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Abstract 
There is a wealth of evidence to support the anti-inflammatory properties of the 

prototypical second messenger cyclic-AMP (cAMP), notably with regard to 

endothelial function. Many studies have shown that cAMP can limit vascular 

permeability by enhancing barrier function and reducing pro-inflammatory effects 

of cytokines. Although the protective effects of cAMP elevation on limiting 

endothelial dysfunction have been well documented, the exact molecular 

mechanisms remain unclear.  

Using two endothelial cell types, namely human umbilical vein endothelial cells 

(HUVECs) and a novel human endothelial angiosarcoma-derived cell line (AS-M), 

this study has further characterised the cAMP-mediated inhibitory mechanism on 

the signalling pathways of two cytokines; interleukin-6 (IL-6) and leptin. Both 

cytokines have been implicated in the regulation of the immune response and both 

have been shown to play important pathological roles in various inflammatory 

diseases. 

In preliminary studies, cAMP elevation was shown to induce suppressor of 

cytokine signalling 3 (SOCS3) in HUVECs. Further investigation of this SOCS 

protein in the context of IL-6 and leptin signalling in endothelial cells would be of 

interest in terms of possibly elucidating the molecular mechanisms underlying the 

protective effects of cAMP. Results from this study demonstrated a cAMP-

mediated inhibition of soluble IL-6Rα (sIL-6Rα)/IL-6-stimulated extracellular 

regulated mitogen-activated protein kinase 1, 2 (ERK1,2) and signal transducer 

and activator of transcription 3 (STAT3) activation in HUVECs, which was 

independent of cAMP-dependent protein kinase A (PKA). Instead, results 

demonstrated the involvement of the other major cAMP sensor; exchange protein 

activated by cAMP 1 (Epac1). Moreover, this inhibition was shown to be SOCS3-

dependent. There also appeared to be a requirement for ERK1,2 activation in the 

cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated STAT3 activation in 

HUVECs. In contrast to these findings, cAMP-mediated inhibition of leptin-

stimulated STAT3 activation in HUVECs was shown to occur via a SOCS3-

independent mechanism. The responses to cAMP elevation on sIL-6Rα/IL-6- and 

leptin-stimulated ERK1,2 activation in AS-Ms were variable, since basal levels of 

ERK1,2 activation were high. Furthermore, the responses to cAMP elevation on 
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sIL-6Rα/IL-6- and leptin-stimulated STAT3 activation in AS-Ms were either very 

modest or showed no effect, respectively. SOCS3 was not shown to be involved in 

the cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 

activation in AS-Ms.  

In conclusion, this study further characterised the cAMP-mediated inhibitory 

mechanism in HUVECs and AS-Ms, with a particular focus on the ERK1,2 

signalling pathway of IL-6 and leptin. Despite varying results between both cell 

types, this study also identified AS-Ms as a useful and tractable cell model to study 

in the context of endothelial biology. Thus, a potentially new pathway has been 

identified which inhibits cytokine receptor activation of ERK1,2 and STAT3 in 

endothelial cells. A better understanding of this mechanism could contribute 

towards new therapeutics in the area of chronic inflammatory diseases, such as 

atheroscleriosis. 
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1.1 Endothelium Function 
The endothelium is the largest organ in the body, lining the entire vascular system, 

from the heart to the smallest capillary. It forms the crucial barrier between the 

bloodstream and underlying tissues, ultimately controlling the passage of materials 

into and out of the vessel.  

The endothelium actively regulates vascular tone, the homeostasis of which is 

maintained by the release of vasoconstrictors, such as endothelin, prostaglandins 

and reactive oxygen species (ROS), and vasodilators such as nitric oxide (NO), 

prostacyclin and endothelium-derived hyperpolarizing factor (Mombouli & 

Vanhoutte, 1999). In its healthy state, the endothelium maintains vascular tone 

and function by controlling the balance between vasodilation and vasoconstriction, 

anti-thrombosis and pro-thrombosis, anti-inflammation and pro-inflammation, cell 

growth inhibition and cell growth promotion, and also anti-oxidation and pro-

oxidation. The endothelium achieves this by expressing constitutive or induced 

molecules on its surface, such as adhesion molecules, and secreting soluble 

mediators such as vasodilators and vasoconstrictors, or cytokines and growth 

factors. One of the most important vasoactive substances is NO, which is 

synthesised by the endothelial NO synthase (eNOS). NO is not only a crucial 

mediator of endothelium-dependent vasodilation, described initially as 

endothelium-derived relaxing factor (EDRF) (Palmer et al., 1987), but also has 

important roles in inflammation and thrombosis. These include inhibition of 

leukocyte and platelet adhesion to the endothelium, inhibition of platelet 

aggregation (Alheid et al., 1987; Kubes et al., 1991; Radomski et al., 1987), and 

suppression of the expression of plasminogen activator inhibitor-1 (PAI-1), a 

prothrombotic protein in smooth muscle cells (SMC) (Bouchie et al., 1998). 

Impaired NO bioavailability is believed to play a major part in endothelial 

dysfunction (Davignon & Ganz, 2004). Endothelial dysfunction is characterised by 

impaired vasodilation and increased permeability, leukocyte adhesion and 

cytokine release. It represents an imbalance in the actions of vasoconstrictors 

versus the actions of vasodilators. Assessment of endothelial dysfunction is 

primarily based on changes in vasomotion, which is also representative of all other 

impaired functions of the endothelium (Landmesser et al., 2004). The resulting 

dysfunction is associated with many conditions, such as hypertension (Lockette et 

al., 1986; Luscher, 1990), elevated levels of low density lipoprotein and oxidised 
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lipoproteins (Gilligan et al., 1994), elevated levels of homocysteine (McDowell & 

Lang, 2000), insulin resistance and type 2 diabetes (Jansson, 2007), smoking 

(Hutchison, 1998) and obesity (Sivitz et al., 2007). 

As mentioned previously, decreased NO bioavailability may be considered a 

crucial mechanism of endothelial dysfunction. Reactive oxygen species (ROS), so-

called oxidative stress contributes greatly to endothelial dysfunction through the 

sequestration of NO. Thus, when the overall balance between oxidative stress and 

the anti-oxidative defense mechanism is upset, NO bioavailability is reduced and 

endothelium function is impaired. Mechanisms of oxidative stress leading to 

decreased NO bioavailability are discussed further in Chapter 1.1.3.  

Endothelial dysfunction is believed to underpin the development of various 

inflammatory diseases including sepsis (Aird, 2003), diabetic retinopathy (Hsueh & 

Anderson, 1992) and atherosclerosis, which is discussed hereafter in the context 

of vascular disease. 

 

1.1.1 Vascular Disease 
Vascular disease encompasses a variety of diseases including abdominal aortic 

aneurism (AAA), deep vein thrombosis (DVT), thromboangiitis obliterans (TAO) 

and peripheral arterial disease (PAD). However, it is the PAD atherosclerosis that 

represents the single, most important cause of coronary heart disease (CHD1) and 

stroke to date. CHD1 and stroke are the two main forms of cardiovascular disease 

(CVD). CVD is the major cause of death in the UK and accounts for over 208,000 

deaths each year. 48% of all deaths from CVD are caused by CHD1 and 28% from 

stroke. Despite a 30 year decline, the death rate for CHD1 in the UK is still one of 

the highest in Western Europe and costs the health care system millions of 

pounds each year (in 2003 costs accrued to around £3,500 million; 

www.heartstats.org). 

Atherosclerosis is a chronic inflammatory disease of the arteries and, depending 

on which arteries are affected, results in different clinical manifestations. For 

example, atherosclerosis in the coronary arteries can cause angina pectoris and 

myocardial infarction, while atherosclerosis in the cerebrovascular circulation may 

lead to a transient ischaemic episode or stroke.  
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1.1.2 Endothelial Dysfunction and Atherosclerosis 
There is an abundance of evidence to suggest that atherosclerosis is strongly 

linked to endothelial dysfunction. The study by Ludmer et al. (1986) was one of the 

first to show this correlation in humans. This showed that whereas there was a 

dose-dependent dilation of coronary arteries treated with acetylcholine in patients 

without coronary disease, a paradoxical vasoconstriction was observed in patients 

with mild to advanced coronary atherosclerosis, indicative of an impaired 

endothelium-dependent vasomotion (Ludmer et al., 1986). It has also been 

demonstrated that many of the risk factors that predispose to atherosclerosis have 

the potential to cause endothelial dysfunction (e.g. hypertension, 

hypercholesterolemia, diabetes mellitus, smoking and family history) (Davignon & 

Ganz, 2004; Vita et al., 1990). Thus it is not surprising that endothelial dysfunction 

has been shown to be associated with clinical events of atherosclerosis and may 

actually predict the risk of cardiac events. Several studies have shown that acute 

clinical outcomes of atherosclersosis, such as myocardial infarction and 

cardiovascular death can be predicted by endothelial dysfunction (Halcox et al., 

2002; Suwaidi et al., 2000). In these studies, intracoronary acetylcholine was 

administered to patients with mildly diseased coronary arteries or patients 

undergoing cardiac catheterisation for investigation of chest pain, and a number of 

parameters, such as intravascular ultrasound examination, coronary blood flow 

and coronary angiography were assessed to determine endothelial vasodilation. 

The results demonstrated that coronary endothelial dysfunction independently 

predicts acute cardiovascular events. Furthermore, improvement of endothelial 

vasodilation in patients surviving an acute coronary syndrome was associated with 

significantly less cardiac events (Fichtlscherer et al., 2004). These studies support 

the idea that endothelial dysfunction plays a crucial role in the progression of 

atherosclerosis. Furthermore, the findings that endothelial dysfunction in patients 

with coronary risk factors precedes angiographic or ultrasonic evidence of 

atherosclerostic plaque also suggests that it constitutes an early event in disease 

pathogenesis (Celermajer et al., 1994; Reddy et al., 1994). 

 
1.1.3 The Endothelium and Inflammation 
As mentioned previously, endothelial dysfunction is manifest as impaired 

endothelium-dependent vasomotion and reflects an impairment of important 
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endothelial functions. Of particular relevance to the present study is the 

endothelium’s anti-inflammatory role. In its normal, healthy state the endothelium 

actively regulates vascular inflammation. However, upon damage the endothelium 

assumes a pro-inflammatory phenotype. In this state, the endothelial cells become 

activated and start to exhibit oxidative stress and an increased adhesiveness to 

circulating leukocytes.  

Oxidative stress, in terms of superoxide (O2
–) production, increases greatly in 

activated endothelial cells. This can be caused by a number of factors, such as 

uncoupling of eNOS, whereby O2
– is generated, instead of NO. Thus, O2 reduction 

by eNOS is uncoupled from NO formation, and a functional eNOS is converted 

into a dysfunctional O2
–-generating enzyme that contributes to vascular oxidative 

stress. Uncoupling has been associated with the reduced availability of the eNOS 

co-factor BH4 (Schmidt & Alp, 2007). The resultant O2
– can react with NO to 

produce peroxynitrite (ONOO−), a potent oxidant, which in turn leads to uncoupling 

and enzyme dysfunction, possibly via oxidation of tetrahydrobiopterin (BH4), which 

reduces its bioavailability (Beckman et al., 1990; Laursen et al., 2001; Rubanyi & 

Vanhoutte, 1986; Schmidt & Alp, 2007). Thus, a vicious cycle is established 

whereby the vasoprotective effects of NO are precluded (Kubes et al., 1991). In 

support of this, many studies have demonstrated that BH4 can restore endothelial 

dysfunction in patients with hypercholesterolemia, diabetes or coronary heart 

disease (Heitzer et al., 2000; Maier et al., 2000; Stroes et al., 1997), implicating 

impaired eNOS function (resulting from decreased availability of BH4) in 

endothelial dysfunction (Schmidt & Alp, 2007). Furthermore, levels of an 

endothelial-derived substance, endothelin-1, are increased in response to 

oxidative stress (Kahler et al., 2000). In addition to mediating vasoconstriction, 

endothelin-1 has been shown to activate polymorphonuclear secretion and 

adhesion and macrophage activity (Zouki et al., 1999). Thus, oxidative stress 

greatly contributes towards endothelial dysfunction and this is supported by the 

findings that anti-oxidant treatment in the form of ascorbic acid can rescue 

endothelial-dependent vasodilation in patients with hypercholesterolaemia or 

coronary heart disease (Levine et al., 1996; Ting et al., 1997).  

The attachment of leukocytes to the endothelium is an essential process for the 

propagation of a normal inflammatory response in response to infection or injury. 

However when this response is exaggerated or inefficiently terminated, it can lead 
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to the development of a chronic inflammatory state. Leukocyte interaction with the 

endothelium involves a series of highly coordinated adhesive and signalling events 

mediated by specific groups of adhesion molecules, including selectins, integrins 

and cellular adhesion molecules (CAMs). Intracelluar adhesion molecule 1 (ICAM-

1), vascular adhesion molecule 1 (VCAM-1) and E-selectin are all upregulated by 

endothelial cells in response to pro-inflammatory cytokines, such as IL-1β and 

TNFα, to promote leukocyte (monocytes and neutrophils) adhesion and 

transmigration (Cotran & Pober, 1990; Hakkert et al., 1991; Luscinskas et al., 

1991; Takahashi et al., 1994). Moreover, IL-1β and TNFα stimulate the production 

of secondary cytokines, including IL-6 which is involved in activating the acute 

phase response (detailed in section 1.3.2) (Jarvisalo et al., 2006). The chemokine 

“monocyte chemoattractant protein-1” (MCP-1/CCL2) is also upregulated by IL-1β 

and TNFα in endothelial cells (Rollins et al., 1990). MCP-1 not only stimulates the 

recruitment of monocytes, but has also been shown to increase endothelial cell 

proliferation (Weber et al., 1999). Additionally, T cells are also recruited to the 

activated endothelium, where they secrete pro-inflammatory cytokines such as IL-

1β, TNFα and also IFNγ (Tesfamariam & DeFelice, 2007). Although described 

very briefly, all of these inflammatory processes greatly contribute to a chronic and 

persistent state of inflammation that manifests itself in disease, notably 

atherosclerosis. 

 
1.2 Adenosine-3',5'-cyclic monophosphate (cyclic AMP) 
Cyclic AMP (cAMP) is one of the oldest signalling molecules known. It was first 

discovered as an intracellular mediator of hormone action in 1957 (Sutherland & 

Rall, 1958). Since then, numerous studies have shown that cAMP acts as a 

second messenger for a plethora of hormones, neurotransmitters and growth 

factors to regulate a vast array of cellular processes, including proliferation, 

differentiation, secretion, apoptosis, adhesion and migration (Beavo & Brunton, 

2002). cAMP can be synthesised via G protein coupled receptor (GPCR) 

activation of adenylyl cyclases (AC), of which there are 9 membrane-bound 

isoforms (Sunahara & Taussig, 2002) and 1 soluble form, which is insensitive to 

regulation by G-protein and forskolin (a potent activator of AC, detailed in Chapter 

3) (Buck et al., 1999). Each AC molecule comprises 12 transmembrane sections 
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and 2 cytosolic domains (C1 and C2), with C1 and C2 forming the catalytic core 

(Cooper, 2003) (Figure 1.1). AC catalyses the conversion of adenosine 5’ 

triphosphate (ATP) to cAMP by formation of an intramolecular 3’–5’ 

phosphodiester bond, whereas enzymes known as cyclic nucleotide 

phosphodiesterases (PDEs) hydrolyse cAMP to adenosine 5’–monophosphate (5’-

AMP). Phosphodiesterases thereby act to degrade cAMP via hydrolysis of the 3' 

cyclic phosphate bond. PDEs may be considered a diverse set of enzymes, 

comprising 11 families of which there are 21 gene products. Alternative 

transcriptional start sites and alternative splice variants are believed to give rise to 

many more than 21 mRNA transcripts or protein products (Bender & Beavo, 

2006). The 11 families of PDEs can be divided into 3 groups, based on their 

substrate specificity; (1) cAMP-specific PDEs including PDE4, PDE7 and PDE8 (2) 

cGMP-specific PDEs including PDE5, PDE6 and PDE9 and finally (3) dual 

specificity PDEs including PDE1, PDE2, PDE3, PDE10 and PDE11 (Bender & 

Beavo, 2006). Thus cAMP levels are tightly regulated by the co-ordinated actions 

of both ACs and PDEs in the cell.  

cAMP exerts its numerous biological effects by binding and activating what was 

initially believed to be the only cAMP effector, cAMP dependent protein kinase A 

(PKA) (Walsh et al., 1968). However, other targets of cAMP have since been 

identified, namely “exchange proteins directly activated by cAMP” (Epacs) (de 

Rooij et al., 1998), cAMP-regulated ion channels (Fesenko et al., 1985) and the 

Ras or Rap guanine nucleotide exchange factor, cyclic nucleotide rasGEF 

(CNrasGEF) (Pham et al., 2000). The best characterised cAMP sensors, namely 

PKA and Epac will be discussed in more detail further on in this Chapter. For such 

a limited number of cAMP effectors, there is an extensive number of cellular 

responses. These pleiotropic effects of cAMP pose the question of how specificity 

is achieved. Interestingly, there is increasing evidence to support the notion of 

cAMP compartmentalisation within the cell. A particular focus of this work has 

been the identification of macromolecule complexes within defined regions of the 

cell, which comprise proteins of the cAMP signalling pathway. These spatially 

confined signalling complexes may only permit the selective activation of certain 

signaling pathways (discussed further in Section 1.2.2). However, this is only a 

partial explanation of how cAMP specificity may be achieved. Another 

consideration is the freely diffusible nature of cAMP in the cell. The emergence of 
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Fluorescence resonance energy transfer (FRET) approaches has enabled the 

identification of discrete pools of cAMP in the cell (Zaccolo et al., 2006). The 

restricted diffusion of cAMP to these pools is believed to be largely due to the 

actions of PDEs. PDEs have been shown to be present within multiprotein 

signaling complexes in the cell, acting to quench cAMP and controlling the 

intracellular gradients of cAMP in the cell.   

cAMP has long been known to act as an endogenous ‘off’ signal of the 

inflammatory response, preventing the effects of chronic inflammation (Moore & 

Willoughby, 1995) and a large body of research supports this notion. Some 

examples of the inhibitory effects of cAMP elevation include the suppression of 

lysosomal enzymes, ROS and platelet-activating factor (PAF) from neutrophils 

(Fonteh et al., 1993; Nielson, 1987; Weissmann et al., 1971), the reduction of 

cytokines and nitric oxide released from macrophages (Bulut et al., 1993; Renz et 

al., 1988), the inhibition of eosinophil respiratory burst activity (Dent et al., 1991) 

and the inhibition of cytotoxic T lymphocyte activation (Wisloff & Christoffersen, 

1977). Of relevance to the present study is the role that cAMP plays in modulating 

inflammation in the context of endothelial cell function. Studies have shown that 

cAMP can limit vascular permeability by enhancing barrier function, and reduce 

pro-inflammatory effects of cytokines (Blease et al., 1998; Cullere et al., 2005; 

Fukuhara et al., 2005; Morandini et al., 1996; Pober et al., 1993). For example, 

TNFα-stimulated expression of E-selectin and VCAM-1 has been shown to be 

inhibited by cAMP elevation in human lung microvascular endothelial cells 

(HLMECs) and HUVECs (Blease et al., 1998; Morandini et al., 1996; Pober et al., 

1993). Additionally, inhibition of neutrophil adherence to TNFα-stimulated 

HLMECs in response to cAMP elevation has been observed (Blease et al., 1998).  

 

1.2.1 PKA  
PKA is a ubiquitous cellular kinase that phosphorylates serine and threonine 

residues in response to cAMP. It is the most well studied cAMP effector and was 

initially described during a number of studies in the 1950s and ‘60s carried out by 

Edwin G. Krebs et al. looking at the glycogenolytic enzyme glycogen 

phosphorylase and how it was regulated in skeletal muscle (Krebs et al., 1959; 

Krebs et al., 1966). These experiments suggested the involvement of a cAMP-
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induced kinase enzyme, but it was not until later experiments conducted by Walsh 

et al. (1968) and Reimann et al. (1971) that this cAMP-induced kinase enzyme 

was identified as cAMP-dependent protein kinase (Reimann et al., 1971; Walsh et 

al., 1968), now called PKA.  

 

1.2.2 PKA Structure and Regulation 
PKA comprises 2 catalytic (C) subunits and 2 regulatory subunits (R), which form 

a heterotetramer (Taylor et al., 1990). In mammals, 3 genes for the catalytic 

subunit exist (Cα, Cβ and Cγ) and 4 genes for the regulatory subunit (RIα, RIβ, 

RIIα and RIIβ). cAMP binds to two binding sites on each R subunit, which relieves 

the contact with the C subunits, causing the release of the active C subunits. Thus, 

unstimulated PKA is held in an inactive state via conformational constraints 

imposed by the R subunits, until cAMP binds and liberates the C subunits (Granot 

et al., 1980). The free catalytic subunits are then able to phosphorylate serine and 

threonine residues in adjacent PKA substrates, for example C-Raf/Raf1, which is 

phosphorylated at specific serine residues (Dhillon et al., 2002b). Thus, until cAMP 

is elevated in the cell, the regulatory subunits inhibit PKA activity. In addition to 

this, the regulatory subunits also bind to scaffolding proteins known as A-Kinase 

Anchoring Proteins (AKAPs), which anchor the PKA holoenzyme to specific 

subcellular structures (Colledge & Scott, 1999; Michel & Scott, 2002). This AKAP-

regulatory subunit interaction controls intracellular localisation of PKA and thus 

regulates PKA-mediated biological effects. For example, the muscle-specific A-

kinase anchoring protein (mAKAP) has been proposed to anchor PKA to a cellular 

localisation, wherein PDE4D3 serves as an adapter protein for Epac1 and ERK5, 

which together generates a cAMP-responsive signalling complex, present in 

cardiomyocytes. This complex integrates 2 cAMP-mediated pathways, whereby 

PKA and Epac can become activated via ERK5 phosphorylation of PDE4D3, 

which suppresses phosphodiesterase activity leading to increased cAMP. 

Activated PKA can then phosphorylate PDE4D3, which increases its affinity for 

cAMP and decreases localised cAMP levels and activated Epac1 can inhibit 

ERK5, thus preventing continued inactivation of PDE4D3. Hence, a feedback loop 

is generated, which causes cAMP levels to fall when they become elevated. 

(Dodge-Kafka et al., 2005). This study partly contributes towards the 



10 
 

understanding of the present thesis’ results and will be discussed further in the 

Results chapters. 

Further to these regulatory effects of the PKA regulatory subunits, another level of 

regulation can be exerted via endogenous PKA inhibitors termed “protein kinase 

inhibitor” (PKI) peptides. Walsh and his colleagues discovered PKI soon after the 

discovery of PKA in 1971 (Walsh et al., 1971). There are 3 isoforms termed PKIα, 

PKIβ and PKIγ (Beale et al., 1977; Collins & Uhler, 1997; Olsen & Uhler, 1991), all 

of which act to inhibit the phosphorylation of PKA substrates by competitively 

binding to the substrate binding site of the free C subunit following dissociation 

from the R subunits. Thus, PKI inhibition only occurs in the presence of cAMP, 

after the regulatory and catalytic subunits have been separated (Ashby & Walsh, 

1972; Ashby & Walsh, 1973). As well as acting as a potent competitive inhibitor of 

PKA, PKI has also been shown to mediate the export of free catalytic subunits of 

PKA from the nucleus to the cytoplasm (Fantozzi et al., 1994), wherein these 

catalytic subunits can reassociate with the regulatory subunits to re-form the PKA 

holoenzyme and thus restore cAMP regulation (Dalton & Dewey, 2006). This is 

possible because PKI has a nuclear export signal, which causes the ATP-

dependent export of the PKI-bound catalytic subunit out of the nucleus and into 

the cytoplasm (Wen et al., 1994). Of interest, endothelial cells from pulmonary 

artery, foreskin microvascular and brain microvascular sources have all been 

shown to express the PKIα and PKIγ isoforms (Lum et al., 2002). Furthermore, 

overexpression of PKI in human microvascular endothelial cells has been shown 

to abolish cAMP-mediated inhibition of endothelial permeability, implicating PKA in 

regulating endothelial barrier function (Lum et al., 1999). 

 

1.2.3 Epac 
Epac was discovered in 1998 by 2 independent groups, as a Rap1 guanine-

nucleotide-exchange factor directly activated by cyclic AMP (de Rooij et al., 1998; 

Kawasaki et al., 1998). Rap1 belongs to the Ras superfamily of small GTPases, 

comprising more than 150 members. This family is sub-divided into 5 main groups, 

based on sequence and functional similarities; (1) Ras (2) Rho (3) Rab (4) Arf and 

(5) Ran. The Ras sub-family consists of 36 members, including R-Ras, Ral and 

Rap proteins (Wennerberg et al., 2005). All members of the Ras superfamily 

function as molecular switches, cycling between inactive GDP-bound forms and 
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active GTP-bound forms. This cycle is regulated by guanine nucleotide exchange 

factors (GEFs) and a combination of GTPase activating proteins (GAPs) and 

intrinsic GTPase activity. GEFs dissociate the bound GDP to allow the association 

of the more abundant GTP, thus activating the G protein, whereas the intrinsic 

GTPase activity, together with GAPs catalyse GTP hydrolysis and subsequently 

inactivate the protein (Boriack-Sjodin et al., 1998). The GTPase Rap1 was first 

identified as an antagonist of Ras, whereby overexpression of Rap1 was shown to 

suppress the transformation of cells with an oncogenic K-Ras mutation (Kitayama 

et al., 1989). Since then, Rap1 and its regulation by Epac has been the focus of 

much research. More than 30 GEFs capable of activating Ras members have 

been identified and many of these GEFs activate Rap (Quilliam et al., 2002). 

Epac1 and Epac2 represent a novel class of GEFs, since these are the only Rap1 

GEFs activated directly by cAMP. This was an important discovery in terms of 

helping to explain PKA-independent effects of cAMP documented in numerous 

studies (Gonzalez-Robayna et al., 2000; Kashima et al., 2001; Laroche-Joubert et 

al., 2002; Rangarajan et al., 2003; Schmidt et al., 2001).  

 
1.2.4 Epac Structure and Regulation 

Epac 1 and 2 are structurally very similar, with each protein containing; (1) a 

cAMP-binding domain, which is similar to that found in the regulatory domain of 

PKA, so-called B-site (2) a CDC25 homology domain, which exhibits GEF activity 

for Rap proteins, (3) a Ras association (RA) domain, which facilitates binding to 

Ras, (4) a Ras exchanger motif (REM), which is involved in interaction with the 

GEF domain and finally (6) a Disheveled/Egl-10/pleckstrin (DEP) domain, which is 

required for membrane association (Bos, 2006) (Figure 1.2). However, differences 

between both proteins do exist; for example, although both Epacs have been 

shown to possess a putative RA domain, only Epac2 has been shown to bind H-, 

K- and N-RasGTP via this domain (Li et al., 2006). This interaction has been 

shown to promote the translocation of Epac2 from the cytosol to the plasma 

membrane, causing the subsequent activation of a pool of membrane-localised 

Rap1 (Li et al., 2006). Thus, it appears that only Epac2 has a functional RA 

domain (Epac1 lacks key residues involved in Ras association; (Wohlgemuth et 

al., 2005). Furthermore, Epac2 differs from Epac1 by having an additional cAMP 

binding domain, the so-called A-site, which has a lower affinity for cAMP (87µM) 
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than the B-site cAMP-binding domains of Epac1 and Epac2 (4 and 1.2 µM, 

respectively) (de Rooij et al., 2000). The function of this second cAMP binding 

domain has yet to be determined (Rehmann et al., 2003a). Additionally, the DEP 

domain of Epac1 has been shown to target Epac1 to the plasma membrane (de 

Rooij et al., 2000), whereas the function of the DEP domain of Epac2 appears to 

be less clear, since membrane association of Epac2 has only been observed 

when Epac2 is over-expressed (Li et al., 2006). In keeping with localization 

differences between both Epac1 and Epac2, Epac1 has also been shown to 

possess a mitochondrial localisation signal at its N terminus (Qiao et al., 2002) 

which is absent from Epac2. This may explain the lack of punctuate staining of 

Epac2 in cells (Li et al., 2006). The localization of Epac1 appears to be dependent 

on the cell cycle, showing membrane and mitochondria localization during 

interphase in COS-7 cells (Qiao et al., 2002). 

Despite their differences, both Epac1 and Epac2 are capable of activating Rap1 

and Rap2 in response to cAMP (de Rooij et al., 2000). Binding of Rap to Epac is 

believed to occur following a conformational change induced by cAMP binding, 

which relieves the auto-inhibition imposed by the N-terminal regulatory region. 

This has been proposed based on the crystal structure of Epac2 in the absence of 

cAMP (Rehmann et al., 2006). Thus, the closed structure of Epac2 displays a 

covering of the regulatory region over the predicted binding site, which appears to 

sterically hinder access of Rap. cAMP binding is believed to disrupt this inhibition, 

although the structure of Epac in the presence of cAMP has yet to be determined.  

 

1.2.5 Roles of Epac in Endothelial Biology 
Of relevance to endothelial biology, endothelial cells only appear to express Epac1 

(Fang & Olah, 2007). Studies in this area have revealed Epac1 to be important in 

the modulation of endothelial barrier function. Rap1 has been shown to have many 

downstream effectors, including scaffolding proteins, such as AF6 (Boettner et al., 

2003), RapL (Katagiri et al., 2003) and Riam (Lafuente et al., 2004). These 

scaffolding proteins have been implicated in cell adhesion and cell-cell junction 

formation and hence, a role for Epac in these processes has been thoroughly 

investigated. One of the first studies to demonstrate a role for Epac in cell 

adhesion was conducted by Rangarajan et al. (2003) showing that integrin-

mediated cell adhesion was enhanced via an Epac-Rap1 pathway following cAMP 
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elevation (Rangarajan et al., 2003). However, this study was carried out in an 

ovarian carcinoma cell line. To assess the role of Epac in endothelial biology, 

various studies have been conducted in endothelial cells, wherein endothelial 

barrier function is crucial for the maintenance of a healthy endothelium. A defining 

feature of endothelial dysfunction is increased vascular permeability, leading to 

inflammatory cell infiltration and chronic inflammation. Several studies have 

demonstrated an Epac1-mediated enhancement of endothelial barrier function. 

More specifically, Epac1-Rap1 mediated increases in vascular endothelial (VE) 

cadherin-dependent cell adhesion and cortical actin have been observed 

(Fukuhara et al., 2005; Kooistra et al., 2005). Structurally, the endothelial cell 

barrier is made up of adherens junctions (AJ) and tight junctions. VE-cadherin 

constitutes the AJ and mediates calcium-dependent intercellular adhesions, which 

is strengthened by the association of VE-cadherin with the actin cytoskeleton. 

Thus, Epac1 has been implicated in this process, demonstrating for the first time a 

PKA-independent signalling pathway in endothelial cells, which regulates vascular 

permeability. Although Rap1 has been implicated in this pathway, it has also been 

reported that Epac1 can bind and activate R-Ras, which has also been implicated 

in integrin-mediated cell adhesion (Lopez De Jesus et al., 2006).  

 

1.3 Cytokines 
Cytokines are small soluble regulatory proteins that function as intercellular 

messengers, predominantly in the immune system. The vast majority of cytokines 

are referred to as “interleukins”, a name that traditionally implied that they were 

secreted by and acted upon leukocytes. Chemokines are another group of 

cytokines, defined by the role they play in chemotaxis. However, cytokines can be 

secreted by numerous cell types and exert a plethora of physiological effects, such 

as the development of cellular and humoral immune responses, induction of the 

immune response, control of cellular proliferation and regulation of 

haematopoiesis. 

Classification of cytokines can be based on a number of parameters, including, 

structural differences (Heinrich et al., 1998). The “four α-helix bundle” family 

comprise cytokines with a four α-helix bundle structure consisting of 2 pairs of anti-

parallel α-helices. These cytokines can be further sub-divided into short chain, 

long chain and eight α-helices groups (Bravo & Heath, 2000). The short chain 
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group comprise cytokines with α-helices of 8-10 residues in length, such as IL-2, 

IL-3 and IL-4, whilst the long chain group comprise cytokines with α-helices of 10-

20 residues in length, such as growth hormone (GH), erythropoietin (EPO), 

granulocyte colony-stimulating factor (GCSF) and the gp130 cytokines. The third 

group include cytokines, such as IL-5 and interferon-γ, which have a duplication of 

the 4-helix bundle and thus, a total of 8 α-helices.  

Cytokine receptors can again be classified according to structure and on this basis 

may belong to any one of five receptor families; (1) Immunoglobulin superfamily, 

(2) Class I family, (3) Class II family, (4) TNF superfamily and lastly (5) Chemokine 

receptor family. The class I receptor family comprise most of the receptors that 

function in the immune and haematopoetic systems and possess a characteristic 

cytokine receptor homology domain (CHD2), which is situated in the extracellular 

domain. The CHD2 comprises 7 β-strands that are arranged as anti-parallel β-

sandwiches, connected by a proline-rich sequence. The defining feature of this 

structure is the WSXWS box, (Trp-Ser-Xaa-Trp-Ser, where X is a nonconserved 

residue), present in the C-terminal end and a conservation of cysteine residues 

(Bazan, 1990).  

 
1.3.1 Interleukin-6 (IL-6) 
IL-6 belongs to the IL-6 family of haematopoietic cytokines, a sub-family of the four 

α-helix bundle cytokines; the long chain group, comprising IL-6, IL-11, oncostatin 

M (OSM), leukaemia inhibitory factor (LIF), cardiotrophin 1 (CT-1), ciliary 

neurotrophic factor (CNTF), and cardiotrophin-like cytokine (CLC). IL-6 has a wide 

variety of biological effects and this is in part reflected in its nomenclature. For 

example, IL-6 was cloned in 1986 (Hirano et al., 1986) and called B cell 

stimulatory factor-2 (BSF-2), because of the crucial role it played in the 

differentiation of B cells to immunoglobulin-producing cells (Muraguchi et al., 

1981). However, other groups cloned the same protein under the name of 

interferon β2 protein (IFNβ2) because it was shown to induce interferon (IFN) 

activity (Zilberstein et al., 1986). Later, hybridoma growth factor (HGF) (Van 

Damme et al., 1987) was found to be the same protein, so-called because this 

group found that it induced myeloma and plasmacytoma growth, and also induced 
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acute phase reactants in hepatocytes. When these proteins were discovered to be 

identical the names were unified as IL-6 (Naka et al., 2002). 

In general, the IL-6 family of cytokines have been demonstrated to play important 

roles in haematopoiesis, embryonic development, fertility, liver and neuronal 

regeneration and, of particular relevance to the present study, inflammation and 

the immune response (Naka et al., 2002). Notably, dysregulation of IL-6 signalling 

has been shown to be heavily implicated in the development of various chronic 

inflammatory diseases, including rheumatoid arthritis, Castleman’s diease, juvenile 

idiopathic arthritis and Crohn’s disease (Nishimoto & Kishimoto, 2004). 

 
1.3.2 Roles of IL-6 
IL-6 is well known for the role it plays in the acute phase response, whereby it 

potently induces the production of acute phase proteins (Gauldie et al., 1987). 

Examples of acute phase proteins include, C-reactive protein (CRP), fibrinogen, 

serum amyloid protein and various complement components. The concentration of 

these proteins increase (positive acute-phase proteins) or decrease (negative 

acute-phase proteins) by a minimum of 25-fold, the threshold for classification as 

an acute phase protein, to as much as 1000-fold, as in the case of CRP, in the 

setting of acute inflammation (Gabay & Kushner, 1999). These fold differences in 

acute phase proteins have been documented during conditions, such as infection, 

trauma, surgery, burns, tissue infarction etc. and appear to serve beneficial 

effects, by initiating, sustaining or modulating the inflammatory process (Gabay & 

Kushner, 1999). IL-6 is considered to be the chief stimulator of the production of 

most acute phase proteins (Gauldie et al., 1987). The involvement of IL-6 in 

mediating the acute phase response is demonstrated in studies of IL-6 knock-out 

mice, whereby this response is severely impaired following tissue damage or 

infection. Furthermore, these mice display impaired T-cell dependent antibody 

responses when challenged with virus (Kopf et al., 1994).  

Epidemiological studies have shown that, in addition to C-reactive protein (CRP), 

IL-6 plasma levels are strong independent predictors of risk of future 

cardiovascular events (Rattazzi et al., 2003), suggesting an involvement of IL-6 in 

cardiovascular disease. In more detail, these studies, which included the WHS and 

WHI (healthy women), PHS (healthy men), and the Iowa65+ Rural Heath (elderly) 

studies, showed that those subjects in the top quantile of baseline IL-6 levels had 
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an almost 2 fold greater risk of death and CVD events when compared to those in 

the lower quantile (Rattazzi et al., 2003). Indeed endothelial dysfunction has been 

shown to correlate with CRP levels (Fichtlscherer et al., 2000). Furthermore, a 

study conducted recently found that patients who were in a stable phase following 

myocardial infarction displayed a negative correlation between endothelium-

dependent vasodilation and IL-6 levels (Erzen et al., 2007). 

It is interesting to note that IL-6 has been shown to possess anti- as well as pro-

inflammatory properties, which appear to depend on the duration of the 

inflammatory response. For example, during acute responses, IL-6 has been 

shown to reduce the levels of pro-inflammatory cytokines (Xing et al., 1998). 

However, during states of chronic inflammation, IL-6 becomes pro-inflammatory, 

involved in the transition from neutrophil to monocyte recruitment in areas of 

inflammation, a defining feature of the transition from acute to chronic 

inflammatory states (Hurst et al., 2001; Kaplanski et al., 2003). This may be in part 

due to increased shedding of the secretory form of the IL-6 receptor, namely sIL-

6Rα from neutrophils at sites of acute inflammation, since sIL-6Rα is required for 

trans-signalling, a mechanism described in section 1.3.3. For example, IL-6 and 

sIL-6Rα have been shown to induce endothelial cells to secrete IL-8 and MCP-1 

and upregulate adhesion molecules (Romano et al., 1997), establishing an 

autocrine loop for MCP-1 which favours monocyte recruitment and the transition 

from acute to chronic inflammation (Marin et al., 2001). In contrast, there is a 

reduction in neutrophil recruitment and an increase in neutrophil phagocytosis, 

during which levels of TNFα and MCP-1 are upregulated (Gabay, 2006). sIL-6Rα 

appears to be important in this transition and has been shown to induce the 

expression of E-selectin, ICAM-1, VCAM-1, IL-8 and IL-6 in human umbilical vein 

endothelial cells (HUVECs). sIL-6Rα is therefore capable of activating EC 

inflammation via endothelial-derived IL-6, which can itself be upregulated by IL-6 

and sIL-6Rα (Modur et al., 1997). Thus, IL-6 appears to modulate the immune 

response by dictating the recruitment and activation of different leukocyte classes 

and inducing different cytokines (Jones et al., 2005).  

As mentioned previously, IL-6 is heavily implicated in the development of chronic 

inflammatory diseases, such as RA, juvenile idiopathic arthritis, Castleman’s 

disease and Crohn’s disease (Nishimoto & Kishimoto, 2004). For example, in 
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disease models of arthritis, anti-IL-6R antibody has been shown to reduce the 

development of arthritis (Takagi et al., 1998) and interestingly, blockade of sIL-6Rα 

by a soluble form of the IL-6 receptor (gp130) reduces the severity of arthritis, 

implicating  sIL-6Rα in the development of RA (Nowell et al., 2003). Indeed, a 

humanised anti-IL-6R monoclonal antibody has been used in the treatment of RA 

with strong therapeutic effects (Nakahara & Nishimoto, 2006). It has also been 

used in Crohn’s disease (Ito et al., 2004) and Castleman's disease (Nakahara and 

Nishimoto, 2006). 

 
1.3.3 IL-6-activated Signalling Cascades 
All members of the IL-6 family signal via receptor complexes containing the 

glycoprotein gp130, belonging to the class 1 cytokine receptor family. IL-6, IL-11 

and CNTF cannot bind gp130 directly. They first need to bind to their respective 

membrane-bound α-receptor subunits; IL-6Rα, IL-11Rα and CNTFRα (Davis et 

al., 1991; Hilton et al., 1994; Yamasaki et al., 1988). Regarding IL-6, endothelial 

cells do not express IL-6Rα. However, soluble forms of the receptor (sIL-6Rα) 

exist and these can bind IL-6 to generate a so-called trans-signalling sIL-6Rα/IL-6 

complex that is capable of efficiently activating gp130. sIL-6Rα can be produced 

by limited proteolysis (shedding) of membrane-bound receptors from, for example, 

neutrophils recruited to sites of vascular injury (Marin et al., 2002). Additionally, 

sIL-6Rα can be generated by translation from an alternatively spliced sIL-6Rα 

transcript (Muller-Newen et al., 1996). The remaining IL-6-type cytokines bind 

directly with their respective signal transducing receptors; LIF, CNTF, CT-1 and 

CLC bind and signal via heterodimers of gp130 and LIFR, while OSM signals via 

heterodimers of gp130-LIFR and/or gp130-OSMR (Figure 1.3). 

The extracellular domain of all members of the class 1 receptor cytokine family 

have the characteristic motif CHD2 mentioned earlier (Bazan, 1990) and different 

numbers of fibronectin type III (F-III) domains. The CHD2 of gp130 has been 

shown to interact with distinct areas on the surface of the IL-6 cytokines. One such 

site, which is common to all the IL-6 cytokines and binds CHD2 is site II. In addition 

to site II, another site termed site III interacts with the second signalling receptor 

via the Ig-like domains of either a second gp130 or LIFR or OSMR. Therefore, 

even when signalling via gp130 homodimers, 2 different sites and 2 different 
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epitopes on gp130 are required for ligand recognition (Kurth et al., 1999). If an α-

receptor is involved in signalling, as is the case with IL-6, site I on IL-6 binds with 

the CHD2 on sIL-6Rα (Figure 1.4). 

 
- The Janus Kinases (JAKs)  

Most cytokine receptors have no intrinsic tyrosine kinase activity and therefore rely 

on signalling via associated tyrosine kinases. Numerous studies have shown that 

the JAK family are the predominant kinases utilised by cytokine receptors for this 

purpose (Muller et al., 1993; Witthuhn et al., 1993). However, another class of 

tyrosine kinases called the Src family kinases (SFK) have also been shown to be 

activated by cytokine receptors. Indeed, studies have shown that co-operation 

between both SFKs and JAKs are required for optimal signal transduction (Ingley 

& Klinken, 2006). In mammals, the JAK family has 4 members; JAK1, JAK2, JAK3 

and TYK2. JAK1, JAK2 and TYK2 are widely expressed, whereas JAK3 is 

restricted to the haematopoietic immune system (Musso et al., 1995). Importantly, 

JAK3 deficiency is the basis of human autosomal recessive “severe combined 

immunodeficiency” (SCID) (Macchi et al., 1995).  

Structurally JAKs comprise 7 conserved domains, termed The JAK homology (JH) 

domains 1-7, numbered from the carboxyl to the amino terminus (Figure 1.5 a.). 

The hallmark of the JAKs is the presence of JH1, which is a functional tyrosine 

kinase domain, and JH2, which is a catalytically inactive pseudo-kinase domain; 

the presence of these domains give rise to the kinase’s name (the “two-faced” 

Roman god Janus). Despite lacking tyrosine kinase activity, JH2 is proposed to 

have regulatory functions. For example, deletion of this domain has been shown to 

increase JAK2 and JAK3 phosphorylation, as well as signal transducer and 

activator of transcription (STAT) activation. The JH2 domain is believed to 

negatively regulate the kinase domain via an intramolecular interaction between 

JH1 and JH2, which effectively suppresses basal kinase activity. Upon ligand 

binding, conformational changes relieve this interaction and allows activation of 

JH1 (Saharinen et al., 2000; Saharinen & Silvennoinen, 2002). JH3-JH5 domains 

have homology with SH2 domains, implying interactions with other signalling 

components via phosphorylated tyrosine residues. However, partners for these 

domains have yet to be identified (Ingley & Klinken, 2006). Lastly, JH6-JH7 

domains constitute a Band 4.1, ezrin, radaxin, moesin (FERM) domain, which has 
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been implicated in interactions with cytokine receptors (Huang et al., 2001), and 

the JH1 domain to increase activity (Zhou et al., 2001).  

The membrane-proximal regions of gp130 predominantly bind JAK1, supported by 

the findings that in cells lacking JAK1, IL-6 signalling is impaired (Guschin et al., 

1995). These regions contain conserved motifs called box1 and box2 and both are 

necessary for efficient JAK binding. Deletions or mutations to box1 result in 

impaired binding of JAKs to gp130 (Haan et al., 2000; Tanner et al., 1995) and 

deletion of box2 only leads to JAK association when the kinase is over-expressed 

(Tanner et al., 1995). It has therefore been proposed that box2 increases the 

affinity of JAK binding (Heinrich et al., 2003). In addition to box1 and box2, an 

interbox1-2 region on gp130 is also involved in JAK binding and again, in studies 

where this region has been mutated, abrogated JAK signalling has been observed 

(Haan et al., 2000). 

Ligand binding causes a conformational change within the gp130 homodimer, 

which allows JAK transphosphorylation and activation. Following JAK activation, 

specific tyrosine residues on the receptor become phosphorylated by the activated 

JAKs. The structural basis of the JAK-receptor interaction and the mechanism by 

which the receptor re-orientates to receive the phosphorylation is currently very 

poorly understood. Nevertheless, after the receptor has become phosphorylated at 

specific tyrosine residues, SH2-domain containing proteins are recruited to the 

receptor and activate downstream signalling. Two major intracellular pathways 

activated by gp130 are the signal transducer and activator of transcription (STAT) 

pathway and the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. 

 

- The STAT Pathway  

The STAT family of transcription factors were first described by Darnell et al. 

(1994) in the early 90s as ligand-induced transcription factors in cells treated with 

interferon (IFN) (Darnell et al., 1994; Fu et al., 1992). To date, the STAT family 

comprises seven mammalian members; STAT1, STAT2, STAT3, STAT4, STAT5a, 

STAT5b and STAT6. Additionally, alternative splicing of STAT1, 3, 4, 5a and 5b 

yields isoforms with truncated C-terminal domains, for example the STAT3β 

isoform lacks the 55 C-terminal amino acids of STAT3α, but gains a unique 7 

amino acids (Schaefer et al., 1995). The β isoforms have been reported to act as 

dominant negative regulators of transcription when overexpressed (Caldenhoven 
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et al., 1996). Moreover, these isoforms have been shown to differ in their 

transcriptional activities, for example isoform-specific deletions of STAT3β and 

STAT3α have shown that STAT3β activates a distinct subset of STAT3 genes in 

response to IL-6 and may not act as a dominant negative in vivo (Maritano et al., 

2004). 

STATs are activated by a wide range of cytokines, as well as growth factors and 

hormones (Lim & Cao, 2006). Depending on the STAT member involved, a range 

of ligands which are sometimes overlapping can activate STAT1, STAT3, STAT5a 

and STAT5b, whereas only a few cytokines are capable of activating STAT2, 

STAT4 and STAT6 (Lim & Cao, 2006). For example, STAT3 can be activated by 

cytokines and growth factors, including the IL-6 family members and EGF, and is 

implicated in mitogenesis, survival and anti-apoptosis (Bromberg, 2001). STAT6, 

on the other hand is predominantly activated by IL-4 and is involved in T helper 2 

(Th2) development (Shimoda et al., 1996).  

Structurally, STATs comprise several distinct functional domains, including an N-

terminal domain, a coiled-coil domain, a DNA binding domain, a linker domain, a 

SH2 domain and a C-terminal transactivation domain (Figure 1.5 b.). The N-

terminal domain is involved in dimerisation and tetramerisation, and the 

recruitment of phophatases for some STATs (Meyer et al., 2004; Ota et al., 2004; 

Vinkemeier et al., 1998). The coiled-coil domain is implicated in protein-protein 

interactions. For example, c-Jun has been shown to interact with this domain in 

STAT3, whereby STAT3 and c-Jun cooperation is required for maximal IL-6-

dependent acute-phase response gene activation driven by the 2-macroglobulin 

enhancer (Zhang et al., 1999b). This domain has also been shown to be involved 

in receptor binding, whereby mutations within it impair STAT3 recruitment to 

gp130 (Zhang et al., 2000). The DNA-binding domain is highly conserved amongst 

all the STATs and, as well as binding DNA, it also controls nuclear translocation. It 

has been proposed to achieve this by maintaining the necessary conformation for 

importin binding (Ma & Cao, 2006). Importins are required for cytokine-induced 

nuclear import of STATs, whereas nuclear export involves a “chromosome region 

maintenance 1” (CRM1)/ exportin1-dependent process (Meyer & Vinkemeier, 

2004). The linker domain is implicated in transcriptional activation, since studies 

using point mutations within this region of STAT1 abolished transcriptional 

responses to IFN-γ (Yang et al., 1999). Additionally, this domain also participates 
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in protein-protein interactions, demonstrated by STAT3 interaction with “genes 

associated with retinoid–IFN-induced mortality-19” (GRIM-19), a death regulatory 

gene product. GRIM-19 association with STAT3 has been shown to block STAT3 

transcriptional activity (Liu et al., 1998). The most conserved domain within the 

STATs is the SH2 domain. This domain is essential for binding to receptors via 

specific phospho-Tyr residues (Hemmann et al., 1996), and can also mediate 

dimerisation (Shuai et al., 1994). Lastly, the C-terminal transactivation domain and 

the conserved tyrosine and serine residues facilitate the activation, dimerisation 

and transcriptional activation of STATs (Darnell et al., 1994; Shuai et al., 1993). 

The transactivation domain mediates protein-protein interactions including 

interactions with the “cAMP response element binding protein” (CREB)-binding 

protein (CBP) to regulate gene transcription (Gingras et al., 1999; Zhang et al., 

1996). 

All IL-6 type cytokines are capable of activating STAT1 and STAT3 via gp130. 

However, STAT3 activation has been observed at a greater extent than STAT1 

activation (Heinrich et al., 1998). STAT recruitment to activated IL-6 type receptors 

is mediated by the STAT SH2 domain and requires the phosphorylation of certain 

tyrosine residues. In particular, STAT3 binds four phospho (p)YXXQ motifs of 

gp130 (Y767RHQ, Y814FKQ, Y905LPQ and Y915MPQ) (Stahl et al., 1995), whereas 

STAT1 is more restricted and binds two (p)YXPQ motifs in gp130 (Y905LPQ and 

Y915MPQ) (Gerhartz et al., 1996). Once recruited, STATs become phosphorylated 

by JAKs on a single tyrosine residue; Y701 in STAT1 and Y705 in STAT3 (Kaptein et 

al., 1996; Shuai et al., 1993). In addition, STAT serine phosphorylation by MAP 

kinases has also been observed at S727 in both STAT1 and STAT3 (Wen et al., 

1995). The relevance of this is still not completely understood, but it has been 

proposed that serine phosphorylation is required for maximal transcriptional 

activity, since a mutated Ser727 to Ala in STAT3 results in reduced transcriptional 

activity (Shen et al., 2004). Following phosphorylation, activated STATs form 

homo- and/or hetero-dimer complexes, consisting of STAT1-STAT1, STAT1-

STAT3 or STAT3-STAT3 dimers, which translocate to the nucleus to bind 

response elements of IL-6 inducible genes. STATs bind to essentially 2 types of 

response elements; (1) interferon stimulated response element (ISRE) and (2) 

gamma-activated site (GAS). The ISRE appears to be restricted to IFN signalling 

(Fu et al., 1990), whereas the GAS, including  sis-inducible element (SIE), acute 



22 
 

phase response element (APRE) and other GAS-like sequences are present in 

promoters such as c-fos and acute phase proteins and are targets of STATs. 

Target genes downstream of STAT3 include acute phase genes, such as 

fibrinogen (Wegenka et al., 1993), cell cycle regulators such as cyclin D1, and 

anti-apoptotic genes such as Bcl-XL (Bromberg et al., 1999).  

 

- ERK1/2 Pathway 

ERK1 and ERK2 are ubiquitously expressed, proline-directed serine and threonine 

protein kinases, discovered in the early 90s (Boulton & Cobb, 1991) and belong to 

the mitogen-activated protein kinase (MAPK) family. ERK1 and ERK2 constitute 

one of three sub-families of MAPK, together with the c-Jun N-terminal kinase 

subfamily (JNK1, JNK2 and JNK3) and the p38-MAP kinase subfamily (α, β, γ and 

δ). Additionally, ERK3 - ERK8 have also been identified, but their regulation and 

roles are much less understood (Bogoyevitch & Court, 2004). ERK1 and ERK2 are 

generally considered one entity (ERK1/2), since they are 83% identical, with the 

differences shown to be outside the kinase region (Boulton et al., 1991). ERK1/2 is 

expressed in all tissues and may be activated by a wide range of stimuli, including, 

growth actors, serum, cytokines, hormones and osmotic stress (Chen et al., 2001). 

ERK1/2 is implicated in many cellular processes, including cell proliferation, 

survival and differentiation (Kolch, 2005).  

Conventionally, ERK1/2 is activated as the final step in a Raf-MEK-ERK kinase 

cascade (Figure 1.6). The small G protein Ras is an upstream activator of Raf, and 

recruits Raf to the plasma membrane. Notably, mutations in Ras genes are found 

in 30% of all human cancers (Bos, 1989). Raf activation involves phosphorylation 

at specific Ser, Tyr and Thr residues, which differ between the 3 Raf isoforms; A-

Raf, B-Raf and Raf-1/C-Raf. For example, phosphorylation of both Ser338 and 

Tyr341 appears to be crucial for Raf-1 activation, since mutation of both residues 

(Ser338/Tyr341 to Ala) has been shown to abrogate Raf-1 activity (Mason et al., 

1999). Furthermore, phosphorylation of Thr491 and Ser494 has been shown to be 

necessary, but not sufficient for Raf-1 activation. These sites co-operate with 

Ser338 and Tyr341 to activate Raf-1 (Chong et al., 2001). Alternatively, Ser259 on 

Raf-1 has been identified as an inhibitory phosphorylation site, whereby this site is 

phosphorylated in resting cells and requires dephosphorylation to activate Raf-1 or 

conversely may be hyperphosphorylated by PKA to inhibit Raf-1 activity (Dhillon et 
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al., 2002a; Dhillon et al., 2002b). Thus, activation of Raf-1 involves complex 

changes in phosphorylation, which are still not fully understood. This complicated 

activation of Raf-1 also applies to A-Raf. However, B-Raf activation appears to be 

simpler and this is reflected in the findings that B-Raf activates MEK and ERK 

more potently than Raf-1 or A-Raf (Galabova-Kovacs et al., 2006; Pritchard et al., 

1995). B-Raf has the highest basal activity and has been found to be mutated in 

many cancers (Repasky et al., 2004). 

Despite these differences, all 3 Raf isoforms are capable of activating MAP/ERK 

kinases 1/2 (MEK1/2), except for A-Raf, which cannot activate MEK2 (Beeram et 

al., 2005). MEK1/2 becomes phosphorylated on serine residues 217 and 221 

within the activation loop, which is a region within protein kinases that modulate 

kinase activity (Alessi et al., 1994; Canagarajah et al., 1997). MEK1/2 are dual-

specificity kinases that phosphorylate ERK1/2 on Thr (Thr202/185 on ERK1/2 

respectively) and Tyr residues (Tyr204/187 on ERK1/2 respectively) (Canagarajah 

et al., 1997; Owens & Keyse, 2007) in a “TEY” motif within the activation loop. The 

“TEY” motif is a tripeptide motif including Thr(T)-Glu(E)-Tyr(Y), which depicts the 

phosphorylation sites of ERK1/2, separated by a single amino acid (Glu). The 

amino acid between the two phosphorylation sites defines the different groups of 

MAPK, for example, the aforementioned Glu is the amino acid found in the ERK1, 

2 and 5 tripeptide motif, whereas JNKs (JNK1-3) exhibit a Pro (Thr-Pro-Tyr) and 

p38 MAPKs (α-δ) a Gly (Thr-Gly-Tyr) (Widmann et al., 1999). Raf isoforms are the 

best characterised MEK1/2 activators, however other activators exist, including 

tumour progression locus 2 (Tpl2) (Salmeron et al., 1996). 

Structurally, the MAPKs comprise 2 domains; an N-terminal domain which 

consists of β-sheets and 2 helices, so-called αC and αL16, and the C-terminal 

domain which is predominantly helical, with 4 short β-strands containing the 

residues involved in catalysis (Turjanski et al., 2007). The catalytic site is localised 

at the junction between these two domains. MAPKs can be distinguished from 

other protein kinases by the presence of a 50 residue MAPK insertion in the C-

terminal, with an extension of this domain which spans the entire protein. All 

MAPKs are structurally very similar, which poses the question of how specificity of 

signalling between the different MAPKs is achieved. Differences in the docking 

motif binding sites that are located outside the catalytic domain of MAPKs, which 

dictate substrate specificity could account for this. Furthermore, conformational 
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changes have been observed in MAPKs upon binding to upstream activators, 

scaffolds and downstream targets, which can also contribute towards MAPK 

specificity (Zhou et al., 2006).       

SHP2 (SH2-domain-containing cytoplasmic protein tyrosine phosphatase) is a 

ubiquitously expressed and highly conserved enzyme. Like its name suggests, 

SHP2 comprises two N-terminal SH2 domains and a C-terminal protein tyrosine 

phosphatase domain and will be detailed in section 1.4.4.1. It is recruited to 

pTyr759 on gp130 following IL-6 type receptor dimerisation and is subsequently 

phosphorylated by JAKs. The phosphorylation of SHP2 provides docking sites for 

the adapter protein Grb2 (growth factor receptor binding protein 2), which is 

constitutively associated with the GDP/GTP Ras exchange factor, “Son of 

sevenless” (Sos). It has been proposed that the C-terminal domain residues 

Tyr542 and Tyr580 within SHP2 interacts with the Grb2-Sos complex (Heinrich et 

al., 2003). Sos recruitment to the receptor complex allows for the activation of Ras, 

which in turn leads to the activation of the Ras-Raf-MEK-ERK cascade. The 

activation of ERK1/2 results in the preferential phosphorylation of substrates with 

the consensus sequence, Pro-Xaa-Ser/Thr-Pro (Gonzalez et al., 1991) and more 

than 150 substrates have been identified (Table 1). In summary, a diagram of the 

IL-6-activated STAT and ERK1,2 signalling cascades, as described above, is 

shown in Figure 1.7.  

Alternatively, phosphorylated SHP2 has also been shown to associate with the 

scaffolding proteins Gab1/2 and the p85 subunit of phosphatidylinositol-3-kinase 

(PI3K), forming a tertiary complex. This complex can go on to activate the Akt 

pathway and might also feed back into the Ras/ERK cascade (Ernst & Jenkins, 

2004).  

 
1.3.4 Leptin 
Discovered in 1994 by positional cloning, leptin is the product of the obese (ob) 

gene (Zhang et al., 1994). Sequence analysis of leptin showed no strong 

similarities with any other proteins, however analysis of the tertiary structure using 

X-ray crystallography, revealed leptin to be a four-helix bundle cytokine, similar to 

that of the long chain helical family comprising, amongst others, IL-6 (Zhang et al., 

1997). However, further to this, NMR studies designated leptin a member of the 

short helix subfamily of cytokines, since the length of the helices were found to be 
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very similar to those of interleukin-2 (IL-2), interleukin-4 (IL-4) and macrophage-

colony stimulating factor (M-CSF), all members of the same short helix family 

(Kline et al., 1997). The receptor, which is encoded by the diabetes (db) gene, is 

termed OB-R and belongs to the same class of receptors as IL-6, namely the class 

I cytokine receptor family (Tartaglia et al., 1995). Thus, while the OB-R and 

receptors of the class 1 cytokine family, such as gp130, LIFR and G-CSFR share 

very similar sequences and are classed together on this basis, they do not appear 

to share the same similarities with respect to their ligands.  Despite this, the 

findings that leptin and OB-R have structural and sequence similarities with other 

cytokine/cytokine receptor families has greatly aided research into leptin signalling, 

especially since its discovery has lagged behind that of IL-6, which was discovered 

in 1986 (Kishimoto, 2006).   
Leptin comes from the greek “leptos” meaning thin. As its name suggests, leptin is 

predominantly known for its role in the regulation of food intake and energy 

balance. This is clearly demonstrated in the mouse model of leptin deficiency 

(ob/ob mice), which suffers from early onset morbid obesity (Zhang et al., 1994). 

Associated diseases with this model include insulin resistance, diabetes mellitus 

and infertility (Zhang et al., 1994). Thus, leptin’s effects are not simply restricted to 

body weight and this is further reinforced by the almost universal expression 

pattern of the leptin receptor in the body. Like IL-6, leptin may therefore be 

considered a pleiotropic molecule with a range of biological effects. 

 

1.3.5 Leptin Receptors 
Leptin acts via transmembrane receptors of which there are at least 6 isoforms; 

OB-Ra – OB-Rf, encoded by a single gene (Lee et al., 1996). All of these splice 

variants share the same extracellular domain of over 800 amino acids, a 

transmembrane domain of 34 amino acids (except for OB-Re) and a variable 

intracellular domain (Figure 1.8) (Beltowski, 2006; Fruhbeck, 2006). The OB-R has 

2 CHD2s and four fibronectin type III domains (Hegyi et al., 2004). Based on the 

different intracellular domains, the OB-R isoforms are classed into (1) short forms 

(2) long forms and (3) secreted forms. The secreted form of OB-R is OB-Re and is 

produced by ectoderm shedding of membrane-bound OB-R or alternative splicing 

(Ge et al., 2002). OB-Re contains only the extracellular domain of OB-R and 

appears to act as a buffering system for free leptin, since the expression pattern of 
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OB-Re is quite extensive, with levels of OB-Re comparable to those of leptin 

(Lollmann et al., 1997). The short forms of OB-R (OB-Ra, OB-Rc, OB-Rd and OB-

Rf), all have the same first 29 intracellular amino acids as the long form, OB-Rb, 

but only OB-Rb, which has a cytoplasmic domain of 301 amino acids (1162 amino 

acids full length) has full signalling capability (detailed in signalling section). 

Indeed, mice deficient in the OB-Rb receptor (db/db) display a phenotype 

characterised by obesity, diabetes mellitus and infertility which is exactly the same 

phenotype as that of the ob/ob mice and mice lacking all the OB-R isoforms 

(db3J/db3J) (Kowalski et al., 2001). Furthermore, this phenotype can be rescued by 

neuron-specific OB-Rb transgenes (de Luca et al., 2005; Kowalski et al., 2001). 

This demonstrates the importance of the OB-Rb isoform in leptin signalling and 

highlights the less understood roles of the short forms of OB-R, despite their 

distinct tissue distribution (Lee et al., 1996). The short forms of OB-R have 

however, been implicated in the transport of leptin across the blood-brain barrier 

(Hileman et al., 2000), which is supported by the high expression of these short 

forms in the choroid plexus (Tartaglia, 1997). OB-Rb is predominantly expressed 

in the hypothalamus (Schwartz et al., 1996), but has been found in many tissues, 

notably in endothelial cells (Sierra-Honigmann et al., 1998). A large body of 

research suggests that OB-Rb is crucial for mediating leptin effects and these 

effects have been demonstrated to be extremely diverse.  

 
1.3.6 Roles of Leptin 
Leptin is mainly produced by white adipocytes. The concentration of circulating 

leptin has been documented to be relative to body mass index (BMI) and total 

body fat (Fruhbeck, 2006) and serves to communicate with the CNS to regulate 

food intake and energy expenditure (Friedman & Halaas, 1998). This role of leptin 

is heavily supported by the intensely studied mouse models of leptin and leptin 

receptor deficiency (ob/ob and db/db), since both models display increased food 

intake, coupled with decreased energy expenditure. This results in a phenotype 

resembling morbid human obesity, whereby each mouse model weighs three 

times more than their normal littermates. Furthermore, treatment of ob/ob mice 

with exogenous leptin was shown to reverse these effects (Ahima et al., 1996). On 

this basis, leptin was initially considered to be a wonder drug for the treatment of 

obesity. However, it was soon shown that obese individuals actually have elevated 
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levels of leptin in their bloodstream, due to their increased fat mass, which do not 

appear to mediate weight loss (Maffei et al., 1995). Moreover, leptin administration 

to these individuals was shown to have minimal effects (Heymsfield et al., 1999). 

This phenomenon gave rise to the concept of leptin resistance occurring at, at 

least two levels: (1) the level of the blood brain barrier at which the transport 

system may have become saturated or (2) the level of OB-Rb activation or 

signalling, whereby the transduction of the leptin signal has become impaired.  

Leptin has traditionally been exclusively associated with these central effects on 

energy homeostasis and body weight. However, like many cytokines, research into 

leptin has uncovered a wide range of biological activities mediated by this 

adipokine, whereby involvement in diverse systems, such as the endocrine, 

immune, reproductive, wound healing, respiratory and the CVS have been 

observed (Beltowski, 2006; Fruhbeck, 2006; Munzberg et al., 2005; Peelman et 

al., 2004). Of relevance to the present study are leptin’s peripheral effects on the 

immune system and the involvement of leptin in the pathogenesis of diseases, 

particularly those of the CVS. 

It is well known that obesity is a key risk factor for cardiovascular disease (Van 

Gaal et al., 2006) along with insulin resistance, type 2 diabetes, hypertension and 

dyslipidemia (Roth, 1997). Hyperleptinaemia may be considered another risk and 

has been shown to contribute to cardiovascular disease as detailed hereafter. 

Interestingly, research has shown a link between hyperleptinaemia and endothelial 

dysfunction, whereby high concentrations of leptin (resembling the concentrations 

observed in morbid obesity) administered to dogs and rats were shown to 

attenuate vasodilation of coronary arterioles in response to acetylcholine (Knudson 

et al., 2005). However, studies are conflicting in this area and whether leptin plays 

a role in endothelial function in humans is currently unknown.    

Indeed, it has been proposed that leptin mediates atherogenesis in obese 

individuals. This is based on the assumption that leptin resistance is selective i.e. 

only the body weight effects of leptin are impaired in leptin resistance, while other 

effects are maintained (Beltowski, 2006; Ozata et al., 1999). The concept of 

selective resistance was suggested by a study using ob/ob mice and Agouti yellow 

obese (Ay) mice, which are mice that have an overexpression of an agouti peptide 

that blocks melanocortin receptors, leading to obesity. Ay mice exhibit 

hyperleptinaemia and a higher arterial pressure than their lean littermates. 
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Interestingly, Ay mice have a higher arterial pressure than ob/ob mice, despite 

having milder obesity than ob/ob mice. Thus, it appears that peripheral effects of 

hyperleptinemia are preserved, whereas central affects are resistant. 

Administration of exogenous leptin to ob/ob mice results in weight loss, however 

the peripheral effects of leptin administration increase arterial pressure (Correia et 

al., 2002; Mark et al., 1999). This concept of selective resistance is supported by 

the findings that ob/ob mice on an atherogenic diet are protected from 

atherosclerosis, despite displaying obesity, diabetes, and hyperlipidemia (Schafer 

et al., 2004). Furthermore, administration of exogenous leptin to these ob/ob mice 

revert from an anti-atherogenic to a pro-atherogenic phenotype and in WT mice 

exacerbates atherosclerosis, but has no effect in db/db mice (Schafer et al., 2004). 

Leptin has also been shown to promote atherosclerosis and thrombus formation in 

atherosclerosis-prone apoE-deficient mice despite a reduction in adipose tissue 

mass and fasting insulin levels (Bodary et al., 2005). The expression of leptin 

receptors on various cell types involved in cardiovascular disease, such as 

monocytes/macrophages (Zarkesh-Esfahani et al., 2001) and, importantly, 

vascular endothelial cells (Bouloumie et al., 1998) only strengthens the link 

between leptin and cardiovascular disease.  

In vitro studies have shown that leptin potentiates inflammatory and immune 

responses by increasing pro-inflammatory cytokines, including TNFα, IL-6 and IL-

12 and increasing the phagocytic activity of macrophages (Loffreda et al., 1998). 

Leptin also induces ROS generation and increases expression of MCP-1 in bovine 

aortic endothelial cells (BAEC) (Yamagishi et al., 2001). In addition, leptin has 

been shown to promote angiogenesis (Park et al., 2001; Sierra-Honigmann et al., 

1998) which has been demonstrated to contribute towards unstable plaque 

growth. 

In humans, the ob gene mutations are fortunately rare and, in the few reported 

cases, the phenotype highly resembles that of the ob/ob mouse, with individuals 

displaying the characteristic morbid obesity trait (Montague et al., 1997). Of 

interest, this phenotype has also been associated with low T cell counts and an 

increased incidence of infectious disease and mortality (Ozata et al., 1999). 

Further to this, (Ciccone et al., 2001)have shown an association between plasma 

leptin levels and insulin resistance and inflammation, each of which are risk factors 
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for cardiovascular disease (Wannamethee et al., 2007). Moreover, in a study 

conducted by Wolk et al. (2004), levels of plasma leptin were demonstrated to 

predict future cardiovascular events such as cardiac death, myocardial infarction 

(MI), cerebrovascular accident, or re-vascularization in patients with 

angiographically confirmed atherosclerosis (Wolk et al., 2004). With relation to 

atherosclerosis, a correlation between the intima-media thickness (IMT) of the 

common carotid artery, which is an early marker of atherosclerosis, and plasma 

leptin concentrations has been demonstrated (Ciccone et al., 2001). OB-Rb 

expression has been shown in human atherosclerotic plaques (Park et al., 2001) 

and together with C-reactive protein (CRP), IL-1 and IL-6, leptin has been shown 

to act as an acute-phase reactant, being produced at high levels during 

inflammation, sepsis and fever (La Cava & Matarese, 2004). 

 
1.3.7 Leptin-activated Signalling Cascades 
Leptin signals via OB-R homodimers and mainly activates the JAK/STAT pathway 

(Vaisse et al., 1996) in a very similar way to the IL-6-type cytokine receptors (refer 

to IL-6 section). In the first instance, leptin binds and causes a conformational 

change in the OB-Rb homodimer, which enables the transphosphorylation of the 

OB-Rb-associated JAKs, specifically JAK2 (Kloek et al., 2002). JAK2 associates 

with the OB-Rb via a conserved box1 region (Bahrenberg et al., 2002; Kloek et al., 

2002), in comparison to gp130 that has been shown to require both box1 and box2 

regions for optimal JAK binding. Since, OB-Rb possesses specific tyrosine 

residues on its intracellular domain, it is the only isoform with full signalling 

capability (Hegyi et al., 2004). Transphosphorylation and activation of JAK2 

following leptin binding leads to phosphorylation of specific tyrosine residues on 

OB-Rb, providing docking sites for downstream signalling molecules. OB-Rb has 3 

conserved tyrosine residues on the intracellular domain; Tyr985, Tyr1077, and 

Tyr1138 (Tartaglia, 1997). Both Tyr985 and Tyr1138 are phosphorylated upon 

leptin binding, but Tyr1138 is not (Banks et al., 2000). 

 

STAT Pathway  

P-Tyr1138 on OB-Rb, serves as a docking site for STATs, since replacement of 

this residue with serine impairs STAT signalling and results in an obese, 

hyperphagic phenotype in mice (Bates et al., 2003). STAT1, STAT3 and STAT5 
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have all been demonstrated to bind OB-Rb (Hekerman et al., 2005). Despite 

earlier reports suggesting that Tyr1077 does not participate in leptin signalling due 

to lack of tyrosine phosphorylation, a study has since shown by the use of point 

mutations in OB-Rb, that Tyr1077 or Tyr1138 is required for leptin-induced tyrosyl 

phosphorylation of STAT5, and Tyr1138 is essential for activation of STAT1 and 

STAT3 (Hekerman et al., 2005). Thus, OB-Rb is capable of activating a broader 

range of STAT proteins than gp130. In vivo studies, however have demonstrated 

that signalling of leptin occurs mainly through STAT3 (Bates & Myers, 2004). 

Following STAT activation via associated JAKs, homo- and/or hetero-dimerisation 

complexes are formed, which translocate to the nucleus to bind and activate target 

gene transcription. 

 

ERK1/2 Pathway 

SHP2 is recruited to pTyr985 on OB-Rb (Banks et al., 2000; Bjorbaek et al., 2001), 

becomes Tyr phosphorylated by JAK2 and recruits the adapter protein Grb2 

(Banks et al., 2000), which then mediates activation of the Ras-Raf-MAPK 

cascade (mentioned earlier in section 1.3.3) via the Ras GEF Sos. In addition, 

ERK activation has also been observed in the absence of OB-Rb phosphorylation. 

In this pathway, the short isoform OB-Ra and the OB-Rb lacking all Tyr residues 

are both able to activate ERK via direct signalling from JAK2 to the ERK pathway. 

Thus, two pathways of ERK activation are proposed, whereby one pathway 

requires OB-Rb phosphorylation of Tyr985 and the other pathway does not. 

However, both pathways require the phosphatase activity of SHP2, since 

catalytically inactive SHP2 completely inhibits ERK activation. The substrates of 

SHP2, which mediate ERK activation by leptin have still be identified. Further to 

this, ERK phosphorylation via Tyr985 of OB-Rb requires Tyr phosphorylation of 

SHP2 (Bjorbaek et al., 2001). Refer to Figure 1.9 for a diagram of the leptin-

activated STAT and ERK1,2 signalling cascade.  

 
1.4 Regulation of Cytokine Signalling 
Cytokine signalling is typically transient, suggesting the involvement of negative 

regulatory steps aimed at terminating this response. Indeed, controlling these 

responses is crucial for avoiding detrimental inflammatory outcomes, including the 
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development of diseases such as atherosclerosis, RA, Crohn’s disease and 

Castleman’s disease (Nishimoto & Kishimoto, 2004). 

There are many mechanisms with which to negatively control cytokine signalling; 

these include receptor internalisation, ubiquitin-mediated proteasomal 

degradation, protein inhibitors and activators of STATs (PIAS), protein tyrosine 

phosphatases (PTPs) and suppressors of cytokine signalling (SOCS). These 

endogenous inhibitory mechanisms will be described, with an emphasis on the 

SOCS proteins as inhibitory regulators of IL-6 and leptin signalling.  

 
1.4.1 Receptor Internalisation 
Endocytosis of receptors via clathrin-coated vesicles into early endosomes, 

termed “clathrin-mediated endocytosis” (CME), has three potential consequences; 

(1) receptors can return to the plasma membrane from where they came 

(recycling), (2) receptors can be transported to a different domain of the plasma 

membrane (transcytosis) or (3) receptors can progress to lysosomes, where they 

are degraded. It is important to note here that receptor endocytosis is no longer 

solely considered a mechanism for the termination of signalling. Rather, it has also 

been shown to contribute to cell signalling, whereby signalling processes can 

occur in endosomes (Miaczynska et al., 2004; Polo & Di Fiore, 2006). 

Endocytosis relies on the expression of endocytosis motifs on membrane proteins 

and their interaction with adapters present in clathrin-coated pits, such as the AP-2 

adapter complexes. The most well-studied of these membrane protein motifs 

include the di-leucine and tyrosine-based motifs (Bonifacino & Traub, 2003). An 

example of this can be observed in gp130, whereby studies using mutant gp130s 

with different truncations in the intracellular domain identified a sequence of 10 

amino acids (TQPLLDSEER) containing a di-leucine internalisation motif, which 

was shown to be crucial for receptor- mediated endocytosis of the IL-6 receptor 

complex (Dittrich et al., 1994). However, in addition to these peptide motifs, 

proteins can be ubiquitinated on cytosolic lysine residues and this can also serve 

as a signal for endosomal sorting (Bonifacino & Traub, 2003). Unlike cytosolic or 

nuclear proteins that can be polyubiquitinated and degraded via the proteasome 

(mentioned later), membrane proteins tend to be modified by mono- or di-ubiquitin 

conjugates (Belouzard & Rouille, 2006). Certainly, this has been the case with the 

OB-Ra. The OB-Ra cytoplasmic tail contains no tyrosine or di-leucine-based 
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endocytosis motifs, but instead possesses two lysine residues which are each 

ubiquitinated and these act as internalization motifs for clathrin-dependent 

endocytosis of the receptor (Belouzard & Rouille, 2006).  

It is interesting to note that only 5-25% of OB-R isoforms have been located at the 

cell surface under basal conditions, with the remaining proportion localised to 

intracellular pools (Barr et al., 1999; Fruhbeck, 2006). Indeed, the fate of OB-Ra 

and OB-Rb following internalisation is their eventual degradation in lysosomes and 

this appears to be mediated by a ligand-independent constitutive endocytosis in 

some studies (HeLa cells) (Belouzard et al., 2004) and a ligand-dependent 

endocytosis of the two OB-R isoforms in other studies (CHO cells) (Uotani et al., 

1999). OB-Rb, in particular, has been shown to be undergo internalisation to the 

greatest extent when compared to the other OB-R isoforms, (Barr et al., 1999), 

and this may be a contributory factor to leptin resistance (Fruhbeck, 2006). With 

regards to gp130, endocytosis has been shown to occur constitutively, 

independent of IL-6/IL-6R stimulation (Thiel et al., 1998). 

The mechanisms involved in these intracellular trafficking processes have yet to 

be fully established. Studies of class 1 cytokine receptor routing are limited, but 

from the existing studies, all follow the endosomal/lysosomal pathway including 

the growth hormone receptor (GHR), leptin receptor (LR), prolactin receptor 

(PRLR), IL-9R and gp130 (Belouzard et al., 2004; Dittrich et al., 1994; Irandoust et 

al., 2007; Thiel et al., 1998; Uotani et al., 1999), with the exception of the 

thrombopoietin receptor (TPOR), which is recycled back to the plasma membrane 

(Royer et al., 2005). The lysosomal routing of the G-CSFR from early to late 

endosomes and lysosomes is of interest, since this process is believed to be 

mediated by the suppressor of cytokine signalling 3 (SOCS3) protein via 

ubiquitination of G-CSFR (Irandoust et al., 2007). SOCS3 will be discussed in 

more detail in section 1.6.5 and represents another inhibitory mechanism of 

cytokine signalling. Thus, the lysosomal routing of G-CSFR depicts a novel 

mechanism of inhibition, involving two pathways, i.e. the endosomal/lysosomal 

pathway and SOCS3.  

Further to CME, clathrin-independent mechanisms of endocytosis also exist, such 

as raft/caveolae-mediated endocytosis (RCE), which is a much less studied 

endocytotic mechanism than the former. It is of interest because caveolae are 

especially abundant in specific cell types like endothelial cells (Couet et al., 2001). 
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Caveolae can be described as small, omega-shaped domains enriched in 

cholesterol, sphingolipids and caveolin proteins. Such domains have been 

implicated in cell signalling processes as well as endocytosis (Couet et al., 2001). 

Notably, studies have demonstrated the involvement of these lipid rafts in IL-6-

mediated STAT activation, whereby disruption of the rafts by methyl-β-

cyclodextrin, which removes cholesterol from the membrane, inhibits STAT 

signalling (Sehgal et al., 2002). Caveolin-1 has also been shown to modulate 

insulin signalling, EGF signalling and, importantly, cAMP signalling (Abulrob et al., 

2004; Nystrom et al., 1999; Razani et al., 1999).  

Thus, CME and RCE can either dictate receptor fate or modulate cell signalling 

pathways. Which of these endocytic pathways are used and under what conditions 

is a question that still remains to be answered. The choice of pathways could 

potentially be influenced by the type of stimulus; for example IL-6 treatment has 

been shown to increase trafficking of TGF-β1 receptors to non-lipid raft-associated 

pools and this leads to enhanced TGF-β1-Smad signalling (Zhang et al., 2005). 

Alternatively, it could be the ligand concentration, since the EGFR has been 

shown to be internalised almost exclusively via the CME pathway at low doses of 

EGF, and the RCE pathway at high doses of EGF (Sigismund et al., 2005).  

Overall, endocytic pathways appear to play a very complex role in the integration 

and attenuation of signals and could potentially have effects on IL-6- or leptin-

mediated signalling cascades in endothelial cells.  

 
1.4.2 PIAS 
Mammalian “protein inhibitor of activated STAT” (PIAS) proteins, comprise PIAS1, 

PIAS3, PIASx (PIAS2) and PIASγ (PIAS4), each existing as 2 isoforms, except for 

PIAS1. As their name suggests, PIAS proteins were originally identified as 

negative regulators of STAT proteins, (Chung et al., 1997; Liu et al., 1998). 

Despite their nomenclature, it has now emerged that PIAS proteins are capable of 

positively or negatively regulating a broad range of proteins. Examples of the 

proteins that can be regulated by PIAS proteins, which are involved in immune 

regulation, are shown in (Table 2). 

Every member of the PIAS family has been shown to regulate STAT signalling 

(Shuai & Liu, 2005). Notably, PIAS1 and PIAS3 have been shown to interact with 

STAT1 and STAT3 respectively (Chung et al., 1997; Liu et al., 1998). PIAS-STAT 



34 
 

interactions are cytokine-dependent and result in inhibition of STAT-mediated 

transcription. Transcriptional inhibition can result from PIAS proteins blocking the 

DNA-binding activity of transcription factors. For example,  PIAS1 and PIAS3 have 

both been shown to inhibit the DNA-binding activity of STAT1 and STAT3 

respectively (Chung et al., 1997; Liu et al., 1998). The mechanism by which this 

occurs however is still unclear. Alternatively, PIAS proteins can also recruit co-

regulators, such as histone deacetylases (HDACs), which repress transcription. 

For example, PIASx inhibits IL-12-mediated STAT4 activation via recruitment of 

HDACs (Arora et al., 2003). Interestingly, PIAS proteins have also been shown to 

act as E3 ligases for “small ubiquitin-related modifier” (SUMO) (Kotaja et al., 

2002). SUMO is known as an ubiquitin-like protein (ULP) because of its similarity 

with ubiquitin (described in the next section). Sumoylation involves the conjugation 

of SUMO to protein substrates: for example, sumoylation of STAT1 by PIASx-

alpha via Lys703 has been observed. However the functional consequences of 

this modification have yet to be determined, since it does not appear to alter 

transcriptional activation (Rogers et al., 2003). Thus, the role of PIAS-mediated 

sumoylation in the context of STAT signalling is unclear. However, in general, 

sumoylation has been implicated in many cellular processes including, the 

modulation of transcription factors, the targeting of proteins to the nucleus, protein-

protein interactions and protein stability (Johnson, 2004).    

 

1.4.3 Ubiquitin-mediated Proteasomal Degradation 
Protein degradation in mammalian cells is predominantly mediated by the 

ubiquitin-proteasome system (UPS) (von Mikecz, 2006), and is crucial in many 

cellular events, including antigen presentation (Kloetzel, 2001), cell cycle 

progression (Koepp et al., 1999) and removal of misfolded proteins (Hilt & Wolf, 

1996). Ubiquitination primarily involves targeting proteins for degradation via the 

26S proteasome, but has also been implicated in endocytosis (Reggiori & Pelham, 

2001; Strous et al., 1996) and cell signalling (Khush et al., 2002; Ting & Endy, 

2002). 

The process of ubiquitination involves a series of enzymatic steps, beginning with 

the activation of ubiquitin (Ub) via formation of a thioester bond between an 

ubiquitin (Ub)-activating enzyme (E1) and the carboxyl group of Gly76 on Ub. The 

activated Ub is then transferred to an Ub-conjugating enzyme (E2), before transfer 
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from E2 to the substrate lysine residue by E3 ubiquitin ligase. Thus, 3 enzymes 

are involved in the ubiquitination of substrates, which ultimately results in the 

formation of an iso-peptide linkage between Lys residues on the substrate and 

Gly76 on Ub. Although 3 enzymes are involved in this process, only the E3 

dictates specificity for the target protein and acts to ubiquitinate the substrate by 

either accepting the Ub from E2 and transferring it to the substrate or by bringing 

the substrate into close proximity with the E2 ligase-activated Ub complex (Pickart, 

2001; Walters et al., 2004). Substrates can either be monoubiquitinated or 

polyubiquitinated at one or multiple sites. Polyubiquitin chains are formed by the 

addition of more Ub moieties to existing Ub via linkage between specific Lys 

residues in Ub and the C-terminal residue Gly76. These linkages to Lys residues 

appear to dictate the fate of the protein substrate. For example, linkage at Lys48 

typically targets substrates to the 26S proteasome (Thrower et al., 2000). In 

contrast, linkage at Lys63 has been implicated in nonproteolytic signalling, for 

example activation of IκB kinase (IKK) in the NF-kappaB signalling pathway (Deng 

et al., 2000). 

Two major types of E3 ubiquitin ligases exist, defined by the presence of either a 

“homologous to E6-associated protein C terminus” (HECT) domain or a “really 

interesting new gene” (RING) fold. Recently, a new class of E3 ligase has been 

described, which contains a Lin11/Isl-1/Mec-3 (LIM) domain. The function of the 

LIM domain, which is present in many proteins remains largely unknown, although 

involvement in protein-protein interactions has been suggested (Dawid et al., 

1998). Importantly, a LIM domain protein known as STAT-interacting LIM protein 

(SLIM) has been shown to act as a ubiquitin E3 ligase and targets Tyr-

phosphorylated STAT1 and STAT4 for proteasomal-mediated degradation. 

Overexpression of SLIM results in impaired STAT1 and STAT4 activity due to 

decreased STAT protein levels. Furthermore, deficiency of SLIM in T cells leads to 

increased levels of phosphorylated and total STAT4, and increased amounts of 

IFNγ when stimulated with IL-12, in keeping with the major role of IL-4 signalling in 

the differentiation of IFNγ-secreting Th1 cells (Tanaka et al., 2005).  

 

1.4.4 PTPs – a focus on SHP2 
Protein phosphatases reverse the effects of protein kinases by catalysing the 

removal of phosphoryl groups. In terms of signal transduction, dephosphorylation 
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of proteins can alternatively initiate, sustain or terminate signals (Andersen et al., 

2001). Protein tyrosine phosphatases (PTPs) comprise a large family of proteins, 

which are characterised by a unique signature motif. Residues in this motif form 

the phosphate-binding loop and two residues in particular, namely Cys and Arg, 

are critical for the catalytic activity of PTPs (Andersen et al., 2001; Tiganis & 

Bennett, 2007). PTPs can be grouped into two general families; (1) the tyrosine-

specific PTPs, which can dephosphorylate substrate proteins on tyrosine; these 

can be further sub-divided into transmembrane, receptor-like PTPs and non-

transmembrane PTPs, and (2) the dual-specificity phosphatases (DSPs), which 

can dephosphorylate protein substrates on tyrosine, serine and threonine residues 

(Tiganis & Bennett, 2007). Our understanding of PTPs is greatly lagging behind 

that of PTKs, which is partly due to the discovery of PTKs a decade before PTPs. 

PTPs exhibit a high degree of specificity for their substrates. This is achieved by 

the PTP catalytic domain, which recognises the specific phosphorylated residues 

and the flanking amino acids within the substrate, and the non-catalytic N- and C- 

terminal domains, which target the PTP to particular intracellular compartments for 

substrate recognition (Andersen et al., 2001). PTP specificity can be demonstrated 

by the subfamily of DSPs, termed the mitogen-activated protein kinase 

phosphatases (MKPs), which dephosphorylate MAPKs on tyrosine and threonine 

residues. Of the 10 members that make up this family, some can specifically target 

one class of MAPK (e.g. DUSP6/MKP-3 which specifically dephosphorylates ERK) 

while others can target more than one class of MAPK (e.g. DUSP1/MKP-1 which 

dephosphorylates ERK, JNK and p38 MAP kinases) (Owens & Keyse, 2007).  

The prototypical PTP is PTP1B which was discovered in 1988 (Charbonneau et 

al., 1988). It has been shown to have numerous substrates, but the most 

extensively studied of these include the insulin receptor (IR) and JAK2 (Tiganis & 

Bennett, 2007). A lot of this information has come from the study of PTP1B-

deficient mice, which exhibit enhanced insulin sensitivity, which is associated with 

increased tyrosine phosphorylation of the insulin receptor in muscle and liver. 

Furthermore, these mice are resistant to diet-induced obesity (Elchebly et al., 

1999). Further studies have revealed the involvement of leptin signalling in the 

above phenotype and have demonstrated PTP1B inhibition of leptin signalling via 

dephosphorylation of JAK2 (Cheng et al., 2002). 
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T-cell-specific protein tyrosine phosphatase (TCPTP), including its nuclear isoform 

TC45, has several proposed substrates, including the IR, EGFR (Tiganis & 

Bennett, 2007), JAK1, JAK3 (Simoncic et al., 2002) STAT1 (ten Hoeve et al., 

2002) and STAT3 (Yamamoto et al., 2002). Of interest, Yamamoto et al. (2002) 

demonstrated TC45-mediated suppression of STAT3 activation in response to IL-6 

in 293T cells, implicating the nuclear isoform of TCPTP in the negative regulation 

of IL-6 signalling. This negative regulation is supported by studies of TCPTP-

deficient mice. These mice display a complex phenotype in comparison to PTP1B-

deficient mice, wherein the mice are viable but exhibit haemopoietic defects, 

resulting in splenomegaly, lymphadenopathy and thymic atrophy. As a result, the 

mice die at 3-5 weeks. Specifically, homozygous mice display defects in bone 

marrow, B cell lymphopoiesis, and erythropoiesis, as well as impaired T and B cell 

functions. Taken together, the abnormalities displayed in TCPTP-deficient mice 

strongly suggest a crucial role of TCPTP in hematopoiesis and immune function 

(You-Ten et al., 1997). 

 

1.4.4.1 SHP-2  
The SH2-domain containing protein tyrosine phosphatases (SHPs) are a subfamily 

of non-transmembrane PTPs comprising two vertebrate SHPs, SHP1 and SHP2. 

SHP1 expression is restricted to cells of the haematopoietic system, whereas 

SHP2 is ubiquitously expressed. Both proteins contain two N-terminal SH2 

domains (N-SH2 and C-SH2) and a C-terminal catalytic phosphatase domain. As 

such, SHP1 and SHP2 have the unique ability to function as phosphatases, 

dephosphorylating signalling components and down-regulating signal transduction, 

whilst also serving as adapter molecules via their SH2 domains, recruiting further 

adapter molecules to transducer downstream signalling (Heinrich et al., 2003; Neel 

et al., 2003; Salmond & Alexander, 2006). SHP1 and SHP2 appear to have non-

redundant roles, since deletion of either protein in mice results in death at 2-3 

weeks due to severe inflammation, so-called the “motheaten” phenotype because 

of the patchy hair loss caused by sterile dermal abscesses (SHP1), (Neel et al., 

2003) or embryonic lethality due to defective gastrulation or mesodermal 

differentiation (SHP2) (Neel et al., 2003). Thus, one SHP does not compensate for 

the other in these phenotypes. The differences between SHP1 and SHP2 effects 

appear to be due to the differences in SH2 domain-mediated protein interactions, 
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as well as differences in the PTP domains of both proteins (Salmond & Alexander, 

2006). 

Of particular relevance to the present study is the finding that SHP2 binds to 

Tyr759 on gp130 and Tyr985 on OB-Rb (Carpenter et al., 1998; Stahl et al., 1995). 

The dual function of SHP2 as a phosphatase and an SH2 domain-containing 

protein poses the question; does SHP2 serve as a positive or negative regulator of 

IL-6 or leptin signalling?  

 

1.4.4.2 Positive Effects of SHP2 on the ERK Pathway 
The finding that ERK activation is inhibited in mice with a mutation of Tyr759 to 

Phe (gp130F759/F759) or cells transfected with a mutated Tyr759 gp130 construct, 

establishes a positive regulatory role of SHP2 on the ERK pathway (Kim & 

Baumann, 1999; Ohtani et al., 2000). Furthermore, catalytically inactive dominant-

negative SHP2 mutants have been shown to block leptin-mediated ERK 

phosphorylation and ERK-dependent gene transcription from the egr-1 promoter, 

suggesting a positive role of SHP2 in leptin signalling (Bjorbaek et al., 2001). 

Indeed, previous studies on growth factor signalling, including EGF, insulin and 

platelet-derived growth factor (PDGF) signalling have each demonstrated a 

positive regulatory role of SHP2 on ERK signalling and gene expression (Bennett 

et al., 1994; Bennett et al., 1996; Yamauchi et al., 1995).  

 

1.4.4.3 Positive and Negative Effects of SHP2 on the STAT Pathway 

In contrast to these positive effects, gp130F759/F759 mice and cells transfected with 

a Tyr759→Phe mutated gp130 construct have demonstrated impaired SHP2 

activation, prolonged STAT3 and STAT1 activation and enhanced acute-phase 

protein gene induction, suggesting a negative role of SHP2 on the STAT pathway 

(Ohtani et al., 2000; Schaper et al., 1998). In further support of this negative 

regulatory role, the gp130F759/F759 mouse phenotype displays splenomegaly, 

lymphadenopathy and an enhanced acute phase reaction (Ohtani et al., 2000). 

However, these results are complicated by the findings that suppressor of cytokine 

signalling 3 (SOCS3), another inhibitory mechanism of cytokine signalling detailed 

in the next section, binds to the same site as SHP2 on gp130 and OB-Rb (De 

Souza et al., 2002) and could therefore contribute towards these negative effects. 

To address this issue, studies have employed catalytically inactive dominant 
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negative SHP2 mutants in gp130 signalling. Expression of these mutants have 

resulted in increased gp130, JAK and STAT3 phosphorylation as well as gene 

induction (Lehmann et al., 2003; Symes et al., 1997), which confirms the 

involvement of SHP2 in the negative regulation of the STAT pathway via gp130.  

These negative effects of SHP2 on gp130 signalling do not appear to be observed 

for OB-Rb signalling, since mutation of Tyr985 of OB-Rb has no effect on STAT 

activation (Li & Friedman, 1999). Also, using dominant negative SHP2 strategies 

(COS-1 cells), SHP2 was shown not to have an effect on STAT3 phosphorylation 

or STAT3-mediated gene transcription from the SOCS3 promoter (Bjorbaek et al., 

2001). However, these studies demonstrated no effect of SHP2 on STAT 

activation and STAT-dependent promoter activity following 15 minutes and 6 hours 

of leptin treatment respectively. Further research by this group has demonstrated 

that following 24 hours of leptin treatment, STAT-mediated transcription was 

enhanced in cells expressing mutated Tyr985Phe OB-Rb (Bjorbaek et al., 2001) 

and suggested that the induction of SOCS3 by leptin over prolonged leptin 

treatment could account for the enhanced STAT3 response, implicating SOCS3 

involvement and not SHP2. In addition, over these extended periods of leptin 

treatment, SHP2 could possibly act as an indirect positive regulator of the STAT 

pathway, preventing SOCS3 binding to the OB-Rb at Tyr985 (Bjorbaek et al., 

2001).     

 

1.4.4.4 Possible Mechanisms of SHP2’s Actions on ERK and STAT Signalling 
Thus, in general, a positive role of SHP2 in cytokine-induced ERK activation and a 

negative or positive role of SHP2 in cytokine-induced STAT activation have been 

proposed. How SHP2 mediates this positive effect on ERK activation and the 

contribution of SHP2 to the negative regulation of STAT signalling, in relation to 

SOCS3, are still areas under investigation. To address the first point, SHP2 

appears to exert a positive effect on ERK signalling by acting as an adapter 

protein, wherein SHP2 becomes recruited to phosphotyrosine residues on 

activated receptors and following activation, associates with the adapter protein 

Grb2, which is bound to the Ras GDP-GTP exchange factor Sos. This Grb2/Sos 

complex can then go on to activate the Ras-ERK pathway (as discussed earlier in 

the signalling sections). This has been demonstrated for growth factor receptor 

signalling, including FGFR, and OB-Rb (Banks et al., 2000; Bennett et al., 1994; Li 
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et al., 1994; Myers, 2004). With regards to gp130 signalling, it has been proposed 

that the SHP2-Grb2 mode of ERK activation could be adopted (Heinrich et al., 

2003). However, in addition to this, Grb2-associated binder-1 (Gab1) has been 

shown to become tyrosine phosphorylated in response to IL-6 and associates with 

SHP2 and PI3K to activate ERK (Takahashi-Tezuka et al., 1998). Alternatively, 

SHP2 can act as a Tyr phosphatase, dephosphorylating particular substrates, 

which are negatively regulated by tyrosine phosphorylation. For example, SHP2 

has been shown to dephosphorylate tyrosine residues on EGFR required for 

RasGAP recruitment to the EGFR, thereby inhibiting phosphorylation dependent 

translocation of RasGAP to the plasma membrane and maintaining Ras and 

hence ERK activation (Agazie & Hayman, 2003).  

A model of SHP2 phosphatase activity exists, whereby the binding of SHP2 to 

phosphotyrosine residues has been shown to activate its phosphatase activity 

(Barford & Neel, 1998). This can occur in two ways, (1) the SH2 domains can bind 

to pTyr motifs on activated receptors, such as pTyr759 on gp130, which leads to 

unfolding of the protein and subsequent phosphatase activation or (2) the SH2 

domains can bind to pTyr542 and 580 on the C-terminal tail of SHP2 itself and 

cause conformational changes leading to activation. If pTyr binding does not 

occur, SHP2 remains in an inactive state, whereby the N terminal SH2 (N-SH2) 

domain appears to sterically hinder the access of phosphotyrosine substrates to 

the PTP domain, as demonstrated by its crystal structure (Hof et al., 1998). 

Therefore, the N-SH2 domain of SHP2 can either bind and inhibit the 

phosphatase, or bind to phosphotyrosines to activate the enzyme (Figure 1.10). 

Interestingly, in the human autosomal dominant disorder Noonan syndrome (NS), 

approximately 50% of all cases are caused by mutations in the SHP2 gene, 

PTPN11, and specifically in portions of the amino N-SH2 domain. These mutations 

lock SHP2 in its active conformation and subsequently cause excessive SHP2 

activity (Tartaglia et al., 2001). NS is characterised by short stature, cardiac 

defects, facial dysmorphia and an increased risk of developing leukaemia 

(Salmond & Alexander, 2006). Of relevance, this syndrome displays aberrant 

regulation of the Ras/ERK pathway (Bentires-Alj et al., 2006). Thus, NS 

demonstrates an involvement of SHP2 on ERK activation in humans. However, 

further research is required to better understand the exact mechanisms involved. 
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Likewise, the mechanisms by which SHP2 negatively or positively regulates STAT 

activation are not well understood and the relative contribution of both SHP2 and 

SOCS on gp130 or OB-Rb signalling is still unclear. There are reports showing 

that SHP2 can act directly as a STAT phosphatase (STAT5a) (Chen et al., 2003; 

Yu et al., 2000) and indeed STAT3/SHP2 complexes have been detected (Gunaje 

& Bhat, 2001). A large body of evidence supporting a negative role of SHP2 in 

gp130-mediated STAT activation exists, whereas conversely, SHP2 has been 

shown to have no effects on OB-Rb-mediated STAT3 phosphorylation (Bjorbaek 

et al., 2001). The possibility that SHP2 acts as an indirect positive regulator of 

STAT3, impeding SOCS3 recruitment at the Tyr985 site, has been described 

(Bjorbaek et al., 2001). Clearly, the involvement of SHP2 in gp130 and OB-Rb 

signalling requires further study. 

 

1.4.5 SOCS Family of Proteins 
There are eight members of the suppressor of cytokine signalling (SOCS) family of 

proteins to date; CIS (cytokine-inducible SH2 domain-containing protein) and 

SOCS1 through to SOCS7. SOCS1 was the first member to be discovered in 1997 

by three independent groups (Endo et al., 1997; Naka et al., 1997; Starr et al., 

1997). Using the predicted amino acid sequence of SOCS1 as a probe, database 

searches identified 20 proteins with shared sequence homology within the C-

terminal SOCS box region. Based on the presence of a central SH2 domain, the 

SOCS proteins were subdivided into a group of their own. The remaining proteins 

were divided into the following groups; WD-40-repeat proteins with a SOCS box 

(WSB proteins), ankyrin repeat proteins with a SOCS box (ASB proteins), sprouty 

(SPRY) domain-containing SOCS box proteins (SSB proteins) and GTPase 

domain-containing proteins (RAR and RAR-like proteins) (Krebs & Hilton, 2001). In 

addition to a central SH2 domain, all members of the SOCS family contain an 

amino-terminal of variable length (50-380 amino acids) and a conserved 40 amino 

acid carboxyl terminal SOCS box (Alexander, 2002; Yoshimura et al., 2007). 

Three systems of nomenclature exist for the SOCS proteins, but the SOCS 

nomenclature is the most widely accepted. Further analysis of the primary amino 

acid sequences of all SOCS members revealed paired associations according to 

sequence similarity. Thus, CIS and SOCS2, SOCS1 and SOCS3, SOCS4 and 

SOCS5, and SOSC6 and SOCS7 form related pairs. CIS, SOCS1, SOCS2 and 
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SOCS3 are quite well characterised, while the remaining members are poorly 

understood in comparison. Since SOCS1 and SOCS3 are well studied, homology-

paired and have been shown to potently inhibit IL-6/leptin signalling, focus will be 

placed on these SOCS members and on SOCS3 in particular. 
 
1.4.5.1 SOCS Proteins as Inhibitors of Cytokine Signalling 
SOCS proteins function as classical negative feedback inhibitors of cytokine 

signalling, since most SOCS proteins are themselves induced by cytokines. 

Cytokines shown to induce SOCS include the gp130 signalling cytokines, IL-2, IL-

3, IL-4, IL-10, IFN-γ, G-CSF and leptin. (Alexander, 2002; Yoshimura et al., 2007). 

Other inducers of SOCS proteins comprise Toll-like receptor (TLR) agonists (e.g. 

LPS, CpG-DNA), GH, prolactin, statins and importantly, cAMP (Dalpke et al., 

2001; Gasperini et al., 2002; Lang et al., 2003; Yoshimura et al., 2007). The SOCS 

proteins can inhibit signalling by multiple mechanisms according to the SOCS 

member and signalling pathway involved. Currently, there are 3 known 

mechanisms by which SOCS proteins can downregulate cytokine signalling 

(Figure 1.11): 

1. SOCS proteins can bind specific pTyr residues via their SH2 domain. 

SOCS3 binds to the pTyr motif 759 (pTyr759/mouse homologue pTyr785) on 

gp130 (Nicholson et al., 2000) and pTyr985/Tyr1077 on the leptin receptor 

(Eyckerman et al., 2000) and physically occupies the same sites as other SH2 

domain-containing signalling components, such as SHP2, thereby competing with 

and subsequently inhibiting other signalling pathways (De Souza et al., 2002; 

Heinrich et al., 2003). Peptide studies have shown that the binding specificity of 

SOCS3 is very similar to that of SHP2, with optimal SOCS3 and SHP2 

phosphopeptide ligands containing overlapping consensus sequences (De Souza 

et al., 2002). The same group showed that SOCS3 binds to the gp130 receptor 

with much higher affinity than the leptin receptor (De Souza et al., 2002). However, 

the findings that SOCS3 can bind two sites on the leptin receptor may compensate 

for the low affinity each site exhibits for SOCS3, for example two SOCS3 

molecules are capable of binding the leptin receptor simultaneously, whereas only 

one SOCS3 molecule can bind gp130 at any one time (De Souza et al., 2002). 
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2. The kinase inhibitory region (KIR) of SOCS1 and SOCS3, located 

downstream of the SH2 domain, is capable of interacting with the substrate 

binding site of the kinase domain in JAK2, acting as a pseudosubstrate and thus 

inhibiting the catalytic activity of JAK2 and activation of signalling from the 

associated receptor (Sasaki et al., 1999; Yasukawa et al., 1999). Specifically, 

Tyr31 of SOCS3 and Tyr65 of SOCS1 have been identified as the residues 

responsible for the pseudosubstrate inhibition of JAK2 (Bergamin et al., 2006). 

Interestingly, structural data relating to this interaction has revealed that it is 

implausible for Tyr31 or Tyr65 to reach the active kinase domain of JAK2 whilst 

bound via the SH2 domain i.e. in cis (Bergamin et al., 2006). This does not rule out 

the possibility that the SOCS proteins could bind to one JAK via their SH2 domain 

and inhibit another JAK via pseudosubstrate inhibition i.e. in trans, or the 

possibility that binding of the SOCS SH2 domain to the specific phosphotyrosine 

residues as outlined above positions the KIR for binding to the kinase domain of 

associated JAK2. This appears to be a more likely scenario than the former trans 

concept, since the crystal structure of the SOCS3/gp130 and various structural 

data favour the physiological target of SOCS3 SH2 domain to be pTyr757/759 of 

mouse/human gp130 and not the activation loop of JAK2 (Bergamin et al., 2006). 

3. The SOCS box present within all SOCS members can recruit elongins B 

and C, which together with cullin 5 and RING-box 2 (Rbx2) form an E3 ubiquitin-

ligase complex. This complex associates with enzymes E1, a ubiquitin-activating 

enzyme and E2, a ubiquitin-conjugating enzyme, to mediate Lys48 

polyubiquitination and subsequent proteasomal degradation of signalling 

components bound to the SOCS proteins via their SH2 domains (Kamura et al., 

2004; Ungureanu et al., 2002; Zhang et al., 1999a). A possible ubiquitination site, 

Lys-6 is also present at the N-terminus of SOCS3. A truncated isoform of SOCS3 

lacking this site has a much longer half-life than the wild-type SOCS3, suggesting 

that Lys-6 plays an important role in proteasomal degradation. Moreover, this 

demonstrates that SOCS3 expression can be regulated at a post translational 

level (Sasaki et al., 2003).  

Ubiquitin-mediated degradation has been proposed to be quite a generic 

mechanism of degradation, since SOCS proteins can potentially target the whole 

receptor-cytokine complex including the JAKs, plus the SOCS proteins themselves 
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for proteasomal degradation by the proteasome. It poses the question of how 

SOCS proteins selectively block JAK signalling at one type of receptor and leave 

other receptors using the same JAKs? This could possibly be explained by using 

the former concept mentioned in 2 above i.e. that SOCS SH2 domains could be 

preferentially binding the specific phosphotyrosine residues on activated receptors 

rather than JAKs, thereby causing degradation of associated JAKs as well as the 

receptor-cytokine complex, and achieving specifity at the receptor level. Indeed, it 

has been shown that mutation of Tyr757 to Phe on murine gp130 is sufficient to 

cause enhanced IL-6-inducible gene expression (Anhuf et al., 2000). Furthermore, 

bone marrow-derived macrophages (BMDM) isolated from mice with a mutation of 

Tyr757 to Phe in gp130 is sufficient to switch the IL-6 mediated response to an ‘IL-

10-like’ anti-inflammatory response, in terms of inhibiting LPS-induced induction of 

pro-inflammatory cytokines (El Kasmi et al., 2006). Previous studies have linked 

the absence of SOCS3 with the establishment of the anti-inflammatory response 

following IL-6 treatment (Yasukawa et al., 2003) as will be discussed later, so the 

former data suggests that mutation of only the specific phosphotyrosine that binds 

SOCS3 is sufficient to cause cytokine receptors to become refractory to SOCS 

inhibition, despite the presence of JAKs. Specific phosphotyrosine binding of 

SOCS members therefore appears to be the main mode of SOCS3 association 

with the receptor and not JAK association via the SH2 domain. This is in contrast 

to SOCS1, since studies have shown that the phenotype of SOCS1- deficient mice 

can only be partially rescued in mice with SOCS1 lacking the SOCS box, but 

retaining the SH2 domain. This shows that both the SOCS box and SH2 domain 

are required for the inhibitory effects on IFN-γ signalling (Zhang et al., 2001). 

In contrast to the above findings of SOCS interaction with elongins B and C, 

leading to proteasomal degradation, some studies have found that interaction with 

the elongin BC complex can stabilise SOCS3 (Haan et al., 2003) and SOCS1 

(Kamura et al., 1998). Haan et al. (2003) showed that tyrosine phosphorylation of 

SOCS3 disrupted elongin interaction, which accelerated SOCS3 degradation. This 

may suggest that tyrosine phosphorylation of SOCS3 is a prerequisite to 

proteasomal degradation. Indeed, Haan et al. (2003) suggested that the elongin 

BC interaction with SOCS3 may function to associate SOCS3 with a latent 

ubiquitination complex that only becomes active when SOCS3 is phosphorylated. 



45 
 

SOCS phosphorylation causes the dissociation of elongin C and the bringing 

together of the ubiquitination machinery into close proximity with SOCS3, 

subsequently triggering its degradation (Haan et al., 2003). This concept therefore 

combines the both views of elongin BC interaction and proteasomal degradation.  

 

1.4.5.2 SOCS Proteins as Regulators of Other Signalling Pathways 
In addition to the involvement of SOCS proteins in cytokine signalling, SOCS1 and 

SOCS3 have been shown to bind both EGF and FGF receptors (EGFR, FGFR) 

and affect downstream signalling events, in both positive and negative ways (Ben-

Zvi et al., 2006; Xia et al., 2002). With regards to EGF signalling, SOCS1 and 3 

have been shown to facilitate EGFR proteasomal degradation in HEK293 cells 

(Xia et al., 2002), while SOCS1 has been shown to inhibit STAT1 phosphoryation, 

but elevate ERK phosphorylation in response to FGF treatment in rat 

chondrosarcoma (RCS) cells (Ben-Zvi et al., 2006). Furthermore, SOCS1 and 

SOCS3 have been demonstrated to associate with insulin receptor substrate 1 

(IRS1) and IRS2 following insulin stimulation and interact with the elongin BC 

ubiquitin-ligase complex to promote Lys48 polyubiquitination and degradation (Rui 

et al., 2002). 

As mentioned earlier, SOCS3 offers another level of regulation by being able to 

become tyrosine phosphorylated itself on residues 204 and 221 located in the 

SOCS box by IL-2, erythropoietin (EPO), epidermal growth factor (EGF) and 

platelet-derived growth factor (PDGF) (Cacalano et al., 2001). The phosphorylated 

tyrosine residue 221 has also been shown to associate with and inhibit RasGAP. 

Using a murine B cell line, it was found that WT SOCS3 could inhibit IL-2-

mediated STAT5 phosphorylation, but maintain IL-2-mediated ERK 

phosphorylation, whereas a Tyr204/221Phe mutant SOCS3 still inhibited STAT5 

phosphorylation, but in contrast to the WT, abolished ERK phosphorylation, 

suggesting a phosphorylation-dependent maintenance of ERK signalling. 

(Cacalano et al., 2001). This inhibitory effect of the mutant was also observed 

following EPO and PDGF treatment. Thus, phosphorylation of Tyr204 and Tyr221 

of SOCS3 following growth factor stimulation leads to pTyr221 interaction with the 

SH2 domain of RasGAP, which subsequently sustains the activation of Ras and 

ERK. The duration of ERK signalling has been shown to be important for 

determining biological outcome, for example sustained activation of ERK has been 
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shown to be required for the control of G1 progression by regulating cyclin D1 

activation (Weber et al., 1997). SOCS3 therefore appears to have pathway-

specific effects as well as receptor-specific effects, and appears to show positive 

regulation as well as its well-known negative regulation, adding further 

complexities to its actions.  

Another level of complexity demonstrated by SOCS proteins is their ability to 

interact with other SOCS family members (Piessevaux et al., 2006; Tannahill et 

al., 2005). For example, although SOCS2 plays a major role in the negative 

regulation of GH signalling (Greenhalgh et al., 2005), it has also been shown to 

enhance GH signalling. This is believed to be caused by the binding of SOCS2 to 

other SOCS members and modulating their activity via the elongin BC complex, 

with subsequent proteasomal degradation (Piessevaux et al., 2006; Tannahill et 

al., 2005). This SOCS2-mediated inhibitory effect on other SOCS members has 

been observed on SOCS1- and SOCS3-dependent inhibition of growth hormone 

(GH) signalling, thus potentiating GH signalling (Piessevaux et al., 2006). SOCS2 

has also been shown to enhance IL-2 and IL-3 signalling (Tannahill et al., 2005) by 

accelerating proteasome-dependent degradation of SOCS3. Similar effects again 

have been shown on signalling via the IFN type 1 and leptin receptors (Piessevaux 

et al., 2006). These observations imply that SOCS2 is counteracting the effects of 

other SOCS proteins, rather like a secondary negative feedback mechanism, to 

limit the effects of excessive levels of SOCS proteins. This assumption is 

supported by the findings that SOCS2 induction usually occurs a long time after 

cytokine stimulation and is prolonged, whereas SOCS1 and SOCS3 expression is 

typically quite rapid and transient (Adams et al., 1998; Pezet et al., 1999). 

Although quite poorly understood, SOCS6 and SOCS7 have also been shown to 

bind other SOCS members and similar effects to SOCS2 have been observed for 

SOCS6 (Piessevaux et al., 2006). Again, this data suggests that SOCS proteins 

can act as positive and negative regulators of signalling pathways and could 

explain some reported anomalies, such as the enhanced insulin signalling 

observed in transgenic mice overexpressing SOCS6 (Li et al., 2004) or the 

gigantism observed in transgenic mice overexpressing SOCS2 (Greenhalgh et al., 

2002). 
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1.4.5.3 Functional Roles of SOCS Proteins 
The functions of SOCS proteins have largely been elucidated by the generation of 

mice engineered to lack particular SOCS genes. These studies have greatly 

enhanced our understanding of the roles SOCS proteins play, particularly with 

regards to the immune response, and have also identified key definitive roles of 

individual SOCS members, such as the non-redundant role SOCS1 appears to 

play in IFNγ signaling (Alexander et al., 1999; Marine et al., 1999) (Table 3). 

However, this is not always the case and knock-out models can encounter 

problems. Due to placental insufficiency, SOCS3-null mice die at mid-gestation 

(Roberts et al., 2001; Takahashi et al., 2003). To overcome this, other ways of 

investigating SOCS3 deficiency have been explored. A genetic cross study 

conducted by Robb et al. (2005) showed that mice on a leukaemia-inhibitory factor 

(LIF)/SOCS3-null background were rescued from embryonic lethality due to 

placental failure, and the mice appeared normal at birth (Robb et al., 2005). It is 

believed that the deletion of SOCS3 leads to dyregulated LIF signalling through 

the LIFRα-chain, which alters trophoblast differentiation and causes placental 

defects (Boyle & Robb, 2008). In support of this is the finding that the number of 

trophoblast giant cells are reduced in LIFRα-null mice, compared with an 

abnormally high number of trophoblast giant cells in SOCS3-null mice (Takahashi 

et al., 2003). Although embryonic lethality is rescued, a high neonatal mortality 

rate is observed in SOC3-/-LIF-/- mice and adult mice develop a fatal inflammatory 

disease, which is very similar to that seen in mice with a conditional deletion of 

SOCS3 in hematopoietic cells (Croker et al., 2004). LIF-/- mice, on the other hand 

have a normal lifespan and do not exhibit any major hematopoietic abnormalities. 

This suggests that SOCS3 plays a vital role in the negative regulation of the 

inflammatory response. 

Another way to overcome SOCS3 embryonic lethality is the generation of 

conditional knock-outs, using the Cre recombinase and loxP system. In this way, 

the modified target gene can be ablated in adulthood, thus avoiding the placental 

insufficiency as observed with SOCS3 knock-outs. Furthermore, this ablation of 

the gene can be targeted to any tissue at any defined time. This is a powerful tool 

for the examination of genes that appear to be crucial during embryonic 

development, but may play important roles in particular adult tissues (Sauer, 
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1998). Applying this system with irradiated mice reconstituted with SOCS3-/- fetal 

liver cells, the SOCS3 gene has been specifically deleted in the liver and in 

macrophages. The absence of SOCS3 results in prolonged STAT3 and STAT1 

activation following IL-6 treatment, but normal activation of STAT1 in response to 

IFNγ and normal activation of STAT3 in response to IL-10 (Croker et al., 2003; 

Lang et al., 2003). SOCS3 deficiency also upregulates several IFNγ-responsive 

genes following IL-6 treatment, which is not observed upon IL-6 stimulation of cells 

with functional SOCS3 alleles. This suggests that STAT1 provokes a dominant 

IFNγ-like gene expression profile owing to excessive STAT1 phosphorylation and 

activation. Furthermore, a mutation in gp130 (Tyr759Phe) in mice, which impedes 

SOCS3 and/or SHP2 recruitment, was shown to result in a phenotype displaying 

rheumatoid arthritis (RA)-like joint disease, a condition known to be associated 

with dysregulation of IL-6 signalling (Atsumi et al., 2002). Collectively, these 

studies show that SOCS3 is the main physiological regulator of IL-6 signalling and 

that SOCS3 can regulate the specificity of the cytokine response as well as the 

duration of the signal (Croker et al., 2003; Lang et al., 2003).  

Interestingly, in the absence of SOCS3 in mouse macrophages, IL-6 has been 

shown to induce an ‘IL-10-like’ anti-inflammatory response, as demonstrated by a 

reduction in LPS-induced production of TNFα and IL-12, by IL-6 in SOCS3 

deficient cells. (Yasukawa et al., 2003). This is interesting because there is 

currently no explanation as to why these two cytokines have such diverse effects. 

Both cytokines use identical JAK-STAT members and yet have very distinct gene 

expression patterns (Figure 1.12) (Murray, 2007). IL-10 has been shown to be 

anti-inflammatory in macrophages and dendritic cells, activating a different set of 

genes from IL-6, but both cytokines also activate a common pool of genes, 

including SOCS3 (Murray, 2007). Yasukawa et al. (2003) proposed that the 

difference in gene expression may be due to the intensity of the STAT3 signal. 

However, Murray (2006) has identified flaws in this concept, for example the 

strength of the signal does not account for the commonality of genes activated by 

the two cytokines. One obvious difference between the two cytokines is the 

involvement of SOCS3 as an inhibitory step in IL-6 signalling, but not in IL-10 

signalling. Studies have shown that if modified receptors are used, which are 

either naturally insensitive to SOCS3 (e.g. IL-22R) or engineered to be insensitive 
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(e.g. IL-6, leptin receptors), but activate STAT3, an anti-inflammatory response is 

triggered (El Kasmi et al., 2006). Thus, based on SOCS3 involvement, a 

hypothesis has been proposed describing the activation of a generic pool of 

STAT3 by the IL-10R, which is not subjected to any inhibition by SOCS3. The IL-

6R, on the other hand activates a different pool of STAT3, which is specifically 

inhibited by SOCS3, possibly via post-translational modification by kinases or 

phosphatases etc. These different pools of STAT3 may therefore go on to activate 

very different sets of genes. This is just one idea put forward by Murray (2007) and 

highlights the gaps in our understanding of the various modes of action of SOCS3 

on signalling pathways and hence the importance of further studies.   

With regards to leptin signaling, mice with a neural-specific deletion of SOCS3 

have been generated using the Cre-loxP system. Similar to the IL-6 data 

presented above, SOCS3 deletion results in prolonged activation of STAT3 in 

response to leptin. Moreover, SOCS3 deficient mice exhibited a greater body 

weight loss when compared to their wild-type littermates. These knock-out mice 

were also resistant to high fat diet-induced weight gain and hyperleptinaemia, and 

retained insulin sensitivity. This study showed that SOCS3 is a key regulator of 

leptin signalling and hence plays an important role in diet-induced leptin and 

insulin resistance (Mori et al., 2004). A number of studies support this link between 

SOCS3 and leptin resistance, whereby leptin-mediated induction of SOCS3 has 

been associated with the attenuation of OB-Rb signalling (Bjorbaek et al., 1998). 

Chronic stimulation of OB-Rb has been shown to result in the desensitisation of 

OB-Rb signalling, whereby the receptor becomes refractory to re-stimulation. 

Mutation of the STAT3 binding site on OB-Rb (Tyr1138Ser), which mediates 

STAT3-induced SOCS3 induction, alleviates this feedback inhibition. Moreover, 

RNA interference-mediated knock-down of SHP2 had no effect on the attenuation 

of OB-Rb signalling, suggesting a role for SOCS3 in the feedback inhibition of OB-

Rb signalling and not SHP2 (Dunn et al., 2005).  

 
1.5 Aim  
The anti-inflammatory effects of cAMP have been well documented, notably with 

regards to endothelial barrier function. However, the exact molecular mechanisms 

underlying these effects are still unclear. To investigate this further in the context 

of endothelial inflammation, the signalling pathways of IL-6 and leptin will be 
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examined in response to cAMP elevation in two endothelial cell types; human 

umbilical vein endothelial cells (HUVECs) and a novel human endothelial 

angiosarcoma-derived cell line (AS-M). Focus will be placed on SOCS3 as a 

potential mediator of the possible inhibitory effects, since previous experiments in 

the Palmer lab have demonstrated SOCS3 induction in response to cAMP 

elevation. Refer to Figure 1.13 for a diagram of the working hypothesis. In 

addition, this study also aims to further characterise AS-Ms in the context of both 

cytokine and cAMP signalling, since there are currently very limited studies on AS-

Ms in the public domain. This endothelial cell line represents a less costly cell 

system when compared to HUVECs and could prove to be a tractable endothelial 

model for future research in endothelial biology.  
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Figure 1.1 The structure of AC  
 
AC comprises 12 transmembrane (TM) domains, which can be divided into TM1 

and TM2 and 2 cytoplasmic domains labelled C1 (in blue) and C2 (in red). The C1 

and C2 domains can be further divided into C1a and C2a, which are highly 

conserved, forming the catalytic core and the less conserved C1b and C2b 

domains. 

(Taken from Cooper et al., 2003) 
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Figure 1.2 Schematic Representations of the Domain Structure of Epac1 and 
Epac2 
 
CDC25HD – CDC25 homology domain with GEF activity, RA - Ras association 

domain, REM – Ras exchanger motif, B-site – cAMP binding domain, DEP – 

disheveled Egl-10 pleckstrin domain, A-site – cAMP binding domain. 
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Figure 1.3 IL-6-type Receptor Complexes 
 
All members of the IL-6-type cytokines signal via gp130, some via homodimers of 

gp130 like IL-6/IL-Rα, the majority via heterodimers of gp130 and LIFR, like LIF 

and lastly via heterodimers of gp130 and LIFR or OSM-R, like OSM 
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Figure 1.4 Structure of IL-6  
 
IL-6 comprises 4 long α-helices, denoted A, B, C and D and receptor binding sites 

I, II and III shown by circles.  

(Taken from (Heinrich et al., 2003).  
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Figure 1.5a & b Schematic Representations of the JAK Homolgy (JH) and 
STAT Domains 
 
The JH domanins are numbered 1-7, from the carboxyl to the amino terminus. 

These constitute the kinase, pseudo-kinase, SH2 and FERM domains. The STAT 

domains include the N-terminal dimerisation domain, the coiled-coil domain, the 

DNA binding domain, the linker domain, the SH2 domain and the C-terminal 

conserved tyrosine residues and transactivation domain. 
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Figure 1.6 Evolutionary Conserved Raf-MEK-ERK Pathway  
 
Conventionally, the serine/threonine kinase Raf (MAPKK), of which there are 3 

isoforms; A-Raf, B-Raf and Raf-1, is activated by Ras GTPases, which are 

themselves activated by most cell-surface receptors. All 3 isoforms of Raf are 

capable of activating MEK (MAPKK) by phosphorylation of 2 serines in the 

activation loop. MEK is a dual-specificity kinase, which activats ERK (MAPK) by 

phosphorylating threonine and tyrosine residues in a TEY motif, present in the 

activation loop. Both MEK and ERK have two isoforms, which are mostly co-

regulated. 
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Table 1 ERK 1,2 Substrates 
 
More than 150 ERK1/2 substrates have been identified. These substrates can be 

classified into transcription factors, protein kinases and phosphatases, cytoskeletal 

proteins, signalling proteins, apoptotic proteins and proteinases, and other types of 

proteins. (Table taken from (Lu & Xu, 2006). 
Transcription 
factors 

Kinases and 
phosphatases 

Cytoskeletal 
proteins 

Signalling 
proteins 

Apoptotic 
proteins & 
proteinases 

Other proteins 

AML1 (RUNX1) DAPK Annexin XI EGFR Bad Amphiphysin 1 
Androgen receptor ERK1/2 Caldesmon ENaCβ/γ Bim-EL CPSII/CAD 
ATF2 FAK1 Calnexin Fe65 Calpain CR16 
BCL6 GRK2 CENP-E FRS2 Caspase 9 GRASP55 
BMAL1 Inhibitor-2 Connexin-43 Gab1 EDD GRASP65 
CBP Lck Cortactin Gab2 IEX1 HABP1 
C/EBPβ MAPKAP3 Crystallin GAIP MCL-1 Histone H 
CRY1/2 MAPKAP5 DOC1R Grb10 TIS2 HnRNP-K 
E47 MEK1/2 Dystrophin IRS1 TNFR CD120a KIP 
Elk1 MKP1/2 Lamin B2 LAT  MBP 
ER81 MKP7 MAP1 LIFR  PHAS-I 
ERF MLCK MAP2 MARCKS  CPLA2 
Estrogen receptor MNK1/2 MAP4 Naf1α  Rb 
c-Fos MSK1/2 MISS PDE4  SAP90/PSD95 
Fra1 PAK1 NF-H PLCβ  Spinophilin 
GATA1/2 PTP2C NF-M PLCγ  Topoisomerase 

II 
HIF1α Raf1 Paxillin Potassium 

channel Kv 4.2 
 Tpr 

HSF1 B-Raf Stathmin KSR1  TTP (Nup47) 
ICER RSK1-4 SW1/SNF Rab4  Tyrosine 

hydroxylase 
c-Jun S6K Synapsin 1 SH2-B  Vif 
Microphthalmia Syk Tau ShcA  Vpx 
c-Myc  Vinexin β Sos1   
N-Myc   Spin90   
Net (Sap2)   TSC2   
NFATc4      
NF-IL6      
NGFI-B/TR3/Nur77      
Pax6      
PPARγ      
P53      
Progesterone 
receptor 

     

RNA Pol. II      
PUNX2      
Sap1      
Smad1      
Smad2/3      
SP1      
SRC1      
SREBP1/2      
STAT1/3      
STAT5a      
TALI1/SCL      
TFII-I      
TFIIIB      
TGIF      
TIF1A      
UBF      
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Figure 1.7 IL-6-activated STAT and ERK1,2 Signalling Cascade 
 
IL-6 signals via gp130 homodimers. IL-6 cannot bind and activate gp130 directly, it 

first needs to bind an IL-6 receptor α-subunit (IL-6Rα). ECs do not express IL-6Rα, 

but soluble forms of the receptor, termed soluble IL-6Rα (sIL-6Rα) are shed from 

adjacent leukocytes at sites of inflammation. The sIL-6Rα/IL-6 trans-signalling 

complex binds and activates gp130, which causes conformational changes in the 

gp130 homodimer. JAK1, which is bound to gp130 via conserved box1 and box2 

regions, becomes phosphorylated as a result of these conformational changes. 

JAK1 phosphorylation and activation leads to the phosphorylation of specific Tyr 

residues, which provide docking sites for SH2 domain-containing proteins for 

downstream signalling. Two major pathways activated by gp130 are the STAT 

pathway and the ERK pathway. PTyr759 serves as a docking site for SHP2, which 

becomes phosphorylated via JAK1 and leads to the activation of the ERK 

pathway. PTyr767, 814, 905 and 915 are all docking sites for STAT3, whereas 

pTyr905 and 915 can also recruit STAT1. STAT3 appears to be the predominant 

STAT activated during IL-6 signalling. Following STAT phosphorylation via JAK1, 

homo-and/or heterodimerisation complexes are formed. 
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Figure 1.8 Leptin Receptors 
 
A diagram of the 6 leptin isoforms, OB-Ra - f, showing the cytokine homology 

domains (CHD2), the fibronectin type III domains (F-III), the box1, 2 motifs and the 

phospho-Tyr residues of OB-Rb. 
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Figure 1.9 Leptin-activated STAT and ERK1,2 Signalling Cascade 
 
Leptin signals via OB-R homodimers. Leptin can bind to one of six isoforms of OB-

R, however, only OB-Rb has full signalling capability, due to the presence of key 

phosphoTyr residues on its intracellular domain (Y985, Y1077 and Y1138). Leptin 

binding causes conformational changes in the OB-R homodimer, which allow 

JAK2 transphosphorylation. JAK2 is associated with the conserved box1 region on 

OB-R. JAK2 phosphorylation and activation leads to the phosphorylation of 

specific Tyr residues, which provide docking sites for SH2 domain-containing 

proteins for downstream signalling. Two major pathways activated by OB-Rb are 

the STAT pathway and the ERK pathway. PTyr985 serves as a docking site for 

SHP2, which becomes phosphorylated via JAK2 and leads to the activation of the 

ERK pathway. In addition, ERK activation has also been demonstrated in the 

absence of OB-Rb phosphorylation, yet requires JAK2 activation. With regards to 

STAT activation, pTyr1077 provides a docking site for STAT5, whereas pTyr1138 

recruits STAT1, STAT3 and STAT5. However, STAT3 appears to be the 

predominant STAT activated during leptin signalling. Following STAT 

phosphorylation via JAK2, homo-and/or heterodimerisation complexes are formed. 
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Table 2 PIAS Regulated Proteins 
 
PIAS proteins have been shown to regulate more than 60 proteins, with most of 

these constituting transcription factors. The proteins in the table are the main 

proteins shown to interact with PIAS proteins in immune regulation. 

(Taken from Shuai & Liu, 2005) 

 

Interacting Protein PIAS 

Inteferon Pathways 
 

STAT1 PIAS1, PIASγ, PIAS3, PIASx-α 
STAT3 PIAS3 
STAT4 PIASx 
STAT5 PIAS3 
GFI1 PIAS3 
ATBF1 PIAS3 
IRF1 PIAS3 
IRF3, -7 PIASγ 

NF ­ κB Pathways 
 

NF - κB p65 PIAS1, PIAS3 
TRIF PIASγ 
SMAD Pathways  
SMAD3 PIAS3, PIASγ 
SMAD4 PIAS1, PIASx-β 
Oncoproteins and Tumour 
Suppressor Proteins 

 

p53 PIAS1, PIASx-β 
p73 PIAS1, PIASx 
JUN PIAS1, PIASx 
MYB PIASγ 
MDM2 PIAS1, PIASx-β 
PLAG1 PIAS1, PIASγ 
LEF1 PIASγ 
Viral Proteins  
IE2 PIAS1 
RTA PIAS1 
E1 PIAS1, PIASx 
NP PIAS1, PIASx-β 
Others  
C/EBP-ε PIAS1, PIASx 
SATB2 PIAS1 
MITF PIAS3 
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Figure 1.10 Schematic Representation of the Model of SHP2 Phosphatase  
Activation  
 
In the inactive state, the SH2 domain of SHP2 appears to sterically hinder the 

access of phosphoTyr substrates to the protein Tyr phosphatase (PTP) domain 

and inhibit phosphatase activity. Activation of the phosphatase occurs in 2 ways; 

(1) the SH2 domains can bind to phosphoTyr motifs on activated receptors, which 

leads to unfolding of the protein and subsequent phosphatase activation or (2) the 

SH2 domains can bind to the phosphoTyr residues 542 and 580 on the C-terminal 

tail of SHP2 itself and cause conformational changes, which leads to activation.  
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Figure 1.11 The Three Main Mechanisms Utilised by SOCS Proteins to 
Downregulate Cytokine Signalling 
 
(1) Binding of SOCS proteins to specific phosphotyrosine residues on receptors 

and physically blocking occupation of docking sites of other SH2 domain-

containing signalling proteins, such as SHP2. 

(2) The kinase inhibitory region (KIR) of SOCS1 and SOCS3 binding to the kinase 

domain of JAK and inhibiting JAK activation. 

(3) The SOCS box of SOCS proteins recruiting the ubiquitin-ligase machinery and 

promoting the proteosomal degradation of signalling proteins bound to SOCS via 

their SH2 domains.   

The orange oval represents SH2 domain-containing signalling proteins.  

(Adapted from Howard & Flier, 2006) 
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Table 3 SOCS Knockout in Mice  
 
The major consequences of SOCS knockout in vivo, with tissue-specific knock-

outs described in the text (Section 1.4.5.3).  

 
 
Gene Knockout mice 

CIS Has no detectable abnormal 

phenotype (Marine et al. 1999). 

SOCS1 Neonatal lethality, due to 

dysregulation of IFNγ signalling. 

(Marine et al., 1999). Additionally, 

fatty degeneration in liver, 

hematopoietic infiltration of multiple 

organs and lymphoid deficiencies 

(Starr et al., 1998). 

SOCS2 Gigantism and dysregulation of GH 

signalling (Metcalf et al., 2000). 

SOCS3 Embryonic lethality due to placental 

defects (Marine et al., 1999, Roberts 

et al., 2001, Takahashi et al., 2003). 

SOCS6 Mild growth retardation (Krebs et al., 

2002). 

SOCS7 Enhanced insulin sensitivity and 

increased growth of pancreatic islets 

(Banks et al., 2005).  
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Figure 1.12 IL-6 and IL-10 Signalling 
 
IL-6 and IL-10 signal via identical JAK-STAT members, but activate different sets 

of genes; IL-10 activates a subset of anti-inflammatory genes, whereas IL-6 

activates a sub-set of IL-6 regulated genes. SOCS3 is representative of a 

‘common’ subset of genes activated by both cytokines. 

(Taken from Murray et al., 2007) 
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Figure 1.13 Diagram of the Working Hypothesis 
cAMP-elevating stimuli, such as β-adrenergic catecholamines, histamine, 

prostaglandins and adenosine bind to their respective G protein coupled receptors 

(GPCRs) to activate the adenylyl cyclase signalling pathway, resulting in increased 

intracellular cAMP levels. cAMP then activates Epac, a cAMP-activated guanine 

nucleotide exchange factor for the small GTPases Rap1 and Rap2. Active 

Rap1GTP goes on to trigger SOCS3 induction, possibly via the C/EBP family of 

transcription factors. SOCS3 accumulation subsequently leads to the inhibition of 

sIL-6Rα/IL-6-and leptin-stimulated ERK1,2 and STAT3 activation. 
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2.1 Materials 

 

Abcam plc., Cambridge, UK 
SOCS3 Ab        (cat. no. ab16030) 

Phospho-CREB (Ser133) Ab     (cat. no. ab3419) 

Sp1 Ab       (cat. no. ab13370) 

 
Autogen Bioclear UK Ltd., Calne, UK 
SOCS3 si-RNA (h)      (cat. no. sc-41000) 

Control siRNA-A      (cat. no. sc-37007) 

 
Biolog Life Science Institute, Bremen, Germany 
8-(4-Chlorophenylthio)-2’-O-methyl-cAMP   (cat. no. C 041) 

 
Cell Signaling Technology (New England BioLabs UK Ltd.) Herts, UK 
Phospho-p44/42 MAPK (Thr202/Tyr204) mouse mAb  (cat. no. 9106) 

Phospho-STAT3 (Tyr705) mouse mAb    (cat. no. 9138) 

p44/42 MAPK Ab       (cat. no. 9102) 

STAT3 Ab        (cat. no. 9132) 

 
Dharmacon RNA Technologies, Lafayette, CO 
Epac1-targeted siRNA     (cat. No. M-007676-00) 

 

GE Healthcare UK Ltd., Buckinghamshire, UK 
Rainbow molecular weight marker    (cat. no. RPN 756) 

 

Inverclyde Biologicals, Bellshill, UK 
Protan nitrocellulose transfer membrane   (cat. no. 10401396) 

 

Invitrogen Ltd., Paisley, UK 
Opti-MEM®, reduced serum medium   (cat. no. 31985-047) 

Oligofectamine reagent     (cat. no. 12252-011) 
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Lonza Wokingham Ltd., Berkshire, UK 
Dulbecco's Phosphate Buffered Saline (DPBS)   (cat. no. BE17-512F) 

EGM bulletkit       (cat. no. CC-3162) 

Pooled HUVEC cryopreserved in EGM    (cat. no. CC-2519) 

 

Merck Biosciences, Nottingham, UK 
MG-132        (cat. no. 474790) 

Forskolin        (cat. no. 344270) 

Rolipram       (cat. no. 557330) 

H89        (cat. no. 371963) 

U0126        (cat. no. 662005) 

Phorbol-12-myristate-13-acetate (PMA)   (cat. no. 524400) 

 

Perkin Elmer Life and Analytical Sciences, Monza, Italy 
Enhanced chemiluminescence (ECL) reagents   (cat. no. NEL 104) 

 

Pierce (Perbio Science UK Ltd.) Northumberland, UK 
Restore western blot stripping buffer    (cat. no. 21059) 

 

Promega, Southampton, UK 
Wizard plus miniprep DNA purification system  (cat. no. A7100) 

Passive lysis 5x buffer      (cat. no. E1941) 

 

Qiagen Ltd., Crawley, UK 
Endofree plasmid maxi kit      (cat. no. 12362) 

 

R & D Systems Europe Ltd., Abingdon, UK 
Recombinant human leptin (OB)     (cat. no. 398-LP) 

Recombinant human IL-6      (cat. no. 206-IL) 

Recombinant human sIL-6Rα     (cat. no. 227-SR) 
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Roche Diagnostics Ltd., Burgess Hill, UK 
Fugene® 6 transfection reagent    (cat. no. 11815091001) 

Agarose       (cat. no. 1388991) 

 

Santa Cruz Biotechnology Inc., Heidelberg, Germany 
SOCS3 (m-20) goat polyclonal Ab    (cat. no. sc-7009) 

SOCS3 siRNA (h)      (cat. no. sc-41000) 

Control siRNA-A      (cat. no. sc-37007) 

 

Sigma-RBI, Dorset, UK  

Anti-α-tubulin mAb       (cat. no. T9026) 

Sterile filtered cell culture water     (cat. no. W3500) 

Trypsin – EDTA       (cat. no. T4299) 

Tween – 20        (cat. no. P5927) 

30% (w/v) acrylamide/0.8% (w/v) bis-acrylamide  (cat. no. A3699) 

L-glutamine        (cat. no. G7513) 

Penicillin-streptomycin     (cat. no. P0781) 

Anti-mouse IgG (peroxidase-conjugated)  (cat. no. A4416) 

Anti-rabbit IgG (peroxidase-conjugated)   (cat. no. A6154) 

Soybean trypsin inhibitor     (cat. no. T9003) 

Benzamidine       (cat. no.12072) 

Bovine serum albumin     (cat. no. A7030) 

Bromophenol blue      (cat. no. B7021) 

Ampicillin       (cat. no. A9393) 

N, N, N’,N’-tetramethylethylenediamine (TEMED) (cat. no. T9281) 

Phenylmethylsulphonyl fluoride (PMSF)   (cat. no. P7626) 

Medium 199       (cat. no. M7528) 

Nonidet P-40       (cat. no. N6507) 

Tissue culture bovine serum albumin   (cat. no. A1595) 

 
Wild-type (SOCS3+/+) and SOCS3-/- murine embryonic fibroblasts (MEFs) 

(Kawaguchi et al., 2004) were generously provided by Prof. Akihiko Yoshimura 

(Kyushu University, Japan). 
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Monoclonal anti-Epac1 antibody 5D3 (Price et al., 2004) was generously supplied 

by Prof. Johannes Bos (University Medical Center, Utrecht, Netherlands). 
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2.2 Methods 
 
2.2.1 Cell Culture 

HUVECs and AS-Ms were maintained at 37°C in a humidified atmosphere 

containing 5% (v/v) CO2 in EGM-2 supplemented with 2% (v/v) foetal bovine 

serum (FBS), plus hydrocortisone, hFGF, VEGF, R3-IGF, ascorbic acid, hEGF, 

GA-1000 (Gentamicin, Amphotericin-B) and heparin, as recommended by the 

supplier (Lonza), which will hereafter be referred to as EGM. MEFs were cultured 

in Dulbecco’s Modified Eagle’s Medium supplemented with 10% (v/v) FBS, 2mM 

L-glutamine, 100U/ml penicillin and 100µg/ml streptomycin, which will hereafter be 

referred to as DMEM. Cells were grown until 70% confluence before being 

passaged and seeded into plates or dishes for experimentation or flasks for further 

propagation. Passaging the cells involved washing the cells once with tissue grade 

PBS and adding 2ml of endothelial trypsin (HUVECs and AS-Ms) and 2ml of 

trypsin (MEFs) to each flask. Cells were left for a few minutes at 37°C to allow 

detachment from the flask. Fresh DMEM was added to the MEF cell mixture and 

gently pipetted to resuspend the cells. The HUVEC/AS-M cell mixture was added 

to a 50ml tube containing EGM to neutralise the trypsin and spun down at 200 g 

for 5 minutes. The cell pellet was then resuspended in fresh medium. HUVECs 

and AS-Ms were counted using a haemocytometer and seeded at the following 

densities; 3-4x105 cells per well of a 6 well plate, 12x105 cells per 10cm2 dish.  

 
2.2.2 Transfection of cells using Oligofectamine 

Based on 1 well of a 6 well plate, 3μl Oligofectamine was added to 12μl Optimem 

and incubated for 10 minutes at room temperature. Oligonucleotides were 

resuspended to give the relevant stock concentrations (10μM SOCS3 siRNA, 

20μM Epac1 siRNA). The appropriate volumes of these oligonucleotides were 

then used for experimentation (based on prior optimisation experiments) and 

made up to a final volume of 185μl with Optimem. Following 10 minutes, the 

Oligofectamine mix was added to the oligonucleotides and incubated for a further 

20 minutes at room temperature. During this time, the cells were washed twice 

with Optimem and 1ml Optimem per well was added to the cells. 200μl of 

transfection mix per well was added dropwise to the cells, which were then placed 

back in the incubator for 5 hours. Following 5 hours, 1ml EGM was added to each 
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well and the cells left overnight at 37°C. This procedure was repeated the next day 

and the experimental conditions were applied on the third day. 

 
2.2.3 Transfection of cells using Fugene 

Based on 1 well of a 6 well plate, 0.5-1μg of endotoxin-free DNA was added to 

200μl serum-free medium (Optimem) and mixed. 10μl Fugene was added to the 

DNA suspension and mixed again. The transfection mix was then incubated for 15 

minutes at room temperature before being added dropwise over the cells of each 

well. The cells were incubated overnight at 37°C and the following day the medium 

was replaced with fresh EGM. 

 

2.2.4 Preparation of Cell Extracts for Immunoblotting 
Following treatment of cells with the relevant stimuli, cells were transferred to ice. 

The medium was removed and cells were washed twice with ice cold PBS. Cells 

were then scraped down into 50µl RIPA lysis buffer (50mM HEPES pH7.5, 150mM 

NaCl, 1% (w/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 

0.01M sodium phosphate, 5mM EDTA, 0.1mM PMSF, 1μg/ml soybean trypsin 

inhibitor, 1μg/ml benzamidine) and transferred to ice cold micro-centrifuge tubes. 

The tubes were incubated on ice for 20 minutes to allow the proteins to solubilise 

before centrifugation at 20,000 g for 5 minutes at 4°C. The supernatant was 

transferred to fresh micro-centrifuge tubes for determination of protein 

concentration and analysis by SDS-PAGE and immunoblotting. 

 

2.2.5 Bicinchoninic acid (BCA) Assay to Determine Protein Concentration 
Bovine serum albumin (BSA) standards, ranging from concentrations of 0-2 mg/ml 

were added in duplicate to a 96 well plate in volumes of 10μl per well. The same 

volume of each cell lysate sample of unknown concentration was added to the 

plate in duplicate. 200μl of BCA solution (1% (w/v) 4, 4 dicarboxy-2, 2 biquinoline 

disodium salt, 2% (w/v) sodium carbonate, 0.16% (w/v) sodium potassium tartrate, 

0.4% (w/v) sodium hydroxide, 0.95% (w/v) sodium bicarbonate pH 11.25, 0.08% 

(w/v) copper (II) sulphate) was added to each well and incubated at room 

temperature for 10 minutes. Following incubation, protein concentration was 

determined by measuring the absorbance of samples at 492nm (A492) using a 
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MRX-TCII plate reader (Dynex Technologies). The absorbance values of the 

standards were used to construct a best-fit straight-line plot, from which the values 

of the unknown protein samples could be determined. 

 
2.2.6 Bradford Assay to Determine Protein Concentration 
Bovine serum albumin (BSA) standards, ranging from concentrations of 0-2 mg/ml 

were added in duplicate to a 96 well plate in volumes of 10μl per well. The same 

volume of each cell lysate sample of unknown concentration was added to the 

plate in duplicate. 50μl of Bradford’s reagent, which had previously been diluted 

1:4 with distilled deionised water, was added to each well and the samples 

incubated at room temperature for 5 minutes. Following incubation, protein 

concentration was determined by measuring the absorbance of samples at 630nm 

(A630) using a MRX-TCII plate reader (Dynex Technologies). The absorbance 

values of the standards were used to construct a best-fit straight-line plot, from 

which the values of the unknown protein samples could be determined. 

 
2.2.7 SDS-PAGE and Immunoblotting  
Each sample was equalised for protein concentration and volume, and 2 x SDS-

PAGE sample buffer (50mM Tris pH 6.8 at room temperature, 10% (v/v) glycerol, 

12% (w/v) SDS, 10mM dithiothreitol, 0.0001% (w/v) bromophenol blue) was 

added. Samples were then subjected to fractionation by SDS-PAGE using a 10% 

or 12% acrylamide resolving gel (10%/12% (w/v) acrylamide, 0.3% (w/v) 

bisacrylamide, 0.4M Tris (pH8.8), 0.1% (w/v) SDS, 0.01% (w/v) ammonium 

persulphate and 0.001% (v/v) TEMED) and a 3% acrylamide stacking gel (3% 

(v/v) acrylamide, 0.1% (v/v) bisacrylamide, 0.1M Tris (pH6.8), 0.1% (w/v) SDS, 

0.001% (w/v) ammonium persulphate and 0.001% (v/v) TEMED). Electrophoresis 

of samples was performed in the presence of pre-stained protein makers 

(Rainbow Markers 14.3 – 220kDa) using Biorad Mini-Protean III gel 

electrophoresis systems and running buffer (24.7mM Tris, 0.19M glycine, 0.1% 

(w/v) SDS) at 150V. The electrophoresis of samples and markers was stopped 

when the bromophenol blue dye front reached the bottom of the gel. Fractionated 

proteins were then electrophoretically transferred to a nitrocellulose membrane at 

400mA for 45 minutes in transfer buffer (24.7mM Tris, 0.19M glycine, and 20% 
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(v/v) methanol). Following transfer the membranes were washed in Tris Buffered 

Saline-Tween (TBST) (20mM Tris, pH7.5, 150mM NaCl, 0.1% (v/v) Tween 20) 

once and transferred to blocking solution (5% (w/v) skimmed milk in TBST) for a 1 

hour incubation with shaking at room temperature. Membranes were then 

incubated with primary antibody diluted in 5% BSA (w/v) in TBST overnight at 4°C 

on a rotating platform. The next day, the membranes were washed three times (10 

minutes/wash) in TBST and incubated with the appropriate HRP-conjugated 

secondary antibody diluted in blocking solution (5% (w/v) skimmed milk in TBST) 

for 1 hour on a rotating platform at room temperature. The membranes were 

washed a further three times in TBST and finally incubated with ECL reagents as 

per the manufacturer’s instructions. Immunoreactive proteins were visualised 

using X-ray film and the optical density of the bands was measured using the 

TotalLab 2003.02 software. Briefly, TotalLab analysis involved a step-wise manual 

approach to allow lane creation (using a semi-automated approach to define the 

number of lanes), background substraction (using the Rolling Ball method) and 

band detection (using 3 parameters; minimum slope, noise reduction and 

percentage maximum peak). Normalisation was performed as appropriate for each 

set of data and the values expressed as a proportion of the selected band.   
 
2.2.8 Preparation of Antibiotic Agar Plates  
LB agar (1% (w/v) bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium 

chloride, 1.5% (w/v) agar), which had been autoclaved and left to cool before 

addition of 50μg/ml ampicillin was poured into 10cm Petri plates. These plates 

were left overnight at room temperature to solidify. The next day, plates were 

transferred to 4°C for storage.   

 
2.2.9 Plasmid DNA Preparation 
A stab from a glycerol stock was inoculated with 10ml of LB broth (1% (w/v) 

bactotryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride), supplemented 

with 50μg/ml ampicillin. This was then placed in a shaking incubator overnight at 

37°C. The next day, plasmid DNA was extracted from the culture by using the 

Promega™ Wizard Plus SV mimiprep purification kit as per the manufacturer’s 

instructions. Alternatively, the culture was transferred to 250ml of LB broth, 
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supplemented with 50μg/ml ampicillin and placed back in the shaking incubator 

overnight at 37°C. The next day, plasmid DNA was extracted from the culture 

using the Qiagen endofree plasmid maxi kit as per the manufacturer’s instructions.  

 

2.2.10 Transformation of Competent XL1 Blue E.coli cells 
One vial of XL1 Blue cells was defrosted on ice, before transferring 80µl to a pre-

chilled micro-centrifuge tube. Approximately 30-40ng of plasmid DNA was added 

to the tube and left on ice for 20 minutes. The tube was then incubated at 42°C for 

2 minutes and placed back on ice. 1ml of LB broth was added to the tube and 

incubated for a further 30 minutes at 37°C. Following incubation, 100µl of the 

transformation mix was plated out onto agar plates containing 50μg/ml ampicillin 

and incubated overnight at 37°C. 

 

2.2.11 Reporter Gene Assay 
HUVECs and AS-Ms were seeded into 6 well plates at densities of 3 x 105 

cells/well and 3.5 x 105 cells/well respectively. Cells were left for 24 hours prior to 

replacing the medium with fresh EGM. 1 hour after the medium change, cells were 

transfected with a trans-activator plasmid (Gal4-Elk-1) at 1µg/well, a Firefly 

luciferase reporter plasmid (Gal4-luc) at 1µg/well and a normalisation Renilla 

luciferase plasmid (pRL-CMV) at 0.5µg/well using Fugene reagent as described in 

section 2.2.3. The cells were then incubated overnight at 37°C, prior to another 

medium change with fresh EGM. The cells were left for a further 24 hours before 

treatment with or without leptin (125ng/ml), sIL-6Rα/IL-6 (25ng/ml/5ng/ml) or PMA 

(1µM) for 6 hours. Following treatment, cells were lysed in 50µl passive lysis buffer 

and stored at -80°C. Firefly and Renilla luciferase buffers were prepared fresh for 

each experiment; Firefly luciferase buffer pH8 (25mM Gly-gly, 15mM KXPO4 pH8, 

4mM EGTA, 2mM ATP, 1mM DTT, 15mM MgSO4, 0.1mM CoA enzyme and 

0.075mM luciferin), Renilla luciferase buffer pH5 (1100mM NaCl, 2.2mM 

Na2EDTA, 220mM KXPO4 pH5, 0.44mg/ml BSA, 1.3mM NaN3 and 0.0143mM 

coelentrazine). 30µl of each cell lysate was transferred to a white-walled 96 well 

plate. The plate was then placed into the Luminoskan Acsent luminometer and 

100µl of each of the luciferase buffers was automatically added to each well and 

luminescence was measured. 
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2.2.12 Nuclear Extraction 
12x105 HUVECs or AS-Ms were seeded into 10cm2 dishes. 24 hrs after seeding, 

cells were washed twice in PBS and serum starved for 4 hrs. Following 4 hrs, cells 

were treated with or without leptin (125ng/ml) or sIL-6Rα/IL-6 (25ng/ml/5ng/ml) for 

30 minutes or PMA (1µM) for 5 minutes. Cells were transferred onto ice and 

washed twice with cold PBS before adding 1ml PBS to each dish. The cells were 

scraped down and transferred to ice cold micro-centrifuge tubes for centrifugation 

at 5000 g for 5 minutes at 4°C. The cell pellet was resuspended in 400μl of ice 

cold buffer A (10mM HEPES (pH 7.9), 10mM KCl, 0.1mM EDTA, 0.1mM EGTA, 

1mM DTT), supplemented with protease inhibitors on the day (0.1mM PMSF, 

10μg/μl soybean trypsin inhibitor and 10μg/μl benzamidine) and left on ice for 10 

minutes to allow the cells to “swell”. 25μl of 10% (v/v) NP40 was then added to 

each sample to lyse the cells. Each sample was centrifuged again at 13,000 g at 

4°C for a few seconds to pellet the nuclear fraction. The supernatant containing 

the cytosolic fraction was removed and transferred to fresh micro-centrifuge tubes 

for storage at -80°C. 

The remaining pellet was washed three times in buffer A with brief centrifugation 

(20,000 g for 10 seconds) to remove any residual cytosolic supernatant and then 

resuspended in buffer B (20mM HEPES (pH 7.9), 450mM NaCl, 1mM EDTA, 1mM 

EGTA, 1mM DTT) supplemented with protease inhibitors on the day (0.1mM 

PMSF, 10μg/μl soybean trypsin inhibitor and 10μg/μl benzamidine). Each sample 

was incubated on ice for 15 minutes with brief vortexing every 5 minutes and then 

centrifuged at 13,000 g for 5 minutes at 4°C. The supernatant containing the 

nuclear fraction was transferred to fresh micro-centrifuge tubes and stored at -

80°C. Protein concentrations were measured using Bradford’s assay and samples 

analysed by SDS-PAGE and immunoblotting.  

 
2.2.13 Statistical Analysis 
All statistical analyses were performed using Student’s two-tailed unpaired t-test 

as described in Excel 2007 software. 
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Chapter 3 

 

Establishing the cell systems, including the tools and 

conditions to use for the further examination of the working 

hypothesis 
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3. 1 Introduction 
The endothelium is no longer considered an inert layer of cells lining the 

vasculature, but crucially an active layer of cells with many regulatory roles. A 

healthy endothelium presents a non-adhesive and anti-thrombotic surface, which 

maintains vascular tone. Impaired vasodilation is considered the hallmark of 

endothelial dysfunction and reflects impairment of other endothelium functions, 

such as the endothelium’s anti-inflammatory properties (Davignon & Ganz, 2004; 

Landmesser et al., 2004). When damaged, the endothelium assumes a highly 

inflammatory phenotype that leads to localised inflammation and the development 

of inflammatory disease states, including sepsis (Aird, 2003), diabetic retinopathy 

(Hsueh & Anderson, 1992) and atherosclerosis (Ludmer et al., 1986).  

IL-6 and leptin both signal via the same class of receptors, namely the class I 

cytokine family of receptors and both have been shown to be potent pro-

inflammatory cytokines in various cells, such as HUVECs, bovine aortic 

endothelial cells (BAEC) and mouse macrophages (Loffreda et al., 1998; Romano 

et al., 1997; Yamagishi et al., 2001). They can act as acute-phase reactants, 

produced at high levels during inflammation, sepsis and fever (La Cava & 

Matarese, 2004). Importantly, both cytokines have been shown to modulate EC 

function, for example, by upregulating adhesion molecules such as VCAM-1 and 

ICAM-1, increasing MCP-1 and endothelin-1 expression, and inducing oxidative 

stress (Modur et al., 1997; Quehenberger et al., 2002; Romano et al., 1997; 

Yamagishi et al., 2001). Additionally, both have been implicated in the 

development of inflammatory diseases, such as RA and atherosclerosis (Bodary et 

al., 2005; Nishimoto & Kishimoto, 2004).  

The prototypical second messenger cAMP may be considered a crucial 

immunomodulator. Of relevance to the present study is the role that cAMP plays in 

the modulation of important endothelial functions. Many studies have shown that 

cAMP can limit vascular permeability by enhancing barrier function and reducing 

pro-inflammatory effects of cytokines. For example, TNFα-, PMA- or LPS-

stimulated expression of E-selectin has been shown to be inhibited by cAMP 

elevation in HUVECs and human lung microvascular endothelial cells (HLMECs) 

(Blease et al., 1998; Morandini et al., 1996; Pober et al., 1993). Additionally, 

inhibition of neutrophil adherence to TNFα-stimulated HLMECs in response to 
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cAMP elevation has been observed (Blease et al., 1998). Further studies have 

shown that cAMP elevation decreases vascular permeability in HUVECs, and 

increases cortical actin. Thrombin-enhanced permeability has also been observed 

to be reduced by cAMP treatment in HUVECs (Cullere et al., 2005). Another study 

demonstrated decreased vascular permeability and enhanced vascular endothelial 

(VE) cadherin-mediated adhesion in HUVECs following cAMP elevation (Fukuhara 

et al., 2005). It is important to note that the latter two studies proposed that the 

signalling pathway responsible for the observed effects was independent of PKA, 

namely the cAMP/Epac/Rap1 pathway, which is discussed in more detail in 

Chapter 4. Thus, a number of studies support the notion that cAMP reduces 

vascular permeability, and hence maintains barrier function. Although the 

protective effects of cAMP have been well documented, the molecular 

mechanisms involved remain incompletely defined.  

The SOCS family of proteins represent possible mediators of the anti-inflammatory 

effects of cAMP. SOCS3 is one of the better studied members of the family and 

has been shown to be a potent inhibitor of the IL-6 and leptin signalling pathways 

(Bjorbaek et al., 1998; Croker et al., 2003; Lang et al., 2003; Mori et al., 2004). 

Importantly, previous work in this laboratory has shown that elevation of cAMP 

induces a time-dependent accumulation of SOCS3 protein in HUVECs (Sands et 

al., 2006). Thus, the further investigation of this SOCS protein in the context of IL-

6 and leptin signalling in endothelial cells would be of interest in terms of possibly 

elucidating the molecular mechanisms underlying the protective effects of cAMP. 

For this research, two endothelial cell types were utilised; human umbilical vein 

endothelial cells (HUVECs) and an angiosarcoma-derived cell line (AS-M). 

HUVECs have previously been used in the Palmer lab to generate publications in 

the same area of work as the current study (Sands & Palmer, 2005; Sands et al., 

2006). HUVECs have also been widely used in the literature in the context of this 

research area. Thus, for consistency and as an excellent point of reference from 

previous and ongoing research, HUVECs provide a useful and tractable 

endothelial cell model to study. The second cell type AS-M is a novel endothelial 

cell line, which has been established from a cutaneous angisarcoma on the scalp, 

a rare malignant neoplasm originating in the endothelium (Krump-Konvalinkova et 

al., 2003). AS-Ms display a number of endothelial characteristics, for example, the 

expression of proteins known to be present predominantly in endothelial cells such 
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as vWF and CD31 and the induction of adhesion molecules ICAM-1, VCAM-1 and 

E-selectin when challenged with bacterial LPS. Furthermore, they demonstrate 

active uptake of acetylated LDL (acLDL), which is regarded as a typical endothelial 

reaction (Krump-Konvalinkova et al., 2003; Voyta et al., 1984). These 

characteristics are all comparable to those of primary isolated HUVECs. Since the 

establishment of this cell line, the cells have undergone at least 100 population 

doublings. This is an obvious advantage over primary endothelial cells, since all 

primary cells have a limited lifespan. Extended cultivation of endothelial cultures 

typically results in phenotypical cell changes. During the course of the present 

study, HUVECs were passaged to a maximum of 4 passages. AS-Ms in 

comparison underwent many more passages, representing a more tractable 

endothelial cell type which may be used for the generation of stable knock-

ins/outs. For example, one study has used AS-Ms to knock-down the G-protein-

coupled sphingosine 1-phosphate receptor (S1P1) by RNA interference. Long 

term silencing has enabled this group to demonstrate for the first time the 

involvement of S1P in key functions of endothelial cells (Krump-Konvalinkova et 

al., 2005).  

Using these two cell types, the objective of this results chapter was to initially 

establish the cell systems, which will form the basis for further examination of the 

working hypothesis (Section 1.6 of the Introduction). In addition, research carried 

out on the immortal cell line, AS-M will characterise this cell line in the context of 

both cytokine (IL-6 and leptin) and cAMP signalling, since there are currently very 

limited studies on AS-Ms in the public domain. This would be beneficial for two 

reasons. Firstly, AS-Ms represent a more tractable cell system when compared to 

HUVECs because of the potential for stable knock in/outs. Secondly, AS-Ms are 

less costly than HUVECs. Results from this chapter will ultimately characterise this 

cell line, and establish the tools and conditions to use in both cell types for further 

experimentation. 
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3.2 Results 
IL-6 and leptin signal via gp130 and OB-R homodimers respectively. IL-6 first 

binds to a soluble form of the receptor, sIL-6α to generate a trans-signalling 

complex that is capable of efficiently activating gp130, whereas leptin can bind 

directly to one of six isoforms of OB-R. However, only OB-Rb has full signalling 

capability, due to the presence of key phosphoTyr residues on its intracellular 

domain (Fruhbeck, 2006; Heinrich et al., 1998). IL-6 and leptin have both been 

shown to activate the ERK1,2 and STAT3 pathways (Fruhbeck, 2006; Heinrich et 

al., 1998). To compare pathway activation by both cytokines in HUVECs and AS-

Ms in the present study and to identify a suitable timepoint to use in subsequent 

experiments, HUVECs and AS-Ms were treated with IL-6/sIL-6α or leptin over a 

timecourse from 0 to 60 minutes, and phosphorylation of ERK1,2 and STAT3 was 

assessed by immunoblotting.  

In HUVECs, ERK1,2 phophorylation levels (Thr202 and Tyr204 of Erk1, Thr185 

and Tyr187 of Erk2) in response to IL-6/sIL-6α peaked after 15 minutes of 

stimulation (12±3 fold increase over vehicle, p<0.05 n=3 versus vehicle-treated 

control) and declined to 40±7% (n=3) of peak levels at 60 minutes. The protein 

kinase (PKC) activator phorbol 12-myristate 13-acetate (PMA) was included as a 

positive control for ERK1,2 activation in this experiment and subsequent 

experiments, since PMA has been shown by others to be an efficacious activator 

of ERK1,2 in these cells (Sexl et al., 1997) (Figure 3.1). STAT3 phosphorylation at 

Tyr705 in response to IL-6/sIL-6α treatment displayed a similar temporal pattern of 

phosphorylation as ERK1,2 in these cells, peaking at 15 minutes (54±17 fold 

increase over vehicle, p<0.05 n=3 versus vehicle-treated control) and declining to 

41±11% (n=3) of peak levels at 60 minutes (Figure 3.2). In contrast to IL-6 

treatment in these cells, leptin treatment could not produce a consistent pattern of 

ERK1,2 phosphorylation, despite using cells of different passage numbers, and 

cells which had been serum-starved for greater lengths of time (data not shown). 

Levels of phosphorylated STAT3 however, were analysed in response to leptin 

treatment in HUVECs and showed a time-dependent increase in STAT3 

phosphorylation, peaking at 60 minutes (16±2 fold increase over basal, p<0.01 

n=3 versus vehicle-treated control) (Figure 3.3), which is in contrast to the 

transient phosphorylation of ERK1,2 and STAT3 in response to IL-6/sIL-6α. 
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In AS-Ms, ERK1,2 phosphorylation levels following 15 minutes of IL-6/sIL-6α 

treatment were observed to be significantly increased over vehicle-treated control 

(31±11 fold, p<0.05 n=3). STAT3 phosphorylation levels following IL-6/sIL-6α 

stimulation peaked at 30 minutes (49±11 fold increase over basal, p<0.05 n=3 

versus vehicle-treated control) and declined to 70±2% (n=3) of peak levels at 60 

minutes (Figure 3.5). ERK1,2 phosphorylation in response to leptin in these cells 

was maximal at 60 minutes (6±0.3 fold increase over vehicle, p<0.001 n=3 versus 

vehicle-treated control) (Figure 3.6), whereas STAT3 phosphorylation levels in 

response to leptin peaked at 30 minutes (24±5 fold increase over vehicle, p<0.01 

n=3 versus vehicle-treated control) and declined to 81±22% of peak levels by 60 

minutes (Figure 3.7). Thus, these results demonstrate that IL-6/sIL-6α is capable 

of activating both the ERK1,2 and STAT3 pathways in HUVECs and AS-Ms, 

whereas leptin activates ERK1,2 in AS-Ms and STAT3 in both cell types.  

SOCS proteins function as classical negative feedback inhibitors of cytokine 

signalling, since most SOCS proteins are themselves induced by cytokines. 

Following the discovery of these proteins, their induction was almost exclusively 

attributed to the JAK/STAT pathway (Starr et al., 1998). This is due to the 

presence of putative STAT-binding elements in the promoter region of the SOCS3 

gene (He et al., 2003). SOCS3 is thus a well characterized STAT3 target gene and 

this was exploited in the present study for the initial examination of SOCS3 

expression in the cell system following IL-6/sIL-6α or leptin treatment (Bjorbaek et 

al., 1998; Dunn et al., 2005; Starr et al., 1997). Results from this would effectively 

test the antibodies and conditions to use for detection of SOCS3, and would 

contribute towards the validation of the cell system. Additionally, detection of 

SOCS3 in response to IL-6/sIL-6α or leptin treatment may also contribute towards 

the understanding of the observed transient signalling detailed earlier in this 

Results section. HUVECs or AS-Ms were treated with IL-6/sIL-6α or leptin over 0-

90 minutes. In HUVECs, SOCS3 protein began to accumulate at 60 minutes and 

peaked at 90 minutes in response to IL-6/sIL-6α (21±8 fold increase over vehicle, 

n=3) (Figure 3.8) and leptin (9±4 fold increase over vehicle, n=3) (Figure 3.9). The 

same pattern of SOCS3 expression was observed in AS-Ms, whereby SOCS3 

started to accumulate at 60 minutes and peaked at 90 minutes in response to IL-

6/sIL-6α (64±35 fold over vehicle, n=3) (Figure 3.10) and leptin (34±5 fold increase 

over vehicle, p<0.01 n=3 versus vehicle-treated control) (Figure 3.11). Statistical 
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analysis revealed that SOCS3 expression was not significantly increased over 

vehicle-treated control (p>0.05) (except for SOCS3 induction in response to leptin 

in AS-Ms). This is potentially due to the variability in the fold stimulation.   

Further studies on the regulation of SOCS proteins revealed that these proteins 

are not only induced by cytokines, but also by toll-like receptor (TLR) agonists 

(e.g. LPS, CpG-DNA), GH, prolactin, statins and importantly, cAMP (Dalpke et al., 

2001; Gasperini et al., 2002; Lang et al., 2003; Yoshimura et al., 2007). To test 

whether or not SOCS3 could be induced by cAMP elevation in the present study, 

and thus initially test the hypothesis of SOCS3 involvement in the anti-

inflammatory effects of cAMP, SOCS3 protein expression was examined in 

HUVECs and AS-Ms in response to the cAMP-elevating agents, forskolin and 

rolipram. The diterpene forskolin (from the Indian plant Coleus forskolhii) potently 

activates all isoforms of ACs, except for AC9 (Yan et al., 1998). Rolipram is a type 

4 phosphodiesterase inhibitor, which inhibits the degradation of cAMP in 

endothelial cells (Castro et al., 2005). SOCS3 accumulation in response to cAMP 

elevation in HUVECs has already been observed in the Palmer lab (Sands et al., 

2006). To re-affirm this finding in HUVECs and to examine SOCS3 induction in 

AS-Ms, since this has not previously been observed, a combination of forskolin 

(Fsk) and rolipram (Roli) was used to elevate cAMP levels. Treatment of HUVECs 

with Fsk and Roli over 0-5 hours produced a time-dependent accumulation of 

SOCS3 protein (Figure 3.12a [n=1]). The same pattern of accumulation was 

observed in AS-Ms, with greatest levels of SOCS3 protein at 5 hours (8±2 fold 

increase over vehicle, p<0.05 n=3 versus vehicle-treated control) (Figure 3.12b).  

cAMP has been shown to have several effectors, including PKA (Walsh et al., 

1968), Epac (de Rooij et al., 1998), cAMP-regulated ion channels (Fesenko et al., 

1985) and CNrasGEF (Pham et al., 2000). The best characterised of these are 

PKA and Epac. Although PKA has long been thought of as the sole intracellular 

effector of cAMP, the discovery of Epac in 1998 led to the emergence of a key 

player in PKA-independent effects of cAMP (Gonzalez-Robayna et al., 2000; 

Kashima et al., 2001; Laroche-Joubert et al., 2002; Rangarajan et al., 2003; 

Schmidt et al., 2001). Epac is of particular interest in the present study as it has 

been heavily implicated in the modulation of EC function (Fukuhara et al., 2005; 

Kooistra et al., 2005). To examine a role for Epac in the induction of SOCS3, an 

Epac-selective cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-
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3',5'-cyclic monophosphate (8CPT-2Me-cAMP [8-pCPT]) was used (Enserink et 

al., 2002). This analogue was used at concentrations ranging from 0-300 µM to 

identify a suitable concentration to use in subsequent experiments. 5 hours was 

chosen as a suitable timepoint to treat both cell types with 8-pCPT, since this was 

the timepoint that exhibited greatest accumulation of SOCS3 following forskolin 

and rolipram treatment. In HUVECs, SOCS3 levels peaked at 200µM (7±4 fold 

increase over vehicle, n=3 versus vehicle-treated control) (Figure 3.13). However, 

this was not found to be statistically significant when compared to vehicle-treated 

control (p>0.05). This is potentially due to the variability in the fold stimulation. In 

AS-Ms, the greatest accumulation of SOCS3 was seen at 300µM (3±1 fold 

increase over vehicle, p<0.01 n=3 versus vehicle-treated control) (Figure 3.14).  

Although 8-pCPT treatment was observed to induce SOCS3 expression, the 

results were not conclusive and they did not discount the involvement of other 

cAMP-dependent effectors. To further examine a role for Epac in cAMP-mediated 

effects, the selective PKA inhibitor H89 was used. H89 inhibits PKA via binding to 

the ATP binding sites of PKA and inhibiting the phosphorylation process (Lochner 

& Moolman, 2006). The use of this inhibitor could potentially discount the 

involvement of PKA (the other major cAMP sensor) in cAMP-mediated effects. 

Thus, to initially determine the effectiveness of this inhibitor in both cell types with 

the aim of using this inhibitor in further experiments to test the working hypothesis, 

cells were treated with forskolin over 0-30 minutes and the PKA-mediated 

phosphorylation of cAMP response element binding protein (CREB) was assessed 

in the presence or absence of H89. CREB is a well characterised PKA substrate 

and is directly phosphorylated by PKA at serine residue 133 (Mayr & Montminy, 

2001). The CREB co-activators CREB-binding protein (CBP) and p300 both bind 

to CREB to form a CREB-CBP/p300 complex, which can then go on to bind to 

cAMP response elements in target genes (Mayr & Montminy, 2001). In HUVECs, 

phosphorylation of CREB in response to forskolin stimulation peaked at 10 

minutes (18±9 fold increase over vehicle, p<0.001 n=3 versus vehicle-treated 

control) and was substantially inhibited by pre-treatment with H89 (87±6% 

inhibition, p<0.001 n=3 versus 10 minute forskolin-treated cells) (Figure 3.15). 

Similarly, levels of CREB phosphorylation in AS-Ms peaked at 10 minutes (22±0.7 

fold increase over vehicle, p<0.001 n=3 versus vehicle-treated control) and were 

abolished by pre-treatment with H89 (84±4% inhibition, p<0.001 n=3 versus 10 
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minute forskolin-treated cells) (Figure 3.16). No significant difference was found 

between vehicle-treated cells and cells treated with forskolin together with H89 

pre-treatment in both cell types. These observations suggest that H89 was 

effective at inhibiting PKA activity at the concentration used (5µM). In addition, 

these results also show that forskolin is an efficacious activator of PKA-mediated 

CREB phosphorylation, a principal downstream target of cAMP, and thus a potent 

elevator of cAMP at the concentration used (10µM). 

To summarise the major findings of this chapter, IL-6/sIL-6α was shown to activate 

both ERK1,2 and STAT3 pathways in HUVECs and AS-Ms, whereas leptin 

activated ERK1,2 in AS-Ms and STAT3 in both cell types. A trend of SOCS3 

accumulation was observed in both cell types in response to IL-6/sIL-6α and leptin. 

Furthermore, a time-dependent accumulation of SOCS3 in both cell types was 

also observed in response to Fsk and Roli. In addition, the Epac-selective cAMP 

analogue 8-pCPT was shown to induce SOCS3 expression in both cell types. 

However, the 8-pCPT results in HUVECs were not conclusive and this could 

potentially be due to the variability in the fold stimulation. Finally, the expression of 

the well characterised PKA substrate CREB was demonstrated to be inhibited by 

pre-treatment with the selective PKA inhibitor H89. 
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3.3 Discussion 
Two major intracellular pathways activated by gp130 and OB-Rb are the STAT 

and ERK1/2 pathways (Bromberg, 2001; Fruhbeck, 2006; Heinrich et al., 2003; 

Vaisse et al., 1996; Yang & Barouch, 2007). All IL-6-type cytokines are capable of 

activating STAT1 and STAT3 via their common receptor subunit gp130, which is 

ubiquitously expressed. However, STAT3 appears to be the preferred STAT 

protein activated by IL-6. Studies have shown that of the four distal tyrosine 

modules of gp130 involved in STAT activation, all four stimulate STAT3 activation, 

whereas STAT1 is only activated by the last two distal tyrosine modules(Gerhartz 

et al., 1996; Stahl et al., 1995). Furthermore, whereas STAT3 binds to pYXXQ 

motifs, STAT1 is recruited to a more restricted sequence (pYXPQ) in gp130 

(Gerhartz et al., 1996; Heinrich et al., 1998). Gene deletion studies have shown 

that STAT3 deletion in mouse livers abolishes a major IL-6-mediated cellular 

response. namely acute phase gene induction (Alonzi et al., 2001). Furthermore, 

IL-6-deficient mice demonstrated impaired acute phase gene induction, which 

correlated with defective STAT3 activation (Alonzi et al., 1998). Similarly, in vivo 

studies have demonstrated that leptin signalling via OB-Rb, which is expressed 

almost universally including expression on HUVECs (Bouloumie et al., 1998; 

Sierra-Honigmann et al., 1998), occurs principally via STAT3 (Bates & Myers, 

2004).  

Using ERK1,2 and STAT3 phosphorylation as readouts for the activation of both of 

these signalling pathways, the present results show that IL-6/sIL-6α is capable of 

similarly activating the ERK1,2 and STAT3 pathways in HUVECs and AS-Ms, 

whereas leptin activates ERK1,2 in AS-Ms and STAT3 in both cell types. Various 

lines of evidence have demonstrated ERK1,2 and STAT3 activation in response to 

IL-6/sIL-6α and leptin in endothelial cells (Bouloumie et al., 1998; Heinrich et al., 

1998; Romano et al., 1997). However, this is the only study that demonstrates the 

activation of ERK1,2 and STAT3 in response to IL-6/sIL-6α and leptin in the AS-M 

cell line. In HUVECs, both ERK1,2 and STAT3 phosphorylation is maximal by 15 

minutes in response to IL-6/sIL-6α. This is in agreement with other studies, such 

as Sobota and co-workers (2008), who demonstrated maximal STAT3 activation at 

15 minutes in human dermal fibroblasts following IL-6 treatment (Sobota et al., 

2008). Interestingly, another group (Wormald et al., 2006) describe a bi-phasic 

activation of STAT3 in response to IL-6 injection in mouse macrophages, an event 
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that could potentially be taking place in the present study, since STAT3 

phosphorylation peaks at between 15 and 30 minutes following treatment with IL-

6/sIL-6α or leptin in AS-Ms and IL-6/sIL-6α in HUVECs, and declines thereafter. 

Indeed, longer timepoints are required to confirm the existence of this bi-phasic 

pattern of activation in the present study. The present pattern of rapid activation 

and subsequent decline of STAT3 however has also been observed for ERK1,2 

activation following IL-6/sIL-6α treatment in both cell types. In contrast, ERK1,2 

activation in AS-Ms following leptin treatment was more sustained, increasing over 

time. Bouloumie and co-workers (1998) also showed a time-dependent increase in 

ERK1,2 activation in response to leptin, which they observed in HUVECs 

(Bouloumie et al., 1998). In the present study, a consistent pattern of ERK1,2 

activation in HUVECs could not be achieved. This could potentially be due to low 

levels of OB-Rb on the cell surface of HUVECs. Indeed, a number of studies 

examining leptin-mediated effects routinely use cells which have been transfected 

with either OB-Rb or a chimeric receptor comprising the erythropoietin (Epo) 

extracellular domain and the OB-Rb intracellular domain (ELR) (Dunn et al., 2005; 

Myers, 2004). This chimeric receptor is principally used to avoid potential artifacts 

which may be introduced as a result of endogenous short forms of the leptin 

receptor, since EpoR is expressed on very few cells or cell lines (Myers, 2004). 

Additionally, ELR has been shown by some studies to be expressed more robustly 

than OB-Rb (Dunn et al., 2005). The present study uses leptin at a concentration 

of 125ng/ml. Although this concentration is greater than the physiological 

concentration of leptin, which ranges between 5 and 15ng/ml in lean subjects 

(Sinha et al., 1996), and increases in response to overfeeding, insulin, 

glucocorticoids, endotoxins and cytokines (Yang & Barouch, 2007), the present 

study does not utilise transfected cells. This is in contrast to some studies which 

use leptin at a higher concentration than physiological concentrations in 

combination with transfected cells (Dunn et al., 2005).  

Results from the above experiments support the general consensus that cytokine 

signalling is typically a transient event, suggesting the involvement of negative 

regulatory mechanisms. In a classical negative feedback manner, SOCS induction 

is one such mechanism. A plethora of studies have demonstrated cytokine 

induction of SOCS3. Some of these cytokines include IL-2 (Cohney et al., 1999), 

leukemia inhibitory factor (Bousquet et al., 1999), IL-11 (Auernhammer & Melmed, 
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1999), IL-6 (Starr et al., 1997) and leptin (Bjorbaek et al., 1998). Additionally, there 

is evidence to support an early negative feedback of cytokine signalling by SOCS3 

induction. For example, SOCS3 protein expression and binding to JAK2 in murine 

corticotroph AtT20 cells has been shown to be maximal by 60 minutes following 

LIF treatment. This timepoint correlates with the dephosphoylation of JAK2 and 

ultimately the termination of signal transduction (Bousquet et al., 1999). 

Furthermore, work carried out by Wormald and co-workers (2006) showed that 

SOCS3 imposed bi-phasic kinetics upon IL-6 signalling (Wormald et al., 2006). 

Rapid STAT3 phosphorylation was observed in mouse macrophages by this group 

in response to IL-6 injection, with levels of phosphoylation declining between 30 

and 60 minutes and then accumulating again thereafter. To examine a role for 

SOCS3 in this biphasic pattern of expression, IL-6 signalling was analysed in 

SOCS3-deficient macrophages. Results revealed that in the absence of SOCS3, 

IL-6-mediated STAT3 activation was maximal and sustained rather than biphasic. 

This suggested that SOCS3 plays a role in the early phase of IL-6 signalling. 

(Wormald et al., 2006). These findings could potentially explain the pattern of 

STAT3 phosphorylation in HUVECs in response to IL-6/sIL-6α in the present 

study, since examination of SOCS3 induction in response to IL-6/sIL-6α in 

HUVECs showed SOCS3 accumulation at 60 and 90 minutes. This 60 minute 

accumulation correlates with the decline in STAT3 phosphorylation. Indeed, the 

detection of the SOCS3 transcript has been observed as early as 20 minutes after 

IL-6 injection in mouse liver, lung and spleen (Starr et al., 1997). SOCS3 induction 

in response to IL-6/sIL-6α and leptin in AS-Ms starts to accumulate at 60 minutes, 

with greatest levels observed at 90 minutes. Again, this induction of SOCS3 may 

contribute towards the suppression of IL-6- and leptin-mediated STAT3 

phophorylation. Alternatively, other negative regulatory mechanisms may also be 

playing a part in the downregulation of early phase signalling, such as the SH2-

domain containing protein tyrosine phosphatases SHP2. 

Although early inhibitory feedback signalling mechanisms are of interest, the main 

objective for the examination of SOC3 induction in response to IL-6/sIL-6α and 

leptin in both cell types in the present study was to ascertain whether SOCS3 

could be detected in the cell system under conditions whereby SOCS3 has been 

readily observed in a number of studies. Additionally, the ability of AS-Ms to 

induce SOCS3 should be confirmed, since studies carried in human cancer cells 
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have shown that the SOCS3 promotor can become inactivated as a result of 

methylation (Niwa et al., 2005; Sutherland et al., 2004; Tokita et al., 2007). The 

present results demonstrate a trend of SOCS3 induction in response to IL-6/sIL-6α 

and leptin treatment in HUVECs and AS-Ms, with highest levels of expression at 

90 minutes. These results corroborate with other studies, and therefore contribute 

towards the validation of the cell system. In addition, the results show that SOCS3 

protein expression can be detected under the conditions used.  

Not only are SOCS proteins induced by cytokines, but further studies have shown 

that SOCS1 and SOCS3 can also be induced by non-cytokine stimuli, thus 

providing a mechanism by which other signalling pathways can mediate the 

negative regulation of cytokine signalling. Dalpke and co-workers (2001) have 

demonstrated SOCS1 and SOCS3 induction by bacterial CpG-DNA in J774 

macrophages, RAW 264.7 macrophages, mouse bone marrow-derived dendritic 

cells, and peritoneal macrophages (Dalpke et al., 2001). CpG-DNA triggers TLR-

dependent signalling cascades, such as the NF-κB pathway (Hacker et al., 2002), 

which are independent of the JAK/STAT pathway (Yi & Krieg, 1998). Other stimuli 

which trigger similar pathways as CpG-DNA are LPS and TNFα, both of which 

have been shown to induce SOCS3 expression in murine macrophages (Bode et 

al., 1999; Stoiber et al., 1999). Furthermore, inhibition of the ERK1/2 pathway by 

treatment with the MEK inhibitor UO126 has been shown to reduce the induction 

of SOCS3 by CpG-DNA, suggesting the involvement of the ERK1/2 pathway in 

SOCS3 induction (Dalpke et al., 2001). This is supported by the findings that PMA 

induces SOCS3 expression via ERK1/2 activation and pre-treatment of HepG2 

and COS-7 cells with PMA inhibits STAT3 activation (Terstegen et al., 2000). The 

involvement of ERK1/2 in SOCS3 induction will be discussed in more detail in 

Chapter 4.  

Of interest to the present study is the induction of SOCS3 by cAMP-elevating 

agents, since this potentially represents a mechanism by which cAMP mediates its 

anti-inflammatory effects. Gasperini and colleagues (2002) have demonstrated the 

induction of SOCS3 mRNA and protein expression in response to prostaglandin 

E2 (PGE2), PGE1, forskolin, dibutyryl cAMP (dbcAMP) and cholera toxin in human 

leukocytes (Gasperini et al., 2002). While, Park and co-workers (2000) have 

shown that treatment of FRTL-5 thyroid cells with forskolin induces the expression 
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of SOCS1 and SOCS3 (Park et al., 2000). Previous work in this laboratory has 

demonstrated that SOCS3 is induced by forskolin and rolipram treatment in 

HUVECs, whereas SOCS1 is not induced in HUVECs under conditions that readily 

induce the expression of SOCS3 (Sands et al., 2006). To re-affirm these results, 

HUVECs were treated with forskolin and rolipram over a timecourse, and SOCS3 

expression was examined. Results showed a time-dependent accumulation of 

SOCS3 in response to these cAMP elevating stimuli, with greatest expression at 5 

hours. In AS-Ms, a similar pattern of expression was observed with greatest 

accumulation of SOCS3 at 5 hours. Thus, the present results not only confirm 

earlier results with HUVECs, but also demonstrate SOCS3 induction in AS-Ms for 

the first time 

Until relatively recently, the main intracellular mediator of cAMP effects was 

generally considered to be PKA. However, numerous studies have since 

discovered a new cAMP sensor, so-called Epac. Due to the roles that Epac has 

been ascribed to with regards to endothelial barrier function (Cullere et al., 2005; 

Fukuhara et al., 2005) it would be of interest in the present study to determine 

whether Epac too plays a role in the potential anti-inflammatory effects of cAMP in 

endothelial cells. Indeed, the finding that the SOCS3 promoter does not contain 

any classical cyclic AMP response elements (CREs) (He et al., 2003) may support 

a role for PKA-independent effectors of cAMP, that do not involve the PKA-

mediated activation of the transcription factor CREB. Furthermore, recent work 

carried out by Yarwood et al. (2008) showed that Epac can induce SOC3 

expression in HUVECs via activation of the C/EBP family of transcription factors 

(Yarwood et al., 2008). 

Currently, there are no pharmacological antagonists of Epac. However a selective 

agonist in the form of 8pCPT has been developed. 8pCPT is an Epac-Selective 

Cyclic AMP Analog (ESCA) which activates Epac but not PKA, due to the 

incorporation of a 2’-O-methyl substitution on the ribose ring (2’-O-Me-cAMP). 

Further work on 2’-O-Me-cAMP led to the finding that a parachlorophenylthio 

(pCPT) substitution at position 8 on the adenine moiety of 2’-O-Me-cAMP (8-

pCPT-2’-O-Me-cAMP [8-pCPT]) greatly increased its affinity for Epac, and also 

enhanced selectivity (107 fold greater affinity for Epac1 than for PKA) and 

increased cell permeability (Holz et al., 2008). 
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With the use of this selective anlogue, the current results demonstrate an 

accumulation of SOCS3 in response to 8-pCPT treatment at concentrations of 

200μM and 300μM in HUVECs and AS-Ms respectively. However, results in 

HUVECs were not consistent when using this analogue, which produced variability 

in the fold stimulation. Of interest, previous work in the lab has suggested the 

involvement of Epac in SOCS3 induction. For example, the accumulation of 

SOCS3 protein following forskolin treatment in HUVECs was not significantly 

inhibited by the PKA inhibitor H89, suggesting a PKA-independent induction of 

SOCS3 (Sands et al., 2006). Additionally, a constitutively active GTPase-deficient 

Val12Rap1a was capable of triggering SOCS3 induction, potentially suggesting 

the involvement of Epac (Sands et al., 2006). In further agreement were the 

findings that Rap1a siRNA and over-expression of RapGAP substantially inhibited 

the induction of SOCS3 by Fsk and Roli in HUVECs (Yarwood et al., 2008). 

Furthermore, Epac siRNA abolished the ability of Fsk and Roli to induce SOCS3 

(Yarwood et al., 2008). Many studies have demonstrated positive results when 

using 8pCPT in HUVECs, at concentrations within the range of that used in the 

current study (Cullere et al., 2005; Fukuhara et al., 2005). 8-pCPT has even been 

referred to as a “super activator” so-called because it activates Epac1 with greater 

efficacy than cAMP in vitro (Rehmann et al., 2003b).  

One explanation for the variation in the induction of SOCS3 in this study may be 

due to 8pCPT degradation by PDEs during the 5 hour incubation period (a 

timepoint chosen based on the maximal accumulation of SOCS3 in response to 

forskolin treatment in earlier experiments). Indeed, studies which have identified 

the positions on cAMP that allow interaction with PDEs, describe N1, N6 and N7 on 

the adenine moiety as particularly important for PDE interaction and the 2’-OH 

moiety as not required at all (Holz et al., 2008). Therefore, in theory, all ESCAs are 

capable of interacting with PDEs and undergoing degradation. To overcome this 

potential problem, a PDE-resistant 8pCPT has been developed (Sp-8-pCPT-2’-O-

Me-cAMPS), but was not used in the present study. 

In view of the above results with 8pCPT, other pharmacological tools were 

considered in the present study, namely H89. H89 belongs to the H-series of 

protein kinase inhibitors, developed by Hidaka and coworkers from 1977 onwards 

(Lochner & Moolman, 2006). It acts competitively with ATP to bind the ATP 
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binding sites of the catalytic subunits of PKA, and inhibit the phosphorylation 

process. Using this inhibitor throughout the course of the study could potentially 

not only assess the involvement of PKA in cAMP-mediated effects, but also 

indirectly examine the contribution of Epac. This is based on the assumption that 

PKA and Epac are the 2 main cAMP effectors in the present cell system under the 

conditions used. The involvement of other known cAMP effectors, such as cAMP-

regulated ion channels and the cyclic nucleotide rasGEF (CNrasGEF), plus the 

involvement of yet unknown effectors can therefore not be discounted. 

Furthermore, caution must be exercised when using this inhibitor as studies have 

shown that at a concentration of 10µM, H89 inhibits at least 8 other kinases by 80-

100% (Davies et al., 2000). The IC50 values revealed that three of these kinases, 

namely mitogen- and stress-activated protein kinase 1 (MSK1), p70 ribosomal 

protein S6 kinase (S6K1) and Rho-dependent protein kinase (ROCK-II) were 

inhibited with a potency similar to or greater than that for PKA (Davies et al., 

2000). In the present study, the possible inhibition of these three kinases does not 

appear to be of great concern, since CREB is a major substrate of PKA and 

results from these experiments should implicate PKA and not the other three 

kinases. However, MSK1 has also been shown to phosphorylate CREB. This 

kinase is principally a downstream target of ERK1,2 and p38 (Widmann et al., 

1999) and although the ERK1,2 pathway and the cAMP pathway have been 

shown to cross-talk (which will be described in more detail in Chapter 4) cAMP-

mediated CREB activation occurs predominantly via direct phosphorylation of 

serine residue 133 by the catalytic subunits of PKA (Daniel et al., 1998). Whilst the 

concentration of H89 used in the present study (5µM) may compromise its 

selectivity, it is nevertheless often required to achieve cell permeability, favorable 

stoichiometry between the inhibitor and the targets, and to compete with ATP, 

which is present in the cell at millimolar levels (Lochner & Moolman, 2006). Ideally, 

when examining the role of PKA, H89 should be used in conjunction with other 

PKA inhibitors, such as Rp-cAMPS and PKI analogues, or PKA-selective cAMP 

analogues such as 6-Bnz-cAMP. Thus, although H89 has been shown to be a 

potent inhibitor of PKA and has been used extensively for the assessment of the 

role of PKA in various biological processes, the specific inhibition of PKA is still not 

fully understood and this should be considered when using this inhibitor in studies. 
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When using this inhibitor in the present study to initially examine its effectiveness, 

results showed that pre-treatment of HUVECs or ASMs with H89 at a 

concentration of 5µM completely abolished forskolin-induced PKA-dependent 

CREB phosphorylation. H89 therefore appeared to be effectively inhibiting PKA at 

the concentration used. Indeed, many studies have used H89 at the same 

concentration to assess PKA involvement, including Fukuhara et al. (2005) to help 

identify the PKA-independent cAMP-Epac-Rap1 signalling pathway in endothelial 

barrier function (Fukuhara et al., 2005).  

In summary, results from this Chapter demonstrate that both HUVECs and AS-Ms 

may be considered useful cell models for the further examination of the working 

hypothesis. Both cell types were capable of activating the ERK1,2 and/or STAT3 

pathway(s) in response to IL-6/sIL-6α and leptin treatment. A trend of SOCS3 

induction was observed in both cell types in response to IL-6/sIL-6α and leptin 

treatment. Furthermore, accumulation of SOCS3 over time was observed in both 

cell types in response to cAMP elevation. Use of the Epac-selective cAMP 

analogue 8-pCPT in both cell types induced SOCS3 accumulation, but produced 

considerable variation in the fold stimulation. In comparison, the use of H89 in both 

cell types demonstrated consistent inhibition of the PKA substrate CREB. 

Collectively, these results are important in terms of establishing the cell systems 

and conditions to use for further experimentation. Of particular interest are the 

results from AS-Ms, since there are very limited studies on AS-Ms in the public 

domain, and these cells represent a more tractable and less costly cell model 

when compared to HUVECs.  
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Figure 3.1 The Effect of sIL-6Rα/IL-6 Treatment on ERK1, 2 Phosphorylation 
in HUVECs  
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30 and 60 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with PBS alone 

at the same volume as sIL-6Rα/IL-6 treatment, and 1µM PMA treated cells, a 

potent activator of ERK1,2 in endothelial cells. Following treatment, soluble cell 

extracts equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK1,2 levels in HUVECs from three experiments is presented as 

mean values +/- standard error (*p<0.05 versus phosphorylated ERK1,2 levels in 

vehicle-treated cells). Basal is set at 100. Total ERK1,2 expression is also shown 

as a representative immunoblot to control for protein loading.   
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Figure 3.2 The Effect of sIL-6Rα/IL-6 Treatment on STAT3 Phosphorylation in 
HUVECs  
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30 and 60 minutes. Vehicle (V) treated cells 

were treated with PBS alone at the same volume as sIL-6Rα/IL-6 treatment. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in HUVECs from three 

experiments is presented as mean values +/- standard error (*p<0.05 versus 

phosphorylated STAT3 levels in vehicle-treated cells). Basal is set at 100. Total 

STAT3 expression is also shown as a representative immunoblot to control for 

protein loading.   
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Figure 3.3 The Effect of Leptin Treatment on STAT3 Phosphorylation in 
HUVECs  
 

4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with leptin at a concentration of 125ng/ml for 5, 15, 

30 and 60 minutes. Vehicle (V) treated cells were treated with PBS alone at the 

same volume as leptin treatment. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in HUVECs from three experiments is presented as 

mean values +/- standard error (**p<0.01 versus phosphorylated STAT3 levels in 

vehicle-treated cells). Basal is set at 100. Total STAT3 expression is also shown 

as a representative immunoblot to control for protein loading.   
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Figure 3.4 The Effect of sIL-6Rα/IL-6 Treatment on ERK1, 2 Phosphorylation 
in AS-Ms  
 

4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30 and 60 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with PBS alone 

at the same volume as sIL-6Rα/IL-6 treatment, and 1µM PMA treated cells, a 

potent activator of ERK1,2 in endothelial cells. Following treatment, soluble cell 

extracts equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK1,2 levels in AS-Ms from three experiments is presented as 

mean values +/- standard error (*p<0.05 versus phosphorylated ERK1,2 levels in 

vehicle-treated cells) Basal is set at 100. The expression of the cytoskeleton 

protein, tubulin is also shown as a representative immunoblot to control for protein 

loading.   
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Figure 3.5 The Effect of sIL-6Rα/IL-6 Treatment on STAT3 Phosphorylation in 
AS-Ms  
 

4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30 and 60 minutes. Vehicle (V) treated cells 

were treated with PBS alone at the same volume as sIL-6Rα/IL-6 treatment. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (*p<0.05 versus 

phosphorylated STAT3 levels in vehicle-treated cells). Basal is set at 100. Total 

STAT3 expression is also shown as a representative immunoblot to control for 

protein loading. 
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Figure 3.6 The Effect of Leptin Treatment on ERK1, 2 Phosphorylation in AS-
Ms  
 

4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with leptin at a concentration of 125ng/ml for 5, 15, 

30 and 60 minutes. The controls in this experiment included vehicle (V) treated 

cells, which were treated with PBS alone at the same volume as leptin treatment, 

and 1µM PMA treated cells, a potent activator of ERK1,2 in endothelial cells. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated ERK1,2 levels in vehicle-treated cells). Basal is set at 100. Total 

ERK1,2 expression is also shown as a representative immunoblot to control for 

protein loading.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



108 
 

 
 
 

V    5    15   30   60     *  : Exposure time (mins) to Leptin
* PMA

Phospho-ERK1,2

Total ERK1,2

0

5
15

30

60

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

ER
K

1,
2 

P
ho

sp
ho

ry
la

tio
n 

(b
as

al
 s

et
 a

t 1
00

)

Time (mins)

***

 
 
 
 
 
 
 
 
 



109 
 

Figure 3.7 The Effect of Leptin Treatment on STAT3 Phosphorylation in AS-
Ms  
 

4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and serum-starved for 5 hrs. Following serum 

starvation, cells were treated with leptin at a concentration of 125ng/ml for 5, 15, 

30 and 60 minutes. Vehicle (V) treated cells were treated with PBS alone at the 

same volume as leptin treatment. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in AS-Ms from three experiments is presented as 

mean values +/- standard error (**p<0.01 versus phosphorylated STAT3 levels in 

vehicle-treated cells. Basal is set at 100. Total STAT3 expression is also shown as 

a representative immunoblot to control for protein loading. 
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Figure 3.8 The Effect of sIL-6Rα/IL-6 Treatment on SOCS3 Induction in 

HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS, before replacing the medium with serum-free 

medium. Cells were then treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30, 60 and 90 minutes, in the presence of 

the proteosome inhibitor, MG132 at a concentration of 6μM. Vehicle (V) treated 

cells were treated with PBS at the same volume as sIL-6Rα/IL-6 treatment, and 

also MG132 at a concentration of 6μM. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of SOCS3 

levels in HUVECs from three experiments is presented as mean values +/- 

standard error (basal is set at 100). The expression of the cytoskeleton protein, 

tubulin is also shown as a representative immunoblot to control for protein loading. 
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Figure 3.9 The Effect of Leptin Treatment on SOCS3 Induction in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS, before replacing the medium with serum-free 

medium. Cells were then treated with leptin at a concentration of 125ng/ml for 5, 

15, 30, 60 and 90 minutes, in the presence of the proteosome inhibitor, MG132 at 

a concentration of 6μM. Vehicle (V) treated cells were treated with PBS at the 

same volume as leptin treatment, and also MG132 at a concentration of 6μM. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of SOCS3 levels in HUVECs from three experiments is 

presented as mean values +/- standard error (basal is set at 100). The expression 

of the cytoskeleton protein, tubulin is also shown as a representative immunoblot 

to control for protein loading. 
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Figure 3.10 The Effect of sIL-6Rα/IL-6 Treatment on SOCS3 Induction in AS-
Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS, before replacing the medium with serum-free 

medium. Cells were then treated with sIL-6Rα/IL-6 at a concentration of 

25ng/ml/5ng/ml respectively for 5, 15, 30, 60 and 90 minutes, in the presence of 

the proteosome inhibitor, MG132 at a concentration of 6μM. Vehicle (V) treated 

cells were treated with PBS at the same volume as sIL-6Rα/IL-6 treatment, and 

also MG132 at a concentration of 6μM. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of SOCS3 

levels in AS-Ms from three experiments is presented as mean values +/- standard 

error (basal is set at 100). The expression of the cytoskeleton protein, tubulin is 

also shown as a representative immunoblot to control for protein loading. 
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Figure 3.11 The Effect of Leptin Treatment on SOCS3 Induction in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS, before replacing the medium with serum-free 

medium. Cells were then treated with leptin at a concentration of 125ng/ml for 5, 

15, 30, 60 and 90 minutes, in the presence of the proteosome inhibitor, MG132 at 

a concentration of 6μM. Vehicle (V) treated cells were treated with PBS at the 

same volume as leptin treatment, and also MG132 at a concentration of 6μM. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of SOCS3 levels in AS-Ms from three experiments is 

presented as mean values +/- standard error (**p<0.01 versus SOCS3 expression 

levels in vehicle-treated cells). Basal is set at 100. The expression of the 

cytoskeleton protein, tubulin is also shown as a representative immunoblot to 

control for protein loading. 
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Figure 3.12 The Effect of cAMP Elevation on SOCS3 Induction in HUVECs 
and AS-Ms 
 

a. 4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, 

cells were washed twice with PBS before replacing the medium with serum-

free medium. Cells were then treated with the adenylyl cyclase activator, 

forskolin (fsk) at a concentration of 10μM and the phosphodiesterase type 4 

inhibitor, rolipram (roli) at a concentration of 10μM over a time course 

ranging from 5 minutes to 5 hours in the presence of the proteosome 

inhibitor, MG132 at a concentration of 6μM. Vehicle (V) treated cells were 

treated with ethanol and DMSO at the same volume as forskolin and 

rolipram treatment respectively, and also MG132 at a concentration of 6μM. 

Following treatment, soluble cell extracts equalised for protein 

concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. The immunoblot shows the expression of SOCS3 in 

HUVECs from one experiment, since previous work in the lab has 

demonstrated this effect consistently. The expression of the cytoskeleton 

protein, tubulin is also shown as an immunoblot from 1 experiment, to 

control for protein loading. 

b. AS-Ms were treated exactly as described above. Following treatment, 

soluble cell extracts equalised for protein concentration were fractionated 

by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of SOCS3 levels in AS-Ms from three experiments is 

presented as mean values +/- standard error (*p<0.05 versus SOCS3 

expression levels in vehicle-treated cells). Basal is set at 100. The 

expression of the cytoskeleton protein, tubulin is also shown as a 

representative immunoblot, to control for protein loading. 
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Figure 3.13 The Effect of 8pCPT on SOCS3 Induction in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS before replacing the medium with serum-free 

medium. Cells were treated with the Epac selective cAMP analogue, 8pCPT at 

concentrations of 1, 50, 100 and 200μM over 5 hours in the presence of the 

proteosome inhibitor, MG132 at a concentration of 6μM. Vehicle (V) treated cells 

were treated with DMSO at the same volume as 8pCPT treatment, and also 

MG132 at a concentration of 6μM. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of SOCS3 

levels in HUVECs from three experiments is presented as mean values +/- 

standard error (basal is set at 100). The expression of the cytoskeleton protein, 

tubulin is also shown as a representative immunoblot, to control for protein 

loading. 
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Figure 3.14 The Effect of 8pCPT on SOCS3 Induction in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS before replacing the medium with serum-free 

medium. Cells were treated with the Epac selective cAMP analogue, 8pCPT at 

concentrations of 1, 50, 100 and 200μM over 5 hours in the presence of the 

proteosome inhibitor, MG132 at a concentration of 6μM. Vehicle (V) treated cells 

were treated with DMSO at the same volume as 8pCPT treatment, and also 

MG132 at a concentration of 6μM. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of SOCS3 

levels in AS-Ms from three experiments is presented as mean values +/- standard 

error (*p<0.05 versus SOCS3 expression levels in vehicle-treated cells). Basal is 

set at 100. The expression of the cytoskeleton protein, tubulin is also shown as a 

representative immunoblot, to control for protein loading. 
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Figure 3.15 The Effect of H89 on Forskolin Induced CREB Phosphorylation in 
HUVECs 
 

4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS before replacing the medium with serum-free 

medium. 1 well from each 6 well plate was pre-treated with the cAMP dependent 

protein kinase A inhibitor, H89 for 30 minutes at a concentration of 5μM before 

being treated with the adenylyl cyclase activator forskolin (fsk) at a concentration 

of 10μM for 10 minutes. The remaining wells were treated with fsk for 5, 10, 15 

and 30 minutes. The Vehicle (V) treated cells were treated with ethanol at the 

same volume as fsk treatment. Following treatment, soluble cell extracts equalised 

for protein concentration were fractionated by SDS-PAGE for immunoblotting with 

the indicated antibodies. Quantitative analysis of phosphorylated Ser133 CREB 

levels in HUVECs from three experiments is presented as mean values +/- 

standard error (***p<0.001 versus phosphorylated CREB levels in vehicle-treated 

cells, ***p<0.001 versus 10 minute fsk treated cells). Maximum response is set at 

100. The expression of the cytoskeleton protein, tubulin is also shown as a 

representative immunoblot, to control for protein loading. (ATF1 = Activating 

Transcription Factor 1, a member of the ATF/CREB family) 
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Figure 3.16 The Effect of H89 on Forskolin Induced CREB Phosphorylation in 
AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS before replacing the medium with serum-free 

medium. 1 well from each 6 well plate was pre-treated with the cAMP dependent 

protein kinase A inhibitor, H89 for 30 minutes at a concentration of 5μM before 

being treated with the adenylyl cyclase activator forskolin (fsk) at a concentration 

of 10μM for 10 minutes. The remaining wells were treated with fsk for 5, 10, 15 

and 30 minutes. The Vehicle (V) treated cells were treated with ethanol at the 

same volume as fsk treatment. Following treatment, soluble cell extracts equalised 

for protein concentration were fractionated by SDS-PAGE for immunoblotting with 

the indicated antibodies. Quantitative analysis of phosphorylated Ser133 CREB 

levels in AS-Ms from three experiments is presented as mean values +/- standard 

error (***p<0.001 versus phosphorylated CREB levels in vehicle-treated cells, 

***p<0.001 versus 10 minute fsk treated cells). Maximum response is set at 100. 

The expression of the cytoskeleton protein, tubulin is also shown as a 

representative immunoblot, to control for protein loading. (ATF1 = Activating 

Transcription Factor 1, a member of the ATF/CREB family) 
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Chapter 4 

 

Testing the Working Hypothesis - cAMP-Mediated Inhibition 

of sIL-6Rα/IL-6 and Leptin Signalling in Endothelial Cells 
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4.1 Introduction 
The downregulation of cytokine signalling has been attributed to several inhibitory 

mechanisms, all of which are crucial for the prevention of inappropriately sustained 

signalling (Wormald & Hilton, 2004). These include, but are not limited to, protein 

inhibitors and activators of STATs (PIAS), proteosomal degradation following 

Lys48 polyubiquitylation, protein tyrosine phosphatases (PTPs) and suppressor of 

cytokine signalling (SOCS) proteins.  

The family of PIAS proteins are constitutively expressed and every member of the 

family has been shown to regulate STAT signalling (Shuai & Liu, 2005). In 

particular, PIAS3 has  been shown to inhibit the DNA-binding activity of STAT3 

(Chung et al., 1997). Interestingly, PIAS proteins have also been shown to act as 

E3 ligases for “small ubiquitin-related modifier” (SUMO) conjugation. For example, 

SUMOylation of STAT1 by PIASx-alpha has been observed. However the 

consequence of this modification has yet to be determined (Rogers et al., 2003). It 

was recently proposed that the phosphorylation of Ser727 on STAT1 by MAPK 

(p38 and ERK1/2) enhances STAT1 SUMOylation by PIAS1 (Vanhatupa et al., 

2008), thereby implicating the MAPK pathway in the SUMOylation process. SUMO 

is very similar to ubiquitin, and is classed as a ubiquitin-like protein (ULP) on this 

basis. A STAT-interacting LIM protein (SLIM) has been shown to act as a ubiquitin 

E3 ligase targeting Tyr phosphorylated STAT1 and STAT4 for proteasomal-

mediated degradation in T cells and STAT1 in macrophages (Gao et al., 2007; 

Tanaka et al., 2005). 

PTPs comprise a large family of protein phosphatases. Of interest, PTP1B has 

been shown to inhibit leptin signalling via JAK2 dephosphorylation (Cheng et al., 

2002) and TC45 has been demonstrated to suppress IL-6 induced STAT3 

activation in 293T cells (Yamamoto et al., 2002). Of particular significance to the 

present study is SHP2, which not only functions as an adapter protein facilitating 

the activation of the ERK pathway, but also acts as a protein phosphatase, 

dephosphorylating Tyr-phosphorylated cytokine receptors, JAKs and STATs 

(Chen et al., 2003; Heinrich et al., 2003; Yu et al., 2000). The dual function of 

SHP2 as a protein phosphatase and as a SH2 domain-containing protein allows 

this protein to potentially serve as a positive or negative regulator of IL-6 and leptin 

signalling. As discussed earlier in section 1.4.4 of the Introduction, it is evident that 

further research is required to better understand the involvement of SHP2 in these 
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signalling pathways. Another level of complexity to SHP2 involvement comes from 

the findings that SHP2 binds to the same site on gp130 and OB-Rb, namely 

Tyr759 and Tyr985 respectively, as SOCS3. The relative contribution of both 

SHP2 and SOCS3 on gp130 and OB-Rb signalling constitutes another area of 

research requiring more investigation. 

The SOCS family of proteins are the main focus of the present study, and 

numerous studies have documented a role for SOCS3 in gp130 and Ob-Rb 

signalling, most notably studies using conditional SOCS3-deficient mice. These 

studies have demonstrated prolonged, unrestricted STAT3 activation in response 

to IL-6 and leptin in SOCS3-deficient macrophages, hepatocytes and neurons 

(Croker et al., 2003; Mori et al., 2004; Yasukawa et al., 2003). There are 3 known 

mechanisms by which SOCS3 can downregulate cytokine signalling. The first 

mechanism involves SOCS3 binding to Tyr759 on gp130 and Tyr985 on OB-Rb 

and physically occupying the same site as other SH2-domain-containing signalling 

components, such as SHP2. In this way, SOCS3 competes with and inhibits other 

signalling pathways (De Souza et al., 2002; Heinrich et al., 2003; Schmitz et al., 

2000). The second mechanism involves the kinase inhibitory region (KIR) of 

SOCS3, which binds to the kinase domain of JAKs. SOCS3 acts as a 

pseudosubstrate, inhibiting the catalytic activity of JAKs and consequently 

inhibiting subsequent receptor activation (Sasaki et al., 1999). The third 

mechanism of SOCS3 inhibition involves the C terminal SOCS3 box, which can 

recruit an elongin B and C E3 ubiquitin-ligase complex. This complex can trigger 

the polyubiquitylation and proteasomal degradation of SH2 domain-bound 

signalling partners, such as JAK2 (Kamura et al., 2004; Rui et al., 2002; Zhang et 

al., 1999a). 

In view of the findings that SOCS3 is induced in response to cAMP-elevating 

agents, in the present study and other studies (Gasperini et al., 2002; Sands et al., 

2006), it would be of interest to investigate the effect of cAMP elevation and 

SOCS3 induction on the signalling pathways of both leptin and IL-6. A cAMP-

mediated, SOCS3- dependent inhibition of IL-6 and leptin signalling represents a 

novel mechanism by which cAMP can mediate its anti-inflammatory effects. 

Although the mechanism of inhibition may be novel, cross-regulation of the 

ERK1,2 and STAT signalling pathways by cAMP is not a new concept. Numerous 

studies have documented a cAMP-mediated inhibition of ERK1,2 and STAT3 
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signalling, some of which are detailed below. A particular focus of the present 

study is the cross-regulation of the ERK pathway by cAMP.  

Crosstalk between the cAMP and ERK pathways has been observed since the 

early 1990s, whereby the cAMP analogues 8-chloro-cAMP (8-Cl-cAMP) or di-

butyryl cAMP have been shown to inhibit growth factor stimulated ERK activation 

in fibroblasts. (Burgering et al., 1993; Cook & McCormick, 1993; Wu et al., 1993). 

In more detail, all three studies have shown that cAMP agonists are capable of 

inhibiting EGF-mediated MAPK in Rat-1 cells (Burgering et al., 1993; Cook & 

McCormick, 1993; Wu et al., 1993). Furthermore, Burgering and colleagues (1993) 

demonstrated a cAMP-mediated inhibition of PDGF- and insulin-stimulated ERK 

activation in NIH3T3 and Rat-1 fibroblasts (Burgering et al., 1993). Other cell types 

have also been examined in the context of cAMP-mediated inhibition, and results 

from these studies have shown inhibition of EGF- and insulin-stimulated ERK 

signalling in adipocytes and inhibition of thrombin-stimulated ERK signalling in 

smooth muscle cells (Osinski & Schror, 2000; Sevetson et al., 1993). Thus, cAMP-

mediated inhibition appears to occur in multiple cell types and affects the signalling 

of multiple growth factors. However, less is known about the crosstalk between 

cAMP and cytokine-induced ERK activation. The inhibitory effect of cAMP has 

been demonstrated in response to TNFα, whereby TNFα-mediated expression of 

E-selectin is suppressed following cAMP elevation in HUVECs and human lung 

microvascular endothelial cells (HLMECs) (Blease et al., 1998; Morandini et al., 

1996). Of particular relevance to the present study is the work carried out by 

Sobota and co-workers (2008). These investigators demonstrated a cAMP-

mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 activation, but not STAT3 

activation in human dermal fibroblasts and murine embryonic fibroblasts (MEFs). 

Additionally, the cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 

activation in MEFs was shown to be independent of Epac, and dependent on PKA. 

(Sobota et al., 2008). Although not a focus of the present study, the STAT pathway 

has also been shown to be modulated by the cAMP pathway, wherein cAMP 

elevation has been shown to inhibit sIL-6Rα/IL-6-stimulated STAT3 signalling in 

human monocytes (Sengupta et al., 1996) Previous work in the Palmer lab has 

also demonstrated inhibition of IL-6-stimulated STAT3 phosphorylation following 
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chronic cAMP elevation in HUVECs and MEFs (Sands & Palmer, 2005; Sands et 

al., 2006). 

The biological relevance of this cAMP-mediated inhibition on downstream effects 

of ERK1,2 signalling has also been investigated. For example, numerous studies 

have demonstrated inhibition of proliferation in response to cAMP elevation, which 

is largely attributed to cAMP-mediated effects on growth factor-induced ERK1,2 

activation (Bornfeldt & Krebs, 1999; Budillon et al., 1999; Hecquet et al., 2002; 

Schmitt & Stork, 2001; Tortora et al., 1989). For example, cAMP elevation in 

smooth muscle cells has been shown to inhibit proliferation and migration by 

blocking growth factor receptor activation (Bornfeldt & Krebs, 1999). Proliferation 

and migration of smooth muscle cells have been shown to contribute towards the 

thickening of vessel walls, a major feature of the development of atherosclerosis. 

In support of these observations, the expression of many cell cycle regulatory 

proteins such as cyclin D and cyclin A, which are downstream targets of the ERK 

pathway, have been demonstrated to be inhibited by cAMP elevation (Dumaz & 

Marais, 2005; L'Allemain et al., 1997). cAMP-mediated inhibitory effects are not 

limited to ERK1,2-dependent proliferation. cAMP elevation has also been shown to 

inhibit other ERK1,2-mediated effects, such as monocyte chemoattractant protein-

1 (MCP-1) induction. MCP-1 induction by IL-6 in human dermal fibroblasts has 

been shown to be inhibited by prostaglandin E1 (PGE1), an initiator of cAMP 

signalling via activation of the EP2 prostaglandin G-protein-coupled receptor 

(GPCR). This induction of MCP-1 was shown to be ERK sensitive by 

demonstrating inhibition of MCP-1 following treatment with the MEK inhibitor 

U0126 (Sobota et al., 2008). In corroboration, work carried out in the Palmer lab 

has demonstrated inhibition of MCP-1 accumulation by sIL-6Rα/IL-6 in response 

to cAMP elevation by Fsk and Roli or 8pCPT treatment in HUVECs (Sands et al., 

2006). MCP-1 plays a crucial part in the development of atherosclerosis via 

recruitment of monocytes to the endothelium at sites of vascular injury (Charo & 

Taubman, 2004). Of interest to the present study is the ERK transcription factor 

Elk-1. Elk-1 belongs to the E twenty-six (Ets) family of transcription factors, which 

have been shown to play roles in development, differentiation, transformation and 

proliferation. Elk-1, together with Net and Sap-1, forms a subfamily of the Ets 

family known as the ternary complex factors (TCFs) (Buchwalter et al., 2004). All 
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three TCFs characteristically form ternary complexes with serum response factor 

(SRF) dimers on serum response elements (SREs) present in c-fos and other 

early immediate gene (EIG) promoters. The TCFs represent final effectors of the 

MAP kinase cascade and Elk-1 is a target of all 3 MAP kinases; ERK1,2, JNK and 

p38 (Buchwalter et al., 2004). As such, Elk-1 represents a potential target of sIL-

6Rα/IL-6- or leptin-stimulated ERK1,2 signalling, which could be investigated to 

assess the downstream effects of cAMP-mediated inhibition. The inhibition of Elk-

1 by cAMP could have beneficial effects on vascular disease, such as 

atherosclerosis. For example, the anti-inflammatory cytokine IL-10 has been 

shown to suppress tissue factor (TF) expression in LPS-stimulated mouse 

macrophages via inhibition of early growth response gene 1 (Egr-1) and a MEK-

ERK1,2/Elk-1 pathway (Kamimura et al., 2005). Elk-1, together with serum 

response factor has been shown to bind and activate serum response elements in 

the promoter of Egr-1, and Egr-1 in association with AP-1 and NFκB has been 

shown to activate the TF promoter. These findings together with the pro-

atherogenic role of TF in thrombus formation in acute coronary syndromes, 

implicate Elk-1 in the disease progression of atherosclerosis (Kamimura et al., 

2005). Of interest, Egr-1 has also been shown to be a key regulator of genes such 

as membrane type 1 matrix metalloproteinase and intercellular adhesion molecule 

1 (ICAM-1), both of which have been demonstrated to be involved in the 

development of atherosclerosis (Haas et al., 1999; Maltzman et al., 1996).  

These downstream effects are interesting in terms of contributing towards the 

understanding of the physiological relevance of the inhibition on sIL-6Rα/IL-6 and 

leptin signalling. However, the emphasis of the present study was on the further 

elucidation of the molecular mechanism of cAMP-mediated inhibition. A number of 

models exist to try to explain the inhibitory mechanism of cAMP on ERK signalling. 

One of which involves the direct phosphorylation of Raf by PKA. Raf 

serine/threonine kinases are the main effectors of Ras in the MAPK pathway. Raf-

1 has been shown to be phosphorylated by PKA at 3 serine residues; S43, S233 

and S259 (Dhillon et al., 2002b; Dumaz et al., 2002; Wu et al., 1993). All three 

sites have been shown to block Raf-1 interaction with Ras; S43 blocks interaction 

via steric hindrance (Wu et al., 1993), while S233 and S259 block interaction via 

recruitment of the adapter/scaffolding proteins 14-3-3, which prevent Raf-1 
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recruitment to the membrane (Dumaz & Marais, 2003; Light et al., 2002). Although 

this mode of inhibition has been well described for the cAMP-mediated inhibition of 

growth factor signalling, the inhibitory effects on cytokine signalling are less 

understood. In relation to the cAMP-mediated STAT3 inhibitory mechanism, 

studies have shown that expression of catalytically inactive dominant negative 

SHP2 mutants results in increased gp130, Jak and STAT3 phosphorylation as well 

as gene induction (Lehmann et al., 2003; Symes et al., 1997). Since SHP-2 has 

been shown to be positively regulated by cAMP via phosphorylation by PKA 

(Rocchi et al., 2000), a cAMP-mediated SHP-2-dependent inhibition of STAT3 

activation describes a mode of STAT3 inhibition. 

The objective of this results chapter was to initially determine whether or not cAMP 

elevation in HUVECs and AS-Ms exert inhibitory effects on the signalling pathways 

of sIL-6Rα/IL-6 and leptin. This was examined using ERK1,2 and STAT3 

phosphorylation levels as end-points of sIL-6Rα/IL-6 and leptin signalling. 

Additionally, the downstream transcriptional activation of an ERK1,2 effector, 

namely Elk-1 was examined in an attempt to assess the biological consequences 

of cAMP-mediated inhibition of ERK1,2 activation. The focus of the present 

chapter however was to better understand the mechanism of inhibition, with a 

particular emphasis on SOCS3 as a potential mediator of the inhibitory effects (as 

a follow-up to previous work carried out in the Palmer lab). cAMP-mediated 

inhibition of ERK1,2 activation as opposed to STAT3 activation was more closely 

examined during this research. 
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4.2 Results 

Inhibition of sIL-6Rα/IL-6 and Leptin Signalling by cAMP Elevation  

In endothelial cells, specifically HUVECs, cAMP has been shown to play a pivotal 

role in reducing pro-inflammatory events and limiting vascular permeability. 

(Blease et al., 1998; Cullere et al., 2005; Fukuhara et al., 2005; Morandini et al., 

1996). Further to the use of HUVECs in the present study, AS-Ms were utilised to 

potentially identify an alternative and possibly more tractable cell model when 

compared to HUVECs. In the present study, pre-treatment of HUVECs with the 

cAMP elevating agents forskolin (Fsk) and rolipram (Roli) had the effect of 

significantly inhibiting both ERK1,2 phosphorylation in response to sIL-6Rα/IL-6 

(60±5% inhibition by Fsk + Roli versus sIL-6Rα/IL-6-treated alone cells, p<0.001, 

n=3) (Figure 4.2) and STAT3 phosphorylation in response to sIL-6Rα/IL-6 (70±7% 

inhibition by Fsk + Roli versus sIL-6Rα/IL-6-treated alone cells, p<0.001, n=3) 

(Figure 4.3). However, neither treatment alone had a significant effect on ERK1,2 

or STAT3 phosphorylation in response to sIL-6Rα/IL-6. In contrast, leptin-

mediated STAT3 activation could be inhibited by forskolin and rolipram in 

combination (62±10% inhibition by Fsk + Roli versus leptin-treated alone cells, 

p<0.01, n=3) as well as forskolin alone (52±16% inhibition by Fsk versus leptin-

treated alone cells, p<0.05, n=3) (Figure 4.4). In AS-Ms, basal levels of ERK 

phosphorylation were high and neither sIL-6Rα/IL-6- or leptin-induced ERK 

phosphorylation were significantly above these levels (p>0.05). Thus, the inhibitory 

effect of cAMP on sIL-6Rα/IL-6 and leptin signalling could not be assessed. 

However, it should be noted that forskolin and rolipram in combination, as well as 

either treatment alone could significantly inhibit “sIL-6Rα/IL-6-treated” levels of 

ERK phosphorylation (76±7%, 79±8%, 80±7% inhibition by Fsk, Roli and Fsk + 

Roli respectively versus sIL-6Rα/IL-6-treated alone cells, p<0.001 in all 3 

comparisons, n=3) (Figure 4.5) and “leptin-treated” levels of ERK phosphorylation 

(80±7%, 86±2%, 87±2% inhibition by Fsk, Roli and Fsk + Roli respectively versus 

leptin-treated alone cells, p<0.001 in all 3 comparisons, n=3) (Figure 4.7). When 

examining STAT3 levels in AS-Ms, sIL-6Rα/IL-6-stimulated phosphorylation of 

STAT3 (29±3 fold increase over vehicle, p<0.001 n=3 versus vehicle-treated 

control) was modestly inhibited by forskolin and rolipram in combination (34±8% 

inhibition by Fsk + Roli versus sIL-6Rα/IL-6-treated alone cells, p<0.05, n=3) and 
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forskolin alone (25±8% inhibition by Fsk versus sIL-6Rα/IL-6-treated alone cells, 

p<0.05, n=3) (Figure 4.6). No inhibition of leptin induced STAT3 activation was 

observed in response to Fsk and Roli treatment (Figure 4.8).  

In summary, these results show that pre-treatment of HUVECs with the cAMP 

elevating agents Fsk and Roli in combination for 5 hours substantially reduces the 

MEK-stimulated Thr and Tyr phosphorylation of ERK1,2 and the JAK stimulated 

Tyr phosphorylation of STAT3 in response to sIL-6Rα/IL-6. Additionally, Fsk and 

Roli pre-treatment in combination and Fsk treatment alone substantially inhibits 

leptin-induced Tyr phosphorylation of STAT3. In AS-Ms, the Tyr phosphorylation of 

STAT3 in response to sIL-6Rα/IL-6 was only modestly inhibited by Fsk and Roli in 

combination and Fsk alone. Leptin-induced Tyr phosphorylation of STAT3 was not 

inhibited by Fsk and Roli in combination or by either treatment alone. Levels of 

cAMP were not measured following 5 hours treatment with Fsk and Roli, since 

accumulation of SOCS3 was detected much earlier than 5 hours (Figure 3.12) and 

this was demonstrated to be preceeded by cAMP elevation, as determined by 

CREB phosphorylation (Figures 3.15 & 3.16). Lastly, Thr and Tyr phosphorylation 

levels of ERK1,2 in response to sIL-6Rα/IL-6 and leptin in AS-Ms were no greater 

than basal levels of ERK1,2 phosphorylation. Thus, the effect of Fsk and Roli on 

sIL-6Rα/IL-6- or leptin-stimulated ERK1,2 phosphorylation could not be assessed 

in AS-Ms. 

Downstream Effects of cAMP-Mediated ERK1,2 Inhibition 

The above results demonstrate a cAMP-mediated inhibition of sIL-6Rα/IL-6 and 

leptin signalling, but only demonstrate this inhibition at the level of ERK1,2 and 

STAT3 phosphorylation. To assess the inhibitory effect of cAMP further 

downstream and to potentially better understand possible biological consequences 

of this inhibitory effect in both cell types, a downstream effector of ERK1,2 was 

analysed. The well characterised ERK-responsive transcription factor Elk-1 has 

been demonstrated to become phosphorylated at multiple sites within the C-

terminal transcriptional activation domain following binding of MAP kinases to the 

MAP kinase docking motif. This leads to increased Elk-1 transcriptional activation 

potential (Gille et al., 1995; Yang et al., 2002). To initially determine whether Elk-1 

transcriptional activity increases following sIL-6Rα/IL-6 and leptin treatment in both 

cell types, a trans-acting reporter gene assay system was used. Cells were co-
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transfected with a trans-activator plasmid (Gal4-Elk-1), a luciferase reporter 

plasmid (Gal4-luc) and a normalisation Renilla plasmid (pRL-CMV). Gal4-Elk-1 

encodes a protein comprising the yeast Gal4 DNA-binding domain fused to the 

activation domain of Elk-1 and Gal4-luc contains the Gal4-binding element 

upstream of a luciferase reporter gene. Gal4-Elk-1 chimeric protein will 

accumulate in the cell as a result of the CMV promoter. Once activated by 

ERK1,2, a conformational change will allow the Gal4 DNA-binding domain to bind 

to the Gal4-binding element, which will drive transcription of luciferase. Both these 

constructs (Gal4-Elk-1 and Gal4-luc) have been used successfully to demonstrate 

Elk-1 activation following nociceptin treatment in CHO cells stably expressing the 

human opioid receptor-like 1 (ORL1) receptor (Bevan et al., 1998). In the present 

study, cells were treated with sIL-6Rα/IL-6, leptin and PMA for 6 hrs and 

luminescence was read using a luminometer. The readings were expressed as 

average ratios of Firefly over Renilla luciferase activity from 3 independent 

experiments performed in triplicate. Results revealed a trend of increased Elk-1 

transcriptional activity in response to PMA treatment in both HUVECs and AS-Ms. 

However, this increase was not found to be statistically significant over basal 

levels of Elk-1 transcriptional activity in both cell types. Furthermore, Elk-1 

transcriptional activity following either sIL-6Rα/IL-6 and leptin treatment was either 

not increased or very modestly increased over basal levels of Elk1 transcriptional 

activity and was again found to be not statistically significant (Figure 4.9a & b). 

Thus, the further utilisation of these reporter gene assays to test the inhibitory 

effects of cAMP elevation on Elk-1 transcriptional activity was not feasible. It 

should, however be noted that some individual biological replicates of these 

assays did display statistically significant increases in Elk-1 transcriptional activity 

in response to PMA when compared to basal levels of Elk-1 transcriptional activity, 

and these increases were shown to be ERK dependent, since pre-treatment of the 

cells with the MEK inhibitor U0126 abolished Elk-1 activity. An example of one 

such replicate in HUVECs is shown in Figure 4.9c. Additionally, experiments were 

carried out for 12 hr treatments of sIL-6Rα/IL-6, leptin and PMA, but no increase in 

Elk-1 transcriptional activity over basal levels was observed (data not shown).  

As a follow-up to the reporter gene assay results above, experiments were 

conducted to assess the translocation of ERK1,2 into the nucleus following sIL-
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6Rα/IL-6 and leptin treatment. These experiments were carried out to assess 

whether or not the inability of sIL-6Rα/IL-6 and leptin treatment to induce Elk-1 

transcriptional activity, was possibly due to poor translocation of ERK1,2 into the 

nucleus after stimulation with sIL-6Rα/IL-6 and leptin. HUVECs and AS-Ms were 

treated with sIL-6Rα/IL-6 and leptin for 30 minutes before isolating both nuclear 

and cytoplasmic cell fractions for detection of phosphorylated ERK1/2 and STAT3 

by immunoblotting. SP1, a transcription factor, which binds to GC box promoter 

elements and tubulin, a cytoskeleton protein, were analysed in both fractions to 

confirm the isolation of nuclear and cytosolic preparations respectively. PMA-

treated cells were used as a positive control in these experiments. In HUVECs, an 

increase in ERK1,2 phosphorylation in response to PMA treatment was observed 

in both the nuclear cell fraction (6±2 fold increase over vehicle, p<0.05 n=3 versus 

vehicle-treated control) and the cytoplasmic cell fraction (10±1 fold increase over 

vehicle, p<0.001 n=3 versus vehicle-treated control). Levels of ERK1,2 

phosphorylation in response to sIL-6Rα/IL-6 in HUVECs were increased in the 

nuclear fraction only (3±0.4 fold increase over vehicle, p<0.05 n=3 versus vehicle-

treated control), whereas leptin treatment did not induce ERK1,2 phosphorylation 

in either cytoplasmic or nuclear fractions (Figure 4.10). When examining STAT3 

activation in HUVECs, levels of phosphorylated STAT3 were increased in 

response to sIL-6Rα/IL-6 in the cytoplasmic fraction (22±4 fold increase over 

vehicle, p<0.01 n=3 versus vehicle-treated control). STAT3 phosphorylation levels 

were also increased in response to leptin in the nuclear fraction (5±0.5 fold 

increase over vehicle, p<0.01 n=3 versus vehicle-treated control). In AS-Ms, 

ERK1,2 phosphorylation in response to PMA treatment was increased in both the 

cytoplasmic fraction (17±5 fold increase over vehicle, p<0.05 n=3 versus vehicle-

treated control) and the nuclear fraction (16±5 fold increase over vehicle, p<0.05 

n=3 versus vehicle-treated control). However, neither sIL-6Rα/IL-6- or leptin-

induced ERK1,2 phosphorylation was significantly above basal levels of ERK1,2 

phosphorylation in either fractions (p>0.05). When examining STAT3 activation in 

AS-Ms, an increase in STAT3 phosphorylation was observed in response to sIL-

6Rα/IL-6 (8±1 fold increase over vehicle, p<0.01 n=3 versus vehicle-treated 

control) and leptin treatment (3±1 fold increase over vehicle, p<0.05 n=3 versus 

vehicle-treated control) in the nuclear fraction. Levels of STAT3 phosphorylation in 
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response to both sIL-6Rα/IL-6 and leptin in the cytoplasmic fractions were not 

significantly greater than basal levels of STAT3 phosphorylation (p>0.05) (Figure 

4.11).  

To summarise the results, which are relevant to the reporter gene assay, a marked 

increase in ERK1,2 phosphorylation levels in both cell fractions was observed 

following PMA treatment in both cell types. However, when examining sIL-6Rα/IL-

6- and leptin-stimulated ERK1,2 phosphorylation in both cell types, only sIL-

6Rα/IL-6-stimulated ERK1,2 phosphorylation in the nuclear fraction of HUVECs 

was significantly above basal levels of ERK1,2 phosphorylation. 

Mechanism of Inhibition – Examining a Role for PKA and/or Epac 
Although the above results were of interest in terms of the downstream effect of 

cAMP elevation on sIL-6Rα/IL-6 and leptin signalling, the present study aimed to 

focus on the molecular mechanism of cAMP inhibition. Therefore, to further 

investigate the working hypothesis, experiments were carried out to assess the 

contribution of the two major cAMP sensors; PKA and Epac in the observed 

inhibition of ERK1,2 and STAT3 phosphorylation following cAMP elevation. Both 

H89 and 8pCPT were optimised in previous experiments, which are detailed in 

Chapter 3. In the first instance, when examining a role for PKA in cAMP-mediated 

effects, pre-treatment of HUVECs with 5µM H89 followed by Fsk and Roli 

treatment for 5 hrs had the effect of significantly inhibiting both ERK1,2 

phosphorylation (70±17% inhibition by Fsk + Roli + H89 versus sIL-6Rα/IL-6-

treated alone cells, p<0.05, n=3) and STAT3 phosphorylation (73±5% inhibition by 

Fsk + Roli + H89 versus sIL-6Rα/IL-6-treated alone cells, p<0.001, n=3) in 

response to sIL-6Rα/IL-6. The inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 

phosphorylation observed in the presence of H89 was not significantly different 

from that seen in HUVECs pre-treated with Fsk and Roli in the absence of H89 

(p>0.05). Indeed, the inhibition of sIL-6Rα/IL-6-stimulated STAT3 phosphorylation 

following Fsk and Roli treatment in the presence of H89 was even shown to be 

greater than the inhibition of sIL-6Rα/IL-6-stimulated STAT3 phosphorylation 

following Fsk and Roli treatment alone (73±5% inhibition by Fsk + Roli + H89 

versus 50±3% inhibition by Fsk + Roli, p<0.05 n=3) (Figures 4.12 & 4.13). Thus, 

pre-treatment of HUVECs with H89 at a concentration shown to be effective in 

previous experiments (Figure 3.15) could not reverse the inhibitory effect of Fsk + 
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Roli on sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 phosphorylation. These 

results discount a role for PKA in cAMP-mediated inhibition, and may even 

suggest a partial repressive effect of PKA on cAMP-mediated inhibition of STAT3 

activation in response to sIL-6Rα/IL-6. In comparison, the effect of H89 in AS-Ms 

could not be assessed, since basal levels of ERK1,2 phosphorylation were high 

and neither sIL-6Rα/IL-6- or leptin-induced ERK phosphorylation were significantly 

above these levels (p>0.05 n=3) (Figures 4.14 & 4.15), as observed in previous 

experiments (Figures 4.5 & 4.7).  

When examining a role for Epac in cAMP-mediated inhibition of ERK1,2 and 

STAT3 phosphorylation in response to sIL-6Rα/IL-6 , HUVECs and AS-Ms were 

pre-treated with the Epac-selective cAMP analogue 8pCPT at 100µM for 5 hrs and 

ERK1,2 and STAT3 phosphorylation was assessed by immunoblotting. The 

experiment aimed to test whether or not 8pCPT could mimic the inhibitory effect of 

Fsk and Roli on sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 phosphorylation, and 

thus determine a potential role for Epac in this inhibition. The present results 

revealed that there was no significant difference between the levels of ERK1,2 

phosphorylation in response to sIL-6Rα/IL-6 following 8pCPT treatment (with or 

without H89), and sIL-6Rα/IL-6-treated alone cells (p>0.05 n=3) (Figure 4.12). 

8pCPT treatment therefore had no effect on IL-6Rα/IL-6-stimulated ERK1,2 

phosphorylation and could not recapitulate the effects of Fsk and Roli treatment on 

sIL-6Rα/IL-6-stimulated ERK1,2 phosphorylation in HUVECs. It should be noted 

that the effects of 8pCPT treatment on ERK1,2 phosphorylation in HUVECs were 

variable, and as a consequence produced large standard error values. Variability 

using 8pCPT was also demonstrated in earlier experiments in Chapter 3 (Figure 

3.13). Thus, a possible effect of 8pCPT on ERK1,2 phosphorylation may be 

masked by the variability in the fold stimulation. In comparison, when analysing 

STAT3 phosphorylation, 8pCPT treatment was shown to cause a 47±13% 

inhibition of STAT3 phosphorylation in the absence of H89 (p<0.05 n=3 versus IL-

6Rα/IL-6-treated alone cells) and a 63±14% inhibition of STAT3 phosphorylation in 

the presence of H89 (p<0.05 n=3 versus IL-6Rα/IL-6-treated alone cells) which 

were comparable and not significantly different from the levels of STAT3 

phosphorylation in response to sIL-6Rα/IL-6 following Fsk and Roli pre-treatment 

with or without H89 (p>0.05 n=3) (Figure 4.13). In addition, there was no 
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significant difference between the STAT3 phosphorylation levels following 8pCPT 

treatment with or without H89 pre-treatment (p>0.05 n=3). 

Mechanism of Inhibition – Examining a Role for SOCS3 

The above experiments suggest a PKA-independent inhibition of IL-6Rα/IL-6-

stimulated ERK1,2 and STAT3 activation following Fsk and Roli treatment in 

HUVECs. Furthermore, they also suggest a potential role for Epac in the inhibition 

of IL-6Rα/IL-6-stimulated STAT3 activation. The present study focuses on SOCS3 

as a possible mediator of these inhibitory effects and since previous experiments 

in the Palmer lab have suggested the involvement of Epac in SOCS3 induction 

(Sands et al., 2006), it would be of interest to further investigate a role for SOCS3 

in cAMP-mediated inhibition. Results from Chapter 3 demonstrated SOCS3 

induction following treatment of HUVECs and AS-Ms with Fsk and Roli (Figure 

3.12). Results from the Palmer lab showed that this induction was PKA-

independent, by pre-treating the cells with H89 and observing no inhibition of 

SOCS3 induction following Fsk treatment. Additionally, expression of a 

constitutively active GTPase-deficient Val12Rap1a was shown to be capable of 

triggering SOCS3 accumulation (Sands et al., 2006). Collectively, these results, 

together with results from Chapter 3 showing a trend of SOCS3 accumulation 

following 8pCPT treatment in HUVECs and AS-Ms (Figure 3.13 & 3.14) suggest 

an Epac-mediated SOCS3 induction, which is independent of PKA and potentially 

leads to the inhibition of IL-6Rα/IL-6-stimulated ERK1,2 and STAT3 activation. 

To specifically test the involvement of SOCS3 in the inhibitory effects of cAMP on 

IL-6Rα/IL-6 and leptin signalling, siRNA was employed. In the first instance, 

HUVECs and AS-Ms were treated with increasing concentrations of SOCS3 

siRNA and Fsk and Roli-mediated induction of SOCS3 was detected by 

immunoblotting. These experiments were conducted to identify a suitable 

concentration of SOCS3 siRNA for use in future experiments. The immunoblots 

show that concentrations as low as 1nM were sufficient to substantially attenuate 

Fsk and Roli-mediated induction of SOCS3 (Figure 4.16a. & b.). The control 

siRNA used in this experiment comprised of a scrambled, non-targeting sequence. 

Therefore, it was used as a negative control in the present experiment and all 

subsequent SOCS3 siRNA experiments. Results from these experiments identified 

10nM as a suitable concentration to use in further SOCS3 siRNA experiments, 
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based on extent of knock-down of SOCS3 in both cell types, and cost 

effectiveness. Under conditions in which Fsk and Roli-mediated induction of 

SOCS3 was significantly attenuated (14±3 fold increase over vehicle in control 

siRNA-treated HUVECs versus 5±1 fold increase over vehicle in SOCS3 siRNA-

treated HUVECs, p<0.05 n=3) (Figure 4.17), Fsk and Roli- mediated inhibition of 

IL-6Rα/IL-6-stimulated ERK1,2 phosphorylation was completely abolished (70±7% 

inhibition in control siRNA-treated HUVECs versus 5±18% inhibition [not 

significantly different from IL-6Rα/IL-6-treated alone cells] in SOCS3 siRNA-

treated HUVECs, p<0.05 n=3) (Figure 4.18). The inhibition of IL-6Rα/IL-6-

stimulated STAT3 phosphorylation following Fsk and Roli treatment in the 

presence of SOCS3 siRNA was also attenuated in HUVECs, although not to the 

same extent as the attenuation of phosphorylated ERK1,2 inhibition shown above 

(71±2% inhibition in control siRNA-treated HUVECs versus 23±3% inhibition in 

SOCS3 siRNA-treated HUVECs, p<0.001 n=3) (Figure 4.19). When examining the 

inhibition of leptin-stimulated STAT3 phosphorylation following Fsk and Roli 

treatment in HUVECs, a modest attenuation of inhibition was observed in the 

presence of SOCS3 siRNA (76±4% inhibition in control siRNA-treated HUVECs 

versus 56±5% inhibition in SOCS3 siRNA-treated HUVECs, p<0.001 n=4) (Figure 

4.20). In AS-Ms, under conditions in which Fsk and Roli-mediated induction of 

SOCS3 was attenuated (Figure 4.21) Fsk and Roli- mediated inhibition of IL-

6Rα/IL-6-stimulated ERK1,2 and STAT3 phosphorylation was not significantly 

attenuated by SOCS3 siRNA treatment ([ERK1,2] 70±7% inhibition in control 

siRNA-treated AS-Ms versus 54±13% inhibition in SOCS3 siRNA-treated AS-Ms, 

p>0.05 n=3 [STAT3] 37±12% inhibition in control siRNA-treated AS-Ms versus 

36±10% inhibition in SOCS3 siRNA-treated AS-Ms, p>0.05 n=3) (Figures 4.22 & 

4.23 respectively). 

Further to these siRNA experiments, a second approach was employed to 

specifically test the involvement of SOCS3 in the inhibitory effects of cAMP 

elevation. This approach utilised W/T (SOCS3+/+) and SOCS3-/- murine embryonic 

fibroblasts (MEFs) to compare the inhibitory effect of Fsk and Roli treatment in 

both cell types. To initially confirm the absence of SOCS3 in SOCS3-/- MEFs, cells 

were treated with Fsk and Roli for 5 hours prior to detection of SOCS3 expression 

by immunoblotting. Results revealed a 4±0.2 fold increase in SOCS3 expression 
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over vehicle in W/T MEFs following Fsk and Roli treatment (p<0.001 n=3 versus 

vehicle-treated control), but no expression of SOCS3 was detected in SOCS3-/- 

MEFs with or without Fsk and Roli treatment (Figure 4.24). When examining the 

inhibitory effects of cAMP in both cell types, Fsk and Roli-mediated inhibition of IL-

6Rα/IL-6-stimulated ERK1,2 phosphorylation was significantly attenuated in 

SOCS3-/- MEFs (64±0.4% inhibition in W/T MEFs versus 19±2% inhibition in 

SOCS3-/- MEFs, p<0.001 n=3) (Figure 4.25). Further to this, the inhibition of IL-

6Rα/IL-6-stimulated STAT3 phosphorylation was completely abolished in SOCS3-/- 

MEFs (46±10% inhibition in W/T MEFs versus 3±8% inhibition [not significantly 

different from IL-6Rα/IL-6-treated alone cells] in SOCS3-/- MEFs, p<0.05 n=3) 

(Figure 4.26).  

Taken together, the results from the siRNA experiments and the MEFs 

experiments demonstrate that SOCS3 does have a role to play in the cAMP-

mediated inhibition of IL-6Rα/IL-6-stimulated ERK1,2 phosphorylation in HUVECs 

and MEFs. Additionally, the involvement of SOCS3 in cAMP-mediated STAT3 

inhibition was demonstrated in response to leptin in HUVECs and in response to 

IL-6Rα/IL-6 in MEFs. These results also show that the SOCS3-mediated inhibitory 

effects of cAMP on IL-6Rα/IL-6 signalling are not only limited to endothelial cells 

and may be a feature common to various cell types. On the other hand, SOCS3 

siRNA appeared to have no effect on the cAMP-mediated inhibition of both 

ERK1,2 and STAT3 phosphorylation in response to IL-6Rα/IL-6 in AS-Ms, implying 

that SOCS3 is not involved in this inhibitory mechanism in AS-Ms. 

Mechanism of Inhibition – Effects of PMA 
To strengthen the involvement of SOCS3 in the cAMP-mediated inhibitory 

mechanism, experiments were conducted to investigate the level at which the 

inhibition was occurring within the ERK1,2 signalling pathway. PMA, a direct 

protein kinase C activator (PKC) is known to intercept the ERK1,2 pathway at the 

level of Raf via PKC phosphorylation of Raf-1 (Kolch et al., 1993). However, 

studies have also demonstrated a Ras-dependent activation of ERK1,2 by PMA-

induced PKC activation (Verin et al., 2000). Additionally, other 

diacylglycerol/phorbol ester effectors exist, including RasGRPs, which can activate 

Ras independent of PKC (Brose & Rosenmund, 2002). SOCS3 intercepts the 

ERK1,2 pathway at the level of the receptor, upstream of Raf-1 and Ras. A very 
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well documented mode of cAMP inhibition on growth factor-stimulated  ERK1,2 

activation is the direct phosphorylation of Raf-1 by PKA at 3 serine residues; S43, 

S233 and S259, all of which have been shown to block Raf-1 interaction with GTP-

Ras (Dhillon et al., 2002b; Dumaz et al., 2002; Wu et al., 1993). Thus, to reinforce 

the notion that cAMP-mediated inhibition observed in the present study is due to 

SOCS3 and is independent of PKA, HUVECs were pre-treated with Fsk and Roli 

for 5 hours prior to 1 µM PMA treatment for 5 minutes. It was hypothesised that 

Fsk and Roli pre-treatment would have no effect on PMA-stimulated ERK1,2 

activation if indeed the cAMP-mediated mechanism of inhibition was SOCS3-

dependent and PKA-independent. However, if the well described PKA-mediated 

inhibition at the level of Raf-1 was involved, an inhibition of ERK1,2 

phosphorylation may be observed. Further to testing these assumptions, this 

experiment would also test whether or not the inhibition observed in the present 

study was specific for the signalling pathways examined. Results revealed that 

there was no inhibition of PMA-stimulated ERK1,2 phosphorylation following Fsk 

and Roli pre-treatment in the presence or absence of H89 in HUVECs (Figure 

4.27). To rule out the possibility that the concentration of PMA was masking any 

inhibitory effects of Fsk and Roli, varying concentrations of PMA were tested and 

even at concentrations as low as 0.2nM no inhibitory effects were observed (data 

not shown). Thus, the results supported the involvement of SOCS3 in the 

inhibitory mechanism and possibly further discounted a role for PKA in this 

mechanism. Additionally, the results also suggested a mode of inhibition which is 

specific for IL-6Rα/IL-6 and leptin signalling. 

As a follow-up to this, experiments were conducted to examine the effect of Fsk 

and Roli treatment over a shorter duration prior to PMA treatment, since studies 

have demonstrated cAMP-mediated inhibition of phorbol ester-stimulated ERK1,2 

phosphorylation following treatment with cAMP-elevating agents for 10 minutes in 

A14 cells (Burgering et al., 1993) and 15 minutes in MC3T3-E1 osteoblasts 

(Siddhanti et al., 1995). However, results revealed that there was no inhibition of 

PMA-stimulated ERK1,2 phosphorylation following Fsk and Roli pre-treatment for 

15 minutes in the presence or absence of H89 in HUVECs (Figure 4.28). Of 

interest, phosphorylated ERK1,2 levels were increased above basal in response to 

Fsk and Roli treatment alone for 15 minutes (6±1 fold increase over vehicle, 
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p<0.05 n=3 versus vehicle-treated control). Moreover, levels of ERK1,2 

phosphorylation were inhibited by pre-treating the cells with H89 (6±1 fold increase 

over vehicle versus 2±0.1 fold increase over vehicle, p<0.05 n=3). This is in 

contrast to the lack of ERK1,2 phosphorylation in response to Fsk and Roli 

treatment over 5 hours with or without H89 (Figure 4.27). These results are of 

interest since studies in the Palmer lab have demonstrated an ERK-dependent 

and JAK-independent induction of SOCS3 following Fsk and Roli treatment in 

HUVECs (Sands et al., 2006). The present results may therefore strengthen the 

involvement of ERK1,2 in SOCS3 induction. 

Mechanism of Inhibition – Examining a Role for ERK1,2 
However, to put this result in the context of cAMP-mediated inhibition, the next 

experiments investigated the effect of the MEK1,2 inhibitor U0126 on cAMP-

mediated inhibition of STAT3 phosphorylation in HUVECs. Cells were pre-treated 

with and without U0126 prior to Fsk and Roli treatment for 5 hours. Levels of 

ERK1,2 and STAT3 phosphorylation were examined in response to IL-6Rα/IL-6 by 

immunoblotting. In the first instance, results from these experiments revealed that 

levels of ERK1,2 phosphorylation were not significantly above basal following IL-

6Rα/IL-6 or PMA treatment in the presence of U0126 (p>0.05), which is in contrast 

to ERK1,2 phosphorylation levels following IL-6Rα/IL-6 and PMA treatment in the 

absence of U0126 (5±0.1 fold increase over vehicle, p<0.001 n=3, 12±4 fold 

increase over vehicle, p<0.05 n=3, respectively). Furthermore, a cAMP-mediated 

inhibition of IL-6Rα/IL-6-stimulated ERK1,2 phosphorylation was observed in 

HUVECs in the absence of U0126 (54±11% inhibition by Fsk + Roli versus sIL-

6Rα/IL-6-treated alone cells, p<0.05, n=3) (Figure 4.29). Thus, under conditions in 

which ERK1,2 phosphorylation was abolished, the ability of Fsk and Roli to inhibit 

sIL-6Rα/IL-6-stimulated STAT3 phosphorylation was severely impaired (56±2% 

inhibition in control HUVECs versus sIL-6Rα/IL-6-treated alone cells, p<0.001 n=3, 

12±20% inhibition in U0126-treated HUVECs versus sIL-6Rα/IL-6-treated alone 

cells, p>0.05 n=3) (Figure 4.30). These experiments suggest that ERK1,2 

activation is required for cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated 

STAT3 activation in HUVECs. To further test this assumption in AS-Ms, cells were 

initially treated with Fsk and Roli for 15 minutes to determine whether or not cAMP 

elevation could activate ERK1,2. Results showed that ERK1,2 phosphorylation 
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was not increased over basal following Fsk and Roli treatment in AS-Ms, which is 

in contrast to the marked increase of ERK1,2 phosphorylation levels following 

PMA treatment (41±9 fold increase over vehicle, p<0.01 n=3) (Figure 4.31). The 

absence of ERK1,2 phosphorylation in these cells potentially suggests an absence 

of ERK1,2-mediated SOCS3 induction, and may help explain earlier results 

wherein SOCS3 siRNA had no effect on the inhibition of sIL-6Rα/IL-6-stimulated 

ERK1,2 and STAT3 phosphorylation in AS-Ms (Figure 4.22 & 4.23). However, 

earlier results also demonstrated the induction of SOCS3 following Fsk and Roli 

treatment in AS-Ms (Figure 3.12). Thus, although Fsk and Roli treatment triggers 

SOCS3 induction in these cells, the induction may be completely distinct from the 

cAMP-mediated inhibitory effects on sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 

phosphorylation in AS-Ms. However, it must be noted that only one time point was 

used to detect ERK activation following Fsk and Roli treatment in AS-Ms, and 

conclusions should not be made based on this result alone.   

Mechanism of Inhibition – Examining a Role for Epac1 
Since experiments conducted in HUVECs were generating results which were of 

greater relevance to the working hypothesis of the current study, the next 

experiments focused on HUVECs alone. Thus far, overall experiments in HUVECs 

have suggested a cAMP-mediated, SOCS3- and ERK1,2-dependent or SOCS3-

dependent inhibition of sIL-6Rα/IL-6-stimulated STAT3 and ERK1,2 

phosphorylation respectively, which is independent of PKA, and may potentially 

involve Epac. Since results from 8-pCPT experiments were not completely clear, 

another approach was used to determine the role of Epac in cAMP-mediated 

inhibition. This approach utilised Epac1 siRNA to examine the effect of Epac1 

knock-down on sIL-6Rα/IL-6-stimulated STAT3 and ERK1,2 phosphorylation 

following Fsk and Roli treatment. In the first instance, a concentration of 20nM 

Epac1 siRNA (previously optimised in the Palmer lab) was shown to cause a 

72±11% knock-down of Epac1 protein expression under basal conditions (p<0.001 

n=5 versus control siRNA-treated control) (Figure 4.32). When examining the 

effect of this knock-down on cAMP-mediated inhibition, results revealed that Fsk- 

and Roli-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 phosphorylation 

was completely abolished in Epac1 siRNA-treated cells (60±5% inhibition in 

control siRNA-treated cells versus 7±15% inhibition [not significantly different from 
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IL-6Rα/IL-6-treated alone cells] in Epac1 siRNA-treated cells, p<0.05 n=5) (Figure 

4.33). Furthermore, treatment of cells with Epac1 siRNA also had the effect of 

substantially attenuating the Fsk and Roli-mediated inhibition of sIL-6Rα/IL-6-

stimulated STAT3 phosphorylation (41±3% inhibition in control siRNA-treated cells 

versus 13±4% inhibition in Epac1 siRNA-treated cells, p<0.01 n=4) (Figure 4.34). 

It may be worth noting in these Epac1 siRNA experiments that basal levels of 

ERK1,2 phosphorylation in Epac1 siRNA-treated cells were high. This may be the 

result of the broader effects of Epac1 knock-down in these cells. Epac has been 

shown to play important roles in integrin-mediated cell adhesion and cell-cell 

junction formation in endothelial cells (Fukuhara et al., 2005; Kooistra et al., 2005). 

Thus, disruption of these effects by Epac1 knock-down may be potentially 

obscuring the results. Indeed, micrograph images of the cells following siRNA 

transfection show that cells transfected with Epac1 siRNA look unhealthy 

compared with control siRNA and SOCS3 siRNA (Figure 4.35). Although this is an 

important point to consider when making any conclusions from the phosphorylated 

ERK1,2 immunblots, the basal levels of STAT3 phosphorylation following 

treatment of cells with Epac1 siRNA were not significantly different from the control 

siRNA-treated cells (p>0.05). Thus, the broader effects of Epac1 knock-down on 

the STAT3 signalling pathway appears to be unaffected. 

Mechanism of Inhibition – Summary 
To summarise the major findings in relation to the mechanism of inhibition, results 

from the present study suggest a cAMP-mediated inhibition of sIL-6Rα/IL-6-

stimulated ERK1,2 and STAT3 activation, and leptin-stimulated STAT3 activation 

in HUVECs. Results from AS-Ms were less clear, as basal levels of ERK1,2 

phosphorylation were high and assessment of cAMP-mediated inhibition of sIL-

6Rα/IL-6- and leptin-stimulated ERK1,2 activation was not feasible. Moreover, only 

a modest or indeed no inhibition of sIL-6Rα/IL-6- and leptin-stimulated STAT3 

activation respectively was observed following Fsk and Roli treatment in these 

cells. The cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and 

STAT3 activation observed in HUVECs appeared to be independent of PKA. 

Furthermore, the Fsk and Roli-mediated inhibitory effect on STAT3 activation was 

shown to be mimicked by the activation of Epac in HUVECs, suggesting the 

involvement of Epac. This result was verified by the findings that Epac1 knock-
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down in HUVECs significantly impaired sIL-6Rα/IL-6-stimulated ERK1,2 and 

STAT3 activation. Further to Epac1 involvement, SOCS3 was also shown to play a 

crucial role in the inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 

activation in HUVECs. However, SOCS3 siRNA results suggested no involvement 

of SOCS3 in the inhibition of leptin-stimulated STAT3 activation, or sIL-6Rα/IL-6-

stimulated ERK1,2 and STAT3 activation in AS-Ms. Nevertheless, SOCS3 

involvement in the inhibitory mechanism in HUVECs was strengthened by the 

findings that SOCS3 absence in MEFs either severely attenuated or abolished 

cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 

activation, respectively. This inhibitory effect was demonstrated to be specific for 

the sIL-6Rα/IL-6 and leptin signalling pathway, as opposed to the PMA signalling 

pathway. In addition, the inhibitory effect on sIL-6Rα/IL-6-stimulated STAT3 

activation (and presumably ERK1,2 activation) was shown to be dependent on 

ERK1,2 activation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



150 
 

4.3 Discussion 

4.3.1 Inhibition of sIL-6Rα/IL-6 and Leptin Signalling by cAMP Elevation  

From the results of the present chapter, a potentially new pathway has been 

identified which inhibits cytokine receptor activation of ERK1,2 and STAT3 in 

endothelial cells. An inhibition of both IL-6 and leptin signalling in response to 

cAMP elevation in HUVECs has been observed. Of particular relevance to the 

present study is the inhibition of sIL-6Rα/IL-6–induced ERK1,2 activation following 

cAMP elevation. These findings are in agreement with other studies; for example, 

Sobota and co-workers have demonstrated an inhibition of IL-6-induced ERK1,2 

activation following forskolin (Fsk) treatment in human dermal fibroblasts (Sobota 

et al., 2008).  

In general, inhibition of ERK1,2 by cAMP has been documented in numerous cell 

types, including NIH3T3 fibroblasts, Rat-1 fibroblasts, adipocytes and smooth 

muscle cells (Burgering et al., 1993; Cook & McCormick, 1993; Osinski & Schror, 

2000; Sevetson et al., 1993; Wu et al., 1993). In comparison, cAMP elevation has 

also been shown to activate the ERK1,2 pathway in certain cell types, such as rat 

PC12 cells, N1E-115 neuroblastoma cells and melanocytes (Keiper et al., 2004; 

Wang et al., 2006). cAMP has been shown to exert these positive or negative 

effects on ERK1,2 signalling via a number of mechanisms. For example, when 

examining the activation of ERK1,2 by cAMP in PC12 rat pheochromocytoma 

cells, Wang et al. (2006) described a PKA-dependent activation of Rap1 via the 

Rap-GEF Crk SH3 domain Guanine nucleotide exchange (C3G). Active GTP-

bound Rap1, in turn, directly binds and activates B-Raf, leading to ERK1,2 

activation (Wang et al., 2006). A PKA-dependent activation of ERK1,2 via Rap1 

and B-Raf activation has also been demonstrated in HEK293 cells (Schmitt & 

Stork, 2000). Alternatively, Keiper and co-workers have described a more indirect 

pathway leading to ERK1,2 activation by cAMP, which is independent of PKA. 

These investigators provided evidence for a Rap2b/phospholipase C (PLC)-

ε/RasGRP pathway, leading to the accumulation of GTP-bound Ras and 

subsequent ERK1,2 activation in HEK293 cells and N1E neuroblastoma cells. 

Specifically, Epac-mediated activation of Rap2B was shown to activate PLC-ε, 

leading to an increase in intracellular calcium, and the subsequent activation of the 

RasGRP family of Ras-specific GEFs. This was followed by the activation of H-
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Ras and finally ERK1,2 (Keiper et al., 2004). Yet another pathway describes how 

cAMP can activate ERK1,2 via activation of the GEF CNRasGEF, which leads to 

Ras activation and subsequent ERK1,2 activation in melanoma cells (Amsen et 

al., 2006). 

Conversely, cAMP can inhibit ERK1,2 activation via several mechanisms. One of 

which (detailed in Chapter 4 Introduction) involves the direct phosphorylation of 

Raf-1 by PKA at multiple sites in its N-terminal domain, which block Raf-1 

interaction with Ras (Dhillon et al., 2002b; Dumaz & Marais, 2005). This 

mechanism has been well described for the cAMP-mediated inhibition of growth 

factor signalling and more recently has been proposed to be responsible for the 

cAMP-mediated PKA-dependent inhibition of sIL-6Rα/IL-6–induced ERK1,2 

activation (Sobota et al., 2008). Another model of ERK1,2 inhibition by cAMP 

involves the phosphorylation and activation of Src-kinase by PKA, which leads to 

the activation of Rap1. GTP-bound Rap1 is then believed to sequester Raf-1, 

preventing its activation by Ras and consequently inhibiting ERK1,2 activation 

(Schmitt & Stork, 2001; Schmitt & Stork, 2002). Further to this, an alternative PKA-

dependent inhibitory mechanism involves the induction of mitogen-activated 

protein kinase phosphatase 1 (MKP-1, also known as DUSP1). MKP-1 

dephosphorylates MAPKs (ERK, JNK and p38 MAPKs) on tyrosine and threonine 

residues. MKP-1 has been shown to be induced following cAMP elevation in a 

PKA-dependent manner. Thus, dephosphorylation of ERK1,2 by MKP-1 

represents another inhibitory mechanism (Burgun et al., 2000; Sewer & 

Waterman, 2003). In summary, a number of mechanisms have been ascribed to 

the inhibition or activation of ERK1,2 in a variety of cell types, highlighting the 

complexity of ERK1,2 regulation by cAMP. 

When examining the STAT3 pathway, a cAMP-mediated inhibition of sIL-6Rα/IL-

6– and leptin-induced STAT3 activation in HUVECs was observed. These results 

are in contrast to the findings by Sobota and co-workers (2008); demonstrating no 

inhibition of STAT3 activation in response to cAMP elevation in human dermal 

fibroblasts (Sobota et al., 2008). This may be due to different experimental 

conditions, since these investigators treated the cells with sIL-6Rα/IL-6 for up to 60 

minutes in the presence or absence of Fsk, whereas the present study pre-treated 

the cells with Fsk and rolipram (Roli) for 5 hours. Indeed, it could be postulated 
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that short-term effects of cAMP in HUVECs lead to the inhibition of ERK1,2 

activation via the phosphorylation of Raf1 by PKA (described above), whereas 

long-term effects of cAMP in HUVECs result in the inhibition of both ERK1,2 and 

STAT3 via a mechanism distinct from Raf1 phosphorylation and activation. 

Certainly, part of the basis of this current work was to discount the involvement of 

the well described PKA-Raf1 inhibitory mechanism in the cAMP-mediated 

inhibition observed in the present study. However, work carried out by Sengupta 

and co-workers (1996), showed that IL-6-induced STAT3 binding to a high affinity 

serum-inducible element (hSIE) oligonucleotode in human mononuclear cells was 

inhibited following only 60 minutes pre-incubation with 8-Br-cAMP (Sengupta et 

al., 1996). This therefore also suggests the presence of cell-type specific effects of 

cAMP and is supported by the present results showing that STAT3 activation in 

response to sIL-6Rα/IL-6 was only modestly inhibited by cAMP elevation in AS-Ms 

and leptin-induced STAT3 activation was not inhibited at all, despite using exactly 

the same experimental conditions. Furthermore, the effects of cAMP on sIL-

6Rα/IL-6- or leptin-induced ERK1,2 activation in AS-Ms could not be assessed as 

levels of ERK1,2 activation in response to both these cytokines were no greater 

than basal levels of ERK1,2 activation. It may be worth noting however that cAMP 

elevation substantially reduced “basal levels” of ERK1,2 in these cells, which has 

been demonstrated in other studies. For example, Wang and co-workers (2001) 

demonstrated inhibition of ERK1,2 phosphorylation in response to 8-CPT-cAMP, 

Fsk and isoproterenol when compared to basal levels of ERK1,2 phosphorylation 

in rat C6 glioma cells (Wang et al., 2001). Thus, although both cell types were 

endothelial in origin and both cell types were subjected to the same experimental 

conditions, each cell type responded differently to cAMP elevation on IL-6 and 

leptin signalling. It is well known that endothelial cells from different origins display 

variation with respect to their biochemical and immunological properties (Aird, 

2005). Therefore, the differences observed between these cell types may be 

attributable to the different origins of these cells. Of particular relevance, AS-Ms 

are derived from a cutaneous angisarcoma (Krump-Konvalinkova et al., 2003). As 

a cancerous cell line, high basal levels of ERK1,2 activation may be expected in 

these cells.  
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4.3.2 cAMP-mediated PKA-independent Inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 and STAT3 Activation in HUVECs 

Further experiments focusing on the cAMP-mediated inhibition of sIL-6Rα/IL-6-

induced ERK1,2 and STAT3 activation in HUVECs demonstrated that this 

inhibition occurred via a mechanism independent of PKA. These results are 

supported by a number of studies demonstrating PKA-independent inhibitory 

effects of cAMP in endothelial cells. For example, cAMP elevation in HUVECs has 

been shown to reduce vascular permeability and enhance vascular endothelial 

(VE) cadherin-mediated adhesion via a cAMP/Epac/Rap1 pathway, which is 

independent of PKA (Cullere et al., 2005; Fukuhara et al., 2005). Conversely, 

Sobota and coworkers (2008) demonstrated a cAMP-mediated inhibition of sIL-

6Rα/IL-6-induced ERK1,2 activation via PKA-dependent phosphorylation and 

inhibition of Raf-1 (Sobota et al., 2008). Thus, results from the present study imply 

that the cAMP-mediated mechanism of inhibition is distinct from the well 

characterised PKA-dependent inhibition of Raf-1, often associated with cAMP-

mediated growth factor signalling inhibition. Furthermore, these results may also 

discount a role for MKP-1 in the inhibition of ERK1,2, since MKP-1 has been 

shown to be activated by PKA. However, MKP-1 is also induced by ERK1,2 in 

various cell types, in an inhibitory feedback manner (Brondello et al., 1997; 

Grumont et al., 1996). Previous studies from the Palmer lab and the present study 

(detailed later) have implied that activation of ERK1,2 is required to observe 

cAMP-mediated inhibition of IL-6 signalling. Thus, cAMP-mediated and ERK1,2-

dependent activation of MPK-1 could represent a mode of inhibition of sIL-6Rα/IL-

6-induced ERK1,2 activation. Additionally, the H89-insensitive inhibition of sIL-

6Rα/IL-6-induced STAT3 activation may also limit the involvement of SHP2 in the 

inhibition, since SHP2 has been shown to be positively regulated by PKA, leading 

to the stimulation of phosphatase activity (Rocchi et al., 2000). In summary, a 

PKA-independent inhibition of sIL-6Rα/IL-6-induced ERK1,2 and STAT3 activation 

has been observed in HUVECs, which could potentially discount the previously 

described PKA-dependent mechanisms of inhibition and may implicate the other 

major cAMP sensor; Epac. 

4.3.3 Epac-dependent & -independent Inhibition of sIL-6Rα/IL-6-induced 

STAT3 and ERK1,2 Activation, respectively, in HUVECs  
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The use of the Epac-selective cAMP analogue 8pCPT in this study showed that 

8pCPT could recapitulate the cAMP-mediated inhibition of sIL-6Rα/IL-6-induced 

STAT3 activation, but not ERK1,2 in HUVECs. Since HUVECs have been shown 

to express only Epac1 and not Epac2 (Fang & Olah, 2007), it may be postulated 

that an Epac1-mediated inhibitory mechanism was operational. However, this did 

not account for the inability of 8pCPT to recapitulate cAMP-mediated inhibition of 

sIL-6Rα/IL-6-induced ERK1,2 activation. Previous results from Chapter 3, together 

with the present Chapter’s results demonstrate a substantial amount of variation 

when using 8pCPT and this should be taken into account when making any 

conclusions. Indeed, varying results have been reported in the literature when 

using 8pCPT, in relation to ERK1,2 activation. As discussed later in the context of 

the present results, ERK1,2 activation appears to be necessary to observe cAMP-

mediated inhibition. Previous reports in the Palmer lab have demonstrated that 

8pCPT treatment in HUVECs could not activate ERK1,2 (data not published). This 

result is in agreement with other studies, which demonstrate Rap1 activation but 

not ERK1,2 activation in several cell lines, including CHO, OVCAR3, PC12, 

HEK293T and AtT20 (Enserink et al., 2002; Wang et al., 2006). Enserink et al. 

(2002) suggested that Epac-mediated Rap1 activation and cAMP-mediated 

ERK1,2 activation were independent processes. As such, Rap1 is incapable of 

activating ERK1,2. However, other studies have demonstrated that 8pCPT can 

activate ERK1,2 in HEK293 cells, N1E-115 neuroblastoma cells and HUVECs 

(Fang & Olah, 2007; Keiper et al., 2004). Furthermore, Wang et al. (2006) 

proposed that the inability of Rap1 to activate ERK1,2 was not due to a property of 

Rap1, but rather a property of Epac. These investigators suggested that Epac-

mediated ERK activation may be dependent on the localisation of Rap GEFs 

within the cell, and their ability to activate different pools of Rap1 (Wang et al., 

2006). Epac1 has been shown to have a distinct perinuclear expression pattern, 

whereas the Rap1 GEF C3G is cytoplasmic under basal conditions and becomes 

recruited to the plasma membrane upon activation (Qiao et al., 2002; Radha et al., 

2004). Rap1 activated by C3G is capable of activating ERK and this appears to be 

a consequence of its localisation. When the membrane targeting motif of Ki-Ras 

was fused to the C terminus of Epac1, Epac1 was relocated to the plasma 

membrane where it could activate ERK via a Rap1/BRaf mechanism (Wang et al., 
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2006). Thus, variability exists in terms of 8pCPT-Rap1 regulation of ERK1,2. The 

present results demonstrate that 8pCPT is capable of mimicking the Fsk and Roli-

mediated inhibition of sIL-6Rα/IL-6-induced STAT3 activation, but not capable of 

mimicking the Fsk and Roli-mediated inhibition of sIL-6Rα/IL-6-induced ERK1,2 

activation. This may suggest the involvement of two separate inhibitory 

mechanisms in HUVECs; an Epac1-dependent inhibition of sIL-6Rα/IL-6-induced 

STAT3 activation and an Epac1-independent inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 activation. However, later experiments will disprove this assumption. A 

more likely explanation is experimental variation associated with this analogue. As 

previously mentioned in Chapter 3, 8pCPT could be getting degraded over the 5 

hour incubation period. Additionally, 8pCPT has been shown to have low 

membrane permeability. Indeed, recently a new Epac analogue has been 

developed (8-pCPT-2’-O-Me-cAMP-AM), which is more efficiently delivered into 

cells (Vliem et al., 2008). 

4.3.4 cAMP-mediated SOCS3-dependent & -independent Inhibition of sIL-

6Rα/IL-6-induced ERK1,2 and STAT3 Activation, and leptin-induced STAT3 

Activation, respectively, in HUVECs 

The PKA-independent inhibition of IL-6Rα/IL-6-stimulated ERK1,2 and STAT3 

activation following cAMP elevation, and potentially Epac1-dependent inhibition of 

IL-6Rα/IL-6-stimulated STAT3 activation in HUVECs, did not alter the levels of 

total ERK1,2 and STAT3 expression. From these observations it may be 

postulated that a post-receptor inhibitory mechanism was operational. In line with 

the working hypothesis and the involvement of SOCS3 in the inhibitory 

mechanism, previous results from the Palmer lab have shown that Fsk-mediated 

induction of SOCS3 is not inhibited by H89 in HUVECs (Sands et al., 2006). 

Additionally, expression of a constitutively active GTPase-deficient Val12Rap1a 

was shown to be capable of triggering SOCS3 accumulation in HUVECs (Sands et 

al., 2006). Further to this, depletion of Rap1a using specific siRNA targeting 

Rap1a in HUVECs substantially attenuated SOCS3 induction by Fsk and Roli. 

Furthermore, depletion of Epac1 using siRNA in HUVECs was shown to abolish 

SOCS3 induction following cAMP elevation (Sands et al., 2006). Lastly, over-

expression of RapGAP, which is known to increase the intrinsic GTPase activity of 

Rap1, was shown to severely attenuate the ability of Fsk and Roli, and 8-pCPT to 
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induce SOCS3 in HUVECs (Yarwood et al., 2008). Collectively, these results 

together with the results from Chapter 3, which show a trend of SOCS3 

accumulation following 8pCPT treatment in HUVECs and AS-Ms (Figure 3.13 & 

3.14) suggest an Epac1-mediated SOCS3 induction, which is independent of PKA. 

The possibility of SOCS3 involvement in the cAMP-mediated inhibition of IL-6 and 

leptin signalling was next investigated by using specific siRNA targeting SOCS3. 

These experiments demonstrated that SOCS3 is involved in the cAMP-mediated 

inhibition of sIL-6Rα/IL-6-induced ERK1,2 and STAT3 activation in HUVECs. 

However, a role for SOCS3 in the cAMP-mediated inhibition of leptin-induced 

STAT3 activation in HUVECs was not demonstrated. The SOCS3 binding sites on 

the leptin receptor have been identified as pTyr985 and pTyr1077. The affinity of 

SOCS3 binding to these sites has been shown to be much lower than for pTyr757 

on gp130. For example, pTyr985 has an 80-fold lower affinity for SOCS3, when 

compared to pTyr757 (De Souza et al., 2002). As an alternative to SOCS3, protein 

tyrosine phosphatase 1B (PTP1B) may be a strong candidate for the observed 

negative regulation of leptin signalling. Supporting this assumption is a study using 

PTP1B-deficient mice. These mice are hypersensitive to insulin and leptin, and are 

resistant to diet-induced obesity (Elchebly et al., 1999). A large body of evidence 

suggests that PTP1B targets leptin signaling mainly via JAK2 dephosphorylation 

and thus targets both the STAT and ERK1,2 pathways (Lavens et al., 2006). 

Interestingly, serine phosphorylation of PTP1B in response to cAMP analogues 

has been shown in HeLa cells (Brautigan & Pinault, 1993). Further to PTP1B, 

other SOCS members could be involved in the cAMP-mediated inhibition of leptin 

signalling. For example, SOCS7 has been shown to inhibit leptin-induced STAT3 

activation in HEK293T cells (Martens et al., 2005).  

4.3.5 cAMP-mediated SOCS3-independent Inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 and STAT3 Activation in AS-Ms 
With regards to AS-Ms, depletion of SOCS3 in these cells demonstrated no 

involvement of SOCS3 in the cAMP-mediated inhibition of sIL-6Rα/IL-6-induced 

STAT3 and ERK1,2 activation. As mentioned previously, other inhibitory 

mechanism could be responsible for this inhibition, independent of SOCS3. For 

example, in addition to PTP1B and other SOCS members, SHP2 could possibly 

be involved. Previous work in the Palmer lab has shown that pre-treatment of 



157 
 

HUVECs with the tyrosine phosphatase inhibitor mpV does not alter the cAMP-

mediated inhibition of sIL-6Rα/IL-6-induced STAT3 activation (Sands et al., 2006). 

This argues against a role for SHP2 and other protein tyrosine phosphatases in 

the cAMP-mediated inhibition observed in HUVECs, but since this experiment was 

not performed in AS-Ms, SHP2 involvement could still be a possibility. Indeed, 

studies have shown that expression of catalytically inactive dominant negative 

SHP2 mutants results in increased gp130, JAK and STAT3 phosphorylation as 

well as gene induction (Lehmann et al., 2003; Symes et al., 1997). 

4.3.6 cAMP-mediated SOCS3-dependent Inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 and STAT3 Activation in MEFs 

Further support for the involvement of SOCS3 in the cAMP-mediated inhibition of 

sIL-6Rα/IL-6 signalling in HUVECs was demonstrated when the inhibition of sIL-

6Rα/IL-6-induced ERK1,2 and STAT3 activation was shown to be severely 

attenuated in SOCS3-/- MEFs, while remaining intact in the SOCS3+/+ MEFs. 

These results strengthen the involvement of SOCS3 in the inhibitory mechanism 

and also show that the SOCS3-mediated inhibitory effects of cAMP on IL-6Rα/IL-6 

signalling were not limited to HUVECs and may be a feature common to various 

cell types. Indeed, previous work in the Palmer lab has shown that the 

cAMP/SOCS3 inhibitory pathway is also present in human aortic endothelial cells 

(HAECs), as observed by a cAMP-mediated inhibition of sIL-6Rα/IL-6-induced 

STAT3 activation and SOCS3 induction in these cells (Sands et al., 2006).  

4.3.7 PMA-stimulated ERK1,2 Activation in HUVECs – Insensitivity to cAMP 
Inhibitory Mechanism 
Further weight to the cAMP/SOCS3 pathway was added when examining the PMA 

effects in HUVECs. PMA, a direct protein kinase C (PKC) activator is known to 

intercept the ERK1,2 pathway at the level of Raf-1 (Kolch et al., 1993). This is 

supported by the findings that ERK activation following phorbol ester treatment 

does not require functional p21Ras, since a virus expressing dominant negative 

Asn17 mutant p21Ras in Rat-1 cells inhibits PDGF-mediated ERK2 activation, but 

not PMA-mediated ERK2 activation (de Vries-Smits et al., 1992). Furthermore, 

activation of p21Ras following PMA treatment could not be demonstrated under 

conditions in which insulin-induced p21Ras activation was readily observed 

(Medema et al., 1991). However, there is also evidence to suggest a Ras-
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dependent activation of ERK1,2 following PMA treatment. Interestingly, this Ras-

dependent activation of ERK1,2 in PMA-treated bovine pulmonary artery 

endothelial cells (BPAECs) was found to lead to endothelial barrier dysfunction 

(Verin et al., 2000). Further to a Raf-1-dependent and a Ras-dependent 

PMA/PKC-mediated ERK1,2 activation, other diacylglycerol/phorbol ester effectors 

have been identified. These include chimaerins, protein kinase D, RasGRPs, 

Munc13s and DAG kinase γ (Brose & Rosenmund, 2002). Of particular interest 

are the RasGRP effectors, since these comprise a family of 4 guanine nucleotide 

exchange proteins (GEFs) for Ras, all of which activate Ras in response to 

DAG/phorbol ester stimulation independent of PKC (Brose & Rosenmund, 2002). 

SOCS3 intercepts the ERK1,2 pathway at the level of the receptor, upstream of 

Raf-1 and Ras, while the well documented PKA/Raf-1 inhibitory pathway, 

mentioned previously, intercepts the ERK1,2 pathway at the level of Raf-1. In the 

present study, a cAMP-mediated inhibition of ERK1,2 activation following PMA 

stimulation in HUVECs could not be demonstrated. These results therefore 

suggest that the cAMP-mediated inhibitory effect observed in the present study 

does not appear to be intercepting the ERK1,2 pathway at the level of Ras or Raf-

1, since PMA-stimulated ERK1,2 activation is still intact. Thus, the well described 

PKA-mediated inhibitory mechanism at the level of Raf-1 may not be operating, 

making the cAMP/SOCS3 pathway a more likely inhibitory mechanism. 

Furthermore, cAMP-mediated inhibition of PMA-stimulated ERK1,2 activation 

could not be shown by pre-treating the cells with Fsk and Roli for shorter 

incubations. This is in contrast to other studies, which have demonstrated a cAMP-

mediated inhibition of PMA-stimulated ERK1,2 activation by pre-treating cells with 

cAMP-elevating agents for 5 minutes in adipocytes and CHO cells (Bradley et al., 

1993), 10 minutes in A14 cells (Burgering et al., 1993) and 15 minutes in MC3T3-

E1 osteoblasts (Siddhanti et al., 1995). Thus, the short-term effects of cAMP on 

PMA-stimulated ERK1,2 activation still do not support a role for the PKA/Raf-1 

pathway.  

4.3.8 cAMP-induced ERK1,2 Activation in HUVECs 
Interestingly, treating HUVECs with Fsk and Roli for a shorter length of time (15 

minutes) demonstrated activation of ERK1,2, whereas longer incubations (5 hours) 

showed no ERK1,2 activation. Additionally, this cAMP-mediated ERK1,2 activation 

was shown to be PKA-dependent. Previous results from the Palmer lab have 
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demonstrated that cAMP-mediated induction of SOCS3 in HUVECs is abolished 

by pre-treating the cells with the MEK inhibitor U0126. Furthermore, a selective 

JAK inhibitor was shown to have no effect on cAMP-mediated SOCS3 induction, 

but abolished SOCS3 induction in response to sIL-6Rα/IL-6 (Sands et al., 2006). 

Recently, Yarwood et al. (2008) suggested that the family of transcription factors 

termed CCAATT/enhancer binding proteins (CEBPs) link Epac activation to 

SOCS3 induction (Yarwood et al., 2008). These findings are in contrast to the 

cAMP-mediated PKA-dependent activation of ERK1,2 observed in the present 

study, but are consistent with the cAMP-mediated PKA-independent inhibition of 

sIL-6Rα/IL-6-induced ERK1,2 and STAT3 activation. Thus, the PKA-mediated 

stimulation of ERK1,2 may be distinct from the PKA-independent inhibitory 

mechanism. Intriguingly, further experiments demonstrated that ERK1,2 activation 

appears to be required for the cAMP-mediated inhibition of sIL-6Rα/IL-6-induced 

STAT3 activation, since the MEK inhibitor U0126 severely impaired STAT3 

inhibition. This result also suggests that the inhibitory effects of cAMP were not 

due to an inactivation of dual specificity ERK phosphatases, such as the 

aforementioned MKP-1. Of interest, ERK1,2 activation in response to Fsk and Roli 

could not be observed in AS-Ms. This could possibly explain earlier results 

wherein SOCS3 siRNA had no effect on the inhibition of sIL-6Rα/IL-6-stimulated 

ERK1,2 and STAT3 phosphorylation in AS-Ms. However, results from Chapter 3 

demonstrated SOCS3 induction in response to Fsk and Roli treatment in AS-Ms. 

Thus, although Fsk and Roli treatment triggers SOCS3 induction in these cells, the 

induction may be completely distinct from the cAMP-mediated inhibitory effects on 

sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 phosphorylation in AS-Ms. It is 

tempting to speculate that a strong stimulation of cAMP-mediated ERK1,2 

activation is required to observe cAMP/SOCS3 inhibition of IL-6 signalling in AS-

Ms.  

4.3.9 cAMP-mediated Epac1-dependent Inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 and STAT3 activation in HUVECs 
As no pharmacological inhibitors of Epac currently exist, Epac siRNA is a powerful 

tool to determine the role of Epac in various processes, such as the regulation of 

EC permeability and the induction of SOCS3 (Kooistra et al., 2005; Sands et al., 

2006). In the present study, the depletion of Epac1 in HUVECs had the effect of 
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severely attenuating the cAMP-mediated inhibition of sIL-6Rα/IL-6-induced 

ERK1,2 and STAT3 activation. These results strongly implicate Epac1 in the 

cAMP-mediated inhibitory mechanism, which is consistent with other studies 

demonstrating Epac-mediated inhibitory effects in HUVECs, namely reduced 

vascular permeability and enhanced vascular endothelial (VE) cadherin-mediated 

cell-cell interactions. These effects were proposed to occur via a cAMP/Epac/Rap1 

pathway, which is independent of PKA (Cullere et al., 2005; Fukuhara et al., 

2005). These results are also consistent with the anti-inflammatory effects of 

cAMP in endothelial cells (Blease et al., 1998; Morandini et al., 1996; Pober et al., 

1993). Therefore, targeting the cAMP/Epac/Rap1 pathway could prove to be 

beneficial in terms of limiting a number of endothelial functions associated with 

endothelial dysfunction. In comparison, and as mentioned previously, findings from 

Sobota and co-workers (2008) demonstrated a PKA-dependent and Epac-

independent inhibition of sIL-6Rα/IL-6-induced ERK1,2 activation in human dermal 

fibroblasts (Sobota et al., 2008). It is interesting to note that the SOCS-mediated 

inhibitory mechanism observed in the present study targets gp130 and thus both 

the sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 pathways in response to cAMP 

elevation, whereas the PKA-dependent inhibitory mechanism observed in Sobota 

et al. (2008) targets Raf-1 in response to cAMP elevation and thus only the sIL-

6Rα/IL-6-stimulated ERK1,2 pathway.  

4.3.10 cAMP Selectivity - Compartmentalisation 
How and why cAMP selectively activates some pathways in some cells and other 

pathways in other cells is still unclear. This is particularly exemplified in the 

selective activation of ERK1,2 in some cells and the inhibition of ERK1,2 in other 

cells in response to cAMP as discussed earlier in this Chapter. This may be due to 

a number of reasons. For example, the signalling proteins that couple different 

pathways may be expressed in a cell type dependent manner. Alternatively, and of 

interest to the present study there is increasing evidence to support the 

compartmentalization of cAMP within the cell, which may only permit the selective 

activation of certain signaling pathways.  

Early models proposed that cAMP was distributed uniformly within cells, but it is 

now known that cAMP can also localise to discreet cellular compartments (Dodge-

Kafka et al., 2005; Netherton et al., 2007). This is in part achieved by the 
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association of PKA with A-kinase anchoring proteins (AKAPs). AKAPs are non-

enzymatic scaffolding proteins, which anchor PKA to specific subcellular structures 

(Michel & Scott, 2002). One of the first AKAPs to be described was AKAP75, 

originally identified as a contaminant in PKA type II preparations (Sarkar et al., 

1984). Since then, the family of AKAPs has increased to over 50 members. Of 

relevance to the present study, muscle-specific mAKAP signalling complexes 

identified in the heart, have been shown to comprise PKA, Epac1, PDE4D3 and 

ERK5. As mentioned previously in section 1.2.2 of the Introduction, this complex 

incorporates 2 cAMP-mediated pathways and 2 coupled cAMP-dependent 

feedback loops. Briefly, both PKA and Epac1 can become activated via ERK 

phosphorylation of PDE4D3 on Ser579 (Hoffmann et al., 1999), which suppresses 

phosphodiesterase activity leading to increased cAMP levels. Activated PKA can 

then phosphorylate PDE4D3 on Ser54 (Sette & Conti, 1996), which increases its 

affinity for cAMP and then decreases localised cAMP levels. Additionally, activated 

Epac1 can inhibit ERK5, thus preventing continued inactivation of PDE4D3 

(Dodge-Kafka et al., 2005) (Figure 4.1). This is in contrast to other studies as 

Epac- and PKA-integrated signalling is observed within the same signalling 

complex, whereas other studies have shown that PKA- and Epac-based 

complexes are distinct and cannot be found together (Netherton et al., 2007; 

Raymond et al., 2007). Furthermore, these conflicting studies also demonstrate 

that PDE3B and PDE4D are similarly non-overlapping, with PKA- or Epac-based 

signalling complexes containing either PDE3B or PDE4D but not both (Netherton 

et al., 2007; Raymond et al., 2007). Raymond and coworkers (2007) proposed that 

at least 3 signalling complexes were present in 293T cells; PDE3B-EPAC, 

PDE4D-EPAC and PDE4D-AKAP-PKA (Raymond et al., 2007). Of interest, further 

work by this group showed that the PDE3B-EPAC complex was also found in 

human aortic endothelial cells (HAECs) (Netherton et al., 2007). When examining 

the mAKAP signalling complex in rat neonatal ventriculocytes (RNVs), pre-

treatment with forskolin for 20 minutes resulted in a reduction in serum-dependent 

activation of mAKAP-associated ERK5, which could not be rescued by the PKA 

inhibitor H89 (Dodge-Kafka et al., 2005). Similar results were observed when 

using alternative PKA inhibitors, such as KT5720 and Rp-cAMPs, thereby 

implicating a PKA-independent mechanism of cAMP–mediated inhibition of ERK5 

(Dodge-Kafka et al., 2005). 8pCPT was used to assess whether Epac1 was 
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playing a role in mAKAP-associated ERK5 inhibition, and results showed that 

8pCPT treatment for 1hr recapitulated the inhibitory effect of forskolin on serum-

dependent activation of ERK5, thereby suggesting the involvement of Epac1, and 

not PKA, in mAKAP-associated ERK5 inhibition (Dodge-Kafka et al., 2005). 

Furthermore, the same group implicated Rap-1 in the inhibitory effect, since 

expression of a constitutively active RapGAP blocked cAMP–mediated inhibition of 

ERK5 (Dodge-Kafka et al., 2005). These results parallel the present results to a 

degree and may possibly suggest the presence of an analogous signalling 

complex in the present study. 

4.3.11 Possible Downstream Effects of ERK1,2 Activation 
Although the cAMP-mediated inhibitory mechanism was the main focus of the 

present study, it should be noted that in an attempt to investigate this inhibitory 

effect on ERK1,2 signalling further downstream, the transcriptional activity of the 

well characterised ERK-responsive transcription factor Elk-1 was shown to be 

unaffected by sIL-6Rα/IL-6 or leptin treatment in HUVECs (and AS-Ms). However, 

a trend of increased Elk-1 transcriptional activity following PMA treatment was 

observed in HUVECs (and AS-Ms). These findings were largely supported by the 

results from the nuclear extraction experiments, as ERK1,2 activation following 

sIL-6Rα/IL-6- or leptin treatment in the nuclear fractions of both HUVECs and AS-

Ms was substantially lower when compared to PMA-induced ERK1,2 activation in 

the nuclear fractions of both cell types. A possible explanation for these 

observations may involve the spatial regulation of MAPK and in particular the 

nucleocytoplasmic trafficking of ERK1,2. Sef (similar expression to fgf genes) is a 

transmembrane protein which has been shown to sequester activated 

MEK1,2/ERK1,2 complexes in the cytoplasm by preventing MEK1,2 dissociation. 

MEK1,2 dissociation is required for ERK1,2 translocation to the nucleus. Thus, Sef 

blocks ERK1,2 translocation, and does not appear to  affect the activity of ERK1,2 

in the cytoplasm (Kondoh et al., 2005). Of relevance to the present study, Elk-1 

transcriptional activity in response to FGF and EGF treatment in HEK293 cells and 

HeLa cells was shown to be inhibited following transfection with human Sef (hSef) 

constructs. In comparison, activation of p90 ribosomal S6 kinase 2 (RSK2) by 

FGF, a well known cytoplasmic ERK1,2 substrate was unaffected by hSef (Torii et 

al., 2004). In addition to Sef, another protein which has been shown to influence 
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ERK1,2 localisation is phosphoprotein enriched in astrocytes 15 kDa (PEA-15). 

PEA-15 has been shown to promote cytoplasmic localisation of ERK1,2 by binding 

to ERK1,2 and RSK2 and sequestering them both in the cytoplasm. PEA-15 is 

believed to act as a scaffold protein, enhancing ERK1,2 phosphorylation of RSK2. 

Lymphocytes from PEA-15 knock-out mice demonstrated diminished RSK2 activity 

in response to PMA, which is rescued by exogenous PEA-15 expression 

(Vaidyanathan et al., 2007). Thus, the possible involvement of Sef and/or PEA-15 

in sIL-6Rα/IL-6- or leptin-induced ERK1,2 activation could result in the preferential 

activation of cytoplasmic substrates, as opposed to nuclear substrates. Indeed, a 

study conducted in human bone marrow stromal cells showed that leptin induced 

apoptosis through the ERK1/2 cascade via activation of cytosolic phospholipase 

A2 (cPLA2) (Kim et al., 2003) In comparison to Sef and PEA-15 which both act to 

sequester ERK1,2 in the cytoplasm, the kinase suppressor of Ras (KRS) has been 

shown to inhibit Elk1 activity by promoting Elk-1 dephosphorylation via activation 

of the major Elk-1 phosphatase; phosphoprotein phosphatase 2B (PP2B, also 

known as calcineurin). EGF- and Ras-induced activation of Elk-1 in COS1 cells 

has been shown to be inhibited by KSR, whilst ERK1,2 activation is unaffected 

(Sugimoto et al., 1998). The involvement of KSR could possibly explain the lack of 

PMA-induced Elk-1 transcriptional activity despite observing a marked increase in 

ERK1,2 activation in the nuclear fractions following PMA treatment. However, 

further to the possible regulation of ERK1,2 and /or Elk-1 outlined above, 

consideration must also be given to experimental drawbacks such as low 

transfection efficiency. 

4.3.12 Mechanism of Inhibition - Summary 
In summary, and in relation to the inhibitory mechanism, results from this Chapter 

demonstrate a cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and 

STAT3 activation in HUVECs, which is independent of PKA. This cAMP-mediated 

inhibition was also shown to be Epac1- and SOCS3-dependent. Further to this, 

there appeared to be a requirement for ERK1,2 activation in the cAMP-mediated 

inhibition of sIL-6Rα/IL-6-stimulated STAT3 activation in HUVECs. In contrast to 

these findings, cAMP-mediated inhibition of leptin-stimulated STAT3 activation in 

HUVECs was shown to occur via a SOCS3- independent mechanism. The 

responses to cAMP elevation on sIL-6Rα/IL-6- and leptin-stimulated ERK1,2 
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activation in AS-Ms were variable, since basal levels of ERK1,2 activation were 

high. Moreover, the responses to cAMP elevation on sIL-6Rα/IL-6- and leptin-

stimulated STAT3 activation were either very modest or showed no effect, 

respectively. However, siRNA experiments demonstrated that SOCS3 was not 

involved in the cAMP-mediated inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and 

STAT3 activation in AS-Ms. Focusing on the results relevant to the working 

hypothesis of this study, the present results together with previous results from the 

Palmer lab and Yarwood et al. (2008) show an Epac1-mediated accumulation of 

GTP-bound Rap1a which is sufficient to induce SOCS3 expression possibly via 

the C/EBP family of transcription factors. SOCS3 accumulation subsequently 

leads to the inhibition of sIL-6Rα/IL-6-stimulated ERK1,2 and STAT3 activation in 

HUVECs. These inhibitory effects appear to be both ERK1,2-dependent and PKA-

independent.  
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Figure 4.1 mAKAP Complex in Cardiomyocytes  
 
Cytokines such as LIF activate ERK5, which phosphorylates PDE4D3 on Ser579, 

causing its inactivation. This leads to an increase in local cAMP levels and the 

subsequent activation of PKA and Epac1. Activated PKA phosphorylates PDE4D3 

on Ser54, which increases its affinity for cAMP and lowers the levels of cAMP. 

Additionally, activated Epac1 inhibits ERK5 via Rap1, thus preventing continued 

inactivation of PDE4D3. Therefore, both PKA and Epac1 mediate negative 

feedback of local cAMP levels within this multi-protein complex. 

(Taken from (Bos, 2006). 
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Figure 4.2 The Effect of cAMP elevating agents on ERK1,2 Phosphorylation 
by sIL-6Rα/IL-6 in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml 

respectively for 30 minutes. The controls in this experiment included vehicle (V) 

treated cells, which were treated with ethanol, DMSO and PBS at the same 

volume and for the same length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment 

respectively, and 1µM PMA treated cells (data not shown), a potent activator of 

ERK1,2 in endothelial cells. Following treatment, soluble cell extracts equalised for 

protein concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. Quantitative analysis of phosphorylated ERK1,2 levels in 

HUVECs from three experiments is presented as mean values +/- standard error 

(***p<0.001 versus phosphorylated ERK1,2 levels in vehicle-treated cells, 

***p<0.001 versus phosphorylated ERK1,2 levels in sIL-6Rα/IL-6-treated alone 

cells). sIL-6Rα/IL-6-treated alone cells set at 100. Total ERK1,2 expression is also 

shown as a representative immunoblot to control for protein loading. [F=Fsk, 

R=Roli].  
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Figure 4.3 The Effect of cAMP elevating agents on STAT3 Phosphorylation 
by sIL-6Rα/IL-6 in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml 

respectively for 30 minutes. The controls in this experiment included vehicle (V) 

treated cells, which were treated with ethanol, DMSO and PBS at the same 

volume and for the same length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment 

respectively. Following treatment, soluble cell extracts equalised for protein 

concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. Quantitative analysis of phosphorylated STAT3 levels in 

HUVECs from three experiments is presented as mean values +/- standard error 

(***p<0.001 versus phosphorylated STAT3 levels in vehicle-treated cells, 

***p<0.001 versus phosphorylated STAT3 levels in sIL-6Rα/IL-6-treated alone 

cells). sIL-6Rα/IL-6-treated alone cells set at 100. Total STAT3 expression is also 

shown as a representative immunoblot to control for protein loading. [F=Fsk, 

R=Roli].  
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Figure 4.4 The Effect of cAMP elevating agents on STAT3 Phosphorylation 
by Leptin in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without leptin at a concentration of 125ng/ml for 30 minutes. 

The controls in this experiment included vehicle (V) treated cells, which were 

treated with ethanol, DMSO and serum-free medium at the same volume and for 

the same length of time as Fsk, Roli and leptin treatment respectively. Following 

treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in HUVECs from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated STAT3 levels in vehicle-treated cells, **p<0.01 / *p<0.05 versus 

phosphorylated STAT3 levels in leptin treated alone cells). Leptin-treated alone 

cells set at 100. Total STAT3 expression is also shown as a representative 

immunoblot to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.5 The Effect of cAMP elevating agents on ERK1,2 Phosphorylation 
by sIL-6Rα/IL-6 in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml 

respectively for 30 minutes. The controls in this experiment included vehicle (V) 

treated cells, which were treated with ethanol, DMSO and PBS at the same 

volume and for the same length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment 

respectively, and 1µM PMA treated cells (data not shown), a potent activator of 

ERK1,2 in endothelial cells. Following treatment, soluble cell extracts equalised for 

protein concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. Quantitative analysis of phosphorylated ERK1,2 levels in AS-

Ms from three experiments is presented as mean values +/- standard error 

(***p<0.001 versus phosphorylated ERK1,2 levels in sIL-6Rα/IL-6-treated alone 

cells). sIL-6Rα/IL-6-treated alone cells set at 100. Total ERK1,2 expression is also 

shown as a representative immunoblot to control for protein loading. [F=Fsk, 

R=Roli].  
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Figure 4.6 The Effect of cAMP elevating agents on STAT3 Phosphorylation 
by sIL-6Rα/IL-6 in AS-Ms 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml 

respectively for 30 minutes. The controls in this experiment included vehicle (V) 

treated cells, which were treated with ethanol, DMSO and PBS at the same 

volume and for the same length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment 

respectively. Following treatment, soluble cell extracts equalised for protein 

concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. Quantitative analysis of phosphorylated STAT3 levels in AS-

Ms from three experiments is presented as mean values +/- standard error 

(**p<0.01 versus phosphorylated STAT3 levels in vehicle-treated cells, *p<0.05 

versus phosphorylated STAT3 levels in sIL-6Rα/IL-6-treated alone cells). sIL-

6Rα/IL-6-treated alone cells set at 100. Total STAT3 expression is also shown as 

a representative immunoblot to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.7 The Effect of cAMP elevating agents on ERK1,2 Phosphorylation 
by Leptin in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without leptin at a concentration of 125ng/ml for 30 minutes. 

The controls in this experiment included vehicle (V) treated cells, which were 

treated with ethanol, DMSO and serum-free medium at the same volume and for 

the same length of time as Fsk, Roli and leptin treatment respectively, and 1µM 

PMA treated cells (data not shown), a potent activator of ERK1,2 in endothelial 

cells. Following treatment, soluble cell extracts equalised for protein concentration 

were fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated ERK1,2 levels in leptin-treated alone cells). Leptin-treated alone 

cells set at 100. Total ERK1,2 expression is also shown as a representative 

immunoblot to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.8 The Effect of cAMP elevating agents on STAT3 Phosphorylation 
by Leptin in AS-Ms 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 5 hrs with or without 10µM forskolin 

(Fsk) and/or 10µM rolipram (Roli) in serum-free medium. Following 5 hrs, cells 

were treated with or without leptin at a concentration of 125ng/ml for 30 minutes. 

The controls in this experiment included vehicle (V) treated cells, which were 

treated with ethanol, DMSO and serum-free medium at the same volume and for 

the same length of time as Fsk, Roli and leptin treatment respectively. Following 

treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated STAT3 levels in vehicle-treated cells). Leptin-treated alone cells 

set at 100. Total STAT3 expression is also shown as a representative immunoblot 

to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.9 The Effect of sIL-6Rα/IL-6 and Leptin Treatment on the 
Transcriptional Activity of Elk1 in HUVECs and AS-Ms 
 
3 x 105 HUVECs/well and 3.5 x 105 AS-Ms/well were seeded into 6 well plates. 24 

hrs after seeding, medium was replaced with fresh medium and the cells were 

transfected with a trans-activator plasmid (Gal4-Elk-1) at 1µg/well, a luciferase 

reporter plasmid (Gal4-luc) at 1µg/well and a normalisation Renilla plasmid (pRL-

CMV) at 0.5µg/well. Cells were incubated overnight before another change of 

medium and left for a further 24 hrs. Following 24 hrs, cells were treated with or 

without 1µM U0126 for 30 minutes prior to treatment with sIL-6Rα/IL-6 

(25ng/ml/5ng/ml) or leptin (125ng/ml) for 6 hours. The controls in this experiment 

included vehicle (V) treated cells, which were transfected with all three constructs 

and 1µM PMA treated cells, a potent activator of ERK1,2 in endothelial cells. 

Following treatment, cell lysates were assayed for Firefly and Renilla luciferase 

activity, using a luminometer. The results are expressed as fold increase +/- 

standard error from 3 independent experiments performed in triplicate in HUVECs 

(a.) and AS-Ms (b.). Graph (c) shows luciferase activity from one biological 

replicate assayed in triplicate in HUVECs (*p<0.05 versus luciferase activity in 

vehicle-treated cells). [U1=U0126]. 
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Figure 4.10 The Effect of sIL-6Rα/IL-6 and Leptin Treatment on ERK1,2 and 
STAT3 Activation and Translocation to the Nucleus in HUVECs  
  
12x105 HUVECs were seeded into 10cm2 dishes. 24 hrs after seeding, cells were 

washed twice in PBS and serum starved for 4 hrs. Following 4 hrs, cells were 

treated with or without leptin (125ng/ml) or sIL-6Rα/IL-6 (25ng/ml/5ng/ml) for 30 

minutes. The controls in this experiment included vehicle (V) treated cells, which 

were treated with PBS and serum-free medium at the same volume and for the 

same length of time as sIL-6Rα/IL-6 and leptin treatment respectively and 1µM 

PMA, a potent activator of ERK1,2 in endothelial cells. Following treatment, cells 

were harvested in PBS. A series of centrifugation and washing steps were then 

undertaken, resulting in the isolation of nuclear and cytoplasmic cell fractions. Both 

fractions were equalised for protein concentration and fractionated by SDS-PAGE 

for immunoblotting with the indicated antibodies. SP1, a transcription factor and 

tubulin, a cytoskeleton protein, were both analysed to confirm the isolation of 

nuclear and cytosolic preparations respectively. Quantitative analysis of 

phosphorylated ERK1,2 and STAT3 levels in HUVECs from three experiments is 

presented as mean values +/- standard error (***p<0.001, *p<0.05 versus 

phosphorylated ERK1,2 levels in vehicle-treated cells and **p<0.01 versus 

phosphorylated STAT3 in vehicle-treated cells). Basal is set at 100.  
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Figure 4.11 The Effect of sIL-6Rα/IL-6 and Leptin Treatment on ERK1,2 and 
STAT3 Translocation to the Nucleus in AS-Ms  
 
12x105 AS-Ms were seeded into 10cm2 dishes. 24 hrs after seeding, cells were 

washed twice in PBS and serum starved for 4 hrs. Following 4 hrs, cells were 

treated with or without leptin (125ng/ml) or sIL-6Rα/IL-6 (25ng/ml/5ng/ml) for 30 

minutes. The controls in this experiment included vehicle (V) treated cells, which 

were treated with PBS and serum-free medium at the same volume and for the 

same length of time as sIL-6Rα/IL-6 and leptin treatment respectively and 1µM 

PMA, a potent activator of ERK1,2 in endothelial cells. Following treatment, cells 

were harvested in PBS. A series of centrifugation and washing steps were then 

undertaken, resulting in the isolation of nuclear and cytoplasmic cell fractions. Both 

fractions preparations were equalised for protein concentration and fractionated by 

SDS-PAGE for immunoblotting with the indicated antibodies. SP1, a transcription 

factor and tubulin, a cytoskeleton protein, were both analysed to confirm the 

isolation of nuclear and cytosolic preparations respectively. Quantitative analysis 

of phosphorylated ERK1,2 and STAT3 levels in AS-Ms from three experiments is 

presented as mean values +/- standard error (**p<0.01, *p<0.05 versus 

phosphorylated ERK1,2 and phosphorylated STAT3 levels in vehicle-treated 

cells). Basal is set at 100.  
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Figure 4.12 The Effect of H89 on cAMP-mediated Inhibition of ERK1,2 
Phosphorylation and the Effect of 8pCPT on ERK Phosphorylation by sIL-
6Rα/IL-6 in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 30 minutes with or without 5µM H89 

prior to treatment with 10µM forskolin (Fsk) and 10µM rolipram (Roli) or 100µM 

8pCPT for 5 hrs in serum-free medium. Following 5 hrs, cells were treated with or 

without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml respectively for 30 

minutes. The controls in this experiment included vehicle (V) treated cells, which 

were treated with ethanol, DMSO and PBS at the same volume and for the same 

length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment respectively, and 1µM PMA 

treated cells (data not shown), a potent activator of ERK1,2 in endothelial cells. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in HUVECs from three 

experiments is presented as mean values +/- standard error (**p<0.01 versus 

phosphorylated ERK1,2 levels in vehicle-treated cells, **p<0.01 / *p<0.05 versus 

phosphorylated ERK1,2 levels in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-

treated alone cells set at 100. Total ERK1,2 expression is also shown as a 

representative immunoblot to control for protein loading. [F=Fsk, R=Roli, 

8MC=8pCPT].  
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Figure 4.13 The Effect of H89 on cAMP-mediated Inhibition of STAT3 
Phosphorylation and the Effect of 8pCPT on STAT3 Phosphorylation by sIL-
6Rα/IL-6 in HUVECs 
 
4 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 30 minutes with or without 5µM H89 

prior to treatment with 10µM forskolin (Fsk) and 10µM rolipram (Roli) or 100µM 

8pCPT for 5 hrs in serum-free medium. Following 5 hrs, cells were treated with or 

without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml respectively for 30 

minutes. The controls in this experiment included vehicle (V) treated cells, which 

were treated with ethanol, DMSO and PBS at the same volume and for the same 

length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment respectively. Following 

treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in HUVECs from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated STAT3 levels in vehicle-treated cells, ***p<0.001 / *p<0.05 versus 

phosphorylated STAT3 levels in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-

treated alone cells set at 100. Total STAT3 expression is also shown as a 

representative immunoblot to control for protein loading. [F=Fsk, R=Roli, 

8MC=8pCPT].  
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Figure 4.14 The Effect of H89 on cAMP-mediated Inhibition of ERK1,2 
Phosphorylation and the Effect of 8pCPT on ERK Phosphorylation by sIL-
6Rα/IL-6 in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 30 minutes with or without 5µM H89 

prior to treatment with 10µM forskolin (Fsk) and 10µM rolipram (Roli) or 100µM 

8pCPT for 5 hrs in serum-free medium. Following 5 hrs, cells were treated with or 

without sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml respectively for 30 

minutes. The controls in this experiment included vehicle (V) treated cells, which 

were treated with ethanol, DMSO and PBS at the same volume and for the same 

length of time as Fsk, Roli and sIL-6Rα/IL-6 treatment respectively, and 1µM PMA 

treated cells (data not shown), a potent activator of ERK1,2 in endothelial cells. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (**p<0.01 versus 

phosphorylated ERK1,2 levels in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-

treated alone cells set at 100. Total ERK1,2 expression is also shown as a 

representative immunoblot to control for protein loading. [F=Fsk, R=Roli, 

8MC=8pCPT].  
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Figure 4.15 The Effect of H89 on cAMP-mediated Inhibition of ERK1,2 
Phosphorylation and the Effect of 8pCPT on ERK Phosphorylation by Leptin 
in AS-Ms 
 
4 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with PBS and treated for 30 minutes with or without 5µM H89 

prior to treatment with 10µM forskolin (Fsk) and 10µM rolipram (Roli) or 100µM 

8pCPT for 5 hrs in serum-free medium. Following 5 hrs, cells were treated with or 

without leptin at a concentration of 125ng/ml for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and serum-free medium at the same volume and for the same length of 

time as Fsk, Roli and leptin treatment respectively, and 1µM PMA treated cells 

(data not shown), a potent activator of ERK1,2 in endothelial cells. Following 

treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (***p<0.001 / **p<0.01 

versus phosphorylated ERK1,2 levels in leptin-treated alone cells). Leptin-treated 

alone cells set at 100. Total ERK1,2 expression is also shown as a representative 

immunoblot to control for protein loading. [F=Fsk, R=Roli, 8MC=8pCPT].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



193 
 

 
 
 

- +    +   +    +   +     - - - - - : Leptin, 30 min

Total-ERK 1, 2

Phospho-ERK 1, 2

Fsk+Roli

Fsk+Roli+
H89*

8-pCPT

8-pCPT+H89*

Fsk+Roli

Fsk+H89*

8-pCPT

8-p
CPT+H89*

Leptin+H89*

: 5 hr pre-treatment
*H89 - 30 min treatment prior 5hr

- -

0

50

100

150

200

250

300

V L L + 
F/R

L + 
F/R + 
H89

L + 
8MC

L+ 
8MC + 

H89

F/R F/R + 
H89

8MC 8MC + 
H89

L + 
H89

E
RK

1,
2 

Ph
os

ph
or

yl
at

io
n 

(L
ep

tin
 s

et
 a

t 1
00

)

Treatment

***
**

 
 
 
 
 
 
 
 
 
 



194 
 

Figure 4.16 The Effect of Increasing Concentrations of SOCS3 siRNA on 
cAMP-mediated Induction of SOCS3 in HUVECs and AS-Ms 
 
2 x 105 AS-Ms / well and 2 x 105 HUVECs / well were seeded into 6 well plates. 24 

hrs after seeding, cells were washed twice with serum-free medium before adding 

1ml / well serum-free medium. Cells were then transfected with or without 10nM 

control siRNA and varying concentrations of SOCS3 siRNA, and incubated for 5 

hrs. After 5 hrs, 1ml / well medium was added to the cells for incubation overnight. 

The following day, the transfection procedure was repeated. On the fourth day, 

cells were washed twice with PBS and treated for 5 hrs with or without 10µM 

forskolin (Fsk) and 10µM rolipram (Roli) in serum-free medium. All wells were also 

treated with MG132 at a concentration of 6μM for 5 hrs. Following treatment, 

soluble cell extracts equalised for protein concentration were fractionated by SDS-

PAGE for immunoblotting with the indicated antibodies. The immunoblots show 

the expression of SOCS3 in HUVECs (a.) and AS-Ms (b.) from one experiment. 

The expression of the cytoskeleton protein, tubulin is also shown in both HUVECs 

and ASM-S to control for protein loading.  
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Figure 4.17 The Effect of SOCS3 siRNA on cAMP-mediated Induction of 
SOCS3 in HUVECs  
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and treated 

for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-

free medium. Vehicle (V) treated cells were treated with ethanol and DMSO at the 

same volume and the same length of time as Fsk and Roli treatment respectively. 

All wells were also treated with MG132 at a concentration of 6μM for 5 hrs. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of SOCS3 expression levels in HUVECs from three 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

SOCS3 expression levels in vehicle-treated cells, *p<0.05 versus SOCS3 

expression levels in Fsk/Roli-treated cells). Basal is set at 100. The expression of 

the cytoskeleton protein, tubulin is also shown as a representative immunoblot to 

control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.18 The Effect of SOCS3 siRNA on cAMP-mediated Inhibition of 
ERK1,2 Phosphorylation by sIL-6Rα/IL-6 in HUVECs 
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and treated 

for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-

free medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively and 1µM PMA treated cells (data not 

shown), a potent activator of ERK1,2 in endothelial cells. Following treatment, 

soluble cell extracts equalised for protein concentration were fractionated by SDS-

PAGE for immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK1,2 levels in HUVECs from three experiments is presented as 

mean values +/- standard error (***p<0.001 / **p<0.01 versus phosphorylated 

ERK1,2 levels in vehicle-treated cells, ***p<0.001 versus phosphorylated ERK1,2 

levels in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-treated alone cells set at 

100. Total ERK1,2 expression is also shown as a representative immunoblot to 

control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.19 The Effect of SOCS3 siRNA on cAMP-mediated Inhibition of 
STAT3 Phosphorylation by sIL-6Rα/IL-6 in HUVECs 
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the third day, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in HUVECs from three experiments is presented as 

mean values +/- standard error (***p<0.001 versus phosphorylated STAT3 levels 

in vehicle-treated cells, ***p<0.001 / **p<0.01 versus phosphorylated STAT3 levels 

in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-treated alone cells set at 100. 

Total STAT3 expression is also shown as a representative immunoblot to control 

for protein loading. [F=Fsk, R=Roli].  
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Figure 4.20 The Effect of SOCS3 siRNA on cAMP-mediated Inhibition of 
STAT3 Phosphorylation by Leptin in HUVECs 
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the third day, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without leptin at a 

concentration of 125ng/ml for 30 minutes. The controls in this experiment included 

vehicle (V) treated cells, which were treated with ethanol, DMSO and serum-free 

medium at the same volume and for the same length of time as Fsk, Roli and 

leptin treatment respectively. Following treatment, soluble cell extracts equalised 

for protein concentration were fractionated by SDS-PAGE for immunoblotting with 

the indicated antibodies. Quantitative analysis of phosphorylated STAT3 levels in 

HUVECs from four experiments is presented as mean values +/- standard error 

(***p<0.001 versus phosphorylated STAT3 levels in vehicle-treated cells, 

***p<0.001 versus phosphorylated STAT3 levels in leptin-treated alone cells). 

Leptin-treated alone cells set at 100. Total STAT3 expression is also shown as a 

representative immunoblot to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.21 The Effect of SOCS3 siRNA on cAMP-mediated Induction of 
SOCS3 in AS-Ms  
 
2 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and treated 

for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-

free medium. Vehicle (V) treated cells were treated with ethanol and DMSO at the 

same volume and the same length of time as Fsk and Roli treatment respectively. 

All wells were also treated with MG132 at a concentration of 6μM for 5 hrs. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. The 

immunoblot shows the expression of SOCS3 in AS-Ms from one experiment. The 

expression of the cytoskeleton protein, tubulin is also shown as an immunoblot 

from 1 experiment to control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.22 The Effect of SOCS3 siRNA on cAMP-mediated Inhibition of 
ERK1,2 Phosphorylation by sIL-6Rα/IL-6 in AS-Ms 
 
2 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the third day, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively and 1µM PMA treated cells (data not 

shown), a potent activator of ERK1,2 in endothelial cells. Following treatment, 

soluble cell extracts equalised for protein concentration were fractionated by SDS-

PAGE for immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK1,2 levels in AS-Ms from three experiments is presented as 

mean values +/- standard error (**p<0.01 versus phosphorylated ERK1,2 levels in 

vehicle-treated cells, ***p<0.001 / *p<0.05 versus phosphorylated ERK1,2 levels in 

sIL-6Rα/IL-6 -treated alone cells). sIL-6Rα/IL-6 -treated alone cells set at 100. 

Total ERK1,2 expression is also shown as a representative immunoblot to control 

for protein loading. [F=Fsk, R=Roli].  
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Figure 4.23 The Effect of SOCS3 siRNA on cAMP-mediated Inhibition of 
STAT3 Phosphorylation by sIL-6Rα/IL-6 in AS-Ms 
 
2 x 105 AS-Ms / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 10nM control siRNA or 10nM 

SOCS3 siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added 

to the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the third day, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in AS-Ms from three experiments is presented as 

mean values +/- standard error (***p<0.001 versus phosphorylated STAT3 levels 

in vehicle-treated cells, *p<0.05 versus phosphorylated STAT3 levels in sIL-

6Rα/IL-6 -treated alone cells). sIL-6Rα/IL-6 -treated alone cells set at 100. Total 

STAT3 expression is also shown as a representative immunoblot to control for 

protein loading. [F=Fsk, R=Roli].  
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Figure 4.24 The Effect of cAMP elevating agents on SOCS3 Induction in W/T 
and SOCS3-/- MEFs  
 
W/T and SOCS3-/- MEFs were seeded into 6 well plates and grown until 

confluent. 24 hrs after seeding, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Vehicle (V) treated cells were treated with ethanol and DMSO at the 

same volume and for the same length of time as Fsk and Roli treatment 

respectively. All wells were also treated with MG132 at a concentration of 6μM for 

5 hrs. Following treatment, soluble cell extracts equalised for protein concentration 

were fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of SOCS3 expression levels in W/T and SOCS3-/- MEFs 

from three experiments is presented as mean values +/- standard error 

(***p<0.001 versus SOCS3 expression levels in vehicle-treated cells). Basal is set 

at 100. The expression of the cytoskeleton protein, tubulin is also shown as a 

representative immunoblot to control for protein loading. [F=Fsk, R=Roli].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



211 
 

 
 
 

SOCS3

Tubulin

W/T 
MEFs

SOCS3-/-
MEFs

- - : 5 hr treatment

0

50

100

150

200

250

300

350

400

450

V F/R

SO
C

S
3 

E
xp

re
ss

io
n 

(V
eh

ic
le

 s
et

 a
t 

10
0)

Treatment

W/T MEFs

SOCS3-/-
MEFs

***

 
 
 
 
 
 
 
 
 



212 
 

Figure 4.25 The Effect of cAMP elevating agents on ERK1,2 Phosphorylation 
by sIL-6Rα/IL-6 in W/T and SOCS3-/- MEFs  
 
W/T and SOCS3-/- MEFs were seeded into 6 well plates and grown until 

confluent. 24 hrs after seeding, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively, and 1µM PMA treated cells, a potent 

activator of ERK1,2 in endothelial cells (as observed in previous experiments in 

the Palmer lab). Following treatment, soluble cell extracts equalised for protein 

concentration were fractionated by SDS-PAGE for immunoblotting with the 

indicated antibodies. Quantitative analysis of phosphorylated ERK1,2 levels in W/T 

and SOCS3-/- MEFs from three experiments is presented as mean values +/- 

standard error (***p<0.001 versus phosphorylated ERK1,2 levels in vehicle-treated 

cells, ***p<0.001 versus phosphorylated ERK1,2 levels in sIL-6Rα/IL-6-treated 

alone cells). sIL-6Rα/IL-6-treated alone cells set at 100. Total ERK1,2 expression 

is also shown as a representative immunoblot to control for protein loading. 

[F=Fsk, R=Roli].  
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Figure 4.26 The Effect of cAMP elevating agents on STAT3 Phosphorylation 
by sIL-6Rα/IL-6 in W/T and SOCS3-/- MEFs  
 
W/T and SOCS3-/- MEFs were seeded into 6 well plates and grown until 

confluent. 24 hrs after seeding, cells were washed twice with PBS and treated for 

5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-free 

medium. Following 5 hrs, cells were treated with or without sIL-6Rα/IL-6 at a 

concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The controls in this 

experiment included vehicle (V) treated cells, which were treated with ethanol, 

DMSO and PBS at the same volume and for the same length of time as Fsk, Roli 

and sIL-6Rα/IL-6 treatment respectively. Following treatment, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in W/T and SOCS3-/- MEFs from three experiments 

is presented as mean values +/- standard error (***p<0.001 versus phosphorylated 

STAT3 levels in vehicle-treated cells, *p<0.05 versus phosphorylated STAT3 

levels in sIL-6Rα/IL-6-treated alone cells). sIL-6Rα/IL-6-treated alone cells set at 

100. Total STAT3 expression is also shown as a representative immunoblot to 

control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.27 The Effect of cAMP elevating agents (5 hr pre-treatment) in the 
presence and absence of H89 on ERK1,2 Phosphorylation by PMA in 
HUVECs  
 
4 x 105 HUVECs were seeded into 6 well plates. 24 hrs after seeding, cells were 

washed twice with PBS and treated for 30 minutes with or without 5µM H89 prior 

to treatment for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) 

in serum-free medium. Following 5 hrs, cells were treated with or without 1 µM 

PMA for 5 minutes. The controls in this experiment included vehicle (V) treated 

cells, which were treated with ethanol and DMSO at the same volume and for the 

same length of time as Fsk, Roli and PMA treatment. Following treatment, soluble 

cell extracts equalised for protein concentration were fractionated by SDS-PAGE 

for immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK levels in HUVECs from three experiments is presented as 

mean values +/- standard error (***p<0.001 / *p<0.05 versus phosphorylated ERK 

levels in vehicle-treated cells). Basal is set at 100. The expression of the 

cytoskeleton protein, tubulin is also shown as a representative immunoblot to 

control for protein loading. [F=Fsk, R=Roli].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



217 
 

 
 
 

Tubulin

Phospho-ERK1,2

- - : 5 hr pre-treatment
* H89 - 30 mins treatment prior 5 hr

- +    +    +     - - +            : PMA, 5 mins

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

V PMA PMA +F/R PMA + F/R 
+ H89

F/R F/R + H89 PMA + H89

ER
K

1,
2 

P
ho

sp
ho

ry
la

tio
n 

(V
eh

ic
le

 s
et

 a
t 1

00
)

Treatment

***

*

***

*

 
 
 
 
 
 
 



218 
 

Figure 4.28 The Effect of cAMP elevating agents (15 mins pre-treatment) in 
the presence and absence of H89 on ERK1,2 Phosphorylation by PMA in 
HUVECs  
 
4 x 105 HUVECs were seeded into 6 well plates. 24 hrs after seeding, cells were 

washed twice with PBS and treated for 30 minutes with or without 5µM H89 prior 

to treatment for 15 minutes with or without 10µM forskolin (Fsk) and 10µM rolipram 

(Roli) in serum-free medium. Following 15 minutes, cells were treated with or 

without 1 µM PMA for 5 minutes. The controls in this experiment included vehicle 

(V) treated cells, which were treated with ethanol and DMSO at the same volume 

and for the same length of time as Fsk, Roli and PMA treatment. Following 

treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK levels in HUVECs from three 

experiments is presented as mean values +/- standard error (***p<0.001 / **p<0.01 

/ *p<0.05 versus phosphorylated ERK levels in vehicle-treated cells, **p<0.01 

versus phosphorylated ERK levels in PMA-treated alone cells, *p<0.05 versus 

phosphorylated ERK levels in Fsk- and Roli-treated alone cells). Basal is set at 

100. Total ERK1,2 expression is also shown as a representative immunoblot to 

control for protein loading. [F=Fsk, R=Roli].  
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Figure 4.29 The Effect of U0126 Treatment on cAMP-mediated Inhibition of 
ERK1,2 Phosphorylation by sIL-6Rα/IL-6 in HUVECs  
 
4 x 105 HUVECs were seeded into 6 well plates. 24 hrs after seeding, cells were 

washed twice with PBS and treated for 30 minutes with or without 1µM U0126 

prior to treatment for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram 

(Roli) in serum-free medium. Following 5 hrs, cells were treated with or without 

sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The 

controls in this experiment included vehicle (V) treated cells, which were treated 

with ethanol, DMSO and PBS at the same volume and for the same length of time 

as Fsk, Roli and sIL-6Rα/IL-6 treatment respectively, and 1µM PMA treated cells, 

a potent activator of ERK1,2 in endothelial cells. Following treatment, soluble cell 

extracts equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated ERK levels in HUVECs from three experiments is presented as 

mean values +/- standard error (***p<0.001 / *p<0.05 versus phosphorylated ERK 

levels in vehicle-treated cells, *p<0.05 versus phosphorylated ERK levels in sIL-

6Rα/IL-6-treated alone cells). Basal is set at 100. Total ERK1,2 expression is also 

shown as a representative immunoblot to control for protein loading. [F=Fsk, 

R=Roli].  
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Figure 4.30 The Effect of U0126 Treatment on cAMP-mediated Inhibition of 
STAT3 Phosphorylation by sIL-6Rα/IL-6 in HUVECs  
 
4 x 105 HUVECs were seeded into 6 well plates. 24 hrs after seeding, cells were 

washed twice with PBS and treated for 30 minutes with or without 1µM U0126 

prior to treatment for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram 

(Roli) in serum-free medium. Following 5 hrs, cells were treated with or without 

sIL-6Rα/IL-6 at a concentration of 25ng/ml/5ng/ml respectively for 30 minutes. The 

controls in this experiment included vehicle (V) treated cells, which were treated 

with ethanol, DMSO and PBS at the same volume and for the same length of time 

as Fsk, Roli and sIL-6Rα/IL-6 treatment respectively. Following treatment, soluble 

cell extracts equalised for protein concentration were fractionated by SDS-PAGE 

for immunoblotting with the indicated antibodies. Quantitative analysis of 

phosphorylated STAT3 levels in HUVECs from three experiments is presented as 

mean values +/- standard error (***p<0.001 versus phosphorylated STAT3 levels 

in vehicle-treated cells, ***p<0.001 versus phosphorylated STAT3 levels in sIL-

6Rα/IL-6-treated alone cells). Basal is set at 100. Total STAT3 expression is also 

shown as a representative immunoblot to control for protein loading. [F=Fsk, 

R=Roli].  
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Figure 4.31 The Effect of cAMP elevating agents on ERK1,2 Phosphorylation 
in AS-Ms  
 
4 x 105 AS-Ms were seeded into 6 well plates. 24 hrs after seeding, cells were 

washed twice with PBS and treated for 30 minutes with or without 1µM U0126 

prior to treatment for 15 mins with or without 10µM forskolin (Fsk) and 10µM 

rolipram (Roli), in serum-free medium. The controls in this experiment included 

vehicle (V) treated cells, which were treated with ethanol and DMSO at the same 

volume and for the same length of time as Fsk and Roli treatment respectively. 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in AS-Ms from three 

experiments is presented as mean values +/- standard error (*p<0.05 versus 

phosphorylated ERK1,2 levels in vehicle-treated cells). Basal is set at 100. Total 

ERK1,2 expression is also shown as a representative immunoblot to control for 

protein loading. [F=Fsk, R=Roli].  
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Figure 4.32 The Effect of Epac siRNA on basal levels of Epac Expression in 
HUVECs  
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 20nM control siRNA or 20nM 

Epac siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added to 

the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and incubated 

for 5 hrs in serum-free medium. Following incubation, soluble cell extracts 

equalised for protein concentration were fractionated by SDS-PAGE for 

immunoblotting with the indicated antibodies. Quantitative analysis of Epac 

expression levels in HUVECs from four experiments is presented as mean values 

+/- standard error (***p<0.001 versus Epac expression levels in control siRNA-

treated cells). Control siRNA-treated cells set at 100. Total ERK1,2 expression is 

also shown as a representative immunoblot to control for protein loading.  
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Figure 4.33 The Effect of Epac siRNA on cAMP-mediated Inhibition of 
ERK1,2 Phosphorylation by sIL-6Rα/IL-6 in HUVECs 
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 20nM control siRNA or 20nM 

Epac siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added to 

the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and treated 

for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-

free medium. Vehicle (V) treated cells were treated with ethanol and DMSO at the 

same volume and the same length of time as Fsk and Roli treatment respectively 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated ERK1,2 levels in HUVECs from five 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated ERK1,2 levels in sIL-6Rα/IL-6 -treated alone cells, **p<0.01 / 

*p<0.05 versus phosphorylated ERK1,2 levels in vehicle-treated cells). sIL-6Rα/IL-

6-treated alone cells set at 100. Total ERK1,2 expression is also shown as a 

representative immunoblot to control for protein loading.  
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Figure 4.34 The Effect of Epac siRNA on cAMP-mediated Inhibition of STAT3 
Phosphorylation by sIL-6Rα/IL-6 in HUVECs 
 
2 x 105 HUVECs / well were seeded into 6 well plates. 24 hrs after seeding, cells 

were washed twice with serum-free medium before adding 1ml / well serum-free 

medium. Cells were then transfected with either 20nM control siRNA or 20nM 

Epac siRNA and incubated for 5 hrs. After 5 hrs, 1ml / well medium was added to 

the cells for incubation overnight. The following day, the transfection procedure 

was repeated. On the fourth day, cells were washed twice with PBS and treated 

for 5 hrs with or without 10µM forskolin (Fsk) and 10µM rolipram (Roli) in serum-

free medium. Vehicle (V) treated cells were treated with ethanol and DMSO at the 

same volume and the same length of time as Fsk and Roli treatment respectively 

Following treatment, soluble cell extracts equalised for protein concentration were 

fractionated by SDS-PAGE for immunoblotting with the indicated antibodies. 

Quantitative analysis of phosphorylated STAT3 levels in HUVECs from four 

experiments is presented as mean values +/- standard error (***p<0.001 versus 

phosphorylated STAT3 levels in vehicle-treated cells and sIL-6Rα/IL-6 -treated 

alone cells, *p<0.05 versus phosphorylated STAT3 levels in sIL-6Rα/IL-6 -treated 

alone cells). sIL-6Rα/IL-6-treated alone cells set at 100. Total STAT3 expression is 

also shown as a representative immunoblot to control for protein loading.  
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Figure 4.35 HUVEC Morphology in Response to SOCS3 and Epac siRNA 
Treatment 
 
Light micrograph images of HUVECs treated with and without Epac siRNA (a) and 

SOCS3 siRNA (b) at day 4 of the transfection process. Images were captured 

using a Zeiss microscope (10 x objective lens) and manipulated using Axiovision 

software.  
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Summary 
An exhaustive number of studies have demonstrated the inhibitory effects of cAMP 

on a myriad of cell types and tissues. Significantly, elevation of cAMP has been 

associated with the inhibition of function of various inflammatory cell types, 

including macrophages, neutrophils, eosinophils, T cells and endothelial cells 

(Bulut et al., 1993; Dent et al., 1991; Fonteh et al., 1993; Nielson, 1987; Pober et 

al., 1993; Renz et al., 1988; Teixeira et al., 1997). Examples of these inhibitory 

effects include, the reduction of cytokines, such as TNFα, and nitric oxide release 

from macrophages (Bulut et al., 1993; Renz et al., 1988), the suppression of 

lysosomal enzymes, ROS and platelet-activating factor (PAF) from neutrophils 

(Fonteh et al., 1993; Nielson, 1987), the inhibition of eosinophil respiratory burst 

activity (Dent et al., 1991), the inhibition of cytotoxic T lymphocyte activation 

(Teixeira et al., 1997; Wisloff & Christoffersen, 1977), and importantly, the 

inhibition of TNFα-induced adhesion molecule expression in endothelial cells 

(Morandini et al., 1996; Pober et al., 1993). Furthermore, studies have also shown 

a cAMP-mediated reduction in endothelial cell permeability (Cullere et al., 2005; 

Fukuhara et al., 2005; Suttorp et al., 1993), and suppression of transendothelial 

leukocyte migration (Lidington et al., 1996; Lorenowicz et al., 2007).  

PDE4 inhibitors have been extensively studied in various animal models of 

inflammatory disease (reviewed in Teixeira et al., 1997). All of these studies have 

demonstrated suppression of inflammation and disease activity following treatment 

with PDE4 inhibitors (Teixeira et al., 1997). Clinically, PDE4 inhibitors have been 

in development since the early 1980s, with asthma and chronic obstructive 

pulmonary disease (COPD) constituting the predominant disease indications. 

However, not one of these PDE4 inhibitors has yet reached the market. This is 

due to lack of efficacy and/or dose-limiting adverse effects, such as nausea, 

abdominal pain, vomiting and diarrhea (Giembycz, 2008). An example of one such 

PDE4 inhibitor is rolipram, which has been used throughout the course of the 

current study. This was terminated during clinical development due to its side 

effects of nausea and gastrointestinal disturbances (Boswell-Smith et al., 2006). It 

is believed that the inhibition of PDE4D in particular, in non-target tissues, is 

responsible for the emetic effects. Since PDE4 is encoded by four genes (A-D), 

selective sub-type inhibitors could potentially overcome the side effects. Indeed, 
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selective ablation of PDE4B in mouse macrophages has been shown to 

substantially reduce LPS-stimulated TNFα release, whereas PDE4A and PDE4D-

null macrophages displayed no reduction in LPS-stimulated TNFα release. 

Furthermore, PDE4B null mice were partially protected from LPS-induced shock 

(Jin et al., 2005). In addition to sub-type specific inhibitors, slow–releasing 

formulations have been developed to reduce systemic exposure. For example, 

pentoxifylline is a slow-releasing non-selective PDE inhibitor, which has been used 

to treat peripheral vascular disease and cerebrovascular disease (Ward & 

Clissold, 1987). 

With regards to the clinical implications of inhibiting cytokine signalling, a 

humanised anti-IL-6R monoclonal antibody so-called tocilizumab has been used in 

the treatment of rheumatoid arthritis (RA) with strong therapeutic effects 

(Nakahara & Nishimoto, 2006). Tocilizumab has also been used in Crohn’s 

disease and Castleman's disease with promising results (Ito et al., 2004; Nakahara 

& Nishimoto, 2006). Interestingly, a phase III study is currently recruiting 

participants to investigate the effect of tocilizumab on lipids, arterial stiffness and 

markers of atherogenic risk in patients with moderate to severe active rheumatoid 

arthritis (www.clinicaltrials.gov). Therapeutically, the inhibition of leptin signalling is 

more complex. Human leptin deficiency is associated with morbid obesity. Despite 

this obesity, no risk factors for cardiovascular disease, such as hypertension and 

impairment in lipid metabolism have been observed (Ozata et al., 1999). This 

supports the presence of selective resistance in obese (non-leptin deficient) 

individuals, wherein these individuals display central but not peripheral resistance 

to leptin, as discussed in Section 1.3.6, Chapter 1 Introduction. For example, 

ob/ob mice on an atherogenic diet are protected from atherosclerosis, despite 

displaying obesity, diabetes, and hyperlipidemia (Schafer et al., 2004). Indeed, 

leptin has been shown to promote atherosclerosis and thrombus formation in 

atherosclerotic-prone apoE-deficient mice, despite a reduction in adipose tissue 

mass and fasting insulin levels (Bodary et al., 2005). Therefore, hyperleptinemia 

may be the contributory factor that leads to the cardiovascular morbidity 

associated with obesity. Inhibiting leptin signalling may represent a promising 

strategy for limiting the progression of atherosclerosis in hyperleptinemic obese 

individuals.  
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Thus, the inhibition of IL-6 signalling has demonstrated clinically beneficial effects 

on inflammatory diseases, such as RA and Crohn’s disease. Furthermore, human 

epidemiological studies have shown that leptin is associated with the development 

of cardiovascular disease (Ciccone et al., 2001; Wannamethee et al., 2007; Wolk 

et al., 2004). In addition, research has shown that both cytokines can modulate EC 

function, for example, by upregulating adhesion molecules such as VCAM-1 and 

ICAM-1, increasing MCP-1 and endothelin-1 expression, and inducing oxidative 

stress (Modur et al., 1997; Quehenberger et al., 2002; Romano et al., 1997; 

Yamagishi et al., 2001). As such, it would be of interest to further investigate ways 

in which these signalling pathways can be negatively regulated. As mentioned 

previously, cAMP is considered a crucial immunomodulator. Although the anti-

inflammatory effects of cAMP have been well described, the molecular 

mechanisms underlying these effects are less known. In relation to endothelial 

cells, cAMP has been shown to limit vascular permeability and enhance 

endothelial barrier function via a cAMP/Epac/Rap1 pathway (Cullere et al., 2005; 

Fukuhara et al., 2005). This is of particular relevance to the present study as 

results have suggested an Epac1-dependent cAMP-mediated inhibition of IL-6/sIL-

6α-stimulated ERK1,2 and STAT3 activation in HUVECs. Furthermore, the present 

results demonstrate the involvement of SOCS3 in the observed inhibition. 

Therefore, an Epac1- and SOCS3-dependent inhibitory pathway has been 

identified and represents a novel inhibitory pathway, distinct from the PKA-Raf1 

pathway which has been well described for the cAMP-mediated inhibition of 

growth factor signalling. This novel pathway is important in terms of expanding our 

knowledge of endogenous protective signalling pathways that can potentially be 

exploited for therapeutic benefit. Interestingly, intracellular delivery of SOCS3 has 

been shown to greatly attenuate the acute inflammation observed following 

administration of staphylococcal enterotoxin B (SEB) and lipopolysaccaride (LPS) 

in mice. A cell-penetrating form of SOCS3 (CP-SOCS3) has been developed, 

which has a membrane-translocating motif (MTM) derived from the hydrophobic 

signal sequence of fibroblast growth factor 4, attached to either the N-terminal or 

C-terminal end. CP-SOCS3 administered to mice challenged with SEB or LPS via 

intraperitoneal injection revealed that CP-SOCS3 increased survival and 

suppressed inflammatory cytokines, such as TNFα and IL-6 (Jo et al., 2005). In a 
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similar study, liposome-mediated gene delivery of SOCS3 in a lethal endotoxic 

shock mouse model was shown to increase survival and greatly reduce the serum 

level of TNFα from peritoneal macrophages (Fang et al., 2005). 

In contrast, a role for SOCS3 in the cAMP-mediated inhibition of leptin-stimulated 

STAT3 activation in HUVECs could not be demonstrated. As an alternative to 

SOCS3; SHP2, PTPB1 and other SOCS members may be responsible for the 

observed inhibition (as discussed in Chapter 4 Discussion). These results are in 

contrast to studies using mice with a neuronal deletion of SOCS3, which 

demonstrated prolonged activation of STAT3 in response to leptin. Moreover, 

SOCS3 deficient mice exhibited greater body weight loss when compared to their 

wild-type littermates and were also resistant to high fat diet-induced weight gain 

and hyperleptinemia, and retained insulin sensitivity (Mori et al., 2004). Although 

SOCS3 has been implicated in the negative regulation of leptin signalling, a large 

body of research has also implicated PTPB1 in this inhibition, which is discussed 

in Chapter 4 Discussion. Interestingly, PTP1B has been shown to target the insulin 

receptor as well as JAK2, contributing towards insulin resistance in addition to 

leptin resistance (Lavens et al., 2006). Inhibitors of PTP1B are currently under 

investigation for the treatment of obesity and type 2 diabetes (Hooft van 

Huijsduijnen et al., 2002). Indeed, further research will need to be carried out to 

confirm the involvement of PTPB1 in cAMP-mediated inhibition of leptin signalling 

in HUVECs observed in the present study, for example, by using siRNA knock 

down or over expression approaches. Of note, SOCS3 has also been shown to 

target insulin signalling via ubiquitin-mediated degradation of IRS1 and IRS2 in 

HEK293 cells (Rui et al., 2002). As IRS1 and IRS2 represent alternative SOCS 

binding partners, it may be of interest to determine whether or not the 

Epac1/SOCS3 pathway observed in the present study also regulates the SOCS3-

mediated degradation of IRS1 and IRS2.  

Consistent with the SOCS3-independent cAMP-mediated inhibition of leptin-

stimulated STAT3 activation in HUVECs, experiments conducted in AS-Ms 

demonstrated no involvement of SOCS3 in the cAMP-mediated inhibition of sIL-

6Rα/IL-6-induced STAT3 and ERK1,2 activation. As previously mentioned, other 

inhibitory mechanisms independent of SOCS3 may be responsible for the 

observed inhibition, such as SHP2. Indeed, studies have shown that expression of 
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catalytically inactive dominant negative SHP2 mutants results in increased gp130, 

JAK and STAT3 phosphorylation as well as gene induction (Lehmann et al., 2003; 

Symes et al., 1997). Further studies in AS-Ms could investigate the involvement of 

SHP2 and other possible inhibitory molecules in this inhibitory mechanism. 

Despite observing different responses in HUVECs and AS-Ms, AS-Ms may still 

represent a useful and tractable cell type to study in the context of endothelial 

inflammation. Indeed, it is likely that different inhibitory molecules are involved in 

the regulation of IL-6 and leptin signalling in different cell types, and studying AS-

Ms as well as HUVECs would provide a greater understanding of all of these 

inhibitory mechanisms.  

With repect to the SOCS3- and Epac1-dependent inhibition of IL-6/sIL-6α-

stimulated ERK1,2 and STAT3 activation in HUVECs, further results from this 

study demonstrated a requirement for ERK1,2 activation in the inhibition of STAT3 

activation. These results tie in well with recent findings from work carried out by 

Yarwood et al. (2008). These investigators have suggested that the C/EBP family 

of transcription factors link Epac1 activation to SOCS3 induction and since the 

C/EBP proteins have been shown to be substrates for ERK and RSK proteins 

(Ramji & Foka, 2002), an Epac1/ERK/C/EBP/SOCS3 pathway leading to the 

inhibition of IL-6/sIL-6α-stimulated STAT3 activation could be a possibility. 

However, this remains to be determined. 

In conclusion, a potentially new pathway has been identified which inhibits 

cytokine receptor activation of ERK1,2 and STAT3 in endothelial cells. 

Additionally, the AS-M cell line has been further characterised in the context of 

cytokine and cAMP signalling. Overall, results from this study could contribute 

towards the identification of new molecular targets for the therapeutic treatment of 

chronic inflammatory diseases, such as atherosclersosis, and further examination 

of AS-Ms could uncover potentially new mechanisms of inhibition, or increase our 

knowledge of existing inhibitory mechanisms. 
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