact only with

other individuals at a single distance k so that the selection gradient is proportional to −C(z) +

κk,0Bk(z). Then, Eq (18) entails that selection favours such a helping behaviour if κk,0 > C(z)/

Bk(z) holds, that is, if the scaled-relatedness coefficient is greater than the cost-to-benefit ratio.

For a Wright-Fisher process, κk,0 reduces to −1/(DN − 1)� 0 (Eq 21), which is always non-

positive. Thus, helping cannot spread regardless of population structure because κk,0 > C(z)/

Bk(z) cannot be satisfied as long as Bk(z) > 0. This result was first derived for a lattice-struc-

tured population for D!1 and k = 0 in [55], and for finite D and any k under a circular

one-dimensional habitat in [5] (chapter 8, and generalized to other abelian group structures in

[44] and [43]). More generally, the scaled-relatedness coefficient given in Box 3 recovers estab-

lished conditions for the spread of helping and harming behaviour in lattice-structured popu-

lations under different biological assumptions, such as for survival effects or for fecundity

effects with overlapping generations (e.g. [15, 36, 51, 56]; see [43] for the explicit connections

to this literature). Finally, in the presence of ecologically mediated interactions, so that @π(z•,

z0,0, n0,0)/@n0,0 6¼ 0, Eq (18) recovers eq. (A.21) in [2] which holds for a Wright-Fisher process

(to see this correspondence, set sk,t = N(@π(z•, z0,0, n0,0)/@n0,0)ek,t in Eq 18).

3.3.3 Local interactions. In Eq (18), payoffs can depend on the traits expressed in and

the environmental variables of all patches. In many instances, payoff effects can reasonably

be assumed to be local, i.e. the payoff of an individual depends only on the traits and the envi-

ronment of its patch. In this case, the payoff to the focal individual can be written as π(z•, z0,0,

n0,0) = π(z•, z0,0, n0,0), and the selection gradient Eq (18) reduces to

sðzÞ /
@pðz�; z0;0; n0;0Þ

@z�
þ
@pðz�; z0;0; n0;0Þ

@z0;0

k0;0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/ swðzÞ

þ
@pðz�; z0;0; n0;0Þ

@n0;0

NK
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ seðzÞ

;
ð23Þ

where

K ¼
X1

t¼1

X

k2G
ek;tkk;t ð24Þ

summarizes selection on environmentally mediated social interactions (see Appendix F in S1

Text for a derivation and Eq III.C in Box 3 for more details). When K = 0, selection is blind to

the effects of the trait on the environment, even if the environment affects payoffs (i.e. even if

@π(z•, z0,0, n0,0)/@n0,0 6¼ 0). When K> 0, selection favours trait values that improve the envi-

ronment (i.e. the payoff in the future increases). Conversely, when K< 0, selection favours

trait values that deteriorate the environment (i.e. the payoff in the future decreases). Which of

these outcomes unfolds depends on the interaction between extended phenotypic effects ek,t
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and scaled-relatedness coefficients κk,t, with K> 0 when ek,t and κk,t tend to be of the same

sign (i.e. when
P1

t¼1

P
k2Gek;tkk;t > 0 holds), and K> 0 when they tend to be of opposite sign

(i.e. when
P1

t¼1

P
k2Gek;tkk;t < 0 holds). In the next section, we explore through an example

how this interaction depends on dispersal and how environmental state variables of different

patches influence one another.

3.4 Inter-temporal helping and harming through a lasting commons

To gain more specific insights into how isolation by distance influences the way selection

shapes environmentally mediated interactions, consider a scenario where the environmental

variable is some lasting commons (e.g. a common-pool resource or a toxic compound) that

can move in space, and whose production depends on an evolving trait that is individually

costly to express. We assume that the commons is a “good” when the environmental variable

takes positive values (n̂ > 0) and a “bad” when it takes negative values (n̂ < 0). We also

assume that the trait leads to the former when z> 0 and to the latter when z< 0, where the

trait space is assumed to be Z ¼ ð� 1;1Þ. The trait can thus be broadly thought of as

environmentally mediated helping (increasing survival and reproduction to recipients) when

z> 0, and as environmentally mediated harming (decreasing survival and reproduction to

recipients) when z< 0.

We assume that fitness takes the form of Eq (17) with payoff given by

pðz�; z0;0; n0;0Þ ¼ exp ðBnaB0;0 � CzaC
�
Þ; ð25Þ

where B> 0 and C> 0 are parameters that respectively tune the effects of the environmental

variable in the focal patch n0,0 and of the modifying trait z• of the focal individual on the payoff

of the focal individual. These effects also depend on the shape parameters αB and αC, which we

assume are positive integers, with αB odd (e.g. αB = 1) and αC even (e.g. αC = 2). Thus, the local

commons increases (resp. decreases) payoffs when n0,0 > 0 (resp. n0,0 < 0) holds, but any trait

expression, that is, any z• away from 0, is individually costly and reduces individual payoff, and

thus fitness. We also assume that costs increase more steeply than benefits, i.e. that αC > αB

holds.

Meanwhile, how the trait modifies the commons is determined by the environmental map

g (Eq 2), which we assume is given by

gðzR
0;0
; n0;0Þ ¼ d0ðð1 � �Þn0;0 þ PðzR

0;0
ÞÞ þ

X

k2Gn0

dkðð1 � �Þnk;0 þ Pðzk;0ÞÞ: ð26Þ

Eq (26) states that the commons changes from one demographic time point to the next due to

three processes. First, the commons is modified or “produced” in a patch according to a func-

tion P : R! R of the average trait expressed in that patch, i.e. zR0;0 ¼ z�=N þ ðN � 1Þz0;0=N in

the focal patch and zk,0 otherwise (with k 6¼ 0). We assume that P(0) = 0 holds, and that P is

monotonically increasing, i.e. P0(z) > 0 for all z 2 R, where P0(z) denotes the derivative of P
with respect to z. Second, each unit of commons “diffuses” or moves with probability dk to a

patch at a distance k from its source patch, where the probability distribution defined by dk

can be thought of as the environmental equivalent of the dispersal probability distribution mk.

We let DðhÞ denote the Fourier transform of this distribution for future use (i.e. DðhÞ is to dk

what MðhÞ is to mk, Table 1). Third, a unit of commons decays with rate 0< �� 1 from one

time step to the next. Substituting Eq (26) into Eq (3) indicates that in a monomorphic popula-

tion for z, the dynamics of the commons stabilises to

n̂ ¼ PðzÞ=�; ð27Þ
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which is positive when z> 0, negative when z< 0, and whose absolute value increases as the

rate of decay � decreases, as expected. This equilibrium is unique because g is linear in P, and

stable because � > 0 holds.

With fitness of the form of Eq (17) and payoff Eq (25) only depending on local interactions

(as in section 3.3.3), we can use Eqs (23) and (24) to characterise selection. With κk,t as given

in Box 3, all that remains to be computed are the extended phenotypic effects, ek,t. To do so,

we start by substituting Eq (26) into Eqs (12) and (13), to obtain ψk = P0(z)dk/N, and ck = (1 −
�)dk, which in turn yield CðhÞ ¼ P0ðzÞDðhÞ=N and CðhÞ ¼ ð1 � �ÞDðhÞ. Substituting these

expressions into Eq (14) then gives E tðhÞ ¼ ð1 � �Þ
t� 1P0ðzÞDðhÞt=N, which leads to

ek;t ¼
P0ðzÞ

N
ð1 � �Þ

t� 1qk;t; ð28Þ

for the extended phenotypic effect ek,t on patch k, t, where

qk;t ¼ LkðD
t
Þ ¼

1

D

X

h2G
DðhÞt�wkðhÞ: ð29Þ

Equation Eq (28) can be understood as follows. By marginally changing its trait value, a focal

individual produces P0(z)/N additional units of commons. Each such unit decays with time

according to (1 − �)t−1, and ends up in patch k, t according to qk,t (Eq 29), which can be inter-

preted as the probability that a non-decaying unit of the commons modified in the focal patch

is located in patch k t generations in the future. In fact, the collection qt ¼ ðqk;tÞk2G yields the

distribution of a standard random walk on the set of patches with step distribution character-

ised by dk. Extended phenotypic effects thus depend critically on the way the commons moves

in space as captured by dk (see Fig 4 for examples of ek,t in a 1D model).

In turn, how selection depends on extended phenotypic effects is found by substituting Eqs

(25) and (28) into Eq (23). From this, we obtain

sðzÞ / � C aC zaC � 1 þ OB aB
P0ðzÞ
�

� �
PðzÞ
�

� �aB � 1

; ð30Þ

where

O ¼
X1

t¼1

X

k2G
�ð1 � �Þ

t� 1
kk;t qk;t ð31Þ

can be thought of as the total expected genetic value in units of payoff of all the individuals in

the future that are affected by a unit of the commons in the focal patch. Since the term multi-

plying O in Eq (30) is positive (recall that αB is odd and hence αB − 1 is even), the selection gra-

dient increases with O, and the greater O is, the greater the z favoured by selection. In fact, the

selection gradient reduces to s(0)/ O at z = 0 (under our assumptions about parameters and

the commons production function P). This shows that in a population where the trait is ini-

tially absent (so that individuals have no effect on the commons), selection favours environ-

mental modifications leading to a common good (z> 0) when O> 0, or to a common bad

(z< 0) when O< 0. Put differently, selection favours environmentally mediated inter-tempo-

ral helping when, in the eyes of the focal individual, the recipient of such help on average has

positive genetic value in units of payoff, and conversely, inter-temporal harming when it has

negative genetic value.
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Further insights can be generated if we assume the simple functional form P(z) = P0z. In

this case, we obtain

z∗ ¼
B
C
�
aB
aC
�

P0

�

� �aB

� O

� � 1
aC � aB

: ð32Þ

Fig 4. Extended phenotypic effects in a 1D lattice model under short and long-range movement of the commons.

Panel A: When the commons moves locally, extended phenotypic effects ek,t decay in time and space away from the

focal deme (from Eq 28 with D1 = 31, movement probability d = 0.6 and expected movement distance �λd ¼ 1:55, see

Appendix G.5 in S1 Text for details on how movement is modelled; production function P(z) = Nz, i.e. each unit of z
contributes to one unit of resource; decay rate � = 0.2; other parameters: N = 20, m = 0.3, �λm ¼ 1:55). Panel B: In

contrast, when the resource moves at greater distances, extended phenotypic effects ek,t are greatest further away from

the focal deme (from Eq 28 with movement parameters d = 0.98 and �λd ¼ 8; production function P(z) = Nz; decay rate

� = 0.5; other parameters: same as Fig 2A). See S1 Data for how to generate these figures using Mathematica.

https://doi.org/10.1371/journal.pcbi.1012071.g004

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 23 / 34

https://doi.org/10.1371/journal.pcbi.1012071.g004
https://doi.org/10.1371/journal.pcbi.1012071


The singular value z* (32) is convergence stable under our assumption that the cost of trait

expression increases faster than the benefits (i.e. αC > αB). Therefore, z* is the mode of the sta-

tionary phenotypic distribution of the trait substitution sequence (we compute this distribu-

tion for the Wright-Fisher model in eq. A-136 in S1 Text). From Eq (32) it is clear that the

absolute value of z* increases with the benefit-to-cost ratio B/C, with αB/αC, and with the envi-

ronmental effect of the trait P0. However, whether z* is positive or negative (and thus whether

Fig 5. Selection favours altruism or spite depending on dispersal of the evolving species and the commons in a 2D lattice model. Panels A-B:

Regions of dispersal parameters leading to the evolution of altruism,O> 0 (in white), or of spite,O< 0 (in gray) for an example in a 2D lattice model

(with D1 = D2 = 13 and N = 50) under a Wright-Fisher life-cycle with fecundity effects (withO computed from Eq 34). Panel A: Combination of

dispersal probability of the evolving species m = 1 −m0 (x-axis) and of the commons d = 1 − d0 (y-axis) for different levels of environmental decay � in

different shades of gray (� = 0.1, 0.5, 1) with expected dispersal distance fixed (�λm ¼ 1:54 and �λd ¼ 8). This shows that spite is favoured by high levels

of dispersal and environmental decay. Panel B: Combination of expected dispersal distance of the evolving species �λm (x-axis) and of the commons �λd
(y-axis) for different levels of environmental decay � in different shades of gray (see panel A for the legend) with dispersal probability fixed (m = 0.98

and d = 1). This shows that spite is favoured by dispersal asymmetry between the evolving species and the commons. Panels C-D: Evolution of spite in

individual-based simulations under a Wright-Fisher life-cycle with fecundity effects (with D1 = D2 = 13, N = 50, m = 0.3, �λm ¼ 1:54, d = 1, �λd ¼ 8,

B = 2, αB = 1, C = 1, αC = 4, P(z) = Nz; for mutation, the trait mutates during reproduction with probability 10−4, in which case a normally distributed

deviation with mean 0 and standard deviation 10−2 is added to the parental trait value). Panel C shows the average trait z in the population; panel D

shows the average commons level or environmental variable n (with simulations in full lines—see S1 Code—and analytical prediction in dashed

lines—from Eq 32 for z and 27 for n). See S1 Data for how to generate these figures using Mathematica.

https://doi.org/10.1371/journal.pcbi.1012071.g005
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helping or harming evolves), ultimately depends on the sign of O, i.e. whether the expected

genetic value O of a modification to the commons is positive or negative in payoff units.

The impact of species dispersal and commons movement onO can be understood most eas-

ily by assuming that payoff influences fecundity under a Wright-Fisher process (i.e. f 0 > 0 and

s0 ¼ s ¼ 0 in Box 3). In this case, O can be expressed as (see Appendix G.1 in S1 Text)

O ¼
�D2

DN � 1

X1

t¼1

ð1 � �Þ
t� 1covðpt; qtÞ; ð33Þ

where cov(pt, qt) is the covariance between the distributions of the random walks of genes

pt ¼ ðpk;tÞk2G (Eq 22) and commons qt ¼ ðqk;tÞk2G (Eq 29). This covariance is positive when

there is a positive association between gene lineages and the commons these lineages modify.

In other words, O is positive and helping is favoured when an environmental modification

owing to the expression of a gene is most likely to be experienced by individuals living in the

future and carrying identical-by-descent copies of that gene. Conversely, O tends to be nega-

tive and harming is favoured when this environmental modification is less likely to be experi-

enced by future carriers.

While Eq (33) offers intuition on the biological conditions leading to positive or negative

values of O, this quantity is more readily computed by noting thatO = �KN/P0(z) holds, where

K is defined in Eq (24), and by substituting eqs. (A-127) and (A-128) in S1 Text into Eq (III.E)

in Box 3. Doing so, we obtain

O ¼
�

DN � 1

X

h2Gn0

Dð� hÞMðhÞ
1 � ð1 � �ÞDð� hÞMðhÞ

: ð34Þ

Fig 5A and 5B give the sign of O under a binomial model for the distance of both the dispersal

of the focal species and the movement of the commons (see Appendix G.5 in S1 Text for

details). These figures show that such model of dispersal allows for both positive and negative

values ofO and thus for the evolution of both inter-temporal helping and harming. Here, help-

ing corresponds to posthumous altruism and harming to posthumous spite since an individual

can never obtain direct benefits from its own trait effects on the environment, and these effects

are only felt by the next generation (as generations are non-overlapping under a Wright-Fisher

process).

More generally, numerical explorations of O (Fig 5A and 5B) indicate that spite tends to be

favoured by: (i) high levels of dispersal in the evolving species; (ii) high levels of movement of

the commons; (iii) high environmental decay �; and (iv) significant differences in the dispersal

distance of the species and of the commons (e.g. when individuals disperse short distances but

the commons move far away from their original patch). These conditions lead to a negative

association between gene lineages and the commons these lineages modify. Conversely, altru-

ism tends to be favoured when dispersal and movement are weak, environmental decay is low,

and the distributions of the species’ dispersal and of the commons’ movement are similar (Fig

5A and 5B, white region). In fact, under weak dispersal and movement (so that m0 = 1 − m
and d0 = 1 − d with m and d close to zero), and regardless of the dispersal and movement dis-

tributions, we have

O ¼
D � 1

DN � 1

� �
� � m � d

�2

� �

; ð35Þ

which is always positive when m and d are sufficiently small (see Appendix G.2 in S1 Text for a

derivation of Eq 35). Under these assumptions, an individual’s lineage and the commons origi-

nating from its patch will be strongly and locally associated.
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To see the effects of isolation by distance on social evolution, we compare in Fig 6A the sin-

gular strategy z* for a 2D lattice where the evolving species and the commons follow a bino-

mial model for distance travelled (detailed in Appendix G.5 in S1 Text), with the singular

strategy z* under the island model (where dispersal and commons movement are uniform).

This comparison illustrates how isolation by distance allows for a wider range of evolved social

Fig 6. Isolation by distance allows for the evolution of a wider range of social behaviours than the island model

under environmental feedback. Panel A: Singular trait value z* from Eq 32 for m = 0.75 (in black) and m = 0.2 (in

gray). Other parameters: D1 = D2 = 13, so that D = 169, N = 50, �λm ¼ 1:54, d = 0.99, B = 2, αB = 1, C = 1, αC = 4, P(z) =

Nz. Dashed lines show the singular trait value with the same parameters but under the island model of dispersal for

both the species and the commons (from Eq 32 with O given by eq. (A-126 in S1 Text) derived in Appendix G.3). Panel

B: Observed vs. predicted equilibrium trait value in individual-based simulations running for 20 000 generations under

different expected dispersal distance of the commons �λd leading to altruism (z> 0) and spite (z< 0). Other

parameters: same as in Fig 5C and 5D. The prediction is shown as a dashed line (from Eq 32) with grey region around

for twice the standard deviation obtained from the stationary phenotypic distribution (from eq. A-136 in S1 Text).

Observed values of the trait average in the population are shown as black dots for the average from generation 5 000 to

20 000, with error bars for standard deviation over the same 15 000 generations. Simulations were initialised at the

predicted convergence stable trait value. S1 Code for simulation code and S2 Data for simulation results.

https://doi.org/10.1371/journal.pcbi.1012071.g006
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Fig 7. Scaled relatedness and selection under survival effects in a 1D lattice model. Panels A-B: Scaled relatedness

κk,t in a 1D lattice model under survival effects (from Box 3 with s ¼ 0 in panel A and s ¼ 0:9 in panel B; other

parameters: same as in Fig 4A). These panels show that genetic value decays away from the focal deme especially

quickly when baseline survival is high (compare panels A and B). Otherwise, these profiles of scaled relatedness are

similar to to those in Fig 4A, which suggests that selection acts similarly when the trait affects survival or fecundity.
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behaviours as both altruism (z*> 0) and spite (z*< 0) can be favoured by selection depending

on the distance dispersed. In contrast, only altruism is favoured by selection under the island

model in Fig 6A (compare black full and dashed lines). Fig 6A also shows how selection may

favour the evolution of more exaggerated social behaviours under isolation by distance (i.e.

larger |z*|). These differences are down to the fact that isolation by distance allows for a wider

range in the covariance among genetic and commons movement (recall Eq 33). We also com-

pared the singular strategy z* found by substituting Eq (34) into Eq (32) with results from indi-

vidual-based simulations. In these simulations, each offspring mutates with probability 10−4,

in which case a normally distributed deviation with mean 0 and standard deviation 10−2 is

added to the parental trait value. The only difference between these simulations and our ana-

lytical scenario is thus that multiple alleles can segregate due to mutation (rather than just two

alleles under a trait substitution sequence, see [7] for finite populations). Nevertheless, we find

an excellent fit between the convergence stable z* and the mean population trait value in simu-

lations (Fig 6B).

The case where payoff influences survival rather than fecundity (s0 > 0 and f
0
¼ 0 in Eq 17)

is illustrated in Fig 7 (the expression of O for this case in terms of characteristic dispersal func-

tions can be found in Appendix G.4 in S1 Text). This analysis reveals that harming tends to be

favoured when baseline survival s is low, especially when environmental decay is also low (Fig

7C). This is because, otherwise, an individual may harm itself in the future. But apart from

this, selection is not fundamentally different when payoff influences survival rather than fecun-

dity in this model (i.e. under a birth-death vs. death-birth process).

4 Discussion

Our analyses characterise in two main ways the selection gradient on a trait that impacts the

deterministic dynamics of environmental state variables that can be abiotic or biotic, which in

turn feed back on individual survival and reproduction under isolation by distance.

First, we showed how selection on a trait due to its environmental effects can be understood

in terms of how a focal actor influences the fitness of all future individuals via a modification

to the environmental state variables that these individuals experience (Eqs 11 and II.D for the

case of multiple environmental variables). The relevant trait-driven environmental modifica-

tions are formalized as extended phenotypic effects that quantify how a trait change in an actor

individual in the present affects the environmental state variables in all patches at all future

times (the ek,t effects, Eq 14). While extended phenotypic effects are typically thought to benefit

the actor or related contemporaries directly [57, 58], these effects in our model are all indirect,

carrying over in space and time, thus influencing the fitness of future carriers of the actor’s

trait when dispersal is limited. The associations between environmental and genetic variation

that are necessary for selection to target trait-driven environmental modifications are given by

the product between the extended environmental effects ek,t and the relatedness coefficients

Rk,t (see Eq 11), both of which can be efficiently computed using Fourier transforms (Eqs 14

and II.E and II.F for a multivariate environment). These gene-environment associations indi-

cate that selection favours traits or behaviours with environmental effects such that, when

expressed by a focal individual, the environmental effects increase (resp. decrease) the fitness

Panel C: Parameter region where selection favours the evolution of helping (O> 0) or harming (O< 0) under survival

effects with adult survival probability s on the x-axis and environmental decay � on the y-axis (O computed from Eq 31

using eq. A-129 in S1 Text; other parameters: same as in Fig 4B, i.e. under long-range movement of the commons). See

S1 Data for how to generate these figures using Mathematica.

https://doi.org/10.1371/journal.pcbi.1012071.g007

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 28 / 34

https://doi.org/10.1371/journal.pcbi.1012071.g007
https://doi.org/10.1371/journal.pcbi.1012071


of future individuals that are more (resp. less) related to the focal than other individuals at that

same future generation.

The second version of the selection gradient that we derived is based on the extra assump-

tion that interactions between individuals are mediated through a payoff function (see Eq 17),

as in most of traditional evolutionary game theory (e.g. [8, 59, 60]). Selection on a trait due to

its environmental effects can still be viewed from an actor-centered perspective, but this time

at the payoff rather than at the fitness level. Specifically, selection can be quantified in terms of

how a focal individual influences the payoff of all future individuals via modifications to the

environment these individuals experience, weighted by the relatedness between these individ-

uals and the focal, now scaled to take competition into account (the term proportional to se(z)

in Eq 18, with scaled relatedness given in Eqs 19 and 20). The concept of scaled relatedness is

useful because it summarizes in a single quantity (here one for each spatial and temporal dis-

tance) all the consequences of interactions among related individuals for indirect selection [7,

52, 53, 61]. That is, scaled relatedness balances, on the one hand, the positive effects of boosting

the reproductive success of relatives in a particular spatial position, with, on the other hand,

the negative effects of increasing competition for these relatives by affecting the reproduction

and survival of others across the habitat. The increase of kin competition can be strong enough

to offset the indirect benefits of social behaviour when social interactions occur among

contemporaries (and generations do not overlap, e.g. [5, 55]). Because the strength of kin com-

petition depends on the specifics of the life cycle (such as whether generations overlap or not,

or whether payoff influences fecundity or survival), the evolution of direct social interactions

is sensitive to such assumptions (see [52] for a review). This is notably the case under isolation

by distance, where the evolution of altruism crucially depends on whether reproduction is

modelled as a “death-birth” or a “birth-death” process (e.g. [62–64]). The “death-birth” process

is akin to iteroparous reproduction with fecundity effects, and the resulting life cycle can sus-

tain altruism; the “birth-death” process is akin to iteroparous reproduction with survival

effects, and the life cycle inhibits altruism via increased kin competition (e.g. [15, 17, 18, 56]).

In contrast, we have found that in our model of environmentally mediated social interac-

tions through a lasting commons, whether selection favours the evolution of helping or harm-

ing depends weakly on whether payoff influences survival or fecundity. There are two

explanations for this. The first is that, because of environmental legacy, the effects on recipients

are felt in the distant future, which decreases the competition among the focal’s own offspring

[41, 65]. The second explanation is that, in our model, individuals and their environmental

effects can move in space independently, further dissociating the positive and negative effects

of interactions among relatives. This decoupling between benefits and costs means that natural

selection can readily favor either posthumous altruism or posthumous spite in our model with

non-overlapping generations. Which of these behaviours evolves depends on whether the

combination of dispersal pattern and commons movement cause environmental effects to fall

predominantly on individuals that are more or less related than average in the future.

Our findings on environmentally mediated posthumous spite merit further discussion as

existing models suggest that the conditions for the evolution of spite are more restrictive than

those for altruism. By spite, we refer here to a trait or behaviour whose expression decreases

the individual fitness of both its actor and recipients. This is a strong form of spite, reducing

the actor’s fitness (chapter 7 in [5]), which contrasts with the more commonly explored scenar-

ios of weak spite (where the behaviour directly increases the actor’s fitness, e.g. [66, 67]). The

evolution of strong spite typically relies on the existence of mechanisms by which individuals

can evaluate their relatedness with social partners and thus behave according to some kin or

type-recognition mechanism (e.g. [68–72]). By contrast, in our model spite is indiscriminate:

an individual deteriorates the environment in the future without paying attention to recipients’
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identities, even if this comes at a cost in the present. In the absence of generational overlap

(e.g. Wright-Fisher model), such spite is entirely posthumous. With this in mind, it is notewor-

thy that spite can evolve even when local populations are not small (e.g. of local size 50, Fig 5).

More broadly, our results illustrate how environmentally mediated social interactions under

isolation by distance can evolve to be as relevant for fitness as direct social interactions.

The two main assumptions of our model are that fitness and environmental effects are

homogeneous in space and time, and that environmental dynamics are deterministic. These

assumptions are common to previous models interested in environmental or ecological

changes in space that are evolutionarily driven, and particularly to those where individuals

produce an environmental commons that moves according to a diffusion process (e.g. [73–

77]). These models further assume a separation of time scales between demography and the

commons such that in between the reproduction, death, or dispersal of any individual in the

entire population, the dynamics of the commons reaches a stable distribution across the land-

scape. By contrast, here we have assumed that the mutation process, rather than the demo-

graphic process, is slow compared to environmental dynamics. Reproduction, death, or

dispersal can occur on a similar time scale than environmental dynamics in our model, as is

usually the case in ecological models (e.g. [78, 79]). As a result, even though environmental

dynamics are described by a deterministic system (Eq 9, also as in most ecological models, [78,

79]), realised environmental dynamics fluctuate randomly on a similar time scale than

unavoidable genetic fluctuations owing to finite patch size. The next challenge would be to

consider a fully stochastic system for the environmental variables (i.e. to extend Eq 9 to the

dynamics of a probability distribution). This would be especially useful to investigate the

effects of demographic stochasticity in response to trait evolution [25], and to model, for

instance, environmentally mediated evolutionary suicide or rescue. Our framework may nev-

ertheless provide a suitable approximation to cases of demographic and environmental sto-

chasticity (with Eq 9 giving the expectation in state variable at the next time step, conditional

on the states of at the previous step). This approach has been shown to work well under the

island model of dispersal provided that patches were not too small and dispersal not too lim-

ited [41]. It would be interesting to investigate how this holds up under isolation by distance.

Finally, we considered the evolution of a single trait but our analyses apply directly to the case

where multiple traits with environmental effects evolve jointly. To investigate such a case, one

would first use our equations to obtain the selection gradient on each trait separately (applying

Eq 5 to each trait under focus), and then jointly consider these gradients to perform a standard

multidimensional analysis of directional selection (e.g. [80, 81]).

Supporting information

S1 Text. PDF containing Appendices A-G, where we derive the results presented in the

main text.

(PDF)

S1 Data. Mathematica Notebook that allows to make Figs 2–5 and 7 (requires Mathematica

License).

(NB)

S2 Data. Zipped folder containing: CSV files with simulated data used to make Fig 6B; and

Mathematica Notebook that reads CSV files and produces Fig 6B.

(ZIP)

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 30 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012071.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012071.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012071.s003
https://doi.org/10.1371/journal.pcbi.1012071


S1 Code. M-file with the code we used for individual based simulations, which lay the

bases of Figs 5C, 5D and 6B (requires Mathematica License).

(M)

Acknowledgments

The authors are grateful to Robbie I’Anson Price for help with Fig 1.

Author Contributions

Conceptualization: Charles Mullon, Jorge Peña, Laurent Lehmann.

Formal analysis: Charles Mullon, Jorge Peña, Laurent Lehmann.

Investigation: Charles Mullon, Jorge Peña, Laurent Lehmann.

Visualization: Charles Mullon.

Writing – original draft: Laurent Lehmann.

Writing – review & editing: Charles Mullon, Jorge Peña, Laurent Lehmann.

References
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64. Débarre F. Fidelity of parent-offspring transmission and the evolution of social behavior in structured

populations. Journal of Theoretical Biology. 2017; 420:26–35. https://doi.org/10.1016/j.jtbi.2017.02.027

PMID: 28254478

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 33 / 34

https://doi.org/10.1016/j.jtbi.2009.05.035
https://doi.org/10.1016/j.jtbi.2009.05.035
http://www.ncbi.nlm.nih.gov/pubmed/19505481
https://doi.org/10.1006/jtbi.2001.2322
http://www.ncbi.nlm.nih.gov/pubmed/11403564
https://doi.org/10.1086/700094
https://doi.org/10.1086/700094
http://www.ncbi.nlm.nih.gov/pubmed/30444662
https://doi.org/10.1016/j.jtbi.2021.110750
http://www.ncbi.nlm.nih.gov/pubmed/33957155
https://doi.org/10.1111/j.1365-294X.2011.05238.x
http://www.ncbi.nlm.nih.gov/pubmed/21880087
https://doi.org/10.1111/j.1558-5646.2010.01162.x
http://www.ncbi.nlm.nih.gov/pubmed/21044061
https://doi.org/10.1007/s002850000048
http://www.ncbi.nlm.nih.gov/pubmed/11072757
https://doi.org/10.1016/0040-5809(75)90033-7
http://www.ncbi.nlm.nih.gov/pubmed/1198353
https://doi.org/10.1214/aop/1176995980
https://doi.org/10.1086/648554
http://www.ncbi.nlm.nih.gov/pubmed/19911983
https://doi.org/10.1038/2281218a0
http://www.ncbi.nlm.nih.gov/pubmed/4395095
https://doi.org/10.1016/j.tpb.2006.03.001
https://doi.org/10.1016/j.tpb.2006.03.001
http://www.ncbi.nlm.nih.gov/pubmed/16405936
https://doi.org/10.1098/rspb.2006.3576
http://www.ncbi.nlm.nih.gov/pubmed/16901846
https://doi.org/10.1098/rstb.2010.0138
https://doi.org/10.1098/rstb.2010.0138
http://www.ncbi.nlm.nih.gov/pubmed/20679105
https://doi.org/10.1016/j.jtbi.2015.06.039
http://www.ncbi.nlm.nih.gov/pubmed/26151588
https://doi.org/10.1016/j.jet.2019.104951
https://doi.org/10.1111/j.0014-3820.2000.tb00549.x
http://www.ncbi.nlm.nih.gov/pubmed/11005283
https://doi.org/10.1023/B:BIPH.0000036180.14904.96
https://doi.org/10.1007/BF01237667
https://doi.org/10.1007/BF01237667
https://doi.org/10.1016/j.jtbi.2008.01.005
http://www.ncbi.nlm.nih.gov/pubmed/18295801
https://doi.org/10.1016/j.jtbi.2017.02.027
http://www.ncbi.nlm.nih.gov/pubmed/28254478
https://doi.org/10.1371/journal.pcbi.1012071


65. Lehmann L. The evolution of trans-generational altruism: kin selection meets niche construction. Jour-

nal of Evolutionary Biology. 2007; 20:181–189. https://doi.org/10.1111/j.1420-9101.2006.01202.x

PMID: 17210011

66. Hamilton WD. Selection of selfish and altruistic behaviour in some extreme models. In: Eisenberg JF,

Dillon WS, editors. Man and Beast: Comparative Social Behavior. Washington, DC: Smithsonian Insti-

tutions Press; 1971. p. 59–91.

67. Schaffer ME. Evolutionarily stable strategies for a finite population and a variable contest size. Journal

of Theoretical Biology. 1988; 132(4):469–478. https://doi.org/10.1016/S0022-5193(88)80085-7 PMID:

3226137

68. Gardner A, West SA. Spite and the scale of competition. Journal of Evolutionary Biology. 2004;

17:1195–1203. https://doi.org/10.1111/j.1420-9101.2004.00775.x PMID: 15525404

69. Lehmann L, Feldman MW, Rousset F. On the evolution of harming and recognition in finite panmictic

and infinite structured populations. Evolution. 2009; 63:2896–2913. https://doi.org/10.1111/j.1558-

5646.2009.00778.x PMID: 19624725

70. West SA, Gardner A. Altruism, spite, and greenbeards. Science. 2010; 327:1341–1344. https://doi.org/

10.1126/science.1178332 PMID: 20223978

71. Smead R, Forber P. The coevolution of recognition and social behavior. Scientifc Reports. 2016;

6:25813. https://doi.org/10.1038/srep25813 PMID: 27225673

72. Bruner JP, Smead R. Tag-based spite with correlated interactions. Journal of Theoretical Biology.

2022; 540:111052. https://doi.org/10.1016/j.jtbi.2022.111052 PMID: 35247376

73. Borenstein DB, Meir Y, Shaevitz JW, Wingreen NS. Non-Local Interaction via Diffusible Resource Pre-

vents Coexistence of Cooperators and Cheaters in a Lattice Model. PLOS ONE. 2013; 8:e63304.

https://doi.org/10.1371/journal.pone.0063304 PMID: 23691017

74. Allen B, Gore J, Nowak MA. Spatial dilemmas of diffusible public goods. eLife. 2013; 2013. https://doi.

org/10.7554/eLife.01169 PMID: 24347543

75. Scheuring I. Diffusive Public Goods and Coexistence of Cooperators and Cheaters on a 1D Lattice.

PLOS ONE. 2014; 9:e100769. https://doi.org/10.1371/journal.pone.0100769 PMID: 25025985

76. Menon R, Korolev KS. Public good diffusion limits microbial mutualism. Physical Review Letters. 2015;

114:168102. https://doi.org/10.1103/PhysRevLett.114.168102 PMID: 25955075

77. Gerlee P, Altrock PM. Persistence of cooperation in diffusive public goods games. Physical Review E.

2019; 99:062412. https://doi.org/10.1103/PhysRevE.99.062412 PMID: 31330651

78. Case TJ. An Illustrated Guide to Theoretical Ecology. Oxford: Oxford University Press; 2000.

79. Begon M, Townsend CR. Ecology: from Individuals to Ecosystems. 5th ed. West Sussex: Wiley;

2021.

80. Brown SP, Taylor PD. Joint evolution of multiple social traits: a kin selection analysis. Proceedings of

the Royal Society B: Biological Sciences. 2010; 277(1680):415–422. https://doi.org/10.1098/rspb.2009.

1480 PMID: 19828549

81. Leimar O. Multidimensional convergence stability. Evolutionary Ecology Research. 2009; 11:191–208.

82. Terras A. Fourier analysis on finite groups and applications. 43. Cambridge University Press; 1999.

PLOS COMPUTATIONAL BIOLOGY Environmentally mediated social interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012071 May 30, 2024 34 / 34

https://doi.org/10.1111/j.1420-9101.2006.01202.x
http://www.ncbi.nlm.nih.gov/pubmed/17210011
https://doi.org/10.1016/S0022-5193(88)80085-7
http://www.ncbi.nlm.nih.gov/pubmed/3226137
https://doi.org/10.1111/j.1420-9101.2004.00775.x
http://www.ncbi.nlm.nih.gov/pubmed/15525404
https://doi.org/10.1111/j.1558-5646.2009.00778.x
https://doi.org/10.1111/j.1558-5646.2009.00778.x
http://www.ncbi.nlm.nih.gov/pubmed/19624725
https://doi.org/10.1126/science.1178332
https://doi.org/10.1126/science.1178332
http://www.ncbi.nlm.nih.gov/pubmed/20223978
https://doi.org/10.1038/srep25813
http://www.ncbi.nlm.nih.gov/pubmed/27225673
https://doi.org/10.1016/j.jtbi.2022.111052
http://www.ncbi.nlm.nih.gov/pubmed/35247376
https://doi.org/10.1371/journal.pone.0063304
http://www.ncbi.nlm.nih.gov/pubmed/23691017
https://doi.org/10.7554/eLife.01169
https://doi.org/10.7554/eLife.01169
http://www.ncbi.nlm.nih.gov/pubmed/24347543
https://doi.org/10.1371/journal.pone.0100769
http://www.ncbi.nlm.nih.gov/pubmed/25025985
https://doi.org/10.1103/PhysRevLett.114.168102
http://www.ncbi.nlm.nih.gov/pubmed/25955075
https://doi.org/10.1103/PhysRevE.99.062412
http://www.ncbi.nlm.nih.gov/pubmed/31330651
https://doi.org/10.1098/rspb.2009.1480
https://doi.org/10.1098/rspb.2009.1480
http://www.ncbi.nlm.nih.gov/pubmed/19828549
https://doi.org/10.1371/journal.pcbi.1012071


S1 Text

Appendix A Convergence stability from fixation probability

Here, we prove eqs. (4)-(6) of the main text by considering the fixation probability of a single mutant

with trait value z + d into a population monomorphic for resident trait z. Let P(z + d, z) denote the

fixation probability of this mutant, and by

f(z) =
dP(z + d, z)

dd

����
d=0

(A-1)

the derivative of the fixation probability with respect to the mutant effect. A trait value z
⇤ that is

convergence stable under a trait substitution sequence is thus characterized by

f(z⇤) = 0 and
df(z)

dz

����
z=z⇤

< 0 (A-2)

[1, 2, 3]. Under our modeling assumptions, the perturbation of the fixation probability is given by

f(z) = lim
µ!0

 
1 � Q0

1 � Q0,0

!
⇥
 

∂w(z•, z0,0, n0,0(zH))
∂z•

+
•

Â
t=0

Â
k2G

∂w(z•, z0,0, n0,0(zH))
∂zk,t

Rk,t

!
(A-3)

(eq. 1 of [4] together with eq. A11 of [5]), which can be expressed as

f(z) = lim
µ!0

 
1 � Q0

1 � Q0,0

!

| {z }
>0

s(z), (A-4)

where s(z) is given by eqs. (5)–(6b). Because the limit in eq. (A-4) is always positive as long as N > 1

holds [2], the condition for convergence stability (A-2) is equivalently given by eq. (4).

The condition for convergence stability (A-2) also connects to the stationary probability density func-

tion p(z) that trait value z is observed in the population under a trait substitution sequence process in

a finite population. This probability density function is given by

p(z) = K exp


2DN

Z
z

l

f(y)dy

�
, (A-5)

(eq. 7. of [6], eq. 62 of [3]) where l is the lower boundary of the state space and p(z) has a local

maximum at z
⇤ if conditions (A-2) are satisfied (see e.g. [6, 3] for details). The density function (A-5)

is useful to evaluate the expected phenotypic variance in the population and can thus be compared to

results from individual-based simulations (see eq. A-136 and Fig 6B for a concrete example).

1



To compute the probability density function p(z), however, requires to fully quantify the derivative of

the fixation probability f(z), which in turn depends on limµ!0
�
1 � Q0

�
/ (1 � Q0,0), which is process

specific. For instance, for the Wright-Fisher process,

lim
µ!0

 
1 � Q0

1 � Q0,0

!
=

✓
DN + M

DN

◆
(A-6)

holds (eq. A17 in [4]), where M = Âh2G\0 M(h)2/
�
1 �M(h)2� is defined as under eq. (8) in the

main text and may remain complicated to evaluate. Yet evaluating eq. (A-6) may actually not be

needed to compute f(z). For instance when the selection gradient takes the form of eq. (A-55)

(eq. (19) of the main text), eq. (A-6) cancels from f(z) when fitness takes the form eq. (17) owing

to eq. (A-105) (and this property may hold more generally). Further, using coalescent arguments,

eq. (A-6) may be computed indirectly. For instance, owing to eq. (3.68) and eq. (3.70) of [2], one ac-

tually has limµ!0
⇥
(1 � Q0)/(1 � Q0,0)

⇤
= 1/(DN) for the Wright-Fisher process under the infinite

allele model.

Appendix B A distribution for short and long range dispersal

Here, we specify a dispersal distribution based on the binomial distribution, which allows us to con-

sider both short and long dispersal, and that we used to generate the various numerical examples of

our analysis.

Appendix B.1 One-dimensional habitat

Let us first consider a one-dimensional habitat consisting of a circular lattice, so that the set of patches

is G = ZD = {0, 1, . . . , D � 1}, i.e. the set of integers modulo D. We assume that D is odd, so that

we can write ZD = {0, 1, . . . , (D � 1)/2,�(D � 1)/2,�(D � 1)/2 + 1, . . . ,�1}. We further assume

that an individual disperses with probability m, and that it stays in its natal patch with probability

1�m. If an individual disperses, it does so with equal probability either “clockwise” or “counterclock-

wise” a number j 2 {1, 2, ..., (D � 1)/2} of steps, which we assume follows a zero-truncated binomial

distribution with probability mass function

pj(Ns, q) =
(Ns

j
)qj(1 � q)Ns�j

1 � (1 � q)Ns
. (A-7)

Here, Ns = (D� 1)/2 is the number of trials, and q = 2lm/(D� 1) is the probability of success, where

lm = Nsq is the mean of the non-truncated distribution. The mean number of steps an individual

2



disperses conditional on dispersal is given by

lm =
lm

1 �
⇣

1 � 2lm
D�1

⌘(D�1)/2 . (A-8)

From these assumptions, the dispersal distribution is given by

mj = m�j =

8
><

>:

1 � m, if j = 0
1
2

mpj(Ns, q) if j 2 {1, 2, ..., (D � 1)/2},
(A-9)

and its associated characteristic function (or Fourier transform I.B) can be written as

M(k) =
D�1

Â
j=0

mjcj(k)

= m0 +

D�1
2

Â
j=1

mjcj(k) +

D�1
2

Â
j=1

m�jc�j(k)

= m0 +

D�1
2

Â
j=1

mj

⇣
cj(k) + c

j
(k)

⌘

= (1 � m) + m

D�1
2

Â
j=1

pj((D � 1)/2, 2lm/(D � 1))

 
cj(k) + c

j
(k)

2

!

= (1 � m) + m

D�1
2

Â
j=1

pj((D � 1)/2, 2lm/(D � 1)) cos (2p jk/D) , (A-10)

where the third line uses the fact that the migration kernel is symmetric (mj = m�j holds for j 2

{1, 2, ..., (D � 1)/2}) and the identity c�j(k) = c
j
(k), and the last line uses the trigonometric identity

cos(x) = (exp(ix) + exp(�ix)) /2. Eq. (A-10) shows that the characteristic function of the dispersal

distribution is determined by the parameters D, m, and lm.

Appendix B.2 Two-dimensional habitat

For the two-dimensional case, we consider a torus with the same number of patches in each dimension

so that G = {(k1, k2) : 0  kj < D
1/2} for k1 and k2 modulo D

1/2. The dispersal distribution of

the focal species mk for k = (k1, k2) 2 G, is constructed similarly as above. First, an individual

disperses with probability m and with probability 1�m stays in its natal patch. Second, conditional on

dispersal, we sample the number of steps j 2 {1, 2, ..., D
1/2 � 1} an individual disperses on the lattice

(maximum D
1/2 � 1) from a zero-truncated binomial distribution pj(Ns, q) (eq. A-7) with parameters

Ns = D
1/2 � 1 and q = lm/(D

1/2 � 1). Accordingly, the mean number of steps an individual disperses

3



conditional on dispersal is

lm =
lm

1 �
⇣

1 � lm
D1/2�1

⌘D1/2�1
. (A-11)

Third, we determine how this total number of steps j is divided between j1 steps in dimension 1 and

j2 steps in dimension 2 (so that j = j1 + j2), assuming that dispersal in either dimension has the same

distribution. We do so by sampling j1 from a discrete uniform distribution unif(jmin, jmax), where

jmin = max

 
0, j � D

1/2 � 1
2

!

jmax = min

 
j,

D
1/2 � 1

2

!
,

(A-12)

and by setting j2 = j � j1. Finally, given the number of steps in each dimension j1 and j2, these are

then equally likely to occur in either direction away from the focal patch.

Appendix C Extended phenotypic effects

Appendix C.1 Actor-centered representation of inter-temporal effects

Here, we derive eq. (11) of the main text. To this end, we first apply the chain rule to the fitness

expression (1) whereby we have for t � 1 that

∂w(z•, z0,0, n0,0(zH))
∂zk,t

= Â
j2G

✓
N

∂w(z•, z0,0, n0,0)
∂nj,0

◆
ej�k,t, (A-13)

where we have defined

ej�k,t =
1
N

∂nj,0(zH)

∂zk,t
. (A-14)

Thanks to spatial homogeneity this is in turn equivalent to

ej�k,t =
1
N

∂nj�k,0(zH)

∂z0,t
. (A-15)

The quantity ej�k,t is the extended phenotypic effect of a single individual residing in the focal patch

at t time steps in the past on the value of the environmental variable in patch j � k in the present,

where ∂nj�k,0(zH)/∂z0,t is the effect of the whole set of individuals in the focal patch at t time steps in

the past on the value that the environmental variable takes in patch j � k in the present. But since the

map g (eq. 2) does not depend on time (i.e. environmental dynamics are homogeneous in time), ej�k,t

is also the effect of a focal individual residing in the focal patch on the value that the environmental

4



variable takes in patch j � k at t time steps in the future. We can thus write

ej�k,t =
∂nj�k,t

∂z•
, (A-16)

where nk,t now stands for the value of the environmental variable in patch k at t steps in the future.

Substituting eq. (A-16) into eq. (A-13), and this into eq. (6b), obtains eq. (11), as required.

Appendix C.2 Extended phenotypic effects

Here, we derive the expression for the extended phenotypic effect given by eq. (14) of the main text.

To do this, we first take the derivative on both sides of eq. (9) with respect to z•, which yields

∂nk,t+1
∂z•

= dt,0
∂g(zR

k,0, nk,0)

∂z•
+ Â

i2G

∂g(zR
k,t, nk,t)

∂ni,t

∂ni,t
∂z•

, (A-17)

where dt,0 is a Kronecker delta, and where we used ∂g(zk,t, nk,t)/∂ni,t = ∂g(zR
k,t, nk,t)/∂ni,t, since all

derivatives are evaluated at z and n̂. This also entails that the derivatives of the transition map g are

independent of time, which allows us to write

ek,t+1 = dt,0yk + Â
i2G

ck�iei,t, (A-18)

with

yk =
∂g(zR

k,0, nk,0)

∂z•
=

8
>>>>><

>>>>>:

1
N

∂g(zR
0,0, n0,0)

∂z
R
0,0

for k = 0

1
N

∂g(zR
0,0, n0,0)

∂zk,0
otherwise,

(A-19)

and

ck�i =
∂g(zR

k,t, nk,t)

∂ni,t
=

∂g(zR
k,0, nk,0)

∂ni,0
=

∂g(zR
0,0, n0,0)

∂nk�i,t
, (A-20)

where the second equality in equation (A-19) follows from spatial homogeneity and the chain rule of

derivatives, the second equality in equation (A-20) follows from temporal homogeneity, and the last

equality in equation (A-20) follows from spatial homogeneity. These expressions are useful in concrete

applications since only g(zR
0,0, n0,0) needs to be specified to evaluate yk and ck (see section 3.4).

We can solve eq. (A-18), using the Fourier transforms (see Box 1) Et(h) = Âk2G ek,tck(h), C(h) =

Âk2G ckck(h) (Table 1) and Y(h) = Âk2G ykck(h) (Table 1). Using these expressions, from (A-18),
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and noting that ck(h) = ck�i(h)ci(h) holds, we have

Â
k2G

ei,k,t+1ck(h)

| {z }
Et+1(h)

= dt,0 Â
k2G

ykck(h)

| {z }
Y(h)

+ Â
i2G

ei,tci(h)

| {z }
Et(h)

Â
k2G

ck�ick�i(h)

| {z }
C(h)

, (A-21)

where the expression for C(h) holds by changing the dummy index of the sum. Thus, we obtain the

recursion

Et+1(h) = dt,0Y(h) + C(h)Et(h), (A-22)

whose solution given the initial condition E0(h) = 0 (as there are no extended phenotypic effects in

the focal generation) is Et(h) = C(h)t�1Y(h), as required in eq. (14).

Appendix D Selection gradient in terms of scaled relatedness

Here, we derive eq. (18) which, recall, is premised on the fitness of the focal individual taking the form

w(z•, z0,0, n0,0) = w̃(p(z•, z0,0, n0,0)) (A-23)

with payoff vector

p(z•, z0,0, n0,0) =

0

BB@p(z•, z0,0, n0,0)| {z }
p•

, p(z0,0, z
n
0,0, n0,0)| {z }

p0

, . . . , p(zj,0, z
R
j,0, nj,0)

| {z }
pj

, . . .

1

CCA . (A-24)

Here, z
n
0,0 is equivalent to z0,0 except for the first entry which is given by

z
n
0,0 =

1
N � 1

z• +
N � 2
N � 1

z0,0, (A-25)

(instead z0,0 of in z0,0), and z
R
j,0 is equal to zj,0 except that the entry with component z0,0 in this vector

is replaced with

z
R
0,0 =

1
N

z• +
N � 1

N
z0,0, (A-26)

that is, with the average phenotype in the patch 0, 0 including the focal individual.

To simplify the operation of taking derivatives of fitness with respect to phenotypes later, we first

express the derivatives of the payoff pj appearing in eq. (A-24) with respect to its various arguments

in terms of the derivatives of the payoff to the focal individual. Applying the chain rule of derivatives

6



and evaluating the derivatives at the resident phenotype, we readily obtain the following,

∂p•
∂z•

=
∂p(z•, z0,0, n0,0)

∂z•
, (A-27)

∂p•
∂z0,0

=
∂p(z•, z0,0, n0,0)

∂z0,0
, (A-28)

∂p0

∂z•
=

1
N � 1

∂p(z•, z0,0, n0,0)
∂z0,0

, (A-29)

∂pj

∂z•
=

1
N

∂p(z•, z0,0, n0,0)
∂zj,0

for j 6= •, 0, (A-30)

∂p0

∂z0,0
=

∂p(z•, z0,0, n0,0)
∂z•

+

✓
N � 2
N � 1

◆
∂p(z•, z0,0, n0,0)

∂z0,0
, (A-31)

∂pj

∂z0,0
=

✓
N � 1

N

◆
∂p(z•, z0,0, n0,0)

∂zj,0
for j 6= •, 0, (A-32)

∂pj

∂zj,0
=

∂p(z•, z0,0, n0,0)
∂z•

+
∂p(z•, z0,0, n0,0)

∂z0,0
for j 6= 0, (A-33)

∂pk

∂zj,0
=

∂pj

∂zk,0
=

∂p•
∂zj�k,0

=
∂p•

∂zk�j,0
=

∂p(z•, z0,0, n0,0)
∂zk�j,0

=
∂p(z•, z0,0, n0,0)

∂zj�k,0
for j 6= 0 and k 6= •, j,

(A-34)

where the equalities in the last expression all follow from our assumption of spatial homogeneity.

Similarly, for derivatives of payoffs with respect to environmental state variables, we have

∂p•
∂n0,0

=
∂pj

∂nj,0
=

∂p(z•, z0,0, n0,0)
∂n0,0

for all j 2 G, (A-35)

where the first and second equalities are consequences of spatial homogeneity, and

∂pk

∂nj,0
=

∂p•
∂nj�k,0

=
∂p(z•, z0,0, n0,0)

∂nj�k,0
for j 6= 0 (A-36)

where the first equality is again a consequence of spatial homogeneity.

We can then write the derivatives of fitness that appear in the selection gradient (eqs. 6a–6b) in terms

of the derivatives of the payoff to the focal individual (eqs. A-27–A-36) by applying the chain rule of

derivatives to the right-hand side of eq. (A-23) and simplifying, as follows. First, the fitness derivative
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with respect to the focal individual’s phenotype can be written as

∂w(z•, z0, n0,0)
∂z•

=
∂w̃(p(z•, z0,0, n0,0))

∂z•

=
∂w̃

∂p•

∂p•
∂z•

+
∂w̃

∂p0

∂p0

∂z•
+ Â

k2G\0

∂w̃

∂pk

∂pk

∂z•

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂z•

+
∂w̃

∂p0

1
N � 1

∂p(z•, z0,0, n0,0)
∂z0,0

+ Â
k2G\0

∂w̃

∂pk

1
N

∂p(z•, z0,0, n0,0)
∂zk,0

, (A-37)

where the first equality follows from taking the derivative to both sides of eq. (A-23); the second equal-

ity follows from applying the chain rule; and the third equality follows from substituting eqs. (A-27)–

(A-30).

Second, the fitness derivative with respect to the average phenotype of patch neighbours is

∂w(z•, z0, n0,0)
∂z0,0

=
∂w̃(p(z•, z0,0, n0,0))

∂z0,0

=
∂w̃

∂p•

∂p•
∂z0,0

+
∂w̃

∂p0

∂p0

∂z0,0
+ Â

k2G\0

∂w̃

∂pk

∂pk

∂z0,0

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂z0,0

+
∂w̃

∂p0


∂p(z•, z0,0, n0,0)

∂z•
+

✓
N � 2
N � 1

◆
∂p(z•, z0,0, n0,0)

∂z0,0

�

+ Â
k2G\0

∂w̃

∂pk

✓
N � 1

N

◆
∂p(z•, z0,0, n0,0)

∂zk,0

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂z0,0

+
∂w̃

∂p0


∂p(z•, z0,0, n0,0)

∂z•
+

✓
1 � 1

N � 1

◆
∂p(z•, z0,0, n0,0)

∂z0,0

�

+ Â
k2G\0

∂w̃

∂pk

✓
1 � 1

N

◆
∂p(z•, z0,0, n0,0)

∂zk,0

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂z0,0

+
∂w̃

∂p0


∂p(z•, z0,0, n0,0)

∂z•
�
✓

1
N � 1

◆
∂p(z•, z0,0, n0,0)

∂z0,0

�

+ Â
k2G

∂w̃

∂pk

∂p(z•, z0,0, n0,0)
∂zk,0

� Â
k2G\0

∂w̃

∂pk

1
N

∂p(z•, z0,0, n0,0)
∂zk,0

, (A-38)

where the first equality follows from taking the derivative to both sides of eq. (A-23); the second equal-

ity follows from applying the chain rule; the third equality follows from substituting eqs. (A-28), (A-31)

and (A-32); and the last equality follows from distributing and rearranging terms.
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Third, the derivative with respect to the average phenotype in any patch j 6= 0 is

∂w(z•, z0, n0,0)
∂zj,0

=
∂w̃(p(z•, z0,0, n0,0))

∂zj,0

=
∂w̃

∂p•

∂p•
∂zj,0

+
∂w̃

∂pj

∂pj

∂zj,0
+ Â

k2G\j

∂w̃

∂pk

∂pk

∂zj,0

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂zj,0

+
∂w̃

∂pj

✓
∂p(z•, z0,0, n0,0)

∂z•
+

∂p(z•, z0,0, n0,0)
∂z0,0

◆

+ Â
k2G\j

∂w̃

∂pk

∂p(z•, z0,0, n0,0)
∂zj�k,0

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂zj,0

+
∂w̃

∂pj

∂p(z•, z0,0, n0,0)
∂z•

+ Â
k2G

∂w̃

∂pk

∂p(z•, z0,0, n0,0)
∂zj�k,0

, (A-39)

where the second equality follows from applying the chain rule; the third equality follows from using

the definition of p• (eq. A-24) and substituting eq. (A-33) and eq. (A-34); and the fourth and last

equality follows from rearranging.

Finally, the derivative with respect to the state variable in patch j is

∂w(z•, z0,0, n0,0)
∂nj,0

=
∂w̃(p(z•, z0,0, n0,0))

∂nj,0

=
∂w̃

∂p•

∂p•
∂nj,0

+ Â
k2G

∂w̃

∂pk

∂pk

∂nj,0
(A-40)

=
∂w̃

∂p•

∂p(z•, z0,0, n0,0)
∂nj,0

+ Â
k2G

∂w̃

∂pk

∂p(z•, z0,0, n0,0)
∂nj�k,0

,

where the second equality follows from applying the chain rule; and the third equality follows from

substituting eqs. (A-35)–(A-36).

Let us denote by

lj = � ∂w̃

∂pj

,
∂w̃

∂p•
(A-41)

the coefficient of fitness interdependence between individuals in the focal patch and individuals in

patch j. We can express sw(z) in terms of these coefficients of fitness interdependence and in terms of

the derivatives of the fitness function with respect to the phenotypes of different actors in the following

way. Substituting eqs. (A-37)–(A-39) into eq. (6a), factoring ∂w̃/∂p•, and making use of (A-41), we

9



obtain

sw(z) =
∂w

∂z•
+

∂w

∂z0,0
R0,0 + Â

j2G\0

∂w

∂zj,0
Rj,0

=
∂w̃

∂p•

∂p

∂z•
+

∂w̃

∂p0

1
N � 1

∂p

∂z0,0
+ Â

k2G\0

∂w̃

∂pk

1
N

∂p

∂zk,0
| {z }

∂w

∂z•

+

2

4 ∂w̃

∂p•

∂p

∂z0,0
+

∂w̃

∂p0

✓
∂p

∂z•
� 1

N � 1
∂p

∂z0,0

◆
+ Â

k2G

∂w̃

∂pk

∂p

∂zk,0
� Â

k2G\0

∂w̃

∂pk

1
N

∂p

∂zk,0

3

5

| {z }
∂w

∂z0,0

R0,0

+ Â
j2G\0

"
∂w̃

∂p•

∂p

∂zj,0
+

∂w̃

∂pj

∂p

∂z•
+ Â

k2G

∂w̃

∂pk

∂p

∂zj�k,0

#

| {z }
∂w

∂z
j,0

Rj,0

=
∂w̃

∂p•

8
<

:
∂p

∂z•
� l0

1
N � 1

∂p

∂z0,0
� Â

k2G\0

lk

1
N

∂p

∂zk,0

+

2

4 ∂p

∂z0,0
� l0

✓
∂p

∂z•
� 1

N � 1
∂p

∂z0,0

◆
+ Â

k2G\0

lk

1
N

∂p

∂zk,0
� Â

k2G

lk

∂p

∂zk,0

3

5 R0,0

+ Â
j2G\0

"
∂p

∂zj,0
� lj

∂p

∂z•
� Â

k2G

lk

∂p

∂zj�k,0

#
Rj,0

9
=

;

=
∂w̃

∂p•

8
<

:
∂p

∂z•
� l0

1
N � 1

∂p

∂z0,0
� Â

k2G\0

lk

1
N

∂p

∂zk,0

+

2

4 ∂p

∂z0,0
� l0

∂p

∂z•
� l0

1
N � 1

∂p

∂z0,0
+ Â

k2G\0

lk

1
N

∂p

∂zk,0
� l0

∂p

∂z0,0
� Â

k2G\0

lk

∂p

∂zk,0

3

5 R0,0

+ Â
j2G\0

2

4 ∂p

∂zj,0
� lj

∂p

∂z•
� lj

∂p

∂z0,0
� Â

k2G\j

lk

∂p

∂zj�k,0

3

5 Rj,0

9
=

; . (A-42)

Collecting terms and simplifying, we further get

sw(z) =
∂w̃

∂p•

(
∂p

∂z•

 
1 � Â

j2G

ljRj,0

!
+

∂p

∂z0,0

"
R0,0 � l0

1
N � 1

(1 � R0,0)� Â
j2G

ljRj,0

#

+ Â
k2G\0

∂p

∂zk,0


Rk,0 �

1
N

lk (1 � R0,0)

�
� Â

j2G
Â

k2G\j

lk

∂p

∂zj�k,0
Rj,0

| {z }
U

9
>>>>=

>>>>;

. (A-43)
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To further simplify this expression, note that the underbraced term can be rewritten as

U = Â
j2G

Â
k2G\j

lk

∂p

∂zj�k,0
Rj,0

= Â
j2G

Â
k2G

lk

∂p

∂zj�k,0
Rj,0 � Â

j2G

lj

∂p

∂z0,0
Rj,0

= Â
k2G

lk Â
j2G

∂p

∂zj�k,0
Rj,0 �

∂p

∂z0,0
Â
j2G

ljRj,0

= Â
k2G

lk Â
j2G

∂p

∂zj,0
Rj�k,0 �

∂p

∂z0,0
Â
j2G

ljRj,0

= Â
j2G

∂p

∂zj,0
Â

k2G

lkRj�k,0 �
∂p

∂z0,0
Â
j2G

ljRj,0

= Â
j2G\0

∂p

∂zj,0
Â

k2G

lkRj�k,0

= Â
k2G\0

∂p

∂zk,0
Â
j2G

ljRj�k,0, (A-44)

where the third line follows from the identity

Â
j2G

fjgk�j = Â
j2G

fk�jgj, (A-45)

and the last line follows from changing the dummy variables and from the symmetry of the relatedness

coefficients (i.e. the fact that R�k,0 = Rk,0 holds for all k 2 G).

Substituting (A-44) into (A-43) and simplifying we obtain

sw(z) =
∂w̃

∂p•

(
∂p

∂z•

 
1 � Â

j2G

ljRj,0

!
+

∂p

∂z0,0

"
R0,0 � l0

1
N � 1

(1 � R0,0)� Â
j2G

ljRj,0

#

+ Â
k2G\0

∂p

∂zk,0

"
Rk,0 �

1
N

lk (1 � R0,0)� Â
j2G

ljRj�k,0

#9=

;

=
∂w̃

∂p•

 
1 � Â

j2G

ljRj,0

!(
∂p

∂z•
+

R0,0 � l0
1

N�1 (1 � R0,0)� Âj2G ljRj,0

1 � Âj2G ljRj,0

∂p

∂z0,0

+ Â
k2G\0

Rk,0 � 1
N

lk(1 � R0,0)� Âj2G ljRj�k,0

1 � Âj2G ljRj,0

∂p

∂zk,0

9
=

;

= L

(
∂p

∂z•
+ Â

k2G

kk,0
∂p

∂zk,0

)
, (A-46)

where the second equality follows from factoring ∂w̃

∂p•

⇣
1 � Âj2G ljRj,0

⌘
, and the final equality follows

from defining

L =
∂w̃

∂p•

 
1 � Â

j2G

ljRj,0

!
, (A-47)
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k0,0 =
R0,0 � 1

N�1 l0(1 � R0,0)� Âj2G ljRj,0

1 � Âj2G ljRj,0
, (A-48)

and

kk,0 =
Rk,0 � 1

N
lk(1 � R0,0)� Âj2G ljRj�k,0

1 � Âj2G ljRj,0
(A-49)

for k 6= 0. Eq. (A-46) corresponds to the expression for sw(z) in eq. (18) of the main text, as required,

by rearranging the numerators of eq. (A-48) and eq. (A-49). The representation of the numerators in

eqs. (A-48)–(A-49) are useful for computations, while those in eq. (19) are more amenable to interpre-

tation.

Note that in the infinite island model of dispersal, Rj,0 = 0 for all j 6= 0. In this case, k0,0 (eq. A-48)

reduces to eq. 22 of [7] as it should. This provides a consistency check of our derivation.

Let us turn to express se(z) in terms of the coefficients of fitness interdependence. From eq. (11) and

after substituting (A-40), factoring ∂w̃/∂p•, and making use of eq. (A-41), we obtain

se(z) = N

•

Â
t=1

Â
k2G

Â
j2G

ej�k,tRk,t
∂w

∂nj,0

= N

•

Â
t=1

Â
k2G

Â
j2G

ej�k,tRk,t

"
∂w̃

∂p•

∂p

∂nj,0
+ Â

i2G

∂w̃

∂pi

∂p

∂nj�i,0

#

= N
∂w̃

∂p•

•

Â
t=1

Â
k2G

Â
j2G

ej�k,tRk,t

"
∂p

∂nj,0
� Â

i2G

li

∂p

∂nj�i,0

#
. (A-50)

By rearranging terms and applying the identity (A-45), we can rewrite this expression as

se(z) = N
∂w̃

∂p•

•

Â
t=1

"

Â
j2G

∂p

∂nj,0
Â

k2G

ej�k,tRk,t � Â
j2G

Â
i2G

li

∂p

∂nj�i,0
Â

k2G

ej�k,tRk,t

#

= N
∂w̃

∂p•

•

Â
t=1

"

Â
j2G

∂p

∂nj,0
Â

k2G

ek,tRj�k,t � Â
j2G

Â
i2G

li

∂p

∂nj�i,0
Â

k2G

ek,tRj�k,t

#

= N
∂w̃

∂p•

•

Â
t=1

"

Â
i2G

∂p

∂ni,0
Â

k2G

ek,tRi�k,t � Â
j2G

Â
k2G

ek,tRj�k,t Â
i2G

li

∂p

∂nj�i,0

#

= N
∂w̃

∂p•

•

Â
t=1

"

Â
i2G

∂p

∂ni,0
Â

k2G

ek,tRi�k,t � Â
j2G

Â
k2G

ek,tRj�k,t Â
i2G

lj�i

∂p

∂ni,0

#

= N
∂w̃

∂p•

•

Â
t=1

"

Â
i2G

∂p

∂ni,0
Â

k2G

ek,tRi�k,t � Â
i2G

∂p

∂ni,0
Â

k2G

ek,t Â
j2G

Rj�k,tlj�i

#

= N
∂w̃

∂p•

•

Â
t=1

Â
i2G

∂p

∂ni,0
Â

k2G

ek,t

"
Ri�k,t � Â

j2G

lj�iRj�k,t

#
. (A-51)

Using the symmetry of the relatedness coefficients and changing the summation indices we further
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get

se(z) = N
∂w̃

∂p•

•

Â
t=1

Â
i2G

∂p

∂ni,0
Â

k2G

ek,t

"
Rk�i,t � Â

j2G

ljRj�k+i,t

#

= N
∂w̃

∂p•

•

Â
t=1

Â
i2G

∂p

∂ni,0
Â

k2G

ek�i,t

"
Rk,t � Â

j2G

ljRj�k,t

#

= N
∂w̃

∂p•

 
1 � Â

j2G

ljRj,0

!
•

Â
t=1

Â
k2G

Â
i2G

∂p

∂ni,0
ek�i,t

Rk,t � Âj2G ljRj�k,t

1 � Âj2G ljRj,0

= LN

•

Â
t=1

Â
k2G

Â
i2G

∂p

∂ni,0
ek�i,tkk,t, (A-52)

where the second-to-last line follows from multiplying and dividing by 1 � Âj2G ljRj,0, and the last

line follows from identifying L (A-47) and defining

kk,t =
Rk,t � Âj2G ljRj�k,t

1 � Âj2G ljRj,0
for t > 0. (A-53)

Eq. (A-52) corresponds to the expression for se(z) in eq. (18) of the main text, as required.

Adding the intra- (eq. A-46) and inter-temporal (eq. A-52) components of the selection gradient, we

obtain

s(z) = sw(z) + se(z)

= L

(
∂p

∂z•
+ Â

k2G

kk,0
∂p

∂zk,0
+ N

•

Â
t=1

Â
k2G

Â
i2G

∂p

∂ni,0
ek�i,tkk,t

)
, (A-54)

overall.

For derivations to come, it is convenient to have the scaled-relatedness coefficients written in terms

of the partial derivatives of w̃ with respect to the payoffs of different individuals. From eqs. (A-48),

(A-49) and (A-53) and the definition of the coefficients of fitness interdependence (A-41) we have after

rearrangements and multiplying numerators and denominators by ∂w̃/∂p•:

k0,0 =
R0,0

∂w̃

∂p•
+ ∂w̃

∂p0

h
1

N�1 (1 � R0,0) + R0,0

i
+ Âj2G\0

∂w̃

∂pj

Rj,0

∂w̃

∂p•
+ ∂w̃

∂p0
R0,0 + Âj2G\0

∂w̃

∂pj

Rj,0
, (A-55)

kk,0 =
Rk,t

∂w̃

∂p•
+ ∂w̃

∂pk

1
N
(1 � R0,0) + Âj2G

∂w̃

∂pj

Rj�k,0

∂w̃

∂p•
+ ∂w̃

∂p0
R0,0 + Âj2G\0

∂w̃

∂pj

Rj,0
for k 6= 0, (A-56)

and

kk,t =
Rk,t

∂w̃

∂p•
+ Âj2G

∂w̃

∂pj

Rj�k,t

∂w̃

∂p•
+ ∂w̃

∂p0
R0,0 + Âj2G\0

∂w̃

∂pj

Rj,0
for t > 0. (A-57)
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Appendix E Explicit expressions for scaled relatedness

Here, we derive the explicit expression for scaled relatedness kk,t given by eq. (III.A) in Box 3, which

is based on the assumption that individual fitness can be written as eq. (17); that is

w̃(p) = s (p•) + Â
i2G

mi

h
1 � sR (pi)

i f(p•)

Âj2Gmi�jfR(pj)
, (A-58)

where

sR(pi) =

8
<

:

1
N
s(p•) + N�1

N
s(p0) if i = 0

s(pi) otherwise
(A-59)

and

fR(pi) =

8
<

:

1
N
f(p•) + N�1

N
f(p0) if i = 0

f(pi) otherwise.
(A-60)

We proceed in three steps. First, we calculate payoff derivatives and the coefficients of fitness interde-

pendence in terms of demographic parameters (Appendix E.1). Second, we calculate expressions for

the scaled relatedness coefficients in terms of relatedness coefficients (Appendix E.2). Third, starting

from these expressions, we calculate expressions for the scaled relatedness coefficients in terms of de-

mographic parameters, obtaining eq. (III.A) shown in Box 3 (Appendix E.3). Finally, in Appendix E.4,

we use these results to get an expression for L (A-47) in terms of demographic parameters, which can

be useful to have the magnitude (not just the sign) of the selection gradient.

Appendix E.1 Payoff derivatives and coefficients of fitness interdependence

Using the quotient rule of derivatives, and evaluating expressions at the resident trait value, the deriva-

tive of w̃ (A-58) with respect to the payoff of the focal individual p• can be written as

∂w̃

∂p•
=

∂s (p•)
∂p•

+ Â
i2G

mi

∂

∂p•

(⇥
1 � sR (pi)

⇤
f(p•)

Âj2Gmi�jfR(pj)

)

= s0 + Â
i2G

mi

∂
∂p•

�⇥
1 � sR (pi)

⇤
f(p•)

 
Âj2G mi�jf

R(pj)�
⇥
1 � sR (pi)

⇤
f(p•)Âj2G mi�j

∂fR(pj)
∂p•h

Âj2G mi�jfR(pj)
i2

= s0 + Â
i2G

mi

∂
∂p•

�⇥
1 � sR (pi)

⇤
f(p•)

 
f � (1 � s)f Âj2G mi�j

∂fR(pj)
∂p•

f2

= s0 + Â
i2G

mi

∂
∂p•

�⇥
1 � sR (pi)

⇤
f(p•)

 

f
� Â

i2G

mi

(1 � s)Âj2G mi�j

∂fR(pj)
∂p•

f
,

where we have set s0 = ∂s (p•) /∂p•, and used the fact that Âj2G mi�j = 1 for all i 2 G.
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Substituting (A-59), noting that

∂sR(pi)
∂p•

=

8
<

:

1
N
s0 if i = 0

0 otherwise,
(A-61)

and
∂fR(pi)

∂p•
=

8
<

:

1
N
f 0 if i = 0

0 otherwise
(A-62)

hold, and setting f 0 = ∂f (p•) /∂p•, we further get

∂w̃

∂p•
= s0 + m0

∂
∂p•

nh
1 � 1

N
s(p•)� N�1

N
s(p0)

i
f(p•)

o

f
+ Â

i2G\0

mi

∂
∂p•

{[1 � s (pi)] f(p•)}
f

� Â
i2G

mi

(1 � s)Âj2G mi�j

∂fR(pj)
∂p•

f

= s0 + m0

(1 � s)f 0 � 1
N
s0f

f
+ Â

i2G\0

mi

(1 � s)f 0

f
� Â

i2G

mi

(1 � s)mi
1
N
f 0

f

= s0 � m0

1
N
s0 + m0

(1 � s)f 0

f
+ Â

i2G\0

mi

(1 � s)f 0

f
� 1

N
(1 � s)

f 0

f Â
i2G

m
2
i

= s0
✓

1 � m0

1
N

◆
+ (1 � s)

f 0

f Â
i2G

mi �
1
N
(1 � s)

f 0

f Â
i2G

m
2
i

=

✓
1 � 1

N
m0

◆
s0 +

 
1 � 1

N
Â
i2G

m
2
i

!
(1 � s)

f 0

f

= s0 + (1 � s)
f 0

f
� 1

N

 
s0m0 + (1 � s)

f 0

f Â
i2G

m
2
i

!
. (A-63)

Applying the same line of arguments produces

∂w̃

∂p0

= �N � 1
N

"
m0s

0 +

 

Â
i2G

m
2
i

!
(1 � s)

f 0

f

#
(A-64)

and
∂w̃

∂pj

= �mjs
0 �

 

Â
i2G

mimi�j

!
(1 � s)

f 0

f
for j 6= 0, (A-65)

where, as usual, all functions are evaluated at the resident trait value z and equilibrium n̂.

Introducing the notation

Pj = Â
i2G

mimi�j, (A-66)

which is the probability that an offspring born in patch j competes with an offspring of the focal

individual (i.e. that they both migrate to the same patch), the derivatives in eqs. (A-63)–(A-65) can be
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more compactly written as

∂w̃

∂p•
= s0 + (1 � s)

f 0

f
� 1

N

✓
s0m0 + (1 � s)

f 0

f
P0

◆
(A-67)

∂w̃

∂p0

= �N � 1
N

✓
s0m0 + (1 � s)

f 0

f
P0

◆
(A-68)

∂w̃

∂pj

= �
✓
s0mj + (1 � s)

f 0

f
Pj

◆
for j 6= 0. (A-69)

In terms of these derivatives, the coefficients of fitness interdependence (A-41) can then be written as

l0 = � ∂w̃/∂p0

∂w̃/∂p•
=

✓
N � 1

N

◆
s0fm0 + f 0(1 � s)P0

s0f + f 0(1 � s)� [s0fm0 + f 0(1 � s)P0] /N
, (A-70)

lj = �
∂w̃/∂pj

∂w̃/∂p•
=

s0fmj + f 0(1 � s)Pj

s0f + f 0(1 � s)� [s0fm0 + f 0(1 � s)P0] /N
for j 6= 0. (A-71)

Appendix E.2 Scaled-relatedness in terms of relatedness coefficients

To calculate and simplify the scaled-relatedness coefficients, it is convenient to start from expressions

(A-55) – (A-57). First, note that using eqs. (A-67) and (A-68), and rearranging terms yields

∂w̃

∂p•
+

∂w̃

∂p0

R0,0 = s0 + (1 � s)
f 0

f
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
1
N

+
N � 1

N
R0,0

◆

= s0 + (1 � s)
f 0

f
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
R0,0 +

1
N

(1 � R0,0)

◆

= s0 + (1 � s)
f 0

f
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆
R0,0

�
✓
s0m0 + (1 � s)

f 0

f
P0

◆
1
N

(1 � R0,0) . (A-72)

Then, using (A-72) and (A-69), rearranging, and factoring, the common denominator of k0,0 (A-55),

kk,0 (A-56), and kk,t (A-57) can be written as

∂w̃

∂p•
+

∂w̃

∂p0

R0,0 + Â
j2G\0

∂w̃

∂pj

Rj,0

= s0 + (1 � s)
f 0

f
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆
1
N

(1 � R0,0)� Â
j2G

✓
s0mj + (1 � s)

f 0

f
Pj

◆
Rj,0

= s0
"

1 �
 

Â
j2G

mjRj,0 + m0

(1 � R0,0)
N

!#
+

f 0

f
(1 � s)

"
1 �

 

Â
j2G

PjRj,0 + P0

(1 � R0,0)
N

!#
. (A-73)
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Similarly, using (A-68), yields

∂w̃

∂p0

✓
1

N � 1
(1 � R0,0) + R0,0

◆
= �N � 1

N

✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
1

N � 1
(1 � R0,0) + R0,0

◆

= �
✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
1
N
(1 � R0,0) +

N � 1
N

R0,0

◆

= �
✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
R0,0 �

1
N

R0,0 +
1
N

(1 � R0,0)

◆
.

Using this expression together with (A-67) and (A-69), the numerator of k0,0 (A-55) can be simplified

as follows:

R0,0
∂w̃

∂p•
+

∂w̃

∂p0

✓
1

N � 1
(1 � R0,0) + R0,0

◆
+ Â

j2G\0

∂w̃

∂pj

Rj,0

= R0,0

✓
s0 + (1 � s)

f 0

f

◆
� 1

N

✓
s0m0 + (1 � s)

f 0

f
P0

◆
R0,0

�
✓
s0m0 + (1 � s)

f 0

f
P0

◆✓
R0,0 �

1
N

R0,0 +
1
N

(1 � R0,0)

◆
� Â

j2G\0

✓
s0mj + (1 � s)

f 0

f
Pj

◆
Rj,0,

= R0,0

✓
s0 + (1 � s)

f 0

f

◆
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆
1
N

(1 � R0,0)� Â
j2G

✓
s0mj + (1 � s)

f 0

f
Pj

◆
Rj,0

= s0
"

R0,0 �
 

Â
j2G

mjRj,0 + m0

(1 � R0,0)
N

!#
+

f 0

f
(1 � s)

"
R0,0 �

 

Â
j2G

PjRj,0 + P0

(1 � R0,0)
N

!#
.

(A-74)

Now, substituting (A-73) and (A-74) into (A-55), and then multiplying numerator and denominator by

f, yields

k0,0 =
s0f

h
R0,0 �

⇣
Âj2G mjRj,0 + m0

(1�R0,0)
N

⌘i
+ f 0(1 � s)

h
R0,0 �

⇣
Âj2G PjRj,0 + P0

(1�R0,0)
N

⌘i

s0f
h
1 �

⇣
Âj2G mjRj,0 + m0

(1�R0,0)
N

⌘i
+ f 0(1 � s)

h
1 �

⇣
Âj2G PjRj,0 + P0

(1�R0,0)
N

⌘i . (A-75)
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To obtain similar expressions for kk,0 (A-56), and kk,t (A-57), we first use eqs. (A-67)–(A-69) to write

Rk,t
∂w̃

∂p•
+ Â

j2G

∂w̃

∂pj

Rj�k,t

= Rk,t
∂w̃

∂p•
+ R�k,t

∂w̃

∂p0

+ Â
j2G\0

∂w̃

∂pj

Rj�k,t

= Rk,t

✓
∂w̃

∂p•
+

∂w̃

∂p0

◆
+ Â

j2G\0

∂w̃

∂pj

Rj�k,t

= Rk,t


s0 + (1 � s)

f 0

f
� 1

N

✓
s0m0 + (1 � s)

f 0

f
P0

◆
� N � 1

N

✓
s0m0 + (1 � s)

f 0

f
P0

◆�
+ Â

j2G\0

∂w̃

∂pj

Rj�k,t

= Rk,t


s0 + (1 � s)

f 0

f
�
✓
s0m0 + (1 � s)

f 0

f
P0

◆�
� Â

j2G\0


s0mj + (1 � s)

f 0

f
Pj

�
Rj�k,t

= Rk,t


s0 + (1 � s)

f 0

f

�
� Â

j2G


s0mj + (1 � s)

f 0

f
Pj

�
Rj�k,t

= s0
"

Rk,t � Â
j2G

mjRj�k,t

#
+

f 0

f
(1 � s)

"
Rk,t � Â

j2G

PjRj�k,t

#
. (A-76)

and

∂w̃

∂pk

1
N
(1 � Rk,0) = �

✓
s0mk + (1 � s)

f 0

f
Pk

◆
1
N
(1 � Rk,0)

= �s0mk

(1 � Rk,0)

N
� f 0(1 � s)

f
Pk

(1 � Rk,0)

N
(A-77)

Substituting (A-73), (A-77), and (A-76) into (A-56), and then multiplying numerator and denominator

by f, yields

kk,0 =
s0f

h
Rk,t �

⇣
Âj2G mjRj�k,0 + mk

(1�R0,0)
N

⌘i
+ f 0(1 � s)

h
Rk,t �

⇣
Âj2G PjRj�k,0 + Pk

(1�R0,0)
N

⌘i

s0f
h
1 �

⇣
Âj2G mjRj,0 + m0

(1�R0,0)
N

⌘i
+ f 0(1 � s)

h
1 �

⇣
Âj2G PjRj,0 + P0

(1�R0,0)
N

⌘i for k 6= 0.

(A-78)

Likewise, substituting (A-73), and (A-76) into (A-57), and then multiplying numerator and denomina-

tor by f, yields

kk,t =
s0f

h
Rk,t � Âj2G mjRj�k,t

i
+ f 0(1 � s)

h
Rk,t � Âj2G PjRj�k,t

i

s0f
h
1 �

⇣
Âj2G mjRj,0 + m0

(1�R0,0)
N

⌘i
+ f 0(1 � s)

h
1 �

⇣
Âj2G PjRj,0 + P0

(1�R0,0)
N

⌘i for t > 0.

(A-79)
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Appendix E.3 Scaled-relatedness in terms of demographic parameters

Substituting eq. (7) into eqs. (A-75), (A-78), and (A-79), and then cancelling common terms, we obtain

k0,0 =

s0f lim
µ!0

"
Q0,0 �

 

Â
j2G

mjQj,0 + m0

(1�Q0,0)
N

!#
+ f 0(1 � s) lim

µ!0

"
Q0,0 �

 

Â
j2G

PjQj,0 + P0

(1�Q0,0)
N

!#

s0f lim
µ!0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1�Q0,0)
N

!#
+ f 0(1 � s) lim

µ!0

h
1 �

⇣
Âj2G PjQj,0 + P0

(1�Q0,0)
N

⌘i ,

(A-80)

kk,0 =

s0f lim
µ!0

h
Qk,0 �

⇣
Âj2G mjQj�k,0 + mk

(1�Q0,0)
N

⌘i
+ f 0(1 � s) lim

µ!0

h
Qk,0 �

⇣
Âj2G PjQj�k,0 + Pk

(1�Q0,0)
N

⌘i

s0f lim
µ!0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1�Q0,0)
N

!#
+ f 0(1 � s) lim

µ!0

h
1 �

⇣
Âj2G PjQj,0 + P0

(1�Q0,0)
N

⌘i ,

(A-81)

for k 6= 0, and

kk,t =

s0f lim
µ!0

"
Qk,t � Â

j2G
mjQj�k,t

#
+ f 0(1 � s) lim

µ!0

"
Qk,t � Â

j2G
PjQj�k,t

#

s0f lim
µ!0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1�Q0,0)
N

!#
+ f 0(1 � s) lim

µ!0

h
1 �

⇣
Âj2G PjQj,0 + P0

(1�Q0,0)
N

⌘i .

(A-82)

for t > 0.

To simplify eqs. (A-80)–(A-82), we first note that, from eqs. (A.42), (A.48), and (A.51) in [8], we have1

lim
µ!0

1
1 � Q0,0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1 � Q0,0)
N

!#
=

1
N


N + L0 (F

s)� 1 + s

2D

�
, (A-83)

lim
µ!0

1
1 � Q0,0

"
Q0,0 �

 

Â
j2G

mjQj,0 + m0

(1 � Q0,0)
N

!#
=

1
N


L0 (F

s)� 1 + s

2D

�
, (A-84)

lim
µ!0

1
1 � Q0,0

"
Qk,0 �

 

Â
j2G

mjQj�k,0 + mk

(1 � Q0,0)
N

!#
=

1
N


Lk (F

s)� 1 + s

2D

�
for k 6= 0, (A-85)

lim
µ!0

1
1 � Q0,0

"
Qk,t � Â

j2G

mjQj�k,t

#
=

1
N


Lk (Gs

t )�
1 + s

2D

�
for t 6= 0, (A-86)

where Lk(F ) is the inverse transform of F at k as defined in eq. (I.B), and where the functions F
s and

1Eq. (A.51) in [8] applies for all k 2 G, the condition “ if k > 0” therein is not necessary. Also, the term �s/N in the last line
of eq (A.48) of [8] contains a typo and should be replaced by s/N.
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G
s
t

are defined at h as

F
s(h) = � (1 � s)M(h)

1 + s+ (1 � s)M(h)
, (A-87)

G
s
t (h) =

(1 + s) [s+ (1 � s)M(h)]t

1 + s+ (1 � s)M(h)
(A-88)

(see eqs. (A.47) and (A.49) in [8]).

Likewise, from eqs. (A.32), (A.38), and (A.41)2 in [8], we have

lim
µ!0

1
1 � Q0,0

"
1 �

 

Â
j2G

PjQj,0 + P0

(1 � Q0,0)
N

!#
=

1
N


N + L0

⇣
F
f
⌘
� 1 + s

D

�
(A-89)

lim
µ!0

1
1 � Q0,0

"
Q0,0 �

 

Â
j2G

PjQj,0 + P0

(1 � Q0,0)
N

!#
=

1
N


L0

⇣
F
f
⌘
� 1 + s

D

�
(A-90)

lim
µ!0

1
1 � Q0,0

"
Qk,0 �

 

Â
j2G

PjQj�k,0 + Pk

(1 � Q0,0)
N

!#
=

1
N


Lk

⇣
F
f
⌘
� 1 + s

D

�
for k 6= 0, (A-91)

lim
µ!0

1
1 � Q0,0

"
Qk,t � Â

j2G

PjQj�k,t

#
=

1
N


Lk

⇣
G
f
t

⌘
� 1 + s

D

�
for t 6= 0, (A-92)

where the functions F
f and G

f
t

are defined at h as

F
f (h) =

2sM(h)
1 + s+ (1 � s)M(h)

, (A-93)

G
f
t (h) =

(1 + s)(1 +M(h)) [s+ (1 � s)M(h)]t

1 + s+ (1 � s)M(h)
(A-94)

(see eqs. (A.37) and (A.39)3 in [8]).

We can now proceed to simplify eqs. (A-80)–(A-82). First, multiplying the numerator and denomi-

nator of (A-80) by limµ!0 1/(1 � Q0,0), substituting eqs. (A-83), (A-84), (A-89), and (A-90), and then

multiplying numerator and denominator by N, we obtain

k0,0 =
s0f

h
L0 (F

s)� 1+s
2D

i
+ f 0(1 � s)

h
L0

⇣
F
f
⌘
� 1+s

D

i

s0f
h

N + L0 (Fs)� 1+s
2D

i
+ f 0(1 � s)

h
N + L0

�
Ff
�
� 1+s

D

i . (A-95)

Second, proceeding similarly with eq. (A-81) (by substituting eqs. (A-83), (A-85), (A-89), and (A-91)),

we obtain

kk,0 =
s0f

h
Lk (F

s)� 1+s
2D

i
+ f 0(1 � s)

h
Lk

⇣
F
f
⌘
� 1+s

D

i

s0f
h

N + L0 (Fs)� 1+s
2D

i
+ f 0(1 � s)

h
N + L0

�
Ff
�
� 1+s

D

i for k 6= 0. (A-96)

2Eq. (A.41) in [8] applies for for all k 2 G, the condition “ if k 6= 0” therein is not necessary.
3Eq.(A.39) in [8] contains a typo in that the the second parenthesis is not closed and the term (1 + yh should read (1 + yh).
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Third, proceeding similarly with eq. (A-82) with t > 0 (by substituting eqs. (A-83), (A-86), (A-89), and

(A-92)) we obtain

kk,t =
s0f

h
Lk (Gs

t
)� 1+s

2D

i
+ f 0(1 � s)

h
Lk

⇣
G
f
⌘
� 1+s

D

i

s0f
h

N + L0 (Fs)� 1+s
2D

i
+ f 0(1 � s)

h
N + L0

�
Ff
�
� 1+s

D

i for t > 0. (A-97)

Finally, noting that eq. (A-95) is equal to eq. (A-96) with k = 0, substituting eqs. (A-87)–(A-93), and

rearranging yields eq. (III.A) of Box 2, that is:

kk,t =

8
>><

>>:

Lk(F)� (1 + s) [s0f + 2f 0(1 � s)] /(2D)
N [s0f + f 0(1 � s)] + L0(F)� (1 + s) [s0f + 2f 0(1 � s)] /(2D)

if t = 0

Lk(Gt)� (1 + s) [s0f + 2f 0(1 � s)] /(2D)
N [s0f + f 0(1 � s)] + L0(F)� (1 + s) [s0f + 2f 0(1 � s)] /(2D)

otherwise,
(A-98)

where the functions F and Gt are given by

F(h) = � (1 � s) [s0f � 2sf 0]M(h)
1 + s+ (1 � s)M(h)

,

Gt(h) =
(1 + s) [s0f + f 0(1 � s)(1 +M(h))] [s+ (1 � s)M(h)]t

1 + s+ (1 � s)M(h)
, (A-99)

as required.

Note that one can also write eq. (A-98) as

kk,t =

8
>><

>>:

Lk(F)� G0(0)/D

N [s0f + f 0(1 � s)] + L0(F)� G0(0)/D
if t = 0

Lk(Gt)� G0(0)/D

N [s0f + f 0(1 � s)] + L0(F)� G0(0)/D
otherwise,

(A-100)

since, for all t,

Gt(0) =
(1 + s) [s0f + f 0(1 � s)(1 +M(0))] [s+ (1 � s)M(0)]t

1 + s+ (1 � s)M(0)
= G0(0) =

(1 + s) [s0f + 2f 0(1 � s)]
2

(A-101)

holds.

Appendix E.4 Explicit expression for L

Finally, we evaluate L in eq. (A-47), which is needed if one aims to evaluate the trait stationary density

function (A-5). Substituting the definition of the coefficients of fitness interdependence (A-41) into
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eq. (A-47), simplifying, and rearranging, we obtain

L =
∂w̃

∂p•
+

∂w̃

∂p0

R0,0 + Â
j2G\0

∂w̃

∂pj

Rj,0

= s0
"

1 �
 

Â
j2G

mjRj,0 + m0

(1 � R0,0)
N

!#
+

f 0

f
(1 � s)

"
1 �

 

Â
j2G

PjRj,0 + P0

(1 � R0,0)
N

!#
, (A-102)

where the second equality follows from our previous derivation in eq. (A-73).

Substituting eq. (7), we get

L =
1
f

 
s0f lim

µ!0

1
1 � Q0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1 � Q0,0)
N

!#

+f 0(1 � s) lim
µ!0

1
1 � Q0

"
1 �

 

Â
j2G

PjQj,0 + P0

(1 � Q0,0)
N

!#!
, (A-103)

which can be computed as

L =
1
f

lim
µ!0

✓
1 � Q0,0

1 � Q0

◆ 
s0f lim

µ!0

1
1 � Q0,0

"
1 �

 

Â
j2G

mjQj,0 + m0

(1 � Q0,0)
N

!#

+f 0(1 � s) lim
µ!0

1
1 � Q0,0

"
1 �

 

Â
j2G

PjQj,0 + P0

(1 � Q0,0)
N

!#!
. (A-104)

Using eqs. (A-83), (A-89), and (A-99), this becomes after some rearrangements,

L = lim
µ!0

✓
1 � Q0,0

1 � Q0

◆
⇥ 1

fN

✓
N
⇥
s0f + f 0(1 � s)

⇤
+ L0(F)� (1 + s) [s0f + 2f 0(1 � s)]

2D

◆
. (A-105)

For a Wright-Fisher process where s0 = s = 0 (and hence, also L0(F) = 0), we have

L = lim
µ!0

✓
1 � Q0,0

1 � Q0

◆
⇥ f 0

fN

✓
N � 1

D

◆
= lim

µ!0

✓
1 � Q0,0

1 � Q0

◆
⇥ f 0

f

✓
ND � 1

ND

◆
. (A-106)

Appendix F Explicit coefficient for the selection gradient

Here, we derive eq. (III.C) of Box 3 of the main text. First, we simplify the expression for kk,t for t > 0

given in the second line of eq. (A-100). Using the definition of the inverse Fourier transform given in
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eq. (I.D), and simplifying we obtain

kk,t =
Lk(Gt)� Gt(0)/D

N [s0f + f 0(1 � s)] + L0(F)� G0(0)/D

=
1
D

Âj2G Gt(j)ck
(j)� 1

D
Gt(0)ck

(0)

N [s0f + f 0(1 � s)] + 1
D

Âj2G F(j)� G0(0)/D

=
1
D

Âj2G\0 Gt(j)ck
(j)

N [s0f + f 0(1 � s)] + 1
D

Âj2G\0 F(j)� s0f+f 0(1�s)
D

=
Âj2G\0 Gt(j)ck

(j)

(ND � 1) [s0f + f 0(1 � s)] + Âj2G\0 F(j)
, (A-107)

where we have used c
k
(0) = 1 for all k 2 G, the identity Gt(0) = G0(0) for all t (A-101), and the fact

that

F(0)� G0(0) = �
⇥
s0f + f 0(1 � s)

⇤
(A-108)

holds.

Substituting the simplified expression for kk,t (A-107) together with the expression for ek,t (14) into

eq. (24), and setting

H = (ND � 1)
⇥
s0f + f 0(1 � s)

⇤
+ Â

j2G\0

F(j), (A-109)

yields

K =
•

Â
t=1

Â
k2G

ek,tkk,t

=
1
H

•

Â
t=1

Â
k2G

"
1
D

Â
i2G

C(i)t�1Y(i)c
k
(i)

# 2

4 Â
j2G\0

Gt(j)ck
(j)

3

5

=
1
H

•

Â
t=1

Â
i2G

Â
j2G\0

C(i)t�1Y(i)Gt(j)
1
D

Â
k2G

c
k
(i)c

k
(j)

=
1
H

•

Â
t=1

Â
j2G\0

C(�j)t�1Y(�j)Gt(j), (A-110)

where the last equality follows from using eq. (I.F). Substituting eq. (III.B) into (A-110) and solving

the geometric series yields

K =
1
H

•

Â
t=1

Â
j2G\0

C(�j)t�1Y(�j)
(1 + s) [s0f + f 0(1 � s)(1 +M(j))] [s+ (1 � s)M(j)]t

1 + s+ (1 � s)M(j)
(A-111)

=
1
H

Â
j2G\0

(1 + s) [s0f + f 0(1 � s)(1 +M(j))] [s+ (1 � s)M(j)� C(�j)M(j)]Y(�j)
[1 + s+ (1 � s)M(j)] [1 � C(�j)] [1 � C(�j)M(j)]

,

which is the final expression presented in eq. (III.C).

To go from the first to the second line of eq. (A-111), the relevant geometric series must converge,
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which happens if the moduli of M(j) and C(j) are smaller than one (i.e. |M(j)| < 1 and |C(j)| < 1)

for all j 6= 0, i.e. if the complex numbers M(j) and C(j) are within the unit circle. To see this is

true, consider first that by the property of characteristic functions of probability distributions, we have

M(0) = 1, and |M(j)| < 1 for j 6= 0 (p. 182 in [9]). Second, |C(j)| < 1 from our assumption that

the dynamical system eq. (2) has a hyperbolically stable equilibrium point. Indeed, stability means

that all the eigenvalues of the Jacobian matrix of eq. (2) have modulus smaller than one (e.g. p. 103 of

[10]). But these eigenvalues are in fact given by the coefficients C(j). To see this, first note that from

eq. (2) the Jacobian of this discrete-time dynamical system around the equilibrium n̂ defined by eq. (3)

is given by

J =

0

BBBBBBBBBBBBBBBBBB@

∂g(z0,t, n0,t)
∂n0

∂g(z0,t, n0,t)
∂n1

∂g(z0,t, n0,t)
∂n2

. . .
∂g(z0,t, n0,t)

∂nD�1

∂g(z1,t, n1,t)
∂n0

∂g(z1,t, n1,t)
∂n1

∂g(z1,t, n1,t)
∂n2

. . .
∂g(z1,t, n1,t)

∂nD�1

∂g(z2,t, n2,t)
∂n0

∂g(z2,t, n2,t)
∂n1

∂g(z2,t, n2,t)
∂n2

. . .
∂g(z2,t, n2,t)

∂nD�1

...
...

...
. . .

...

∂g(zD�1,t, nD�1,t)

∂n0

∂g(zD�1,t, nD�1,t)

∂n1

∂g(zD�1,t, nD�1,t)

∂n2

. . .
∂g(zD�1,t, nD�1,t)

∂nD�1

1

CCCCCCCCCCCCCCCCCCA

,

(A-112)

where all derivatives are evaluated at z and n̂. Now, recalling the notations defined in eq. (A-20), the

entries of this matrix are of the form

ck�i =
∂g(zk,t, nk,t)

∂ni,t
=

∂g(zk�i,t, nk�i,t)

∂n0,t
=

∂g(z0,t, n0,t)
∂nk�i,t

, (A-113)

which is the same as eq. (A-20) since all phenotypes vectors, here and there, are set to (z, ..., z) when

computing the derivative. From the first equality in the previous equation, the Jacobian (A-112) can

be written as

J =

0

BBBBBBBBBBBB@

c0 c�1 c�2 . . .

c1 c0 c�1 . . .

...
...

... . . .

cD�1
cD�2

cD�3

. . .

1

CCCCCCCCCCCCA

, (A-114)

where we defined D�2 = D�1 � 1, D�3 = D�1 � 2, etc. Written in this form, it is clear that the

Jacobian (A-114) is a G-group circulant matrix (e.g. p. 50 of [11]), with eigenvalues given by the

Fourier transform of cj (Theorem 8 in [11]). Hence, the k-th eigenvalue of J is C(k) = Âj2G cjcj(k).
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Appendix G Public good diffusion example

Appendix G.1 Fecundity effects

Here, we derive eq. (33) of the main text, which considers fecundity effects and no generational overlap

(s0 = s = 0). Substituting eq. (21) into eq. (31) yields

W = e
•

Â
t=1

Â
k2G

(1 � e)t�1
qk,t

✓
Dpk,t � 1
DN � 1

◆

=
e

DN � 1

•

Â
t=1

(1 � e)t�1

 
D Â

k2G

qk,t pk,t � Â
k2G

qk,t

!

=
eD

DN � 1

•

Â
t=1

(1 � e)t�1

 

Â
k2G

pk,tqk,t �
1
D

!
, (A-115)

where we have used the fact that qk,t is a probability distribution over G for all t and hence that

Âk2G qk,t = 1 holds for all t.

Eq. (A-115) can be written in terms of the population covariance of pk,t and qk,t in the following way.

Recall that the population covariance of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) of length n

is given by

cov(x, y) =
1
n

n

Â
j=1

xjyj � hxihyi (A-116)

where hxi = (1/n)Ân

j=1 xj and hyi = (1/n)Ân

j=1 yj. Using this definition of population covariance,

and denoting by pt =
�

p0,t, . . . , pD�1,t
�

and qt =
�
q0,t, . . . , qD�1,t

�
the vectors collecting all pk,t’s and

qk,t’s in lexicographic order, we can write

cov(pt, qt) =
1
D

Â
k2G

pk,tqk,t �
 

1
D

Â
k2G

pk,t

! 
1
D

Â
k2G

qk,t

!

=
1
D

Â
k2G

pk,tqk,t �
1

D2

=
1
D

 

Â
k2G

pk,tqk,t �
1
D

!

Dcov(pt, qt) = Â
k2G

pk,tqk,t �
1
D

, (A-117)

where the second line follows from the fact that both pk,t and qk,t are probability distributions over

G for all t and hence satisfy Âk2G pk,t = Âk2G qk,t = 1 for all t. Substituting (A-117) into (A-115) we

finally obtain

W =
eD

2

DN � 1

•

Â
t=1

(1 � e)t�1cov(pt, qt), (A-118)

as required.
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Appendix G.2 Fecundity effects: Weak dispersal

Here, we derive eq. (35) of the main text, following the common approach to evaluate a weak migration

approximation (chapter 3 in [2]). To do so, we first set m0 = (1 � m) and d0 = (1 � d), where m and

d are the net dispersal probabilities of the focal species and the environmental variable, and write

mi = mg
m
i

and di = dg
d
i

. The characteristic functions of the dispersal distributions can then be

expressed as M(j) = 1 � mx
m(j) and D(j) = 1 � dx

d(j), where x
m(j) = 1 � Âi2G\0 g

m
i

ci(j) and

x
d(j) = 1 � Âi2G\0 g

d
i

ci(j). Substituting these expressions into the summand of eq. (34), and Taylor

expanding around m = 0 and d = 0, we get

D(�j)M(j)
1 � (1 � e)D(�j)M(j)

=
e � mx

m(j)� dx
d(j)

e2 + h.o.t., (A-119)

where “h.o.t.” refers to higher order terms, e.g. terms proportional to m
2, md, d

2, etc. Substituting

x
m(j) = [1 �M(j)]/m and x

d(j) = [1 �D(j)]/d, we can write eq. (34) as

W =
1

DN � 1 Â
j2G\0

M(j) +D(j) + e � 2
e2 + h.o.t.. (A-120)

Neglecting the higher order terms and using M(j) = Âk2G mkck(j), and D(j) = Âk2G dkck(j) pro-

duces

W =
1

DN � 1

2

4 Â
j2G\0

Â
k2G

✓
mk + dk

e2

◆
ck(j) + Â

j2G\0

✓
e � 2

e2

◆3

5 (A-121)

=
1

DN � 1

2

4 Â
k2G

✓
mk + dk

e2

◆ 

Â
j2G

ck(j)� 1

!
+ Â

j2G\0

✓
e � 2

e2

◆3

5

=
1

DN � 1

✓
m0 + d0

e2

◆
(D � 1) + (D � 1)

✓
e � 2

e2

◆�

=

✓
D � 1

DN � 1

◆✓
e � m � d

e2

◆
,

where the penultimate equality follows from the facts that Âk2G ck(j) = D if j = 0 and zero otherwise

(recall eq. I.F), and that Âj2G\0 1 = D � 1.

Appendix G.3 Fecundity effects: Island model

Here, we derive the expression for W for a Wright-Fisher life cycle (using eq. 34) under the island

model of species dispersal and commons movement, which we use in Fig 6 (dashed lines). Under this

26



model of dispersal and movement, we have

mk =

8
>>><

>>>:

1 � m if k = 0

m

D � 1
otherwise,

(A-122)

and similarly,

dk =

8
>>><

>>>:

1 � d if k = 0

d

D � 1
otherwise.

(A-123)

We first calculate the Fourier transforms M(h) and D(�h) of the dispersal and movement distribu-

tions. We obtain

M(h) = Â
k2G

mkck(h)

= (1 � m)c0(h) + Â
k2G\0

m

D � 1
ck(h)

= (1 � m)c0(h) +
m

D � 1

"

Â
k2G

ck(h)� c0(h)

#

= (1 � m) +
m

D � 1

"

Â
k2G

ck(h)� 1

#

=

8
>>><

>>>:

1 if h = 0

(1 � m)D � 1
D � 1

otherwise,

(A-124)

where the first line uses the definition of Fourier transform (I.B), the second and third lines rearrange

terms, the fourth line uses the fact that c0(h) = 0, and the fifth line follows from identity (I.F).

Likewise,

D(h) =

8
>>><

>>>:

1 if h = 0

(1 � d)D � 1
D � 1

otherwise.

(A-125)

Substituting eqs. (A-124) and (A-125) into eq. (34), using the fact that, for (A-125) D(�h) = D(h)

holds, and simplifying, we arrive to

W =

✓
e

DN � 1

◆
(D � 1) [(1 � d)D � 1] [(1 � m)D � 1]

(D � 1)2 � (1 � e) [(1 � d)D � 1] [(1 � m)D � 1)]
. (A-126)
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Appendix G.4 Survival effects

We now consider the case where there are survival but no fecundity effects (f 0 = 0). Writing W as

W = eKN/P
0(z), substituting

Y(h) = P
0(z)D(h)/N, (A-127)

C(h) = (1 � e)D(h). (A-128)

into eq. (III.F) in Box 3, and simplifying we obtain

W =
1

(DN � 1)� Âj2G\0

(1�s)M(j)
1+s+(1�s)M(j)

⇥ Â
j2G\0

(1 + s) [s+ (1 � s)M(j)� (1 � e)M(j)D(�j)]D(�j)
[1 + s+ (1 � s)M(j)] [1 � (1 � e)D(�j)] [1 � (1 � e)M(j)D(�j)]

, (A-129)

which remains a somewhat complicated expression. In the limit s ! 1, eq. (A-129) simplifies to

W =
1

DN � 1 Â
j2G\0

D(�j)
1 � (1 � e)D(�j)

. (A-130)

This can be thought of as a special case where investment into the common-pool resource occurs in

a population of immortal individuals that, therefore, become mortal through endogenously induced

deaths. Finally, we note that for a spatially symmetric dispersal distribution we can set D(�j) = D(j).

Appendix G.5 Species dispersal and commons movement

In our example, we assumed that the evolving species dispersed according to a model based on the

binomial distribution, which is detailed in Appendix B. Hence, the characteristic function used for

a one-dimensional habitat is given by eq. (A-10), while for a two-dimensional habitat, it is based on

Appendix B.2.

We assume that the way the commons moves in space follows the same model as the evolving species.

We write d for the commons’ probability of movement (instead of m), and ld for the mean number

of steps a unit of commons moves conditional on leaving the patch (instead of lm). The characteristic

function of the movement in one dimension then is like eq. (A-10), i.e.

D(k) = (1 � d) + d

D�1
2

Â
j=1

pj((D � 1)/2, 2ld/(D � 1)) cos (2p jk/D) (A-131)
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where ld is such that

ld =
ld

1 �
⇣

1 � 2ld
D�1

⌘(D�1)/2 . (A-132)

Appendix G.6 Stationary distribution

Here, we specify the stationary distribution of the trait substitution sequence for our example, i.e. we

specify eq. (A-5), which we used in Fig 6B for the interval. Substituting eq. (30) into eq. (A-54), which

is in turn substituted into eq. (A-4) gives

f(z) = lim
µ!0

 
1 � Q0

1 � Q0,0

!

| {z }
>0

⇥L ⇥ p(z, z, n̂)⇥
 

BP
0(z)aB

✓
P(z)

e

◆aB�1
W � CaCz

aC�1

!
, (A-133)

thus characterising the term within parenthesis of eq. (A-5). For the Wright-Fisher process, we have

from eq. (A-106) that

L = lim
µ!0

✓
1 � Q0,0

1 � Q0

◆
⇥ 1

p(z, z, n̂)

✓
DN � 1

DN

◆
, (A-134)

where we used the fact that, for our example, payoff is fecundity, and so f 0 = 1 in eq. (A-106). Thus,

the perturbation of the fixation probability reduces to

f(z) =

✓
DN � 1

DN

◆ 
BP

0(z)aB

✓
P(z)

e

◆aB�1
W � CaCz

aC�1

!
. (A-135)

Assuming further that P(z) = P0z, we find by substituting eq. (A-135) into eq. (A-5) that the stationary

distribution is given by

p(z) = Cp exp


2 (DN � 1)
✓

B

✓
P0z

e

◆aB

e W � Cz
aC

◆�
, (A-136)

where Cp is a constant of proportionality such that
R •
�• p(z)dz = 1.
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