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QUANTITATIVE ANISOTROPIC ISOPERIMETRIC AND BRUNN−MINKOWSKI

INEQUALITIES FOR CONVEX SETS WITH IMPROVED DEFECT ESTIMATES

Davit Harutyunyan1,a

Abstract. In this paper we revisit the anisotropic isoperimetric and the Brunn−Minkowski inequali-
ties for convex sets. The best known constant C(n) = Cn7 depending on the space dimension n in both
inequalities is due to Segal [A. Segal, Lect. Notes Math., Springer, Heidelberg 2050 (2012) 381–391].
We improve that constant to Cn6 for convex sets and to Cn5 for centrally symmetric convex sets. We
also conjecture, that the best constant in both inequalities must be of the form Cn2, i.e., quadratic in n.
The tools are the Brenier’s mapping from the theory of mass transportation combined with new sharp
geometric-arithmetic mean and some algebraic inequalities plus a trace estimate by Figalli, Maggi and
Pratelli.
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1. Introduction and main results

The isoperimetric inequality is one of the classical inequalities in geometric measure theory, e.g., [17]. It states
the following: If one prescribes the volume of a set in Rn, then its perimeter is smallest if and only if the set is
a ball. In the mathematical formulation one has the inequality

per(E) ≥ n|E|(n−1)/n|B1|1/n, (1.1)

for any measurable and bounded set E ⊂ Rn with perimeter P (E) and Lebesgue measure |E|. Moreover, the
equality in (1.1) holds if and only if the set E is a ball. The isoperimetric inequality has been proven by
different authors and different approaches, see the articles [13,15,19,20,30,33] and the references therein. Upon
introducing the isoperimetric deficit

δ(E) =
per(E)

n|E|(n−1)/n|B1|1/n
− 1 ≥ 0, (1.2)

of the set E, one considers then the following stability question: Is it true, that if the deficit is close to zero,
then the set E is close to a ball in an appropriate sense? A positive answer to this question has been given by
many authors. In the case n = 2, Bonnesen [2] (see also [37]) proved that a planar domain D of area A that is
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bounded by a closed simple curve ∂D of length L, has concentric circles O1 inside D and O2 containing D and
with radii R1 and R2 such, that

(R2 −R1)2 ≤ L2

4π
−A.

For the general case n > 2, the following version of the quantitative isoperimetric inequality has been considered:

per(E) ≥ n|E|(n−1)/n|B1|1/n
(

1 +
(A(E))α

C(n)

)
, (1.3)

where A(E) is the asymmetry index of the set E defined as

A(E) = inf
x∈Rn

{
|E4(x+Br)|

|Br|
: |Br| = |E|

}
, (1.4)

where Br is a ball with the same volume as E, the set X4Y is the symmetric difference of the sets X and Y,
and the sum X+Y is the Minkowski sum defined as X+Y = {x+y : x ∈ X, y ∈ Y }. Here the constant C(n)
depends on the space dimension n and α ∈ R is a positive number. There is also the so called anisotropic or
weighted version of the isoperimetric inequality which we present below. Assume L ⊂ Rn is an open bounded
convex set that contains the origin. Define the weight function of the set L in all directions in Rn as follows:

‖ν‖∗ = sup{x · ν : x ∈ L}, for all directions ν ∈ Sn−1. (1.5)

Let now E ∈ Rn be a piecewise smooth2 open set oriented by the outer unit normal νE . Then the anisotropic
or weighted perimeter of E with respect to L is defines to be

PL(E) =

∫
∂E

‖νE‖∗dHn−1. (1.6)

In the case when L is the unit ball centered at the origin, PL(E) coincides with the usual perimeter per(E)
of the set E. The anisotropic isoperimetric inequality then states, that if the volume of E is fixed, then the
anisotropic perimeter PL(E) is minimised for the set E that is homothetic to L, which is Wulff’s conjecture [39],
see the work of Fonseca and Müller [18] for a proof. The Wulff inequality reads as

PL(E) ≥ n|E|(n−1)/n|L|1/n,

for all E ∈ Rn open bounded domains. In what follows, we assume that L is a fixed convex set and we will drop
the dependence in L of some parameters sometimes in order to not to complicate the notation. The anisotropic
deficit will then be the quantity

δ(E) =
PL(E)

n|E|(n−1)/n|L|1/n
− 1 ≥ 0. (1.7)

The quantitative version of (1.7) analogous to (1.4) then naturally arises and reads as

δ(E) ≥ (A(E))α

C(n)
· (1.8)

The quantity A(E) here is not the asymmetry index of the set E, but rather it determines the amount of how
much the shape of E differs from the shape of L, i.e.,

A(E) = inf
x∈Rn

{
|E4(x+ rL)|

|E|
: |rL| = |E|

}
. (1.9)

2A set that has a piecewise smooth boundary.
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The main question is then what the smallest possible value of α and C(n) are. Inequality (1.3) dates back to
1905, when Bernstein [3] studied it in the case n = 2. Quantitative versions of the isoperimetric inequality (1.3)
have been proven again by different authors, among which the first proof for arbitrary Borel sets is due to Fusco,
Maggi and Pratelli [20], where the authors prove that (1.3) holds for α = 2 and some constant C(n) proving Hall’s
conjecture [25]. The work of Figalli, Maggi and Pratelli [15] by a mass transportation approach then follows,
where the authors pursue Gromov’s approach [33] to prove the inequality (1.8), i.e., the anisotropic case (Wulff’s
inequalty) for α = 2 and an improved constant C(n). The mass transportation approach has been know to be
an excellent tool for proving geometric inequalities, e.g., [1, 31, 32]. As already said, the optimal value of α in
the inequalities (1.3) and (1.8) is α = 2. Until the year 2010, the best know constant C(n) in (1.3) and (1.8)

was obtained by Figalli, Maggi and Pratelli in [15], where they get the value C(n) = C(n) = 181n7

(2−2(n−1)/n)1.5
.

It is easy to see, that Cn8.5 ≥ C(n) ≥ cn8.5 for all n ∈ N, i.e., it has a polynomial growth. In the sequel we
will refer to both inequalities (1.3) and (1.8) for the value α = 2. Then the work of Segal [35] followed in 2012,
where following the lines of [15], Segal improved the constant to Cn7, which is the best known constant to our
best knowledge. In this paper we aim to prove the inequality (1.8) with an improved constant C(n) = 100n6 for
any convex body E and with C(n) = 100n5 for any convex body E that is centrally symmetric. Our strategy is
to prove a somewhat specialized Brunn−Minkowski inequality and then to derive the isoperimetric inequality
from it. Let us introduce the Brunn−Minkowski inequality. In the beginning of the 20th century Minkowski
proved that for any measurable bounded sets X,Y ∈ Rn, the inequality holds:

|X + Y |1/n ≥ |X|1/n + |Y |1/n. (1.10)

Inequality (1.10) is called Brunn−Minkowsky inequality for sets. The credit of Brunn in (1.10) is that he had
proved it for the case n = 3 before Minkowsky’s general proof. It has been proved [7, 22, 23, 27], that equality
holds in (1.10) if and only if the sets X and Y are homothetic to the same convex set, i.e., there exists a convex
set K ∈ Rn, two vectors u, v ∈ Rn and numbers λ, µ > 0 such, that |(u + λK)4X| = |(v + µK)4Y | = 0. An
analogous quantitative version of (1.10) is as follows, e.g., [16],

|X + Y |1/n ≥ (|X|1/n + |Y |1/n)

(
1 +

A(X,Y )2

C0(n)σ(X,Y )1/n

)
, (1.11)

for all bounded convex sets X,Y ⊂ Rn, where

A(X,Y ) = inf
x∈Rn

{
|X4(x+ λY )|

|X|
: λ =

(
|X|
|Y |

)1/n
}
, (1.12)

σ(X,Y ) = max

((
|X|
|Y |

)1/n

,

(
|Y |
|X|

)1/n
)
·

As it is know, e.g., [36], that the Brunn−Minkowski inequality (1.11) implies the stable version of the isoperi-
metric inequality (1.8) with the same constant C(n) = C0(n). In the existing works on the Brunn−Minkowski
inequality, the dependence of the constant C0(n) upon the space dimension n is Cn7, which is due to Segal [35],
thus it is our task to derive a version of (1.11) with a constant C(n) that depends on n relatively favorably. We
believe, that the asymptotically best constant C in all inequalities (1.3), (1.8) and (1.11) is of the form Cn2

as n → ∞, which we conjecture in this paper. Recall, that in the general case when the sets X and Y are not
convex, the stability of the classical Brunn−Minkowski inequality has been proven by Figalli and Jerison [14],
where the authors prove a version of (1.11) with A(X,Y )αn instead of A(X,Y )2 with some αn > 0 depending on
n and having exponential growth. Also, if one of the sets X and Y is convex, then Carlen and Maggi [10] proved
an estimate analogous to (1.11) with A(X,Y )4 instead of A(X,Y )2 with some constant C0(n). In general, even
in the case when only one of the sets X and Y is convex, the best exponent α of A(X,Y ) (which is 2 for convex
sets) is not know. Let us now introduce some more notation for convex sets. In what follows, we will use the
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letters K and L for convex sets to keep the notation consistent with the monograph on convex bodies and the
Brunn−Minkowski theory by Schneider in [36]. Given a bounded domain Ω ∈ Rn, denote by rΩ and RΩ the
inner and the outer radii of it, i.e., rΩ is the radius of the biggest ball that can be put in Ω and RΩ is the
radius of the smallest ball that contains Ω. It is well known that any compact convex body has a minimal ball
inside itself and a maximal ball containing it, e.g., [36]. Given now a compact convex body, denote the so called
inverse roundness of K to be the quantity

qK = inf

{
RT (K)

rT (K)
: T = Ax, A ∈Mn×n, detA 6= 0

}
. (1.13)

The quantity qK determines how round the convex body K can be made by a nonsingular affine transformation:
the smaller the value of qK is the rounder the body K can be made. Another property of convex bodies is that
any convex body K ∈ Rn fulfills the inequality, e.g. [29, 36],

RT (K)

rT (K)
≤ n, (1.14)

where the transformation T is called John’s symmetrization [29]. It is also known, that if the convex body K is
centrally symmetric, then one has an improved version of (1.14), [28, 36], namely,

RT (K)

rT (K)
≤
√
n. (1.15)

We hereafter assume that n ≥ 2. Next come the main results of the paper.

Theorem 1.1. Assume K,L ⊂ Rn are compact convex bodies such that |K|, |L| > 0. Then the quantitative
anisotropic isoperimetric inequality holds:

PL(K) ≥ n|K|(n−1)/n|L|1/n
(

1 +
(A(K))2

C(K,n)

)
, (1.16)

with the constant C(K,n) = 100n4q2K .

Corollary 1.2. Owing to the estimates (1.14) and (1.15) we get the that the quantitative anisotropic isoperi-
metric inequality (1.16) holds with the constant C(n) = 100n6 for any convex bodies K and with the constant
C(n) = 100n5 provided the convex body K is centrally symmetric.

The following version of Brunn−Minkowski inequality then follows:

Theorem 1.3. Assume K,L ⊂ Rn are compact convex bodies such that |K|, |L| > 0. Then the quantitative
Brunn−Minkowski inequality holds:

|K + L|1/n ≥ (|K|1/n + |L|1/n)

(
1 +

(A(K,L))2

C(n)σ(K,L)1/n

)
, (1.17)

with the constant C(n) = 400n6. Recall, that inequality (1.17) reads as

β(K,L) ≥ (A(K,L))2

C(n)σ(K,L)1/n
,

where

β(K,L) =
|K + L|1/n

|K|1/n + |L|1/n
− 1 (1.18)

is the Brunn−Minkowski deficit, e.g., [15].

We also make the following conjecture:

Conjecture 1.4. In both Theorems 1.1, 1.3 the optimal constants C(K,n) and C(n) are of the form Cn2,
where C is an absolute constant.
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2. Stable geometric-arithmetic mean inequalities and the connection
with the Brunn−Minkowski inequality

In this section we prove sharp quantitative versions of the geometric and arithmetic mean inequality. The
purpose of that is then to use them in the derivation of a stable Brunn−Minkowski inequality. Our motivation is
as follows: It is very well known, that Brunn−Minkowski inequality can be derived from the arithmetic-geometric
mean inequality on a page as done by Hadwiger and Ohmann in [24], see also [26,36] and the celebrated review
article of Gardiner [21] for details. The interesting thing is that the reverse process can also be done in a few
lines, i.e, the geometric-arithmetic mean inequality can be derived from the Brunn−Minkowski inequality. To
our best knowledge that has never been written anywhere and we present it in the below lemma.

Lemma 2.1. The Brunn−Minkowski inequality implies the geometric and arithmetic mean inequality,

x1 + x2 + . . .+ xn
n

≥ (x1x2 . . . xn)1/n, for all xi ≥ 0, i = 1, 2, . . . , n. (2.1)

i.e., they are equivalent.

Proof. Assume (1.10) is satisfied for the sets X = K and Y = L according to our convention. Then take the
sets K = [0, ε]n and L = [0, x1]× [0, x2]× . . .× [0, xn] and apply (1.10) to the pair (K,L) to get

ε+ (x1x2 . . . xn)1/n ≤ ((x1 + ε)(x2 + ε) . . . (xn + ε))1/n.

Taking now the n− th power of both sides we get after the cancellation of x1x2 . . . xn,

εn(x1x2 . . . xn)1/n +O(ε2) ≤ ε(x1 + x2 + . . .+ xn) +O(ε2).

Sending now ε to zero, we arrive at (2.1). The proof is finished now. �

This equivalence suggests, that one may be able to prove a quantitative version of the Brunn−Minkowski in-
equality via a quantitative version of the geometric-arithmetic mean inequality. We prove the following theorem.

Theorem 2.2. For a sequence x1, x2, . . . , xn ≥ 0 denote x = (x1x2 . . . xn)1/n. Then the following quantitative
version of the geometric-arithmetic mean inequality holds:

x1 + x2 + . . .+ xn
n

≥ (x1x2 . . . xn)1/n +
1

n

n∑
i=1

(
√
xi −

√
x)2. (2.2)

Moreover the equality holds if and only if one of the numbers x1, x2, . . . , xn is zero or if all of them are equal.

Proof. The proof is trivial, we simply open the brackets on the right to get an equivalent inequality

x1 + x2 + . . .+ xn
n

≥ x+
x1 + x2 + . . .+ xn

n
+ x− 2

√
x

n

n∑
i=1

√
xi,

which is equivalent to

1

n

n∑
i=1

√
xi ≥

√
x,

i.e., the geometric and arithmetic mean inequality for the sequence
√
x1,
√
x2, . . . ,

√
xn. If x > 0 then it is clear

that the equality holds if and only if xi = x for all 1 ≤ i ≤ n. If x = 0, then clearly equality holds in (2.2). If
x = 0, then again clearly equality holds in (2.2). �
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Remark 2.3. The coefficient 1
n in front of the expression

∑n
i=1(
√
xi −

√
x)2 on the right can not be improved

as shown by the example x1 = 1, xi = 0, i ≥ 2.

Corollary 2.4. For any sequence x1, x2, . . . , xn ≥ 0 the inequality holds:

x1 + x2 + . . .+ xn
n

≥ (x1x2 . . . xn)1/n +
1

2n

n∑
i=1

(xi − x)2

xi + x
· (2.3)

Proof. The proof is a direct consequence of inequality (2.2) and the estimate

(
√
xi −

√
x)2 =

(xi − x)2

(
√
xi +

√
x)2
≥ (xi − x)2

2(xi + x)
· �

The next theorem is an alternative version of Theorem 2.2 which may be of separate interest.

Theorem 2.5. Assume x1, x2, . . . , xn ≥ 0. Then the following quantitative version of the geometric-arithmetic
mean inequality holds:

x1 + x2 + . . .+ xn
n

≥ (x1x2 . . . xn)1/n +
1

n(n− 1)

∑
1≤i<j≤n

(
√
xi −

√
xj)

2. (2.4)

Moreover the equality holds only in one of the following cases:

(i) If n = 2.
(ii) All but one of the numbers x1, x2, . . . , xn are zero.
(iii) All of the numbers x1, x2, . . . , xn are equal.

Proof. The proof is again trivial, upon opening the brackets on the right we get an equivalent inequality

2

n(n− 1)

∑
1≤i<j≤n

√
xixj ≥ (x1x2 . . . xn)1/n, (2.5)

which is exactly the geometric-arithmetic mean inequality for the numbers
√
xixj . It is also clear, that the

equality in (2.5) will hold if and only if all the numbers
√
xixj are equal. It is clear that the case n = 2 provides

equality in (2.4). Assume now n ≥ 3. If xi 6= 0 for some 1 ≤ i ≤ n, then we get from the equality
√
xixj =

√
xixk

that xj = xk for j, k 6= i. On the other hand as n ≥ 3 the equality
√
xixj =

√
xjxk holds and thus we get

xj(xi − xk) = 0 for all j, k 6= i and j 6= k. This then implies that xj = 0 for all j 6= i or xi = xj for all
1 ≤ i, j ≤ n, which are exactly cases (ii) and (iii) respectively. It is trivial that both cases provide equality
in (2.5) The proof is finished now. �

Remark 2.6. The constant 1
n(n−1) can not be improved in the inequality (2.4) as shown by the example

x1 = 1, xi = 0, i ≥ 2.

The last theorem in this section provides another key estimate in the proof of Theorem 1.1.

Remark 2.7. Unlike the classical geometric-arithmetic mean inequality, there are several equality cases in
both (2.2) and (2.4).

Lemma 2.8. For any numbers x1, x2, . . . , xn ∈
[
0, 12
]

the inequality holds:

n∑
i=1

√
xi

1 + xi
≥ n

√
x

1 + x
, (2.6)

where as before we define x = (x1x2 . . . xn)1/n.
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Proof. We prove the theorem by induction up and down in n, namely the strategy is to prove inequality (2.6)
for n = 2k and then derive it for n− 1 provided it holds for n. The first step is to prove (2.6) for n = 2, i.e.,√

x1
1 + x1

+

√
x2

1 + x2
≥ 2

√
x

1 + x
, (2.7)

where x =
√
x1x2. Denote xi = tan2(αi), where αi ∈ [0, α] ⊂ [0, π2 ) such that tanα ≤ 1√

2
. After some

trigonometric manipulation, inequality (2.6) turns into the form

(sinα1 + sinα2)2 cos(α1 − α2) ≥ 4 sinα1 sinα2,

which is the same as

(sinα1 + sinα2)2
[
1− 2 sin2 α1 − α2

2

]
≥ 4 sinα1 sinα2,

which is equivalent to

(sinα1 − sinα2)2 ≥ 2 sin2 α1 − α2

2
(sinα1 + sinα2)2,

and again after some trigonometry we arrive at an equivalent form

4 sin2 α1 − α2

2
cos2

α1 + α2

2
≥ 2 sin2 α1 − α2

2
(sinα1 + sinα2)2,

i.e., the form

2 cos2
α1 + α2

2
≥ (sinα1 + sinα2)2. (2.8)

It is clear, that

2 cos2
α1 + α2

2
≥ 2 cos2 α

and

(sinα1 + sinα2)2 ≤ 4 sin2 α,

and thus (2.8) follows from the fact tanα ≤ 1√
2
, thus (2.7) is proven. If now inequality (2.6) is true for n = k,

then we have for 2k numbers x1, x2, . . . , xk, xk+1, . . . , x2k ∈ [0, 12 ], that

2k∑
i=1

√
xi

1 + xi
=

k∑
i=1

√
xi

1 + xi
+

2k∑
i=k+1

√
xi

1 + xi

≥ k


√√√√ (

∏k
i=1 xi)

1/k

1 + (
∏k
i=1 xi)

1/k
+

√√√√ (
∏2k
i=k+1 xi)

1/k

1 + (
∏2k
i=k+1 xi)

1/k


≥ 2k

√
x

1 + x
,

hence, (2.6) is true for 2k numbers too. By induction (2.6) holds true for any number n = 2k, k ∈ N. Observe,
now, that is (2.6) holds for n+ 1 numbers, then given the sequence x1, x2, . . . , xn ∈ [0, 12 ], we can utilizing it for
the n+ 1 numbers x1, x2, . . . , xn, x ∈ [0, 12 ], to derive (2.6) exactly for the sequence x1, x2, . . . , xn. The proof of
the lemma is finished now. �
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3. Proof of the main result

s We adopt the mass transportation approach proposed by Gromov e.g., [33] and successfully employed by
Ball in [1] and Figalli, Maggi and Pratelli in [16]. In fact our proof is a refinement of the Figalli, Maggi, Pratelli
proof in [16] where the estimates (2.2) and (2.6) and their careful application play a significant role.

Proof of Theorem 1.1. First we prove the following suitably modified partial version of the Brunn−Minkowski
inequality.

Lemma 3.1. Assume K,L ⊂ Rn are convex bodies such that |K|, |L| > 0 and denote Lε = εL for any ε ∈ R.
Then there exists a positive constant ε0 = ε0(K,L) > 0 that depends on the convex sets K and L such, that for
any ε ∈ (0, ε0), the inequality holds:

|K + Lε|1/n ≥ (|K|1/n + |Lε|1/n)

(
1 +

A(K,Lε)
2

C(K,n)σ(K,Lε)1/n

)
, (3.1)

with the constant C(K,n) = 100n4q2K .

Remark 3.2. The important point is that the constant C(K,n) in the inequality (3.1) does not depend on the
set L. This fact will be crucial when deriving an isoperimetric inequality from Lemma 3.1.

Proof. It is clear, that if the constant C(K,n) is frozen, then the inequality (3.1) is affine transformation-
invariant, thus as the constant C(K,n) does not depend on the set L, then we can without loss of generality
assume, that the set K has maximal possible roundedness, i.e., K is such that the quantity qK in (1.13)
is achieved for the identical transformation T (x) = x. An inner approximation, i.e., an approximation of the
sets K and L from inside by other compact convex sets lowers the measure of the sum |K+Lε| and approximates
the quantities |K|, |Lε|, A(K,Lε) and σ(K,Lε), thus we can assume without loss of generality, that the sets
K and L are smooth and uniformly convex. Due to the convexity of the sets K and L, one has by Brenier’s
theorem, [4,5,37] that there exists a convex function ϕ(x) : Rn → R such that the its gradient F = ∇ϕ : Rn → Rn
is a function of bounded variation, F ∈ BV (Rn, L) and pushes forward the probability measure 1

|K|χKdx to

the probability measure 1
|L|χLdx, i.e., it has a constant Jacobian in K:

detF (x) =
|L|
|K|

, for all x ∈ K· (3.2)

Next, we can without loss of generality assume, that |K| > |L|, thus we get σ(K,L) = |K|
|L| . As long as the

sets K and L are smooth and uniformly convex, Caffarelli showed in [8, 9], that Brenier’s map is smooth up
to the boundary of K, i.e., F ∈ C∞(K,L). On the other hand by the convexity of the map ϕ, the Hessian
∇2ϕ(x) = ∇F (x) is a symmetric positive semi-definite matrix for all x ∈ K. Denoting the eigenvalues of ∇F
by λ1(x), λ2(x), . . . , λn(x), they must be real and positive, and we get according to the condition (3.2) that,

n∏
i=1

λi(x) =
|L|
|K|

= µn, for all x ∈ K. (3.3)

where µ =
(
|L|
|K|

)1/n
= 1

σ(K,L)1/n
. It is then clear that we can use the map ϕε(x) = εϕ(x) : Rn → R as Brenier’s

map for ε > 0 and for the sets K and Lε. Denote next Fε(x) = εF (x) and Gε(x) = x + Fε(x). It is clear, that
Gε : K → K+Lε, thus Gε(K) ⊂ K+Lε. Let us now verify, that the map Gε : K → K+Lε is surjective. Assume
in contradiction, that Gε(x1) = Gε(x2), for some x1, x2 ∈ K, with x1 6= x2. Thus we get

Fε(x1)− Fε(x2) = x2 − x1. (3.4)



WULFF AND BRUNN–MINKOWSKI INEQUALITIES WITH IMPROVED DEFECT ESTIMATES 487

By the mean value formula we have Fε(x1)− Fε(x2) = ∇Fε(θx1 + (1− θ)x2)(x1 − x2) for some θ ∈ [0, 1], thus
owing to (3.4) we obtain (∇Fε(θx1 + (1− θ)x2) + I)(x1 − x2) = 0 which gives

det[∇Fε(θx1 + (1− θ)x2) + I] = 0. (3.5)

Recall now, that the Hessian∇Fε(θx1+(1−θ)x2) is positive definite and thus so is the sum∇Fε(θx1+(1−θ)x2)+I
which contradicts (3.5). From the surjectivity of the map Gε : K → K + Lε and the fact Gε(K) ⊂ K + Lε, we
obtain

|K + Lε| ≥ |Gε(K)| =
∫
K

det∇Gε(x)dx =

∫
K

n∏
i=1

(ελi + 1)dx. (3.6)

We aim to estimate the product
∏n
i=1(ελi + 1) from below. We have by Theorem 2.2, that(

n∏
i=1

ελi
1 + ελi

)1/n

≤ 1

n

n∑
i=1

ελi
1 + ελi

− 1

n

n∑
i=1

(√
ελi

1 + ελi
− u

)2

, (3.7)

where

u =

(
n∏
i=1

ελi
1 + ελi

)1/2n

·

Again, by the geometric-arithmetic mean inequality we get(
n∏
i=1

1

1 + ελi

)1/n

≤ 1

n

n∑
i=1

1

1 + ελi
· (3.8)

thus summing inequalities (3.7) and (3.8) we obtain

1 + εµ

(
∏n
i=1(ελi + 1))1/n

≤ 1− 1

n

n∑
i=1

(√
ελi

1 + ελi
− u

)2

≤ 1. (3.9)

Next denote v =
√

εµ
1+εµ . First of all the estimate (3.9) implies, that v ≥ u. We aim to prove now, that for ε > 0

small enough one has the estimate

n∑
i=1

(√
ελi

1 + ελi
− u

)2

≥
n∑
i=1

(√
ελi

1 + ελi
− v

)2

. (3.10)

Opening the brackets inequality (3.10) amounts to the following

2(v − u)

n∑
i=1

√
ελi

1 + ελi
≥ n(v2 − u2),

thus taking into account the estimate v ≥ u, we get an equivalent inequality

2

n∑
i=1

√
ελi

1 + ελi
≥ nu+ nv. (3.11)

By the definition of u and the geometric-arithmetic mean inequality we have

n∑
i=1

√
ελi

1 + ελi
≥ nu,
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for all ε > 0, thus it remains to show, that

n∑
i=1

√
ελi

1 + ελi
≥ nv, (3.12)

for small enough ε > 0. By the smoothness of the mapping F (x) and the positivity of the eigenvalues λi(x), one
has the following uniform estimates

0 < a ≤ λi(x) ≤ b <∞, uniformly in x ∈ K, i = 1, 2, . . . , n, (3.13)

thus ελi(x) ≤ εb ≤ 1
2 , for all x ∈ K and i = 1, 2, . . . , n as long as ε ≤ 1

2b . This shows the validity of (3.12) and
thus (3.10) owing to Lemma 2.8. Putting together now (3.9) and (3.10) we get the estimate

1 + εµ

(
∏n
i=1(ελi + 1))1/n

≤ 1− 1

n

n∑
i=1

(√
ελi

1 + ελi
−
√

εµ

1 + εµ

)2

· (3.14)

Next we estimate (√
ελi

1 + ελi
−
√

εµ

1 + εµ

)2

=

(
ελi

1+ελi
− εµ

1+εµ

)2
(√

ελi

1+ελi
+
√

εµ
1+εµ

)2
≥

(
ελi

1+ελi
− εµ

1+εµ

)2
2
(

ελi

1+ελi
+ εµ

1+εµ

)
=

ε2(λi − µ)2

2(1 + ελi)(1 + εµ)(ελi + εµ+ ε2λiµ)

≥ ε(λi − µ)2

2.1(λi + µ)
,

provided ε is small enough. Therefore we get from (3.14) the simpler looking estimate

1 + εµ

(
∏n
i=1(ελi + 1))1/n

≤ 1− 1

2.1n

n∑
i=1

ε(λi − µ)2

λi + µ
,

which finally implies by the Bernoulli inequality

n∏
i=1

(ελi + 1) ≥ (1 + εµ)n

(
1

1− 1
2.1n

∑n
i=1

ε(λi−µ)2
λi+µ

)n
(3.15)

≥ (1 + εµ)n

(
1 +

1

2.1n

n∑
i=1

ε(λi − µ)2

λi + µ

)n

≥ (1 + εµ)n

(
1 +

1

2.1

n∑
i=1

ε(λi − µ)2

λi + µ

)
·

Denote for simplicity U =
∑n
i=1

ε(λi−µ)2
λi+µ

. Then we have combining the estimates (3.6) and (3.15) that

|K + Lε| ≥ (1 + εµ)n
(
|K|+ 1

2.1

∫
K

Udx

)
,
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which gives

|K + Lε|1/n ≥ (|K|1/n + |Lε|1/n)

(
1 +

1

2.1|K|

∫
K

Udx

)1/n

. (3.16)

Next, owing to the bounds (3.13) we can estimate

U =

n∑
i=1

ε(λi − µ)2

λi + µ
≤ 2nb2

a
ε,

thus we have
1

2.1|K|

∫
K

Udx ≤ nb2

a
ε→ 0 as ε→ 0,

and hence we have for small enough ε by the binomial expansion,(
1 +

1

2.1|K|

∫
K

Udx

)1/n

≥ 1 +
1

2.2n|K|

∫
K

Udx,

which gives together with (3.16) the estimate

|K + Lε|1/n ≥ (|K|1/n + |Lε|1/n)

(
1 +

1

2.2n|K|

∫
K

Udx

)
,

which amounts to

β(K,Lε) ≥
1

2.2n|K|

∫
K

Udx. (3.17)

In the next step we recall the following inequality proven by Figalli, Maggi and Pratelli in [16],

A(K,Lε) ≤
C0nqK
εµ|K|

∫
K

|∇Fε(x)− εµI|dx, (3.18)

where C0 = 2
√
2

ln 2 . For convenience of the reader we present the proof of (3.18) from [16]. The key estimate needed
for proving (3.18) is the following trace inequality proven again in [16].

Lemma 3.3. Let K ⊂ Rn be a convex body such that Br ⊂ K ⊂ BR for some 0 < r < R. Then

C0nR

2r

∫
K

|∇f(x)|dx ≥ inf
c∈R

∫
∂K

|f(x)− c|dHn−1, (3.19)

for all f ∈ C∞(Rn) ∩ L∞(Rn).

The idea of the proof is that inequality (3.17) insures, that the sets 1
εµLε = 1

εµFε(K) and K are close provided

β(K,L) is small. The strategy of estimating the measure of the symmetric difference ( 1
εµLε)4K is the following:

given a point x on the boundary of the set K, one projects it onto the set L′ = 1
µL and integrates the obtained

distance over the boundary of L′. Namely, Figalli, Maggi and Pratelli do the following calculation: denote by
P (x) : Rn \ L′ → ∂L′ the projection onto the set L′, then as F (x) takes values in L, one gets the estimate

1

|K|

∫
∂K

∣∣∣∣F (x)

µ
− x
∣∣∣∣dHn−1 ≥ 1

|K|

∫
∂K  L′

|P (x)− x|dHn−1 (3.20)

Consider now the map Φ(x, t) : (∂K \ L′)× [0, 1]→ K \ L′ defined by

Φ(x, t) = tx+ (1− t)P (x).
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It is clear, that as Φ(x, t) lies on the segment joining the points x and P (x), then Φ(x, t) is a bijection. Let now
{εk(x)}n−1k=1 be a basis of the tangent space to ∂K at x. Since Φ is a bijection on has

|K \ L′| =
∫ 1

0

dt

∫
∂K\L′

∣∣∣∣∣(x− P (x)) ∧

(
n∧
k=1

(tεk(x) + (1− t)dPx(εk(x)))

)∣∣∣∣∣dHn−1.
Since P (x) is a projection onto a convex set, it decreases the distances [36], thus |dPx| ≤ 1, thus we have
|tεk(x) + (1− t)dPx(εk(x))| ≤ 1 for all k and x. Therefore one gets from the last equality, that

|K \ L′|
|K|

≤ 1

|K|

∫
∂K\L′

|P (x)− x|dHn−1,

which together with (3.20) implies

1

|K|

∫
∂K

∣∣∣∣F (x)

µ
− x
∣∣∣∣ dHn−1 ≥ |K \ L′||K|

· (3.21)

One can have assumed initially, that the set L′ is translated by a vector c ∈ Rn so that

∫
∂K

∣∣∣∣F (x)

µ
− x
∣∣∣∣dHn−1 = inf

c∈Rn

∫
∂K

∣∣∣∣F (x)

µ
− x− c

∣∣∣∣dHn−1.
Thus finally noticing, that A(K,L) ≤ |K4L

′|
|K| = 2 |K\L

′|
|K| and applying Lemma 3.3, the estimate (3.18) follows

from (3.21). The rest of the analysis is to derive the estimate (3.1) from (3.17) and (3.18). To that end we
denote

V = |∇F − µI| =

(
n∑
i=1

(λi − µ)2

)1/2

, W =

n∑
i=1

(λi + µ). (3.22)

We have on one hand by the Schwartz inequality, that

V =

(
n∑
i=1

(λi − µ)2

)1/2

≥ 1√
n

n∑
i=1

|λi − µ|

≥ 1√
n

n∑
i=1

(λi − µ)

=
1√
n

(W − 2nµ),

thus we get

W ≤
√
nV + 2nµ. (3.23)
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We have on the other hand again by the Schwartz inequality and utilizing (3.17), that

2.2n|K|β(K,Lε)

∫
K

(
√
nV + 2nµ)dx ≥

∫
K

Udx

∫
K

Wdx

≥
(∫

K

√
UWdx

)2

≥ ε

(∫
K

n∑
i=1

|λi − µ|dx

)2

≥ ε
(∫

K

V dx

)2

,

which then gives the estimate

1

|K|

∫
K

V dx ≤ 2.2n
√
nβ(K,Lε)

ε
+

√
4.2n2µβ(K,Lε)

ε
· (3.24)

Recall, that we are after the estimate (3.1), which is equivalent to

A(K,Lε)
2 ≤ 100n4q2Kβ(K,Lε)

µε
· (3.25)

It is clear, that A(K,Lε) ≤ 2, thus we can without loss of generality assume, that

100n4q2Kβ(K,Lε)

µε
< 4,

thus taking into account the bound qK ≥ 1 and n ≥ 2, we get the estimate

β(K,Lε)

µε
<

1

25n4
≤ 1

200n
· (3.26)

It is then easy to see, that (3.26) implies, that

2.1n
√
nβ(K,Lε)

ε
≤ 1

10

√
4.2n2µβ(K,Lε)

ε
,

and hence we discover from (3.24)

1

|K|

∫
K

V dx ≤ 11

10

√
4.2n2µβ(K,Lε)

ε
· (3.27)

Finally, combining now the estimates (3.18) and (3.25) we arrive at

A2(K,Lε) ≤
121 · 4.2C2

0n
4q2K

100εµ
β(K,Lε), (3.28)

which yields (3.1). The proof of the lemma is finished now. �

It is a well known procedure how the proof of Theorem 1.1 easily follows now from the estimate (3.1), one
just lets ε go to zero in (3.1). Indeed, from the estimate

|K + Lε| ≥
(
|K|1/n + ε|L|1/n

)n(
1 +

εA(K,L)2|L|1/n

C(K,n)|K|1/n

)
,
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we get by the well known (Minkowski-Steiner formula for the case of L = B1) formula [17], that at the first
order (as ε→ 0),

|K|+ εPL(K) ≥ (|K|+ εn|K|(n−1)/n|L|1/n)

(
1 +

εA(K)2|L|1/n

C(K,n)|K|1/n

)n
≥ (|K|+ εn|K|(n−1)/n|L|1/n)

(
1 +

εnA(K)2|L|1/n

C(K,n)|K|1/n

)
,

which is exactly (1.16). The proof of the theorem is finished now. �

Proof of Theorem 1.3. The derivation of a Brunn−Minkowski for convex sets from an anisotropic isoperimetric
inequality is again classical and is due to Hadwiger and Ohmann [24]. Again, for convenience of the reader we
present the proof here. From the definition of the anisotropic perimeter, it is clear that

PK(M) + PL(M) = PK+L(M), (3.29)

for all convex sets K,L,M ∈ Rn. Another trivial and classical fact is the triangle inequality

A(K,L) ≤ A(K,M) +A(M,L). (3.30)

We can assume without loss of generality, that the origin is an inner point for both of the sets K and L and it
is also clear that the set M = K + L is convex too. Thus we have by Corollary 1.2, that

PK(K + L) ≥ n|K + L|(n−1)/n|K|1/n
(

1 +
A(K + L,K)2

C(n)

)
,

and

PL(K + L) ≥ n|K + L|(n−1)/n|L|1/n
(

1 +
A(K + L,L)2

C(n)

)
,

thus summing the two estimates and owing to (3.29) we get

|K + L|1/n

|K|1/n + |L|1/n
− 1 ≥ 1

C(n)

(
|K|1/n

|K|1/n + |L|1/n
A(K + L,K)2 +

|L|1/n

|K|1/n + |L|1/n
A(K + L,L)2

)
(3.31)

≥ 1

C(n)

(
σ1/n

1 + σ1/n
A(K + L,K)2 +

1

1 + σ1/n
A(K + L,L)2

)
≥ 1

C(n)

(
1

2σ1/n
A(K + L,K)2 +

1

2σ1/n
A(K + L,L)2

)
,

as σ ≥ 1. An application of the inequality a2 + b2 ≥ 1
2 (a+ b)2 and due to the triangle inequality we get

|K + L|1/n

|K|1/n + |L|1/n
− 1 ≥ A(K,L)2

4C(n)σ1/n
,

which completes the proof of the theorem. �

Finally, we comment on the Conjecture 1.4. As we have already seen, Brunn−Minkowski inequality implies the
anisotropic isoperimetric inequality with the same constant C(n), and the anisotropic isoperimetric inequality
with a constant C(n) implies the Brunn−Minkowski inequality with a constant 4C(n), thus it suffices to prove
that C(n) ≥ Cn2 for some constant C in the Brunn−Minkowski inequality. To that end we consider the two
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boxes K = [0, 1]n and L = [0, 1]m × [0, 1 + ε]n−m, where n ≥ 2, m = [n/2] is the whole part of n/2, and ε is a
small number. We have denoting α = (n−m)/n, by Taylor’s formula that

β(K,L) =
|K + L|1/n − |K|1/n − |L|1/n

|K|1/n + |L|1/n
(3.32)

≤ 1

2
(|K + L|1/n − |K|1/n − |L|1/n)

=
1

2

(
2
(

1 +
ε

2

)α
− 1− (1 + ε)α

)
=

1

2

(
2

(
1 +

αε

2
+
α(α− 1)ε2

8
+O(ε3)

)
− 1−

(
1 + αε+

α(α− 1)ε2

2
+O(ε3)

))
=
α(1− α)ε2

4
+O(ε3)

≤ ε2

16
+O(ε3).

On the other hand by the construction of the boxes K and L it is clear, that

A(K,L) ≥ cnε, (3.33)

for some constant c > 0. Thus combining inequalities (3.32), (3.33) and (1.11), and sending ε to zero we arrive
at the estimate C(n) ≥ Cn2 for some absolute constant C > 0. This insures, that the exponent 2 of n in the
constant C(n) is not possible to make any lower. The reverse inequality for the optimal constant C(n) ≤ Cn2 is
a task for future. It is also worth mentioning, that Segal showed in [35], that if one assumes that the validity of
Dar’s conjecture implies the estimate C(n) ≤ Cn2, i.e., proves Conjecture 1.4. Recall, that Dar’s conjecture [12]
asserts the following: For any bounded convex bodies, the inequality holds

|K + L|1/n ≥M(K,L)1/n +
|K|1/n|L|1/n

M(K,L)1/n
,

where
M(K,L) = max

x∈Rn
|K ∩ (L+ x)|.

Note, that Dar’s conjecture has been proven recently by Xi and Leng [38] in the planar case n = 2.

Remark 3.4. As mentioned in the introduction section, in the general case when the sets X,Y ⊂ Rn are just
bounded and measurable, then the validity of (1.11) is open. The convex body proof approach does not work in
the general case due to many facts in particular the luck of John’s symmetrization and the passage from Wullf’s
inequality to the Brunn−Minkowski.
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