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Abstract

Clinicians and practitioners are often motivated to determine which treatment

would work best for a given individual based on their observed characteristics,

but doing so can be challenging because sample sizes are typically not large

enough, and the variables involved in the true treatment effect heterogene-

ity are often unknown. To better understand treatment effect heterogeneity,

researchers can rely on combining information from multiple sources, e.g.,

multiple randomized controlled trials (RCTs), or RCTs in conjunction with

observational datasets. However, combining data requires taking into ac-

count that the data comes from heterogeneous sources, and different sources

might have different settings, potential biases, and site-level characteristics

that can impact treatment effects. This dissertation discusses approaches

for integrating multiple datasets to estimate heterogeneous treatment effects.

Previous approaches are outlined, and new methods are developed and in-

troduced to estimate the conditional average treatment effect function across

multiple trials and in a target population. The methods used are primarily

non-parametric but compared to parametric meta-analysis. Methods are ap-

plied to real data comparing treatments for major depression to investigate

potential heterogeneity of the treatment effect in this setting.
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Chapter 1

Introduction

In a clinical setting, an ultimate goal is for every patient to achieve the best out-

come possible based on the treatments available to them. This goal expands

beyond the clinical space and can be a priority in health policy, education,

and other fields that involve intervention implementation and assessment.

With a variety of potentially effective treatments available for conditions like

depression (Sampogna et al., 2024; Fisher and Bosley, 2015), diabetes (Bertsi-

mas et al., 2017), and cancer (Duffy and Crown, 2008), the question becomes

determining which of the available treatments the patient should receive. To

answer this question in the most accurate way, it is often necessary to estimate

not just which treatment is the best on average in a given population, but

which treatment is the best based on the patient’s characteristics. This field of

work is sometimes labeled as precision medicine, where the goal is to make

more personalized treatment decisions based on observable information about

the patients.

In randomized controlled trials (RCTs), as well as observational studies,

researchers often estimate this average effectiveness of a treatment; however,
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less information is available regarding whether the treatment might be more

beneficial for certain groups of patients rather than others. RCTs can some-

times be used to answer this question, but they are typically under-powered

to detect effect moderation, or differences in the treatment effect across patient

characteristics (Fleiss, 2011). The small sample sizes in single trials can also be

problematic when effect moderation is unknown a priori or involves complex

and non-linear relationships between characteristics (Yusuf et al., 1991). On

the other hand, observational datasets are larger and might better represent

the target population for which decisions are being made, but treatment as-

signment is not random in those datasets, so estimating the treatment effect is

less straightforward.

A growing field of literature is focusing on data integration (also called data

fusion), where individual-level data from multiple sources can be combined

to provide more information about an estimand of interest. Data integration

can potentially help with precision medicine, as bringing in more data from

different sources can aid in investigating heterogeneity of the treatment effect

across patient characteristics. However, integrating data from different sources

brings up new challenges, including heterogeneity across studies in measures,

exposures, and outcomes.

This dissertation explores data integration approaches to estimate treat-

ment effect heterogeneity. The methods discussed are agnostic to application

area, but the data explored in the following chapters focus on treatments for

major depressive disorder (MDD) and how they affect depression severity.

Across all chapters, the target estimand is the conditional average treatment
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effect (CATE). The CATE is defined here as the expected difference in potential

outcomes under treatment versus control, conditional on observed charac-

teristics. In other words, the CATE allows for the treatment effect to vary

depending on values of patient covariates. This estimand is common when

the goal is estimating these heterogeneous treatment effects and using those

to inform treatment decisions.

Chapter 2 provides an extensive overview of data integration methods,

specifically focusing on estimating heterogeneous treatment effects. The ap-

proaches are broken down based on the sources being combined and the level

of data access, which can include aggregate-level data, federated learning

(where individual participant-level data is available within studies but can-

not be shared across sites), or individual participant-level data. The sources

can also vary in terms of study type, including RCTs and observational data.

Finally, the analysis approach could be parametric (i.e., meta-analysis) or

non-parametric. In Chapter 2, we discuss approaches and reveal openings for

further work in this field. We also introduce the conditional average treatment

effect (CATE) estimand, and detail the relevant assumptions for this type of

causal inference. This paper has been published in Statistical Science (Brantner

et al., 2023).

In Chapter 3, we focus on integrating multiple RCTs to estimate heteroge-

neous treatment effects. We discuss the limitations of individual participant-

level data (IPD) parametric meta-analysis, a common approach for combining

trials but not commonly used to assess effect heterogeneity, and we explore the

application of non-parametric machine learning methods instead. We develop

3



methods to aggregate information across trials and assess their performance

in simulations, and we ultimately apply the methods to data comparing treat-

ments for major depressive disorder, duloxetine and vortioxetine. We discuss

the results after combining four RCTs and examine potential heterogeneity of

the treatment effect across patient characteristics and across trials (Brantner

et al., 2024).

Chapter 4 directly extends the methods explored in Chapter 3 to predict

treatment effects in a new target population that we can examine through

patient electronic health records (EHR) from a health care system. The goal

of this chapter is to develop methods for obtaining clinically relevant results

in a given population, based on previously conducted trials. Specifically,

we utilize multiple RCTs to generate a model for the CATE as in Chapter 3,

and we then define prediction intervals for the treatment effect conditional

on observed covariates in the new target population, using both parametric

and non-parametric methods. In an application to real data, we estimate

the CATE in three of the same RCTs from Chapter 3 comparing duloxetine

and vortioxetine for treatment of depression, and we subsequently estimate

CATE prediction intervals in EHR data from patients in the Duke Health Care

System who have major depression or other similar mood diagnoses.

Each chapter of this dissertation pushes the field further in data integration

to estimate heterogeneous treatment effects, with a goal of moving towards

relevance for clinical practice. We emphasize the challenges of interpreting

results from non-parametric methods and explore options to do so more

4



effectively, and we focus on estimating uncertainty appropriately when inte-

grating data and applying models to new populations. The final chapter of

the dissertation (Chapter 5) discusses key takeaways and future directions.
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Chapter 2

Methods for Integrating Trials and
Non-Experimental Data to Examine
Treatment Effect Heterogeneity

Abstract:1 Estimating treatment effects conditional on observed covariates

can improve the ability to tailor treatments to particular individuals. Doing

so effectively requires dealing with potential confounding, and also enough

data to adequately estimate effect moderation. A recent influx of work has

looked into estimating treatment effect heterogeneity using data from multiple

randomized controlled trials and/or observational datasets. With many new

methods available for assessing treatment effect heterogeneity using multiple

studies, it is important to understand which methods are best used in which

setting, how the methods compare to one another, and what needs to be done

to continue progress in this field. This paper reviews these methods broken

down by data setting: aggregate-level data, federated learning, and individual

1This chapter has undergone peer review and is published in Statistical Science: Brantner,
C. L., Chang, T., Nguyen, T. Q., Hong, H., Di Stefano, L., and Stuart, E. A. (2023). Methods
for integrating trials and non-experimental data to examine treatment effect heterogeneity.
Statistical Science, 38(4), 640–654.
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participant-level data. We define the conditional average treatment effect

and discuss differences between parametric and nonparametric estimators,

and we list key assumptions, both those that are required within a single

study and those that are necessary for data combination. After describing

existing approaches, we compare and contrast them and reveal open areas

for future research. This review demonstrates that there are many possible

approaches for estimating treatment effect heterogeneity through the combi-

nation of datasets, but that there is substantial work to be done to compare

these methods through case studies and simulations, extend them to different

settings, and refine them to account for various challenges present in real data.

2.1 Introduction

Identifying the right treatment for the right patient can improve quality of

healthcare for individuals and populations. Treatments for disorders and

diseases like depression (Trivedi et al., 2006), schizophrenia (Samara et al.,

2019), and diabetes (Xie, Chan, and Ma, 2018) can exhibit differential treat-

ment effects across individuals due to effect moderators, defined as known and

unknown individual, genetic, environmental, and other characteristics that

are associated with the effectiveness of medical treatments (Baron and Kenny,

1986). Finding ways to identify and leverage effect moderators at the point of

care to facilitate clinical decision-making can improve efficiency, quality and

outcomes of healthcare.

Although crucial for delivery of treatment and preventative medicine,

detecting treatment effect heterogeneity is challenging with common study

8



designs. Randomized trials yield comparable treatment groups on average

but are typically under-powered to detect moderation. One rule-of-thumb is

that study samples need to be four times larger to test an effect moderator than

to detect the overall average effect (Enderlein, 1988). In addition, randomized

trial samples are also often not representative of the target population for

which treatment decisions will be made; for instance, Black individuals are

on the whole underrepresented in pivotal clinical trials (Green et al., 2022).

Therefore, conclusions from one particular trial might not reflect conclusions

for a target population, and different trials might give conflicting results due

to differences in their enrolled participants. On the other hand, large-scale non-

experimental studies can have improved external validity, but these studies

can suffer from confounding bias. Given power concerns in single randomized

trials and bias concerns in non-randomized studies, much can be gained by

combining multiple trials, or combining experimental and non-experimental

studies, to examine effect moderation (Berlin et al., 2002; Brown et al., 2013).

Many methods have been proposed to examine effect moderation in a sin-

gle study. One of the popular approaches is to prespecify a few key subgroups

and fit models with treatment-subgroup interactions. This approach is limited

in that data analysts could explore a range of possible subgroups and report

only those that are statistically significant (Kent et al., 2010); additionally,

this approach does not allow the contribution of multivariate factors in effect

moderation. Another approach is “risk modeling” (Kent et al., 2010; Kent

et al., 2020), where a risk score is created using the covariates to predict the

outcome (usually outcome under the comparison/control condition), and the
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treatment effect is assessed based on the interaction between treatment and

this risk score in a regression model of the outcome. This review focuses on

what is sometimes called “effect modeling”. Effect modeling spans a spectrum

that includes parametric approaches in which a few effect moderators are

pre-specified, and nonparametric approaches where effect moderation is as-

sumed to be via some potentially complex function of a large set of covariates.

Regression analyses and variable selection are common approaches for the

former; machine learning methods for the latter.

In order to examine treatment effect heterogeneity based on observed

characteristics, the target estimand in the present work is the conditional

average treatment effect (CATE). Notation for this estimand is presented in

the following section. The CATE is a general function of covariates that could

be quite complex and so requires large sample sizes to estimate reliably. A

key assumption when combining studies to estimate the conditional average

treatment effect is that the CATE function is substantially similar across studies.

When discussing the CATE, it is relevant to note that the CATE function is

related to subgroup average treatment effects and identification of groups who

benefit from treatment; these similar goals are mostly outside of the scope of

this review. We therefore focus on the CATE and mention subgroup treatment

effects and other similar topics briefly when relevant.

There have been recent statistical advances in modeling heterogeneous

treatment effects and a separate burgeoning interest in combining data from

multiple sources. A select few works have done both – simultaneously lever-

aging data from multiple studies to assess treatment effect heterogeneity.
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Methods like these are needed to best harness the available data to optimize

and individualize treatments, and to leverage information from multiple stud-

ies to provide more systematic, comprehensive, and generalizable conclusions.

This paper reviews these novel methods of assessing treatment effect hetero-

geneity using multiple studies in the form of multiple randomized trials, or

one randomized trial with a large observational dataset. We focus on methods

identifying which of two treatments is more likely to improve outcomes for

an individual or subgroup – a causal question that sits at the core of clinical

practice. In this review, we consider the situation where the variables are

similarly defined and available from all studies. It is common though that

different studies may have different sets of variables. In this more complicated

case, either harmonization is needed on the variables or some shared structure

is required on conceptually related variables. We will return to this point in

the Discussion section (2.6).

Methods discussed in this paper are broken down based on data setting:

aggregate-level data, federated learning, and individual participant-level

data (IPD). The aggregate-level data setting occurs when researchers only

have access to summary information from each study. With aggregate-level

data, individual-level effect heterogeneity can only be truly assessed if each

study estimated treatment-covariate interactions using the same statistical

models (e.g., same link function, same set of covariates), which is not often

feasible. In the federated learning setting, sensitive individual-level data

are distributed across decentralized studies and cannot be shared beyond

their original storage location (Vo et al., 2021). Finally, the IPD setting is the
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most straightforward and powerful scenario for assessing treatment effect

heterogeneity, as individual-level covariates are available from all studies

simultaneously. With IPD, we can harmonize covariates, estimate effect mod-

eration by using the same statistical models in each study, and assess model

assumptions consistently.

Within each of these data settings, methods are primarily geared towards

either combining multiple RCTs or one RCT with one observational dataset.

We discuss the use of meta-analysis models with multiple RCTs (Debray et al.,

2015; Burke, Ensor, and Riley, 2017), along with the opportunity to employ

variable selection approaches to identify effect moderators (Seo et al., 2021).

When combining an RCT with observational data, we consider various meth-

ods that allow for complicated relationships to be included in the treatment

effect function and account for potential bias from the observational data.

These methods can involve estimating the CATE in the RCT and observational

data separately and then combining them through an estimated weighting

factor (Rosenman et al., 2022; Rosenman et al., 2020; Cheng and Cai, 2021;

Yang, Zeng, and Wang, 2020), or estimating the observational CATE and the

confounding effect in the observational dataset (Kallus, Puli, and Shalit, 2018;

Yang, Zeng, and Wang, 2020; Wu and Yang, 2021; Hatt et al., 2022). Colnet et

al., 2021b reviewed some methods that combine RCT and observational data,

and we extend upon this review by focusing on this combination explicitly

for treatment effect heterogeneity. We also add in more methods that combine

RCT with observational data along with methods that focus on combining

multiple RCTs. In general, there are many approaches outside of those we
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reference here that focus on estimating the average treatment effect by combin-

ing datasets, some of which are discussed by Colnet et al. (2021); we choose

to primarily focus on efforts to examine treatment effect heterogeneity in the

present review.

To provide context to the methods discussed in this review, we can con-

sider a few example scenarios. We first consider an assessment of the efficacy

of surgery in stage IV breast cancer according to 15 studies where researchers

combining the studies only had access to aggregate-level data (Petrelli and

Barni, 2012). We also discuss a comparison of outcomes for veterans who

received the Moderna versus the Pfizer vaccination for COVID-19 in five dif-

ferent sites where IPD was available within each site but could not be shared

across sites, known as a “federated learning” situation (Han et al., 2021). An-

other setting investigates a diabetes medication, pioglitazone, versus placebo

for individuals coming from one of six RCTs, where IPD was available in

each trial (Hong et al., 2015). And finally, we discuss data assessing the treat-

ment effect comparing two active treatments for major depression, duloxetine

and vortioxetine, wherein we have access to IPD from a combination of RCT

data and electronic health records (EHR) from a hospital system (Brantner

et al., 2024). These scenarios all could clearly benefit from combining data to

examine heterogeneity in treatment effects, but they each require distinct con-

siderations and statistical approaches to best integrate information. We will

use these examples throughout the paper to ground the methods in specific

applications.

Importantly, to effectively combine information from multiple datasets, the
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original studies need to have high transparency and reproducibility. Whether

data are reported in aggregate or at the individual participant level, re-

searchers using the data for additional analyses – such as those discussed here

– need extensive information about how the data were collected, analyzed, and

presented to be able to determine if and how to combine the information with

other datasets. It is therefore vital to keep these ideas of transparency and

reproducibility of data, code, and results at the forefront when applying these

methods. Movements towards data sharing and reproducible research will

greatly facilitate the types of research discussed here, which can lead to im-

portant new insights regarding effect heterogeneity that cannot be answered

from single studies alone due to generalizability, sample size, or confounding

concerns.

In the following section (2.2), we introduce the estimand and assumptions.

The next sections are then organized based on the level of data access so

that researchers can determine available methods in their given data setting.

Specifically, Section 2.3 discusses aggregate-level data; Section 2.4, federated

learning; and Section 2.5, individual participant-level data (IPD). Finally,

Section 2.6 compares methods and provides an overview of potential future

areas for research.

2.2 Notation

2.2.1 Target Estimand

Our target estimand to assess effect heterogeneity is the conditional average

treatment effect (CATE), defined using the potential outcomes framework
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under the Stable Unit Treatment Value assumption (Rubin, 1974). Suppose S

is the categorical variable indicating study membership, A = 0, 1 is a binary

treatment variable, Y is the observed outcome, Y(1) and Y(0) are the potential

outcomes under treatment and control respectively, X is a set of covariates,

and Z is a subset of X containing the proposed effect moderators.

The CATE can be formally defined as a function of X:

τ(X) = g(E[Y(1)|X])− g(E[Y(0)|X])

(Abrevaya, Hsu, and Lieli, 2015; Künzel et al., 2019), where E[.|.] denotes

conditional expectation in the target population of interest and g(.) is a link

function that defines the scale on which the interactions occur, whether addi-

tive (mean or risk difference) or multiplicative (risk, rate, or odds ratio). In

this paper we primarily discuss a continuous outcome, in which case we use

the identity link function and write the CATE as

τ(X) = E[Y(1)− Y(0)|X]. (2.1)

This τ(.) can often be assumed to be a flexible function in which all covari-

ates are considered as potential moderators, so we do not have to a priori

differentiate Z and X when methods allow for this flexibility.

One can also consider study-specific CATE functions. This is often the case

when researchers are interested in assessing heterogeneity of the treatment

effect functions across trials/datasets, or when this heterogeneity is high and

it is potentially unreasonable to combine information across studies. We can

denote study by S: in the case where data is being combined from one RCT and
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one observational dataset, S = 0 will indicate RCT and S = 1 observational

data; otherwise, S will be a categorical variable ranging from 1 to K, where K

is the number of RCTs. The above Equation (2.1) defines a general CATE that

is not study-specific. When estimating study-specific CATEs, Equation (2.1)

can be rewritten as

τs(X) = E[Y(1)− Y(0)|X, S = s]. (2.2)

In most of the methods to follow, the CATE is defined by conditioning on

a set of available covariates, X. An alternative is to a priori define subgroups

of interest and estimate subgroup-specific treatment effects. This approach is

similar to the methods discussed in this review but somewhat distinct because

subgroups must be specified first. The form of the estimand when examining

subgroup-specific effect estimates is instead

τk = E[Y(1)− Y(0)|K = k]

where K represents subgroup membership (Rosenman et al., 2020; Rosenman

et al., 2022).

2.2.2 Assumptions

Across many methods, the key assumption that allows pooling data from

multiple studies to estimate the treatment effect is that either entire or partial

components of the treatment effect function τ(X) is shared across studies.

This review also focuses solely on the case when there are only two treatments

(or one treatment and one control/placebo) being compared. If there are more
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than two conditions being compared, different approaches would need to be

used (i.e., network meta-analysis; Efthimiou et al., 2016; Debray et al., 2018;

Hong et al., 2015). Aside from these overarching assumptions, individual

methods employ their own specific assumptions. When multiple RCTs are

included in meta-analyses, they are often assumed to have similar eligibility

criteria (specifically in terms of the covariates thought to be effect modifiers)

(Dahabreh et al., 2020), and distributional assumptions are made for model

parameters (Debray et al., 2015).

Broadly, parametric approaches require the assumption of a parametric

relationship between covariates (including treatment, effect moderators, and

interactions between the two) and outcomes; further, this parametric relation-

ship is assumed to be approximately correctly specified (Debray et al., 2015;

Yang, Zeng, and Wang, 2022; Yang, Zeng, and Wang, 2020). Specifically in the

meta-analytic framework when combining multiple RCTs, effect moderation

is often assessed using treatment-covariate interaction terms. This approach

typically uses an outcome model of the form

h(E(Y)) = µ(X) + A × τ(Z),

where h(.) is a link function, µ(X) is the modelled mean of the outcomes

under control, Z contains a subset of the variables in X that often needs to be

pre-specified, and τ(Z) is the the CATE function:

τ(Z) = δ + θTZ. (2.3)

In this expression for τ(Z), δ corresponds to the effect of treatment A when
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Z = 0 (or when the covariates in Z equal their means if they have been

centered), and θ corresponds to the coefficients of treatment-moderator in-

teraction terms AZ in the h(E(Y)) model. Similarly to the general format of

the CATE in Equation (2.1), this parametric form of τ(Z) can be expressed as

multiple study-specific functions:

τs(Z) = δs + θT
s Z. (2.4)

When combining an RCT with an observational dataset, there are a few

within-study assumptions, including unconfoundedness (Assumption 2.1),

positivity (Assumption 2.2), and consistency (Assumption 2.3) (Colnet et al.,

2021b; Cheng and Cai, 2021):

Assumption 2.1 {Y(0), Y(1)} ⊥⊥ A|X within each study.

Assumption 2.2 For almost all X with π(X) = P(A = 1|X) (the propensity

score), there exists a constant c > 0 such that c < π(X) < 1 − c within each study.

Assumption 2.3 Y = AY(1) + (1 − A)Y(0) almost surely.

The unconfoundedness assumption (2.1) is satisfied by design in an RCT.

Assumption 2.2 also holds by design in an RCT since the probability of treat-

ment is independent of observed covariates and is pre-specified.

When combining datasets, we expand upon the previous assumptions.

In the setting where observational data is being combined with an RCT, the

unconfoundedness assumption (2.1) can be relaxed in the observational data.

This is because there are analysis possibilities with multiple datasets that
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include assessing whether this assumption is met or not and using the RCT

to account for any confounding in the observational data (Cheng and Cai,

2021; Yang, Zeng, and Wang, 2020; Yang, Zeng, and Wang, 2022). Assumption

2.3 in the multi-study setting implies that the treatments being compared are

the same across all studies (since there is no s subscript) to ensure that the

potential outcomes Y(0) and Y(1) are well-defined. We also can introduce two

other assumptions that are involved at some level in methods that combine an

RCT with observational data; these assumptions include study membership

positivity (Assumption 2.4) (Colnet et al., 2021b; Cheng and Cai, 2021) and

unconfounded study membership (Assumption 2.5) (Hatt et al., 2022; Cheng

and Cai, 2021; Kallus, Puli, and Shalit, 2018).

Assumption 2.4 For almost all X there exists a constant d > 0 such that d <

P(S = s|X = x) < 1 − d.

Assumption 2.5 {Y(0), Y(1)} ⊥⊥ S|X.

The following sections break down methods based on available data.

2.3 Aggregate-Level Data

The broadest level of data access is in the form of aggregate-level data (AD),

where individual studies have been carried out and analyzed, and only sum-

mary data (e.g., sample mean, standard deviation, or regression model co-

efficient estimates) are available. AD are often used in meta-analyses when

IPD are unavailable. Meta-analysis with AD can estimate average effects ef-

fectively and provide similar results as meta-analysis with IPD (Burke, Ensor,
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and Riley, 2017; Hong et al., 2015). However, aggregation bias (also known as

the ecological fallacy), which occurs when conclusions are incorrectly drawn

about individuals when the relationship is found at the group level, can easily

be introduced if researchers want to make a conclusion about individual-level

effect moderation when only AD is available (Berlin et al., 2002; Debray et al.,

2015; Teramukai et al., 2004). This aggregation bias will not be present if

each paper reports subgroup-specific outcomes for all necessary subgroups;

however, this is rare in practice because subgroups are often defined by more

than one covariate. AD therefore has limited power for detecting effect mod-

eration (Lambert et al., 2002). However, IPD is not always easy to access or

use, so the following section discusses what can be done with AD. In framing

this discussion, one can think of the example assessing the effects of tumor-

removal surgery in individuals with breast cancer (Petrelli and Barni, 2012)

using aggregate data from several relevant studies.

2.3.1 Meta-Analysis of Interaction Terms

If AD is all that is available for a question of interest, there is still an oppor-

tunity to estimate individual-level effect moderation under specific circum-

stances. If all previous studies have performed similar analyses and have

included a particular treatment-covariate interaction term using the IPD from

that given study, then these interaction terms can be pooled at the aggregate

level (Simmonds and Higgins, 2007; Kovalchik, 2013). For instance, although

this approach was not taken by Petrelli and Barni ( 2012), if a treatment-age

interaction term was estimated in each of the individual studies assessing the
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effect of surgery on mortality in individuals with stage IV breast cancer, then

these interaction terms could be pooled together. In this way, researchers can

estimate an individual-level effect moderation term across multiple studies

and can combine such terms to estimate τ(Z) as in Equation (2.3). However,

this requires that the studies assess and report the interactions of interest

consistently. Similarly, the aggregate data could include subgroup-specific

treatment effects rather than interactions, which could also be pooled to de-

scribe effect moderation if the effects are reported in each study (Godolphin

et al., 2022).

2.3.2 Meta-Regression

If such study-specific interaction coefficients are not available across all studies,

AD can be also modeled through meta-regression with treatment-covariate

interaction terms, where importantly only aggregate level covariates (e.g.,

mean age, proportion female) are available. For example, the individual-level

covariate of interest might be whether the person has severe disease or not;

in an AD meta-regression, this covariate would become the percentage of

individuals in the study who have severe disease. Meta-regression was the

approach taken by Petrelli and Barni (2012) in their assessment of surgery effi-

cacy. Specifically, they investigated hazard ratios of overall survival according

to the fifteen different studies and did so while including covariates such as

median age and mastectomy rate.

AD analyses can handle study-level effect moderators well. However, the

ability to assess individual-level moderators depends on the level of detail

21



available in the AD. Multiple papers have assessed the differences between

AD and IPD meta-regressions for estimating treatment effect heterogeneity.

In an analysis by Berlin and colleagues (2002), models using IPD picked

up on a key effect moderator that had been found in previous literature,

but all models using AD missed this effect moderator at the group level.

Extensive simulation studies also have shown that the power for detecting

treatment effect moderation is much lower in meta-regression using AD; in

these simulations, effect moderation was only effectively discovered in AD

analyses when there were a large number of trials with large sample sizes

(Lambert et al., 2002). Again, relationships that are picked up in an AD

meta-regression cannot be immediately interpreted as individual-level effects;

for example, if the percentage of individuals with severe disease is an effect

moderator in the AD model, researchers cannot immediately conclude that

the individual-level presence of severe disease is an effect moderator at the

individual level.

Furthermore, the aggregate-level covariates also often do not vary much

across studies. Since studies included in meta-regressions require similar eli-

gibility criteria, they likely will have somewhat similar covariate distributions.

For instance, the percentage of individuals with severe disease is likely to be

similar across trials; in this case, the interpretation of effect moderation cannot

be extrapolated beyond the aggregate-level range of the covariates.

The estimand in meta-regression can still be considered to be a version of

the CATE, but it is the CATE according to group-level effect moderators; for

example, it could be written like Equation (2.3) but as τ(Z̄) where Z̄ consists
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of aggregations of Z at the study-level. Such an estimand assumes that the

included studies are representative of the target population of studies.

2.4 Federated Learning

Federated learning (similar to distributed modeling) uses a combination of

IPD and AD; namely, IPD exists across decentralized studies but can only be

accessed in the study in which it is stored (Yang et al., 2019). An example of

this is a study of the efficacy of two COVID-19 vaccinations (developed by

Moderna and Pfizer) for preventing COVID-19 in veterans in five Veterans

Affairs sites (Han et al., 2021). This data setup is increasingly common in fields

where there is interest in combining multiple cohorts (“cohort consortia”), but

where data privacy concerns prohibit full direct data sharing. Therefore, the

IPD data must be turned into AD or aggregated models so that information

can be shared across studies.

We discuss two approaches for CATE estimation in federated learning

in this section. Other approaches exist that focus on estimating the average

treatment effect (ATE) (Han et al., 2021), and those can be extended to CATE

estimation but must provide sufficient information about the parameters of

effect moderation. Depending on the ATE approach, it is unclear how easily

the method can be extended to CATE estimation; we focus instead on methods

explicitly focused on CATE estimation.
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2.4.1 Meta-Analysis after Local Model Formulation

There are three steps in meta-analysis within the federated learning setting:

(1) fit models within studies, (2) aggregate the model coefficients, and then (3)

conduct a meta-analysis (Silva et al., 2019). This is similar to the meta-analyses

of interaction terms using aggregate data discussed in Section 2.3.1. A key

difference here is that federated learning models apply a pre-determined sta-

tistical model including desired interaction terms so that the interaction effects

are assessed consistently across all studies, while the traditional meta-analysis

with AD has access to model coefficient estimates but not the model fitting

process. Here, the estimand of interest is the common CATE function as in

Equation (2.3) that is calculated by summarizing model coefficients corre-

sponding to interaction terms AZ (treatment-moderator) and A (treatment)

from each study-specific regression.

2.4.2 Tree-Based Ensemble

Another option within federated learning would be to still create study-

specific models first, but to use information from other studies to improve

those individual models. Tan, Chang, and Tang (2021) use tree-based ensem-

ble methods to combine information about treatment effect heterogeneity from

multiple separate studies. Specifically, they allow for study-level heterogeneity

as well as heterogeneity due to individual-level covariates.

Their procedure involves first fitting models to estimate the CATE in each

of K individual studies, using single-study machine learning methods like

causal forests (Athey, Tibshirani, and Wager, 2019). These K study-specific
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models are then applied to a single “coordinating study”, so that each in-

dividual in the coordinating study has K estimates of the CATE. In other

words, if there are n individuals in the coordinating study, there will be n ∗ K

CATE estimates. Finally, these n ∗ K estimates are used as outcomes in an

ensemble regression tree or random forest, in which the predictors are the

individual-level covariates and an indicator of the study model from which

the specific CATE estimate was estimated. Ultimately, this method provides

study-specific CATE functions (Equation (2.2)) that have hopefully been made

more accurate because they have been adjusted to incorporate information

from other studies. Tan, Chang, and Tang (2021) applied this approach to

investigate the effects of oxygen saturation on hospital mortality across 20

hospitals and found effects that varied across sites but did not have high levels

of within-site heterogeneity based on covariates like age or gender.

2.5 Individual Participant-Level Data

Finally, when individual participant-level data (IPD) is available from all stud-

ies, treatment effect heterogeneity can be estimated through a wide variety of

methods. Recently, many novel methods have been proposed and are actively

being developed. While the previous two settings of AD and federated learn-

ing are more restrictive, estimating individual-level effect moderation in this

setting with all IPD available is much more feasible and flexible. The methods

to follow are broken down based on whether the data being combined is from

multiple RCTs or from one RCT and one observational dataset. Many of the

methods in this multi-study setting build upon single-study methods, which
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are discussed in depth in the Supplementary Materials B.

2.5.1 Combining Multiple RCTs

As mentioned when discussing aggregate data, meta-analyses are an effective

and widely used parametric approach for combining information from mul-

tiple RCTs (Riley, Stewart, and Tierney, 2021). Recently, more and more IPD

has become accessible to researchers, allowing them to go a step further from

AD and more effectively assess effect moderation. Having IPD available, such

as in the example of assessing the effects of pioglitazone for individuals with

diabetes (Hong et al., 2015), allows for baseline individual-level covariates

to be used to study subgroup effects and effect moderation at the individual

level.

2.5.1.1 Types of IPD Meta-Analyses

There are two commonly discussed IPD meta-analysis estimation methods:

two-stage and one-stage. In two-stage IPD meta-analysis, aggregate statistics

are calculated within each study (e.g., overall treatment effects, effects for

each subgroup, interaction terms), and then these results are combined in a

between-study model. In one-stage IPD meta-analysis, all individual-level

data are put directly into a hierarchical or multilevel model (Burke, Ensor,

and Riley, 2017). Although results with respect to average treatment effects

are often similar between the two approaches (Burke, Ensor, and Riley, 2017;

Debray et al., 2015; Tierney et al., 2015), model assumptions do differ, and

choosing the approach that seems best fit to a specific research question is an
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important decision. In this paper, we focus on one-stage IPD meta-analysis

because of its flexibility (Debray et al., 2015).

2.5.1.2 One-Stage IPD Meta-Analysis

In one-stage IPD meta-analysis, a common technique is to use a generalized

linear mixed model (GLMM) to estimate the mean outcome given covariates.

The model can have the form

g(E(Yis)) = αs + δs Ais + βT
s X is + θT

s AisZis, (2.5)

where Yis is the outcome for individual i from study s, αs ∼ N(α, σ2
α) is a study-

specific intercept, δs ∼ N(δ, σ2
δ ) is the vector of study-specific treatment effects

when the covariates are set to 0 (or their means, if centered), βs ∼ N(β, Σβ)

is the study-specific vector of main effects of covariates on the outcome, and

θs ∼ N(θ, Σθ) is the study-specific vector of effect moderation terms (Seo

et al., 2021). Here, σ2
α , σ2

δ and the diagonal elements of Σβ and Σθ measure

the between-study variability of the effects. βs and θs are often assumed to be

uncorrelated in the literature; however, we can extend this model to allow for

correlation between βs and θs.

If the outcome is continuous (as assumed in this paper), g(.) is often set to

be the identity function; if the outcome is binary, g(.) could be the logit link

function. Key parameters of interest are δ, which indicates an overall measure

of the treatment effect when the moderators are set to 0, and θ, which indicates

the magnitude of the effect moderation. For easy interpretation, covariates

can be centered at zero so that the treatment effects, δs represent the treatment
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effects at the mean value of each covariate (Dagne et al., 2016; Gelman, Hill,

and Vehtari, 2020).

The model above includes random effects for all coefficients, and so ex-

plicitly models between-study heterogeneity for each coefficient (the βs’s and

θs’s). This approach can be thought of as interpolating between two extremes.

The first of these is a “no-pooling” model, with the same structure as Equation

(2.5) but with study-specific coefficients fit as fixed effects independently to

the data from each study. Such a model avoids the sharing of information

across studies, but also includes more free parameters, which may be less

stably estimated. This approach also does not ultimately provide a global

treatment effect estimate across studies, as all studies are given their own fixed

coefficients.

A simpler model would treat some coefficients as shared across studies.

This might take the form of assuming a common intercept or slope (Thomas,

Radji, and Benedetti, 2014); for example, in Equation (2.5), if between-study

variability of the main covariate effects (represented by Σβ) were small, a

common coefficient could be estimated instead by replacing βs with β. In

practice, θ is often assumed to be shared across studies. GLMMs can quickly

become too complicated if many effects are allowed to vary across studies

(especially when study sample sizes are small); on the other hand, the model

might be misspecified if it ignores important variation that does exist. There-

fore, each coefficient – and whether it should be treated as common across

studies, modelled as random, or estimated independently within each study –

should be considered carefully to ensure that the model effectively represents
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between-study variability while still being sufficiently simple.

GLMMs can be fit under both frequentist and Bayesian frameworks (De-

bray et al., 2015). If a Bayesian framework is used, prior distributions need to

be assigned to each parameter; an option for this is non-informative priors to

all parameters of interest (McCandless, 2009). Informative priors can be used

when information about the parameters is available from expert opinion or

historical data analysis. Hong et al. (2015) utilize a Bayesian framework for

their analysis of diabetes medication; however, they compare more than just

two treatments and perform network meta-analysis, which is not the focus of

this paper.

One other consideration in one-stage IPD meta-analysis is the option to

decompose between-study and within-study variability. To avoid aggregation

bias, some researchers (Hua et al., 2017; Debray et al., 2015; Donegan et al.,

2012; Hong et al., 2015) suggest decomposing the interactions into two sources:

individual-level (i.e., within-study effect) and aggregate-level (i.e., between-

study effect) interactions. This model can be written by extending Equation

(2.5):

g(E(Yis)) = αs + δs Ais + βT
s,within(X is − X̄s)+

βT
acrossX̄s + θT

s,withinAis(Zis − Z̄s) + θT
acrossAisZ̄s.

Here, we have broken up the covariate and treatment-covariate interaction

terms into within-study effect and between-study components so that we can

separately assess the associations of individual covariates and their study-

level summaries with the outcome. This is especially helpful when specific
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effect moderators vary significantly both within studies and across studies

(Debray et al., 2015). Equation (2.5) is a special case of this model when

βacross and θacross are equal to the average of the βs,within’s and the θs,within’s,

respectively (Hua et al., 2017).

Standard implementations of meta-analysis techniques to assess effect

heterogeneity assume that a set of potential moderators has already been iden-

tified and observed in all included studies. Because studies measure several

variables that could plausibly serve as effect moderators, selecting which terms

to include in the model is an important and challenging decision. Furthermore,

testing a high number of potential effect moderators can increase the risk of

false positives (Hayward et al., 2020). When many potential moderators exist,

variable selection or shrinkage methods can help overcome these challenges

and identify meaningful moderators while controlling for overfitting. Seo

et al. (2021) compared one-stage IPD meta-analysis methods that identified

effect moderators and estimated their effect size. They compared various

variable selection methods under both frequentist and Bayesian frameworks

including stepwise selection, Lasso regression, Ridge regression, adaptive

Lasso, Bayesian Lasso, and stochastic search variable selection (SVSS). In

extensive simulation studies, the shrinkage methods (Lasso, Ridge, adaptive

Lasso, Bayesian Lasso, and SVSS) performed best, supporting the usage of

such methods in IPD meta-analysis to enhance performance (Seo et al., 2021).

Especially in settings in which large numbers of variables are available and

many could plausibly serve as treatment effect moderators, these methods

could be useful to efficiently estimate the conditional average treatment effect.
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2.5.1.3 Integrating IPD with AD

If data are available at the individual level in some studies but at the aggregate

level in others, both levels of data can still be combined to estimate treatment

effects. One straightforward way to do so is through two-stage meta-analysis,

as introduced in 2.5.1.1, where models are fit to each study with IPD to

calculate aggregate statistics, and then these statistics can be combined with

those reported in the AD (Riley et al., 2008). Another more complicated but

effective approach is to combine the IPD and AD simultaneously in one-stage

meta-analysis: Riley et al. (2008) describe a method for doing this where the

outcome for each trial with only AD is simply the estimate of the treatment

effect and there is just one observation. They also incorporate an indicator of

IPD versus AD.

Bayesian methodology can also be incorporated to combine IPD with AD

and allow for adaptive borrowing of information. In such a setting, Hong, Fu,

and Carlin (2018) recommend treating the AD as auxiliary data and utilizing

a power prior to adaptively incorporate the AD and a commensurate prior

to borrow from the AD to estimate treatment effects. In another Bayesian

approach, Saramago et al. (2012) incorporate IPD-level covariates to improve

estimation of treatment-covariate interactions over that available by AD alone.

2.5.2 Combining an RCT with Observational Data

Another usage for IPD in estimating treatment effect heterogeneity is through

combining data from an RCT with an observational dataset. For example,

we can consider the scenario introduced earlier where we are interested in
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comparing two treatments for major depression, duloxetine and vortioxetine,

and we have access to RCT data and a large observational dataset contain-

ing electronic health records (Brantner et al., 2024). This scenario requires

attention to potential confounding in the observational dataset; notably, the

individuals are not randomly assigned to treatment in the observational data

unlike in the RCTs. In this setting, the approaches are often nonparametric,

with some exceptions, and they include some approach for accounting for con-

founding in the observational dataset. We use τ̂r(X) and τ̂o(X) to represent

the estimated CATE function based on data from the RCT and observational

study, respectively.

Colnet et al., 2021b provides a literature review of methods that combine

RCT and observational data. They touch on many different purposes of com-

bination, one of which is CATE estimation. Their review includes some of the

nonparametric approaches listed in this section (Kallus, Puli, and Shalit, 2018;

Yang, Zeng, and Wang, 2022; Yang, Zeng, and Wang, 2020) and discusses key

assumptions, code, and implementation of methods. Our review incorporates

some of the same papers but includes other recent and related approaches as

well.

Existing methods for combining RCT and observational data first involve

estimating the CATE in either the randomized trial data, the observational

data, or both, using single-study methods. These estimators are then combined

in one of multiple different ways.
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2.5.2.1 Combining Separate CATE Estimates from RCT and Observational
Studies

When combining one RCT with one large observational dataset (the usual

approach in the methods to follow), one category of approaches involves

estimating the CATE in both datasets. In several of these approaches, the final

CATE estimate is a weighted combination of the two study-specific CATE

estimates, where the weight is derived based on a method-specific estimate of

bias in the observational data. This is the approach taken by Rosenman et al.

in two papers (2022; 2020). In each paper, Rosenman and colleagues discuss

the CATE in terms of average treatment effects within “strata”, or subgroups

that can be defined as a complex function of covariates (Rosenman et al., 2022).

The authors construct strata based on effect moderators and propensity score

estimates from the observational data. They assume that within each stratum,

the true average treatment effect is the same for both the observational and

RCT data; however, the observational data may yield a biased estimate due

to unobserved confounding. The base estimator used in their papers is a

difference in mean outcomes between the treatment and control group within

stratum k:

τ̂o
k =

∑i∈Ok
AiYi

∑i∈Ok
Ai

−
∑i∈Ok

(1 − Ai)Yi

∑i∈Ok
(1 − Ai)

(2.6)

where o indicates observational study, k indexes strata, and Ok is the set of

individuals in the observational study belonging to stratum k. The same

estimator can be established for the RCT by replacing o and Ok with r and Rk,

respectively. From this, Rosenman et al. (2022) construct a “spiked-in” estima-

tor, in which individuals from the RCT are assigned to their corresponding

33



strata with individuals from the observational data. Then the stratum-specific

treatment effects are estimated as in Equation (2.6) but including both RCT

and observational data. They compare this “spiked-in” estimator with a

dynamic weighted average in which stratum-specific treatment effects are

estimated separately in the RCT and observational data, and then the weight

for combining the RCT and observational stratum-specific treatment effects is

constructed based on the variance of the RCT estimator and the mean squared

error (MSE) of the observational data estimator. Ultimately, they discover that

the “spiked-in” estimator is only effective when the covariate distributions

are very similar across datasets and that their dynamic weighted average has

low bias regardless of whether the covariate distributions are similar or not.

In their second paper in this stratum-specific treatment effect framework,

Rosenman et al. (2020) utilize shrinkage estimation to combine CATE estima-

tors from the RCT and observational dataset. They first determine a structure

for a given shrinkage factor, λ, and then optimize an unbiased risk estimate to

solve for this λ. They again define stratum-specific average treatment effects

under the assumption that treatment effect heterogeneity can be assessed

by dividing up the dataset into strata. For example, they define a common

shrinkage factor λ selected by minimizing the unbiased risk estimate such

that

τ̂k(λ) = τ̂r
k − λ(τ̂r

k − τ̂o
k) (2.7)

where r indexes the RCT estimator, o the observational estimator, k indexes

strata, and τ̂r
k and τ̂o

k can be estimated as specified in Equation (2.6). They

also discuss an estimator that is the same as Equation (2.7) but multiplies the
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difference λ(τ̂r
k − τ̂o

k) by the variance matrix from the RCT. Note that both of

these approaches by Rosenman and colleagues are technically at the subgroup-

level; however, these subgroups can be complex functions of covariates, so the

approach can be easily discussed in terms of covariates, X, instead of stratum

membership.

A recent paper by Cheng and Cai (2021) incorporates a similar approach

to the shrinkage estimation by Rosenman et al. (2020) by adaptively com-

bining CATE functions between an RCT and observational dataset based on

the estimated degree of bias in the observational estimator to yield study-

specific CATE estimates that minimize MSE. Cheng and Cai (2021) also use

a weighted linear combination of CATE estimators from the RCT, τ̂r
s(X) and

the observational data, τ̂o
s(X):

τ̂s(X) = τ̂r
s(X) + νX{τ̂o

s(X)− τ̂r
s(X)}

where s = 0, 1 denotes RCT and observational data, respectively and νX

is a weight function. To estimate CATE functions in each study separately,

the authors use doubly-robust pseudo-outcomes (Kennedy, 2020) that are

defined as influence functions for the average treatment effect (see more in

the Supplementary Material B). These influence functions are then regressed

on the potential effect moderators, X, to estimate the CATE in both the RCT

(τ̂r
s(X)) and observational data (τ̂o

s(X)) separately. The weight νX is estimated

by minimizing a decomposition of an estimate of the mean squared error

(MSE) for the CATE function and varies based on X. This strategy allows for

the weight to heavily favor the RCT estimator when the observational data
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is biased and to combine both estimators efficiently to minimize asymptotic

variance in the presence of insignificant bias in the observational data.

Cheng and Cai’s method of estimating νX is similar to Rosenman et al.

(2020) approach of estimating λ using an unbiased risk estimate. An important

distinction between the two approaches is that Rosenman et al. (2020) repre-

sent treatment effect heterogeneity through K distinct strata within which they

assume that the treatment effect is common across the RCT and observational

datasets. Cheng and Cai (2021) instead use individual covariates as part of

their CATE estimation, and they do not require the treatment effects to be

equivalent between the RCT and observational datasets. Cheng and Cai (2021)

also use a different base estimation procedure for the initial estimates of τ in

the RCT and observational data.

Finally, Yang, Zeng, and Wang (2020) also combine separate estimates

of the CATE from the RCT and observational data to minimize MSE un-

der the assumptions of unconfoundedness in the RCT (Assumption 2.1 in

the RCT; satisfied via randomization) and a structural model for the CATE

(τ(X) = τψ0(X)). This approach uses elastic integration to combine the es-

timates based on a hypothesis test that determines whether the assumption

of unconfoundedness in the observational data (Assumption 2.1 in the ob-

servational data) is sufficiently met or not (Yang, Zeng, and Wang, 2020). To

construct this test, Yang et al. (2020) introduce

Hψ0(X) = Y − τψ0(X)A (2.8)

such that E(Hψ0 |A, X, S) = E(Y(0)|A, X, S). From here, they introduce a
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semiparametric efficient score of the parameters ψ0 which we will call SESψ0 .

This semiparametric efficient score is used in their hypothesis test with a null

hypothesis of E(SESo
ψ0
) = 0 where SESo

ψ0
is the score in the observational data.

If this null hypothesis is rejected, the ultimate parameters for the CATE are

determined solely from the RCT data; if not, parameters are solved for using

an elastic integration of both the RCT and observational data. Estimating the

parameters is discussed in more detail in Yang et al.’s (2020) paper; briefly,

they solve
∑N

i=1
ˆ︃SESψ

N
= 0

by plugging in estimators of unknown quantities and solving for ψ.

2.5.2.2 Estimating and Accounting for the Confounding Bias in the Obser-
vational Data

Another category focuses on estimating the CATE – and the confounding

bias, as estimated by bringing in the RCT data – in the observational data,

rather than estimating the CATE in each dataset. Kallus and colleagues (2018)

estimate the CATE in the observational data first and then estimate a correction

term to adjust for confounding. They focus on deriving a CATE estimator that

is consistent. The approach assumes unconfoundedness (Assumption 2.1) in

the RCT, but does not assume that the observational data fully overlaps with

the RCT data (Kallus, Puli, and Shalit, 2018; Colnet et al., 2021b). The authors

note that the CATE function in the observational data, τo(X) does not equal

the true CATE, τ(X) because of confounding, so they define the confounding

effect to be

η(X) = τ(X)− τo(X)
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and focus on estimating this η to correct the observational CATE estimator.

The observational CATE is estimated using any single-study approach, such

as a causal forest (Athey, Tibshirani, and Wager, 2019), and the confounding

effect is estimated using the following equation. For the propensity score in

the RCT, πr(X) = P(A = 1|X, S = 0), Kallus et al. define

qr(X i) =
Ai

πr(X i)
− 1 − Ai

1 − πr(X i)

for individuals in the RCT. This leads to the final equation to solve to estimate

the confounding effect:

θ̂ = argminθ

nr

∑
i=1

(qr(X i)Yi − τ̂o(X i)− θTX i)
2

again applied to only individuals in the RCT, where nr is the total number of

individuals in the RCT. Finally, they set η̂(X) = θ̂
TX and ultimately define

τ̂(X) = τ̂o(X) + η̂(X).

Yang, Zeng, and Wang (2022) also estimate confounding in the observa-

tional study directly. They focus on the conditional average treatment effect

on the treated (CATT), τ(X) = E[Y(1)− Y(0)|X, A = 1], and define a con-

founding function to estimate the effect of unobserved confounding in the

observational data. They assume unconfoundedness in the RCT (Assumption

2.1), a structural model for both the CATT and the confounding function, ζ,

and that the RCT and observational data come from the same target popula-

tion, though their covariate distributions need not overlap. Their confounding

function is defined in the observational study as the difference in potential
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outcome means between treatment groups:

ζ(X) =E[Y(0)|A = 1, X, S = 1]−

E[Y(0)|A = 0, X, S = 1].

When all confounders are measured, ζ(X) = 0, but in reality, unobserved

confounders will lead the function to be non-zero. Yang, Zeng, and Wang

(2022) show that this function is only identifiable when the RCT data is used

with the observational data.

To estimate the parameters for the CATT and the confounding function,

Yang, Zeng, and Wang (2022) utilize estimating equations and semiparametric

efficiency theory, similar to the approach taken by Yang, Zeng, and Wang

(2020). Specifically, they define an equation similar to that of their previous

work (Yang, Zeng, and Wang, 2020) shown in Equation (2.8):

Hψ0 = Y − τφ0(X)A − Sζϕ0(X)(A − e(X, S))

where ψ0 = (φ0, ϕ0) are parameters and such that the final term in the equation

will only come into play when S = 1, i.e., in the observational data. They solve

an estimating equation based around this H to get a preliminary estimator

of the parameters for τ and ζ; next, they update this solution based on a

semiparametric efficient score. The authors finally show that their estimator of

the CATT, which integrates both datasets, is more efficient than the CATT from

the RCT data when the predictors from the CATT function and confounding

function are linearly independent.

The “integrative R-learner” falls in a similar category of methods and
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is based on adapting the original R-learner by Nie and Wager (2021) (see

Supplementary Material B) to the setting with one RCT and one observational

dataset (Wu and Yang, 2021). This approach minimizes loss and is consistent

and asymptotically efficient compared to an RCT-only estimator. The authors

use a very similar definition of the confounding function as in Yang, Zeng,

and Wang, 2022, with a slight adjustment:

c(X) = E(Y|X, A = 1, S = 1)− E(Y|X, A = 0, S = 1)− τ(X)

where c(X) = 0 when there is no unobserved confounding in the observa-

tional dataset (Assumption 2.1). Wu and Yang (2021) estimate this confound-

ing function and τ(X) by minimizing an empirical loss function that has the

Neyman orthogonality property, as found in the original R-learner (Nie and

Wager, 2021).

Finally, Hatt et al. (2022) propose a method that utilizes the estimated

confounding effect in the observational data through a representation learning

approach. Under similar assumptions to previous methods such as consis-

tency (Assumption 2.3), common support across the RCT and observational

data (Assumption 2.4), and unconfoundedness in the RCT (Assumption 2.1)

among others, Hatt et al. (2022) define ϕ∗ to be a representation of the shared

structure of covariates in both the RCT and the observational data. They

also define hr
a and ho

a as “hypotheses” in the RCT and observational data,

respectively, for a = 0, 1 indicating control or treatment. These so-called

hypotheses are functions meant to be applied to the representation, ϕ∗ where

40



for r representing membership in the RCT and o in the observational data,

E(Yr|Ar = a, Xr = x)− E(Yo|Ao = a, Xo = x)

= hr
a(ϕ

∗(x))− ho
a(ϕ

∗(x)).

Similarly to previous methods, Hatt et al. (2022) use a confounding function

to represent the bias, defined as γa = hr
a − ho

a. Their algorithm starts by

estimating ϕ̂ and ĥ
o
a for a = 0, 1 from the observational data by minimizing

an empirical loss. Next, these estimates are applied to the RCT data and the

empirical loss in this dataset is minimized to derive an estimate for the bias γ̂a,

a = 0, 1. Finally, these estimates are combined using the fact that γa = hr
a − ho

a

to solve for ĥ
r
a = γ̂a + ĥ

o
a and to ultimately estimate the CATE as

τ̂(X) = ĥ
r
1(ϕ̂(X))− ĥ

r
0(ϕ̂(X)).

2.6 Discussion

2.6.1 Comparison of Approaches

The recent influx of interest in studying treatment effect heterogeneity has

led to novel and adapted methods that strive to improve the identification

of tailored interventions. Furthermore, with the increase of IPD availability

and the simultaneous research interests of combining data sources, assessing

treatment effect heterogeneity in a reproducible manner is more feasible than

before. Table 2.1 summarizes the aforementioned approaches, with a focus on

their data setting, modeling approach, and motivation.
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2.6.2 Parametric and Nonparametric Approaches

Meta-analyses have been in use for many years but are less often conceptu-

alized in terms of identifying treatment effect moderation. This review and

some other continuing work (i.e., Seo et al., 2021) have tied meta-analyses into

this framework. Traditional methods for assessing moderation generally have

involved parametric approaches that require pre-specification of the potential

moderators. However, parametric regression models are limited by the need

to pre-specify interaction terms, and complex non-linearities might be missed

in the ultimate CATE function. Variable shrinkage techniques (including pri-

ors) could help to ensure that the most important interactions are included

without overfitting the model (Seo et al., 2021).

Newer approaches listed in Section 2.5.2 include flexible machine learning

methods that allow for complicated functional forms for the covariates in the

CATE and do not require that moderators be pre-specified. The nonparamet-

ric side to estimation that is often employed when combining an RCT with

observational data allows for the CATE function to be more complex, but

there are some potential weaknesses of these methods compared with simpler

parametric models. First, the resulting CATE estimates may be more difficult

to interpret, particularly if the goal is to pick out individual effect moderators

and assess their precise relationship with the treatment effect. Second, the

desirable theoretical properties of these methods—consistency of the estima-

tors, robustness against model misspecification, accuracy of the associated

confidence intervals—are for the most part asymptotic, and so a priori one

would expect that the nonparametric/machine learning methods are better
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suited to situations with enough data. The point at which the robustness of

the nonparametric approaches is to be preferred over the explicitness and

simplicity of the parametric approaches is perhaps best assessed using a com-

bination of contextual or scientific background knowledge, simulation studies,

data splitting techniques like cross-validation and training/test/validation

sets, and real-world experience with the methods.

In conclusion, parametric models may suffer from model misspecification

but are easy to interpret and apply. Although machine learning methods

are relatively untested, their statistical properties are mostly asymptotic, and

their implementation can be more computationally intensive, they incorporate

a large amount of flexibility and could be ideal when complex nonlinear

associations are expected with a large number of variables.

2.6.3 Current Shortcomings and Future Directions

Because this field is growing rapidly and the methods discussed are some-

what new, many methods have not been thoroughly compared to one another

in simulation studies or illustrated using real trials and/or observational

datasets. There is therefore a broad opening for future research that assesses

these approaches in comparison to one another through data applications.

For meta-analysis, many real-world applications exist, but not all go in-depth

into treatment effect heterogeneity. The remaining approaches discussed in

this study are all very recent, and the new methods have not been tried out

extensively in real data. Real-world applications will be important for un-

derstanding the practical implications and considerations such as differential
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measurement across datasets, missing data, and more – such implications

must be addressed for the methods to be fully useful in applications. Further-

more, any comparisons that have been done do not combine parametric and

nonparametric approaches in this field of CATE estimation using multiple

studies.

Another useful field of follow-up study is consolidating and evaluating

assumptions. The assumptions of methods discussed here vary in whether

they are required, relaxed, or unneeded. It would be helpful to be able to

empirically evaluate the assumptions across datasets to examine their feasi-

bility, although not all assumptions explored in this paper can be empirically

assessed. Specific approaches for inference in the form of variance estimation

and confidence intervals are also needed in many approaches. For parametric

approaches discussed throughout the review, often standard methods such

as Wald confidence intervals can be employed (Yang, Zeng, and Wang, 2022),

or bootstrapping can be used to estimate intervals and standard errors as

well. However, there is an opening for more work to determine the best

inference approaches in the parametric and nonparametric cases, and how

these approaches vary depending on the method.

More work could also be done when it comes to the type of data being

combined. One might be interested in determining how to apply the meta-

analytic framework to the combination of trial and observational data; this

field has been called cross-design synthesis and has been debated in the

literature (Debray et al., 2015). On the other hand, the methods geared towards

combining an RCT with observational data could be tailored to combine

45



multiple RCTs, but this option was not discussed in the methods previously

described aside from briefly in the federated learning setting (Tan, Chang, and

Tang, 2021)

In terms of specific data availability settings, aggregate-level data consis-

tently provides a challenge for estimating individual-level effect moderation,

and there are only a couple of limited settings in which this goal can be

achieved. Therefore, more IPD data access is the simplest solution to being

able to derive an in-depth model to estimate the CATE. For the case when

IPD is available but cannot be shared across studies (i.e., federated learning),

the approaches discussed in this review could be tailored to deal with this.

Very few methods exist in this field within federated learning; only one paper

specifically discusses treatment effect heterogeneity when data is distributed

privately across studies (Tan, Chang, and Tang, 2021). Thus, future work could

be done to derive approaches to estimate the CATE in federated learning.

Data availability also can vary within a given set of studies, and researchers

often run into the issue of systematically missing covariates – i.e., covariates

available in some but not all data sources. Covariates also can be sporadically

missing, where the covariate is present in all studies but missing for some

individuals throughout the studies. Future development of the methods

discussed previously should incorporate these considerations, as many of

the new approaches leave this for future work. Some papers have looked

into these types of missingness in a slightly separate context (Colnet et al.,

2021a); for example, Audigier et al. (2018) investigated the performance of

multiple imputation procedures for systematically and sporadically missing
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data. Jolani et al. (2015) also describe a generalized imputation approach for

IPD meta-analysis when covariates are systematically missing.

An appropriate follow-up question from this work is when to best imple-

ment each method. Because the machine learning methods have not been

compared to one another in simulation studies, it is difficult to conclude which

of the methods is optimal in which scenario. This review does attempt to

clarify which type of data can be handled by each method, and whether the

method works with RCT and observational data, or multiple RCTs. However,

further study is needed to determine which approach will yield the most

accurate predictions depending on the types of heterogeneity present in the

study (i.e., heterogeneity across studies, heterogeneity within studies).

For those working in this field or those who want to learn more, it is

important to continue to look out for new research that comes out, since

this field is changing and growing rapidly. At the time of this review, many

future directions of work are open for pursuit. The new methods mentioned

throughout this review increase the feasibility of reproducible conclusions

regarding individualized treatment decisions. Because we can employ data

from multiple sources, we are developing a deeper understanding and can

more effectively estimate individual treatment effects that are reliable and

generalizable.
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Chapter 3

Comparison of Methods that
Combine Multiple Randomized
Trials to Estimate Heterogeneous
Treatment Effects

Abstract:1 Individualized treatment decisions can improve health outcomes,

but using data to make these decisions in a reliable, precise, and generalizable

way is challenging with a single dataset. Leveraging multiple randomized

controlled trials allows for the combination of datasets with unconfounded

treatment assignment to better estimate heterogeneous treatment effects. This

paper discusses several non-parametric approaches for estimating heteroge-

neous treatment effects using data from multiple trials. We extend single-study

methods to a scenario with multiple trials and explore their performance

through a simulation study, with data generation scenarios that have dif-

fering levels of cross-trial heterogeneity. The simulations demonstrate that

1This chapter has undergone peer review and is published in Statistics in Medicine: Brantner,
C. L., Nguyen, T. Q., Tang, T., Zhao, C., Hong, H., and Stuart, E. A. (2024). Comparison of
methods that combine multiple randomized trials to estimate heterogeneous treatment effects.
Statistics in Medicine.
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methods that directly allow for heterogeneity of the treatment effect across

trials perform better than methods that do not, and that the choice of single-

study method matters based on the functional form of the treatment effect.

Finally, we discuss which methods perform well in each setting and then apply

them to four randomized controlled trials to examine effect heterogeneity of

treatments for major depressive disorder.

3.1 Introduction

When tailoring treatment regimens to individual patients, one must strive to

understand how different treatment options might affect the specific patient

based on their characteristics or context. Rather than using a one-size-fits-all

approach, clinicians and researchers are turning more towards personalized

medicine with the goal of improving clinical outcomes. In this setting, the

focus of estimation becomes conditional average treatment effects, i.e., how

well the treatment is expected to work conditional on the person’s known

characteristics.

The benchmark for estimating treatment effects in an unbiased manner is

most often a randomized controlled trial (RCT). In an RCT, participants are

randomly assigned to treatment or control, therefore ensuring unconfounded

treatment assignment and unbiased treatment effect estimates in the given

sample. However, these trials often have sample sizes that are large enough

to detect main effects but lack power to estimate heterogeneous treatment

effects (Fleiss, 2011) and might not be representative of a broader popula-

tion. To overcome these specific issues, researchers have started combining
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information from multiple studies to improve treatment effect estimation.

Multiple studies allow for larger sample sizes and at times a more represen-

tative sample of the target population. In the setting with multiple RCTs,

meta-analysis or hierarchical models are common techniques to combine stud-

ies and estimate treatment effects (Debray et al., 2015; Seo et al., 2021). These

approaches often do not explicitly target conditional average treatment effects

though, and often only use aggregate-level data which makes it challenging

to estimate treatment effects conditional on individual-level characteristics.

Furthermore, meta-analysis is commonly applied within a parametric frame-

work, which is highly interpretable but requires prespecification of effect

moderators and distributional assumptions for parameters. Non-parametric

approaches are worth exploring in this setting because they allow for high

levels of flexibility in outcome and treatment effect functions. Relationships

between covariates and treatment effect can be complex and non-linear in

reality, and non-parametric machine learning methods can better handle those

scenarios.

Many non-parametric approaches exist to estimate heterogeneous treat-

ment effects (Künzel et al., 2019; Athey, Tibshirani, and Wager, 2019; Green and

Kern, 2012; Kennedy, 2020; Nie and Wager, 2021; Dandl et al., 2022); however,

these approaches have generally been developed only for the single-study

setting. Several of the common approaches are discussed in the section to

follow (3.3.1), and we subsequently extend these methods for use in multiple

studies. Recent research has investigated a few non-parametric approaches for

the multiple study setting, mostly geared towards combining data from one
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RCT with a large observational dataset (Yang, Zeng, and Wang, 2020; Yang,

Zeng, and Wang, 2022; Kallus, Puli, and Shalit, 2018; Rosenman et al., 2023). In

that work, the focus is often on estimating the bias present in the observational

data to determine the level at which the observational study estimates can

be combined with the RCT estimates. These methods are therefore not as

straightforward to use in the multiple RCT setting. With multiple RCTs, each

individual trial has the benefit of unconfounded treatment assignment, but

significant cross-trial heterogeneity could still exist due to both observed and

unobserved factors. The focus in this case is no longer de-biasing one of the

datasets, but instead determining the amount of heterogeneity present and

how to account for it.

Brantner and colleagues (2023) wrote a comprehensive review of methods

geared towards combining datasets to estimate treatment effect heterogeneity.

That review included approaches for multiple RCTs; the most common were

individual participant-level data one-stage meta-analyses (Debray et al., 2015).

One alternative approach focuses on combining RCTs to estimate conditional

average treatment effects in a non-parametric framework (Tan et al., 2022).

However, that work by Tan and colleagues was done in the federated learning

setting, in which individual-level data could not be shared across study sites

and instead only aggregate results or models could be shared. In the sections

to follow, we tailor Tan et al.’s method to when individual-level data can be

shared across trials, and we add other new options for combining trials.

To our knowledge, this paper is the first to describe and compare machine

learning options for estimating heterogeneous treatment effects using data
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from multiple RCTs, in the setting in which all data can be shared across trials.

Because not many methods exist to do this, we demonstrate several options

for extending current methods for single studies to the multiple-study setting.

We also build off of the approach in Tan et al. (2022) by adapting it to the

case when individual-level data can be shared across trials. Our goals are

to assess estimation accuracy of the various methods within a given sample

of trials and to determine whether and when pooling data is useful, or if it

might ever worsen accuracy in the presence of high heterogeneity across trials.

We conduct extensive simulations with varying data generation parameters

to determine which of the single-study and aggregation methods perform

best depending on different amounts of cross-trial heterogeneity in the effects.

We then apply the approaches to a set of four RCTs of depression treatments

and discuss the variability in estimates across the approaches and potential

substantive conclusions that can be made.

3.2 Notation

The estimand considered in this paper is the conditional average treatment

effect (CATE), defined under Rubin’s potential outcomes framework (Rubin,

1974). Let A denote a binary treatment indicator (often treatment versus

control), X represent covariates, and Y represent a continuous outcome. Under

Rubin’s framework, Y(0) and Y(1) denote the potential outcomes under

control and treatment, respectively. In other words, Y(0) is the value of Y that

an individual would have if they are in the control group, while Y(1) is the

value of Y that they would have if they received treatment. The fundamental
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problem of causal inference is that we cannot ever observe both Y(0) and

Y(1) simultaneously for the same person; therefore, we must use design

and analysis approaches to estimate the unobserved outcomes. Next, let

S be a categorical variable representing the trial in which the individual

participated and ranging from 1 to K, where K is the total number of RCTs.

Finally, represent the probability of receiving treatment given covariates and

trial membership (propensity score) as πs(X) = P(A = 1|X, S = s).

With a continuous outcome, the CATE is

τ(X) = E(Y(1)|X)− E(Y(0)|X). (3.1)

In this paper, we note that the goal estimand is this “universal” CATE (3.1)

built off of potential outcomes that are not dependent upon study membership.

However, many methods in the following sections target a study-specific

CATE:

τs(X) = E(Y(1)|X, S = s)− E(Y(0)|X, S = s). (3.2)

To identify the estimand when combining data across RCTs, many of

the standard causal inference assumptions are required, including the Stable

Unit Treatment Value Assumption (SUTVA) within each RCT. Other stan-

dard assumptions include: unconfoundedness (Assumption 3.1), consistency

(Assumption 3.2) and positivity (Assumptions 3.3 and 3.4) (Tan et al., 2022).

Assumption 3.2 varies slightly depending on the estimand; under the univer-

sal CATE estimand (Equation 3.1), we assume overall consistency, while under

the study-specific estimand (Equation 3.2), we assume consistency within each
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study. Assumption 3.4, which requires that any X is possible to be observed

in all studies, can be relaxed depending on the method.

Assumption 3.1 {Y(0), Y(1)} ⊥⊥ A | X, S = s for all studies s.

Assumption 3.2 Y = AY(1) + (1 − A)Y(0) almost surely (in each study).

Assumption 3.3 There exists a constant c > 0 such that c < πs(x) < 1 − c for all

studies s and for all x values in each study.

Assumption 3.4 (Can be relaxed) There exists a constant d > 0 such that d <

P(S = s|X = x) < 1 − d for all x and s.

3.3 Methods

This paper includes methods developed for treatment effect estimation in a

single study and aggregation approaches that apply these methods to mul-

tiple studies. This section discusses three single-study methods and several

aggregation options that apply the single-study methods to the multi-study

setting.

3.3.1 Single-Study Methods

For a given RCT, many machine learning methods have been developed

for CATE estimation. The single-study methods that exist can be grouped

into multiple categories, as delineated by Brantner et al (2023). For ease of

comparison, three approaches are included that are user-friendly and have

been shown to be effective in previous literature: the S-learner, X-learner
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(Künzel et al., 2019), and causal forest (Athey, Tibshirani, and Wager, 2019).

We ultimately selected these three approaches because they represent two

distinct classes of methods for estimating heterogeneous treatment effects (see

Brantner et al., 2023) and seem to be used in practice, especially the causal

forest (Athey and Wager, 2019; Jawadekar et al., 2023). Specifically, the first

two approaches are multi-step procedures that involve first estimating the

conditional outcome mean under treatment or control and then combining

the two into one CATE function, while the causal forest involves tree-based

partitioning of the covariate space by treatment effect. In this paper, we use

random forests as the base learners for both the S-learner and the X-learner to

best compare with the causal forest, which is inherently forest-based. These

single-study methods are different from those explored by Tan and colleagues

(2022); we chose to focus on the causal forest over a causal tree because the

causal forest is an aggregation of multiple trees, and we added in the X-learner

and S-learner to provide a different type of method to compare with.

3.3.1.1 S-Learner

The first single-study machine learning method used in this paper is called

the "S-learner" (Künzel et al., 2019). This method is classified as a "meta-

learner" in that it combines base learners (i.e., regression models) of any form

in a specific way (Künzel et al., 2019). The S-learner uses a base learner (i.e.,

a random forest) to estimate a conditional outcome mean function given

observed covariates and assigned treatment:

µ(X, A) = E(Y|X, A).
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The conditional outcome mean function in this approach is not specific to

treatment group, but instead treatment is included together with the covariates

as features to be used by the random forest. The CATE can then be directly

estimated by plugging in 0 and 1 for the treatment indicator to obtain predicted

outcomes under treatment and control for each individual and calculate

τ̂(X) = µ̂(X, 1)− µ̂(X, 0).

3.3.1.2 X-Learner

The second approach considered here is another meta-learner called the "X-

learner" (Künzel et al., 2019). The X-learner takes a similar approach as

the S-learner by modeling the conditional outcome mean functions before

estimating the CATE directly. However, rather than estimating one outcome

mean function for Y(1) and Y(0) simultaneously, the X-learner estimates two

functions separately and then imputes treatment effects for each treatment

group.

Specifically, the X-learner involves three steps. First, the conditional out-

come mean functions are estimated using base learners (in this case, random

forests) like in the S-learner, but separately by treatment group:

µ0(X) = E(Y(0)|X) and µ1(X) = E(Y(1)|X).

Next, the unobserved potential outcomes for individuals in the treatment and

control groups are predicted using those models to get µ̂0(X i:A=1) (estimate of

the potential outcome under control for an individual who received treatment)

and µ̂1(X i:A=0) (estimate of the potential outcome under treatment for an
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individual who received control). We then input these predictions along with

the observed outcomes to impute individual treatment effects:

D̃i:A=1 = Yi:A=1 − µ̂0(X i:A=1) and D̃i:A=0 = µ̂1(X i:A=0)− Yi:A=0.

Then D̃ is regressed on X to estimate τ(X). This is done within each treatment

group separately, resulting in two estimates, labeled τ̂1(X) and τ̂0(X). Finally,

these are combined to obtain one estimate of the CATE function:

τ̂(X) = g(X)τ̂1(X) + (1 − g(X))τ̂0(X),

where the weight g(X) is often an estimate of the propensity score (the case in

this paper) or can be chosen otherwise (Künzel et al., 2019).

3.3.1.3 Causal Forest

The third single-study approach is the causal forest (Athey, Tibshirani, and

Wager, 2019). The causal forest is similar to a random forest, but the focal

estimand is the treatment effect itself, rather than the outcome for a given

individual. The causal forest is based off of a causal tree, which involves

recursive partitioning of the covariates to best split based on treatment effect

heterogeneity. Here, the treatment effect is estimated as the difference in

average outcomes between the treatment and control group individuals within

leaves. From there, the causal forest is the weighted aggregation of many

causal trees.

One potential challenge with causal forests is that bias could occur when

there is overlap between the data used to form the trees and data used to
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estimate the treatment effects within leaves. A solution to that problem, called

"honesty", has been proposed (Wager and Athey, 2018). This concept ensures

that for every individual involved in creating the tree, their outcome is used

either for splitting the tree or estimating the treatment effect within a leaf,

but not both. Honesty has been used some in the literature, but there is not

a widespread conclusion as to whether trees should be fit with or without

honesty depending on the scenario. Dandl and colleagues compared honesty

versus adaptive (not honest) forests in their simulations including causal

forests and found that in their setting that was meant to represent an RCT, the

adaptive forests performed better (Dandl et al., 2022). Additionally, honesty

requires large sample sizes. Thus, we do not include honesty in the causal

forests in the primary simulations but do investigate it in a second round of

method comparisons.

3.3.2 Aggregation Methods

In many contexts, there are multiple RCTs available that compare the same

two treatments. It is then worth considering methods that allow combining

across trials. When aggregating to the multi-study level, the question becomes:

how much does the treatment effect vary based on study membership? This

variability can range along a continuum, where on one end is the possibility

that the trials are all very homogeneous in terms of the CATE, meaning

that participants in trial j and in trial k who have the same covariate values

would have the same treatment effect. At the other extreme, individuals with

the same covariates but in different trials could have completely different
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treatment effects. These differences can be due to heterogeneity in the sites in

which the trials were conducted, heterogeneity in trial procedures (including

the treatment or control conditions themselves), heterogeneity in trial samples,

or other reasons. The aggregation methods to follow take different approaches

to incorporating trial membership into the treatment effect estimation, ranging

from assuming trial membership does not matter at all, to allowing it to matter

just as much as any other characteristic.

3.3.2.1 Complete Pooling

A complete pooling approach is very straightforward: the researcher simply

takes all data from each of the K RCTs, creates a single dataset, and then

fits one of the three previously described methods (S-learner, X-learner, or

causal forest) to the pooled dataset. This approach is quick and easy to

do, but requires many assumptions. Namely, this approach assumes a high

level of homogeneity across trials and specifically that the CATE function is

shared across studies. This method is included because it represents a naive

comparison point and because it provides universal CATE estimates (i.e., not

study-specific).

3.3.2.2 Pooling with Trial Indicator

An alternative pooling approach is to incorporate trial membership in the

models but essentially still perform the pooling as before. Here, all of the

individual data from each RCT is combined into one comprehensive dataset,

but a categorical variable is included that represents the trial in which the

individual participated. Then, the researcher can apply one of the single-study
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approaches to this full dataset, allowing for all of the covariates, including

trial membership, to be involved in the treatment effect function. In this

way, if trial membership is important for estimating effects, estimates should

be somewhat informed by trial membership; otherwise, the treatment effect

estimates should be similar across trials. While the previous complete pooling

approach gives estimates that were not trial-specific, this approach yields

trial-specific CATE estimates.

3.3.2.3 Ensemble Approach

The next approach is based off of Tan and colleagues’ (2022) methods for

federated learning, originally developed for scenarios in which individual data

cannot be shared across trial sites. Their original approach fits trial-specific

models and then applies those models to data from a single coordinating

site to derive an ensemble. We propose an adaptation of Tan’s approach for

settings where individual-level data from all trials are available to the analyst.

This adaptation of Tan et al.’s approach involves three steps.

1. First, the researcher builds localized models for the CATE within each

trial, using one of the three single-study methods previously discussed

(S-learner, X-learner, or causal forest).

2. Next, they apply these localized models to each individual across all

of the RCTs to get for each individual their trial-specific CATE estimates,

i.e., the estimated effects had the individual been part of study 1, study

2 and so on. For K studies with a total of N individuals in all studies

combined, there will be K trial-specific CATE models. Once each of
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these models are applied to all N data points, every individual will have

K different estimates of their CATE. So there will ultimately be N · K

CATE estimates in what Tan et al. define as an "augmented" dataset. The

difference between the second step here and what Tan et al. did is that

we apply the study-specific models to all data points in all trials, rather

than having to restrict to a single coordinating site.

3. The third and final step is to fit an ensemble model to the augmented

dataset that has CATE estimates for every individual crossed with every

trial. In this ensemble model, the response variable is the CATE estimate,

and the predictors are the individual covariates and a categorical variable

indicating the local model that had been used to compute the CATE

estimate. We use three different options for this final ensemble model

fit to the augmented dataset: a regression tree, a random forest, and a

lasso regression. The regression tree and random forest were explored

in Tan et al.’s paper (2022), while we added lasso regression to provide a

parametric comparison point.

The resulting functions from these ensemble approaches are trial-specific

estimates of the CATE; however, they have been adapted based on the CATEs

from the other trials. Therefore, this method allows for trial heterogeneity but

incorporates information across trials to hopefully improve the model from

each trial.
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3.3.2.4 IPD Meta-Analysis

As a comparison point in the simulations to follow, we also include an in-

dividual patient-level data (IPD) meta-analysis with a random intercept for

trial membership. This method is a standard approach taken by researchers

when combining multiple RCTs and assessing treatment effects (Debray et

al., 2015; Seo et al., 2021; Burke, Ensor, and Riley, 2017), and it also serves

here as a parametric comparison to the primarily non-parametric approaches

outlined above. A meta-analysis does not employ a single-study method

like the S-learner, X-learner, or causal forest; instead, all of the data is pooled

together and trial-level relationships can be included as fixed or random

effects. The decision of how to parametrize a given meta-analysis is very

important and can have major implications as to the assumptions of how

the true data is distributed and the subsequent fit of the model. While the

previous non-parametric approaches implicitly allow for any important mod-

erating relationships and interactions to be picked up based on the modeling

procedure, meta-analysis requires that we pre-specify moderation according

to a priori hypotheses. In this paper, we set up the meta-analysis to mimic the

setup of the first scenario in the simulation to follow except for the exact form

of the moderator, so that we can see how well meta-analysis performs when

it is mostly correctly specified versus when it is incorrectly specified (for the

second and third CATE scenarios described in the simulations below). The

model is as follows:

Y = (α0 + as)+ (α1 + bs)X1 + α2X2 + α3X3 + α4X4 +(ζ + zs)A+(θ + ts)X1A+ ϵ.
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In this model, we allow the intercept to include a fixed component (α0) and

a random component by study (as ∼ N(0, σ2
a )), and our residual error is

ϵ ∼ N(0, σ2). The fixed effects are α = {α1, α2, α3, α4}, the coefficients relating

the covariates to the outcome; ζ, the coefficient for treatment; and θ, the

coefficient of the interaction between treatment and a moderator X1 (Seo

et al., 2021). The random effects by study are bs ∼ N(0, σ2
b ), the random

slope for the covariate X1; zs ∼ N(0, σ2
z ), the random slope for treatment; and

ts ∼ N(0, σ2
t ), the random slope for the treatment-X1 interaction term. From

here, the estimate of the conditional average treatment effect can be calculated

as τ̂s(X) = (ζ̂ + ẑs) + (θ̂ + t̂s)X1.

The meta-analysis framework assumes that the CATE function is shared

across studies, but that the mean potential outcome under control can differ

across studies. Notably, this functional form of the CATE assumes linear

relationships, and one must prespecify all variables that might be relevant to

the main effect of the covariates and to the treatment effect.

3.3.2.5 No Pooling

Finally, we also consider that there might be instances where trials are too

heterogeneous to reliably combine information across trials. When this is the

case, fitting models within each study would be the best approach; therefore,

we include this option in our simulations as well. For this “no pooling”

approach, one can fit a single model within every trial separately using a

single-study method previously introduced, and CATEs can be estimated

within each study using the given study’s model. We provide results from this
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method in the simulations to investigate if there are settings when pooling

worsens estimation accuracy. However, it is important to mention that this

approach is not technically an “aggregation approach” because it analyzes

each study independently from the others and does not use data from multiple

studies together. Particularly in the simulations to follow, the no pooling

approach will find the best fit within each study and should therefore yield

consistently high estimation accuracy. There will also be some differences

in terms of variance; we assume that there would be higher variance when

using only one study, but we do not explore this explicitly here. Note, though,

that the current setup does not examine how well this approach will predict

CATEs for individuals outside of the specific trials; we elaborate on this more

in the sections to follow.

3.4 Simulation Setup

To compare both the single-study and aggregation methods, we performed

a simulation study, simulating data from multiple randomized controlled

trials and changing parameter values to compare which methods achieve the

lowest mean squared error (MSE) between the estimated and true individual

CATEs. Because there were three single-study methods (S-learner, X-learner,

and causal forest) and six aggregation methods (complete pooling, pooling

with trial indicator, ensemble tree, ensemble forest, ensemble lasso, and no

pooling) being compared along with meta-analysis, there were 3 · 6 + 1 = 19

total combinations of methods applied to each simulated dataset.
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3.4.1 Data Generating Mechanism

In the simulations to follow, the potential outcomes are generated using the

following model (Tan et al., 2022):

Yi(a) = m(xi, si) +
2a − 1

2
· τ(xi, si) + ϵi (3.3)

where m(xi, si) represents the outcome mean conditional on covariates and

trial, and τ(xi, si) is the CATE. In the main setting for the data generation, we

employed two options for m and τ. The first setup (1a) involves a linear m

and piecewise linear τ, based on a similar setup by Tan et al. (Tan et al., 2022):

m(x, s) = x1/2+
4

∑
j=2

xj + βs + δs · x1 and τ(x, s) = x1 · I(x1 > 0) + βs + δs · x1.

The second setup (1b) involves a more complicated non-linear function for τ,

derived partially from a simulation setting by Kunzel et al. (2019):

m(x, s) = 0 and τ(x, s) = g(x1)g(x2) + βs + δs · x1

where g(x) = 2
1+exp(−12(x−1/2)) . In both of these, the coefficients βs represent

trial-specific main effect coefficients, and δs represent trial-specific interaction

effect coefficients (interaction between trial and the moderator x1). In both

setups, x1 is an effect moderator, and in the second setup, x2 is as well. If

the coefficients βs and δs differ across s (i.e., trial membership), then trial is

making an impact in the moderation.

From this information, the components simulated are listed as follows:

1. For each simulation, the number of trials was K = 10.
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2. Each trial had a sample size of 500 individuals.

3. Within each trial, we simulated five continuous covariates per person Xi,

i ∈ {1, 2, 3, 4, 5}, where E(Xi) = 0, Var(Xi) = 1, and Cov(Xi, Xj) = 0.2

for all i ̸= j.

4. Each person was then assigned a treatment status, 0 or 1, according to a

propensity score of πi = 0.5 within each trial.

5. Each person was also assigned an error term for their outcome function,

so ϵi ∼ N(0, 0.01).

6. We then sampled trial-specific main effect and interaction effect terms.

Each of the K = 10 studies was assigned a main effect term according to

βs ∼ N(0, σ2
β) and an interaction effect term according to δs ∼ N(0, σ2

δ ).

The values of the standard deviations were:

(σβ, σδ) ∈ {(0.5, 0), (1, 0), (1, 0.5), (1, 1), (3, 1)}.

7. From this information, m, τ, and Y were calculated under either of the

two setups described above (1a and 1b).

We then included some variations of the above setup to assess method

performance under different adjustments. The first was including one other

scenario (2) to see how the methods would perform when the functional form

of the CATE itself differed across trials – a particularly challenging situation

for pooling. For this scenario, we used the same form for Yi as in Equation

(3.3), and now we set m and τ to be such that m is linear and τ depends on
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study:

m(x, s) = x1/2 +
4

∑
j=2

xj,

τ(x, s) = I(s ∈ {1, 2, 3, 4}) · g(x1)g(x2) + I(s ∈ {5, 6, 7, 8}) · x1 · I(x1 > 0)

+ I(s ∈ {9, 10}) · 0

where g(x) is as previously defined.

We also added settings with variation in the trial sample sizes. One new

option involved one large trial (n=1000) and the rest smaller (n=200). The

second new setting had half of the trials with n=500 and the other half with

n=200. We assessed performance for these sample size adjustments under

scenarios 1a, 1b, and 2 with trial main and interaction coefficient standard

deviations of 1 and 0.5, respectively.

We then investigated the impact of covariate shift on method performance.

In particular, we generated the data such that all even numbered studies had

X1 with mean 0 as above, but in odd numbered studies, the mean of X1 was

set to be 2. We assessed this setting under scenarios 1a and 1b with standard

deviations of 1 and 0.5 of study main and interaction effect terms, and we

allowed trial sample sizes to either all be the same or for one trial to be large

and the rest smaller.

Finally, we added some simulations with K = 30 trials in two of the

settings (scenario 1a and 1b with trial main and interaction coefficient standard

deviations of 0.5 and 0, respectively) to determine if there were differences in

performance based on number of trials (the remainder of the simulations had
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K = 10).

For each simulation setup, we generated 1,000 simulated datasets. Neces-

sary packages included causalToolbox for the S-learner and X-learner (Künzel

et al., 2019), grf for the causal forest (Athey, Tibshirani, and Wager, 2019), rpart

for the ensemble tree (Therneau et al., 2015), ranger for the ensemble forest

(Wright and Ziegler, 2017), glmnet for the ensemble lasso (Friedman et al.,

2017), and lme4 for the mixed effects meta-analysis (Bates, 2010). Ensembling

functions were based off of those in the ifedtree package (Tan et al., 2022) but

were adapted to the setting in which data could be shared across trials. In

all non-parametric approaches, hyperparameters were set to be the defaults,

except that the causal forest was set to use 1,000 trees instead of the default of

2,000 for computational ease, and honesty was set to false for the preliminary

simulations. For each method and each iteration, performance of the different

approaches was assessed based on the mean squared error (MSE) between

the true individual CATEs and the estimated individual CATEs, and these

MSEs were ultimately averaged across the 1,000 repetitions. Code containing

all adapted methods and implementation of the simulations can be found at

the github repo: https://github.com/carlyls/CATE_multiRCT.

3.5 Simulation Results

The following tables and figures display the performance results across 1,000

iterations of each parameter combination/scenario. Figure 3.1 displays the

distribution of MSE for every approach for the two main scenarios (piecewise

linear and non-linear CATE), broken down by the standard deviations of
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the trial main and interaction effects. In the piecewise linear and non-linear

CATE scenarios, as the trial coefficients (both main and interaction effects)

increase in variability, the MSE increases, meaning the methods estimate

individual CATEs more poorly. This is consistent with the idea that when

trial membership is involved in the treatment effect function, the CATEs vary

across trials and therefore are harder to estimate when data is pooled across

studies. Notably, this increase in MSE happens much more quickly for the

complete pooling approaches.

In the piecewise linear scenario (1a), the most consistently effective ap-

proaches in terms of MSE are when the causal forest is used as the single-study

method and when the aggregation approach is either pooling with trial indica-

tor or ensemble forest. The X-learner also performs relatively well in terms of

MSE. Meta-analysis performs well, which is expected because the model was

set up to mostly match the true functional form of the CATE in this scenario.

For the non-linear scenario (1b), the ensemble lasso and meta-analysis perform

notably worse, which makes sense due to the complexity of the functional

form of the CATE, as it includes the product of two expit functions, and the

lasso and meta-analysis assume a parametric linear relationship between co-

variates and outcome. The ensemble forest and pooling with trial indicator

again estimate the CATEs well, with all single-study methods performing

more similarly. While the S-learner was not very effective with the piecewise

linear CATE (1a), it was more effective with the non-linear CATE (1b). In all

main settings, the no pooling approach performs similarly well to pooling

with trial indicator and ensemble forest (Figure B.1); we discuss more about
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Figure 3.1: Distribution of MSE for main parameter combinations across all single-
study and aggregation approaches.

Columns are broken down by simulation scenarios (piecewise linear versus non-linear
CATE), and rows are by standard deviation of study main and study interaction coefficients.

this in the Discussion section.

Several boxplots in the Appendix display the results of the many variations

upon the original simulation settings included. To assess the performance

of methods with different trial sizes, Figure B.2 demonstrates that there do

79



not seem to be notable differences in patterns across methods depending on

whether all trials have the same sample size, one trial is much larger, or half

are larger while half are smaller. The MSE seems to be slightly higher overall

when trial sizes are different, but not substantially different. Furthermore,

Figure B.3 displays the results for the variable CATE scenario (2). Here, the

causal forest is clearly performing the best of the three single-study methods,

while the S-learner is not performing as well. The most effective aggregation

methods are again pooling with trial indicator and ensemble forests, and

meta-analysis performs relatively poorly.

When we introduced a shift in the covariate distributions between even

versus odd numbered studies (Figure B.4), there again does not seem to be

a difference in the patterns of results. The MSE generally is slightly higher

across all methods compared to when the covariates all came from the same

distributions across trials; however, methods like the causal forest with pool-

ing with trial indicator and ensemble forest still perform consistently well. In

the piecewise linear CATE with a shift in covariate distributions, meta-analysis

performs very well and the best of all aggregation approaches, but it does not

perform well when the CATE is non-linear.

Finally, for the two scenarios with 30 trials instead of 10, Figure B.5 demon-

strates that the results and patterns are all similar to the results for K=10,

except for the causal forest with pooling with trial indicator. Interestingly,

this approach, which performed very well with 10 trials, has high MSE when

there are 30. To understand this more fully we did further investigations,

including some iterations with 15, 20, and 25 trials to see how the pattern
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changes. Overall, the results of these investigations indicate that when there

are more trials, the causal forest with pooling with trial indicators has more

difficulty identifying the heterogeneity that exists across trials. In particular,

the method rarely “picks up” the trial indicators of trials that do have different

patterns in effects when K > 20, as indicated by the variable importance

measures (weighted sum of the number of times the variable was used in a

split at each level of the forest) (Athey, Tibshirani, and Wager, 2019). Table B.1

shows average variable importance values under the piecewise linear CATE

scenario for different values of K. Based on the simulation setup, the causal

forests should split often on moderating variables, which in this case are X1

and study membership. The variable importance measures demonstrate that

for all values of K, X1 is involved in a high proportion of splits, as it should be

as a moderator. For lower numbers of trials (K = 10 through around 20), the

most heterogeneous studies (defined based on main coefficients) had notable

variable importance, meaning they were involved in some of the splits in

the causal forest. However, for higher values of K (more trials), the variable

importance for these most heterogeneous studies approached zero, meaning

study membership was no longer picked up much in the causal forest even

though there was notable heterogeneity of the treatment effect based on study

membership. In addition, for high values of K, the causal forest split more

often on the non-moderating covariates, X2 − X5. These issues that arose with

large numbers of trials likely contributed to the high MSE of the causal forest

with pooling with trial indicator for large values of K. We reflect more on

these results in the Discussion section.
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To more formally examine the results of the main settings in our simulation,

we regressed the average MSE across iterations on the methods and parameter

combinations, just within the piecewise linear and non-linear CATE scenarios,

excluding meta-analysis and no pooling, and excluding the settings with

K = 30 and with covariate shift. Specifically, the regression is such that:

MSE =β0 + β1 · singlestudy + β2 · aggregation + β3 · singlestudy · aggregation

+ β4 · mainsd + β5 · interactionsd + β6 · scenario + β7 · trialsizes + ϵ.

From this regression, there were no significant differences in performance

across single-study methods, but all aggregation methods performed signifi-

cantly better than complete pooling. The ensemble forest had the best average

MSE for the S-learner and X-learner, and pooling with trial indicator had the

best average MSE for the causal forest.

Finally, we also performed 500 more iterations using the same methods

previously described, but with honest causal forests instead of traditional

“adaptive” causal forests. These iterations were performed using the main

data generation setups as above, except that covariates were not correlated.

The resulting average MSEs are presented in the Appendix (Figure B.6). We

found very similar results to the original 1,000 repetitions with adaptive causal

forests, but the honest causal forests had slightly higher MSEs on average,

indicating worse estimation accuracy than the adaptive causal forests. For the

ensemble tree, forest, and lasso, the honest causal forests had slightly higher

average MSE compared to the X-learner (Figure B.6), while the adaptive

causal forests had slightly lower average MSE compared to the X-learner for
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these same aggregation approaches in the original simulations. However,

these differences are very small, so we can broadly make similar conclusions

whether we use adaptive or honest causal forests in these scenarios.

3.6 Application to Real Dataset

After the simulations demonstrated differences across methods in several

data generation setups, we applied the various methods to an existing dataset

containing multiple randomized controlled trials that compared the same two

medications.

3.6.1 Treatments for Major Depressive Disorder

The applied dataset used in the current paper consists of four randomized con-

trolled trials (Mahableshwarkar, Jacobsen, and Chen, 2013; Mahableshwarkar

et al., 2015; Boulenger, Loft, and Olsen, 2014; Baldwin, Loft, and Dragheim,

2012), each of which included three treatments: duloxetine, vortioxetine, and

placebo, where duloxetine and vortioxetine are both treatments for major

depressive disorder (MDD). At the time of the trials, duloxetine had been

more commonly used to treat MDD so was primarily included in the trials

as an active reference, while vortioxetine was a newer treatment not yet mar-

keted (Schatzberg et al., 2014). Each of the four trials compared at least two

different dosages of vortioxetine and therefore had more participants taking

vortioxetine as opposed to duloxetine or placebo. For the purposes of the

current application, we removed placebo participants and lumped all dosages

of vortioxetine together to investigate the potential differences between the
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efficacy of the active medications (duloxetine and vortioxetine), as well as

identify features that might be moderating this difference.

Participants in each of the four trials shared similar eligibility criteria. All

four trials required patients to be between the ages of 18 to 75, to have a

Major Depressive Episode (MDE) as a primary diagnosis according to the

DSM-IV-TR criteria over at least three months, and to have a Montgomery-

Asberg Depression Rating Scale (MADRS) (Montgomery and Åsberg, 1979)

score of at least 22 (one trial) or 26 (three trials) at both screening and baseline

(Mahableshwarkar, Jacobsen, and Chen, 2013; Mahableshwarkar et al., 2015;

Boulenger, Loft, and Olsen, 2014; Baldwin, Loft, and Dragheim, 2012). A

primary outcome in the trials is the change in MADRS (Montgomery-Asberg

Depression Rating Scale) score from baseline to the last observed follow-up in

the study. Participants were meant to stay in the study for 8 weeks, at which

point their final MADRS score was collected. For those who did not remain in

the trial for 8 weeks, a last observation carried forward imputation approach

was used for simplicity. This imputation approach is not the best way to

account for missing data and many other options exist (Little et al., 2012), but

it is used here for simplicity because this example is primarily illustrative.

Predictors/effect modifiers used in the models were age, sex (female or male),

smoking status (ever smoked or never smoked), weight, baseline MADRS

score, baseline HAM-A (Hamilton Anxiety Rating) score (Hamilton, 1959), co-

morbidity indicators (if ever had diabetes mellitus, hypothyroidism, anxiety),

and medication indicators (if they are concomittantly taking an antidepres-

sant, antipsychotic, thyroid medication). Since the outcome is the difference
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in MADRS score (MADRS at follow up minus MADRS at baseline), a more

negative outcome indicates a better result. We removed individuals who were

either in the placebo group or who had missing treatment assignment, along

with individuals with missing baseline MADRS or no post-randomization

MADRS. After this, sample sizes were 575, 436, 418, and 418 for each of the

trials. Further descriptive information about the samples in the four RCTs

is reported in the Appendix (Table B.2). Little missing covariate data was

present in the sample; however, conditional mean imputation was performed

for missing values of weight (n=1) and baseline HAM-A score (n=2).

Following data preparation, we used each of the aforementioned method

combinations (i.e., causal forest, S-learner, and X-learner as single-study meth-

ods paired with complete pooling, pooling with trial indicator, ensemble tree,

ensemble forest, and ensemble lasso) to estimate the CATEs for every indi-

vidual across the four trials. We then compared the CATE estimates across

methods to see their concordance levels. Notably, it is not possible to compare

the method performances with the truth, as the true CATEs are unknown in

this real dataset.

3.6.2 Results

All methods broadly led to the conclusion of a positive average CATE. This

indicates that vortioxetine is estimated to have less of a beneficial effect on

the MADRS score on average. In each of the four RCTs, both treatments

were associated with a reduction in depressive symptom severity over time

(shown through a reduction in MADRS score), but this reduction was smaller
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for the vortioxetine group than the duloxetine group. Table 3.1 contains

the mean and standard deviation of the CATEs according to each method.

Broadly, the S-learner approaches estimated lower CATEs on average than

the other approaches, and there is some consistency between the aggrega-

tion approaches within each single-study method (S-learner, X-learner, and

causal forest). There were especially high levels of similarity in the average

CATE estimates across the causal forest methods, shown in the last column

of Table 3.1. The variability of the CATE estimates differs depending on the

approach as well; causal forest approaches had higher standard deviations

than approaches that used the S-learner and X-learner. Complete pooling also

yielded the highest standard deviations for CATE estimates out of all of the

aggregation approaches. As a comparison point, we used a multiple linear

regression with a random effect for trial to estimate an average treatment effect

of 2.49 (SE = 0.49), which is similar to the averages of the CATEs according to

the X-learner and causal forest approaches.

S-Learner X-Learner Causal Forest
Complete Pooling 1.38 (1.6) 2.57 (1.4) 2.37 (2.8)
Pooling with Trial Indicator 0.91 (1.3) 2.52 (1.3) 2.37 (2.7)
Ensemble Tree 0.89 (1.3) 2.35 (1.5) 2.23 (2.5)
Ensemble Forest 0.89 (1.1) 2.36 (1.4) 2.30 (2.2)
Ensemble Lasso 0.89 (1.2) 2.32 (1.4) 2.23 (2.1)

Table 3.1: Mean (SD) of CATEs from all individuals in sample according to different
single-study and aggregation method combinations.
The CATEs are individual-level estimates that indicate the difference in the estimated effect
of vortioxetine versus duloxetine on the difference in MADRS score for a given patient. A
positive CATE indicates that vortioxetine is estimated to have a smaller reduction of the

MADRS score.

We then focused in on results from the causal forest with pooling with

trial indicator approach, since that approach performed the best on average in
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the simulations when there were not a large number of trials being combined.

The CATE estimates and their 95% confidence intervals from this approach

are displayed in Figure 3.2. These confidence intervals were calculated based

on variance estimates provided through the grf package, where variance

is calculated based on comparison of individual CATE predictions within

and across small groups of fitted causal trees (Athey, Tibshirani, and Wager,

2019). These estimates support that the majority of individuals have a positive

CATE estimate, but they also display very high levels of uncertainty, with all

confidence intervals including zero.

Figure 3.2: Point estimates and 95% confidence intervals for CATEs according to
causal forest with pooling with trial indicator.

To learn more about the moderation within the CATE model, we can

explore variable importance measures. As previously mentioned, variable

importance from the grf package (Athey, Tibshirani, and Wager, 2019) is a

weighted sum of the number of times the variable was used in a split at

each level of the forest. We can investigate the variable importance measures
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according to the grf package for all covariates, first in separate causal forests for

each study (Figure 3.3), and second according to the causal forest with pooling

with trial indicator (Figure 3.4). From Figure 3.3, there are a few variables that

are consistently identified as effect moderators across studies (age, weight,

baseline MADRS score, and baseline HAM-A score), and there are several

that are not found to be major moderators (the comorbidity and medication

indicators). However, notably there are some differences according to the

separate models, indicating that the treatment effect functions are slightly

different within each study. Figure 3.4 then displays the resulting importance

measures from one aggregation model fit to all studies. Here, we can see that

the same four variables (age, weight, baseline MADRS, and baseline HAM-A)

are involved in a high proportion of the splits in the causal forest, and study

membership is involved in some splits as well. The fact that these study

indicators are not more highly involved in the partitioning of the treatment

effect is a good sign, though, that there is not a very high level of heterogeneity

in CATE estimates across studies.

The variable importance plots do not demonstrate the direction of the

moderating effect, however. We briefly investigate these directional effects

through an interpretation tree (Figure 3.5) and through exploratory plots such

as Figure B.7. This interpretation tree was formed by fitting a regression tree,

where the CATE estimates according to the causal forest with pooling with

trial indicator were the outcomes, and the features (predictors) were every

covariate in the original CATE model. The tree confirms what was shown in

Figure 3.4 – that age, weight, baseline MADRS, and baseline HAM-A score
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Figure 3.3: Variable importance for study-specific causal forest models.

are the strongest effect moderators. Study membership does not show up in

this interpretation tree, supporting that there is low heterogeneity across trials.

This is a helpful visual to see the direction of the relationships aggregated

across trials, but it is exploratory and should not be interpreted in great detail.

Another similar approach for investigating the CATE function in terms of

individual moderators is to fit the best linear projection of the CATE estimates

using a function in the grf package (Athey, Tibshirani, and Wager, 2019); the

resulting coefficients from this regression using doubly-robust estimates of

the CATE are reported in Table B.3.

Broadly, these interpretations of the CATE function derived by the causal
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Figure 3.4: Variable importance for causal forest with pooling with trial indicator.

forest with pooling with trial indicator do not display high levels of hetero-

geneity, with the exception of potential heterogeneity by age. The scatterplot

of CATE estimates by age in Figure B.7 and the best linear projection sum-

marized in Table B.3 indicate somewhat higher CATE estimates for older

individuals; however, there are very high levels of uncertainty in the confi-

dence intervals (Figure 3.2). Other than this potential moderation by age, there

does not appear to be heterogeneity across other variables, and in general

we suggest further study, perhaps using more trials or observational data, to

assess whether this age relationship is truly strong.

We also can compare the results of these pooled non-parametric methods

with a more standard approach – IPD meta-analysis. In particular, we fit
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Figure 3.5: Interpretation tree for causal forest with pooling with trial indicator.
Circled numbers represent the average CATE estimate for individuals in that leaf.

a linear regression with random effects for trial membership and included

interaction terms to investigate potential moderation and compare results to

the causal forest with pooling with trial indicator. As previously mentioned,

the IPD meta-analysis yielded an average treatment effect estimate of 2.49 (SE

= 0.49). To go a step further, we added interaction terms between treatment

and each covariate in separate models to determine whether any interaction

terms were significant. None were, although the interaction for age was close

to significant (95% CI: (-0.01, 0.14)), which is consistent with our findings in the

non-parametric approaches. We finally performed a subgroup analysis where

we divided the sample into four groups based on age (18-34, 35-44, 45-54, and

55-75 years old) and fit mixed effects regression models with random effects
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for trial membership to each subgroup separately. The resulting average

treatment effect estimates for each subgroup are presented in Figure B.8,

and they lead to a similar conclusion – that older individuals may have a

higher treatment effect, but the moderation does not appear to be statistically

significant.

This data application shows how to effectively apply the methods com-

pared in simulations to a real dataset and assess potential moderation. The

methods all agree broadly on the direction of the average treatment effect but

imply somewhat different conclusions with respect to the individual CATE

estimates. In comparing the causal forest with pooling with trial indicator

versus the IPD meta-analysis with trial random effects, we reach similar con-

clusions. We expand upon the benefits and drawbacks of these approaches in

the following section.

3.7 Discussion

In this paper, we compared methods to estimate the conditional average

treatment effect in a single trial and methods to extend the single-trial ap-

proaches to multiple trials. In the absence of notable cross-trial heterogeneity

of treatment effects, the methods examined all performed well, but when trial

membership was involved in the treatment effect function, some methods

performed worse than others. Specifically, and not surprisingly, methods

that ignore trial membership (complete pooling) do not effectively estimate

the CATE when there is cross-trial heterogeneity. On the other hand, some

methods performed well no matter the level of heterogeneity: pooling with
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trial indicator and ensemble forests had consistently low mean squared error

despite increasing the variability of the trial membership coefficients in the

treatment effect. This was especially true when the single-study method used

was the causal forest (Figure 3.1). These patterns held across various data

generation setups, including introducing different sample sizes across trials

and a covariate shift. The patterns persisted for the most part with 30 trials as

opposed to 10; however, the causal forest with pooling with trial indicator per-

formed much worse with 30 trials. Therefore, this approach could be highly

effective with a smaller number of trials but might miss key study-level differ-

ences with a large number of trials. Having 30 trials to combine is unlikely

in practice, though, in our experience. Otherwise, the two best performing

methods – causal forest with pooling with trial indicator and causal forest

with ensemble forest – showed high accuracy across all other scenarios and

could be good first choices for combining trials to estimate heterogeneous

treatment effects.

When considering the three single-study approaches, the most consistently

favorable method in the simulations was the causal forest, followed by the

X-learner. The S-learner performed well in certain scenarios, such as scenario

1b, where the treatment effect function involved a bounded, non-linear expit

function. The performances of the S-learner and X-learner in our simulations

and applied example were consistent with results found previously (Künzel

et al., 2019), in that the S-learner seemed to be somewhat biased towards 0

in the applied example (Table 3.1) and performed worse in the simulations

when the treatment effect function was complicated (variable CATE scenario
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and the piecewise linear and non-linear CATE with high variability). The

X-learner performed well in the simulations with complex CATEs and with

structural forms of the CATE, again consistent with previous work (Künzel

et al., 2019). The causal forest performed well across all scenarios. These

simulation results and the results from the applied data example of MDD

medications demonstrate that it is important to carefully select the single-study

method for a given question, as each of the three options can provide different

estimates. A good starting point would be to consider expert knowledge of

how heterogeneous across studies and complicated the outcomes or treatment

effect might be. These results also indicate the need for more diagnostics to

help researchers determine which approach to choose. In general though, the

causal forest performed consistently well when combining 10 studies, so use

of this method is supported by the simulations.

The simulations also incorporated some comparisons between the non-

parametric and parametric approaches. Specifically, the use of a lasso re-

gression as an ensemble showed how a parametric ensemble could perform

compared to the ensemble tree and forest. The lasso performed very well

when the treatment effect function was piecewise linear (scenario 1a) but

quickly suffered in performance when the function was more non-linear (sce-

narios 1b and 2). Furthermore, the inclusion of a mixed effects meta-analysis

demonstrated a common parametric technique used in the multiple-study

setting. This model was set up to perform well when the CATE function was

piecewise linear (scenario 1a), but it yielded high MSE in the non-linear and

complex scenarios that it was not correctly parametrized for (scenario 1b and
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2). The particular specification of a meta-analysis is therefore very important,

and incorrect hypotheses of key interactions and moderating relationships

have major implications for model fit and accuracy of estimates. These com-

parisons demonstrate that non-parametric machine learning approaches are

very beneficial when the treatment effect function is complicated and non-

linear, as the non-parametric methods do not require correct specification of

any parameters. Although interpretability becomes more of a challenge, the

non-parametric methods allow for flexible relationships and hopefully high

levels of accuracy in CATE estimation.

In this work, we did not explore an exhaustive list of potential single-study

and aggregation methods, and we also investigated a few data generation

setups that do not cover every possible scenario of real data. We attempted to

select single-study methods that were common, user-friendly, and shown to

be effective or potentially effective in previous literature. However, as this is

an ever-growing field, future work could include other single-study methods

(Wendling et al., 2018; Powers et al., 2018) to see how they compare to the

ones used in this study. For example, it would be interesting to investigate the

performance of the X-learner with a different base learner, such as Bayesian

additive regression trees (BART) (Chipman, George, and McCulloch, 2010;

Künzel et al., 2019). In general, non-parametric methods for CATE estimation

are notably flexible and effective in estimating complex functional forms of

the CATE; however, reliable variance estimation for these approaches is some-

what lacking. Without the distributional assumptions present in parametric

methods, the non-parametric approaches often require resampling procedures
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to effectively estimate variance in predictions. Furthermore, with ensemble

approaches such as those used in this paper, there are multiple sources of

variance coming from both the original predictions and the predictions from

the ensemble model. Therefore, variance estimation is an important area of

future work for many of the methods discussed in this paper.

Another important point related to the non-parametric approaches used in

this work is that they primarily serve to accurately estimate the true CATE

function. They are not as straightforward to use when the goal is identification

of key moderators; although we can use tools like variable importance, there

are not statistical tests of moderation as there are in parametric approaches like

meta-analysis. In the simulations, we were thus not able to efficiently evaluate

the methods’ ability to identify effect moderators and instead prioritized min-

imizing error in CATE estimation. If a research goal is to identify moderators,

some of the more exploratory work in the applied example (plotting CATE

estimates, best linear projections, etc.) could be a helpful starting point, and

potential moderators could then also be included in a parametric model to

more formally test for moderation.

The approaches discussed in this paper implicitly rely on the assumption

that all of the trials being combined have observed the same covariates X

necessary to estimate the CATE. We did not discuss cases where the trials

contain different measures of a similar construct or cases of systematic miss-

ingness, meaning where certain covariates are not at all available in some trials.

Approaches for dealing with systematic missingness have been discussed in

the literature (Audigier et al., 2018; Jolani et al., 2015) but not in this specific
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context, so future work should explore methods for addressing missingness

and discordant measures of similar constructs.

It is important to note that with the exception of complete pooling, the

resulting CATE estimates are trial-specific. Unless trial was not picked up in

the aggregation methods, the majority of the methods discussed will produce

trial-specific estimates of the CATE. This allows for improved accuracy of esti-

mates but might be less helpful in real world applications. We are interested

in continuing to identify ways in which researchers could aggregate across

trials to develop estimates that are accurate but not trial-specific – this could

be crucial for use of the resulting methods and models in practice, on data

not coming from the specific trials used in the model formulation. However,

the trial-specific estimates can still be useful; for example, if trials were done

in separate hospitals, CATEs of future patients could be predicted using the

hospital that they are being treated in, and the model that estimates their

treatment effect should be more accurate after taking into consideration the

data from the other hospitals. Similarly, the focal point of this paper and the

simulations described above were the performance of models in the given

sample. We thus assessed the performance in the simulations based on MSE

across the trials used to fit the model, and we discuss accuracy in terms of

the trials themselves. Future work will be focused on assessing how these

methods perform when estimating CATEs in a target population, outside the

specific trials used to estimate the CATE. This is where we might see even

more of the benefits of pooling/ensembling approaches over methods like the

no pooling approach, because we would be gaining information by combining
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trials.

In the MDD trials, duloxetine was included as a reference medication

because it was already marketed at the time of the trials, and patients were

excluded from the study if they had previously not responded to duloxetine.

On the other hand, vortioxetine was not yet marketed and was the more

experimental medication; therefore, some bias could arise due to participants

being excluded if they had previously not responded to duloxetine. Acknowl-

edging this, we were able to estimate treatment effects according to each

method combination, and we used variable importance and interpretation

trees to investigate which variables might be important moderators of the

treatment effect. Variable importance is a limited measure and can often be

biased towards continuous variables with more possible split points (Strobl

et al., 2007), so we encourage caution when interpreting those results. This

example dataset shows how to combine multiple RCTs to get an improved

assessment of treatment effect heterogeneity and better determine which treat-

ment would be best suited to a given individual, based on their features and

their estimated CATE. Notably, the four trials used in this dataset were run

by the same organizations and had very similar protocols; this helps ensure

that we can confidently combine datasets but also might limit the potential

heterogeneity across trials that might exist in other applications. We also did

not see high levels of heterogeneity in the treatment effects based on other

covariates in these trials. A general idea is that studies need to be four times

larger to identify effect moderators compared to an average treatment effect

(Fleiss, 2011), and this study included precisely four trials. Therefore, our
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findings would become more robust and we could more confidently assess

heterogeneity or lack thereof with the inclusion of more studies.

There are many openings for future work, some of which have been men-

tioned. Broadly, it is important to further refine these methods and identify

which are most helpful in specific data scenarios. It will also be helpful to

determine when it is appropriate to develop universal CATE estimates, versus

when the CATE estimates should be trial-specific. This paper demonstrated

several approaches that take data from multiple studies and estimate het-

erogeneous treatment effects, using flexible models that allow for complex

relationships – which is often the case in the real world.
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Chapter 4

Combining Trials to Estimate
Heterogeneous Treatment Effects in
a Target Sample

Abstract: Estimating heterogeneous treatment effects can aid practitioners in

determining which treatment would work best for a given individual based

on their observed characteristics. However, estimating these effects can be

challenging with small sample sizes. To better understand treatment effect

heterogeneity, researchers can combine data from multiple randomized con-

trolled trials (RCTs). However, combining RCTs requires taking into account

that the data comes from different trials, and the treatment effect estimates are

therefore conditional on trial membership. A key interest is in applying these

models to make predictions for units who do not come from a particular trial,

though, which is not straightforward. This paper introduces a method that

examines how to best incorporate the resulting uncertainty from applying a

model using multiple trials to a set of units in a new setting. The approach

draws from meta-analytic prediction intervals to create 95% intervals for the

106



conditional average treatment effects in the target population. We employ a

motivating example containing multiple trials that compare two treatments for

major depression, duloxetine and vortioxetine, and we conduct simulations

based on this real data that assess coverage of prediction intervals created

using meta-analysis, causal forests, and Bayesian additive regression trees

(BART). The non-parametric methods achieve high coverage of the true effects

in the target population in simulations across data generating scenarios with

varying forms, including heterogeneity of the treatment effect function. Fi-

nally, we form treatment effect prediction intervals for a representative set of

patient profiles in a target population of patients with depression in a health

care system. These approaches allow researchers to effectively leverage multi-

ple RCTs to estimate treatment effects in a target population of interest and

assess treatment effect heterogeneity across both trial and target data.

4.1 Introduction

In a clinical setting, as well as in decision-making in education, public policy,

and more, practitioners are often interested in “what works for whom,” (Roth

and Fonagy, 2006) meaning identifying subgroups for whom certain interven-

tions might work best. Understanding this can aid in allocation of resources

and efficiency, as well as improve outcomes in the target group of interest. To

make these decisions, researchers and practitioners often rely on estimation

of heterogeneous treatment effects – the effects of treatment conditional on

observed characteristics of the patients or units of interest.

Estimation of heterogeneous treatment effects is a common goal when
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assessing treatment efficacy; however, conclusions are often limited by small

sample sizes and by the fact that treatment effect heterogeneity can be due

to unknown and complex interactions of characteristics (Yusuf et al., 1991).

For example, when evaluating treatment effects from randomized controlled

trials (RCTs), a commonly encountered issue is that the trials were powered

to estimate the average effect rather than the conditional average treatment

effect (CATE) (Mills et al., 2021), where the treatment effect is conditional on

observed characteristics. Researchers often must choose a few pre-specified

potential effect moderators to investigate for heterogeneity and might miss

unknown subgroup differences. On the other hand, testing all variables as

potential effect moderators can be problematic due to multiple testing concerns

and a lack of pre-specification.

To learn about effect heterogeneity and estimate the CATE function, re-

searchers could potentially address the above issues by combining individual,

participant-level data (IPD) from multiple sources, e.g., multiple RCTs. A

growing body of literature has focused on data integration methods to lever-

age the benefits of combining data sources and account for the limitations of

single sources on their own (Brantner et al., 2023; Colnet et al., 2021). Many

methods exist to combine RCTs, with meta-analysis being a common and

standard approach to do so. Notably, meta-analysis is not commonly param-

eterized to identify heterogeneous treatment effects and instead generally

focuses on estimating the average effect across studies. Some work has inves-

tigated meta-analysis in a causal inference setting; Sobel et al. (2017) defined a
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causal framework in meta-analysis to estimate study-specific potential out-

comes and assess reasons for heterogeneity across trials, and Dahabreh et al.

(2020) focused on transporting causal estimation from a meta-analysis to a

target population. In a recent paper by Brantner and colleagues (Brantner

et al., 2024), several non-parametric methods were explored and extended

to account for multiple trials when estimating the CATE as well. In most

parametric and non-parametric approaches for estimating the CATE using

multiple trials, a key consideration is accounting for the fact that the data

came from different trials, which often yields CATE functions that depend not

only on characteristics of patients, but also on trial.

The primary goal of this paper is guiding treatment decisions for a target

set of patients who do not come from a randomized trial and who meet criteria

to receive one of multiple potential treatments. In the current work, this set

of potential treatments is restricted to two (i.e., treatment or control), and we

assume that treatments have not yet been assigned in this target population.

Importantly, this target population does not come from any of the trials used

to fit the original CATE model; therefore, the method must account for the

uncertainty of the CATE in this new population.

This paper proposes an approach to estimate the uncertainty of the CATE

for new populations, to help ensure that treatment guidelines account for

effect heterogeneity when needed, and that there is an understanding of when

there is not strong evidence for variation in effects. This, ultimately, is often

what proponents of personalized medicine are aiming for – use of existing
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study results to predict outcomes and guide treatment decisions for individ-

uals outside the original study samples. Dahabreh et al. (2020) and other

approaches have a similar goal in their work on extending causal effects from

one or more trials to a target population; however, they focus on transport-

ing an average effect estimate to a setting where the target population may

have different covariate distributions than the trial sample(s). The approach

proposed in this paper builds off of meta-analytic prediction intervals (Riley,

Higgins, and Deeks, 2011), which are commonly used to estimate a range of

potential values for an average effect in a new study. We apply this prediction

interval approach to the CATE, and we extend the method to the case when

non-parametric methods (i.e., causal forest (Athey, Tibshirani, and Wager,

2019) and Bayesian additive regression trees (Hill, 2011)) are used to estimate

the CATE from multiple trials.

As a case study, we include a comparison of two treatments for major

depression, duloxetine and vortioxetine, using data from three randomized

controlled trials (Mahableshwarkar, Jacobsen, and Chen, 2013; Mahablesh-

warkar et al., 2015; Boulenger, Loft, and Olsen, 2014) described in detail in

Brantner et al. (2024). We estimate the conditional average treatment effect

(CATE) across these trials, where the primary outcome is change in a de-

pressive symptoms score from baseline to last observed follow-up. We also

bring in electronic health record (EHR) data from Duke Health Care System

and define a target group of patient profiles representing patients for whom

clincians might be interested in understanding the CATE to aid in treatment

decision-making. The methods described in the following sections are used to
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form prediction intervals for the CATE in this new setting.

In the sections to follow, we introduce notation and the key estimands

and assumptions required (Section 4.2). We then explain the approach for

estimating the conditional average treatment effect (CATE) function in mul-

tiple trials and subsequently forming prediction intervals for the CATE in

the target population, considering both parametric meta-analysis (Section

4.3.1) and non-parametric approaches (Section 4.3.2). We then investigate

performance in simulations based on real data (Section 4.4) and apply the

methods to estimate the conditional average treatment effects of vortioxetine

versus duloxetine for treatment of patient profiles of individuals with major

depressive disorder (Section 4.5). Finally, we discuss conclusions, limitations,

and future directions in Section 4.6.

4.2 Notation

Let A represent treatment assignment, where A ∈ {0, 1} is binary. Let X

represent individual-level covariates and Y represent a continuous outcome.

One can then define the potential outcomes Y(0) and Y(1) under Rubin’s

framework (1974) as the outcomes that would have been observed if the

individual had received control or treatment, respectively. The estimand of

interest is the conditional average treatment effect (CATE):

τ(X) = E(Y(1)|X)− E(Y(0)|X). (4.1)

This estimand – the true CATE function – is universal and not dependent

upon study membership. In other words, for a given covariate profile X∗,
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we assume that there is a true, universal τ(X∗) as in Equation 4.1. However,

when combining multiple trials, the methods explored in this paper ultimately

estimate study-specific CATEs, where study is represented by a categorical

variable S ∈ {1, 2, ..., K}. These study-specific estimates of the estimand

introduced in Equation 4.1 can be expressed as:

τ̂s(X) = (Ŷ(1)|X, S = s)− (Ŷ(0)|X, S = s). (4.2)

4.2.1 Assumptions

To combine data from multiple trials to estimate the CATE, we employ stan-

dard causal inference assumptions, including the Stable Unit Treatment Value

Assumption (SUTVA) within each RCT. We also assume unconfoundedness

(Assumption 4.1), consistency (Assumption 4.2), and positivity of treatment as-

signment (Assumption 4.3) within each trial. These assumptions are generally

satisfied in RCTs and have been described in detail elsewhere (Brantner et al.,

2023). In this particular setting where we estimate the CATE using multiple

trials and subsequently predict in a target population, we also require the

assumption that every covariate profile in the target population has positive

probability of being found in the trials (Assumption 4.4).

Assumption 4.1 {Y(0), Y(1)} ⊥⊥ A | X, S = s for all studies s.

Assumption 4.2 Y = AY(1) + (1 − A)Y(0) almost surely in each study.

Assumption 4.3 There exists a constant b > 0 such that b < P(A = 1|X =

x, S = s) < 1 − b for all studies s and for all x values in each study.
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Assumption 4.4 There exists a constant c > 0 such that c < P(S ∈ {1, 2, ..., K}|X =

x) < 1 − c for all x in the target population.

Finally, depending on the method used to combine trials and estimate

the CATE, we sometimes need to assume positivity of study membership

(Assumption 4.5).

Assumption 4.5 There exists a constant d > 0 such that d < P(S = s|X = x) <

1 − d for all x and s.

4.3 Methods

In order to ultimately estimate heterogeneous treatment effects in a target

population, we start by estimating effects using data from a set of randomized

controlled trials comparing the same two treatments. Methods for estimating

the CATE across multiple trials were investigated in depth in a previous

paper (Brantner et al., 2024), where traditional parametric meta-analysis was

compared with non-parametric methods for aggregating information and

accounting for heterogeneity across trials. Some of these approaches are

outlined in the following sections.

Once the CATE function is estimated from the multiple RCTs, the key goal

of this work is predicting the CATE in an external target population. The

models produced from the multiple trials would ideally be helpful for this

target population to determine who should receive which treatment; however,

the multi-trial CATE models are study-specific as in Equation 4.2. For the

target population, we are interested in the universal CATE estimand instead
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(Equation 4.1). Specifically, the target population does not come from a trial,

so the variable S representing study membership is missing in this new group.

To address this issue of missing study membership in the target population,

we provide an approach that essentially integrates out study membership from

the original CATE function estimated using the multiple trials. This approach

draws from the meta-analytic prediction interval literature and focuses on

variance estimation. We now outline this approach using parametric and

non-parametric models, describing both the CATE estimation using multiple

trials and CATE prediction in the target population.

4.3.1 Meta-Analysis

Before discussing the non-parametric approaches that can be used to estimate

the CATE in both the trials and the target population, we focus on a para-

metric and standard approach – meta-analysis – to introduce a form of CATE

prediction intervals. Individual participant-level data (IPD) meta-analysis is a

common modeling approach when combining trials; however, heterogeneous

treatment effect estimation is not generally a focus of meta-analysis. This

approach can have some limitations in that the hypothesized treatment effect

heterogeneity and effect moderators have to be defined in the model in ad-

vance, and complex non-linearities and covariate interactions might be missed

by the parametric specification. However, this model is common in practice,

highly interpretable, and beneficial for introducing prediction intervals that

can be extended to non-parametric methods as well.

114



4.3.1.1 Estimating CATE in Multiple Trials

We define the meta-analysis model as follows:

Ysi = (β0 + as) + β1Xsi + (β2 + bs)Asi + (β3 + cs)Xmod
si Asi + ϵsi

where s = 1, ..., K represents study membership, i = 1, ..., ns represents in-

dividual i in study s, and as ∼ N(0, σ2
a ), bs ∼ N(0, σ2

b ), and cs ∼ N(0, Σc)

represent random study effects for the intercept, treatment main effect, and

treatment-moderator interaction effects, respectively. Here, Xmod
si represents

a usually low-dimensional subset of Xsi that consists of hypothesized effect

moderators.

From this model, we are interested in the conditional average treatment

effect for a particular covariate profile X∗. We can estimate the CATE for this

covariate profile in study s (as defined broadly in Equation 4.2) as

τ̂s(X∗) = (Ŷ(1)|X∗, S = s)− (Ŷ(0)|X∗, S = s)

= (β̂2 + b̂s) + (β̂3 + ĉs)X∗,mod.

4.3.1.2 Estimating CATE in Target Population

For simplicity of notation, let us consider τ̂s = τ̂s(X∗). This mixed effects

model parameterization assumes the following for τ̂s:

τ̂s ∼ N(τs, SE(τ̂s)
2)

τs ∼ N(τ, θ2)

(4.3)
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(Riley et al., 2021), where τ = τ(X∗) represents the average parameter across

studies, SE(τ̂s)2 represents the variance of the fixed effects, and θ2 represents

the variance of the random effects in the model.

Notably, we are interested in the treatment effect in the absence of study

membership. Prediction intervals in random effects meta-analysis estimate

a range of potential parameter values in a new study (Riley, Higgins, and

Deeks, 2011), so they can be implemented here to determine what the effects

might be in the target population. The general form for a prediction interval

for a parameter τ = τ(X∗) is based off of the above assumptions and models

and can be expressed as follows:

τ ∈
{︂

τ̂ ± tK−2

√︂
SE(τ̂)2 + θ̂

2
}︂

(4.4)

We can calculate this prediction interval for τ(X∗) by leveraging the model

assumptions that bs ∼ N(0, σ2
b ) and cs ∼ N(0, Σc). From here, the average

CATE estimate for X∗ across studies is

τ̂ = β̂2 + β̂3X∗,mod.

We can then estimate the variance terms by determining the variance of the

fixed effects (within-study variance) and the variance of the random effects

(between-study variance):

SE(τ̂)2 = Var(β̂2 + β̂3X∗,mod) and θ̂
2
= Var(bs + csX∗,mod).

For more details of these variance calculations in matrix form, see the Ap-

pendix (C.1).
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4.3.2 Non-Parametric Approaches

In non-parametric CATE estimation, there are no longer distributional assump-

tions on parameters, nor is there a need to prespecify a functional form of the

CATE. However, we can still utilize the prediction interval approach similarly

to Equation 4.4. The key difference here is that instead of calculating the

variance of the fixed and random effects as done in meta-analysis, we utilize

the study-specific estimates of the treatment effect and calculate variance by

combining the within- and between-study variability of those study-specific

estimates. We start with estimation of the CATE using non-parametric ap-

proaches applied to multiple RCTs.

4.3.2.1 Estimating CATE in Multiple Trials

Several non-parametric approaches for estimating the CATE using multiple

trials are described in Brantner et al. (2024). The flexible modeling approaches

used in Brantner et al. (2024) allow for trial membership to interact with other

potential effect moderators. Several aggregation approaches were explored,

with pooling with trial indicator and ensemble forests showing particularly

good performance in simulations; for this paper, we focus on the approach

labeled “pooling with trial indicator” due to its high estimation accuracy,

existing methods for assessing uncertainty, and computational efficiency.

The pooling with trial indicator approach involves first pooling all individual-

level data from all trials into one large dataset. This pooled dataset then

includes a categorical variable that indicates the trial that the individual par-

ticipated in. A non-parametric method like a causal forest (Athey, Tibshirani,
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and Wager, 2019) (see Section 4.3.2.3) can then be fit to the pooled dataset to es-

timate the conditional average treatment effect as in Equation 4.2, conditioning

on individual-level covariates as well as their trial membership.

4.3.2.2 Estimating CATE in Target Population

Once the CATE function has been estimated, the next step is predicting the

CATE in a target population. We again focus on a given covariate profile

X∗ and estimate the treatment effect τ = τ(X∗) in the target population by

utilizing the study-specific treatment effect estimates {τ̂1, τ̂2, ..., τ̂K} (again,

removing the X∗ for simplicity of notation). We assume that these treatment

effects represent random draws from some distribution of the true treatment

effect for covariate profile X∗, where each estimated τ̂i has its own uncertainty

as well. There is therefore some within-study uncertainty represented by the

variance of τ̂i, i = 1, ..., K, as well as between-study variability represented by

the variance of the vector of study-specific estimates, {τ̂1, τ̂2, ..., τ̂K}.

Thus, a prediction interval for the treatment effect conditional on covariate

profile X∗ can be constructed as follows:

τ ∈ {τ̂ ± tK−2
√

varwithin + varbetween} (4.5)

where

τ̂ =
1
K

K

∑
i=1

τ̂i,

tK−2 is the critical value of the t-distribution at K − 2 degrees of freedom (Riley,
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Higgins, and Deeks, 2011),

varwithin =
1
K

K

∑
i=1

Var(τ̂i), and

varbetween = Var{τ̂1, τ̂2, ..., τ̂K}.

This general form can be applied to any non-parametric approach that

yields study-specific estimates of the CATE. In the following subsections, we

introduce two potential non-parametric methods for use in this setting.

4.3.2.3 Causal Forest

The causal forest (Athey, Tibshirani, and Wager, 2019) is a non-parametric

method that involves a weighted aggregation of causal trees. Each causal tree

is formed by recursively partitioning covariates, where splits are chosen to

maximize treatment effect heterogeneity. In each leaf, the treatment effect is

estimated as the difference in average outcomes between the treatment and

control group individuals within the subgroup that falls in that particular leaf.

The causal forest does not rely on estimating the outcomes conditional on

covariates and instead directly proceeds by estimating the treatment effects

conditional on covariates.

Wager and Athey (2018) also introduce a concept called “honesty” to their

causal forest implementation, which ensures that within each tree, every

individual’s outcome is used only for defining tree splits or estimating the

treatment effect within a leaf, but not both. This concept is discussed in more

depth in Wager and Athey’s paper (2018), and honest versus adaptive (not

honest) causal forests are compared briefly in Brantner et al. (2024). This paper
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provides results from both honest and adaptive causal forests.

Based on the work done previously (Brantner et al., 2024) to extend single-

study non-parametric methods to the multi-study setting, we focus on the

causal forest pooling with trial indicator approach introduced in Section

4.3.2.1. In this approach, a single causal forest is fit to the pooled dataset,

and the model covariates include patient-level characteristics as well as a

categorical variable representing trial membership. Once the causal forest

with pooling with trial indicator is fit to the multiple RCTs, this yields a

CATE function that is study-specific (Equation 4.2). Furthermore, the causal

forest is non-parametric so does not provide model coefficients like in meta-

analysis. Instead, the model provides CATE estimates and variance estimates

per covariate profile and study. Therefore, for a given covariate profile X∗ in

the target population, we can calculate estimated means and variances of their

treatment effect if they were in each trial:

{︁
{τ̂1, Var(τ̂1)}, {τ̂2, Var(τ̂2)}, ..., {τ̂K, Var(τ̂K)}

}︁
.

From this information, we can calculate the necessary information for

Equation 4.5 as described above: τ̂(X∗) is the average of the estimates across

studies; varwithin is the average of the variances within each study; varbetween

is the variance of the estimates across studies.

4.3.2.4 Bayesian Additive Regression Trees

Another non-parametric approach for CATE estimation in a single-study is

Bayesian Additive Regression Trees (BART) (Hill, 2011; Carnegie, Dorie, and

120



Hill, 2019). BART is a sum-of-trees model that uses regularization priors to

restrict the amount of relationships that each tree can explain. BART is similar

to the causal forest in that both are tree-based, but it is different in that it

is a Bayesian implementation and focuses on first estimating the outcome

conditional on covariates rather than the treatment effect. To estimate the

CATE using BART, one can estimate the conditional mean outcome under

treatment and control, and then directly calculate their difference (Hill, 2011;

Carnegie, Dorie, and Hill, 2019). BART also provides draws from the poste-

rior distributions for outcomes conditional on covariates, so intervals can be

created either using the mean and variance of those draws and assuming a

normal distribution, or using quantiles of the posterior distribution (Dorie

et al., 2022). In this paper, we use a normal distribution assumption to stay

consistent with approaches like the causal forest but discuss the alternative of

posterior quantiles in the Appendix (C.2).

Here, we also apply the pooling with trial indicator aggregation method to

fit BART to multiple trials at one time. Specifically, we fit a single BART model

(sometimes called an S-learner (Künzel et al., 2019)) to the pooled dataset,

where covariates include patient-level characteristics, trial membership, and

treatment. We estimate each individual’s counterfactual according to the

fitted BART model by including as “test” data the same dataset but with

opposite treatment assignment. Finally, we estimate the CATE by subtracting

the estimated outcome under treatment minus the estimated outcome under

control (averaged across posterior draws), and we estimate the variance of

the CATE by adding together the variance of the outcome under treatment
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across posterior draws with the variance of the outcome under control across

posterior draws. Then, just like the causal forest, for a given covariate profile

X∗ we have:

{︁
{τ̂1, Var(τ̂1)}, {τ̂2, Var(τ̂2)}, ..., {τ̂K, Var(τ̂K)}

}︁
.

We can then follow the same procedure as the causal forest to estimate a

prediction interval according to Equation 4.5 as described in Section 4.3.2.2.

4.4 Simulations

4.4.1 Setup

We now present a simulation study to assess performance of the methods

described above for estimating CATE prediction intervals. We set up the

simulation to closely represent the real RCTs discussed in the following section

(4.5); specifically, we estimated means and covariances of variables in the

real data to guide covariate distributions in the simulated data, and we fit

models to the real data to estimate reasonable treatment effect functions for

the simulated data.

In primary simulations, we simulated K = 10 studies, each with n = 500

individuals and with the same covariate distributions across all trials. Each

individual had probability 0.5 of receiving the treatment, and individuals had

five observed covariates: sex (defined as binary, female or male), smoking

status (defined as binary, have smoked or never smoked), weight in kilo-

grams, age in years, and baseline Montgomery-Asberg Depression Rating

122



Scale (MADRS) score (Montgomery and Åsberg, 1979). These covariates were

simulated using a multivariate normal distribution within each study with

continuous variables simulated on a standardized (mean 0, standard deviation

1) scale.

While the trials were randomly sampled according to the above informa-

tion for every iteration of the simulation, we also created a single target sample

with n = 100 individuals representing a range of covariate profiles, where

baseline covariates were sampled from the same multivariate normal distribu-

tion that the trials were sampled from. We saved this set of covariate profiles

to be used across all simulation iterations, where outcomes and treatment

effects for the target sample were defined for each iteration depending on the

data generation setup.

We defined average outcomes for each covariate profile in the training

trials and target population according to the following model:

Y = m(X) + A ∗ τ(X) + ϵ,

where Y represented the change in MADRS score from baseline to last ob-

served follow-up, m(X) represented a main effect function, A represented

treatment (0 representing control and 1 treatment), τ(X) represented the

CATE function, and ϵ ∼ N(0, 0.052) was a random error term. We defined

two settings for m and τ:

1. Age is the only moderator, CATE is linear

m(X) = (−17.40 + as)− 0.13 ∗ Age − 2.05 ∗ MADRS − 0.11 ∗ Sex
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τ(X) = (2.505 + bs) + (0.82 + cs) ∗ Age

2. Age is the only moderator, CATE is non-linear:

m(X) = (−17.52 + as)− 0.08 ∗ Age

τ(X) = (2.20 + bs) ∗ exp[(0.35 + cs) ∗ Age]

In these setups, as ∼ N(0, σ2
a ), bs ∼ N(0, σ2

b ), and cs ∼ N(0, σ2
c ) represent

heterogeneity due to study membership. In the target population, we set

as = bs = cs = 0. In the trial data within each of the three setups, we included

different values for the standard deviations of these study-level terms to allow

for varying heterogeneity in the main and treatment effects across studies.

Specifically, we use four sets of values:

1. Low heterogeneity: σa = 0.05, σb = 0.05, σc = 0.05

2. Heterogeneous intercept: σa = 1, σb = 0.05, σc = 0.05

3. Heterogeneous intercept and main treatment effect: σa = 1, σb = 0.5,

σc = 0.05

4. High heterogeneity: σa = 1, σb = 1, σc = 0.5

Finally, we reran the above settings with a few other changes to param-

eters. First, we allowed for two different settings in terms of the covariate

distributions; one setting varied the average baseline depression across trials,

and another setting contained a single trial with notably older individuals

compared to the other trials. We also reran all simulations with K = 3 RCTs,

which is the number of trials used in the applied example to follow.
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For each simulation setup, we ran 500 replications. We used several R

packages to conduct the simulations, including lme4 for the mixed effects

meta-analysis (Bates, 2010), grf for the causal forest (Athey, Tibshirani, and

Wager, 2019), and dbarts for BART (Dorie et al., 2023). In the causal forest

and BART, hyperparameters were set to be the defaults, except that the causal

forest was set to use 1,000 trees instead of the default of 2,000 for computa-

tional ease. Performance of the methods were assessed based on prediction

interval coverage, prediction interval length, and absolute bias. Specifically,

for each covariate profile in the target population, we assessed whether their

true treatment effect was contained within the prediction interval produced

by the modeling procedure, and we calculated the percent of the 500 iterations

for which this occurred to determine coverage. Code containing all meth-

ods and implementation of the simulations can be found at the repository:

https://github.com/carlyls/OOSE_multiRCT.

4.4.2 Results

We first present results from the primary simulations, including K = 10 RCTs

with n = 500 individuals in each with the same covariate distributions across

trials, and where age is the only moderator involved in the treatment effect

function. Results from both a linear and non-linear CATE function with

varying levels of heterogeneity in the coefficients across trials are included.

Figure 4.1 displays boxplots of CATE prediction interval coverage for the

100 covariate profiles in the target population, where coverage for each person

was calculated as the percentage of the 500 iterations for which the covariate
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profile’s true treatment effect was contained within their prediction interval.

Overall, there are high levels of coverage for the target population profiles

across the majority of methods and simulation scenarios; specifically, most

profiles have close to 100% coverage. The exceptions to this are the honest

causal forest, where the coverage is centered around 95% when heterogeneity

across trials was low, and meta-analysis, where the coverage was variable

and had some profiles with notably low coverage when the treatment effect

function was non-linear and heterogeneity across trials was low. Interestingly,

all models had high coverage for all covariate profiles when heterogeneity

of the CATE across trials was high; we explore this more by investigating

interval length and bias.

Figure 4.1: Distributions of coverage for each covariate profile in the target population
across each method and data generation scenario.
Coverage was calculated as the percent of 500 iterations for which the profile’s true treatment
effect was contained within the estimated prediction interval. Method abbreviations: ACF =

adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART = Bayesian
Additive Regression Trees with S-learner.
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Figure 4.2 presents boxplots of average prediction interval length across

the 500 simulation iterations for each covariate profile in the target popula-

tion. As heterogeneity of the CATE increases across trials (moving from the

left-most column to the right-most column of plots), the intervals become

wider, which is to be expected. The interval lengths are similar between the

linear and non-linear CATE setups; however, there is a bit more variability

in the distributions of interval lengths when the CATE is non-linear. Several

profiles had very high average interval lengths in the non-linear CATE setting

with high heterogeneity, which was omitted in the plot to be able to best

visualize differences across methods and settings. In terms of methods, the

honest causal forest and BART fit using an S-learner had lower interval length

distributions across all settings displayed in Figure 4.2. Meta-analysis had

the highest interval lengths in the non-linear setting, which aligns with the

fact that meta-analysis assumes linearity and so is not tailored correctly to the

non-linear CATE function.

Figure 4.3 presents average absolute bias for each covariate profile in the

target population. Here, meta-analysis has considerably lower bias compared

to the other methods when the CATE was linear, but higher bias when the

CATE was non-linear. Again, the honest causal forest and BART with the

S-learner performed similarly to one another. For all methods, higher bias

occurred when heterogeneity across trials increased.

To further examine the variability in metrics like coverage, interval length,

and absolute bias, we plotted these metrics versus values of the age covariate

across the covariate profiles in the target population (Figures 4.4, 4.5, 4.6).
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Figure 4.2: Distributions of average interval length for each covariate profile in the
target population across each method and data generation scenario.

Length was calculated as the average length of the profile’s prediction interval across 500
iterations. Y-axis was cut off at 10 for ease of visualization; some profiles in the non-linear,
high heterogeneity CATE had higher average interval length. Method abbreviations: ACF =

adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART = Bayesian
Additive Regression Trees with S-learner.

The goal here was to determine whether the methods performed equally well

across all values of the covariate or not. In terms of coverage, BART with

the S-learner had high coverage for all ages across all scenarios. The honest

causal forest had high coverage for profiles with age closer to the mean and

lower coverage for profiles with age further from the mean. Meta-analysis

had high coverage for all ages when the CATE was linear or non-linear and

heterogeneous, but had much messier coverage results in the non-linear CATE

setting with lower levels of heterogeneity. This messy coverage occurred in

the non-linear and low heterogeneity CATE setting because the true CATE

was non-linear and the estimated CATE was linear using meta-analysis, so
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Figure 4.3: Distributions of absolute bias for each covariate profile in the target
population across each method and data generation scenario.

Absolute bias was calculated as the average absolute difference between the covariate
profile’s true treatment effect and the estimated treatment effect across 500 iterations. Method
abbreviations: ACF = adaptive causal forest, HCF = honest causal forest, MA = meta-analysis,

SBART = Bayesian Additive Regression Trees with S-learner.

profiles towards the middle of the age range had small intervals but high bias

and therefore low coverage.

Interval length also varied by age, data generation setup, and method;

overall, interval length was higher for profiles with age further from the mean.

In the high heterogeneity, non-linear CATE setting, some profiles had very

wide prediction intervals. Absolute bias showed a similar pattern in that

profiles who had age further from the mean had higher absolute bias. With

the non-linear CATE, meta-analysis had high absolute bias for profiles with

close to average age as well due to the fact that meta-analysis was constructed

using a misspecified linear model.
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Figure 4.4: A LOESS plot of coverage for each covariate profile in the target population
based on their standardized age across each method and data generation scenario.

Method abbreviations: ACF = adaptive causal forest, HCF = honest causal forest, MA =
meta-analysis, SBART = Bayesian Additive Regression Trees with S-learner.

4.5 Applied Example: Major Depression Treatments

4.5.1 Datasets

After comparing method performance in the simulation study described

above, we applied the methods to data from three trials investigating two

treatments for major depression: duloxetine and vortioxetine. Each trial

included participants who were between 18 to 75 years old, had a Major De-

pressive Episode (MDE) as a primary diagnosis according to the DSM-IV-TR

criteria over at least three months, and had a Montgomery-Asberg Depression

Rating Scale (MADRS) (Montgomery and Åsberg, 1979) score of at least 22

(one trial) or 26 (three trials) at both screening and baseline (Mahableshwarkar,

Jacobsen, and Chen, 2013; Mahableshwarkar et al., 2015; Boulenger, Loft, and
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Figure 4.5: A LOESS plot of average interval length for each covariate profile in
the target population based on their standardized age across each method and data
generation scenario.

Method abbreviations: ACF = adaptive causal forest, HCF = honest causal forest, MA =
meta-analysis, SBART = Bayesian Additive Regression Trees with S-learner.

Olsen, 2014). Participants were randomly assigned to receive duloxetine, vor-

tioxetine, or placebo; we removed individuals who were randomly assigned

to placebo for this analysis. We treat duloxetine as the control condition here

because it was already in use at the time of the trials. The primary outcome

was change in MADRS score from baseline to last observed follow-up, where

the goal was to follow patients for 8 weeks. More information on these trials

can be found in their original papers (Mahableshwarkar, Jacobsen, and Chen,

2013; Mahableshwarkar et al., 2015; Boulenger, Loft, and Olsen, 2014) or in

Brantner et al. (2024); note that we removed one trial used in Brantner et al.

because it did not collect BMI. Table 4.1 presents descriptive statistics for the

three trials used in the current analysis.
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Figure 4.6: A LOESS plot of average absolute bias for each covariate profile in the
target population based on their standardized age across each method and data
generation scenario.

Method abbreviations: ACF = adaptive causal forest, HCF = honest causal forest, MA =
meta-analysis, SBART = Bayesian Additive Regression Trees with S-learner.

We constructed our external target population using data from patients at

the Duke Health Care System. The diagram explaining the construction of

this patient sample can be found in the Appendix (C.4). We identified patients

from Duke psychiatry or primary care with visits that were assigned diagnoses

of major depression, bipolar disorder, and/or persistent mood disorder, and

we filtered to patients who were prescribed either duloxetine or vortioxetine

between January 1, 2014 to December 31, 2021. We then subset to patients

who had at least one year of electronic health record (EHR) data before they

had been prescribed either of the medications, and we finally included only

patients aged 18 to 65 at the time of their prescription who had a non-missing

PHQ-9 (Patient Health Questionnaire) score of at least 10 (indicating less than
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moderate depression) (Kroenke, Spitzer, and Williams, 2001). The final sample

size from the EHR data was 2,123 patients. These patients represent a set of

covariate profiles that are possible in the target population, and the goal is to

estimate the CATE for this set of profiles. For the purposes of this analysis, we

ignore which treatment the patients actually received and use their baseline

characteristics to estimate treatment effect prediction intervals based on the

approaches previously described. Descriptive statistics for this patient sample

can also be found in Table 4.1. Notably, the EHR sample is similar to the trials

in terms of age, BMI, sex, and baseline depression; however, the EHR data has

much higher prevalence of the comorbidities and medications measured.

Across both samples, conditional mean imputation was performed for

missing values of BMI (n=2 in the trials and n=19 in the EHR data). Most

variables were similarly defined across the trials and the EHR data; however,

the RCTs used MADRS to measure depression, while the EHR data includes

PHQ-9 to measure depression. In order to have a similar measure of baseline

depression across all datasets, we created a binary indicator of moderate or

severe depression based on criteria defined for both scales (Snaith et al., 1986;

Herrmann et al., 1998; Kroenke, Spitzer, and Williams, 2001).

4.5.2 Results

After pre-processing the data, we applied the methods described previously

to first fit a CATE model to the three RCTs and subsequently form treatment

effect prediction intervals for the covariate profiles in the EHR data. Here,

we focus on the results from the honest causal forest with pooling with trial
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NCT00672620 NCT01140906 NCT01153009 Duke Patients

N=418 N=436 N=418 N=2,123

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age 43.0 (13.8) 46.3 (13.9) 43.4 (12.2) 44.7 (12.7)

BMI 30.4 (7.9) 25.9 (4.9) 31.2 (7.9) 31.5 (8.7)

% % % %

Female 64.4 65.4 74.2 75.7

Diabetes Mellitus 4.8 1.4 2.4 20.2

Hypothyroidism 5.0 3.2 4.5 11.1

Anxiety 1.9 0.2 3.8 61.3

Antidepressant 1.7 33.5 19.4 58.7

Thyroid Medication 0.7 3.4 3.6 9.3
Severe (vs. Moderate)
Baseline Depression 13.2 17.2 28.7 27.3

Table 4.1: Descriptive statistics for three randomized controlled trials and EHR data
from patients at the Duke Health Care System.

indicator. Detailed results from a similar model fit to these trials can be found

in previous work (Brantner et al., 2024). This paper uses three of the same

trials analyzed in Brantner et al. (2024), where the fourth trial was removed in

this analysis because it did not report body mass index (BMI). Most notably,

there was not a high level of heterogeneity in the treatment effect, both in

terms of potential covariates and across the studies being combined. There

did seem to be some differences in the treatment effect across age, where older

individuals had a more positive effect estimate, but the uncertainty intervals

were wide. Overall, it seemed that duloxetine was the preferable treatment

compared to vortioxetine across individual characteristics in the sample.
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In these three trials, the main takeaways from Brantner et al. (2024) hold.

From the honest causal forest with pooling with trial indicator, the average

CATE estimate across the sample of 1,272 individuals was 2.68 (SD = 0.97).

The average confidence interval length in the trials was 4.78, and 60.77% of

the sample had a confidence interval that did not cross zero. Every set of

covariates represented in this sample according to this model had a positive

treatment effect estimate, thus in favor of duloxetine. There again is potential

heterogeneity of the treatment effect by age, where older individuals had

higher estimates of the effect.

Figure 4.7 displays the effect estimates and 95% prediction intervals for

all of the covariate profiles in the target population of patients from the EHR

data. All EHR patients have positive effect estimates, again indicating that

duloxetine is estimated to be the better treatment for reduction of depressive

symptoms in this patient population. Specifically, the average effect estimate

in the target population is 2.79 (SD = 0.92). 66.8% of the covariate profiles

in this target population have a prediction interval that does not cross zero,

and the average interval length is 4.64. Because only three trials were being

combined, the critical value used to calculate the prediction intervals was

approximated as 1.96 rather than using the t-distribution with K − 2 = 3− 2 =

1 degree of freedom. Therefore, these prediction intervals are likely a bit too

narrow, but using 1.96 as an approximation of the critical value was shown

to perform relatively well in simulated data with K = 3 trials (see Appendix

C.3).
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Figure 4.7: 95% prediction intervals for treatment effect estimates in target population.
X axis is ordered by magnitude of treatment effect estimate.

4.6 Discussion

This paper introduced and assessed a prediction interval-based approach for

predicting conditional average treatment effects in a target population after

having estimated the CATE from multiple trials. We discussed this approach

in conjunction with meta-analysis as well as with non-parametric methods,

including the causal forest and BART. The non-parametric methods performed

well in simulations in terms of prediction interval coverage of the true effects,

across levels of heterogeneity in the effect across trials and both a linear and

non-linear CATE function. Meta-analysis performed well when the true CATE

was linear but poorly when the true CATE was non-linear.

The performance of all methods did vary across levels of age; specifically,
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coverage, length, and absolute bias were worse for many of the approaches

and data generation setups for values of age that were further from the mean

age. This difference in performance for absolute bias and interval length was

more drastic when the true CATE was very heterogeneous across studies and

was non-linear. Therefore, in practice, it is important to explore the variability

in the covariate distributions in the target population and in comparison to the

trials to identify if there might be subgroups for whom the CATE prediction

intervals might perform more poorly.

The methods also performed well even with a small number of studies

(Appendix C.3) and when the critical value was set to be 1.96 rather than

tK−2. There were slight decreases in coverage compared to the settings with

10 studies, but coverage was still relatively high overall. In the other setups

where covariate distributions varied across trials, the main results still held

for the most part. Coverage did get lower for several covariate profiles in the

setting where one trial had a very different mean age compared to the others

(Appendix C.3).

In the real data, three RCTs were combined to estimate the CATE function

and subsequently predict CATEs for health records of patients in a health

care system. This analysis revealed that there was potential heterogeneity of

the treatment effect by age but that variability was high, and in general, all

patient profiles were estimated to benefit more from duloxetine compared to

vortioxetine. It is important to note that in the original trials, duloxetine was

included as an active reference medication, and two of the trials had eligibility

criteria where patients were excluded from the study if they had previously
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not responded to duloxetine. Therefore, this comparison could be somewhat

biased due to this exclusion criteria. The prediction intervals were calculated

for this target population based on the causal forest with pooling with trial

indicator; we estimated the critical value as 1.96 in this setting and so intervals

might be slightly underestimating the true potential variability. This analysis

could be helpful for clinicians looking to decide between treatment options

for patients based on previous treatment effect heterogeneity estimated from

randomized trials. These results again demonstrated that duloxetine would

be preferable as a whole; however, other treatment comparisons might reveal

more notable differences in treatment effectiveness across patient character-

istics. In general, this approach allowed estimation of effects in the patient

sample without needing to observe any outcomes or treatment assignment in

this group beforehand.

Notably, throughout this paper we have emphasized the idea of the CATE

for a set of covariate profiles. This emphasis is first due to the nature of

non-parametric, machine learning methods. Specifically, while meta-analysis

provides an interpretable functional form of the CATE, approaches like the

causal forest and BART instead give predicted CATEs and intervals but not

a functional form with parameter estimates. Therefore, we represent the

CATE by estimating it across a set of covariate profiles. Another key point

is the important distinction between conditional average treatment effects

(CATEs) and individual treatment effects (ITEs). The two estimands are often

treated as the same but are not, and it is important to draw distinctions

between them. An ITE is the difference between the potential outcomes for an
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individual and is very challenging (almost impossible) to estimate given that

for each individual we only directly observe one of their potential outcomes.

In contrast, the CATE represents average effects across individuals in the

population that share the same observed covariates (Vegetabile, 2021), and

it is more easily estimable. It is thus important to emphasize that the effects

discussed in this paper are averages for a covariate profile rather than effect

estimates for particular individuals.

The approaches discussed in this paper do have some limitations and

opportunity for future refinement. Specifically, we relied on several assump-

tions to implement the methods, including an assumption of overlapping

covariate distributions across the target and trial data. A key concern might

be predicting effects for covariate profiles in the hospital data who were not

represented in the trials, which would violate our assumption. In the real data

analysis, we removed covariate profiles from our target population who had

less than moderate depression, but there might be interest in understanding

this group further. Future development could work to address this covariate

overlap assumption; one approach could be augmenting the trial data with

observational data that did have observed treatment and outcomes for this

underrepresented group.

Use of EHR data can also come with other challenges, including mea-

surement error. More specifically, the measures in the EHR data might be

subjective, highly missing, or different measures of similar constructs com-

pared to the trial data. Future work could explore imputation approaches to

deal with missing data in this context or ways to leverage open text data to
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fill in more information about patient care. Furthermore, the issue of differ-

ential measures that was encountered here – where the EHR data measured

depression using a different scale than the trial data – is not an uncommon

one. This was addressed in the present analysis by creating a binary variable

from both scales to separate into moderate or severe depression; another

approach could have been to map the scales to one another continuously, or

create standardized measures. These discordant measures can also arise in

combining the trials; the trials used here had the same outcome measures,

but many other applications of this approach might involve different trial

outcomes and predictors that would need to be harmonized.

Future work should examine in more detail the choice of critical value in

the prediction interval construction. We chose the t-distribution with K − 2

degrees of freedom based on the literature, but the best choice for this critical

value might be more complicated (Riley, Higgins, and Deeks, 2011). The true

distribution of the treatment effects might not be approximately normal in

reality, and future work could further refine the distributional assumptions

and work to achieve close to 95% coverage across non-parametric and para-

metric approaches. Another potential approach could be to explore Bayesian

meta-analysis (Higgins, Thompson, and Spiegelhalter, 2009) to leverage prior

information about treatment effects when integrating information across trials.

Estimating heterogeneous treatment effects is of high interest in clinical

practice but can be challenging statistically. Furthermore, practitioners are

often interested in understanding the predicted effects before an individual has

received any sort of treatment so that the treatment allocation can be optimal
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for patient outcomes. This paper introduced an approach for predicting

effects in a target population based on previously conducted trials. With

further refinement of the variance and distribution estimation and approaches

for effectively dealing with measurement error and non-overlap in the EHR

data, we can move closer towards aiding clinical decision-making based on

which treatment is predicted to lead to better outcomes for the patient.
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Chapter 5

Discussion and Conclusion

This dissertation has outlined, developed, and implemented data integration

methods for estimating treatment effects conditional on observed character-

istics. Chapter 2 provided an in-depth review of methods, broken down by

their data setting and type, to reveal the current state of the field and areas

for future work. This review showed that while several methods exist to

combine data and estimate heterogeneous treatment effects, many methods

were created in isolation and without concrete code or data applications, there-

fore making it challenging to determine which methods would work well in

practice based on the data and questions of interest. Furthermore, combining

trials was mainly handled using meta-analysis, which is interpretable and

straightforward to implement, but is not typically geared towards treatment

effect heterogeneity and might miss key relationships that are non-linear or

complex. Across all methods, more applications to real data were also needed

to identify new challenges and methodological considerations that might not

be picked up when applying the methods to simulated datasets (Brantner

et al., 2023).

146



The next two chapters in this dissertation addressed some of the openings

revealed by Chapter 2. Specifically, Chapter 3 developed aggregation meth-

ods to apply non-parametric approaches to estimate the conditional average

treatment effect (CATE) function across multiple randomized controlled trials.

This chapter revealed more about the benefits and drawbacks of parametric

meta-analysis compared to non-parametric approaches like the causal forest

(Athey, Tibshirani, and Wager, 2019). Chapter 3 compared several aggregation

options and applied them to real data looking at treatment effects of major

depression medications, duloxetine and vortioxetine (Brantner et al., 2024).

From Chapter 3, an important next question was determining how to

apply the CATE function to a new target population that was distinct from the

trial populations. Chapter 4 examined this question, which is of the utmost

clinical interest and relevance. This chapter explored a prediction interval-

based approach to implement with both meta-analysis and non-parametric

methods. In this way, the work done in Chapter 3 could be applied to predict

effects in a target population as in Chapter 4. CATE prediction intervals were

constructed for sets of covariate profiles and assessed in extensive simulations.

Furthermore, the CATE function was estimated by combining three of the

RCTs introduced in Chapter 3, and then prediction intervals were formed

for covariate profiles represented by real electronic health record data from

patients in a health care system.

A primary goal of this dissertation is moving towards making treatment

allocation decisions to optimize outcomes. The chapters in this dissertation

progressively moved closer to this goal. Chapter 2 started by providing an
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overview of the options and opportunities for combining data to improve

heterogeneous treatment effect estimation; Chapter 3 estimated these effects

by combining multiple trials; and Chapter 4 applied the information gained

from multiple trials to a target population.

In Chapters 3 and 4, real data was utilized to identify new considerations

when applying the methods outside of a simulated setting. In the real data,

the methods demonstrated that duloxetine was estimated to be the more

beneficial medication than vortioxetine for nearly everyone in the trials as

well as in the target population. There seemed to be minimal heterogeneity

if any, where older patients had a larger magnitude of the treatment effect,

meaning that duloxetine would be even more beneficial for older individuals,

but confidence and prediction intervals were wide. The applications of these

methods showed how conclusions can be drawn based on trial data in a

target population to help guide treatment decision-making. In this particular

case, the lack of substantial heterogeneity could provide more confidence that

all patients could receive the same medication, duloxetine, since duloxetine

was not only estimated to be preferable on average, but also for almost all

covariate profiles found in the trials and target population. This application

also demonstrated that even with combination of multiple trials, there were

still high levels of uncertainty of the CATE in the trials and wide prediction

intervals in the target population. This further supports the fact that estimation

of effect heterogeneity is challenging, and more can be done to continue to

leverage multiple sources while effectively accounting for uncertainty.
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There are several opportunities for future work to continue moving for-

ward in this field of heterogeneous treatment effect estimation using multiple

datasets. First, while Chapter 2 introduced methods for bringing together trial

and observational data, the subsequent chapters focused primarily on trial

data and then an external, target population. Future work could dive more

into the methods of combining trial and observational data by applying some

of the approaches discussed in Chapter 3 but accounting for confounded treat-

ment assignment in the observational data, and comparing methods using

simulated and real data. Bringing in the observational data would add new

complications but would considerably increase the sample size and might

help extend the covariate distributions of the trials with more strict eligibility

criteria. More work could also be done to assess settings when assumptions

are violated; for example, this dissertation often relied on the assumption that

the trials and target population had similar covariate distributions, but this is

often not fully the case in real applications.

A key focus of Chapter 4 was effectively estimating uncertainty of the

CATE to produce prediction intervals that were wide enough to capture the

truth but not overly conservative. This idea of variance estimation could be

further explored, especially in conjunction with new non-parametric methods

like the causal forest (Athey, Tibshirani, and Wager, 2019), S- and X-learner

(Künzel et al., 2019), and ensemble forests (Tan et al., 2022; Brantner et al.,

2024). Many of these newer non-parametric approaches still have more to be

done to reliably capture uncertainty, especially when used in conjunction with

aggregation methods described in Chapter 3 to combine multiple studies.
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Finally, as mentioned previously, bringing in real data reveals important

challenges that need to be addressed methodologically. In this dissertation,

the key challenges that came up mostly relate to bringing in EHR data. First,

the EHR data of patients with depression often had no measures of depression

included, and when it did, the measure was a different depression scale (PHQ-

9) than the scale used in the trials (MADRS). The EHR data also included some

groups of patients who were not represented in the trials due to eligibility

criteria. Each of these considerations were addressed briefly in Chapter 4; for

example, individuals were only included in the target population if they had

non-missing PHQ-9 score. This step excluded a large proportion of available

individuals in the EHR data, so future work could investigate other proxies

measuring depression severity, like medication changes or hospitalizations.

Much more exploration can be done to understand how the methods discussed

in this dissertation can be effectively tailored to account for these real data

challenges.

With more open data access and careful, ethical sharing of individual

participant-level data, questions about treatment effect heterogeneity seem

more feasible to answer than before. Leveraging multiple data sources and the

methods discussed in this dissertation can continue to examine heterogeneity

of the treatment effect and move practice closer towards precise intervention

decisions. The work done in the previous chapters did also reveal reasons for

caution, in that heterogeneous treatment effects can still involve high levels of

uncertainty, and sometimes heterogeneity might not actually be highly preva-

lent based on the characteristics that are observed. This dissertation aimed
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to address the challenges that arise when bringing multiple data sources to-

gether, maintaining a focus on a target population of interest and optimizing

outcomes for this population. Continual work in this field can harness the

data available, account for heterogeneity and uncertainty effectively, and pri-

oritize interpretable results to impact real groups of patients in their treatment

journeys.

151



References

Brantner, Carly Lupton, Ting-Hsuan Chang, Trang Quynh Nguyen, Hwanhee
Hong, Leon Di Stefano, and Elizabeth A. Stuart (2023). “Methods for
integrating trials and non-experimental data to examine treatment effect
heterogeneity”. In: Statistical Science 38.4, pp. 640–654.

Athey, Susan, Julie Tibshirani, and Stefan Wager (2019). “Generalized random
forests”. In: The Annals of Statistics 47.2, pp. 1148–1178.

Brantner, Carly Lupton, Trang Quynh Nguyen, Tengjie Tang, Congwen Zhao,
Hwanhee Hong, and Elizabeth A Stuart (2024). “Comparison of meth-
ods that combine multiple randomized trials to estimate heterogeneous
treatment effects”. In: Statistics in Medicine.

Künzel, Sören R, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu (2019). “Met-
alearners for estimating heterogeneous treatment effects using machine
learning”. In: Proceedings of the national academy of sciences 116.10, pp. 4156–
4165.

Tan, Xiaoqing, Chung-Chou H Chang, Ling Zhou, and Lu Tang (2022). “A
tree-based model averaging approach for personalized treatment effect
estimation from heterogeneous data sources”. In: International Conference
on Machine Learning. PMLR, pp. 21013–21036.

152



Appendix A

Supplemental Material for Chapter
2

A.1 Single-Study CATE Estimation Methods

In this section, we review several approaches geared towards CATE estimation

in a single RCT or observational dataset when we have access to the individual

participant-level data (IPD). One option is through a regression, using

g(E(Yi)) = β0 + βa Ai + βT
x X i + βT

z AiZi,

where Z represents effect moderators and is a subset of X. Traditionally,

regressions like this are used to examine pre-determined subgroups; however,

this model can also be used for CATE estimation. Specifically, we can define

the CATE from this as

τ(Zi) = βa + βT
z Zi.

This approach is built upon in the IPD meta-analysis framework discussed

in the main paper in the section entitled, “One-Stage IPD Meta-Analysis”. In

observational data, we can also incorporate propensity score methods before
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modeling using the above regression to account for confounded treatment

assignment. As another option, Z could be a risk score, rather than a set of

effect moderators (Kent et al., 2010; Kent et al., 2020). This approach is the

same but requires some preliminary modeling to derive a risk score.

There are also several machine learning methods for CATE estimation in

the single study setting that are still relatively new. These methods can be

grouped into the following four classes. The first relies mainly on modeling

the conditional mean of the outcome given covariates under each interven-

tion (treatment and control), with the CATE function taken as the difference

between the two conditional mean outcome functions. This can be achieved

via two different models fit to the two treatment groups separately, or via

a single model fit to the full sample; these two strategies have been labeled

“T-learner” and “S-learner” (with T standing for “two” models and S for “sin-

gle” model), respectively (Künzel et al., 2019). Based off of these options, the

“X-learner” has also been developed. In this approach, one first estimates the

conditional mean outcomes in each treatment group, µ(x, 0) = E(Y(0)|X = x)

and µ(x, 1) = E(Y(1)|X = x). Next, individual counterfactual outcomes for

each treatment group are imputed by using outcome estimators fit to individ-

uals from the other group Here, the subscript i : A = 1 refers to individual i

from the treatment group, and i : A = 0 refers to individual i from the control

group.

D̃i:A=1 = Yi:A=1 − µ̂(X i:A=1, 0)

D̃i:A=0 = µ̂(X i:A=0, 1)− Yi:A=0.
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Finally, a CATE estimator is calculated in each treatment group using a re-

gression with D̃i:A=1 and D̃i:A=0 as outcomes, respectively; the ultimate CATE

estimate is then a weighted average (where weights are often estimates of

propensity scores) of the CATE functions from each group (Künzel et al., 2019).

These methods can utilize approaches like random forests (Breiman, 2001;

Athey, Tibshirani, and Wager, 2019) or Bayesian additive regression trees

(BART) (Chipman, George, and McCulloch, 2010) to perform the first step of

outcome function estimation. A helpful review of these and related methods

are in Caron, Baio, and Manolopoulou (2020).

The second class of single-study methods for estimating treatment effect

heterogeneity involves transformation of either the outcome or the covariates.

An option for transforming the outcome can be written as

Y∗
i = Yi

Ai

π(X i)
− Yi

1 − Ai

1 − π(X i)

where π(X i) are the propensity scores (probability of treatment assignment

given covariates) (Signorovitch, 2007; Powers et al., 2018). Since E(Y∗
i |X i) =

τ(X i), a regression model can be fit to this transformed outcome to estimate

τ(X), obviating the need to model outcome mean functions (treated as “nui-

sance” parameters). Transformation of the covariates is another option; this

transformation is often via some sign flipping and scaling so that the system-

atic part of the model fit to the transformed variables represents treatment

effect variation, while variation in the mean outcome that is unrelated to treat-

ment effect is relegated to the error part of the model. The modified covariate

method (MCM) (Tian et al., 2014) is an example of this approach.
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The third class similarly includes transformation of the covariates but still

estimates nuisance parameters in the process. The “R-learner” (Nie and Wager,

2021) is one example, which first estimates conditional mean outcomes and

propensity scores and then uses those estimates in a “quasi-oracle” objective

function that is optimized. This class also includes transformed outcome

methods, where the first step assembles a function, f (.), such that E( f (.)|X) =

τ(X), and the second step regresses f (.) on X. Kennedy (2020) uses this type

of method through an influence function for the average treatment effect. The

Bayesian causal forest (Hahn, Murray, and Carvalho, 2020) also exists within

this class. The Bayesian causal forest parameterizes a function f such that

f (X, A) = µ(X, π, 0) + τ(X)A

where µ(x, π, 0) = E(Y(0)|X = x, π = π), π represent the propensity scores,

and µ(0) and τ have pre-specified prior distributions.

The final class of methods includes trees and forests that partition the

covariate space to locally maximize the distance in τ(X) between the sides of

each split. Causal inference trees were introduced by Su et al. (2012) who used

recursive partitioning to split data into strata by propensity score and treat-

ment effect. Moving forward from this, causal forests have been developed

and then extended to “honest” causal forests (Athey, Tibshirani, and Wager,

2019), wherein for each tree, Yi can only be used in one of the following: to

determine the splitting in the tree, or to estimate the treatment effect within

a given leaf (Wager and Athey, 2018). The R-learner approach previously

mentioned (Nie and Wager, 2021) can also be considered within this class,
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as it is a causal forest based on residualized exposure and outcome, and the

Bayesian causal forest (Hahn, Murray, and Carvalho, 2020) is also a part of

this class as well.

In all classes, many but not all methods also have built in propensity

score-based adjustment for confounding for use in non-randomized studies.

A review of several such methods in the observational data setting is by

Wendling et al. (2018).
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Appendix B

Supplemental Material for Chapter
3

B.1 More Simulation Results
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Figure B.1: Distribution of MSE for no pooling versus best performing pool-
ing/ensembling methods

Columns are broken down by simulation scenarios (piecewise linear versus non-linear
CATE), and rows are by standard deviation of study main and study interaction coefficients.

Y-axis is cutoff for ease of visualization.
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Figure B.2: Distribution of MSE for trials with different sample sizes
Columns are broken down by simulation scenarios (piecewise linear versus non-linear

CATE), and rows are by trial sample sizes (same: all trials with n=500, one large: one trial
with n=1,000 and the rest with n=200, half and half: five trials with n=500 and five with

n=200). SD of study main and study interaction coefficients were 1 and 0.5, respectively for
all iterations.
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Figure B.3: Distribution of MSE for trials with variable CATE function
Columns are broken down by trial sample sizes (same: all trials with n=500, one large: one

trial with n=1,000 and the rest with n=200, half and half: five trials with n=500 and five with
n=200). SD of study main and study interaction coefficients were 1 and 0.5, respectively for

all iterations.
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Figure B.4: Distribution of MSE for trials with covariate shift
Columns are broken down by simulation scenarios (piecewise linear versus non-linear

CATE), and rows are by trial sample sizes (same: all trials with n=500, one large: one trial
with n=1,000 and the rest with n=200). SD of study main and study interaction coefficients

were 1 and 0.5, respectively for all iterations.
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Figure B.5: Distribution of MSE for K=30 trials
Columns are broken down by simulation scenarios (piecewise linear versus non-linear

CATE). SD of study main and study interaction coefficients were 0.5 and 0, respectively for all
iterations.

Figure B.6: Average MSE across all scenarios and iterations using honest causal
forests.
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Table B.2: Descriptive statistics of participants of four randomized controlled trials,
broken down by treatment group.
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Figure B.7: CATE estimates by age of individual according to causal forest with
pooling with trial indicator.

Note that uncertainty of the CATE estimates is not reflected in this plot.
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Estimate Standard Error P-Value
(Intercept) -6.32 5.06 0.21
Age 0.09 0.04 0.03*
Female 0.45 1.07 0.67
Smoker -1.47 1.10 0.18
Weight -0.01 0.03 0.72
Baseline MADRS 0.09 0.13 0.49
Baseline HAM-A 0.08 0.09 0.38
Has Diabetes Mellitus -3.97 3.36 0.24
Has Hypothyroidism -1.81 3.56 0.61
Has Anxiety 3.58 3.63 0.32
Takes Antidepressant 1.55 1.32 0.24
Takes Antipsychotic -0.21 1.93 0.91
Takes Thyroid Medication 2.23 4.22 0.60
Study NCT00635219 -1.09 1.63 0.50
Study NCT01140906 2.71 1.62 0.09
Study NCT00672620 2.93 1.58 0.06

Table B.3: Results of best linear projection of the CATE according to the causal forest
with pooling with trial indicator.

*Indicates a p-value less than 0.05.
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Figure B.8: Average treatment effect with 95% confidence interval by subgroup of age
Vertical red line represents the overall average treatment effect estimate.
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Appendix C

Supplemental Material for Chapter
4

C.1 Meta-Analytic Prediction Intervals

This paper extends the prediction interval format towards different estimands,

rather than just the overall average treatment effect. In particular, we allow

for effect moderation in the form of treatment-covariate interaction terms,

which yields treatment effect estimates that are dependent upon a covariate

profile. This heterogeneity in the treatment effect is not commonly addressed

in meta-analysis, nor is the CATE a common estimand of interest.

We define the meta-analysis model as follows:

Ysi = (β0 + as) + β1Xsi + (β2 + bs)Asi + (β3 + cs)Xmod
si Asi + ϵsi

where as ∼ N(0, σ2
a ), bs ∼ N(0, σ2

b ), and cs ∼ N(0, Σc).
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Then we can define the CATE as

τ(Xsi) = E(Ysi(1)|Xsi)− E(Ysi(0)|Xsi)

= (β2 + bs) + (β3 + cs)Xmod
si

We can convert this CATE to matrix notation to facilitate calculation of the

variance.

τ(X) = X̃ β̃ + Z̃ũ =

⎡⎣X̃1
...
X̃k

⎤⎦ β̃ +

[︃
Z̃1 ... 0
0 ... Z̃k

]︃
ũ

where

X̃s = Z̃s =

⎡⎣1 Xs1
... ...
1 Xsn

⎤⎦ β̃ =

[︃
β2
β3

]︃
ũs =

[︃
bs
cs

]︃

Then, the variance of the CATE estimate can be calculated as

Var(τ̂(X̃)) = Var(X̃ β̂ + Z̃û)

= X̃Var(β̂)X̃T
+ Z̃Var(û)Z̃T.

C.2 CATE Estimation Using Bayesian Additive Re-
gression Trees

Bayesian additive regression trees (BART) is a sum-of-trees modeling proce-

dure in conjunction with a regularization prior, where the prior restricts the

amount that each tree can contribute to the overall model fit. An important

distinction with BART is that it estimates the expected outcome conditional

on covariates. To apply BART to estimate the CATE, several approaches exist,

including the S-learner, T-learner (Künzel et al., 2019), and the Bayesian causal
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forest (Hahn, Murray, and Carvalho, 2020). We focus on the S-learner in this

paper, as it is relatively straightforward to implement and applies well to the

setting with multiple trials.

When using BART as an S-learner and in the setting with multiple trials,

we fit a single model to the entire training data to estimate E(Y|X, A, S) – the

expected outcome given covariates, treatment, and study membership. As

“testing” data, we replicate the training data but assign the opposite treatment

to what the individual actually received, to estimate their counterfactual out-

come. BART ultimately provides draws from the posterior distribution for the

training outcomes under their true and counterfactual treatment assignment,

and we can use these draws to estimate the treatment effects conditional on

covariates and create credible intervals for these effect estimates. There are

two options for how to estimate these credible intervals:

1. We can estimate E(Y|X, 1, S) and E(Y|X, 0, S) by taking the average

of the posterior draws for each treatment condition, and we can es-

timate Var(Y|X, 1, S) and Var(Y|X, 0, S) by taking the variance of the

posterior draws for each treatment condition. We can then estimate

the CATE by defining τS(X) = E(Y|X, 1, S)− E(Y|X, 0, S), and we can

estimate the variance of that CATE estimate by adding Var(Y|X, 1, S) +

Var(Y|X, 0, S), under the conservative assumption that the potential out-

comes under treatment and control are uncorrelated. We then create an

interval under the assumption that

τ̂S(X) ∼ N(τS(X), Var(Y|X, 1, S) + Var(Y|X, 0, S)).
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2. Instead of aggregating across posterior draws first, we can start by

subtracting (Ŷ|X, 1, S)− (Ŷ|X, 0, S) within each posterior draw. We can

then take the mean of these treatment effect estimates as well as the 2.5th

and 97.5th percentiles of the CATE across these draws to construct a

credible interval.

We use option 1 above in this paper, but did explore both options in

preliminary simulations. In our setting, it seemed that the more conservative

option 1 performed better, especially when focusing on interval coverage

in the target population. Notably, the above options refer to constructing

intervals in the original trials. In the target population, we rely on estimating

the treatment effect for the given covariate profile within each study, and then

accounting for the within- and between-study variance to produce prediction

intervals for the new setting.

C.3 More Simulation Results

The following figures display results from secondary simulations with new

data generation settings. Figures C.1 and C.2 display coverage results when

study distributions varied in baseline MADRS and mean age, respectively.

Figures C.3, C.4, and C.5 display coverage, interval length, and absolute

bias across 500 iterations of the same simulation settings as in the main results,

but now with K = 3 RCTs instead of 10.
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Figure C.1: Distributions of coverage for each covariate profile in the target population
across each method and data generation scenario where studies had different mean
MADRS score.
Coverage was calculated as the percent of 500 iterations for which the profile’s true treatment
effect was contained within the estimated prediction interval. Method abbreviations: ACF =

adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART = Bayesian
Additive Regression Trees with S-learner.
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Figure C.2: Distributions of coverage for each covariate profile in the target population
across each method and data generation scenario where one study had very different
mean age.
Coverage was calculated as the percent of 500 iterations for which the profile’s true treatment
effect was contained within the estimated prediction interval. Method abbreviations: ACF =

adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART = Bayesian
Additive Regression Trees with S-learner.
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Figure C.3: Distributions of coverage for each covariate profile in the target population
across each method and data generation scenario using K = 3 RCTs.
Coverage was calculated as the percent of 500 iterations for which the profile’s true treatment
effect was contained within the estimated prediction interval. Method abbreviations: ACF =

adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART = Bayesian
Additive Regression Trees with S-learner.
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Figure C.4: Distributions of average interval length for each covariate profile in the
target population across each method and data generation scenario using K = 3 RCTs.

Length was calculated as the average length of the profile’s prediction interval across 500
iterations. Method abbreviations: ACF = adaptive causal forest, HCF = honest causal forest, MA

= meta-analysis, SBART = Bayesian Additive Regression Trees with S-learner.
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Figure C.5: Distributions of absolute bias for each covariate profile in the target
population across each method and data generation scenario using K = 3 RCTs.

Absolute bias was calculated as the average absolute difference between the profile’s true
treatment effect and the estimated treatment effect across 500 iterations. Method abbreviations:

ACF = adaptive causal forest, HCF = honest causal forest, MA = meta-analysis, SBART =
Bayesian Additive Regression Trees with S-learner.
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C.4 Duke EHR Cohort

Figure C.6: CONSORT diagram for producing sample of EHR patients from Duke
Health Care System.
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