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The states with non-dissipative flows are explored within a microscopic approach to a problem of spatially
inhomogeneous multiparticle Bose-systems. Density of superfluid component was evaluated and its correlation with
one- and two-particle Bose condensate density was analyzed also.
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1. INTRODUCTION

One of the most prominent features of new phase in
liquid 4He discovered by Kapitsa [1] was the existence
of non-dissipative mass fluxes. The underlying
phenomenology, proposed by Landau [2], is tight into
two-liquids hydrodynamics framework. Later on, in
Ginzburg and Pitaevsky approach [3], which was
developed by analogy with Ginzburg and Landau
superconductivity theory [4], the existence of non-
dissipative fluxes took place due to system phase
symmetry breakdown. Relation of symmetry breakdown
with non-dissipative fluxes was considered in [5,6] (see
also [7,8]). Though it is not clear up to now how the
superfluidity phenomenon is related to Bose
condensation.

In present paper we study the states with superfluid
fluxes on the basis of microscopic model for spatially-
inhomogeneous systems [9]. Density of normal and
superfluid components were found, and the relation of
that to Bose condensate density was analyzed.

2. SELF-CONSISTENT FIELD EQUATIONS
SET FOR BOSE SYSTEMS WITH BROKEN
PHASE SYMMETRY

Consider many-particle system of Bose particles
with delta-like potential U(x,x'):U05(x—x')- In that

case equations set for self-consistent field reads [9]
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where 4 (x),v,(x) are the quasiparticle wave function
components in state i, y(x) is Bose condensate wave
function, 4 is the chemical potential. Equations (1)-(3)
and anomalous 7

contain normal p implicit one-

particle density matrices: 5= p+| 4 7=7+2*. One-

particle overcondensate density matrices p,r are

written out below.
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Solutions for equations set (1)-(3) are to be found in
the form
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where 7 is the system volume. By inserting the
solutions (4) into (1)-(3), one finds the equations to be
fulfilled provided that q"=(q—q')/2. In that case

equations (1)-(3) take the form
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with A:Uo(r+;(2/V), I=pu-2U,p is the effective
chemical potential. The condition ‘uk‘z _‘Uk‘z —1 has to

be fulfilled. Normal and anomalous density matrices are
determined by formulae
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where f, =(exp(g, /T)—1)", T being the temperature.

From equations (5) and (6) dispersion relation for quasi-
particles follows:
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where & (q)=#*(k+q)’ /2m— . The solutions have
the form
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where Dk:\/[ék(q)+§k(q')]2_4‘Az’ A is defined by

(7)-(9). Note, that the quantities ¢, u,,0v,, D,

also
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depend on two vectors q,q', though we omit explicit
notation.

3. PARTICLE FLUX AND NORMAL
COMPONENT DENSITY
It is possible to find the superfluid component flux
in the system. Let us take advantage of the formula for
the particle total flux
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where y(x), " (x) are the field operators.

Calculation of the particle total flux leads to
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In the first approximation on q- q’ dispersion rule (10)

for quasiparticle is determined by expression
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is the quasiparticle dispersion rule at the state without
fluxes,

0=U,/(1+UJ), J= 2w (1+2£,)/&
k

We see that the energy of a quasiparticle at k =0 does
not go to zero but takes a finite value
U,R

gy =2n, U, (U, —O®)=2U,n, LUR

where 5, EMZ/V.

Thus the spectrum has an energy gap.

Let the reference frame be introduced as one where
the normal component stays at rest. We suppose the
relative motion velocity of superfluid and normal

components is V. Superfluid component velocity is

assumed to be small in comparison with any
characteristic velocity in the system (with sound
velocity, for instance).

Let us consider the particular case when q=—q If
we define the superfluid velocity by relation
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the dispersion rule (12) becomes ¢, :gl({o)+hkvs. Flux

density (11) takes the form
h
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where the total particle number density can be written as
(9]
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The first term in (15)
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is the particle number density in the Bose condensate
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The second term
nq = V_lsz
k

is the number density of the quasiparticle excitations
and the last term

n,= V_1;|Uk|2(1+2fk)

is the number density of the particle correlated in
Cooper pairs.
In the case when the normal component stays at rest

and superfluid component has velocity V_, the total
flux will be [10]

j=ij,=nv,.

Further, taking this into account, from the formula
(14) it follows
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and the normal density expression is obtained as a result
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Preserving a good accuracy in equations (16), one can
neglect the second term in parentheses. Taking into
account (15) the expression for the particle density of
superfluid component takes on form
n=ny+n,+n,—n,.

Note, that the particle density of superfluid component
is not equal to that of one-particle and pair condensate
ny+n,. Superfluid component density is equal to net

density of one-particle and pair condensate only at
T=0"K

nG=ng +n P
Let velocity v be small. Then one can expand the

distribution function. Such an expansion leads to the
formula
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Passing from summation to integration and doing
integration one obtains
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The main contribution to integral (17) is from small &
region, thus the rather complicated expression (13) can
be replaced by the expansion of that, up to x? order:
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where g, =2n, /UOiUO_(ai is the energy gap,

ms = 2mJU, (U, —®i/(2U0 — @) is the effective mass.
The expansion of the function f°) in power series and
integration in the formula (17) give the temperature

dependense of the normal density 5,
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where the function 2:,(&,) is defined by
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Thus we also obtain the temperature dependence of
superfluid component density since n =n—n, . Note, in

addition to the contribution from one-particle
excitations in superfluid and normal component density,
there exists a noticeable contribution from long-wave
excitations (phonons).

In conclusion, we would like to write out the flux
state constancy condition in the system considered.
Expression (10) implies that the constancy may be
achieved at £ >0. As the minimum of &, is equal (see

(12)) to
)& (A7, P, =Tk

(min) _
the constancy takes place at
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Thus, present paper introduces the calculation of
one-particle excitations contribution to normal and
superfluid component density. It takes place for Bose
systems with one-particle and paired condensate. It is
shown, that superfluid component density is not equal

VS'

or

to total number density of particles, forming Bose
condensate.
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K MUKPOCKOIMUYECKOMN TEOPUHA HE3ATYXAIOHIUX ITOTOKOB B BO3E-CUCTEMAX
AL Heawun, FO.M. ITonysxkmos

Ha ocnoge MHUKPOCKOIMMYECKOro moaxoda jid OonrucCaHusd NpOCTPaHCTBECHHO-HEOAHOPOJHBIX MHOTIOYaCTHUYHBIX
003e-cucreM HCCIICAOBAHbI COCTOAHUA CO CBCPXTCKYUYUMMHU IOTOKAMHU. Paccunrana miIoTHOCTH CBerTequeﬁ
KOMIIOHCHTBI U MMPOAaHAJIN3UPOBAHA €€ CBA3b C IIJIOTHOCTAMU OJJHOYACTUIHOI'O U MAPHOTO 6036—KOH,I[CHC&TOB.

JIO MIKPOCKOIIIYHOI TEOPII HE3ATYXAIOUIX ITOTOKIB Y BO3E-CUCTEMAX
AL leawun, FO.M. Ilonyexkmos

Ha ocHOBI MIKpOCKOIYHOTO MiAXOJy A0 OIUCY IPOCTOPOBO-HEOJHOPIAHMX 0araToyacTHHKOBHX 003e-CHCTEM
JOCTIDKEHO CTaH 3 He3racalouMMH IIOTOKaMH. Po3paxoBaHO ryCTUHY HaJILIMHHOI KOMIOHEHTH 1 MPOaHaTi30BaHO il
3B’SI30K 3 TYCTHHAMH OJHOYACTHHKOBOTO 1 MapHOTO 003e-KOH/IEHCATIB.
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