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Abstract

In the field of computer vision, the ability to generalize is essential for ensuring robust and

reliable performance across diverse datasets and real-world scenarios. Generalization refers

to a computer vision model’s capability to accurately interpret and process new, unseen

data beyond the specific examples it was trained on. Real-world visual data can vary widely

in terms of lighting conditions, backgrounds, viewpoints, occlusions, and other factors,

making generalization crucial for effective performance. A computer vision system with

strong generalization ability can identify objects, recognize patterns, and make accurate

predictions even when presented with variations it has not encountered during training.

Achieving robust generalization necessitates careful algorithm design, sufficient training

data that captures real-world variability, regularization techniques to prevent overfitting, and

robust evaluation methodologies. Without robust generalization, computer vision models

may perform well on training data but fail to generalize to new, unseen data, limiting their

real-world applicability.

In this dissertation, I will present my research efforts in enhancing the generalization

ability of vision models from several perspectives. Firstly, i focus on designing vision

algorithms that can generalize to novel viewpoints and occlusions, tackling challenges

commonly encountered in real-world scenarios. Secondly, I investigate the architectural
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disparities between vision transformers and convolutional neural networks (CNNs) to better

understand their impact on generalization, particularly concerning out-of-distribution data

and adversarial attacks. Thirdly, I propose innovative self-supervised learning algorithms,

Point-Level Region Contrast for Object Detection Pre-Training, aimed at providing strong

backbone features for generalization across various downstream tasks. Additionally, I

introduce efficient masked autoencoding techniques for enhanced representation learning.

Finally, I propose Sequential Modeling Enables Scalable Learning for Large Vision Models,

a methodology designed to effectively leverage large volumes of real-world visual data,

thereby further enhancing generalization capabilities. Through these contributions, I

aim to advance the field towards more generalized and robust vision models with broad

applicability across diverse real-world scenarios.
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Chapter 1

Introduction

Generalization is one of the key goals in computer vision research. It refers to a model’s

capability to perform well on new, unseen data that is different from the data it was trained

on. This is important because real-world visual data can be extremely varied, with changes

in lighting, viewpoints, occlusions, and environments.

In this thesis, I first look at supervised algorithms that allow object detection models

to generalize to unseen viewpoints (Chapter 2) and be robust to occlusions (Chapter 3).

We also explore the role of architecture choice, and surprisingly find (Chapter 4) that the

specific architecture is not the most crucial factor for generalization.

Since self-supervised representation learning has shown some level of generalization

capability across downstream tasks (Chapter 5), I then dive deeper into developing strong

representation learning algorithms (Chapter 6).

However, in all previous representation learning approaches, features were encoded

independently for each image, resulting in a gap when transferring to downstream tasks

after fine-tuning.
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In this sense, the algorithm is never allowed to think on the fly by following hints. To

leap over this gap, I reformulate visual recognition as a "visual sentence completion" task

in (Chapter 7). It integrates all types and sources of visual data, including human-labeled

and naturally co-occurring data, into a sequential form. Recognition is formulated as a

think-on-the-fly in-context prediction task, where the next image predicted could be a

segmentation mask or an imagined result of an action. This unified framework is designed

to improve generalization since it combines all possible generative and discriminative tasks

into one common framework during the learning stage. We are not learning to remember

image labels in isolation but learning to follow hints in a visual sentence and thus think on

the fly.

In conclusion, the road toward generalization is full of pitfalls, dead ends, and false

starts. The final discovery emerges from the sad realization that true generalization does

not come from algorithms or architectures, and training on ImageNet data give limited

generalization ability. Accepting this allows me to focus on the data itself: train with

diverse things and make the prediction as hard as possible.

1.1 Generalize to Novel Viewpoints for Semantic Part De-
tection

Detecting semantic parts of an object is a challenging task in computer vision, particularly

because it is hard to construct large annotated datasets due to the difficulty of annotating

semantic parts. In Chapter 2, we present an approach that learns from a small dataset of

annotated semantic parts captured from a limited range of viewpoints, yet generalizes to

detect parts from a much broader range of unseen viewpoints.
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Our matching-based algorithm establishes accurate spatial correspondences between

image pairs, transferring part annotations from one image to another. Specifically, we match

training images to a virtual 3D object model and use clustering to annotate the model’s

parts. This annotated 3D model synthesizes part-labeled images across many viewpoints,

which can be matched to test images to detect parts in novel views. Despite being simple

and parameter-efficient, our algorithm outperforms conventional deep nets, particularly

excelling at novel viewpoints on the VehicleSemanticPart car subset.

1.2 Contrastive Learning for Robust Keypoint Detection

Chapter 3 introduces CoKe, a contrastive learning framework tailored for keypoint detection,

which not only enhances robustness to occlusion but also fosters finer-grained understanding

of object structures, bolstering generalization capabilities.

Unlike other vision tasks, keypoint detection requires representing and detecting mul-

tiple annotated keypoints per input image. Our approach extends contrastive learning to

handle this multi-keypoint scenario, allowing the loss to discriminate keypoint features

from each other and background cues. CoKe offers two key benefits: leveraging contrastive

learning’s power for keypoint tasks and achieving robustness to occlusions by detecting

keypoints independently rather than holistically. Our framework employs technical inno-

vations like a clutter bank for non-keypoint features, a keypoint bank storing prototypical

keypoint representations to approximate the contrastive loss between keypoints, and a

cumulative moving average update to learn these prototypes while training the feature

extractor. Across diverse datasets (PASCAL3D+, MPII, ObjectNet3D), CoKe performs

favorably against alternative keypoint detectors, even for human poses. Notably, it exhibits
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exceptional robustness to partial occlusions and previously unseen object poses.

1.3 Are Transformers More Robust Than CNNs?

Chapter 4 transitions to a broader comparative analysis of vision models. Our research

explores the robustness and generalization capabilities of transformers and CNNs. By

conducting fair comparisons and delving into the intricacies of adversarial robustness and

generalization, we aim to elucidate the strengths and weaknesses of these foundational

architectures, offering valuable insights for the advancement of robust vision systems.

Transformers have emerged as a powerful tool for visual recognition, demonstrating

competitive performance across a wide range of visual benchmarks. Recent works have

argued that Transformers are significantly more robust than Convolutional Neural Networks

(CNNs). Surprisingly, however, we find that these conclusions are drawn from unfair

experimental settings, where Transformers and CNNs are compared at different scales and

with distinct training frameworks. In this work, we aim to provide the first fair and in-depth

comparisons between Transformers and CNNs, focusing on evaluations of robustness.

With our unified training setup, we first challenge the previous belief that Transformers

outperform CNNs in measuring adversarial robustness. More surprisingly, we find that

CNNs can easily match the robustness of Transformers against adversarial attacks if they

properly adopt the training recipes of Transformers. Regarding generalization to out-of-

distribution samples, we show that pre-training on large-scale external datasets is not

a fundamental requirement for Transformers to achieve better performance than CNNs.

Moreover, our ablations suggest that such stronger generalization is largely benefited by

the Transformer’s self-attention-like architectures themselves, rather than by other training
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setups.

1.4 Point-Level Region Contrast for Object Detection Pre-
Training

In Chapter 5, the focus shifts towards pre-training methodologies for object detection,

with the introduction of point-level region contrast. This self-supervised approach har-

nesses contrastive learning to improve both localization and recognition, thereby enhancing

generalization across multiple tasks and datasets.

This approach is motivated by the two key factors in detection: localization and recog-

nition. While accurate localization favors models that operate at the pixel- or point-level,

correct recognition typically relies on a more holistic, region-level view of objects. Incor-

porating this perspective in pre-training, our approach performs contrastive learning by

directly sampling individual point pairs from different regions. Compared to an aggregated

representation per region, our approach is more robust to the change in input region quality

and further enables us to implicitly improve initial region assignments via online knowledge

distillation during training. Both advantages are important when dealing with imperfect

regions encountered in the unsupervised setting.

Experiments show point-level region contrast improves on state-of-the-art pre-training

methods for object detection and segmentation across multiple tasks and datasets, and we

provide extensive ablation studies and visualizations to aid understanding.
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1.5 Masked Autoencoders Enable Efficient Knowledge
Distillers

As we find in Chapter 5, self-supervised learning has shown generalization ability among

many downstream tasks. Therefore, in this work, we hope to keep empowering the

representation learning algorithm by developing an efficient way for distilling a pre-trained

model, which enables strong downstream performance and generalization under a very low

budget.

The approach is simple: in addition to optimizing the pixel reconstruction loss on

masked inputs, we minimize the distance between the intermediate feature map of the

teacher model and that of the student model. This design leads to a computationally efficient

knowledge distillation framework, given 1) only a small visible subset of patches is used,

and 2) the (cumbersome) teacher model only needs to be partially executed, i.e., forward

propagate inputs through the first few layers, for obtaining intermediate feature maps.

Compared to directly distilling fine-tuned models, distilling pre-trained models sub-

stantially improves downstream performance. For example, by distilling the knowledge

from an MAE pre-trained ViT-L into a ViT-B, our method achieves 84.0% ImageNet top-1

accuracy, outperforming the baseline of directly distilling a fine-tuned ViT-L by 1.2%. More

intriguingly, our method can robustly distill knowledge from teacher models even with

extremely high masking ratios: e.g., with 95% masking ratio where merely TEN patches

are visible during distillation, our ViT-B competitively attains a top-1 ImageNet accuracy

of 83.6%; surprisingly, it can still secure 82.4% top-1 ImageNet accuracy by aggressively

training with just FOUR visible patches (98% masking ratio).

6



1.6 Sequential Modeling Enables Scalable Learning for
Large Vision Models

In Chapter 7, we introduce a novel sequential modeling approach that enables learning a

Large Vision Model (LVM) without making use of any linguistic data. To do this, we define

a common format, “visual sentences", in which we can represent raw images and videos as

well as annotated data sources such as semantic segmentations and depth reconstructions

without needing any meta-knowledge beyond the pixels. Once this wide variety of visual

data (comprising 420 billion tokens) is represented as sequences, the model can be trained

to minimize a cross-entropy loss for next token prediction. By training across various scales

of model architecture and data diversity, we provide empirical evidence that our models

scale effectively. Many different vision tasks can be solved by designing suitable visual

prompts at test time.

This novel sequential modeling approach builds upon our previous findings on en-

hancing generalization, robustness, and representation learning for vision models. By

representing all data modalities as sequences in a common format, LVM can leverage self-

supervised learning objectives like next token prediction to learn powerful representations

that generalize effectively across diverse visual tasks and conditions.

1.7 Relevant Publications

Parts of this present dissertation has been previously published in conference proceedings,

as follows:

• Chapter 2 - Bai, Yutong, Qing Liu, Lingxi Xie, Weichao Qiu, Yan Zheng, and Alan
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L. Yuille. "Semantic part detection via matching: Learning to generalize to novel

viewpoints from limited training data." In Proceedings of the IEEE/CVF International

Conference on Computer Vision 2019 (13).

• Chapter 3 - Bai, Yutong, Angtian Wang, Adam Kortylewski, and Alan Yuille. "Coke:

Contrastive learning for robust keypoint detection." In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision 2023 (15).

• Chapter 4 - Bai, Yutong, Jieru Mei, Alan L. Yuille, and Cihang Xie. "Are transform-

ers more robust than cnns?." Advances in neural information processing systems

2021 (14).

• Chapter 5 - Bai, Yutong, Xinlei Chen, Alexander Kirillov, Alan Yuille, and Alexander

C. Berg. "Point-level region contrast for object detection pre-training." In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2022 (10).

• Chapter 6 - Bai, Yutong, Zeyu Wang, Junfei Xiao, Chen Wei, Huiyu Wang, Alan
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Chapter 2

Semantic Part Detection via Matching:
Learning to Generalize to Novel
Viewpoints from Limited Training Data

As discussed earlier, achieving good generalization ability is a key goal in computer vision

research. This means models should perform well on new, unseen data that is different

from what they were trained on. In this chapter, we explore specific methods to improve the

generalization capabilities of vision models. We start by tackling the problem of detecting

semantic parts (e.g. wheels, headlights) of objects from limited training data covering only

a narrow range of viewpoints.

2.1 Introduction

Object detection has been a long-lasting challenge in computer vision which has attracted a

lot of research attention (80)(82). Recently, with the development of deep networks, this

research area has been dominated by a strategy which starts by extracting a number of

regional proposals and then determines if each of them belongs to a specific set of object
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Figure 2.1: The flowchart of our approach (best viewed in color). The key module is the matching
algorithm which finds spatial correspondence between images with similar viewpoints. This enables
us to match the training data to a virtual 3D model and thereby annotate it. The virtual 3D model
can then be used to detect the semantic parts on images in the test set, by re-using the matching
algorithm.

classes (90)(205)(60)(160)(203). The success of these approaches (80)(151) motivates

researchers to address the more challenging task of understanding the objects at finer level

and, in particular, to parse it into semantic parts, which we define to be those components

of an object with semantic meaning and can be verbally described (314). A particular

challenge is that annotating semantic parts is very time-consuming and much more difficult

than annotating objects, which makes it harder to directly apply deep networks to this task.

In this paper, we address the problem of semantic part detection when there is a small

amount of training data and when the object is seen from a limited range of viewpoints. Our

strategy is to define a matching algorithm which finds correspondences between images

of the same object seen from roughly the same viewpoint. This can be used to match the
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training images to the rendered images of a virtual 3D model enabling us to annotate the

semantic parts of the 3D model. The same matching algorithm can then be used to find

correspondences between the virtual 3D model and the test images, which enables us to

detect the semantic parts of the test images, even though they may correspond to viewpoints

not seen in the training set. The overall framework is illustrated in Figure 2.1.

Mathematically, we have a training set D, in which each image In has a viewpoint pn

and a semantic part set Sn. Given a testing image I∗ and the corresponding viewpoint p∗

(provided by ground-truth or some state-of-the-art approaches such as (233)), the goal is

to predict a set of matches for each training sample, i.e., Mn = M(I∗, In), so that Sn is

transplanted to S∗n according to M and finally all these transplanted sets are summarized

into the final prediction S∗. In this pipeline, the key component is the matching algorithm

M(·, ·). For simplicity, we assume that M(·, ·) only deals with two images with similar

viewpoints (which could be found by an off-the-shelf viewpoint detector). In order to

combine information from the training images with different viewpoints, we introduce a

viewpoint transfer function which converts each training image In with viewpoint pn into

I′n with viewpoint p∗, following which M(I∗, I′n) is computed. the matching algorithm, this

is implemented by introducing a virtual model I (e.g., represented by point clouds) with

3D semantic part annotations S assigned to it. A graphics algorithm is used for rendering

(I◦n, S◦n) = g(I, S | pn). S is a hidden variable, so we apply a clustering-based algorithm

to estimate it in the training stage. An additional benefit of this strategy is that the costly

matching algorithm M(·, ·) is executed only once in the testing stage.

The major contribution of this work is to provide a simple and intuitive algorithm

for semantic part detection which works using little training data and can generalize
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to novel viewpoints. It is an illustration of how virtual data can be used to reduce the

need for time-consuming semantic part annotation. Experiments are performed on the

VehicleSemanticPart (VSP) dataset (259), which is currently the largest corpus for semantic

part detection. In the car subclass, our approach achieves significantly better performance

than standard end-to-end methods such as Faster R-CNN (205) and DeepVoting (314). The

advantages become even bigger when the amount of training data is limited.

The remainder of this paper is organized as follows. Section 2.2 briefly reviews the

prior literature, and Section 2.3 presents our framework. After experiments are shown in

Section 2.4, we conclude this work in Section 2.5.

2.2 Related Work

In the past years, deep learning (143) has advanced the research and applications of com-

puter vision to a higher level. With the availability of large-scale image datasets (65)

as well as powerful computational device, researchers designed very deep neural net-

works (141)(223)(231) to accomplish complicated vision tasks. The fundamental idea of

deep learning is to organize neurons (the basic units that perform specified mathematical

functions) in a hierarchical manner, and tune the parameters by fitting a dataset. Based

on some learning algorithms to alleviate numerical stability issues (178)(228)(128), re-

searchers developed deep learning in two major directions, namely, increasing the depth

of the network towards higher recognition accuracy (110)(125)(124), and transferring the

pre-trained models to various tasks, including feature extraction (70)(202), object detec-

tion (90)(89)(205), semantic segmentation (162)(37), pose estimation (180), boundary

detection (285), etc.
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For object detection, the most popular pipeline, in the context of deep learning, involves

first extracting a number of bounding-boxes named regional proposals (3)(249)(205), and

then determining if each of them belongs to the target class (90)(89)(205)(60)(160)(203).

To improve spatial accuracy, the techniques of bounding-box regression (131) and non-

maximum suppression (122) were widely used for post-processing. Boosted by high-quality

visual features and end-to-end optimization, this framework significantly outperforms the

conventional deformable part-based model (82) which were trained on top of handcrafted

features (62). Despite the success of this framework, it still suffers from weak explainability,

as both object proposal extraction and classification modules were black-boxes, and thus

easily confused by occlusion (314) and adversarial attacks (279). There were also research

efforts of using mid-level or high-level contextual cues to detect objects (259) or semantic

parts (314). These methods, while being limited on rigid objects such as vehicles, often

benefit from better transferability and work reasonably well on partially occluded data (314).

Another way of visual recognition is to find correspondence between features or images,

so that annotations from one (training) image can be transplanted to another (testing)

image (103)(136)(183)(234)(248). This topic was noticed in the early age of vision (184)

and later built upon handcrafted features (169)(123)(294). There were efforts in introducing

semantic information into matching (153), and also improving the robustness against

noise (166). Recently, deep learning has brought a significant boost to these problems by

improving both features (202)(317) and matching algorithms (73)(102)(320)(126), while a

critical part of these frameworks still lies in end-to-end optimizing deep networks.

Training a vision system requires a large amount of data. To alleviate this issue,

researchers sought for help from the virtual world, mainly because annotating virtual data
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Figure 2.2: Two examples of annotated semantic parts in the class car. For better visualization, we
only show part of annotation.

is often easy and cheap (193). Another solution is to perform unsupervised or weakly-

supervised training with consistency that naturally exists (320)(94)(324). This paper

investigates both of these possibilities.

2.3 Our Approach

2.3.1 Problem: Semantic Part Detection

The goal of this work is to detect semantic parts on an image. We use P to denote the image-

independent set of semantic parts, each element in which indicates a verbally describable

components of an object (259). For example, there are tens of semantic parts in the class

14



car, including wheel, headlight, licence plate, etc. Two car examples with semantic parts

annotated are shown in Figure 2.2.

Let the training set D contain N images, and each image, In, has a width of Wn and

a height of Hn. A set Sn of Mn semantic parts are annotated for each image, and each

semantic part appears as a bounding box bn,m and a class label sn,m ∈ {1, 2, . . . , |P|},

where m is the index.

2.3.2 Framework: Detection by Matching

We desire a function S = f(I; θ) which receives an image I and outputs the corresponding

semantic part set S. In the context of deep learning, researcher designed end-to-end

models (205) which starts with an image, passes the signal throughout a series of layers,

and outputs the prediction in an encoded form. With ground-truth annotation Sn, a loss

function Ln is computed between S′n = f(In; θ) and Sn, and the gradient of Ln with

respect to θ is computed in order to update θ accordingly. Despite their success, these

approaches often require a large number of annotations to avoid over-fitting, yet their ability

of explaining the prediction is relatively weak. DeepVoting (314) went a step further by

simplifying the high-level inference layers as well as reducing the number of parameters in

them, so that the prediction can be partly explained by a feature voting process. However,

as we shall see in experiments, it still suffers significant accuracy drop in the scenario of

few training data.

This paper investigates the problem of semantic part detection from another perspective.

Instead of directly optimizing f(·), we adopt an indirect approach which assumes that

semantic part detection can be achieved by finding semantic correspondence between two
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(or more) images. This is to say, if a training image In is annotated with a set Sn of semantic

parts, and we know that In is densely matched to a testing image I∗, then we can transplant

Sn to S∗ by projecting each element of Sn onto the corresponding element of S∗ by applying

a spatially-constrained mapping function.

This approach suffers from a major drawback. For every testing image I∗, there needs

to be at least one training image which has a very similar viewpoint of I∗. The argument is

two fold. First, semantic parts that appear in an image vary among different viewpoints,

so we shall not expect the annotation to transfer between two images with large viewpoint

difference. Second, towards simplicity, we aim at using a relatively simple algorithm, e.g.,

the max-clique algorithm, for image matching. However, in the scenarios with few (e.g.,

tens of) training images, it is not realistic to expect the existence of such training samples.

Our solution, as well as the main contribution of this work, is to introduce auxiliary

cues by borrowing information from those training images with clearly different viewpoints.

These auxiliary cues are named viewpoint consistency, which suggests that when an object

and its semantic parts are observed from one viewpoint, they should be predictable under

another viewpoint, e.g., the viewpoint of the testing image. Therefore, our idea is to transfer

each training image to the same viewpoint of the testing image with semantic parts pre-

served, so that we can make prediction and transplant semantic parts with a light-weighted

feature matching algorithm. In what follows, we formulate this idea mathematically and

solve it using an efficient algorithm.
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2.3.3 The Matching Algorithm

We start with defining a generation function g(·) which takes a source (training) image In

as well as its semantic part annotation Sn, refers to the source and target viewpoints pn and

p∗, and outputs a transferred image and the corresponding semantic parts:

(︁
I′n, S′n

)︁
= g(In, Sn | pn, p∗). (2.1)

Throughout the remaining part, a prime in superscript indicates elements in a generated

image. Next, by assuming that I∗ and I′n have the same viewpoint1, we build a regional

feature matching between them, denoted by M∗n = M(I∗, I′n). We assume that both images

are represented by a set of regional features, each of which describes the appearance of a

patch. In the context of deep learning, this is often achieved by extracting mid-level neural

responses from a pre-trained deep network (259)(317). Although it is possible to fine-tune

the network with an alternative head for object detection (314), we do not take this option

in order to preserve the model’s explainability2. Let an image In have a set Vn consisting of

Ln regional features, the l-th of which is denoted by vn,l. We assume that all these feature

vectors have a fixed length, e.g., all of them are 512-dimensional vectors corresponding to

specified positions at the pool-4 layer of VGGNet (223)(259). Each vn,l is also associated

with a 2D coordinate un,l.

1We expect I∗ and I′n to have exactly the same viewpoint, though the matching algorithm I∗ has the true
viewpoint of p∗ while I′n is generated by the estimated p∗, so the actual viewpoints of these two images can
be slightly different, e.g., (233) reported a medium viewpoint prediction error of less than 10◦ on the car
subclass.

2We follow the argument that low-level features, e.g., edges, basic geometric shapes, etc., can be auto-
matically learned by deep networks on a large dataset, but in order to achieve explainability, the high-level
inference part should be assigned with clear meanings, e.g., visual word counting or feature voting.
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Then, M∗n takes the form of:

M∗n = M
(︁
I∗, I′n

)︁
=

{︂(︂
v∗lw , u∗lw , v′n,ln,w

, u′n,ln,w

)︂}︂W

w=1
, (2.2)

which implies that a feature vector v∗lw with a coordinate u∗lw on I∗ is matched to a feature

v′n,ln,w
at with a coordinate u′n,ln,w

on I′n. lw and ln,w are the matched feature indices on I∗

and I′n, respectively. We use both unary and binary relationship terms to evaluate the quality

of M∗n in terms of appearance and spatial consistency. The penalty function of M∗n, α(M∗n),

is defined as:

α(M∗n) = λ1 ·
W

∑
w=1

⃓⃓⃓
v∗lw − v′n,ln,w

⃓⃓⃓2
+

λ2 · ∑
1⩽w1<w2⩽W

⃓⃓⃓
∆u∗lw1 ,lw2

− ∆u′n,ln,w1 ,ln,w2

⃓⃓⃓2
, (2.3)

where ∆ denotes the oriented distance between two features, i.e., ∆u∗lw1 ,lw2
= u∗lw1

− u∗lw2

and ∆u′n,ln,w1 ,ln,w2
= u′n,ln,w1

− u′n,ln,w2
. Thus, the first term on the right-hand side measures

the similarity in appearance of the matched patches, and the second term measures the

spatial consistency of the connection between all patch pairs.

Based on M∗n, we can compute a coordinate transformation function T(·) mapping the

bounding box of each semantic part of I′n to the corresponding region on I∗:

b∗n,m = T
(︁
b′n,m |M∗n

)︁
, s∗n,m = s′n,m = sn,m, (2.4)

where m is the index of a semantic part.

18



2.3.4 Optimization with Multiple Viewpoints

After the annotations of all training images are collected and transplanted to I∗, we apply

the final term named cross-viewpoint consistency to confirm that these annotations align

with each other. For simplicity, we denote b∗m as the m-th semantic part transferred to I∗,

regardless of its source image index n. For all pairs (m1, m2) with the same semantic part

index, i.e., s∗m1
= s∗m2

, we compute the intersection-over-union (IOU) between the two

bounding boxes and penalize those pairs with similar but clearly different positions:

β(b∗, s∗) = λ3 · ∑
s∗m1

=s∗m2

IOU
(︂

b∗m1
,b∗m2

)︂
⩾τ

1− IOU
(︁
b∗m1

, b∗m2

)︁
, (2.5)

where we set τ = 0.5, i.e., two annotations are considered to be different instances if their

IOU is smaller than 0.5.

The final solution b∗, s∗ comes from minimizing the sum of the matching penalty

defined in Eqn (2.3) and the consistency penalty defined in Eqn (2.5):

Q(b∗, s∗ | I∗,D) =
N

∑
n=1

α(M∗n) + β(b∗, s∗). (2.6)

In this overall loss function, three modules can be optimized, namely, the generator g(·),

the matching function M(·, ·) and the coordinate transformation function T(·).

Directly optimizing Eqn (2.6) is computationally intractable due to two reasons. First,

it is not a convex function. Second, Eqn (2.6) involves matching I∗ to all training images,

which makes it time consuming the matching algorithm. This subsection provides a practical

solution, which deals with the first issue with iteration, and the second using a 3D model,
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while the possibility of designing other algorithm to optimize this generalized objective

function is preserved.

The major motivation comes from accelerating computation. We use a simplified

version of Eqn (2.1) which assumes that all images I′n and annotations S′n are generated by

the same model and thus identical to each other:

(︁
I′, S′

)︁ .
=

(︁
I′1, S′1

)︁
= . . . =

(︁
I′N, S′N

)︁
= R(I, S | p∗). (2.7)

In practice, I is a 3D virtual model (e.g., a point cloud) and S indicates the vertices in I that

correspond to semantic parts. Provided a viewpoint p∗, R(· | p∗) is a rendering algorithm

(e.g., UnrealCV (193)) that generates a 2D image I′ from I with S projected onto the image

as S′. Thus, we relate each training data (In, Sn) to the testing data (I∗, S∗) by:

(I◦n, S◦n) = R(I, S | pn) = R
(︂

R−1(I∗, S∗ | p∗) | pn

)︂
, (2.8)

and then computing the relationship between (In, Sn) and (I◦n, S◦n), i.e., using Eqns (2.3)

and (2.5) accordingly.

Finally, we assume that I and S do not change with testing data. Under this assumption,

Eqn (2.6) is partitioned into two individual parts, namely, a training stage which optimizes

I and S, and a testing stage which infers S∗, i.e., b∗ and s∗. Though the first part is often

time-consuming, it is executed only once and does not slow down testing.

2.3.4.1 Training: Optimizing the Hidden Variables

It is difficult to construct I directly by optimization, so pre-define a model set I and

each I is an instance in it. We purchase K = 5 high-resolution models from the Unreal
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Engine Marketplace, and enumerate through the set to achieve the best matching to each In

individually. We denote kn ∈ {1, 2, . . . , K} as the index of the model that In corresponds to.

Given a specified Ik, we first render it into I◦n = R(Ik | pn), and then extract the feature sets

Vn and V◦n with Ln and L◦n elements, respectively. the matching algorithm, this is achieved

by rescaling each image so that the short axis of the object is 224-pixel long (259), followed

by feeding it into a pre-trained 16-layer VGGNet (223) and extracting all 512-dimensional

feature vectors at the pool-4 layer. All feature vectors are ℓ2-normalized.

Now, Eqn (2.6), in the training stage, is simplified as:

Q({Ik, Sk} , {kn} | D) =
N

∑
n=1

α
(︁
M◦n,kn

)︁
+

K

∑
k=1

β(b◦k , s◦k), (2.9)

where M◦n,kn
is the matching between I◦n and I′kn

, and α
(︂
M◦n,kn

)︂
and β

(︁
b◦k , s◦k

)︁
are the

corresponding losses to Eqns (2.3) and (2.5). Note that both of these terms depend on

hidden variables {kn}N
n=1, i.e., α

(︂
M◦n,kn

)︂
computes the loss from I◦n to I′kn

, and β
(︁
b◦k , s◦k

)︁
only sums up the data that are assigned to Ik. We use an iterative algorithm to optimize

them. The starting point is that all kn are randomly sampled from {1, 2, . . . , K}.

In the first-step of each iteration, we fix all kn as well as α
(︂
M◦n,kn

)︂
and minimize

β
(︁
b◦k , s◦k

)︁
for each Ik, which is equivalent to finding the optimal Sk. Note that each Ik

is equipped with an individual Sk. So, we collect semantic parts from all images that

are assigned to Ik and optimize Eqn (2.5). As an approximation, each collected b◦m is

considered a candidate if at least ⌊µ · Nk⌋ boxes, including itself, have the same semantic

part index as well as an IOU of at least τ with it, where µ is a hyper-parameter and Nk is

the number of training images assigned to Ik. The average of all the overlapping boxes to a

candidate forms a semantic part of Sk. This algorithm is able to filter out false positives
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(e.g., those generated by incorrect matching) because these samples are mostly isolated.

Also, the true positives are averaged towards more accurate localization.

In the second-step, we instead fix all β
(︁
b◦k , s◦k

)︁
, minimize each α

(︂
M◦n,kn

)︂
by enumer-

ating k ∈ {1, 2, . . . , K} and finding the best solution meanwhile updating kn. Again, this is

done in an approximate manner. For each of the Ln × L◦n feature pairs (l, l◦), we compute

the ℓ2 distance between vn,l and v◦n,l◦ and use a threshold ξ to filter them. On the survived

features , we further enumerate all quadruples (l1, l2, l◦1 , l◦2 ) with l1 matched to l◦1 and l2

matched to l◦2 , compute ∆ul1,l2 and ∆u◦l◦1 ,l◦2
, and again filter them with a threshold ζ. Finally,

we apply the Bron-Kerbosch algorithm to find the max-clique on both images that are

matched with each other. the matching algorithm, the hyper-parameters ξ and ζ do not

impact performance.

2.3.4.2 Testing: Fast Inference

In the testing stage, all Ik and Sk are fixed, so the viewpoint consistency term vanishes and

the goal becomes:

Q(b∗, s∗ | I∗, {Ik, Sk}) = min
k

α(M∗k). (2.10)

Thus, we enumerate over all possible Ik and find the best solution. There are no new

components introduced in this part – the feature matching process is executed, based on

which a coordinate transformation function is built and transplants Sk into S∗ which obtains

the desired results.

Compared to Eqn (2.6) that computes feature matching between the testing image and

all N training images, Eqn (2.10) only performs the computation for each of the K models.

Most often, we have K ≪ N and so this strategy saves a large amount of computation at
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the testing stage.

2.3.5 Implementation Details

The rendering function g(·) is implemented with standard rasterization in a game engine.

We place the 3D model in regular background with road and sky, and use two directional

light sources to reduce shadow in the rendered images (this improves image matching

performance).

The transformation of the semantic part annotations is learned using their nearby

matched features. For each semantic part, a weighted average of its neighboring features’

relative translation is applied to the annotation, where the weights are proportional to the

inverse of the 2-D Euclidean distances between the semantic part and the features in the

source image.

The basis of our approach is the feature vectors extracted from a pre-trained deep

network. However, these features, being computed at a mid-level layer, often suffer a lower

resolution in the original image plane. For example, the pool-4 features of VGGNet (223)

used in this paper have a spatial stride of 16, which leads to inaccuracy in feature coordinates

and, consequently, transformed locations of semantic parts. To improve matching accuracy,

Approach 16 Training Samples 32 Training Samples 64 Training Samples
L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3

Faster R-CNN (205) 31.64 15.57 10.51 8.35 43.05 20.72 14.81 11.95 55.43 29.03 19.05 13.75
DeepVoting (314) 33.28 18.09 13.92 10.26 37.66 21.91 16.35 12.12 49.23 30.01 21.86 15.52
Ours 45.87 31.32 26.52 15.77 50.16 34.27 28.25 17.67 52.23 35.11 29.08 18.04

Table 2.1: Semantic part detection accuracy (by mAP, %) of different approaches using different
number of training samples. L0 through L3 indicate occlusion levels, with L0 being non-occlusion
and L3 the heaviest occlusion.
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we apply a hierarchical way of extracting regional features. The idea is to first use higher-

level (e.g., pool-4) features for semantic matching, and then fine-tune the matching using

lower-level (e.g., pool-3) features which have a smaller spatial stride for better alignment.

2.3.6 Discussions

Compared to prior methods on object detection (205) or parsing (314), our approach enjoys

a higher explainability as shown in experiments (see Figure 2.5). Here, we inherit the

argument that low-level or mid-level features can be learned by deep networks as they often

lead to better local (297) or regional (202) descriptions, but the high-level inference stage

should be semantically meaningful so that we can manipulate either expertise knowledge

or training data for improving recognition performance or transferring the pipeline to other

tasks. Moreover, our approach requires much fewer training data to be optimized, and

applies well in novel viewpoints which are not seen in training data.

The training process of our approach can be largely simplified if we fix S, e.g., manually

labeling semantic parts on each 3D model I. However, the amount of human labor required

increases as the complexity of annotation as well as the number of 3D models. Our approach

serves as a good balance – the annotation on each 2D image can be transferred to different

3D models. In addition, 2D images are often annotated by different users, which provide

complementary information by crowd-sourcing (65). Therefore, learning 3D models from

the ensemble of 2D annotations is a safer option.
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2.4 Experiments

2.4.1 Settings and Baselines

We perform experiments on the VehicleSemanticPart (VSP) dataset (259). We choose sedan,

a prototype of car, which aligns with the purchased 3D models, and investigate whether our

approach generalizes to other prototypes. There are 395 training and 409 testing images,

all come from the Pascal3D+ dataset (274), and the authors manually labeled 39 semantic

parts covering a large fraction of the surface of each car (examples in Figure 2.2). There

are 9 semantic parts related to wheel, 1 at the center and other 8 around the rim. We only

consider the center one as the others are less consistent in annotation. Moreover, we did not

investigate other classes due to the difficulty in defining 3D models, i.e., airplane, bus, and

train images suffer substantial intra-class appearance variation, and bike and motorbike are

not perfectly rigid. The same setting was used in some prior work (186)(93)(145), which

focused on broad applications of car parsing.

We use the ground-truth azimuth angle to categorize training images into 8 bins, centered

at 0◦, 45◦, . . . , 315◦, respectively. We randomly sample N′ ∈ {2, 4, 8} images in each

bin, leading to three training sets with 16, 32 and 64 images, which are much smaller than

the standard training set (395 images). In the testing stage, we provide the ground-truth

viewpoint and bounding-box for each image, which often requires less than 3 seconds to

annotate – in comparison, labeling all semantic parts costs more than one minute. We add

quantization noise to the ground-truth azimuth and polar angles by assigning them into

bins with fixed widths. This is to reduce the benefit of the algorithm in using very accurate

viewpoints. In addition, following the same setting of (314), different levels of occlusion
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are added to each testing image.

The competitors of our approach include DeepVoting (314), a recent approach towards

explainable semantic part detection, as well as Faster R-CNN (205) (also used in (314)),

an end-to-end object detection algorithm. Other approaches (e.g., (259) and (258)) are not

listed as they have been verified weaker than DeepVoting.

2.4.2 Quantitative Results

Results are summarized in Table 2.1. One can observe that our approach outperforms both

DeepVoting and Faster R-CNN, especially in the scenarios of (i) fewer training data and (ii)

heavier occlusion.

2.4.2.1 Impact of the Amount of Training Data

One major advantage of our method is the ability to learn from just a few training samples

by preserving the 3D geometry consistency for images from different viewpoints. As shown

in Table 2.1, when using as less as 16 training images, which provides no more than 6

training samples for most semantic parts, our method still gives reasonable predictions and

outperforms other baseline method by a large margin. By increasing the training sample

number, our method also benefits from learning more accurate annotations on the 3D model,

resulting to higher mAP in the 2D detection task. By contrast, both Faster R-CNN and

DeepVoting fail easily given small number of training.

Since the viewpoint is provided for each testing image, we also design a naive overlaying

algorithm which transfers semantic parts between two images with similar viewpoints,

i.e., each semantic part is transferred to the same relative position within the bounding
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box. With 16 training samples, it produces an mAP of 23.74%, about 50% lower than our

approach. This reveals the effectiveness of using feature matching to guide coordinate

transformation.

2.4.2.2 Ability of Dealing with Occlusion

To evaluate how robust our method is to occlusion, we apply the models learned from

the occlusion-free dataset to images with different levels of occlusion. Compared to

DeepVoting (314), which learns the spatial relationship between semantic parts and their

characteristic deep features in occlusion-free settings, our method directly models the

spatial relationship of parts by projecting them to the 3D space, and then matches them

back to the occluded testing. On light occlusion, our method consistently beats the baseline

methods. In the cases of heavier occlusion, due to the deficiency of accurately matched

features, the performance of our method deteriorates. As expected, Faster R-CNN lacks the

ability of dealing with occlusion and its performance drops quickly, while DeepVoting is

affected less.

It is interesting to see that the robustness to fewer training data and occlusion is

negatively related to the number of extra parameters. For example, DeepVoting has less

than 10% parameters compared to Faster R-CNN, and our approach, being a stage-wise

one, only requires some hyper-parameters to be set. This largely alleviates the risk of

over-fitting (to small datasets) and the difficulty of domain adaptation (to occlusion data).
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Figure 2.3: Example of predicting on unseen viewpoint. Left: test image with transferred annotation
(red) and ground truth (green). Note that no ground truth for wheels is given for the current
image, which is an annotation error. Right: viewpoint matched synthetic image with semantic part
annotations learned from training data.

2.4.2.3 Predicting on Unseen Viewpoints

To show that our approach has the ability of working on unseen viewpoints, we train the

models using sedan images with various azimuth angle and 0◦ elevation angle, then test

them on sedan with elevation angle equal or larger than 10◦. The results are shown in

Table 2.2. Our method maintains roughly the same mAP as tested on all viewpoints, while

Approach # Training Samples
16 32 64

Faster R-CNN 16.02 21.80 19.91
DeepVoting 8.59 27.71 33.82
Ours 48.96 50.86 49.54

Table 2.2: Semantic part detection accuracy (by mAP, %) of different approaches on unseen
viewpoints.
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FasterRCNN and DeepVoting deteriorate heavily. In Figure 2.3, we show predictions made

by our method on one sample with unseen viewpoint (elevation angle equals 20◦). The

predicted locations are very close to the annotated ground truth, and may help to fix the

annotation error in the dataset.

2.4.2.4 Transfer across Different Prototypes

In order to evaluate how sensitive our method is to the car prototype used during training

(and 3D reconstruction), we transfer the sedan model with semantic parts to other prototypes

of cars. Results are summarized in Table 2.3. As expected, our method generalizes fine

to prototypes with similar appearance (e.g., SUV). For minivan and hatch-back, due to the

variation of their 3D structures and semantic part definitions, the performance drops more.

Similar results are observed from Faster R-CNN and DeepVoting, and DeepVoting seems

slightly more robust to the prototypes.

2.4.3 Qualitative Studies

2.4.3.1 Viewpoint Consistency in Training

In Figure 2.4, we show examples on how viewpoint consistency improves the stability of

the training stage. Although we have applied 2-D geometry coherence as one of the criteria

Approach sedan SUV
mini-

van
hatch-

back
Faster R-CNN 43.05 41.16 32.18 30.04
DeepVoting 37.66 37.18 30.67 31.62
Ours 50.16 44.39 39.41 34.91

Table 2.3: Semantic part detection accuracy (by mAP, %) of different approaches on other car
prototypes. All models are trained using 32 sedan images.
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Figure 2.4: Two examples of how viewpoint consistency improves the semantic part annotation
on 3D model. The red circles represent incorrectly transferred semantic part annotations that get
eliminated during our aggregation process using 3-D geometry constraints. The green circles are the
reasonable annotations that are used to get the final annotation for the targeted semantic part, which
is represented by the blue stars with bounding-boxes.

during matching individual training samples to their viewpoint-paired synthetic images, it

is possible to get wrong matched features at inaccurate positions. Therefore, the semantic

part annotations transferred from an individual training image could be far off the ground

truth area (e.g., outliers shown by the red circles). With viewpoint consistency, the incorrect

annotations are eliminated during aggregation, and our method stably outputs the right

position for the targeted semantic parts (e.g., final annotation shown by blue stars) based on

the reasonably transferred annotations (e.g., inliers shown by green circles).
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Figure 2.5: Interpret semantic part detection. Stars with bounding-boxes represent the semantic
parts that are transferred from the synthetic image (right) to the testing image (left), based on
transformation learned from features (green circles, matched features are linked by red lines) in their
neighborhood.

2.4.3.2 Interpreting Semantic Part Detection

Next, we provide some qualitative results to demonstrate the explainability of our approach.

In Figure 2.5, we show examples of how we locate the semantic parts in two image pairs.

Each pair includes one testing image and its viewpoint-matched synthetic image.The star

represents the location of the semantic parts in each image (learned from training in the

synthetic images and got transferred to in the testing images), and the color represent their

identity. The transformation is learned using nearby matched features, which are shown by

green circles (matched features are linked by red lines). For better visualization, we only

display the nearest three features for each semantic part in the figure. This explains what

features are used to transfer the annotation from synthetic images to testing images, and

helps us understand what is going on during the inference process.
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2.5 Conclusions

In this paper, we present a novel framework for semantic part detection. The pipeline

starts with extracting regional features and applying robust matching algorithms to find

correspondence between images with similar viewpoints. To deal with the problem of

limited training data, an additional consistency loss term is added, which measures how

semantic part annotations transfer across different viewpoints. By introducing a 3D model

as well as its viewpoints as hidden variables, we can optimize the loss function using an

iterative algorithm. In the testing stage, we directly apply the same algorithms to match the

semantic parts from the 3D model back to each 2D image, and achieve high efficiency in

the testing stage. Experiments are performed to detect semantic parts of car in the VSP

dataset. Our approach works especially well with very few (e.g., tens of) training images,

on which other competitors (205)(314) often heavily over-fit the data and generalize badly.

Our approach provides an alternative solution to object parsing, which has three major

advantages: (i) it can be trained on a limited amount of data and generalized to unseen

viewpoints; (ii) it can be trained on a subset of viewpoints and then transferred to novel

ones; and (iii) it can be assisted by virtual data in both training and testing. However, it

still suffers from the difficulty of designing parameters, which is the common weakness of

stepwise methods compared to the end-to-end learning methods. In other words, a lot of

work is yet undone towards the balance of abilities of learning and explanation.

Researchers believe that 3D is the future direction of computer vision. In the intending

research, we will try to learn one or more 3D models directly from 2D data, or allow the 3D

model to adjust slightly to fit 2D data. More importantly, it is an intriguing yet challenging
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topic to generalized this idea to non-rigid objects, which will largely extend its area of

application.
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Chapter 3

CoKe: Contrastive Learning for Robust
Keypoint Detection

In this part of the work, we focus on making keypoint detection more robust. Keypoint

detection involves locating important landmarks or keypoints on an object. We introduce a

new method called CoKe that uses contrastive learning, which learns representations by

bringing similar examples close together and pushing dissimilar ones apart, and it enhances

the robustness and generalization of keypoint detection across diverse real-world data.

3.1 Introduction

Semantic keypoints, such as the joints of a human body, provide concise abstractions

of visual objects in terms of their shape and pose. Accurate keypoint detections are of

central importance for many visual understanding tasks, including viewpoint estimation

(189), human pose estimation (29), action recognition (171), feature matching (163), image

classification (309), and 3D reconstruction (132). There are many diverse approaches

for keypoint detection. Common approaches include the application of a regression loss
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Figure 3.1: Intuition behind our approach. Image patches depict feature representations of two
different keypoints (blue and red border) and background clutter (grey border). The star shapes
illustrate the average representations µ1 and µ2 of the corresponding keypoint features. Our approach
learns a representation space such that the following three distances are optimized: (1) The distance
between features of the same keypoint is small, i.e. they cluster tightly around their mean. (2) The
distance between the keypoint clusters is maximized. (3) The distance between the clutter features
and the keypoint centers is maximized.
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(180; 133), a classification loss (109), or combinations of either of those with a 3D ge-

ometric model of the object (321). In recent years, work in contrastive learning has led

to major advances in representation learning (39; 106; 174) demonstrating benefits over

classical losses, such as cross-entropy, e.g. in terms of robustness and data efficiency (134).

However, most works on contrastive learning in computer vision focus on the task of image

classification, and it remains unclear how contrastive learning can be applied for keypoint

detection.

In this paper, we introduce a contrastive learning framework for keypoint detection

(CoKe). Keypoint detection differs from other visual tasks where contrastive learning

has been applied, such as face recognition (213) or unsupervised learning (106), because

the input is a set of images in which multiple keypoints are annotated. To enable the

contrastive learning of keypoint detectors, we need to represented and detected keypoints

independently, such that a contrastive loss can make the keypoint features different from

each other and from the background. This is very different from current popular approaches

to keypoint detection, such as stacked hourglass networks (? ), which attempt to detect

all keypoints jointly. Our approach has two benefits: It enables us to exploit the power of

contrastive learning for keypoint detection, and by detecting each keypoint independently

the detection can become more robust to occlusion compared to holistic methods (as shown

in our experiments).

Our CoKe framework introduces several technical innovations. Specifically, we found

that the contrastive learning of keypoint representations requires the optimization of three

types of distances in the feature space (Figure 3.1):

(1) The distance between features of the same keypoint should be small. But the
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computational cost to calculate the distance between all features of the same keypoint

is quadratic in their number. We instead reduce the computational cost to be linear by

introducing an average prototypical representation for each keypoint (stars in Figure 3.1).

(2) The distance between features of different keypoints should be large. The number of

distance comparisons between features of different keypoints is combinatorial in the number

of keypoints and training images. To manage this computational burden, we introduce a

keypoint bank which stores the prototypical representations of all keypoints and allows

for an efficient computation of the distance between the prototypes of different keypoints

(Figure 3.1 bold orange arrow).

(3) The distance between keypoint features and features from the background clutter

(Figure 3.1 grey squares) should be large to reduce false-positive detections. However, most

of the features in an image are clutter features and it is not feasible to compute the distance

to all of them. Therefore, we introduce a clutter bank that keeps track of clutter features

that are spatially close to keypoint features and hence are most difficult to be distinguished

from.

The proposed approximations enable an efficient contrastive learning of keypoint

detectors. We evaluate CoKe on several datasets including PASCAL 3D+, MPII, and

ObjectNet3D. We observe that CoKe performs on par, and often even better, compared to

SOTA related work (Stacked Hourglass Networks, MSS-Net (133)) and to approaches that

use additional supervision in terms of detailed 3D object geometries (StarMap (321)). These

results are remarkable as CoKe works well on all these datasets while, for example, the best

results on MPII are often achieved by architectures that are specialized for human keypoint

detection. We also observe that when compared to related work, CoKe is exceptionally
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robust to partial occlusion and unseen object poses. Our main contributions are:

1. We introduce a framework for keypoint detection that benefits from the power of

contrastive learning.

2. CoKe performs very well on various keypoint detection datasets for rigid and articu-

lated objects.

3. CoKe achieves exceptional robustness to partial occlusion and previously unseen

object poses.

3.2 Related Work

Keypoint Detection. Keypoint detection, is a widely studied problem in computer vision.

Popular applications are, e.g., the detection of human joints (29; 180; 239; 240) or distinct

locations on rigid objects (270; 247; 189; 321). Early approaches relied on local descriptors

(96; 211; 297; 52; 83) that are distinctive and invariant (165). While approaches using

local descriptors have proven to be robust to occlusion and background clutter, they were

outperformed by deep learning approaches that were trained end-to-end (180). Toshev

et al. (240) first trained a deep neural network for 2D human pose regression and Li et

al. (146) extended this approach to 3D. Starting from the work of Tompson et al. (239),

regression-based approaches to keypoint detection became very popular. They perform

keypoint detection by regressing a heatmap representation. These approaches achieve a

particularly good performance at detecting the joints of both articulated and rigid objects

(180), because they can implicitly leverage the structural information between keypoint to

resolve locally ambiguous keypoint detections. Tulsiani et al. (247), proposed to integrate
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the structural information between keypoints explicitly by integrating 2D and 3D models,

which inspired a number of follow-up works, in particular for rigid objects (321; 247; 189).

Supervised Contrastive Learning. Contrastive learning, originates from Metric Learn-

ing (35; 268; 206) and involves the learning of a representation space by optimizing the

similarities of sample pairs in this space. Intuitively, supervised contrastive learning aims

to reduce the distance of feature representations of the same class, while increasing the

distance between samples from different classes. Popular examples use pairs of samples

for loss computation (101), triplets (213), or N-Pair tuples (225).

Recently, contrastive learning has attracted attention from the research community

in self-supervised learning (39; 106; 272; 174; 113). The main difference in the self-

supervised learning setting is that positive examples are usually generated using data

augmentations(57) or co-occurrence (121; 235) of a query sample, whereas negative exam-

ples are chosen as other images in the same mini-batch.

While most of the supervised contrastive learning (134) focuses on learning a holistic

representation of the complete image, in this paper, we target a more fine-grained task

- keypoint detection. Keypoints are localized image patterns and therefore require the

learning of local feature embeddings. The main challenge is that local image patterns can

be highly ambiguous (e.g. the front and back tire of a car) and therefore require a contrastive

learning framework that can learn to disambiguate local representations, while at the same

time being able to learn a distinct representation that can be localized accurately.
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Figure 3.2: Illustration the Keypoint and Clutter Bank Updating Process. First, a feature map for
the input image is extracted. After a dimensionality reduction and L2 normalization, we retrieve the
keypoint features (F1-F6) and randomly selected clutter features (F7-F10). The Keypoint Bank is
updated using a cumulative moving average update. The Clutter Bank is updated by replacing the
oldest features in the Clutter Bank with (F7-F10) based on the time tag.

3.3 CoKe: Contrastive Keypoint Learning

In this section, we present our framework for contrastive keypoint learning, then discuss the

intuition underlying our approach and the training pipeline and how to perform keypoint

detection during inference.

3.3.1 Training CoKe

We use Φ to denote the feature extractor. Given an input image Ii, it computes the

feature map Φ(Ii) = Fi ∈ RH×W×D, where i is the image index in the training data
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{Ii|i ∈ {1, . . . , N}}. Using the keypoint annotation we retrieve the corresponding keypoint

features fi
k ∈ RD for the keypoints k ∈ K from the feature map Fi. Similarly, we can

(randomly) select a non-keypoint location as clutter point and retrieve a set of clutter

features {fi
c ∈ RD|c ∈ {1, . . . , C}}. We define the distance between two features as

d(·, ·). During training we learn a feature extractor that optimizes the following distances

in the feature space:

(1) One objective for the feature extractor during training is to minimize the distance

between features of the same keypoint (i.e. the intra-keypoint distance) across all training

images, by minimizing the objective:

Dintra(fi
k) =

N

∑
j=1

d(fi
k, fj

k) ≈ d(fi
k, ¯k). (3.1)

However, as we described in the introduction it is unpractical to compute the distance of

a keypoint’s feature vector from one image fi
k to the corresponding vectors in all other

training images j ∈ {1, . . . , N}. To resolve this computational problem, we define a

prototypical keypoint feature ¯k, that represents the average feature of keypoint k. Instead of

computing the full objective, we approximate it as simply the distance to the corresponding

average representation d(fi
k, ¯k). We store the prototypical features of all keypoints {µk} in

a keypoint bank and update them during training.

(2) The second objective for the feature extractor is to maximize the distance between

features of different keypoints (i.e. the inter-keypoint distance). This requires computing

the distance between the feature representations of one particular keypoint k and all other
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keypoints k
′

over all training images:

Dinter(fi
k) = ∑

k′∈K\{k}

N

∑
j=1

d(fi
k, fj

k′) ≈ ∑
k′∈K\{k}

d(fi
k, ¯k′). (3.2)

We approximate this objective by instead computing the distance to the prototypes of the

respective keypoint features from the keypoint bank.

(3) The third objective for the feature extractor is to maximize the distance between

the keypoint features and all clutter features. In the best case, this involves computing

the distance between a keypoint feature fi
k to every clutter feature in all training images.

To avoid the computation of this large amount of distances, we instead approximate this

objective by storing a subset of all clutter features {`c, c ∈ C} in a clutter bank. Which

allows us to approximate the full objective with

Dclutter(fi
k) ≈ ∑

c∈C

d(fi
k, `c). (3.3)

These three approximations make it feasible to optimize the overall objective with a

feasible computational load. As the parameters of the feature extractor will change during

learning, the clutter features fc in the clutter bank as well as the prototypes ¯k need to be

updated. To achieve this, we follow an EM-type optimization process. First, we initialize

the clutter bank by randomly sampling clutter features from the training data, and initialize

the prototypes by computing the average feature for every keypoint across the training

data µk =
∑N

i=1 fi
k

N . Using these initial estimates, we can compute the overall objective and

train the feature extractor. While training the feature extractor, we update the clutter and

keypoint bank. We perform those updates in an alternating manner.
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3.3.1.1 Keypoint and Clutter Bank Update

Figure 3.2, illustrates the process of updating the keypoint prototypes and the clutter bank

during training.

Keypoint Bank Update. Computing the prototypical keypoint features ¯k while learning

the feature extractor is challenging, because we want to avoid to re-compute the prototypes

over all training images µk =
∑N

i=1 fi
k

N after every gradient step. Instead, we approximate the

sample mean via a cumulative moving average. Specifically, we update ¯k with a training

batch of size m using:

¯k ← ¯k ∗ α +
∑m

i=0 fi
k

m
∗ (1− α). (3.4)

Clutter Bank Update. The clutter bank contains a limited number C of clutter features

{`c, c ∈ C}. In practice the size of the clutter bank depends on the availability of GPU

memory and we observe that the larger the bank, the better the training performance (see

experiments section). We update the clutter bank during training by replacing the oldest

clutter features with newly extracted features from the current training batch based on a

time tag that indicates how long features were stored in the bank.

3.3.1.2 Feature Extractor Training

When training the feature extractor with SGD, we freeze the keypoint bank and clutter

bank in every gradient step and use them to compute the gradient update on the weights of

the feature extractor. To compute the distance between two feature vectors, we use the L2

distance:

d(fa, fb) = (fa − fb)
2 = 2 ∗ (1− fa · fb). (3.5)
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The last step in above equation leverages that all features in our model are L2 normalized.

From Eq. 3.5 observe that we can minimize Dintra(fi
k) by maximizing fi

k · ¯k. Similarly,

we can maximize Dinter(fi
k) and Dclutter(fi

k) by minimizing {fi
k · ¯k′ |∀k′ ∈ K \ {k}}

and {fi
k · `c |∀c ∈ C} respectively. To optimize those terms simultaneously, we use a

non-parametric softmax as our loss function. Thus, the loss for each keypoint feature is

calculated as:

L(fi
k, {µk}, {`c}) =

efi
k·¯k

∑k′∈K efi
k·¯k′ + ∑c′∈C efi

k·`c′
, (3.6)

where {µk} is the keypoint bank and {θc} is the clutter bank.

Clutter Sampling Loss. A technical problem is that the features in the clutter bank are

copied from a large number of training images, and therefore it is not practical to calculate

gradient directly w.r.t. {θc}, and therefore the feature extractor is not optimized w.r.t. the

clutter features. This technical limitation makes the optimization w.r.t. the clutter distance

Dclutter(fi
k) converge slowly, especial when the clutter bank is large. To make the training

more efficient, we propose a clutter sampling loss, which uses the sampled clutter features

fi
c from the current training batch and directly maximizes the clutter to keypoint distance:

L(fi
c, {µk}) = ∑

k′∈K

fi
c · ¯k′ . (3.7)

Thus, the final loss for training the feature extractor becomes:

L(Fi,{µk},{`c})=∑
k∈K

L(fi
k, {µk}, {`c})+∑

c∈C

L(fi
c, {µk}). (3.8)

44



Keypoint Bank

K1
K2
K3
K4
K5
K6
K7

K1
K2
K3
K4
K5
K6

K7

CNN	
backbone

1*1	Conv ArgMax
Feature MapImage Response Map Keypoints Detection

Figure 3.3: Keypoint detection with CoKe. We first extract feature representation at different
positions of input image. Each keypoint in the Keypoint Bank has an individual representation used
as a convolution kernel to compute a response map. The location of maximum response is used as
prediction result. Colored boxes show ground truth and dots the prediction result.

3.3.2 Inference with the CoKe Model

In the following, we describe the detection process for keypoints of a single category, but

note that this can be trivially extended to multiple categories. Figure 3.3 illustrates the

inference process with the CoKe. To locate the predicted the keypoint position pk for

keypoint k on the feature map of a test image Ii, we apply the following steps:

Extract a feature map Φ(Ii) = Fi using the trained feature extractor Φ. Use the

prototypes ¯k, k ∈ K to compute the per pixel feature distance d(f, ¯k) for all feature vectors

f ∈ Fi and store the detection scores in the output S ∈ RH×W×K. For each keypoint, select

the position p with the highest detection score in S. Project p back to the original image

coordinates.

3.4 Experiments

In this section, we experimentally evaluate CoKe and compare it to related works. We

first describe the experimental setup, compare CoKe to related work on several diverse
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datasets, and study their robustness to partial occlusion. Then discuss qualitative results

with ablation studies.

3.4.1 Experimental Setup

Evaluation Protocol. Evaluation is done using the standard Percentage of Correct Key-

points (PCK) metric which reports the percentage of detections that fall within a normalized

distance of the ground truth. we use PCK=0.1 for PASCAL3D+, ObjectNet3D and Occlud-

edPASCAL3D+ datasets following the standard experimental protocol. For MPII, we use

PCKh=0.5 as the evaluation metric. Distance is normalized by a fraction of the head size

(PCKh). We follow the common protocol of evaluating each object category by computing

the average accuracy on the visible keypoints over all the test images.

Training Setup. We use the standard train-val-test split for all the datasets. We use a

batch size of 64 for training. For each image, we randomly select a group of 20 clutter

points. The full clutter bank consists of 1024 such groups. We choose the clutter features

to be within two pixels distance to the keypoint annotation in the feature map. We use the

non-parametric softmax (272) to calculate the similarity between features and banks. The

temperature parameter(120) that controls the concentration level of the distribution is set to

τ = 0.7.

PASCAL3D+ Dataset. The dataset contains 12 man-made object categories with

totally training 11045 images and 10812 evaluation images. Different from previous works

(321; 247), we use all images for evaluation, including occluded and truncated ones.

MPII Dataset. MPII Human Pose (4) consists of images taken from a wide range of

human activities with a challenging array of articulated poses. The keypoint visibility is
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Figure 3.4: Eight examples of CoKe-Res50’s representation visualization. For each sub-figure,
top is the original image with keypoint annotation, labeled with red dot. Bottom is the response
map, predicted by CoKe-Res50. It is worth noting that how all keypoints are detected accurately
despite the difficulty from false positives, occlusions, rare viewpoints, different domain, irregular
appearance and irregular state and rare viewpoints.

annotated, enabling us to report numbers for the full dataset as well as partially occluded

humans.

ObjectNet3D Dataset. ObjectNet3D consists of common daily life objects and is

notably more difficult compared to PASCAL3D+ as it contains more rare viewpoints,

shapes and truncated objects with occlusion. We test on nine categories, chosen based

on their high annotation accuracy, as some categories in ObjectNet3D have low quality

annotations due to the complexity of this dataset.

OccludedPASCAL3D+ Dataset. While it is important to evaluate algorithms on real

images of partially occluded objects, simulating occlusion enables us to quantify the effects

of partial occlusion more accurately. We use an analogous dataset with artificial occlusion

for keypoint detection proposed in (257) for object detection. It contains all 12 classes

of the PASCAL3D+ dataset at various levels of occlusion. The dataset has a total of 3

occlusion levels, with Lv.1: 20-40%, Lv.2: 40-60% and Lv.3: 60-80% of the object area
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being occluded.

3.4.2 Performance on Various Datasets

PASCAL3D+ and OccludedPASCAL3D+. Table 3.1 shows the keypoint detection results

on the PASCAL3D+ dataset for CoKe models learned from three different backbones:

ResNet-50 (110), Stacked-Hourglass-Network and Res-UNet (313). We also show the

performance of StarMap (321) as reported in the original paper. Note that StarMap uses 3D

models as additional supervision to jointly reason about the relative position of the keypoints.

The performance of CoKe with all backbones is constantly high. The highest performance

is achieved with the most recently developed architecture Res-UNet. When compared to the

original Stacked-Hourglass-Network trained with a regression loss (SHG) we can clearly

observe a large gain in performance. Most notably, the performance difference is very

prominent for strong occlusion. We believe CoKe is more robust to occlusion, because

of two reasons: 1) It is actively optimized to discriminate between keypoint features and

clutter features based on their local representations only, which might help to reduce the

effective receptive field size and hence reduces the negative effects of occlusions. 2) CoKe

stores the clutter representation from a large number of images, and hence can better learn

to distinguish keypoints from clutter. Overall, our results clearly highlight that CoKe is

very competitive with related work, while being highly robust to partial occlusion.

In Table 3.2, we also perform an experiment to demonstrate additional robustness to

unseen object poses. We divide the azimuth pose in the car category of Pascal3D+ into 4

bins, front, back, left and right. We train CoKe on the front and back subsets, and test on

seen (7305 images) and unseen (3507 images) poses separately. Table 3.2 shows that CoKe
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is much more robust to unseen poses compared to SHG.

PASCAL3D+
Occlusion Level Lv.0 Lv.1 Lv.2 Lv.3 Avg
SHG 68.0 46.5 43.2 39.9 49.4
MSS-Net 68.9 46.6 42.9 39.6 49.5
StarMap 78.6 - - - -
CoKe-Res50 77.0 67.6 59.9 53.4 64.4
CoKe-SHG 78.3 66.3 58.4 52.3 63.8
CoKe-ResUnet 80.3 68.5 59.1 54.0 65.5

Table 3.1: Keypoint detection results on PASCAL3D+ under different levels of partial occlusion
(Lv.0:0%,Lv.1:20-40%,Lv.2:40-60%,Lv.3:60-80% of objects are occluded, L0 is the original dataset).
CoKe outperforms baseline models and is highly robust to partial occlusion.

PASCAL3D+
Seen-Pose Unseen-Pose

CoKe-SHG 94.0 84.0
SHG 94.2 73.6

Table 3.2: Robustness of keypoint detectors to unseen poses. For the car category, we separate
PASCAL3D+ training and testing set into 4 bins using azimuth annotations. We train CoKe on the
front and back subsets, and test under both seen and unseen poses.

MPII. We compare CoKe learned from the SHG backbone to a number of related works

on MPII in Table 3.3. CoKe-SHG is again highly competitive and outperforms related

work by a small but significant margin. Table 3.4 compares CoKe-SHG and SHG for both

occluded and non-occluded keypoint detection on the MPII dataset. We can observe that

CoKe achieves significantly higher results on occlusion scenarios compared with SHG.

ObjectNet3D. We compare SHG and a CoKe-SHG on ObjectNet3D in Table 3.5.

CoKe-SHG outperforms SHG by a large margin on every category. Since ObjectNet3D

dataset contains much more challenging scenarios, we claim that CoKe is more robust.
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MPII
RecurrentPose(19) 88.1
PoseMachines(267) 88.5
DeeperCut(127) 88.5
PartHeatmap(27) 89.7
SHG(180) 90.9
DualPathNetworks(181) 91.2
PoseRegression(27) 91.2
CoKe-SHG 91.4

Table 3.3: Keypoint detection results on MPII compared with regression based algorithms.

MPII
Full Occluded

SHGs 90.1 84.3
CoKe-SHG 91.4 86.7

Table 3.4: Keypoint detection results on MPII of CoKe-SHG and SHG on both original and
challenging scenarios.

In summary, we observe that CoKe is a general purpose framework that constantly

achieves a very high performance across a wide range of backbone architectures and for

a range of datasets with very different characteristics, while also being highly robust to

occlusion.

3.4.3 Qualitative Results

Visualization of Keypoint Detection Maps. We visualize the part detection maps from

CoKe-Res50 in Figure 3.4. Images are selected from the car category in PASCAL3D+

which has complex changes in pose, illumination and object structure. Note how all

keypoints are detected accurately despite the difficulty from false positives, occlusions, rare

viewpoints, different domain, irregular appearance. We can observe that CoKe is robust in
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Figure 3.5: Qualitative detection results under different levels of partial occlusion for artificially
occluded objects from PASCAL3D+ (a-d) and humans from MPII (e). The dots visualize the
detection result of CoKe. The colored circles in (a-d) indicate the ground-truth position within
PCK=0.1, and in (e) indicate ground-truth position within PCKh=0.5. Note how CoKe is very robust
even under strong occlusion.

these challenging scenarios.

Visualization of Detection Results under Occlusion. We visualize qualitative results

in Figure 3.5. Overall, the illustrations demonstrate the robustness of CoKe to partial

occlusions. Any keypoints that are not in the vicinity of occluders are correctly detected

and not affected by the occlusion. Furthermore, keypoints that are partially occluded (e.g.

the wheel) can still be located robustly, although the detections tend to move away from

the occluder. Importantly, we do not observe false positive detections at locally ambiguous

keypoints. This demonstrates that CoKe leverages the receptive field to disambiguate

keypoints, while still being able to localize individual keypoints accurately.

Inference Time and Memory Consumption. During inference, CoKe-Res50 (params:

23M, acc: 77%) takes 0.01s per image, while SHGs (params: 25M, acc: 68%) needs 0.06s.
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ObjectNet3D
coffee dryer kettle jar wash

SHG 31.0 35.1 32.2 41.9 33.9
CoKe-SHG 36.4 37.6 37.8 45.2 36.1

can calc eyegls guitar mean
SHG 66.8 52.3 44.6 45.8 42.62
CoKe-SHG 70.2 57.7 51.3 49.6 46.88

Table 3.5: Keypoint Detection results on ObjectNet3D+ (273).

For the memory consumption, CoKe-Res50 needs 715MB, SHGs 786MB when batch size

equals to 1. CoKe has an advantage of the inference time while maintaining the competence

of the memory consumption.

3.4.4 Ablation Study

Comparison with Other Losses. In Table 3.6, we ablate the effect of the contrastive

learning compared to other common losses on different backbone architectures. Specifically,

we compare to a regression loss as used in Stacked-Hourglass-Networks and a supervised

classification loss. The classification baseline enables us to compare the effect of the

contrastive learning with a cross-entropy loss. We implement keypoint detection as a

classification problem by using the features at the ground truth keypoint locations in the

training data as instances of different classes to train the backbone with the cross-entropy

objective. During testing, we use the average representations from the training set as part

detector, similar as in the CoKe pipeline. The main difference to the CoKe training is hence

that the contrastive loss and the clutter bank are not used. From the results, we observe that

our representation learning formulation of keypoint detection constantly outperforms other

losses by a large margin.
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PASCAL3D+
Backbone Reg Class CoKe
SHGs 68.0 67.8 78.3
Res50 68.9 69.3 77.0
ResUnet 69.7 70.2 80.3

Table 3.6: Ablation study of CoKe training strategy in comparison of standard regression or
classification training loss.

Occlusion Level Lv.0 Lv.1 Lv.2 Lv.3
No clutter 79.3 75.4 71.8 65.8
Image-specific clutter 92.8 82.7 76.5 69.2
Clutter Bank (64 groups) 93.0 83.6 80.1 73.3
Clutter Bank (256 groups) 94.3 84.3 77.7 71.0
Clutter Bank (1024 groups) 95.5 85.9 79.0 70.6
Clutter Bank w/o
clutter sampling loss 94.2 83.1 76.8 68.0

Table 3.7: Ablation study on PASCAL3D+ with different settings for contrastive learning: no
clutter features, image-specific clutter features (using 20 features from the same image as clutter
examples), our proposed Clutter Bank with different number of groups (each group contains 20
features) and deactivating clutter sampling loss. Note the benefit of using clutter features in general,
and in particular using a large clutter bank, as well as the importance of the clutter sampling loss.

Clutter Bank Mechanism In Table 3.7, we study the influence of the clutter features

and the clutter sampling loss on the contrastive learning result. In particular, the table shows

the keypoint detection results for CoKe-Res-UNet on the car category of the PASCAL3D+

dataset. We observe that the performance decreases significantly when no clutter features

are used during training. An extension of this basic setup is to use image-specific clutter

features but without maintaining the features in a Clutter Bank. In particular, we select

the clutter features from the same image from which the keypoint features are sampled

using the same hard negative sampling mechanism as in our standard setup. From the

results we observe that using the image-specific clutter features increases the performance
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significantly. However, the best performance is achieved using our proposed Clutter Bank

mechanism. In particular, the results show a general trend that the more features we store

in the bank, the higher the performance becomes. Notably, lower occlusion scenarios

benefit from a larger clutter bank while for stronger occlusion a smaller clutter bank is more

beneficial. Finally, our ablation shows that explicitly regularizing the clutter to be distinct

from the Keypoint Bank using the clutter sampling loss is highly beneficial.

Cumulative Moving Average Update We also study the importance of the cumulative

moving average update. Here we provide another possible method: average approximation.

In particular, we calculate an average over the whole dataset for {`} each 10 epochs. We

report the result using CoKe-Res-UNet on the car category of the PASCAL3D+ dataset. We

observe a deduction of keypoint detection accuracy as L0: 94.2→ 88.7, L1: 83.1→ 80.0,

L0: 76.8→ 75.0, L0: 68.0→ 68.9. Conclusively, the best performance is achieved using

our proposed cumulative moving average update mechanism.

3.5 Conclusion

In this paper, we study keypoint detection from the perspective of contrastive learning. Our

contrastive keypoint learning framework (CoKe) makes several efficient approximations

to enable the contrastive representation learning for keypoint detection: (i) A clutter

bank to approximate non-keypoint features; (ii) a keypoint bank that stores prototypical

representations of keypoints, to approximate the within-keypoint distance; and (iii) a

cumulative moving average update to learn the keypoint prototypes while training the feature

extractor. Our experiments on several diverse datasets (PASCAL3D+, MPII, ObjectNet3D)

show that CoKe is very general and performs well for rigid as well as articulated objects.
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Compared to related work, CoKe achieves higher performance, while also being much

more robust to partial occlusion and unseen object poses.

55



Chapter 4

Are Transformers More Robust Than
CNNs?

As we continue our investigation into the generalization ability of vision models, we now

pivot towards a comparative analysis between transformers and CNNs. By conducting fair

comparisons and delving into the intricacies of adversarial robustness and generalization,

this chapter aims to compare the strengths and weaknesses of these two architectures,

providing some insights for the advancement of robust vision systems.

4.1 Introduction

Convolutional Neural Networks (CNNs) have been the widely-used architecture for visual

recognition in recent years (140; 224; 230; 111; 125). It is commonly believed the key to

such success is the usage of the convolutional operation, as it introduces several useful

inductive biases (e.g., translation equivalence) to models for benefiting object recognition.

Interestingly, recent works alternatively suggest that it is also possible to build successful

recognition models without convolutions (198; 316; 21). The most representative work in
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this direction is Vision Transformer (ViT) (71), which applies the pure self-attention-based

architecture to sequences of images patches and attains competitive performance on the

challenging ImageNet classification task (209) compared to CNNs. Later works (161; 260)

further expand Transformers with compelling performance on other visual benchmarks, in-

cluding COCO detection and instance segmentation (151), ADE20K semantic segmentation

(318).

The dominion of CNNs on visual recognition is further challenged by the recent findings

that Transformers appear to be much more robust than CNNs. For example, Shao et al.

(220) observe that the usage of convolutions may introduce a negative effect on models’

adversarial robustness, while migrating to Transformer-like architectures (e.g., the Conv-

Transformer hybrid model or the pure Transformer) can help secure models’ adversarial

robustness. Similarly, Bhojanapalli et al. (22) report that, if pre-trained on sufficiently

large datasets, Transformers exhibit considerably stronger robustness than CNNs on a

spectrum of out-of-distribution tests (e.g., common image corruptions (114), texture-shape

cue conflicting stimuli (87)).

Though both (22) and (220) claim that Transformers are preferable to CNNs in terms

of robustness, we find that such conclusion cannot be strongly drawn based on their

existing experiments. Firstly, Transformers and CNNs are not compared at the same model

scale, e.g., a small CNN, ResNet-50 (25 million parameters), by default is compared to a

much larger Transformer, ViT-B (86 million parameters), for these robustness evaluations.

Secondly, the training frameworks applied to Transformers and CNNs are distinct from

each other (e.g., training datasets, number of epochs, and augmentation strategies are

all different), while little efforts are devoted on ablating the corresponding effects. In
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a nutshell, due to these inconsistent and unfair experiment settings, it remains an open

question whether Transformers are truly more robust than CNNs.

To answer it, in this paper, we aim to provide the first benchmark to fairly compare

Transformers to CNNs in robustness evaluations. We particularly focus on the comparisons

between Small Data-efficient image Transformer (DeiT-S) (241) and ResNet-50 (111), as

they have similar model capacity (i.e., 22 million parameters vs. 25 million parameters)

and achieve similar performance on ImageNet (i.e., 76.8% top-1 accuracy vs. 76.9% top-1

accuracy1). Our evaluation suite accesses model robustness in two ways: 1) adversarial

robustness, where the attackers can actively and aggressively manipulate inputs to approxi-

mate the worst-case scenario; 2) generalization on out-of-distribution samples, including

common image corruptions (ImageNet-C (114)), texture-shape cue conflicting stimuli

(Stylized-ImageNet (87)) and natural adversarial examples (ImageNet-A (116)).

With this unified training setup, we present a completely different picture from previous

ones (220; 22). Regarding adversarial robustness, we find that Transformers actually are no

more robust than CNNs—if CNNs are allowed to properly adopt Transformers’ training

recipes, then these two types of models will attain similar robustness on defending against

both perturbation-based adversarial attacks and patch-based adversarial attacks. While for

generalization on out-of-distribution samples, we find Transformers can still substantially

outperform CNNs even without the needs of pre-training on sufficiently large (external)

datasets. Additionally, our ablations show that adopting Transformer’s self-attention-like

architecture is the key for achieving strong robustness on these out-of-distribution samples,

while tuning other training setups will only yield subtle effects here. We hope this work can

1Here we apply the general setup in (243) for the ImageNet training. We follow the popular ResNet’s
standard to train both models for 100 epochs. Please refer to Section 4.3.1 for more training details.

58



serve as a useful benchmark for future explorations on robustness, using different network

architectures, like CNNs, Transformers, and beyond (238; 154).

4.2 Related Works

Vision Transformer. Transformers, invented by Vaswani et al. in 2017 (253), have largely

advanced the field of natural language processing (NLP). With the introduction of self-

attention module, Transformer can effectively capture the non-local relationships between

all input sequence elements, achieving the state-of-the-art performance on numerous NLP

tasks (296; 61; 26; 67; 194; 195).

The success of Transformer on NLP also starts to get witnessed in computer vision.

The pioneering work, ViT (71), demonstrates that the pure Transformer architectures are

able to achieve exciting results on several visual benchmarks, especially when extremely

large datasets (e.g., JFT-300M (229)) are available for pre-training. This work is then

subsequently improved by carefully curating the training pipeline and the distillation

strategy to Transformers (241), enhancing the Transformers’ tokenization module (302),

building multi-resolution feature maps on Transformers (161; 260), designing parameter-

efficient Transformers for scaling (305; 244; 290), etc. In this work, rather than focusing

on furthering Transformers on standard visual benchmarks, we aim to provide a fair and

comprehensive study of their performance when testing out of the box.

Robustness Evaluations. Conventional learning paradigm assumes training data and

testing data are drawn from the same distribution. This assumption generally does not

hold, especially in the real-world case where the underlying distribution is too complicated
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to be covered in a (limited-sized) dataset. To properly access model performance in the

wild, a set of robustness generalization benchmarks have been built, e.g., ImageNet-C

(114), Stylized-ImageNet (87), ImageNet-A (116), etc. Another standard surrogate for

testing model robustness is via adversarial attacks, where the attackers deliberately add

small perturbations or patches to input images, for approximating the worst-case evaluation

scenario (232; 95). In this work, both robustness generalization and adversarial robustness

are considered in our robustness evaluation suite.

Concurrent to ours, both Bhojanapalli et al. (22) and Shao et al. (220) conduct robustness

comparisons between Transformers and CNNs. Nonetheless, we find their experimental

settings are unfair, e.g., models are compared at different capacity (22; 220) or are trained

under distinct frameworks (220). In this work, our comparison carefully align the model

capacity and the training setups, which draws completely different conclusions from the

previous ones.

4.3 Settings

4.3.1 Training CNNs and Transformers

Convolutional Neural Networks. ResNet (111) is a milestone architecture in the history of

CNN. We choose its most popular instantiation, ResNet-50 (with 25 million parameters), as

the default CNN architecture. To train CNNs on ImageNet, we follow the standard recipe of

(97; 197). Specifically, we train all CNNs for a total of 100 epochs, using momentum-SGD

optimizer; we set the initial learning rate to 0.1, and decrease the learning rate by 10× at

the 30-th, 60-th, and 90-th epoch; no regularization except weight decay is applied.
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Vision Transformer. ViT (71) successfully introduces Transformers from natural lan-

guage processing to computer vision, achieving excellent performance on several visual

benchmarks compared to CNNs. In this paper, we follow the training recipe of DeiT (241),

which successfully trains ViT on ImageNet without any external data, and set DeiT-S (with

22 million parameters) as the default Transformer architecture. Specifically, we train all

Transformers using AdamW optimizer (164); we set the initial learning rate to 5e-4, and

apply the cosine learning rate scheduler to decrease it; besides weight decay, we additionally

adopt three data augmentation strategies (i.e., RandAug (58), MixUp (307) and CutMix

(303)) to regularize training (otherwise DeiT-S will attain significantly lower ImageNet

accuracy due to overfitting (45)).

Note that different from the standard recipe of DeiT (which applies 300 training epochs

by default), we hereby train Transformers only for a total of 100 epochs, i.e., same as the

setup in ResNet. We also remove {Erasing, Stochastic Depth, Repeated Augmentation},

which were applied in the original DeiT framework, in this basic 100 epoch schedule,

for preventing over-regularization in training. Such trained DeiT-S yields 76.8% top-

1 ImageNet accuracy, which is similar to the ResNet-50’s performance (76.9% top-1

ImageNet accuracy).

4.3.2 Robustness Evaluations

Our experiments mainly consider two types of robustness here, i.e., robustness on adversar-

ial examples and robustness on out-of-distribution samples.

Adversarial Examples, which are crafted by adding human-imperceptible perturbations

or small-sized patches to images, can lead deep neural networks to make wrong predictions.

61



In addition to the very popular PGD attack (167), our robustness evaluation suite also

contains: A) AutoAttack (56), which is an ensemble of diverse attacks (i.e., two variants of

PGD attack, FAB attack (55) and Square Attack (5)) and is parameter-free; and B) Texture

Patch Attack (TPA) (291), which uses a predefined texture dictionary of patches to fool

deep neural networks.

Recently, several benchmarks of out-of-distribution samples have been proposed to

evaluate how deep neural networks perform when testing out of the box. Particularly,

our robustness evaluation suite contains three such benchmarks: A) ImageNet-A (116),

which are real-world images but are collected from challenging recognition scenarios

(e.g., occlusion, fog scene); B) ImageNet-C (114), which is designed for measuring model

robustness against 75 distinct common image corruptions; and C) Stylized-ImageNet (87),

which creates texture-shape cue conflicting stimuli by removing local texture cues from

images while retaining their global shape information.

4.4 Adversarial Robustness

In this section, we investigate the robustness of Transformers and CNNs on defending

against adversarial attacks, using ImageNet validation set (with 50,000 images). We

consider both perturbation-based attacks (i.e., PGD and AutoAttack) and patch-based

attacks (i.e., TPA) for robustness evaluations.

4.4.1 Robustness to Perturbation-Based Attacks

Following (220), we first report the robustness of ResNet-50 and DeiT-S on defending

against AutoAttack. We verify that, when applying with a small perturbation radius ϵ =
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0.001, DeiT-S indeed achieves higher robustness than ResNet-50, i.e., 22.1% vs. 17.8% as

shown in Table 4.1.

However, when increasing the perturbation radius to 4/255, a more challenging but

standard case studied in previous works (217; 269; 278), both models will be circumvented

completely, i.e., 0% robustness on defending against AutoAttack. This is mainly due to

that both models are not adversarially trained (95; 167), which is an effective way to secure

model robustness against adversarial attacks, and we will study it next.

Table 4.1: Performance of ResNet-50 and DeiT-S on defending against AutoAttack, using ImageNet
validation set. We note both models are completely broken when setting perturbation radius to
4/255.

Clean Perturbation Radius
0.001 4/255

ResNet-50 76.9 17.8 0.0
DeiT-S 76.8 22.1 0.0

4.4.1.1 Adversarial Training

Adversarial training (95; 167), which trains models with adversarial examples that are

generated on-the-fly, aims to optimize the following min-max framework:

arg min
θ

E(x,y)∼D

[︂
max
ϵ∈S

L(θ, x + ϵ, y)
]︂
, (4.1)

where D is the underlying data distribution, L(·, ·, ·) is the loss function, θ is the network

parameter, x is a training sample with the ground-truth label y, ϵ is the added adversarial

perturbation, and S is the allowed perturbation range. Following (283; 269), the adversarial

training here applies single-step PGD (PGD-1) to generate adversarial examples (for

lowering training cost), with the constrain that maximum per-pixel change ϵ = 4/255.
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Adversarial Training on Transformers. We apply the setup above to adversarially

train both ResNet-50 and DeiT-S. However, surprisingly, this default setup works for

ResNet-50 but will collapse the training with DeiT-S, i.e., the robustness of such trained

DeiT-S is merely around 4% when evaluating against PGD-5. We identify the issue is

over-regularization—when combining strong data augmentation strategies (i.e., RangAug,

Mixup and CutMix) with adversarial attacks, the yielded training samples are too hard to

be learnt by DeiT-S.

(a) Epoch = 0 (b) Epoch = 4 (c) Epoch = 9

Figure 4.1: The illustration of the proposed augmentation warm-up strategy. At the beginning
of adversarial training (from epoch=0 to epoch=9), we progressively increase the augmentation
strength.

To ease this observed training difficulty, we design a curriculum of the applied augmen-

tation strategies. Specifically, as shown in Figure 4.1, at the first 10 epoch, we progressively

enhance the augmentation strength (e.g., gradually changing the distortion magnitudes

in RandAug from 1 to 9) to warm-up the training process. Our experiment verifies this

curriculum enables a successful adversarial training—DeiT-S now attains around 44%

robustness (boosted from around 4%) on defending against PGD-5.

Transformers with CNNs’ Training Recipes. Interestingly, an alternative way to address
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the observed training difficulty is directly adopting CNN’s recipes to train Transformers

(220), i.e., applying M-SGD with step decay learning rate scheduler and removing strong

data augmentation strategies (like Mixup). Though this setup can stabilize the adversarial

training process, it significantly hurts the overall performance of DeiT-S—the clean accuracy

drops to 59.9% (-6.6%), and the robustness on defending against PGD-100 drops to 31.9%

(-8.4%).

One reason for this degenerated performance is that strong data augmentation strategies

are not included in CNNs’ recipes, therefore Transformers will be easily overfitted during

training (45). Another key factor here is the incompatibility between the SGD optimizer

and Transformers. As explained in (157), compared to SGD, adaptive optimizers (like

AdamW) are capable of assigning different learning rates to different parameters, resulting

in consistent update magnitudes even with unbalanced gradients. This property is crucial

for enabling successful training of Transformers, given the gradients of attention modules

are highly unbalanced.

CNNs with Transformers’ Training Recipes. As shown in Table 4.2, adversarially trained

ResNet-50 is less robust than adversarially trained DeiT-S, i.e., 32.26% vs. 40.32% on

defending against PGD-100. It motivates us to explore whether adopting Transformers’

training recipes to CNNs can enhance CNNs’ adversarial training. Interestingly, if we

directly apply AdamW to ResNet-50, the adversarial training will collapses. We also

explore the possibility of adversarially training ResNet-50 with strong data augmentation

strategies (i.e., RandAug, Mixup and CutMix). However, we find ResNet-50 will be overly

regularized in adversarial training, leading to very unstable training process, sometimes

may even collapse completely.
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Though Transformers’ optimizer and augmentation strategies cannot improve CNNs’

adversarial training, we find Transformers’ choice of activation functions matters. Unlike

the widely-used activation function in CNNs is ReLU, Transformers by default use GELU

(115). As suggested in (278), ReLU significantly weakens adversarial training due to its

non-smooth nature; replacing ReLU with its smooth approximations (e.g., GELU, SoftPlus)

can strengthen adversarial training. We verify that by replacing ReLU with Transformers’

activation function (i.e., GELU) in ResNet-50. As shown in Table 4.2, adversarial training

now can be significantly enhanced, i.e., ResNet-50 + GELU substantially outperforms its

ReLU counterpart by 8.01% on defending against PGD-100. Moreover, we note the usage

of GELU enables ResNet-50 to match DeiT-S in adversarial robustness, i.e., 40.27% vs.

40.32% for defending against PGD-100, and 35.51% vs. 35.50% for defending against

AutoAttack, challenging the previous conclusions (22; 220) that Transformers are more

robust than CNNs on defending against adversarial attacks.

Table 4.2: The performance of ResNet-50 and DeiT-S on defending against adversarial attacks (with
ϵ = 4). After replacing ReLU with DeiT’s activation function GELU in ResNet-50, its robustness
can match the robustness of DeiT-S.

Activation Clean Acc PGD-5 PGD-10 PGD-50 PGD-100 AutoAttack

ResNet-50 ReLU 66.77 38.70 34.19 32.47 32.26 26.41
GELU 67.38 44.01 40.98 40.28 40.27 35.51

DeiT-S GELU 66.50 43.95 41.03 40.34 40.32 35.50

4.4.2 Robustness to Patch-Based Attacks

We next study the robustness of CNNs and Transformers on defending against patch-based

attacks. We choose Texture Patch Attack (TPA) (291) as the attacker. Note that different

from typical patch-based attacks which apply monochrome patches, TPA additionally
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optimizes the pattern of the patches to enhance attack strength. By default, we set the

number of attacking patches to 4, limit the largest manipulated area to 10% of the whole

image area, and set the attack mode as the non-targeted attack. For ResNet-50 and DeiT-S,

we do not consider adversarial training here as their vanilla counterparts already demonstrate

non-trivial performance on defending against TPA.

Interestingly, as shown in Table 4.3, though both models attain similar clean image ac-

curacy, DeiT-S substantially outperforms ResNet-50 by 28% on defending against TPA. We

conjecture such huge performance gap is originated from the differences in training setups;

more specifically, it may be resulted by the fact DeiT-S by default use strong data augmenta-

tion strategies while ResNet-50 use none of them. The augmentation strategies like CutMix

already naïvely introduce occlusion or image/patch mixing during training, therefore are

potentially helpful for securing model robustness against patch-based adversarial attacks.

To verify the hypothesis above, we next ablate how strong augmentation strategies in

DeiT-S (i.e., RandAug, Mixup and CutMix) affect ResNet-50’s robustness. We report the

results in Table 4.4. Firstly, we note all augmentation strategies can help ResNet-50 achieve

stronger TPA robustness, with improvements ranging from +4.6% to +32.7%. Among all

these augmentation strategies, CutMix stands as the most effective one to secure model’s

TPA robustness, i.e., CutMix alone can improve TPA robustness by 29.4%. Our best model

is obtained by using both CutMix and RandAug, reporting 52.4% TPA robustness, which is

even stronger than DeiT-S (47.7% TPA robustness). This observation still holds by using
Table 4.3: Performance of ResNet-50 and DeiT-S on defending against Texture Patch Attack.

Architecture Clean Acc Texture Patch Attack
ResNet-50 76.9 19.7

DeiT-S 76.8 47.7
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stronger TPA with 10 patches (increased from 4), i.e., ResNet-50 now attains 34.5% TPA

robustness, outperforming DeiT-S by 5.6%. These results suggest that Transformers are

also no more robust than CNNs on defending against patch-based adversarial attacks.

Table 4.4: Performance of ResNet-50 trained with different augmentation strategies on defending
against Texture Patch Attack. We note 1) all augmentation strategies can improve model robustness,
and 2) CutMix is the most effective augmentation strategy to secure model robustness.

Augmentations Clean Acc Texture Patch AttackRandAug MixUp CutMix
76.9 19.7

✓ 77.5 24.3 (+4.6)
✓ 75.9 31.5 (+11.8)

✓ 77.2 49.1 (+29.4)
✓ ✓ 75.7 31.7 (+12.0)
✓ ✓ 76.7 52.4 (+32.7)

✓ ✓ 77.1 39.8 (+20.1)
✓ ✓ ✓ 76.4 48.6 (+28.9)

4.5 Robustness on Out-of-distribution Samples

In addition to adversarial robustness, we are also interested in comparing the robustness of

CNNs and Transformers on out-of-distribution samples. We hereby select three datasets,

i.e., ImageNet-A, ImageNet-C and Stylized ImageNet, to capture the different aspects of

out-of-distribution robustness.

4.5.1 Aligning Training Recipes

We first provide a direct comparison between ResNet-50 and DeiT-S with their default

training setup. As shown in Table 4.5, we observe that, even without pretraining on (exter-

nal) large scale datasets, DeiT-S still significantly outperforms ResNet-50 on ImageNet-A

(+9.0%), ImageNet-C (+9.9) and Stylized-ImageNet (+4.7%). It is possible that such
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performance gap is caused by the differences in training recipes (similar to the situation we

observed in Section 4.4), which we plan to ablate next.

Table 4.5: DeiT-S shows stronger robustness generalization than ResNet-50 on ImageNet-C,
ImageNet-A and Stylized-ImageNet. Note the results on ImageNet-C is measured by mCE (lower is
better).

Architecture ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet ↑
ResNet-50 76.9 3.2 57.9 8.3

ResNet-50* 76.3 4.5 55.6 8.2
DeiT-S 76.8 12.2 48.0 13.0

A fully aligned version. A simple baseline here is that we completely adopt the recipes of

DeiT-S to train ResNet-50, denoted as ResNet-50*. Specifically, this ResNet-50* will be

trained with AdamW optimizer, cosine learning rate scheduler and strong data augmentation

strategies. Nonetheless, as reported in Table 4.5, ResNet-50* only marginally improves

ResNet-50 on ImageNet-A (+1.3%) and ImageNet-C (+2.3), which is still much worse than

DeiT-S on robustness generalization.

It is possible that completely adopting the recipes of DeiT-S overly regularizes the

training of ResNet-50, leading to suboptimal performance. To this end, we next seek to

discover the “best” setups to train ResNet-50, by ablating learning rate scheduler (step

decay vs. cosine decay), optimizer (M-SGD vs. AdamW) and augmentation strategies

(RandAug, Mixup and CutMix) progressively.

Step 1: aligning learning rate scheduler. It is known that switching learning rate scheduler

from step decay to cosine decay improves model accuracy on clean images (20). We

additionally verify that such trained ResNet-50 (second row in Table 4.6) attains slightly

better performance on ImageNet-A (+0.1%), ImageNet-C (+1.0) and Stylized-ImageNet

(+0.1%). Given the improvements here, we will use cosine decay by default for later ResNet
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training.

Step 2: aligning optimizer. We next ablate the effects of optimizers. As shown in the

third row in Table 4.6, switching optimizer from M-SGD to AdamW weakens ResNet

training, i.e., it not only decreases ResNet-50’s accuracy on ImageNet (-1.0%), but also

hurts ResNet-50’s robustness generalization on ImageNet-A (-0.2%), ImageNet-C (-2.4)

and Stylized-ImageNet (-0.3%). Given this degenerated performance, we stick to M-SGD

for later ResNet-training.

Table 4.6: The robustness generalization of ResNet-50 trained with different learning rate sched-
ulers and optimizers. Nonetheless, compared to DeiT-S, all the resulted ResNet-50 show worse
generalization on out-of-distribution samples.

Optimizer-LR Scheduler ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet ↑

ResNet-50
SGD-Step 76.9 3.2 57.9 8.3

SGD-Cosine 77.4 3.3 56.9 8.4
AdamW-Cosine 76.4 3.1 59.3 8.1

DeiT-S AdamW-Cosine 76.8 12.2 48.0 13.0

Step 3: aligning augmentation strategies. Compared to ResNet-50, DeiT-S additionally

applied RandAug, Mixup and CutMix to augment training data. We hereby examine

whether these augmentation strategies affect robustness generalization. The performance of

ResNet-50 trained with different combinations of augmentation strategies is reported in

Table 4.7. Compared to the vanilla counterpart, nearly all the combinations of augmentation

strategies can improve ResNet-50’s generalization on out-of-distribution samples. The best

performance is achieved by using RandAug + Mixup, outperforming the vanilla ResNet-50

by 3.0% on ImageNet-A, 4.6 on ImageNet-C and 2.4% on Stylized-ImageNet.

Comparing ResNet with the “best” training recipes to DeiT-S. With the ablations above,
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Table 4.7: The robustness generalization of ResNet-50 trained with different combinations of
augmentation strategies. We note applying RandAug + Mixup yields the best ResNet-50 on out-of-
distribution samples; nonetheless, DeiT-S still significantly outperforms such trained ResNet-50.

Architecture Augmentation Strategies ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet↑RandAug MixUp CutMix

ResNet-50

77.4 3.3 56.9 8.4
✓ ✓ 75.7 6.3 52.3 10.8
✓ ✓ 76.7 6.3 56.3 7.1

✓ ✓ 77.1 6.1 55.1 8.8
✓ ✓ ✓ 76.4 5.5 54.0 9.1

DeiT-S ✓ ✓ ✓ 76.8 12.2 48.0 13.0

we can conclude that the “best” training recipes for ResNet-50 (denoted as ResNet-50-

Best) is by applying M-SGD optimizer, scheduling learning rate using cosine decay, and

augmenting training data using RandAug and Mixup. As shown in the second row of Table

4.7, ResNet-50-Best attains 6.3% accuracy on ImageNet-A, 52.3 mCE on ImageNet-C and

10.8% accuracy on Stylized-ImageNet.

Nonetheless, interestingly, we note DeiT-S still shows much stronger robustness general-

ization on out-of-distribution samples than our “best” ResNet-50, i.e., +5.9% on ImageNet-

A, +4.3 on ImageNet-C and +2.2% on Stylized-ImageNet. These results suggest that the

differences in training recipes (including the choice of optimizer, learning rate scheduler

and augmentation strategies) is not the key for leading the observed huge performance gap

between CNNs and Transformers on out-of-distribution samples.

Model size. To further validate that Transformers are indeed more robust than CNNs on

out-of-distribution samples, we hereby extend the comparisons above to other model sizes.

Specifically, we consider the comparison at a smaller scale, i.e. ResNet-18 (12 million

parameters) vs. DeiT-Mini (10 million parameters, with embedding dimension = 256 and

number of head = 4). For ResNet training, we consider both the fully aligned recipe version
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(denoted as ResNet*) and the “best” recipe version (denoted as ResNet-Best). Figure

4.2 shows the main results. Similar to the comparison between ResNet-50 and DeiT-S,

DeiT-Mini also demonstrates much stronger robustness generalization than ResNet-18*

and ResNet-18-Best.

We next study DeiT and ResNet at a more challenging setting—comparing DeiT to a

much larger ResNet on robustness generalization. Surprisingly, we note in both cases, DeiT-

Mini vs. ResNet-50 and DeiT-S vs. ResNet-101, DeiTs are able to show similar, sometimes

even superior, performance than ResNets. For example, DeiT-S beats the nearly 2× larger

ResNet-101* (22 million parameters vs. 45 million parameters) by 3.37% on ImageNet-A,

1.20 on ImageNet-C and 1.38% on Stylized-ImageNet. All these results further corroborate

that Transformers are much more robust than CNNs on out-of-distribution samples.
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Figure 4.2: By comparing models at different scales, DeiT consistently outperforms ResNet* and
ResNet-Best by a large margin on ImageNet-A, ImageNet-C and Stylized-ImageNet.

4.5.2 Distillation

In this section, we make another attempt to bridge the robustness generalization gap between

CNNs and Transformers—we apply knowledge distillation to let ResNet-50 (student model)
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directly learn from DeiT-S (teacher model). Specifically, we perform soft distillation (120),

which minimizes the Kullback-Leibler divergence between the softmax of the teacher

model and the softmax of the student model; we adopt the training recipe of DeiT during

distillation.

Main results. We report the distillation results in Table 4.8. Though both models attain

similar clean image accuracy, the student model ResNet-50 shows much worse robustness

generalization than the teacher model DeiT-S, i.e., the performance is decreased by 7.0%

on ImageNet-A, 6.2 on ImageNet-C and 3.2% on Stylized-ImageNet. This observation

is counter-intuitive as student models typically achieve higher performance than teacher

models in knowledge distillation.

However, interestingly, if we switch the roles of DeiT-S and ResNet-50, the student

model DeiT-S is able to significantly outperforms the teacher model ResNet-50 on out-

of-distribution samples. As shown in the third row and the fourth row in Table 4.8,

the improvements are 6.4% on ImageNet-A, 6.3 on ImageNet-C and 3.7% on Stylized-

ImageNet. These results arguably suggest that the strong generalization robustness of DeiT

is rooted in the architecture design of Transformer that cannot be transferred to ResNet via

neither training setups or knowledge distillation.

Table 4.8: The robustness generalization of ResNet-50, DeiT-S and their distilled models.

Distillation Architecture ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet ↑
Teacher DeiT-S 76.8 12.2 48.0 13.0
Student ResNet-50*-Distill 76.7 5.2 (-7.0) 54.2 (+6.2) 9.8 (-3.2)
Teacher ResNet-50* 76.3 4.5 55.6 8.2
Student DeiT-S-Distill 76.2 10.9 (+6.4) 49.3 (-6.3) 11.9 (+3.7)
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4.5.3 Hybrid Architecture

Following the discussion in Section 4.5.2, we hereby ablate whether incorporating Trans-

former’s self-attention-like architecture into model design can help robustness general-

ization. Specifically, we create a hybrid architecture (named Hybrid-DeiT) by directly

feeding the output of res_4 block in ResNet-18 into DeiT-Mini, and compare its robustness

generalization to ResNet-50 and DeiT-Small. Note that under this setting, these three

models are at the same scale, i.e., hybrid-DeiT (21 million parameters) vs. ResNet-50 (25

million parameters) vs. DeiT-S (22 million parameters). We apply the recipe of DeiT to

train these three models.

Main results. We report the robustness generalization of these three models in Figure 4.3.

Interestingly, with the introduction of Transformer blocks, Hybrid-DeiT is able to achieve

better robustness generalization than ResNet-50, i.e., +1.1% on ImageNet-A and +2.5% on

Stylized-ImageNet, suggesting Transformer’s self-attention-like architectures is essential

for boosting performance on out-of-distribution samples. We additionally compare this

hybrid architecture to the pure Transformer architecture. As expected, Hybrid-DeiT attains

lower robustness generalization than DeiT-S, as shown in Figure 4.3.

4.5.4 300-Epoch Training

As mentioned in Section 4.3.1, we by default train all models for only 100 epochs. This

is a standard setup in training CNNs (97; 197), but not typical in training Transformers

(243; 161). To rule out the possibility of introducing negative effects in shortening training

length, we lastly ablate the 300-epoch setup, i.e., we directly borrow the default setup in

(243) to train both ResNet and DeiT.
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Figure 4.3: The robustness generalization of ResNet-50, DeiT-S and Hybrid-DeiT. We note intro-
ducing Transformer blocks into model design benefits generalization on out-of-distribution samples.

As reported in Table 4.9, DeiT-S substantially outperforms ResNet-50 by 10.4% on

ImageNet-A, 7.5 on ImageNet-C and 5.6 on Stylized-ImageNet. Nonetheless, we argue

that such comparison is less interesting and even unfair—DeiT-S already beats ResNet-50

by 1.8% on ImageNet classification, therefore it is expected that DeiT-S will also show

stronger performance than ResNet-50 on ImageNet-A, ImageNet-C and Stylized-ImageNet.

Table 4.9: The robustness generalization of ResNet-50 and DeiT-S under the 300-epoch training
setup. We note DeiT-S shows stronger performance than ResNet-50 on both clean images and
out-of-distribution samples.

Architecture ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet ↑
ResNet-50 78.1 8.8 50.3 9.5

DeiT-S 79.9 19.2 42.8 15.1

To make the setup fairer (i.e., comparing the robustness of models that have similar

accuracy), we now compare DeiT-S to the much larger ResNet-101 (i.e., 22 million param-

eters vs. 45 million parameters). The results are shown in Table 4.10. We observer that

though both models achieve similar accuracy on ImageNet, DeiT-S demonstrates much

stronger robustness generalization than ResNet-101. This observation can also holds for

bigger Transformers and CNNs, e.g., DeiT-B can consistently outperforms ResNet-200 on
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ImageNet-A, ImageNet-C and Stylized- ImageNet, despite they attain similar clean image

accuracy (i.e., 81.8% vs. 82.1%).

Table 4.10: The robustness generalization of ResNet and DeiT under the 300-epoch training setup.
Though both models attain similar clean image accuracy, DeiTs show much stronger robustness
generalization than ResNets.

Architecture ImageNet ↑ ImageNet-A ↑ ImageNet-C ↓ Stylized-ImageNet ↑
ResNet-101 80.2 17.6 45.8 11.9

DeiT-S 79.9 19.2 42.8 15.1
ResNet-200 82.1 23.8 40.8 13.6

DeiT-B 81.8 27.9 38.0 17.9

In summary, in this 300-epoch training setup, we can draw the same conclusion as

the one in the 100-epoch training setup, i.e., Transformers are truly much more robust

than CNNs on out-of-distribution samples. In addition, we note this conclusion is further

corroborated in concurrent works (306; 188; 281; 322; 179), where a range of additional

out-of-distribution tasks/datasets are tested. We refer interested readers to their papers for

details.

4.6 Conclusion

With the recent success of Transformer in visual recognition, researchers begin to study

its robustness compared with CNNs. While recent works suggest that Transformers are

much more robust than CNNs, their comparisons are not fair in many aspects, e.g., training

datasets, model scales, training strategies, etc. This motivates us to provide a fair and

in-depth comparisons between CNNs and Transformers, focusing on adversarial robustness

and robustness on out-of-distribution samples. With our unified training setup, we found

that Transformers are no more robust than CNNs on adversarial robustness. By properly
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adopting Transformer’s training recipes, CNNs can achieve similar robustness as Trans-

formers on defending against both perturbation-based adversarial attacks and patch-based

adversarial attacks. While regarding generalization on out-of-distribution samples (e.g.,

ImageNet-A, ImageNet-C and Stylized ImageNet), we find Transformer’s self-attention-

like architectures is the key. We hope this work would shed lights on the understanding of

Transformer, and help the community to fairly compare robustness between Transformers

and CNNs.
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Chapter 5

Point-Level Region Contrast for Object
Detection Pre-Training

Continuing our exploration of techniques aimed at enhancing generalization capabilities,

we delve into the realm of pre-training approaches for object detection. Through the

introduction of point-level region contrast, our research focuses on empowering vision

models with generalizable representation learning capabilities across different downstream

tasks.

5.1 Introduction

Un-/self-supervised learning – in particular contrastive learning (113; 107; 40) – has

recently arisen as a powerful tool to obtain visual representations that can potentially benefit

from an unlimited amount of unlabeled data. Promising signals are observed on important

tasks like object detection (152). For example, MoCo (107) shows convincing improvement

on VOC (79) over supervised pre-training by simply learning to discriminate between

images as holistic instances (74) on the ImageNet-1K dataset (210). Since then, numerous
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Figure 5.1: For intra-image contrastive learning, samples of a feature map can be aggregated and
then compared between regions (1), compared directly between all samples (2), or only compared
directly between samples in different regions (3). We call (3) point-level region contrast, it allows
both learning at the point-level to help localization, and at the region-level to help holistic object
recognition – two crucial aspects for object detection.

pre-text tasks that focus on intra-image contrast have been devised specifically for object

detection as the downstream transfer task (262; 286; 112). While there has been steady

progress, state-of-the-art detectors (2) still use weights from supervised pre-training (e.g.,

classification on ImageNet-22K (66)). The full potential of unsupervised pre-training for

object detection is yet to be realized.

Object detection requires both accurate localization of objects in an image and correct

recognition of their semantic categories. These two sub-tasks are tightly connected and

often reinforce each other in successful detectors (168). For example, region proposal

methods (249; 325; 6) that first narrow down candidate object locations have enabled

R-CNN (91) to perform classification on rich, region-level features. Conversely, today’s

dominant paradigm for object instance segmentation (109) first identifies object categories

along with their coarse bounding boxes, and later uses them to compute masks for better
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localization at the pixel-level.

With this perspective, we hypothesize that to learn a useful representation for object

detection, it is also desirable to balance recognition and localization by leveraging informa-

tion at various levels during pre-training. Object recognition in a scene typically takes place

at the region-level (91; 205). To support this, it is preferable to maintain a conceptually

coherent ‘label’ for each region, and learn to contrast pairs of regions for representation

learning. On the other hand, for better localization, the model is preferred to operate at the

pixel-, or ‘point-level’ (137; 49), especially when an initial, unsupervised, assignment of

pixels to regions (i.e., segmentation) is sub-optimal (see Fig. 5.1 for an example). To our

knowledge, existing methods in this frontier can be lacking in either of these two aspects

(to be discussed in Sec. 7.2).

In this paper, we present a self-supervised pre-training approach that conceptually

contrasts at the region-level while operating at the point-level. Starting from MoCo v2 (42)

as an image-level baseline, we introduce the notion of ‘regions’ by dividing each image into

a non-overlapping grid (112). Treating rectangular regions on this grid as separate instances,

we can define the task of intra-image discrimination on top of the existing inter-image

one (74) and pre-train a representation with contrastive objectives. Deviating from the

common practice that aggregates features for contrastive learning (107; 40; 112), we directly

operate at the point-level by sampling multiple points from each region, and contrasting

point pairs individually across regions (see Fig. 5.1, right column for illustrations).

The advantage of operating at the point-level is two-fold, both concerning dealing with

imperfect regions as there is no ground-truth. First, such a design can be more robust to the

change in region quality, since feature aggregation can cause ambiguities when the regions
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are not well localized (e.g., in Fig. 5.1, both regions of interest can mean ‘a mixture of dog

and couch’), whereas individual points still allow the model to see distinctions. Second and

perhaps more importantly, it can enable us to bootstrap (100) for potentially better regions

during the training process. This is because any segmentation can be viewed as a hard-coded

form of point affinities – 1 for point pairs within the same region and 0 otherwise; and a

natural by-product of contrasting point pairs is soft point affinities (values between 0 and 1)

that implicitly encode regions. By viewing the momentum encoder as a ‘teacher’ network,

we can formulate the problem as knowledge distillation one (120; 30), and improving point

affinities (and thus implicitly regions) online in the same self-supervised fashion.

Empirically, we applied our approach to standard pre-training datasets (ImageNet-

1K (66) and COCO train set (152)), and transferred the representation to multiple down-

stream datasets: VOC (79), COCO (for both object detection and instance segmentation),

and Cityscapes (54) (semantic segmentation). We show strong results compared to state-of-

the-art pre-training methods which use image-level, point-level, or region-level contrastive

learning. Moreover, we provide extensive ablation studies covering different aspects in

design, and qualitatively visualize the point affinities learned through knowledge distillation.

While we are yet to showcase improvements on larger models, longer training schedules,

stronger augmentations (88), and bigger pre-training data for object detection, we believe

our explorations on the pre-training design that better balances recognition and localization

can inspire more works in this direction.
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5.2 Related Work

Self-supervised learning. Supervised learning/classification (110; 210) has been the

dominant method for pre-training representations useful for downstream tasks in computer

vision. Recently, contrastive learning (272; 113; 235; 107; 40; 75) has emerged as a

promising alternative that pre-trains visual representations without class labels or other

forms of human annotations – a paradigm commonly referred as ‘self-supervised learning’.

By definition, self-supervised learning holds the potential of scaling up pre-training to huge

models and billion-scale data. As a demonstration, revolutionary progress has already been

made in fields like natural language processing (67; 196; 24) through scaling. For computer

vision, such a moment is yet to happen. Nonetheless, object detection as a fundamental

task in computer vision is a must-have benchmark to test the transferability of pre-trained

representations (91).

Contrastive learning. Akin to supervised learning which maps images to class labels,

contrastive learning maps images to separate vector embeddings, and attracts positive

embedding pairs while dispels negative pairs. A key concept connecting the two types of

learning is instance discrimination (74), which models each image as its own class. Under

this formulation, two augmentations of the same image is considered as a positive pair,

while different images form negative pairs. Interestingly, recent works show that negative

pairs are not required to learn meaningful representations (100; 44) for reasons are yet to be

understood. Regardless, all these frameworks treat each image as a single instance and use

aggregated (i.e., pooled) features to compute embeddings. Such a classification-oriented

design largely ignores the internal structures of images, which could limit their application
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to object detection that performs dense search within an image (205; 160; 150).

Point-level contrast. Many recent works (262; 286; 159; 284; 191) have realized the above

limitation, and extended the original idea from contrasting features between whole images

to contrasting features at points. Different ways to match points as pairs have been explored.

For example, (262) selects positive pairs by ranking similarities among all points in the

latent space; (286) defines positive pairs by spatial proximity; (159) jointly matches a set of

features at points to another set via Sinkhorn-Knopp algorithm (59), designed to maximize

the set-level similarity for sampled features. However, we believe directly contrasting

features at arbitrary points over-weights localization, and as a result misses a more global

view of the entire object that can lead to better recognition.

Region-level contrast. Closest to our paper is the most recent line of work that contrasts

representations at the region-level (112; 280; 266; 282; 277; 207). Specifically, images

are divided into regions of interest, via either external input (112; 266; 282), or sliding

windows (277), or just random sampling (280; 207). Influenced by image-level contrastive

learning, most approaches represent each region with a single, aggregated vector embedding

for loss computation and other operations, which we argue – and show empirically – is

detrimental for localization of objects.

5.3 Approach

In this section we detail our approach: point-level region contrast. To lay the background

and introduce notations, we begin by reviewing the formulation of MoCo (107).
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Figure 5.2: Illustration of point-level region contrast (Sec. 5.3.2), which also enables point affinity
distillation (Sec. 5.3.3). On the left we show four different types of contrastive learning methods,
including image-level, region-level, point-level and our point-level region contrast. On the right we
show point affinity distillation with one pair of points.

5.3.1 Background: Momentum Contrast

As the name indicates, MoCo (107; 42) is a contrastive learning framework (185; 40) that

effectively uses momentum encoders to learn representations. Treating each image as

a single instance to discriminate against others, MoCo operates at the image-level (see

Fig. 6.1 top left corner).

Image-level contrast. While the original model for instance discrimination (74) literally

keeps a dedicated weight vector for each image in the dataset (on ImageNet-1K (210) it

would mean more than one million vectors), modern frameworks (272; 40) formulate this

task as a contrastive learning one which only requires online computation of embedding

vectors per-image and saves memory. Specifically MoCo, two parallel encoders, f E and
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f M, take two augmented views ( and ′) for each image in a batch, and output two ℓ2-

normalized embeddings and ′. Here f E denotes the base encoder being trained by gradient

updates as in normal supervised learning, and f M denotes the momentum encoder that

keeps updated by exponential moving average on the base encoder weights. Then image-

level contrastive learning is performed by enforcing similarity on views from the same

image, and dissimilarity on views from different images, with the commonly used InfoNCE

objective (185):

Lm = − log
exp(·′/τ)

∑j exp(·′j/τ)
, (5.1)

Where τ is the temperature, other images (and self) are indexed by j. In MoCo, other images

are from the momentum bank (272), which is typically much smaller in size compared to

the full dataset.

It is important to note that in order to compute the embedding vectors (and ′), a pooling-

like operation is often used in intermediate layers to aggregate information from all spatial

locations in the 2D image. This is inherited from the practice in supervised learning, where

standard backbones (e.g., ResNet-50 (110)) average-pool features before the classification

task.

5.3.2 Point-Level Region Contrast

As discussed above, image-level contrast is classification oriented. Next, we discuss our

designs in point-level region contrast, which are more fit for the tasks of object detection.

Regions. Region is a key concept in state-of-the-art object detectors (205; 109). Through

region-of-interest pooling, object-level recognition (i.e., classifying objects into pre-defined
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categories) are driven by region-level features. Different from detector training, ground-

truth object annotations are not accessible in self-supervised learning. Therefore, we simply

introduce the notion of regions by dividing each image into a non-overlapping, n × n

grid (112). We treat the rectangular regions on this grid as separate instances, which allows

inter-image contrast and intra-image contrast to be jointly performed on pairs of regions.

Now, each augmentation is paired with masks, and each mask denotes the corresponding

region under the same geometric transformation as with which it shares resolution. Note

that due to randomly resized cropping (107), some masks can be empty. Therefore, we

randomly sample N=16 valid masks {n} (n∈{1, . . . , N}) (with repetition) as regions to

contrast, following the design of (112).

Grid regions are the simplest form of the spatial heuristic that nearby pixels are likely

belong to the same object (112). More advanced regions (249; 6), or even ground-truth

segmentation masks (used for analysis-only) (152) can be readily plugged in our method

to potentially help performance, but it comes at the expense of more computation costs,

potential risk of bias (34) or human annotation costs. Instead, we focus on improving

training strategies and just use grids for our explorations.

Point-level. Given the imperfect regions, our key insight is to operate at the point-level.

Intuitively, pre-training by contrasting regions can help learn features that are discriminative

enough to tell objects apart as holistic entities, but they can be lacking in providing low-level

cues for the exact locations of objects. This is particularly true if features that represent

regions are aggregated over all pertinent locations, just like the practice in image-level

contrast. Deviating from this, we directly sample multiple points from each region, and

contrast point pairs individually across regions without pooling.
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Formally, we sample P points per mask n, and compute point-level features i (i∈{1, . . . , N×P})

for contrastive learning. Each i comes with an indicator for its corresponding region, i. To

accommodate this, we modify the encoder architecture so that the spatial dimensions are

kept all the way till the output.1 The final feature map is up-sampled to a spatial resolution

of R×R via interpolation. Then our point-level, region contrastive loss is defined as:

Lc = −
1
C ∑

i=k

log
exp(i·′k/τ)

∑j exp(i·′j/τ)
, (5.2)

where j loops over points from regions in the same image (intra-), or over points from other

images (inter-). C is a normalization factor for the loss which depends on the number of

positive point pairs. An illustrative case (for n=2 and P=4) is shown in Fig. 6.1.

5.3.3 Point Affinity Distillation

Operating at the point level enables us to bootstrap (311) and not be restricted by the

pre-defined regions. This is because according to Eq. (5.2), the only place the pre-defined

regions matter is in the indicators i, which provides a hard assignment from points to

regions. When i=k, it means the probability of i and k coming from the same region is 1,

otherwise it is 0.

On the other hand, the InfoNCE loss (185) (Eq. (5.1)) used for contrastive learning

computes point affinities as a natural by-product which we define as:

ik′(τ) :=
exp(i·′k/τ)

∑j exp(i·′j/τ)
. (5.3)

Note that ik′(τ) is a pairwise term controlled by two indexes i and k′, and the additional

′ indicates the embeddings participating is computed by the momentum encoder. For
1An additional projector MLP is introduced in MoCo v2 (42) following SimCLR (40), we convert the

MLP into 1× 1 convolution layers.
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example i′k′(τ) means both embeddings are from the momentum encoder f M. Point

affinities offer soft, implicit assignment from points to regions, and an explicit assignment

can be obtained via clustering (e.g. k-means). In this sense, they arguably provide more

complete information about which point pairs belong to the same region.

The Siamese architecture (44) of self-supervised learning methods like MoCo presents

a straightforward way to bootstrap and obtain potentially better regions. The momentum

encoder f M itself can be viewed as a ‘teacher’ which serves as a judge for the quality of

f E (30). From such an angle, we can formulate the problem as a knowledge distillation

one (120), and use the outputs of f M to supervise the point affinities that involve f E via

cross entropy loss:
La = −∑

i,k
i′k′(τt) logik′(τs), (5.4)

where τt and τs are temperatures for the teacher and the student, respectively. We call this

‘point affinity distillation’. There are other possible ways to distill point affinities from the

momentum encoder (see Sec. 5.4.5.2), we choose the current design trading off speed and

accuracy.

On the other hand, we note that the pooling operation does not back-propagate gradients

to the coordinates (only to the features) by default. Therefore, it is less straightforward to

morph regions along with training by contrasting aggregated region-level features (112;

266; 282).
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method # of
epochs

Pascal VOC COCO detection COCO segmentation Cityscapes
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 mIoU

Scratch - 33.8 60.2 33.1 26.4 44.0 27.8 29.3 46.9 30.8 65.3
Supervised 200 54.2 81.6 59.8 38.2 58.2 41.2 33.3 54.7 35.2 73.7
MoCo (107) 200 55.9 81.5 62.6 38.5 58.3 41.6 33.6 54.8 35.6 75.3
SimCLR (40) 1000 56.3 81.9 62.5 38.4 58.3 41.6 - - - 75.8
MoCo
v2 (42)

800 57.6 82.7 64.4 39.8 59.8 43.6 36.1 56.9 38.7 76.2

InfoMin (237) 200 57.6 82.7 64.6 39.0 58.5 42.0 - - - 75.6
DetCo (280) 200 57.8 82.6 64.2 39.8 59.7 43.0 34.7 56.3 36.7 76.5
InsLoc (292) 800 58.4 83.0 65.3 39.8 59.6 42.9 34.7 56.3 36.9 -
PixPro (286) 200 58.8 83.0 66.5 40.0 59.3 43.4 34.8 - - 76.8
DetCon (112) 200 - - - 40.5 - - 36.4 - - 76.5
SoCo (266) 200 59.1 83.4 65.6 40.4 60.4 43.7 34.9 56.8 37.0 76.5
Ours 200 59.4 83.6 67.1 40.7 60.4 44.7 36.9 57.4 39.6 77.0

Table 5.1: Main results with ImageNet-1K pre-training. From left to right, we show transfer
performance on 4 tasks: VOC (07+12) detection (79), COCO object detection (152); COCO instance
segmentation and Cityscapes semantic segmentation (54). From top to down, we compare our
approach with 3 other setups: i) no pre-training (i.e., scratch); ii) general pre-training with supervised
learning or inter-image contrastive learning; iii) object detection oriented pre-training with additional
intra-image contrast. Our point-level region contrast pre-training shows consistent improvements
across different tasks under fair comparisons.

5.3.4 Overall Loss Function

We jointly perform point-level region contrast learning (Sec. 5.3.2) and point affinity

distillation (Sec. 5.3.3) controlled by a balance factor α:

Lp = αLc + (1− α)La. (5.5)

Here, Lc offers an initialization of regions to contrast with, whereas La bootstraps (100)

from data, regularizes learning and alleviates over-fitting to the initial imperfect region

assignments. This is how these two terms interact and benefit each other – a common

practice for knowledge distillation with additional ground-truth labels.

Finally, our point-level loss is added to the original MoCo loss for joint optimization,

89



controlled by another factor β:

L = βLp + (1− β)Lm, (5.6)

which does not incur extra overhead for backbone feature computation. Note that all the

loss terms we have defined above are focused on a single image for explanation clarity, the

full loss is averaged over all images.

5.4 Experiments

In this section we perform experiments. For our main results, we pre-train on ImageNet-1K

or COCO, and transfer the learned representations to 4 downstream tasks. We then conduct

analysis by: 1) visualizing the learned point affinities with a quantitative evaluation metric

using VOC ground-truth masks, 2) presenting evidence that point-level representations are

effective and more robust to region-level ones when the mask quality degenerates; and 3)

ablating different point affinity distillation strategies in our approach. More analysis on

various hyper-parameters and more visualizations are found in the appendix.

5.4.1 Pre-Training Details

We either pre-train on ImageNet-1K (210) or COCO (152), following standard setups (112;

262).

ImageNet-1K setting. Only images from the training split are used, which leads to 1.28

million images for ImageNet-1K. We pre-train the model for 200 epochs.

It is worth noting that we build our approach on the default, asymmetric version of

MoCo v2 (42), which is shown to roughly compensate for the performance of pre-training
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with half the length using symmetrized loss (44) – both setups share the same amount of

compute in this case.

COCO setting. Only images from the training split (train2017) are used, which leads

to 118k for COCO. We pre-train with 800 COCO epochs, not ImageNet epochs.

Hyper-parameters and augmentations. We use a 4× 4 grid and sample N=16 valid

masks per view following (112). P=16 points are sampled per region. The up-sampled

resolution of the feature map R is set to 64. We use a teacher temperature τt of 0.07 and

student temperature τs of 0.1, with 30 epochs as a warm-up stage where no distillation

is applied. The balancing ratios for losses are set as α=0.5 and β=0.7. For optimization

hyper-parameters (e.g. learning rate, batch size etc.) and augmentation recipes we follow

MoCo v2 (42). We follow the same strategy in DetCon (112) to sample region pairs through

random crops, and skip the loss computation for points when views share no overlapping

region, which happens rarely in practice.

method # of
epochs

Pascal VOC COCO detection COCO segmentation Cityscapes
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 mIoU

Scratch - 33.8 60.2 33.1 29.9 47.9 32.0 32.8 50.9 35.3 63.5
MoCo v2 (42) 800 54.7 81.0 60.6 38.5 58.1 42.1 34.8 55.3 37.3 73.8
BYOL (100) 800 - - - 37.9 57.5 40.9 - - - -
Self-EMD (159) 800 - - - 38.5 58.3 41.6 - - - -
PixPro (286) 800 56.5 81.4 62.7 39.0 58.9 43.0 35.4 56.2 38.1 75.2
Ours 800 57.1 82.1 63.8 39.8 59.6 43.7 35.9 56.9 38.6 75.9

Table 5.2: Main results with COCO pre-training. Same as ImageNet-1K, from left to right,
we show the performance on 4 tasks: VOC (07+12) detection, COCO detection; COCO instance
segmentation and Cityscapes semantic segmentation. From top to down, we compare with training
from scratch and pre-training with self-supervision. For COCO pre-training, our method shows
significant improvements.
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5.4.2 Downstream Tasks

We evaluate feature transfer performance on four downstream tasks: object detection on

VOC (79), object detection and instance segmentation on COCO (152), and semantic

segmentation on Cityscapes (54).

VOC. PASCL VOC is the default dataset to evaluate self-supervised pre-training for object

detection. We follow the setting introduced in MoCo (107), namely a Faster R-CNN

detector (205) with the ResNet-50 C4 backbone, which uses the conv4 feature map to

produce object proposals and uses the conv5 stage for proposal classification and bounding

box regression. In fine-tuning, we synchronize all batch normalization layers across devices.

Training is performed on the combined set of trainval2007 and trainval2012.

For testing, we report AP, AP50 and AP75 on the test2007 set. Detectron2 (271) is

used.

COCO. On COCO we study both object bounding box detection and instance segmentation.

We adopt Mask R-CNN (109) with ResNet-50 C4 as the backbone and head. Other setups

are the same as VOC. Detectron2 is again used. We follow the standard 1× schedule for

fine-tuning, which is 90k iterations for COCO.

Cityscapes. On Cityscapes we evaluate semantic segmentation, a task that also relies on

good localization and recognition. We follow the previous settings (107; 286), where a

FCN-based structure is used (162). The classification is obtained by an additional 1×1

convolutional layer.

92



5.4.3 Main Results

ImageNet-1K pre-training. Tab. 5.1 compares our point-level region contrast to previous

state-of-the-art unsupervised pre-training approaches on 4 downstream tasks, which all

require dense predictions. We compare with four categories of methods: 1) training from

scratch, i.e. learning the network from random initialization; 2) ImageNet-1K supervised

pre-training; 3) general self-supervised pre-training, including MoCo, MoCo v2, SimCLR

and InfoMin. Those are under their reported epochs; 4) Task-specific pre-training, including

DetCo (280), PixPro (286), DenseCL (262) and DetCon (112). We report the numbers

with 200-epoch pre-training. It is worth noting that we adopt the asymmetric network

structure (42), i.e. each view is only used once per iteration. For this reason, we denote

PixPro (100-epoch reported in (262)) and SoCo (266) as 200 epochs since the loss is

symmetrized there. DetCon (112) uses pre-defined segmentation masks acquired by off-

the-shelf algorithms. We also compared with it under the same number of epochs.

It shows consistent improvement on every tasks compared with prior arts under this

fair comparison setting on VOC object detection, COCO object detection, COCO instance

segmentation and Cityscapes semantic segmentation.

COCO pre-training. Tab. 5.2 compares our method to previous state-of-the-art unsu-

pervised pre-training approaches on COCO. We evaluate the transferring ability to the

same 4 downstream tasks used for ImageNet-1K pre-training, and on all of them we show

significant improvements. Different from ImageNet-1K, COCO images have more objects

per-image on average, thus our point-level region contrast is potentially more reasonable

and beneficial in this setting.
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Figure 5.3: Point affinity visualizations. In total we show 15 groups of examples. In each group
from left to right we show the original image with the selected point (denoted by red circle); three
affinity maps calculated from the point to the rest of the image with the output of i) our point-level
region contrast; ii) region-level contrast; and iii) MoCo v2 (image-level contrast). In rows from top
to down, we show 5 categories of picked points: i) single non-rigid objects, ii) single rigid objects,
iii) multiple objects, iv) objects in chaotic background and v) background stuff. Brighter colors in
the affinity map denote more similar points. Best viewed in color and zoomed in.

5.4.4 Visualization of Point Affinities

In order to provide a more intuitive way to show the effectiveness of our method, we

visualize the point affinities after pre-training in Fig. 5.3.

The images are randomly chosen from the validation set of ImageNet-1K. We follow

the previous experimental setting to pre-train 200 epochs on ImageNet-1K. We then resize

all images to 896 × 896, and interpolate the corresponding feature map of Res5 from

(28× 28) to 56× 56 for higher resolution. For each image, we first pick one point (denoted

with a red circle), then calculate the point affinity (in terms of cosine similarity) from the

last-layer output feature representation of this point to all the others within the same image.
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Figure 5.4: Point affinity (failures). We present two kinds of failure cases for our method: under-
segmentation (left) and over-segmentation (right). For each kind we show 3 pairs of images, using
the same visualization technique in Fig. 5.3. See text for details.

In addition, we also compare it with the visualizations from MoCo v2 and a region-level

contrast variant of our method to analyse the improvement. The region-level contrast variant

is implemented using MoCo v2 framework with grid regions (same as ours), with an AP

of 58.2 on VOC. In Fig. 5.3, from top to down we show 15 different groups of examples

which (row-wise) represent 5 categories of picked points: single non-rigid objects, single

rigid objects, multiple objects, objects in chaotic background, and background. Within each

group, from left to right we show the point affinity of our method, region-level contrast,

and the MoCo v2 baseline. Brighter colors on the feature map denote more similar points.

Observations. For original MoCo, its final global pooling operation intuitively causes

a loss in 2D spatial information, since everything is compressed into a single vector for

representations. Therefore, when tracing back, the salient regions usually only cover certain

closely-connected small area around the picked point. For the region-level contrast baseline,

its salient regions can expand to a larger area, but the area is quite blurry and hard to tell

the boundaries. For objects (shown in row 1-3), although all three methods show some

localization capabilities, ours often predicts sharper and more clear boundaries, indicating

a better understanding of the localization of objects. Row 4 shows the objects in chaotic

environments, which is hard to recognize even with human eyes. Except for foreground

objects, we also test the ability on the background stuff (row 5). It is interesting to see that

even for background, ours can still distinguish it with foreground objects.
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Figure 5.5: Point affinity with or without affinity distillation. In each of the 4 groups, we show
(from left to right) the original image, ours with point affinity distillation and ours without. As can
be seen, the distillation loss plays a key role in capturing object boundaries, as shown in the 4 groups
of examples.

random supervised image- region- ours
15.3 22.9 33.1 33.8 52.0

Table 5.3: Quantitative metric to compare VOC visualizations from different pre-training methods.
Our point-level region contrast outperforms all baselines ranging from random, supervised pre-
training and self-supervised pre-training at various levels.

Failure cases. We also give some failure cases from our model in Fig. 5.4. On the left we

show under-segmentation, where a segment contains more objects than it should be. For

example, in the first image, both the man and the running machine have higher similarity to

the chosen point. On the contrary, on the right we show over-segmentation, where a segment

does not cover the entire object. For example, the face of the woman has higher similarity

to the chosen point, while the clothes and wig have lower similarities – ideally they should

all belong to the same person. We believe this is reasonable in our unsupervised setting:

without definition of object classes, the model can at best form groups using low-level cues

such as textures or colors; therefore, it can miss semantic-level grouping of objects.

Affinity distillation helps localization. We visualize our method with or without point

affinity distillation in Fig. 5.5. We find the distillation loss plays a key role in capturing

object boundaries for better localization.
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Figure 5.6: Point-level vs. region-level features. We check how many points are needed to match a
region-level representation when pre-trained on ImageNet-1K. Along the horizontal axis the number
of points increases from 2 to 64 for point-level features. The pre-trained representation can already
match region-level features (blue line) in VOC AP with only 4 points.

Quantitative Metric. We quantitatively evaluate the visualizations from different pre-

training methods on VOC val2007. For each ground-truth object, we pick its center

point and calculate the similarity from this point to the rest of the image with the pre-

trained model to generate segmentation masks. We pick a threshold to keep 80% of the

entire affinity map. The mask is then benchmarked with Jaccard similarity, defined as the

intersection over union (IoU) between the predicted mask and the ground-truth one.

Our baselines are: random (no pre-training), supervised (on ImageNet-1K), MoCo

v2 (image-level) and region-level. The results are summarized in Tab. 5.3. As expected,

point-level region contrast significantly outperforms others.

5.4.5 Main Ablation Studies

For our main ablation analysis, we begin with point-level contrastive learning in Sec. 5.4.5.1,

showing its effectiveness to represent regions and robustness to inferior initial regions
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compared to a region-based counterpart. Then we discuss and compare possible point

affinity distillation strategies in Sec. 5.4.5.2. More ablations are found in the appendix.

Throughout this section, we pre-train for 100 epochs on ImageNet-1K and 400 COCO

epochs on COCO.

5.4.5.1 Point-Level vs. Region-Level

We first design experiments to show the motivation and effectiveness of introducing point-

level operations to region-level contrast. We conduct two experiments.

First is to see how many points are needed to match the pooled region-level features.

We pre-train on ImageNet for 100 epochs without point affinity loss for fair comparisons,

and report results with VOC object detection transfer. As shown in Fig. 5.6, we find with

only 4 points per-region, its AP (56.6) is already better than region-level contrast (56.5).

Interestingly, more point-level features continue to benefit performance even up to 64 points,

which suggests that the pooled, region-level features are not as effective as point-level ones

for object detection pre-training.

Second, we add back the point affinity loss and compare the robustness of our full

method against contrast learning with aggregated region-level features (112). For this

experiment, we pre-train on COCO as COCO is annotated with ground-truth object boxes/-

masks. P=16 points are used per-region and evaluation is also performed with VOC object

detection. In Fig. 5.7 we gradually decrease the region quality, from highest (ground-truth

mask), to lowest (2× 2 grid) with ground-truth box and 4× 4 grid in-between. Not only

does point-level region contrast perform better than region-level contrast, the gap between

the two increases as the region quality degenerates from left to right. This confirms that our
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Figure 5.7: Region quality vs. AP comparison between our point-level region contrast (red) and
region-level contrast with pooled-features, pre-trained on COCO. Along the horizontal axis the
region quality degenerates: ground truth masks, ground truth bounding box, 4× 4 grid and 2× 2
grid. Our method is consistently better and is more resilient to the degeneration of region qualities.

method is more robust to initial region assignments and can work with all types of regions.

5.4.5.2 Point Affinity Distillation Strategies

For point affinity distillation, there are three possible strategies: 1) i′k′ as teacher (see

Eq. (5.3) for its definition), ik′ as student (default); 2) ik′ as teacher, ik as student; 3) i′k′ as

teacher, ik as student, which requires an extra forward pass with momentum encoders.

Strategy 1) achieves 58.0 AP. Switching to strategy 2) slightly degenerates AP to 57.6,

and strategy 3) yields the same AP as 1) while requiring extra computations. Therefore we

set 1) as our default setting.

5.5 Conclusion

Balancing recognition and localization, we introduced point-level region contrast, which

performs self-supervised pre-training by directly sampling individual point pairs from
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different regions. Compared to other contrastive formulations, our approach can learn both

inter-image and intra-image distinctions, and is more resilient to imperfect unsupervised

regions assignments. We empirically verified the effectiveness of our approach on multiple

setups and showed strong results against state-of-the-art pre-training methods for object

detection. We hope our explorations can provide new perspective and inspirations to the

community.
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Chapter 6

Masked Autoencoders Enable Efficient
Knowledge Distillers

Next, based on the finding that representation learning can show certain level of generaliza-

tion ability among downstream tasks. We keep pushing for stronger representation learning

algorithm, and propose DMAE.

6.1 Introduction

Following the success in the natural language processing (253; 67), the Transformer ar-

chitecture is showing tremendous potentials in computer vision (72; 242; 245; 11; 300),

especially when they are pre-trained with a huge amount of unlabelled data (17) with self-

supervised learning techniques(108; 10). Masked image modeling, which trains models to

predict the masked signals (either as raw pixels or as semantic tokens) of the input image,

stands as one of the most powerful ways for feature pre-training. With the most recent

representative work in this direction, masked autoencoder (MAE) (104), we are now able to

efficiently and effectively pre-train high-capacity Vision Transformers (ViTs) with strong
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Figure 6.1: Illustration of the distillation process in DMAE. There are two key designs. Firstly,
following MAE, we hereby only take visible patches as inputs and aim to reconstruct the masked
ones. Secondly, knowledge distillation is achieved by aligning the intermediate features between the
teacher model and the student model. Note the gray blocks denote the dropped high-level layers of
the teacher model during distillation.

feature representations, leading to state-of-the-art solutions for a wide range of downstream

visual tasks.

In this paper, we are interested in applying knowledge distillation (120), which is one

of the most popular model compression techniques, to transfer the knowledge from these

strong but cumbersome ViTs into smaller ones. In contrast to prior knowledge distillation

works (120; 312; 173), the teacher considered here is a pre-trained model whose predictions

do not necessarily reveal the fine-grained relationship between categories; therefore, typical

solutions like aligning the soft/hard logits between the teacher model and the student model

may no longer remain effective. Moreover, after distilling the pre-trained teacher model,

these student models need an extra round of fine-tuning to adapt to downstream tasks.

These factors turn distilling pre-trained models seemingly a less favorable design choice in

terms of both performance and computational cost.

Nonetheless, surprisingly, we find by building upon MAE, the whole distillation frame-

work can efficiently yield high-performance student models. There are two key designs.
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Firstly, we follow MAE to let the encoder exclusively operate on a small visible subset of

patches and to employ a lightweight decoder for pixel reconstruction. Whereas rather than

using the “luxury” setups in MAE, we show aggressively simplifying pre-training from

1600 epochs to 100 epochs and pushing masking ratio from 75% to 95% suffice to distill

strong student models. Secondly, instead of aligning logits, we alternatively seek to match

the intermediate feature representation; this enables the cumbersome teacher model to only

forward propagate inputs through the first few layers, therefore, reducing computations. We

note applying L1 norm for distance measure is an essential recipe for ensuring a successful

intermediate feature alignment.

We name this distilling MAE framework as DMAE. Compared to the traditional knowl-

edge distillation framework where the teacher is a fine-tuned model, DMAE is more efficient

and can train much stronger student models at different capacities. For example, by setting

ViT-B as the student model, while the baseline of distilling a fine-tuned ViT-L achieves

82.8% top-1 ImageNet accuracy, DMAE substantially boosts the performance to 84.0%

(+1.2%) top-1 ImageNet accuracy, at an even lower training cost (i.e., 195 GPU hours vs.

208 GPU hours, see Table 6.9). More intriguingly, we found that DMAE allows for robust

training with extremely highly masked images—even with TEN visible patches (i.e., 95%

masking ratio), ViT-B can competitively attain a top-1 ImageNet accuracy of 83.6%; this

masking ratio can further be aggressively pushed to 98% (FOUR visible patches) where

DMAE still help ViT-B secure 82.4% top-1 ImageNet accuracy. We hope this work can

benefit future research on efficiently unleashing the power of pre-train models.

103



6.2 Related Work

Knowledge distillation (KD) is a popular model compression technique that allows models

to achieve both strong performances of large models and fast inference speed of small mod-

els. The first and seminal KD approach, proposed in (120), transfers the “dark knowledge”

via minimizing the KL divergence between the soft logits of the teacher model and that

of the student model. From then on, many advanced KD methods have been developed,

which can be categorized into two branches: logits distillation (84; 312; 50; 173; 315; 276)

and intermediate representation distillation (208; 135; 118; 117; 236). Our DMAE belongs

to the second branch, as it minimizes the distance between latent features of the teacher

model and those of the student model.

The first feature-based distillation method is FitNets (208). In addition to aligning logits,

FitNets requires the student model to learn an intermediate representation that is predictive

of the intermediate representations of the teacher network. Heo et al. (117) re-investigates

the design of feature distillation and develops a novel KD method to create a synergy

among various aspects, including teacher transform, student transform, distillation feature

position, and distance function. CRD (236) incorporates contrastive learning into KD to

capture correlations and higher-order output dependencies. Unlike these existing works,

our DMAE is the first to consider applying KD to extra information from self-supervised

pre-trained models.

Masked image modeling (MIM) helps models acquire meaningful representations by

reconstructing masked images. The pioneering works are built on denoising autoen-

coders (256) and context encoders (187). Following the success of BERT in natural
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language (67), and also with the recent trend of adopting Transformer (253) to computer vi-

sion (72), there has emerged a set of promising works on applying MIM for self-supervised

visual pre-training. BEiT (17) first successfully adopts MIM to ViT pre-training by learning

to predict visual tokens. MaskFeat (264) finds that learning to reconstruct HOG features

enables effective visual representation learning. SimMIM (287) and MAE (104) both

propose to directly reconstruct the pixel values of the masked image patches. Our work is

built on MAE and finds that MAE enables the whole distillation framework to be efficient

and effective.

6.3 Approach

6.3.1 Masked Autoencoders

Our method is built upon MAE, a powerful autoencoder-based MIM approach. Specifically,

the MAE encoder first projects unmasked patches to a latent space, which are then fed into

the MAE decoder to help predict pixel values of masked patches. The core elements in

MAE include:

Masking. MAE operates on image tokens, i.e., the image needs to be divided into non-

overlapping patches. A random small subset of those patches will be kept for the MAE

encoder, and the rest will be set as the predicting target of the MAE decoder. Typically, a

high masking ratio (e.g.,75%) is applied, preventing models from taking shortcuts (e.g.,

simply extrapolating missing pixels based on neighbors) in representation learning.

MAE encoder.The MAE encoder is a standard ViT architecture except that it only operates

on those unmasked patches. This design largely reduces the computation cost of encoders.
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MAE decoder. In addition to the encoded features of unmasked patches (from MAE

encoder), the MAE decoder receives mask tokens as input, a learned vector shared across

all missing positions. The mask token is only used during pre-training, allowing independent

decoder design. Particularly, MAE adopts a lightweight decoder for saving computations.

Reconstruction. Different from BEiT (17) or MaskFeat (264), MAE directly reconstructs

image pixel values. The simple mean squared error is applied to masked tokens for

calculating loss.

Note that, other than distillation-related operations, the whole pre-training and fine-

tuning process in this paper exactly follow the default setup in MAE, unless specifically

mentioned. Interestingly, compared to MAE, our DMAE robustly enables a much more

efficient pre-training setup, e.g., 100 (vs. 1600) training epochs and 95% (vs. 75%) masking

ratio.

6.3.2 Knowledge Distillation

MAE demonstrates extraordinary capabilities in learning high-capacity models efficiently

and effectively. In this work, we seek to combine knowledge distillation with the MAE

framework, to efficiently acquire small and fast models with similar performance as those

powerful yet cumbersome models. The most straightforward approach is directly applying

existing knowledge distillation methods, like the one proposed in DeiT (242), to a fine-

tuned MAE model. However, we empirically find that this approach hardly brings in

improvements. In addition, this approach fails to leverage the special designs in MAE

for reducing computations, e.g., only feeding a small portion of the input image to the

encoder. To this end, we hereby study an alternative solution: directly applying knowledge
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distillation at the pre-training stage.

Since there are no categorical labels in MAE pre-training, distilling logits can hardly

help learn semantically meaningful representations. We, therefore, resort to distilling the

intermediate features. This idea is first developed in FitNets (208), and inspired a set

of followups for advancing knowledge distillation (135; 118; 117; 236). Concretely, we

first extract the features from the specific layers of the student model; after feeding such

features into a small project head, the outputs will be asked to mimic the features from the

corresponding layers of the teacher model. In practice, the projection head is implemented

by simple fully connected layer, which addresses the possible feature dimension mismatch

between teacher models and student models.

Formally, let x ∈ R3HW×1 be the input pixel RGB values and y ∈ R3HW×1 be the

predicted pixel values, where H denotes image height and W denotes image width. The

MAE reconstruction loss LMAE can be written as

LMAE =
1

Ω (xM) ∑
i∈M

(yi − xi)
2 . (6.1)

where M denotes the set of masked pixels, Ω(.) is the number of elements, and i is the

pixel index.

Let zS
l , zT

l ∈ RLC×1 be the features extracted from the lth layer of the student model

and the teacher model, respectively, where L denotes the patch numbers, and C denotes

the channel dimension. We use σ() to denote the projection network function. Our feature

alignment distillation loss LDist can be written as

LDist = ∑
l

1
Ω

(︁
zT

l

)︁ ∑
i

⃦⃦⃦
σ
(︂

zS
l

)︂
i
− zT

l,i

⃦⃦⃦
1

. (6.2)
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# of Layers Layer Location Student Aligned Layer Index ImageNet Top-1 Acc (%)

Single

Bottom 3 82.6

Middle
6 83.6
9 84.0

Top 12 83.4
Multiple Middle+Top 6+12 84.2

Table 6.1: The effects of feature alignment location. We hereby test with 5 different layer
locations, where the top layers refer to those closer to network outputs. For single layer feature
alignment, features from the 3

4 depth of the model leads to the best ImageNet top-1 accuracy. This
performance is even comparable to the setup of aligning multiple layers.

The final loss used in pre-training is a weighted summation of MAE reconstruction loss

LMAE and the feature alignment distillation loss LDist, controlled by the hyperparameter α:

L = LMAE + α× LDist. (6.3)

The framework of DMAE is summarized in Figure 6.1. Following MAE, DMAE also

takes masked inputs and performs the pretext task of masked image modeling. Besides, the

corresponding features are aligned between the teacher model and the student model. It is

worthy of highlighting that DMAE is an efficient knowledge distiller: 1) it only operates

on a tiny subset of visible patches i.e., a high masking ratio is applied; and 2) aligning

intermediate layer features reduces the computation cost of (cumbersome) teacher model.

In the next section, we extensively compare our method with three baselines: the original

MAE without any distillation, DeiT-style distillation, and feature alignment distillation in

the supervised setting.
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6.4 Experiments

6.4.1 Implementation Details

Following MAE (104), we first perform self-supervised pre-training on ImageNet-1k (65).

Unless otherwise mentioned, the teacher models are public checkpoints released from

the official MAE implementations. For pre-training, we train all models using AdamW

optimizer (164), with a base learning rate of 1.5e-4, weight decay of 0.05, and optimizer

momentum β1, β2 = 0.9, 0.95. We use a total batch size of 4096, and pre-train models

for 100 epochs with a warmup epoch of 20 and a cosine learning rate decay schedule. We

by default use the masking ratio of 75%; while the ablation study shows that our method

can robustly tackle extremely high masking ratios. After pre-training, the teacher model is

dropped, and we exactly follow the default setups in MAE to fine-tune the student model on

ImageNet.

For feature alignments, we choose to align the features from the 3
4 depth of both the

student model and the teacher model, which we find delivers decent results for all model

sizes tested. For example, with a 24-layer ViT-L as the teacher model and a 12-layer ViT-B

as the student model, features from the 9th layer of ViT-B are aligned with the features

from the 18th layer of ViT-L. We set α = 1 in Eq. 6.3 to balance the tradeoff between MAE

reconstruction loss LMAE and the feature alignment distillation loss LDist in pre-training.

6.4.2 Analysis

We first provide a detailed analysis of how to set distillation-related parameters in DMAE.

Specifically, we set the teacher model as an MAE pre-trained ViT-L (from MAE official

109



Teacher Layer (relative position) ImageNet Top-1 Acc (%)
Middle 84.0
Top 83.3
Bottom 82.1

Table 6.2: The analysis of aligning order on ImageNet classification top-1 accuracy (%).

GitHub repository, attaining 85.9% top-1 ImageNet accuracy after fine-tuning), and set the

student model as a randomly initialized ViT-B. We analyze the following six factors:

Where to align. In Table 6.1 we first check the effect of feature alignment location on

model performance. We observe that shallower features are less favored: e.g., the 3rd layer

alignment under-performs all other settings. We speculate this is due to the learning process

of ViTs—images are much noisier and less semantic than texts, ViTs will first group the

raw pixels in the bottom layers (closer to the input), which is harder to transfer. While

features from 3
4 depth (i.e., the 9th layer in ViT-B) achieves the best performance, a simple

rule-of-thumb which we find fits all model scales in our experiments. We adopt this design

choice in all other experiments. It is also worth mentioning that simply aligning multiple

layers has no clear advantage over aligning features from 3
4 depth (84.2% vs. 84.0%); we,

therefore, stick to the 3
4 depth setting, which is more efficient.

Aligning order. We next test the importance of alignment ordering on model performance.

Specifically, by fixing the layer location in the student model (i.e., the middle layer in our

experiment), we then align it to different layers of the teacher model. As shown in Table

6.2, we observe that when the aligned layers are in the same relative position (e.g., middle

to middle), the student model can achieve the best performance.

Masking ratio. MAE reveals that the masking ratio in masked image modeling could be

surprisingly high (75%). The hypothesis is that by learning to reason about the gestalt of the
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Figure 6.2: DMAE allows an extremely high masking ratio. From left to right, we increase
the masking ratio from the basic 75% to the extreme 99%. We note that our DMAE competitively
attains 83.6% top-1 ImageNet accuracy with 95% masking ratio (TEN visible patches), and still
secures 82.4% top-1 ImageNet accuracy even by learning with FOUR visible patches (98% masking
ratio).

Projection Head ImageNet Top-1 Acc (%)
Linear 84.0
2-layer MLP 84.0
3-layer MLP 83.8

Table 6.3: Projection Head. A simple fully-connected layer works best. We choose this as the
default setting.

Decoder Depth ImageNet Top-1 Acc (%)
2 83.7
4 83.8
8 84.0

Table 6.4: Decoder Depth. A deeper decoder (slightly) improves the pre-trained representation
quality.

missing objects and scenes, which cannot be done by extending lines or textures because of

the high masking ratio, the model is also learning useful representations. Interestingly, we

find that when combining MAE and knowledge distillation, an even much higher masking

ratio is possible, as shown in Figure 6.2.

Firstly, it is interesting to note that, compared to the typical 75% masking ratio setting,

further raising the masking ratio to 90% comes at no performance drop, i.e., both attain
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Loss Design ImageNet Top-1 Acc (%)

Loss Choice
L1 with α = 1 84.0
L2 with α = 1 83.3

L1 with α = 0.5 83.9

Loss Ratio
L1 with α = 1 84.0
L1 with α = 2 84.0
L1 with α = 4 84.0

Table 6.5: Loss Function. From the first block, we observe that the L1 distance yields significantly
higher performance than the L2 distance. From the second block, we observe that the hyperparameter
α has little influence on the representation quality of DMAE.

Method
Pre-training

epochs
Supervised training /
fine-tuning epochs

ImageNet
Top-1 Acc (%)

MAE-B 100 100 81.6
MAE-B 1600 100 83.6
DeiT-B - 100 76.8
DeiT-B - 300 81.8
DeiT-B-Soft Distillation - 100 77.5
DeiT-B-Hard Distillation - 100 78.3
CRD(236) - 100 81.9
SRRL(295) - 100 82.2
Dear-KD(41) - 100 82.4
Supervised Feature Alignment - 100 82.8
DMAE-B 100 100 84.0

Table 6.6: DMAE shows stronger performance than all three kinds of baselines: MAE,
supervised model, and other existing advanced distillation strategies.

84.0% top-1 ImageNet accuracy. Next, even with an extremely large masking ratio like

98% (only FOUR visible patches), DMAE still beats the 100-epoch MAE baseline that

uses a masking ratio of 75% (second row in Table 6.6), by a non-trivial-margin (82.4%

vs. 81.6%). These results suggest that, with the assistance of distilled knowledge from the

teacher model, the student model can make better use of visible patches, even at a very

limited amount, for representation learning.

Projection head. The goal of the proposed feature alignment distillation is to encourage
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the student model to learn features that are predictive of features from a stronger teacher

model. To that end, a small projection head is employed on features from the student model,

to 1) project them onto a space of the same dimension as the hidden dimension of the

teacher model, and 2) provide extra flexibility for feature alignment. We ablate the choice

of this projection network, as shown in Table 6.3. We can observe that applying a simple

fully connected layer already performs the best among other choices.

Decoder depth. In Table 6.4 we analyze the effect of decoder depth. Similar to MAE

(104), the final performance gets (slightly) increased with a deeper decoder. We choose

a decoder depth of 8 as the default setting as in (104). Note that a decoder depth of 2 is

also a competitive choice—compared to an 8-depth decoder, it significantly reduces the

computation cost while only marginally sacrificing the accuracy by 0.3%.

Loss designs. Table 6.5 ablates the loss design. While SimMIM (287) shows that L1

distance and L2 distance lead to similar performance, ours suggests that L1 distance

exhibits a clear advantage over L2 distance, i.e., +0.7% improvement. Furthermore, we

note DMAE is quite robust to the specific value of the hyperparameter α, which controls

the relative importance of the distillation loss over the reconstruction loss. Based on these

results, we choose L1 in Eq. 6.2 for distance measure and set α = 1 in Eq. 6.3 for the rest

experiments.

6.4.3 Comparison with Baselines.

In Table 6.6, we compare the performance of our DMAE with various baselines:

MAE. The MAE baselines are presented in the first block of Table 6.6. If MAE is also asked

to pre-train for only 100 epochs, DMAE can substantially outperform this baseline by 2.4%
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(from 81.6% to 84.0%). When comparing to a much stronger but more computationally

expensive MAE baseline with 1600 pre-training epochs, we note DMAE still beats it by

0.4%.

Supervised model. The second block in Table 6.6 demonstrates the effectiveness of DMAE

compared with models trained under the supervision of categorical labels, which requires

a much longer training time, i.e., +2.2% compared to the DeiT 300 epochs supervised

training.

Other distillation strategies. We next compare DMAE with other distillation methods.

We consider DeiT-style logit-based distillation (242), CRD (236), SRRL (295), Dear-KD

(41), and feature alignment distillation. Note for these baselines, one significant difference

from DMAE is that the student model here directly distills knowledge from a supervisely

fine-tuned teacher model. Moreover, to make these baselines more competitive, the teacher

models will first be MAE pre-trained and then fine-tuned on ImageNet-1k.

The results are shown in the third block of Table 6.6. Firstly, we can observe that

the DeiT-style logit-based distillation, either soft or hard, even hurts the student models’

performance. This phenomenon potentially suggests that such a distillation strategy may

not fit teacher models of ViT architectures. For other baselines, we note that feature

alignment distillation performs the best; but this is still worse than DMAE (82.8% vs.

84.0%), indicating the importance and effectiveness of distilling knowledge from a pre-

trained teacher model.
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Student Model Teacher Model
ImageNet Top-1 Acc (%)
MAE DMAE

Base Large 81.6 84.0 (+2.4)

Small
Large 77.4 80.1 (+2.7)
Base 77.4 79.3 (+1.9)

Tiny Base 66.6 70.0 (+3.4)

Table 6.7: Across different model sizes, DMAE shows consistent improvements compared with
MAE.

6.4.4 Scaling to Different Model Sizes

We test DMAE with different model sizes, listed in Table 6.7. For a fair comparison, both

methods only pre-train models for 100 epochs. DMAE shows consistent improvement

compared to MAE across different model sizes. With only one middle layer feature

alignment, DMAE brings an additional improvement of +2.4% with ViT-B, +2.7% with

ViT-Small, and +3.4% with ViT-Tiny. In addition, we are interested in the following two

cases:

Same teacher model, different student model. As shown in the first two lines in Table

6.7, we find that when using ViT-L as the teacher model, both ViT-B and ViT-S benefit

from the distillation, demonstrating a clear advantage over the MAE baseline. We argue

that the ability to effectively generalize to cases where an even smaller student model is

desirable, especially for those computation-constrained real-world applications.

Same student model, different teacher model. As shown in Table 6.7, with a ViT-S as

the student model, enlarging the teacher model from ViT-B to ViT-L further boosts the

accuracy by 0.8% (from 79.3% to 80.1%). This result suggests that DMAE can effectively

distill knowledge from the teacher models at different scales.
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Method
Pre-training

epochs
Supervised training /
fine-tuning epochs

IN-1%
Top-1 Acc(%)

IN-10%
Top-1 Acc(%)

MAE-B 100 100 33.9 65.0
MAE-B 1600 100 49.6 72.8
DeiT-B - 100 - -
DeiT-B-Soft Distillation 1600 100 36.0 66.4
DeiT-B-Hard Distillation 1600 100 37.3 67.3
Supervised Feature Alignment 1600 100 34.2 67.6
DMAE-B 100 100 50.3 73.4

Table 6.8: DMAE demonstrates much stronger performance than all other baselines when
training data is limited. Note that the DeiT-B baseline is unable to converge because of data
insufficiency.

Model
Training Cost (GPU Hours) ImageNet

Pre-training Fine-tuning Overall Top-1 Acc(%)
MAE-B-100-epoch 78h 112h 190h 81.6
MAE-B-1600-epoch 1248h 112h 1360h 83.6
DeiT-B-Soft Distillation - 213h 213h 77.5
DeiT-B-Hard Distillation - 213h 213h 78.3
Supervised Feature Alignment - 208h 208h 82.8
DMAE-B 83h 112h 195h 84.0

Table 6.9: Computational cost comparisons among DMAE and other baselines. The training
cost is measured by A5000 GPU hours. We note the proposed DMAE maintains a similar (or even
cheaper) training cost than others, while achieving much higher top-1 ImageNet accuracy.

6.4.5 Limited Training Data

In certain real-world applications, data could be hard to acquire because of high data

collection and labeling costs or due to privacy concerns. Leveraging models pre-trained

on large-scale unlabeled datasets for fine-tuning when only a small dataset of downstream

tasks is available becomes a promising solution. Here we seek to test the potential of our

DMAE in this data-scarce scenario. We strictly follow (39) to sample 1% or 10% of the

labeled ILSVRC-12 training datasets in a class-balanced way. We set MAE pre-trained

ViT-L as the teacher model and a randomly initialized ViT-B as the student model. In
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addition, we compare DMAE with three kinds of baselines described in Section 6.4.3:

MAE, supervised model, and other distillation strategies, and similarly, set the teacher

model to be a ViT-L that first pre-trained with MAE and then fine-tuned on ImageNet-1k.

Note that since DMAE has full access to the 100% ImageNet dataset (without labels) during

pre-training, to ensure a fair and competitive comparison, we initialize all the baselines as

the 1600-epoch MAE pre-trained model on ImageNet.

Table 6.8 shows that DMAE largely surpasses all other baselines. For example, when

only 10% ImageNet data is available for supervised training or fine-tuning, DMAE out-

performs the MAE pre-trained baseline by 8.4% (i.e., 73.4% vs. 65.0%). DMAE also

significantly outperforms other distillation strategies, with an improvement ranging from

5.8% to 7.0%. We note this accuracy gap is even larger when only 1% ImageNet is available,

demonstrating the data efficiency of DMAE.

6.4.6 Generalization to Other Methods

Lastly, we provide preliminary results of integrating DMAE into other self-supervised

training frameworks, including DINO (31) and MoCo-V3 (47). Unlike MAE, which

belongs to masked image modeling, DINO and MoCo-V3 are contrastive learning-based

methods. Still, as shown in Table 6.10, without further hyperparameter tuning, DMAE

effectively shows non-trivial improvements on top of both DINO (+1.3%) and MoCo-v3

(+1.4%), demonstrating the potential of distilling pre-trained models (rather than fine-tuned

models as in most existing knowledge distillation frameworks).
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w/o DMAE w/ DMAE
DINO 80.9 82.2 (+1.3)
MoCo-V3 81.1 82.5 (+1.4)

Table 6.10: DMAE effectively improves other self-supervised pre-training frameworks (includ-
ing DINO and MoCo-v3) on ImageNet classification top-1 accuracy (%).

6.4.7 Generalization to Downstream tasks

Following ViT-Det(149), we conduct downstream fine-tuning on the COCO dataset, where

MAE/DMAE pre-trained ViT-Base model is adopted as the plain backbone of Mask-

RCNN. We train the model on the train2017 split and evaluate it on the val2017 split.

We report results on bounding box object detection (APbox) and instance segmentation

(APmask), shown in Table 6.11. Our observations indicate that DMAE also demonstrates

strong potential in downstream tasks like detection and segmentation.

method APbox APmask

MAE 51.2 45.5
DMAE 53.4 46.9

Table 6.11: DMAE effectively improves the downstream tasks as well, including object detection
and segmentation.

6.5 Discussion

In this section, we present a quantitative evaluation of the computational cost of DMAE

compared to baseline methods. Additionally, we conduct a standard deviation analysis to

assess the stability of our DMAE approach. Finally, we propose an advanced fine-tuning

recipe for applying DMAE to smaller ViT models.

118



6.5.1 Computational Costs

In Table 6.9, we provide a quantitative evaluation of the computational cost, which is tested

on a single NVIDIA A5000 GPU. We can observe that, without a significantly increase

in training hours, DMAE substantially outperforms the MAE-100 baseline by +2.4% on

ImageNet; this result even exceeds the MAE-1600 baseline, which causes 7x GPU hours

than MAE-100 baseline. We additionally provide the actual GPU hours of other baselines,

and find that the proposed DMAE stands as the most efficient one, meanwhile achieving

the best top-1 ImageNet accuracy.

6.5.2 Standard Deviation Analysis

In the above experiments, we kept the same random seed. Following MAE, we perform the

statistical analysis for DMAE by changing the random seeds. In Table 6.12, from top to

down, we show three aligning settings; and from left to right, we show the results with the

default seed, the average accuracy with three randomly sampled seeds, and their standard

deviation, respectively. From these results, we could conclude that our DMAE can bring in

statistically stable improvements.

Pos Acc(%) Avg Standard Deviation
Bottom (3th) 82.6 82.50 0.20
Mid (6th) 83.6 83.67 0.08
Top (9th) 84.0 84.03 0.10

Table 6.12: Standard deviation analysis for DMAE. From top to bottom, we show three aligning
settings, the model performance with the default seed, the average performance with three randomly
sampled seeds, and their standard deviations, respectively. ’Pos’ denotes the student distillation
position. Acc denotes ImageNet Top-1 accuracy. ’Avg’ denotes the average value over three times.
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((a)) ViT-Tiny

ViT-
Tiny

Top-1 Acc
(%)

MAE 70.1
DeiT 74.5

DMAE 74.9

((b)) ViT-Small

ViT-
Small

Top-1 Acc
(%)

MAE 80.0
DeiT 81.2

DMAE 82.2

Table 6.13: Weaker augmentation and regularization helps smaller ViT models, during finetun-
ing for both MAE and DMAE on ImageNet classification top-1 accuracy (%)

6.5.3 Smaller ViT Models.

Since the original MAE paper does not offer specialized recipes for ViT-Small and Tiny,

we by default use the recipe for ViT-Base to fine-tune these smaller ViTs. However, this

recipe includes strong regularization and augmentation techniques that might lead to over-

regularization for the smaller ViTs. To address this issue, we experiment with a modified

recipe with weaker augmentation and regularization by removing MixUp, CutMix, and

Stochastic Depth. Results on ImageNet in Table 6.13 show that DMAE not only maintains

its advantage over MAE, but also outperforms DeiT with this new recipe, highlighting its

effectiveness.

6.6 Conclusion

Self-supervised pre-training has demonstrated great success for those exponentially growing

models in the natural language domain. Recently, the rise of MAE shows that a similar

paradigm also works for the computer vision domain, and now the development of vision

models may embark on a similar trajectory as in the language domain. Yet, it is often

desirable to have a well-balanced model between performance and speed in real-world
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applications. This work is a small step towards unleashing the potential of knowledge

distillation, a popular model compression technique, within the MAE framework. Our

DMAE is a simple, efficient, and effective knowledge distillation method: feature alignment

during MAE pre-training. Extensive experiments on multiple model scales demonstrate

the effectiveness of our approach. Moreover, an intriguing finding is that it allows for a

masking ratio even higher than the already large one used in MAE (i.e., 75%). We have

also validated the effectiveness of our DMAE when in the small-data regime. We hope this

work can benefit future research in knowledge distillation with pre-trained models.
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Chapter 7

Sequential Modeling Enables Scalable
Learning for Large Vision Models

In our final exploration, we delve into the data part. By introducing a novel sequential

modeling approach, we aim to tackle the challenges posed by vast amounts of visual data

efficiently. This chapter represents a crucial advancement towards handling the complexities

of real-world visual data at scale, paving the way for scalable and versatile vision systems

capable of addressing diverse challenges.

7.1 Introduction

Large language models (LLMs) such as GPT (25) and LLaMA (246) have taken the world

by storm. What would it take to build a Large Vision Model (LVM)? From the animal

world, we know that visual competences are not dependent on language. In particular, many

experiments have shown that the visual world of non-human primates is remarkably similar

to that of humans. So while the space of vision-language models such as LLaVA (155) is

interesting and worthwhile to pursue, in this paper we seek an answer to a different question
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– how far can we go from pixels alone?

The key features of contemporary LLMs that we seek to emulate in LVMs are: 1)

scaling in the presence of big data, and 2) flexible specification of tasks through prompting

(in-context learning). How do we achieve this? As usual, there are three main components

that must be specified:

Data: We want to exploit all the remarkable diversity in visual data. First of all, just raw

unannotated images and videos. Next, we want to exploit the variety of annotated visual data

sources that have been produced over the last couple of decades – semantic segmentations,

depth reconstructions, keypoints, multiple views of 3D objects, among others. We define

a common format, “visual sentences”, in which to represent these different annotations

without needing any meta-knowledge beyond the pixels. The total size of our training

dataset is 1.64 billion images/frames.

Architecture: We use a large transformer architecture (3 billion parameters) trained

on visual data represented as sequence of tokens, using a learned tokenizer that maps each

image to a string of 256 vector-quantized tokens.

Loss function: We draw inspiration from the natural language community, where

masked token modeling has given way to sequential autoregressive prediction. Once

images/videos/annotated images can all be represented as sequences, we can train the

model to minimize the cross-entropy loss for predicting the next token.

With this extremely simple design, we demonstrate some noteworthy behaviors:

• Appropriate scaling behavior as one increases model size and data size.

• Many different vision tasks can now be “solved” by designing suitable prompts at
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test time. While the results don’t show as high performance as bespoke, specifically-

trained models, the fact that so many tasks are all addressed by a single vision model

is quite encouraging.

• We see a clear benefit of the amount of unsupervised data on the performance on

various standard vision tasks.

• We see a hint of an ability for general visual reasoning – handling out-of-distribution

data, and performing novel tasks. But further investigation is needed.

7.2 Related Work

Pretrained Vision Models. The value of using pretrained models (such as ImageNet-

pretrained AlexNet (141)) has been demonstrated as far back as 2015 in R-CNN (92),

and it has since become standard practice in computer vision. Self-supervised pretraining

was proposed as a way to vastly increase the amount of data available for pretraining (68;

310; 182; 187; 43; 100). Unfortunately, this was not very successful, likely because the

CNN-based architectures of that time did not have enough capacity to absorb the data.

With the introduction of Transformers (254), which have much higher capacity, researchers

revisited self-supervised pretraining, and showed that transformer-based masked image

reconstruction approaches, such as BEiT (17), MAE (104), SimMIM (287), perform vastly

better than their CNN-based counterparts (187). Yet, despite their recent successes, current

pretrained vision-only models have had trouble scaling up to the really large datasets, such

as LAION (214).

Multi-task Learning and In-context Learning. From the classic one-model-per-task
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setups, computer vision is slowly moving toward a single model performing multiple

different tasks. Various multi-task learning approaches (304; 138; 69; 216; 129) exist but

they are typically limited to a fixed, pre-defined number of tasks. More recently, methods

inspired by in-context learning in LLMs forgo any notion of tasks and instead let the model

infer the task directly from the input prompt. For example, Visual Prompting (18; 261)

takes in a task input/output example pair and a query image at test time, concatenates them

into a single 2-by-2 image, and uses inpainting to generate the desired output. But, since

the inpainting is performed using a variant of MAE (104), the same problems with scaling

are inherited by these approaches.

Auto-regressive Visual Models. The idea of using auto-regressive models for synthesizing

visual data goes back at least 70 years. Inspired by Shannon’s use of N-grams to synthesize

language (218; 219), a number of works, starting with Attneave’s seminal 1954 paper (8),

applied this idea to sequentially synthesizing pixels (85; 192; 77; 119), image patches (76),

video frames (212; 200), and motion capture data (7; 139; 144). As deep models became

popular, newer works replaced N-grams with RNNs or CNNs for pixel synthesis (251;

250). Most recently, transformer-based autoregessive visual generation methods have been

proposed (38; 301; 78; 298), and, combined with language, have demonstrated impressive

image synthesis results, e.g. Parti (299).

7.3 Data

“Data! Data! Data! I can’t make bricks without clay!” – SHERLOCK HOLMES

The key requirement of any Large Pre-trained Model is that it must be trained on vast
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Figure 7.1: Visual sentences allow us to format diverse vision data into the unified structure of
image sequences.

amounts of data. For language models, very large and very diverse datasets are fairly

easy to obtain. For instance, the popular Common Crawl repository (1) contains 250

billion web pages spanning the entire Web, is extremely diverse, and includes “natural

demonstrations” like language translations, question answering, etc. In computer vision,

we are still very far from having a data source of comparable size and diversity. One of the

central contributions of our work is the first step toward curating such a dataset that we call

Unified Vision Dataset v1 (UVDv1). To assemble it, we leverage many different sources of
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visual data: (1) unlabelled images, (2) images with visual annotations, (3) unlabelled videos,

(4) videos with visual annotations, and (5) 3D synthetic objects. The unlabeled images,

which represent over 80% of our data, capture a huge cross-section of our visual world,

and provide the required diversity, at the cost of lower quality. Images with annotations

have a much more constrained distribution, but are usually of higher quality. Video data is

even more constrained (typically, to human-centric activities), but is an invaluable source

of temporal data. Renderings of 3D synthetic objects are the lowest in diversity but can

provide valuable hints about the behavior of 3D structures. Importantly, UVDv1 is a purely

visual dataset, with no non-visual meta-data (e.g. text) included. All together, UVDv1

contains 1.64 billion images.

Another important difference from Large Language Models is that language data has a

natural, unified one-dimensional structure for all the data – a stream of text. Unfortunately,

this is not the case for visual data, with different sources all having different structures. In

this work we propose visual sentence as a unified unit of visual data, which enables us to

train scalable models from a diverse set sources. A visual sentence is simply a sequence

containing one or more images followed by an end-of-sentence (EOS) token. Figure 7.1

shows how the various data sources are partitioned into visual sentences. In particular:

Single images. A single image itself represents the simplest form of a visual sentence –

{ image, EOS}. We use the filtered subset of 1.49 billion images (263) from the LAION

5B (215) dataset. This is by far the largest part of our data, comprising 88.5%.

Image sequences. A sequence of images is a natural form of visual sentence. We create

such sequences by sourcing video data from a wide range of existing datasets (226; 190;

142; 28; 175; 176; 204; 222; 98; 63; 32; 288; 289; 170; 148; 147; 221; 177; 99). Visual
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sentences of 16 frames are formed by randomly sampling the videos at three different strides

(10, 20, and 30). In addition, we utilize synthetic 3D objects from the Objaverse Dataset (64)

to generate object-centric multiview sequences for a variety of objects. For each object,

we sample one radius length between the object center and the camera from 1.5 to 2.2,

and sample one constant elevation from -45 degrees to 45 degrees, then traverse different

views of the object by changing the azimuth with a step length of 15 degrees and render 24

views. We rendered 42000 such sequences in total for training and 8000 for testing. Finally,

we can also represent images belonging to the same semantic category as being (part of)

a sequence. We use categories from ImageNet, concatenating together groups of images

(2,4,8, or 16) from the same category into a 16-image long visual sentences.

Images with annotations. To handle different types of image annotations in a uniform

way, we choose to represent all annotations as images. Some data types, e.g. semantic

segmentation maps (319), edge maps (227), depth (199) and normal images (9), are already

represented this way. For others we apply tailored methods for each specific annotation

type: 1) Object Detection: We create annotations by overlaying a color-coded bounding box

around each object, following the methodology in (36); 2) Human Pose: Human skeletons

are rendered in pixel space, adhering to the OpenPose format, utilizing MMPose (53);

3) Depth Estimation, Surface Normal, and Edge Detection: given ImageNet and COCO

images, we generate annotations in line with the protocols from (158). 3) Style Transfer (23),

De-rain (308), De-noise (255), Low Light Enhancement (265), and Stereo Datasets (86):

These are all represented as image pairs (e.g. input/output). 4) Colorization: We convert

ImageNet images to greyscale, producing image pairs. 5) Inpainting: The process involves

randomly adding black-colored boxes in images to simulate corruption, resulting in image
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pairs. For all the above annotation types, we can create visual sentences by concatenating

8 image pairs of the same annotation type into a 16-image visual sentence. For datasets

containing k different annotations for the same image we use a different approach: for

each set of 1 + k images (input plus k annotations), we randomly select m elements, where

m ≤ n + 1 ≤ 16. These m-tuples are then concatenated to form visual sequences.

Image sequences with annotations. When converting annotated video data (VIPSeg (172),

Hand14K (81), AVA (177), JHMDB (130)) to visual sentences, we apply two comple-

mentary strategies. The first is similar to how we treat image data with paired annota-

tions: each visual sentence is constructed by concatenating frames with their annotations –

{frame1,annot1,frame2,annot2,...}. The second method involves grouping multiple frames

followed by their corresponding annotations – {frame1,frame2,annot1,annot2,...}.

We present a detailed summary of all the data sources, annotation type and data statistics

of UVDv1 in the Appendix.

7.4 Approach

In this section, we describe the design of our autoregressive Large Vision Model. Unlike

text data, which naturally exhibits discrete sequential structure, it is not straightforward to

model image pixels in visual sentences. In this work, we take a two-stage approach: 1) train

a large visual tokenizer (which operates on individual images) to convert each image into a

sequence of visual tokens; 2) train an autoregressive transformer model on visual sentences,

each represented as a sequence of tokens. We summarize our approach in Figure 7.2.
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7.4.1 Image Tokenization

While the visual sentences exhibit a sequence structure between consecutive images, we

don’t have such natural sequence structure within an image. Therefore, in order to apply a

transformer model to images, prior works typically do one of the following: either divide the

image into patches in scan-line order, and treat that as a sequence (71), or use a pre-trained

image tokenizer, such as VQVAE (252) or VQGAN (78), to cluster image features into

a grid of discrete tokens, which, again, are turned into a sequence in scan-line order. We

adopt the latter approach since the discrete categorical output from a model naturally forms

a probabilistic distribution that one can easily sample from, enabling flexible conditional

generation of new images within a visual sentence.

Specifically, we employ semantic tokens generated by a VQGAN model, a concept

introduced by Esser et al (78). This framework consists of an encoding and a decoding

mechanism, featuring a quantization layer that assigns input images to a sequence of

discrete tokens from an established codebook. Our encoders and decoders are constructed

purely with convolutional layers. The encoder is equipped with several downsampling

modules to contract the spatial dimension of the input, whereas the decoder is fitted with an

equivalent series of upsampling modules to restore the image to its initial size. For a given

image, our VQGAN tokenizer produces 256 discrete tokens.

It is important to note that our tokenizer operates on individual images independently,

rather than on the entire visual sentence at once. This independence allows us to decouple

the tokenizer training from the downstream Transformer model so that the tokenizer can be

trained on a dataset of single images without having to consider the distribution of visual
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sentences.

Implementation Details: We adopt an off-the-shelf VQGAN architecture from (33). We

follow the exact configuration in (33), which uses a downsampling factor of f = 16

and codebook size 8192. This means that for an image of size 256× 256, our VQGAN

tokenizer produces 16× 16 = 256 tokens where each can take 8192 different values. We

found that using the results of an ImageNet pre-trained tokenizer did not generalize well

beyond ImageNet images. Therefore, we train our own tokenizer on a 1.5B subset of the

LAION 5B dataset (215).

7.4.2 Sequence Modeling of Visual Sentences

 

tokens

VQGAN Decoder

VQGAN Encoder

Visual Sentence

Decoded Visual 
Sentence

tokens tokens

VQGAN Decoder

tokens EOS

tokens tokens tokens tokensBOS

VQGAN Encoder

   Autoregressive Vision Model

Figure 7.2: Architecture of LVM. We first convert individual images from a visual sentence into
discrete tokens using a VQGAN encoder. The resulting tokens from all images are then concatenated
into a 1D sequence, and fed into an autoregressive Transformer model to predict the next token in
the sequence. The predicted visual tokens are decoded into images using the VQGAN decoder.
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After converting images into discrete tokens with VQGAN, we treat our visual sentence

as a unified sequence by concatenating the discrete tokens from multiple images into a 1D

sequence. Importantly, all visual sentences are treated equally – we do not make use of

any special tokens to indicate particular tasks or formats. We train a causal Transformer

model with the next token prediction objective using a cross-entropy loss, similar to the

standard approach for language models (25). Training the model the same way on all visual

sentences enables the model to infer the relation between images from context instead of

from task- or format-specific tokens. This gives the model an opportunity to generalize to

other, unseen visual sentence structures.

Implementation Details: After tokenizing each image in a visual sentence into 256 tokens,

we concatenate them to form a 1D sequence of tokens. On top of the sequences of visual

tokens, our Transformer model is virtually the same as an autoregressive language model,

so we adopt the Transformer architecture of LLaMA (246), a popular open-source language

model with widely available implementations. We use a context length of 4096 tokens,

which can fit 16 images under our VQGAN tokenizer. Similar to language models, we add

a [BOS] (begin of sentence) token to the beginning of each visual sentence and an [EOS]

(end of sentence) token to the end, and use sequence concatenation (51) during training

time to improve efficiency. We train our model on our entire UVDv1 dataset (420 billion

tokens) using one epoch (simple epoch training is standard in language models to avoid

potential overfitting). We train 4 models with different numbers of parameters: 300 million,

600 million, 1 billion and 3 billion, following the same training configurations. We provide

the detailed training hyperparameters in Appendix ??.
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Figure 7.3: Training loss for the 300M, 600M, 1B, and 3B models. All models are trained on
420B tokens, which correspond to 1.64B images. The training scales well with model sizes.

7.4.3 Inference by Visual Prompting

Since the autoregressive Transformer in our model outputs a probability distribution of the

next token conditioned on previous tokens, we can easily sample from this distribution

to generate new visual tokens that complete a visual sentence. To use the model for

downstream tasks, one can construct a partial visual sentence that defines a task at test

time, and apply the model to generate the output. This is similar to in-context learning in

language models (26) or visual prompting in computer vision (119; 18).

7.5 Experimental Results and Analysis

In this section, we evaluate the scaling abilities of our trained model, as well as its ability to

understand and answer a range of diverse prompted tasks.
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Figure 7.4: Larger LVMs perform better on downstream tasks. We evaluate LVM models
of varying sizes on 4 different downstream tasks, following the 5 shot setting on the ImageNet
validation set and report the perplexity. We find that perplexity decreases with larger models across
all tasks, indicating the strong scalability of LVM.
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Figure 7.5: We evaluate the perplexity of 4 models trained on different subsets of our datasets on
multiple tasks using the ImageNet validation set. All models are 3B parameters and all evaluations
are conducted in the 5-shot setting. We can see that the model benefits from each single images,
videos and annotations, demonstrating the importance of our training dataset diversity.

7.5.1 Scalability

We investigate the scaling behavior of our model in terms of the training loss and down-

stream task performance as we increase the model size as well as the number of tokens

seen during training.

Training loss. We first inspect the training loss of LVM with different parameter sizes,

which we present in Figure 7.3. Since all our models are trained for only one epoch on

the dataset, the model sees a given data sample just once, and therefore the training loss
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GeneratedPrompts

Figure 7.6: Frame predictions. LVM predicts the next frame (marked in red) given previous video
frames as prompt. The results reveal that the LVM can predict the video frames while considering
dynamic objects and camera motion.

at any point during training is very similar to the validation loss. One can observe that as

training progresses: 1) the training loss (perplexity) of the models, regardless of their size,

continues to decrease; 2) as we increase the size of the model (parameter count), the loss

decreases faster. These observations indicate that LVM shows strong scalability behavior

with both larger models and more data.

Scalability on downstream benchmarks. While the LVM overall loss scales well during

training, there is no guarantee that the better overall model would also perform better on

a given specific downstream task. Therefore, we evaluate different sizes of models on 4

downstream tasks: semantic segmentation, depth estimation, surface normal estimation,

and edge detection. We evaluate these tasks on the ImageNet validation set and generate

all the annotations using the corresponding method described in Sec. 3. For each task, we

give 5 pairs consisting of the inputs and corresponding ground-truth annotations as well as
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the query image as input prompt and evaluate the perplexity of the ground-truth annotation

under our model’s prediction of the next 256 tokens (one image). We report the results

in Figure 7.4. We see that larger models indeed attain lower perplexity across all tasks,

showcasing that our scalable overall performance does transfer to a range of downstream

tasks.

Dataset ablation. While LVM attains better performance with larger models and more data,

it is natural to ask whether each data component we collect in UVDv1 helps. To answer

this question, we conduct an ablation study on our dataset by training several 3B models on

subsets of our dataset, and compare their performances on downstream tasks. We use the

same 4 downstream tasks and settings as before and present the results in Figure 7.5. We

observe that each data component contributes positively to the downstream tasks. LVM not

only benefits from larger data, but also improves with more diversity in the dataset, which

includes both annotated and unsupervised image and video data.

7.5.2 Sequential Prompting

We begin with the most intuitive and straightforward approach to visually prompt the LVM:

sequential reasoning. Here the prompt construction is very simple: we present the model

with a sequence of 7 images and ask it to predict the next image (256 tokens).

Video frame prediction. The most direct task for sequential prompting is video prediction.

Figure 7.6 presents several next frame prediction examples, prompted by sequences from

the Kinetics-700 validation set. At the top, 7 frame prompts (blue border) are followed

by the predicted frame (red border). We observe a certain degree of inferential ability

regarding spatial positioning, viewpoint and object understanding. Perplexity of prediction
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Figure 7.7: Longer context helps model understand better.

on Kinetics val set is 49.8. The last 4 rows show predictions with longer context (15 frames)

and a longer prediction (4 frames).

Rotation and Category prediction. The same type of simple sequential prompting can

be used in other ways as well. For example, Figure ?? shows how prompting the model

with a sequence of 3D rotations of a synthetic object around an arbitrary axis allows it to

predict further rotation. Or we can think of a list of items of a given category as a sequence

and predict other ideas in that same category, as shown in Figure ??. Note that, while the

system was trained on groups of images from the same ImageNet category, here the prompt

consists of sketches, which have not been seen in any annotated data.

Context length analysis. Next we ask how much temporal context is required to accurately

predict the subsequent frame? We assessed the model’s frame generation perplexity when

prompted with a context of varying lengths (1 to 15 frames). As Figure 7.7 shows, on the

Kinetics-700 val set, we see a clear improvement in perplexity from 1 to 11 frames after

which it stabilizes (from 62.1→ 48.4).
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Figure 7.8: In and out of distribution prompting examples. Every row is a prompt that contains
a sequence of images interleaved with annotations, followed by a query. The last image is predicted
by the model (marked in red). The last 5 rows show examples where the query image is out of
distribution (painting, sketch, etc) for the task it was trained for.

7.5.3 Analogy Prompting

Our study progresses by evaluating a more complex prompting structure, which we call

‘Analogy Prompting’. This method challenges the model to comprehend analogies of

arbitrary length and complexity, thereby testing its advanced interpretative abilities.

Qualitative Results. Figure 7.8 shows a sampling of qualitative results with analogy
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GeneratedPrompts

Figure 7.9: Task Compositionality. Examples of prompts that combine two different tasks – object
rotation and keypoint tracking.

Prompts Generated

(b) Relighting, light moves top to bottom

(a) Object Replication

(c) Zooming In

Figure 7.10: Miscellaneous Prompting. A variety of simple vision tasks, such as object replication
(top), relighting (middle), and zooming in (bottom), can be simply specified via a suitably chosen
visual sentence prompt that expresses the task to the LVM.

prompting on a number of tasks. The prompts consist of a sequence of 14 images giving

examples of various tasks, followed by a 15th query image. Given each prompt, the next
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image predicted is the result. The top part of the figure shows several example prompts

defining tasks that were part of the training set (but these actual images were never seen at

training). The bottom part of the figure demonstrates generalization to tasks never shown at

training. See the Appendix for many more qualitative examples.

Unseen Tasks and Dataset. We present the results for keypoint detection on Pascal

3D+ (275), evaluated using the standard Percentage of Correct Keypoints (PCK) metric

with a of threshold 0.1. Remarkably, LVM achieves a PCK of 81.2 without training on this

dataset, demonstrating impressive generalization capabilities. In comparison, we show some

existing task-specific model: StackedHourglass (180) scores 68.0 PCK, MSS-Net (133)

achieves 68.9 PCK, and StarMap (321) registers 78.6 PCK.

Comparison with Visual Prompting. The closest approach to ours that also allows for

defining arbitrary tasks is Visual Prompting (18). In Table 7.1, we compare various visual

prompting models on few-shot segmentation, object detection, and colorization tasks. Note

that our sequential LVM beats previous approaches on almost all tasks.

Task Compositing. Figure 7.9 demonstrates compositing several tasks together within a

single prompt. Here, we demonstrate the rotation task together with the novel keypoint

correspondence task and ask the model to continue the pattern. The model is able to suc-

cessfully combine these two at test ti me, demonstrating some degree of compositionality.

7.5.4 Miscellaneous Prompts

Here we try to see how far we can push our model by offering it various prompts it has not

seen before. Figure 7.10 shows a few such prompts that happened to work reasonably well.

Figure 7.11 shows some prompts which are not easily describable by words – these are the

140



GeneratedPrompts

Figure 7.11: What comes next? Tasks that are not always easily describable in language.

Model Foreground Segmentation ↑ Single Object Detection ↑ Colorization ↓
Split 0 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3 Split 4 MSE LPIPS

MAE (IN-1k) 1.92 6.76 3.85 4.57 1.37 1.98 1.62 1.62 1.13 0.87
MAE-VQGAN (IN-1k) 2.22 7.07 5.48 6.28 3.34 3.21 2.80 2.80 3.31 0.75

MAE (CVF) 17.42 25.70 18.64 16.53 5.49 4.98 5.24 5.84 0.43 0.55
MAE-VQGAN (CVF) 27.83 30.44 26.15 24.25 24.19 25.20 25.36 25.23 0.67 0.40
Ours 48.94 51.29 47.66 50.82 48.25 49.60 50.08 48.92 0.51 0.46

Table 7.1: Comparison with Visual Prompting (18). For Foreground Segmentation and Single
Object Detection, we report the mIOU score. For Colorization, we report the MSE and LPIPS.

type of tasks where LVMs might eventually outshine LLMs.

In Figure 7.13, we show initial qualitative results on a typical visual reasoning question

as found on non-verbal human IQ tests (Raven’s Progressive Matrices (201)). With consid-

erable squinting, one could imagine the LVM having a latent ability for grasping abstract

visual patterns and applying the grasped pattern to extrapolate the shown visual sequence.

This exciting result warrants further study. Therefore we performed perplexity analysis

on 10 classic Raven 5-way multiple-choice Matrices, choosing the answer with lowest

perplexity under our model. It shows that our results are better than chance. And in order
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GeneratedPrompts

Figure 7.12: Failure Cases. This figure illustrates seven examples of failure cases: (1) Task
confusion: the model interprets the counting task as style transfer, resulting in a pear-shaped apple.
(2) Task entanglement: the model perceives the prompt as high frequencies from the entire image,
rather than just from some parts of image (objects). (3) Wrong instance: the model correctly
identifies rotation but mistakenly generates a brush instead of a manta. (4) Outlier detection versus
generation: rather than detecting an outlier, the model directly generates it. (5) Digits: the model
fails to represents digit sequences. (6) Tokenizer: poor performance with some out-of-distribution
synthetic data generation (wrong background). (7) Sequence degeneration: sometimes frame
predictions go astray.

to further understand this process, we also generated 900 new Raven-like synthetic tests

to study individual factors: color, shape, and size following (18). As shown in Table 7.2,

LVM has shown better understanding in all three aspects compared to chance.

Raven IQ matrices shape color size
chance 20% 33% 33% 50%
Ours 30% 45% 42% 94%

Table 7.2: Raven’s Progressive Matrices Perplexity and Synthetic Resaoning Tasks.

142



Prompts Generated

Figure 7.13: “Sparks of AGI?" We prompt LVM with a masked reasoning visual sentence to
infer the solution for non-verbal reasoning questions which are prevalent in IQ tests (masked image,
second from the right). We find that the model often infers and applies the abstract visual pattern
correctly. So, we graciously hand over to you, our gentle reader, the task of pondering whether our
modest LVM also exhibits the much-vaunted ‘Sparks of AGI’.

7.6 Limitations

Figure 7.12 shows some typical failure cases of the current model. One common element,

the use of visual prompt to define a task is often under-constrained (more so than in

language, since images are very high-dimensional), or the requested task might be beyond

the capabilities of the current system. Other, more mundane failures involve issues with the

tokenizer and lack of high-quality video training data.

Limited computing resources placed severe constraints that prevented us from exploring

a range of intriguing problems, including the impact of different data sets and detailed

ablation studies. It is important to note that, despite this being one of the biggest vision

models to date, it is still rather small in comparison with modern Large Language Models.

Therefore, the question of emergence and true generalization in Large Vision Models

remains wide open and ripe for further study.
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Chapter 8

Future Work

The key goals of my future research are achieving higher levels of general intelligence

directly from raw sensory experience, akin to how humans learn. This potentially involves

continuous adaptation for better generalization in dynamic real-world settings over time

with multi-modal input.

8.1 Life-long Learning

An important direction for future work is enabling life-long learning for vision models (46).

Traditional training assumes static datasets and finite training periods (105; 31), limiting

adaptability as environments and data distributions evolve over time. Future research

should focus on life-long learning techniques that allow models to incrementally update

their knowledge from new data streams while retaining prior learned skills.

Strategies are needed to mitigate catastrophic forgetting, dynamically adapt tokens

and prioritize important input samples for further training via meta-learning and model

introspection. While the visual sentence model from this thesis was trained for just one
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epoch, the future vision is for models to continually learn and improve over their lifetimes

through constant interaction with a stream of real-world data.

8.2 Multi-modal Learning

In contrast to existing work where language has dominated multi-modal training (156; 323),

we are interested in investigating whether any intelligent behavior can be learned directly

from sensory data alone. This line of inquiry has significant potential for embodied AI

systems that must operate in real-world environments based solely on raw sensory inputs

like vision, audio, and haptics(48; 293).

Our visual sentence framework provides a promising direction by representing all

visual modalities, including video, audio, depth, and more, as sequential tokens that can be

consumed by a single multi-modal encoder. By training on next-token prediction across

these unified "visual sentences", the model learns multi-modal representations grounded in

the low-level signals rather than relying on symbolic language representations.

Key objectives of this multi-modal learning approach include developing better percep-

tion models that can fuse multiple sensor streams, enabling tight sensor-action loops for

control in embodied agents, and ultimately acquiring broad general intelligence from raw

sensory experience akin to how humans learn.
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