
STATISTICAL LEARNING VIA STOCHASTIC OPTIMIZATION
UNDER DATA PRIVACY CONSIDERATIONS

by
Md Enayat Ullah

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
January, 2024

© 2024, Md Enayat Ullah
All rights reserved

Abstract

In this dissertation, we study statistical learning, formulated as stochastic optimization

problems, under modern constraints motivated by data privacy considerations. The

goal is to understand the statistical and computational complexity in algorithm design

for fundamental classes of problems.

The first part concerns differential privacy, which, in recent years, has emerged

as the de-facto standard for privacy-preserving data analysis. We study design of

differentially private algorithms for (a). supervised learning of linear predictors with

convex losses, also known as convex generalized linear models, and (b). non-convex

optimization, where the goal is to approximate stationary points of the risk function.

Our derived guarantees for the proposed algorithms are, as of yet, the best-known,

and in most cases, are shown to be nearly optimal, in the worst case.

The second part concerns the problem of machine unlearning. The goal here is

to efficiently update a trained model under requests to unlearn a data point in the

training dataset. We delve into the problem for widely-studied classes of convex losses:

smooth/non-smooth settings and generalized linear models. We propose learning and

corresponding unlearning algorithms, which are (non-trivially) accurate and efficient.

Further, we extend our techniques, to unlearn general structured iterative procedures,

and a streaming setting, where the unlearning requests arrive sequentially.

ii

Thesis Readers

Dr. Raman Arora (Primary Advisor)

Department of Computer Science

The Johns Hopkins University

Dr. Amitabh Basu

Department of Applied Mathematics and Statistics

The Johns Hopkins University

Dr. Michael Dinitz

Department of Computer Science

The Johns Hopkins University

iii

Dedicated to my family.

iv

Acknowledgements

I am indebted to many who have generously provided support and wisdom, aiding

both my professional growth and personal well-being, during my doctoral journey. I

am afraid my words may fall short in expressing this, but I will try my best.

I owe immense gratitude to my advisor, Prof. Raman Arora, for his continued

guidance and support. His mentorship was instrumental in shaping my research

interests and honing my critical-thinking skills. He always remained patient, kind and

encouraging, even when I faced (extended) periods of little progress, or even a clear

direction. I am particularly grateful for facilitating opportunities to visit the Institute

for Advanced Study, Princeton, and Simons Institute for the Theory of Computing,

as well as for fostering numerous collaborations.

I thank Prof. Amitabh Basu and Prof. Michael Dinitz, for agreeing to be a part of

my dissertation committee, and for being excellent teachers and mentors.

I am fortunate to have regularly collaborated with Prof. Raef Bassily, Prof.

Cristóbal Guzmán and Michael Menart, which has been richly rewarding and produc-

tive. Every meeting was a learning experience, markedly enhancing my understanding

of the field. I deeply appreciate Raef and Cristóbal’s fervent enthusiasm for research

and progress, which continually fueled my motivation. I also thank Tomás González,

who joined us on a project, and made invaluable contributions.

I undertook two summer internships, at Adobe and Google Research. My heartfelt

thanks to my mentors, Anup Rao, Tung Mai and Ryan Rossi at Adobe, and Peter

v

Kairouz, Sewoong Oh and Christopher Choquette-Choo, at Google. The internships

provided me with valuable experiences, and broadened my perspective, especially

regarding research in industry. I’m also sincerely grateful to my mentors for the career

counsel they generously offered whenever I sought it.

I thank my (former and current) labmates: Jalaj, Poorya, Teodor, Yunjuan, Austin,

Anh, Thanh and Kaibo. I am lucky to have collaborated with many of you. I appreciate

you all for serving as my sounding board, helping clarify my doubts and sharing in

my excitement over various (often unrelated) topics. I am particularly thankful to

Poorya and Teodor for guiding me in the initial years.

I am grateful to Prof. Vladimir (Vova) Braverman, which whom I worked during

my initial Ph.D. years. Vova was thoughtful and generous in introducing me to many

wonderful colleagues and mentors. Several of them became my co-authors, including

Nikita Ivkin, Daniel Rothchild, Ashwinee Panda, Harry Lang, Samson Zhou, Prof.

Ion Stoica and Prof. Joseph Gonzalez. I enjoyed and learned a lot working with them.

I thank Jalaj Upadhyay and Venkata Gandikota (GV) for their ample and earnest

guidance, particularly during the onset of my Ph.D. Jalaj sparked my interest in

differential privacy, which forms a core component of this thesis. He has looked after

me throughout these years, promptly answering my queries, technical and otherwise.

I convey my sincere gratitude to my mentors at IIT Kanpur, Prof. Purushottam

Kar, Prof. Debasis Kundu and Dr. Prateek Jain, for nurturing my early enthusiasm

for (theoretical) research and encouraging me towards pursuing graduate studies.

I am indebted to the exceptional teachers at JHU, IIT Kanpur, and those before

them, who have been essential in shaping my path to this moment.

I thank the CS staff, especially Kim Franklin, for streamlining the administrative

tasks. Kudos to the coffee czars for ensuring the espresso machine in Malone works!

I thank my housemates, Samvit and Saurabh, at Carolina. The Ph.D. journey

vi

would likely have been much more difficult if it were not for their company (especially

during the COVID-19 times). I will dearly miss hanging out with you guys! I

am fortunate to have made lifelong friends, including Ravi, Sandeep, Samik, Sayan,

Yasamin, Niharika, Nikita, Aditya, Anirbit, Cristina, Piyush, Harsh, Razieh, Rohit,

Eli, Jaron, Trung, Arka, Aarushi, Jingfeng, Akshay, Pushpendre (and others whose

names I might be forgetting).

I fondly remember Ashish Arora, former Ph.D. student at JHU and a close friend

who introduced me to the (then existent) Corona Cricket group. Sadly, grappling

with mental health challenges, Ashish chose to end his life last year. I mourn his

untimely loss and extend my deepest sympathies to his family.

I thank my friends, from IIT Kanpur, high school and others, who, to my great

fortune, are too many to list. I thank you all for staying in touch even when miles

and time zones separate us.

I thank my late father, mother, siblings and extended family, who, despite having

little clue of what (or why) I am doing, supported me unwaveringly. I treasure the

loving memories of my father, who tragically passed away with COVID-19. Each

memory is a testament to his enduring love, which continues to guide me. Words fall

short in conveying the immense gratitude I owe to my family.

Lastly, my enduring thanks to the small but vibrant town of Madhupur, India,

where I was born and raised, for the spirit and warmth of the place and its people.

vii

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . viii

List of Figures . xv

Chapter 1 Introduction . 1

1.1 Organization . 3

1.2 Problem Setup and Preliminaries . 4

1.2.1 Machine Learning as Stochastic Optimization 5

1.2.2 Uniform Convergence, Stability and Generalization 13

1.2.3 Differential Privacy (DP) . 16

1.2.4 Machine Unlearning . 22

1.3 Contributions . 25

1.3.1 Differentially Private Convex GLMs 25

1.3.2 Differentially Private Non-convex Optimization 28

1.3.3 Machine Unlearning . 29

1.3.4 Auxiliary Results . 30

Chapter 2 Differentially Private Generalized Linear Models 32

viii

2.1 Introduction . 33

2.1.1 Contributions . 33

2.1.2 Techniques . 36

2.1.3 Related Work . 37

2.2 Preliminaries . 38

2.3 Smooth Non-negative GLMs . 38

2.3.1 Upper Bounds . 39

2.3.2 Lower Bounds . 44

2.4 Lipschitz GLMs . 45

2.5 Adapting to ∥w∗∥ . 47

2.6 Conclusion . 49

Chapter 3 Differentially Private Non-convex Optimization 50

3.1 Introduction . 51

3.1.1 Contributions . 51

3.1.2 Techniques . 52

3.1.3 Related Work . 54

3.2 Stationary Points of Empirical Risk 56

3.2.1 Efficient Algorithm with Faster Rate 56

3.2.2 Lower Bound . 57

3.3 Stationary Points of Population Risk 60

3.4 Stationary Points in the Convex Setting 62

3.5 Generalized Linear Models . 64

3.6 Conclusion . 66

Chapter 4 Machine Unlearning via Algorithmic Stability 67

4.1 Introduction . 67

4.1.1 Contributions . 68

ix

4.1.2 Related Work . 70

4.2 Additional Preliminaries . 71

4.3 Main Results . 72

4.4 Main Ideas . 76

4.4.1 TV-stable Learning Algorithms and Differential Privacy 77

4.4.2 Unlearning via (un)couplings 78

4.5 Algorithms . 80

4.5.1 TV-stable Learning Algorithm: noisy-m-A-SGD 80

4.5.2 Unlearning Algorithm for noisy-m-A-SGD 81

4.6 Conclusion . 85

Chapter 5 From Adaptive Query Release to Machine Unlearning . . 87

5.1 Introduction . 88

5.1.1 Results and Techniques . 89

5.1.2 Related Work . 93

5.2 Additional Preliminaries . 94

5.3 Unlearning for Adaptive Query Release 95

5.4 Prefix-sum Queries . 97

5.4.1 Learning with Binary Tree Data-Structure 98

5.4.2 Unlearning by Maximally Coupling Binary Trees 99

5.5 Applications . 102

5.5.1 Smooth SCO with Variance Reduced Frank-Wolfe 103

5.5.2 Non-smooth SCO with Dual Averaging 104

5.5.3 Convex GLM with JL Method 104

5.6 SCO in Dynamic Streams . 106

5.6.1 Weak Unlearning in Dynamic Streams 107

5.7 Conclusion . 108

x

Chapter 6 Conclusion . 109

6.1 Ongoing and Future Work . 109

6.2 Other Works . 111

Bibliography . 113

Chapter A Appendix for Chapter 2 . 135

A.1 Missing Proofs from Section 2.3.1 (Smooth GLMs) 135

A.1.1 Utility Lemmas . 135

A.1.2 Proof of Lemma 2 . 135

A.1.3 Low Dimension . 136

A.1.4 High Dimension . 142

A.1.5 Constrained Regularized ERM with Output Perturbation . . . 146

A.1.6 Proof of Theorem 10 . 148

A.1.7 Proof of Theorem 11 . 148

A.2 Missing Proofs from Section 2.4 (Lipschitz GLMs) 151

A.2.1 Proof of Theorem 12 . 151

A.2.2 Upper Bound using JL Method 152

A.2.3 Proof of Theorem 13 . 154

A.2.4 Lower bound for Non-Euclidean DP-GLM 155

A.3 Missing Details for Section 2.5 (Adapting to ∥w∗∥) 158

A.3.1 Generalized Exponential Mechanism 158

A.3.2 Proof of Theorem 14 . 159

A.3.3 Proof of Theorem 15 . 160

A.3.4 Stability Results for Assumption 2 161

A.4 Missing Details for Confidence Boosting 162

A.4.1 Boosting the JL Method . 168

A.4.2 Boosting Output Perturbation Method 169

xi

A.5 Non-private Lower Bounds . 170

A.6 Additional Results . 171

Chapter B Appendix for Chapter 3 . 173

B.1 Lower Bounds . 173

B.1.1 Missing Details from DP Empirical Stationarity Lower Bound 173

B.1.2 Non-private Sample Complexity Lower Bound 175

B.2 Missing Results for Empirical Stationary Points 177

B.2.1 Private Spiderboost . 177

B.2.2 Additional Discussion of Rate Improvement Challenges 182

B.3 Missing Results for Population Stationary Points 187

B.4 Missing Results for Stationary Points in the Convex Setting 192

B.4.1 Utility Lemmas . 195

B.4.2 Lemmas for NoisyGD (Algorithm 18) 196

B.4.3 Lemmas for PhasedSGD (Algorithm 16) 198

B.5 Missing Results for Generalized Linear Models 202

Chapter C Appendix for Chapter 4 . 209

C.1 Additional Related Work . 209

C.2 Additional Discussion . 212

C.2.1 Total Variation Stability from Optimal Transport 212

C.2.2 DP Convex ERM Algorithms for Unlearning 213

C.3 sub-sample-GD . 215

C.3.1 Unlearning for sub-sample-GD 215

C.4 Proofs of Main Results . 217

C.4.1 Proof of Theorem 22 . 217

C.4.2 Proof of Theorem 23 . 219

C.4.3 Proof of Theorem 24 . 219

xii

C.5 Proofs for Section 4.5.1 . 220

C.6 Proofs for Section 4.5.2 . 230

C.6.1 Unlearning for sub-sample-GD 231

C.6.2 Unlearning for noisy-m-A-SGD 234

C.7 Runtime and Space Complexity . 246

C.7.1 Learning Runtime . 246

C.7.2 Unlearning Runtime . 247

C.7.3 Space Complexity . 252

C.8 Other Algorithms and Batch Unlearning 253

C.8.1 noisy-m-SGD . 254

C.8.2 quantized-m-SGD . 258

C.9 Lower Bounds on Excess Empirical Risk 273

C.9.1 Lower Bound for Mean Computation 276

C.10 Excess Population Risk Bounds . 282

C.10.1 Upper Bounds . 282

C.10.2 Lower Bounds . 283

C.11 Algorithms for Approximate Unlearning 285

C.12 Experiments . 288

Chapter D Appendix for Chapter 5 . 291

D.1 Auxiliary Results . 291

D.2 Unlearning for Linear Queries . 292

D.2.1 Applications . 294

D.2.2 Federated Unlearning for Federated Averaging 294

D.2.3 Lloyd’s Algorithm for k-means Clustering 295

D.3 Missing Details from Section 5.4 . 296

D.4 Missing Proofs from Section 5.4 . 297

D.4.1 Lemmas for Unlearning . 297

xiii

D.5 Missing Proofs from Section 5.5 . 305

D.5.1 Variance-reduced Frank Wolfe 305

D.5.2 Dual Averaging . 308

D.5.3 Convex GLMs with the JL method 309

D.6 Missing Details from Section 5.6 . 312

D.6.1 Weak Unlearning . 312

D.6.2 Exact Unlearning . 313

xiv

List of Figures

Figure 4-1 Markov chain for noisy-m-A-SGD Algorithm 78

Figure 5-1 A simplified schematic of the learning (left) and unlearning

(right) procedures for prefix-sum queries. In the left, the leaves

contain (noisy, if +ξi) prefix-sum queries applied on the randomly

permuted data-point (zi’s) below it. The intermediate nodes

with + adds the not-noised values of its children, where as others

add noise to it. On the right, the deleted point z4 is replaced

with z8 which amounts to adjusting the queries with −g+g′ (see

Algorithm 13 for details) and performing Rejection Sampling

(abbreviated RSi, where i’s indicates the order of occurrence of

sequence of rejection samplings) along the height of the tree. . 99

Figure C-1Markov chain for noisy-m-A-SGD Algorithm 240

Figure C-2Accuracy and number of unstable edits as a function of variance of

noise used. 290

Figure C-3Number of retraining iterations by unlearning algorithm compared

to all full retraining (all iterations) 290

xv

Chapter 1

Introduction

Over the past decade, machine learning has witnessed remarkable advancements,

sparking a revolution across diverse domains like computer vision [RPG+21], language

and speech processing [Ope23, RKX+23], game-play [SHM+16] and biochemistry

[JEP+21]. This success stems from both conceptual and algorithmic breakthroughs,

as well as the unprecedented access to substantial computational resources and vast

datasets. However, the progress and widespread adoption has not come without its

share of contemporary challenges. An important desideratum in modern applications,

which is the focus of this dissertation, is data privacy.

With data-driven analysis and services becoming ubiquitous, there is a growing

push for broader awareness of data privacy and ownership. Often, the data contains

sensitive personal information, and its use poses considerable risks. A pertinent

example is the prevalent use of large language models, and how raw personal data

can be retrieved from these [CTW+21, NCH+23]. These concerns have driven the

development of rigorous approaches to safeguard data privacy. Further, these efforts,

in part, have led to regulatory bodies enacting laws, such as the European Union’s

General Data Protection Regulation (GDPR), to uphold these standards.

In this dissertation, we focus on the following two problems, broadly-outlined,

motivated by data privacy considerations. We study these problems under the unified

1

and ubiquitous framework of stochastic (convex) optimization.

Differentially Private Machine Learning. Differential privacy (DP), introduced

in [DMNS06], has emerged as the gold standard for privacy protection in data analysis.

It ensures the confidentiality of an individual’s sensitive information in released models

or statistics derived from data analysis, while concurrently allowing for the extraction

of statistical insights about the broader population. Differential privacy has been

widely adopted, notably by the U.S. Census Bureau [Abo18], and companies like

Google and Apple in their products [XZA+23, Inc17].

The constraint of differential privacy often leads to a degradation in utility, both

in theory and practice. The goal, thus, is to understand the complexities and devise

algorithms which provide the best possible utility. We study two problems in differen-

tially private machine learning: (a). learning convex generalized linear models, and

(b). approximating stationary points in non-convex optimization. These foundational

problems have been the subject of numerous prior works, yet significant gaps in our

knowledge still remain. We bridge these gaps by proposing algorithms with improved

guarantees and establishing fundamental limits on what is achievable.

Machine Unlearning. The problem of machine unlearning concerns with updating

trained machine learning models to comply with requests to unlearn/forget/delete

an individual’s data from the training dataset. This problem has recently gained

attention owing to various data privacy laws such as European Union’s General Data

Protection Regulation (GDPR) and California Consumer Act (CCA), which empower

users to make such requests to the entity possessing user data (see Right to be forgotten,

[Wik21]). The entity is then required to update the state of the system such that

(ideally) all information pertaining to the user data has been removed.

The goal here is to formalize what it means to unlearn, and develop meaningful

2

and efficient approaches towards achieving it. In our work, we consider the most

strict unlearning criterion, called exact unlearning. We show that in various settings

of stochastic convex optimization (and even beyond), we can design learning and

a corresponding exact unlearning algorithm which are non-trivially accurate and

efficient, in comparison to the standard benchmark of recomputation.

1.1 Organization

We give a brief outline and summary of the contributions presented in this dissertation

below. In the subsequent Section 1.2, we setup the problem formally and introduce

preliminaries, which allows us to expand on our contributions in Section 1.3.

1. In Chapter 2, we consider the problem of learning Generalized Linear Models

(GLM) under differential privacy. GLMs form a large and fundamental class of

supervised learning problems which includes linear and logistic regression and

support vector machines. We study two classes of convex GLMS, (a). Lipschitz

GLM (such as hinge loss in support vector machines) and (b). non-negative and

smooth GLM (such as squared loss in linear regression), and propose efficient

differentially private algorithms which we achieve near-optimal rates on the

excess population risk. This chapter is based on [ABG+22], published in the

proceedings of Neural Information Processing Systems (NeurIPS), 2022.

2. In Chapter 3, we consider the problem of differentially private non-convex

optimization, where the goal is to find an approximate stationary point of

the empirical risk or population risk. For both these criteria, we propose DP

algorithms which achieve improved rates over existing works. Further, we give a

lower bound demonstrating that in some regimes of problem parameters, our

upper bounds are tight. Finally, motivated by the (in-general) gap between our

upper and lower bound, we study the problem under the additional assumption

3

of convexity, and establish the optimal rate. This chapter is based on [ABG+23],

published in the proceedings of International Conference on Machine Learning

(ICML), 2023.

3. In Chapter 4, we study the problem of machine unlearning in Stochastic Convex

Optimization (SCO). We formalize the notion of exact unlearning, which, roughly

speaking, requires the updated model to be perfectly indistinguishable from

retraining. We identify a notion of algorithmic stability called Total Variation

(TV) Stability, and show how it can be useful for designing exact unlearning

algorithms. For smooth convex losses, we propose a TV stable learning and

a corresponding (exact) unlearning algorithm, which are accurate and more

efficient than retraining. This chapter is based on [UMR+21], published in the

proceedings of Conference on Learning Theory (COLT), 2021.

4. In Chapter 5, we further explore the problem of machine unlearning building on

the afore-mentioned framework of Total Variation stability. We propose efficient

unlearning algorithms for general structured learning algorithms. Specifically,

we consider algorithms which perform, what we call, adaptive query release,

from structured query classes on the dataset. This includes iterative procedures

such as those in optimization and beyond. This yields unlearning algorithms

for (smooth) SCO and GLMs. As an example, we obtain the first sub-linear

time unlearning algorithm for logistic regression while achieving the optimal rate.

This chapter is based on [UA23], published in the proceedings of International

Conference on Machine Learning (ICML), 2023.

1.2 Problem Setup and Preliminaries

In this section, we formally setup the problem and introduce the preliminaries and no-

tation, used in the rest of the dissertation. We present basic primitives in optimization

4

and differential privacy, and survey the most related works.

Notation and terminology. We use the standard Big-O notations,

O(·),Ω(·), o(·), ω(·) and Θ(·). Further, we use ˜︁O(·) (and similarly others), to

suppress poly-logarithmic factors of parameters. Claims of optimality of any quantity,

are made in the sense of asymptotic order optimality, with the asymptotic parameter

being the number of samples n→∞, unless otherwise specified. Further, we routinely

deal with distance and divergence between probability distributions. We sometimes

abuse notation and write distance and divergence between random variables - these

should be interpreted as using the laws of the corresponding random variables.

In Table 1-I, we provide the notation and their description, used in this dissertation.

1.2.1 Machine Learning as Stochastic Optimization

Statistical machine learning tasks can often be posed as stochastic optimization

problems. Let Z denote a data space and W ⊆ Rd denote the set of parameters.

We will often consider a constrained setting wherein we assume that the set W is

closed, convex and bounded, with diameter D = supw,w′∈W ∥w − w′∥ <∞. Here and

everywhere else, the norm, ∥·∥, is the Euclidean norm, unless otherwise stated. Let

ℓ :W ×Z → R denote a loss function. Consider a probability distribution D over

Z. The population risk of w with respect to D, is defined as,

L(w;D) = Ez∼D[ℓ(w; z)].

The goal is to design a procedure A : Zn → W which given n independently and

identically distributed (i.i.d.) samples from D as input, called the training set,

S = {z1, z2, . . . , zn}, the (expected) population risk of its output is small. Formally,

we want to control the following, expected excess population risk quantity,

ES∼Dn,A

[︃
L(A(S);D)− min

w∈W
L(w;D)

]︃
.

5

The expectation above is with respect to the randomness in training data S as well

as in the algorithm A. Often, it is desirable to control the above quantity in high-

probability, but in this dissertation, we will mostly limit to a control in expectation.

We expect the excess population risk to go to zero as number of samples n → ∞,

which is why we will often refer to bounds on the quantity as rate. Finally, we want

such a guarantee without imposing any structural constraints on the distribution D,

which is often referred to as the distribution-free setting.

1.2.1.1 Empirical Risk Minimization (ERM)

A canonical approach to the stochastic optimization problem is Empirical Risk Mini-

mization. Given a dataset S = {z1, z2, . . . , zn}, the empirical risk is defined as,

ˆ︁L(w;S) = 1
n

n∑︂
i=1

ℓ(w; zi).

The empirical risk minimization rule is defined as,

ˆ︁w ∈ arg min
w∈W

ˆ︁L(w;S).

Further, any minimizer above is called an empirical risk minimizer. We will overload

the abbreviation ERM to refer to both the problem and the minimizer, however it

should be clear from context what we refer to.

Even though ERM is motivated as an approach to solve the stochastic optimization

problem, we do not impose any distributional constraints on the training set S. This

serves two purposes: (a). it makes the ERM problem reducible from distribution-free

stochastic optimization, which is useful in deducing lower bounds, and (b). it allows

the results to apply to general finite-sum optimization problems, which need not arise

from a machine learning context.

As in the previous section, we are interested in designing a procedure A with small

(expected) excess empirical risk, defined as,

EA

[︃ˆ︁L(A(S);S)− min
w∈W

ˆ︁L(w;S)
]︃
.

6

We note that since the above is a deterministic problem, it is non-trivial only

under computational constraints and/or additional restrictions on the procedure A,

which prevents exact minimization.

1.2.1.2 Information-based Complexity

We are interested in understanding the statistical and computational aspects in solving

the afore-mentioned problem. These are studied in an information-based complexity

framework, which limits knowledge of the underlying population risk function to certain

class of queries [NY83]. These complexities are framed in a minimax sense, which

correspond to guarantees of the best procedure (min), for the worst instance (max).

For a rigorous treatment, we refer the reader to standard optimization textbooks, such

as [NY83] and [N+18].

Statistical (or sample) complexity refers to the number of samples n, needed to

get an expected excess population risk of at most α. That is, for every query, we are

given the full description of the map w ↦→ ℓ(w; z) for an independent z sampled from

D. Note that sample complexity for a target α, and a rate on excess population risk,

in terms of a given number of samples n, provide the same information, and we will

use them interchangeably.

Computational complexity stems from access to descriptions of only local approxi-

mations to the underlying function. Formally, in the p-th order model, for a query

(w, z) for z ∈ S, we are provided (ℓ(w; z),∇ℓ(w; z), . . .∇pℓ(w; z)), where the gradient

and higher-order derivatives are with respect to the argument w. We sometimes

operate in the constrained setting over an abstract convex set W. To describe the

computation in interacting with the set W , we consider a projection oracle, which

given a u ∈ Rd, outputs the point closest to it in W , i.e. v = arg minv∈W ∥u− v∥
2.

A procedure is an adaptive querying protocol, which, with small number of queries,

seeks to find a w with small expected excess population (or empirical) risk. In this

7

dissertation, we limit to the first-order model, where for a query (w, z), we are

provided (ℓ(w; z),∇ℓ(w; z)). Further, we treat the projection and gradient costs as

identical, conflating both into one. We refer to this as gradient complexity, or

simply runtime.

1.2.1.3 Regularity Assumptions of Lipschitzness and Smoothness

In order to make the problem non-trivial, we need to impose some regularity constraints

on the loss function. We define two such properties.

Definition 1 (G-Lipschitzness). A function f : U → R is G-Lipschitz, if for all

u, u′ ∈ U , we have,

|f(u)− f(u′)| ≤ G ∥u− u′∥ .

If the function f is differentiable at all points in its domain, the above is equivalent

to assuming that ∥∇f(u)∥ ≤ G for all u ∈ U . We now define smoothness.

Definition 2 (H-Smoothness). A differentiable function f : U → R is H-smooth, if

for all u, u′ ∈ U , we have,

∥∇f(u)−∇f(u′)∥ ≤ H ∥u− u′∥ .

We say that a loss function ℓ is Lipschitz and/or smooth, if the map w ↦→ ℓ(w; z)

is Lipschitz and/or smooth for all z ∈ Z.

Under the above assumptions, the optimal rate on the expected excess population

risk is ˜︁Ω (︂√︂ d
n

)︂
[LGOT23]. Further this is achievable, upto poly-log factors, by ERM.

However, the two downsides to this result are (a). an explicit dimension dependence

in the rate, and (b). the required gradient complexity is necessarily exponential in the

dimension.

8

1.2.1.4 Stochastic Convex Optimization (SCO)

The setting of stochastic convex optimization addresses both the above limitations.

We first define convex functions.

Definition 3 (Convexity). A function f : U → R is convex, if for all u, u′ ∈ U and

all λ ∈ [0, 1],

f(λu+ (1− λ)u′) ≤ λf(u) + (1− λ)f(u′).

In SCO, we assume that the loss function w ↦→ ℓ(w; z) is convex for all z ∈ Z.

Under the additional assumption of G-Lipschitzness, the seminal work of [NY83]

showed that the optimal expected excess population risk is Θ
(︂
GD√
n

)︂
. This is achieved

by the one-pass Stochastic Gradient Descent (SGD) procedure with optimal gradient

complexity of n. This remarkable result shows that (a). it is possible to get a

non-trivial rate in all dimensions d, and (b). there is no separation of sample and

gradient complexity, in this setting. Further, the additional assumption of (any level

of) smoothness does not change the optimal rate or runtime.

Strong convexity. A stricter assumption is that of strong convexity, defined below.

Definition 4 (µ-strongly convexity). A function f : U → R is µ-strongly convex if

for all u, u′ and λ ∈ [0, 1],

f(λu+ (1− λ)u′) ≤ λf(u) + (1− λ)f(u′)− λ(1− λ)µ ∥u− u′∥2

2 .

We note that a function can be both µ-strongly convex and G-Lipschitz, only

over a set of diameter at most G
µ

. Under the µ-strong convexity and G-Lipschitzness

assumptions on the loss function w ↦→ ℓ(w; z), [AWBR09] showed that the optimal

expected excess population risk is Θ
(︂
G2

µn

)︂
. For constant G and µ, this improves over

the prior rate quadratically. Further, as before, this is achievable by the one-pass SGD

procedure with a gradient complexity of n.

9

The final setting we discuss is that of convex, smooth, and bounded range loss

functions. Formally, L0-bounded range is defined by supz ℓ(0; z)−minw ℓ(w; z) ≤ L0.

Via a simple translation argument, it is similar to assuming non-negativity and that

supz ℓ(0; z) ≤ L0 – we will hence call this the convex, non-negative and smooth setting.

In this case, the optimal expected excess population risk is Θ
(︂√

HL0D√
n

)︂
, which is yet

again achieved by the one-pass SGD procedure [SST10, Sha15].

Non-Euclidean Settings. The theory of convex optimization can be generalized to

(a large class of) abstract Banach spaces [NY83], which we discuss briefly. Herein, we

assume that the the loss function is Lipschitz with respect to a primal norm ∥·∥, which

is not necessarily the Euclidean norm, and diameter of the constraint set is bounded

in its dual norm, ∥·∥∗
1. A particularly important case is the ℓp/ℓq setup, wherein loss

function is Gq-Lipschitz with respect to ℓp-norm, and diameter of the constraint set is

bounded in ℓp norm by Dp, with 1
p

+ 1
q

= 1 being Hölder conjugates, and 1 < p <∞.

In this case, the optimal rates are Θ
(︃

GpDq√
(p−1)n

)︃
and Θ

(︂
GpDq min

(︂
d1/2−1/p

√
n

, 1
n1/p

)︂)︂
for

p ∈ (1, 2) and p ≥ 2 respectively [NY83, AWBR09]. This is achievable by the best of

one-pass SGD and its non-Euclidean generalization, called the (Stochastic) Mirror

Descent method.

1.2.1.5 Generalized Linear Model (GLM)

Generalized Linear Models are loss functions popularly encountered in supervised

learning settings. They correspond to learning linear predictors (described by w) with

real-valued losses. Formally, the data space Z = X × Y, where X ⊆ Rd is the set of

features and Y ⊆ R is the set of labels or responses. A GLM is a loss function of the
1The Dual space, V∗, of a vector space V over R is the vector space of all continuous linear

functionals from V to R. For a normed vector space, (V, ∥·∥), the Dual norm on V∗ is defined as,
∥f∥∗ = sup {|f(v)| , v ∈ V, ∥v∥ ≤ 1}.

10

following form,

ℓ(w; (x, y)) = ϕy(⟨w, x⟩),

where ϕy : R→ R is some link function.

Examples of GLMs are abound in machine learning. We give a few below.

Example 1. A: Squared loss in Linear Regression,

ℓ(w; (x, y)) = (y − ⟨w, x⟩)2 .

B: Hinge loss in Support Vector Machines (SVM),

ℓ(w; (x, y)) = max (0, 1− y ⟨w, x⟩) .

C: Logistic loss in Logistic Regression,

ℓ(w; (x, y)) = log (1 + exp (−y ⟨w, x⟩)) .

D: A single hidden neuron neural network with squared loss,

ℓ(w; (x, y)) = (y − tanh(⟨w, x⟩))2 .

Convexity, Lispchitzness and Smoothness. We say a GLM loss function ℓ is

G-Lipschitz, if the map ϕy : R → R is G-Lipschitz for all y ∈ Y. Similarly, we say

it is H-smooth, if the map ϕy : R → R is H-smooth for all y ∈ Y. In the above,

Example 1.B and 1.C, are Lipschitz, convex GLMs, Example 1.A and 1.C are smooth,

convex GLMs, and Example 1.D is a smooth (non-convex) GLM.

We use ∥X∥ and ∥Y∥ to denote the boundedness parameters on x and ϕy(0) i.e.

∥x∥ ≤ ∥X∥ and |ϕy(0)| ≤ ∥Y∥2. The later, in popular instances (such as linear

regression), corresponds to a bound on responses y. Further, under the non-negativity

assumption on the loss function, ∥Y∥2 is simply the bounded range parameter L0.

11

For Lipschitz, convex GLMs, the optimal expected excess population risk is Θ
(︂

1√
n

)︂
,

same as that for the more general class of Lipschitz, convex losses. This follows since

the loss function in the hard instance, is a GLM [NY83]. As before, this is achieved by

one-pass SGD with a gradient complexity of n. However, interestingly, even without

convexity, Lipschitz GLMs (still) exhibit a dimension-independent rate of Θ
(︂

1√
n

)︂
, in

contrast to the rate of ˜︁Θ (︂√︂
d
n

)︂
for general Lipschitz functions.

1.2.1.6 Non-convex Optimization

While the structure of convexity enables existence of efficient procedures, it arguably

limits modelling. This is best exemplified by the success of deep learning in applications

such as computer vision and language processing [RPG+21, Ope23] where the loss

functions used are highly non-convex with respect to the neural network parameters.

The theory of (efficient) non-convex optimization can be broadly categorized

into two: those involving (a). relaxed, yet useful, sub-optimality criterion, such

as approximating stationary points, and (b). structured non-convexity, such as

the Polyak-Łojasiewicz (PL) condition [Pol63], which despite non-convexity, admits

efficient procedures guaranteeing global optimality. We limit to the former in this

dissertation.

For a distribution D, an α-population stationary point is a w such that

∥∇L(w;D)∥ ≤ α. Similarly, for a dataset S, an α-empirical stationary point is a

w such that
⃦⃦⃦
∇ˆ︁L(w;S)

⃦⃦⃦
≤ α. In the following, we will refer to the above criteria as

population stationarity and empirical stationarity respectively.

We operate in the unconstrained setting and limit to smooth and Lipschitz loss

functions which additionally satisfy bounded range, which we recall, means that

ℓ(0; z)−minw ℓ(w; z) ≤ L0 for all z ∈ Z.

Unlike the convex case, the (current) landscape of non-convex optimization is

more complex. The sample complexity of approximating stationary points is a major

12

open problem, with the state, as of yet, as follows. The work of [ACD+19] showed

that, in high-enough dimensions, with n gradient queries, the optimal population

(and empirical) stationarity is Θ
(︂
n−1/3

)︂
. This is achieved by the Stochastic Path-

Integrated Differential Estimator (SPIDER) [FLLZ18] procedure. Besides this, via a

standard argument based on uniform convergence, it is possible to derive a population

stationarity of ˜︁O (︂√︂ d
n

)︂
, which is better than the rate of SPIDER in low dimensions.

With regard to lower bounds, the work of [FSS18] show a lower bound of Ω
(︂
G√
n

)︂
for

smooth (but non-Lipschitz) functions with d > n. Our work [ABG+22], presented in

Chapter 3, extends this lower bound to smooth and Lipschitz functions for all d ∈ N.

Finding stationary points in convex settings. While the stationary point

criterion is often motivated as a tractable proxy for non-convex optimization, it has

also been studied under convexity. The reasons are two-fold: (a). this often serves as

an easier test-bed to settle the gaps in non-convex setting, and (b). there exists convex

problems where the goal can be framed as finding stationary points, for instance, dual

formulations of linearly constrained convex programs [Nes12].

The work of [FSS+19] studied this problem and established the optimal rate on

population stationary and its gradient complexity. The optimal rate is shown to be
˜︁Θ (︂

G√
n

)︂
and achieving it necessarily requires ˜︁Ω (︂max

(︂
n,

√
HL0n
G

)︂)︂
gradient queries (in

high enough dimensions). This result, interestingly, establishes a separation of sample

and gradient complexity, unlike what happens in stochastic convex optimization (under

the excess risk criterion).

1.2.2 Uniform Convergence, Stability and Generalization

The analysis of a machine learning procedure often involves investigating its general-

ization gap, which is the difference between its population and empirical risk,

EA,S
[︂
L(A(S);D)− ˆ︁L(A(S);S)

]︂
.

13

A bound on the generalization gap is useful since it readily gives excess population

risk bounds provided that the procedure (approximately) minimizes the empirical risk.

Uniform Convergence. A canonical approach towards it is that of uniform

convergence. This amounts to controlling the above deviation between the population

and empirical risk, uniformly over an a-priori fixed set in which the algorithm is con-

strained, or likely, to output. In the following, we define Rademacher Complexity

and discuss how it relates to uniform convergence.

Definition 5 (Rademacher Complexity). Let n ∈ N. Given a class of functions

F ⊆ RZ , the (worst-case) Rademacher Complexity of F , with respect to n samples, is

defined as,

Rn(F) = sup
S∈Zn

Eσi

[︄
sup
f∈F

1
n

n∑︂
i=1

σif(zi)
]︄
,

where σi ∈ {−1, 1} are i.i.d. Rademacher random variables i.e. P[σi = 1] = 0.5.

A key result in learning theory is that Rademacher Complexity characterizes

uniform convergence.

Theorem 1 (Theorem 2.1 in [BMR21]). Let b ≥ 0. Given sets Z and W, consider

the function class LW,b =
{︂
w ↦→ ℓ(w; z), w ∈ W : supw∈W,z∈Z ℓ(w; z) ≤ b

}︂
, then

Rn(LW,b)
2 −

√︄
b log (2)

2n ≤ ES∼Dn

[︄
sup
w∈W

(︂
L(w;D)− ˆ︁L(w;S)

)︂]︄
≤ 2Rn(LW,b).

For the class of G-Lipschitz, constrained (potentially non-convex) GLMs, the

Rademacher complexity is Θ
(︂
G∥X ∥D√

n

)︂
[KST08]. This leads to obtaining the optimal

rate via ERM. Unfortunately, for general stochastic convex optimization, the uniform

convergence rate is necessarily dimension-dependent, ˜︁Ω (︂GD (︂
d
n

+ 1√
n

)︂)︂
[Fel16]. This

is in sharp contrast to the dimension-independent upper bound of O
(︂
GD√
n

)︂
, achieved

by the one-pass SGD procedure [NY83]. This discrepancy, in part, has motivated

alternative approaches to study generalization.

14

Stability. A prominent and more algorithm-dependent approach to generalization

is that of algorithmic stability. We define a few important notions below.

Given a dataset S of n items and a data point z′ ∈ Z, let S(i) denote that dataset

where the i-th item is replaced by z′.

Definition 6 (Average Stability). A procedure A : Zn →W is α-on-average stable if

for all datasets S and S ′, differing in at most one data point, we have that

E
S∼Dn,z′∼D,z∼D,i∼Unif([n]),A

[︂
ℓ(A(S); z)− ℓ(A(S(i)); z)

]︂
≤ α

Definition 7 (Uniform Stability). A procedure A : Zn →W is α-uniformly stable if

for all datasets S and S ′, differing in at most one data point, for all z ∈ Z, we have

that EA |ℓ(A(S); z)− ℓ(A(S ′); z)| ≤ α.

Definition 8 (Uniform Argument Stability). A procedure A : Zn →W is α-uniformly

argument stable if for all datasets S and S ′, differing in at most one data point, for

all z ∈ Z, we have that EA ∥A(S)−A(S ′)∥ ≤ α.

Note that for Lipschitz losses, uniform argument stability implies uniform stability,

which further, in general, implies average stability. A seminal result of [BE02] shows

that generalization gap is equal to average stability.

Theorem 2 ([BE02]). For any procedure A : Zn →W, we have that

ES∼Dn,A
[︂
L(A(S);D)− ˆ︁L(A(S);S)

]︂
= E

S∼Dn,z′∼D,z∼D,i∼Unif([n]),A

[︂
ℓ(A(S); z)− ℓ(A(S(i)); z)

]︂
.

The expectations above include the potential randomness inA. Further, the random

variables A(S) and A(S ′) need not involve independent sample of the randomness in

A, but can be arbitrarily coupled.

15

Stability in Convex Optimization. The seminal work of [BE02] showed that

ERM for µ-strongly convex and G-Lipschitz losses satisfies O
(︂
G
µn

)︂
-uniform argument

stability. This implies that ERM achieves the optimal rate of Θ
(︂
G2

µn

)︂
. Further,

the argument can be extended to (general) convex, Lipschitz losses by a standard

regularization based reduction. Specifically, the regularized ERM procedure adds a

small regularization penalty function λ
2 ∥w∥

2 to the empirical risk, and applies ERM.

For an appropriately chosen λ, this achieves the optimal rate of Θ
(︂
GD√
n

)︂
.

The work of [HRS16] extended the stability theory to gradient descent based

procedures. They showed that (various variants of) gradient descent, run on smooth

Lipschitz, (strongly) convex losses, satisfies uniform argument stability, and conse-

quently achieves the optimal rates. This was subsequently extended to non-smooth,

Lipschitz, (strongly) convex losses by [BFGT20].

An interesting case is that of convex, smooth and non-negative losses, where

uniform argument stability (for regularized ERM and gradient descent) necessarily

achieve a worse rate of Ω
(︂
H max (L0,D2)√

n

)︂
. However, for regularized ERM, [SST10]

showed that an average stability based analysis suffices to show that it achieves the

optimal rate of Θ
(︂√

HL0D√
n

)︂
.

We give a similar average stability result for gradient descent in Chapter 2, which

we detail in Section 1.3.4.

1.2.3 Differential Privacy (DP)

We start with the definition of differential privacy.

Definition 9 ((ϵ, δ)-Differential Privacy). A procedure A satisfies (ϵ, δ) differential

privacy if for any pair of datasets S and S ′ differing in one point and any measurable

event E in the range of A it holds that

P[A(S) ∈ E] ≤ eϵP[A(S ′) ∈ E] + δ.

16

The above definition provides privacy in the sense that it ensures that the likelihood

of any event remains approximately the same, regardless of whether a user decides to

include or exclude their data.

The above definition is sometimes called approximate differential privacy, with the

δ = 0 case called pure differential privacy. We will sometimes write (ϵ, 0)-DP as ϵ-DP.

Here, ϵ and δ are called privacy parameters, with ϵ being a small constant, and δ, a

negligible function in the number of samples (users) n, being the preferred settings for

reasonable privacy protection.

The condition that datasets S and S ′ differ in one point is known as neighbouring

relation, with the datasets S and S ′ called neighbours. Formally, given two equally

sized multi-sets S and S ′, we define the neighbouring relation S ∼n S ′ if the symmetric

difference between them, S∆S ′ = 2.

1.2.3.1 Basic Differentially Private Mechanisms and Properties

We review some basic results on differential privacy which serve as building blocks in

differentially private algorithm design.

Differentially Private Query Release. A query is a function which takes as input

the dataset, and outputs some statistic. The problem of differentially private query

release is to find a DP procedure for evaluating the query on the dataset, the result of

which is accurate, with respect to some error criterion.

We introduce two basic mechanisms for DP query release. Towards it, we first

define the ℓp-sensitivity of a query, which simply is the difference of query evaluations,

in ℓp norm, uniformly over all neighbouring datasets.

Definition 10. For p ∈ [1,∞), the ℓp-sensitivity of a function q : Zn → Rd, is defined

17

as,

∆p(q) = sup
S∼nS′

∥q(S)− q(S ′)∥p

We now state the Laplace and Gaussian mechanism and their guarantees.

Theorem 3 (Laplace mechanism [DMNS06, DR+14]). The Laplace Mechanism A,

is defined as, A(S) = q(S) + [ξ1, ξ2, . . . , ξd]⊤, where ξi ∼ Laplace
(︂
0, ∆1(q)

ϵ

)︂
i.i.d.

2 he Laplace mechanism A satisfies ϵ-DP. Further, its error ∥A(S)− q(S)∥1 ≤
2∆1(q)(d+log(1/β))

ϵ
, with probability at least 1− β.

Theorem 4 (Gaussian mechanism [DMNS06, DR+14]). Let ϵ ≤ log (1/δ) , δ ∈

(0, 1). The Gaussian Mechanism A, is A(S) = q(S) + [ξ1, ξ2, . . . , ξd]⊤, where

ξi ∼ N
(︂
0, 16∆2

2(q) log(1/δ)
ϵ2

)︂
i.i.d.3 Gaussian mechanism A satisfies ϵ-DP. Further, its

error ∥A(S)− q(S)∥2 ≤
8∆2(q)

√
log(1/δ)

(︂√
d+
√

log(1/β)
)︂

ϵ
, with probability at least 1− β.

Differentially Private Selection. The selection problem consists of a list of

candidates C = {c1, c2, . . . , ck}, a dataset S ∈ Zn, and a score function s : Zn×C → R,

which evaluates the score of a candidate on the dataset. The problem is design a DP

procedure to select the candidate with a large score.

A generic procedure to this problem is the Exponential mechanism [MT07].

It involves constructing a probability distribution by exponential tilting the uniform

distribution over the candidates based on their scores. To describe it, we first define

the sensitivity of the score function as follows,

∆∞ = sup
c∈C

sup
S∼nS′

|s(c;S)− s(c;S ′)| .

The description and guarantee of exponential mechanism is given below.

2Laplace (µ, σ) is defined by the probability density function fLaplace(µ,σ)(x) ∝ exp
(︂
− |x−µ|

σ

)︂
.

3N (µ, σ) is defined by the probability density function fN (µ,σ)(x) ∝ exp
(︂
− (x−µ)2

2σ2

)︂
.

18

Theorem 5 (Exponential Mechanism [MT07, DR+14]). The Exponential Mechanism

samples and outputs ˆ︁c with probability p(c) ∝ exp
(︂
−2ϵs(c;S)

∆∞

)︂
. It satisfies ϵ-DP. Further,

with probability at least 1− β,

s(ˆ︁c;S) ≥ max
c
s(c;S)− 2∆∞ ln (|C| /β)

ϵ
.

Exponential mechanism can be generalized beyond finite sets, by similarly defining

an exponentially titled density with respect to an appropriate base measure. We omit

this generalization for brevity.

Composition. Composition guarantees allows us to track the evolution of overall

privacy parameters upon multiple queries made to a dataset. This is a crucial tool

in differential private algorithm design, as it facilitates development of procedures

built upon basic DP primitives, such as query release and selection. We present the

composition theorem below.

Theorem 6. [DNPR10, KOV15] Let ϵ, δ > 0, and let A = (A1,A2, . . . ,Ak) be a

sequence of (ϵ, δ)-DP procedures, potentially chosen sequentially and adaptively. Then,

for any δ′ > 0, A satisfies (˜︁ϵ, ˜︁δ)-DP, where

˜︁ϵ = min
{︃
kϵ, 2ϵ

√︂
k log (1/δ′) + kϵ

eϵ − 1
eϵ + 1

}︃
, and

˜︁δ = kδ + δ′.

Results with only the first and second term in the minimum for ˜︁ϵ above are often

called basic composition, and advanced composition respectively.

Secrecy of the Sample/ Privacy Amplification by Sub-sampling. If a DP

procedure is run on a random sub-sample of the dataset, and the identity of the

sub-sample is kept secret, then the overall privacy guarantee is amplified. The formal

result is presented below.

19

Theorem 7. [KLN+08] Let m,n ∈ N. Let A : Zm → R be an (ϵ, δ)-DP procedure.

Then, the procedure A : Zm → R, which first sub-samples m out of n items from its

input dataset, and then applies A′ on it, satisfies
(︂

(eϵ−1)m
n

, mδ
n

)︂
-DP.

1.2.3.2 Differentially Private Optimization

Differentially private optimization has been extensively studied in the last decade. In

the following, we limit our discussion to results under approximate DP, which is the

notion we consider in this dissertation.

Convex setting. For the constrained, Lipschitz, convex ERM setting, the

work of [BST14, ACG+16a] established the optimal expected excess empirical

risk of Θ
(︃
GD
√
d log(1/δ)
nϵ

)︃
under (ϵ, δ)-DP. Moreover, under µ-strong convexity,

[BST14, ACG+16a] showed that the optimal rate is Θ
(︂
G2d log(1/δ)

µn2ϵ2

)︂
. These were

extended to the (harder) SCO setting in [BFTGT19], yielding optimal rates of

Θ
(︃
GD

(︃
1√
n

+
√
d log(1/δ)
nϵ

)︃)︃
and Θ

(︂
G2

µ

(︂
1
n

+ d log(1/δ)
(nϵ)2

)︂)︂
for Lipschitz, convex and

strongly convex settings respectively.

The setting of constrained, convex, smooth and non-negative losses under DP is

considered in Chapter 2 of this dissertation – we detail the results in Section 1.3.4

Convex GLMs. The above rates show that, unlike the non-private setting, an

explicit dimension dependence is unavoidable under DP. One can hope that perhaps

under additional structure, for instance that of GLMs, it can potentially be alleviated.

Unfortunately, as in the non-private setting, the loss function in the hard instance,

ℓ(w; z) = G ⟨w, z⟩, is a GLM [BST14]. However, interestingly enough, it turns out

that the hardness stems from the constrained nature of the setting which requires the

algorithm to output in the constrained set W .

The work of [JT14] proposed a DP procedure for unconstrained Lipschitz, convex

20

GLM which achieved a dimension-independent rate of O
(︂
G∥X∥ ∥w∗∥

(︂
1√
n

+ 1√
nϵ

)︂)︂
on excess population risk. Herein, w∗ is a population risk minimizer,

and ∥w∗∥ is assumed to be known. Further, a more fine-grained rate of

O
(︃
G∥X∥ ∥w∗∥

(︃
1√
n

+ EX [
√

rank(X)]
nϵ

)︃)︃
was established by [SSTT20], where rank(X) is

rank of the feature vectors in the training set. Since rank(X) ≤ min (n, d), this rate

is, in the worst-case, the same as that of [JT14].

Several questions remained open here, which our work, presented in Chapter 5,

addresses. We give a detailed description of contributions in Section 1.3.1.

Non-Euclidean DP-SCO. Akin to the non-private setting, the non-Euclidean

SCO problem has been studied under DP in the works of [AFKT21, BGN21]. In

the ℓp/ℓq setting, these works proposed (ϵ, δ)-DP algorithms with expected excess

population risk of ˜︁O (︂GpDq

(︂
1√
n

+
√
d

nϵ

)︂)︂
and ˜︁O (︂GpDq

(︂
d1/2−1/p

√
n

+ d1−1/p

nϵ

)︂)︂
for p ∈ (1, 2]

and p > 2 respectively. Further, the above rate for the p ∈ (1, 2] regime is shown to

be near-optimal by [BGN21].

The question about optimality of the rate for the p > 2 regime is tackled in our

work, presented in Chapter 2 – we discuss our results in Section 1.3.4.

Non-convex Optimization. We review the most related works in DP non-convex

optimization problem where the goal is approximate stationary points – we treat

regularity parameters such Lipschitzness and smoothness as constants. The work of

[WYX17], under the smoothness and Lipschitzness assumption, proposed an (ϵ, δ)-

DP procedure with an excess empirical stationarity of ˜︁O (︃(︂√
d

nϵ

)︂1/2)︃
. This rate was

subsequently reproduced by a number of works, albeit with different techniques

[ZZMW17, WX19, WCX19a]. For population stationary, the work of [WX19] pro-

posed an (ϵ, δ)-DP procedure with a rate of O
(︃√︂

d
n

+
(︂√

d
nϵ

)︂1/2)︃
via a uniform con-

vergence based analysis. Besides this, the work of [ZCH+20] obtained a rate of

21

O
(︃√

dϵ+
(︂√

d
nϵ

)︂1/2)︃
, which, for any ϵ, is Ω

(︃(︂
d
n

)︂1/3
)︃

.

Our work, presented in Chapter 2, makes several contributions to this problem –

we elaborate on them in Section 1.3.2.

1.2.4 Machine Unlearning

In this section, we setup the notation and formally define what it means to unlearn.

Recall that Z and W are the data and model space respectively. Further, let M

denote the meta-data space, which, as we will see, will correspond to additional

information a learning algorithm saves to aid unlearning. We consider a learning

algorithm as a map A : Z∗ → W ×M and an unlearning algorithm as a map

U : W ×M× Z → W ×M. We use A and U to denote the first output (which

belongs to W) of A and U respectively.

The definition of exact unlearning requires that the entire state after unlearning

be indistinguishable from the state obtained if the learning algorithm were applied to

the dataset without the deleted point.

Definition 11 (Exact unlearning). A procedure (A,U) satisfies exact unlearning if

for all datasets S, all z ∈ Z, and for all measurable events E ⊆ W ×M, we have,

P (A (S\ {z}) ∈ E) = P (U (A(S), z) ∈ E)

The problem of machine unlearning concerns with the design of learning and

unlearning algorithms A and U respectively, with the following properties.

1. It satisfies the (exact) unlearning criterion.

2. The runtime of unlearning (and learning) algorithm is non-trivially small.

3. The outputs of learning and unlearning algorithm are non-trivially accurate.

We note that all the above three criteria are required to eliminate trivialities. For

instance, a straightforward way to comply with the requirement of exact unlearning

22

is to recompute (or retrain, in machine learning jargon). This, however, violates the

second requirement of efficient unlearning algorithms - herein and afterwards, we will

use the word “efficient”, in the context of unlearning, to mean that the unlearning

runtime is smaller than recompute time.

Most of the prior work falls into two categories: (a). unlearning in structured

problems, such as linear regression and clustering, where the proposed unlearning

algorithms carefully leverage this structure for efficiency (such as [GGVZ19]), and

(b). approximate unlearning criterion, a popular one inspired from differential privacy,

which facilitates transfer to algorithmic techniques (such as [NRSM21a, SAKS21]).

In this dissertation, we consider exact unlearning in stochastic convex optimization

and convex empirical risk minimization. Despite the minimal structure in the setup

and the strictness of exact unlearning, we show that it is still possible to obtain

non-trivial results in this regard.

1.2.4.1 Preliminaries on Optimal Transport and Couplings

We present a brief primer on optimal transport and couplings, which form the core of

our techniques. We first define a coupling, also known as transport plan, between

two probability distributions.

Definition 12 (Coupling). A coupling between two probability distributions P and Q

over a common measurable space U , is a joint distribution π over U × U such that the

marginal distributions along the projections (p, q) ↦→ p and (p, q) ↦→ q are P and Q

respectively.

We use the notation Π(P,Q) to denote the set of couplings between P and Q.

Further, for a measurable set E ⊆ U , we use the notation P (E) to denote its measure

under P i.e. P (E) = Pp∼P {p ∈ E}.

The optimal transport problem is formulated as follows (see [Vil09] for details).

23

Given probability distributions P and Q over a common measurable space U , and a

cost function c : U ×U → R, the Kantorovich’s formulation of optimal transport, seeks

a transport plan π which minimizes the expected cost, i.e. infπ∈Π(P,Q) E(p,q)∼πc(p, q).

In our applications, we limit to cost function being the discrete (or disagreement)

metric, c(p, q) = 1 {p ̸= q}. In the case, the optimal transport cost has a simple

explicit form. To describe it, we define Total Variation distance below.

Definition 13 (Total Variation (TV) distance). The Total Variation distance between

two probability distributions P and Q defined over a common measurable space U is

defined as,

TV(P,Q) = sup
measurable E⊆U

|P (E)−Q(E)| = 1
2 ∥ϕP − ϕQ∥1 .

where the second equality holds if both distributions have probability density functions,

with respect to a base measure which are denoted by ϕP an ϕQ respectively.

The connection between Total Variation distance and optimal transport is that,

under the discrete metric, is that optimal transport cost between two distributions is

equal to the Total Variation distance between them (Theorem 2.12 in [DH12]).

TV(P,Q) = inf
π∈Π(P,Q)

E(p,q)∼π1 (p ̸= q) = inf
π∈Π(P,Q)

P(p,q)∼π (p ̸= q)

Further, a coupling, witnessing the “inf” above, always exists (but is not necessarily

unique), and is referred to as a maximal coupling. This result is known as the maximal

coupling characterization of Total Variation distance, or the coupling lemma.

In our application to machine unlearning, we will be interested in explicit construc-

tions of (near) maximal couplings. Towards it, a key primitive that we will utilize,

is the technique of Reflection Coupling [LR+86]. This involves sampling p ∼ P ,

and performing a rejection sampling step, with respect to Q. If it results in accept,

we output p as the sample for Q (as well). Otherwise, we obtain a sample for Q by

reflecting p about the mid-point of the means of P and Q.

24

Formally, consider two probability distributions P and Q with means µP and µQ,

and probability density functions ϕP and ϕQ, respectively. The reflection coupling

construction is describe below.

1. Sample p ∼ P .

2. Sample u ∼ Unif([0, ϕP (p)]).

3. If u ≤ ϕQ(p), Accept: q = p.

4. Else, Reflect: q = Reflect(µP , µQ, p), defined as,

Reflect(µP , µQ, p) = µP − µQ + p.

5. Output (p, q).

Under suitable assumptions on the probability distributions P and Q (see Lemma 26

for details), the above output (p, q) is a sample from a maximal coupling of P and Q.

Our contributions for this setting is presented in Section 1.3.3.

1.3 Contributions

In this section, we detail our contributions, using notation and context provided in

the preceding Section 1.2. We organize our contributions as follows: (a). Differentially

Private Convex GLMs, (b). Differentially Private Non-convex Optimization, (c).

Machine Unlearning, and (d). Auxiliary Results.

1.3.1 Differentially Private Convex GLMs

Our work, presented in Chapter 2, makes progress towards understanding the com-

plexity of learning convex GLMs under differential privacy – see Section 1.2.3.2 for a

25

Notation Description
w Model parameter vector
d Dimensionality of w

W ⊆ Rd (Constrained) set where w lies in
D Upper bound on ∥w∥ for w ∈ W , if constrained
z Data point
Z Set where z lies in
x Feature vector (in supervised learning)
y Label or response (in supervised learning)

X ⊆ Rd Set where x lies in
Y ⊆ R Set where y lies in
∥X∥ Upper Bound on ∥x∥ for x ∈ X
∥Y∥ Upper Bound on |y| for y ∈ Y

ℓ :W ×Z → R Loss function
ϕy : R→ R GLM link function, ℓ(w; (x, y) = ϕy(⟨w, x⟩)

D Probability distribution over Z
n Number of data points

S ∈ Zn Given (training) data set
L(w;D) = Ez∼D[ℓ(w; z)] Population risk of w w.r.t. Dˆ︁L(w;S) = n−1∑︁n

i=1 ℓ(w; zi) Empirical risk of w w.r.t. S
G Lipschitz parameter of w ↦→ ℓ(w; z) for all z ∈ Z
H Smoothness parameter of w ↦→ ℓ(w; z) for all z ∈ Z
L0 Bounded range parameter, supz∈Z(ℓ(0; z)− min

w∈W
ℓ(w; z)) ≤ L0

ϵ, δ Differential privacy parameters
ρ Total variation stability parameter

Table 1-I. Notation, their definition and meaning, used in this dissertation.

26

background on existing results. In the following, for ease of notation, we treat regularity

parameters such as Liphschitzness, smoothness, and ∥X∥ and ∥Y∥ as constants.

Optimality. The first question is whether the rate obtained in the prior works of

[JT14, SSTT20] is optimal, or can be improved. We show that the optimal rate is
˜︁Θ(︃
∥w∗∥

(︃
1√
n

+ min
(︃

EX [
√

rank(X)]
nϵ

, 1√
nϵ

)︃)︃)︃
, which improves over the prior works in

the small ϵ (i.e. the high privacy) regime.

Non-negative, Smooth, Convex GLMs. In the unconstrained setting, several

popular GLM loss functions, for instance the squared loss in linear regression, are non-

Lipschitz. A natural question is where dimension-independent rates can be obtained

here. We answer it positively showing that for non-negative, smooth, convex GLMs, we

can achieve a rate of ˜︁O (︃∥w∗∥√
n

+ min
{︃

∥w∗∥2

(nϵ)2/3 ,
√
d∥w∗∥2

nϵ

}︃)︃
. We also give a corresponding

lower bound of ˜︁Ω(︃ 1√
n

+ min
{︃

∥w∗∥4/3

(nϵ)2/3 ,
√
d∥w∗∥
nϵ

}︃)︃
, which shows that our rate is tight

up-to dependence on ∥w∗∥.

Linear Regression. The prototypical example of non-negative, smooth loss, is

the squared loss in linear regression, which has been studied on its own, under DP,

in prior works [Wan18, CWZ21]. Interestingly, our aforementioned upper and lower

bounds apply to this special case, thus allowing us to establish the near-optimal rate

for differentially private (distribution-free) linear regression.

Adaptivity to ∥w∗∥. The prior works of [JT14, SSTT20] assume knowledge of the

∥w∗∥ for their guarantees, which is, arguably, unreasonable. Our procedures, on the

other hand, are adaptive to the knowledge ∥w∗∥, yet achieving the above rate, upto

poly-logarithmic factors in problem parameters.

27

Relation to the constrained setting. Our work also sheds light on the seeming

discrepancies between the dimension-dependent and dimension-independent rates

in the constrained and unconstrained settings respectively. We show that in fact

these settings are intimately connected. Specifically, we show that high-dimensional,

unconstrained, convex GLMs can be reduced to low-dimensional constrained SCO

problems, in an efficient black-box manner. The resulting low-dimension, determined

by problem parameters (such as smoothness H, number of samples n and privacy

parameters ϵ and δ), essentially controls the complexity of the problem, in the same

way as the ambient dimension d does, in the constrained setting.

1.3.2 Differentially Private Non-convex Optimization

Our work, presented in Chapter 2, makes several contributions, improving over existing

works – see Section 1.2.3.2 for prior results. We provide details below.

Non-convex Empirical Stationarity. We propose an (ϵ, δ)-DP procedure with

achieves an improved rate of O
(︄(︃√

L0HG
√
d log(1/δ)

nϵ

)︃2/3
+ G
√
d log(1/δ)
nϵ

)︄
on expected

empirical stationarity. Ignoring regularity parameters, our rate of O
(︄(︃√

d log(1/δ)
nϵ

)︃2/3)︄
improves upon the ˜︁O (︃(︂√

d
nϵ

)︂1/2)︃
rate obtained in multiple prior works.

Non-convex Population Stationarity. In the statistical setting, our proposed pro-

cedure achieves a rate of ˜︁O (︃G (1 +HL0)
(︃

1
n1/3 +

(︂√
d

nϵ

)︂1/2)︃)︃
on expected population

stationarity , in linear time. This improves upon the aforementioned rates. Further,

the non-private rate of O
(︂

1
n1/3

)︂
matches the optimal rate that can be obtained in

linear runtime (in high dimensions) [ACD+19].

Lower Bounds. We establish a lower bound of Ω
(︃
G
√
d log(1/δ)
nϵ

)︃
on expected em-

pirical stationarity of (ϵ, δ)-DP procedures. This lower bound holds for all values of

28

smoothness H > 0, demonstrating that our upper bounds are tight for small H.

Convex Setting. Given the apparent gap in our upper and lower bounds, a natural

question is whether it can be resolved under the additional assumption of convexity.

This would help identify whether the additional complexity is a manifestation of

non-convexity or the criterion of stationarity (as opposed to that of excess risk).

We resolve this question by constructing a DP procedure which attains a rate of

O
(︃
G
√
d log(1/δ)
nϵ

)︃
on expected empirical stationarity and O

(︃
G
(︃

1√
n

+
√
d log(1/δ)
nϵ

)︃)︃
on

expected population stationarity, both matching their corresponding lower bounds.

1.3.3 Machine Unlearning

We list our contributions on machine unlearning, presented in full in Chapters 4 and

5 below – see Section 1.2.4 for context. As before, in the following, we will treat

regularity parameters, such as smoothness and Lipschitzness, as constants.

Convex ERM. For smooth, Lipschitz convex losses, our proposed algorithm has

expected excess empirical risk of O
(︃

min
(︃

1√
ρn
,
(︂√

d
nρ

)︂4/5)︃)︃
, with expected unlearning

runtime = O(ρ · Training time), where training time refers to the optimal gradient

complexity of the learning algorithm for the stated accuracy.

Stochastic Convex Optimization. For smooth, Lipschitz SCO, our proposed

algorithm achieve an expected excess population risk of ˜︁O (︂ 1√
n

+
√
d

nρ

)︂
, with expected

unlearning runtime = ˜︁O(ρn), for linear-time learning algorithm. Similarly, in the non-

smooth setting, we achieve an expected excess population risk of ˜︁O (︃ 1√
n

+
(︂√

d
nρ

)︂1/2)︃
,

with expected unlearning runtime = ˜︁O(ρn).

Convex GLMs. For GLMs, we get dimension-independent rates. Specifically, we

get ˜︁O (︂ 1√
n

+ 1
(nρ)2/3

)︂
and ˜︁O (︂ 1√

n
+ 1

(nρ)1/2

)︂
rates with expected unlearning runtime =

29

˜︁O(ρn) for smooth and non-smooth settings respectively. The first case is particularly

interesting, since it shows that in such settings (which includes problems like logistic

regression), it is possible to achieve the near-optimal rate of ˜︁O (︂ 1√
n

)︂
with sub-linear

unlearning time of ˜︁O(n2/3) with a linear time learning algorithm.

Algorithmic Stability. We identify a generic strategy for the unlearning problem,

based on a notion of algorithmic stability, called Total Variation (TV) stability. This

comprises of designing an accurate TV stable learning algorithm, and a corresponding

efficient unlearning algorithm which constructs a (near) maximal coupling of the the

outputs on original and updated datasets. Our results show that this strategy can be

realized in settings such as SCO.

Adaptive Query Release and Streaming setting. Our techniques are general

enough to enable design of unlearning algorithms corresponding to iterative learning

algorithms, which perform, what we call, adaptive query release, from structured query

classes. This allows us to apply our results beyond (known) optimization algorithms

– for instance, Lloyd’s algorithm for k-means clustering. We further generalize our

results beyond a single unlearning request to that of dynamic streams, consisting of a

sequence to edits (insertions and deletions).

1.3.4 Auxiliary Results

Besides the core results, our works also produce several novel findings, either as

intermediate steps, or via extension of proposed techniques. We believe these could

be of independent interest, and list them below.

Stability of Gradient Descent. In our work, presented in Chapter 2, we show,

via an average stability based analysis, that the gradient descent method (and not just

regularized ERM, considered in [SST10]) achieves the optimal rate of Θ
(︂√

HL0D√
n

)︂
.

30

Non-Euclidean DP-SCO Lower Bounds. In our work, presented in Chapter 2,

we consider the Non-Euclidean ℓp/ℓq setting DP-SCO setting. We give a lower bound

of Ω
(︃
GqDp min

(︃
1

(nϵ)1/p ,
d(p−1)/p

nϵ

)︃)︃
on excess empirical (and population) risk of any

(ϵ, δ)-DP procedure. For p =∞ and p ≥ 2, d ≤ nϵ, this matches the best known upper

bounds from [BGN21].

Population Stationarity Lower Bound. We give a lower bound of Ω
(︂
G√
n

)︂
on

expected population stationary for smooth G-Lipschitz functions in all dimensions.

This extends the prior lower bound of [FSS+19], in which the loss function in the hard

instance is non-Lipschitz and requires d ≥ n.

Constrained Non-negative, Smooth, Convex setting, under DP. This set-

ting was studied in our work, the results of which are presented in Chapter 2.

For the ERM setting, we proposed an (ϵ, δ)-DP procedure with expected excess

empirical risk of O
(︄√

HDmax(√
HD,

√
L0)
√
d log(1/δ)

nϵ

)︄
. We also gave a lower bound of

Ω
(︃

min
(︃√

HL0D
√
d

nϵ
,

(
√
HD)3/2L

1/3
0

(nϵ)2/3

)︃)︃
, which establishes tightness of our rate, in the

regime L0 ≥
√
HD and small d ≤ (nϵ)2/3. In the population risk setting, our upper

bound is O
(︄

√
HL0D√
n

+
√
HDmax(√

HD,
√
L0)
√
d log(1/δ)

nϵ

)︄
– here, the additional non-private

term
√
HL0D√
n

matches a known lower bound [Sha15].

31

Chapter 2

Differentially Private Generalized
Linear Models

Summary

In this chapter, we study the problem of (ϵ, δ)-differentially private learning of linear

predictors with convex losses. We provide results for two subclasses of loss func-

tions. The first case is when the loss is smooth and non-negative but not necessarily

Lipschitz (such as the squared loss in linear regression). For this case, we establish

an upper bound on the excess population risk of ˜︁O (︃∥w∗∥√
n

+ min
{︃

∥w∗∥2

(nϵ)2/3 ,
√
d∥w∗∥2

nϵ

}︃)︃
,

where n is the number of samples, d is the dimension of the problem, and w∗ is

the minimizer of the population risk. Apart from the dependence on ∥w∗∥, our

bound is essentially tight in all parameters. In particular, we show a lower bound

of ˜︁Ω(︃ 1√
n

+ min
{︃

∥w∗∥4/3

(nϵ)2/3 ,
√
d∥w∗∥
nϵ

}︃)︃
. We also revisit the previously studied case of

Lipschitz losses [SSTT20]. For this case, we close the gap in the existing work and

show that the optimal rate (up to polylog factors) is Θ
(︃

∥w∗∥√
n

+ min
{︃

∥w∗∥√
nϵ
,

√
rank∥w∗∥
nϵ

}︃)︃
,

where rank is the expected rank of the design matrix. This improves over existing

work in the high privacy regime. Finally, our algorithms involve a private model

selection approach that we develop to enable attaining the stated rates without a-priori

knowledge of ∥w∗∥.

32

H-Smooth, Non-negative G-Lipschitz√
H ∥w∗∥ ∥X∥ ≤ ∥Y∥

√
H ∥w∗∥ ∥X∥ > ∥Y∥

d ≤
(︃

∥w∗∥
√
H∥X ∥nϵ

∥Y∥

)︃2/3
d >

(︃
∥w∗∥

√
H∥X ∥nϵ

∥Y∥

)︃2/3
d ≤ (nϵ)2/3 d > (nϵ)2/3 rank ≤ nϵ rank > nϵ

DP

UB
√
H∥w∗∥∥X ∥∥Y∥

√
d

nϵ

(√
H∥w∗∥∥X ∥)4/3

∥Y∥2/3

(nϵ)2/3
H∥w∗∥2∥X ∥2√

d
nϵ

H∥w∗∥2∥X ∥2

(nϵ)2/3
G∥w∗∥∥X ∥

√
rank

nϵ
G∥w∗∥∥X ∥√

nϵ

Theorem 8 Theorem 9 Theorem 8 Theorem 9, 10 [SSTT20] Theorem 32, 12

LB Tight Tight
√
H∥w∗∥∥X ∥∥Y∥

√
d

nϵ

(√
H∥w∗∥∥X ∥)4/3

∥Y∥2/3

(nϵ)2/3 Tight Tight
Theorem 11 Theorem 11 Theorem 11 Theorem 11 Theorem 13 Theorem 13

Non-private

UB
√
H∥X ∥∥Y∥∥w∗∥√

n
G∥w∗∥∥X ∥√

n

[SST10] [NY83]

LB min{∥Y∥,∥w∗∥∥X ∥}√
n

+ min
{︃
∥Y∥2, H∥w∗∥2∥X ∥2+d∥Y∥2

n
,

√
H∥w∗∥∥Y∥∥X ∥√

n

}︃
Tight

[SST10, Sha15] [NY83]

Table 2-I. Summary of Rates. Parameters: d: dimension, n: sample size, H: smoothness
parameter, w∗: minimum norm population risk minimizer, ∥X∥: bound on feature vectors, ∥Y∥:
bound on loss at zero, G: Lipschitzness parameter, rank: expected rank of the design matrix, ϵ:
privacy parameter (δ factors omitted). The actual private excess risk bounds are the sum of the
expressions shown in the DP rows and their non-private counterparts. Details on non-private
lower bounds in Appendix A.5.

2.1 Introduction

In this chapter, we study one of the most basic machine learning problems under

differential privacy: learning convex generalized linear models (GLM).

2.1.1 Contributions

Smooth, Non-negative GLMs. Our primary contribution is a new and nearly

optimal rate for the problem of differentially private learning of smooth GLMs. In this

setting, we focus on characterizing the excess risk in terms of n, d, ϵ and ∥w∗∥. Specifi-

cally, we show that it is possible to achieve a rate of ˜︁O (︃∥w∗∥√
n

+ min
{︃

∥w∗∥2

(nϵ)2/3 ,
√
d∥w∗∥2

nϵ

}︃)︃
on the excess population risk. Our new rates exhibit an interesting low/high di-

mensional transition at d ≈ (∥w∗∥nϵ)2/3. First, in the low dimensional regime, we

develop a novel analysis of noisy gradient decent (GD) inspired by techniques from

[SST10]. In particular, we show that Noisy GD gives an improved rate for non-

negative smooth functions (not necessarily GLMs). This is based on an average

stability analysis of Noisy GD. As we elaborate in Section 2.3.1, a straightforward

application of uniform stability leads to sub-optimal bounds and hence a new analysis

33

is required. We note in passing that this upper bound works for (unconstrained)

DP-SCO with smooth (non-Lipschitz) losses, which is of independent interest. For

the high dimensional regime, we perform random projections of the data (specifically,

the Johnson-Lindenstrauss transform) for dimensionality reduction, roughly reducing

the problem to its low dimensional counterpart. We also develop a lower bound for

the excess risk under DP of ˜︁Ω(︃min
{︃

∥w∗∥4/3

(nϵ)2/3 ,
√
d∥w∗∥
nϵ

}︃)︃
. We note that non-privately a

lower bound of ˜︁Ω (︂ 1√
n

+ min
{︂
d+∥w∗∥2

n
, ∥w∗∥√

n

}︂)︂
is known on the excess population risk

[SST10, Sha15]. We note that these private and non-private lower bounds imply that

our bound is optimal up to factors of ∥w∗∥ (see Table 2-I).

Lipschitz GLMs. For the Lipschitz case, we close a subtle but important gap in

existing rates. In this setting, it has been shown that one can characterize the excess

risk in terms of the expected rank of the design matrix, rank, instead of d [SSTT20].

In this setting, the best known rate was ˜︁O (︃∥w∗∥√
n

+
√

rank∥w∗∥
nϵ

)︃
. We show an improved

rate of ˜︁O (︃∥w∗∥√
n

+ min
{︃

∥w∗∥√
nϵ
,

√
rank∥w∗∥
nϵ

}︃)︃
. This improves in the high privacy regime

where ϵ ≤ rank
n

. In fact, the upper bound O
(︂

∥w∗∥√
nϵ

)︂
for this rate can be obtained

with only minor adjustments to the regularization method of [JT14]. Our second

contribution in this setting is extending the lower bound of [SSTT20] to hold for all

values of ∥w∗∥ > 0 and rank ∈ [n]. This is in contrast to the original lower bound

which only holds for problem instances where ∥w∗∥2 = rank and rank ∈ [nϵ].

Model Selection. As part of our methods, we develop a differentially private model

selection approach which eliminates the need for a-priori knowledge of ∥w∗∥. Although

such methods are well established in the non-private case, (see e.g. [SSBD14]), in the

private case no such methods have been established. Our method, as in the non-private

case, performs a grid search over estimates of ∥w∗∥ and picks the best model based

on the loss. However, in the private setting we must account for the fact the the loss

34

evaluation must be privatized. This is non-trivial in the non-Lipschitz smooth case as

the loss at a point w may grow quadratically with ∥w∥.

Lower Bounds for Non-Euclidean DP-SCO. Our lower bound construction

generalizes to Non-Euclidean ℓp/ℓq variants of DP-SCO with Lipschitz convex losses

[BGN21]. Herein, we assume that the loss function is Gq-Lipschitz with respect to ℓq

norm, and radius of the constraint set is bounded in ℓp norm by Dp. For this setting, we

give a lower bound of Ω
(︃
GqDp min

(︃
1

(nϵ)1/p ,
d(p−1)/p

nϵ

)︃)︃
on excess empirical/population

risk of any (potentially unconstrained) (ϵ, δ)-DP algorithm; see Corollary 5 in Appendix

A.2.4 for a formal statement and proof. For p =∞ and p ≥ 2, d ≤ nϵ, this matches

the best known upper bounds in [BGN21].

Non-private settings. As by-products, we give the following new results for the

non-private setting. For details on the parameters used below we refer to Table 2-I.

1. We show that gradient descent, when run on convex non-negative ˜︂H smooth

functions (not necessarily GLMs), it achieves the optimal rate of O
(︂√˜︁H∥w∗∥∥Y∥√

n

)︂
(see Corollary 2). This is done via an average-stability analysis of gradient

descent. This result is interesting as it also shows GD only needs n iterations,

which is known not to work for non-smooth SCO [BFGT20, ACKL21, AKL21].

2. In Section A.4, we give a procedure to boost the confidence of algorithms for

risk minimization with convex non-negative ˜︂H smooth functions (not necessarily

GLMs). The standard boosting analysis based on Hoeffding’s inequality does

not give a bound with a linear dependence on the parameters (∥w∗∥ , ∥X∥, ∥Y∥),

and hence a tighter analysis is required.

35

2.1.2 Techniques

Upper bounds. We give two algorithms for both the smooth and Lispschitz cases.

The first method is simple and has two main steps. First, optimize the regularized

empirical risk over the constraint set
{︂
w ∈ Rd : ∥w∥ ≤ D

}︂
for some D ≥ ∥w∗∥. Then

output a perturbation of the regularized minimizer with Gaussian noise (which is not

requried to be in the constraint set). This method is akin to that of [JT14] with the

modification that the regularized minimizer is constrained to a ball. We elaborate on

this key difference shortly.

The second method is based on dimensionality reduction. We use smaller dimen-

sional data-oblivious embeddings of the feature vectors. A linear JL transform suffices

to give embeddings with the required properties. We then run a constrained DP-SCO

method (Noisy GD) in the embedded space, and use the transpose of the JL transform

to get a d dimensional model. In this method, the embedding dimension required

is roughly the threshold on dimension at which the rates switch from dimension

dependent to independent bounds. We also remark that [NêUZ20] applied a similar

technique to provide dimension independent classification error guarantees for privately

learning support vector machines under hard margin conditions.

We note that a crucial part in all of these methods is the use of constrained

optimization as a subroutine, where the constraint set is a ball of radius ∥w∗∥. This is

in stark contrast to the Lipschitz case where existing methods such as those presented

by [JT14, SSTT20] rely on the fact that projection is not required. In the smooth

case however, constrained optimization helps ensure that the norm of the gradient

is roughly bounded by the diameter of the constraint set. We note that in the high

dimensional regime, the property that the final output of the algorithm can have large

norm is still crucial to the success of our algorithms.

36

Lower bounds. For our lower bounds in the smooth case we rely on the connection

between stability and privacy. Specifically, we will utilize a lemma from [CH12]

which bounds the accuracy of one-dimensional differentially private algorithms. We

then combine this with packing arguments to obtain stronger lower bounds for high

dimensional problems. For the Lipschitz case, we adapt the method of [SSTT20].

2.1.3 Related Work

We briefly discuss the most related works. In the Lipschitz-convex setting, tight rates

are known for both the empirical and population risk [BST14, BFTT19]. Specifically,

it was shown that in the constrained setting, dependence on the dimension in the

form of Ω
(︂√

d
nϵ

)︂
is unavoidable even for generalized linear models . In contrast, in the

unconstrained setting, it has been shown that dimension independent rates are possible

for GLMs [JT14]. In this setting, assuming prior knowledge of ∥w∗∥, the best known

rate is O
(︃

∥w∗∥√
n

+ ∥w∗∥
√

rank
nϵ

)︃
[SSTT20], where rank is the expected rank of the design

matrix. However, without prior knowledge of ∥w∗∥, these methods exhibit quadratic

dependence on ∥w∗∥. Furthermore, these results crucially rely on the assumption that

the loss is Lipschitz to bound the sensitivity. Although gradient clipping has been

proposed to remedy this problem [SSTT20, CWH20], it is known that the solution

obtained by clipping may not coincide with the one of the original model.

Without Lipschitzness, work on differentially private GLMs has largely been limited

to linear regression [Wan18, CWZ21]. Here, dimension independent rates have only

been obtained under certain sparsity assumptions.

More generally, smooth non-negative losses have been studied in the non-private

setting by [SST10], where it was shown such functions can obtain risk guarantees with

linear dependence on the minimizer norm (as in the Lipschitz case). This work also

established a lower bound of Ω
(︂

1√
n

)︂
on the excess population risk for this class of loss

functions. [Sha15] additionally establishes a lower bound of Ω
{︂
min

{︂
∥w∗∥2+d

n
, ∥w∗∥√

n

}︂}︂

37

on the excess population risk by way of linear regression1.

2.2 Preliminaries

In the following we detail some additional concepts needed for the presentation of this

chapter. For our lower bounds, we will make use of the following Lemma from [CH12].

Lemma 1. Let Z be a data domain and let S and S ′ be two datasets each in Zn

that differ in at most ∆ entries, and let A : Zn → R be any (ϵ, δ)-DP algorithm. For

all τ ∈ R, if ∆ ≤ log(1/2γ)
ϵ

and δ ≤ 1
16(1 − e−ϵ), then E [|A(S)− τ |+ |A(S ′)− τ ′|] ≥

1
4 |τ − τ

′|.

Furhter, we introduce the Johnson-Lindenstrauss (JL) transform to perform random

projections.

Definition 14 ((α, β)-JL property). A distribution over matrices Rk×d satisfies (α, β)-

JL property if for any u, v ∈ Rd, P [|⟨Φu,Φv⟩ − ⟨u, v⟩| > α ∥u∥ ∥v∥] ≤ β.

It is well known that several such “data-oblivious” (i.e. independent of u,v)

distributions exist with k = O
(︂

log(1/β)
α2

)︂
[Nel11]. We note that the JL property is

typically described as approximation of norms (or distances), but it is easy to deduce

the above dot product preservation property from it; for completeness we give this as

Lemma 13. Finally, we use ΦD to denote the push-forward measure of the distribution

D under the map Φ : (x, y) ↦→ (Φx, y). Similarly, given a data set S = {(xi, yi)}i, we

define ΦS := {(Φxi, yi)i}

2.3 Smooth Non-negative GLMs

For smooth non-negative GLMs, we present new upper and lower bounds on the excess

risk. For our upper bounds, we here assume that the algorithm is given access to
1The [SST10] bound assumes ∥Y∥, H, ∥X∥ = Ω(1). The bounds of [Sha15] were originally stated

for the constrained setting, but can easily be converted. More details in Appendix A.5.

38

some upper bound on ∥w∗∥, that we denote by D. We later show in Section 2.5 how

to obtain such a rate without prior knowledge of ∥w∗∥. We also emphasize that the

privacy of these algorithms holds regardless of whether or not D ≥ ∥w∗∥.

2.3.1 Upper Bounds

Before presenting our algorithms, we highlight some key ideas underlying all our

methods. A crucial property of non-negative smooth loss functions which allows

one to bound sensitivity, and thus ensure privacy, is the self-bounding property

(e.g. Sec. 12.1.3 in [SSBD14]), which states that for an ˜︂H-smooth non-negative function

f and u ∈ dom(f), ∥∇f(u)∥ ≤
√︂

4˜︂Hf(u).

This property implies that the gradient grows at most linearly with ∥w∥. More

precisely, we have the following.

Lemma 2. Let ℓ be an H-smooth non-negative GLM. Then for any w ∈ B (D) and

(x, y) ∈ (X × Y) we have ∥∇ℓ(w, (x, y))∥ ≤ 2 ∥Y∥
√
H∥X∥+ 2HD∥X∥2.

In order to leverage this property, all our algorithms in this setting utilize con-

strained optimization as a subroutine, where the constraint set is B (D) and the

Lipschitz constant is G = 2 ∥Y∥
√
H∥X∥+ 2HD∥X∥2. This, in conjunction with the

self-bounding property ensures reasonable bounds on sensitivity. In turn, this allows

us to ensure privacy without excessive levels of noise.

Finally, we note that our upper bounds for smooth GLMs distinguish low and high

dimensional regimes, transitioning at d = min
(︃(︃

D
√
H∥X ∥

∥Y∥

)︃ 2
3
, 1
)︃

(nϵ) 2
3 .

2.3.1.1 Low dimensional regime

We start with the low dimensional setting where we use techniques developed for

constrained DP-SCO for Lipschitz losses (not necessarily GLMs). Existing private

algorithms for DP-SCO (e.g., [BFTT19, FKT20a]) lead to excess risk bounds that

39

scale with HD2
√
n

. On the other hand, the optimal non-private rate [SST10] scales with
√
HD√
n

, which may indicate that the private rate implied by the known methods is

sub-optimal. We show that this gap can be closed by a novel analysis of private GD.

A standard proof of excess risk of (noisy) gradient descent for smooth convex

functions is based on uniform stability [HRS16, BFTT19]. However, this still leads

to sub-optimal rates. Hence we turn to an average stability based analysis of GD,

yielding the following result.

Theorem 8. Let ℓ be a non-negative, convex, ˜︂H-smooth loss function, bounded

at zero by ∥Y∥2. Let D,n > 0, n0 = ˜︁HD2

∥Y∥2 , G = 2 ∥Y∥
√︂˜︂H + 2˜︂HD. Then, for

any ϵ, δ > 0, Algorithm 1 invoked with W = B (D), T = n, σ2 = 8G2T log(1/δ)
n2ϵ2

,

η = min
(︃

D
√
T max

(︂√˜︁H∥Y∥,σ
√
d

)︂ , 1
4˜︁H
)︃

is (ϵ, δ)-differentially private. Further, given a

dataset S of n ≥ n0 i.i.d samples from an unknown distribution D, the excess risk of

output of Algorithm 1 is bounded as,

E[L(ˆ︁w;D)− L(w∗;D)] = O

⎛⎝
√︂˜︂HD∥Y∥√

n
+
GD

√︂
d log (1/δ)
nϵ

⎞⎠.
We note that since H-smooth GLMs satisfy the Theorem condition with parameter

˜︂H ≤ H∥X∥2, we obtain results for GLMs as a direct corollary.

Non-private Risk Bound. As a corollary (see Corollary 2 in Appendix A.1.3.1),

with no privacy constraint, the above result (setting ϵ→∞ and δ = 1) shows that

gradient descent achieves the optimal excess risk bound, previously shown to be

achievable by regularized ERM and one-pass SGD [SST10]. The lower bound, n0,

simply means that the trivial solution “zero” has larger excess risk.

Proof sketch of Theorem 8. The privacy proof simply follows from [BST14] since

the loss function is G-Lipschitz in the constraint set. For utility, we first introduce

two concepts used in the proof. Let S be a dataset of n i.i.d samples {(xi, yi)}ni=1, S(i)

40

be the dataset where the i-th data point is replaced by an i.i.d. point (x′, y′). Let

A be an algorithm which takes a dataset as input and outputs A(S). The average

argument stability of A, denoted as AAS(A) is defined as

AAS(A)2 = ES,i,(x′,y′)∥A(S)−A(S(i))∥2.

The average regret of gradient descent (Algorithm 1) with iterates {wt}Tt=1 is

εreg(A;w∗) = 1
T

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)].

The key arguments are as follows: we first bound the generalization gap, or

on-average stability, in terms of average argument stability and excess empirical

risk (Lemma 5). We then bound average argument stability in terms of average

regret (Lemma 6). Finally, in Lemma 7, we provide bounds on excess empirical risk

and average regret of noisy gradient descent. Substituting these in the excess risk

decomposition gives the claimed bound. The full proof with the above lemmas is

deferred to Appendix A.1.3.1.

Algorithm 1 Noisy GD
Input: Dataset S, loss function ℓ, constraint set W, steps T , learning rate η, noise

scale σ2

1: w0 = 0
2: for t = 1 to T − 1 do
3: ξ ∼ N (0, σ2I)
4: wt+1 = ΠW

(︂
wt − η

(︂ˆ︁L(wt;S) + ξ
)︂)︂

where ΠW is the Euclidean projection on to W
5: end for

Output: ˆ︁w = 1
T

∑︁T
t=1 wj

2.3.1.2 High dimensional regime

In the high dimensional setting, we present two techniques.

JL method. In the JL method, Algorithm 2, we use a data-oblivious JL map

Φ to embed all feature vectors in dataset S to k < d dimensions. Let dataset

41

Algorithm 2 JL Method
Input: Dataset S = {(x1, y1), ..., (xn, yn)}, loss function ℓ, k, D, η, T , σ2

1: Sample JL matrix Φ ∈ Rk×d

2: ˜︁S = {(Φx1, y1) , (Φx2, y2) , . . . , (Φxn, yn)}
3: ˜︁w = NoisyGD(˜︁S, ℓ,B (2D) , T, η, σ2)

Output: ˆ︁w = Φ⊤ ˜︁w
˜︁S = {(Φxi, yi)}ni=1. We then run projected Noisy GD method (Algorithm 1) on the

loss with dataset ˜︁S and the diameter of the constraint set as 2D. Finally, we map

the returned output ˜︁w back to d dimensions using Φ⊤ to get ˆ︁w = Φ⊤ ˜︁w. We note that

no projection is performed on ˆ︁w and thus the output may have large norm due to

re-scaling induced by Φ⊤.

Theorem 9. Let k = O
(︃
D

√
H∥X ∥ log(2n/δ)nϵ

∥Y∥∥X ∥+
√
HD∥X ∥2

)︃2/3
, W = B (D), T = n, σ2 = 8G2T log(1/δ)

n2ϵ2
,

η = min
(︃

D
√
T max

(︂√
H∥X ∥∥Y∥,σ

√
d

)︂ , 1
4H∥X ∥2

)︃
and n0 = HD2∥X ∥2

∥Y∥2 . Algorithm 2 satisfies

(ϵ, δ)-differential privacy. Given a dataset S of n ≥ n0 i.i.d samples, of the output ˆ︁w
is bounded by

E[L(ˆ︁w;D)− L(w∗;D)] ≤ ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥√

n

+

(︂√
HD ∥X∥

√︂
∥Y∥

)︂ 4
3 +

(︂√
HD ∥X∥

)︂2

(nϵ) 2
3

⎞⎠.
Proof sketch of Theorem 9. From the JL property, with k = O(log (n/δ) /α2),

w.h.p. norms of all feature vectors and w∗, as well as inner products between are

preserved upto an α tolerance (see Definition 14). The preservation of norms of

feature vectors implies the gradient norms are preserved, and thus privacy guarantee

of sub-routine, Algorithm 1, suffices to establish DP. For the utility proof, from our

analysis of Noisy GD (Theorem 8) and using the JL property, the excess risk of ˆ︁w

42

Algorithm 3 Regularized Output Perturbation
Input: Dataset S = {(x1, y1), ..., (xn, yn)}, loss function ℓ, λ,D, σ2

1: ˜︁w = arg min
w∈B(D)

{︂
L(w;S) + λ

2 ∥w∥
2
}︂

2: ξ ∼ N (0, σ2Id)
Output: ˆ︁w = ˜︁w + ξ

under D w.r.t. the risk of Φw∗ under ΦD is bounded as,

E[L(ˆ︁w;D)− L(Φw∗; ΦD)]

≤ O

⎛⎝√H∥X∥D∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D2

)︂
D
√︂
k log (1/δ)

nϵ

⎞⎠.
From smoothness and JL property, the, “JL error” is:

E[L(Φw∗; ΦD)]− L(w∗;D)] ≤ ˜︁O(︄HD2∥X∥2

k

)︄
.

The above is optimized for the value of k prescribed in Theorem 9, substituting which

gives the claimed bound.

Constrained regularized ERM + output perturbation. Our second technique

is constrained regularized ERM with output perturbation (Algorithm 3). A similar

technique for the Lipschitz case was seen in [JT14], however we note that the addition

of the constraint set B (D) is crucial in bounding the sensitivity in the smooth case.

Theorem 10. Let n0 = HD2∥X ∥2

∥Y∥2 . Then Algorithm 3 run with σ2 =

O
(︃(∥Y∥2+H2D2∥X ∥4) log(1/δ)

λ2n2ϵ2

)︃
and λ =

(︃(∥Y∥+HD∥X ∥2)√
H∥X ∥

Dnϵ

)︃2/3
(log (1/δ))1/3 satisfies

(ϵ, δ)-differential privacy. Given a dataset S of n ≥ n0 i.i.d samples, the excess risk of

its output ˆ︁w is bounded as

E[L(ˆ︁w;D)− L(w∗;D)] ≤ ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥ ∥Y∥2

√
n

+

(︂√
HD ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD ∥X∥

)︂2

(nϵ)2/3

⎞⎠.

43

We note that we can use the same technique in the low dimensional setting too,

yielding a rate of
√
HD∥X ∥∥Y∥+∥Y∥2

√
n

+ GD
√
d

nϵ
. However, in contrast to Theorem 8 and

9, these results have an additional ∥Y∥2
√
n

term (in both regimes). Thus, in the regime

when ∥Y∥ ≤
√
HD∥X∥, the two upper bounds are of the same order.

Proof sketch of Theorem 10. The privacy proof follows the Gaussian mechanism

guarantee together with the fact that the ℓ2-sensitivity of constrained regularized

ERM is O
(︂
G
λn

)︂
[BE02]. For utility, we use the Rademacher complexity based result

of [SST10] to bound the generalization error of ˜︁w. The other term, error from noise,

E[L(ˆ︁w;D) − L(˜︁w;D)] ≤ O(Hσ2∥X∥2) from smoothness of GLM. Combining these

two and optimizing for λ gives the claimed result.

2.3.2 Lower Bounds

The proof technique for our lower bound relies on the connection between differential

privacy and sensitivity shown in [CH12]. The underlying mechanisms behind the

proof is also similar in nature to the method seen in [SU17]. We note that although

we present the following theorem for empirical risk, a reduction found in [BFTT19]

implies the following result holds for population risk as well (up to log factors).

Theorem 11. Let ϵ ∈ [1/n, 1], δ ≤ 1
16(1 − e−ϵ). For any (ϵ, δ)-DP al-

gorithm A, there exists a dataset S with empirical minimizer of norm at

most D such that the excess empirical risk of A on S is lower bounded by

Ω
{︃

min
{︃
∥Y∥2, (D∥X ∥)4/3(H∥Y∥)2/3

(nϵ)2/3 ,
√
dD∥X ∥∥Y∥

√
H

nϵ

}︃}︃
.

The problem instance used in the proof is the squared loss function, and thus this

result holds additionally for the more specific case of linear regression. We also note

this lower bound implies our upper bound is optimal whenever D∥X∥ ≤ ∥Y∥, which

is a commonly studied regime in linear regression [SST10, KL15]. We here provide a

proof sketch and defer the full proof to Appendix A.1.7.

44

Proof sketch of Theorem 11 Define ˆ︁L(w;S) = 1
n

∑︁
(x,y)∈S(⟨w, x⟩ − y)2. Let

d′ < min {n, d} and b, p ∈ [0, 1] be parameters to be chosen later. For any σ ∈ {±1}d
′
,

define the dataset Sσ which consists of the union of d′ subdatasets, S1, ..., Sd′ given

as follows. Set pn
d′ of the feature vectors in Sj as ∥X∥ej (the rescaled j’th standard

basis vector) and the rest as the zero vector. Set pn
2d (1 + b) of the labels as σj∥Y∥ and

pn
2d (1− b) labels as −σj∥Y∥. Let wσ = arg minw∈Rd

{︂ˆ︁L(w;Sσ)
}︂

be the ERM minimizer

of ˆ︁L(·;Sσ). Following from Lemma 2 of [Sha15] we have that for any w̄ ∈ Rd that

ˆ︁L(w̄;Sσ)− ˆ︁L(wσ;Sσ) ≥ p∥X∥2

2d′

d′∑︂
j=1

(wj̄ − wσ
j)2.

We will now show lower bounds on the per-coordinate error. Consider any σ and σ′

which differ only at index j for some j ∈ [d′]. Note that the datasets Sσ and Sσ′ differ

in ∆ = pn
2d′ [(1+b)−(1−b)] = pbn

d′ points. Let τ = wσ
j = ∥Y∥b

∥X ∥ and τ ′ = wσ′
j = −∥Y∥b

∥X ∥ (i.e.

the j components of the empirical minimizers for S and S ′
j respectively). Note that

|wσ
j − wσ′

j | = 2∥Y∥b
∥X ∥ . Setting d′ =

(︂
p∥X ∥Dnϵ

∥Y∥

)︂2/3
and b =

(︂
∥X ∥D

∥Y∥√
pnϵ

)︂2/3
ensures ∆ ≤ 1

ϵ
,

and thus Lemma 1 can be used to obtain

E
[︂
|A(Sσ)j − wσ

j |2 + |A(Sσ′)j − wσ′

j |2
]︂
≥ 1

32
∥Y∥2b2

∥X∥2 = D4/3∥Y∥2/3

32(∥X∥pnϵ)2/3 .

One can now show via a packing argument that

sup
σ∈{±1}d′

{︃
E
[︂ ˆ︁L(A(Sσ);Sσ)− ˆ︁L(wσ;Sσ)

]︂}︃
≥ (∥X∥D)4/3∥Y∥2/3p1/3

128(nϵ)2/3 ,

The result then follows from setting p = min
{︂
1, d

3/2∥Y∥
D∥X ∥nϵ

}︂
.

2.4 Lipschitz GLMs

In the Lipschitz case, we close a subtle gap in existing rates. We recall that in

this setting a more precise characterization in terms of the expected rank of the

design matrix is possible (as opposed to using d). The best known upper bound is
˜︁O (︃∥w∗∥

√
rank

nϵ

)︃
assuming knowledge of ∥w∗∥. This bound was shown to be optimal

when ϵ ≥ rank/n and ∥w∗∥ =
√

rank [SSTT20].

45

We first show that in the high privacy regime where ϵ ≤ rank/n, an improved rate

is possible. Specifically, we show that in this regime constrained regularized ERM with

output perturbation and achieves the optimal rate. In fact, we note that the method

of [JT14] (i.e. unconstrained regularized ERM with output perturbation), can obtain

this rate when ϵ = O(1) if the regularization parameter is set differently. We present

the constrained version in order to leverage Rademacher complexity arguments and

provide a slightly cleaner bound that holds for all ϵ > 0.

Theorem 12. Algorithm 3 run with parameters σ2 = 4G2∥X ∥2 log(1/δ)
λ2n2ϵ2

and λ =
G∥X ∥(log(1/δ))1/4

D
√
nϵ

satisfies (ϵ, δ)-DP. Given a dataset of n i.i.d. samples from D, its

output has excess risk

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O(︄GD∥X∥√
n

+ GD∥X∥√
nϵ

)︄
.

We also state and prove a similar bound using the JL technique in Appendix A.2.

Next, we generalize the lower bound of [SSTT20] to show this new bound is optimal

for all settings of D, rank, and ϵ. We now show that a modification of the lower bound

present in [SSTT20] shows our upper bound is tight. We note that their lower bound

only held for problem instances where rank = ∥w∗∥2 and ϵ ≤ rank/n. By contrast,

the upper bound O(
√

rank∥w∗∥
nϵ

) holds for any values of rank and ∥w∗∥.

Theorem 13. Let G, ∥Y∥ , ∥X∥ , D > 0, ϵ ≤ 1.2 and δ ≤ ϵ. For any (ϵ, δ)-DP

algorithm A, there exists a G-Lipschitz GLM loss bounded at zero by ∥Y∥ and a

distribution D with ∥w∗∥ ≤ D such that the output of A on S ∼ Dn satisfies

E [L(A(S);D)− L(w∗;D)] = Ω
(︄
GD∥X∥min

(︃
1, 1√

nϵ
,

√
rank
nϵ

)︃)︄
.

All proofs for this section are deferred to Appendix A.2.

46

2.5 Adapting to ∥w∗∥

Our method for privately adapting to ∥w∗∥ is given in Algorithm 4. We start by giving

a high level overview and defining some necessary preliminaries. The algorithm works

in the following manner. First we define a number of “guesses” K for ∥w∗∥, D1, ..., DK

where Dj = 2j : ∀j ∈ [K]. Then given black box access to a DP optimization

algorithm, A, Algorithm 4 generates K candidate vectors w1, ..., wK using A, training

set S1 ∈ (X × Y)n/2, and the guesses D1, ..., DK . We assume A satisfies the following

accuracy assumption for some confidence parameter β > 0.

Assumption 1. There exists a function ERR : R+ ↦→ R+ such that for any D ∈ R+,

whenever D ≥ ∥w∗∥, w.p. at least 1− β
4K under the randomness of S1 ∼ D

n
2 and A it

holds that E [L(A(S1, D);D)− L(w∗;D)] ≤ ERR(D).

After generating the candidate vectors, the goal is to pick guess with the smallest

excess population risk in a differentially private manner using a validation set S2. The

following assumption on A allows us both to ensure the privacy of the model selection

algorithm and verify that ˆ︁L(wj;S2) provides a tight estimate of L(wj;D).

Assumption 2. There exist a function ∆ : R+ ↦→ R+ such that for any dataset

S2 ∈ (X × Y)n/2 and D > 0

P
A

[∃(x, y) ∈ S2 : |ℓ(A(S1, D); (x, y))| ≥ ∆(D)] ≤ min {δ, β}
4K

Specifically, our strategy will be to use the Generalized Exponential Mechanism,

GenExpMech, of [RS16] in conjunction with a penalized score function. Roughly, this

score function penalty ensures the looser guarantees on the population loss estimate

when D is large do not interfere with the loss estimates at smaller values of D. We

provide the relevant details for GenExpMech in Appendix A.3.1. We now state our

result.

47

Algorithm 4 Private Grid Search
Input: Dataset S ∈ (X × Y)n, grid parameter K ∈ R, optimization algorithm:
A : (X × Y)n × R ↦→ Rd, privacy parameters (ϵ, δ)

1: Partition S into two disjoint sets, S1 and S2, of size n
2

2: w0 = 0
3: for j ∈ [K] do
4: Dj = 2j
5: wj = A(S1, Dj)
6: ˜︁Lj = ˆ︁L(wj;S2) + ∆(Dj) log(K/β)

n
+
√︂

4∥Y∥2 log(K/β)
n

7: end for
8: Set j∗ as the output of GenExpMech run with privacy parameter ϵ

2 , confidence
parameter β

4 , and sensitivity/score pairs (0, ∥Y∥2), (∆(D1), ˜︁L1)..., (∆(DK), ˜︁LK),
9: Output wj∗

Theorem 14. Let ℓ : Rd × (X × Y) be a smooth non-negative loss function such that

ℓ(0, (x, y)) ≤ ∥Y∥2 for any x, y ∈ (X × Y). Let ϵ, δ, β ∈ [0, 1]. Let K > 0 satisfy

ERR(2K) ≥ ∥Y∥2. Let A be an (ϵ
2K ,

δ
2K)-DP algorithm satisfying Assumption 2. Then

Algorithm 4 is (ϵ, δ)-DP. Further, if A satisfies Assumption 1 and S1 ∼ Dn/2 then

Algorithm 4 outputs w̄ s.t. with probability at least 1− β,

E [L(w̄;D)− L(w∗;D)] ≤ min
{︃
∥Y∥2,ERR(2 max {∥w∗∥ , 1})

+
√︄

4∥Y∥2 log (4K/β)
n

+ 5∆(2 max {∥w∗∥ , 1})
nϵ

}︃
.

We note that we develop a generic confidence boosting approach to obtain high

probability guarantees from our previously described algorithms in Section 2.5, and

thus obtaining algorithms which satisfy 1 is straightforward. We provide more details

on how our algorithms satisfy Assumption 2 in Appendix A.3.4. The following Theorem

details the guarantees implied by this method for output perturbation with boosting

(see Theorems 35,37). Full details are in Appendix A.3.3.

Theorem 15. Let K, ϵ, δ, β > 0 and A be the algorithm formed by running 3 with

boosting and privacy parameters ϵ′ = ϵ
K

, δ′ = δ
K

. Then there exists a setting of K such

that K = Θ
(︃

log
(︃

max
{︃

∥Y∥
√
n

∥X ∥
√
H
, ∥Y∥2(nϵ)2/3

√
H∥X ∥2

}︃)︃)︃
and Algorithm 4 run with A and K is

48

(ϵ, δ)-DP and when given S ∼ Dn, satisfies the following w.p. at least 1− β (letting

D∗ = 2 max {∥w∗∥ , 1})

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O
⎛⎝min

{︃
∥Y∥2,

(︂√
HD∗ ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD∗ ∥X∥

)︂2

(nϵ)2/3

+
√
HD∗ ∥X∥max {∥Y∥ , 1}+ ∥Y∥2

√
n

+ ∥Y∥
2 +H(D∗∥X∥)2

nϵ

}︃⎞⎠.

Confidence Boosting. We give an algorithm to boost the confidence of uncon-

strained, smooth DP-SCO (with possibly non-Lipschitz losses). We split the dataset S

into m+ 1 chunks and run an (ϵ, δ)-DP algorithm over the m chunks to get m models,

and then use Report Noisy Max mechanism to select a model with approximately the

least empirical risk. We show that this achieves the optimal rate of ˜︁O (︃√
HD∥X ∥∥Y∥√

n

)︃
whereas the previous high probability result of [SST10] had an additional ˜︁O (︂∥Y∥2

√
n

)︂
term, which was also limited to only GLMs. The key idea is that non-negativity,

convexity, smoothness and loss bounded at zero, all together enable strong bounds on

the variance of the loss, and consequently give stronger concentration bounds. The

details are deferred to Appendix A.4.

2.6 Conclusion

In this chapter, we studied the problem of learning convex generalized linear models

(GLM), under differential privacy, in the unconstrained setting. We designed DP

procedures with near-optimal dimension-independent rates for two fundamental classes:

Lipschitz GLM, and non-negative, smooth GLMs. Further, we proposed an adaptive

procedure which attains near-optimal rates without knowledge of the norm of the

optimal predictor.

49

Chapter 3

Differentially Private Non-convex
Optimization

Summary

In this chapter, we study the problem of approximating stationary points of Lipschitz

and smooth functions under (ε, δ)-differential privacy (DP) in both the finite-sum and

stochastic settings. We provide a new efficient algorithm that finds an ˜︁O(︂[︂√
d

nε

]︂2/3)︂
-

stationary point in the finite-sum setting, where n is the number of samples. This

improves on the previous best rate of ˜︁O(︂[︂√
d

nε

]︂1/2)︂
. We also give a new construction

that improves over the existing rates in the stochastic optimization setting, where the

goal is to find approximate stationary points of the population risk. Our construction

finds a ˜︁O(︂ 1
n1/3 +

[︂√
d

nε

]︂1/2)︂
-stationary point of the population risk in time linear in n.

Furthermore, under the additional assumption of convexity, we completely characterize

the sample complexity of finding stationary points of the population risk (up to polylog

factors) and show that the optimal rate on population stationarity is ˜︁Θ(︂ 1√
n

+
√
d

nε

)︂
.

Finally, we show that our methods can be used to provide dimension-independent

rates of O
(︂

1√
n

+ min
(︂[︂√

rank
nε

]︂2/3
, 1

(nε)2/5

)︂)︂
on population stationarity for Generalized

Linear Models (GLM), where rank is the rank of the design matrix, which improves

upon the previous best known rate.

50

3.1 Introduction

In this chapter, we study differentially private non-convex optimization; namely, the

task of approximating stationary points. This has been heavily studied in recent years

in the non-private setting [FLLZ18, MWCC18, CDHS17, NP06, GL13, ACD+19,

FSS+19]. This problem is motivated by the intractability of nonconvex (global)

optimization, as well as by a number of settings where stationary points have been

shown to be global minima [GLM16, SQW16].

3.1.1 Contributions

In this work, we make progress towards resolving the complexity of approximating

stationary points in optimization under the constraint of differential privacy, for both

empirical and population risks. A summary of our new results is available in Table

3-I. In what follows, d is the problem dimension, n is the dataset size, and ε, δ are the

approximate DP parameters. Our first set of results pertains to the approximation of

stationary points in empirical nonconvex optimization (a.k.a. finite-sum optimization

setting). In this context, we provide algorithms with rate O
(︂[︂√

d
nε

]︂2/3)︂
, and oracle

complexity1 ˜︁O(︂max
{︂(︂

n5ε2

d

)︂1/3
,
(︂
nε√
d

)︂2}︂)︂
. This rate is sharper than the best known

for this problem [WYX17].

Next, we focus on the task of approximating stationary points of the population

risk. Results for this problem are scarce. We provide the fastest rate up to date for this

problem under DP, of ˜︁O(︂ 1
n1/3 +

[︂√
d

nε

]︂1/2)︂
, with an algorithm that moreover has oracle

complexity n (i.e., is single-pass). This algorithm is a noisy version of the SPIDER

algorithm [FLLZ18], whose gradient estimators are built using a tree-aggregation data

structure for prefix-sums [AFKT21].

We continue by investigating stationary points for convex losses and give an
1We consider for complexity the first-order oracle model, standard for continuous optimization

[NY83].

51

Setting Convergence Our Rate Previous best-known rate

Non-convex
Empirical

(︂√
d

nϵ

)︂2/3
(Thm. 16)

(︂√
d

nϵ

)︂1/2
[WYX17]

Population 1
n1/3 +

(︂√
d

nϵ

)︂1/2
(Thm. 19)

√
dϵ+

(︂√
d

nϵ

)︂1/2
[ZCH+20]

Convex Population 1√
n

+
√
d

nϵ
(Thm. 20) None

Non-convex
GLM

Empirical
[︂√

rank
nϵ

]︂2/3
∧ 1

(nϵ)2/5 (Cor. 1)
(︂√

rank
nϵ

)︂1/2
[SSTT21]

Population 1√
n

+
[︁√

rank
nϵ

]︁2/3∧ 1
(nϵ)2/5 (Cor. 1) None

Convex GLM Population 1√
n

+
√

rank
nϵ ∧

1√
nϵ

(Cor. 1) None

Table 3-I. Results summary: We omit log factors and function-class parameters. The
symbol ∧ stands for minimum of the quantities.

algorithm based on the recursive regularization technique of [AZ18] which achieves the

optimal rate of ˜︁Θ(︂ 1√
n

+
√
d

nε

)︂
on population stationarity. To establish optimality, we give

a lower bound of Ω
(︂√

d
nε

)︂
on empirical stationarity under DP (Theorem 17) and a non-

private lower bound of Ω(1√
n
) on population stationarity (Theorem 40). We also give a

linear-time method, which achieves the optimal rate when the smoothness parameter

is not so large. We conclude the paper showing a black-box reduction that converts

any DP method for finding stationary points of smooth and Lipschitz losses into a DP

method with dimension-independent rates for the case of generalized linear models

(GLM). Using our proposed method with Private Spiderboost as the base algorithm

yields a rate of ˜︁O (︃ 1√
n

+ min
(︃[︂√

rank
nε

]︂2/3
, 1

(nε)2/5

)︃)︃
on population stationarity. This

improves upon the result of [SSTT21] which proposed a method with ˜︁O(︂[︂√
rank
nε

]︂1/2)︂
empirical stationarity2.

3.1.2 Techniques

Our methods combine multiple techniques from optimization and differential privacy in

novel ways. The lower bound for the empirical norm of the gradient uses fingerprinting

codes to a loss similar to that used for Differentially Private-Empirical Risk Minimiza-

tion (DP-ERM) [BST14], crafted to work in the unconstrained case. This lower bound
2This is the rate obtained after fixing a mistake in the proof of Theorem 4.1 in [SSTT21].

52

can be extended to the population gradient norm by a known re-sampling argument

[BFTGT19]. We also give a non-private lower bound of Ω (1/
√
n) on population

stationarity with n samples which holds even in dimension 1, as opposed to previous

results [FSS+19].

Efficient algorithms for (both empirical and population) norm of the gradient

are derived using noisy versions of variance-reduced stochastic first order methods,

which have proved remarkably useful in DP stochastic optimization [AFKT21, BGN21,

BGM21]. However, in contrast to previous work which scales noise proportionally to

the Lipschitz constant [ZCH+20, ZMLX21] or (in the case of constrained optimization)

the diameter of the constraint set [BGM21, BGN21], we observe that the gradient

variations between iterates w,w′ can be privatized more effectively by scaling the noise

proportional to H ∥w − w′∥. In the case of the empirical risk, we use a noisy version

of SpiderBoost [WJZ+19]. We remark that our methods can achieve comparable rates

when applied to similar algorithms such as Spider [FLLZ18] and Storm [CO19], but

SpiderBoost allows for a larger learning rate which is considered better in practice. For

the population risk, it is worth noting that the empirical norm of the gradient does not

translate directly into population gradient guarantees, even if the algorithm in use is

uniformly stable [BE02], since this type of guarantee does not enjoy a stability-implies-

generalization property. Therefore, we opt for single pass methods that combine

variance-reduction with tree-aggregation; these techniques are particularly suitable for

the classical Spider algorithm [FLLZ18], which is the one we base our method on. For

the convex setting, we use recursive regularization [AZ18] which was used to achieve

the optimal non-private rate by [FSS+19].

Finally, our method for (non-convex) GLMs uses the Johnson-Lindenstrauss based

dimensionality reduction technique similar to [ABG+22], which focused on the convex

setting. Moreover, for population stationarity of GLMs, we give a new uniform

convergence result of gradients of Lipschitz functions. This guarantee, unlike the prior

53

work of [FSS18], has only poly-logarithmic dependence on the radius of the constraint

set, which is crucial for our analysis.

3.1.3 Related Work

The current work fits within the literature of differentially private optimization, which

has primarily focused on the convex case [CMS11, JKT12, KST12, BST14, TTZ14,

JT14, TTZ15, BFTGT19, FKT20b, AFKT21, BGN21]. The culmination of this line

of work for the convex smooth case showed that optimal rates are achievable in linear

time [FKT20b, AFKT21, BGN21]. Our work shows that in the convex case similar

rates are achievable for the norm of the gradient: this result is useful, e.g., for dual

formulations of linearly constrained convex programs [Nes12], and moreover it has

become a problem of independent interest [AZ18, FSS+19]. 3

Regarding stationary points for nonconvex losses, work in DP is far more recent, and

primarily focused on the empirical stationarity [WYX17, ZZMW17, WX19, WCX19b].

Under similar assumptions to ours these works approximate stationary points with

rate ˜︁O(︂[︂√
d

nε

]︂1/2)︂
, which is slower than ours.

Works addressing population guarantees for the norm of the gradient under DP

are scarce. [ZCH+20] proposed a noisy gradient method, whose population guarantee

is obtained by generalization properties of DP. However, the best guarantee obtainable

with their analysis is O
(︂[︂√

d
nε

]︂1/2
+
√
dε
)︂

4. Note that for any ε this rate is Ω
(︂
[d/n]1/3

)︂
.

Under additional assumptions (on the Hessian), [WX19] obtains a rate of ˜︁O(
√︂
d/(nε))

by uniform convergence of gradients, which is sharper when ε is constant. By contrast,

our rate is much faster than both for ε = Θ(1). In particular, in this range, our rates
3To provide a specific example, consider the dual of the regularized discrete optimal transport

problem, as discussed in [DG23], Section 5.6. If the marginals µ, ν in that model are accessed through
i.i.d. samples, then this becomes an SCO problem. Moreover, it is argued in that reference that
approximate stationary points provide approximately feasible and optimal transports through duality
arguments. Hence, the result is an SCO problem where we require approximate stationary points.

4[ZCH+20] omits the term
√

dε, but this omission is only valid when ε < 1/[n
√

d]1/3.

54

are faster than those obtained by uniform convergence, O(
√︂
d/n) [FSS18]. Moreover,

our method runs in time linear in n. On the other hand, in the much more restrictive

setting where the loss satisfies the Polyak-Łojasiewicz (PL) inequality, [ZMLX21]

provide population risk bounds of ˜︁O(d/[nε]2) under DP.

The work of [BGM21] studies population guarantees for stationarity in constrained

settings, obtaining rates O
(︂

1
n1/3 +

[︂√
d

nε

]︂2/5)︂
in linear time. Notice first that these

guarantees are based on the Frank-Wolfe gap, making those results incomparable to

ours. Despite this fact, their rates are slower than ours.5 On the other hand, they

provide results for (close to nearly) stationary points in constrained/unconstrained

settings, for a broader class of weakly convex losses (possibly nonsmooth). This result

is then more general, but the rate of O
(︂

1
n1/4 +

[︂√
d

nε

]︂1/3)︂
is substantially slower than

ours, and their algorithm has oracle complexity which is superlinear in n.

The problem of stationary points in (nonprivate) stochastic optimization has drawn

major attention recently [GL13, GL16, FLLZ18, AZ18, FSS18, FSS+19, ACD+19].

To the best of our knowledge, no lower bounds for the sample complexity6 of this

problem are known (beyond those known for the convex case [FSS+19]). On the other

hand, oracle complexity is by now understood: in high dimensions, for (on average)

smooth losses the optimal stochastic oracle complexity rate is O(1/n1/3) [ACD+19].

Although this provides some evidence of the sharpness of our results (see Appendix

B.2.2), note that these lower bounds require very high dimensional constructions

(namely, d = Ω(1/α4), where α is the rate), which limits their applicability in the

private setting.
5We believe our methods can be extended to constrained settings using gradient mapping, a

guarantee for which is stronger than for Frank-Wolfe gap [Lan20, Section 7.5.1]. We defer this
extension to future work.

6Sample complexity is the fundamental limit on the sample size needed, as a function of α, to
achieve α stationarity. This is different from the oracle complexity as one is not limited to first-order
methods.

55

Algorithm 5 Private SpiderBoost
Input: Dataset: S ∈ Zn, Function: ℓ : Rd ×Z ↦→ R, Learning Rate: η, Phase Size:

q, Batch Sizes b1, b2, Privacy Parameters: (ϵ, δ), Iterations: T
1: w0 = 0
2: σ1 = cG

√
log(1/δ)
ϵ

max
{︂

1
b1
,

√
T√
qn

}︂
, where c is a universal constant.

3: σ2 = cH
√

log(1/δ)
ϵ

max
{︂

1
b2
,

√
T
n

}︂
4: ˆ︁σ2 = 2cG

√
log(1/δ)
ϵ

max
{︂

1
b2
,

√
T
n

}︂
5: for t = 0, . . . , T do
6: if mod (t, q) = 0 then
7: Sample batch St of size b1

8: Sample gt ∼ N (0, Idσ2
1)

9: ▽t = 1
b1

∑︁
z∈St
∇ℓ(wt; z) + gt

10: else
11: Sample batch St of size b2
12: Sample gt ∼ N

(︂
0, Id min

{︂
σ2

2 ∥wt − wt−1∥2 , ˆ︁σ2
2

}︂)︂
13: ∆t = 1

b2

∑︁
x∈St

[∇ℓ(wt; z)−∇ℓ(wt−1; z)] + gt
14: ▽t = ▽t−1 + ∆t

15: end if
16: wt+1 = wt − η▽t

17: end for
18: return ˆ︁w uniformly at random from w1, . . . , wT

3.2 Stationary Points of Empirical Risk

3.2.1 Efficient Algorithm with Faster Rate

The algorithm for our upper bound is a noisy version of the SpiderBoost algorithm

[WJZ+19]7. The algorithm works by running a series of phases of length q. Each phase

starts with a minibatch estimate of the gradient, and subsequent gradient estimates

within the phase are then computed by adding an estimate of the gradient variation.

The key to the analysis is to bound the error in the gradient estimate at each iteration.

Towards this end, we have the following generalization of the [WJZ+19, Lemma 1],

which follows directly from [FLLZ18, Proposition 1].

7SpiderBoost itself is essentially the Spider algorithm [FLLZ18] with a different learning rate and
analysis.

56

Lemma 3. Consider Algorithm 5, and for any t ∈ {0, .., T} let st =
⌊︂
t
q

⌋︂
q.

If each ▽t computed in line 9 is an unbiased estimate of ∇ˆ︁L(wt;S) satisfying

E
[︃⃦⃦⃦
▽st −∇ˆ︁L(wst ;S)

⃦⃦⃦2
]︃
≤ τ 2

1 and each ∆t computed in line 13 is an unbiased es-

timate of the gradient variation satisfying E
[︃⃦⃦⃦

∆t − [∇ˆ︁L(wt;S)−∇ˆ︁L(wt−1;S)]
⃦⃦⃦2
]︃
≤

τ 2
2 ∥wt − wt−1∥2. Then for any t ≥ st + 1, the iterates of Algorithm 5 satisfy

E
[︃⃦⃦⃦
▽t −∇ˆ︁L(wt;S)

⃦⃦⃦2
]︃
≤ τ 2

2

t∑︂
k=st+1

E
[︂
∥wk − wk−1∥2

]︂
+ τ 2

1 .

For privacy, using smoothness we observe the sensitivity of the gradient variation

estimate at iteration t is proportional to β ∥wt − wt−1∥. Thus we can apply the above

lemma with τ 2
1 = G2

b1
+ G2σ2

1 and τ 2
2 = H2

b2
+ H2σ2

2 (note the Gaussian noise in line

13 is drawn with variance scale at most σ2
2 ∥wt − wt−1∥2). By carefully balancing the

algorithm parameters, we are then able to obtain the following result. The full proof

is deferred to Appendix B.2.1.

Theorem 16 (Private Spiderboost ERM). Let ϵ, δ ∈ [0, 1] and n ≥

max
{︃

(Gϵ)2

L0Hd log(1/δ) ,
√
dmax{1,

√
HL0/G}

ϵ

}︃
. Algorithm 5 is (ϵ, δ)-DP. Further, there exist

settings of T, η, q, b1, b2 such that Algorithm 5 satisfies

E
[︂⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦]︂
= O

⎛⎜⎝
⎛⎝√L0HG

√︂
d log (1/δ)
nϵ

⎞⎠2/3

+
G
√︂
d log (1/δ)
nϵ

⎞⎟⎠
and has oracle complexity ˜︁O (︃max

{︃(︂
n5/3ϵ2/3

d1/3

)︂
,
(︂
nϵ√
d

)︂2
}︃)︃

.

In the case where the dominant error term is α = ˜︁O(︃[︂√
d

nϵ

]︂2/3
)︃

, then we approxi-

mately have oracle complexity ˜︁O(︂max
{︂

1
α3 ,

n
α

}︂)︂
.

3.2.2 Lower Bound

We now show a lower bound for the sample complexity of finding a stationary

point under differential privacy in the unconstrained setting, which shows that the

O
(︂
G
√
d log(1/δ)
nϵ

)︂
term in the rate given in Theorem 16 is necessary. Furthermore, as our

57

lower bound holds for all levels of smoothness, it also shows that our rate in Theorem

16 is optimal in the (admittedly uncommon) regime where H ≤
√
dG2

L0nϵ
. Our lower

bound in fact holds even for convex functions. Furthermore, this result implies the

same lower bound (up to log factors) for the population gradient using the technique

in [BFTGT19, Appendix C].

Theorem 17. Given G,H, n, ϵ = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), there exists an G-

Lispchitz, H-smooth (convex) loss ℓ : Rd ×Z → R and a dataset S of n points such

that any (ϵ, δ)-DP algorithm run on S with output ˆ︁w satisfies,

⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
= Ω

⎛⎝Gmin
⎛⎝1,

√︂
d log (1/δ)
nϵ

⎞⎠⎞⎠ .
The proof is based on a reduction to DP mean estimation. Specifically, we consider

a instance of the Huber loss function for which the minimizer is the empirical mean of

the dataset. We then argue that close to the minimizer, the empirical stationarity is

lower bounded by DP mean estimation bound [SU15], and far away, by construction,

the empirical stationarity is G. We defer the details to Appendix B.1.

Challenges for Further Rate Improvements. Given the above lower bound,

the question arises as to whether the ˜︁O(︂[︂√
d

nϵ
]2/3

)︂
term can be improved. An informal

argument using the oracle complexity lower bound of [ACD+19] suggests several major

challenges in obtaining further rate improvements. A more detailed version of the

following discussion can be found in Appendix B.2.2.

Consider methods which ensure privacy by directly privatizing the gradient/gradient

variation queries. The aim of such methods is to design some private stochastic first

order oracle, Oϵ′,δ′ , such that a set of Q queries to Oϵ′,δ′ satisfies (ϵ, δ)-DP, and use this

oracle in some optimization algorithm A(Oϵ′,δ′). Such a setup encapsulates numerous

results in the convex setting [BFTGT19, KLL21], and is even more dominant in

non-convex settings [WYX17, ZCH+20, ACG+16b]. Under advanced composition

58

based arguments, to make Q calls to such a private oracle one needs ϵ′ ≤ ϵ/
√
Q. Now,

standard fingerprinting code arguments suggest lower bounds on the level of accuracy

of any such private oracle [SU15]. Specifically, without leveraging further problem

structure beyond Lipschitzness, one needs the gradient estimation error to be at least

τ1 = Ω
(︃
G
√
Qd log(1/δ)
nϵ

)︃
. A similar argument suggests the error in the gradient variation

between iterates w,w′ must at least τ2 ∥w − w′∥ = Ω
(︃
H∥w−w′∥

√
Qd log(1/δ)

nϵ

)︃
. Now

consider some optimization algorithm, A, which takes as input a stochastic oracle O

for some smooth function L. The lower bound of [ACD+19] suggests that if A makes at

most Q queries to O, the algorithm satisfies E [∥∇L(A(O))∥] = Ω
(︃(︂

L0τ2τ1
Q

)︂1/3
+ τ1√

Q

)︃
.

If O is a private oracle satisfying the previously mentioned conditions, we would then

have under the setting of τ1 and τ2 suggested by privacy that

E [∥∇L(A(O))∥] = Ω

⎛⎜⎝
⎛⎝√L0HG

√︂
d log (1/δ)
nϵ

⎞⎠2/3

+
G
√︂
d log (1/δ)
nϵ

⎞⎟⎠ .
This indicates a substantial challenge for future rate improvements, as alternative

methods which avoid private gradients (see e.g. [FKT20b]) rely crucially on stability

guarantees arising from convexity.

59

3.3 Stationary Points of Population Risk

Algorithm 6 Tree-based Private Spider
Input: S = (z1, . . . , zn) ∈ Zn: private dataset, (ϵ, δ): privacy parameters, T : number

of rounds, b: batch size at beginning of each round, D: depth of trees at each
round, β: step-size parameter, ˜︁α: accuracy parameter.

1: w0,ℓ(2D−1) = 0
2: for t = 1 to T do
3: Set wt,∅ = wt−1,ℓ(2D−1)
4: Draw a batch St,∅ of b data points, set S ← S \ St,∅.
5: Set σ2

t,∅ := 8L2
0 log(1.25/δ)
b2ϵ2

.
6: ∇t,∅ = 1

b

∑︁
z∈St,∅∇ℓ (wt,∅; z) + gt,∅, where gt,∅ ∼ N

(︂
0, Idσ2

t,∅

)︂
.

7: for ut,s ∈ DFS [D] do
8: Let s = ˆ︁sc, where c ∈ {0, 1}.
9: if c = 0 then

10: ∇t,s = ∇t,ˆ︁s
11: wt,s = wt,ˆ︁s
12: else
13: Draw a batch St,s of b

2|s| data points, set S ← S \ St,s.
14: Set noise variance σ2

t,s := 8·2Dβ2 log(1.25/δ)
b2ϵ2

.
15: ∆t,s = 2|s|

b

∑︁
z∈St,s

(︂
∇ℓ (wt,s; z)−∇ℓ

(︂
wt,ˆ︁s; z)︂)︂+ gt,s, where gt,s∼N

(︂
0, Idσ2

t,s

)︂
.

16: ∇t,s = ∇t,ˆ︁s + ∆t,s.
17: end if
18: if |s| = D (i.e, ut,s is a leaf) then
19: if ∥∇t,s∥ ≤ 2˜︁α then
20: Return wt,s
21: end if
22: Let ut,s+ be the next vertex in DFS[D].
23: Set ηt,s := β

2D/2H∥∇t,s∥
24: wt,s+ = wt,s − ηt,s∇t,s.
25: end if
26: end for
27: end for
28: Return w, chosen uniformly at random from {wt,s : t ∈ [T], ut,s is a leaf}.

For the population gradient, we provide a linear time algorithm; see Algorithm

6 for pseudocode. It is a noisy variant of SPIDER [FLLZ18], and utilizes a variance

reduction technique tailored to an underlying binary tree structure. Namely, we run

60

T rounds, where at the beginning of round t we build a binary tree of depth D, whose

nodes are denoted by ut,s, where s ∈ {0, 1}D. Every node ut,s is associated with a

parameter vector wt,s and a gradient estimate ∇t,s. Next, we perform a Depth-First-

Search traversal of the tree. We denote by DFS[D] the set of nodes in the visiting

order excluding the root, for example: DFS[2] = {u0, u00, u01, u1, u10, u11}. When a

left child node is visited, it receives the same parameter vector and gradient estimator

of the parent node.

On the other hand, when a right child node is visited, it receives a fresh set of

samples and uses it to update the gradient estimator coming from the parent node.

Every time a leaf node is reached, a gradient step is performed using the gradient

estimator associated to the leaf. Finally, the parameter vector of a right child node

comes from the gradient step performed at the right-most leaf in the left sub-tree of

it. The use of the binary tree structure is benefitial because every gradient estimator

is updated at most D times within a round of 2D optimization steps, as opposed to

the original SPIDER algorithm where the gradient estimators are updated at every

optimization step. This way, we are able to perform the same number of optimization

steps but adding substantially smaller amounts of noise, leading to a faster rate than

the one we would get without using the tree. In the following, we denote by ℓ(k) the

binary representation of any number k ∈ [0, 2D − 1] and by |s| the depth of ut,s for

any t ∈ [T].

The proposed algorithm is similar to the one in Section 5 of [BGN21] for con-

strained Differentially Private-Stochastic Convex Optimization (DP-SCO), with the

key difference that Algorithm 6 executes each round with fixed depth trees, which

is key for our convergence analysis, whereas the prior work leverages convexity to

construct trees that increase depth by one at each round. In addition, to choose the

step-size in [BGN21] the authors leverage the bounded diameter of the domain, while

our step-size is chosen as that of [FLLZ18], i.e. normalized by the norm of the gradient

61

estimator and proportional to the target accuracy. This choice is crucial for controlling

the sensitivity of the gradient variation estimator in the unconstrained setting, and

consequently for the privacy analysis as well. Our results are presented below and the

proofs are deferred to Appendix B.3.

Theorem 18 (Privacy guarantee). For any ϵ, δ ∈ [0, 1], Algorithm 6 is (ϵ, δ)-DP.

Theorem 19 (Accuracy guarantee). Let p ∈ (0, 1), ϵ, δ > 0, b = max
{︂
n2/3,

√
nd1/4
√
ϵ

}︂
,

D be such that D2D+1 = b, T = n
b(D/2+1) , α =

√
2Gmax

{︂
1

n1/3 ,
(︂√

d
nϵ

)︂1/2}︂
, β =

αmin{1,
√
bϵ√
d
}, and ˜︁α = ˜︁Cα, where ˜︁C = 256 log

(︂
1.25
δ

)︂
log

(︂
2T2D+1

p

)︂
+ 8HL0

√
2D(D/2+1)
2G2 .

Then, for any n ≥ max{
√
d(D2 + 1)2/ϵ, (D2 + 1)3}, with probability 1− p, Algorithm 6

ends in line 20, returning an iterate wt,s with

∥∇L(wt,s;D)∥ ≤ 3
√

2G ˜︁C max
{︃ 1
n1/3 ,

(︃√
d

nϵ

)︃1/2}︃
.

Furthermore, Algorithm 6 has oracle complexity of n.

3.4 Stationary Points in the Convex Setting

Algorithm 7 Recursive Regularization
Input: Dataset S, loss function ℓ, steps T , {λt}t, {Dt}t, PrivateSubRoutine, number

of steps of sub-routine {Kt}, selector functions {St(·)}t, step size {ηt}t, noise
variances {σt}t

1: w0 = 0, n0 = 1
2: Define function (w, z) ↦→ ℓ(0)(w; z) = ℓ(w; z) + λ0

2 ∥w − w0∥2

3: for t = 1 to T − 1 do
4: nt = nt−1 +

⌊︂
|S|
T

⌋︂
5: ˆ︁wt = PrivateSubRoutine

(︂
Snt−1:nt , ℓ

(t−1), Dt, Kt, ηt,St(·), σt
)︂

6: Define function (w, x) ↦→ ℓ(t)(w; z) = ℓ(t−1)(w; z) + λt

2 ∥w − ˆ︁wt∥2

7: end for
Output: ˆ︁w = ˆ︁wT

In this section, we additionally assume that the loss function is convex. The

motivation for this is two-fold: firstly, this setting has recently gained attention in a

62

non-private setting [Nes12, AZ18, FSS+19]. Secondly, in this setting we are able to

establish tightly the sample complexity of approximate stationary points.

Our method is based on the recursive regularization technique proposed in [AZ18],

and further improved by [FSS+19]. The main idea, as the name suggests, is to

recursively regularize the objective and optimize it via some solver. For the DP setting,

the key idea is to use a private sub-routine as the inner solver. Furthermore, while

a solver for the unconstrained problem suffices non-privately, we need to carefully

increase the radius of the constrained set over which the solver operates.

Theorem 20. Let G,H, ϵ, δ > 0, d, n ∈ N. Let w ↦→ ℓ(w; z) be an G-Lipschitz

H-smooth convex function for all x. Let Dt =
(︂√

2
)︂t
∥w∗∥ , λt = 2tλ, ηt = log(Kt)

λtKt
, T =⌊︂

log2

(︂
H
λ

)︂⌋︂
, σ2

t = 64G2K2
t log(1/δ)
n2ϵ2

, and St({wk}k) = 1∑︁Kt
k=1(1−ηtλt)−k

∑︁Kt
k=1 (1− ηtλt)−k wk.

1. (Optimal rate) Algorithm 7 run with NoisyGD (Algorithm 18 in Appendix B.4) as the

PrivateSubRoutine with above parameter settings and λ = G2

H∥w∗∥ min
(︂

1
n
, d
n2ϵ2

)︂
and

Kt = max
(︃
H+λt

λt
log

(︂
H+λt

λt

)︂
,
n2ϵ2(G2λ+H3/2)
T 2λdG2 log(1/δ)

)︃
satisfies (ϵ, δ)-DP, and given a dataset

S of n i.i.d. samples from D, outputs ˆ︁w such that

E ∥∇L(ˆ︁w;D)∥ = ˜︁O(︄ G√
n

+ G
√
d

nϵ

)︄
.

Furthermore, the above rate is tight up to poly-logarithmic factors.

2. (Linear time rate) Algorithm 7 run with PhasedSGD (Algorithm 16)

as the PrivateSubRoutine with with above parameter settings and λ =

max
(︂

G2

H∥w∗∥2 min
(︂

1
n
, d
n2ϵ2

)︂
, H log(n)

n

)︂
and Kt = ⌊ n

T
⌋ satisfies (ϵ, δ)-DP and given a

dataset S of n i.i.d. samples from D, in linear time, outputs ˆ︁w with

E ∥∇L(ˆ︁w;D)∥ = ˜︁O(︄ G√
n

+ G
√
d

nϵ
+ H ∥w∗∥√

n

)︄
.

The proof of the above result is deferred to Appendix B.4. For the tightness of

the rate, the necessity of the second term G
√
d

nϵ
is due to our DP empirical stationarity

63

lower bound, Theorem 17. For the first “non-private” term L0√
n
, even though [FSS+19]

proved a sample complexity lower bound, their instance is not Lipschitz and has

d = Ω (n log (n)), hence not applicable. To remedy this, we give a new lower bound

construction with a Lispchitz function in d = 1, Theorem 40 in Appendix B.1. The

polylog dependence on H and ∥w∗∥ in the upper bounds, is consistent with the

non-private sample complexity in [FSS+19].

The second result is a linear time method which has an additional H ∥w∗∥ /
√
n term.

Firstly, if the smoothness parameter is small enough, then there is no overhead; this

small-enough smoothness is precisely the regime in which we have linear time methods

with optimal rates for smooth DP-SCO [FKT20b]. More importantly, [FSS+19] showed

that even in the non-private setting, a polynomial dependence on H ∥w∗∥ is necessary

in the stochastic oracle model. However, the optimal non-private term, shown in

[FSS+19], is H ∥w∗∥ /n2, achieved by accelerated methods. Improving this dependency,

if possible, is an interesting direction for future work.

3.5 Generalized Linear Models

In this section, we assume that the loss function is a generalized linear model (GLM),

ℓ(w; (x, y)) = ϕy (⟨w, x⟩). Also, assume the norm of data points x are bounded by

∥X∥ and the function ϕy : R→ R is G-Lipschitz and H-smooth for all y. Furthermore,

let rank denote the rank of design matrix X ∈ Rn×d.

Algorithm 8 JL method
Input: Dataset S, function (z, y) ↦→ ϕy(z), Algorithm A, JL matrix Φ ∈ Rk×d, G, H,
∥X∥

1: ˜︁w = A((z, y) ↦→ ϕy(z), {(Φxi, yi)}ni=1 , 2G ∥X∥ , 2H ∥X∥
2 , ϵ, δ/2)

Output: ˆ︁w = Φ⊤ ˜︁w
Algorithm 8 is a generic method which converts any for smooth Lipschitz losses with

an empirical stationarity guarantee to get dimension-independent rates on population

64

stationarity for smooth Lipschitz GLMs. This algorithm is the JL method from

[ABG+22] used therein to give excess risk bounds for convex GLM. We note that

while the JL method there is limited to the Noisy GD method, ours is a black-box

reduction. Furthermore, unlike [ABG+22], we show that the JL method gives finer

rank based guarantees by leveraging the fact it acts as an oblivious approximate

subspace embedding (see Definition 20 in Appendix B.5).

Theorem 21. Let A be an (ϵ, δ)-DP algorithm which when run on a H-smooth

G-Lipschitz function on a dataset S = {(xi, yi)}ni=1 where xi ∈ X ⊆ Rd, guarantees

E
[︂⃦⃦⃦
∇ˆ︁L(A(S);S)

⃦⃦⃦]︂
≤ g(d, n,H,G, ϵ, δ) and ∥A(S)∥ ≤ poly(n, d,G,H) with probability

at least 1− 1√
n
. Then, Algorithm 8 run with

k =
⌈︃

min
(︃

arg min
j∈N

(︃
g(j, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ/2) + G ∥X∥ log (n)√

j

)︃
,

rank log
(︃2n
δ

)︃)︃⌉︃
,

on a G-Lipschitz, H-smooth GLM loss, is (ϵ, δ)-DP. Furthermore, given a dataset of

n i.i.d samples from D, its output ˆ︁w satisfies,

E
[︂⃦⃦⃦
∇ˆ︁L(ˆ︁w;D)

⃦⃦⃦]︂
≤ ˜︁O(︄G ∥X∥√

n
+ g(k, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ/2)

)︄
.

The expression for k above comes from the subspace embedding property of JL,

and from balancing the dimension of the embedding with respect to the error of A and

the approximation error of the JL embedding. The proof is based on the properties of

JL matrices: oblivious subspace embedding and preservation of norms, together with

a new uniform convergence result for gradients of Lipschitz GLMs. The full proof is

deferred to Appendix B.5.

Below, we instantiate the above with our proposed algorithms.

Corollary 1. Under the assumptions of Theorem 21, Algorithm 8 run with A as

1. Private Spiderboost (Alg. 5) yields
⃦⃦⃦
∇ˆ︁L(ˆ︁w;D)

⃦⃦⃦
=

˜︁O (︃ 1√
n

+ min
(︃(︂√

rank
nϵ

)︂2/3
, 1

(nϵ)2/5

)︃)︃
.

65

2. Algorithm 7 with NoisyGD as PrivateSubRoutine, under the additional as-

sumption that w ↦→ ℓ(w; (x, y)) is convex for all x, y, yields
⃦⃦⃦
∇ˆ︁L(ˆ︁w;D)

⃦⃦⃦
=

˜︁O (︂ 1√
n

+ min
(︂√

rank
nϵ

, 1√
nϵ

)︂)︂
.

We remark that the above technique also gives bounds on empirical stationarity.

In particular, the first term 1√
n
, in the above guarantees, is the uniform convergence

bound and the second term is the bound on empirical stationarity.

3.6 Conclusion

In this chapter, we study differentially private optimization, where the goal is to

approximate stationary points of a smooth, Lipschitz and potentially non-convex

function. We consider two settings, where the objective is the empirical and population

risk, and propose differentially private procedures with improved rates. We further

give a lower bound which demonstrates tightness of our results in some regime of

problem parameters. Finally, we close these gaps, in general, under the additional

assumption of convexity.

66

Chapter 4

Machine Unlearning via
Algorithmic Stability

Summary

In this chapter, we study the problem of machine unlearning and identify a notion of

algorithmic stability, Total Variation (TV) stability, which we argue, is suitable for

the goal of exact unlearning. For stochastic convex optimization and empirical risk

minimization problems, we design TV-stable algorithms based on noisy Stochastic

Gradient Descent (SGD). Our key contribution is the design of corresponding efficient

unlearning algorithms, which are based on constructing a near-maximal coupling of

Markov chains for the noisy SGD procedure. To understand the trade-offs between

accuracy and unlearning efficiency, we give upper and lower bounds on excess empirical

and populations risk of TV stable algorithms for convex risk minimization. Our

techniques generalize to arbitrary non-convex functions, and our algorithms are

differentially private as well.

4.1 Introduction

In this chapter, we study the problem of machine unlearning under the proposed

criterion of exact unlearning – see Definition 11 for a formal definition. The primary

67

objective is design of efficient unlearning algorithms for convex learning settings. In

these settings, and indeed in much of machine learning and even beyond, gradient-

based optimization stands out as the principal algorithmic approach. Unlike prior

works where the (learning) algorithms for specific problems (like linear regression) are

tailored enough to the problem to be amenable to efficient unlearning, an optimization

method hardly has any such useful structure. It is then natural to ask whether we

can design unlearning algorithms with non-trivial guarantees for a class of convex

problems.

We operate in a a streaming setting, where we start with a given initial dataset,

and observe a stream of edits (insertion or deletion) to the dataset. The goal is

to design a learning algorithm that outputs an initial model and a (corresponding)

unlearning algorithm that updates the model after an edit request. We require the

following properties to hold: (a). exact unlearning – at every time point in the stream,

the output model is indistinguishable from what we would have obtained if trained on

the updated dataset (i.e., without the deleted sample or with the inserted sample),

(b). the unlearning runtime is non-trivially small, and (c). the output models are

non-trivially accurate.

4.1.1 Contributions

Total Variation Stability. We develop new algorithmic principles which enable

exact unlearning in general settings. In particular, we identify a notion of algorithmic

stability, called total variation (TV) stability - an algorithmic property, which for any

problem, yields an in-principle exact unlearning algorithm. Such an algorithm might

not be efficiently implementable computationally or due to the data access restriction

(sequential nature of edits). To demonstrate the generality of our framework, we

discuss, in Section C.8.2 how the previous work of [GGVZ19] for unlearning in k-means

clustering using randomized quantization can be interpreted as a special case of our

68

framework - a TV stable method, followed by efficient coupling based unlearning.

Finally, we note that the notion of TV-stability has appeared before in [BNS+16],

although in the seemingly unrelated context of adaptive data analysis.

Stochastic Convex Optimization and ERM. We make the above ideas of

TV stability constructive in the special case of smooth convex ERM problems. To

elaborate, we give a TV stable learning algorithm, and a corresponding efficient

exact unlearning algorithm for smooth convex ERM. Informally, for n data points,

and d dimensional model and a given 0 < ρ ≤ 1, our method retrains only on ρ

fraction of edit requests, while satisfying exact unlearning and maintaining that the

accuracy (excess empirical risk) is at most min
{︃

1√
ρn
,
(︂√

d
ρn

)︂4/5}︃
(see Theorem 22 for

precise statement). This implies that for the (useful) regime of accuracy greater than

min
{︃

1√
n
,
(︂√

d
n

)︂4/5}︃
, our algorithms provide a strict improvement over the only known

method of re-computation - see remarks after Theorem 22 for details. Furthermore,

we also give excess population risk bounds by leveraging known connections between

generalization and algorithmic stability (see Section C.10). Finally, to assess how far

are our proposed (TV stable) algorithms from the most accurate, we give preliminary

lower bounds on excess empirical and population risk for TV stable algorithms for

convex risk minimization.

Extensions. Our results yield a number of interesting properties and extensions.

• Privacy: Even though privacy is not the goal of this work, as a consequence of our

techniques, some of our ρ-TV stable algorithms, those based on noisy SGD (Algo-

rithm 9, 21) are (ϵ, δ)-differentially private (see Definition 9) with ϵ = ρ
√︂

log (1/δ),

for any δ > 0. It is easy to see that these parameters can lie in the regime reasonable

for good privacy properties i.e. ϵ = O(1), δ < 1
n2 . However, not all TV-stable

algorithms, for instance Algorithm 19, may have good privacy properties. Our work

69

therefore demonstrates interesting connections between techniques developed for

differential privacy and the problem of unlearning.

• Beyond Convexity and practical heuristics: Interestingly, our unlearning techniques

only require finite sum structure in the optimization problem (for exact unlearning)

and Lipschitzness (for runtime bounds). Therefore our unlearning algorithms yield

provable unlearning for gradient-descent based methods for any ERM problem. In

particular, we can apply the unlearning algorithm to non-convex (and potentially

non-Lipschitz) problems, like deep neural networks, and everytime the algorithm

does not recompute, it still guarantees exact unlearning. In contrast, differential

private training of non-convex models require Lipschitzness or use clipping of

gradients - a popular heuristic in deep learning. We can similarly use clipping

to give unlearning runtime bounds in non-Lipschitz scenarios. As is typical, the

accuracy in these cases is estimated empirically.

4.1.2 Related Work

The problem of exact unlearning in convex ERM has not been studied before, and

therefore the only baseline is re-computation (using some variant of gradient descent).

The most related are the works of [GGVZ19] and [NRSM21a], which we discuss as

follows. [GGVZ19] studied the problem of k-means clustering with exact unlearning

in a streaming setting of deletion requests - we borrow the setting (while also allowing

insertions) and the notion of exact unlearning from therein. We note that in [GGVZ19],

the notion of efficiency is based on the amortized (over edits) unlearning time being at

most the training time since that is a natural lower bound on the overall computational

cost. We, on the other hand, do not place such a restriction and so our methods can

have unlearning runtime smaller than the training time. Most importantly, the general

framework here (of TV-stable methods and coupling based unlearning) captures the

quantized-k-means algorithm of [GGVZ19] as a special case (see Section C.8.2 for

70

details).

The work of [NRSM21a] focuses on unlearning in convex ERM problems, with a

stream of edit requests, the same as here. However there are two key differences. First,

the notion of unlearning in [NRSM21a] is approximate, based on (ϵ, δ)-differential

privacy, whereas we focus on exact unlearning. Second, the unlearning runtime in

[NRSM21a] is deterministic, whereas that of ours is random. These are akin to

Monte-Carlo vs. Las Vegas style of guarantee discrepancy. We refer the reader to

an extended literature survey along with a detailed comparison to [NRSM21a] in

Section C.1. We show therein that with the same unlearning time, the accuracy

guarantees of [NRSM21a] are better than us only in regimes where their approximate

unlearning parameters and hence the notion, is weak.

4.2 Additional Preliminaries

We review the problem setup and present additional preliminaries below.

We operate under the criterion of exact unlearning – see Definition 11. However,

since we also consider insertions here, the unlearning requests can also include insertions

to the dataset.

Let S = S0 = {z1, z2, . . . , zn} , zi ∈ Z be the initial dataset of n points. We observe

k edit requests, each being either an insertion or deletion request. We use Si to denote

the set of data points available at time i in the stream. For simplicity, we assume that

at any point in the stream, the number of available data points is at least n/2 and at

most 2n.

Total Variation Stability. We define Total Variation stability (TV-stability),

which is the notion of algorithmic stability we propose to use.

71

Definition 15 (ρ-TV-stability). An algorithm A is said to be ρ-TV-stable if

sup
S,S′:S∼nS′

TV(A(S),A(S ′)) ≤ ρ

See Section 1.2.4.1 for preliminaries on Total Variation distance (including its

definition in Definition 13) as well as its connection to maximal coupling. We note

that the notion of TV stability has appeared in prior works, such as [BNS+16], albeit

in different contexts than machine unlearning.

A few remarks are in order.

Remark 1. 1. In the above definition, we consider the marginals of output, and

do not include the metadata.

2. Suppose S is a dataset of n points, and S ′ is a dataset of n+ k2 points such that

|S\S ′| = k1. Then, if algorithm A is ρ-TV stable, then by triangle inequality of

TV distance, we have that TV(A(S),A(S ′)) ≤ (2k1 + k2)ρ

4.3 Main Results

We state our main result on designing learning and unlearning algorithms in a stream

of edit requests.

Theorem 22 (Main Theorem). For any 1
n
≤ ρ < ∞, there exists a learning and a

corresponding unlearning algorithm such that for any w ↦→ ℓ(w; z), which is H-smooth

and G-Lipschitz convex function ∀ z, and a stream of edit requests,

1. Satisfies exact unlearning at every time point in the stream of edit requests.

2. At time i in the stream, outputs ˆ︁wSi with excess empirical risk bounded as,

E
[︂ ˆ︁L(ˆ︁wSi ;Si)− ˆ︁L(w∗

Si ;Si)
]︂

= O

⎛⎝min

⎧⎨⎩ GD
√
ρn
,

(︄
H1/4GD3/2

√
d

(ρn)

)︄4/5⎫⎬⎭
⎞⎠ .

72

3. For k edit requests, the expected unlearning runtime is

O(max {min {ρ, 1} k · Training time, k}).

We make some remarks about the result.

Training time. Informally, what the above theorem says is that the algorithms

satisfy exact unlearning and are accurate while only recomputing a ρ fraction of times

- this is indeed the nature of our proposed algorithms. "Training time" in the above

theorem is the runtime of the learning algorithm (for the aforementioned accuracy).

If we measure training time in terms of number of gradient (oracle) computations,

as is typical in convex optimization, then for the above accuracy, our algorithm has

optimal oracle complexity in most regimes (see details in Section C.7.1).

Role of ρ. The external parameter ρ controls the trade-off between accuracy and

unlearning efficiency. In the extreme case where we don’t care about unlearning

efficiency and are fine with paying retraining computation for every edit request, then

we can set ρ > 1 as large as we want to get, as expected, arbitrary small excess

empirical risk. However, the interesting case is when we set ρ < 1: herein, we get an

improved (see below) unlearning time and yet a non-trivial accuracy, upto ρ = Ω
(︂

1
n

)︂
.

Improvements. The above result may seem like a trade-off, but, as we argue below,

is a strict improvement over the baseline of retraining after every edit request (which

is the only other known method for exact unlearning for this problem). Let the

target excess empirical risk be α > α0 = min
{︃
GD√
n
,
(︂
H1/4GD3/2√

d
n

)︂4/5}︃
. For any such

α, from the above result, there exists a ρ < 1, such that our algorithms have ρk ·

Training time(α) expected unlearning time, which is smaller than k ·Training time(α)

- the cost of retraining after every edit request. Furthermore, as remarked above,

since our training time is optimal in number of gradient computations (for the said

73

accuracy), the aforementioned improvement holds for re-computation with any first-

order optimization algorithm. A small caveat is that we are comparing our expected

unlearning time with deterministic runtime of retraining. To summarize, with this

caveat, we have a strict improvement in the low accuracy regime, whereas in the

high accuracy regime: α < α0, our unlearning algorithms are as good as trivial

re-computation. However, this low accuracy regime is often the target in machine

learning problems. To elaborate, the goal is to minimize the population risk rather

than empirical risk, and it is well known that this statistical nature of the problem

results in an information-theoretic lower bound of 1√
n

on excess population risk. We

show in Section C.10 that our algorithm guarantees an excess population risk of 1√
n

+α,

and so a very small α only becomes a lower order term in excess population risk.

Algorithms. The first upper bound on accuracy in Theorem 22 is obtained by

standard SGD, which, in each iteration samples a fraction of datapoints, called

mini-batch, to compute the gradient, and performs the descent step - we call this

sub-sample-GD. The second upper bound is obtained using noisy accelerated mini-

batch-SGD (noisy-m-A-SGD), which is also used for differentially private ERM. Our

unlearning algorithm for sub-sample-GD is rather straightforward, and most of the

work is design of unlearning algorithm for noisy-m-A-SGD, which is based of efficient

coupling of Markov chains corresponding to the learning algorithm. We describe the

algorithms in detail in Section 4.5.

Sub-optimality within the TV stability framework. If we consider G,H,D =

O(1), and a simple model of computation wherein we pay a unit computation when

we recompute, otherwise not, then the unlearning problem is equivalent to design of

TV -stable algorithms, and a corresponding (maximal) coupling (see Section C.2.1 for

more details). Our coupling construction for unlearning in noisy-m-A-SGD, though

efficient, is not maximal - this gap shows up in the accuracy bound (second term),

74

which is
(︂√

d
ρn

)︂1/5
worse than what we would have obtained via a maximal coupling

i.e
√
d

ρn
. We also note that in case we don’t use acceleration, but rather vanilla noisy

mini-batch SGD, and the "same" coupling construction for unlearning, then we obtain

a worse accuracy bound of
(︂√

d
ρn

)︂2/3
(see Section C.8.1 for details). Finally, apart from

closing the gap with the maximal coupling, another potential improvement is by giving

ρ-TV stable algorithms with better accuracy. We discuss such upper and lower bounds

as follows.

As pointed out, intermediate to the result in Theorem 22 is the design and analysis

of TV -stable algorithms for smooth convex ERM. Our main result on upper bounds

on accuracy of such algorithms is the following.

Theorem 23 (Upper bound). For any 0 < ρ <∞, there exists an algorithm which

is min {ρ, 1}-TV stable, such that for any function ℓ(·; z) which is H-smooth and

G-Lipschitz convex ∀ z, and any dataset S of n points, outputs ˆ︁wS which satisfies the

following.

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
GDmin

{︄
1
√
ρn
,

√
d

ρn

}︄)︄
.

We show that the condition ρ ≥ 1
n

in Theorem 23 is fundamental for any non-

trivial accuracy, as evidenced by our lower bounds, with a matching dependence on ρ.

Furthermore, we omit the regime ρ ≥ 1 in our lower bound since it puts no constraint

on the algorithms to exhibit a non-trivial lower bound.

Theorem 24 (Lower bound). For any ρ-TV-stable algorithm A, there exists a G-

Lipschitz, 0-smooth convex function ℓ and a dataset S of n points such the expected

excess empirical risk is lower bounded as:

1. For any 0 < ρ < 1, and any dimension d, E
[︂ ˆ︁L(A(S);S)− ˆ︁L(w∗

S;S)
]︂

=

Ω
(︂
GDmin

{︂
1, 1

ρn

}︂)︂
.

75

2. Assuming that A(S) has a probability density function upper bounded by

K ≤ O(2d), then for n > 72, 1
n
≤ ρ ≤ 1

4 and large enough d,

E
[︂ ˆ︁L(A(S);S)− ˆ︁L(w∗

S;S)
]︂

= Ω
(︂
GDmin

{︂
1, 1√

ρn

}︂)︂
.

In each of the lower bounds, the term GD is trivial as it is attained if an algorithm

outputs a constant regardless of the problem instance. The first lower bound holds

for all problem instances without any assumptions on the relationship between the

problem parameters d, n and ρ. Note that if we assume that the upper bound given

by Theorem 23 were tight, in that case we would expect to derive a lower bound of
√
d

ρn
whenever

√
d

ρn
≤ 1√

ρn
⇐⇒ d ≤ 1

ρn
- we would therefore need to shrink the class

of problem instances explicitly. Unfortunately, our techniques currently do not show

improvement with this restriction. The second result is obtained by a direct analysis,

where the key ingredient is the fact that normalized volume of spherical cap of a

hypersphere goes to 0 as d→∞, for a fixed width of the cap. The condition that the

probability distribution A(S) has bounded density prevents it to have discrete atoms -

this is not desirable especially since our (upper bound) algorithm sub-sample-SGD

outputs a mixture of discrete distributions, and therefore does not lie in this class.

Please see Section C.9 for derivations of the lower bounds.

4.4 Main Ideas

In this section, we discuss the key ideas to our approach. The first is identifying a

notion of stability. The key idea is maximal coupling characterization of total variation

distance. Note that if the outputs on neighbouring datasets S (original) and S ′ (after

an edit) are close in TV distance, then there exists a maximal coupling under which,

the output on S can likely be reused while still satisfying exact unlearning. Our

approach is to make this idea constructive for convex ERM problem. We also note

that the notion of TV stability for unlearning can be motivated from and cast in

76

a more general framework based on optimal transport (see for Section C.2.1 more

details). The second ingredient is the design of TV stable algorithms for convex

ERM. One of the algorithms we propose is an existing differential private solution,

which we show to be TV stable as well. Finally, the bulk of the work, is the design

and analysis of efficient unlearning algorithms. We show that this problem can be

reduced to efficiently constructing couplings between Markov chains, and we give such

a construction using rejection sampling and reflection mappings.

4.4.1 TV-stable Learning Algorithms and Differential Privacy

In this section, we discuss the ideas underlying the design of TV-stable learning

algorithms. We will use the notion of differential privacy (DP) – see Definition 9 –

which will serve as a key tool.

A differentially private algorithm promises that the output distributions are close

in a specific sense: the likelihood ratios for all events for two neighbouring datasets is

uniformly close to e±ϵ, upto a failure probability δ. Note that we have identified that

we want our outputs to be ρ-TV stable. A natural question is whether we can relate

the (ϵ, δ)-DP notion to ρ-TV-stability. An easy to see direction is that any ρ-TV stable

method is (at least) (0, ρ)-DP. Similarly, for the other direction, under additional

assumptions, such relations can be derived. The important part is that certain widely

used DP methods are TV stable as well. The primary example, which we will use in

this work, is Gaussian mechanism. It is known that adding Gaussian noise of standard

deviation
√

log(1/δ)
ϵ

to a 1-sensitive function, provides (ϵ, δ)-DP [DR+14]. It can be

shown that the same method also provides ρ-TV stability, with ρ = ϵ√
log(1/δ)

.

TV-stable Algorithm. For the problem of TV-stable convex empirical risk mini-

mization, we propose two algorithms: sub-sample-GD and noisy-m-A-SGD. We show

that the expected excess empirical risk of noisy-m-A-SGD is better than that of sub-

77

sample-GD, in regimes of small dimension. The algorithm noisy-m-A-SGD is essentially

noisy-SGD algorithm of [BST14] for DP convex ERM, with an additional (Nesterov’s)

acceleration on top. In noisy-m-A-SGD, at iteration t, we sample a mini-batch bt

uniformly randomly, use it to compute the gradient at iterate ẘt = (1−αt)wt+αtwt−1

denoted as ∇ˆ︁L(ẘt;Sbt) and update as follows:

wt+1 = ẘj − η
(︂
∇ˆ︁L(ẘj;Sbj

) + θt
)︂

where θj ∼ N (0, σ2Id) and σ is set appropriately. This procedure can be viewed as

sampling from a Markov chain depicted in Figure 4-1.

Mini-batches b1 b2 b3 bT

w2w1 w3 w4 wT+1Iterates

. . .

. . .

Figure 4-1. Markov chain for noisy-m-A-SGD Algorithm

A detailed discussion of challenges and certain subtleties in applying DP algorithms

to our problem is provided in Section C.2.2

4.4.2 Unlearning via (un)couplings

The final, though the most important piece, is the design of unlearning algorithms.

Let S be the initial dataset, S ′ is the dataset after one edit request, and we want

to design a transport from P = A(S) to Q = A(S ′), which means that we want to

construct a coupling of P and Q. Broadly, there are two challenges: the first is the

data access restriction - when generating a sample from P , we don’t know what Q

would be, therefore, the coupling cannot be based on efficiently sampling from the

joint distribution directly, but is limited to work with samples generated from P . The

other is that construction of the coupling should be computationally more efficient

78

than drawing independent samples from P and Q, which essentially amounts to our

baseline of re-computation.

Framework of verification and re-computation: We encapsulate some desirable

design properties while constructing couplings as a framework which gives efficient

unlearning algorithms. We first setup some terminology - the diagonal of a coupling π of

two probability distributions, is the set {(p, q) : p = q} and similarly, the non-diagonal

is the set {(p, q) : p ̸= q}. We have that the measure of the non-diagonal, under a

maximal coupling π∗, is P(p,q)∼π∗1 {(p, q) : p ̸= q} = TV(P,Q). This implies that when

using ρ-TV stable algorithms, the probability measure of the diagonal under a maximal

coupling, is large: at least 1− ρ. At a high-level, our unlearning algorithms comprise

of two stages: verification and recomputation. We first verify whether our output on

dataset S (i.e. sample from P) falls on the diagonal of any maximal coupling of P and

Q or not - if that is indeed the case, then the same sample for Q suffices. Importantly,

for computational efficiency, we require that verification be computationally much

cheaper then recomputing (smaller that ρ · recompute cost). If the verification fails,

we sample from the non-diagonal of any maximal coupling P and Q, so that we have a

valid transport. As the name suggests, the computational cost of recomputation that

we will shoot for is to be of the same order as (full) recompute. If we are able to design

such a method, then we will show that for k edit requests, the expected computational

cost for unlearning is k · verification cost + kρ · recompute cost ≈ kρ · recompute cost.

Coupling of Markov chains. Our approach for unlearning is to construct a

coupling of the optimization trajectories on neighbouring datasets. We have discussed

that the iterates from noisy-m-A-SGD can be seen as generated from a Markov chain,

depicted in Figure 4-1. Hence, for two neighbouring datasets, the iterates are sampled

from two different Markov chains P and Q. Moreover, by design, we know that these

Markov chains are ρ-TV close - we measure the total variation distance between the

79

marginals of outputs. The task is now to maximally couple these two Markov Chains.

We remark that in the Markov chain literature, maximal coupling of Markov chains

does not refer to the above but rather the setting wherein we have one Markov chain,

but started at two different states, and the goal is to design a coupling such that their

sampled states become and remain equal as soon as possible. In contrast, our notion of

coupling of two Markov chains has also been recently studied by [Völ16] and [EKRR19],

wherein they refer to this problem as design of uncoupling or maximal agreement/exit

couplings. However, the ideas in the aforementioned works are analytical and arguably

not computationally efficient in general.

4.5 Algorithms

In this section, we present the algorithms for learning and unlearning. In our algorithms,

we use functions “save” and “load”, which vaguely means saving and loading the

variables to and from memory respectively. In Section C.7, we explain what data

structures to use for computational efficiency. The main result Theorem 22 is obtained

by combination of two algorithms: sub-sample-GD (superior in high dimensions) and

noisy-m-A-SGD (superior in low dimensions). We note that subsample-GD is just

standard mini-batch SGD and unlearning therein is simple. Hence, due to space

constraints, we defer its description to Section C.3 and focus here on noisy-m-A-SGD.

The proofs of results in this section are deferred to Section C.5.

4.5.1 TV-stable Learning Algorithm: noisy-m-A-SGD

The algorithm, superior in low dimensions, called noisy-m-A-SGD, is accelerated

mini-batched SGD [Lan12] with appropriate Gaussian noise added at each iteration.

In the literature, this algorithm (with or without acceleration) is used for DP training

of (non) convex models. In each iteration, we save the mini-batch indices, the models,

the gradients as well as the noise vectors to memory.

80

Algorithm 9 noisy-m-A-SGD(wt0 , t0)
Input: Initial model wt0 , data points {z1, . . . , zn}, T , η, m

1: w0 = 0
2: for t = t0, t0 + 1 . . . , T do
3: Sample mini-batch bt of size m uniformly randomly
4: Sample θt ∼ N (0, σ2Id)
5: ẘt = (1− αt)wt + αtwt−1
6: gt = 1

m

∑︁
j∈bt
∇ℓ(ẘt; zj)

7: wt+1 = P (ẘt − η (gt + θt))
8: Save(bt, θt, wt, ẘt, gt)
9: end for

Output: ˆ︁wS = wT+1

We now state our main result for noisy-m-A-SGD.

Proposition 1. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z. For any

0 < ρ < ∞, Algorithm 9, run with t0 = 1, η = min

⎧⎨⎩ 1
2H ,

D(︂
G√
m

+σ
)︂
T 3/2

⎫⎬⎭, α0 = 0, αt =

1−t
t+2 , σ = 8

√
TG
nρ

, and Tgeq (nρ)2

16m2 outputs ˆ︁wS which is min {ρ, 1}-TV stable and satisfies

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
HD2

T 2 + GD√
Tm

+ GD
√
d

nρ

)︄
.

Choosing T (number of iterations) and m (mini-batch size) appropriately gives an

excess empirical risk of O
(︂
GD

√
d

ρn

)︂
– see Corollary 7.

4.5.2 Unlearning Algorithm for noisy-m-A-SGD

We now discuss the algorithm to handle edit requests which is based on efficiently

constructing near-maximal couplings. As discussed before, an important component

on constructing such couplings is, what we call verification, wherein we check if the

current model suffices after the edit request or not. If the verification is successful, we

don’t do any additional computation, otherwise we do a partial or full recompute (i.e.

retrain), which we call recomputation. The key idea is that verification can be done

efficiently, and fails with small probability (depending on the TV-stability parameter).

Our unlearning algorithm for noisy-m-A-SGD is based on efficiently constructing a

81

Algorithm 10 Unlearning for noisy-m-A-SGD
Input: Data point index j to delete or data point z to insert (index n+ 1)

1: for t = 1, 2 . . . , T do
2: Load(θt, wt, ẘt, bt, gt)
3: if deletion and j ∈ bt then
4: Sample i ∼ Uniform([n]\bt)
5: g′

t = gt − 1
m

(∇ℓ(ẘt; zj)−∇ℓ(ẘt; zi))
6: Save(g′

t, bt\ {j} ∪ {i})
7: else if insertion and Bernoulli

(︂
m
n+1

)︂
then

8: Sample i ∼ Uniform(bt)
9: g′

t = gt − 1
m

(∇ℓ(ẘt; zi)−∇ℓ(ẘt; z))
10: Save(g′

t, bt\ {i} ∪ {n+ 1})
11: else
12: continue
13: end if
14: ξt = gt + θt

15: if Uniform(0, 1) ≥
ϕN (g′

t
,σ2I)(ξt)

ϕN (gt,σ2I)(ξt) then
16: ξ′

t = reflect(ξt, g′
t, gt)

17: wt+1 = wt − ηξ′
t

18: Save(ξ′
t)

19: noisy-m-A-SGD(wt+1, t+ 1) // Continue retraining on current dataset
20: break
21: end if
22: end for

coupling of Markov chain describing noisy-m-A-SGD, with large mass on its diagonal.

The proof of result in this section is deferred to Section C.6. We first describe how

Algorithm 10 couples mini-batch indices while handling edit request.

Coupling Mini-batch Indices. After observing a deletion request, in Algorithm 10,

we look at all iterations in which the deleted point was sampled. We then replace the

deleted point with a uniformly random point not already sampled in that iteration. For

insertion, at each step, we again replace a uniformly sampled point in the mini-batch

of that step by the inserted point with probability m
n+1 .

Reflection Coupling. We use the technique of reflection coupling, described in

Section 1.2.4.1, for our coupling construction. The reflection map, given the means of

82

two distributions, denoted as µP and µQ and a sample from p ∼ P , reflects p about the

mid-point of µP and µQ. The context in which we will use it is p would be a sampled

point from a Gaussian distribution under the old dataset S (on which the model was

trained on), with µP and µQ being the means of the Gaussian distribution under

the updated dataset S ′ (after edit request) and S respectively. The map essentially

exploits the spherical symmetry of the Gaussian to generate a good sample for the

distribution under S ′. Please see Section C.6.2.2 for properties of the reflection map,

which are used in the final proofs.

Iterative Rejection Sampling. Our unlearning algorithm is based on iteratively

verifying each model wt+1 using rejection sampling. To elaborate, at each iteration,

we check if the noisy iterate, defined as w̄t+1 = ẘt− η(gt + θt) is a good sample for the

dataset S ′, where gt is the gradient computed on ẘt using a uniformly sub-sampled

mini-batch from S. To do this, we need to compute a ratio of estimated marginal

densities (we just use conditional density under the coupled mini-batch, more details

below) of wt+1 (line 15 in Algorithm 10) for both datasets, evaluated at the noisy

iterate, and compare it with Uniform(0, 1). It it succeeds, we move to the next

iteration and repeat. If any of the rejection sampling fails, we use the reflection map

(line 16) to obtain a new wt+1, and continue retraining on S ′.

Verification and Recompuation stages. Herein, the rejection sampling steps

comprise the verification stage, and if any of the rejection sampling fails, we move to

re-computation. The reason why verification can be done efficiently is due to the finite

sum structure of the ERM problem. To elaborate, at any iteration, to compute the

estimated marginal density, we need to compute the gradient with the new dataset

S ′ - this, using the gradient of the old dataset only requires subtracting the gradient

at the deleted point, so Od(1) runtime as opposed to Od(m), if we were to compute

from scratch, where m is the mini-batch size. Moreover, throughout verification,

83

this computation is done only for iterations which used the deleted point which are

roughly Tm
n

iterations. Hence the total runtime of verification is Od

(︂
Tm
n

)︂
as opposed

to Od (Tm) for re-computation. Similar reasoning applies to the insertion case.

Fast Algorithms and Maximal Coupling. The above procedure generates a

coupling but not a maximal coupling - the measure of the diagonal under the coupling,

and hence the probability to recompute, is
√
T worse then the optimal, where T is the

number of iterations run of noisy-m-A-SGD. This gives us that the faster the algorithm

(in terms of iteration complexity) is, the smaller the probability to recompute, when

using our coupling construction. This motivates why we use accelerated mini-batch

SGD, since it has a quadratically faster iteration complexity than vanilla mini-batch

SGD. In Section C.7.1, we also remark that using even faster variance-reduction based

algorithms like Katyusha [AZ17] do not yield further improvements.

Estimation of Marginals. We explain what we mean by estimated marginal

densities in the previous paragraph. Ideally, we want to create maximal coupling of

marginals of the output, and therefore measure TV distance between marginals, rather

than the entire algorithmic state. In particular, fix all iterates before iteration t, and

consider noisy iterate w̄t+1 = ẘt − η(gt + θt). If we also fix the sampled mini-batch

bt, then w̄t+1 is distributed as N (ẘt − ηgt, η2σ2I). However, once we unfix bt, then

wt+1 is mixture of Gaussians, with the number of components being exponential in

m. and therefore even evaluating the marginal density is infeasible. One solution

is to just consider m = n i.e. full gradient descent, and then there is no additional

state. However, this makes the training runtime worse, which means that we would be

using a slower learning algorithm than what we would have used if we were to simply

recompute to unlearn. Hence, to tackle this, as alluded to in the previous paragraph,

we evaluate the ratio of conditional probability densities, where the conditioning is

84

on the coupled mini-batch indices (say bSt and bS
′

t) i.e. ϕS′ (w̄t|bS
t)

ϕS(w̄t|bS
t) – this is done in line

15 of Algorithm 10, with a small change that we evaluate the ratio of conditional

densities of noisy gradients rather than iterates, but it can be verified that the ratio is

invariant to this shift and scaling. This use of conditional density corresponds to using

unbiased estimates of the marginals densities. It is easy to verify, using convexity of

the pointwise supremum for instance, that

TV((w̄St , bSt), (w̄S′

t , b
S′

t)) ≥ E(bS
t ,b

S′
t)TV(w̄St |bSt , w̄S

′

t |bS
′

t) ≥ TV(w̄St , w̄S
′

t)

However, in general, this might still not be ideal since we are estimating with just one

sample from the mixture and hence the estimation error would be large. However, we

will show that since we are anyway not able to construct maximal couplings, we don’t

pay extra with this coarse estimate.

Please see Section C.6.2.3 for a more formal treatment of the coupling procedure.

We now state the main result for this section.

Proposition 2. (Algorithm 9, Algorithm 10) satisfies exact unlearning. Moreover,

for k edits, Algorithm 10 recomputes with probability at most kρ
√
T

4 .

In the above proposition, we state unlearning efficiency in terms of probability to

recompute. In Section C.7.2, we provide more details on runtime (analytical complexity

bounds on total unlearning time, which is O(ρk
√
T Training time)) as well as space

complexity with an efficient implementation.

4.6 Conclusion

In this chapter, we studied the problem of machine unlearning under the exact

unlearning criterion. We defined a notion of algorithmic stability, Total Variation (TV)

stability, which motivated a general strategy for unlearning. This involved designing

a TV stable learning algorithm and a corresponding unlearning algorithm which

85

constructs a near maximal coupling of the outputs on the original and updated datasets.

We applied this to the smooth convex ERM and stochastic convex optimization settings,

yielding accurate and efficient unlearning algorithms. Our techniques generalize to

the streaming setting involving deletions and insertions.

86

Chapter 5

From Adaptive Query Release to
Machine Unlearning

Summary

In this chapter, we formalize the problem of machine unlearning as design of efficient

unlearning algorithms corresponding to learning algorithms which perform a selection of

adaptive queries from structured query classes. We give efficient unlearning algorithms

for linear and prefix-sum query classes. As applications, we show that unlearning in

many problems, in particular, stochastic convex optimization (SCO), can be reduced

to the above, yielding improved guarantees for the problem. In particular, for smooth

Lipschitz losses and any ρ > 0, our results yield an unlearning algorithm with

excess population risk of ˜︁O(︂ 1√
n

+
√
d

nρ

)︂
with unlearning query (gradient) complexity

˜︁O(ρ ·Retraining Complexity), where d is the model dimensionality and n is the initial

number of samples. For non-smooth Lipschitz losses, we give an unlearning algorithm

with excess population risk ˜︁O(︂ 1√
n

+
(︂√

d
nρ

)︂1/2)︂
with the same unlearning query (gradient)

complexity. Furthermore, in the special case of Generalized Linear Models (GLMs),

such as those in linear and logistic regression, we get dimension-independent rates of
˜︁O(︂ 1√

n
+ 1

(nρ)2/3

)︂
and ˜︁O(︂ 1√

n
+ 1

(nρ)1/3

)︂
for smooth Lipschitz and non-smooth Lipschitz

losses respectively. Finally, we give generalizations of the above from one unlearning

request to dynamic streams consisting of insertions and deletions.

87

5.1 Introduction

In this chapter, we continue our investigation into design of efficient unlearning

algorithms. We recall that the machine unlearning is concerned with updating trained

machine learning models upon request of deletions to the training dataset. We work

under the notion of exact unlearning defined in the previous chapter – see Definition 11.

Motivating Example: The main objective of our work is to identify algorithmic

design principles for unlearning such that it is more efficient than retraining, the

naive baseline method. Towards this, we first discuss the example of unlearning

for Gradient Descent (GD) method, which will highlight the key challenges as well

as foreshadow the formal setup and techniques. GD and its variants are extremely

popular optimization methods with numerous applications in machine learning and

beyond. In a machine learning context, it is typically used to minimize the training

loss, ˆ︁L(w;S) = 1
n

∑︁n
i=1 ℓ(w; zi) where S = {zi}ni=1 is the training dataset and w, the

model. Starting from an initial model w1, in each iteration, the model is updated as:

wt+1 = wt − η∇ˆ︁L(wt;S) = wt − η
(︄

1
n

n∑︂
i=1
∇ℓ(wt; zi)

)︄
,

where η is the learning rate. After training, a data-point, say zn without loss of

generality, is requested to be unlearnt and so the updated training set is S ′ = {zi}n−1
i=1 .

We now need to apply an efficient unlearning algorithm such that its output is equal to

that of running GD on S ′. Observe that the first iteration of GD is simple enough to be

unlearnt efficiently by computing the new gradient ∇ˆ︁L(w1;S ′) = 1
n−1

(︂
n∇ˆ︁L(w1;S)−

∇ℓ(w1; zn)
)︂

and updating as w′
2 = w1−η∇ˆ︁L(w1;S ′). However, in the second iteration

(and onwards), the gradient is computed on w′
2 which can be different from w2 and

the above adjustment can no longer be applied and one may need to retrain from

here onwards. This captures a key challenge for unlearning in problems solved by

simple iterative procedures such as GD – adaptivity – that is, the gradients (or more

88

generally, the queries) computed in later iteration depend on the result of the previous

iterations. We systematically formalize such procedures and design efficient unlearning

algorithms for them.

5.1.1 Results and Techniques

Learning/Unlearning as Query Release. Iterative procedures are an integral

constituent of the algorithmic toolkit for solving machine learning problems and

beyond. As in the case of GD above, these often consist of a sequence of simple but

adaptive computations. The simple computations are often efficiently undo-able (as in

the first iteration of GD) but its adaptive nature – change of result of one iteration

changing the trajectory of the algorithm – makes it difficult to undo computation, or

unlearn, efficiently.

As opposed to designing unlearning (and learning) algorithms for specific (machine

learning) problems, we study the design of unlearning algorithms corresponding to (a

class of) learning algorithms. We formalize this by considering learning algorithms

which perform adaptive query release on datasets. Specifically, this consists of a

selection of adaptive queries from structured classes like linear and prefix-sum queries

(see Section 5.3 for details). The above example of GD is an instance of linear query,

since the query, which is the average gradient 1
n

∑︁n
i=1∇ℓ(wt; zi), is a sum of functions

of data-points. With this view, we study how to design efficient unlearning algorithms

for such methods.

We use efficiency in the sense of number of queries made (query complexity),

ignoring the use of other resources, e.g., space, computation for selection of queries,

etc. To elaborate on why this is interesting, firstly note that this does not make the

problem trivial, in the sense that even with unlimited access to other resources, it is still

challenging do design an unlearning algorithm with query complexity smaller than that

of retraining (the naive baseline). Secondly, let us revisit the motivation from solving

89

optimization problems. The standard model to measure computation in optimization is

the number of gradient queries a method makes for a target accuracy, often abstracted

in an oracle-based setup [NY83]. Importantly, this setup imposes no constraints

on other resources, yet it witnesses the optimality of well-known simple procedures

like (variants of) GD. We follow this paradigm, and as applications of our results

to Stochastic Convex Optimization (SCO), we make progress on the fundamental

question of understanding the gradient complexity of unlearning in SCO. Interestingly,

our proposed unlearning procedures are simple enough that the improvement over

retraining in terms of query complexity also applies even with accounting for the

(arithmetic) complexity of all other operations in the learning and unlearning methods.

Linear Queries. The simplest query class we consider is that of linear queries

(details deferred to Appendix D.2). Herein, we show that the prior work of [UMR+21],

which focused on unlearning in SCO and was limited to the stochastic gradient method,

can be easily extended to general linear queries. This observation yields unlearning

algorithms for algorithms for Federated Optimization/Learning and k-means clustering.

Herein, we give a ρ-TV stable (see Definition 15) learning procedure with T adaptive

queries and a corresponding unlearning procedure with a O(
√
Tρ) relative unlearning

complexity (the ratio of unlearning and retraining complexity; see Definition 17).

Prefix-sum Queries. Our main contribution is the case when we consider the

class of prefix-sum queries. These are a sub-class of interval queries which have been

extensively studied in differential privacy and are classically solved by the binary

tree mechanism [DNPR10]. We note in passing that for differential privacy, the

purpose of the tree is to enable a tight privacy accounting and no explicit tree may be

maintained. In contrast, for unlearning, we show that maintaining the binary tree

data structure aids for efficient unlearning. We give a binary-tree based ρ-TV stable

learning procedure and a corresponding unlearning procedure with a ˜︁O(ρ) relative

90

unlearning complexity.

Unlearning in Stochastic Convex Optimization (SCO). Our primary motiva-

tion for considering prefix-sum queries is its application to unlearning in SCO (see

Section 5.2 for preliminaries).

1) Smooth SCO. The problem of unlearning in smooth SCO was studied in

[UMR+21], presented in Chapter 4, which proposed algorithms with excess population

risk of ˜︁O (︃ 1√
n

+
(︂√

d
nρ

)︂2/3)︃
where ρ is the relative unlearning complexity. We show that

using a variant of variance-reduced Frank-Wolfe [ZSM+20], which uses prefix-sum

queries, yields an improved excess population risk of O
(︂

1√
n

+
√
d

nρ

)︂
. This corresponds

to ˜︁O(ρn) expected gradient computations upon unlearning.

2) Non-smooth SCO. In the non-smooth setting, which was not covered in the

prior works, we give an algorithm based on Dual Averaging [Nes09], which again uses

prefix-sum query access, and thus fits into the framework. This algorithm gives us an

excess population risk of O
(︂

1√
n

+ d1/4
√
nρ

)︂
with ˜︁O(ρn) expected gradient complexity of

unlearning.

3) Generalized Linear Models (GLM). GLMs are one of most basic machine

learning problems which include the squared loss (in linear regression), logistic loss (in

logistic regression), hinge loss (support vector machines), etc. We study unlearning

in two classes of GLMs (see below), for which we combine recently our proposed

techniques based on dimensionality reduction [ABG+22], presented in Chapter 3, with

the above prefix-sum query algorithms to get the following dimension-independent

rates.

91

3(a) Smooth GLM. For the smooth convex GLM setting, we combine Johnson-

Lindenstrauss transform with variance reduced Frank-Wolfe to get O
(︃

1√
n

+ 1
(nρ)2/3

)︃
excess population risk. Note that we get no overhead in statistical rate even with

very small relative unlearning complexity, ρ ≈ n−1/4. This class of smooth GLMs

contains the well-studied problem of logistic regression. Hence, our result demonstrates

that it is possible to unlearn logistic regression with sub-linear, specifically O(n3/4),

unlearning complexity with no sacrifice in the statistical rate.

3(b) Lipschitz GLM. Similarly, for the Lipschitz convex GLM setting, we

combine Johnson-Lindenstrauss transform with Dual Averaging yielding a rate of
˜︁O (︃ 1√

n
+ 1

(nρ)1/3

)︃
.

Please see Table 5-I for a summary of above results.

SCO in dynamic streams. Finally, we consider SCO in dynamic streams where

we observe a sequence of insertions and deletions and are supposed to produce outputs

after each time-point. In this case, we present two methods: one which satisfies the

exact unlearning guarantee with worse update time, the other which satisfies weak

unlearning – which only requires the model (and not metadata) to be indistinguishable

(see Definition 16) – with improved update time. The exact unlearning method is

inspired from our work [UMR+21], presented in Chapter 4, which dealt with insertions

similar to deletions. The weak unlearning method is motivated from the observation

that the above may be too pessimistic. To elaborate, inserting a new data item does

not warrant a (unlearning) guarantee that the algorithm’s state be indistinguishable

to the case if the point was not inserted. Hence, insertions should require smaller

update time which is indeed the case for our proposed methods.

92

Problem Base algorithm Rate
Smooth, Lipschitz-SCO VR-FW 1√

n
+

√
d

nρ

Lipschitz SCO DA 1√
n

+ d1/4
√
nρ

Smooth, Lipschitz GLM JL + VR-FW 1√
n

+ 1
(nρ)2/3

Lipschitz GLM JL + DA 1√
n

+ 1
(nρ)1/3

Table 5-I. Excess population risk guarantees for various problems as well as the base
algorithm; ρ: relative unlearning complexity (see Definition 17), VR-FW: Variance-reduced
Frank Wolfe, DA: Dual averaging, JL: Johnson-Lindenstrauss transform.

5.1.2 Related Work

This chapter is a direct follow up of [UMR+21], presented in Chapter 4, wherein we

proposed the framework of Total Variation (TV) stability and maximal coupling for

the exact machine unlearning problem. We recap that this was applied for unlearning

in smooth stochastic convex optimization (SCO) yielding a guarantee of 1√
n

+
(︂√

d
nρ

)︂ 2
3 on

excess population risk, where n is the number of data samples, d, model dimensionality

and ρ is the relative unlearning complexity (see Definition 17). We improve upon the

results in the previous work in multiple ways as described in the preceding section.

Besides this, the exact unlearning problem has been studied for k-means clustering

[GGVZ19] and random forests [BL21]. The work of [BCCC+21] proposes a general

methodology for exact unlearning for deep learning methods. Their focus is to

devise practical methods and they do not provide theoretical guarantees on accuracy,

even in simple settings. Finally, there are works which consider unlearning in SCO,

however they use an approximate notion of unlearning inspired from differential privacy

[GGHVDM20, NRSM21b, SAKS21, GJN+21], and therefore are incomparable to our

work.

93

5.2 Additional Preliminaries

We review the problem setup and preliminaries briefly. We consider the setting where

we start with a dataset of n samples and observe one unlearning request. We assume

that the choice of unlearning request is oblivious to the learning process.

In Section 5.6, we generalize our result to a streaming setting of requests. Herein,

besides exact unlearning (Definition 11), we also consider a weaker notion, called weak

unlearning, wherein only the model output and not the entire state is required to be

indistinguishable. We provide its definition below.

Definition 16 (Weak unlearning). A procedure (A,U) satisfies weak unlearning if

for all all datasets S, all z ∈ Z, and for all measurable events E ⊆ W ×M, we have,

P (A (S\ {z}) ∈ E) = P (U (A(S), z) ∈ E)

We briefly recap how the framework of Total Variation stability (see Definition 15)

and maximal coupling, is used in our construction of efficient unlearning algorithms. We

recall that, given two distributions P and Q, a maximal coupling is a coupling (see

Definition 12) π such that the disagreement probability P(p,q)∼π {p ̸= q} = TV(P,Q).

In the unlearning context, P = A(S), the output on initial dataset, and Q = A(S ′), the

output on the updated dataset. Hence, the unlearning problem simply becomes about

transporting P to Q with small computational cost, akin to optimal transport [Vil09].

When sampled from a maximal coupling between P and Q, by definition, we get

the same sample for both P and Q, expect with probability ρ, and yet satisfying the

exact unlearning criterion. The main idea is that for certain learning algorithms of

interest, during unlearning, we can efficiently construct a (near) maximal coupling

of P and Q, and so the same model output from P suffices for Q, most of the times.

In particular, the fraction of times that we need change the model is (roughly) the

TV-stability parameter ρ of the learning algorithm. The goal, therefore, is to design

94

Algorithm 11 Template learning algorithm
Input: Dataset S, steps T , query functions {qt(·)}t≤T where qt ∈ Q, a query class,

update functions {Ut(·)}t≤T , selector function S(·)
1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do
3: Query dataset ut = qt

(︂
{wi}i≤t , S

)︂
4: Update wt+1 = Ut({wi}i≤t , ut)
5: end for

Output: ˆ︁w = S
(︂
{wt}t≤T

)︂

an (accurate) TV-stable learning algorithm and a corresponding efficient coupling-

based unlearning algorithm. In this work, we use the technique of reflection coupling

described in Section 1.2.4.1 in Chapter 1.

5.3 Unlearning for Adaptive Query Release

We now set up the framework of adaptive query release, which is a lens to view

(existing) iterative learning procedures; this view is useful in our design of corresponding

unlearning algorithms. Iterative procedures run on datasets consist of a sequence

of interactions with the dataset; each interaction computes a certain function, or

query, on the dataset. The chosen query is typically adaptive, i.e., dependent on the

prior query outputs. We consider iterative learning procedures which are composed

of adaptive queries from a specified query class. Formally, consider a query class

Q ⊆ WW∗×Z∗ ; herein, each query in Q is a function of a sequence of {wi}i<t (typically,

prior query outputs), and the dataset S, with output in W . With this view, we give a

general template of a learning procedure as Algorithm 11, where {Ut}t and S are the

update and selector functions internal to the algorithm.

Query model: We describe the query model which we use to measure computational

complexity. Under the model, a query function q({w}i , S) takes |S| unit computations

(or queries, for brevity) for any q and {wi}i. In our applications to SCO, this will

95

correspond to the gradient oracle complexity.

Our algorithmic approach to unlearning is rooted in the relationship between TV

stability and maximal couplings. With this view, for a specified query class, we have

the following requirements.

1. TV-stability: We want a ρ-TV stable “modification" of the learning Algorithm 11,

in the sense that it responds to the queries (line 3) while satisfying TV stability.

2. Efficient unlearning algorithm: We measure efficiency as the average number of

queries the unlearning algorithm makes relative to the learning algorithm (retraining),

defined as follows.

Definition 17 (Relative Unlearning Complexity). The Relative Unlearning Com-

plexity is defined as,

E(A,U) [Query complexity of unlearning algorithm U]
EA [Query complexity of learning algorithm A]

For a ρ-TV stable learning algorithm, we want that the relative unlearning complexity

is (close to) ρ. This is motivated from the relationship between maximal coupling

and TV distance. In the following, our proposed unlearning algorithm constructs a

(near) maximal coupling of the learning algorithm’s output under the original and

updated dataset. This means that unlearning algorithm changes the original output

(under the original dataset) with probability at most ρ – in this case, the unlearning

algorithm makes a number of queries akin to retraining. In the other case when it

does change the output, it makes a small (ideally, constant) number of queries. The

above imply that relative unlearning complexity is (close to) ρ.

We note that relative unlearning complexity, in itself, does not completely capture

if the unlearning algorithm is good, since it may be the case that the corresponding

learning algorithm is computationally more expensive than other existing methods.

However, in our applications to SCO (Section 5.5), our learning algorithms are

96

linear time, so the denominator, in the definition above, is as small as it can be

(asymptotically), i.e. Θ(n).

3. Accuracy: We will primarily be concerned with correctness of the unlearning

algorithm and its efficiency. In the applications (Section 5.5), we will give accuracy

guarantees for specific problems, where we will see our proposed TV stable modified

algorithms are still accurate.

5.4 Prefix-sum Queries

We now consider prefix-sum queries, which is the main contribution of this chapter.

The reason for this choice is that two powerful (family of) algorithms for SCO, Dual

Averaging and Recursive Variance Reduction based methods, fit into this template

(detailed in Section 5.5). We start by defining a prefix-sum query.

Definition 18. A set of queries {qt}t≥1 where qt :W t×Zn →W are called prefix-sum

queries if q1(w1, S) = p1(w1, z1) and for all t > 1, qt({wi}i≤t , S) = qt−1({wi}i<t , S) +

pt
(︂
{wi}i≤t , zt)

)︂
for some functions {pt}t≥1 where pt :W∗ ×Z →W.

Simply put, prefix-sum queries, sequentially query new data points and adds them

to the previous accumulated query. A simple example is computing partial sums of

data points (z1, z1 + z2, . . .). Note that in the above definition, we can equivalently

represent the prefix-sum queries using the sequence {pt}t. We also assume that the

queries have bounded sensitivity, defined as follows.

Definition 19. A query q :W∗×Zn→W is B-sensitive if

sup
{wi}i

sup
S∼nS′

∥q ({wi}i , S)− q ({wi}i , S
′)∥ ≤ B.

We note that the bounded sensitivity condition is satisfied in a variety of applica-

tions; see Section 5.5.

97

5.4.1 Learning with Binary Tree Data-Structure

The learning algorithm, given as Algorithm 12, is based on answering the adaptive

prefix-sum queries with the binary tree mechanism [DNPR10]. For n samples (assume

n is a power of two, otherwise we can append dummy “zero” samples without any

change in asymptotic complexity), the binary tree mechanism constructs a complete

binary tree T with the leaf nodes corresponding to the data samples. The key idea in

the binary tree mechanism is that instead of adding fresh independent noise to each

prefix-sum query, it is better to add correlated noise, where the correlation structure

is described by a binary tree. For example, suppose we want to release the seventh

prefix-sum query, ∑︁7
i=1 pi({wj}j≤i , zi), then consider the dyadic decomposition of 7 as

4, 2 and 1, and release the sum,

(︂ 4∑︂
i=1

pi({wj}j≤i , zi) + ξ1
)︂

+
(︂ 6∑︂
i=5

pi({wj}j≤i , zi)ξ2
)︂

+
(︂
p7({wj}j≤i , zi) + ξ3

)︂
,

where ξi’s denote the added noise, which may have also been used in prior prefix-sum

query responses. See Figure 5-1 (left) for a simplified description of the process.

We index the nodes of the tree using using binary strings B = {0, 1}log(n) which

describes the path from the root. Let the tree T = {vb}b∈B which denotes the contents

stored by the learning algorithm. Herein, each node contains the tuple (u, r, w, z)

where u ∈ Rd is the query response, r ∈ Rd is the noisy response, w ∈ Rd a model

and z ∈ Z a data point. In fact, only the leaf nodes store the model and data sample.

The size of the tree is the space complexity of the learning procedure. Finally, define

leaf : [n]→ {0, 1}log(n) which gives the binary representation of the input leaf node.

This binary tree data structure supports the following operations:

1. Append(u, σ; T): Add a new leaf to T , which consists of setting its query response

and noisy query response to u, and u+N (0, σ2I) respectively. Further, update

98

tree to add u to ub, corresponding to nodes vb in the path from this leaf to root,

and add noise to their noisy response rb for nodes which are left child in the

path.

2. GetPrefixSum(t; T), where t ∈ N: Get the t-th noisy response from T , which

consists of traversing the tree from t-th leaf to root, and adding the noisy

responses of nodes which are left child.

3. Get(b; T) where b ∈ {0, 1}log(n): Get all items in the vertex of T indexed by b.

4. Set(b, v; T) where b ∈ {0, 1}log(n): Set the contents of vertex b in the T as v.

+ξ8

+ξ4

+ξ2

p1(w0) + ξ1

z7

p2(w≤1)

z2

+

p3(w≤2) + ξ3

z1

p4(w≤3)

z5

+

+ξ6

p5(w≤4) + ξ5

z4

p6(w≤5)

z3

+

p7(w≤6) + ξ7

z6

p8(w≤7)

z8

−g+ g′

RS3

+ξ4

+ξ2

p1(w0) + ξ1

z7

p2(w≤1)

z2

+

p3(w≤2) + ξ3

z1

p4(w≤3)

z5

−g+ g′

−g+ g′

RS2

−g+ g′

RS1

z4
z8

p6(w≤5)

z3

+

p7(w≤6) + ξ7

z6

p8(w≤7)

z8

Figure 5-1. A simplified schematic of the learning (left) and unlearning (right) procedures
for prefix-sum queries. In the left, the leaves contain (noisy, if +ξi) prefix-sum queries
applied on the randomly permuted data-point (zi’s) below it. The intermediate nodes
with + adds the not-noised values of its children, where as others add noise to it. On the
right, the deleted point z4 is replaced with z8 which amounts to adjusting the queries with
−g + g′ (see Algorithm 13 for details) and performing Rejection Sampling (abbreviated
RSi, where i’s indicates the order of occurrence of sequence of rejection samplings) along
the height of the tree.

Following [GTS13], we give pseudo-codes of the above operations in Section D.3,

with minor modifications to aid the unlearning process.

5.4.2 Unlearning by Maximally Coupling Binary Trees

The unlearning Algorithm 13 is based on constructing a (near) maximal coupling

of the binary trees under current and updated dataset. Let zj be the element to be

deleted and let vs be the leaf node which contains zj (we use z in place of zj from here

99

Algorithm 12 TreeLearn(t0; T)
Input: Dataset S, steps T , B-sensitive prefix-sum queries {pt}t≤T , update functions
{Ut}t≤T , noise standard deviation σ

1: if t0 = 1 then Permute dataset and initialize T end if
2: (·, ·, wt0 , ·) = Get(leaf(t0); T)
3: for t = t0 to |S| − 1 do
4: ut = pt({wt}i≤t , zt)
5: Append(ut, σ; T)
6: rt = GetPrefixSum(t; T)
7: wt+1 = Ut

(︂
{wt}≤t , rt

)︂
8: Set(leaf(t), (ut, rt, wt, zt) ; T)
9: end for

Output: ˆ︁w = S ({wt}t)

on, for simplicity). During unlearning, we simulate (roughly speaking) the dynamics

of the learning algorithm if the deleted point was not present to begin with. In that

case, in place of the deleted point, some other point would have been used. Now, since

the dataset was randomly permuted, every point is equally likely to have been used,

and thus we can use the point z′ in the last leaf node, say vl, in the tree – this choice

of the last point is important for unlearning efficiency. Firstly, the computations

associated with the last point z′ needs to be undone – towards this, we update the

contents of the nodes in the path from node vl to root (line 5), finally removing node

vl from the tree (line 6). Then, we need to replace all the computations which used

the deleted point z with the same computation under z′. Since the learning algorithm

was based on the binary tree mechanism, the point z was only explicitly used in

the nodes lying on the path from leaf vs to the root (so, at most log (n) nodes). We

say explicitly above because due to the adaptive nature of the process, in principle,

all nodes after vs depend on it, in the sense that their contents would change if the

response in vs were to change. However, importantly, the binary search structure of

our learning algorithm and our coupling technique (details below) would enable us to

(mostly) only care about explicit computations.

We first compute two new queries, under the data point z and z′, with responses

100

Algorithm 13 TreeUnlearn
Input: zj: data point to be deleted, T : internal tree data-structure saved during

learning
1: s = leaf(j) and l = leaf(|S|)
2: (·, ·, w, z) = Get(s; T) and (·, ·, ·, z′) = Get(l; T)
3: g = pj({wq}q≤s , z) and g′ = pj({wq}q≤s , z′)
4: Let path = {l→ · · · → root} be the path from l to root.
5: for b ∈ path do ub = ub − g′ end for
6: Remove node l from T .
7: Let b = s and ct = 1
8: if j = |S| then let b = ∅ end if
9: while b ̸= ∅ do

10: (u, r, ·, ·) = Get(b; T)
11: u′ = u− g + g′

12: if Unif (0, 1) ≤ ϕN (u,σ2I)(r)
ϕN (u′,σ2I)(r) then

13: if b = s then Set(b, (u′, r, w, z′) ; T) else then Set(b, (u′, r, ∅, ∅) ; T) end if
14: else
15: r′ = Reflect(u, u′, r)
16: if b = s then
17: Set(b; (u′, r′, ∅, z′) ; T)
18: w′ = Uj

(︂
{wq}q≤b ,GetPrefixSum(j; T)

)︂
19: Set(b, (u′, r′, w′, z′) ; T)
20: else
21: Set(b, (u′, r′, ∅, ∅) ; T)
22: end if
23: TreeLearn(j + ct; T) // Continue Retraining
24: break
25: end if
26: if b is left sibling then ct = ct + 2|s|−|b|−1 end if
27: Set (new) b as binary representation of parent of b
28: end while
29: Update dataset S = S\ {zj}
Output: ˆ︁w = S({wb}b)

g = pj({wq}q≤s , z) and g′ = pj({wq}q≤s , z′) respectively (line 3). Starting with leaf

node vs, we update the original unperturbed prefix-sum query response under z i.e. u

to what it would have been under data-point z′: u′ = u− g′ + g (line 11). Further,

since the training method adds noise N (0, σ2I) to u to produce original noisy response

r, we now need to produce a sample from N (u′, σ2I) to satisfy exact unlearning.

Naively, we could simply get a fresh independent sample from N (u′, σ2I), however,

101

this would change the noisy response r, and hence require all subsequent computations

to be redone (the adaptive nature). So, ideally, we want to reuse the same r and yet

generate a sample from N (u′, σ2I). This is precisely the problem of constructing a

maximal coupling, discussed in the Section 5.2, wherein we also discussed the method

of reflection coupling to do it.

This amounts to doing a rejection sampling which (roughly) ascertains if response

r is still sufficient under the new distribution N (u′, σ2I). Specifically we compute the

ratio of the probability densities at r under the noise added to u and u′, i.e. ϕN (u,σ2I)(r)
ϕN (u′,σ2I)(r)

and compare it against a randomly sampled Unif(0,1); if it results in accept, we move

to parent of the node vs, and repeat. If any step fails, we reflect which generates a

different noisy response r′, and continue retraining from the next leaf w.r.t. the post

order traversal of the tree (the variable ct in Algorithm 13 keeps track of this next

node). See Figure 5-1 for a simplified description of the process.

The main result of this section is as follows.

Theorem 25. The following are true for Algorithms 12 and 13.

1. The learning Algorithm 12 with σ2 = 64B2log2(n)
ρ

satisfies ρ-TV stability.

2. The corresponding unlearning Algorithm 13 satisfies exact unlearning.

3. The relative unlearning complexity is ˜︁O (ρ)

As discussed in the preceding section, in the Theorem above, we have all the

properties we needed with the unlearning process. We now move on to applications

and give accuracy guarantees.

5.5 Applications

In the following, we describe some problems and learning algorithms. The corre-

sponding unlearning algorithms and its correctness simply follow as application of the

102

result of the preceding section, provided we show that it uses a bounded sensitivity

prefix-sum query. The only other thing to show is the accuracy guarantee of the TV

stable modification of the learning algorithm (Algorithm 12).

From here on, we use runtime to mean gradient complexity as is standard in convex

optimization [NY83]. But, as pointed out before, our proposed unlearning algorithm

yields similar improvements over retraining, even accounting for other operations in

the method.

5.5.1 Smooth SCO with Variance Reduced Frank-Wolfe

We assume that the loss function w ↦→ ℓ(w; z) is H-smooth and G-Lipschitz for all

z1. The algorithm we use is variance reduced Frank-Wolfe method where the variance

reduced gradient estimate ut is the Hybrid-SARAH estimate [TDPPN19] with γt = 1
t+1

given as,

ut = (1− γt) (ut−1 +∇ℓ(wt; zt)−∇ℓ(wt−1; zt)) + γt∇ℓ(wt; zt)

= 1
t+ 1

t∑︂
i=1

((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))

We show that the above is a prefix sum query with sensitivity B = 2 (HD +G),

thus fits into our framework. The full pseudo-code is given as Algorithm 33 in

Appendix D.5. We state the main result below where the accuracy guarantee follows

from modifications to the analysis in [ZSM+20].

Theorem 26. Let ρ ≤ 1 and ℓ : W ×Z → R be an H-smooth, G-Lipschitz convex

function over a closed convex set W of diameter D. Algorithm 33, as the learning

algorithm, run with σ2 = 64(HD+G)2log2(n)
ρ2 , t0 = 1 and ηt = 1

t+1 on a dataset S of n

i.i.d. samples from D outputs ˆ︁w, with excess population risk bounded as,

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O(︄(G+HD)D
(︄

1√
n

+
√
d

nρ

)︄)︄
.

1A real valued function x ↦→ f(x) is G-Lipschitz and H-smooth if |f(x1)− f(x2)| ≤ G ∥x1 − x2∥
an ∥∇f(x1)−∇f(x2)∥ ≤ H ∥x1 − x2∥ respectively.

103

Furthermore, the corresponding unlearning Algorithm 13 (with query and update

functions as specified in the learning algorithm), satisfies exact unlearning with ˜︁O (ρn)

expected runtime.

5.5.2 Non-smooth SCO with Dual Averaging

In this section, we only assume that loss function w ↦→ ℓ(w; z) is G-Lipschitz and

convex ∀ z ∈ Z. Herein, we use dual averaging method [Nes09] where the model is

updated as follows:

wt+1 = ΠW

(︃
w0 − η

t∑︂
i=1
∇ℓ(wi; zi)

)︃
,

where Π denotes the Euclidean projection on to the convex set W. The above

again is a prefix-sum query with sensitivity G, thus fits into our framework. The

full pseudo-code is given as Algorithm 34 in Appendix D.5. The accuracy guarantee

mainly follows from [KMS+21].

Theorem 27. Let ρ ≤ 1 and ℓ :W ×Z → R be a G-Lipschitz convex function over a

closed convex set W of diameter D. Algorithm 34, as the learning algorithm, run with

σ2 = 64G2log2(n)
ρ2 , t0 = 1 and η = Dd1/4

√
log(n)

G
√
nρ

on a dataset S of n samples, drawn i.i.d.

from D, outputs ˆ︁w with excess population risk bounded as,

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O
⎛⎝GD

⎛⎝ 1√
n

+

⌜⃓⃓⎷√d
nρ

⎞⎠⎞⎠.
Furthermore, the corresponding unlearning Algorithm 13 (with query and update

functions as specified in the learning algorithm), satisfies exact unlearning with ˜︁O (ρn)

expected runtime.

5.5.3 Convex GLM with JL Method

This JL method, proposed in our work [ABG+22], covered in Chapter 3, is a

general technique to get dimension-independent rates for unconstrained convex GLMs

104

Algorithm 14 JL Method
Input: Dataset S, loss function ℓ, base algorithm A, JL matrix Φ ∈ Rd×k, noise

variance σ2

1: ΦS = {Φxi}ni=1
2: ˜︁w = A(ℓ,ΦS, 2G ∥X∥ , 2H ∥X∥2 , σ)

Output: ˆ︁w = Φ⊤ ˜︁w
from algorithms giving dimension-dependent rate for constrained (general) convex

losses. The method, described in Algorithm 14, simply embeds the dataset into a low

dimensional space, via a JL matrix Φ, and then runs a base algorithm on the low

dimensional dataset.

Smooth, Lipschitz GLMs: We assume that ϕy : R→ R is convex, H-smooth and

G-Lipschitz for all y ∈ Y. We give the following result in this case using VR-Frank

Wolfe as the base algorithm.

Theorem 28. Let ρ ≤ 1 and ℓ : W × X × Y → R be an H-smooth, G-Lipschitz

convex GLM loss function. Algorithm 14 instantiated with Algorithm 33, as the

learning algorithm, run with σ2 = ˜︁O(︄(H∥X ∥2∥w∗∥+G∥X ∥)2

ρ2

)︄
, t0 = 1, ηt = 1

t+1 and

k = ˜︁O(︄(︃ H∥X ∥2∥w∗∥
(H∥X ∥2∥w∗∥+G∥X ∥)

)︃2/3
(nρ)2/3

)︄
on a dataset S of n samples, drawn i.i.d.

from D, outputs ˆ︁w with excess population risk bounded as,

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O
⎛⎝
(︂
G ∥X∥+H ∥X∥2 ∥w∗∥

)︂
∥w∗∥

√
n

+ H1/3G2/3 ∥w∗∥4/3 ∥X∥4/3 +H ∥X∥2 ∥w∗∥2

(nρ)2/3

⎞⎠.
Furthermore, the corresponding unlearning Algorithm 13 (with query and update

functions as specified in the learning algorithm), satisfies exact unlearning with ˜︁O (ρn)

expected runtime .

Lipschitz GLMs: We assume that ϕy : R → R is convex and G-Lipschitz for all

y ∈ Y. We give the following result in this case using Dual Averaging as the base

105

algorithm.

Theorem 29. Let ρ ≤ 1 and ℓ :W ×X × Y → R be a G-Lipschitz convex GLM loss

function. Algorithm 14 with Algorithm 34 as the sub-routine, as the learning algorithm,

run with σ2 = O
(︂
G2∥X ∥2

ρ2

)︂
, t0 = 1, η = ∥w∗∥d1/4

√
log(n)

G∥X ∥√
nρ

and k = √nρ on a dataset S of

n samples sampled i.i.d. from D outputs ˆ︁w, with excess population risk bounded as,

E [L(ˆ︁w;D)− L(w∗;D)] = ˜︁O(︄G ∥X∥ ∥w∗∥
(︃ 1√

n
+ 1

(nρ)1/3

)︃)︄
.

Furthermore, the corresponding unlearning Algorithm 13 (with query and update

functions as specified in the learning algorithm), satisfies exact unlearning with ˜︁O (ρn)

expected runtime.

5.6 SCO in Dynamic Streams

In this section, we extend our previous results to dynamic streams wherein we observe

a sequence of insertions and deletions, starting with potentially zero data points.

We assume that the number of available points throughout is positive and the data

points are i.i.d. from an an unknown distribution as well as the requests are chosen

independent of the algorithm.

To give a simple and unified presentation, let the accuracy, say expected excess

population risk, of the ρ-TV stable Algorithm 12 with a dataset S be denoted

as, α(ρ, |S| ;P) where P denotes problem specific parameters such as Lipschitzness,

diameter etc.

We present two techniques for dynamic streams; one of them satisfies exact

unlearning but has a worse update time; this is similar to [UMR+21], covered in

Chapter 4, and is deferred to Section D.6. The other, presented below, satisfies weak

unlearning (see Definition 16) with better update time. A key component to both are

anytime guarantees, which hold at every time-point in the stream, for any length of

the stream.

106

Anytime binary tree mechanism. In the previous section, the depth of the

initialized tree and the noise variance σ2, both were chosen as a function of the dataset

size n. However, the tree can be easily built in an online manner as in prior work

of [GTS13]. For setting the noise variance: for target ρ-TV stability, we distribute

the noise budget exponentially along the height of the tree; specifically, the leaf node

contribute to ρ/2 TV stability, the nodes above them ρ/4 and so on. In this way, the

final tree satisfies ρ-TV stability for any value of n.

Anytime accuracy. The other problem of changing data size is that the internal

parameters of algorithm (step size, in our case) may be set as a function of n for

desirable accuracy guarantees. Fortunately, the two algorithms that we consider, VR-

Frank Wolfe and Dual Averaging, have known horizon-oblivious parameter settings

[Ora19]. Their JL counterparts on the other hand, require setting the embedding

dimension as a function of n, and thus not applicable unless we assume that the

number of data points throughout the stream is Θ(n).

5.6.1 Weak Unlearning in Dynamic Streams

We first argue in what way insertions handled in [UMR+21] is deficient. The main

reason is that they require insertions to also satisfy the unlearning criterion: the state

of the system upon insertion is instinguishable to the state had the inserted point

being present to begin with. However, this is an overkill; adding new points simply

serve to yield improved statistical accuracy. Furthermore, methods which allow adding

new points, are abound, particularly in the stochastic optimization setting, sometimes

known as incremental methods. Importantly, in most cases, the insertion time of

these methods is constant (in n). Hence, a natural question is whether, for dynamic

streams, can we design unlearning methods in which we pay for update time only in

proportion to the number of deletions? Our result shows that we can, albeit under

107

the weak unlearning (see Definition 16) guarantee.

Specifically, our procedure requires hiding the order in which data points are

processed. Intuitively, an incremental method typically processes the newest data

point the last. This ordering is problematic to our unlearning procedure, since if some

point is to deleted, then we can no longer replace it with the last point, as we did

before, since that would result in a different order. Our main result is as follows.

Theorem 30. In the dynamic streaming setting with R requests, using anytime incre-

mental learning and unlearning algorithms, Algorithm 12 and 13, without permuting

the dataset, the following are true.

1. It satisfies weak unlearning at every time point in the stream.

2. The accuracy of the output ˆ︁wi at time point i, with corresponding dataset Si, is

E[L(ˆ︁wi;D)]−min
w
L(w;D) = α(ρ, |Si| ;P)

3. The number of times retraining is triggered, for V unlearning requests, is at most
˜︁O(ρV)

Importantly, in the above guarantee, we only pay for the number of unlearning

requests V rather than the number of requests R.

5.7 Conclusion

In this chapter, we proposed a general framework for designing unlearning algorithms

for learning algorithms which can be viewed as performing adaptive query release

on datasets. We applied this to yield improved guarantees for unlearning in various

settings of stochastic convex optimization. Our results are obtained by instantiating

it with the class of prefix-sum queries and linear queries.

108

Chapter 6

Conclusion

In this dissertation, we studied machine learning problems under constraints motivated

by modern considerations of data privacy, through the lens of stochastic optimization.

In Chapters 2 and 3, we studied differentially private convex generalized linear models

and non-convex optimization respectively. In Chapters 4 and 5, we studied machine

unlearning in multiple standard settings of stochastic convex optimization.

6.1 Ongoing and Future Work

This section provides a brief overview of some ongoing and future work, motivated

from investigations in this dissertation.

(Private) Non-convex Optimization. In Chapter 3, we studied the design of

differentially private algorithms for approximating stationary points of non-convex

empirical and population risk. We presented new upper and lower bounds for the

problem, which match in some, admittedly restrictive, regime of problem parameters.

A natural direction is to close this gap in general. A related and important question

is the same problem in the non-private setting. In particular, as of yet, the (optimal)

sample complexity of approximating stationary points, in the population setting, is

unknown. Moreover, this gap in our understanding essentially percolates to gaps in

the private setting. Thus, progress in the non-private setting is crucial to resolve the

109

problem in the private setting.

Private Learning with Public Data. There is by now a rich literature (some of

them discussed in this dissertation) of algorithms and complexity of statistical learning

tasks under differential privacy. In many cases, there is an additional price, due to

privacy, in sample complexity. An example, discussed in Chapters 1 and 2, is that of

constrained (convex) GLMs in d dimensions: herein, the optimal rate, without privacy,

with n samples, is Θ
(︂

1√
n

)︂
, which is dimension-independent. However, under (ϵ, δ) DP,

the optimal rate turns out to be dimension-dependent, Θ
(︂

1√
n

+
√
d

nϵ

)︂
[BST14].

Such pessimistic results have motivated a hybrid model, where a small public

dataset is leveraged to circumvent these limitations. Practically, this public data could

originate from opt-in users who consent to minimal or no privacy assurances, or from a

related dataset that is publicly available. This model has been explored for the Proba-

bility Approximately Correct (PAC) learning setting and statistical inference problems,

where it has been shown to yield non-trivial improvements [ABM19, BCM+20, BKS22].

A natural question is investigating (various settings of) differentially private stochas-

tic (convex) optimization with public data. This involves identifying settings and

approaches where a (small) public dataset can be effectively used to get around the

known barriers.

Lower Complexity Bounds for Machine Unlearning. The current thrust of

most research in (exact) machine unlearning is towards proposing algorithms with

(non-trivial) guarantees in comparison to (any) retraining. Indeed, this is the nature

of results presented in Chapters 4 and 5 of this dissertation. However, in order to truly

assess the quality of (existing) procedures, we need to establish corresponding lower

bounds which tells us how far we are from what is achievable. A natural direction is

to study the limitations of (exact) unlearning in the stochastic convex optimization,

110

borrowing the language and tools from information-based complexity of optimization.

Concretely, the goal is to characterize the Pareto frontier of optimal unlearning

runtime and accuracy, among all procedures which satisfy unlearning correctness and

have optimal learning runtime (for the said accuracy).

6.2 Other Works

Besides the works presented in this dissertation, I have been involved in other projects,

which I will briefly summarize.

In [MUA+23] (to appear to ALT 2024), we studied differentially non-convex

optimization under the Kurdyka-Łojasiewicz (KL) condition. This is a widely studied

class of non-convex functions which admit efficient (non-private) procedures with

global optimality guarantees. We designed differentially private procedures for such

settings and show that they achieve near-optimal rates.

In [UCKO23] (published in ICML 2023), we considered the Federated Learning

(FL) setting, wherein we have a (large) number of clients (user devices such as mobile

phones, typically), containing user data, and a typical goal is to train a shared machine

learning model. Two important desiderata in an FL setting are communication-

efficiency and privacy. These are motivated from the fact that the clients usually

communicate over a slow medium, and may have sensitive data. We studied the

design of procedures which are differentially private, communication-efficient, and

importantly require minimal tuning of any hyper-parameter related to the size of

messages communicated. This work was preceded by [IRU+19] (published in NeurIPS

2019) and [RPU+20] (published in ICML 2020) where we explored the use of sketching

techniques to design communication-efficient algorithms in (non-private) distributed

and federated settings, respectively.

In [WUMA22] (published in NeurIPS 2022), we studied the adversarial robustness

111

problem, where at prediction-time, the test data point can be slightly, but adversarially,

perturbed. We showed that all two-layer ReLU neural networks in the so-called lazy

regime (which is the dominant model in theoretical deep learning) are susceptible

to such attacks. In [WUNTA23] (published in NeurIPS 2023), we considered the

multi-task representation learning setting, where a complex representation is learnt

from multiple (data-abundant) source tasks, which then is used to learn a simple

predictor (on top of the representation) on a (data-scarce) target task. Under a

standard assumption of task diversity , we derived optimistic rates, those which

interpolate between the slow n−1/2 and fast n−1 rates, depending on the easiness of

the tasks.

In [UMMA18] (published in NeurIPS 2018), we studied the design and analysis

of algorithms for kernel Principal Component Analysis with random Fourier features.

This was followed by [UA22] (published in TMLR 2022) where we established improved

generalization bounds for the regularized empirical risk minimization rule for the

problem of kernel Canonical Correlation Analysis.

In [BLUZ19] (published in APPROX 2019), we delved into a streaming setting,

wherein we designed low-space algorithms for clustering and coreset construction in

time-decay streams. This was followed by [ULAB22] (published in TMLR 2022) where

we considered the problem of clustering in data streams, and coreset construction,

under access to an approximate nearest neighbour search oracle.

112

Bibliography

[ABG+22] Raman Arora, Raef Bassily, Cristóbal A Guzmán, Michael Menart,

and Enayat Ullah. Differentially private generalized linear models

revisited. In Advances in Neural Information Processing Systems,

2022.

[ABG+23] Raman Arora, Raef Bassily, Tomás González, Cristóbal A Guzmán,

Michael Menart, and Enayat Ullah. Faster rates of convergence to

stationary points in differentially private optimization. In International

Conference on Machine Learning, pages 1060–1092. PMLR, 2023.

[ABM19] Noga Alon, Raef Bassily, and Shay Moran. Limits of private learning

with access to public data. Advances in neural information processing

systems, 32, 2019.

[Abo18] John M Abowd. The us census bureau adopts differential privacy. In

Proceedings of the 24th ACM SIGKDD international conference on

knowledge discovery & data mining, pages 2867–2867, 2018.

[ACD+19] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan

Srebro, and Blake Woodworth. Lower bounds for non-convex stochastic

optimization, 2019.

[ACG+16a] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential

113

privacy. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 308–318, 2016.

[ACG+16b] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential

privacy. In Proceedings of the 2016 ACM SIGSAC conference on

computer and communications security, pages 308–318, 2016.

[ACKL21] Idan Amir, Yair Carmon, Tomer Koren, and Roi Livni. Never go

full batch (in stochastic convex optimization). Advances in Neural

Information Processing Systems, 34, 2021.

[AFKT21] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private

stochastic convex optimization: Optimal rates in l1 geometry. In

International Conference on Machine Learning, pages 393–403. PMLR,

2021.

[AKL21] Idan Amir, Tomer Koren, and Roi Livni. Sgd generalizes better than

gd (and regularization doesn’t help). In Proceedings of Thirty Fourth

Conference on Learning Theory, volume 134 of Proceedings of Machine

Learning Research, pages 63–92. PMLR, 2021.

[AWBR09] Alekh Agarwal, Martin J Wainwright, Peter Bartlett, and Pradeep

Ravikumar. Information-theoretic lower bounds on the oracle complex-

ity of convex optimization. Advances in Neural Information Processing

Systems, 22, 2009.

[AZ17] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochas-

tic gradient methods. The Journal of Machine Learning Research,

18(1):8194–8244, 2017.

114

[AZ18] Zeyuan Allen-Zhu. How to make the gradients small stochastically:

Even faster convex and nonconvex sgd. In Advances in Neural Infor-

mation Processing Systems, pages 1157–1167, 2018.

[BBG18] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification

by subsampling: Tight analyses via couplings and divergences. In

Advances in Neural Information Processing Systems, pages 6277–6287,

2018.

[BBL03] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Intro-

duction to statistical learning theory. In Summer school on machine

learning, pages 169–207. Springer, 2003.

[BCCC+21] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-

Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and

Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on

Security and Privacy (SP), pages 141–159. IEEE, 2021.

[BCM+20] Raef Bassily, Albert Cheu, Shay Moran, Aleksandar Nikolov, Jonathan

Ullman, and Steven Wu. Private query release assisted by public data.

In International Conference on Machine Learning, pages 695–703.

PMLR, 2020.

[BDRS18] Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke.

Composable and versatile privacy via truncated cdp. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, page 74–86, New York, NY, USA, 2018. Association for

Computing Machinery.

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization.

Journal of machine learning research, 2(Mar):499–526, 2002.

115

[BFGT20] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar.

Stability of stochastic gradient descent on nonsmooth convex losses.

Advances in Neural Information Processing Systems, 33, 2020.

[BFTGT19] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep

Guha Thakurta. Private stochastic convex optimization with optimal

rates. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc., 2019.

[BFTT19] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha

Thakurta. Private stochastic convex optimization with optimal rates.

In Advances in Neural Information Processing Systems, pages 11282–

11291, 2019.

[BGM21] Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially

private stochastic optimization: New results in convex and non-convex

settings. Advances in Neural Information Processing Systems, 34,

2021.

[BGN21] Raef Bassily, Cristobal Guzman, and Anupama Nandi. Non-euclidean

differentially private stochastic convex optimization. In Mikhail Belkin

and Samory Kpotufe, editors, Proceedings of Thirty Fourth Conference

on Learning Theory, volume 134 of Proceedings of Machine Learning

Research, pages 474–499. PMLR, 15–19 Aug 2021.

[BH79] Jean Bretagnolle and Catherine Huber. Estimation des densités: risque

minimax. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte

Gebiete, 47(2):119–137, 1979.

[BKS22] Alex Bie, Gautam Kamath, and Vikrant Singhal. Private estimation

116

with public data. Advances in Neural Information Processing Systems,

35:18653–18666, 2022.

[BL21] Jonathan Brophy and Daniel Lowd. Machine unlearning for random

forests. In International Conference on Machine Learning, pages

1092–1104. PMLR, 2021.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentra-

tion inequalities: A nonasymptotic theory of independence. Oxford

university press, 2013.

[BLUZ19] Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou.

Improved algorithms for time decay streams. Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques,

2019.

[BMR21] Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep

learning: a statistical viewpoint. Acta numerica, 30:87–201, 2021.

[BNS+16] Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stem-

mer, and Jonathan Ullman. Algorithmic stability for adaptive data

analysis. In Proceedings of the forty-eighth annual ACM symposium

on Theory of Computing, pages 1046–1059, 2016.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical

risk minimization: Efficient algorithms and tight error bounds. In 2014

IEEE 55th Annual Symposium on Foundations of Computer Science,

pages 464–473. IEEE, 2014.

[Can22] Clément L Canonne. A short note on an inequality between kl and tv.

arXiv preprint arXiv:2202.07198, 2022.

117

[CDHS17] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.

"convex until proven guilty": Dimension-free acceleration of gradient

descent on non-convex functions. In Proceedings of the 34th Interna-

tional Conference on Machine Learning - Volume 70, ICML’17, page

654–663. JMLR.org, 2017.

[CH12] Kamalika Chaudhuri and Daniel J. Hsu. Convergence rates for dif-

ferentially private statistical estimation. In Proceedings of the 29th

International Conference on Machine Learning, ICML 2012, Edin-

burgh, Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress,

2012.

[Chu91] Alexander Mikhailovich Chudnov. Game-theoretical problems of

synthesis of signal generation and reception algorithms. Problemy

Peredachi Informatsii, 27(3):57–65, 1991.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Dif-

ferentially private empirical risk minimization. Journal of Machine

Learning Research, 12(Mar):1069–1109, 2011.

[CO19] Ashok Cutkosky and Francesco Orabona. Momentum-based variance

reduction in non-convex sgd. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[Coh16] Michael B Cohen. Nearly tight oblivious subspace embeddings by trace

inequalities. In Proceedings of the twenty-seventh annual ACM-SIAM

symposium on Discrete algorithms, pages 278–287. SIAM, 2016.

[CTW+21] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski,

118

Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn

Song, Ulfar Erlingsson, et al. Extracting training data from large

language models. In 30th USENIX Security Symposium (USENIX

Security 21), pages 2633–2650, 2021.

[CWH20] Xiangyi Chen, Steven Z. Wu, and Mingyi Hong. Understanding gradi-

ent clipping in private sgd: A geometric perspective. In H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in

Neural Information Processing Systems, volume 33, pages 13773–13782.

Curran Associates, Inc., 2020.

[CWZ21] T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy:

Optimal rates of convergence for parameter estimation with differential

privacy. The Annals of Statistics, 49(5):2825 – 2850, 2021.

[CY15] Yinzhi Cao and Junfeng Yang. Towards making systems forget with

machine unlearning. In 2015 IEEE Symposium on Security and Privacy,

pages 463–480. IEEE, 2015.

[DG23] Jelena Diakonikolas and Cristóbal Guzmán. Complementary composite

minimization, small gradients in general norms, and applications, 2023.

[DH12] Frank Den Hollander. Probability theory: The coupling method. Lec-

ture notes available online (http://websites. math. leidenuniv. nl/prob-

ability/lecturenotes/CouplingLectures. pdf), 2012.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.

Calibrating noise to sensitivity in private data analysis. In Theory of

cryptography conference, pages 265–284. Springer, 2006.

[DMR18] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total

119

variation distance between high-dimensional gaussians. arXiv preprint

arXiv:1810.08693, 2018.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum.

Differential privacy under continual observation. In Proceedings of the

forty-second ACM symposium on Theory of computing, pages 715–724,

2010.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of

differential privacy. Foundations and Trends in Theoretical Computer

Science, 9(3-4):211–407, 2014.

[Duc16] John Duchi. Lecture notes for statistics 311/electrical engineering 377.

URL: https://stanford. edu/class/stats311/Lectures/full_notes. pdf.

Last visited on, 2:23, 2016.

[EKRR19] Philip A Ernst, Wilfrid S Kendall, Gareth O Roberts, and Jeffrey S

Rosenthal. Mexit: Maximal un-coupling times for stochastic processes.

Stochastic Processes and their Applications, 129(2):355–380, 2019.

[Fel16] Vitaly Feldman. Generalization of erm in stochastic convex optimiza-

tion: The dimension strikes back. Advances in Neural Information

Processing Systems, 29, 2016.

[FKT20a] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic

convex optimization: optimal rates in linear time. In Proceedings of

the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

pages 439–449, 2020.

[FKT20b] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic

convex optimization: optimal rates in linear time. In Proceedings of

120

the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

pages 439–449, 2020.

[FLLZ18] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider:

Near-optimal non-convex optimization via stochastic path-integrated

differential estimator. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 31. Curran Associates, Inc.,

2018.

[FSS18] Dylan J Foster, Ayush Sekhari, and Karthik Sridharan. Uniform

convergence of gradients for non-convex learning and optimization. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018.

[FSS+19] Dylan J Foster, Ayush Sekhari, Ohad Shamir, Nathan Srebro, Karthik

Sridharan, and Blake Woodworth. The complexity of making the

gradient small in stochastic convex optimization. In Conference on

Learning Theory, pages 1319–1345. PMLR, 2019.

[GGHVDM20] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van

Der Maaten. Certified data removal from machine learning models.

In International Conference on Machine Learning, pages 3832–3842.

PMLR, 2020.

[GGVZ19] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou.

Making ai forget you: Data deletion in machine learning. In Advances

in Neural Information Processing Systems, pages 3518–3531, 2019.

[GJN+21] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-

121

Malvajerdi, and Chris Waites. Adaptive machine unlearning. Advances

in Neural Information Processing Systems, 34, 2021.

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order

methods for nonconvex stochastic programming. SIAM Journal on

Optimization, 23(4):2341–2368, 2013.

[GL16] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods

for nonconvex nonlinear and stochastic programming. Mathematical

Programming, 156(1):59–99, 2016.

[GLM16] Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has

no spurious local minimum. In D. Lee, M. Sugiyama, U. Luxburg,

I. Guyon, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc., 2016.

[GTS13] Abhradeep Guha Thakurta and Adam Smith. (nearly) optimal al-

gorithms for private online learning in full-information and bandit

settings. Advances in Neural Information Processing Systems, 26,

2013.

[HRS16] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize

better: Stability of stochastic gradient descent. In International

conference on machine learning, pages 1225–1234. PMLR, 2016.

[Inc17] Apple Inc. Learning with privacy at scale. Apple Machine Learning

Journal, 2017.

[IRU+19] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman

Arora, et al. Communication-efficient distributed sgd with sketching.

Advances in Neural Information Processing Systems, 32, 2019.

122

[ISCZ21] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James

Zou. Approximate data deletion from machine learning models. In

International Conference on Artificial Intelligence and Statistics, pages

2008–2016. PMLR, 2021.

[JEP+21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,

Augustin Zidek, Anna Potapenko, et al. Highly accurate protein

structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[JKT12] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially

private online learning. In 25th Annual Conference on Learning Theory

(COLT), pages 24.1–24.34, 2012.

[JNG+19] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I

Jordan. A short note on concentration inequalities for random vectors

with subgaussian norm. arXiv preprint arXiv:1902.03736, 2019.

[JT14] Prateek Jain and Abhradeep Guha Thakurta. (near) dimension in-

dependent risk bounds for differentially private learning. In Eric P.

Xing and Tony Jebara, editors, Proceedings of the 31st International

Conference on Machine Learning, volume 32 of Proceedings of Machine

Learning Research, pages 476–484, Bejing, China, 2014. PMLR.

[KL15] Tomer Koren and Kfir Y Levy. Fast rates for exp-concave empirical

risk minimization. In NIPS, pages 1477–1485, 2015.

[KLL21] Janardhan Kulkarni, Yin Tat Lee, and Daogao Liu. Private non-smooth

erm and sco in subquadratic steps. In M. Ranzato, A. Beygelzimer,

Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances

123

in Neural Information Processing Systems, volume 34, pages 4053–4064.

Curran Associates, Inc., 2021.

[KLN+08] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya

Raskhodnikova, and Adam Smith. What can we learn privately? In

2008 49th Annual IEEE Symposium on Foundations of Computer

Science, pages 531–540, 2008.

[KMS+21] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar,

Abhradeep Thakurta, and Zheng Xu. Practical and private (deep)

learning without sampling or shuffling. In International Conference

on Machine Learning, pages 5213–5225. PMLR, 2021.

[KMY+16] Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strate-

gies for improving communication efficiency. In NIPS Workshop on

Private Multi-Party Machine Learning, 2016.

[KOV15] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition

theorem for differential privacy. In International conference on machine

learning, pages 1376–1385. PMLR, 2015.

[KST08] Sham M Kakade, Karthik Sridharan, and Ambuj Tewari. On the

complexity of linear prediction: Risk bounds, margin bounds, and

regularization. Advances in neural information processing systems, 21,

2008.

[KST12] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private con-

vex empirical risk minimization and high-dimensional regression. In

Conference on Learning Theory, pages 25–1, 2012.

124

[KU20] Gautam Kamath and Jonathan Ullman. A primer on private statistics.

arXiv preprint arXiv:2005.00010, 2020.

[Lan12] Guanghui Lan. An optimal method for stochastic composite optimiza-

tion. Mathematical Programming, 133(1-2):365–397, 2012.

[Lan20] Guanghui Lan. First-order and stochastic optimization methods for

machine learning. Springer, 2020.

[LeC98] Yann LeCun. The mnist database of handwritten digits. http://yann.

lecun. com/exdb/mnist/, 1998.

[LGOT23] Daogao Liu, Arun Ganesh, Sewoong Oh, and Abhradeep Guha

Thakurta. Private (stochastic) non-convex optimization revisited:

Second-order stationary points and excess risks. In Thirty-seventh

Conference on Neural Information Processing Systems, 2023.

[LR+86] Torgny Lindvall, L Cris G Rogers, et al. Coupling of multidimensional

diffusions by reflection. The Annals of Probability, 14(3):860–872, 1986.

[Mir17] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer

Security Foundations Symposium (CSF), pages 263–275. IEEE, 2017.

[MRTZ18] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.

Learning differentially private recurrent language models. In Interna-

tional Conference on Learning Representations, 2018.

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential

privacy. In 48th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’07), pages 94–103. IEEE, 2007.

[MUA+23] Michael Menart, Enayat Ullah, Raman Arora, Raef Bassily, and

Cristóbal Guzmán. Differentially private non-convex optimiza-

125

tion under the kl condition with optimal rates. arXiv preprint

arXiv:2311.13447, 2023.

[MWCC18] Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit

regularization in nonconvex statistical estimation: Gradient descent

converges linearly for phase retrieval and matrix completion. In Jennifer

Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 3345–3354. PMLR, 10–15 Jul 2018.

[N+18] Yurii Nesterov et al. Lectures on convex optimization, volume 137.

Springer, 2018.

[NCH+23] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski,

A Feder Cooper, Daphne Ippolito, Christopher A Choquette-Choo,

Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable extraction

of training data from (production) language models. arXiv preprint

arXiv:2311.17035, 2023.

[Nel11] Jelani Nelson. Sketching and streaming high-dimensional vectors. PhD

thesis, Massachusetts Institute of Technology, 2011.

[Nes09] Yurii Nesterov. Primal-dual subgradient methods for convex problems.

Mathematical programming, 120(1):221–259, 2009.

[Nes12] Yurii Nesterov. How to make the gradients small. Optima. Mathemat-

ical Optimization Society Newsletter, pages 10–11, 2012.

[NêUZ20] Huy Lê Nguyễn, Jonathan Ullman, and Lydia Zakynthinou. Efficient

Private Algorithms for Learning Large-Margin Halfspaces. In Aryeh

Kontorovich and Gergely Neu, editors, Proceedings of the 31st Inter-

national Conference on Algorithmic Learning Theory, volume 117 of

126

Proceedings of Machine Learning Research, pages 704–724. PMLR, 08

Feb–11 Feb 2020.

[NP06] Yurii Nesterov and Boris Polyak. Cubic regularization of newton

method and its global performance. Mathematical Programming,

108:177–205, 2006.

[NRSM21a] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-

delete: Gradient-based methods for machine unlearning. In Algorithmic

Learning Theory, pages 931–962. PMLR, 2021.

[NRSM21b] Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-

delete: Gradient-based methods for machine unlearning. In Algorithmic

Learning Theory, 2021.

[NY83] A.S. Nemirovsky and E.R. Yudin. Problem Complexity and Method

Efficiency in Optimization. A Wiley-Interscience publication. Wiley,

1983.

[Ope23] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv

preprint arXiv:1912.13213, 2019.

[Pol63] Boris Polyak. Gradient methods for the minimisation of functionals.

Ussr Computational Mathematics and Mathematical Physics, 3:864–878,

12 1963.

[R+61] Alfréd Rényi et al. On measures of entropy and information. In Pro-

ceedings of the Fourth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Contributions to the Theory of Statistics.

The Regents of the University of California, 1961.

127

[RKX+23] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine

McLeavey, and Ilya Sutskever. Robust speech recognition via large-

scale weak supervision. In International Conference on Machine

Learning, pages 28492–28518. PMLR, 2023.

[RPG+21] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea

Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-

image generation. In International Conference on Machine Learning,

pages 8821–8831. PMLR, 2021.

[RPU+20] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion

Stoica, Vladimir Braverman, Joseph Gonzalez, and Raman Arora.

Fetchsgd: Communication-efficient federated learning with sketching.

In International Conference on Machine Learning, pages 8253–8265.

PMLR, 2020.

[RS16] Sofya Raskhodnikova and Adam Smith. Lipschitz extensions for node-

private graph statistics and the generalized exponential mechanism.

In 2016 IEEE 57th Annual Symposium on Foundations of Computer

Science (FOCS), pages 495–504, 2016.

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of

random matrices: extreme singular values. In Proceedings of the

International Congress of Mathematicians 2010 (ICM 2010) (In 4

Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited

Lectures, pages 1576–1602. World Scientific, 2010.

[SAKS21] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and

Ananda Theertha Suresh. Remember what you want to for-

128

get: Algorithms for machine unlearning. Advances in Neural

Information Processing Systems, 34, 2021.

[Sha15] Ohad Shamir. The sample complexity of learning linear predictors

with the squared loss. J. Mach. Learn. Res., 16:3475–3486, 2015.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-

rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis

Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering

the game of go with deep neural networks and tree search. nature,

529(7587):484–489, 2016.

[SQW16] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase

retrieval. In 2016 IEEE International Symposium on Information

Theory (ISIT), pages 2379–2383, 2016.

[SSBD14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine

learning: From theory to algorithms. Cambridge university press, 2014.

[SST10] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Optimistic

rates for learning with a smooth loss. arXiv preprint arXiv:1009.3896,

2010.

[SSTT20] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta.

Characterizing private clipped gradient descent on convex generalized

linear problems. CoRR, abs/2006.06783, 2020.

[SSTT21] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta.

Evading the curse of dimensionality in unconstrained private glms.

In International Conference on Artificial Intelligence and Statistics,

pages 2638–2646. PMLR, 2021.

129

[SU15] Thomas Steinke and Jonathan Ullman. Between pure and approximate

differential privacy. Journal of Privacy and Confidentiality, 7, 01 2015.

[SU17] Thomas Steinke and Jonathan Ullman. Tight lower bounds for dif-

ferentially private selection. In 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 552–563. IEEE,

2017.

[TDPPN19] Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen.

Hybrid stochastic gradient descent algorithms for stochastic nonconvex

optimization. arXiv preprint arXiv:1905.05920, 2019.

[TTZ14] Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Private empirical

risk minimization beyond the worst case: The effect of the constraint

set geometry. arXiv preprint arXiv:1411.5417, 2014.

[TTZ15] Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Nearly optimal

private lasso. In NIPS, 2015.

[UA22] Enayat Ullah and Raman Arora. Generalization bounds for kernel

canonical correlation analysis. Transactions on Machine Learning

Research, 2022.

[UA23] Enayat Ullah and Raman Arora. From adaptive query release to

machine unlearning. In International Conference on Machine Learning,

pages 34642–34667. PMLR, 2023.

[UCKO23] Enayat Ullah, Christopher A. Choquette-Choo, Peter Kairouz, and

Sewoong Oh. Private federated learning with autotuned compression.

In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-

gelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International

130

Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-

olulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning

Research, pages 34668–34708. PMLR, 2023.

[ULAB22] Enayat Ullah, Harry Lang, Raman Arora, and Vladimir Braverman.

Clustering using approximate nearest neighbour oracles. Transactions

on Machine Learning Research, 2022.

[UMMA18] Enayat Ullah, Poorya Mianjy, Teodor V Marinov, and Raman Arora.

Streaming kernel pca with ˜︁o(√n) random features. In Proceedings of

the 32nd International Conference on Neural Information Processing

Systems, pages 7322–7332, 2018.

[UMR+21] Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman

Arora. Machine unlearning via algorithmic stability. In Conference on

Learning Theory, 2021.

[VEH14] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-

leibler divergence. IEEE Transactions on Information Theory,

60(7):3797–3820, 2014.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with

applications in data science, volume 47. Cambridge university press,

2018.

[VGNA20] Mariia Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Ar-

bel. Sub-weibull distributions: Generalizing sub-gaussian and sub-

exponential properties to heavier tailed distributions. Stat, 9(1):e318,

2020.

[Vil09] Cédric Villani. Optimal transport: old and new, volume 338. Springer,

2009.

131

[Völ16] Florian Völlering. On maximal agreement couplings. arXiv preprint

arXiv:1608.01511, 2016.

[Wal77] Alastair J Walker. An efficient method for generating discrete random

variables with general distributions. ACM Transactions on Mathemat-

ical Software (TOMS), 3(3):253–256, 1977.

[Wan18] Yu-Xiang Wang. Revisiting differentially private linear regression:

optimal and adaptive prediction & estimation in unbounded domain.

In Amir Globerson and Ricardo Silva, editors, Proceedings of the

Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,

UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 93–

103. AUAI Press, 2018.

[WBK19] Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Sub-

sampled rényi differential privacy and analytical moments accountant.

In International Conference on Artificial Intelligence and Statistics,

2019.

[WCX19a] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empir-

ical risk minimization with non-convex loss functions. In International

Conference on Machine Learning, pages 6526–6535. PMLR, 2019.

[WCX19b] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empir-

ical risk minimization with non-convex loss functions. In Proceedings

of the 36th International Conference on Machine Learning, volume 97

of Proceedings of Machine Learning Research, pages 6526–6535. PMLR,

09–15 Jun 2019.

[Wik21] Wikipedia. Right to be forgotten — Wikipedia, the free encyclope-

dia. http://en.wikipedia.org/w/index.php?title=Right%20to%

132

http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238
http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238
http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238

20be%20forgotten&oldid=1007605238, 2021. [Online; accessed 23-

February-2021].

[WJZ+19] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh.

Spiderboost and momentum: Faster variance reduction algorithms. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc., 2019.

[WS16] Blake E Woodworth and Nati Srebro. Tight complexity bounds for

optimizing composite objectives. Advances in neural information

processing systems, 29:3639–3647, 2016.

[WUMA22] Yunjuan Wang, Enayat Ullah, Poorya Mianjy, and Raman Arora.

Adversarial robustness is at odds with lazy training. Advances in

Neural Information Processing Systems, 35:6505–6516, 2022.

[WUNTA23] Austin Watkins, Enayat Ullah, Thanh Nguyen-Tang, and Raman

Arora. Optimistic rates for multi-task representation learning. In

Thirty-seventh Conference on Neural Information Processing Systems,

2023.

[WX19] Di Wang and Jinhui Xu. Differentially private empirical risk mini-

mization with smooth non-convex loss functions: A non-stationary

view. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 1182–1189, 2019.

[WYX17] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical

risk minimization revisited: Faster and more general. In Advances in

Neural Information Processing Systems, pages 2722–2731, 2017.

133

http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238
http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238
http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238
http://en.wikipedia.org/w/index.php?title=Right%20to%20be%20forgotten&oldid=1007605238

[XZA+23] Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher A Choquette-

Choo, Peter Kairouz, H Brendan McMahan, Jesse Rosenstock, and

Yuanbo Zhang. Federated learning of gboard language models with

differential privacy. arXiv preprint arXiv:2305.18465, 2023.

[ZCH+20] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu,

and Arindam Banerjee. Private stochastic non-convex optimiza-

tion: Adaptive algorithms and tighter generalization bounds. CoRR,

abs/2006.13501, 2020.

[ZMLX21] Qiuchen Zhang, Jing Ma, Jian Lou, and Li Xiong. Private stochastic

non-convex optimization with improved utility rates. In Proceedings of

the Thirtieth International Joint Conference on Artificial Intelligence,

IJCAI-21, pages 3370–3376, 2021.

[ZSM+20] Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and

Amin Karbasi. One sample stochastic frank-wolfe. In International

Conference on Artificial Intelligence and Statistics, pages 4012–4023.

PMLR, 2020.

[ZZMW17] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient

private erm for smooth objectives. In Proceedings of the 26th Inter-

national Joint Conference on Artificial Intelligence, IJCAI’17, page

3922–3928. AAAI Press, 2017.

134

Appendix A

Appendix for Chapter 2

A.1 Missing Proofs from Section 2.3.1 (Smooth
GLMs)

A.1.1 Utility Lemmas

Fact 1. [SSBD14] For a ˜︂H-smooth non-negative function f , and for any u ∈ dom(f),

we have ∥∇f(u)∥ ≤
√︂

4˜︂Hf(u).

A.1.2 Proof of Lemma 2

From the self-bounding property (Fact 1), the ∥Y∥2 bound on loss at zero, and

smoothness, we have the following bound on the gradient:

∥∇ℓ(w; (x, y)∥ ≤ ∥∇ℓ(0; (x, y))∥+ ∥∇ℓ(w; (x, y))−∇ℓ(0; (x, y))∥

≤ 2
√
H ∥x∥ ℓ(0; (x, y)) +H ∥x∥2 ∥w∥

≤ 2
(︂√

H ∥Y∥ ∥x∥+H ∥x∥2 ∥w∥
)︂
. (A.1)

Lemma 4. For any w ∈ B (D) and any (x, y) ∈ (X × Y) it holds that ℓ(w; (x, y)) ≤

3(∥Y∥2 +HD2∥X∥2).

Proof. Using the fact that the loss function is G = ∥Y∥
√
H∥X∥+DH∥X∥2-Lipschitz

135

in the constraint set (Lemma 2) we have

ℓ(w; (x, y)) ≤ ℓ(0; (x, y)) + |ℓ(w; (x, y))− ℓ(0; (x, y))|

≤ ∥Y∥2 +G ∥w∥

≤ ∥Y∥2 + ∥Y∥
√
HD∥X∥+HD2∥X∥2

≤ 3
(︂
∥Y∥2 +HD2∥X∥2

)︂

where the last step follow from AM-GM inequality.

A.1.3 Low Dimension

Before presenting the proof of Theorem 8, we provide formal statements of its Corol-

laries.

Corollary 2, stated below, gives an upper bound on excess risk of gradient descent

in the non-private setting.

Corollary 2. Let ℓ be a non-negative convex ˜︂H smooth loss function, bounded at zero

by ∥Y∥2. Let n0 = ˜︁HD2

∥Y∥2 , W = B (D), T = n, and η = min
(︃

D
√
T

√˜︁H∥Y∥
, 1

4˜︁H
)︃

. Given a

dataset S of n ≥ n0 i.i.d samples from an unknown distribution D, the excess risk of

output of Algorithm 1 with σ = 0 is bounded as,

E[L(ˆ︁w;D)− L(w∗;D)] ≤ O

⎛⎜⎝
√︂˜︂HD∥Y∥√

n

⎞⎟⎠ .
Corollary 3 below gives an upper bound on excess risk of noisy gradient descent

for non-negative smooth GLMs.

Corollary 3. Let n0 = H∥X ∥2D2

∥Y∥2 , η = min
(︃

D√
T max(√

H∥X ∥∥Y∥,σ
√
d) ,

1
4H∥X ∥

)︃
,W = B (D),

σ2 = 8G2T log(1/δ)
n2ϵ2

and T = n. Let ℓ be a non-negative convex H smooth GLM, bounded

at zero by ∥Y∥2. Algorithm 1 satisfies (ϵ, δ)-differential privacy. Given a dataset

136

S ∼ Dn, n ≥ n0, then the excess risk of output of Algorithm 1 is bounded as,

E[L(ˆ︁w;D)− L(w∗;D)] = O

⎛⎝√H∥X∥D∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D2

)︂
D
√︂
d log (1/δ)

nϵ

⎞⎠.
A.1.3.1 Proof of Theorem 8

Since Algorithm 1 uses a projection step, the iterates always lie in the constraint set

{w : ∥w∥ ≤ D}. Hence, the function over this constraint set is G-Lipschitz. From

the analysis of Noisy (S)GD in [BST14, BFTT19], we have that the setting of noise

variance σ2 ensures that the algorithm satisfies (ϵ, δ)-DP

We now move to the utility part. We start with the decomposition of excess risk as

E[L(ˆ︁w;D)− L(w∗;D)] = E[L(ˆ︁w;D)− ˆ︁L(ˆ︁w;S)] + E[ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)] (A.2)

The key arguments are as follows: we first bound generalization gap, or on-average

stability (first term in the right hand side above), in terms of average argument

stability and excess empirical risk (Lemma 5). We then bound average argument

stability in terms of average regret (Lemma 6). Finally, in Lemma 7, we provide

bounds on excess empirical risk and average regret of gradient descent. Substituting

these in the above equation gives the claimed bound. We now fill in the details.

We start with Lemma 5 which gives the following bound on the generalization gap:

E[L(A(S);D)− ˆ︁L(ˆ︁w;S)] ≤

√︂˜︂HD√
n ∥Y∥

(︂
E[ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)]

)︂
(A.3)

+ 2
√︂˜︂Hn∥Y∥

D
AAS(A)2 +

√︂˜︂HD∥Y∥√
n

(A.4)

137

Substituting the bound on AAS(A) from Lemma 6, the second term becomes,

2
√︂˜︂Hn∥Y∥

D
AAS(A)2

≤ 16˜︂H3/2η2T∥Y∥√
nD

1
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 16˜︂H3/2η2T∥Y∥√
nD

≤ 16
√︂˜︂HD√
n∥Y∥

1
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 16
√︂˜︂HD√
n∥Y∥

≤ 16
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 16
√︂˜︂HD√
n∥Y∥

.

Substituting the above in Eqn. (A.3) and using the fact that
√˜︁HD√
n∥Y∥ ≤ 1 from the

lower bound on n, we get:

E[L(A(S);D)− ˆ︁L(ˆ︁w;S)]

≤
(︂
E[ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)]

)︂
+ 16

n

⎛⎝ T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)]
⎞⎠

+ 17
√︂˜︂HD∥Y∥√

n
.

From the excess empirical risk guarantee (Lemma 7), the terms excess empirical

risk E[ˆ︁L(ˆ︁w;S) − ˆ︁L(w∗;S)] and average regret 1
n

(︂∑︁T
j=1 E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)]

)︂
are

both bounded by the same quantity. Thus, substituting the above in Eqn. (A.2) and

substituting the bound from 7, we have,

E[L(ˆ︁w;D)− L(w∗;D)] ≤ 18
n

n∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 17
√︂˜︂HD∥Y∥√

n

≤ O

(︄√
HD∥Y∥√

n
+
√
dGD log (1/δ)

nϵ

)︄
.

Substituting the value of G completes the proof.

Lemma 5. Let n ≥ ˜︁HD2

∥Y∥2 . Let ℓ be a non-negative ˜︂H smooth convex loss function. Let

S be a dataset of n i.i.d. samples from an unknown distribution D, and w∗ denote the

optimal population risk minimizer. The generalization gap of algorithm A is bounded

as,

138

E[L(A(S);D)− ˆ︁L(A(S);S)] ≤

√︂˜︂HD√
n ∥Y∥

(︂
E[ˆ︁L(A(S);S)− ˆ︁L(w∗;S)]

)︂

+ 2
√︂˜︂Hn∥Y∥

D
AAS(A)2 +

√︂˜︂HD∥Y∥√
n

.

Proof. Let ˆ︁w := A(S), S(i) be the dataset where the i-th data point is replaced by an

i.i.d. point (x′, y′) and let ˆ︁w(i) be the corresponding output of A.

A standard fact (see [SSBD14]) is that generalization gap is equal to on-average

stability:

E[L(ˆ︁w;D)− ˆ︁L(ˆ︁w;S)] = E[ℓ(ˆ︁w(i); (xi, yi))− ℓ(ˆ︁w; (xi, yi)].

From smoothness and self-bounding property, we have,

ℓ(ˆ︁w(i); (xi, yi))− ℓ(ˆ︁w; (xi, yi) ≤ ∥∇ℓ(ˆ︁w; (xi, yi))∥
⃦⃦⃦ ˆ︁w − ˆ︁w(i)

⃦⃦⃦
+
˜︂H
2
⃦⃦⃦ ˆ︁w − ˆ︁w(i)

⃦⃦⃦2

≤ 2
√︂˜︂Hℓ((ˆ︁w; (xi, yi))

⃦⃦⃦ ˆ︁w − ˆ︁w(i)
⃦⃦⃦

+
˜︂H
2
⃦⃦⃦ ˆ︁w − ˆ︁w(i)

⃦⃦⃦2
.

Taking expectation, using Cauchy-Schwarz inequality and substituting average argu-

139

ment stability, we get,

E
[︂
ℓ(ˆ︁w(i); (xi, yi))− ℓ(ˆ︁w; (xi, yi)

]︂
≤ 2

√︂˜︂HE[ℓ((ˆ︁w; (xi, yi))]
√︂
E[∥ ˆ︁w − ˆ︁w(i)∥2] +

˜︂H
2 E

[︃⃦⃦⃦ ˆ︁w − ˆ︁w(i)
⃦⃦⃦2
]︃

(A.5)

≤ 2
√︂˜︂HE[ˆ︁L(ˆ︁w;S)] AAS(A) +

˜︂H AAS(A)2

2

≤

√︂˜︂HDE[ˆ︁L(ˆ︁w;S)]√
n ∥Y∥

+

√︂˜︂Hn ∥Y∥AAS(A)2

D
+
˜︂H AAS(A)2

2

≤

√︂˜︂HD√
n ∥Y∥

(︂
E[ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)]

)︂
+

√︂˜︂Hn ∥Y∥AAS(A)2

D
+
˜︂H AAS(A)2

2

+

√︂˜︂HD√
n ∥Y∥

E[ˆ︁L(w∗;S)]

≤

√︂˜︂HD√
n ∥Y∥

(︂
E[ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)]

)︂
+

⎛⎜⎝
√︂˜︂Hn∥Y∥

D
+
˜︂H
2

⎞⎟⎠AAS(A)2

+

√︂˜︂HD∥Y∥√
n

(A.6)

where the third inequality follows from AM-GM inequality, and last follows since w∗

is the optimal solution: E[ˆ︁L(w∗;S)] = L(w∗;D) ≤ L(0;D) ≤ ∥Y∥2. Finally, using

the lower bound on n, we have ˜︁H
2 ≤

√˜︁Hn∥Y∥
D

, substituting which gives the claimed

bound.

Lemma 6. The average argument stability for noisy GD (Algorithm 1) run for T

iterations with step size η ≤ 4˜︁H is bounded as

AAS(A)2 ≤ 8˜︂Hη2T

n

1
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 8˜︂Hη2T∥Y∥2

n
.

Proof. The uniform argument stability analysis for (Noisy) (S)GD is limited to the

Lipschitz setting [HRS16, BFTT19, BFGT20] and therefore not directly applicable.

We therefore need to modify the arguments to give an average stability analysis in

smooth (non-Lipschitz) case.

Let ˆ︁w := A(S), S(i) be the dataset where the i-th data point is replaced by an

140

i.i.d. point (x′, y′) and let ˆ︁w(i) be the corresponding output of A. Moroever, let wi

denote the iterate of noisy SGD on dataset S and similarly ˜︁w(i)
i for dataset S(i).

We simply couple the Gaussian noise sampled at each iteration to be equal on

both datasets. Using the fact the the updates are non-expansive, we have

⃦⃦⃦
wt+1 − w′

t+1

⃦⃦⃦
≤ ∥wt − w′

t∥+ η (∥∇ℓ(wt; (xi, yi))∥+ ∥∇ℓ(w′
t; (x′; y′))∥)

n

≤
η
∑︁t
j=1

(︂
∥∇ℓ(wj; (xi, yi))∥+

⃦⃦⃦
∇ℓ(w′

j; (x′; y′))
⃦⃦⃦)︂

n
.

From the self-bounding property in Fact 1, we get that (∥∇ℓ(wj; (xi, yi))∥) ≤

2
√︂˜︂Hℓ(wj; (xi, yi))). Therefore, we get,

E[∥wt − w′
t∥

2] ≤ 4˜︂Hη2T

n2

t∑︂
j=1

(︂
E[ℓ(wj; (xi, yi)) + ℓ(w′

j; (x′, y′))]
)︂

= 8˜︂Hη2T

n2

t∑︂
j=1

E[ˆ︁L(wj;S)].

For the average iterate,

E
[︃⃦⃦⃦ ˆ︁w − ˆ︁w(i)

⃦⃦⃦2
]︃
≤ 1
T 2T

T∑︂
t=1

E[∥wt − w′
t∥

2] ≤ 8˜︂Hη2T

n2

T∑︂
j=1

E[ˆ︁L(wj;S)]

≤ 8˜︂Hη2T

n

1
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 8˜︂Hη2T

n
E[ˆ︁L(w∗;S)]

≤ 8˜︂Hη2T

n

1
n

T∑︂
j=1

E[ˆ︁L(wj;S)− ˆ︁L(w∗;S)] + 8˜︂Hη2T∥Y∥2

n

where the last inequality follows since w∗ is the population risk minimizer:

E[ˆ︁L(w∗;S)] = L(w∗;D)] ≤ L(0;D) ≤ ∥Y∥2.

Lemma 7. Let n ≥ ˜︁HD2

∥Y∥2 , η = min
⎛⎝ D

√
T max

(︂√˜︁H∥Y∥,σ
√
d

)︂ , 1
4˜︁H
⎞⎠, σ2 = 8G2T log(1/δ)

n2ϵ2
and

T = n. We have,

E
[︂ ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)

]︂
≤ 1
T

T∑︂
j=1

E
[︂ ˆ︁L(wj;S)− ˆ︁L(w∗;S)

]︂

= O

(︄√
HD∥Y∥√

n
+
√
dG log (1/δ)

nϵ

)︄
.

where w∗ is the (minimum norm) population risk minimizer.

141

Proof. From standard analysis of (S)GD,

E
[︂
∥wt+1 − w∗∥2

]︂
≤ E

[︃⃦⃦⃦
wt − η

(︂
∇ˆ︁L(wt;S) + ξt

)︂
− w∗

⃦⃦⃦2
]︃

≤ E
[︂
∥wt − w∗∥2

]︂
+ η2E

[︃⃦⃦⃦
∇ˆ︁L(wt;S)

⃦⃦⃦2
]︃

+ η2σ2d− 2ηE
[︂ ˆ︁L(wt;S)− ˆ︁L(w∗;S)

]︂
≤ E

[︂
∥wt − w∗∥2

]︂
+ 4η2˜︂HE[ˆ︁L(wt;S)]

+ η2σ2d− 2ηE
[︂ ˆ︁L(wt;S)− ˆ︁L(w∗;S)

]︂
where the last inequality follows from self-bounding property (Fact 1). Rearranging,

and using the fact that E[ˆ︁L(w∗;S) = L(w∗;D)] ≤ L(0;D) ≤ ∥Y∥2 we get,
(︂
1− 2η˜︂H)︂E [︂ ˆ︁L(wt;S)− ˆ︁L(w∗;S)

]︂
≤

E
[︂
∥wt − w∗∥2 − ∥wt+1 − w∗∥2

]︂
2η

+ 2η
(︂˜︂H∥Y∥2 + σ2d

)︂
From the choice of η, we have

(︂
1− 2η˜︂H)︂ ≥ 1

2 . Averaging over T iterations, we get

that the average regret is,

1
T

T∑︂
j=1

E
[︂ ˆ︁L(wj;S)− ˆ︁L(w∗;S)

]︂
≤ D2

ηT
+ 4η

(︂˜︂H∥Y∥2 + σ2d
)︂
.

Setting η = min
⎛⎝ D

√
T max

(︂√˜︁H∥Y∥,σ
√
d

)︂ , 1
4˜︁H
⎞⎠, we get

1
T

T∑︂
j=1

E
[︂ ˆ︁L(wj;S)− ˆ︁L(w∗;S)

]︂
= O

⎛⎜⎝
√︂˜︂HD∥Y∥√

T
+ D
√
dσ√
T

+
˜︂HD2

T

⎞⎟⎠ .
Finally, substituting σ2 = 8G2T log(1/δ)

n2ϵ2
, T = n and using the lower bound on n gives

the claimed bound on average regret. Applying convexity to lower bound average

regret by excess empirical risk of ˆ︁w gives the same bound on excess empirical risk.

A.1.4 High Dimension

Proof of Theorem 9. Let α ≤ 1 be a parameter to be set later. From the JL property

with k = O
(︂

log(2n/δ)
α2

)︂
, with probability at least 1 − δ/2, for all data points xi,

142

∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥, and ∥Φw∗∥2 ≤ 2 ∥w∗∥2 ≤ 2D2.

Further, by Lemma 2, for any w in the embedding space with ∥w∥2 ≤ D, with

probability at least 1 − δ/2, the loss is G Lipschitz where G = 2 ∥Y∥
√
H ∥X∥ +

2HD ∥X∥2. The privacy guarantee now follows from the privacy of Noisy SGD and

post-processing.

For the utility guarantee, let L(w; ΦD) and ˆ︁L(w; ΦS) denote population and

empirical risk (resp) where test and training feature vectors (resp) are mapped using

Φ. The excess risk can be decomposed as:

E
[︂
L(Φ⊤ ˜︁w;D)− L(w∗;D)

]︂
= E [L(˜︁w; ΦD)− L(Φw∗; ΦD)]

+ E [L(Φw∗; ΦD)− L(w∗;D)] . (A.7)

The first term in Eqn. (A.7) is bounded by the utility guarantee of the DP-SCO

method. In particular, from Lemma 8 (below), we have

E[L(˜︁w; ΦD)− L(Φw∗; ΦD)] = O

⎛⎝√H∥X∥D∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D2

)︂
D
√︂
k log (1/δ)

nϵ

⎞⎠.
The second term in Eqn. (A.7) is bounded by the JL property together with

smoothness and the fact that w∗ is the optimal solution thus ∇L(w∗;D) = 0. This

gives us

E[L(Φw∗; ΦD)]− L(w∗;D)] ≤ H

2 E
[︂
|⟨Φw∗,Φx⟩ − ⟨w∗, x⟩|2

]︂
≤ α2H ∥w∗∥2 ∥X∥2

2

≤ ˜︁O(︄HD2∥X∥2

k

)︄
.

Combining, we get,

E
[︂
L(Φ⊤ ˜︁w;D)− L(w∗;D)

]︂
= ˜︁O

⎛⎝√H∥X∥D∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D

)︂
D
√︂
k log (1/δ)

nϵ
+ HD2∥X∥2

k

⎞⎠.
143

Setting k = O
(︂
DH∥X ∥ log(2n/δ)nϵ

G

)︂2/3
completes the proof.

Lemma 8. Let Φ ∈ Rd×k be a data-oblivious JL matrix. Let S = {(xi, yi)}ni=1 of n i.i.d

data points and let ΦS := {(Φxi, yi)}ni=1. Let ˜︁w ∈ Rk be the average iterate returned

by Algorithm 1 with σ2 = O
(︂
G2∥X ∥2 log(1/δ)

n2ϵ2

)︂
on dataset ΦS. For k = Ω (log (n)), the

excess risk of ˜︁w on ΦD is bounded as,

E[L(˜︁w; ΦD)− L(Φw∗; ΦD)]

≤ O

⎛⎝√HD∥X∥∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D

)︂
D
√︂
k log (1/δ)

nϵ

⎞⎠.
Proof. Let S(i) be the dataset where the i-th data point is replaced by an i.i.d.

point (x′, y′) and let ˜︁w(i) be the corresponding output of Noisy-SGD on ΦS(i). Define

S := {S, (x′, y′)} and let H(Φ, S) denote an upper bound on the smoothness parameter

of the family of loss function {ℓ(w; (Φx; y))}(x,y)∈S.

We want to apply Theorem 8, but the theorem requires that n ≥ 2H∥X ∥2D2

∥Y∥2 . In

the proof below, we will use it to bound H(Φ, S) ≤ n∥Y∥2

D2 . We use the JL property

to get this. Let α ≤ 1 be a parameter to be set later. Note that H(Φ, S) ≤

H sup(x,y)∈S ∥Φx∥
2 ≤ H (1 + α) ∥X∥2 ≤ 2H ∥X∥2 with probability at least 1 − δ for

k = O
(︂

log(2n/δ)
α2

)︂
. Thus, if we assume n ≥ 2H∥X ∥2D2

∥Y∥2 , then w.h.p. H(Φ, S) ≤ n∥Y∥2

D2 .

Also from the JL property, ∥Φw∗∥ ≤ 2D.

Decomposing excess risk and writing generalization gap as on-average stability, we

have

EΦ,S[L(˜︁w; ΦD)− L(Φw∗; ΦD)]

= EΦ,S[L(Φ⊤ ˜︁w;D)− ˆ︁L(Φ⊤ ˜︁w;S)] + EΦ,S[ˆ︁L(Φ⊤ ˜︁w;S)]− ˆ︁L(Φw∗; ΦS)]

= ES,Φ[ℓ(˜︁w(i); (Φxi, yi))− ℓ(˜︁w; (Φxi, yi)) + ˆ︁L(Φ⊤ ˜︁w;S)− ˆ︁L(Φw∗; ΦS)].

We now fix the randomness of S and bound the terms in high probability w.r.t. the

random Φ. Let IAS(S, i) =
⃦⃦⃦ ˆ︁w − ˆ︁w(i)

⃦⃦⃦
denote the instance argument stability. Re-

144

peating the analysis in Theorem 8, from Eqn. (A.5), the first term is bounded

as,

ℓ(˜︁w(i); (Φxi, yi))− ℓ(˜︁w; (Φxi, yi))

≤

√︂
H(Φ, S)D
√
nY

(︂
ℓ(ˆ︁w; (Φxi, yi))− ˆ︁L(Φw∗; ΦS)

)︂

+
⎛⎝
√︂
H(Φ, S)n∥Y∥

D
+ H(Φ, S)

2

⎞⎠ IAS(S, i)2 +

√︂
H(Φ, S)D∥Y∥
√
n

≤ 2
√
H∥X∥D√
nY

(︂
ℓ(ˆ︁w; (Φxi, yi))− ˆ︁L(Φw∗; ΦS)

)︂

+ 4
√
Hn∥X∥∥Y∥

D
IAS(S, i)2 +

2
√︂
HD∥Y∥∥X∥
√
n

(A.8)

where the last inequality holds from application of JL property: with probability at

least 1− δ, H(Φ, S) ≤ n∥Y∥2

D2 (from the lower bound on n) and H(Φ, S) ≤ 2H∥X∥2.

As in the proof of Lemma 6, IAS(S, i) is bounded as,

IAS(S, i)2 ≤ 8H(Φ, S)η2T

n

1
n

T∑︂
j=1

E[ℓ(wj; (Φxi, yi)) + ℓ(w′
j; (Φx′, y′))− 2ˆ︁L(Φw∗; ΦS)]

+ 8H(Φ, S)η2T∥Y∥2

n

≤ 16H∥X∥2η2T

n

1
n

T∑︂
j=1

E[ℓ(wj; (Φxi, yi)) + ℓ(w′
j; (Φx′, y′))− 2ˆ︁L(Φw∗; ΦS)]

+ 16H∥X∥2η2T∥Y∥2

n
.

Substituting the above in equation A.8, taking expectation with respect to S and

from manipulations as in the proof of Theorem 8, we get that with probability at least

1− δ, we have

ES[L(Φ⊤ ˜︁w;D)− ˆ︁L(Φ⊤ ˜︁w;S)] ≤ 2
(︂
E[ˆ︁L(ˆ︁w; ΦS)− ˆ︁L(Φw∗; ΦS)]

)︂
+ 32

n

⎛⎝ T∑︂
j=1

E[ˆ︁L(wj; ΦS)− ˆ︁L(w∗; ΦS)]
⎞⎠+ 34

√︂˜︂HD∥Y∥√
n

.

Let G(Φ, S) = G = 2 ∥Y∥
√︂
H(Φ, S) + 2H(Φ, S) ∥Φw∗∥ denote the Lispchitzness

parameter of the family of loss functions {ℓ(w; (Φx, y)}(x,y)∈S. From the analysis in

145

Lemma 7, the average regret and excess empirical risk terms are both bounded by the

following quantity with high probability.

O

⎛⎝
√︂
H(Φ, S)D∥Y∥
√
n

+
√
kG(Φ, S) log (1/δ)

nϵ

⎞⎠ ≤ O

(︄√
HD∥Y∥√

n
+
√
kG log (1/δ)

nϵ

)︄
.

This gives the following high probability bound,

E[L(˜︁w; ΦD)− L(Φw∗; ΦD)]

≤ O

⎛⎜⎝√HD∥X∥∥Y∥√
n

+

(︂√
H∥X∥∥Y∥+H∥X∥2D

)︂
D
√︂
k log (1/δ)

nϵ

⎞⎟⎠ .
For the in-expectation bound, note that in the above proof the JL property was

used for: with probability at least 1− δ, sup(x,y)∈S ∥Φx∥ ≤
(︃

1 +
√

log(n/δ)
k

)︃
∥X∥ and

∥Φw∗∥ ≤
(︃

1 +
√

log(n/δ)
k

)︃
D. All these quantities appear in the numerator in the

above bound. Therefore the excess risk random variable w.r.t Φ has a tail with a

poly
(︃√

log(n/δ)
k

)︃
term. This is a (non-centered) sub-Weibull random variable and

from equivalence of tail and moments bounds (e.g. Theorem 3.1 in [VGNA20]) and
log(n)
k
≤ O(1), we get the claimed expectation bound.

A.1.5 Constrained Regularized ERM with Output Perturba-
tion

We here state a key result from [SST10]. Let Rn(D, ∥X∥) denote the Rademacher

complexity of linear predictors with norm bound by D, with n datapoints and norm

of each point bounded by ∥X∥.

Theorem 31. [[SST10]] Let ℓ be an H-smooth GLM and let R be a bound on the loss

function. For a dataset S of n i.i.d samples, with probability at least 1− β, for all w

146

such that ∥w∥ ≤ D, we have

L(w;D) ≤ ˆ︁L(w;S)+O
⎛⎝√︂ˆ︁L(w;S)

⎛⎝√H log1.5(n)Rn(D, ∥X∥) +
√︄
R log (1/β)

n

⎞⎠
+H log3(n)R2

n(D, ∥X∥) + R log (1/β)
n

⎞⎠. (A.9)

Corollary 4. Let ˜︁w = arg min
w∈B(D)

{︂ˆ︁L(w;S)
}︂

and n ≥ HD2∥X ∥2

∥Y∥2 . Then with probability at

least 1− β under the randomness of S we have

L(˜︁w;D)− ˆ︁L(˜︁w;S) = ˜︁O
⎛⎝√HD∥X∥∥Y∥

√︂
log (1/β)

√
n

+ ∥Y∥
2 log (1/β)√

n

⎞⎠ .
Further, in expectation under the randomness of S it holds that

E[L(˜︁w;D)− ˆ︁L(˜︁w;S)] = ˜︁O(︄√H∥Y∥D ∥X∥√
n

+ ∥Y∥
2

√
n

)︄
.

Proof. In our application, w will be the output of regularized ERM ˜︁w, thus ˆ︁L(˜︁w;S) ≤
ˆ︁Lλ(0;S) ≤ ∥Y∥2.

From Lemma 4 we have that R ≤ 3(∥Y∥2 + HD2∥X∥2). Also, Rn(D, ∥X∥) ≤

O
(︂
D∥X ∥√

n

)︂
[SSBD14]. We now plug in the quantities into the above theorem to get

that with probability at least 1− β,

L(˜︁w;D)− ˆ︁L(˜︁w;S)

= ˜︁O
⎛⎝√HD∥X∥√

n

(︄
∥Y∥+

√
HD∥X∥√

n

)︄

+

(︂
∥Y∥+

√
HD∥X∥

)︂√︂
log (1/β)

√
n

⎛⎜⎝∥Y∥+

(︂
∥Y∥+

√
HD∥X∥

)︂√︂
log (1/β)

√
n

⎞⎟⎠
⎞⎠

= ˜︁O
⎛⎝√HD∥X∥∥Y∥

√︂
log (1/β)

√
n

+ ∥Y∥
2 log (1/β)√

n

⎞⎠
where the last follows by simplifications using the lower bound on n.

For the in expectation result, observe that the above Eqn (A.9) is a tail bound

for a sub-Gamma random variable with variance parameter O
(︃√

HD∥X ∥∥Y∥√
n

)︃
and scale

parameter O
(︂

∥Y∥2
√
n

)︂
. From the equivalence of tail and moment bounds of sub-Gamma

random variables, [BLM13] we get the claimed in-expectation bound.

147

A.1.6 Proof of Theorem 10

Proof. Recall from Lemma 2 that the (un-regularized) loss is G-Lipschitz on the

constraint set with ∥w∥ ≤ D, where ˜︁G :=
(︂√

H ∥Y∥+HD ∥X∥
)︂
∥X∥. Note that from

a standard analysis [BE02], we get that ℓ2 sensitivity (or uniform argument stability)

is O
(︂
G
nλ

)︂
, hence σ2 = O

(︂
G2 log(1/δ)
λ2n2ϵ2

)︂
ensures (ϵ, δ)-DP.

For the utility analysis, the excess risk can be decomposed as follows,

E[L(ˆ︁w;D)− L(w∗;D)]

= E[L(˜︁w;D)− ˆ︁L(˜︁w;S)] + E[ˆ︁L(˜︁w;S)− ˆ︁L(w∗;S)] + E[L(˜︁w + ξ;D)− L(˜︁w;D)].

The first term is bounded by the Rademacher complexity result (Corollary 4).

The second term is simply bounded by λ
2 ∥ ˜︁w∥2 ≤ λ

2D
2 since ˜︁w lies in the constraint

set. The third term is bounded using smoothness as follows:

E[L(˜︁w + ξ;D)− L(˜︁w;D)] = E [ϕy (⟨ ˜︁w + ξ, x⟩)− ϕy (⟨ ˜︁w, x⟩)]
≤ E

[︃
ϕ′
y(⟨ ˜︁w, x⟩) ⟨ξ, x⟩+ H

2 |⟨ξ, x⟩|
2
]︃

≤ H

2 σ
2 ∥X∥2 = O

(︄
HG2 ∥X∥2 log (1/δ)

λ2n2ϵ2

)︄

where the last inequality follows since Eξ = 0 and ⟨ξ, x⟩ ∼ N (0, σ2 ∥x∥2). We now

plug in λ =
(︃
G

√
H∥X ∥
D

)︃2/3
(log(1/δ))1/3

(nϵ)2/3 . and G =
(︂√

H ∥Y∥+HD ∥X∥
)︂
∥X∥ to get,

E[L(ˆ︁w;D)− L(w∗;D)]

≤ ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥+ ∥Y∥2

√
n

+

(︂√
HD ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD ∥X∥

)︂2

(nϵ)2/3

⎞⎠.

A.1.7 Proof of Theorem 11

Proof. Define ˆ︁L(w;S) = 1
n

∑︁
(x,y)∈S(⟨w, x⟩ − y)2. Let d′ < min {n, d} and b, p ∈ [0, 1]

be parameters to be chosen later. For any σ ∈ {±1}d
′
, define the dataset Sσ which

148

consists of the union of d′ subdatasets, S1, ..., Sd′ given as follows. Set pn
d′ of the feature

vectors in Sj as ∥X∥ej (the rescaled j’th standard basis vector) and the rest as the

zero vector. Set pn
2d (1 + b) of the labels as σj∥Y∥ and pn

2d (1 − b) labels as −σj∥Y∥.

Let wσ = arg minw∈Rd

{︂ˆ︁L(w;Sσ)
}︂

be the ERM minimizer of ˆ︁L(·;Sσ). Following from

Lemma 2 of [Sha15] we have that for any w̄ ∈ Rd that

ˆ︁L(w̄;Sσ)− ˆ︁L(wσ;Sσ) ≥ p∥X∥2

2d′

d′∑︂
j=1

(wj̄ − wσ
j)2. (A.10)

We will now show lower bounds on the per-coordinate error. Consider any σ

and σ′ which differ only at index j for some j ∈ [d′]. Note that the datasets Sσ

and Sσ′ differ in ∆ = pn
2d′ [(1 + b) − (1 − b)] = pbn

d′ points. Let τ = wσ
j = ∥Y∥b

∥X ∥ and

τ ′ = wσ′
j = −∥Y∥b

∥X ∥ (i.e. the j components of the empirical minimizers for S and S ′
j

respectively). Note that |wσ
j − wσ′

j | =
2∥Y∥b
∥X ∥ . We thus have by Lemma 1 that for a

certain b = b(ϵ, n, d,D, p, ∥Y∥), A must satisfy

E
[︂
|A(Sσ)j − wσ

j |+ |A(Sσ′)j − wσ′

j |
]︂
≥ 1

4
∥Y∥b
∥X∥

. (A.11)

Since we need ∆ ≤ 1
ϵ
, we must set b ≤ d′

pnϵ
. Furthermore, if we are interested in

problems with minimizer norm at most D, we need b ≤ ∥X ∥D
∥Y∥

√
d′ to ensure the norm of the

minimizer is bounded by D. Balancing these two restrictions, we set d′ =
(︂
p∥X ∥Dnϵ

∥Y∥

)︂2/3

which yields b =
(︂

∥X ∥D
∥Y∥√

pnϵ

)︂2/3
. Assuming such settings of b and d′ are possible (e.g.

b ∈ [0, 1]) we can apply Jensen’s inequality and the fact that (a+ b)2 ≤ 2(a2 + b2) to

Eqn. (A.11) to obtain

E
[︂
|A(Sσ)j − wσ

j |2 + |A(Sσ′)j − wσ′

j |2
]︂
≥ D4/3∥Y∥2/3

32(∥X∥pnϵ)2/3 .

We will now show this implies there exists a σ ∈ {±1}d
′

such that ˆ︁L(A(Sσ);Sσ) −
ˆ︁L(wσ;Sσ) = Ω((∥X ∥D)4/3∥Y∥2/3p1/3

(nϵ)2/3). To prove this, we have the following analysis. Let

U = {±1}d
′

and let σ−j denote the vector σ with its j’th component negated. We

149

have

sup
σ∈U

{︃
E
[︂ ˆ︁L(A(Sσ);Sσ)− ˆ︁L(wσ;Sσ)

]︂}︃
≥ 1
|U |

∑︂
σ∈U

E
[︂ ˆ︁L(A(Sσ);Sσ)− ˆ︁L(wσ;Sσ)

]︂

= p∥X∥2

d′|U |
∑︂
j∈[d′]

∑︂
σ∈U

E
[︂
|A(Sσ)j − wσ

j |2
]︂

= p∥X∥2

d′|U |
∑︂
j∈[d′]

∑︂
σ∈U :σj=1

E
[︂
|A(Sσ)j − wσ

j |2 + |A(Sσ−j
)j − wσ−j

j |2
]︂

≥ (∥X∥D)4/3∥Y∥2/3p1/3

128(nϵ)2/3 .

We recall this bound holds providing the settings of d′ and b fall into the range

[1,min {n, d}] and [0, 1] respectively. First note b > 0 always. Furthermore, d′ <

min {n, d} and b < 1 whenever

∥X∥2D2

∥Y∥2nϵ
≤ p ≤ min

{︄
1, d

3/2∥Y∥
∥X∥Dnϵ

}︄
. (A.12)

In the following, assume D ≤ ∥Y∥ min{√
nϵ,

√
d}

∥X ∥ . Note this is no loss of generality as

we can obtain problem instances with arbitrarily large D by adding a dummy point

with x = c′ed′+1 and y = ∥Y∥ where c′ is arbitrarily small so that the minimizer norm

is D. Under this assumption on D, using the restrictions on p, it can be verified that

d′ > 1 whenever ϵ > 1
n
. Thus we have b ∈ [0, 1] and d′ ∈ [1,min {n, d}] as required.

Furthermore this assumption on D implies ∥X ∥2D2

∥Y∥2nϵ
≤ min

{︂
1, d

3/2∥Y∥
∥X ∥Dnϵ

}︂
and thus a valid

setting of p is possible. We now turn to setting p in a way which satisfies (A.12). We

consider two cases, the high and low dimensional regimes.

Case 1: d ≥
(︂
D∥X ∥nϵ

∥Y∥

)︂2/3
. Setting p = 1 gives a lower bound of

Ω
(︂
min

{︂
∥Y∥2, D

4/3∥X ∥4/3∥Y∥2/3

32(nϵ)2/3

}︂)︂
, where the min with ∥Y∥2 from the upper bound

on D.

Case 2: d ≤
(︂
D∥X ∥nϵ

∥Y∥

)︂2/3
. Setting p = d3/2∥Y∥

D∥X ∥nϵ we obtain a bound of

Ω
(︃

min
{︃
∥Y∥2,

√
dD∥X ∥∥Y∥

nϵ

}︃)︃
which we note is no larger than the bound from Case 1

in the low dimensional regime and no smaller than the bound from Case 1 in the high

dimensional regime. Thus we can write the total bound as the minimum of these two

150

bounds. The ∥Y∥2 term again comes from the restriction on D.

To obtain results for arbitrary H, we can set ˆ︁L(w;S) = H
2n
∑︁

(x,y)∈S(⟨w, x⟩− 2√
H
y)2.

This satisfies H-smoothness and loss bounded at zero by ∥Y∥2. Then substituting

∥Y∥ in the previous expressions for 2∥Y∥/
√
H and multiplying through by H/2 one

obtains the claimed bound.

A.2 Missing Proofs from Section 2.4 (Lipschitz
GLMs)

A.2.1 Proof of Theorem 12

Proof. Note that from a standard analysis [BE02], we get that ℓ2 sensitivity of the

regularized minimizer ˜︁w is
(︂

2G∥X ∥
nλ

)︂
, hence σ2 = 4G2∥X ∥2 log(1/δ)

λ2n2ϵ2
ensures (ϵ, δ)-DP.

For the utility analysis, the excess risk can be decomposed as follows,

E[L(ˆ︁w;D)− L(w∗;D)]

= E[L(˜︁w;D)− ˆ︁L(˜︁w;S)] + E[ˆ︁L(˜︁w;S)− ˆ︁L(w∗;S)] + E[L(˜︁w + ξ;D)− L(˜︁w;D)]

The first term is bounded as O
(︂
DG∥X ∥√

n

)︂
from Rademacher complexity results on

bounded linear predictors [SSBD14].

The second term is simply bounded by λ
2 ∥ ˜︁w∥2 ≤ λ

2D
2 since ˜︁w is the regularized

ERM. The third term is bounded via the following

E[L(˜︁w + ξ;D)− L(˜︁w;D)] = E [ϕy (⟨ ˜︁w + ξ, x⟩)− ϕy (⟨ ˜︁w, x⟩)]
≤ E [G| ⟨ξ, x⟩ |]

≤ Gσ ∥X∥ ≤
4G2∥X∥2

√︂
log (1/δ)

λnϵ

where the last inequality follows since Eξ = 0 and ⟨ξ, x⟩ ∼ N (0, σ2 ∥x∥2). Now

plugging in λ = G∥X ∥(log(1/δ))1/4

D
√
nϵ

obtains the following result

E[L(ˆ︁w;D)− L(w∗;D)] = O

⎛⎝DG∥X∥√
n

+ DG∥X∥ log (1/δ)1/4
√
nϵ

⎞⎠ .
151

A.2.2 Upper Bound using JL Method

Theorem 32. Let k = O (log (2n/δ)nϵ) , σ2 = 8TG2∥X ∥2 log(2/δ)
n2ϵ2

, η =
D

G∥X ∥
(︂

1+
√

k log(2/δ)
nϵ

)︂
T 3/4

and T = n2. Algorithm 2 satisfies (ϵ, δ)-differential privacy.

Given a dataset S of n i.i.d samples, the excess risk of its output ˜︁w is bounded as

E[εrisk(ˆ︁w)] = ˜︁O(︄GD ∥X∥√
n

+ GD∥X∥√
nϵ

)︄
.

Proof. Let α ≤ 1 be a parameter to be set later. From the JL property, with

k = O
(︂

log(2n/δ)
α2

)︂
, with probability at least 1 − δ

2 , for feature vectors have ∥Φxi∥ ≤

(1 + α) ∥xi∥ ≤ 2 ∥X∥, and ∥Φw∗∥2 ≤ 2 ∥w∗∥2 ≤ 2D2. Thus, gradient of loss for data

point (x, y) in S at any w is bounded as ∥ℓ(w; (Φx, y)∥ = ϕ′
y(⟨w,Φx⟩) ∥Φx∥ ≤ 2G ∥X∥.

The privacy guarantee thus follows from the privacy of DP-SCO and post-processing.

For the utility guarantee, we decompose excess risk as:

E [L(ˆ︁w;D)− L(w∗;D)]

= E [L(˜︁w; ΦD)− L(Φw∗; ΦS)] + E [L(Φw∗; ΦS)− L(w∗;D)] . (A.13)

The first term in Eqn. (A.13) is bounded by the utility guarantee of the DP-SCO

method. In particular, from Lemma 9 (below), we have

E [L(˜︁w; ΦD)− L(Φw∗; ΦS)] ≤ GD ∥X∥√
n

+O

(︄
G ∥X∥D

√
k

nϵ

)︄
.

For the second term in Eqn (A.13), we use JL-property and Lipschitzness of GLM:

E [L(Φw∗; ΦS)− L(w∗;D)] ≤ GE [|⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|]

≤ αG ∥X∥ ∥w∗∥

= O

⎛⎝G ∥X∥D
√︂

log (2n/δ)
√
k

⎞⎠ .

152

Combining, we get,

E [L(ˆ︁w;D)− L(w∗;D)] ≤ ˜︁O(︄G ∥X∥D√
n

+ G ∥X∥D
√
k

nϵ
+ G ∥X∥D√

k

)︄
.

Balancing parameters by setting k = ˜︁O(nϵ) gives the claimed bound.

Lemma 9. Let Φ ∈ Rd×k be a data-oblivious JL matrix. Let S = {(xi, yi)}ni=1 of

n i.i.d data points and let ΦS := {(Φxi, yi)}ni=1. Let ˜︁w ∈ Rk be the average iterate

returned noisy SGD procedure with Gaussian noise variance σ2 = O
(︂
G2∥X ∥2 log(1/δ)

n2ϵ2

)︂
on dataset ΦS. For k = Ω (log (n)), the excess risk of ˜︁w on ΦD is bounded as,

EΦ,S[L(˜︁w; ΦD)− L(Φw∗; ΦD)] ≤ O

⎛⎝GD∥X∥√
n

+
GD∥X∥

√︂
k log (1/δ)
nϵ

⎞⎠ .
Proof. The proof uses the analysis for excess risk bound for Noisy SGD in [BFGT20]

with the JL transform. Let S(i) be the dataset where the i-th data point is replaced

by an i.i.d. point (x′, y′) and let ˜︁w(i) be the corresponding output of Noisy-SGD on

ΦS(i). Define S := {S, (x′, y′)} and let G(Φ, S) denote an upper bound Lipschitzness

parameter of the family of loss functions {ℓ(w; (Φx; y))}(x,y)∈S.

We decompose the excess risk as:

EΦ,S[L(˜︁w; ΦD)− L(Φw∗; ΦD)]

= EΦ,S[L(Φ⊤ ˜︁w;D)− ˆ︁L(Φ⊤ ˜︁w;S)] + EΦ,S[ˆ︁L(Φ⊤ ˜︁w;S)]− ˆ︁L(Φw∗; ΦS)].

A well-known fact (see [SSBD14]) is that generalization gap is equal to on-average-

stability:

EΦ,S[L(Φ⊤ ˜︁w;D)− ˆ︁L(Φ⊤ ˜︁w;S)] = ES,Φ[ℓ(Φ⊤ ˜︁w(i); (xi, yi))− ℓ(Φ⊤ ˜︁w; (xi, yi))]

= ES,Φ[ℓ(˜︁w(i); (Φxi, yi))− ℓ(˜︁w; (Φxi, yi))].

From the analysis in Theorem 3.3 from [BFGT20], it follows that

ℓ(˜︁w(i); (Φxi, yi))− ℓ(˜︁w; (Φxi, yi)) ≤ G(Φ;S)
⃦⃦⃦ ˜︁w(i) − ˜︁w⃦⃦⃦

≤ O
(︃
G(Φ;S)2

(︃
η
√
T + ηT

n

)︃)︃
. (A.14)

153

where the last equality follows from the GLM structure of the loss function.

From analysis of Noisy-SGD [BST14], the other term (excess empirical risk) can

be bounded as

ˆ︁L(˜︁w; ΦS)]− ˆ︁L(Φw∗; ΦS)

≤ O

(︄
η

(︄
G(Φ;S)2 + kG(Φ;S)2 log (1/δ)

n2ϵ2

)︄
+ ∥Φw

∗∥2

Tη

)︄
(A.15)

We now take expectation with respect to Φ. Note that G(Φ, S) =

sup(x,y)∈S supw |gx(⟨w,Φx⟩)| ∥Φx∥, where gx is the an element of the sub-differential

of ϕx at ⟨w, x⟩. By the Lipschitzness assumption |gx(⟨w,Φx⟩)| ≤ G and from the JL

property, with probability at least 1− δ, sup(x,y)∈S ∥Φx∥ ≤
(︃

1 +
√

log(n/δ)
k

)︃
∥X∥. Sim-

ilarly,
⃦⃦⃦
Φ⊤w∗

⃦⃦⃦
≤
(︃

1 +
√

log(n/δ)
k

)︃
D. Observe that the tail is that of a (non-centered)

sub-Gaussian random variable with variance parameter O
(︂

1
k

)︂
. Using the equivalence

of tail and moment bounds of sub-Gaussian random variables [BLM13] and the fact

that log(n)
k
≤ O(1), we get the following bounds for Eqn. (A.14) and (A.15):

EΦ
[︂
ℓ(˜︁w(i); (Φxi, yi))− ℓ(˜︁w; (Φxi, yi)

]︂
≤ O

(︃
G2 ∥X∥2

(︃
η
√
T + ηT

n

)︃)︃

EΦ
[︂ ˆ︁L(˜︁w; ΦS)]− ˆ︁L(Φw∗; ΦS)

]︂
≤ ˜︁O(︄η (︄G2 ∥X∥2 + kG2 ∥X∥2 log (1/δ)

n2ϵ2

)︄
+ D2

Tη

)︄
.

Finally, as in [BFGT20], taking expectation with respect S in the two inequalities

above, setting η = D

G∥X ∥
(︂

1+
√

k log(1/δ)
nϵ

)︂
T 3/4

and T = n2 and combining gives the claimed

bound.

A.2.3 Proof of Theorem 13

The proof follows from the more general Theorem 33 stated below. Instantiating

Theorem 33 with p = q = 2 satisfies all the requirements of our Theorem 13. Finally,

let w∗ be the population risk minimizer of the hard instance in Theorem 33. We then

154

have,

E[L(A(S);D)−min
w
L(w;D)] = E[L(A(S);D)− L(w∗;D)]

≥ E[L(A(S);D)− min
w:∥w∥2≤D

L(w;D)]

≥ E[L(ˆ︁w;D)− L(˜︁w;D)]

= Ω
(︄
GD∥X∥min

(︄
1, 1√

nϵ
,

√
rank
nϵ

)︄)︄
.

This completes the proof.

A.2.4 Lower bound for Non-Euclidean DP-GLM

Theorem 33. Let G, ∥Y∥ , ∥X∥ , D > 0, ϵ ≤ 1.2, δ ≤ ϵ and p, q ≥ 1. For any (ϵ, δ)-

DP algorithm A, there exists sets X and Y such that for any x ∈ X , ∥x∥q ≤ 1, a

distribution D over X × Y, a G-Lipschitz GLM loss bounded at zero by ∥Y∥ and a ˜︁w
with ∥ ˜︁w∥p ≤ D such that the output of A on S ∼ Dn satisfies

E[L(A(S);D)− L(˜︁w;D)] = Ω
⎛⎝GD∥X∥min

⎛⎝1, 1
(nϵ)1/p ,

(rank)(p−1)/p

nϵ

⎞⎠⎞⎠ .
Proof. The construction below is from [SSTT20] with some changes. We provide the

complete proof below. Consider the following 1-Lipschitz loss function:

ℓ(w; (x, y)) = |y − ⟨w, x⟩| .

Firstly, we argue that we can assume ∥Y∥ =∞. This is because for any arbitrarily

large value of y we can translate the above function below so that the the loss is

bounded by ∥Y∥. However, this translation doesn’t change the excess risk. Also, as

in [BST14], it suffices to consider G = 1, since we can simply scale the 1-Lipschitz

loss function and get a factor of the G in the lower bound. Let d′ ≤ min (rank, nϵ),

0 ≤ α ≤ 1 and β > 0 be parameters to be set later. Since d′ ≤ rank, without loss of

generality, we will represent the features x as d′ dimensional vectors.

Consider a distribution D, where x = e0 := 0⃗ with probability 1 − α, and with

probability α, x ∼ Unif({∥X∥ ei}d
′

i=1). Note that ∥x∥q ≤ ∥X∥ and for any q ≥ 1 for

155

x ∈ supp(Dx) where Dx denotes the marginal of D w.r.t. the x variable. This implies

the loss w ↦→ ℓ(w; (x, y)) is ∥X∥-Lipschitz in ℓq-norm, when x ∈ supp(Dx) and for

all y. Let the fingerprinting code z ∈ {0, 1}d
′

be drawn from a product distribution

with mean µ ∈ [0, 1]d′ where each co-ordinate µi ∼ Beta(β, β). Finally we have

y = D

(d′)1/p ⟨x, z⟩. Let S = {(xi, yi)}ni=1 be n i.i.d. samples drawn from D. Define

˜︁w = D

(d′)1/pµ; note that ∥ ˜︁w∥p ≤ D.

Let A be any (ϵ, δ)-DP algorithm, which given S outputs ˆ︁w. Its excess risk with

respect to ˜︁w can be lower bounded as,

E[L(ˆ︁w;D)− L(˜︁w;D)] = E[|y − ⟨ ˆ︁w, x⟩| − |y − ⟨ ˜︁w, x⟩|]
≥ E[|⟨ ˆ︁w − ˜︁w, x⟩| − 2 |y − ⟨ ˜︁w, x⟩|]. (A.16)

The last term above is upper bounded as:

E[|y − ⟨ ˜︁w, x⟩|] = D

(d′)1/pE[|⟨z, x⟩ − ⟨µ, x⟩|] = D ∥X∥
(d′)1/p

α

d′

d′∑︂
i=1

E |zi − µi| .

By direct computation,

E |zi − µi| = E [|1− µi|µi + |−µi| (1− µi)] = 2Eµi (1− µi) = 2β
1 + 2β .

This gives us that

E[|y − ⟨ ˜︁w, x⟩|] ≤ 2αβD ∥X∥
(1 + 2β) (d′)(p+1)/p . (A.17)

The first term in the right hand side Inequality (A.16) is,

E[|⟨ ˆ︁w − ˜︁µ, x⟩| = D

(d′)1/pE

⃓⃓⃓⃓
⃓⃓
⟨︄

(d′)1/p

D
ˆ︁w − µ, x⟩︄

⃓⃓⃓⃓
⃓⃓ = D ∥X∥α

(d′)(p+1)/pE
d′∑︂
j=1

⃓⃓⃓⃓
⃓⃓(d′)1/p

D
ˆ︁wj − µj

⃓⃓⃓⃓
⃓⃓ .

(A.18)

Define v ∈ Rd′ with vi = (d′)1/pˆ︁wi

D
. Note that,

d′∑︂
j=1

⃓⃓⃓⃓
⃓⃓(d′)1/p

D
ˆ︁wj − µj

⃓⃓⃓⃓
⃓⃓ = ∥v − µ∥1 ≥ ∥v − µ∥2 ≥ ∥ˆ︁v − µ∥2 ≥ ∥ˆ︁v − µ∥2

2

156

where the first inequality above follows from relationship between ℓ1 and ℓ2 norm, the

second follows from projection property and ˆ︁v denotes the projection of v onto [0, 1]d,

and the last inequality follows from boundedness of coordinates of ˆ︁v − µ.

The key step now is application of the fingerprinting lemma (simplified below, see

Lemma B.1 in [SSTT20] for complete statement) from [SU17] which roughly speaking,

“relates the error to correlation”; for any ˆ︁v ∈ [0, 1]d′ , we have

E ∥ˆ︁v − µ∥2
2 ≥

d′

4 (1 + 2β) −
1
β

n∑︂
i=1

E ⟨ˆ︁v, zi − µ⟩ . (A.19)

As in [SSTT20], the correlation simplifies as

E ⟨ˆ︁v, zi − µ⟩ =
d′∑︂
j=0

E[⟨ˆ︁v, zi − µ⟩ |xi = ej]P[xi = ∥X∥ej]

= α

d′E[ˆ︁vj (zi − µ)j |xi = ∥X∥ej]

where the last equality follows since ˆ︁v only depends on the coordinate of zi for which

xi = 1. Now, let ˆ︁v∼i denotes the solution obtained if zi were replaced by an independent

sample. From boundedness,
⃦⃦⃦ˆ︁vj (zi − µ)j

⃦⃦⃦
∞
≤ 1. Using differential privacy, we have,

E[ˆ︁vj (zi − µ)j |xi = ∥X∥ej] ≤ (eϵ − 1)E
[︂⃓⃓⃓ˆ︁v∼i

j (zi − µ)j
⃓⃓⃓
|xi = ∥X∥ej

]︂
+ δ

≤ (eϵ − 1) + δ ≤ 3ϵ

where the last inequality uses the assumption that ϵ ≤ 1.2 and δ ≤ ϵ. Plugging

this in Eqn. (A.19), we get

E ∥ˆ︁v − µ∥2
2 ≥

d′

4 (1 + 2β) − 3αnϵ.

Plugging the above in Eqn. (A.18), we get

E[|⟨ ˆ︁w − ˜︁w, x⟩| ≥ D ∥X∥α
d′(p+1)/p

(︄
d′

4 (1 + 2β) − 3αnϵ
)︄
.

Using the above, and the bound in Eqn. (A.16), we get that,

E[L(ˆ︁w;D)− L(˜︁w;D)] ≥ D ∥X∥α
d′(p+1)/p

(︄
d′

4 (1 + 2β) − 3αnϵ
)︄
− 2αβD ∥X∥

(1 + 2β) (d′)1/p

= D ∥X∥α
(1 + 2β) (d′)1/p

(︄
1
4 −

3α (1 + 2β)nϵ
d′ − 2β

)︄
.

157

Now, we set β = 1
16 . When rank ≤ 48nϵ we set d′ = rank and α =

min
(︂

d′

48(1+2β)nϵ , 1
)︂
. The minimum term becomes d′

48(1+2β)nϵ and obtain an excess

risk lower bound of,

E[L(ˆ︁w;D)− L(˜︁w;D)] ≥ D ∥X∥ (d′)(p−1)/p

1024nϵ .

On the other hand, when rank > 48nϵ, set α = 1 and d′ = ⌊48nϵ⌋ (so that it is at

least 1) to get an excess risk lower bound of,

E[L(ˆ︁w;D)− L(˜︁w;D)] ≥ min
(︄

D ∥X∥
16 (nϵ)1/p , D ∥X∥

)︄
.

Finally, note that we can arbitrarily increase the rank of the construction beyond 48nϵ

by adding datapoints with orthogonal feature vectors of small enough magnitude and

arbitrary labels. Combining the two lower bounds obtains the claimed bound.

Corollary 5. Let G,D > 0, ϵ ≤ 1.2, δ ≤ ϵ and p, q ≥ 1. Let W ⊂ Rd such that

for any w ∈ W, ∥w∥p ≤ D. For any (ϵ, δ)-DP algorithm A, there exists a set Z, a

distribution D over Z and a loss function w ↦→ ℓ(w; z), which is convex, G-Lipschitz

w.r.t. ℓq norm for w ∈ W, for all z ∈ Z such that the output of A on S ∼ Dn (which

may not lie in W), satisfies

EA,S

[︃
Ez∼Dℓ(A(S); z)− min

w∈W
Ez∼Dℓ(w; z)

]︃
= Ω

(︄
GDmin

(︄
1, 1

(nϵ)1/p ,
d(p−1)/p

nϵ

)︄)︄
.

Using generalization properties of differential privacy, we get the same bound as

above for excess empirical risk; see Corollary B.4 in [SSTT20] for details.

A.3 Missing Details for Section 2.5 (Adapting to
∥w∗∥)

A.3.1 Generalized Exponential Mechanism

Theorem 34. [RS16] Let K > 0 and S ∈ Zn. Let q1, ..., qK be functions s.t.

for any adjacent datasets S, S ′ it holds that |qj(S) − qj(S ′)| ≤ γj : ∀j ∈ [K].

158

There exists an Algorithm, GenExpMech, such that when given sensitivity-score

pairs (γ1, q1(S)), ..., (γN , qN(S)), privacy parameter ϵ > 0 and confidence param-

eter β > 0, outputs j ∈ [N] such that with probability at least 1 − β satisfies

qj(S) ≤ min
j∈[N]

{︂
qj(S) + 4γj log(N/β)

ϵ

}︂
.

A.3.2 Proof of Theorem 14

Note that by assumptions on A, the process of generating w1, ..., wK is (ϵ/2, δ/2)−

DP . Furthermore, by Assumption 2 with probability at least δ/2 the sensitivity

values passed to GenExpMech bound sensitivity. Thus by the privacy guarantees of

GenExpMech and composition we have that the entire algorithm is (ϵ, δ)-DP.

We now prove accuracy. In order to do so, we first prove that with high probability

every ˜︁Lj is an upper bound on the true population loss of wj. Specifically, define

τj = ∆(Dj) log(4K/β)
n

+
√︂

4∥Y∥2 log(4K/β)
n

(i.e. the term added to each L(wj ;S2) in Algorithm

4). Note it suffices to prove

P [∃j ∈ [K] : |L(wj;S2)− L(wj;D)| ≥ τj] ≤
β

2 . (A.20)

Fix some j ∈ [K]. Note that the non-negativity of the loss implies that ℓ(w∗
D; (x, y)2) ≥

0. The excess risk assumption then implies that E
(x,y)∼D

[ℓ(wj; (x, y))2] ≤ 4∥Y∥2, which

in turn bounds the variance. Further, with probability at least 1− β
4K it holds that for

all (x, y) ∈ S2 that ℓ(w, (x, y)) ≤ ∆0 + ∆(D). Thus by Bernstein’s inequality we have

P [|L(w;S2)− L(w;D)| ≥ t] ≤ exp
(︄
− t2n2

∆(Dj)tn+ 4n∥Y∥2

)︄
+ β

4K

Thus it suffices to set t = ∆(Dj) log(4K/β)
n

+
√︂

4∥Y∥2 log(4K/β)
n

to ensure

P [|L(w;S2)− L(w;D)| ≥ t] ≤ β
2K . Taking a union bound over all j ∈ K establishes

(A.20). We now condition on this event for the rest of the proof.

Now consider the case where j∗ ̸= 0 and ∥w∗∥ ≤ 2K . Note that the unconstrained

minimizer w∗ is the constrained minimizer with respect to any B (r) for r ≥ ∥w∗∥.

159

With this in mind, let j′ = min
j∈[K]

{j : w∗ ∈ B (2j)} (i.e. the index of the smallest ball

containing w∗). In the following we condition on the event that ∀j ∈ [K], j ≥ j′,

the parameter vector wj satisfies excess population risk at most ERR(2j). We note

by Assumption 2 that this (in addition to the event given in (A.20)) happens with

probability at least 1− 3β
4 . By the guarantees of GenExpMech, with probability at

least 1− β we (additionally) have

L(wj∗ ;D) ≤ L(wj∗ ;S2) + τj∗ ≤ min
j∈[K]

{︄
L(wj;S2) + τj + 4∆(Dj) log (4K/β)

nϵ

}︄

≤ L(wj′ ;S2) + τj′ + 4∆(Dj′) log (4K/β)
nϵ

≤ L(wj′ ;D) + 2τj′ + 4∆(Dj′) log (4K/β)
nϵ

.

Since 2j′ ≤ max {2 ∥w∗∥ , 1} we have

L(wj∗ ;D)− L(w∗;D)

≤ L(wj′ ;D)− L(w∗;D) + 2τj′ + 4∆(Dj′) log (4K/β)
nϵ

≤ ERR(2 max {∥w∗∥ , 1}) + 2τj′ + 4∆(max {2 ∥w∗∥ , 1}) log (4K/β)
nϵ

≤ ERR(2 max {∥w∗∥ , 1}) +
√︄

4∥Y∥2 log (4K/β)
n

+ 5∆(max {2 ∥w∗∥ , 1}) log (4K/β)
nϵ

where the second inequality comes from the fact the assumption that ∥w∗∥ ≤ ∥Y∥2.

Now note that by the assumption that ERR(2K) ≥ ∥Y∥2, whenever ∥w∗∥ ≥ 2K it

holds that ∥Y∥2 ≤ ERR(∥w∗∥). However since the sensitivity-score pair (0, ∥Y∥2) is

passed to GenExpMech, the excess risk of the output is bounded by at most ∥Y∥2 by

the guarantees of GenExpMech).

A.3.3 Proof of Theorem 15

Let ˆ︁w denote the output of the regularized output perturbation method with boosting

and noise and privacy parameters ϵ′ = ϵ
K

and δ′ = δ
K

. We have by Theorem 37 that

160

with probability at least 1− β
4K that

L(ˆ︁w;D)− L(w∗;D)

= ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥+ ∥Y∥2

√
n

+

(︃(︂√
HD ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD ∥X∥

)︂2
)︃

(nϵ)2/3

+ (∥Y∥2 +HD2∥X∥2)
nϵ

+

(︂
∥Y∥+

√
HD∥X∥

)︂
√
n

⎞⎠.
Note that this is no smaller than ∥Y∥2 when D = Ω

(︃
max

{︃
∥Y∥

√
nϵ

∥X ∥
√
H
, ∥Y∥2(nϵ)2/3

√
H∥X ∥2

}︃)︃
, and

thus it suffices to set K = Θ
(︃

log
(︃

max
{︃

∥Y∥
√
n

∥X ∥
√
H
, ∥Y∥2(nϵ)2/3

√
H∥X ∥2

}︃)︃)︃
to satisfy the condition

of the Theorem statement.

Let σj denote the level noise used for when the guess for ∥w∗∥ is Dj. To establish

Assumption 2, by Lemma 11 we have that this assumption is satisfies with ∆(D) =

∥Y∥2 + H∥X∥2σ2
j log (K/min {β, δ})) + HD2∥X∥2. In particular, we note for the

setting of σj implied by Theorem 37 and the setting of K we have for all j ∈ [K] that

H∥X∥2σ2
j = ˜︁O(∥Y∥2). Thus ∆(D) = ˜︁O (∥Y∥2 +HD2∥X∥2). The result then follows

from Theorem 14.

A.3.4 Stability Results for Assumption 2

Lemma 10. Algorithm 1 run with constraint set B (D) satisfies Assumption 2 with

∆(D) = ∥Y∥2 +HD2∥X∥2.

The proof is straightforward using Lemma 4 (provided in the Appendix). For

the output perturbation method, we can obtain similar guarantees. Here however,

we must account for the fact that the output may not lie in the constraint set. We

also remark that the JL-based method (Algorithm 2) can also enjoy this same bound.

However, in this case one must apply the norm adaptation method to the intermediate

vector ˜︁w, as Φ⊤ ˜︁w may have large norm.

Lemma 11. Algorithm 3 run with parameter D and σ satisfies Assumption 2 with

∆(D) = ∥Y∥2 +H∥X∥2σ2 log (K/δ)) +HD2∥X∥2

161

Proof. Note that since S and S ′ differ in only one point, it suffices to show that

for any (x, y), (x′, y′) that ℓ(ˆ︁w; (x, y)) ≤ ∥Y∥2 +HD2∥X∥2 +H∥X∥2σ2 log (K/δ) and

similarly for ℓ(ˆ︁w, (x′, y′)). Let w ∈ B (D) and let ˆ︁w = w + b where b ∼ N (0, Idσ2).

We have by previous analysis ℓ(ˆ︁w; (x, y)) ≤ ∥Y∥2 + HD2∥X∥2 + H ⟨b, x⟩2. Since

⟨b, x⟩ is distributed as a zero mean Gaussian with variance at most ∥X∥2σ2, we have

P[| ⟨b, x⟩ | ≥ t] ≤ exp
(︂

−t2
∥X ∥2σ2

)︂
. Setting t = ∥X∥σ log (K/δ) we obtain P[| ⟨b, x⟩ |2 ≥

∥X∥2σ2 log (K/δ)] ≤ δ/K. Thus with probability at least 1 − δ/K it holds that

ℓ(ˆ︁w; (x, y)) ≤ ∥Y∥2 +HD2∥X∥2 +H∥X∥2σ2 log (K/δ).

A.4 Missing Details for Confidence Boosting

Algorithm 15 Confidence Boosting
Input: Dataset S, loss function ℓ, Algorithm A, ˜︁σ privacy parameters ϵ, δ

1: Split the dataset S into equally sized chunks {Si}m+1
i=1

2: For each i ∈ [m+ 1], ˆ︁wi = A
(︂
Si,

ϵ
2 , δ

)︂
3: i∗ = arg maxi∈[m]

(︂
−ˆ︁L(ˆ︁wi;Sm+1) + Lap(0, ˜︁σ)

)︂
Output: ˆ︁wi∗

We state the result of the boosting procedure in a general enough setup so as apply

to our proposed algorithms. This leads to additional conditions on the base algorithm

since our proposed methods may not produce the output in the constrained set.

Theorem 35. Let ℓ be a non-negative, ˜︂H smooth, convex loss function. Let ϵ, δ > 0.

Let A : (S, ϵ, δ) ↦→ A(S, ϵ, δ) be an algorithm such that

1. A satisfies (ϵ, δ)-DP

2. For any fixed S, A(S) is γ2 sub-Gaussian [Ver18]:

sup
∥u∥=1

E
[︂
exp

(︂
⟨A(S), u⟩2 /γ2

)︂]︂
≤ 2

3. For any fixed S, P(x,y)[ℓ(A(S); (x, y)) > ∆ (γ, β)] < β

162

4. Given a dataset S of n i.i.d. points, E[L(A(S);D) − minw∈BD
L(w;D)] ≤

ERR (n, ϵ, γ)

Let ˜︁σ2 = 4(∥Y∥2+˜︁H˜︁γ2∥X ∥2)
nϵ

and n0 = 16γ2 log8(4/β)˜︁H
∥Y∥2 . Algorithm 15 with Algorithm A

as input satisfies (ϵ, δ)-DP. Given a dataset S of n ≥ n0 samples, with probability at

least 1− β, the excess risk of its output ˆ︁wi∗ is bounded as,

L(ˆ︁w;D)− L(w∗;D) ≤ ˜︁O
⎛⎝ERR

(︄
n

4 log (4/β) ,
ϵ

2 , γ
)︄

+ 2∆(γ, β/2)
nϵ

+
2∆

(︂
γ, β2n

)︂
n

+ 32γ
√︂˜︂H∥Y∥√
n

+ 16∥Y∥√
n

+ 128˜︂Hγ2

n

⎞⎠.
We first establish the following concentration bound for convex ˜︂H smooth non-

negative functions.

Lemma 12. Let ℓ be a convex ˜︂H smooth non-negative function. Let S be a dataset of n

i.i.d. samples. Let w be a random variable which is γ2 sub-Gaussian and independent

of S and let ∆ (γ, β) be such that P(x,y)[ℓ(w; (x, y)) > ∆ (γ, β)] ≤ β. Then, with

probability at least 1− β,

ˆ︁L(w;S) ≤ (1 + T (n, β))L(w;D) + U(n, β)

L(w;D) ≤ (1 + T (n, β)) ˆ︁L(w;S) + V (n, β)

where T (n, β) := 4γ log(4/β)
√˜︁H

∥Y∥
√
n

, U(n, β) := 4γ log(4/β)∥Y∥
√˜︁H√

n
+ ∥Y∥

√
log(2/β)√
n

and

V (n, β) := 4γ log(4/β)
√˜︁H∥Y∥√
n

+ 2∆(γ, β
4n) log(2/β)
n

+ ∥Y∥
√

log(2/β)√
n

+ 48˜︁Hγ2 log2(4/β)
n

.

Proof. With probability at least 1 − β
4 , for each (x, y) ∈ S, ℓ(w; (x, y)) ≤ ∆

(︂
γ, β4n

)︂
.

We condition on this event and apply Bernstein inequality to the random variable

L(w;D)− ˆ︁L(w;S):

P
[︂⃓⃓⃓
L(w;D)− ˆ︁L(w;S)

⃓⃓⃓
> t

]︂
≤ exp

⎛⎜⎝− 3nt2

6nE[
(︂
L(w;D)− ˆ︁L(w;S)

)︂2
] + 2∆

(︂
γ, β4n

)︂
t

⎞⎟⎠

163

This gives us that

⃓⃓⃓
L(w;D)− ˆ︁L(w;S)

⃓⃓⃓
≤

∆
(︂
γ, β4n

)︂
log (2/β)
n

+
√︃
E
(︂
L(w;D)− ˆ︁L(w;S)

)︂2
log (2/β)

(A.21)

The term E[
(︂
L(w;D)− ˆ︁L(w;S)

)︂2
= 1

n
E[(ℓ(w; (x, y))− E[ℓ(w; (x, y)])2] ≤

1
n
E[(ℓ(w; (x, y)))2].

Now,

E[(ℓ(w; (x, y)))2] ≤ 2E[(ℓ(w; (x, y))− ℓ(0; (x, y))2] + 2E[(ℓ(0; (x, y)))2]

≤ 2E[(⟨∇ℓ(w; (x, y)), w⟩)2] + 2∥Y∥2

where the last step follows from convexity. We now use the fact that w is γ2-sub-

Gaussian, therefore ⟨∇ℓ(w; (x, y)), w⟩ ≤ γ
√︂

log (4/β) ∥∇ℓ(w; (x, y))∥ with probability

at least 1−β/4. We now use self-bounding property of non-negative smooth functions

to get,

E[(ℓ(w; (x, y)))2] ≤ 2E[∥∇ℓ(w; (x, y))∥2 γ2 log (4/β) + 2∥Y∥2

≤ 8˜︂HE[ℓ(w; (x, y))]γ2 log (4/β) + 2∥Y∥2

= 8˜︂HL(w;D)γ2 log (4/β) + 2∥Y∥2

Plugging the above in Eqn (A.21) gives us,

⃓⃓⃓
L(w;D)− ˆ︁L(w;S)

⃓⃓⃓

≤
∆
(︂
γ, β4n

)︂
log (2/β)
n

+ 4

⌜⃓⃓⎷(︂˜︂HL(w;D)γ2 log (4/β) + ∥Y∥2
)︂

log (1/β)
n

≤
∆
(︂
γ, β4n

)︂
log (2/β)
n

+ 4

√︄˜︂HL(w;D)
n

γ log (4/β) +
∥Y∥

√︂
log (2/β)
√
n

. (A.22)

164

A simple application of AM-GM inequality gives,

ˆ︁L(w;S) ≤

⎛⎜⎝1 + 4γ log (4/β)
√︂˜︂H

∥Y∥
√
n

⎞⎟⎠L(w;D)

+ 4γ log (4/β) ∥Y∥
√︂˜︂H√

n
+
∥Y∥

√︂
log (2/β)
√
n

This proves the first part of the lemma. For the second part, we use the following

fact about non-negative numbers A,B,C [BBL03] (see after proof of Theorem 7)

A ≤ B + C
√
A =⇒ A ≤ B + C2 +

√
BC

Thus, from Eqn. (A.22),

L(w;D) ≤ ˆ︁L(w;S) +
∆
(︂
γ, β4n

)︂
log (2/β)
n

+
∥Y∥

√︂
log (2/β)
√
n

+ 16˜︂Hγ2 log2(4/β)
n

+ 4γ log (4/β)
√︂˜︂H√

n

⎛⎜⎜⎝√︂ˆ︁L(w;S) +

⌜⃓⃓⎷∆
(︂
γ, β4n

)︂
log (2/β)
n

+

⌜⃓⃓⃓
⎷∥Y∥√︂log (2/β)

√
n

⎞⎟⎟⎠
≤ ˆ︁L(w;S) +

4γ log (4/β)
√︂˜︂H ˆ︁L(w;S)
√
n

+
∆
(︂
γ, β4n

)︂
log (2/β)
n

+
∥Y∥

√︂
log (2/β)
√
n

+ 16˜︂Hγ2 log2(4/β)
n

+
4γ
√︃˜︂H∆

(︂
γ, β4n

)︂
log3/2(4/β)

n
+

4γ
√︂˜︂H∥Y∥ log5/4(2/β)

n3/4

≤

⎛⎜⎝1 + 4γ log (4/β)
√︂˜︂H

∥Y∥
√
n

⎞⎟⎠ ˆ︁L(w;S) + 4γ log (4/β) ∥Y∥
√︂˜︂H√

n
+

∆
(︂
γ, β4n

)︂
log (2/β)
n

+
∥Y∥

√︂
log (2/β)
√
n

+ 16˜︂Hγ2 log2(4/β)
n

+
4γ
√︃˜︂H∆

(︂
γ, β4n

)︂
log3/2(4/β)

n

+
4γ
√︂˜︂H∥Y∥ log5/4(2/β)

n3/4

where the last inequality follows from AM-GM inequality. Simplifying the expressions

yields the claimed bound.

Proof of Theorem 35. Since the models { ˆ︁wi}mi=1 are trained on disjoint datasets, by

parallel composition { ˆ︁wi}mi=1 satisfies
(︂
ϵ
2 ,

δ
2

)︂
-DP. We know that probability at least

165

1 − δ
2 , ℓ(w; (x, y)) ≤ ∆

(︂
γ, δ2

)︂
. Thus conditioning on this event, from the guarantee

of the report noisy max procedure, we have that it satisfies
(︂
ϵ
2

)︂
-DP. The privacy

proof thus follows from absorbing the failure probability into δ part and adaptive

composition.

We proceed to the utility part. Let ˜︁w be the model among { ˆ︁wi}mi=1 with minimum

empirical error on the set Sm+1. The excess risk of each ˆ︁wi is bounded as,

E[L(ˆ︁wi;D)]− L(w∗;D) ≤ ERR
(︃

n

m+ 1 ,
ϵ

2 , γ
)︃

From Markov’s inequality, with probability at least 3/4, L(ˆ︁wi;D) ≤ L(w∗;D) +

4ERR
(︂

n
m+1 ,

ϵ
2

)︂
. From independence of {wi}mi=1, with probability at least 1− 1/4m =

1− β
4 , there exists one model, say ˆ︁wi∗ , such L(ˆ︁wi∗ ;D) ≤ L(w∗;D) + 4ERR

(︂
n

m+1 ,
ϵ
2

)︂
.

Also, from the guarantee of Report-Noisy-Max, we have that with probability at

least 1− β/4

L(ˆ︁w;Sm+1) ≤ L(˜︁w;Sm+1) + ∆(γ, β/4)(m+ 1) log2 (4m/δ)
nϵ

Now, we apply Lemma 12. From a union bound, with probability at least 1− β
2 ,

all {wi}mi=1 satisfy the inequalities in Lemma 12 with β substituted as β
2m .

Thus, for the output ˆ︁w, probability at least 1− β
2 ,

L(ˆ︁w;D)

≤
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄
L(ˆ︁w;Sm+1) + V

(︄
n

(m+ 1) ,
β

2m

)︄

≤
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄
L(˜︁w;Sm+1)

+
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄
∆(γ, β/4)(m+ 1) log2 (4m/δ)

nϵ
+ V

(︄
n

(m+ 1) ,
β

2m

)︄

≤
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄
L(wi∗ ;Sm+1) + 2∆(γ, β/4)(m+ 1) log2 (4m/δ)

nϵ

+ V

(︄
n

(m+ 1) ,
β

2m

)︄

166

where in the above we use that T
(︂

n
m+1

)︂
≤ 1 given the lower bound on n and the

setting of m. Furthermore, the last inequality follows because ˜︁w has lowest empirical

risk on Sm+1. Let W (n,m, β) = 2∆(γ,β/4)(m+1) log2 (4m/δ)
nϵ

+V
(︂

n
(m+1) ,

β
2m

)︂
. We now apply

the other guarantee in Lemma 12 and the fact that wi∗ has small excess risk. With

probability at least 1− δ/2,

L(ˆ︁w;D)

≤
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄2

L(wi∗ ;D)

+
(︄

1 + T

(︄
n

m+ 1 ,
β

2m

)︄)︄
U

(︄
n

m+ 1 ,
β

2m

)︄
+W (n,m, β)

≤ L(w∗;D) + 2T
(︄

n

m+ 1 ,
β

2m

)︄
L(w∗;D) + 4ERR

(︃
n

m+ 1 ,
ϵ

2

)︃

+ 8T
(︄

n

m+ 1 ,
β

2m

)︄
4ERR

(︃
n

m+ 1 ,
ϵ

2

)︃
+ 2U

(︄
n

m+ 1 ,
β

2m

)︄
+W (n,m, β)

Let X(n,m, β) = 4ERR
(︂

n
m+1 ,

ϵ
2

)︂
+ 8T

(︂
n

m+1 ,
β

2m

)︂
4ERR

(︂
n

m+1 ,
ϵ
2

)︂
+ 2U

(︂
n

m+1 ,
β

2m

)︂
+

W (n,m, β). Note that m = 4 log (4/β) and T
(︂

n
m+1 ,

β
2m

)︂
≤ 16γ log4(2/β)

√
H

∥Y∥
√
n

. Substi-

tuting this and using the fact that, L(w∗;D) ≤ L(0;D) ≤ ∥Y∥2, we get that with

probability at least 1− δ,

L(ˆ︁w;D) ≤ L(w∗;D) + 16γ log4 (2/β)
√
H∥Y∥√

n
+X(n, 4 log (2/β) , β)

Substituting and simplifying the X(n, 4 log (4/β) , β) we have that

X(n, 4 log (2/β) , β)

≤ 12ERR
(︄

n

4 log (4/β) ,
ϵ

2 , γ
)︄

+ 2∆(γ, β/4) log3 (4/β) log (2/δ)
nϵ

+
2∆

(︂
γ, β2n

)︂
log4 (8/β)
n

+ 16γ log4 (8/β)
√︂˜︂H∥Y∥√

n

+ 16∥Y∥ log4(8/β)√
n

+ 128˜︂Hγ2 log4(8/β)
n

167

Hence, with probability at least 1− β,

L(ˆ︁w;D) ≤ L(w∗;D) + 12ERR
(︄

n

4 log (4/β) ,
ϵ

2 , γ
)︄

+ 2∆(γ, β/4) log3 (4/β) log (2/δ)
nϵ

+
2∆

(︂
γ, β2n

)︂
log4 (8/β)
n

+ 32γ log4 (8/β)
√︂˜︂H∥Y∥√

n
+ 16∥Y∥ log4(8/β)√

n
+ 128˜︂Hγ2 log4(8/β)

n

A.4.1 Boosting the JL Method

Theorem 36. The boosting procedure (Algorithm 15) using the JL method (Algorithm

2) as Algorithm A satisfies (ϵ, δ)-DP, and with probability at least 1− β, its output

ˆ︁wi∗ has excess risk,

L(ˆ︁wi∗ ;D)− L(w∗;D) ≤ ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥√

n

+

(︃(︂√
HD ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD ∥X∥

)︂2
)︃

(nϵ)2/3

+ (∥Y∥2 +HD2∥X∥2)
nϵ

+

(︂
∥Y∥+

√
HD∥X∥

)︂
√
n

⎞⎠
Proof. For the JL method, we consider the boosting procedure in the k dimension

space – this is only for the sake of analysis and the algorithm remains the same. In

particular, consider the distribution to ΦD which, when sampled from, gives the data

point (Φx, y) where (x, y) ∼ D.

Suppose the boosting procedure gives the following k dimensional models:

˜︁w1, · · · ˜︁wm; note that the norm of all these are bounded by 2D. Let ˜︁w∗ ∈

arg min∥w∥≤2D L(w; ΦD). Since the outputs satisfy ∥ ˜︁wi∥ ≤ 2D, the sub-Gaussian

parameter γ = O(D). We now compute the other parameter ∆(γ, β), which is

the high probability bound on loss. Note that for a fixed data point (Φx, y), an

H smooth, non-negative, bounded at zero loss, at any point w s.t. ∥w∥ ≤ 2D

168

is upper bounded by 2
(︂
∥Y∥2 + 4D2H ∥Φx∥2

)︂
. From the JL guarantee, with the

given k, the term ∥Φx∥2 ≤ 2 ∥X∥ with probability at least 1 − β/4. This gives us

∆(2D, β) = 2
(︂
∥Y∥2 + 16 ∥X∥2 D2

)︂
.

We now invoke 35 substituting ∆, γ and ˜︂H = H∥X∥2 to get that with probability

at least 1− β
2 output satisfies,

L(˜︁wi∗ ; ΦD) ≤ L(˜︁w∗; ΦD) + 128D
√
H∥X∥∥Y∥ log4 (8/β)√

n

+ α

(︄
n

4 log ((8/β)) ,
ϵ

2 , 2D
)︄

+ 128 (∥Y∥2 +HD2∥X∥2) log4 (8/β)
nϵ

+
128

(︂
∥Y∥+

√
HD∥X∥

)︂
log4 (8/β)

√
n

Define W := 128D
√
H∥X ∥∥Y∥ log4 (8/β)√

n
+ 128(∥Y∥2+HD2∥X ∥2) log4 (8/β)

nϵ
+

128(∥Y∥+
√
HD∥X ∥) log4 (8/β)

√
n

. The excess risk of the final output ˆ︁wi∗ = Φ⊤ ˜︁wi∗ is

bounded as,

L(ˆ︁wi∗ ;D)− L(w∗;D) = L(˜︁wi∗ ; ΦD)− L(w∗;D)

≤ L(˜︁w∗; ΦD) + α

(︄
n

4 log (8/β) ,
ϵ

2 , 2D
)︄

+W − L(w∗;D)

≤ L(Φw∗; ΦD) + α

(︄
n

4 log (8/β) ,
ϵ

2 , 2D
)︄

+W − L(w∗;D)

≤ α

(︄
n

4 log (8/β) ,
ϵ

2 , 2D
)︄

+W + H

2 |⟨Φx,Φw
∗⟩ − ⟨x,w∗⟩|2

where the last inequality follows from smoothness and that ∇L(w∗;D) = 0. Finally,

from the JL property, with probability at least 1 − β
2 , |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|2 ≤

α2 ∥w∗∥2 ∥X∥2. Combining and substituting the values of α and α
(︂

n
4 log(8/β) ,

ϵ
2

)︂
from

Theorem 9 gives the claimed result.

A.4.2 Boosting Output Perturbation Method

Theorem 37. The boosting procedure (Algorithm 15) using the output perturbation

method (Algorithm 3) as input Algorithm A satisfies (ϵ, δ)-DP, and with probability at

169

least 1− β, its output ˆ︁wi∗ has excess risk,

L(ˆ︁wi∗ ;D)− L(w∗;D) ≤ ˜︁O
⎛⎝√HD ∥X∥ ∥Y∥+ ∥Y∥2

√
n

+

(︃(︂√
HD ∥X∥

)︂4/3
∥Y∥2/3 +

(︂√
HD ∥X∥

)︂2
)︃

(nϵ)2/3

+ (∥Y∥2 +HD2∥X∥2)
nϵ

+

(︂
∥Y∥+

√
HD∥X∥

)︂
√
n

⎞⎠
Proof. Firstly, note that ˜︂H = H∥X∥2. We now compute γ and ∆ to invoke Theorem 35.

Since the algorithm simply adds Gaussian noise of variance σ2Id to a vector ˜︁w where

∥ ˜︁w∥ ≤ D, we have that γ2 ≤ D2 + σ2. For the bound on loss parameter ∆, by

direct computation, ∆(γ, β) ≤ 2
(︂
∥Y∥2 +H ⟨ ˜︁w + ξ, x⟩2

)︂
≤ 2 ∥Y∥2 + 2HD2 ∥X∥2 +

2H ⟨ξ, x⟩2 ≤ 2 ∥Y∥2 + 2HD2 ∥X∥2 + 2Hσ2 log (1/β) where the last inequality follows

since ⟨ξ, x⟩ ∼ N (0, ∥x∥2). Plugging these and the value of σ2 from Theorem 10 into

Theorem 35 gives the claimed bound.

A.5 Non-private Lower Bounds

We first note a simple one-dimensional lower bound.

Theorem 38. (Implicit in [SST10]) Let ∥X∥ ≥ 1 and H ≥ 2. For any Algorithm

A, there exists a 1-dimensional H-smooth non-negative GLM, ℓ : R× (X × Y) ↦→ R,

and a distribution D over (X × Y) with ∥w∗∥ = Θ(min {∥Y∥, D} such that the

excess population risk of the output of A when run on S ∼ Dn is lower bounded as

Ω
(︂

min{∥Y∥,D∥X ∥}√
n

)︂
.

We remark that this requires a slight modification of the example used in [SST10].

Specifically, therein the loss function is defined as

ℓ(w, (x, y)) =

⎧⎨⎩(w − y)2 |w − y| ≤ 1
2

|w − y| − 1/4 |w − y| ≥ 1
2

170

with y ∈ {±1} and x = 1. Our statement is obtained by setting the domain of labels

as {±min {D, ∥Y∥}}. A reduction in [Sha15] enables lower bounds from problem

instances with general ∥X∥ and ∥w∗∥ = R to instances with ∥X∥ = 1 to ∥w∗∥ = R∥X∥.

We now show that the lower bounds presented in [Sha15] to the unconstrained

setting. We start by stating the original bound from [Sha15] which holds for squared

loss.

Theorem 39. Let ℓ(w, (x, y)) = 1
2(⟨w, x⟩ − y)2 be the squared loss function and

D > 0. Then for any algorithm, A, there exists a distribution D over (X × Y)

and a constant C such that for S ∼ Dn it holds that E [L(A(S);D)− L(w∗
D;D)] ≥

C min
{︂
∥Y∥2, D

2∥X ∥2+d∥Y∥2

n
, D∥Y∥∥X ∥√

n

}︂
, where w∗

D = arg min
w∈B(D)

{L(w;D)}.

We now make three observations. First we note that this Theorem holds even

for A(S) /∈ B (D). Second we note that the construction of the distribution in the

above Theorem is such that min
w∗∈B(D)

{L(w;D)} = min
w∗∈Rd

{L(w;D)}. Finally, note that
H
2 (⟨w, x⟩ − y√

H
)2 = 1

2(
√
H ⟨w, x⟩ − y)2. This gives the following corollary.

Corollary 6. Let D > 0. Then for any algorithm, A, there exists a distribution D

over (X × Y) and an H-smooth non-negative GLM, ℓ : Rd × (X × Y) ↦→ R, with

minimizer w∗ = arg min
w∈Rd

{L(w;D)} such that ∥w∗∥ = D and for S ∼ Dn it holds that

E [L(A(S);D)− L(w∗;D)]

= Ω
{︄

min
{︄
∥Y∥2,

HD2∥X∥2 + d∥Y∥2

n
,

√
HD∥Y∥∥X∥√

n

}︄}︄
.

A.6 Additional Results

Lemma 13. Let Φ ∈ Rd×k be a random matrix such that for any u ∈ Rd, with

probability at least 1 − β, (1 − α) ∥u∥2 ≤ ∥Φu∥2 ≤ (1 + α) ∥u∥2. Then for any u, v,

with probability at least 1− 2β, |⟨Φu,Φv⟩ − ⟨u, v⟩| ≤ α ∥u∥ ∥v∥.

171

Proof. Firstly, note that it suffices to prove the result for unit norm vectors u and v.

From the norm preservation result, with probability at least 1− 2β, we have that,

(1− α) ∥u+ v∥2 ≤ ∥Φ(u+ v)∥ ≤ (1 + α) ∥u+ v∥2

(1− α) ∥u− v∥2 ≤ ∥Φ(u− v)∥ ≤ (1 + α) ∥u− v∥2

Therefore, we have

⟨Φu,Φv⟩ = 1
4
(︂
∥Φ (u+ v)∥2 − ∥Φ (u− v)∥2

)︂
≤ 1

4
(︂
(1 + α) ∥u+ v∥2 − (1− α) ∥u− v∥2

)︂
≤ ⟨u, v⟩+ α

This gives us that ⟨Φu,Φv⟩ ≤ ⟨u, v⟩ + α. The other inequality follows in the same

way.

172

Appendix B

Appendix for Chapter 3

B.1 Lower Bounds

B.1.1 Missing Details from DP Empirical Stationarity Lower
Bound

Proof of Theorem 17. For any r > 0, let Wr denote the ball of radius r centered at

the origin. Let D = G
H

. Consider the loss function:

ℓ(w; z) =

⎧⎨⎩
H
2 ∥w − z∥

2 if ∥w − z∥ ≤ D

G ∥w − z∥ − G2

2H otherwise

The function ℓ(w; z) is convex, H-smooth and G-Lispchitz in Rd. We restrict to

datasets S = {zi}ni=1 where zi ∈ WD/4 for all i, and let ˆ︁L(w;S) = 1
n

∑︁n
i=1 ℓ(w; zi) be

the empirical risk on S. The unconstrained minimizer of ˆ︁L(w;S) is w∗ = 1
n

∑︁n
i=1 zi

which lies in WD/4.

For any w ∈ W3D/4, w lies in the quadratic region around all data points. Hence,

from H-strong convexity of w ↦→ ˆ︁L(w;S) onW3D/4, we have that whenever ˆ︁w ∈ W3D/4,

⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
∥ ˆ︁w − w∗∥ ≥

⟨︂
∇ˆ︁L(ˆ︁w;S), w∗ − ˆ︁w⟩︂

≥ ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)

≥ H

2 ∥
ˆ︁w − w∗∥2 .

Let E be the event that w̄ ∈ W3D/4 and let EE denote the conditional expectation

173

(conditioned on event E) operator. Then,

EE
⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
≥ H

2 E ∥ ˆ︁w − w∗∥ ≥ H

2 Ω
⎛⎝(︃ G

4H

)︃
min

⎛⎝1,

√︂
d log (1/δ)
nϵ

⎞⎠⎞⎠ .
where the last inequality follows from known lower bounds for DP mean estimation

[SU15, KU20]. We remark that the lower bound in the referenced work is for algorithms

which produce outputs in the ball of the same radius as the dataset, i.e. WD/4.

However, a simple post-processing argument shows that the same lower bound applies

to algorithms which produce output in W3D/4. Specifically, assuming the contrary, we

simply project the output in W3D/4 to WD/4: privacy is preserved by post-processing

and the distance to the mean cannot increase by the non-expansiveness property of

projection to convex sets, hence a contradiction. This gives us,

EE
[︂⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦]︂
≥ Ω

⎛⎝Gmin
⎛⎝1,

√︂
d log (1/δ)
nϵ

⎞⎠⎞⎠
Let ˜︂W = {w : ∥w − w∗∥ ≤ D/2}. Since ˜︂W ⊆ W3D/4, we have that the above

conditional lower bound applies for ˆ︁w ∈ ˜︂W as well. We now consider ˆ︁w ̸∈ ˜︂W . Let w′

be any point on the boundary of ˜︂W , denoted as ∂W . Note that w′ lies in the region

where, for any data point, the corresponding loss is a quadratic function. Hence, by

direct computation, ∇ˆ︁L(w′;S) = H (w′ − w∗). Therefore,⟨︂
∇ˆ︁L(w′;S), w′ − w∗

⟩︂
= H ∥w′ − w∗∥2 = HD2

4 .

We now apply Lemma 14 which gives us,

EEc

⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
≥ HD2

4 · 2
D

= G

2 ,

where Ec denotes the complement set of E. We combine the above bounds using the

law of total expectation as follows,

E[∥∇ˆ︁L(w̄;S)∥] = EE[∥∇ˆ︁L(w̄;S)∥]P (w̄ ∈ E) + EEc [∥∇ˆ︁L(w̄;S)∥]P (w̄ ∈ Ec)

= Ω
(︃
Gmin

{︃
1,

√︂
d log (1/δ)
nϵ

}︃)︃
P(w̄ ∈ E) + Ω(G)P(w̄ ∈ Ec)

= Ω
(︃
Gmin

{︃
1,

√︂
d log (1/δ)
nϵ

}︃)︃
.

174

This completes the proof.

Lemma 14. Let G,R ≥ 0, d ∈ N. Let WR(w0) denote the Euclidean ball around

w0 of radius R and let ∂WR(w0) denote its boundary. Let f : Rd → R be a dif-

ferentiable convex function. Suppose w0 ∈ Rd is such that for every v ∈ ∂WR(w0),

⟨∇f(v), v − w0⟩ ≥ G, then for any w ̸∈ WR(w0), we have ∥∇f(w)∥ ≥ G
R

.

Proof. For a unit vector u ∈ Rd, define directional directive f ′
u(w) = ⟨∇f(w), u⟩. We

first show that for any u ∈ Rd : ∥u∥ = 1 and any w′ ∈ Rd, the function f ′
u(w′ + ru) is

non-decreasing in r ∈ R+. This simply follows from monotonicity of gradients since f

is convex. In particular, for any r′ > r > 0, we have

f ′
u(w′ + r′u)− f ′

u(w′ + ru) = ⟨∇f(w′ + r′u)−∇f(w′ + ru), u⟩

= 1
r′ − r

⟨∇f(w′ + r′u)−∇f(w′ + ru), w′ + ru− (w′ + ru)⟩

> 0

We now prove the claim in the lemma statement. Let w ̸∈ ∂WR and define u = w−w0
∥w−w0∥ .

Then from Cauchy-Schwarz inequality and the above monotonicity property, we have,

∥∇f(w)∥ ≥ ⟨∇f(w), u⟩ = f ′
u(w) ≥ f ′

u(w0 +Ru) = ⟨∇f(w0 +Ru), u⟩

= 1
R
⟨∇f(v), v − w0⟩ ≥

G

R

which finishes the proof.

B.1.2 Non-private Sample Complexity Lower Bound

Theorem 40. For any G,H, n, d ∈ N, there exists a distribution D over some set Z

and a G-Lipschitz, H-smooth (convex) loss function w ↦→ ℓ(w; z) such that given n

i.i.d samples from D, the output ˆ︁w of any algorithm satisfies,

E ∥∇L(ˆ︁w;D)∥ = Ω
(︄
G√
n

)︄

175

Proof. We construct a hard instance in d = 1 dimension. Let p ∈ [0, 1] be a parameter

to be set later and let v ∈ {−1, 1} be chosen by an adversary. Let the data domain

Z = {−1, 1} and consider the distribution D on Z as follows:

z =

⎧⎨⎩1 with probability 1+vp
2

−1 with probability 1−vp
2

Note that E[z] = vp. Consider the loss function ℓ(w; z) as

ℓ(w; z) = G

2 wz + H

2 ∆(w)

where ∆ is the Huber regularization function, defined as,

∆(w) =

⎧⎨⎩|w|
2 if |w| ≤ G

2H
G|w|
H
− G2

4H2 otherwise

Note that the loss function w ↦→ ℓ(w; z) is convex, G-Lipschitz and H-smooth in Rd,

for all z. The population risk function is,

L(w;D) = G

2 wpv + H

2 ∆(w)

Let ˆ︁w be output some algorithm given n i.i.d. samples from D. Consider two

cases:

Case 1: | ˆ︁w| > G
2H : The gradient norm in this case is

|∇L(ˆ︁w;D)|2 =
⃓⃓⃓⃓
⃓G2 vp+ G ˆ︁w

2 | ˆ︁w|
⃓⃓⃓⃓
⃓
2

= G2p2

4 + G2

4 + G2

2 | ˆ︁w|vp ˆ︁w
≥ G2

4 −
G2

2 p

= G2

4 −
G2

8
√
n

≥ G2

8

where the first inequality follows since v ˆ︁w|ˆ︁w| ≥ −1, the third equality follows by setting

p = 1√
16n and the second inequality follows since n ≥ 1. We therefore have that

E |∇L(ˆ︁w;D)| ≥ G
2
√

2 .

176

Case 2: | ˆ︁w| ≤ G
2H : In this case, the gradient norm is,

|∇L(ˆ︁w;D)|2 =
⃓⃓⃓⃓
G

2 vp+H ˆ︁w ⃓⃓⃓⃓2
Suppose there exists an algorithm with output ˆ︁w, which, with n samples guarantees

that E |∇L(ˆ︁w;D)| < o
(︂
G√
n

)︂
. Then from Markov’s inequality, with probability at least

0.9, we have that |∇L(ˆ︁w;D)|2 < o
(︂
G2

n

)︂
. Let ˜︁w = −2H ˆ︁w

G
, then we have that with

probability at least 0.9,

|∇L(ˆ︁w;D)|2 ≤ o

(︄
G2

n

)︄
⇐⇒ |vp− ˜︁w|2 < o

(︃ 1
n

)︃

This contradicts the well-known bias estimation lower bounds, with p = 1√
16n , using

Le Cam’s method ([Duc16], Example 7.7), hence E |∇L(ˆ︁w;D)| ≥ Ω
(︂
G√
n

)︂
. Combining

the two cases finishes the proof.

B.2 Missing Results for Empirical Stationary
Points

B.2.1 Private Spiderboost

The following lemma largely follows from the analysis in [WJZ+19]. We present a full

proof below for completeness.

Lemma 15. Let the conditions of Lemma 3 be satisfied. Let η ≤ 1
2H and q ≤ O

(︂
1

τ2
2 η

2

)︂
.

Then the output of Private SpiderBoost, ˆ︁w satisfies

E
[︂⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦]︂
= O

(︄√︄
L0

ηT
+ τ1

)︄
. (B.1)

Proof. In the following, for any t ∈ [T], let st =
⌊︂
t
q

⌋︂
q (i.e. the index corresponding to

the start of the phase containing iteration t).

By a standard analysis for smooth functions we have (recalling that ∇t is an

unbiased estimate of ∇ˆ︁L(wt;S) for any t ∈ [T])

ˆ︁L(wt+1;S) ≤ ˆ︁L(wt;S) + η

2
⃦⃦⃦
∇ˆ︁L(wt;S)− ▽t

⃦⃦⃦2
−
(︄
η

2 −
Hη2

2

)︄
∥▽t∥2 .

177

Taking expectation we have the following manipulation using the update rule of

Algorithm 5, we get

E
[︂ ˆ︁L(wt+1;S)− ˆ︁L(wt;S)

]︂
≤ η

2E
[︃⃦⃦⃦
∇ˆ︁L(wt;S)− ▽t

⃦⃦⃦2
]︃
−
(︄
η

2 −
Hη2

2

)︄
E
[︂
∥▽t∥2

]︂
≤ ητ 2

2
2

t∑︂
k=st+1

E
[︂
∥wk+1 − wk∥2

]︂
+ η

2E
[︃⃦⃦⃦
▽st − ˆ︁L(wst ;S)

⃦⃦⃦2
]︃

−
(︄
η

2 −
Hη2

2

)︄
E
[︂
∥▽t∥2

]︂
≤ η3τ 2

2
2

t∑︂
k=st+1

E
[︂
∥▽k∥2

]︂
+ ητ 2

1
2 −

(︄
η

2 −
Hη2

2

)︄
E
[︂
∥▽t∥2

]︂
,

where the second inequality follows from Lemma 3 and the last inequality follows

from the update rule. Note that if t = st the sum is empty. Summing over a given

phase we have

E
[︂ ˆ︁L(wt+1;S)− ˆ︁L(wst ;S)

]︂
≤ η3τ 2

2
2

t∑︂
k=st

k∑︂
j=st+1

E
[︂
∥▽j∥2

]︂
+

t∑︂
k=st

[︃
ητ2

1
2 −

(︂
η
2 −

Hη2

2

)︂
E
[︂
∥▽k∥2

]︂]︃

≤ η3τ 2
2 q

2

t∑︂
k=st

E
[︂
∥▽k∥2

]︂
+

t∑︂
k=st

[︃
ητ2

1
2 −

(︂
η
2 −

Hη2

2

)︂
E
[︂
∥▽k∥2

]︂]︃

= −
t∑︂

k=st

⎡⎣(︄η
2 −

Hη2

2 − η3τ 2
2 q

2

)︄
⏞ ⏟⏟ ⏞

A

E
[︂
∥▽k∥2

]︂
− ητ 2

1
2

⎤⎦, (B.2)

where the second inequality comes from the fact that each gradient appears at

most q times in the sum. We now sum over all phases. Let P = {p0, p1, ...,} ={︂
0, q, 2q, ...,

⌊︂
T−1
q

⌋︂
q, T

}︂
. We have

E
[︂ ˆ︁L(wT ;S)− ˆ︁L(w0;S)

]︂
≤

|P |∑︂
i=1

E
[︂ ˆ︁L(wpi

;S)− ˆ︁L(wpi−1 ;S)
]︂

≤ −
T∑︂
t=0

AE
[︂
∥▽k∥2

]︂
+ Tητ 2

1
2 .

178

Rearranging the above yields

1
T

T∑︂
t=0

E
[︂
∥▽k∥2

]︂
≤ L0

TA
+ ητ 2

1
2A . (B.3)

Now let i∗ denote the index of ˆ︁w selected by the algorithm. Note that

E
[︃⃦⃦⃦
∇ˆ︁L(wi∗ ;S)

⃦⃦⃦2
]︃
≤ 2E

[︃⃦⃦⃦
∇ˆ︁L(wi∗ ;S)− ▽i∗

⃦⃦⃦2
]︃

+ 2E
[︂
∥▽i∗∥2

]︂
. (B.4)

The second term above can be bounded via inequality (B.3). To bound the first term

we have by Lemma 3 that

E
[︃⃦⃦⃦
▽i∗ −∇ˆ︁L(wi∗ ;S)

⃦⃦⃦2
]︃
≤ τ 2

2

t∗∑︂
k=st∗ +1

E
[︂
∥wk − wk−1∥2

]︂
+ τ 2

1

= η2τ 2
2

t∗∑︂
k=st∗ +1

E
[︂
∥▽k∥2

]︂
+ τ 2

1

≤ qη2τ 2
2

T

T∑︂
k=0

E
[︂
∥▽k∥2

]︂
+ τ 2

1

≤ τ 2
2 η

2qL0

TA
+ η3qτ 2

2
2A τ 2

1 + τ 2
1 ,

where the last inequality comes from inequality (B.3) and the expectation over i∗.

Plugging into inequality (B.4) one can obtain

E
[︃⃦⃦⃦
∇ˆ︁L(wi∗ ;S)

⃦⃦⃦2
]︃
≤ 2L0

TA
(1 + τ 2

2 η
2q) +

(︄
η

A
+ 2 + τ 2

2 η
3q

A

)︄
τ 2

1 . (B.5)

Now recall A = η
2 −

Hη2

2 −
η3τ2

2 q

2 . Since q ≤ O
(︂

1
τ2

2 η
2

)︂
and η ≤ 1

2H we have A = Θ(η).

Thus plugging into inequality (B.5) and again using the fact that q ≤ O
(︂

1
τ2

2 η
2

)︂
we

have

E
[︃⃦⃦⃦
∇ˆ︁L(wi∗ ;S)

⃦⃦⃦2
]︃

= O

(︄
L0

Tη
(1 + τ 2

2 η
2q) +

(︄
3 + τ 2

2 η
3q

A

)︄
τ 2

1

)︄
= O

(︄
L0

Tη
+ τ 2

1

)︄
.

The claim then follows from the Jensen inequality.

For privacy, we will rely on the moments accountant analysis of [ACG+16b]. This

roughly gives the same analysis as using privacy amplification via subsampling and the

advanced composition theorem, but allows for improvements in log factors. We provide

179

the following theorem implicit in [ACG+16b] Theorem 1 below. The same result can

be obtained using the analysis for [KLL21] Theorem 3.1 which uses the truncated

central differential privacy guarantees of the Gaussian mechanism [BDRS18].

Theorem 41 ([ACG+16b, KLL21]). Let ϵ, δ ∈ (0, 1] and c be a universal constant.

Let D ∈ Yn be a dataset over some domain Y, and let h1, ..., hT : Y ↦→ Rd be a

series of (possibly adaptive) queries such that for any y ∈ Y, t ∈ [T], ∥ht(y)∥2 ≤ λt.

Let σt = cλt

√
log(1/δ)
ϵ

max
{︂

1
b
,

√
T
n

}︂
. Then the algorithm which samples batches of size

B1, .., Bt of size b uniformly at random and outputs 1
n

∑︁
y∈Bt

ht(y) + gt for all t ∈ [T]

where gt ∼ N (0, Iσ2
t), is (ϵ, δ)-DP.

We note that the original statement of the Theorem in [ACG+16b] requires σt ≥
cλt

√
T log(1/δ)
nϵ

and T ≥ n2ϵ
b2 (or T ≥ n2

b2 so long as ϵ ≤ 1). However, in the case where

T ≤ n2

b2 , one can simply consider the meta algorithm that does run T ′ = n2

b2 steps and

only outputs the first T results. This algorithm is at least as private as the algorithm

which outputs every result, and under the setting T ′ the scale of noise is 8λt

√
log(1/δ)
bϵ

.

We can now prove the main result for Private Spiderboost, restated below. We

note that the setting of b2 given below will always be less than n under required

conditions. More details are provided in the proof below.

Theorem 42 (Private Spiderboost). Let n ≥ max
{︃

(Gϵ)2

L0Hd log(1/δ) ,
√
dmax{1,

√
HL0/G}

ϵ

}︃
.

Private Spiderboost run with parameter settings η = 1
2H ,

b1 = n, b2 =
⌊︄
max

{︄(︃
Gnϵ√

L0Hd log(1/δ)

)︃2/3
, (Gnd log(1/δ))1/3

(HL0)1/6ϵ2/3

}︄⌋︄
, T =⌊︄

max
{︄(︃

(L0H)1/4nϵ√
Gd log(1/δ)

)︃4/3
, nϵ√

d log(1/δ)

}︄⌋︄
, and q =

⌊︂
n2ϵ2

H2Td log(1/δ)

⌋︂
satisfies

E
[︂⃦⃦⃦
∇ˆ︁L(˜︁w;S)

⃦⃦⃦]︂
= O

⎛⎜⎝
⎛⎝
√︂
L0HGd log (1/δ)

nϵ

⎞⎠2/3

+

√︂
d log (1/δ)G

nϵ

⎞⎟⎠
is (ϵ, δ)-DP and has oracle complexity ˜︁O (︃max

{︃(︂
n5/3ϵ2/3

d1/3

)︂
,
(︂
nϵ√
d

)︂2
}︃)︃

.

180

Proof. For privacy, we rely on the moment accountant analysis of the Gaussian

mechanism as per Theorem 41. Note that each gradient estimate computed in line 9

has elements with ℓ2-norm at most G, and this estimate is computed at most T
q

times. Similarly, for a gradient variation at step t in line 13 we have norm bound

H ∥wt − wt−1∥, and have that at most T such estimates are computed. As such, the

scale of noise in both cases ensures the overall algorithm is (ϵ, δ)-DP by Theorem 41.

We now prove the convergence result. To simplify notation in the following, we

define ᾱ =
√
d log(1/δ)
nϵ

. If b1 = n (full batch gradient), the conditions of Lemma 3 are

satisfied with τ 2
1 = O

(︂
G2T ᾱ2

q

)︂
and τ 2

2 = O
(︂
H2

b2
+H2T ᾱ2

)︂
and some setting of q so

long as T ≥ q n
2

b2
1

= q and T ≥ n2

b2
2
. Further, if b2 ≥ 1

T ᾱ2 then τ 2
2 = O (H2T ᾱ2). Thus

the condition on q in Lemma 15 is satisfied with q = H2

τ2
2

= 1
T ᾱ2 since η = 1

2H

Plugging into Eqn. (B.1) we obtain

E
[︂⃦⃦⃦
∇ˆ︁L(˜︁w;S)

⃦⃦⃦]︂
= O

⎛⎝√︄L0H

T
+ G
√
T ᾱ
√
q

⎞⎠
= O

⎛⎝√︄L0H

T
+GTᾱ2

⎞⎠ . (B.6)

We now consider the setting of T . Since q = 1
T ᾱ2 , it suffices to set T ≥ 1

ᾱ
to ensure

T ≥ q. We now set T = max
{︃(︂

(HL0)1/4
√
Gᾱ

)︂4/3
, 1
ᾱ

}︃
. Using Eqn. (B.6) above we have

E
[︂⃦⃦⃦
∇ˆ︁L(˜︁w;S)

⃦⃦⃦]︂
= O

(︄(︃√︂
L0HGᾱ

)︃2/3
+Gᾱ

)︄
.

The claimed rate now follows if there exists a valid setting for b2 satisfying the

previously stated conditions. The restrictions on the batch size implied by T imply

we need b2 ≥ n√
T

and thus it suffices to have b2 ≥ G1/3nᾱ2/3

(HL0)1/6 to satisfy this condition

since T ≥
(︂

(HL0)1/4
√
Gᾱ

)︂4/3
. We recall that for the setting of q to be valid we also require

b2 ≥ 1
T ᾱ2 and because T ≥

(︂
(HL0)1/4

√
Gᾱ

)︂4/3
it suffices that b2 ≥

(︂
G√
L0Hᾱ

)︂2/3
. Thus we need

b2 = max
{︃(︂

G√
L0Hᾱ

)︂2/3
, G

1/3nᾱ2/3

(HL0)1/6

}︃
. Finally, we need b2 ≤ n whenever q ≥ 1. Note that

by the setting of q and T we have q ≤
(︂

G√
L0Hᾱ

)︂2/3
and thus q ≥ 1 =⇒

(︂√
HL0ᾱ
G

)︂
≤ 1.

Under this same condition we have G1/3nᾱ2/3

(HL0)1/6 ≤ n. We further have
(︂

G√
L0Hᾱ

)︂2/3
≤ n

181

under the assumption n ≥ (Gϵ)2

L0Hd log(1/δ) given in the theorem statement. It can also

be verified that under the condition on n given in the theorem statement that q ≥ 1.

Thus the parameter settings obtain the claimed rate.

Note the number of gradient computations is bounded by

O

(︄
Tb2 + Tb1

q

)︄
= ˜︁O

⎛⎝(︄ nϵ√
d

)︄4/3

max

⎧⎨⎩
(︄
nϵ√
d

)︄2/3

,
(nd)1/3

ϵ2/3

⎫⎬⎭+ n

(︄
nϵ√
d

)︄2/3
⎞⎠

= ˜︁O
⎛⎝max

⎧⎨⎩
(︄
nϵ√
d

)︄2

,
n5/3ϵ2/3

d1/3

⎫⎬⎭
⎞⎠ .

B.2.2 Additional Discussion of Rate Improvement Challenges

We here give a more detailed version of the informal discussion in Section 3.2.2. We

want to emphasize that the goal of the following discussion is not to provide a universal

lower bound, but rather to inform future research.

Let L : Rd ↦→ R be a loss function. We say the randomized mapping O :

Rd × (Rd ∪ ⊥) ↦→ Rd, is a (τ1, τ2)-accurate oracle for L if ∀w,w′ ∈ Rd

E
O

[O(w,⊥)] = ∇L(w), E
O

[O(w,w′)] = ∇L(w)−∇L(w′)

E
O

[︂
∥O(w,⊥)−∇L(w)∥2

]︂
≤ τ 2

1 , E
O

[︂
∥O(w,w′)∥2]︂ ≤ τ 2

2 ∥w − w′∥2
.

In short, O is an unbiased and accurate gradient/gradient variation oracle for L.

Define

m(Q,H,L0, τ1, τ2) = inf
A

sup
O,L

inf
{︃
α : E [∥∇L(A(O, H,L0, τ1, τ2)∥] ≤ α

}︃
,

where the supremum is taken over H-smooth functions L satisfying L(0) −

arg min
w∈Rd

{L(w)} ≤ L0, and (τ1, τ2)-accurate oracles for L. The infimum is taken

over algorithms which make at most Q calls to O.

We have the following lower bound on m (i.e. a lower bound on the accuracy of

optimization algorithms which make at most Q queries to the oracle) following from

182

[ACD+19, Theorem 3] and the fact that the oracle model described above is a special

case of the multi-query oracles considered by [ACD+19].

Theorem 43 ([ACD+19]). Let Q,L0, H, τ1, τ2 ≥ 0 and define α =
(︂

L0τ2τ1
Q

)︂1/3
+ τ1√

Q
.

If d = ˜︁Ω(︃[︂L0H
α2

]︂2)︃
, then m(Q,H,L0, τ1, τ2) = Ω (α).

Now consider L such that L(w) = 1
n

∑︁
z∈S ℓ(w; z) for some G-Lipschitz and H-

smooth loss ℓ : Rd×X ↦→ R and S ∈ X n. We are interested in designing some (ˆ︁τ1, ˆ︁τ2)-

accurate and differentially private oracle, ˆ︁O, which can then be used by an optimization

algorithm, A, to obtain an approximate stationary point ˆ︁w = A(ˆ︁O, H,L0, ˆ︁τ1, ˆ︁τ2).

Specifically, we want ˆ︁O to be capable of answering Q queries under (ϵ, δ)-DP. A

common method for achieving this is to ensure each query to O is at least (ϵ√
Q
, δ)-DP

and use advanced composition (or the more refined moment accountant) analysis.

Such a setup encapsulates numerous results in the convex setting [BFTGT19, KLL21],

and is even more dominant in non-convex settings [WYX17, ZCH+20, ACG+16b].

Our key observation is that under such a setup, any increase in the number of

oracle calls to Q must be met with a proportional increase in the accuracy parameters

(ˆ︁τ1, ˆ︁τ2). Thus, if such an oracle, ˆ︁O is applied in a black box fashion to a stochastic

optimization algorithm A, one can obtain a lower bound on the accuracy of the overall

algorithm independent of Q.

Specifically, since estimating the gradient and gradient variation can be viewed as

mean estimation problems on n vectors, we can use fingerprinting code arguments to

lower bound ˆ︁τ1 and ˆ︁τ2 [SU15]. In Lemma 16 below, we prove that any (ˆ︁τ1, ˆ︁τ2)-accurate

oracle which ensures that any query is (ϵ√
Q
, δ)-DP must have ˆ︁τ1 = Ω

(︃
G
√
Qd log(1/δ)
nϵ

)︃
and ˆ︁τ2 = Ω

(︃
H
√
Qd log(1/δ)
nϵ

)︃
. Now, observe that by Theorem 43, we have

m(Q,H,L0, ˆ︁τ1, ˆ︁τ2) = Ω

⎛⎜⎝
⎛⎝√L0HG

√︂
d log (1/δ)
nϵ

⎞⎠2/3

+
G
√︂
d log (1/δ)
nϵ

⎞⎟⎠ ,
which matches our upper bound.

183

We now remark on several ways the above barrier could be circumvented. The

first and most obvious possibility is to employ a different privatization method than

private oracles. However, this is particularly difficult in the nonconvex setting as

existing methods which avoid private gradients (see e.g. [FKT20b] for several such

methods) rely crucially on stability guarantees arising from convexity. Other possible

ways to beat the above rate is by designing a stochastic optimization algorithm which

leverages the structure of the noise used in private implementations of the oracle or

makes use of additional assumptions to beat the Ω
(︃(︂

L0τ2τ1
Q

)︂1/3
+ τ1√

Q

)︃
non-private

lower bound.

Additional Details on Fingerprinting Bound. We conclude by giving a concrete

construction for the fingerprinting argument mentioned above.

Lemma 16. Let G,H ≥ 0, ϵ = O(1), 2−Ω(n) ≤ δ ≤ 1
n1+Ω(1) and

√︂
d log (1/δ)/(nϵ) =

O(1). Let ℓ,L, S satisfy the assumptions above. Then there exists ℓ, S such that for

any oracle, O, which is (τ1, τ2)-accurate for L it holds that

τ1 = Ω
⎛⎝G

√︂
d log (1/δ)
nϵ

⎞⎠ and τ2 = Ω
⎛⎝H

√︂
d log (1/δ)
nϵ

⎞⎠ .
Proof. In the following, we use uj to denote the j’th component of some vector u. Let

B = G
H

√
d

and define h : R ↦→ R as

h(z) =

⎧⎨⎩
H
2 w

2 if|w| ≤ B
G√
d
|w| − G2

2dH otherwise

Define d′ = d
2 (assume d is even for simplicity) and for any vector u ∈ Rd let

u(1) = [u1, ..., ud′]⊤ and u(2) = [ud′+1, ..., ud]⊤. Define ℓ(w; z) = ℓ1(w; z) + ℓ2(w; z)

where

ℓ1(w; z) = G√
d

⟨︂
w(1), z(1)

⟩︂
, ℓ2(w; z) = 1

2

d∑︂
j=d′+1

h(wj)zj.

184

Let W = {w : ∥w∥∞ ≤ B} and note for any w ∈ W we have

∇ℓ(w; z) = [z1√
d
, ...,

zd′√
d
, wd′+1zd′+1, ..., wdzd]⊤,

∇2ℓ2(w; z) = H · Diag(0, ..., 0, zd′+1, ..., zd)

That is, the Hessian of ℓ2(w; z) is a diagonal matrix with entries from x. Thus one

can observe that for any x ∈ {±1}d we have that ℓ(·; z) is G-Lipschitz and H-smooth

over Rd.

To prove a lower bound on τ1 and τ2, it suffices to show that for any (ϵ, δ)-DP

implementation of O there exists w ∈ Rd such that E
O

[︂
∥O(w;⊥)−∇L(w)∥2

]︂
≥ τ 2

1

and there exist w,w′ ∈ Rd such that E
O

[︂
∥O(w,w′)∥2

]︂
≥ τ 2

2 ∥w − w′∥2. For sake of

generality, we will show that these properties hold for a set of w,w′.

Note that to lower bound the gradient error, it suffices to lower bound the error

with respect to the first d′ components. We thus argue using ℓ1, and will in fact show

a lower bound for any w ∈ Rd. Let w ∈ Rd. We have for any (ϵ, δ)-DP oracle O there

exists a dataset S ⊆ {±1}d, where |S| = n, of fingerprinting codes such that

E
O

[∥O(w;⊥)−∇L(w)∥] ≥ E
O

[︄⃦⃦⃦⃦
⃦O(w;⊥)(1) − 1

n

∑︂
x∈S

z(1)
⃦⃦⃦⃦
⃦
]︄

= Ω
⎛⎝G

√︂
d log (1/δ)
nϵ

⎞⎠ .
The bound follows from standard fingerprinting code arguments. See [BST14, Lemma

5.1] for a lower bound and [SU15, Theorem 1.1] for a group privacy reduction that

obtains the additional
√︂

log (1/δ) factor. This fingerprinting result also induces the

parameter constraints in the theorem statement. We thus have τ1 = Ω
(︃
G
√
d log(1/δ)
nϵ

)︃
.

Similarly, we will argue a bound on the gradient variation using ℓ2. Let w,w′ ∈ W

and u = (w − w′)(2). In what follows, we only use the second half of the components

for each vector, and thus omit the superscript (2) from all vectors for readability. We

have ∇ℓ2(w; z) − ∇ℓ2(w′; z) = H[u1z1, ..., ud′zd′]⊤. Then for any c ∈ (0, 2G
H

√
d
] and

185

u ∈ {±c}2 we have

E
O

[︂
∥O(w,w′)− (∇L(w)−∇L(w′))∥2]︂

= H2 · E
O

⎡⎣ d′∑︂
j=1

(︄
O(w,w′)j −

uj
n

∑︂
x∈S

zj

)︄2
⎤⎦

= H2 · E
O

⎡⎣ d′∑︂
j=1

(︄
uj

(︃O(w,w′)j
uj

− 1
n

∑︂
x∈S

zj

)︃)︄2
⎤⎦

= H2 · E
O

⎡⎣c2
d′∑︂
j=1

(︄
O(w,w′)j

uj
− 1
n

∑︂
x∈S

zj

)︄2
⎤⎦

= Ω
(︄
H2c2d

2 log (1/δ)
n2ϵ2

)︄
,

where the last step again comes from fingerprinting results. Note that the extra factor

of d as compared to the previous bound comes from the fact that we are considering

fingerprinting codes with norm larger by a factor of
√
d. We also use the fact that

the vector O(w,w′) transformed using u is (ϵ, δ)-DP by post processing. Now since

c = ∥w−w′∥√
d

we have

E
O

[∥O(w,w′)− (∇L(w)−∇L(w′))∥] =
⎛⎝H ∥w − w′∥

√︂
d log (1/δ)
nϵ

⎞⎠ .
Finally, noting that E

O

[︂
∥O(w,w′)− (∇L(w)−∇L(w′))∥2

]︂
≤ E

O

[︂
∥O(w,w′)∥2

]︂
we ob-

tain τ2 = Ω
(︃
H
√
d log(1/δ)
nϵ

)︃
. This completes the proof.

We remark that the accuracy lower bound for the gradient variation can hold for a

much more general set of vectors than that given in the proof. Specifically, the same

result can be obtained for any u = w−w′ such that u has Θ(d) components which are

Ω
(︂

∥u∥√
d

)︂
(i.e. any sufficiently spread out vector). This uses the fact that it suffices to

bound the number of components which disagree in sign with the fingerprinting mean

and that fingerprinting codes are sampled using a product distribution, and thus the

tracing attack used by fingerprinting constructions holds over any sufficiently large

subset of dimensions.

186

B.3 Missing Results for Population Stationary
Points

Here we present the proof of privacy and accuracy for Algorithm 6. We start by

proving the privacy guarantee.

Proof of Theorem 18. By parallel composition of differential privacy, and since the

used batches are disjoint, it suffices to prove that each step in lines 6 and 15 of the

algorithm is (ϵ, δ)-DP. Note that the gradient estimator in step 6 has ℓ2-sensitivity

2G/b, so by the Gaussian mechanism this step is (ϵ, δ)-DP.

For step 15, suppose St,s and S ′
t,s are neighboring datasets that differ in at most

one element: zi∗ ̸= z′
i∗ , and let ηt,si

and η′
t,si

the respective step-sizes used in step 23.

Then

∥∆t,s −∆′
t,s∥ = 2|s|

b
∥∇ℓ (wt,s; zi∗)−∇ℓ

(︂
wt,ˆ︁s; zi∗)︂− (︂∇ℓ (wt,s; z′

i∗)−∇ℓ
(︂
wt,ˆ︁s; z′

i∗

)︂)︂
∥ ,

and note between the parent node ut,ˆ︁s and ut,s there are 2D−|s| iterates generated

by the algorithm, which we denote as wt,ˆ︁s = wt,s0 , wt,s1 , ..., wt,s2|D|−s
= wt,s. Then, by

smoothness of f and the triangle inequality

∥∆t,s −∆′
t,s∥

= 2|s|

b
∥∇ℓ (wt,s; zi∗)−∇ℓ

(︂
wt,ˆ︁s; zi∗)︂− (︂∇ℓ (wt,s; z′

i∗)−∇ℓ
(︂
wt,ˆ︁s; z′

i∗

)︂)︂
∥

≤
2D−|s|∑︂
i=1

2|s|

b

[︂
∥∇ℓ (wt,si

; zi∗)−∇ℓ
(︂
wt,si−1 ; zi∗

)︂
∥+ ∥

(︂
∇ℓ (wt,si

; z′
i∗)−∇ℓ

(︂
wt,si−1 ; z′

i∗

)︂)︂
∥
]︂

≤
2D−|s|∑︂
i=1

2|s|

b
Hηt,si−1∥∇t,si−1∥+

2D−|s|∑︂
i=1

2|s|

b
Hη′

t,si−1
∥∇′

t,si−1
∥

= 2
2D−|s|∑︂
i=1

2|s|

b

β

2D/2 = 2β2D/2

b
.

The Gaussian mechanism combined with our choice of σt,s certifies privacy of this

step.

187

To prove Theorem 19 we will need some technical lemmas. Define (T ,S) as a

random stopping time that indicates when Algorithm 6 ends. Also, we say (t1, s1) ⪯2

(t2, s2) whenever wt1,s1 comes before wt2,s2 in the algorithm iterates.

Lemma 17 (Gradient estimation error, extension of Lemma 6 in [FLLZ18]). Let

p ∈ (0, 1). Then, with probability 1− p the event

E = {∥∇t,s −∇L(wt,s;D)∥2 ≤ α · ˜︁α ∀(t, s) ⪯2 (T ,S)}

holds, under the parameter setting of σt,∅, σt,s and ηt,s in Algorithm 6, for α2 ≥(︂
G2

b
+ β2D2D

b

)︂
max

{︂
1, (d+1)

bϵ2

}︂
and ˜︁α ≥ 256 log

(︂
1.25
δ

)︂
log

(︂
2T2D+1

p

)︂
α.

Proof. Recall the gradient estimate associated to a left child node is the same as that

of the parent node. Hence, the gradient estimate of a non-leaf node is the same as

that of the left-most leaf of its left sub-tree. In addition, we only need to control

the gradient estimation error when we perform a gradient step, which occurs at the

leaves. Then, to prove the claim, it suffices to prove that we can control the gradient

estimation error at the leaves. Since, the number of iterations (and leaves) is at most

T2D−1, to prove event E happens with probability 1−p, by the union bound it suffices

to prove that P[∥∇t,s−∇L(wt,s;D)∥2 > α · ˜︁α] ≤ p
T2D−1 for every (t, s) ⪯2 (T ,S) where

ut,s is a leaf.

Denote by Ft the sigma algebra generated by randomness in the algorithm until

the end of round t. Fix (t, s) ⪯2 (T ,S) such that ut,s is leaf, and let ut,s∅ =

ut,s0 , ut,s1 , ..., ut,sk
= ut,s be the path from the root to s. Next, extract a sub-sequence

of it including only the root and the nodes that are right children, obtaining ut,s∅ =

ut,sa0
, ut,sa1

, ..., ut,sam
= ut,s. Now we can write

∇t,s −∇L(wt,s;D) =
m∑︂
i=0

gt,sai
+

∑︂
z∈St,∅

1
b

(∇ℓ(wt,∅; z)−∇L(wt,∅;D))⏞ ⏟⏟ ⏞
γ1,z

+
m∑︂
i=1

∑︂
z∈St,sai

2|sai |

b

[︂(︂
∇ℓ(wt,sai

; z)−∇ℓ(wt,sai−1
; z)

)︂
−
(︂
∇L(wt,sai

;D)−∇L(wt,sai−1
;D)

)︂]︂
⏞ ⏟⏟ ⏞

γ2,z,i

.

188

To bound the estimation error, we note that

P[∥∇t,s −∇L(wt,s;D)∥2 > α · ˜︁α|Ft−1]

≤ P
[︃⃦⃦⃦⃦ m∑︂

i=0
gt,sai

⃦⃦⃦⃦2
>
α · ˜︁α

4

⃓⃓⃓⃓
Ft−1

]︃
+ P

[︃⃦⃦⃦⃦ ∑︂
z∈St,∅

γ1,z +
m∑︂
i=1

∑︂
z∈St,sai

γ2,z,i

⃦⃦⃦⃦2
>
α · ˜︁α

4

⃓⃓⃓⃓
Ft−1

]︃
.

and proceed to bound each term on the right hand side separately. By vector

subgaussian concentration (see Lemma 1 in [JNG+19]) and noting that the Gaussians

are independent of Ft−1, we know that

P

⎡⎣⃦⃦⃦⃦⃦
m∑︂
i=0

gt,sai

⃦⃦⃦⃦
⃦

2

>
α · ˜︁α

4

⎤⎦ ≤ 4d exp
(︄
− α · ˜︁α

32(σ2
t,∅ +∑︁m

i=1 σ
2
t,sai

)

)︄
,

and in order to bound this probability by p
2T2D−1 , since m ≤ D, it suffices that

α · ˜︁α > 32 log
(︄

4dT2D
p

)︄[︄
8G2 log (1.25/δ)

b2ϵ2 + 8D2Dβ2 log (1.25/δ)
b2ϵ2

]︄

= 256 log
(︃1.25

δ

)︃ [︄
d log (4) + log

(︄
T2D
p

)︄]︄ [︄
L2

0
b2ϵ2 + D2Dβ2

b2ϵ2

]︄
.

Now, noting that surely

∥γ1,x∥ ≤
2G
b

and ∥γ2,x,i∥ ≤
2β2D/2

b
,

where the second bound comes from following similar steps as in the privacy analysis

in Theorem 18, we have that ∑︁x∈St,∅ γ1,x +∑︁m
i=1

∑︁
x∈St,sai

γ2,x,i is a sum of bounded

martingale differences when conditioned on Ft−1, thus by concentration of martingale-

difference sequences in ℓ2 (see Proposition 2 in [FLLZ18]), and using the fact that

|St,∅| = b and |St,sai
| = b/2|sai | it follows that

P

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦⃦ ∑︂
x∈St,∅

γ1,x +
m∑︂
i=1

∑︂
x∈St,sai

γ2,x,i

⃦⃦⃦⃦
⃦⃦⃦

2

>
α · ˜︁α

4 | Ft−1

⎤⎥⎦ ≤ 4 exp
⎛⎝− α · ˜︁α

16
[︂

4G2

b
+∑︁m

i=1
4β22D

2|sai |b

]︂
⎞⎠ .

Repeating a similar argument as before, to bound this term by p
2T2D−1 , it suffices

that

α · ˜︁α ≥ 64 log
(︄

2T2D+1

p

)︄[︄
G2

b
+ β2D2D

b

]︄
.

189

Finally, both conditions hold simultaneously for

α2 ≥
(︄
G2

b
+ β2D2D

b

)︄
max

{︄
1, (d+ 1)

bϵ2

}︄

and

˜︁α ≥ 256 log
(︃1.25

δ

)︃
log

(︄
2T2D+1

p

)︄
α.

Lemma 18 (Descent lemma; Lemma 7 in [FLLZ18]). Under the assumption that the

event E from Lemma 17 occurs and β ≤ 2D/2 ˜︁α, we have that if Algorithm 6 reaches

the last line, then

L(wT,ℓ(2D);D)− L(0;D) ≤ −(T2D−1) β · ˜︁α
4 · 2D/2H

.

where wT,ℓ(2D) is the last iterate in the T -th tree of Algorithm 6.

We provide the proof of Lemma 18 adapted to our case for completeness.

Proof. By standard analysis for smooth functions we have

L(wt,s+ ;D) ≤ L(wt,s;D)− ηt,s
2 (1− ηt,sH)∥∇t,s∥2 + ηt,s

2 ∥∇t,s −∇L(wt,s;D)∥2,

where ηt,s = β
2D/2H∥∇t,s∥ and ut,s+ is the node after ut,s in the tree. Since β ≤ 2D/2 ˜︁α

and ∥∇t,s∥ > 2˜︁α, we have that (1− ηt,sH) ≥ 1/2. Using this inequality, the definition

of ηt,s and the fact that we are assuming E occurs, we obtain

L(wt,s+ ;D)− L(wt,s;D) ≤ − β

4 · 2D/2H∥∇t,s∥
∥∇t,s∥2 + β

2 · 2D/2H∥∇t,s∥
α · ˜︁α

≤ − β

4 · 2D/2H
· ˜︁α,

where the second inequality comes from ∥∇t,s∥ > 2˜︁α and α ≤ ˜︁α. Then telescoping

over all T2D−1 iterations provides the claimed bound.

We are now ready to prove the convergence guarantee of Algorithm 6.

190

Proof of Theorem 19. From Lemma 17, we know that ∥∇t,s −∇L(wt,s;D)∥2 ≤ α · ˜︁α
with probability 1− p when

α =
√

2Gmax

⎧⎨⎩ 1
n1/3 ,

(︄√
d

nϵ

)︄1/2⎫⎬⎭ ,
˜︁α =

(︄
256 log

(︃1.25
δ

)︃
log

(︄
2T2D+1

p

)︄
+ 8HL0

√
2D(D/2 + 1)
2G2

)︄
α.

Indeed, using our parameter setting, and noting that d > bϵ2 if and only if, d > n2/3ϵ2,

yields

α2 ≥ G2

b
max

{︄
1, (d+ 1)

bϵ2

}︄
+ β2

2 max
{︄

1, (d+ 1)
bϵ2

}︄

= G2
(︄

1
n2/31{d+1≤n2/3ϵ2} +

√
d

nϵ
1{d+1>n2/3ϵ2}

)︄

+ α2

2 min
{︄

1, bϵ
2

d

}︄
max

{︄
1, (d+ 1)

bϵ2

}︄

≥ G2 max
{︄

1
n2/3 ,

√
d

nϵ

}︄
+ α2

2 ,

which shows our values of α and ˜︁α are valid for controlling the gradient estimation

error with high probability, as claimed in Lemma 17.

Now, suppose for the sake of contradiction that Algorithm 6 does not end in

line 20 under E . This means it performs T2D−1 gradient updates. We’ll show this

implies (T2D−1) β·˜︁α
4·2D/2H

> L0 and thus contradicts Lemma 18, which claims that

L0 ≥ −[L(wT,ℓ(2D);D) − L(w0,ℓ(2D);D)] ≥ (T2D−1) β·˜︁α
4·2D/2H

. Indeed, note that by our

parameter setting:

(T2D−1) β · ˜︁α
4 · 2D/2H

> L0 ⇐⇒ β · ˜︁α > 8HL0

T2D/2

⇐⇒ αmin
{︄

1,
√
bϵ√
d

}︄
· ˜︁α > 8HL0

√
2D

T
√
b

⇐⇒ α · ˜︁α > 8HL0
√

2D(D/2 + 1)
√
b

n
max

{︄
1,
√
d√
bϵ

}︄

⇐⇒ α · ˜︁α > 8HL0
√

2D(D/2 + 1) max
{︄√

b

n
,

√
d

nϵ

}︄
,

191

and noting that by the setting of b we have max
{︂√

b
n
,

√
d

nϵ

}︂
= max

{︂
1

n2/3 ,
√
d

nϵ

}︂
, we

conclude the following

(T2D−1) β · ˜︁α
4 · 2D/2H

> L0 ⇐⇒ α · ˜︁α > 8HL0
√

2D(D/2 + 1) max
{︄

1
n2/3 ,

√
d

nϵ

}︄

⇐⇒ α · ˜︁α > 8HL0
√

2D(D/2 + 1)
2G2 α2.

Finally, note α · ˜︁α =
(︃

256 log (1.25/δ) log
(︂
2T2D+1/p

)︂
+ 8HL0

√
2D(D/2+1)
2G2

)︃
α2 and thus

the last inequality holds under our parameter setting. Since this is equivalent to

(T2D−1) β·˜︁α
4·2D/2H

> L0, we are done with the contradiction. It follows that with high

probability, Algorithm 6 ends in line 20 returning wt,s such that ∥∇t,s∥ ≤ 2˜︁α. Also,

by Lemma 17 we have ∥∇F (wt,s;D)−∇t,s∥ < ˜︁α, so the returned iterate satisfies by

the triangle inequality

∥∇L(wt,s;D)∥ < 3˜︁α.
In addition, the linear time oracle complexity follows from the fact that at each

binary tree we use b samples at the root, and then b/2 in levels 1 to D. This gives

a total of b(D/2 + 1) samples used at every round. Since we run the algorithm for

T = n
b(D/2+1) rounds, we compute exactly n gradients. To conclude, note the condition

n ≥ max{
√
d(D/2 + 1)2/ϵ, (D/2 + 1)3} implies the number of rounds T is at least

1. Besides, since the definition of D implies 2D < b, the size of the mini-batches

are well-defined (meaning Algorithm 6 uses batches with at least 1 sample). This

concludes the proof.

B.4 Missing Results for Stationary Points in the
Convex Setting

We first give pseudo-codes of algorithms used in the section.

Proof of Theorem 20. The privacy guarantee, in both cases, follows from the privacy

guarantees of Algorithm 18 and Algorithm 16, in Lemmas 21 and 24 respectively,

192

Algorithm 16 Phased SGD(S, (w, z) ↦→ f(w; z)), D, η,S(·), σ)
Input: Dataset S, loss function f(·; z)), radius D of the constraint set W , steps T , η,

Selection function S, Noise variance σ
1: w1 = 0
2: K = ⌈log (|S|)⌉ and T0 = 1
3: for k = 1 to K − 1 do
4: Tk = 2−k |S| , ηk = 4−kη, σk = ηkσ
5: wk+1 = OutputPerturbedSGD(wk, STk−1+1:Tk

, D, ηk, σk,S(·))
6: end for

Output: ˆ︁w = wK

Algorithm 17 OutputPerturbedSGD(w1, S, (w, z) ↦→ ℓ(w; z),∆(·), D, η,S(·)
Input: Dataset S, loss function ℓ(·; z)), regularizer ∆(·), radius D of the constraint

set W , steps T , η, Selection function S, Noise variance σ
1: for t = 1 to |S| − 1 do
2: wt+1 = ΠW (wt − η (∇ℓ(wt; zt)))
3: end for
4: ξ ∼ N (0, σ2I)
5: ˜︁w = S

(︂
{wt}|S|

t=1

)︂
Output: ˆ︁w = ˜︁w + ξ

together with parallel composition.

We now proceed to the utility part. For simplicity of notation, let D := ∥w∗∥.

Recall the definition of the regularized losses ℓ(t)(w, x) in Algorithm 7. Let {αt}t be

such that E[L(t−1)(ˆ︁wt;D)]− L(t−1)(w∗
t−1;D) ≤ αt where ˆ︁wt are the iterates produced

in the algorithm and w∗
t−1 = arg minw∈Rd L(t−1)(w;D). Following [AZ18, FSS+19], we

193

Algorithm 18 Noisy GD(S, (w, z) ↦→ ℓ(w; z), D, T, η,S(·), σ)
Input: Dataset S, loss function (w, z) ↦→ ℓ(w; z), radius D of the constraint set W,

steps T , η, Selection function S, Noise variance σ
1: w1 = 0
2: for t = 1 to T − 1 do
3: ξt ∼ N (0, σ2I)
4: wt+1 = ΠW

(︂
wt − η

(︂
∇ˆ︁L(wt;S) + ξt

)︂)︂
5: end for

Output: ˆ︁w = S
(︂
{wt}Tt=1

)︂

first establish a general result which will be useful for both parts of the result.

E ∥∇L(ˆ︁wT ;D)∥

= E
⃦⃦⃦⃦
⃦∇L(T−1)(ˆ︁wT ;D) + λ

T∑︂
t=0

2t (ˆ︁wt − ˆ︁wT)
⃦⃦⃦⃦
⃦

≤ E
⃦⃦⃦
∇L(T−1)(ˆ︁wT ;D)

⃦⃦⃦
+ λ

T−1∑︂
t=0

2tE
(︂⃦⃦⃦ ˆ︁wt − w∗

T−1

⃦⃦⃦
+
⃦⃦⃦ ˆ︁wT − w∗

T−1

⃦⃦⃦)︂

≤ 2E
⃦⃦⃦
∇ˆ︁L(T−1)(ˆ︁wT ;D)

⃦⃦⃦
+ λ

T−1∑︂
t=1

2tE
⃦⃦⃦ ˆ︁wt − w∗

T−1

⃦⃦⃦
+ λE

⃦⃦⃦
w0 − w∗

T−1

⃦⃦⃦

≤ 2E
⃦⃦⃦
∇L(T−1)(ˆ︁wT ;D)

⃦⃦⃦
+ 4

T−1∑︂
t=1

√︂
λ2tαt + λDT−1

≤ 4
√︂
HαT + 4

T−1∑︂
t=1

√︂
λ2t+1αt + λ2T/2D

≤ 4
T∑︂
t=1

√︂
λ2t+1αt +

√
λHD

where the third and fourth inequality follows from strong convexity of L(T−1)(·;D) and

Lemma 20 respectively. The last inequality follows from the setting of T since we have

that L(T−1) is H +∑︁T−1
t=1 2tλ ≤ H + λ2T ≤ 2H smooth. Note that the definition of Dt

and Lemma 19,
⃦⃦⃦
w∗
T−1

⃦⃦⃦
≤ DT−1, so the unconstrained minimizer lies in the constraint

set. Therefore E
⃦⃦⃦
∇L(T−1)(ˆ︁wT ;D)

⃦⃦⃦
= E

⃦⃦⃦
∇L(T−1)(ˆ︁wT ;D)−∇L(T−1)(w∗

T−1;D)
⃦⃦⃦
≤

2
√
HαT .

Observe that from the setting of T , L(T) is 4H smooth for all t. Furthermore, the

radius of the constraint set in the t-th round is Dt = 2T/2D. Hence, the Lipschitz

constant Gt ≤ G + 8HDt ≤ O
(︂
G+H2T/2

)︂
. Now we instantiate αt, which is the

194

excess population risk bound of the DP-SCO sub-routine.

Optimal rate. The excess population risk guarantee of Algorithm 18 is in Lemma

21, with (in context of the notation in the Lemma) Lipschitz parameter G being the

same and G∆ = O
(︂
H2T/2

)︂
. Therefore, we have αt = ˜︁O (︂ G2

λtn
+ dG2

λtn2ϵ2

)︂
. Plugging in

the above estimate, we get,

E ∥∇L(ˆ︁w;D)∥ = ˜︁O
⎛⎝ G√

n
+
√
dG

nϵ
+
√︄
λ

H
D

⎞⎠ = ˜︁O(︄ G√
n

+
√
dG

nϵ

)︄

where the last step follows by setting of λ.

The optimality claim follows by combining the non-private lower bound in Theorem

20, and the DP empirical stationarity lower bound in Theorem 17 together with a

reduction to population stationarity as in [BFTGT19, Appendix C].

Linear time rate. The excess population risk guarantee of Algorithm 16 is in

Lemma 24, with Lipschitz parameter G being the same and G∆ = O
(︂
H2T/2

)︂
. This

gives us αt = ˜︁O (︂ G2

λtn
+ dG2

λtn2ϵ2

)︂
, and thus

E ∥∇L(ˆ︁w;D)∥ = ˜︁O(︄ G√
n

+
√
dG

nϵ
+
√
λHD

)︄
= ˜︁O(︄ G√

n
+
√
dG

nϵ
+ HD√

n

)︄

where the last step follows by setting of λ. Finally, note that the Lemma 24 requires

that n = ˜︁Ω (︂H+λt

λt

)︂
for all t. This can be checked to be satisfied by substituting the

value of λt.

B.4.1 Utility Lemmas

We first present some key results which will be useful in the proofs.

Lemma 19. Let f : Rd → R be an H-smooth convex function and let w∗ =

arg minw∈Rd f(w). Let ∥w∗∥ = D and w0 ∈ Rd such that ∥w0∥ ≤ D. Define
˜︁f(w) = f(w) + λ

2 ∥w − w0∥2 and let ˜︁w = arg min ˜︁f(w). Then for any λ ≥ 0,

∥ ˜︁w∥ ≤ √2D.

195

Proof. From optimality criterion, 0 = ∇ ˜︁f(˜︁w) = ∇f(˜︁w) + λ (˜︁w − w0). There-

fore, ∇f(˜︁w) = λ (w0 − ˜︁w) and thus ⟨∇f(˜︁w), w0 − ˜︁w⟩ > 0. Furthermore, since

f is convex, from monotonicity, ⟨∇f(˜︁w), w∗ − ˜︁w⟩ ≤ 0. Since both w0 and w∗

lie in the ball of radius D (say WD), the above two implies that the hyper-

plane H = {w : ⟨∇f(˜︁w), w − ˜︁w⟩ = 0} intersects with WD. Furthermore, since

∇f(˜︁w) = λ (w0 − ˜︁w), we have that ˜︁w is the projection of w0 on H i.e. ΠH(w0).

Let w′ = ΠH(0). We have that w′ ∈ WD; this is because the hyperplane cuts

the hypersphere WD creating a spherical cap and w′ is the center of the cap. From

properties of convex projections ∥ΠH(w0)− ΠH(0)∥ ≤ ∥w0 − 0∥ ≤ D. Furthermore,

ΠH(0) and ΠH(w0)− ΠH(0) are orthogonal. Hence ∥ ˜︁w∥2 = ∥ΠH(w0)∥2 = ∥ΠH(0)∥2 +

∥ΠH(w0)− ΠH(0)∥2 ≤ 2D2.

We state the following result from [AZ18, FSS+19].

Lemma 20. Suppose for every t = 1, 2, . . . T , E[L(t−1)(ˆ︁wt;D)]− L(t−1)(w∗
t−1;D) ≤ αt

where ˆ︁wt are the iterates produced in the algorithm, w∗
t−1 = arg minw∈Rd L(t−1)(w;D)

and λt = 2tλ, we have,

1. For every t ≥ 1, E[
⃦⃦⃦ ˆ︁wt − w∗

t−1

⃦⃦⃦2
] ≤ 2αt

λt−1

2. For every t ≥ 1, E[∥ ˆ︁wt − w∗
t ∥

2] ≤ αt

λt

3. E[∑︁T
t=1 λt ∥ ˆ︁wt − w∗

T∥] ≤ 4∑︁T
t=1
√
αtλt

B.4.2 Lemmas for NoisyGD (Algorithm 18)

Lemma 21. Consider a function f(w; z) = ℓ(w; z) + ∆(w), where w ↦→ ℓ(w; z) is

convex and G Lipschitz for all x, and ∆(w) is λ strongly convex, G∆ Lipschitz and

H∆ smooth over a bounded convex set W. Algorithm 17 run with parameters η =
log(T)
λT

, σ2 = 64G2T log(1/δ)
n2ϵ2

, T = max
(︃
H+H∆

λ
log

(︂
H+H∆

λ

)︂
,
n2ϵ2(G2+G2

∆)
dG2 log(1/δ)

)︃
and S({wt}t) =

196

1∑︁T

t=1(1−ηλ)−t

∑︁T
t=1 (1− ηλ)−twt satisfies (ϵ, δ)-DP and given a dataset S of n i.i.d.

points from D, the excess population risk of its output ˆ︁w is bounded by,

E
[︃
F (ˆ︁w;D)− min

w∈WD

F (w;D)
]︃

= O

(︄
G2

λn
+ dG2 log (1/δ)

λn2ϵ2

)︄
.

Proof. For the privacy analysis, as in [BST14], for fixed w, the sensitivity of the

gradient update is bounded by 2G
n

. Applying advanced composition, we have that

σ2 = 64G2T log(1/δ)
n2ϵ2

suffices for (ϵ, δ)-DP.

For utility, we first compute a bound on uniform argument stability of the algorithm;

let {wt} and {w′
t} be sequence of iterates on neighbouring datasets. Note that the

function w ↦→ f(w; z) is H +H∆-smooth and λ-strongly convex for all z. From the

setting of T , we have that the step size η ≤ 1
H+H∆

, hence from the standard stability

analysis,

wt+1 − w′
t+1 = wt − η∇ˆ︁L(wt;S)− η∇∆(wt)− w′

t + η∇ˆ︁L(w′
t;S ′) + η∇∆(w′

t)

= wt − w′
t − η

(︂
∇ˆ︁L(wt;S) +∇∆(wt)−∇ˆ︁L(w′

t;S)− η∇∆(w′
t)
)︂

+ η
(︂
∇ˆ︁L(w′

t;S ′)−∇ˆ︁L(w′
t;S)

)︂
=
(︂
I− η

(︂
∇2 ˆ︁L(˜︁wt;S) +∇2∆(˜︁wt))︂)︂ (wt − w′

t)

+ η
(︂
∇ˆ︁L(w′

t;S ′)−∇ˆ︁L(w′
t;S)

)︂

where the last equality follows from Taylor remainder theorem where ˜︁wt is some

intermediate point on the line joining wt and w′
t. Using the fact that η ≤ 1

H+H∆
, we

have

⃦⃦⃦
wt+1 − w′

t+1

⃦⃦⃦
≤ (1− ηλ) ∥wt − w′

t∥+ 2ηG
n
≤ 2G
λn

The above gives the same bound for the iterate using the selector S,

∥S({wt})− S({w′
t})∥ ≤

2G
λn

Note that the overall Lipschitz constant for the empirical loss is ˜︁G = G+G∆. For the

197

excess empirical risk guarantee, we use Lemma 5.2 in [FKT20b] to get,

E
[︂ ˆ︁L (ˆ︁w;S) + ∆(ˆ︁w)− ˆ︁L(w∗;S)−∆(w∗)

]︂
= E

[︂ ˆ︁F (ˆ︁w;S)− ˆ︁F (w∗;S)
]︂

= ˜︁O(︄ ˜︁G2

λT

)︄

= ˜︁O(︄ ˜︁G2 + σ2d

λT

)︄

= ˜︁O(︄ ˜︁G2

λT
+ dG2 log (1/δ)

λn2ϵ2

)︄

= O

(︄
dG2 log (1/δ)

λn2ϵ2

)︄

where the last step follows from the setting of T . For the population risk guarantee,

we have,

E [F (ˆ︁w;D)− F (w∗;D)] = E
[︂
F (ˆ︁w;D)− ˆ︁F (ˆ︁w;S)

]︂
+ E [F (ˆ︁w;D)− F (w∗;D)]

= E[F (ˆ︁w;D)− ˆ︁F (ˆ︁w;S)] +O

(︄
dG2 log (1/δ)

λn2ϵ2

)︄

≤ GE ∥ ˆ︁w − ˆ︁w′∥+O

(︄
dG2 log (1/δ)

λn2ϵ2

)︄

= ˜︁O(︄G2

λn
+ dG2 log (1/δ)

λn2ϵ2

)︄

where the inequality follows from Lipschitzness and standard generalization gap to

stability argument.

B.4.3 Lemmas for PhasedSGD (Algorithm 16)

The following lemma gives population risk guarantees for strongly convex functions

under privacy, in terms of variance of stochastic gradients, as opposed to standard

Lipschitzness bounds.

Lemma 22 (Variance based bound for constant step-size SGD for strongly-convex

functions). Consider a function ℓ(w; z) such that w ↦→ ℓ(w; z) is λ strongly convex, H

smooth over a convex set W for all x and let Ex ∥∇ℓ(w; z)− Ez∇ℓ(w; z)∥2 ≤ V2 for

198

all w ∈ W. Let γt = (1− ηλ)−t. Given a dataset S = {z1, z2, . . . , zn} sampled i.i.d

from D and η ≤ 1
2β as input, for any w ∈ W, the iterates of Algorithm 17 satisfy

E
[︄

1∑︁n
t=1 γt

n∑︂
t=1

γtL(wt;D)
]︄
− L(w;D) ≤ λ

eηλn − 1 ∥w0 − w∥2 + ηV2

Furthermore, for n = Ω
(︂
H
λ

log
(︂
H
λ

)︂)︂
, with η = log(n)

λn
and S({wt}t) =

1∑︁n

t=1 γt

∑︁n
t=1 γtwt, the excess population risk of ˜︁w = S({wt}t) satisfies

E
[︃
L(˜︁w;D)− min

w∈W
L(w;D)

]︃
= O

(︄
V2 log (n)

λn

)︄

Proof. An equivalent way to write the update in Algorithm 17 is

wt+1 = arg min
w∈W

(︄
⟨∇ℓ(wt; zt), w⟩+ 1

η
∥wt − w∥2 + ψ(w)

)︄

where ψ(w) = 0 if w ∈ W , otherwise ∞.

199

Following standard arguments in convex optimization, for any w ∈ W , we have

L(wt+1;D)− L(w;D)

= L(wt+1;D) + ψ(wt+1)− L(w;D)− ψ(w)

≤ L(wt) + ⟨∇L(wt), wt+1 − wt⟩+ H

2 ∥wt+1 − wt∥2 + ψ(wt+1)

+ L(w;D)− ψ(w)

≤ ⟨∇L(wt;D), wt+1 − wt⟩+ ⟨∇L(wt;D), wt − w⟩ −
λ

2 ∥wt − w∥
2 + H

2 ∥wt+1 − wt∥2

+ ψ(wt+1) + L(w;D)− ψ(w)

= Ezt

[︃
⟨∇ℓ(wt; zt)−∇L(w;D), wt − wt+1⟩+ H

2 ∥wt+1 − wt∥2 + ⟨∇ℓ(wt; zt), wt − w⟩
]︃

− λ

2 ∥wt − w∥
2 + ψ(wt+1) + L(w;D)− ψ(w)

≤ Ezt

[︃
⟨∇ℓ(wt; zt)−∇L(w;D), wt − wt+1⟩ −

(︄
1
2η −

H

2

)︄
∥wt+1 − wt∥2

+
(︄

1
2η −

λ

2

)︄
∥wt − w∥2 − 1

2η ∥wt+1 − w∥2
]︃

≤ Ezt

[︃
η

2 (1− ηH) ∥∇ℓ(wt; zt)−∇L(w;D)∥2 +
(︄

1
2η −

λ

2

)︄
∥wt − w∥2 − 1

2η ∥wt+1 − w∥2
]︃

≤ ηV2 + Ezt

[︄(︄
1
2η −

λ

2

)︄
∥wt − w∥2 − 1

2η ∥wt+1 − w∥2
]︄

where the first inequality follows from smoothness, the second from strong convexity,

the third from Fact D.1 in [AZ18], fourth from AM-GM inequality and the last from

the assumption about variance bound on the oracle.

Now, the above is exactly the bound obtained in the proof of Lemma 5.2 in

[FKT20b] with the second moment on gradient norm replaced by variance. Repeating

the rest of the arguments in that Lemma gives us the claimed result.

Lemma 23 (Privacy of Algorithm 17). Consider a function f(w; z) = ℓ(w; z) +

∆(w) such that w ↦→ ℓ(w; z) is convex, G Lipschitz, H-smooth for all z, and ∆(·)

is λ strongly convex, G∆ Lipschitz and H∆ smooth over a bounded set W. For

n = Ω
(︂
H+H∆

λ
log

(︂
H+H∆

λ

)︂)︂
, Algorithm 17 with input as function (w, x) ↦→ f(w; z),

σ2 = 64G2(log(n))2 log(1/δ)
λ2n2ϵ2

, η = log(n)
λn

and S ({wt}nt=1) = 1∑︁n

t=1 γt

∑︁n
t=1 γtwt for any weights

200

γt satisfies (ϵ, δ)-DP.

Proof. We start with computing the sensitivity of the algorithm’s output: let {wt}

and {w′
t} be sequence of iterates produced by Algorithm 17 on neighbouring datasets.

Note that the function w ↦→ f(w; z) is H ′ = H +H∆-smooth and λ-strongly convex

for all z. From the assumption on n, we have that the step size η ≤ 1
H+H∆

. Suppose

the differing sample between neighbouring datasets is zj, then wt = w′
t for all t ≤ j.

Also, ⃦⃦⃦
wj+1 − w′

j+1

⃦⃦⃦
= η

⃦⃦⃦
∇ℓ(wj; zj)−∇ℓ(wj; z′

j)
⃦⃦⃦
≤ 2ηG = 2G log (n)

λn

Now, for any t > j, as in the standard stability analysis we have,

wt+1 − w′
t+1 = wt − η∇ℓ(wt; zt)− η∇∆(wt)− wt + η∇ℓ(w′

t; zt) + η∇∆(w′
t)

=
(︂
I− η

(︂
∇2ℓ(˜︁wt; zt) +∇2∆(˜︁wt))︂)︂ (wt − w′

t)

where the last equality follows from Taylor’s remainder theorem where ˜︁wt is some

intermediate point in the line joining wt and w′
t. Using the fact that η ≤ 1

H+H∆
and λ

strong convexity, we have

⃦⃦⃦
wt+1 − w′

t+1

⃦⃦⃦
≤ (1− ηλ) ∥wt − w′

t∥ ≤
⃦⃦⃦
wj+1 − w′

j+1

⃦⃦⃦
≤ 2G log (n)

λn

Applying convexity to the weights in the definition of the selector function S, we get,

∥S({wt})− S({w′
t})∥ ≤

2G log (n)
λn

The privacy proof now follows from the Gaussian mechanism guarantee.

Lemma 24 (Phased SGD composite guarantee). Consider a function f(w; z) =

ℓ(w; z) + ∆(w) where w ↦→ ℓ(w; z) is convex, G-Lipschitz, H-smooth for all z, and

∆(w) is λ strongly convex, G∆ Lipschitz and H∆ smooth over a bounded setW. For n =

Ω
(︂
K(H+H∆)

λ
log

(︂
H+H∆

λ

)︂)︂
, Algorithm 17 with σ2 = 64G2K2(log(n))2 log(1/δ)

λ2n2ϵ2
, satisfies (ϵ, δ)-

DP. Furthermore, with input as function (w, x) ↦→ f(w; z), a dataset S of n samples

201

drawn i.i.d. from D, η = log(n)
λn

, K = ln lnn, γt = (1− ηλ)−t and S ({wt}nt=1) =
1∑︁n

t=1 γt

∑︁n
t=1 γtwt, the excess population risk of output wK is bounded as

E [F (wK ;D)]− min
w∈W

F (w;D) = ˜︁O(︄G2

λn
+ dG2

λn2ϵ2

)︄

Proof. The privacy proof simply follows from parallel composition. For the utility

proof, we repeat the arguments in Theorem 5.3 in [FKT20b] substituting the variance-

based bound from Lemma 22. Note that the variance of the stochastic gradients used,

V2 ≤ G2, this gives us,

E
[︃
F (wK ;D)− min

w∈W
F (w;D)

]︃
= ˜︁O(︄G2

λn
+ dG2

λn2ϵ2

)︄

B.5 Missing Results for Generalized Linear Models

We first give the definition of an oblivious subspace embedding.

Definition 20 ((r, τ, β)-oblivious subspace embedding). A random matrix Φ ∈ Rk×d

is an (r, τ, β)-oblivious subspace embedding if for any r dimensional linear subspace in

Rd, say V , we have that with probability at least 1− β, for all x ∈ V ,

(1− τ) ∥x∥2 ≤ ∥Φx∥2 ≤ (1 + τ) ∥x∥2

It is well-known that Johnson-Lindenstrauss (JL) matrices with embedding di-

mension k = O
(︂
r log(2/β)

τ2

)︂
are (r, τ, β)-oblivious subspace embeddings and can be

constructed efficiently [Coh16]. A simple example is a scaled Gaussian random matrix,

Φ = 1√
k
G where entries of G are independent and distributed as N (0, 1).

Proof of Theorem 21. We first prove privacy. Let G(S) and H(S) be the bounds on the

Lipschitz and smoothness constants of the family of loss functions {w ↦→ f(w; Φx)}x∈S.

With k = Ω(log (2n/δ)), from the JL-property, it follows that with probability at

202

least 1− δ/2, G(S) ≤ 2G ∥X∥ and H(S) ≤ 2H ∥X∥2. Hence, using the fact that A is

(ϵ, δ/2)-DP, we have that Algorithm 8 is (ϵ, δ)-DP.

We now proceed to the utility part. Let ˜︁w ∈ Rk be the output of the base algorithm

in low dimensions. Note that the final output is ˆ︁w = Φ⊤ ˜︁w. The transpose of the

JL matrix can only increase the norm by the polynomial factor of d and n, hence

∥ ˆ︁w∥ ≤ poly(n, d) ∥ ˜︁w∥. By assumption, P (∥ ˜︁w∥ > poly(n, d,G,H)) ≤ 1√
n
. Hence we

also have that P (∥ ˆ︁w∥ > poly(n, d,G,H)) ≤ 1√
n
. Let W ⊆ Rd denote the above set

with radius poly(n, d,G,H).

We now decompose the population stationarity as,

E ∥∇L(ˆ︁w;D)∥ ≤ E
⃦⃦⃦
∇L(ˆ︁w;D)−∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
+
⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
≤ E sup

w∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
+ G ∥X∥√

n
+ E

⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
, (B.7)

where the last inequality follows from the above reasoning that that P (ˆ︁w ∈ W) ≥

1− 1√
n
. The first term is bounded from uniform convergence guarantee in Lemma 25

noting that the dependence on ∥W∥ in the Lemma is only poly-logarithmic.

E sup
w∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
= ˜︁O(︄G ∥X∥√

n

)︄
(B.8)

We now prove a bound on the empirical stationarity. Note that it suffices to prove a

high-probability (over the random JL matrix) bound because the norm of gradient

is bounded in worst case by G ∥X∥. Thus the expected norm of gradient of the

output is bounded by the high probability bound by considering a small enough failure

probability.

From the assumption on A, with probability at least 1− δ/2,

⃦⃦⃦
∇ˆ︁L(˜︁w; ΦS)

⃦⃦⃦
= E

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)Φxi
⃦⃦⃦⃦
⃦ ≤ g(k, n, 2G ∥X∥ , 2G ∥X∥ , ϵ, δ/2)

We now use the fact that if k = O (rank log (2n/δ)), then the JL transform is an

(rank, 1/2, δ/2) oblivious subspace embedding (see Definition 20). Thus, it approxi-

203

mates the norm of any vector in span({xi}ni=1), and hence any gradient. Therefore,

E
⃦⃦⃦
∇ˆ︁L(˜︁w; ΦS)

⃦⃦⃦
= E

⃦⃦⃦⃦
⃦Φ

(︄
1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)xi
)︄⃦⃦⃦⃦
⃦

≥

⎛⎝1−
√︄

rank
k

⎞⎠E
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)xi
⃦⃦⃦⃦
⃦

≥ 1
2E

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)xi
⃦⃦⃦⃦
⃦

= 1
2E

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(
⟨︂
Φ⊤ ˜︁w, xi⟩︂)xi

⃦⃦⃦⃦
⃦

= 1
2E

⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦

Thus with k = O (rank log (2n/δ)), we get

E
⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
≤ g(k, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ) = g(rank, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ)

For the other bound, let Id−k ∈ Rd×k denote the matrix with first k diagonal

entries, (Id−k)j,j with j ∈ [k], are 1 and the rest of the matrix is zero. We have,

E
⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
= E

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(
⟨︂
Φ⊤ ˜︁w, xi⟩︂)xi

⃦⃦⃦⃦
⃦

≤ E
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)Id−kΦxi
⃦⃦⃦⃦
⃦

+ E
[︄⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)xi − 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)Id−kΦxi
⃦⃦⃦⃦
⃦
]︄

≤ E ∥Id−k∥
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
yi

(⟨ ˜︁w,Φxi⟩)Φxi
⃦⃦⃦⃦
⃦+ 1

n
E

n∑︂
i=1

⃓⃓⃓
ϕ′
yi

(⟨ ˜︁w,Φxi⟩)⃓⃓⃓ |∥xi − Id−kΦxi∥|

≤ E
⃦⃦⃦
∇ˆ︁L(˜︁w; ΦS)

⃦⃦⃦
+ 1
n
E

n∑︂
i=1

G ∥I − Id−kΦ∥ ∥xi∥

≤ g(k, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ/2) +G ∥X∥E ∥I −H∥

where the second inequality follows from triangle inequality, the third inequality follows

from G-Lipschitzness of the GLM, the third inequality follows from the accuracy

guarantee of the base algorithm and substituting H = Id−kΦ. To bound E ∥I −H∥,

we use concentration properties of distribution used in the construction of JL matrices.

204

Specifically, using the scaled Gaussian matrix construction, from concentration of

extreme eignevalues of square Gaussian matrices, we have that E ∥I −H∥ = ˜︁O (︂ 1√
k

)︂
[RV10]. This gives us,

E
⃦⃦⃦
∇ˆ︁L(ˆ︁w;S)

⃦⃦⃦
≤ g(k, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ/2) + ˜︁O(︄G ∥X∥√

k

)︄

Choosing k to minimize the above yields the bound of ˜︁O (︂G∥X ∥√
k

)︂
. Combining the

two cases, yields the bound of g(k, n, 2G ∥X∥ , 2H ∥X∥2 , ϵ, δ/2) on gradient norm.

Plugging this and the bound in Eqn. (B.8) in Inequality (B.7) gives the claimed

bound.

Lemma 25. Let D be a probability distribution over X such that ∥x∥ ≤ ∥X∥ for all

x ∈ supp(D). Let ℓ(w; (x, y)) = ϕy (⟨w, x⟩) be an H-smooth G-Lipschitz GLM. Then,

with probability at least 1− β, over a draw of n i.i.d. samples S from D, we have

sup
w∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
≤

4G ∥X∥ log
(︂
2n3/2 ∥W∥H ∥X∥ /G

)︂
√
n

+
4G ∥X∥

√︂
log (1/β)
√
n

Proof. We first give a bound on the expected uniform deviation term, which is

ES∼Dn supw∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
. Note that the gradient of the loss function

is ∇ℓ(w; (x, y)) = ϕ′
y (⟨w, x⟩)x. We start with the standard symmetrization trick,

ES∼Dn sup
w∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
= ES∼Dn sup

w∈W

⃦⃦⃦⃦
⃦Eϕ′

y (⟨w, x⟩)x− 1
n

n∑︂
i=1

ϕ′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦

= ES∼Dn sup
w∈W

⃦⃦⃦⃦
⃦E{x′

i}∼Dn

1
n

n∑︂
i=1

ϕ′
y′

i
(⟨w, x′

i⟩)x′
i −

1
n

n∑︂
i=1

ϕ′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦

≤ ES,S′∼Dn sup
w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

ϕ′
y′

i
(⟨w, x′

i⟩)x′
i −

1
n

n∑︂
i=1

ϕ′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦

= ES,S′∼DnE{σi} sup
w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σi
(︂
ϕ′
y′

i
(⟨w, x′

i⟩)x′
i − ϕ′

yi
(⟨w, xi⟩)xi

)︂⃦⃦⃦⃦⃦
≤ 2ES∼DnE{σi} sup

w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦ (B.9)

205

where σi are i.i.d. Rademacher random variables. For fixed {(xi, yi)}ni=1, consider a set

W0 s.t. for all w ∈ W and i ∈ [n], there exists w0 ∈ W0 such that |⟨w, xi⟩ − ⟨w0, xi⟩| ≤

τ . Since ∥w∥ ≤ ∥W∥ and ∥xi∥ ≤ ∥X∥, we require only 2n∥W∥∥X ∥
τ

points in W0 to

satisfy the above covering condition. Therefore,

ES∼DnE{σi} sup
w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦

= ES∼DnE{σi} sup
w∈W,w0∈W0

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σi
(︂
ϕ′
yi

(⟨w, xi⟩)− ϕ′
yi

(⟨w0, xi⟩) + ϕ′
yi

(⟨w0, xi⟩)
)︂
xi

⃦⃦⃦⃦
⃦

≤ ES∼DnE{σi} sup
w∈W,w0∈W0

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σi
(︂
ϕ′
yi

(⟨w, xi⟩)− ϕ′
yi

(⟨w0, xi⟩)
)︂
xi

⃦⃦⃦⃦
⃦

+
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w0, xi⟩)xi
⃦⃦⃦⃦
⃦

≤ ES∼DnE{σi} sup
w∈W,w0∈W0

H |⟨w, xi⟩ − ⟨w0, xi⟩| ∥X∥

+ ES∼DnE{σi} sup
w0∈W0

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w0, xi⟩)xi
⃦⃦⃦⃦
⃦

≤ Hτ ∥X∥+ ES∼DnE{σi} sup
w0∈W0

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w0, xi⟩)xi
⃦⃦⃦⃦
⃦ (B.10)

where the second last inequality follows from smoothness and the last from the

definition of cover W0. For fixed w0, from standard manipulations, we have,

E{σi}

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w0, xi⟩)xi
⃦⃦⃦⃦
⃦ ≤

⌜⃓⃓⎷E{σi}

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ′
yi

(⟨w0, xi⟩)xi
⃦⃦⃦⃦
⃦

2

=
⌜⃓⃓⎷ 1
n2E{σi}

n∑︂
i=1

⃦⃦⃦
σiϕ′

yi
(⟨w0, xi⟩)xi

⃦⃦⃦2

≤ G ∥X∥√
n

Using Massart’s finite class lemma to handle all w0 ∈ W0, and substituting the

above in Eqn. (B.10), we get,

ES∼DnE{σi} sup
w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦ ≤ Hτ ∥X∥+ G ∥X∥ log (2n ∥W∥∥X∥ /τ)√

n

Choosing τ = G
H

√
n
, we get,

ES∼DnE{σi} sup
w∈W

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

σiϕ
′
yi

(⟨w, xi⟩)xi
⃦⃦⃦⃦
⃦ ≤ 2G ∥X∥ log

(︂
2n3/2 ∥W∥H ∥X∥ /G

)︂
√
n

206

Finally, substituting the above in Eqn. (B.9) gives us the following in-expectation

bound.

ES∼Dn sup
w∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
≤

4G ∥X∥ log
(︂
2n3/2 ∥W∥H ∥X∥ /G

)︂
√
n

For the high-probability bound, let ψ(S) = supw∈W

⃦⃦⃦
∇L(w;D)−∇ˆ︁L(w;S)

⃦⃦⃦
and

let w∗ ∈ W achieves the supremum. We can bound the increment between neighbouring

datasets S and S ′ as,

|ψ(S)− ψ(S ′)| ≤
⃓⃓⃓⃦⃦⃦
∇L(w∗;D)−∇ˆ︁L(w∗;S)

⃦⃦⃦
−
⃦⃦⃦
∇L(w∗;D)−∇ˆ︁L(w∗;S ′)

⃦⃦⃦⃓⃓⃓
≤
⃦⃦⃦
∇ˆ︁L(w∗;S)−∇ˆ︁L(w∗;S ′)

⃦⃦⃦
≤ 2G ∥X∥

n

Finally, applying McDiarmid’s inequality gives the claimed bound.

Proof of Corollary 1. The results follow from Theorem 21 provided we show that

the conditions on the base algorithm in the Theorem statement are satisfied. The

privacy and accuracy claims follow from Theorem 19 and 20 respectively. We note that

even though we are given population stationarity guarantee for the convex case, the

same bound for empirical stationarity guarantee simply follows from the re-sampling

argument in [BFTGT19]. The only thing left to show is the high-probability bound

on the trajectory of the algorithm.

Non-convex setting with Private Spiderboost. From the update in Algorithm

5, we have that for any t

∥∇t∥ ≤
t∑︂
i=1
∥∆i∥+

⃦⃦⃦⃦
⃦

t∑︂
i=1

gt

⃦⃦⃦⃦
⃦ ≤ 2tG+

⃦⃦⃦⃦
⃦

t∑︂
i=1

gt

⃦⃦⃦⃦
⃦

where the last inequality follows from the Lipschitzness assumption. Note that

gt ∼ N (0, σ2
t I) where σt ≤ O (max (σ1, ˆ︁σ2)) = O (poly(n, d,G,H)). Hence

⃦⃦⃦∑︁t
i=1 gt

⃦⃦⃦
≤√︂

d log (1/β′)O (poly(n, d,G,H)) with probability at least 1−β′. Taking a union bound

207

over all t ∈ T gives us ∥wt∥ ≤ poly(n, d,G,H, log (poly(n, d)/β)) with probability at

least 1− β. Substituting β = 1√
n

yields the guarantee of Theorem 21.

Convex setting with Recursive Regularization. Since the iterates are restricted

to the constraint set, the final output, with probability one, lies in the set of radius

DT = 2T/2 ∥w∗∥ = O

⎛⎝√︄H
λ
∥w∗∥

⎞⎠ = O

⎛⎝H ∥w∗∥3/2 n

G

⎞⎠
which completes the proof.

208

Appendix C

Appendix for Chapter 4

C.1 Additional Related Work

We survey the works on machine unlearning - [CY15] were one of the first papers

to study the topic of machine unlearning. Their approach implements statistical

query (SQ) algorithms by estimating the statistical queries using training data. Since

the estimates are usually the mean of query evaluations computed on training data,

unlearning is cheap, as we only need to subtract the evaluation on the deleted point.

[BCCC+21] studies this problem, with the goal to design systems to efficiently handle

deletion requests. Their approach, called SISA, is essentially a divide-and-conquer

strategy, wherein the data is divided into disjoint sets, called shards, and a model

on each shard is trained separately and aggregated. Furthermore, they do several

check-pointing of states for each shard. In the average case, this provides a speedup of
(R+1)S

2 for S shards and R checkpoints per shard, over retraining. They however give no

guarantees on accuracy with this divide-and-conquer training method. [GGHVDM20]

is another work which uses (ϵ, δ)-differential privacy based unlearning criterion. They

study unlearning in generalized linear models, and propose a Newton-step based

method, leveraging connections with influence functions. Their computational cost is

O(d3) computations for one unlearning. They, however give no guarantees on excess

empirical risk achieved by the training method. Finally, the work of [ISCZ21] studies

209

batch unlearning in linear regression, with the goal to improve the computational

cost of batch k unlearning requests. Their method achieves a runtime of O(k2d)

as opposed to O(kd2) for a naive approach. However, their notion of unlearning is

again approximate, in the sense that model returned after unlearning is closest to

the exact unlearning model among models in the d dimensional subspace spanned

by the to-be-deleted k points. So it is easy to see that with larger k, the notion of

approximation improves, which explains the k2 term in the runtime as opposed to k.

Comparison with [NRSM21a]. Our algorithm guarantees provable exact unlearn-

ing with probabilistic runtime guarantees, whereas [NRSM21a] give algorithms with

deterministic runtime and provide only an approximate (ϵ, δ)-DP based unlearning

guarantee – the δ can be interpreted as probability of the failure event in Monte-Carlo

guarantees. To handle these discrepancies when comparing, our stated runtime is

the in-expecatation runtime. For a fixed runtime, we will look at regimes of ϵ and δ,

when the accuracy guarantee of [NRSM21a] is smaller than ours. We remind that a

large ϵ, δ means a weaker unlearning criterion. We have that with the same runtime,

the accuracy of [NRSM21a] is smaller than ours in the regime when their unlearning

parameters and hence the notion, is rather weak.

Considering the Lipschitz, smoothness parameters and diameter as constants,

for smooth convex functions and k edit requests, [NRSM21a] (Theorem 3.4) achieve

an excess empirical risk of O
(︃√

d
√

log(1/δ)
ϵnk

)︃2/5
with an unlearning runtime of k2 full-

gradient computations. On the other hand, our algorithms achieve an an excess

empirical risk of min
{︃

1√
ρn
,
(︂√

d
ρn

)︂4/5}︃
with ρk expected re-computations. Each re-

computation takes m · T gradient computations where m is the mini-batch size and

T the number of iterations. Therefore, in order to have the same runtime, we need

ρkmT = k2n ⇐⇒ ρ = kn
mT

. Firstly, note that as as long as d ≤ (ρn)3/4, noisy-

m-A-SGD has smaller excess empirical risk than sub-sample-GD - this are the two

210

regimes of interest. We now set m and T for both the algorithms: for Algorithm

19, m = ρn
T

and T = √ρn. This gives us ρ = kn
ρn
⇐⇒ ρ =

√
k, however ρ is the

total variation distance and is at most 1. Hence in regime d ≥ (ρn)3/4, our runtime

is always smaller than [NRSM21a]: kn as opposed to k2n gradient computations.

Even with ρ = 1, our excess empirical risk is O
(︂

1√
n

)︂
and the excess empirical risk of

[NRSM21a] is smaller than ours when
(︃√

d
√

log(1/δ)
ϵnk

)︃2/5
= O

(︂
1√
n

)︂
⇐⇒ ϵ√

log(1/δ)
=

Ω
(︂√

dn1/4

k

)︂
. In the second regime d < (ρn)3/4, we use Algorithm 9, wherein we have

mT = (ρn)2

d
. This gives us ρ = knd

(ρn)2 ⇐⇒ ρ =
√︂

kd
n

, and our excess empirical

risk is O
(︃(︂√

d
ρn

)︂4/5)︃
= O

(︂
1

(nk)2/5

)︂
. Therefore, excess empirical risk of [NRSM21a] is

smaller than ours when
(︃√

d
√

log(1/δ)
ϵnk

)︃2/5
= O

(︂
1

(nk)2/5

)︂
⇐⇒ ϵ√

log(1/δ)
= Ω (d). We

therefore have that unless k is very large, the accuracy of [NRSM21a] is smaller

than ours when ϵ and δ, take prohibitively large values which correspond to a weak

notion of approximate unlearning. We can similarly compare against Theorem 3.5 in

[NRSM21a], which will yield qualitatively similar conclusions.

We now compare our space complexity with that of [NRSM21a]. Firstly, note

that we need not consider regime d ≥ (ρn)3/4, since here we have better accuracy

than [NRSM21a], and our algorithm (sub-sample-GD) need not save any iterate. For

regime, d < (ρn)3/4, from Section C.7.3, the space complexity of noisy-m-A-SGD

is max
{︂

(ρn)2

d
, d3/4√ρn

}︂
= max

{︂
kn, (kn)1/4

}︂
, where we plugged in ρ =

√︂
kd
n

for our

runtime to be same as [NRSM21a]. Since d < (ρn)3/4, the maximum term is kn.

Hence, we get same runtime as [NRSM21a], better accuracy (for reasonable ϵ, δ) with

space complexity = O(kn) – so for moderate values of k, this is smaller than space to

store the dataset, which both our result and [NRSM21a] require.

211

C.2 Additional Discussion

C.2.1 Total Variation Stability from Optimal Transport

In this section, we give a didactic treatment of our approach to motivate the notion of

total variation stability. Consider neighbouring datasets S and S ′ and let P = A(S)

and Q = A(S ′) for some randomized algorithm A. The algorithm first computes on S,

and then observes edit requests which generate S ′ as the current dataset. To satisfy

exact unlearning , we need a procedure which moves P to Q. This is akin to the

well-studied optimal transport problem [Vil09], discussed in Section 1.2.4.1, which we

briefly recall below.

Given probability distributions P and Q over measurable space X , and a cost

function c : X × X → R, the goal is to find a transport plan π which minimizes the

expected cost: minπ∈Π(P,Q) E(x,y)∼πc(x, y).

A model of computation. Note that there is of course the trivial coupling in

which we generate independent samples from P and Q - this corresponds to re-

computation, which is not practical in general. Instead, we should correlate P and

Q so that transporting from P to Q can reuse the randomness (computation) used

for P . For this, we use the cost function in the optimal transport problem as a

surrogate of modelling computation. In the optimal transport problem, the cost is

typically a distance on the space, whereas we are concerned with computational cost.

So is there a distance function which corresponds to computational cost? Note that

the sequential nature of the problem already gives us samples generated from P ,

so a natural question is, can we use this to transport to Q? We can set the cost

function as c(x, y) =

⎧⎨⎩1 if x ̸= y

0 otherwise
. This corresponds to an oracle which charges

a unit computation if we use y which is different from x, which can correspond to

a recomputation. Under this simple model of computation, the optimal expected

212

computational cost becomes exactly equal to the total variation distance between P

and Q: infπ∈Π(P,Q) 1 {x ̸= y} - the maximal coupling characterization of total variation

distance.

TV Stability. The above establishes that if we want to transport P to Q using

minimum computation cost, the expected computation cost cannot be smaller than

the total variation distance between P and Q. Intuitively, this means that is least

1 − TV(P,Q) fraction of samples are representative for both P and Q. From the

sequential nature of our problem, when we generate P - the output on dataset S, we

don’t know what Q would be, since we don’t know the incoming edit request. Hence

a reasonable property to have in the algorithm is that its output is close in total

variation distance uniformly over all possible Q’s. This motivates our definition of

total variation stability.

Optimal Transport vs Unlearning: Unlike the optimal transport problem wherein

we are given P and Q, and the task is to find a coupling, in our setup, we have to

find an algorithm generating P and Q as well as the coupling. Moreover, for a fixed ρ,

there may be many algorithms which are ρ-TV stable. The goal therefore, is to find

among these algorithms, the one with the maximum accuracy for the (convex ERM)

problem, and for which we can design a corresponding efficient unlearning algorithm.

C.2.2 DP Convex ERM Algorithms for Unlearning

We first discuss an important distinction in the differential privacy and our unlearning

setup. In the DP setup, we have a curator which possesses the dataset, and an

analyst/adversary, against which the curator want to provide privacy. The analyst

queries the dataset, and the curator provides DP answers to the queries. The curator

can also reveal additional information pertaining to the algorithmic details, however,

it is beneficial to the curator to only release limited information. In particular, the

213

curator can chose to keep certain states of the algorithm secret. This could be done in

the case when only the marginals of the output satisfy a strong DP-guarantee. So, if the

curator were to release the secret state as well, the adversary can correlate information

and then the privacy level, which is now measured using the joint distribution of

output and state, degrades. In the noisy-m-A-SGD algorithm for example, the output

typically is the average or final iterate whereas the rest of iterates and mini-batch

indices bj’s are the secret state.

In the unlearning setup, there is no such adversary per se, or in the idealized

application, the curator is the adversary and the dataset owners wants it to have as little

control as possible. It is therefore natural to demand that the probability distribution

of the entire state maintained by the algorithm, and not just the output be exactly

identical after performing the unlearning operation. This, with slight differences,

is referred to as perfect unlearning in [NRSM21a], and what our algorithms satisfy.

We have argued that designing TV stable algorithms is a good start, and for a

moment suppose that the TV stability is same as DP. Then should we measure TV

stability between the joint distributions over the entire state? This would limit the

application of DP techniques in which keeping additional state hidden has stronger

privacy property. In that case, TV stability parameter, and hence the computational

cost of unlearning would be large. Interestingly, even though the previous work in

differentially private convex ERM, for example [BST14], show that the released iterate

(average/final iterate) is differentially private, the analysis is typically carried out

by first arguing, via a composition step, that all iterates together are differentially

private. This means that all iterates can be released without any additional cost of

privacy. This innocuous property arguably provides no benefit for privacy, but turns

out to be extremely beneficial to us in unlearning. However, even though the all the

iterates can be released, the mini-batches still need to kept secret. We handle this in

the unlearning algorithm using an estimation step - see paragraph titled “Estimation

214

of marginals" in Section 4.5.2.

C.3 sub-sample-GD

The algorithm which is superior in high dimensions, called sub-sample-GD, is just

vanilla mini-batch SGD. Herein, at each iteration, a mini-batch of size m is sub-

sampled uniformly randomly to compute the gradient, and make the update. Finally,

we save all the mini-batch indices, gradients and iterates to memory. We will see

that the unlearning algorithm presented (Algorithm 20) uses all the saved iterates.

However this is done only for ease of presentation - in Section C.7.3, we discuss a

simple efficient implementation (of the unlearning algorithm), which doesn’t need any

iterate, yet has the same unlearning time complexity.

Algorithm 19 sub-sample-GD(wt0 , t0)
Input: Initial model wt0 , data points {z1, . . . , zn} , T,m, η

1: for t = t0, t0 + 1 . . . , T do
2: Sample mini-batch bt of size m uniformly randomly
3: gt = 1

m

∑︁
j∈bt
∇ℓ(wt; zj)

4: wt+1 = P (wt − ηgt)
5: Save(bt, wt, gt)
6: end for

Output: ˆ︁wS = 1
T

∑︁T+1
t=1 wt

We now give guarantees on excess empirical risk for sub-sample-GD.

Proposition 3. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z. Algorithm

19, run with t0 = 1, η = min
{︂

1
2H ,

D
√
ρn

GT

}︂
, T = DH

√
ρn

G
, and m = max

{︂
G

√
ρn

DH
, 1
}︂
,

outputs ˆ︁wS which is min {ρ, 1}-TV-stable and satisfies E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

=

O
(︂
GD√
ρn

)︂
.

C.3.1 Unlearning for sub-sample-GD

At the start of the stream, at every iteration of sub-sample-SGD, we sample a mini-

batch of size m out of n points uniformly randomly, and then compute a gradient

215

using these samples - note that this is the only source of randomness in the algorithm.

As we progress along the stream observing edit requests, the number of available

data points changes. Therefore, if the algorithm were executed on this dataset of,

say ˜︁n points, at every iteration it would have sub-sampled m out of ˜︁n (and not n)

points. The way to account for this discrepancy is to simply adjust the sub-sampling

probability measure accordingly.

Coupling mini-batch indices. The main idea to unlearning in Algorithm 20 is

to couple the sub-sample indices. For deletion, we just look at each mini-batch, and

(literally) verify if the deleted point were used or not. If the deletion point was not

used in any iterations, then we don’t do anything, otherwise, we trigger a recompute.

In the case of insertion, there is no such way of selecting iterations in which the point

was sampled, because the inserted point was absent. However, we know that the

new point would have been sampled with probability m/(n+ 1). We can thus verify

by selecting each iteration with the same probability. We then replace a uniformly

sampled point in the mini-batch of that step by the inserted point. Algorithm 20

implements the above procedure.

Algorithm 20 Unlearning for sub-sample-GD
Input: Data point index j to delete or data point z to insert (index n+ 1)

1: for t = 1, 2 . . . , T do
2: Load(bt, gt, wt)
3: if deletion and j ∈ bt then
4: sub-sample-GD(wt, t) // Continue training on current dataset
5: break
6: else if insertion and Bernoulli

(︂
m
n+1

)︂
then

7: Sample i ∼ Uniform(bt)
8: g′

t = gt − 1
m

(∇ℓ(wt; zi)−∇ℓ(wt; z))
9: wt+1 = P (wt − η (g′

t + θt))
10: Save(wt+1, g

′
t, bt\ {i} ∪ {n+ 1})

11: sub-sample-GD(wt+1, t+ 1) // Continue training on current dataset
12: break
13: end if
14: end for

216

We state our main result for unlearning with Algorithm 20 below.

Proposition 4. (Algorithm 19, Algorithm 20) satisfies exact unlearning. Moreover,

for k edits, Algorithm 20 recomputes with probability at most 2kρ.

C.4 Proofs of Main Results

In this section, we give the proofs of main results, stated in Section 4.3, using the

results in the preceding sections.

C.4.1 Proof of Theorem 22

The proof follows by combining the guarantees for the two algorithms we present: sub-

sample-GD (Algorithm 19) and noisy-m-A-SGD (Algorithm 9), and their corresponding

unlearning algorithms: Algorithm 20 and Algorithm 10. We discuss these one by one.

From Proposition 3, we have that, given 0 < ρ ≤ 1, sub-sample-GD is ρ-TV stable and

has excess empirical risk bounded by O
(︂
GD√
ρn

)︂
. This holds at every point in the stream

by assumption that the number of samples are between n
2 and 2n. Furthermore, from

Proposition 4, we have that the unlearning algorithm satisfies exact unlearning at every

point in the stream, proving the first part of the claim for sub-sample-GD. Moreover, it

states that recompute probability for k edit requests is O(ρk). Finally, from Claim 7,

we have that there exist efficient implementations, such that the runtime of unlearning

for sub-sample-GD is O(max {k,min {ρ, 1} k · Training time}, where "Training time" is

the runtime of the corresponding learning algorithm - this means that re-computations

overwhelm the total unlearning time. This establishes all the guarantees for one

algorithm and recovers one of the upper bounds in the second claim.

The situation for the other algorithm is a little more involved. From Proposition 1,

for dataset S of n points, we have that, given 0 < ˜︁ρ ≤ 1, noisy-m-A-SGD is ˜︁ρ-TV

217

stable and its excess empirical risk is bounded as follows:

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
HD2

T 2 + GD√
Tm

+ GD
√
d

n˜︁ρ
)︄
,

where T is the number of iterations for noisy-m-A-SGD algorithm, and m the mini-

batch size. From Proposition 2, we have that the unlearning algorithm satisfies

exact unlearning (establishing the first claim) and recomputes, for k edit requests,

with probability O(˜︁ρk√T). Finally, from Claim 8, we have that there exist effi-

cient implementations, such that the runtime of unlearning for noisy-m-A-SGD is

O(max{k, kmin
{︂˜︁ρ√T , 1}︂ ·Training time}). In the statement of Theorem 22, we want

that the unlearning runtime be such that we recompute for a ρ fraction of edit requests

(as opposed to something dependent on T). Therefore, we substitute ˜︁ρ = ρ√
T

, and this

changes the excess empirical risk bound for noisy-m-A-SGD, as follows:

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
HD2

T 2 + GD√
Tm

+ GD
√
d
√
T

nρ

)︄
.

We use the largest mini-batch size, which does not hurt runtime, which is m =(︂
G
HD

)︂2
T 3. This simplifies the upper bound to HD2

T 2 + GD
√
d
√
T

nρ
. Optimizing the

trade-off, we have HD2

T 2 = GD
√
d
√
T

nρ
⇐⇒ T =

(︂
HD(nρ)
G

√
d

)︂2/5
, and the excess empirical

risk becomes E
[︂[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂]︂

= O
(︂
HD2

T 2

)︂
= O

(︃(︂
H1/4GD3/2√

d
(ρn)

)︂4/5)︃
– this

recovers the other term in the upper bound in Theorem 22. However, note that

Proposition 1 has an additional condition that T ≥ (n˜︁ρ)2

16m2 - we show that in our setting

of ˜︁ρ and m, this condition is equivalent to the excess empirical risk of noisy-m-A-

SGD being smaller than that of sub-sample-GD. Hence, the regime in which the

aforementioned condition is violated is the same regime in which it is better to use the

other sub-sample-GD algorithm, and therefore is benign. Setting m =
(︂

G
HD

)︂2
T 3 and

˜︁ρ = ρ/
√
T , the condition simplifies as T ≥ (nρ)2

16T ·T 6

(︂
HD
G

)︂2
⇐⇒ T 8 ≥ (nρ)2

16

(︂
HD
G

)︂4
⇐⇒(︂

HD(nρ)
G

√
d

)︂16/5
≥ (nρ)2

16

(︂
HD
G

)︂4
⇐⇒

(︂ √
d

(nρ)

)︂4/5
≤ 2√

nρ

(︂
HD
G

)︂1/5
⇐⇒

(︂
H1/4GD3/2√

d
(ρn)

)︂4/5
≤

2GD√
nρ

, where the final inequality indicates that the expected excess empirical risk

218

of noisy-m-A-SGD is at most that of sub-sample-GD, up to constants. The above

is established for dataset S but holds for any dataset Si in the stream using the

assumption that the number of samples are between n
2 and 2n.

Combining the above arguments finishes the proof of Theorem 22. ■

C.4.2 Proof of Theorem 23

We give two algorithms, sub-sample-GD (Algorithm 19) and noisy-m-A-SGD (Algo-

rithm 9), one for each of the upper bounds. From Proposition 3 and Corollary 7, we

have that, given 0 < ρ <∞, these are min {ρ, 1}-TV stable and their excess empirical

risk is bounded is O
(︂
GD√
ρn

)︂
and O

(︂
GD

√
d˜︁ρn)︂

respectively. Hence combining the above

by taking a minimum, establishes the claimed result. ■

C.4.3 Proof of Theorem 24

In all the lower bounds, we have a GD term - this is a trivial lower bound, since

if an algorithm is defined as A(S) = 0 (or any constant), then this is perfectly

TV stable (ρ = 0), and the expected excess empirical risk is upper bounded as
ˆ︁L(A(S);S) − ˆ︁L(w∗

S;S) ≤ G ∥A(S)− w∗
S∥ ≤ GD, where the first inequality uses G-

Lipschitzness of ˆ︁FS and the second the fact the both A(S) and w∗
S lie in a ball of

diameter D. Hence, attaining an excess empirical risk of GD is trivial, and we now

focus on deriving the other terms in the bounds.

Firstly, as discussed in [BST14], we consider G = D = 1, since a simple reduction

gives a factor of GD for general G and D. Furthermore, similar to [BST14], we

show that the problem of TV-stable convex ERM is at least as hard as that of TV

stable mean computation of a dataset with bounded mean - we state this reduction in

Proposition 10. We now focus on showing accuracy lower bounds for ρ-TV-stable mean

computation of dataset S of size n, with mean M
2 ≤ ∥µ(S)∥ ≤ 2M . The accuracy,

denoted by α, is defined as α2 = E ∥A(S)− µ(S)∥2, A is a ρ-TV stable algorithm,

219

and the expectation is taken over the algorithm’s randomness. The first part of

Theorem 24 follows Theorem 46 which is based on a simple reduction argument. This

gives us that α ≥ 1
ρn

with M = 1
ρn

. Plugging it in Proposition 10, this gives us that

excess empirical risk is lower bounded by Ω
(︂

1
ρn

)︂
. Similarly, the second part follows

from Theorem 47 which gives us α ≥ 1√
ρn

with M = 1√
ρn

- the condition α ≤ 1
4 in the

statement of Theorem 47 can be absorbed in the trivial lower bound GD. ■

C.5 Proofs for Section 4.5.1

Proof of Proposition 3. We first show that Algorithm 19 is min {1, ρ}-TV stable for

the aforementioned choice of number of iterations T and mini-batch size m. Consider

neighbouring dataset S and S ′ of n points which differs in one sample, without loss of

generality, say the nth sample. Let A(S) := ˆ︁wS and A(S ′) := ˆ︁wS′ denote the outputs

of Algorithm 19 on S and S ′ respectively. Since in Algorithm 19, the randomness

is only on indices, rather than actual data points, say that S = {1, 2, . . . , n}. Now

we consider neighbouring dataset S ′, which contains n + 1 or n − 1 samples. We

will now consider the case when S ′ contains n− 1 elements and the case with n+ 1

elements will follow analogously. Let n be the index present in S but absent in S ′

i.e. S ′ = {1, 2, . . . , n− 1}. Let the sigma-algebra on these sets be the power sets of S

and S ′ respectively, denoted by Pow(S) and Pow(S ′) respectively. Moreover, let µn,m

denote the sub-sampling probability measure on n points in S i.e it sub-samples m

out of n elements in S uniformly randomly. Let µ⊗T
n,m denote the product measure of

T of µn,m’s. We similarly define µn−1,m and µ⊗T
n−1,m for S ′.

We first extend the sigma-algebra for the probability spaces so that the random

variables µn,m and µn−1,m, are defined on a common probability space. For this, we will

just add an event where the index n can be sampled under µn−1,m with probability 0.

We define µ′
n,m as follows: for any set b ∈ Pow(S), µ′

n,m(b) =

⎧⎨⎩µn−1,m(b) if n ̸∈ b
0 otherwise

.

220

We similarly extend the sigma algebra for the product space with measure µ⊗T
n−1,m to

get µ′⊗T
n,m.

Observe that for fixed initialization w0 and other parameters, Algorithm A(S) and

A(S ′) is the same (deterministic) map from b = (b1, b2, . . . , bT) where bj ∈ [n]m to

W. They only differ because of different measures on the input space. Hence total

variation distance between A(S) and A(S ′) is just the total variation distance between

the push-forward measures A(S)#µ
⊗T
n,m and A(S ′)#µ

′⊗T
n,m which by using the fact that

A(S) ≡ A(S ′) and data-processing inequality, is at most the total variation distance

between µ⊗T
n,m and µ

′⊗T
n,m. Now the total variation distance can be bounded as,

TV(A(S),A(S ′)) ≤ TV(µ⊗T
n,m, µ

′⊗T
n,m) = sup

b∈Pow([n]m)T)

⃓⃓⃓
µ⊗T
n,m(b)− µ′⊗T

n,m(b)
⃓⃓⃓

= µ⊗T
n,m (b such that at least one bj contains n)

≤ Tµn,m(b1 contains n) = Tm

n

where the inequality follows using a union bound.

A similar argument works when S ′ is an neighbouring dataset of n+ 1 elements,

yielding a total variation bound of Tm
n+1 ≤

Tm
n

. Taking a uniform bound over all neigh-

bouring datasets S ′, we get that sup∆(S,S′)=1 TV(A(S),A(S ′)) ≤ Tm
n

. By definition of

TV distance, we trivially have that sup∆(S,S′)=1 TV(A(S),A(S ′)) ≤ 1. Therefore, set-

ting m = ρn
T

, we get the desired result that the output of Algorithm 19 is min {ρ, 1}-TV

stable.

We now proceed to the accuracy guarantee which follows directly by analysis of

SGD. We first show that the sub-sampling procedure produces unbiased gradients and

221

bound its variance. For a fixed model w, we have that

Eb
[︄∑︁

j∈b∇ℓ(w; zj)
m

]︄
=

∑︂
(n

m) choices for b

∑︁
j∈b∇ℓ(w; zj)
m
(︂
n
m

)︂

=

(︂
n−1
m−1

)︂
m
(︂
n
m

)︂ n∑︂
j=1
∇ℓ(w; zj)

=
∑︁n
j=1∇ℓ(w; zj)

n
,

where in the second equality, we use the observation that every zj appears in exactly(︂
n−1
m−1

)︂
terms over all choices for b. We now bound its variance, denoted by a V2 by

direct computation.

V2 = Eb
⃦⃦⃦⃦
⃦
∑︁
j∈b∇ℓ(w; zj)

m
− Eb

[︄∑︁
j∈b∇ℓ(w; zj)

m

]︄⃦⃦⃦⃦
⃦

2

= Eb
⃦⃦⃦⃦
⃦
∑︁
j∈b∇ℓ(w; zj)

m

⃦⃦⃦⃦
⃦

2

−
⃦⃦⃦⃦
⃦Eb

[︄∑︁
j∈b∇ℓ(w; zj)

m

]︄⃦⃦⃦⃦
⃦

2

=
∑︂

(n
m) choices for b

1(︂
n
m

)︂ 1
m2

⃦⃦⃦⃦
⃦⃦∑︂
j∈b
∇ℓ(w; zj)

⃦⃦⃦⃦
⃦⃦

2

−
⃦⃦⃦⃦
⃦
∑︁n
j=1∇ℓ(w; zj)

n

⃦⃦⃦⃦
⃦

2

In the first term, expanding the square and summing over all choices of b, we get

exactly
(︂
n−1
m−1

)︂
terms of the form ∥∇ℓ(w; zj)∥2 for j = 1 to n, and

(︂
n−2
m−2

)︂
cross terms

of the form ⟨∇ℓ(w; zi),∇ℓ(w; zj)⟩ for i ̸= j, i, j = 1 to n. Similarly, expanding the

second term produces both these kind of terms. Accumulating the coefficients of all

222

the terms, we get

V2 = Eb
⃦⃦⃦⃦
⃦
∑︁
j∈b∇ℓ(w; zj)

m
− Eb

[︄∑︁
j∈b∇ℓ(w; zj)

m

]︄⃦⃦⃦⃦
⃦

2

=
⎛⎝
(︂
n−1
m−1

)︂
m2
(︂
n
m

)︂ − 1
n2

⎞⎠ n∑︂
j=1
∥∇ℓ(w; zj)∥2 +

⎛⎝
(︂
n−2
m−2

)︂
m2
(︂
n
m

)︂ − 1
n2

⎞⎠ n∑︂
i,j=1,i ̸=j

⟨∇ℓ(w; zi),∇ℓ(w; zj)⟩

≤
(︃ 1
mn
− 1
n2

)︃
nG2 +

⃓⃓⃓⃓
⃓ m− 1
nm(n− 1) −

1
n2

⃓⃓⃓⃓
⃓

n∑︂
i,j=1,i ̸=j

∥∇ℓ(w; zi)∥ ∥∇ℓ(w; zj)∥

≤
(︃ 1
m
− 1
n

)︃
G2 +

⃓⃓⃓⃓
⃓ m− 1
nm(n− 1) −

1
n2

⃓⃓⃓⃓
⃓n(n− 1)G2

=
(︃ 1
m
− 1
n

)︃
G2 +

⃓⃓⃓⃓
⃓m− 1
m

− (n− 1)
n

⃓⃓⃓⃓
⃓G2

=
(︃ 1
m
− 1
n

)︃
G2 +

⃓⃓⃓⃓ 1
n
− 1
m

⃓⃓⃓⃓
G2

= 2
(︃ 1
m
− 1
n

)︃
G2 ≤ 2G2

m

where in the first inequality we used Cauchy-Schwartz inequality, and the fact the

G-Lipschitzness implies the gradient norms are bounded by G. Finally, in the second

last equality and the last inequality we used the fact that m ≤ n.

Since the sub-sampled gradients are unbiased, we can use the convergence guarantee

of SGD on smooth convex function (see Theorem 4.1 in [AZ18]) which when using

step size η ≤ 1
H

gives us

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
ηV2

(1− ηH) + D2

ηT

)︄

Using step size η ≤ 1
2H , the right hand side simplifies to 2ηV2 + D2

ηT
≤ 4G2η

m
+ D2

ηT
=

4G2Tη
ρn

+ D2

ηT
, where in the last equality, we substituted m = ρn

T
to ensure ρ TV-stability.

Balancing the trade off in η gives us η = D
√
ρn

GT
. Therefore setting η = min

{︂
1

2H ,
D

√
ρn

GT

}︂
gives us

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
GD
√
ρn

+ D2H

T

)︄

Setting T = DH
√
ρn

G
achieves the claimed result.

223

Proof of Proposition 1. We first prove the stability guarantee. For this, we use the

Rènyi-divergence based analysis used in differential privacy literature. Let P and Q

be probability distributions such that P is absolutely continuous with respect to Q

and have densities ϕP and ϕQ, respectively. For α ∈ (1,∞), the α Rènyi-divergence

between P and Q is defined as follows [R+61]:

Dα(P∥Q) = 1
α− 1 ln

(︃∫︂
fP (x)αfQ(x)1−αdx

)︃

Consider two neighbouring datasets S = {zj}j and S ′ =
{︂
z′
j

}︂
j

such that ∆(S, S ′) =

1, and let {b′
t}
T
t=1 and {w′

t}
T
t=1 denote the mini-batch indices and iterates of Algorithm

9 on dataset S ′ respectively. We look at iteration t, and fix all the randomness before

t i.e. fix wt (and w′
t), as well as randomness in sub-sampling mini-batch indices i.e.

fix bt. The α-Rènyi Divergence between wt+1 and w′
t+1 can be bounded as,

Dα(wt+1∥w′
t+1)

= Dα

(︄
P
(︄
ẘt − η

(︄∑︁
j∈bt
∇ℓ(ẘt; zj)
m

+ θt

)︄)︄ ⃦⃦⃦⃦
P
(︄
ẘt − η

(︄∑︁
j∈bt
∇ℓ(ẘt; z′

j)
m

+ θt

)︄)︄)︄

≤ Dα

(︄
ẘt − η

(︄∑︁
j∈bt
∇ℓ(ẘt; zj)
m

+ θt

)︄ ⃦⃦⃦⃦
ẘt − η

(︄∑︁
j∈bt
∇ℓ(ẘt; z′

j)
m

+ θt

)︄)︄

≤ Dα

(︄∑︁
j∈bt
∇ℓ(ẘt; zj)
m

+ θt

⃦⃦⃦⃦∑︁
j∈bt
∇ℓ(ẘt; z′

j)
m

+ θt

)︄

≤ 2αG2

m2σ2

where in the first and second inequality, we used post-processing property of Rènyi

divergence, and in the last inequality, we use the fact that datasets S and S ′ differ

in at most one sample, therefore
⃦⃦⃦⃦∑︁

j∈bt
∇ℓ(ẘt;zj)
m

−
∑︁

j∈bt
∇ℓ(ẘt;z′

j)
m

⃦⃦⃦⃦2
≤ 4G2

m2 . Hence the

divergence is between two multivariate Gaussians of same variance and with the square

of the separation of their means at most 2αG2

m2σ2 . Therefore, the inequality follows by

using the formula for Rènyi divergence between two such multivariate Gaussians.

We now unfix bt, and use the fact the bt is a uniform sample of m out of n

224

(or n − 1 or n + 1) indices. By privacy amplification by sub-sampling result in

[BBG18], for α ≤ 2, we will argue that the Rènyi divergence upper bound amplifies

to 32αG2

n2σ2 . There are certain subtleties about the application of this result, so we

explain, as follows. The first is that Theorem 9 stated in [BBG18], when considering

α ≤ 2, the right hand side simplifies as 1
α−1 log

(︂
1 + m2

n2
α(α−1)

2 4
(︂
exp

(︂
8G2

m2σ2

)︂
− 1

)︂)︂
≤

2αm2

n2

(︂
exp

(︂
8G2

m2σ2

)︂
− 1

)︂
≤ 32αG2

n2σ2 where the last inequality use the numeric inequality

exp (x) ≤ 1 + 2x when x ≤ 1.256; this means that we need the following condition
8G2

m2σ2 ≤ 1.256 - we will revisit this condition later. The second point is that Theorem

9 in [BBG18] holds integer α ≥ 2, which only leaves us with α = 2. In the subsequent

part of the proof, we will need to take α→ 1. This discrepancy can be accounted for

by using the fact the α-Rènyi Divergence is non-decreasing for α ∈ [0,∞] (see Theorem

3 in [VEH14]). Therefore the result holds for all α ≤ 2, and we can replace the upper

bound to be 64G2

n2σ2 The third and final point is that even though the amplification

result in [BBG18] is established under the neighbouring relation that one point is

replaced between datasets, it can be shown that the same result holds (perhaps upto

constants) when the neighbouring relation is add/delete one data-point; see Lemma 3,

[ACG+16a] for example. We now use adaptive sequential composition property of Rènyi

divergence (Proposition 1 in [Mir17]) which linearly accumulates the divergence across

iterations, yielding that the Rènyi divergence between the iterates (w1, w2, . . . , wT)

and (w′
1, w

′
2, . . . , w

′
T) is bounded as, Dα((w1, w2, . . . , wT)∥(w′

1, w
′
2, . . . , w

′
T)) ≤ 64TG2

n2σ2 .

An application of data-processing inequality gives us the same upper bound on the

Rènyi divergence between the final iterates ˆ︁wS and ˆ︁w′
S. We now use the result

that limα→1 Dα(ˆ︁wS∥ ˆ︁w′
S) = DKL(ˆ︁wS∥ ˆ︁w′

S) where DKL denotes the KL-divergence (see

Theorem 5 in [VEH14]). Hence we get that DKL(ˆ︁wS∥ ˆ︁w′
S) ≤ 64TG2

n2σ2 . Finally, we use

Pinsker’s inequality to further lower bound the left hand side by total variation

distance, which yields TV(ˆ︁wS∥ ˆ︁w′
S) ≤

√︃
DKL(ˆ︁wS∥ˆ︁w′

S)
2 ≤ 8

√
TG
nσ

. As remarked before, this

is a uniform bound over all neighbouring datasets. Finally, as before, we trivially have

225

that TV(ˆ︁wS∥ ˆ︁w′
S) ≤ 1; therefore setting σ = 8

√
TG
nρ

gives us that the algorithm’s output

is min {ρ, 1} TV-stable.

We now proceed to the accuracy guarantee. This follows simply by guarantee of

Accelerated SGD on smooth convex functions. We have already shown in Proposition 3

that the gradients computed by sub-sampling are unbiased and its variance bounded

by 2G2

m
. The mean-zero Gaussian noise added preserves unbiasedness but the variance

is bounded as,

V2 = E
[︄⃦⃦⃦⃦
⃦
∑︁
j∈bt
∇ℓ(ẘt; zj)
m

+ θt −∇ˆ︁L(ẘt;S)
⃦⃦⃦⃦
⃦
]︄2

= E
[︄⃦⃦⃦⃦
⃦
∑︁
j∈bt
∇ℓ(ẘt; zj)
m

−∇ˆ︁L(ẘt;S)
⃦⃦⃦⃦
⃦
]︄2

+ E [∥θt∥]2

≤ 2G2

m
+ σ2d

We now use Theorem 2 from [Lan12] - they use notation {βt}t and {γt}t for the

step size schedule of Accelerated SGD and set βt = t+1
2 and γt = t+1

2 γ. Even though

the updates of their A-SGD seem different than us, it can be verified that they are the

same with αt = βt+1(1− β−1
t) = 1−t

t+2 with α0 = 0 and η = γ. Finally, using step-size

η ≤ 1
2H , and appealing to Theorem 2 in [Lan12], we get,

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗;S)

]︂
≤ O

(︄
TηV2 + D2

ηT 2

)︄
= O

(︄
ηT

(︄
2G2

m
+ σ2d

)︄
+ D2

ηT 2

)︄

Let ˜︁G2 = 2G2

m
+ σ2d, balancing the trade-off in η gives us η = D˜︁GT 3/2 . Therefore,

setting η = min
{︂

1
2H ,

D˜︁GT 3/2

}︂
gives us

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗;S)

]︂
≤ O

(︄
HD2

T 2 +
˜︁GD√
T

)︄
≤ O

(︄
HD2

T 2 + GD√
Tm

+ σ
√
dD√
T

)︄

≤ O

(︄
HD2

T 2 + GD√
Tm

+ GD
√
d

nρ

)︄

Finally, note that when using the amplification lemma, we arrived at the condition
8G2

m2σ2 ≤ 1.256. Substituting σ = 8
√
TG
nρ

, this reduces to (nρ)2

8m2T
≤ 1.256 ⇐⇒ T ≥

(nρ)2

16m2 .

226

Proof of Corollary 7. We start with the result in Proposition 1, and balance the two

trade-offs: the first between the terms GD√
mT

and GD
√
d

ρn
, and the second between GD

√
d

ρn

and HD2

T 2 . Note that as long as GD√
mT
≥ HD2

T 2 ⇐⇒ m ≤ T 3G2

(HD)2 , the second term

is larger than the first. Optimizing the trade-off between second and third term

gives us GD√
mT

= GD
√
d

ρn
⇐⇒ T = (ρn)2

md
. Similarly, optimizing the trade-off between

the first and third term gives us GD
√
d

ρn
= HD2

T 2 ⇐⇒ T =
√︃

HD(ρn)
G

√
d

. Hence setting

T = max
(︃

(ρn)2

md
,
√︃

HD(ρn)
G

√
d

)︃
yields an expected excess empirical risk of O

(︂
GD

√
d

nρ

)︂
.

We now look at the given condition T ≥ (nρ)2

16m2 given in Proposition 1. We have set

T = max
(︃

(ρn)2

md
,
√︃

HD(ρn)
G

√
d

)︃
, there we need to ensure that (ρn)2

md
≥ (ρn)2

16m2 ⇐⇒ m ≥ d
16 ,

as well as
√︃

HD(ρn)
G

√
d
≥ (ρn)2

16m2 ⇐⇒ m ≥ 1
4

(︃
(ρn)3G

√
d

HD

)︃1/4
- this recovers the condition

m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)3G

√
d

HD

)︃1/4
}︄

in the Proposition statement. Combining all the

above arguments, we get that for any m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)3G

√
d

HD

)︃1/4
}︄

, setting T =

max
{︃

(ρn)2

md
,
√︃

HD(ρn)
G

√
d

}︃
, yields an expected excess empirical risk of O

(︂
GD

√
d

nρ

)︂
.

Remark 2. Note that in the above proof, if we use the stronger variance bound of

2H2
(︂

1
m
− 1

n

)︂
from sub-sampling (derived in the proof of Proposition 3), we get that

when doing full-gradient descent, the variance, as expected is zero, which yields a

running time of T =
√︂

HDρn

G
√
d

.

Corollary 7. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z. For any

0 < ρ < ∞, Algorithm 9, run with t0 = 1,m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)3G

√
d

HD

)︃1/4
}︄

, η =

min

⎧⎨⎩ 1
2H ,

D(︂
G√
m

+σ
)︂
T 3/2

⎫⎬⎭, α0 = 0, αt = 1−t
t+2 , σ = 8

√
TG
nρ

, and T = max
{︂

(ρn)2

md
,
√︂

HDρn

G
√
d

}︂
outputs ˆ︁wS which is min {ρ, 1}-TV stable and satisfies E

[︂ ˆ︁FS(ˆ︁w)− ˆ︁FS(w∗
S)
]︂

=

O
(︂
GD

√
d

ρn

)︂
.

Remark 3. The choice of T in Corollary 7 yields that the largest mini-batch size that

can be set, without hurting runtime, is m =
(︃

(ρn)3G√
d

3
HD

)︃1/2
=
(︂

G
HD

)︂2
T 3. Furthermore,

the condition m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)3G

√
d

HD

)︃1/4
}︄

yields (ρn) ≥
(︃
HD(

√
d)7

256G

)︃1/3
.

227

Next we show that the upper bound on total variation stability parameter of

Algorithm 9 derived in Proposition 1 is tight in all problem parameters, upto constants.

Proposition 5. There exists neighbouring datasets S and S ′ of n points, and

smooth G-Lipshcitz convex functions ℓ and constraint set W such that the total

variation distance between iterates produced by Algorithm 9 run on datasets S and

S ′, denoted by {w1, w2, . . . , wT} and {w′
1, w

′
2, . . . , w

′
T} respectively, is bounded as

TV((w1, w2, . . . , wT) , (w′
1, w

′
2, . . . , w

′
T)) ≥ min

{︂
Ω
(︂
G

√
T

nσ

)︂
, 1
}︂
.

Proof of Proposition 5. We first prove this without projection - let the constraint set

W = Rd, and so the projection P is the identity map. Also, for simplicity, let the

initial model be 0. Consider data sets S and S ′ such that all points are 0 but the nth

differing point. Let the nth point of S be −Ge1 and that of S ′ be Ge1, where e1 is the

first canonical basis vector. Let the function ℓ(w; z) = ⟨w, z⟩. The gradients are just

data points z, therefore gradients are 0 on all but the differing points, wherein in the

differing point in dataset S, the gradient is a constant −Ge1 and for dataset S ′, it is

Ge1. Consider the map Ψ : (z1, z2, . . . , zT)→ zT ; using data processing inequality and

this map, we have that

TV((w1, w2, . . . , wT) , (w′
1, w

′
2, . . . , w

′
T))

≥ TV(Ψ (w1, w2, . . . , wT) ,Ψ (w′
1, w

′
2, . . . , w

′
T))

= TV(wT , w′
T)

We now focus on bounding the total variation distance between the last iterates.

Furthermore, by data-processing inequality, we can get rid of the step size scaling,

and therefore can consider the last iterates as just the sum of all gradients. By simple

calculations, we get that wT is a mixture of multivariate Gaussians, all with variance

Tσ2I but with varying means: Ge1, 2Ge1, . . . , TGe1, similarly for w′
T . We denote the

mixtures probabilities by πi where the ith conditional distribution, denoted by wiT

228

and w′i
T respectively, has means iGe1 and −iGe1 respectively. Also, we denote the

conditional probability densities of the ith distribution by ϕiS(w) and ϕiS′(w) respectively.

We will show that the total variation between these mixtures is expected total variation

distance between the mixture components. This follows due the symmetry between

these two mixtures, which implies that the set that achieves the total variation distance

is {w : w1 ≥ 0}. We can therefore write the total variation distance as,

TV(wT∥w′
T) = 1

2 ∥ϕS(w)− ϕS′(w)∥1 =
∫︂
w1≥0

ϕS(w)− ϕS′(w)dw

=
∫︂
w1≥0

∑︂
i

πi(ϕiS(w)− ϕjS′(w))dw =
∑︂
i

πi

∫︂
w≥0

(ϕiS(w)− ϕjS′(w))dw

=
∑︂
i

πiTV(wiT , w′i
T) = Ω

(︄∑︂
i

πi
2Gi

m
√
Tσ

)︄
= Ω

(︄
2G

m
√
Tσ

E [i]
)︄

= Ω
(︄

2G
√
T

nσ

)︄

where in the inequality, we use the fact that wiT and w′i
T are Gaussians with means

separated by 2G, and variance being Tσ2I and use the lower bound result on TV

between high-dimensional Gaussians [DMR18]. Finally, in the last equality, we

compute the Expected value of i under the mixture distribution - recall that i is a

sum of T Bernoulli random variables with bias m
n

, the expectation of which is Tm
n

.

We now argue why projection doesn’t change the above claim. Note the with

the projection, all the Gaussians in the mixture are truncated forming a discrete

distributions at the boundary of the constraint set. The probability mass on either

sides of the (original) mean is unchanged. Hence {w : w1 ≥ 0} is still the witness

set of total variation distance between the mixtures, and the total variation distance

in both constrained/unconstrained cases is the same. The same holds for the total

variation between the corresponding mixture components. These observations suffices

for application of proof of the unconstrained case. Finally, since TV distance, by

definition is upper bounded by 1 - this gives a trivial lower bound of 1, and hence the

TV distance is lower bound by min
{︂
Ω
(︂
G

√
T

nρ

)︂
, 1
}︂
.

229

C.6 Proofs for Section 4.5.2

We introduce some notation and setup the roadmap. In the start of the stream, we

have a model trained on the initial dataset of n samples. We then observe an insertion

or deletion request. We enumerate the data points from 1 to n, and without loss of

generality, assume that the nth sample is to be deleted, and the inserted sample has

index n+ 1. We want to show that the unlearning algorithm satisfies exact unlearning

at every time point in the stream, and what suffices is to argue that this holds for

one edit request, since by mathematical induction it then holds for the entire stream.

For one edit request, we will show the following: 1. unlearning (deletion/insertion)

algorithm is a valid transport, and 2. the probability of recompute is small, and we

will see that together these will imply, that it is a coupling, with large enough measure

of the diagonal.

Let µn,m denote the sub-sampling probability measure to samplem out of n elements

uniformly randomly. In the deletion and insertion algorithms, we replace some mini-

batch indices in some iterations - let these operations be denoted by Del and Ins

respectively. To elaborate, Del is a (deterministic) map from ([n]m)T to ([n− 1]m)T

and Ins is a map from ([n]m)T to ([n+ 1]m)T . For an input b ∈ ([n]m)T , we have

that b ∼ µ⊗T
n,m. Furthermore, define µdel⊗T

n,m := Del#µ
⊗T
n,m and µins⊗T

n,m := Ins#µ
⊗T
n,m. An

important observation is that in the unlearning Algorithm 20, the sub-sampled indices

b are drawn from a product distribution µ⊗T
n,m and in each iteration of Algorithm 20

or Algorithm 10, the maps Del and Ins act component-wise and symmetrically. This

implies that Del(b) = [del(b1), del(b2), . . . , del(bT)] where del : [n]m → [n − 1]m is

the function which describes one iteration of the unlearning algorithm for handling

mini-batch indices. We similarly have function ins : [n]m → [n + 1]m for insertion.

We finally define µdel
n,m := del#µn,m and µins

n,m := ins#µn,m - these are the probability

measures induced on the sub-sampling indices by deletion and insertion operations,

230

respectively.

C.6.1 Unlearning for sub-sample-GD

We first show that µdel
n,m, the probability distribution, induced at a given iteration

during deletion, over mini-batch indices b ∈ [n]m is a transport.

Claim 1 (Deletion). For any set b ∈ [n]m, we have that µdel
n,m(b) = µn−1,m(b)

Proof of Claim 1. First note that if the verification is unsuccessful, then a recompute

is triggered and therein at each iteration, we drawn b ∼ µn−1,m. Therefore, µdel
n,m(b) =

µn−1,m(b) follows trivially. We now argue for the other case. The verification is

successful if the deleted point was not present in any of iterations, i.e. at any iteration

the sub-sample batch bt doesn’t contain the deleted point z. The measure µdel
n,m is

therefore just the probability under the original sub-sampling measure µn,m conditioned

on the event that z ̸∈ b. We therefore have,

µdel
n,m(b) = µn,m(b| {z ̸∈ b}) = µn,m(b ∩ {z ̸∈ b})

µn,m({z ̸∈ b})

By direct computation, µn,m({z ̸∈ b}) = 1−µn,m({z ∈ b}) = 1− (n−1
m−1)
(n

m) = 1−m
n

. We now

look at two choices for b. First suppose z ∈ b, then the numerator µn,m(b∩{z ̸∈ b}) = 0,

which gives us that µdel
n,m(b) = 0 = µn−1,m(b). We now look at a b such that z ̸∈ b. We

have,

µdel
n,m(b) = µn,m(b)

µn,m({z ̸∈ b}) =
1/
(︂
n
m

)︂
1−m/n = n

n−m
(n−m)!m!

n!

= (n−m− 1)!m!
(n− 1)! = 1(︂

n−1
m

)︂ = µn−1,m(b)

Similarly, for insertion, we show that µins
n , the probability distribution, induced

at a given iteration during insertion, over mini-batch indices b ∈ [n]m, is a is valid

transport.

231

Claim 2. For any set b ∈ [n+ 1]m, we have that µins
n,m(b) = µn+1,m(b)

Proof of Claim 2. Let ν denote the uniform probability measure over n+ 1−m ele-

ments. Given b, we consider two cases based of whether last/inserted index n+ 1 lies

in b or not. In the first case, we know that the outcome of Bernoulli(m/(n+ 1)) must

have been 1 i.e. the iteration was selected. Furthermore, in that case, the inserted

point would have replaced some other point not in b - the total number of possibilities

are n + 1 −m. Let Ei be event that the inserted point replaced the ith data point,

whose index we denote by si. Note that the events E ′
is are disjoint and the event

b is ∪n+1−m
i=1 Ei. Furthermore, µins

n,m(Ei) = µins
n,m(original subsample is b\ {n+ 1} ∪

{si} | {si} replaced)µins
n,m({si} replaced)) = µn,m(b\ {n+ 1} ∪ {si} | {si})ν({si}) =

1
(n

m−1)
1

(n+1−m) . We therefore have that

µinsn (b) = m

n+ 1µ
ins
n (∪n+1−m

i=1 Ei) = m

n+ 1

n+1−m∑︂
i=1

µinsn (Ei)

= m

n+ 1

n+1−m∑︂
i=1

1(︂
n

m−1

)︂ 1
(n+ 1−m) = m

n+ 1
1(︂
n

m−1

)︂ = m(m− 1)!(n− (m− 1))!
(n+ 1)n!

= 1(︂
n+1
m

)︂ = µn+1,m(b)

In the other case, we know that Bernoulli(m/(n + 1)) resulted in 0, so there is no

replacement. Therefore, we have

µinsn (b) =
(︃

1− m

n+ 1

)︃ 1(︂
n
m

)︂ = (n+ 1−m)(n−m)!m!
n!(n+ 1) = 1(︂

n+1
m

)︂ = µn+1,m(b)

Coupling. We formally describe the coupling constructed by the unlearning Algo-

rithm 20. We first the discuss deletion case - consider datasets S and S ′ of sizes n

and n− 1 respectively, and wlog assume that the last sample of S differs. We first

sample b = [b1, b2, . . . , bT] ∼ µ⊗T
n,m. We set b(1) = b. For each j ∈ T , if n ∈ bj, then

232

sample b(2)
j ∼ µn−1,m, otherwise set b(2)

j = bj. This produces the coupled mini-batches

(b(1),b(2)) for deletion.

For insertion, we have datasets S and S ′ of sizes n and n + 1 respectively, and

again assume that the last of point of S ′ differs. Sample b = [b1, b2, . . . , bT] ∼ µ⊗T
n,m.

and set b(1) = b. Now sample {cj}Tj=1, where cj ∼ Bernoulli
(︂
m
n

)︂
, if cj = 1, then

sample uniformly a point in b
(2)
j , and replace it with n+ 1. Otherwise set b(2)

j = bj,

which gives us the coupled mini-batches (b(1),b(2)).

It is easy to see that the above procedure is how Algorithm 20 handles insertions

and deletions going from S to S ′. We first show that this is a valid coupling.

Claim 3. For the coupling described above, for any b,

1. P
[︂
b(1) = b

]︂
= µ⊗T

n (b)

2. P
[︂
b(2) = b

]︂
= µ⊗T

n−1(b) (deletion), P
[︂
b(2) = b

]︂
= µ⊗T

n+1(b) (insertion)

Proof of Claim 3. Follows immediately from Claims 1 and 2 .

We now show that the probability of disagreement under the above coupling is

upper bounded by k times TV-stability parameter of Algorithm 19.

Claim 4. For the ρ-TV stable Algorithm 19, under the coupling described above, the

following holds

P(b(1),b(2))[b(1) ̸= b(2)] ≤ ρ

Proof. For deletion, we have,

P(b(1),b(2))[b(1) ̸= b(2)] = P(b(1),b(2))[∃j ∈ [T] : b(1)
j ̸= b(2)

j]

= Pb[∃j ∈ [T] : n ∈ bj]

≤ Tm

n

233

For insertion, we have

P(b(1),b(2))[b(1) ̸= b(2)] = Pb,c[∃j ∈ [T] : cj = 1] ≤ Tm

n

In Proposition 3, we showed that the total variation distance of the algorithm

under change of one point is at most Tm
n

= ρ, which completes the proof.

We are now ready to prove Proposition 4.

Proof of Proposition 4. The following argument is for deletion, but the insertion case

follows similarly. Consider dataset S and S ′ of n points and n− 1 points respectively,

differing in one sample. As in the proof of Proposition 3, we embed the randomness for

Algorithm 19 executed on S and S ′ into a common probability space. Therefore, similar

to the proof of Proposition 3 given the datasets (and other parameters), Algorithm

19, A(S) is a deterministic map from sub-sampled indices b = (b1, b2, . . . , bT) to the

model: A(S) : b→W , where bj ∈ [n]m, for both datasets. Hence, what suffices is to

show that the input probability measure µ⊗T
n,m is transported to the one that would

have been produced on the current dataset S ′ i.e µ⊗T
n−1,m - this follows from Claim 3.

Hence it follows that the output generated by Algorithm 19 has the same measure

as A(S)#µ
⊗T
n−1,m, which proves first part of the claim. The probability of recompute,

being at most ρ, for one edit, follows directly from 4. Finally, from Remark 1, for k

edits, and the assumption the number of samples throughout the stream is between

n/2 and 2n, the recompute probability is at most 2kρ.

C.6.2 Unlearning for noisy-m-A-SGD

C.6.2.1 Coupling mini-batches

In this section, we show that Algorithm 10 transports sub-sampling probability

measures while handling edit requests. We remind that µdel
n,m denotes the probability

measure induced on the sub-sampled indices by the deletion procedure, in any iteration.

234

We show that, for any mini-batch, the probability mass of the mini-batched indices

under µdel
n,m is same as that under the sub-sampling measure µn−1,m.

Claim 5. For any set b ∈ [n− 1]m, we have that µdel
n,m(b) = µn−1,m(b)

Proof of Claim 5. Firstly, note that deletion uses additional randomness which is

used to uniformly sample one element from n− (m− 1) elements - let ν denote the

uniform probability measure on n− (m− 1) elements. Let E be the event that the

nth was sub-sampled originally, and therefore replaced upon verification. By direct

computation µn,m(E) = m
n

. We can therefore write µdel
n,m(b) as follows

µdel
n,m(b) = µdel

n,m(b|E)µn,m(E) + µdel
n,m(b|Ec)µn,m(Ec)

Under event E, we have that the deleted index was replaced. But it can be any

element of b that rose out of this replacement. Hence we decompose the event b|E into

events Ei’s, where Ei corresponds to the event that bi was replaced. We have that

b|E = ∪mi=1Ei, and furthermore, due to the uniform measure, µdel
n,m(Ei) = µdel

n,m(Ej)∀i, j.

Note that in the event Ei, we require that the original sub-sampling measure on n

points µn,m to have produced the set b\bi ∪ {n} and then a uniform bi is drawn upon

replacement. Therefore, µdel
n,m(Ei) = µn,m(b\bi∪{n})ν(bi) = 1

(n−1
m−1)

1
n−1−(m−1) . Similarly,

when the event Ec occurs, probability of outputting b corresponds to the event when

b was generated using the original sub-sampling measure µm (and no additional

randomness used upon verification). Therefore, we get µdel
n,m(b|Ec) = µn,m(b|Ec) =

235

1
(n−1

m) . Plugging these in, and with simple calculations, we have

µdel
n,m(b) =

m∑︂
i=1

µdel
n,m(Ei)µn,m(Ei) + µdel

n,m(b|Ec)µn,m(E)

=
m∑︂
i=1

µn,m(b\bi ∪ {n})ν(bi)
m

n
+ 1(︂

n−1
m

)︂ (︃1− m

n

)︃

= m(︂
n−1
m−1

)︂ 1
n− 1− (m− 1)

m

n
+ 1(︂

n−1
m

)︂ (︃1− m

n

)︃

= 1(︂
n−1
m

)︂ + m

n

⎛⎝ m(︂
n−1
m−1

)︂
(n− 1− (m− 1))

− 1(︂
n−1
m

)︂
⎞⎠

= 1(︂
n−1
m

)︂ + m

n

⎛⎝m(m− 1)!(n− 1− (m− 1))!
(n− 1)!(n− 1− (m− 1)) − 1(︂

n−1
m

)︂
⎞⎠

= 1(︂
n−1
m

)︂ + m

n

⎛⎝ 1(︂
n−1
m

)︂ − 1(︂
n−1
m

)︂
⎞⎠ = 1(︂

n−1
m

)︂ = µn−1,m(b)

Similarly, for insertion, we now show that the probability mass of any mini-batch

under µins
n,m, the probability measure induced by insertion on the n+ 1 data points, is

same as that under µn+1,m.

Claim 6. For any set b ∈ [n+ 1]m, we have that µins
n,m(b) = µn+1,m(b).

Proof of Claim 6. Same as that of Claim 2.

C.6.2.2 Lemmas for reflection coupling

We state and prove some results about reflection mapping and couplings.

Lemma 26. Let P and Q be probability distributions over Rd. Let ψ : Rd → Rd be

a bijection such that ϕP (ψ(x)) = ϕQ(x), ϕP (ψ−1(x)) = ϕQ(x) and
⃓⃓⃓
det

(︂
dψ(x)
dx

)︂⃓⃓⃓
= 1,

where dψ(x)
dx

is the Jacobian of the multivariate map ψ. Let x ∼ P be a sample from P .

Let y = x if Unif(0, 1) ≤ ϕQ(x)
ϕP (x) , otherwise y = ψ(x). Then (x, y) is a maximal coupling

of P and Q.

236

Proof. We first show that y is a sample from Q. Let E be an event in the range of Q.

Let accept be the event when u ∼ Unif(0, 1), u ≤ ϕQ(x)
ϕP (x) . We have,

P [y ∈ E] = P [y ∈ E, accept] + P [y ∈ E, reject]

= Ex,u
[︄
1 {x ∈ E}1

{︄
u ≤ ϕQ(x)

ϕP (x)

}︄]︄
+ Ex,u

[︄
1 {ψ(x) ∈ E}1

{︄
u >

ϕQ(x)
ϕP (x)

}︄]︄

= Ex
[︄
1 {x ∈ E}P

[︄{︄
u ≤ ϕQ(x)

ϕP (x)

}︄ ⃓⃓⃓⃓
x

]︄]︄

+ Ex
[︄
1 {ψ(x) ∈ E}P

[︄{︄
u >

ϕQ(x)
ϕP (x)

}︄ ⃓⃓⃓⃓
x

]︄]︄

=
∫︂
Rd
1 {x ∈ E}min

{︄
1, ϕQ(x)
ϕP (x)

}︄
ϕP (x)dx

+
∫︂
Rd
1 {ψ(x) ∈ E}

(︄
1−min

{︄
1, ϕQ(x)
ϕP (x)

}︄)︄
ϕP (x)dx

=
∫︂
Rd
1 {x ∈ E}min {ϕP (x), ϕQ(x)} dx

+
∫︂
Rd
1 {ψ(x) ∈ E}max {0, ϕP (x)− ϕQ(x)} dx

For the second term, we now do change of variable - let v = ϕ(x) - using the

given properties of ψ, we have ϕP (x) = ϕP (ψ−1(v)) = ϕQ(v) and ϕQ(x) = ϕP (v).

Furthermore dv =
⃓⃓⃓
det

(︂
dψ(x)
dx

)︂⃓⃓⃓
dx = dx. Finally, we are integrating over Rd, and since

ϕ is a bijection, it can flip the limits of some of the coordinates, however, that is

taken into account with using the absolute value of the determinant of the Jacobian.

The second term therefore becomes
∫︁
Rd 1 {v ∈ E}max {0, ϕQ(v)− ϕP (v)} dv. We now

combine the integrands of both the terms, and substitute v = x as the variable in the

second term. This gives us,

P [y ∈ E] =
∫︂
Rd
1 {x ∈ E} (min {ϕP (x), ϕQ(x)}+ max {0, ϕQ(x)− ϕP (x)}) dx

Note that for a fixed x, if ϕP (x) ≤ ϕQ(x), the integrand becomes

1 {x ∈ E} (ϕP (x) + ϕQ(x)− ϕP (x)) = 1 {x ∈ E}Q(x). On the other hand, if ϕP (x) >

ϕQ(x), the integrand becomes 1 {x ∈ E}ϕQ(x). Hence, for all cases, we get that,

P [y ∈ E] =
∫︂
Rd
1 {x ∈ E}ϕQ(x)dx = Q(E)

237

We now show that it is a maximal coupling i.e. the probability of accept is

1− TV(P,Q). We have,

P [accept] = Ex,u
[︄
1

{︄
u ≤ ϕQ(x)

ϕP (x)

}︄]︄
=
∫︂
Rd

min
{︄

1, ϕQ(x)
ϕP (x)

}︄
ϕP (x)dx

=
∫︂
Rd

min {ϕP (x), ϕQ(x)} dx = 1− TV(P,Q)

Lemma 27. Let P and Q be two isotropic probability distributions over Rd with means

µP and µQ such that for any vectors x, y, ϕP (x) = ϕQ(y) if ∥x − µP∥ = ∥y− µQ∥.

Given vector u in Rd, the reflection of u under (Q,P), v = reflect(u, µQ, µP) =

µQ + (µP − u), satisfies:

1. Invertibility: u = uQ + (µP − v)

2. ϕQ(v) = ϕP (u) and ϕP (v) = ϕQ(u)

3.
⃓⃓⃓
det

(︂
d reflect(u,µQ,µP)

du

)︂⃓⃓⃓
= 1

Proof of Lemma 27. The proofs follows immediately using the given assumptions.

C.6.2.3 Coupling Markov chains

We setup some notation to describe the coupling that Algorithm 10 constructs. The

following discussion is for deletion of index n, but it can be verified that the arguments

naturally extend to the insertion case. We remind that µn,m denotes the distribution

of sampling m elements uniformly randomly from [n], and mini-batches bj ∼ µn,m.

Furthermore, we will use bj = [b1, b2, . . . , bj] denote the set of indices upto j. For

dataset S and mini-batch indices b, let the gradient ∇ˆ︁L(w, zb;S) := 1
|b|
∑︁
j∈b∇ℓ(w; zj).

Define ˜︁wj+1 := ẘj − η∇ˆ︁L(ẘj; zbj
), w̄j+1 := ˜︁wj+1 − ηθj and wj+1 := P(w̄j+1). Note

that ˜︁wj is also function of bj but this dependency is not highlighted for notational

simplicity.

238

The iterates and the mini-batches [(w̄2, b1), (w̄3, b2), . . . , (w̄T+1, bT)] produced by

Algorithm 9 is a sample from a T -step first order Markov Chain over an uncountable

state space Rd × [n]∗. We remark that w̄1 is a constant initialization, and so isn’t

considered. Let P be the joint distribution over the T iterates × mini-batches. The

joint density of P can be factored as,

ϕP ((w̄2, b1), (w̄3, b2), . . . , (w̄T+1, bT)) = ϕP (w̄2, b1)ϕP (w̄3, b2|w2) . . .

· ϕP (w̄T+1, bT |wT , wT−1)

where ϕP (w̄2, b1) = ϕ̄P (w̄2|b1)µn,m(b1) and ϕ̄P (w̄2|b1) is the density

of N (˜︁w2, η
2σ2I). Similarly, the conditionals ϕP (w̄j, bj−1|wj−1, wj−2) =

ϕ̄P (w̄j|bj−1, wj−1, wj−2)µn,m(bj−1). Furthermore, let ˜︁P denote the marginal of

[w̄2, w̄2, . . . , w̄T+1], the joint density of which can be factored as,

˜︁ϕ˜︁P (w̄2, w̄3, . . . , w̄T+1) = ϕ˜︁P (w̄2)ϕ˜︁P (w̄3|w2) . . . ϕ˜︁P (w̄T+1|wT , wT−1)

where ϕ˜︁P (w̄2) = Eb1ϕP (w̄2, b1), and the conditional ϕ˜︁P (w̄j|wj−1, wj−2) =

Ebj−1ϕ̄P (w̄j, bj−1|wj−1, wj−2). Finally, given a fixed mini-batch sequence b =

{b1, b2, . . . , bT}, let Pb denote the joint conditional distribution of {w̄2, w̄3, . . . , w̄T+1}

given b. In this case, Pb factorizes as:

ϕPb(w̄2, w̄3, . . . , w̄T+1) = ϕPb1
(w̄2)ϕPb2

(w̄3|w2) . . . ϕPbT
(w̄T+1|wT , wT−1)

where ϕPb1
(w̄2) = ϕ̄P (w2|b1) and ϕPbj−1

(w̄j|wj−1, wj−2) = ϕ̄P (w̄j|bj−1, wj−1, wj−2). We

similarly have a Markov Chain to generate the iterates for dataset S ′ - call this joint

distribution over iterates and mini-batches as Q, the marginals over iterates as ˜︁Q and

for a given b ∼ {µn−1,m}⊗T , the conditionals over the iterates as Qb.

We now describe how the unlearning Algorithm 10 constructs a coupling between

P and Q to generate (w̄(1), w̄(2)). We first describe the coupling of mini-batch

indices. Sample b ∼ (µmn)⊗T , let b(1) = b. We now look at all b(1)
j ∈ b(1): if

n ̸∈ b(1)
j , then let b(2)

j = b
(1)
j , otherwise for each such b

(1)
j , we replace n by randomly

239

Mini-batches b1 b2 b3 bT

w̄2w̄1 w̄3 w̄4 w̄T+1Iterates

. . .

. . .

Figure C-1. Markov chain for noisy-m-A-SGD Algorithm

sampling an index from [n]\b(1)
j , and call this b(2)

j . We then define the ordered set

b(2) =
{︂
b

(2)
j

}︂T
j=1

. From Claim 5, this is a valid coupling of mini-batch indices. Sample

w̄ = [w̄2, w̄3, . . . , w̄T+1] ∼ Pb(1) , which corresponds to training with Algorithm 9 on

dataset S. Set w̄(1) := w̄. To generate w̄(2), we do rejection sampling steps at each

iteration. At the first step, we sample u1 ∼ Unif(0, 1), and check if u1 ≤
ϕQ

b(2) (w̄2)
ϕP

b(1) (w̄2) . If

the step succeeds, then we proceed to the second iteration, wherein we again do a step

of rejection sampling with ratio of conditional densities and so on. However, if anyone

of the rejection sampling step fails, lets say the tth step, then we do a reflection of

iterate w̄t+1 about the mid-point of the means of Pb(1)(·|wt, wt−1) and Qb(2)(·|wt, wt−1)

, which are ˜︁w(1)
t+1 = wt − η∇ˆ︁L(wt; zbt) and ˜︁w(2)

t+1 = wt − η∇ˆ︁L(wt; zb′
t
) respectively. Set

w̄
(2)
t+1 = reflect(w̄t+1, ˜︁w(2)

t+1, ˜︁w(1)
t+1). After the reflection, we continue training on dataset

S ′ which corresponds to continue sampling from the (t + 1)th step of the Markov

chain for Qb(2) conditioned on the tth sample being w̄(2)
t . This generates the random

variables w̄(1) and w̄(2).

We now show that this is indeed a coupling.

Lemma 28. For any measurable set E ⊆ RdT , P
[︂
w̄(2) ∈ E

]︂
= ˜︁Q(E)

Proof of Lemma 28. We will first show that P
[︂
w̄(2) ∈ E|(b(1),b(2))

]︂
= Qb(2)(E).

The proof is based on induction on the length of the Markov chain T . Define

w̄(2)
T :=

{︂
w̄

(2)
2 , · · · , w̄(2)

T−1

}︂
. The key to the proof is the observation that the marginals

P
b

(1)
1

(·) and Q
b

(2)
1

(·) are Gaussian N (˜︁w(1)
2 , η2σ2I) and N (˜︁w(2)

2 , η2σ2I) respectively, and

the conditionals P
b

(1)
j

(·|wj) and Q
b

(2)
j

(·|wj) are also Gaussian N (˜︁w(1)
j+1, η

2σ2I) and

240

N (˜︁w(2)
j+1, η

2σ2I).

For T = 1, we only care about the marginals P
b

(1)
1

(·) and Q
b

(2)
1

(·), which as argued

before, are normally distributed. From Lemma 27, we have established that the

reflection map satisfies the conditions in Lemma 26. Combining these, we have that

the base case T = 1 follows from the reflection coupling result stated as Lemma 26.

We proceed to the induction step. There are two cases, depending on whether we

do a rejection sampling in the T th step or not: we call these "rej-sample" and "no-rej-

sample" respectively. If we do a rejection sampling, we further have two cases (1a).

accept: either all rejection samplings, including the one in the T th step are accepts,

(1b). reflect: all rejection samplings, except the one in the T th step are accepts, and

in the T th step, we reflect. Finally, if we don’t do a rejection sampling step, we have

the third case (2). reject: some rejection sampling prior to T results in reject; in this

case, the T th sample w̄(2)
T+1 ∼ Q

b
(2)
T

(·|w(2)
T , w

(2)
T−1). Cases (1) and (2) partition the whole

event space for T draws, whereas cases (1a) and cases (1b) partitions the space of the

T th draw, conditioned on the first event. Also note that case (1) vs (2) distinction is

measurable w.r.t. the natural filtration generated by the Markov chain upto T − 1

draws.

Note that conditioned on the events "rej sample" as well as w(2)
T−1, the last step is just

a one-step reflection coupling method. To elaborate, the conditionals Q
b

(2)
T

(·|w(2)
T , w

(2)
T−1)

and P
b

(2)
T

(·|w(2)
T , w

(2)
T−1) used in the T th rejection sampling are Gaussians, which along

with the reflection map satisfies properties of Lemma 26, as in the base case. Let

Elast = {y|∃x : (x, y) ∈ E} be the projection of E on the last co-ordinate and Ey =

{x|(x, y) ∈ E}. According to Lemma 27, the conditional distribution of w(2)
T+1 is

241

Q
b

(2)
T

(·|w(2)
T , w

(2)
T−1):

P
[︂
w̄

(2)
T+1 ∈ Elast|rej-sample, w̄(2)

T−1, (b(1),b(2))
]︂

= P
[︂
w̄

(2)
T+1 ∈ Elast, accept|rej-sample, w̄(2)

T−1, (b(1),b(2))
]︂

+ P
[︂
w̄

(2)
T+1 ∈ Elast, reflect|rej-sample, w̄(2)

T−1, (b(1),b(2))
]︂

=
∫︂
Rd
1

(︂
w̄

(2)
T+1 ∈ Elast

)︂
ϕQ

b
(2)
T

(w̄(2)
T+1|w

(2)
T , w

(2)
T−1)dw̄

(2)
T+1

For the "no-rej-sample" case, we have:

P
[︂
w̄

(2)
T+1 ∈ Elast|no-rej-sample, w̄(2)

T−1, (b(1),b(2))
]︂

= E
w̄

(2)
T +1

[︂
1

(︂
w̄

(2)
T+1 ∈ Elast

)︂]︂
=
∫︂
Rd
1

(︂
w̄

(2)
T+1 ∈ Elast

)︂
ϕQ

b
(2)
T

(w̄(2)
T+1|w

(2)
T , w

(2)
T−1)dw̄

(2)
T+1

We will now combine the two cases. Let ϕ(r)(·) and ϕ(nr)(·) denote the densities of

w̄(2)
T−1 under the "rej-sample" and "no-rej-sample" events respectively.

P
[︂
w̄(2) ∈ E|(b(1),b(2))

]︂
= P

[︃
w̄

(2)
T+1 ∈ Elast

⃓⃓⃓⃓
rej-sample, w̄(2)

T−1, (b(1),b(2))
]︃
P
[︃
w̄(2)
T−1 ∈ Ew̄(2)

T +1
, rej-sample

]︃
+ P

[︃
w̄

(2)
T+1 ∈ Elast

⃓⃓⃓⃓
no-rej-sample, w̄(2)

T−1, (b(1),b(2))
]︃
P
[︃
w̄(2)
T−1 ∈ Ew̄(2)

T +1
, no-rej-sample

]︃
=
∫︂
RdT

1

{︂
w̄

(2)
T+1 ∈ Elast

}︂
1

{︃
w̄(2)
T−1 ∈ Ew̄(2)

T +1

}︃
·
{︂
1rej-sample

{︂
w̄(2)
T−1

}︂
ϕ(r)(w̄(2)

T−1) + 1no-rej-sample
{︂
w̄(2)
T−1

}︂
ϕ(nr)(w̄(2)

T−1)
}︂

· ϕQ
b
(2)
T

(w̄(2)
T+1|w

(2)
T , w

(2)
T−1)dw̄

(2)
T

=
∫︂
RdT

1

{︂
w̄(2) ∈ E

}︂
ϕQ

b(2)
T −1

(w̄(2)
T−1)ϕQ

b
(2)
T

(w̄(2)
T+1|w

(2)
T , w

(2)
T−1)dw̄

(2)
T

=
∫︂
RdT

1

{︂
w̄(2) ∈ E

}︂
ϕQb(2) (w

(2)
T)dw̄(2)

T = Qb(2)(E)

where the third equality uses the induction hypothesis that w̄(2)
T−1, conditioned on b(1)

and b(2), is distributed as Qb(2)
T −1

. Finally, we integrate with respect to the coupling

242

generating (b(1),b(2)); we get

P
[︂
w̄(2) ∈ E

]︂
=

∑︂
(b(1),b(2))

P
[︂
w̄(2) ∈ E|(b(1),b(2))

]︂
P
[︂
b(1),b(2)

]︂
=

∑︂
(b(1),b(2))

Qb(2)(E)P
[︂
b(1),b(2)

]︂
=
∑︂
b(2)

Qb(2)(E)P
[︂
b(2)

]︂
= ˜︁Q(E)

This completes the proof.

We now show that not only the marginals over the iterates, but the entire state

maintained by the algorithm, which includes the mini-batching indices is transported.

Lemma 29. For any measurable event in
(︂
Rd × [n]m

)︂⊗T
, we have

P
[︂
(w̄(2),b(2)) ∈ E

]︂
= Q(E)

Proof of Lemma 29. We first decompose the event E ⊆
(︂
Rd × [n]m

)︂⊗T
as two events,

E = E1 × E2 where E1 ⊆ RdT and E2 ⊆ ([n]m)T . We have

P
[︂
(w̄(2),b(2)) ∈ E

]︂
= Eb(1)P

[︂
w̄(2) ∈ E1|b(1),b(2)

]︂
P
[︂
b(2) ∈ E2

]︂
= Eb(1)

˜︁Qb(2)(E1)µdel⊗T
n,m (E2)

= Eb(1)
˜︁Qb(2)(E1)µ⊗T

n−1,m(E2)

= ˜︁Qb(2)(E1)µ⊗T
n−1,m(E2) = Q(E)

where the second and third equality follows from Lemma 28 and Claim 5, and

the final equality follows from the definition of event E and probability distribution

Q.

We now lower bound the probability of accepting at all rejection sampling steps.

Lemma 30. Let “accept" be the event in which all rejection sampling result in accepts

so there is no reflection or recompute. The probability of accept is lower bounded as,

P [accept] ≥ 1−
√
Tρ

8

243

Proof of Lemma 30. We evaluate the probability that all rejection sampling steps

result in accepts. We first do it conditioned on b(1),b(2)

P
[︂
accept|b(1),b(2)

]︂
= E

w̄
(1)
T ,w̄

(2)
T +1,{uj}T

j=1

⎡⎣ T∏︂
j=1

1accept(uj)
⎤⎦

= E
w̄(1)

T ,w̄(2)
T +1

⎡⎢⎢⎣ T∏︂
j=1

P

⎡⎢⎢⎣uj ≤
ϕQ

b
(2)
j

(w̄(1)
j+1|w

(1)
j , w

(1)
j−1)

ϕP
b
(1)
j

(w̄(1)
j+1|w

(1)
j , w

(1)
j−1)

⃓⃓⃓⃓
w̄(1)
T , w̄(2)

T

⎤⎥⎥⎦
⎤⎥⎥⎦

=
∫︂
RdT

T∏︂
j=1

min
{︄
ϕP

b
(1)
j

(w̄(1)
j+1|w

(1)
j)w(1)

j−1), ϕQ
b
(2)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1)
}︄
dw̄(1)

T

=
T∏︂
j=1

(︄∫︂
Rd

min
{︄
ϕP

b
(1)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1), ϕQ
b
(2)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1)
}︄
dw̄

(1)
j+1

)︄

The term

∫︂
Rd

min
{︄
ϕP

b
(1)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1), ϕQ
b
(2)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1)
}︄
dw̄

(1)
j+1

= 1− TVw̄(1)
j ,b(1),b(2)(Pb(1)

j
, Q

b
(2)
j

)

where the notation TVx(·, ·) denotes the conditional TV between the arguments,

conditioned on the subscript. Let γj = ∆(b(1)
j ,b

(2)
j)

2 i.e. the number of elements differing

in b
(1)
j and b

(2)
j . Note that if γj = 0, then b

(1)
j = b

(2)
j and P

b
(1)
j

= Q
b

(2)
j

, and hence

TV
w̄

(1)
j−1,b(1),b(2)(Pb(1)

j
, Q

b
(2)
j

) = 0. In the other case, γj = 1, which corresponds to

the case when the deleted point was used in the jth mini-batch. In this case, the

means of P
b

(1)
j

are Q
b

(2)
j

at separated by at most 2Gη
m

- this follows as in the proof

of Proposition 1. In particular, fixing previous iterates and w̄
(1)
j−1 and mini-batch

indices b(1),b(2), using the fact that gradients are in norm bounded by G, P
b

(1)
j

and Q
b

(2)
j

are Gaussians with variance η2σ2I and means separated by either 2Gηγj

m

or 0, depending on γj. Combining the two cases, and using TV between Gaussians

formula [DMR18], we have 1−TV
w̄

(1)
j−1,b(1),b(2)(Pb(1)

j
, Q

b
(2)
j

) ≥
(︂
1− Gη

ησm

)︂γj =
(︂
1− G

σm

)︂γj .

244

We therefore get
∫︁
Rd min

{︄
ϕP

b
(1)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1), ϕQ
b
(2)
j

(w̄(1)
j+1|w

(1)
j), w(1)

j−1)
}︄
dw̄

(1)
j+1 ≥(︂

1− G
σm

)︂γj . Plugging this in the conditional probability of accept expression, we get

P
[︂
accept|b(1),b(2)

]︂
≥

T∏︂
j=1

(︃
1− G

σm

)︃γj

=
(︃

1− G

σm

)︃∑︁T

j=1 γj

≥ 1−
G
∑︁T
j=1 γj

σm

We now integrate with respect to b(1),b(2). Note that ∑︁T
j=1 γj is the number of mini-

batches which contain the deleted point. Since in each mini-batch, m points are selected

uniformly randomly from n, Eb(1),b(2)γj = m
n

, which gives us Eb(1),b(2)
∑︁T
j=1 γj = Tm

n
.

Hence,

P [accept] ≥ 1−
GEb(1),b(2)

∑︁T
j=1 γj

σm
= 1− GT

σn
= 1−

√
Tρ

8

where the last equality follows from plugging in σ = 8
√
TG
nρ

as in Proposition 1.

We are now ready to prove Proposition 2.

Proof of Proposition 2. We need to show that upon deletion and insertion, the proba-

bility distribution of the entire state maintained by the algorithm, which is all iterates

as well as mini-batches indices is transported - this, for one deletion, follows from

Lemma 29 (which is for unprojected iterates), together with the fact that projection

is a deterministic operation. Moreover, as before, the above argument also holds for

insertion and generalizes arbitrary edit requests.

We now proceed to bound the probability to recompute. This follows directly

combining Lemma 30, Proposition 1 and Remark 1. From Remark 1, upon k edits, the

total variation distance is at most k times total variation distance upon 1 edit. Since

the algorithm is ρ-TV stable (Proposition 1), and the assumption that the number of

samples are between n/2 and 2n, the total variation distance upon k edits is at most

2kρ. Hence, using Lemma 30, we have that the probability to recompute is probability

of “reject" is at most kρ
√
T

4 .

245

C.7 Runtime and Space Complexity

In this section, we discuss, in detail, the learning and unlearning runtime of the

algorithms, as well as their space complexity.

C.7.1 Learning Runtime

In this work, we did not aim to carefully optimize the runtime for training/learning

algorithm, as long as the algorithm achieves the rate in Theorem 23. However, we

briefly discuss the runtime of each algorithm, and highlight easy improvements, where

possible. Algorithm 19 requires mT = ρn stochastic gradient computations. On

the other hand, for Algorithm 9, if m ≤
√︂

LDρn

G
√
d

, it requires mT = m
(︂
ρn
md

)︂
= (ρn)2

d

stochastic gradient computations - setting larger m only hurts the total runtime,

without any advantage. Note that total stochastic gradient descent computations of

noisy-m-SGD (i.e. without acceleration, see Section C.8.1) is also (ρn)2

d
; however, the

key advantage of acceleration is that it allows setting larger mini-batch sizes: T 3 as

opposed to T , which leads to smaller number of iterations:
√︂

ρn√
d

as opposed to ρn√
d

and hence a smaller probability of recompute. From [WS16], we know that mini-batch

SGD (with or without acceleration) is optimal for smooth convex composite/ERM

optimization in the low accuracy regime: when accuracy α = Ω
(︂

1√
n

)︂
. In this regime,

an algorithm makes at least Ω
(︂

1
α2

)︂
calls to a stochastic gradient oracle. It can be

then verified that for our accuracy, our algorithms make the optimal number of oracle

calls.

For Algorithm 9, as discussed, faster algorithms lead to better unlearning times.

It is natural to ask what happens if we additionally introduce variance reduction

techniques on top of acceleration to yield even faster runtimes. In particular, what if

we use Katyusha [AZ17], which has optimal runtime in terms of stochastic gradient

computations. We argue that even though it improves the runtime of the learning

246

algorithm, it does not yield improvement for unlearning beyond what we have with

acceleration. From Corollary 5.8 in [AZ17], setting largest allowed m =
√
n, we get

that Tm = O
(︂√

n√
ϵ

)︂
– in our case, ϵ =

√
d

ρn
, which yields Tm = O

(︃√
n
√︂

ρn√
d

)︃
stochastic

gradient computations. Note that this is smaller than that of noisy-m-A-SGD (unless

ρ is very small), however T =
√︂

ρn√
d

– same as that of noisy-m-A-SGD, and hence

yields no improvement in unlearning time. However, note that using Katyusha would

give us optimal oracle complexity even in the high accuracy regime.

C.7.2 Unlearning Runtime

We now look at how much compute it takes for Algorithm 20 and 10 to handle the edit

requests. We first give a general result, which holds for any TV-stable algorithm with

the unlearning algorithm being the one which constructs a coupling with acceptance

probability at least 1 − ρ. We give in-expectation bounds on the number of times

verification fails or a full or partial recompute is triggered.

Proposition 6. For a coupling based unlearning algorithm with acceptance probability

at least 1− ρ, for k edit requests, the expected number of times recompute is triggered

is at most 4kρ.

Proof of Proposition 6. We first setup some notation. In the general setup, for k edit

requests, let s be the number of times a recompute is triggered. Let {Z1, Z2, . . . , Zs}

be a set of random variables, where each Zi denotes how many edit requests the

ith recompute can handle. To elaborate, Zi takes value j, if upon j edit requests, a

recompute is triggered. The Zi’s comprises to the randomness used in the algorithm

like mini-batching indices or Gaussian noise, as well as the randomness used for

rejection sampling. It is important to note that Z ′
is are not necessarily independent.

In particular, in Algorithm 10, we reuse the Gaussian noise upto the iteration in which

rejection sampling fails, and only use fresh/independent Gaussian noise in the later

247

steps. However, note that we have exact unlearning, and the output at each step is

ρ-TV stable (w.r.t. all the randomness used). Hence, since the above description of

the distribution of Zi’s depend only on the TV stability parameter, it follows that Z ′
is

are (marginally) identical.

We now use the fact that the unlearning algorithm constructs a coupling with

acceptance probability at least 1 − ρ to describe the probability distribution of Zi.

We have that upon one edit request, the probability that a recompute is triggered

is at most ρ. This means that Zi < 2 with probability ≤ ρ. Using Remark 1, this

generalizes as Zi < j with probability at most (j − 1)ρ. Note that in our setup,

we observe at most k requests, so Zi taking values larger than k is not meaningful.

However if kρ < 1, it means that probability that Zi takes values smaller than k

is less than 1, and therefore there is a positive probability of Zi being larger than

k. To remedy this, we define another random variable Xi’s which takes values in

the set {1, 2, . . . , k}. Furthermore, for any i, P [Xi = j] = P [Zi = j] for j ≤ k, but

P [Zi = j] = ∑︁∞
l=k P [Xi = l]. By construction, this ensures that 1 ≤ Zi ≤ k, when we

observe at most k requests.

We want upper bounds on s conditioned on the fact that k requests are addressed

i.e. X1 +X2 . . . , Xs ≥ k. For this we write s as s := minq {2k ≥ X1 +X2 . . . , Xq ≥ k}.

The first inequality holds trivially since we ensured that Xi ≤ k. It is easy to see that

s is a stopping time with respect to the filtered probability space of the stochastic

process {Xi}i∈N. Furthermore, since Xi’s are identical, we can apply Wald’s equation

to get,

248

2k ≥ E[X1 +X2 + . . . Xs] = E[s]E[X1] = E[s]
k∑︂
j=1

P {Xi ≥ j} = E[s]
∞∑︂
j=1

P {Zi ≥ j}

≥ E[s]
1+1/ρ∑︂
j=1

P {Zi ≥ j} = E[s]
1+1/ρ∑︂
j=1

(1− P {Zi < j}) ≥ E[s]
⎛⎝1
ρ
−

1+1/ρ∑︂
j=1

(j − 1)ρ
⎞⎠

≥ E[s]
(︄

1
ρ
−
∫︂ 1/ρ

j=0
jρdj

)︄
≥ E[s]

(︄
1
ρ
− 1

2ρ2ρ

)︄
≥ E[s]

2ρ

This gives us that E[s] ≤ 4kρ.

Next, we look at the runtimes for Algorithm 20 and Algorithm 10 to handle one

deletion or insertion request. For this, we look at the runtime of verification, i.e.,

deciding if recompute needs to be triggered or not. We show how in the standard algo-

rithmic model of computation (say, word RAM model), using suitable data structures,

this can be done efficiently. Furthermore, as standard in convex optimization, we

can use oracle model of computation [NY83] which counts the number of accesses to

the first-order (gradient) information of the function, and a projection oracle. Let G

denote the compute cost for one gradient access or projection in the standard model of

computation – we assume that both oracles require the same compute. In the rest of

the discussion, we provide runtime as a function of the problem parameters ignoring

all constants. Furthermore, since we assumed that the number of samples at any point

in the stream is between n
2 and 2n, we will just work with n samples, and everything

would still be the same, up to constants.

Verification runtime of Algorithm 20. For Algorithm 20, note that for deletion,

for every iteration, we need to check if the used mini-batch bt contained the requested

point. A brute force search takes O(m) time, whereas if we sort when we save the mini-

batch indices bt, we can do a binary search in O(log (m)) time; we can even do constant

time search by storing a dictionary/hash table, giving us an O(T) total time. The

most efficient way however is to store a dictionary of sample to mini-batch iterations

249

that the sample was used in. For this, it takes O(1) time lookup for every edit request.

For insertion, similarly, at every iteration, we first sample from a Bernoulli with bias

m/n which takes constant time, giving us O(T) total time. However, equivalently, we

just sample one Bernoulli with bias Tm/n and recompute based on its outcome. This

gives us an O(1) time lookup for every edit request.

Verification runtime of Algorithm 10. For Algorithm 10, we can similarly search

in constant time whether the deleted point was used in any iteration or not. For

every iteration in which the deleted point is in the mini-batch, we need to compute a

gradient at a new point, so as to replace the deleted point. Sampling a point uniformly

from a discrete universe takes linear time (in the size) in the worst case, but with

some pre-processing can be done in logarithmic/constant time. For example, when

saving the mini-batch indices bt, if we save a sorted list of the indices not sampled,

using binary search, we can sample in O(log (n− (m− 1))) time. The more efficient

way is, if we save a probability table, then we can use Alias method to sample in O(1)

time [Wal77]. Hence for such iterations, we query two gradients, and it takes O(d)

compute to add/subtract this gradients. Since the total number of iterations in which

a deleted point was sampled in, in expectation, is Tm
n

, the expected total compute is
Tm(G+d)

n
.

We now consider the computational cost of rejection sampling. In Algorithm 10, at

every iteration we check if Unif(0, 1) ≤
ϕN (g′

t
,σ2I)(ξt)

ϕN (gt,σ2I)(ξt) , where ϕN (gt,σ2I)(·) and ϕN (g′
t,σ

2I)(·)

are probability densities evaluated at the sampled point ξt. We thus need to compute

this ratio of probability densities – since these are Gaussian densities, the ratio is just

the following the expression:

ϕN (g′
t,σ

2I)(ξt)
ϕN (gt,σ2I)(ξt)

=

1
(
√

2πσ2)d
exp

(︄
−∥g

′
t−ξt∥2

2σ2

)︄
1

(
√

2πσ2)d
exp

(︂
−∥gt−ξt∥2

2σ2

)︂ = exp
(︃ 1

2σ2

(︂
∥gt − ξt∥2 − ∥g′

t − ξt∥
2)︂)︃

.

It takes O(d) time to do the above computation. Moreover, we only need to

250

compute the ratio in iterations where the means differ – these correspond to the

iterations where the deleted point was sampled or the inserted point would have been

sampled. By a direct computation, the expected number of such iterations is Tm
n

. This

gives us a computational cost of Tmd
n

for rejection sampling, and hence the expected

runtime of verification is Tm(G+d)
n

.

We now state bounds on runtime for both unlearning algorithms.

Claim 7. The expected total unlearning runtime of Algorithm 20 for k edit requests is

O (max {k,min {ρ, 1} k · Training time}).

Proof of Claim 7. The total runtime of Algorithm 20 is the time for verification plus

the runtime for recomputation, whenever a recompute is triggered. The recompu-

tation time is just the training time, and in the model considered, excepted cost

of one recomputation takes O (Tm (G + d)) time, since at every iteration, m gradi-

ents are computed and vectors added. As discussed in Section C.7, the expected

verification time for Algorithm 20 is O(1). From Proposition 4, the unlearning

Algorithm 20 recomputes with probability O(min {ρ, 1}) for one edit request. There-

fore, using Proposition 6 which bounds the number of recomputes, we have that

the expected total runtime is bounded as kO(1) + 4kmin {ρ, 1} · O (Tm (G + d)) ≤

O (max (1,min {ρ, 1}Tm (G + d)) k). For a sufficiently large ρ, the unlearning time

of Algorithm 20 is clearly dominated by the training time. In particular, in the

corresponding batch Algorithm 19, we set m = ρn
T

, giving a total runtime of

O (max (1,min {ρ2, 1}n (G + d)) k). Hence for ρ = Ω
(︃

1√
n(G+d)

)︃
, the total runtime in

expectation is at most O(min {ρ, 1} ·k ·Training time). In the other case, the expected

total runtime is just O(k).

Claim 8. The expected total unlearning runtime of Algorithm 10 for k edit requests is

O
(︂
max

{︂
k,min

{︂
ρ
√
T , 1

}︂
· k · Training time

}︂)︂
.

Proof of Claim 8. As before, the total runtime of Algorithm 20 is the time for ver-

251

ification plus the runtime for recomputation, whenever a recompute is triggered.

As discussed in Section C.7, the expected verification time for Algorithm 10 is

O
(︂
Tm(G+d)

n

)︂
. The recomputation in this case may be partial but it also includes

a reflection. The reflection operation with d dimensional vectors takes O(d) com-

pute. Furthermore, we upper bound the partial recomputation time by worst-

case full recomputation time, giving a recomputation time O (Tm (G + d)). From

Lemma 30, we have that the unlearning coupling is not maximal but recomputes

with probability min
{︂
ρ
√
T , 1

}︂
. Finally, by Proposition 6 we have that the expected

total runtime is bounded as kO (Tm (G + d)) + 4kmin
{︂
ρ
√
T , 1

}︂
· O

(︂
Tm(G+d)

n

)︂
≤

O
(︂
max

(︂
min

{︂
ρ
√
T , 1

}︂
, 1
n

)︂
kmT (G + d)

)︂
. In contrast, for Algorithm 10, the runtime

is at most O
(︂
max

(︂
min

{︂
ρ
√
T , 1

}︂
, 1
n

)︂
kmT (G + d)

)︂
. Our lower bounds will show that

we need ρ = Ω
(︂

1
n

)︂
to get any non-trivial accuracy. Therefore the maximum is always

obtained by min
{︂
ρ
√
T , 1

}︂
. Moreover, k is a trivial lower bound on runtime, since we

need to observe all k edit requests. Hence, we get that the total runtime in expectation,

is at most O
(︂
max

{︂
k,min

{︂
ρ
√
T , 1

}︂
· k · Training time

}︂)︂
.

C.7.3 Space Complexity

In this work, the objective was not to optimize the memory used, but rather, to

study if the problem can be solved computationally efficiently, no matter how much

(reasonable) memory the algorithm uses. However, we discuss, in this section, that

the space complexities of the proposed algorithms, which we will see, is arguably,

reasonably small. We ignore the space used to store the dataset. In both algorithms,

we save a hash-table of iterations to samples - since we do T iterations with m samples

each, this takes space of O(Tm) words. We also store all the iterates, which are

d-dimensional vectors, so this takes a space of O(dT) words. Finally, we also store

a dictionary of iterations to models, which takes O(T) space. The space complexity

therefore is O(T (max {m, d}). Plugging in the values of T , we get the following.

252

Algorithm 19. Plugging T ≤ ρn
m

from Proposition 3, we get space complexity =

O
(︂
ρnmax

{︂
1, d

m

}︂)︂
. As remarked in Section C.3, we can improve the space complexity

by not requiring to save all the iterates and yet have the same unlearning runtime. In

the proof of Claim 7, we upper bound the recomputation time by a full re-computation

time - this means that the upper bound on unlearning runtime holds even if the

algorithm does full retraining everytime verification fails. The unlearning Algorithm 20

can thus be modified as follows: for deletion, instead of continue retraining from

iteration t where the deleted point participates, we can just do full retraining, with

fresh randomness for all mini-batches. For insertion, note that when if condition is

met (line 6 in Algorithm 20), we use the iterate wt to compute the gradient on the

inserted point (line 8 in Algorithm 20); however, if we don’t save wt, we can just

compute it on the fly by doing a full retraining with the same old mini-batches. After

wt is computed, we just continue as in Algorithm 20.

With the above modification, we only need to save a hash-table of used samples to

binary values which correspond to whether they were used or not, which takes O(Tm)

words, and a d dimensional model. Hence, the space complexity of Algorithm 20 is

O(Tm+ d) words.

Algorithm 9: From Proposition 1, note that if m ≤ O(T 3), T = ρn
md

, and there-

fore, dT = ρn
m

. If we use the largest mini-batch size m = O(T 3), then T =
√︂

ρn√
d
,

and hence dT = d3/4√ρn. Therefore, the space complexity is O(T max {m, d}) ≤

O
(︂
max

{︂
(ρn)2

d
, d3/4√ρn

}︂)︂
words.

C.8 Other Algorithms and Batch Unlearning

To demonstrate the generality of our framework, we give two more algorithms. The

first is noisy-m-SGD which is the same as Algorithm 9 but without acceleration, and

the second is quantized-m-SGD, based on randomized quantization. We note that

253

both algorithms have worse theoretical guarantees than Algorithm 9, however the

first establishes our claim that acceleration is beneficial, whereas the second shows

how a previous work of [GGVZ19] for k-means clustering, can, not only be seen as a

special case of our framework, but also extended to general convex risk minimization

problems. Moreover, in the second case, we consider a more general setup of batch

edit requests, and show that our techniques are flexible enough to easily generalize to

the batch variant.

C.8.1 noisy-m-SGD

Algorithm 21 noisy-m-SGD(wt0 , t0)
Input: Initial model wt0 , data points {z1, . . . , zn}, T, η,m

1: w0 = 0
2: for t = t0, t0 + 1, . . . , T do
3: Sample mini-batch bt of size m uniformly randomly
4: gt = 1

m

∑︁
j∈bt
∇ℓ(wt; zj)

5: Sample θt ∼ N (0, σ2Id)
6: wt+1 = P (wt − η (gt + θt))
7: Save(bt, θt, wt, gt)
8: end for

Output: ˆ︁wS = 1
T

∑︁T+1
t=1 wt

Proposition 7. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z. Algorithm

21, run with t0 = 1, η = min

⎧⎨⎩ 1
2H ,

D(︂
G√
m

+σ
)︂√

T

⎫⎬⎭, σ = 8
√
TG
nρ

, and T ≥ (ρn)2

16m2 outputs ˆ︁wS
which is min {1, ρ}-TV stable and satisfies E

[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗
S;S)

]︂
= O

(︂
GD

√
d

ρn

)︂
.

Proof of Proposition 7. The TV -stability guarantee of ρ = 8
√
TG
n

follows exactly as

in the proof of Proposition 1. We now proceed to the accuracy guarantee, which

follows simply by guarantee of SGD on smooth convex functions. We have already

shown in Proposition 1 that the gradients are unbiased and its variance bounded by
2G2

m
+ 2G2

m
+ σ2d.

254

Therefore, using Theorem 4.1 in [AZ18] with step-size η ≤ 1
2H , we have

E
[︂ ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)

]︂
= O

(︄
2ηV2 + D2

ηT

)︄
= O

(︄
2η
(︄

2G2

m
+ σ2d

)︄
+ D2

ηT

)︄

Let ˜︁G2 = 2G2

m
+ σ2d, balancing the trade-off in η gives us η = D˜︁G√

T
. Therefore

setting η = min
{︂

1
2H ,

D˜︁G√
T

}︂
gives us

E
[︂ ˆ︁L(ˆ︁w;S)− ˆ︁L(w∗;S)

]︂
= O

(︄
HD2

T
+

˜︁GD√
T

)︄
≤ O

(︄
HD2

T
+ GD√

Tm
+ σ
√
dD√
T

)︄

≤ O

(︄
HD2

T
+ GD√

Tm
+ GD

√
d

nρ

)︄

Finally, the condition in the sub-sampling amplification 8G2

m2σ2 ≤ 1.256 again becomes

T ≥ (nρ)2

16m2 .

We now show that Algorithm 21 achieves the same upper bound on excess empirical

risk as Algorithm 9.

Corollary 8. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z. Al-

gorithm 21, run with m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)G

√
d

HD

)︃1/2
}︄

, η = min

⎧⎨⎩ 1
2H ,

D(︂
G√
m

+σ
)︂√

T

⎫⎬⎭,

σ = 8
√
TG
nρ

, and T = max
{︂

(ρn)2

md
, HDρn
G

√
d

}︂
outputs ˆ︁wS which is ρ-TV stable and satisfies

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O
(︂
GD

√
d

ρn

)︂
.

Proof of Corollary 8. We start with the result in Proposition 7. Note that as long as
GD√
mT

= Ω
(︂
HD2

T

)︂
⇐⇒ m = O

(︂
TG2

HD

)︂
, the second term is larger than the first. We

balance the two trade-offs in T . Optimizing the trade-off between second and third

term gives us GD√
mT

= GD
√
d

ρn
⇐⇒ T = (ρn)2

md
; and optimizing the second trade-off gives

us
√
d

ρn
= HD2

T
⇐⇒ T = HD2(ρn)√

d
. Hence setting T = max

(︂
(ρn)2

md
, HD

2(ρn)√
d

)︂
yields an

expected excess empirical risk of O
(︂
GD

√
d

nρ

)︂
.

We now look at the condition T ≥ (nρ)2

16m2 given in Proposition 7, with T set

as T = max
(︂

(ρn)2

md
, HD

2(ρn)√
d

)︂
. We therefore require (ρn)2

md
≥ (ρn)2

16m2 ⇐⇒ m ≥ d
16 ,

as well as HD(ρn)
G

√
d
≥ (ρn)2

16m2 ⇐⇒ m ≥ 1
4

(︃
(ρn)G

√
d

HD

)︃1/2
- this recovers the condition

255

m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)G

√
d

HD

)︃1/2
}︄

in the Proposition statement. Hence, combining all

the above arguments, we get that for any m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)G

√
d

HD

)︃1/2
}︄

, setting

T = max
{︂

(ρn)2

md
, HD(ρn)

G
√
d

}︂
, yields an expected excess empirical risk of O

(︂
GD

√
d

nρ

)︂
.

Algorithm 22 Unlearning for noisy-m-SGD
Input: Delete point with index j or insert z (with index n+ 1) for noisy-m-SGD

1: for t = 1, 2 . . . , T do
2: Load(θt, wt, bt, gt))
3: if deletion and j ∈ bt then
4: Sample i ∼ Uniform([n]\bt)
5: g′

t = gt − 1
m

(∇ℓ(wt; zj)−∇ℓ(wt; zi))
6: Save(g′

t, bt\ {j} ∪ {i})
7: else if insertion and Bernoulli

(︂
m
n+1

)︂
then

8: Sample i ∼ Uniform(bt)
9: g′

t = gt − 1
m

(∇ℓ(wt; zi)−∇ℓ(wt; z))
10: Save(g′

t, bt\ {i} ∪ {n+ 1})
11: else
12: continue
13: end if
14: ξt = gt + θt

15: if Uniform(0, 1) ≥
ϕN (g′

t
,σ2I)(ξt)

ϕN (gt,σ2I)(ξt) then
16: ξ′

t = reflect(ξt, g′
t, gt)

17: wt+1 = wt − ηξ′
t

18: Save(ξ′
t)

19: noisy-m-SGD(wt+1, t+ 1) // Continue retraining, on current dataset
20: break
21: end if
22: end for

Remark 4. The choice of T in Proposition 1 yields that the largest mini-batch size

that can be set, without hurting runtime, is m = ρnG√
dHD

. Furthermore, the condition

m ≥ min
{︄

d
16 ,

1
4

(︃
(ρn)G

√
d

HD

)︃1/2
}︄

becomes T ≥
(︂√

dHD
4G

)︂2
.

We now state and prove the main theorem for this section.

Theorem 44. Let ℓ(·; z) be an H-smooth G-Lipschitz convex function ∀ z. For any
1
n
≤ ρ ≤ 1, using Algorithm 21 as the learning algorithm and Algorithm 22 as its

unlearning algorithms, then given a stream of edit requests,

256

1. Satisfies exact unlearning at every point in the stream.

2. At time i in the stream of edit requests, outputs ˆ︁wSi, such that if
(︂
H1/2D2√

d
G(ρn)

)︂2/3
≤

GD√
ρn

, then its with excess empirical risk bounded as,

E
[︂ ˆ︁L(ˆ︁wSi ;Si)− ˆ︁L(w∗

Si ;Si)
]︂

= O

⎛⎝(︄H1/2D2
√
d

G(ρn)

)︄2/3⎞⎠ .
3. For k edit requests, the expected total unlearning runtime is

O(max {ρk · Training time, k})

Proof of Theorem 44. We proceed as in the proof of Theorem 22. For any 0 < ˜︁ρ ≤ 1,

from Proposition 7, the output ˆ︁wS is ˜︁ρ-TV stable, and the excess empirical risk using

Algorithm 21 on a dataset S on n points, is bounded as,

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
HD2

T
+ GD√

Tm
+ GD

√
d

n˜︁ρ
)︄

It can be easily verified that Proposition 2 and Proposition 2 still holds for

noisy-m-SGD, which gives us that the algorithm satisfies exact unlearning at every

time in the stream, proving the first part of the claim, Moreover, its recompute

probability bounded by O(˜︁ρk√T) and therefore the unlearning runtime bounded

by O(max
{︂
k, ˜︁ρk√T · Training time

}︂
. Substituting ˜︁ρ = ρ√

T
, and using the largest

mini-batch size m =
(︂

G
HD

)︂2
T , the upper bound on excess empirical risk becomes

HD2

T
+ GD

√
d
√
T

nρ
. Optimizing the trade-off, we have HD2

T
= HD2

T
⇐⇒ T =

(︂
HD(ρn)
G

√
d

)︂2/3
,

and the excess empirical risk bound upper bound is HD
T

=
(︂
H1/2D2√

d
G(ρn)

)︂2/3
. Note that

this also proves the third part of the claim. Furthermore, as in the proof of Theorem 22,

it can be verified that the condition T ≥ (˜︁ρn)2

16m2 is equivalent to
(︂
H1/2D2√

d
G(ρn)

)︂2/3
≤ 1√

ρn
,

which just means that the excess empirical risk of noisy-m-SGD is at most that of

sub-sample-GD. Finally, the upper bound holds for any point in the stream using the

assumption that the number of samples are between n
2 and 2n, thereby establishing

the second claim.

257

C.8.2 quantized-m-SGD

The work of [GGVZ19] considers unlearning in k-means clustering. The key algorithmic

technique is randomized quantization of vectors to a τ -lattice. The intuition is that

if the vector is an average of n data points which are bounded in norm, then upon

changing one data point, the vectors O
(︂

1
n

)︂
close. Therefore, if the lattice is sufficiently

coarse, then it would ensure that both are mapped up the same point in the lattice.

However, if we consider deterministic quantization, then there exists points such that

for any ϵ > 0, shifting the point by ϵ changes the quantized point. Therefore, we first

shift the lattice by a uniformly random phase, which ensures that such a situation

occurs with a small probability.

In their application of k-means clustering, this vector is a cluster centroid, which

is an average of the data points in the cluster. We apply this idea to convex risk mini-

mization problems, wherein we quantize average gradients, which by the Lipshcitzness

assumption are bounded in norm.

We now introduce the quantization operation formally. Given a vector x, let

θ ∼ Unif
[︂
−1

2 ,−
1
2

]︂d
, consider the quantization given by:

Qθ(x) = τ

(︄
θ + arg min

j∈Zd
(x − τ(θ + j))

)︄

We now state a result about the quantization operation.

Lemma 31. Let Bδ(u) denote the Euclidean call of radius δ centered at u. The

following holds for the quantization operation,

1. For any x, E [Qθ(x)] = x and E [∥x − E [x]∥]2 ≤ τ 2d

2. For any vector u, P [∃v ∈ Bδ(u) : Qθ(u) ̸= Qθ(v)] ≤ 2dδ
τ

Proof of Lemma 31. Note that for a given x, Qθ(x) ∼ Unif
[︂
x − τ

2 , x + τ
2

]︂d
, hence

E [Qθ(w)] = w. Furthermore, since w − E [w] ∼ Unif
[︂
− τ

2 ,
τ
2

]︂d
, we have

258

E [∥w − E [w]∥]2 = dE (w1 − E [w1])2 = dτ2

12 . The second part of the claim is Lemma

C.2 in [GGVZ19].

To see why [GGVZ19] is a special case of our framework, note that the total varia-

tion distance between two random variables is at most the probability of disagreement

under any coupling. [GGVZ19] uses the same quantization randomness (used for

training) for verifying after the edit request - this corresponds to a trivial coupling

between the quantization randomness, hence the total variation distance between the

outputs is bounded by the upper bound on the probability that the quantized points

change (see Lemma 31). This establishes that it is a TV stable method. Finally, as

said before, using the same quantization randomness corresponds to a trivial coupling,

but can be shown to be maximal since the probability distribution is uniform around

the to-be-quantized point. Therefore, we have that [GGVZ19] uses a maximal coupling

based unlearning method.

Batch unlearning. We consider a batch unlearning setup, wherein instead of

observing an insertion or deletion request, we observe a batch edit request with

insertions and deletions. We demonstrate that our general approach of coupling mini-

batch indices is flexible enough to handle this variant naturally. The batch unlearning

ideas and results extend to other algorithms: noisy-m-A-SGD, noisy-m-SGD and

subsample-GD. We also note that the computational benefit of batch unlearning as

opposed to handling edits one by one is only a constant factor, which at best is two.

We now discuss how we extend the randomized quantization idea to convex risk

minimization. In our learning algorithm quantized-m-SGD, at each iteration, we draw

a mini-batch of m samples, uniformly randomly from n samples, use it to compute

the gradient on the previous iterate , quantize using a randomly sampled phase, and

update. Algorithm 24 implements the above procedure.

We first prove a lemma which bounds the total variation distance between outputs

259

Algorithm 23 quantized-m-SGD
Input: Initial model w1, data points {z1, . . . , zn},T, η

1: for t = 1, 2 . . . , T do
2: Sample mini-batch bt of size m uniformly randomly
3: Sample θt ∼ Unif

[︂
−1

2 ,
1
2

]︂d
4: gt = 1

m

∑︁
j∈bt
∇ℓ(wt; zj)

5: wt+1 = wt − ηQθt (gt)
6: Save(θt, wt, bt, gt)
7: end for

Output: ˆ︁wS = 1
T+1

∑︁T+1
j=1 wj

generated by quantized-m-SGD on arbitrarily differing datasets - these can be thought

of as arising after a batch edit request.

Lemma 32. Let S and S ′ be two datasets of n and n+ k2 points respectively, such

that S has k1 points which differ from S ′ i.e. |S\S ′| = k1, therefore S and S ′ differ by

k1 + k2 points. Let {wj}Tj=1 and
{︂
w′
j

}︂T
j=1

be iterates of quantized-m-SGD on datasets

S and S ′ respectively. The total variation distance between distribution of average

iterates ˆ︁wS and ˆ︁wS′ is bounded as,

TV(ˆ︁wS, ˆ︁wS′) ≤ 4GTd(k1 + k2)
nτ

Proof of Lemma 32. Without loss of generality, we enumerate S and S ′ into subsets

as follows: let S1 and S ′
1 be the first n− k1 elements of S and S ′ which are the same.

Let S2 and S ′
2 be the next k1 differing elements in S and S ′ respectively. Finally, let

S ′
3 be the last k2 elements of S ′.

We look at iteration t of quantized-m-SGD and fix the previous model wt = w′
t = w.

We will now compute the conditional total variation distance between wt+1 and w′
t+1.

Note that since the only randomness is in the sub-sampling and quantization, we can

compute the total variation distance between sub-sampled quantized gradients on

fixed w for both datasets, and this will lower bound total variation distance between

the iterates wt+1 and w′
t+1 by data processing inequality. Let b(1) and b(2) be a uniform

sample of m points from datasets S and S ′ respectively. For a fixed w, let the gradient

260

on S indexed by b(1) be denoted as gS
b(1)(w) = 1

m

∑︁
j∈b(1)∇ℓ(w; zSj), and similarly for S ′.

Let P and Q denote the probability distribution of gS
b(1)(w) and gS

′

b(2)(w) respectively.

We have the following claim, which we will prove via mathematical induction on k2:

for any measurable set R, for any k2, |P (R)−Q(R)| ≤ 4Gdk1
nτ

+∑︁k2
j=1

4Gd
(n+j)τ .

Base case 1: k2 = 0. Firstly note that both b(1) ∼ Unif([n],m) and b(2) ∼

Unif([n],m), and consider the trivial coupling b(1) = b(2) = b, where b ∼ Unif([n],m),

be a uniform sample of m points from [n]. We now use the fact that total variation

distance is at most the probability of disagreement for any coupling. This gives us

that

TV(Qθ(gSb(1)(w)), Qθ(gS
′

b(2)(w)) ≤ P
[︂
Qθ(gSb (w)) ̸= Qθ(gS

′

b (w))
]︂

We will focus on upper bounding the right hand side. The proof follows by using the

quantization guarantee (Claim 31) combined amplification from subsampling. Without

loss of generality, assume that the first k1 samples in S and S ′ are the ones that differ.

Fix the random (uniform) sample b of indices - suppose for this fixed value of b, exactly

j differing data points are sampled. From G Lipschitzness, and that we have exactly

j differing data points,
⃦⃦⃦
gSb (w)− gS′

b (w)
⃦⃦⃦
≤ 2Gj

m
. Hence, applying Claim 31, we have

that

P
[︃
Qθ(gSb (w)) ̸= Qθ(gS

′

b (w))
⃓⃓⃓⃓
b producing j differing samples

]︃
≤ 4Gdj

τm
.

We will now integrate with respect to the randomness in b - for this, we need to

calculate the probability that a sample of b (uniform m out of n) produces exactly j

differing data points, call it p(j). By direct computation, we have that p(j) = (k1
j)(n−k1

m−j)
(n

m) .

261

Hence we have,

P
[︂
Qθ(gSb (w)) ̸= Qθ(gS

′

b (w))
]︂

=
k1∑︂
j=0

p(j)P
[︃
Qθ(gSb (w)) ̸= Qθ(gS

′

b (w))
⃓⃓⃓⃓
b produces j differing samples

]︃

≤
k1∑︂
j=0

(︂
k1
j

)︂(︂
n−k1
m−j

)︂
(︂
n
m

)︂ 4Gdj
τm

= mk1

n

4Gd
τm

= 4Gdk1

τn

where the second last equality is a consequence of Vandermonde’s identity, as we

show below. We need to show that ∑︁k1
j=0

(k1
j)(n−k1

m−j)j
(n

m) = mk1
n
⇐⇒ ∑︁k1

j=0

(︂
k1
j

)︂(︂
n−k1
m−j

)︂
j =

mk1
n

(︂
n
m

)︂
= k1

(︂
n−1
m−1

)︂
. This holds because,

k1∑︂
j=0

(︄
k1

j

)︄(︄
n− k1

m− j

)︄
j =

k1∑︂
j=0

k1

j

(︄
k1 − 1
j − 1

)︄(︄
n− k1

m− j

)︄
j = k1

k1∑︂
j=0

(︄
k1 − 1
j − 1

)︄(︄
n− k1

m− j

)︄

= k1

k1−1∑︂
j=0

(︄
k1 − 1
j

)︄(︄
n− k1

(m− 1)− j

)︄
= k1

(︄
n− 1
m− 1

)︄

where in the second last equality, we re-indexed the sum which removes the first

element, but it was zero anyway, and the last equality follows from Vandermonde’s

identity.

Base case 2: k2 = 1 :. In this case, S ′ has one more element that S ′ - let this

point be denoted as q. In this case, the probability distribution using S ′ has the form

Q =
(︂
1− m

n+1

)︂
Q1 + m

n+1Q2, where Q1 is the probability distribution conditioned on

the event that q is sub-sampled, and Q2 is the probability distribution conditioned on

the complementary event. For any measurable set R, we have,

|P (R)−Q(R)| =
⃓⃓⃓⃓(︃

1− m

n+ 1

)︃
Q1(R) + m

n+ 1Q2(R)− P (R)
⃓⃓⃓⃓

Note that Q1, Q2 and P are all probability distributions over n elements. Furthermore,

P and Q1 are probability distributions over k1 differing elements, therefore we can

use base case k2 = 0 to get that |P (R)−Q1(R)| ≤ ϵ1 := 4Gdk1
nτ

. We therefore get,

|P (R)−Q(R)| ≤
⃓⃓⃓⃓(︃

1− m

n+ 1

)︃
Q1(R) + m

n+ 1Q2(R)−Q1(R) + ϵ1

⃓⃓⃓⃓
=
⃓⃓⃓⃓
m

n+ 1 (Q2(R)−Q1(R)) + ϵ1

⃓⃓⃓⃓

262

Finally note that Q1 and Q2 are probability distributions over n such that upon

sub-sampling m elements, there is exactly one differing element, therefore we get,

|Q2(R)−Q1(R)| ≤ 4Gd
mτ

. We therefore have that

|P (R)−Q(R)| ≤ m

n+ 1
4Gd
mτ

+ 4Gdk1

nτ
= 4Gd

(n+ 1)τ + 4Gdk1

nτ

Induction Hypothesis. Suppose the following holds for k2 ≤ ˜︁k: for any measurable

set R, |P (R)−Q(R)| ≤ 4Gdk1
nτ

+∑︁˜︁k
j=1

4Gd
(n+j)τ .

Induction Step: k2 = ˜︁k + 1. Let the last element of S ′ be q. As in the base case,

we decompose the distribution Q into a mixture of two components based on whether

q is sampled or not. We have Q =
(︂
1− m

n+˜︁k+1

)︂
Q1 + m

n+˜︁k+1
Q2. Note that Q1 is a

probability distribution which does not use the last element of S ′. Therefore we can

use Induction hypothesis which gives us that |Q1(R)− P (R)| ≤ 4Gdk1
nτ

+∑︁˜︁k
j=1

4Gd
(n+j)τ .

We therefore get,

|P (R)−Q(R)| =
⃓⃓⃓⃓
⃓P (R)−

(︄
1− m

n+ ˜︁k + 1

)︄
Q1(R)− m

n+ ˜︁k + 1
Q2(R)

⃓⃓⃓⃓
⃓

≤

⃓⃓⃓⃓
⃓⃓ m

n+ ˜︁k + 1
(Q1(R)−Q2(R)) + 4Gdk1

nτ
+

˜︁k∑︂
j=1

4Gd
(n+ j)τ

⃓⃓⃓⃓
⃓⃓

≤

⃓⃓⃓⃓
⃓⃓ m

n+ ˜︁k + 1
4Gd
mτ

+ 4Gdk1

nτ
+

˜︁k∑︂
j=1

4Gd
(n+ j)τ

⃓⃓⃓⃓
⃓⃓

= 4Gdk1

nτ
+
˜︁k+1∑︂
j=1

4Gd
(n+ j)τ

where in the last inequality, as in the base case, we used that fact that distributions

Q1 and Q2 differ because in one we subsample the last element where as in the other

we don’t, so from Claim 31, for two data sets of size m differing in one element, the

failure probability is 4Gd
mτ

. This completes the induction argument. We bound the

sum simply as ∑︁k2
j=1

4Gd
(n+j)τ ≤

4Gdk2
nτ

, which gives us that the whole term is bounded by
4Gd(k1+k2)

nτ
.

263

The above, by an application of data processing inequality, shows that the condi-

tional TV distance between wt+1 and w′
t+1 is at most 4Gd(k1+k2)

nτ
. Note that the upper

bound holds uniformly over all conditioning events. Moreover, from the maximal

coupling characterization of TV distance, we have that for any coupling of wt+1 and

w′
t+1, the conditional probability of disagreement is at most 4Gd(k1+k2)

nτ
. Consider the

coupling which just concatenates all these couplings, then an application of union

bound over the T iterates, the joint probability of disagreement under this coupling

is at most 4Gd(k1+k2)T
nτ

which gives us our upper bound on TV distance between joint

iterates. Finally, by data processing inequality, the same upper bound holds for the

average iterates which finishes the proof.

We now establish the guarantees on the learning Algorithm 23. To handle batch

edit request, we extend the notion of exact unlearning with one edit request to batch

request: we term it exact batch unlearning. We similarly also extend ρ-TV-stability

to (k1, k2, ρ)-TV stability, which is ρ-TV stability under arbitrary k1 deletions and

k1 + k2 insertions, as well as k1 insertions and k1 + k2 deletions.

Proposition 8. Let ℓ(.; z) be an H-smooth G-Lipschitz convex function ∀ z.

Algorithm 21, run with η = min

⎧⎨⎩ 1
2H ,

D(︂
G√
m

+τ
√
d

)︂√
T

⎫⎬⎭, τ = 4GdT
ρn

, and T =

max
{︃

(ρn)
d3/2√

m
,
(︂
HD(ρn)
Gd3/2

)︂2/3
}︃

outputs ˆ︁wS which is (k1, k2, (k1 + k2)ρ)-TV stable and

satisfies E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂

= O
(︃(︂√

HGD2d3/2

ρn

)︂2/3
)︃

.

Proof of Proposition 8. The (k1, k2, (k1 + k2)ρ)-TV stability guarantee follows from

Lemma 32 by taking a supremeum over all datasets S and S ′ of sizes n and n+ k2

(or n− k2) to get that that TV stability is uniformly upper bound by 4GTd(k1+k2)
nτ

=

(k1 + k2)ρ, where the equality follows upon setting τ = 4GdT
ρn

. For the excess empirical

risk bound, we use the guarantee on excess empirical risk of SGD on smooth convex

functions (for example, Theorem 4.1 from [AZ18]), combined with the fact in Lemma 31

264

that quantization produces unbiased estimates of the gradient with bounded variance

V2 ≤ 2G2

m
+ τ 2d = 2G2

m
+ 16G2d3T 2

(ρn)2 . Therefore, choosing step size η ≤ 1
2H , we get

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂
≤ O

(︄
2ηV2 + D2

ηT

)︄
= O

(︄
2η
(︄

2G2

m
+ 16G2d3T 2

(ρn)2

)︄
+ D2

ηT

)︄

Define ˜︁G2 = 2
(︂

2G2

m
+ 16G2d3T 2

(ρn)2

)︂
and set η = min

{︂
1

2H ,
D˜︁G√
T

}︂
, which makes the

upper bound

E
[︂ ˆ︁L(ˆ︁wS)− ˆ︁L(w∗

S;S)
]︂

= O

(︄
2ηV2 + D2

ηT

)︄
= O

(︄
HD2

T
+

˜︁GD√
T

)︄

≤ O

(︄
HD2

T
+ GD√

Tm
+ GDd3/2

√
T

(ρn)

)︄

Balancing the trade-off between the las two terms gives us T = (ρn)
d3/2√

m
. Similarly,

balancing the trade-off between the first and last term gives us T =
(︂
HD(ρn)
Gd3/2

)︂2/3
. Hence

setting T = max
{︃

(ρn)
d3/2√

m
,
(︂
HD(ρn)
Gd3/2

)︂2/3
}︃

gives us that the expected excess empirical

risk is bounded by
(︂√

HGD2d3/2

ρn

)︂2/3
and completes the proof.

Remark 5. We see that the TV stability parameter above is (k1 + k2)ρ as opposed to

(k1 + 2k2)ρ which is what we would obtain with ρ-TV stability for one edit request and

using the triangle inequality of TV distance (see Remark 1).

Remark 6. The largest mini-batch size, without hurting runtime, is m =
(︂

G
HD

)︂2
T =(︂

G2(ρn)
(HD)2d3/2

)︂2/3
, which gives us T =

(︂
HD(ρn)
Gd3/2

)︂2/3
.

We now proceed to unlearning. The unlearning algorithm (Algorithm 24) upon

observing an edit request comprising of both insertions and deletions, first couples

the mini-batch indices (described formally in the next paragraph), and computes the

gradient on the new mini-batch It then uses the same quantization randomness as

in training, and checks if the quantized point changes. If it does, in any iteration,

then it calls recompute. The use of the same quantization randomness corresponds

to a trivial coupling between the quantization randomness. We explain the coupling

procedure in detail below.

265

Batch coupling. We setup some notation. Consider the training dataset S and

dataset realized after the batch edit request S ′. Given a vector w, let Qθ1(gSb1(w))

denote the quantized gradient vector where θ1 is the quantization randomness and

b1 is the mini-batching randomness on dataset S ′. Similarly, Qθ2(gS′
b1 (w)) denotes the

quantized vector with θ2 as the quantization randomness and b2 as the mini-batching

randomness on dataset S ′. We couple θ1 and θ2 by considering the trivial coupling

θ1 = θ2 i.e. the joint probability measure is defined only on the diagonal of the product

measure. To couple the mini-batch indices, we consider two cases: if the training

dataset S has less more or more points than S ′. For simplicity, Algorithm 24 is the

pseudo-code corresponding only to the first case.

In the first case, suppose S has n points and S ′ has n+ k2 points, realized after k1

deletions and k1 + k2 insertions. Without loss of generality, order the two datasets

as follows: the first n− k1 points in S and S ′ are the same, call these S1 = S ′
1, next

we have the last k1 points of S, and arbitrary k1 points of S ′ - call these S2 and S ′
2,

and moreover let the mapping of indices from S2 → S ′
2 by denoted by ι. Finally

we have the rest of k2 points of S ′, call this S ′
3. In the following discussion, and

in Algorithm 24, when we consider elements of these sets, we mean their indices.

As before, let µn,m and µn+k2,m denote the probability measures correspondingly to

sampling m elements uniformly from a discrete universe of size n (i.e. S) and n+ k2

(i.e. S ′) respectively. These sub-sampling measures are coupled in the following way

in Algorithm 24. We first sample b(1) ∼ µn,m (during training). Let b(1)
2 be the m2

indices in S2: replace these by the corresponding indices in S ′
2 i.e. ι(b(1) ∩ S2). Next,

sample b ∼ µn+k2,m: let b3 be the m3 indices which are in S ′
3. We now resample

b
(2)
1 ∼ Unif(b(1),m3) - these are indices used in training, which are now to be replaced.

Define b(2) =
(︂
b(1)\

{︂
b(1) ∩ S2

}︂
∪
{︂
ι(b(1) ∩ S2)

}︂)︂
\b(2)

1 ∪ {S ′
3 ∩ b}. Let the distribution

of b(2) produced in the above way be denoted as µedit
n,m. We now show that (b(1), b(2)) is

indeed a coupling of µn,m and µn+k2,m.

266

Claim 9. With the construction described above, we have that b(1) ∼ µn,m and

b(2) ∼ µedit
n,m = µn+k2,m.

Proof of Claim 9. b(1) ∼ µn,m follows trivially by construction. For the other part, for

any set E of m indices arising from the coupling construction, let E1 be the set of

m−m3 points from S ∪ S ′
2 and E2 be the set of m3 points from S ′

3. Since these m3

points of E2 need to be selected when sampling b, the probability of sampling these

points is (n
m−m3)
(n+k2

m) , where the numerator denotes the number of ways to sample from

S ′\S ′
3. For the points in E1, these come from b(1) and replacement using S ′

2 (which is a

deterministic operation). Hence, probability of E1 is (n−(m−m3)
m3)
(n

m) , where the numerator

denotes the number of ways to sample rest of elements not in E1 when sampling b(1).

Finally, we need to consider the re-sampling step i.e sampling b(2)
1 - note that the draw

of E1 and E2 fixes the set produced by this re-sampling, and thus its probability is
1

(m
m3)

. This gives us

µedit
n,m(E) =

(︂
n

m−m3

)︂
(︂
n+k2
m

)︂ ·
(︂
n−(m−m3)

m3

)︂
(︂
n
m

)︂ · 1(︂
m
m3

)︂
= 1(︂

n+k2
m

)︂ · n!(n− (m−m3))!m!(n−m)!m3!(m−m3)!
(m−m3)!(n− (m−m3))!m3!(n−m)!n!m!

= 1(︂
n+k2
m

)︂
= µn+k2,m(E).

This finishes the proof.

In the second case, S has more samples than S ′ - let number of samples in S

be n, and in S ′ be n − k2 and there k1 samples in S ′ not in S. As before we order

the sets as: let S1 = S ′
1 be the n − k2 − k1 samples which are the same in both S

and S ′. Let S2 be the next k1 samples in S, which correspond to S ′
2, the rest of

k1 samples in S ′ - the mapping from S2 to S ′
2 being ι. Finally let S3 be the rest

of k2 samples in S. We first sample b(1) ∼ µn,m (during training). Let b(1)
2 be the

267

m2 indices in S2: replace these by the corresponding indices in S ′
2 i.e. ι(b(1) ∩ S2).

Let b(1)
3 denote the sub-sampled indices which are in the last k2 indices of S, and let

m3 =
⃓⃓⃓
b

(1)
3

⃓⃓⃓
. We re-sample m3 indices as b = Unif((S ′\ι(b(1) ∩ S2)\b(1)),m3). Finally,

define b(2) =
(︂
b(1)\

{︂
b(1) ∩ S2

}︂
∪
{︂
ι(b(1) ∩ S2)

}︂)︂
\b(1)

3 ∪ b. Let the distribution of b(2)

produced in the above way be denoted as µedit
n,m. We now show that (b(1), b(2)) is indeed

a coupling of µn,m and µn−k2,m.

Claim 10. With the construction described above, we have that b(1) ∼ µn,m and

b(2) ∼ µedit
n,m = µn−k2,m.

Proof of Claim 10. b(1) ∼ µn,m follows trivially by construction. For the other part,

let E be a set of m indices from [n− k2]. Note that any number of points in E can

arise due to re-sampling (i.e. when sampling b′), hence we need to consider all such

possibilities - let m3 be the number of indices in E produced via re-sampling. Fixing

one of
(︂
m
m3

)︂
combinations, the probability that it was re-sampled is 1

(n−k2−(m−m3)
m3) . From

the rule of sum, the probability that any m3 sized set was produced via re-sampling is
(m

m3)
(n−k2−(m−m3)

m3) . For each such set, it could arise from any of m3 points from k2, which

gives us
(︂
k2
m3

)︂
possibilities. The probability of choosing any such set, when sampling

b(1), is (k2
m3)
(n

m) . We now combine these and apply the rule of sum on different choices of

m3, from 0 to m. We get,

µedit
n,m(E) =

m∑︂
m3=0

(︂
m
m3

)︂
(︂
n−k2−(m−m3)

m3

)︂ ·
(︂
k2
m3

)︂
(︂
n
m

)︂
= 1(︂

n
m

)︂ m∑︂
m3=0

m!(n− k2 −m)!m3!
m3!(m−m3)!(n− k2 −m+m3)!

(︄
k2

m3

)︄

= 1(︂
n
m

)︂ m∑︂
m3=0

m!(n− k2 −m)!
(n− k2)!

· (n− k2)!
(m−m3)!(n−K2 − (m−m3))!

(︄
k2

m3

)︄

=

(︂
n−k2
m

)︂
(︂
n
m

)︂ m∑︂
m3=0

(︄
n− k2

m−m3

)︄(︄
k2

m3

)︄
=

(︂
n−k2
m

)︂
(︂
n
m

)︂ · (︄n
m

)︄
=
(︄
n− k2

m

)︄
= µn−k2,m

where the third last equality follows from Vandermonde’s identity.

268

Algorithm 24 Batch unlearning for quantized-m-SGD
Input: Edit request produces dataset S ′ of n+k2 points, with k1 deletions and k1 +k2

insertions; let S1, S2 and S ′
1, S

′
2 and S ′

3 be partitions of S and S ′ respectively, as
defined in “Batch coupling"

1: for t = 1, 2 . . . , T do
2: Load(θt, wt, bt, gt)
3: b ∼ Unif(S ′,m)
4: m3 = |{x ∈ S3 ∩ b}|
5: b

(2)
1 ∼ Unif(bt,m3)

6: g′
t = gt − 1

m

⎛⎝ ∑︁
j∈bt∩S2

∇ℓ(wt; zj) + ∑︁
j∈ι(bt∩S2)

∇ℓ(wt; zj)

− ∑︁
j∈b(2)

1

∇ℓ(wt; zj) + ∑︁
j∈S3∩b

∇ℓ(wt; zj)
⎞⎠

7: b
(2)
t = (bt\ {bt ∩ S2} ∪ {ι(bt ∩ S2)}) \b(2)

1 ∪ {S ′
3 ∩ b}

8: Save(g′
t, b

(2)
t)

9: if Qθt (gt) ̸= Qθt (g′
t) then

10: quantized-m-SGD // Recompute on current dataset
11: break
12: end if
13: end for

We now state the main result about unlearning.

Proposition 9. (Algorithm 23, Algorithm 24) satisfies exact batch unlearning. More-

over, for k batch edit requests, where the ith request comprises of ki1 deletions and

ki1 + ki2 insertions, or ki1 insertions and ki1 + ki2 deletions, Algorithm 24 recomputes

with probability at most 2∑︁k
i=1(ki1 + ki2)ρ.

Proof of Proposition 9. We consider one batch edit request of k1 deletions and k1 + k2

insertions (case 1) and k1 insertions and k1 + k2 deletions (case 2). We have that

applications of Claims 9 and 9 give us that mini-batches are transported, for cases

1 and 2 respectively. Moreover, since we consider a trivial coupling of quantization

randomness, we can consider it part of the (randomized) algorithmic map. Therefore,

as in the proof of Proposition 4, transportation of mini-batches suffices to give us that

Algorithm 24 satisfies exact unlearning. Repeated application of the above generalizes

269

it to arbitrary k edits. We now proceed to bound the probability of recompute directly

for a batch edit request. For a fixed model w, and a fixed iteration, we fix the

mini-batches (b(1), b(2)) such that b(1) and b(2) differ by j indices. From Lemma 31, we

have

Pθ,(b(1),b(2))

[︂
Qθ(gSb(1)(w)) ̸= Qθ(gS

′

b(2)(w))|(b(1), b(2)) : b(1), b(2) differ in j indices
]︂

≤ 4Gdj
mτ

We now integrate over the conditioning event. To do this, we need to compute the

probability of the event that sampling (b(1), b(2)) generates j differing indices - denote

this as p(j).

Since we have two case for coupling constructions, we consider each one by one.

We first look at the second case: from construction of the coupling, it is easy to verify

that j differing indices can be produced when, for any i, b(1) samples i elements from

the k1 differing items and j − i indices from the last k2 indices, for any i from 0 to j.

Hence, by direct computation, we have

p(j) =
j∑︂
i=0

(︂
k1
i

)︂(︂
k2
j−i

)︂(︂
n−(k1+k2)

m−j

)︂
(︂
n
m

)︂ =

(︂
n−(k1+k2)

m−j

)︂
(︂
n
m

)︂ j∑︂
i=0

(︄
k1

i

)︄(︄
k2

j − i

)︄
=

(︂
n−(k1+k2)

m−j

)︂(︂
k1+k2
j

)︂
(︂
n
m

)︂
where the last equality follows from Vandermonde’s identity. Plugging this in the

following, we have,

Pθ,(b(1),b(2))

[︂
Qθ(gSb(1)(w)) ̸= Qθ(gS

′

b(2)(w))
]︂

=
k1+k2∑︂
j=0

p(j)Pθ,(b(1),b(2))

[︂
Qθ(gSb(1)(w)) ̸= Qθ(gS

′

b2 (w))|b(1), b(2) differ in j indices
]︂

≤
k1+k2∑︂
j=0

(︂
n−(k1+k2)

m−j

)︂(︂
k1+k2
j

)︂
(︂
n
m

)︂ 4Gdj
mτ

= m(k1 + k2)
n

4Gd
mτ

= 4Gd(k1 + k2)
nτ

≤ kρ

T

270

where the second equality is a consequence of Vandermonde’s identity proved in

Lemma 32 (Base case k2 = 0) and the last inequality follows by plugging in τ = 4GdT
ρn

.

We now look at the first case (when S is smaller than S ′), which is slightly more

involved. Let i1 denote the number of indices in b(1) ∩ S1, and let i2 be the number of

indices in b(2) ∪ S ′
3. Furthermore, since we resample i2 indices from b(1), let i3 be the

number of indices from S1 which are re-sampled. It can be verified that if b(1) and b(2)

differ in j indices, then we need to have i1 + i3 = j. This is because it can happen

that both i(2) is large, but upon re-sampling, it chooses elements from k1, which does

not increase the number of different indices between b(1) and b(2) Also, note that by

construction i3 ≤ i2 ≤ j. Hence the probability p(j), by direct computation is,

p(j) =
j∑︂

i1,i2,i3=0,i1+i3=j,i3≤i2≤j

(︂
k1
i1

)︂(︂
n−k1
m−i1

)︂
(︂
n
m

)︂ ·

(︂
k2
i2

)︂(︂
n

m−i2

)︂
(︂
n+k2
m

)︂ ·

(︂
i1

i2−i3

)︂
(︂
m
i2

)︂
=

j∑︂
i1=0

j∑︂
i2=j−i1

(︂
k1
i1

)︂(︂
n−k1
m−i1

)︂
(︂
n
m

)︂ ·

(︂
k2
i2

)︂(︂
n

m−i2

)︂
(︂
n+k2
m

)︂ ·

(︂
i1

i2−(j−i1)

)︂
(︂
m
i2

)︂
where in the second equality, we substituted i3 = j − i1. We now claim that p(j) =
(n−k1

m−j)(k1+k2
j)

(n+k2
m) , which we will argue via a double counting argument. Note that it suffices

to show that ∑︁j
i1=0

∑︁j
i2=j−i1

(︂
k1
i1

)︂(︂
n−k1
m−i1

)︂
·
(︂
k2
i2

)︂(︂
n

m−i2

)︂(i1
i2−(j−i1))

(m
i2)

=
(︂
n−k1
m−j

)︂(︂
k1+k2
j

)︂(︂
n
m

)︂
. Con-

sider set A of n+k2 elements, composed of A1 of n−k1, A2 of k1 and A3 of k2 elements,

and a B of n elements, composed of B1 of n− k1 and B2 of k1 elements. Note that the

expression
(︂
n−k1
m−j

)︂(︂
k1+k2
j

)︂(︂
n
m

)︂
is the size of number of combinations of 2m elements, m

each from A and B such that the number of elements from A2 ∪A3 is j. We will show

that the other expression also counts this set, via basic combinatorial rules. For this,

consider combinations of m elements from B A3 and such that we have i2 elements

from A3 and the rest m− i2 from B. Also, consider combinations of m elements from

A1 ∪A2 which consists of i1 elements from A2 the rest from A1. We now modify these

as follows, out of m elements from A, select i2 elements and replace thse from elements

from A3 - not that if it turns out that out of i2 selected, j − i1 are from A1, then the

271

number of elements from A2 ∪A3 after replacement becomes exactly j. However, also

note that for each such combination arising, there are
(︂
m
i2

)︂
combinations of samples

from A1 and A2, which give the same final combination after replacement. Hence, we

need to apply the rule of division, so as not to repeatedly count the same combination.

Finally, using the rule of sum to consider all possible values of i1 and i2 retrieves

the expression ∑︁j
i1=0

∑︁j
i2=j−i1

(︂
k1
i1

)︂(︂
n−k1
m−i1

)︂
·
(︂
k2
i2

)︂(︂
n

m−i2

)︂(i1
i2−(j−i1))

(m
i2)

=
(︂
n−k1
m−j

)︂(︂
k1+k2
j

)︂(︂
n
m

)︂
and

completes the argument.

We again plug in the above in the following expression to get,

Pθ,(b(1),b(2))

[︂
Qθ(gSb(1)(w)) ̸= Qθ(gS

′

b(2)(w))
]︂

=
k1+k2∑︂
j=0

p(j)Pθ,(b(1),b(2))

[︂
Qθ(gSb(1)(w)) ̸= Qθ(gS

′

b2 (w))|b(1), b(2) differ in j indices
]︂

≤
k1+k2∑︂
j=0

(︂
n−k1
m−j

)︂(︂
k1+k2
j

)︂
(︂
n+k2
m

)︂ 4Gdj
mτ

= m(k1 + k2)
n

4Gd
mτ

= 4Gd(k1 + k2)
nτ

where the second equality is again a consequence of Vandermonde’s identity as in

Lemma 32, and the last inequality follows by plugging in τ = 4GdT
ρn

. Finally, we

condition on the iterates till iteration t, which gives us the conditional probability of

the iterates differing at iteration t is at most (k1+k2)ρ
T

. Taking a union bound over all

T iterations gives us that probability is at most (k1 + k2)ρ. Finally, we extend it to k

edit request, by using the fact, by assumption than the number of data points at any

point in the stream is between n
2 and 2n. This, with the result for one edit request,

directly give us the probability to recompute is at most 2∑︁k
i=1(ki1 + ki2)ρ.

We now state and prove the main result.

Theorem 45. Let ℓ(·; z) be an H-smooth G-Lipschitz convex function ∀ z. For any
1
n
≤ ρ < ∞, using Algorithm 23 as the learning algorithm and Algorithm 24 as its

unlearning algorithm, then given a stream of batch edit requests,

272

1. Satisfies exact batch unlearning at every point in the stream.

2. At time i in the stream of edit requests, outputs ˆ︁wSi, such that its excess empirical

risk bounded as,

E
[︂ ˆ︁L(ˆ︁wSi ;Si)− ˆ︁L(w∗

Si ;Si)
]︂

= O

⎛⎝(︄√HGD2d3/2

ρn

)︄2/3⎞⎠ .
3. For k batch edit requests, where the ith request comprises of ki1 deletions and

ki1 + ki2 insertions, or ki1 insertions and ki1 + ki2 deletions, the expected total

unlearning runtime is O(max
{︂
min {ρ, 1}∑︁k

i=1(k1
1 + ki2) · Training time, k

}︂
)

Proof of Theorem 45. The first and the second claims follow from Proposition 9 and

Proposition 8 respectively combined with the assumption that the number of samples

at every point in the stream is between n
2 and 2n. Finally, as in the the proof Claim 8

for runtime noisy-m-A-SGD, we can use the same data-structures together with the

fact the quantization operation takes O(d) time, to get that the claimed runtime.

These together finish the proof of Theorem 45.

C.9 Lower Bounds on Excess Empirical Risk

Give a convex function f(·, z), we consider empirical risk minimization on a dataset

of n points. We assume f(·, z) is 1-Lipschitz for all z, and diam(W) ≤ 1. This is only

for simplification as the bounds scale naturally with these constants, as discussed in

[BST14]. We look at algorithms, which given two datasets S and S ′ of size n differing

by one point, disagree only on a set of measure at most an ρ.

We have from the optimal transport connection that this requirement is equivalent

to the total variation distance being at most ρ. We want to understand then what is

the lower bound on excess empirical risk:

sup
∆(S,S′)=1

P [A(S ′) ̸= A(S)] ≤ ρ ⇐⇒ sup
∆(S,S′)=1

TV(A(S),A(S ′)) ≤ ρ

=⇒ E [excess empirical risk] ≥ α(ρ, n, d)

273

We focus on proving the implication. [BST14] gave lower bounds on accuracy

for DP algorithms by providing a reduction to computing mean of the dataset. We

present and give the proof of the reduction, adapted to our context, for completeness.

The reduction is that if we have a TV-stable algorithm for empirical risk minimization

for a particular f with some accuracy, then we have a TV-stable algorithm for mean

computation problem with certain accuracy. We will look at mean computation

problem over datasets with norm of the mean being Θ(M), for some given M . Let

µ(S) = 1
n

∑︁n
j=1 zi denote the mean of dataset S = {z1, z2, · · · zn}.

Let the optimal accuracy of such a mean computation problem be denoted as

follows:

α2
mean(n, ρ, d,M) := min

A:ρ-TV-stable
max

S={zi}i∈[n]:∥zi∥≤1,
M/2≤∥µ(S)∥≤2M

EA

⃦⃦⃦⃦
⃦A(S)− 1

n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦

2

Proposition 10. For any ρ-TV stable algorithm A, there exists a 1-Lipschitz convex

function f , a constraint set W with diameter(W) ≤ 1 and a dataset S of n data point

such that

E
[︂ ˆ︁L(A(S);S)− ˆ︁L(w∗;S)

]︂
≥ max

M

{︄
α2

mean(n, ρ, d,M)
2M

}︄

Proof of Proposition 10. We follow the proof in [BST14]. Consider dataset S =

{z1, z2, . . . , zn}, zi ∈
{︂
− 1√

d
, 1√

d

}︂d
- the dataset is therefore constrained to lie in the

unit Euclidean ball. Consider the following function f(w, z) = −⟨w, z⟩ with the

constraint set W being the unit Euclidean ball. It is easy to see that f(·, z) is

1-Lipschitz for all z. The empirical risk becomes ˆ︁FS(w) = −
⟨︂
w, 1

n

∑︁n
i=1 zi

⟩︂
, the

minimum of which over the unit ball is w∗
S =

1
n

∑︁n

i=1 zi

∥ 1
n

∑︁n

i=1 zi∥ .

Given an algorithm A for empirical risk minimization, let the reduced mean

274

estimate be ˆ︁µ(S) =
⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦
A(S). The accuracy (mean-squared error) of ˆ︁µ is,

∥ˆ︁µ(S)− µ(S)∥2 =
⃦⃦⃦⃦
⃦
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦A(S)− 1

n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦

2

=

⃦⃦⃦⃦
⃦⃦
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦
⎛⎝A(S)−

1
n

∑︁n
i=1 zi⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦
⎞⎠⃦⃦⃦⃦⃦⃦

2

=
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦

2

∥A(S)− w∗
S∥

2

≤
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦ 2
(︂ ˆ︁FS(A(S))− ˆ︁FS(w∗)

)︂
where the last inequality follows using the following computation, wherein we use the

fact all data point are in the unit ball.⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦

2

∥A(S)− w∗
S∥

2 ≤
⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦ 2 (1− ⟨A(S), w∗

S⟩)

= 2
⎛⎝⃦⃦⃦⃦⃦ 1

n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦−

⃦⃦⃦⃦
⃦ 1
n

n∑︂
i=1

zi

⃦⃦⃦⃦
⃦
⟨︄
A(S),

1
n

∑︁n
i=1 zi⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦⟩︄
⎞⎠

= 2
(︄⟨︄

w∗
S,

1
n

n∑︂
i=1

zi

⟩︄
−
⟨︄
A(S), 1

n

n∑︂
i=1

zi

⟩︄)︄
= 2(ˆ︁L(A(S);S)− ˆ︁L(w∗;S)

We therefore get,

ˆ︁L(A(S);S)− ˆ︁L(w∗;S) ≥ 1
2
⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦ ∥ˆ︁µ(S)− µ(S)∥2

There are two things left to show: a bound on 1
2∥ 1

n

∑︁n

i=1 zi∥ ∥ˆ︁µ(S)− µ(S)∥2 and show

that the reduced algorithm ˆ︁µ(S) is also ρ-TV stable. We proceed with the latter: note

that ˆ︁µ(S) =
⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦
A(S). However the term

⃦⃦⃦
1
n

∑︁n
i=1 zi

⃦⃦⃦
depends on the dataset,

and even if, for a neighbouring dataset S ′, A(S) and A(S ′) are ρ-close in total variation,

this data dependent scaling can potentially increase the distance. However, if instead we

define ˆ︁µ(S) = MA(S), where M is a constant, then it is indeed ρ TV stable. Moreover,

for reasonable values of M , the there exists dataset for which
⃦⃦⃦

1
n

∑︁n
i=1 zi

⃦⃦⃦
= Θ(M).

Finally, note that by definition, ∥ˆ︁µ(S)− µ(S)∥2 ≥ α2
mean(n, ρ, d,M). Taking a max

over all M gives us the desired statement.

275

C.9.1 Lower Bound for Mean Computation

In this section, we look at the problem of mean computation with TV stability

constraint. Note that to establish lower bounds on excess empirical risk, we need to

look at mean computation over data sets with means between M/2 and 2M , for a

given M . However, we will see the mean computation even over the unit ball has

same accuracy convex ERM. We will therefore establish lower bounds for the general

mean computation problem, but the construction will use datasets with means Θ(M)

for certain values of M . Given a dataset S = {x1, x2, . . . , xn}, where xi ∈
{︂
− 1√

d
, 1√

d

}︂d
for all i, the task is to compute the mean µ(S) = 1

n

∑︁
j=1 xj, while ensuring that the

procedure is ρ-TV-stable. This task is often considered in the differential privacy

literature, however with the data points being xj ∈ {0, 1}d. The mean computation

task then corresponds to releasing all one-way marginals of the database. Since we

want to consider data points which lie inside the Euclidean ball, we therefore scale

it accordingly. Given an algorithm A(S), the accuracy is defined as mean-squared

error: α2 := α2
mean(n, ρ, d) = E

[︂
∥A(S)− µ(S)∥2

]︂
where the expectation is over the

randomization of the algorithm.

We first describe two algorithms for this problem and give upper bounds.

Subsample-mean. Consider an algorithm which sub-samples a ρ-fraction of the

dataset and outputs the mean on it.

Claim 11. The Subsample-mean procedure satisfies ρ-TV-stability and has accuracy

α2 ≤ O
(︂

1
ρn

)︂
.

Proof of Claim 11. The ρ-TV stability claim follows since TV distance is witnessed

by the event that a differing sample is sub-sampled, which happens with probability
ρn
n

= ρ. The proof of accuracy follows from the proof of Proposition 3, wherein we

computed the gradient on uniformly sub-sampled m out of n points - we showed

276

that the mean on sub-sampled points is an unbiased estimate of the average gradient.

Furthermore, since the gradients were bounded as well, the expected accuracy of mean

computation is the same as the variance of gradient computation, which we derived

to be O
(︂

1
m

)︂
= O

(︂
1
ρn

)︂
.

Noisy-mean. The algorithm computes the mean and adds N(0, σ2I) noise to it

with σ2 = C
n2ρ2 , where C is an appropriate universal constant.

Claim 12. The Noisy-mean procedure satisfies ρ-TV-stability and has accuracy α2 ≤

O
(︂

d
(ρn)2

)︂
Proof of Claim 12. Since the difference in means of two datasets, in norm, is at most
2
n
, the outputs are two multivariate Gaussians with variance σ2 and means separated

by 2
n
. From [DMR18], the total variation distance between such Gaussian sis at most

O
(︂

1
nσ

)︂
= ρ. For the accuracy, we have α2 = E

[︂
∥µ(S) + xi− µ(S)∥2

]︂
= E

[︂
∥xi∥2

]︂
=

dσ2 = O
(︂

d
n2ρ2

)︂
.

If the above procedures are optimal, then we expect a lower bound of α2 =

Ω
(︂
min

{︂
1
ρn
, d

(ρn)2

}︂)︂
. Equivalently, for a fixed accuracy α, we expect a sample com-

plexity lower bound of n = Ω
(︂
min

{︂
1
ρα2 ,

√
d

ρα

}︂)︂
.

C.9.1.1 Lower Bound I

In this section, we give a Ω
(︂

1
αρ

)︂
lower bound on sample complexity. The key ingredient

is the following result, where the proof is based on a simple reduction argument.

Proposition 11. Suppose there exists a ρ-TV-stable algorithm such that for any

dataset of n points, it achieves an accuracy of α. Then there exists a 0.1-TV stable

algorithm such the for any dataset of size ⌈100nαρ⌉, it achieves a 0.1-accuracy.

Proof of Proposition 11. Let n′ = ⌈100nαρ⌉. Consider a dataset S ′ of n′ points. We

construct a dataset S of n points by concatenating K = ⌈0.1/ρ⌉ copies of S ′ followed

277

by ⌈n−Kn′

2 ⌉ copies of a constant sample, all ones (1√
d
, ..., 1√

d
) and ⌈n−Kn′

2 ⌉ copies of a

constant sample, all ones (− 1√
d
, ...,− 1√

d
).

Consider the algorithm wherein we compute the stable-mean on D′ by A′, defined

as computing the stable-mean on D using A and adjusting:

A′(D′) = n

Kn′A(D)

Let ˜︁S ′ be a neighbouring dataset of S ′. By construction, note that S and
˜︁S differ by K samples. Furthermore, since the algorithm A on D is ρ-TV sta-

ble, on K-neighbouring datasets, it is Kρ = 0.1-TV. This establish the stability

part of claim. The accuracy, by direct computation is E
[︂
∥A′(D′)− µ(D′)∥2

]︂
=

n2

K2n′2E
[︂
∥A(D)− µ(D)∥2

]︂
≤ (0.1)2.

Theorem 46. For the d-dimensional mean computation problem over the Euclidean

ball, there exists a dataset S of n samples with mean ∥µ(S)∥ = Θ
(︂

1
ρn

)︂
such that the

accuracy of any ρ TV stable algorithm is α ≥ Ω
(︂

1
ρn

)︂
.

Proof of Theorem 46. Even for accuracy α0 = 0.1 accuracy and ρ0 = 0.1 stability, we

need at least one sample. Hence, using Proposition 10, we get that sample complexity

is n ≥ Ω
(︂

1
ρα

)︂
, which equivalently gives the claimed accuracy lower bound. Note

that for this one-sample dataset S ′, ∥µ(S ′)∥ = 1. Finally, from the reduction in

Proposition 10, the mean of dataset S becomes ∥µ(S)∥ = ⌈0.1
ρn
⌉, which finishes the

proof.

C.9.1.2 Lower Bound II

In this section, we will prove the Ω
(︂

1
α2ρ

)︂
lower bound. We first introduce a technical

assumption.

Assumption 3. For any dataset S, we assume that the probability distribution A(S)

is defined over the unit Euclidean ball, is absolutely continuous with respect to the

278

uniform measure (in the unit Euclidean ball) and its probability density function, with

respect to the uniform measure, is bounded by K in absolute value.

As a remark, the above assumption can also be stated with respect to the Lebesgue

measure, but then we would get a scaling of πd/2

Γ(1+ d
2) , which is the Lebesgue volume of

the Bd(0, 1), to some of our terms. In order to simplify, we therefore use the uniform

measure.

Theorem 47. Let n ≥ 72, α ≤ 1
4 and 1

n
≤ ρ ≤ 1

4 . Let A be any ρ-TV-stable algorithm

satisfying Assumption 3 with K ≤ 2d. For large enough dimension d, there exists a

dataset S of n points with ∥µ(S)∥ = Θ
(︂

1√
ρn

)︂
such that accuracy is lower bounded as

α ≥ Ω
(︂

1√
ρn

)︂
.

Proof of Theorem 47. We will prove the result by contradiction. Let "Vol" of a set

refer to its volume with respect to the uniform measure on the unit ball. Consider

the following high-dimensional setup. Consider a dataset S (or S0) which mean µ(S)

such that ∥µ(S)∥ = Θ
(︂

1√
ρn

)︂
. It is easy to construct such datasets by considering

points such that sum of n− ⌈
√︂

n
ρ
⌉ points is 0 and the rest of points is the same point

repeated - this uses the assumption that ρ ≥ 1
n
. Now consider neighbouring datasets

Si’s, i ∈ [n] such that the means of Si’s are all 1
n

far from that of S, in norm. We also

need that the means of any two datasets ∥µ(Si)− µ(Sj)∥ ≥ 1
2n for i, j = 0 to n and

i ̸= j. It is easy to see the existence of such datasets, by considering the means of Si’s

in near orthogonal directions to that of S, which is possible when d is large enough.

Suppose the algorithm A has expected error α2 i.e. E [∥A(S)− µ(S)∥]2 ≤ α2 with

72 ≤ n ≤ 1
α2ρ

. Consider Bd

(︂
µ(S), 1

K1/d

)︂
, the d dimensional Euclidean ball centered at

279

µ(S) of radius 1
K1/d . From Markov’s inequality, we have that

P
[︃
A(S) ̸∈ Bd

(︃
µ(S), 1

K1/d

)︃]︃
≤ P

[︃
A(S) ̸∈ Bd

(︃
µ(S), 1

2

)︃]︃
= P

[︃
∥A(S)− µ(S)∥2 ≥ 1

4

]︃

≤ E [∥A(S)− µ(S)∥]2

(1/4)
≤ 4α2

, where in the first inequality, we used the assumption K ≤ 2d. Therefore, we have

P
[︂
A(S) ∈ Bd

(︂
µ(S), 1

K1/d

)︂]︂
≥ 1− 4α2.

We now setup some additional notation. Let Ai denote the set

Bd

(︂
µ(Si), 1

K1/d

)︂
\
(︂
∪nj=0,j ̸=iBd

(︂
µ(Sj), 1

K1/d

)︂)︂
i.e. the region in the ball Bd(µ(Si) which

is not contained in any of the other balls. Let Bij denote the region of intersec-

tion between Bd

(︂
µ(Si), 1

K1/d

)︂
and Bd

(︂
µ(Sj), 1

K1/d

)︂
where i ̸= j and i and j go

from 0 to n. Note that set Bij is constituted of two spherical caps. By con-

struction the centers of the intersecting spheres are at least 1
2n apart. To study

the properties of such a set, we define cap as the region in a d dimensional

sphere of radius 1
K1/d which intersects with another sphere of the same radius

but with centers being apart by 1/2n. From known results [Chu91], the volume

of cap is asymptotic to Vol
(︂
Bd

(︂
0, 1

K1/d

)︂)︂ (︂
1− Φ

(︂√
d

2n

)︂)︂
as d → ∞ where Φ is

the cumulative distribution function of a standard normal random variable. We

therefore have that limd→∞ Vol(cap) ∼ limd→∞ Vol
(︂
Bd

(︂
0, 1

K1/d

)︂)︂ (︂
1− Φ

(︂√
d

2n

)︂)︂
=

0. Furthermore, using Assumption 3, we have P [A(S) ∈ cap] ≤ KVol(cap) ∼

KVol
(︂
Bd

(︂
0, 1

K1/d

)︂)︂ (︂
1− Φ

(︂√
d
n

)︂)︂
≤ K

(︂
1

K1/d

)︂d (︂
1− Φ

(︂√
d
n

)︂)︂
=

(︂
1− Φ

(︂√
d
n

)︂)︂
as

d→∞. Since Φ(t) = Pg∼N (0,1)[g ≤ t], we have that 1−Φ(t) = Pg∼N (0,1)[g > t] ≤ e−t2/2
√

2πt

where the last inequality follows from standard bounds on tails of normal distribution

(See Proposition 2.1.2 in [Ver18]). Therefore, we have P [A(S) ∈ cap] = O
(︃
ne−d/4n2

√
d

)︃
.

For constant ϵ > 0, choosing d = Ω (4n2 ln (n/ϵ)) ensures that P [A(S) ∈ cap] ≤ ϵ
2n

for large enough n (to be specified later). Since Bij is made up of two conjoined caps,

280

this gives us that for any j = 0 to n and i ̸= j, we have that P [A(Si) ∈ Bij] ≤ ϵ
n
.

Finally, we look at Ai’s by removing the mass of all Bij’s, and using a union bound,

we get that

P
[︂
A(Si) ∈ Ai

]︂
= P

[︃
A(Si) ∈ Bd

(︃
µ(Si), 1

K1/d

)︃]︃
− P

[︂
A(Si) ∈ ∪nj=0,j ̸=iBij

]︂
≥ 1− 4α2 −

n∑︂
j=0,j ̸=i

P
[︂
A(Si) ∈ Bij

]︂
≥ 1− 4α2 − ϵ ≥ 1

2 − 4α2

where the last inequality holds for ϵ ≤ 1
2 . We now evaluate how large n we need for

this regime of ϵ: recall that we set d = Ω (4n2 ln (n/ϵ)), this gives ne−d/4n2
√
d
≤ ϵ

2n
√

ln (n/ϵ)
.

We want the right hand side to be at most ϵ
2n for ϵ ≤ 1/2. Plugging in this worst-case

value of ϵ, we get the condition ln (2n) ≥ 1 which holds for any n ≥ 1.4 and therefore

is valid by our assumption of n.

We now use the fact that A′
is are disjoint by construction. Therefore the

total measure of A(S) on union of A′
is is at most 1 i.e P [A(S) ∈ ∪ni=1Ai] =∑︁n

i=1 P [A(S) ∈ Ai] ≤ 1. Furthermore, since A(S) is ρ-TV stable, we have that

P [A(S) ∈ Ai] ≥ P [A(Si) ∈ Ai]− ρ. Combining this with the previous analysis which

gives a lower bound on P [A(Si) ∈ Ai] yields

n
(︃1

2 − 4α2 − ρ
)︃
≤

n∑︂
i=1

P
[︂
A(Si) ∈ Ai

]︂
− ρ ≤

n∑︂
i=1

P [A(S) ∈ Ai] ≤ 1 (C.1)

We now proceed in two cases:

Case 1. Suppose 72 ≤ n ≤ 17
4α2 . The latter condition gives us that 4α2 ≤ 17

n
.

Using Eq. (C.1) gives us n(1/2−4α2−ρ) ≤ 1 ⇐⇒ 4α2 ≥ 1
2 −

1
n
−ρ. Upper bounding

4α2 by 17
n

gives us that 18
n
≥ 1

2 − ρ ⇐⇒ n ≤ 18
(1/2−ρ) ≤ 72 where in the last inequality

we used ρ ≤ 1/4. This gives us a contradiction.

Case 2. Suppose 17
4α2 ≤ n. We again start with Eq. (C.1) which gives us

n(1/2 − 4α2 − ρ) ≤ 1 ⇐⇒ ρ ≥ 1
2 −

1
n
− 4α2. We want to prove the right hand

side is at least 1
nα2 , which would give us that n ≥ 1

ρα2 . Suppose this is not true i.e.
1
2 −

1
n
− 4α2 ≤ 1

nα2 ⇐⇒ n−2−8α2n
2n ≤ 1

nα2 ⇐⇒ α2n(1− 8α2) ≤ 2(1 + α2) ⇐⇒ n ≤

281

2(1+α2)
α2(1−8α2) . Finally using the fact that α ≤ 1

4 gives that n ≤ 2(1+1/16)
α2(1−8/16) ≤

17
4α2 which

yields a contradiction.

Hence, we see that with n > 72 samples and accuracy α2, we have established that

n ≥ 1
ρα2 and so α ≥ 1√

ρn
.

C.10 Excess Population Risk Bounds

In this section, consider the error criterion as the population risk, denoted as L(w;D).

We assume that the edits requests are independent of the dataset, so that the resulting

current dataset is still independently and identically distributed.

C.10.1 Upper Bounds

In this section, we will bound the expected excess population risk by appealing to

connections between algorithmic stability and generalization [BE02].

Theorem 48 (Upper bound). There exists a ρ TV stable algorithm, such that for

any function f(·, z) which is H-smooth G-Lipschitz convex ∀ z and any dataset S of

n points, it outputs ˆ︁wS which satisfies the following.

E [L(ˆ︁wS;D)− L(w∗;D)] = O

(︄
GD√
n

+GDmin
{︄

1
√
ρn
,

√
d

ρn

}︄)︄
.

Proof of Theorem 48. We use sub-sample-GD (Algorithm 19) and noisy-m-SGD (Al-

gorithm 21). From Lemma 3.2 in [BFTT19], we have that αstable(n) ≤ G2ηT
n

. From

Proposition 3, we set η = min
{︂

1
2H ,

D
G

√
T

}︂
, and T = DH

√
ρn

G
. We therefore have the

uniform stability parameter αstable(n) ≤ G2T
2Hn = GD

√
ρ√

ρn
. Using the excess empirical

risk bound from Proposition 3, and the fact that ρ ≤ 1, the excess population risk is

bounded as,

E [L(ˆ︁wS;D)− L(w∗;D)] ≤
GD
√
ρ√

n
+ GD
√
ρn
≤ GD√

n
+ GD
√
ρn

282

For noisy-m-SGD, we need to balance the trade-offs more directly. In Proposition 7,

we arrived at that when using η ≤ 1
2L , the expected excess empirical risk is bounded by

ηV2 + D2

ηT
. Using the uniform stability bound of G2Tη

n
, the expected excess population

risk is bounded as,

E [L(ˆ︁wS;D)− L(w∗;D)] ≤ G2Tη

n
+ ηV2 + D2

ηT
= η

(︄
G2T

n
+ V2

)︄
+ D2

ηT

Define ˜︁G2 =
(︂
G2T
n

+ V2
)︂
, where V2 = O (G2 + σ2d) = O

(︂
G2 + G2Td

n2ρ

)︂
. Setting η =

min
{︂

1
2H ,

D˜︁G√
T

}︂
, we get,

E [L(ˆ︁wS;D)− L(w∗;D)] ≤ HD2

T
+

˜︁GD√
T

= O

(︄
HD2

T
+ G
√
TD√

T
√
n

+ GD√
T

+ GD
√
T
√
d

ρn
√
T

)︄

= O

(︄
HD2

T
+ GD√

n
+ GD√

T
+ GD

√
d

ρn

)︄
.

Setting T = max
{︂
min

{︂√
n, ρn√

d

}︂
, HD
G

min
{︂√

n, ρn√
d

}︂}︂
, and combining the two

results finishes the proof.

C.10.2 Lower Bounds

In this section, we will prove a lower bound on excess population risk for any ρ-TV

stable algorithm. As before, we will consider the Lipschitz constant G and diameter

D to be both 1, as the bounds scale naturally with these constants. We first define

the following quantity, which denotes the lower bound on expected excess empirical

risk of ρ-TV-stable algorithm with n points.

ˆ︁α(n, ρ) := inf
A:ρ-TV-stable

sup
S:|S|=n

EA
ˆ︁L(A(S);S)− ˆ︁L(ˆ︁wS;S)

Theorem 49. For the problem of stochastic convex optimization, there exists a data

distribution D, such that any ρ-TV-stable algorithm A incurs expected excess population

risk, bounded as follows

E
S∼Dn,A

[L(A(S);D)− L(w∗;D)] ≥ max
{︄

Ω
(︄

1√
n

)︄
, ˆ︁α(n, ρ)

}︄

283

Proof of Theorem 49. The 1√
n

term follows directly since it is the lower bound for any

algorithm, and so applies to ρ-TV stable algorithms as well. We now focus on the

second term ˆ︁α(n, ρ) The proof is based on a standard reduction argument: if there is

ρ-TV stable algorithm, which with n i.i.d. samples from any distribution, achieves

an expected excess population risk less than ˆ︁α(n, ρ), then there is an ρ-TV stable

algorithm which achieves an expected excess empirical risk less than ˆ︁α(n, ρ) on any

dataset of n samples. Since the latter contradicts the definition of ˆ︁α(n, ρ), this gives

us that the expected excess population risk is at least or equal to ˆ︁α(n, ρ). We now

focus on the proof of the reduction. Consider a dataset S of n points. Consider A

as the following algorithm: sample n i.i.d. samples from S, call this set ˜︁S, and run

some ρ-TV algorithm ˜︁A on ˜︁S. For a fixed ˜︁S, from TV-stable property of ˜︁A, for any

neighbouring dataset ˜︁S ′ with one point differing, we have that TV(˜︁A(˜︁S), ˜︁A(˜︁S ′)) ≤ ρ.

Furthermore, using the group property of TV-stability, for any dataset ˜︁S ′, we have

TV(˜︁A(˜︁S), ˜︁A(˜︁S ′)) ≤ ∆(S, S ′)ρ. Using the maximal coupling characterization of total

variation distance, we have that there exists a coupling ˜︁π of random variables ˜︁A(˜︁S)

and ˜︁A(˜︁S ′) such that TV(˜︁A(˜︁S), ˜︁A(˜︁S ′)) = E˜︁π1{︂ ˜︁A(˜︁S) ̸= ˜︁A(˜︁S ′)
}︂
. We now show that

the algorithm A is also TV-stable for dataset S.

Consider dataset S ′ of n points which differs from S in the first sample. We

now generate ˜︁S ′ by drawing n i.i.d samples from S ′. For this, consider the following

coupling: we draw n i.i.d samples from S, call it ˜︁S. For every draw of the first sample,

replace it by the first sample of S ′, call it ˜︁S ′. It is easy to check the ˜︁S and ˜︁S ′ are

i.i.d. samples from S and S ′ respectively. We now proceed to show the A is ρ-TV

stable. We will use the fact the total variation distance is at most the probability

of disagreement under any coupling. The coupling π we consider is that we first

generate ˜︁S and ˜︁S ′ using the aforementioned coupling, and then use the coupling ˜︁π
which achieves total variation distance for worst-case fixed neighbouring datasets ˜︁S

284

and ˜︁S ′. We have,

TV(A(S),A(S ′)) ≤ Eπ1 {A(S) ̸= A(S ′)} = Eπ1
{︂ ˜︁A(˜︁S) ̸= ˜︁A(˜︁S ′)

}︂
≤ Eπ sup˜︁S,˜︁S′

1

{︂ ˜︁A(˜︁S) ̸= ˜︁A(˜︁S ′)
}︂
≤ Eπ∆(˜︁S, ˜︁S ′)ρ = ρ

where the last equality follows from direct computation of ∆(˜︁S, ˜︁S ′): number of differing

samples, under coupling π.

We now proceed to the accuracy guarantee. From a straight-forward computation,

the excess population risk, under the sampling of ˜︁S, is ˆ︁L(˜︁A(˜︁S);S)− ˆ︁L(w∗
S;S) - this

is the excess empirical risk for dataset S. So if we have an upper bound on excess

population risk using algorithm ˜︁A, we have an upper bound on excess empirical risk

for dataset S. This completes the reduction argument and hence the proof.

C.11 Algorithms for Approximate Unlearning

We consider an approximate notion of unlearning, based on differential privacy, which

has appeared in the literature [NRSM21a, GGHVDM20]. With such a notion, we

show a simple black-box reduction to DP algorithm, to handle unlearning requests,

and show how to use group privacy to trade-off accuracy and runtime. For convex

ERM, this method performs competitively with existing works.

We first define the notion of approximate unlearning.

Definition 21 ((ϵ, δ)-approximate-unlearning). We say a procedure (A,U) satisfies

(ϵ, δ)-approximate-unlearning unlearning if for any S, S ′ ⊂ X ∗ such that ∆(S, S ′) = 1

and for any measurable event E ∈ Range(U) ∩ Range(A), with probability at least

1− δ,

e−ϵP [U(A(S), S ′\S ∪ S\S ′) ∈ E] ≤ P [A(S ′) ∈ E] ≤ eϵP [U(A(S), S ′\S ∪ S\S ′) ∈ E]

We now define (g, ϵ, δ)-group differential privacy.

285

Definition 22 ((g, ϵ, δ)-group differential privacy). An algorithm A satisfies (ϵ, δ)-

differential privacy if for any two datasets S and S ′ such that ∆(S, S ′) ≤ g, for any

measurable event E ∈ Range(A), it satisfies

P(A(S) ∈ E) ≤ eϵP(A(S ′) ∈ E) + δ

Remark 7. [DR+14] If an algorithm satisfies (ϵ, δ)-DP, then for any g ∈ N, it satisfies

(g, gϵ, ge(g−1)ϵδ)-group differential privacy.

We now define privateCompute oracle which, basically is a differentially private

solver for the said task.

Definition 23 (privateCompute(S, ϵ, δ) oracle). For a problem instance, given a

dataset S of n points, and privacy parameters ϵ and δ, a privateCompute oracle

outputs a (ϵ, δ)-differentially private solution with accuracy αprivate(n, ϵ, δ)

We now give a very simple algorithm (Algorithm 25) based on the observation

above using privateCompute oracle calls.

Algorithm 25 Approximate unlearning
Input: ϵ, δ, ρ

1: i← 0
2: ˆ︁wS ← PrivateCompute

(︂
S, ρα, βgroup

(︂⌊︂
1
ρ

⌋︂
, ρα, ρβ

)︂)︂
3: // Observe k edit requests
4: while t = 1, 2, . . . , k do
5: St ← Update dataset(edit request)
6: i+ = 1
7: if i =

⌊︂
1
ρ

⌋︂
then

8: ˆ︁wSt ←PrivateCompute
(︂
St, ρα, βgroup

(︂⌊︂
1
ρ

⌋︂
, ρα, ρβ

)︂)︂
9: i← 0

10: end if
11: end while

Theorem 50. Given a set of n data points to start with, and observing a stream of k

requests, at any time t in the stream, the following hold about Algorithm 25:

286

1. It satisfies (ϵ, δ)-approximate unlearning.

2. The unlearning runtime for k requests is at most 2ρk privateCompute oracle

calls.

3. The accuracy is at most αprivate
(︂
n
2 , ρϵ, δgroup

(︂⌊︂
1
ρ

⌋︂
, ρϵ, ρδ

)︂)︂
.

Proof of Theorem 50. Consider a point t in the stream, and let j be such that j
⌊︂

1
ρ

⌋︂
≤

t ≤ (j + 1)
⌊︂

1
ρ

⌋︂
. Since the algorithm uses privateCompute with parameters ρϵ and

δgroup
(︂⌊︂

1
ρ

⌋︂
, ρϵ, ρδ

)︂
, it satisfies (ρϵ, δgroup

(︂⌊︂
1
ρ

⌋︂
, ρϵ, ρδ

)︂
differential privacy and hence(︂⌊︂

1
ρ

⌋︂
, α, δ

)︂
-group privacy. Therefore, for any such t, since the number of requests

after time j
⌊︂

1
ρ

⌋︂
is less that or equal to

⌊︂
1
ρ

⌋︂
, this implies it satisfies (α, δ)-approximate

unlearning. For the second part of the claim, note that for k updates, the number of

times the algorithm calls privateCompute is k

⌊ 1
ρ⌋

. Note that 1
ρ
≥ 1, so if 1 ≤ 1

ρ
< 2,

then
⌊︂

1
ρ

⌋︂
= 1, which gives that the update complexity is k ≤ 2k. However, if 1

ρ
≥ 2,

we have that k

⌊ 1
ρ⌋
≤ k

(1
ρ

−1) ≤ 2kρ, which gives the update complexity is at most 2ρk in

both cases. For the third part of the claim, at time j
⌊︂

1
ρ

⌋︂
≤ t ≤ (j+ 1)

⌊︂
1
ρ

⌋︂
, the private

estimator is computed with n
(︂
j
⌊︂

1
ρ

⌋︂
)
)︂
≥ n

2 , by assumption. Moreover the privacy

parameters of the algorithm are ρϵ and δgroup
(︂⌊︂

1
ρ

⌋︂
, ρϵ, ρδ

)︂
which gives the claimed

accuracy bound.

As an example, consider ρ = 1√
k
, we first do privatecompute with parameters

(ϵ/
√
k, , δgroup(ϵ/

√
k, δ/
√
k, ⌊
√
k⌋)). Since after ⌊

√
k⌋ edit requests, we would no longer

satisfy the unlearning guarantee, so we now need to do privateCompute again. However

note that we would only need to do privateCompute
√
k times which gives the update

computation cost.

Example: Convex ERM. For convex ERM, we can use [BST14] to instantiate

the oracle. In this case, accuracy αprivate is the excepted excess empirical risk, which

287

is αprivate(n, ϵ, δ) = O
(︃
GD

√
d
√

log(1/δ)
nϵ

)︃
. Using Algorithm 25, given 0 ≤ ρ ≤ 1, at any

point in the stream, we have,

E
[︂ ˆ︁L(ˆ︁wS;S)− ˆ︁L(w∗

S;S)
]︂
≤ αprivate

(︄
n

2 , ρϵ, δgroup

(︄⌊︄
1
ρ

⌋︄
, ρϵ, ρδ

)︄)︄

≤ O

⎛⎜⎜⎝GD
√
d

√︃
log

(︂
(1/ρδ) exp

(︂
ρϵ
(︂⌊︂

1
ρ

⌋︂
− 1

)︂)︂)︂
nρϵ

⎞⎟⎟⎠
≤ O

⎛⎝GD
⎛⎝√d

√︂
log (1/ρδ)
nρϵ

+
√
d

nρ
√
ϵ

⎞⎠⎞⎠
≤ O

⎛⎝GD√d
√︂

log (1/ρδ)
nρϵ

⎞⎠
where the last inequality holds when ϵ

log(1/ρδ) ≤ O(1), which usually is the case in

DP, and so is a reasonable regime. We now compare against [NRSM21a] - we ignore

G,D and log factor in both the bounds. To have the same runtime, we need ρkTm =

k2n ⇐⇒ ρ = kn
Tm

= kd
ϵ2n

, where in the last equality we substituted Tm = (ϵn)2

d
,

parameters for the DP convex ERM algorithm. Our accuracy bound is O
(︂√

d
nρϵ

)︂
=

O
(︂

ϵ
k

√
d

)︂
, which is smaller than that of [NRSM21a], when ϵ

k
√
d
≤
(︂√

d
nkϵ

)︂2/5
⇐⇒ ϵ7 ≤

√
d

7
k3

n2 ⇐⇒ ϵ ≤
√
dk3/7

n2/7 . Hence in regimes where the unlearning parameter ϵ is small

enough, which corresponds to a stronger unlearning criterion, this algorithm is better

than that of [NRSM21a].

C.12 Experiments

We run experiments on MNIST [LeC98], a standard digit classification computer vision

dataset with 10 classes. We train a logistic regression model, which can be formulated

as a smooth convex risk minimization problem. Starting with a training dataset of

60k points, we simulate a stream of 300 deletions of randomly chosen points and 300

insertions of new points, randomly permuted. We use Algorithm 21 as the learning

algorithm, and the corresponding Algorithm 22 as the unlearning algorithm. We train

288

for T = 200 iterations, with mini-batch of size m = 50 with a constant learning rate

η = 0.05. We run experiments on a range of values of standard deviation σ of Gaussian

noise, from 0 to 1.1 separated by the intervals of size 0.005. For every value of σ, we

run 10 instances of the whole unlearning procedure and report average performance:

accuracy and number of unstable edits (i.e. number of times a recompute is triggered)

, and their standard deviations. Note that σ = 0 corresponds to standard mini-batch

SGD, and therefore the accuracy obtained is the accuracy for the standard training

method with the aforementioned setting of the hyperparameters. Moreover, the σ = 0

setting also corresponds to Algorithm 19, and therefore the corresponding unlearning

algorithm Algorithm 20 handles edits for this case.

In Fig. C-2, we report the test accuracy (fraction of mis-classified samples in

the test set) and the number of unstable edits i.e the number of times a retrain is

triggered, as a function of σ. As expected, as σ increases, we get less unstable edits.

Interestingly, for small values of σ, for example 0.05, the degradation in accuracy: 88%

(vanilla SGD) to 87% (our method) is not as much as compared to decrease in the the

number of unstable edits: 520 to 210 i.e. a factor of two and a half. Apart from the

above improvement, there is an additional improvement from the fact that our method

triggers a partial retraining rather than full retraining i.e. only some of the iterations

of SGD are to be rerun. This behaviour is shown in Fig. C-3 - the orange line shows

the average number of iterations we need to do if we did full retraining on every

unstable edit, and the blue line shows the number of iterations for our method. For

σ = 0.05, we see an advantage of a factor of two. Hence, our method with σ = 0.05 has

accuracy comparable to retraining (87% vs 88%) but the computational advantage, in

terms of number of iterations rerun, over retraining, is about a factor of five. Similar

conclusions can be drawn by looking at different values of σ in the plots which show a

smooth trade off between accuracy and unlearning efficiency.

289

Figure C-2. Accuracy and number of unstable edits as a function of variance of noise used.

Figure C-3. Number of retraining iterations by unlearning algorithm compared to all full
retraining (all iterations)

290

Appendix D

Appendix for Chapter 5

D.1 Auxiliary Results

We recall some concepts from differential privacy which will be useful in our algorithmic

techniques.

Definition 24. An algorithm A satisfies (α, ϵ(α))-Rényi Differential Privacy (RDP),

if for any two datasets S and S ′ which differ in one data point (|S∆S ′| = 1), the

α-Rényi Divergence between A(S) and A(S ′), with probability densities ϕA(S) and

ϕA(S′), defined as follows:

Dα (A(S)∥A(S ′)) = 1
α− 1 ln

(︄∫︂
Range(A)

ϕA(S)(x)αϕA(S′)(x)1−αdx

)︄

is bounded as, Dα(A(S)∥A(S ′)) ≤ ϵ(α).

RDP satisfies many desirable properties such as adaptive and parallel composi-

tion and amplification by sub-sampling [Mir17, WBK19]. Furthermore, we give the

following lemma which relates TV stability to RDP.

Lemma 33 (RDP =⇒ TV-stability). If an algorithm satisfies (α, ϵ(α))-RDP, then

it satisfies
(︃

1− exp
(︃
−lim
α↓1

ϵ(α)
)︃)︃ 1

2
-TV stability.

Proof of Lemma 33. From Theorem 4 in [VEH14], we have that lim
α↓1

Dα(P∥Q) =

KL (P∥Q), where KL(·∥·) denotes the Kullback-Leibler (KL) divergence between the

291

two distributions. Finally, we relate the TV distance with the KL divergence using

Bretagnolle–Huber bound [BH79, Can22] which gives the claimed bound.

D.2 Unlearning for Linear Queries

A basic form of a query we consider is a linear query, defined as follows.

Definition 25. A query q : W∗ × Zn → W is a linear query if q ({wi}i ;S) =∑︁
j∈S pj ({wi}i ; zj) for some functions pj :W∗ ×Z →W.

We consider the class of B-sensitive linear queries. We give the TV stable modified

learning procedure in Algorithm 26 which basically releases the linear queries perturbed

with Gaussian noise of appropriate variance.

Algorithm 26 LearnLinearQueries(wt0 , t0)
Input: Dataset S, initial iteration t0, steps T , query functions {qt(·)}t≤T , update

functions {Ut(·)}t≤T , selector function S(·), noise variance σ2

1: Initialize model w1 ∈ W
2: for t = t0 to T − 1 do
3: Query the dataset ut = qt

(︂
{wi}i≤t ;S

)︂
.

4: Perturb: rt = ut + ξt where ξt ∼ N (0, σ2Id).
5: Update wt+1 = Ut({wi}i≤t , rt)
6: Save (ut, rt, wt+1)
7: end for

Output: ˆ︁w = S
(︂
{wt}t≤T

)︂

Note that the underlying probability distribution that the above learning algorithm

samples from is a Markov chain. The corresponding unlearning procedure, described

in Algorithm 27, is based on constructing a coupling between the Markov chains for

the current dataset and the dataset without the to-be-deleted point. In particular, we

start from the first iteration, perform rejection sampling, if it results in acceptance,

then we proceed to the second iteration and so on. If some iteration results in rejection,

then we do the reflection step, and continue retraining from there on.

292

Algorithm 27 Unlearning algorithm for linear queries
Input: Deleted point zj,

1: for t = 1 to T − 1 do
2: (ut, rt, wt) = Load ()
3: Compute u′

t = ut − pjt
(︂
{wi}i≤t ; zj

)︂
4: if Unif (0, 1) ≤ ϕN (ut,σ2I)(rt)

ϕN (u′
t

,σ2I)(rt) then
5: Save (u′

t)
6: else
7: r′

t = reflect(rt, ut, u′
t)

8: wt+1 = Ut
(︂
{wi}i≤t , r′

t

)︂
9: LearnLinearQueries(wt+1, t+ 1)

10: break
11: end if
12: end for

The above is basically the same unlearning algorithm as that of [UMR+21] but pre-

sented in the general context of linear queries. Therefore, it generalizes the framework

of [UMR+21] which was limited to the Stochastic Gradient Descent algorithm. We

also remark that linear queries can often be augmented with a sub-sampling operator

yielding amplified guarantees, as done in [UMR+21] . However, we omit this extension

for brevity. The main result of this section is as follows.

Theorem 51. The following are true for Algorithms 26 and 27,

1. The learning algorithm, Algorithm 26 with σ2 = 64B2

n2ρ2 satisfies ρ-TV stability.

2. The unlearning algorithm, Algorithm 27, corresponding to Algorithm 26, satisfies

exact unlearning.

3. The relative unlearning complexity is O
(︂
ρ
√
T
)︂
.

Proof. This proof simply follows from the observation that the analysis of [UMR+21]

only uses the bounded sensitivity linear query structure of the stochastic gradient

method for their TV stability bound as well as correctness and runtime of the unlearning

procedure.

293

D.2.1 Applications

This generalization yields the following applications.

D.2.2 Federated Unlearning for Federated Averaging

In the federated learning setting, we have C clients (which typically correspond to

user devices) with their own datasets and a parameter server (aggregator). A typical,

informal, goal is training a single globally shared model using all the dataset with

small communication between the clients and the server, and without moving any

private data (explicitly) to the server. Federated Averaging [KMY+16], described in

Algorithm 28, is a widely used method in federated learning. Note that in the every

round of the method, the client outputs, {wct}
C
c=1, are aggregated using an averaging

operation:

wt = 1
C

C∑︂
c=1

wct .

In Algorithm 28, ClientUpdate is a function which runs on the client’s data using

the current model wt and problem specific-parameter P (such as as number of steps,

learning rate of some optimization routine). For brevity, we do not instantiate the

ClientUpdate function, but usually some variant of stochastic gradient descent is used.

Algorithm 28 Federated Averaging (Server side)
Input: Number of clients C, number of rounds T , client-specific parameters P

1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do
3: for c = 1 to C do
4: wct+1 = ClientUpdate (c, wt−1,P)
5: end for
6: wt+1 = 1

C

∑︁C
c=1 w

c
t+1

7: end for
Output: ˆ︁w = S

(︂
{wt}t≤T

)︂

Federated Unlearning: In the federated unlearning problem, after a model

is trained, one of the clients requests to remove themselves from the process. The

294

parameter server then needs to update the model (and state) in such a way that it

is indistinguishable to the state if the client were absent. Hence, this is analogous

to the standard unlearning problem with the client playing the role of a data point.

This analogy also occurs with private federated learning wherein the widely-used

granularity of differential privacy is user-level differential privacy [MRTZ18]. In this

case, a client (potentially containing multiple data items) plays the role of a data item,

the presence/absence of which is used in the differential privacy definition.

TV-stable learning and unlearning: The model aggregation step (line 6 in

Algorithm 28) of the federated averaging method is a linear query over the clients.

Moreover, if the clients output models that are bounded in norm, then it is a bounded

sensitivity linear query (typically enforced by clipping the updates). Hence, this fits

into the template of linear query release method and thus can be modified, as in

Algorithm 26 to be TV stable. The corresponding unlearning method is the one given

in Algorithm 27.

D.2.3 Lloyd’s Algorithm for k-means Clustering

In this section, we briefly discuss how an algorithm for k-means clustering fits into

the linear query release framework. We remark that the prior work [GTS13]. gave

an unlearning method for this problem based on randomized quantization, which can

also be seen as a specific TV-stable algorithm followed by a coupling based unlearning

method.

Lloyd’s algorithm is a widely used method for k-means clustering. Herein, starting

with an arbitrary choice of centers, we construct a partition of the dataset, which

thereby gives a new set of centers. This process is repeated for a certain number of

rounds. The method is described as Algorithm 29.

We notice again that the updates for every cluster, line 7 in Algorithm 29, is a

linear query, hence it fits into the linear query release template and thus learning and

295

unlearning algorithms based on linear queries readily follow.

Algorithm 29 Lloyd’s algorithm
Input: Number of clusters C, number of rounds T , dataset S = {zi}ni=1.

1: Initialize centers {wc}Cc=1
2: for t = 1 to T − 1 do
3: for c = 1 to C do
4: Compute Sc =

{︂
zc1, z

c
2, . . . z

c
|Sc|

}︂
, the set of data-points closest to wc.

5: end for
6: for c = 1 to C do
7: Update wc = 1

|Sc|
∑︁|Sc|
i=1 z

c
i

8: end for
9: end for

Output: {wc}Cc=1

D.3 Missing Details from Section 5.4

In this section, we provide pseudo-code of the operations supported by the binary tree

data structure.

Algorithm 30 Append(u, σ; T)
Input: Query response u, noise variance σ,Tree T

1: Let s be the (binary representation of) first empty leaf.
2: Let q be the index with the first 1 in s.
3: path = {s→ · · · root} be the path from s to root consisting of at most q+ 1 nodes

from leaf.
4: UpdateTree(u, path, σ; T)

Algorithm 31 UpdateTree(u, path, σ; T)
Input: Query response u, Set of nodes path, noise variance σ,Tree T

1: for b ∈ path do
2: ub = ub + u
3: if b is a left child or b is a leaf then
4: ξ ∼ N (0, σ2I)
5: rb = ub + ξ
6: break
7: end if
8: end for

296

Algorithm 32 GetPrefixSum(t; T)
Input: t ∈ N, Tree T ,

1: Initialize g ∈ Rp to 0
2: s← leaf(t)
3: Let path be the path from s to root.
4: while b ̸= ∅ do
5: if b is a leaf child or b is a leaf then
6: g = g + rb
7: end if
8: end while

Output: g

D.4 Missing Proofs from Section 5.4

Proof of Theorem 25. The first part of the Theorem follows from Lemma 34 followed

by post-processing to argue that the same TV stability parameter holds for the final

iterate.

The second part, exact unlearning, follows from Lemma 37 wherein Q denotes the

distribution of the algorithm’s output run on the dataset without the to-be-deleted

point.

For the third part, note that the unlearning algorithm 13 makes two queries if no

retraining is triggered. If a retraining is triggered, the number of queries it makes is

at most the query complexity of learning algorithm, T = n. Finally, the probability

of retraining, from Lemma 38 is at most log (n) ρ. Combining, this gives the stated

bound on relative unlearning complexity.

D.4.1 Lemmas for Unlearning

Additional notation: We first present some additional notation used in the statement

and proof of the following lemmas. Let S and S ′ be datasets before and after the

unlearning request. Let P and Q denote the probability measures over the range of

tree data-structure, which is T =
(︂
Rd × Rd × Rd × [n]

)︂n
, induced by the output of

297

learning algorithm on S and S ′ respectively. We order the nodes of the binary tree

w.r.t. the post-order traversal of tree. Hence, given two nodes v and v′ or their binary

representations s and s′, we use v ≤ v or s ≤ s′ w.r.t the above ordering. Given a

node b, let Pb (·|T≤b) denote the conditional distribution of the nodes given the prefix

nodes of the tree.

Let p be a permutation over [n] and pb denote the index on the b-th node, when

b is a leaf. Let µ denote the probability, and conditional probability, depending on

context, of p and pb, under the random permutation model. Specifically, we use µ(p)

and µ(pb|p≤b) to denote the probability of the sequence p and conditional probability

of pb given the previous values.

Let T (1) denote the initial binary tree i.e. the one constructed after the algorithm is

run on dataset S, and T (2) be the binary tree constructed after unlearning. Let Pp and

Qp denote the conditional distributions for P and Q respectively given permutation p.

We factor the probability density of P as:

ϕP
(︂
T (1)

)︂
=
∏︂
b∈B

ϕPb

(︂
v

(1)
b |T

(1)
≤b

)︂
=
∏︂
b∈B

µ(p(1)
b |p

(1)
≤b)ϕ

P
p

(1)
≤b

b

(︂
u

(1)
b , r

(1)
b , w

(1)
b |T

(1)
≤b

)︂

Fixing the permutation sequence p(1), denote and factor the conditional distribution

as,

ϕp(1)

P (T (1)) =
∏︂
b∈B

ϕ
P

p(1)
≤b

b

(︂
u

(1)
b , r

(1)
b , w(1)|T (1)

≤b

)︂

Finally, define response trees ˜︁T (1) and ˜︁T (2) which only contain the response

variables (rb)b. Moreover, define distributions ˜︁P , ˜︁Pb, ˜︁Pp, ˜︁Pp
b and ˜︁Q, ˜︁Qb, ˜︁Qp ˜︁Qp

b as

before.

We first show the the tree ˜︁T produced by the learning algorithm is TV-stable.

Lemma 34. Let 0 < ρ ≤ 1, B ≥ 0, n ∈ N. For B-sensitive prefix sum queries, setting

σ2 = 64B2log2(n)
ρ2 , the response tree data structure ˜︁T is ρ-TV stable.

298

Proof. The proof of privacy of tree aggregation is classical in differential privacy, see

[GTS13] for example. The proof has three ingredients: Gaussian mechanism guarantee,

parallel composition (to argue that accounting along the height of the tree suffices)

and adaptive composition (for accounting along the height of the tree). Since the

noise is Gaussian and these composition properties also holds under RDP [Mir17],

therefore we can give an RDP guarantee of ϵ(α) ≤ log2(n) · 64αB2

σ2 αρ2. Finally, using

Lemma 33 and a numerical simplification since ρ ≤ 1 gives the claimed result.

Recall that j is the index of the data item (after permutation) which is deleted.

Without loss of generality, assume that the original index of the deleted data-point is

n. We first argue the following about the distribution of p(1) and p(2).

Lemma 35. For any set E ⊆ [n]n and any set E ′ ⊆ [n− 1]n−1, we have

Pp(1)

(︂
p(1) ∈ E

)︂
= µn(E)

Pp(2)

(︂
p(2) ∈ E ′

)︂
= µn−1(E ′)

Proof. Since p(1) and p(2) are discrete distributions, it suffices to argue the above for

the atoms. Firstly, by construction, p(1) ∼ µn and hence the first part is done. For

the second part for any sequence h = (hi)n−1
i=1 where hi ∈ [n− 1]. Let [h, j] denote the

concatenation of h and j (the deleted index). By symmetry, the probability

Pp(2) (h) = 1
n+ 1Pp(1) ([h, j]) = µn−1(h)

This completes the proof.

We now show transport of the conditional distribution by the unlearning operation.

Lemma 36. For any measurable event E ⊆ Rd|T (2)|,

P
(︂ ˜︁T (2) ∈ E|p(1),p(2)

)︂
= ˜︁Qp(2)(E).

299

Proof. The proof is based on induction on the nodes of ˜︁T (2) in the post-order traversal.

Let
(︂
v

(1)
b

)︂
b

and
(︂
v

(2)
b

)︂
b
be the nodes of the tree arranged in the post-order traversal

order. Given j, index of the item deleted, let s = leaf(j). Define prefix(s) and suffix(s),

as set of nodes before and after s respectively in the ≤ order.

Given an event E ⊆ Rd|˜︁T (2)| and r≤b, define Er≤b

b as follows:

E
r≤b

b =
{︂
e ∈ Rd : ∃e ∈

(︂
×>bRd

)︂
: (r≤b, e, e) ∈ E

}︂
where ×>bRd denote the Cartesian product of Rd’s of upto > b but smaller than or

equal to
⃓⃓⃓
T (1)

⃓⃓⃓
elements. Similarly, define Er≤b

≥b as,

E
r≤b

≥b =
{︂
e ∈

(︂
×≥bRd

)︂
: (r≤b, e) ∈ E

}︂
Finally, define E<b as

E<b =
{︂
e ∈

(︂
×<bRd

)︂
: ∃e ∈

(︂
×≥bRd

)︂
: (e, e) ∈ E

}︂

We now factorize the probability below as,

P
(︂ ˜︁T (2) ∈ E|p(1),p(2)

)︂
=

∏︂
b∈prefix(s)

P
(︄
r

(2)
b ∈ E

r
(2)
<b

b |p
(2)
b , r

(2)
<b

)︄
P
(︃ ˜︁T (2)

≥s ∈ E
r

(2)
<s

≥s | ˜︁T (2)
<s ,p(1),p(2)

)︃

=
∏︂

b∈prefix(s)
P
(︄
r

(1)
b ∈ E

r
(1)
<b

b |p
(1)
b , r

(1)
<b

)︄
P
(︃ ˜︁T (2)

≥s ∈ E
r

(2)
<s

≥s | ˜︁T (2)
<s ,p(1),p(2)

)︃

=
∏︂

b∈prefix(s)
Pb

(︄
E
r

(1)
<b

b |p
(1)
b , r

(1)
<b

)︄
P
(︃ ˜︁T (2)

≥s ∈ E
r

(2)
<s

≥s | ˜︁T (2)
<s ,p(1),p(2)

)︃

=
∏︂

b∈prefix(s)
Qb

(︄
E
r

(2)
<b

b |p
(2)
b , r

(2)
<b

)︄
P
(︃ ˜︁T (2)

≥s ∈ E
r

(2)
<s

≥s | ˜︁T (2)
<s ,p(1),p(2)

)︃

= Q<s

(︂
E<s|p(2)

<s, r
(2)
<s

)︂
P
(︃ ˜︁T (2)

≥s ∈ E
r

(2)
<s

≥s | ˜︁T (2)
<s ,p(1),p(2)

)︃

where the second equality follows since r(1)
≤b = r

(2)
≤b and p

(1)
b = p

(2)
b for all b < s by

construction. The third equality follows since r(1)
b is distributed as Pb conditionally

and fourth and final follows since conditioned on the permutation being the same, the

prefix is also distributed as Q<s.

300

We now start the induction: let I(induction variable) be I = s i.e the last item is

deleted. In this case, the unlearning algorithm simply removes the s-th node of the

tree and all we are left with is the tree with prefix(s) nodes, which as argued above is

distributed as Q<s = Q.

For the case I = s + 1: we simply focus on ˜︁T (2)
≥s = ˜︁T (2)

s = r(2)
s . Note that r(1)

s is

distributed as N (u(1), σ2I) and we want r(2)
s distributed as N (u(2), σ2I). The operation

in the algorithm is basically a one step reflection coupling which from Lemma 1 in

[UMR+21] satisfies,

P
(︃
r(2)
s ∈ E

r
(2)
<s
s |p(1),p(2)

)︃
= Qp

(2)
s
s

(︃
E
r

(2)
<s
s

)︃

Therefore,

P
(︂ ˜︁T (2) ∈ E|p(1),p(2)

)︂
= Q<s

(︂
E<s|p(2)

<s, r
(2)
<s

)︂ ˜︁Qp
(2)
s
s

(︃
E
r

(2)
<s
s

)︃
= ˜︁Qp(2)(E)

This finishes the base cases.

We now proceed to the induction step: suppose the following claim holds for nodes

upto I = k – for any event E, the marginal distribution

P
(︂
T (2)

≤k ∈ E|p(1),p(2)
)︂

= ˜︁Q≤k
(︂
E|p(2)

)︂

For node k + 1, consider a few cases:

1. A: All rejection sampling steps prior to node k resulted in accepts:

(a) AP: Node k + 1 lies in the path from the s to root.

i. APA: The rejection sampling at this node succeeds.

ii. APR: The rejection sampling at this node fails i.e. a reflection step is

performed.

(b) AN: Node k + 1 doesn’t lie in the path from s root.

301

2. R: Some rejection sampling step resulted in rejection.

For case R, we have that r(2)
k+1 ∼ ˜︁Qk+1(·| ˜︁T (2)

≤k ,p(2)). For the case AN, note that the

random variable r(2)
k+1 = r

(1)
k+1, hence,

P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T (2)
≤k ,p(1),p(2)

)︄
= ˜︁Pk+1

(︄
E
r

(2)
≤k

k+1|p(2), ˜︁T (2)
≤k

)︄

= ˜︁Qk+1

(︄
E
r

(2)
≤k

k+1|p(2), ˜︁T (2)
≤k

)︄

where the last equality follows since the dependence of r(2)
k+1 is only on data points

which are leaves of the sub-tree rooted at node k + 1. These, by assumption do not

contain the data point s, hence is identically distributed as Pk+1.

For the event AP, we have,

P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1|AP,p(1)p(2), ˜︁T (2)
)︄

= P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1,APA|AP,p(1),p(2), ˜︁T (2)
≤k

)︄

+ P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1,APR|AP,p(1),p(2), ˜︁T (2)
≤k

)︄

= ˜︁Qk+1

(︄
E
r

(2)
≤k

k+1|p(1),p(2), ˜︁T (2)
≤k

)︄

where the last step follows from Lemma 1 in [UMR+21].

Hence, combining AP and AN cases,

P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T (2)
≤k ,p(1),p(2)

)︄
= ˜︁Qk+1

(︄
E
r

(2)
≤k

k+1|p(2), ˜︁T (2)
≤k

)︄

We now combine all the cases: let ϕ(A)
≤k , ϕ

(R)
≤k denote the conditional densities of ˜︁T (2)

≤k

under events A and R respectively. Let Tk =
⃓⃓⃓ ˜︁T (2)

≤k

⃓⃓⃓
. For any event E,

302

P
(︂ ˜︁T (2)

≤k+1 ∈ E|p(1),p(2)
)︂

= P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1|A, ˜︁T (2)
≤k ∈ E≤k,p(1),p(2)

)︄
P
(︄ ˜︁T (2)

≤k ∈ E
r

(2)
≤k

k+1,A|p(1),p(2)
)︄

+ P
(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1|R, ˜︁T (2)
≤k ∈ E≤k,p(1),p(2)

)︄
P
(︂ ˜︁T (2)

≤k ∈ E≤k,R|p(1), p(2)
)︂

=
∫︂
RdTk+1

1

(︄
r

(2)
k+1 ∈ E

r
(2)
≤k

k+1

)︄
1

(︂ ˜︁T (2)
≤k ∈ E≤k

)︂(︄
1

(︂ ˜︁T (2)
≤k ∈ A

)︂
ϕ

(A)
≤k

(︂ ˜︁T (2)
≤k

)︂

+ 1

(︂ ˜︁T (2)
≤k ∈ R

)︂
ϕ

(R)
≤k

(︂ ˜︁T (2)
≤k

)︂)︄
ϕ˜︁Qp(2)

k+1

(︂
r

(2)
k+1| ˜︁T (2)

≤k

)︂
d ˜︁T (2)

≤k dr
(2)
k+1

=
∫︂
RdTk+1

1

(︂
T (2)

≤k+1 ∈ E
)︂
ϕ
Qp(2)

≤k

(︂ ˜︁T (2)
≤k

)︂
ϕ˜︁Qp(2)

k+1

(︂
r

(2)
k+1| ˜︁T (2)

≤k

)︂
d ˜︁T (2)

≤k dr
(2)
k+1

= ˜︁Qp(2)

≤k+1 (E)

where in the third equality, we use the induction hypothesis. This completes the

proof of the lemma.

Lemma 37. For any measurable event E ⊆ T, P[T (2) ∈ E] = Q(E).

Proof. This follows primarily from Lemma 36, and the fact that other elements in

nodes of T , namely ub and wb are deterministic functions of the prefix vertices in the

tree ˜︁T . Consider a decomposition of the event E = Eu × Er × Ew × Ez. Now,

P[T (2) ∈ E] = Ep(1)P
(︂
T (2) ∈ Eu × Er × Ew × Ez|p(1),p(2) ∈ Ez

)︂
P
(︂
p(2) ∈ Ez

)︂
= Ep(1)P

(︂ ˜︁T (2) ∈ Er|p(1),p(2)
)︂
µn−1(Ez)

= Ep(1)
˜︁Qp(2) (Er)µn−1(E2)

= Ep(1)Qp(2) (Eu × Ew × Er)µn−1(Ez)

= Q(E)

where the second and fourth equality follows since variables wb and ub are deterministic

functions of the responses r≤b. The second and third equality also uses Lemma 35

and Lemma 36 respectively.

303

Lemma 38. The probability of retraining is at most log (n) ρ.

Proof. A retraining is triggered only when a rejection sampling step fails. Note that a

rejection sampling step happens only when the node b belongs to the path from s to

root, say path. Let Accept be the event when all rejection sampling steps succeed.

P (Accept) = ET (1),T (2),{ub}
∏︂

b∈path
1

⎛⎜⎝ub ≤ ϕ˜︁Qp(2)
b

(︂
r

(1)
b |T

(1)
<b

)︂
ϕ˜︁Pp(2)

b

(︂
r

(1)
b |T

(1)
<b

)︂
⎞⎟⎠

= E˜︁T (1),p(1),p(2)

∏︂
b∈path

P

⎛⎜⎝ub ≤ ϕ˜︁Qp(2)
b

(︂
r

(1)
b | ˜︁T (1)

<b

)︂
ϕ˜︁Pp(1)

b

(︂
r

(1)
b | ˜︁T (1)

<b

)︂
⎞⎟⎠

= Ep(1),p(2)

∏︂
b∈path

∫︂
Rd

min
(︃
ϕ˜︁Qp(2)

b

(︂
r

(1)
b | ˜︁T (1)

<b

)︂
, ϕ˜︁Pp(1)

b

(︂
r

(1)
b | ˜︁T (1)

<b

)︂)︃
dr

(2)
b

= Ep(1),p(2)

∏︂
b∈path

(︃
1− TV

(︃ ˜︁Qp(2)

b , ˜︁Pp(1)

b | ˜︁T (1)
<b

)︃)︃

=
∏︂

b∈path
(1− ρb)

≥ 1−
∑︂
b∈path

ρb

≥ 1− log (n) max
b
ρb

≥ 1− log (n) ρ

where the fourth equality follows from the definition of TV distance and in the

last equality, ρb denotes the (conditional) TV distance of node b. The third to last

inequality follows from Lemma 39 and the second to last inequality follows from

Holder’s inequality. For the last inequality, we simply upper bound ρb ≤ ρ since the

algorithm is ρ-TV stable (Lemma 34). This completes the proof.

Lemma 39. Let {ai}ki=1 be real numbers such that ai ∈ (0, 1) for all i and ∑︁k
i=1 ai ≤ 1.

Then, ∏︁k
i=1 (1− ai) ≥ 1−∑︁k

i=1 ai

Proof. We prove this via induction on k. The base case k = 1 is immediate. For the

304

induction step k, we have

k∏︂
i=1

(1− ai) =
k−1∏︂
i=1

(1− ai) (1− ak) ≥
(︄

1−
k−1∑︂
i=1

ai

)︄
(1− ak)

= 1−
k∑︂
i=1

ai +
(︄
k−1∑︂
i=1

ai

)︄
ak

≥ 1−
k∑︂
i=1

ai

This completes the proof.

D.5 Missing Proofs from Section 5.5

D.5.1 Variance-reduced Frank Wolfe

Algorithm 33 Variance-reduced Frank Wolfe(t0; T)
Input: Dataset S, loss function (w, z) ↦→ ℓ(w, z), steps T , σ,{ηt}t

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if
2: for t = 1 to T − 1 do
3: ut = ∑︁t

i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))
4: Append(ut, σ; T)
5: rt = GetPrefixSum(t; T)
6: vt = arg minw∈W

⟨︂
w, rt

t+1

⟩︂
7: wt+1 = (1− ηt)wt + ηtvt
8: Set(leaf(t), (ut, rt, wt, zt) ; T)
9: end for

Output: ˆ︁w = wT

Proof of Theorem 26. For the accuracy guarantee, we follow the proof of Theorem 1

in [ZSM+20]. Let dt = rt

t+1 . From smoothness, we have

305

L(wt+1;D) ≤ L(wt;D) + ⟨∇L(wt;D), wt+1 − wt⟩+ H

2 ∥wt+1 − wt∥2

≤ L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ⟨dt, vt − wt⟩+ η2
tHD

2

2

= L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ηt ⟨dt, w∗ − wt⟩+ η2
tHD

2

2

≤ L(wt;D) + ηt ⟨∇L(wt;D), w∗ − wt⟩+ ηt ⟨dt −∇L(wt), w∗ − vt⟩+ η2
tHD

2

2

≤ (1− ηt)L(wt;D)− ηtL(w∗;D) + 2D
t+ 1 ∥dt −∇L(wt;D)∥+ η2

tHD
2

2

where the second inequality follows from the update and the fact that iterates

lie in the set of diameter D. The third inequality follows from the optimality of vt

in the update in Algorithm 33. Finally, the last inequality follows from convexity,

Cauchy-Schwarz inequality and by substituting the step-size. We now take expectation,

and use the bound on gradient estimation error in Lemma 40 to get,

E[L(wt+1;D)− L(w∗;D)]

≤ (1− ηt)E[L(wt;D)− L(w∗;D)] + ˜︁O(︄(HD +G)D
(︄

1
(t+ 1)3/2 +

√
d

(t+ 1)2 ρ

)︄)︄

+ HD2

2 (t+ 1)2

The above recursion gives us,

E[L(wT ;D)− L(w∗;D)]

≤ (L(w1;D)− L(w∗))
T−1∏︂
t=1

(1− ηt)

+
T−1∑︂
i=1

˜︁O(︄(HD +G)D
(︄

1
(i+ 1)3/2 +

√
d

(i+ 1)2 ρ

)︄
+ HD2

(i+ 1)2

)︄
T−1∏︂
t=i+1

(1− ηt)

≤ HD2

T
+

T−1∑︂
i=1

˜︁O(︄(HD +G)D
(︄

1
(i+ 1)1/2 +

√
d

(i+ 1) ρ

)︄
+ HD2

(i+ 1)

)︄
1
T

≤ ˜︁O(︄(HD +G)D
(︄

1√
T

+
√
d

Tρ

)︄
+ HD2

T

)︄

≤ ˜︁O(︄(HD +G)D
(︄

1√
T

+
√
d

Tρ

)︄)︄

306

where the second inequality follows from smoothness and substituting ∏︁T−1
t=i+1 (1− ηt) =

i+1
T−1 . Substituting number of iterations T = n completes the accuracy proof.

For the unlearning part, we start by showing that the algorithm falls into the

template of bounded sensitivity prefix-sum query release. Recall that the update

ut = ∑︁t
i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi)).

The sensitivity is then bounded as,

∥((i+ 1)∇ℓ(wi; z)− i∇ℓ(wi−1; z))− ((i+ 1)∇ℓ(wi; z′)− i∇ℓ(wi−1; z′))∥

≤ iH ∥wi − wi−i∥+ 2G

≤ iHηi−1 ∥vi−1 − wi−1∥+ 2G

≤ 2 (HD +G)

where the first inequality follows from smoothness and Lipschitzness of the loss. The

second inequality follows from the update in Algorithm 33 and the last inequality

follows from the fact that the iterates remain in the set of diameter D. Hence the

correctness of the unlearning algorithm follows from Theorem 25. For runtime, the

training time, in terms of gradient computations is Θ(n). Therefor, using the fact

that the relative unlearning complexity, from Theorem 25, is ˜︁O(ρ), we have ˜︁O(ρn)

bound on expected unlearning runtime.

Lemma 40. The gradient estimation error is,

E
⃦⃦⃦⃦
rt

t+ 1 −∇L(wt;D)
⃦⃦⃦⃦2
≤ ˜︁O(︄(HD +G)2

(︄
1

t+ 1 + d

(t+ 1)2 ρ2

)︄)︄

Proof. Note that dt := rt

t+1 comprises of the original gradient estimate from [ZSM+20],

say ˜︁dt and the noise added by the binary tree mechanism, say ξt. Hence,

E ∥dt −∇L(wt; D)∥2 = E
⃦⃦⃦ ˜︁dt −∇L(wt; D)

⃦⃦⃦2
+ E ∥ξt∥2

≤ ˜︁O(︄(HD +G)2

t+ 1

)︄
+

log(n)∑︂
i=1

dσ2

(t+ 1)2 ρ2

= ˜︁O(︄(HD +G)2
(︄

1
t+ 1 + d

(t+ 1)2 ρ2

)︄)︄

307

where the first inequality follows from Lemma 2 in [ZSM+20] with α = 1, and the fact

that in the binary tree mechanism we add noise of variance σ at most log (n) times;

the factor 1/(t+ 1)2 comes because the gradient estimate is rt/(t+ 1) and rt is the

binary tree response. The final equality follows by plugging in the value of σ.

D.5.2 Dual Averaging

Algorithm 34 Dual averaging(t0; T)
Input: Dataset S, loss function (w, z) ↦→ ℓ(w, z), steps T , {ηt}t,

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if
2: for t = 1 to T − 1 do
3: ut = ∑︁t

i=1∇ℓ(wi; zi)
4: Append(ut, σ; T)
5: rt = GetPrefixSum(t; T)
6: wt+1 = ΠW (w0 − ηtpt)
7: Set(leaf(t), (ut, rt, wt, zt) ; T)
8: end for

Output: ˆ︁w = wT

Proof of Theorem 27. The accuracy guarantee directly follows from Theorem 5.1 in

[KMS+21], replacing ϵ/log2(1/δ)2 therein by ρ. To elaborate, we set σ = ˜︁O (︂G2

ρ2

)︂
as

opposed to ˜︁O (︂G2log4(1/δ)
ϵ2

)︂
, hence substituting it in the accuracy proof of Theorem 5.1

in [KMS+21] gives the claimed guarantee.

For the unlearning part, we start by showing that the algorithm falls into the

template of bounded sensitivity prefix query release.

Recall that the update ut = ∑︁t
i=1∇ℓ(wt; zi). The sensitivity is simply bounded by

Lipschitznes as,

∥∇ℓ(wt; z)−∇ℓ(wt; z′)∥ ≤ 2G

Hence the correctness of the unlearning algorithm follows from Theorem 25. For

runtime, the training time, in terms of gradient computations is Θ(n). Therefor, using

the fact that the relative unlearning complexity, from Theorem 25, is ˜︁O(ρ), we have

308

˜︁O(ρn) bound on expected unlearning runtime.

D.5.3 Convex GLMs with the JL method

Proof of Theorem 28. We start with the accuracy guarantee. Let α ≤ 1 be a parameter

to be set later. From the JL property, with k = O (log (n/β) /α2), with probability at

least 1− β, the norm of all data-points in S, ∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥. Hence,

conditioned on the above event, the GLM loss function function is ˜︁G = 2G ∥X∥-

Lipschitz and ˜︂H = 4H ∥X∥2-smooth. Let ΦD denote the push-forward measure of D

under the map (x, y) ↦→ (Φx, y). With probability at least 1− β, the excess risk is,

E[L(ˆ︁w;D)− L(w∗;D)]

= E[L(Φ⊤ ˜︁w;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]

= E[L(˜︁w; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ ˜︁O(︄(︂ ˜︁G+ ˜︂H ∥w∗∥
)︂
∥w∗∥

(︄
1√
n

+
√
k

nρ

)︄)︄
+ H

2 E |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|2

≤ ˜︁O(︄(︂ ˜︁G+ ˜︂H ∥w∗∥
)︂
∥w∗∥

(︄
1√
n

+
√
k

nρ

)︄
+
˜︂H ∥w∗∥2

k

)︄

= ˜︁O
⎛⎝
(︂ ˜︁G+ ˜︂H ∥w∗∥

)︂
∥w∗∥

√
n

+
˜︂H1/3 ˜︁G2/3 ∥w∗∥4/3 + ˜︂H ∥w∗∥2

(nρ)2/3

⎞⎠
where in the first inequality, we use the accuracy guarantee of VR-Frank Wolfe

(Theorem 26) and smoothness of ϕy together with the fact that w∗ is globally optimal.

The second inequality follows from JL property and the last inequality follows by the

setting of k.

For the in-expectation (over the JL matrix) bound, note that in the worst-case,

L(ˆ︁w;D) − L(w∗;D) ≤ G ∥ ˆ︁w − w∗∥. From boundedness of the range of (typical) JL

maps, ∥ ˆ︁w − w∗∥ = poly(n, d) w.p. 1. Hence, taking the failure probability β to be

small enough suffices to be give an expectation bound which is same as above upto

polylogarithmic factors.

309

We now proceed to the unlearning guarantee. We first remark that the correctness

of the unlearning algorithm (see Lemma 36) holds as long as the learning algorithm

uses prefix-sum queries, even with unbounded sensitivity. Hence, the correctness

follows. We now proceed to bound the unlearning runtime. We first bound the TV

stability parameter of the learning algorithm using Lemma 41. The setting of noise

variance σ in Algorithm 14 together with the stability guarantee of Theorem 26 ensures

that γ(˜︂H, ˜︁G) ≤ τ
2 . Hence the JL method satisfies ρ-TV stability. Now, Lemma 38

gives us that the probability of retraining is at most ˜︁O(ρ). Since the training time, in

terms of gradient computations is Θ(n), we have ˜︁O(ρn) bound on expected unlearning

runtime.

Proof of Theorem 29. We start with the accuracy guarantee; let α ≤ 1 be a parameter

to be set later. From the JL property, with k = O (log (n/β) /α2), with probability at

least 1− β, the norm of all data-points in S, ∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥. Hence,

conditioned on the above event, the GLM loss function function is ˜︁G = 2G ∥X∥-

Lipschitz. Let ΦD denote the push-forward measure of D under the map (x, y) ↦→

(Φx, y). With probability at least 1− β, the excess risk is,

E[L(ˆ︁w;D)− L(w∗;D)]

= E[L(Φ⊤ ˜︁w;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]

= E[L(˜︁w; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ ˜︁O
⎛⎜⎝ ˜︁G ∥w∗∥

⎛⎜⎝ 1√
n

+

⌜⃓⃓⎷√k
nρ

⎞⎟⎠
⎞⎟⎠+GE |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|

≤ ˜︁O
⎛⎜⎝ ˜︁G ∥w∗∥

⎛⎜⎝ 1√
n

+

⌜⃓⃓⎷√k
nρ

⎞⎟⎠+
˜︁G ∥w∗∥√

k

⎞⎟⎠
≤ ˜︁O(︄ ˜︁G ∥w∗∥

(︄
1√
n

+ 1
(nρ)1/3

)︄)︄

where in the first inequality, we use the accuracy guarantee of Dual Averaging

(Theorem 27) and Lipschitzness of ϕy together. The second inequality follows from JL

310

property and the last inequality follows by the setting of k. As in Theorem 28, the

same bound as above for in-expectation (over the JL matrix) holds follows by taking

the failure probability β to be small enough.

The correctness and runtime of the unlearning algorithm follows as in the proof of

Theorem 28.

Lemma 41. Suppose A is an algorithm which when run on ˜︂H-smooth and ˜︁G-Lipschitz

functions is γ(˜︂H, ˜︁G)-TV stable, then the JL method with with k = O (log (2n/τ)) and A

as input, run on H-smooth and G-Lipschitz GLMs, satisfies τ
2 +γ

(︂
2G ∥X∥ , 4H ∥X∥2

)︂
-

TV stability.

Proof. Given a dataset S let GS be the uniform bound on Lipschitzness parameter

of the class of loss functions {w ↦→ ℓ(w; z)}z∈S. We define HS similarly. Let α ≤ 1

be a parameter to be set later. From the JL property, with k = O (log (n/β)),

with probability at least 1 − β, the norm of all data-points in S, ∥Φxi∥ ≤ 2 ∥X∥

- we denote this event as EJL. Since the loss function is a GLM, we have that

conditioned on EJL, the Lipschitzness and smoothness parameters GS and HS are

bounded by 2G ∥X∥ and 2H ∥X∥2 respectively. We therefore get a stability parameter

˜︁γ := γ
(︂
2G ∥X∥ , 4H ∥X∥2

)︂
.

We set β = ρ/2. We now incorporate the failure probability in the failure guarantee.

Let PΦ and QΦ denote the probability distributions of the output on datasets S and

S ′. By definition of TV distance,

311

TV(PΦ, QΦ) = sup
E

Pw∼P (w ∈ E)− Pw∼Q (w ∈ E)

= sup
E

(︃
Pw∼P (w ∈ E|EJL)P(EJL) + Pw∼P (w ∈ E|E ′

JL)P(E ′
JL)

− Pw∼Q (w ∈ E|EJL)P(EJL)− Pw∼Q (w ∈ E|E ′
JL)P(E ′

JL)
)︃

≤
(︄

sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)
)︄
P(EJL)

+
(︄

sup
E

Pw∼P (w ∈ E|E ′
JL)− Pw∼Q (w ∈ E|E ′

JL)
)︄
P(E ′

JL)

≤
(︄

sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)
)︄

+ ρ/2

≤ ˜︁γ + ρ/2

which completes the proof.

D.6 Missing Details from Section 5.6

In this section, we present additional details and proofs of results in Section 5.6.

D.6.1 Weak Unlearning

Proof of Theorem 30. The first claim, weak unlearning guarantee of the unlearning

algorithm, follows mainly from Lemma 36. Specifically, it shows that conditioned

on the permutation of the dataset (in this case, since the dataset is not permuted,

the permutation is simply identity), the distribution over the responses (rb)b in the

tree after unlearning, is transported to the distribution of the output under S ′. Since

the model output is a deterministic function of the responses, (weak unlearning)

correctness follows for one request. For the streaming setting, we simply apply the

above inductively over the requests.

The second claim follows since, at every time point, the executed algorithm is

indistinguishable from the base algorithm executed over the current dataset. Moreover,

312

by assumption, the base algorithm, is anytime, i.e. no parameter is set which depends

on the size of the dataset. Hence, the accuracy guarantee follows. For the last claim

about the number of retraining, firstly, as motivated, by the assumption that the

algorithm is incremental, the insertions are handled in O(1) time. For the unlearning

requests, note that from ρ-TV stability at every point, using Lemma 38, we have a
˜︁O(ρ) probability of retraining. We now apply Proposition 8 from [UMR+21] which

converts this to a bound on the expected number of times a retraining is triggered.

For V unlearning requests, this gives us a ˜︁O(ρV) bound on the number of retraining

triggers.

D.6.2 Exact Unlearning

Another way to extend the results for one unlearning request to dynamic streams is

to modify the definition of unlearning (Definition 11) to also hold for insertions, as is

done in [UMR+21]. This allows us to apply the same tree based unlearning technique

when handing insertions. Specifically, upon inserting a new point, we randomly choose

a leaf and replace the leaf with the inserted point, and then insert the chosen leaf as

the last leaf in the tree. We have the following guarantee for this method.

Theorem 52. In the dynamic streaming setting with R requests, using anytime

learning and unlearning algorithms, Algorithm 12 and 13, the following are true.

1. Exact unlearning at every time point in the stream.

2. The accuracy of the output ˆ︁wi at time point i, with corresponding dataset Si, is

E[L(ˆ︁wi;D)]−min
w
L(w;D) = α(ρ, |Si| ;P)

3. The total number of times, a retraining is triggered, for R requests is at most

O(ρR)

313

Proof. The arguments are similar to that of the proof of Theorem 30. The first

part follows by applying the correctness of the unlearning algorithm, Theorem 25,

inductively over the stream. We remark that the handling the insertions in the

same way as deletions hardly changes anything in the proofs. The second claim

follows from the anytime nature of the algorithm and by assumption on the accuracy

guarantee. Finally, using the probability of retraining in Lemma 38 and Proposition 8

in [UMR+21] gives us the stated number of retraining triggers.

314

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Organization
	Problem Setup and Preliminaries
	Machine Learning as Stochastic Optimization
	Uniform Convergence, Stability and Generalization
	Differential Privacy (DP)
	Machine Unlearning

	Contributions
	Differentially Private Convex GLMs
	Differentially Private Non-convex Optimization
	Machine Unlearning
	Auxiliary Results

	Differentially Private Generalized Linear Models
	Introduction
	Contributions
	Techniques
	Related Work

	Preliminaries
	Smooth Non-negative GLMs
	Upper Bounds
	Lower Bounds

	Lipschitz GLMs
	Adapting to
	Conclusion

	 Differentially Private Non-convex Optimization
	Introduction
	Contributions
	Techniques
	Related Work

	Stationary Points of Empirical Risk
	Efficient Algorithm with Faster Rate
	Lower Bound

	Stationary Points of Population Risk
	Stationary Points in the Convex Setting
	Generalized Linear Models
	Conclusion

	Machine Unlearning via Algorithmic Stability
	Introduction
	Contributions
	Related Work

	Additional Preliminaries
	Main Results
	Main Ideas
	TV-stable Learning Algorithms and Differential Privacy
	Unlearning via (un)couplings

	Algorithms
	TV-stable Learning Algorithm: noisy-m-A-SGD
	Unlearning Algorithm for noisy-m-A-SGD

	Conclusion

	From Adaptive Query Release to Machine Unlearning
	Introduction
	Results and Techniques
	Related Work

	Additional Preliminaries
	Unlearning for Adaptive Query Release
	Prefix-sum Queries
	Learning with Binary Tree Data-Structure
	Unlearning by Maximally Coupling Binary Trees

	Applications
	Smooth SCO with Variance Reduced Frank-Wolfe
	Non-smooth SCO with Dual Averaging
	Convex GLM with JL Method

	SCO in Dynamic Streams
	Weak Unlearning in Dynamic Streams

	Conclusion

	Conclusion
	Ongoing and Future Work
	Other Works

	Bibliography
	Appendix for chap:four
	Missing Proofs from Section 2.3.1 (Smooth GLMs)
	Utility Lemmas
	Proof of Lemma 2
	Low Dimension
	High Dimension
	Constrained Regularized ERM with Output Perturbation
	Proof of Theorem 10
	Proof of Theorem 11

	Missing Proofs from Section 2.4 (Lipschitz GLMs)
	Proof of Theorem 12
	Upper Bound using JL Method
	Proof of Theorem 13
	Lower bound for Non-Euclidean DP-GLM

	Missing Details for Section 2.5 (Adapting to)
	Generalized Exponential Mechanism
	Proof of Theorem 14
	Proof of Theorem 15
	Stability Results for Assumption 2

	Missing Details for Confidence Boosting
	Boosting the JL Method
	Boosting Output Perturbation Method

	Non-private Lower Bounds
	Additional Results

	Appendix for chap:five
	Lower Bounds
	Missing Details from DP Empirical Stationarity Lower Bound
	Non-private Sample Complexity Lower Bound

	Missing Results for Empirical Stationary Points
	Private Spiderboost
	Additional Discussion of Rate Improvement Challenges

	Missing Results for Population Stationary Points
	Missing Results for Stationary Points in the Convex Setting
	Utility Lemmas
	Lemmas for NoisyGD (Algorithm 18)
	Lemmas for PhasedSGD (Algorithm 16)

	Missing Results for Generalized Linear Models

	Appendix for chap:two
	Additional Related Work
	Additional Discussion
	Total Variation Stability from Optimal Transport
	DP Convex ERM Algorithms for Unlearning

	sub-sample-GD
	Unlearning for sub-sample-GD

	Proofs of Main Results
	Proof of Theorem 22
	Proof of Theorem 23
	Proof of Theorem 24

	Proofs for Section 4.5.1
	Proofs for Section 4.5.2
	Unlearning for sub-sample-GD
	Unlearning for noisy-m-A-SGD

	Runtime and Space Complexity
	Learning Runtime
	Unlearning Runtime
	Space Complexity

	Other Algorithms and Batch Unlearning
	noisy-m-SGD
	quantized-m-SGD

	Lower Bounds on Excess Empirical Risk
	Lower Bound for Mean Computation

	Excess Population Risk Bounds
	Upper Bounds
	Lower Bounds

	Algorithms for Approximate Unlearning
	Experiments

	Appendix for chap:three
	Auxiliary Results
	Unlearning for Linear Queries
	Applications
	Federated Unlearning for Federated Averaging
	Lloyd's Algorithm for k-means Clustering

	Missing Details from Section 5.4
	Missing Proofs from Section 5.4
	Lemmas for Unlearning

	Missing Proofs from Section 5.5
	Variance-reduced Frank Wolfe
	Dual Averaging
	Convex GLMs with the JL method

	Missing Details from
	Weak Unlearning
	Exact Unlearning

