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Abstract

Given a partial action of a topological group G on a topological space X
we determine properties P which can be extended from X to its global-
ization. We treat the cases when P is any of the following: Hausdorff,
regular, metrizable, second countable and having invariant metric. Fur-
ther, for a normal subgroup H, we introduce and study a partial action
of G/H on the orbit space X/ ∼H , applications to invariant metrics
and inverse limits are presented.
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1. Introduction

Given an action a : G× Y → Y of a group G on a space Y and an invariant
subset X of Y (i.e. a(g, x) ∈ X, for any g ∈ G, x ∈ X), the restriction of
a to G × X is an action of G over X. If X is not invariant, we get what is
called a partial action on X, that is a collection of partial maps {ηg : g ∈ G},
on X satisfying η1 = idX and ηg ◦ ηh ⊆ ηgh, for each g, h ∈ G. The notion
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of partial group action appeared in the context of C∗-algebras in [8], there
C∗-algebraic crossed products by partial automorphisms played an important
role to analyze and characterize their internal structure. After the work [8],
partial actions have been spreading in several branches of mathematics, for
a detailed account on partial actions the interested reader may consult [5] or
[9]. A relevant question is if a partial action can be obtained by restriction
of a corresponding collection of maps on some superspace. In the topological
context, this is known as the globalization problem and was studied in [1]
and independently in [12]. It was proven that for any partial action η of a
topological group G on a topological space X there is a topological superspace
Y of X and a continuous action µ of G on Y such that the restriction of µ to
X is η. Such a space is called a globalization of X. It is also shown that there
is a minimal globalization XG called the enveloping space of X.

We shall mainly work with partial actions for which the partial maps have
clopen domains, that is closed and open, this kind of partial actions were
considered in [6] where the authors studied the ideal structure of the algebraic
partial crossed product Lc(X) o G, being Lc(X) the algebra consisting of all
locally constant, compactly supported functions on X, while in [10] the authors
showed that partial actions on the Cantor set by clopen subsets are exactly the
ones for which the enveloping space is Hausdorff, also in [3] partial actions with
clopen domains were relevant to introduce and study topological entropy for a
partial action of Z on metric spaces, and in [11] the authors studied topological
dynamics arising from partial actions on clopen subsets of a compact space.

Our work is organized in the following way: After the introduction, in Sec-
tion 2 we present some notions, examples and results that will be useful during
the work, especially Proposition 2.8 gives conditions for the enveloping space to
be T1, while Theorem 2.12 establishes that the globalization of a partial action
is actually an orbit space. At the beginning of Section 3, we treat the question
if a structural property P of a space X endowed with a partial action of a group
G is inherited by the spaces X/∼G and XG (see equations (2.6) and (2.2) for
the proper definitions of X/ ∼G and XG, respectively). To do that, we first
show in Lemma 3.1 that the quotient map πG defined in (2.7) is perfect, this
allows us to present in Theorem 3.2 sufficient conditions in which an affirmative
answer holds for when P is any properties of being Hausdorff, regular, metriz-
able and second countable. The second part of Section 3 deals with invariant
metrics, there we give in Theorem 3.10 a condition for a space X with a partial
action of a compact group so that it admits an invariant metric. It is important
to remark that, in the classical case, the problem of finding characterizations of
G-spaces having invariant metrics have been extensively studied, in particular
it is known that if a space X with a global action admits an invariant metric,
then the orbit space X/ ∼G is metrizable provided that is T1. However, this
result does not hold for partial actions, where one needs to impose regularity
conditions (see Remark 3.11 and Proposition 3.12, respectively). In Section
4 we take a partial action η of G on a space X, a normal subgroup H of G
and we show in Theorem 4.1 how to construct a partial action ηG/H of G/H
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on the orbit space X/∼H , moreover, in the same theorem is shown that the
orbit spaces (X/∼H)/∼G/H and X/∼G are homeomorphic. The structure of
the partial action ηG/H as well as its globalization are presented in Theorem
4.2. As an application for the construction of ηG/H we treat in Proposition
4.9 partial actions on inverse limits, where we provide suitable conditions for
which a space X is G-equivalent to an inverse limit lim

←−
Xi, and such that the

partial action on X satisfies a compatibility relation with the partial actions
associated to Xi.

Throughout the work, several examples are shown to clarify the notions and
results.

2. Preliminaries

Let G be a group with identity element 1, X be a set, and η : G×X → X,
(g, x) 7→ g ·x be a partially defined function, that is, a function whose domain,
denoted by G ∗X, is contained in G ×X. We shall write ∃g · x to mean that
(g, x) belongs to G ∗X. We say that η is a partial action of G on X if for each
g, h ∈ G and x ∈ X the following assertions hold:

(PA1) If ∃g · x, then ∃g−1 · (g · x) and g−1 · (g · x) = x;

(PA2) If ∃g · (h · x), then ∃(gh) · x and g · (h · x) = (gh) · x;

(PA3) ∃1 · x and 1 · x = x.

For g ∈ G, we set Xg = {x ∈ X | ∃g−1 ·x}. Then η induces a family of bijections
{ηg : Xg−1 3 x 7→ g · x ∈ Xg}g∈G. We also denote this family by η. Notice that
η acts (globally) on X if ∃g · x, for all (g, x) ∈ G×X, or equivalently, Xg = X,
for any g ∈ G. The following result characterizes partial actions in terms of a
family of bijections:

Proposition 2.1 ([16, Lemma 1.2]). A partial action η of G on X is a family
η = {ηg : Xg−1 → Xg}g∈G, where Xg ⊆ X, ηg : Xg−1 → Xg is bijective, for all
g ∈ G, and:

(i) X1 = X and η1 = idX ;

(ii) ηg(Xg−1 ∩Xh) = Xg ∩Xgh;

(iii) ηgηh : Xh−1∩Xh−1g−1 → Xg∩Xgh, and ηgηh = ηgh in Xh−1∩Xh−1g−1 ;

for all g, h ∈ G.

Definition 2.2. Let G be a topological group and X be a topological space. A
topological partial action of G on X is a partial action η = {ηg : Xg−1 → Xg}g∈G
on the underlying set X such that Xg is open and ηg is a homeomorphism, for
any g ∈ G. Moreover, we say that η is continuous if η : G∗X → X is continuous,
where G×X has the product topology and G ∗X is endowed with the relative
topology.

Throughout this paper G will denote a Hausdorff topological group, X a
topological space and all partial actions will be topological.
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Now we present an example of a continuous and topological partial action
that will be useful in Section 3. We endow Z with the p-adic topology Tp, where
p is a prime number. For the reader’s convenience we recall its construction
here. See [17, Example 1.18] for details. The family V = {pkZ}k∈Z+ satisfies the
conditions given in [17, Theorem 1.13], then B = {m+ pkZ : m ∈ Z, k ∈ Z+}
is a basis for the topology Tp and (Z,+, Tp) is a topological group.

Example 2.3. Let X be a disconnected topological space, U ⊆ X be a proper
clopen set, f : U → U be a homeomorphism and n ∈ Z. We set f0 = idU ,
if n ∈ Z+ we write fn as n-times the composition of f with itself, and if
n < 0 then fn = (f−1)−n. We define a partial action η of Z on X by setting
Z ∗X = (Z× U) ∪ ({0} ×X) and

η : Z ∗X → X, (n, a) 7→
{

fn(a), if a ∈ U,
a, if n = 0 and a 6∈ U. (2.1)

Suppose there is a prime number p such that fp = idU , and consider Z with
the p-adic topology. Since U is open, then η is a topological partial action. To
show that η is continuous, take (n, x) ∈ Z ∗X and let V ⊆ X be an open set
such that η(n, x) ∈ V . There are two cases to consider:

Case 1: If x ∈ U, then η(n, x) = fn(x) ∈ V . Since V ∩U is open in U , there
is an open set Z ⊆ U such that fn(Z) ⊆ V ∩U . First, we suppose that p does
not divide |n|, then we affirm that the open set W = [(n+pZ)×Z]∩ (Z∗X) ⊆
Z ∗ X satisfies η(W ) ⊆ V . Indeed, given (t, y) ∈ W we have y ∈ Z ⊆ U and
there is m ∈ Z such that t = n+ pm. Note that t 6= 0 since p does not divide
|n|. Further, since y ∈ U we get (n, y) ∈ Z ∗X, and (pm, fn(y)) ∈ Z ∗X, then
the following equalities are valid:

η(t, y) = f t(y) = fpm(fn(y)) = fn(y) ∈ V.
Now, if p divides |n| we let i = max{k ∈ Z+ : pk divides |n|}. Consider

the open set W = [(n + pi+1Z) × Z] ∩ (Z ∗ X). Then for (t, y) ∈ W , by the
maximality of i there is m ∈ Z such that t = n+ pi+1m, y ∈ Z ⊆ U, and t 6= 0.
Since y ∈ U , we get the following:

η(t, y) = fn+pi+1m(y) = fp
i+1m(fn(y)) = fn(y) ∈ V.

We conclude that η(W ) ⊆ V .
Case 2: If x /∈ U, by (2.1) we have n = 0 and η(n, x) = x ∈ V . Since U is

closed, then Z = V ∩ (X \ U) is an open subset of X containing x. Observe
that (n, x) = (0, x) ∈ W = (pZ× Z) ∩ (Z ∗X). Moreover, η(W ) ⊆ V because,
if (t, y) ∈W , then y /∈ U and t = 0, from this we get η(t, y) = η(0, y) = y ∈ V,
showing that η is continuous.

2.1. On the enveloping space. Partial actions can be induced from global
ones as the following example shows:

Example 2.4. (Induced partial action) Let u : G × Y → Y be a continuous
action of G on a topological space Y and X ⊆ Y an open set. For each g ∈ G,
set Xg = X ∩ ug(X) and let ηg = ug � Xg−1 . Then η : G ∗ X 3 (g, x) 7→
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ηg(x) ∈ X is a continuous and topological partial action of G on X. In this
case we say that η is induced by u.

Remark 2.5. Given a continuous global action η of G on X, its induced partial
action on an open (resp. closed) subset Y of X has open (resp. closed) domain
in G× Y .

An important problem on partial actions is whether they can be induced by
global actions. In the topological sense, this turns out to be affirmative and a
proof was presented in [1, Theorem 1.1] and independently in [12, Section 3.1].
For the reader’s convenience, we recall their construction. Let η be a partial
action of G on X. Define an equivalence relation on G×X as follows:

(g, x)R(h, y)⇐⇒ x ∈ Xg−1h and ηh−1g(x) = y, (2.2)

and denote by [g, x] the equivalence class of (g, x). Consider XG = (G×X)/R
with the quotient topology, then the following map:

µ : G×XG 3 (g, [h, x]) 7→ [gh, x] ∈ XG, (2.3)

is a well defined action, and the map

ι : X 3 x 7→ [1, x] ∈ XG, (2.4)

is injective.

Definition 2.6. Let η be a partial action of G on X. The action µ defined
in (2.3) is called the enveloping action of η and XG is the enveloping space or
globalization of X.

In the next result we summarize some basic results about the enveloping
space and the enveloping action. See [1, Theorem 1.1], [12, Theorem 3.13] and
[12, Proposition 3.9].

Proposition 2.7. Let η be a partial action of G on X. Then the following
assertions hold:

(i) The maps µ and ι are continuous,
(ii) If η is continuous and G ∗X is open in G×X, then ι is an open map,
(iii) The quotient map

q : G×X 3 (g, x) 7→ [g, x] ∈ XG, (2.5)

is continuous and open.

Now we provide conditions for XG to be T1.

Proposition 2.8. Let η be a continuous partial action of G on X. Consider
the following assertions:

(i) G ∗X is closed;
(ii) For any x ∈ X the set Gx = {g ∈ G | ∃g · x} is closed;
(iii) XG is T1.

Then (i)⇒ (ii), and (ii)⇒(iii) provided that X is Hausdorff.
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Proof. (i)⇒ (ii): Let x ∈ X and (gλ)λ∈Λ be a net in Gx such that lim gλ = g,
for some g ∈ G. Then (gλ, x)λ∈Λ → (g, x) ∈ G ∗X = G ∗X, thus g ∈ Gx and
Gx is closed.
For the rest of the proof we assume that X is Hausdorff.
(ii)⇒ (iii): Take (g, x) ∈ G×X, and let q be the quotient map defined in (2.5),
then the following equalities are valid:

q−1({[g, x]}) =
⋃
l∈G

{gl−1} × ηl({x} ∩Xl−1) = {(gl−1, l · x) | l ∈ Gx}.

We prove that q−1({[g, x]}) is closed. For this let (h, y) ∈ q−1({[g, x]}), then
there exists a net {li}i∈I in Gx such that (gl−1

i , li · x) → (h, y), in particular
li → h−1g ∈ Gx. We set ηx : Gx 3 g 7→ g · x ∈ X, using the fact that ηx is
continuous one gets li ·x→ (h−1g) ·x, and y = (h−1g) ·x due to the uniqueness
of limits in Hausdorff spaces. From this we obtain the next valid assertion:

(h, y) = (g(h−1g)−1, (h−1g) · x) ∈ q−1({[g, x]}),

thus XG is T1. �

Remark 2.9. With respect to Proposition 2.8 we have the following comments:

• The space XG is T1 when G is discrete and X is Hausdorff.
• Part (ii) ⇒ (i) does not necessarily hold. Indeed, for the partial action

of Z2 = {1,−1} on X = [0, 1] presented in [1, Example 1.4.] that is
α1 = idX and α−1 = idV , where V = (0, 1]. One has that Zx2 is closed
for any x ∈ [0, 1] while Z2 ∗ [0, 1] = {(1, 0)} ∪ (Z2 × V ) is not closed in
Z2 × [0, 1].
• Also part (iii)⇒ (ii) does not hold in general, for this let G = GL(2;R)

be the general linear group of degree 2 acting partially on R as follows:

For g =

(
a b
c d

)
∈ G, set Rg−1 = {x ∈ R : cx + d 6= 0} and consider

ηg : Rg−1 3 x 7→ ax+ b

cx+ d
∈ Rg. There is a homeomorphism from

RG to the space C of complex numbers, then RG is Hausdorff but

G0 =

{(
a b
c d

)
∈ G : d 6= 0

}
is not closed in G.

Definition 2.10. Let X,Y be topological spaces and η : G ∗ X → X, ρ :
G ∗Y → Y be partial actions. A continuous map f : X → Y is called a G-map
if (g, f(x)) ∈ G ∗Y and f(η(g, x)) = ρ(g, f(x)), for every (g, x) ∈ G ∗X. If f is
a homeomorphism and f−1 is a G-map, then X and Y are called G-equivalent.

Proposition 2.11. The following assertions hold:

(i) Let X and Y be topological spaces equipped with partial actions of G.
If X and Y are G-equivalent, then XG and YG are homeomorphic, as
well as G ∗X and G ∗ Y,

(ii) Let β : G × Y → Y be a continuous action of G on a space Y. Let
X ⊆ Y be an open set such that G ·X = Y and η : G ∗X → X be the
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induced partial action of β on X (see Example 2.4). Then the spaces
XG and Y are G-equivalent.

Proof. Part (i) is clear. For (ii), let i : G ×X → G × Y be the inclusion and
α : XG 3 [g, x] 7→ β(g, x) ∈ Y , then the following diagram:

G×X
q

��

i // G× Y

β

��
XG α

// Y,

is commutative. By [12, Proposition 3.5] the map α is a well defined bijection,
moreover, it is continuous because the map α◦q is continuous. Since β is open,
then the map α is a homeomorphism. Finally, notice that α is a G-map. �

2.2. The orbit equivalence relation. Given a partial action η of G on X
the orbit equivalence relation ∼G on X is:

x ∼G y ⇐⇒ ∃g ∈ Gx such that g · x = y, (2.6)

for each x, y ∈ X. The orbit space of X is X/∼G endowed with the quotient
topology. The elements of X/∼G are the orbits Gx · x, for each x ∈ X. It was
shown in [15, Lemma 3.2] that the projection map

πG : X 3 x 7→ Gx · x ∈ X/∼G, (2.7)

is continuous and open.
It is known that globalizations of topological spaces endowed with a partial

action can be seen as orbit spaces. Indeed, the following result was shown in
[15, Theorem 3.3]:

Theorem 2.12. Let η be a topological partial action of G on X, then the family
η̂ = {η̂g : (G×X)g−1 → (G×X)g}g∈G, where (G×X)g = G×Xg and

η̂g : G×Xg−1 3 (h, x) 7→ (hg−1, ηg(x)) ∈ G×Xg,

is a topological partial action of G on G×X, and the enveloping space XG of
η is the orbit space of G×X by η̂.

Let η be a partial action of G on X, and H be a subgroup of G, then
the family ηH : {ηh : Xh−1 → Xh}h∈H is a partial action of H on X. The
corresponding orbit equivalence relation of ηH is denoted by ∼H .

For convenience, the orbits in the space XG/∼H will be denoted by H[g, x],
for any [g, x] ∈ XG. We finish this section with the next lemma:

Lemma 2.13. Let η be a continuous partial action of G on X with G ∗ X
open. Then for each subgroup H of G, the next map:

ϕ : X/∼H3 Hx · x 7→ H[1, x] ∈ XG/ ∼H , (2.8)

is continuous, open and injective, hence ϕ is an embedding.
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Proof. Observe that ϕ is well defined. Indeed, take x, y ∈ X such that x ∼H y

and let h ∈ Hx such that ηh(x) = y. Thus, [1, y]
(2.2)
= [h, x]

(2.3)
= µh([1, x]),

therefore [1, y] ∼H [1, x], then ϕ is well defined. It is easy to check that ϕ is
injective. To prove that ϕ is continuous, consider the corresponding projection
maps πH : X → X/∼H and ΠH : XG → XG/∼H . Since the map ι defined
in (2.4) is continuous and ϕ ◦ πH = ΠH ◦ ι, we conclude that ϕ is continuous.
It remains to check that ϕ is open. Let U ⊆ X/ ∼H be an open set, then
ϕ(U) = ΠH(ι(π−1

H (U))) is open because π−1
H (U) is open in X and the maps ι

and ΠH are open thanks to Proposition 2.7 and [15, Lemma 3.2], respectively.
Therefore ϕ is an open map. �

3. Properties preserved by the enveloping space

We recall that a continuous surjection f : X → Y is perfect if it is closed
and f−1({y}) is compact, for all y ∈ Y.

We proceed with the next lemma:

Lemma 3.1. Let η : G∗X → X be a continuous partial action such that G∗X
is closed in G×X and G is compact, then the following assertions hold:

(i) η is closed;
(ii) The maps πG and π̂G are perfect, being π̂G the quotient map induced

by the partial action η̂, defined in Theorem 2.12.

Proof. (i) Let C be a nonempty closed subset of G ∗ X and y ∈ η(C), then
there is a directed set Λ and a net (gλ, xλ)λ∈Λ in C such that lim gλ · xλ = y.
Since G is compact, we can suppose that lim gλ = g, for some g ∈ G. Notice
that (g−1

λ , gλ · xλ)λ∈Λ is a net in G ∗X and lim(g−1
λ , gλ · xλ) = (g−1, y), then

(g−1, y) ∈ G ∗X because G ∗X is a closed subset of G×X. Now consider the
net (gλ, xλ)λ∈Λ = (gλ, g

−1
λ · (gλ · xλ))λ∈Λ in C, then the next assertion is true:

(g, g−1 · y) = lim(gλ, g
−1
λ · (gλ · xλ)) = lim(gλ, xλ) ∈ C,

so y = g · (g−1 · y) = η(g, g−1 · y) ∈ η(C), which implies that η is a closed map.
(ii) The map πG is closed because of (i) above and the equality π−1

G (πG(F )) =
η((G×F )∩(G∗X)), for any closed subset F ofX. To prove our assertion we need
to check that π−1

G (πG(x)) is compact, for any x ∈ X. By Proposition 2.8 we

have thatGx is a compact subsetG, then π−1
G (πG(x)) = Gx·x = η(Gx×{x}) is a

compact subset of X. To show that π̂G is closed we have by [14, Proposition 2.6]
that η̂ is continuous, moreover, from [14, Corollary 3.3] we get that G∗(G×X)
is closed in G× (G×X), then the result follows. �

Theorem 3.2. Let G be a compact group and η : G ∗X → X be a continuous
partial action such that G ∗X is closed in G×X. Let P be any of the proper-
ties: Hausdorff, regular, metrizable and second countable. Then the following
statements hold:

(i) If X is P, then X/∼G is P,
(ii) If G×X is P, then XG is P.
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Proof. (i): This follows from ı́tem (ii) in Lemma 3.1 and [7, Theorem 5.2],
while (ii) is a consequence of ı́tem (ii) in Lemma 3.1, ı́tem (i) above, and the
last assertion in Theorem 2.12. �

Remark 3.3. We remark the following facts:

(i) In general the assumption that G ∗ X is closed in G × X cannot be
removed in part (ii) of Theorem 3.2. Indeed, for the Abadie’s partial
action of Z2 = {1,−1} on X = [0, 1] presented in Remark 2.9, we have
by Proposition 2.8 that the space XZ2

is T1 but not Hausdorff.
(ii) Also, the fact that XG is Hausdorff does not imply that G is compact,

for instance, in [10, Proposition 2.1] a characterization for XG to be
Hausdorff is presented in the case when G is countable and discrete.

We illustrate the previous theorem with some examples.

Example 3.4. Consider X = R \ {0} as a subspace of R. A partial action of
Z3 on X is defined as follows: Let X1 = (−∞, 0) and X2 = (0,∞). Note that
X1 and X2 are clopen subsets of X such that X = X1 ∪ X2. Set η0 = idX ,
η2 : X1 3 x 7→ −x ∈ X2 and η1 = η−1

2 , moreover, let

Z3 ∗X = ({0} ×X) ∪ ({1} ×X2) ∪ ({2} ×X1),

then η : Z3 ∗X → X is a partial action of Z3 on X such that Z3 ∗X is clopen
in Z3 ×X, thus by Theorem 3.2 the enveloping space XZ3

is metrizable.

Example 3.5. Let X be a disconnected space and U ⊆ X be a non-empty
clopen subset of X with U 6= X. Then η : Z2 ∗X → X is a partial action of Z2

on X, where Z2 ∗X = ({0} ×X) ∪ ({1} × U), and η(1, u) = u for any u ∈ U .
Since Z2 ∗X is closed in Z2 ×X we conclude that XZ2

is metrizable.

In view of (ii) in Remark 3.3 we give the next proposition:

Proposition 3.6. Let G be a compact group, X be a compact Hausdorff space
and η : G ∗ X → X be a partial action. If XG is Hausdorff, then G ∗ X is
closed.

Proof. Let {(gλ, xλ)}λ∈Λ be a net in G ∗ X such that lim(gλ, xλ) = (g, x) ∈
G×X. Since XG is Hausdorff, we have by [1, Proposition 1.2] that the space
Graph(η) = {(g, x, y) ∈ G × X × X : (g, x) ∈ G ∗ X, g · x = y} is a closed
subset of G × X × X, and thus compact. Therefore we may assume that
(gλ, xλ, gλ · xλ)λ∈Λ converges to (g, x, p) ∈ Graph(η), for some p ∈ X. In
particular, (g, x) ∈ G ∗X and G ∗X is closed. �

Having at hand Proposition 3.6 one may ask if its assumptions imply that
if the orbit space X/∼G is Hausdorff then G ∗X is closed in G×X. But this
is not the case as Example 3.7 below shows:

Example 3.7. Consider again the partial action η of Z2 on X = [0, 1] given in
[1, Example 1.4.]. We observed in Remark 2.9 that Z2∗X is not closed in Z2×X.
Moreover, since η(1, x) = x for any x ∈ (0, 1], we have πZ2 : X → X/∼Z2 is
injective and thus a homeomorphism and X/∼Z2 is Hausdorff.
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3.1. Invariant metrics. Let η : G∗X 3 (g, x) 7→ g ·x ∈ X be a partial action
of G on the metric space (X, ρ). We say that ρ is η-invariant if for any g ∈ G
and x, y ∈ Xg−1 , ρ(g · x, g · y) = ρ(x, y).

Example 3.8. Let η be as in equation (2.1). Suppose that X is a metrizable
space and ρ is a compatible metric on X. If f is an isometry, then ρ is a
η-invariant metric in any of the following cases:

(i) Z is considered as a discrete space,
(ii) Z is endowed with the p-adic topology and fp = idU , for some prime

number p.

In the context of hyperspaces endowed with partial actions we give the next
example:

Example 3.9. Let η : G ∗ X 3 (g, x) 7→ g · x ∈ X be a continuous partial
action of G on a compact metric space (X, d). Denote by 2X the hyperspace of
nonempty compact subsets of X endowed with the Hausdorff metric dH , which
is defined by the next rule:

dH(A,B) = inf{ε > 0 : A ⊆ N(B, ε) and B ⊆ N(A, ε)},

where A,B ∈ 2X and N(A, ε) =
⋃
a∈A

Bd(a, ε). It follows by [13, Theorem 3.2]

that 2η : G ∗ 2X 3 (g,A) 7→ ηg(A) ∈ 2X , is a continuous partial action of G on
2X , where

G ∗ 2X = {(g,A) ∈ G× 2X : (g, a) ∈ G ∗X (∀a ∈ A)}.

Suppose that d is η-invariant. We observe that dH is 2η-invariant. For this
take g ∈ G and A,B ∈ 2X for which (g,A), (g,B) ∈ G ∗ 2X . Let ε > 0 with
A ⊆ N(B, ε) and B ⊆ N(A, ε). Now, given a ∈ A there exists b ∈ B such
that a ∈ Bd(b, ε), then d(g · a, g · b) = d(a, b) < ε and we have proven that
ηg(A) ⊆ N(ηg(B), ε). In a similar way one shows that ηg(B) ⊆ N(ηg(A), ε),
therefore, dH(ηg(A), ηg(B)) ≤ ε, and dH(ηg(A), ηg(B)) ≤ dH(A,B).

On the other hand, take ε > 0 such that ηg(A) ⊆ N(ηg(B), ε) and ηg(B) ⊆
N(ηg(A), ε). For a ∈ A choose b ∈ B such that g · a ∈ Bd(g · b, ε), then
d(a, b) = d(g·a, g·b) < ε and A ⊆ N(B, ε), again one verifies B ⊆ N(A, ε) which
implies dH(A,B) ≤ dH(ηg(A), ηg(B)), hence dH(A,B) = dH(ηg(A), ηg(B)), as
desired.

It follows from [2, Proposition 5] that there is a compatible η-invariant metric
for X provided that η is global and G is countably compact. The following
theorem is a version of this result for partial actions:

Theorem 3.10. Let η : G∗X → X be a continuous partial action, then X and
XG are metrizable by an invariant metric under any of the following conditions:

(i) G is countably compact and XG is metrizable,
(ii) G is compact and first countable, X is metrizable and G ∗X is closed.

Moreover if (i) holds and XG/ ∼ G is T1, then X/∼G is metrizable.
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Proof. In both cases it is enough to prove that XG has a compatible µ-invariant
metric ρ, where µ is given by (2.3). Indeed, since η is continuous we have by
[12, Proposition 3.12] that ι : X → ι(X) is a homeomorphism, where ι is given
by (2.4), thus one obtains an η-invariant metric for X by restricting ρ to ι(X).

(i) Since µ is continuous, the result follows from [2, Proposition 5].
(ii) In this case the space G×X is metrizable, thus XG is metrizable thanks

to Theorem 3.2 and again the result follows from [2, Proposition 5]. To show
the last assertion, we observe that XG admits an invariant metric, then the
result follows from [4, Theorem 2.16] and Lemma 2.13. �

Remark 3.11. It is known that when G acts globally on a space X that admits
an invariant metric, then the space X/∼G is metrizable provided that it is T1,
however this does not hold for partial actions. For a concrete example take the
partial action given in Remark 2.9 and use Theorem 2.12 and Remark 3.3.

The following result tells us that one needs to impose the regularity condition
on X/ ∼G:

Proposition 3.12. Let X be a second countable space endowed with a partial
action of G, then the following assertions are equivalent:

(i) X/∼G is metrizable;
(ii) X/∼G is regular and T1.

Proof. Clearly (i) implies (ii). To see (ii) implies (i), notice that X/∼G is sec-
ond countable because the quotient map πG is open. Therefore, by Urysohn’s
metrization Theorem, the space X/ ∼G is metrizable. �

4. Partial actions on orbit spaces

Let η be a partial action of G on X and H be a normal subgroup of G. We
shall construct a partial action of G/H on X/∼H . If η is a global action, then
G/H acts globally on X/∼H via

ηgH(H · x) = H · (g · x), (4.1)

for any g ∈ G and x ∈ X.
For the case of partial action, we notice that mimicking the construction

above does not yield to a partial action of G/H on X/∼H because it is not
natural how to define the set G/H ∗ (X/∼H). Indeed, the construction of such
partial action is essentially more laborious than the global one, as we shall see
in the next result:

Theorem 4.1. Let η be a continuous partial action of G on X and H be
a normal subgroup of G. Then there is a continuous partial action ηG/H of
G/H on X/ ∼H , such that the orbit spaces (X/ ∼H)/ ∼G/H and X/ ∼G are
homeomorphic.

Proof. Let µ be the globalization of η. Then µ is continuous and by (4.1) it
induces a continuous action µG/H on XG/∼H as follows:

µgH : XG/∼H3 H[t, x] 7→ H[gt, x] ∈ XG/∼H ,
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for each gH ∈ G/H. Now, let ϕ be defined by (2.8). By Example 2.4 and
Lemma 2.13 the map µG/H induces a continuous partial action η′G/H of G/H on

the open set Im(ϕ) of XG/∼H , where η′G/H = {η′gH : Xg−1H → XgH}gH∈G/H ,

XgH = µgH(Im(ϕ)) ∩ Im(ϕ) and η′gH = µgH � Xg−1H . (4.2)

Let Ω := X/ ∼H , then one obtains a partial action ηG/H of G/H on Ω by

setting ΩgH = ϕ−1(XgH), g ∈ G and

ηgH : Ωg−1H 3 x 7→ ϕ−1(η′gH(ϕ(x))) ∈ ΩgH . (4.3)

Then

ηgH(x) = (ϕ−1 ◦ µgH ◦ ϕ)(x), (4.4)

for each x ∈ Ωg−1H and g ∈ G. The fact that ηG/H is continuous is straight-
forward.

Let ∼G/H be the orbit equivalence relation in Ω induced by ηG/H . To finish
the proof we show that the spaces Ω/∼G/H and X/ ∼G are homeomorphic.
Consider the next diagram:

X

πH

��

πG // X/ ∼G

Ω
πG/H

// Ω/∼G/H ,

ψ

OO

where ψ satisfies

ψ(πG/H(πH(x))) = πG(x), (4.5)

for each x ∈ X. Let us prove that ψ is well defined. Take x, y ∈ X such that
πG/H(πH(x)) = πG/H(πH(y)). Then there is g ∈ G with

πH(y) = ηgH(πH(x))
(4.4)
= ϕ−1(µgH(ϕ(πH(x)))) = ϕ−1(H[g, x]),

which implies H[g, x] = H[1, y] and there is h ∈ H such that [hg, x] = [1, y],
thus ηhg(x) = y and πG(x) = πG(y), which shows that ψ is well defined.
Moreover, notice that ψ is continuous and surjective.

Let us prove that ψ is injective. Let z1, z2 ∈ Ω/∼G/H such that ψ(z1) =
ψ(z2), and let x, y ∈ X with πG/H(πH(x)) = z1 and πG/H(πH(y)) = z2.
Since πG(x) = πG(y), there is g ∈ Gx satisfying ηg(x) = y. To prove that
z1 = z2 we need to find t ∈ G for which ηtH(πH(x)) = πH(y). We claim that
ηgH(πH(x)) = πH(y). In fact, by (4.4) we get

ηgH(πH(x)) = ϕ−1(µgH(ϕ(πH(x)))) = ϕ−1(H[g, x]),

and ϕ(πH(y)) = H[1, y] = H[g, x], then ηgH(πH(x)) = πH(y) and ψ is injec-

tive. Let U ⊆ Ω/∼G/H be an open set. Since πG is open, πG(π−1
H (π−1

G/H(U))) ⊆
X/∼G is open. Thus ψ(U) is open and ψ : Ω/∼G/H→ XG/∼G is a homeo-
morphism. �
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The following result describes explicitly the partial action ηG/H and its glob-
alization:

Theorem 4.2. Let η be a continuous partial action of G on X, H be a normal
subgroup of G and ηG/H be the partial action of G/H on X/∼H defined above.
Then the following assertions hold:

(i) For g ∈ G we have

(X/∼H)gH = {πH(x) | ∃h ∈ H such that (hg−1, x) ∈ G ∗X},
(ii) The domain of ηG/H is

{(gH, πH(x)) : (g, x) ∈ G×X ∧ ∃h ∈ H such that (hg, x) ∈ G ∗X},
(iii) We have

ηG/H : G/H ∗X/∼H3 (gH, πH(x)) 7→ πH((hg) · x) ∈ X/∼H , (4.6)

where h ∈ H is such that (hg, x) ∈ G ∗X,
(iv) The globalization of ηG/H is (G/H)-equivalent to XG/∼H , where G/H

acts on XG/∼H via µG/H .

Proof. (i) Take g ∈ G and x ∈ X such that πH(x) ∈ (X/ ∼H)gH . By
(4.3) ϕ(πH(x)) = H[1, x] ∈ XgH and (4.2) gives an element y ∈ X such
that µgH(H[1, y]) = H[1, x], that is, H[g, y] = H[1, x] and [h0, x] = [g, y] for
some h0 ∈ H, therefore (g−1h0, x) ∈ G ∗ X. Since H is normal in G we have
g−1h0 = hg−1 for some h ∈ H and (hg−1, x) ∈ G ∗ X. Conversely, if x ∈ X
verifies (h0g

−1, x) ∈ G ∗ X for some h0 ∈ H, then h0g
−1 = g−1h for some

h ∈ H and we have [h, x] = [g, y], where y = (g−1h) · x and

ϕ(πH(x)) = H[1, x] = H[1, (h−1g)·y]
(2.2)
= H[h−1g, y] = H[g, y] = µgH(H[1, y]),

thus ϕ(πH(x)) ∈ µgH(Imϕ) and πH(x) ∈ (X/∼H)gH thanks to equations (4.2)
and (4.3).

(ii) This is a consequence of part (i) and the fact that (gH, πH(x)) ∈ G/H ∗
X/∼H if and only if πH(x) ∈ (X/∼H)g−1H .

(iii) Take (gH, πH(x)) ∈ G/H ∗ X/ ∼H . There exists h ∈ H such that
(hg, x) ∈ G ∗ X, then [hg, x] = [1, (hg) · x] and ϕ(πH((hg) · x)) = H[hg, x] =
H[g, x]. Then follows by (4.4) that:

ηG/H(gH, πH(x)) = ϕ−1(H[g, x]) = πH((hg) · x),

as desired.
(iv) Observe that Imϕ = {H[1, x] | x ∈ X}, then µG/H [Imϕ] = XG/∼H ,

thus by (ii) of Proposition 2.11 the spaces (Imϕ)G/H and XG/∼H are home-
omorphic. Now we must show that the spaces Imϕ and X/ ∼H are G/H-
equivalent, but by (i) in Proposition 2.11 it is enough to show that ϕ is a
(G/H)-map, and this follows from (4.3). �

Example 4.3. Consider the partial action η : Z ∗ X → X of Example 3.8
and let m ∈ Z+ be the least integer such that fm = idU . If H = mZ, then
the induced quotient morphism πH satisfies πH(x) = {x}, for any x ∈ X, thus
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the spaces X and X/∼H are homeomorphic. Now we determine ηZ/H . Take
(k +H,πH(x)) ∈ Z/H ∗X/∼H , then, if k ∈ H, by (4.6) we get

ηZ/H(k +H,πH(x)) = ηZ/H(H,πH(x)) = πH(x).

Suppose k /∈ H. By (ii) of Theorem 4.2, there is h ∈ H such that (h + k, x) ∈
Z ∗ X and ηZ/H(k + H,πH(x)) = πH(η(h + k, x)), thanks to (4.6). Since
(h + k, x) ∈ Z ∗X and k /∈ H, the equality (2.1) implies x ∈ U . Then, (h, x)
and (k+h, x) belong to Z∗X, which gives η(h+k, x) = η(k+h, x) = fk+h(x) =
fk(x). We have shown that if k /∈ H with (k+H,πH(x)) ∈ Z/H ∗X/ ∼H , one
gets

ηZ/H(k +H,πH(x)) = πH(η(h+ k, x)) = πH(fk(x)) = πH(η(k, x)).

Corollary 4.4. Let G be a compact group, H be a closed normal subgroup of G,
and η : G∗X → X be a continuous partial action on a compact Hausdorff space
X. If G∗X is closed in G×X, then G/H ∗X/∼H is closed in G/H×X/∼H .

Proof. Let η′G/H be the partial action defined (4.2). By construction we get

that ηG/H and η′G/H are G/H-equivalent, and thus it is enough to show that

G/H ∗ Im(ϕ) is closed in G/H × Im(ϕ). Having at hand Remark 2.5 we only
need to see that Im(ϕ) is closed in XG/∼H . Now, by (ii) in Theorem 3.2 the
enveloping space XG is Hausdorff and since H is compact then the first ı́tem
of Theorem 3.2 implies that XG/ ∼H is Hausdorff. Also X/ ∼H is compact
which implies that ϕ is a closed map, then Im(ϕ) is closed in XG/ ∼H and
G/H ∗ Im(ϕ) is closed in G/H × Im(ϕ) which finishes the proof. �

The following lemma is clear:

Lemma 4.5. Let G and H be topological groups and φ : G → H be a group
homomorphism. If {ηh : Xh−1 → Xh}h∈H is a partial action of H on X, then
the family {ηφ(g) : Ug−1 → Ug}g∈G, where Ug = Xφ(g), g ∈ G, is a partial action
of G on X such that

G ∗X = (φ× idX)−1(H ∗X) and G ∗X 3 (g, x) 7→ η(φ(g), x) ∈ X. (4.7)

Remark 4.6. Using ηG/H and the canonical homomorphism pH : G→ G/H, it
follows by Theorem 4.1 and Lemma 4.5 that there is a partial action ηpH of G
on X/∼H which by (4.7) has domain

G ∗ (X/∼H) = {(g, πH(x)) | g ∈ G, x ∈ X, (gH, πH(x)) ∈ G/H ∗X/∼H},
(4.8)

and
ηpH (g, πH(x)) = ηG/H(gH, πH(x)). (4.9)

From now on we always consider G acting partially on X/∼H via ηpH .

Let H1, H2 be subgroups of G such that H1 ⊆ H2. We define πH1,H2 :
X/∼H1→ X/∼H2 as the only map such that

πH2
= πH1,H2

◦ πH1
, (4.10)

in particular, for a subgroup H of G the map πH,H is the identity on X/∼H .
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Proposition 4.7. Let H,H1 and H2 be normal subgroups of G with H1 ⊆ H2.
Then πH and πH1,H2 are G-maps.

Proof. First we show that πH is a G-map. Take (g, x) ∈ G ∗ X, by (ii) of
Theorem (4.2) the pair (gH, πH(x)) belongs to G/H ∗ X/∼H and follows by
(4.6) that πH(η(g, x)) = ηG/H(gH, πH(x)). Hence (g, πH(x)) ∈ G ∗ X/ ∼H
and ηpH (g, πH(x)) = πH(η(g, x)) which shows that πH is a G-map. Now we
show that πH1,H2

is a G-map. Suppose (g, πH1
(x)) ∈ G ∗ X/∼H1

. We need
to show that (g, πH2

(x)) ∈ G ∗ X/ ∼H2
and πH1,H2

(ηG/H1
(gH1, πH1

(x))) =
ηG/H2

(gH2, πH2
(x)). We have (gH1, πH1

(x)) ∈ G/H1 ∗ X/ ∼H1
. Using (ii)

of Theorem 4.2 there exists h ∈ H1 ⊆ H2 such that (hg, x) ∈ G ∗ X, thus
(gH2, πH2(x)) ∈ G/H2 ∗X/ ∼H2 and (g, πH2(x)) ∈ G∗X/ ∼H2 . It follows from
(4.6) that

ηpH1 (g, πH1
(x)) = ηG/H1

(gH1, πH1
(x)) = πH1

(η(hg, x)),

in a similar way ηpH2 (g, πH2
(x)) = ηG/H2

(gH2, πH2
(x)) = πH2

(η(hg, x)). There-
fore

πH1,H2(g · πH1(x)) = πH1,H2(πH1(hg · x)) = πH2(hg · x) = g · πH2(x),

and we conclude that πH1,H2
is a G-map. �

4.1. Inverse limits. As an application of Theorem 4.1 we extend [2, Theorem
9] to the context of partial actions. Let G be a compact group, let (I,≤) be

a directed set and consider an inverse system {Gi; pji ; I} in the category of
topological groups such that G = lim

←−
Gi, where {pi : G→ Gi}i∈I is the family

of projections such that pji ◦ pj = pi for i, j ∈ I and i ≤ j. Take i ∈ I, then

Hi = ker(pi) = p−1
i ({ei}) is a closed normal subgroup of G thus is compact

and Hj ≤ Hi, for every i, j ∈ I with i ≤ j. Let η be a continuous partial action
of G on X. Now, for i ∈ I the group Hi acts partially on X via restriction,
setting Xi = X/ ∼Hi

we denote by πji = πHj ,Hi
: Xj → Xi, i ≤ j, the G-map

defined in (4.10) and πi = πHi : X → Xi, the orbit equivalence map.
We proceed with the next lemma:

Lemma 4.8. Following the notations above consider i, j ∈ I with i ≤ j. Let
η : G ∗X → X be a continuous partial action such that G ∗X is closed, then
the family {πi : X → Xi}i∈I separates points of closed sets in X.

Proof. The proof follows the lines of [2, Lemma 3], where it is shown that
πi(x) /∈ πi(C) for any x ∈ X and C ⊆ X a closed subset such that x /∈ C.
On the other hand, the fact that G ∗ X is closed is used to guarantee that
Hi ∗ X = (G ∗ X) ∩ (Hi × X), is closed in Hi × X, which implies that πi is
closed, for any i ∈ I. Then the family {πi : X → Xi}i∈I separates points of
closed sets in X, as desired. �

Take i, j, k ∈ I such that i ≤ j ≤ k. For x ∈ X, we have πki (Hx
k · x) =

(πji ◦ πkj )(Hx
k · x), then X = {Xi, π

j
i , I} is an inverse system of spaces endowed

with continuous partial actions of G.
We finish this work with the next result:
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Proposition 4.9. Under the assumptions above, let X = {ϕi : lim
←−

Xi →
Xi}i∈I be the family of projections associated to lim

←−
Xi. If X is Hausdorff and

G ∗X is closed in G×X, then the following assertions hold:

(i) There is a partial action θ of G on lim
←−

Xi such that X is G-equivalent

to lim
←−

Xi.

(ii) The following diagram is commutative for any j ∈ I

G ∗ lim
←−

Xi

idG×ϕj

��

θ // lim
←−

Xi

ϕj

��
G ∗Xj

η
pHj

// Xj ,

where ηpHj is the partial action of G on Xj given by (4.9).

Proof. (i) It is not difficult to see that the family Π = {πi : X → Xi}i∈I is
compatible with X then by the universal property of the inverse limit there
exists a continuous map λ : X → lim

←−
Xi, such that ϕi ◦ λ = πi, for any i ∈ I.

We shall prove that λ is a homeomorphism. First, by Lemma 4.8, the family
Π separates points of closed sets in X, further, by (i) in Theorem 3.2 each
orbit space Xi is T2, then the map λ is an embedding. Let (xi)i∈I ∈ lim

←−
Xi,

since Hi ∗ X is closed in Hi × X and by Lemma 3.1 the map πi is perfect,
we have Ai = π−1

i (xi) is a compact subset of X, for all i ∈ I. Now write
A = {Ai}i∈I and take i, j ∈ I such that i ≤ j. For y ∈ Aj we have πi(y) =

πji (πj(y)) = πji (xj) = xi, and Aj ⊆ Ai, from this one concludes that A has
the finite intersection property, therefore

⋂
i∈I

Ai 6= ∅. Finally, if y ∈
⋂
i∈I

Ai,

then πi(y) = xi, that is (xi)i∈I = λ(y), therefore lim
←−

Xi = λ(X) and λ is a

homeomorphism. To define a partial action of G on lim
←−

Xi we set

G ∗ lim
←−

Xi =
{

(g, x) ∈ G× lim
←−

Xi | (g, λ−1(x)) ∈ G ∗X
}
,

and

θ : G ∗ lim
←−

Xi 3 (g, x) 7→ λ(g · λ−1(x)) ∈ lim
←−

Xi,

thus λ is a G−map which shows the first ı́tem.
(ii) Take j ∈ I. We first check that the map idG × ϕj is well defined, that

is for (g, x) ∈ G ∗ lim
←−

Xi one has that (g, xj) ∈ G ∗ Xj , where x = (xi)i∈I .

Indeed, if (g, x) ∈ G ∗ lim
←−

Xi we get that (g, λ−1(x)) ∈ G ∗ X which by ı́tem

(ii) in Theorem 4.2 implies (gHj , πj(λ
−1(x))) ∈ G/Hj ∗Xj and thus (g, xj) =

(g, πj(λ
−1(x))) ∈ G∗Xj thanks to (4.8), and idG×ϕj is well defined. To check

that the diagram commutes observe that

ηpHj ◦ (idG × ϕj)(g, x) = ηG/Hj
(gHj , πj(λ

−1(x))) = πj((hg) · λ−1(x)),
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where by (ii) of Theorem 4.2 the element h ∈ Hj is such that (hg, λ−1(x)) ∈
G∗X. Since λ−1(x) ∈ Xg−1h−1∩Xg−1 we get by ı́tem (ii) of Proposition 2.1 that
g · λ−1(x) ∈ Xh−1 thus (hg) · λ−1(x) = h · (g · λ−1(x)) and πj((hg) · λ−1(x)) =
πj(g ·λ−1(x)). On the other hand ϕj ◦θ(g, x) = ϕjλ(g ·λ−1(x)) = πj(g ·λ−1(x)).
Then ηpHj ◦ (idG × ϕj) = ϕj ◦ θ which ends the proof. �
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13, no. 1 (2019), 195–247.

[6] M. Dokuchaev and R. Exel, The ideal structure of algebraic partial crossed products,

Proc. Lond. Math. Soc. 115, no. 1 (2017), 91–134.
[7] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

[8] R. Exel, Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-

Voiculescu exact sequences, J. Funct. Anal. 122, no. 3 (1994), 361–401.
[9] R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical sur-

veys and monographs; volume 224, Providence, Rhode Island: American Mathematical

Society, 2017.
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