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Abstract: Some iterative schemes with memory were designed for approximating the inverse of
a nonsingular square complex matrix and the Moore–Penrose inverse of a singular square matrix
or an arbitrary m × n complex matrix. A Kurchatov-type scheme and Steffensen’s method with
memory were developed for estimating these types of inverses, improving, in the second case, the
order of convergence of the Newton–Schulz scheme. The convergence and its order were studied in
the four cases, and their stability was checked as discrete dynamical systems. With large matrices,
some numerical examples are presented to confirm the theoretical results and to compare the results
obtained with the proposed methods with those provided by other known ones.

Keywords: nonlinear matrix equations; inverse and pseudo-inverse matrices; iterative procedure;
methods with memory

MSC: 65H99; 15A09

1. Introduction

Calculating the inverse of a matrix, especially of a large size, is a very difficult task with
a high computational cost. The alternative is the use of iterative algorithms to estimate it.
In a vast range of fields, such as image and signal processing [1–4], encryption [5,6], control
system analysis [7,8], etc., it is necessary to calculate the inverse or different generalized
inverses in order to solve the problems posed.

In recent years, many iterative schemes of different orders of convergence have been
designed to estimate the inverse of a complex matrix A or some generalized inverse (Moore–
Penrose inverse, Drazin inverse, etc.). In 2013, Weiguo et al. in [9] constructed a sequence
of third-order iterations converging to the Moore–Penrose matrix. In the same year as
well, Toutounian and Soleymani in [10] presented a high-order method for approximating
inverses and pseudo-inverses of complex matrices based on Homeier’s scheme, with a
derivative-free composition. More recently, Stanimirovic et al. in [11] designed efficient
transformations of the hyperpower iterative method for computing the generalized inverses
A(2)

T,S with the aim of minimizing the number of required matrices by matrix products
per cycle. In 2020, Kaur et al. established in [12] new formulations of the fifth-order
hyperpower method to compute the weighted Moore–Penrose inverse, improving the
efficiency indices. Such approximations were found to be robust and effective when
implemented as a preconditioned matrix to solve the linear systems. All these schemes
were designed with the starting point of iterative procedures without memory, that is
where each new iteration is calculated using only the information provided by the previous
iterate.

Mathematics 2023, 11, 3161. https://doi.org/10.3390/math11143161 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143161
https://doi.org/10.3390/math11143161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0003-4594-071X
https://orcid.org/0000-0002-9893-0761
https://orcid.org/0000-0001-7755-5635
https://doi.org/10.3390/math11143161
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143161?type=check_update&version=1


Mathematics 2023, 11, 3161 2 of 19

Iterative procedures that use more than one previous iterate to calculate the next
one are called methods with memory. In the context of matrix inverse approximations,
the secant scheme was proposed by the authors in [13]. For a nonsingular matrix, the
secant method gives an estimation of the inverse and, when the matrix is singular, an
approximation of the pseudo-inverse and Drazin inverse. Furthermore, the superlinear
convergence was demonstrated in all cases.

In this manuscript, we focused on constructing several iterative methods with memory,
free of inverse operators and with different orders of convergence, for finding the inverse
of a nonsingular complex matrix. We also analyzed the proposed schemes for computing
the Moore–Penrose inverse of complex rectangular matrices. On the other hand, these
procedures allow approximating other generalized inverses such as the Drazin inverse, the
group inverse, etc., although this is beyond the scope of this work.

Let A be a complex n × n nonsingular matrix. The design of iterative algorithms
without memory for estimating the inverse matrix, which we call Newton–Schulz-type
methods, is mostly based on iterative solvers for the scalar equation f (x) = 0 applied to
the nonlinear matrix equation:

F(X) = X−1 − A = 0, (1)

where F : Cn×n → Cn×n is a nonlinear matrix function.
The most-used iterative scheme to approximate A−1 is the Newton–Schulz scheme [14]:

Xk+1 = Xk(2I − AXk), k = 0, 1, . . . , (2)

where I is an identity matrix of size n× n.
On the other hand, in the context of iterative procedures with memory, the authors

presented in [13] a secant-type method (SM), whose iterative expression is:

Xk+1 = Xk−1 + Xk − Xk−1 AXk, k = 0, 1, 2, . . . , (3)

where X0, X−1 are the starting guesses. With a particular choice of the initial approxima-
tions, the authors proved that sequence {Xk}, obtained by (3), converges to A−1 with order
of convergence 1.618.

To analyze the convergence order of the iterative methods with memory for solving
nonlinear equations f (x) = 0, the R-order is used (see [15]), which we summarize below.

Theorem 1. Let ψ be an iterative method with memory that generates a sequence {xk} of approx-
imations to the root α of f (x) = 0, and let this sequence converge to α. If there exists a nonzero
constant η and nonnegative numbers ti, i = 0, 1, . . . , m, such that the inequality:

|ek+1| ≤ η
m

∏
i=0
|ek−i|ti

holds, then the R-order of convergence of the iterative method ψ satisfies the inequality:

OR(ψ, α) ≥ s∗,

where s∗ is the unique positive root of the equation:

sm+1 −
m

∑
i=0

tism−i = 0.

Here, ek = xk − α denotes the error of the approximation in the kth iterative step.
Continuing with the idea of designing iterative procedures with memory, in this work,

we used the scalar iterative methods of Kurchatov and Steffensen with memory, which we
adapted to the context of matrix equations. In the scalar case, this kind of procedure can
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reach a higher order of convergence than schemes without memory with the same number
of functional evaluations and usually has better stability properties. However, as far as we
know, only the secant scheme has been extended to matrix equations with good results,
in [13].

Kurchatov’s scheme is an iterative algorithm with memory with quadratic convergence
to solve scalar equations f (x) = 0 (see [16]), which is deduced from Newton’s method by
substituting f ′(x) by Kurchatov’s divided difference, that is:

xk+1 = xk −
f (xk)

f [xk, xk−1]K
= xk −

2(xk − xk−1) f (xk)

f (2xk − xk−1)− f (xk−1)
, k = 1, 2, . . . (4)

Regarding Steffensen’s scheme, it was initially developed in [17], where the derivative
f ′(x) was replaced by the divided difference f [xk, xk + f (xk)]. It still holds the original
quadratic convergence, but in practice, the set of converging initial estimations is quite
smaller than that of Newton’s scheme. It was Traub who, in [18], introduced an accelerating
parameter γ in the divided difference such that f ′(xk) ≈ f [xk, xk + γ f (xk)] derived an
iterative method whose error equation was:

ek+1 = (1 + γ f ′(α))c2e2
k + O(e3

k),

with c2 = 1
2

f ′′(α)
f ′(α) . With the aim of increasing the order of convergence of the scheme, Traub

defined an approximation of γ = − 1
f ′(α) by γk = − 1

f [xk ,xk−1]
, obtaining the procedure:

xk+1 = xk −
f (xk)

f [xk + γk f (xk), xk]
, k = 0, 1, 2, . . . ,

which, given initial values x0 and γ0, has order of convergence 1 +
√

2.
The stability of these schemes with memory for scalar problems was analyzed firstly

in [19,20], showing very stable performance in both cases. In what follows, some definitions
and properties about vectorial discrete dynamical systems are introduced. These tools are
shown to be useful in the following sections.

Basic Concepts of Qualitative Studies of Schemes with Memory

Let us start with an iterative scheme with memory, which is used to solve the scalar
problem f (x) = 0, using two previous iterates to calculate the next one:

xk+1 = ψ(xk−1, xk), k ≥ 1,

with x0 and x1 being its seeds. Therefore, a solution α is estimated whether xk+1 = xk
or, equivalently, xk = ψ(xk−1, xk). This estimation can be obtained as a fixed point of
Ψ : R2 −→ R2 by means of:

Ψ(xk−1, xk) = (xk, ψ(xk−1, xk)), k = 1, 2, . . . ,

with again x0 and x1 being the seeds.
To study the qualitative behavior of a fixed point iterative scheme with memory, it is

applied on a low-degree polynomial p(x), generating a vectorial rational operator, G(x).
Then, the orbit of (z, x) ∈ R2 is the set:

{(z, x), G((z, x)), . . . , Gm((z, x)), . . .}.

Therefore, a point (z, x) is fixed if it is the only point belonging to its orbit, and it
is a T-periodic point if is orbit is only defined by

{
(z, x), G((z, x)), . . . , GT−1((z, x))

}
and

GT((z, x)) = (z, x).
On the other hand, the orbit of a point can be classified depending on its asymptotic

behavior, according to the next result.
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Theorem 2 ([21], p. 558). Let G : Rn → Rn be C2. Let us also assume that x∗ is a period-k point.
Let λi, i = 1, 2, . . . , n be the eigenvalues of the Jacobian G′(x∗):

(a) If |λj| < 1, j = 1, 2, . . . , n, then x∗ is an attractor. It is said to be a superattractor if |λj| = 0.
(b) If λj0 exists such that |λj0 | > 1, then the periodic point is unstable (repelling or saddle).
(c) If |λj| > 1, j = 1, 2, . . . , n, then x∗ is a repulsor.

Moreover, we define a point xc ∈ R2 as a critical point of G if det(G′(xc)) = 0. Indeed,
if xc is not a zero of p(x), it is named a free critical point. In a similar way, if a fixed point is
not a zero of p(x), it is named a strange fixed point.

Denoting by xF ∈ R2 an attracting fixed point of: G, its basin of attraction B(xF) is
defined as:

B(xF) =
{
(z, x) ∈ Rn : Gm((z, x))→ xF, m→ ∞

}
.

The union of all the basins of attraction of G is defined as the Fatou set, F (G), and its
complementary set in R2 is the Julia set J (G). It holds all the repelling fixed points and
sets the boundary among the basins of attraction.

In Sections 2 and 3, we build a Kurchatov-type and a Steffensen-type iterative method
with memory, respectively, to estimate the inverse of a nonsingular complex matrix. Both
schemes are free of inverse operators, and we prove their order of convergence and stability.
In Section 4, we extend these schemes to calculate the Moore–Penrose inverse of a complex
rectangular matrix. Section 5 is devoted to the numerical tests to analyze their performance
and confirm the theoretical results. We end the work with some conclusions.

2. Kurchatov-Type Method

The Kurchatov divided difference was defined by [16] as:

f [xk−1, 2xk − xk−1; f ]K =
f (2xk − xk−1)− f (xk−1)

2(xk − xk−1)
.

For an equation f (x) = 0, Kurchatov’s method has order or convergence two and
iterative expression:

xk+1 = xk −
f (xk)

f [xk, xk−1]K
= xk −

2 f (xk)(xk − xk−1)

f (2xk − xk−1)− f (xk−1)
.

If we apply this method to F(X) = X−1 − A, where F : Cn×n → Cn×n and A ∈ Cn×n

is an n× n nonsingular matrix, not necessarily diagonalizable, we obtain:

Xk+1 = Xk − 2[F(2Xk − Xk−1)− F(Xk−1)]
−1F(Xk)(Xk − Xk−1)

= Xk − 2[(2Xk − Xk−1)
−1 − X−1

k−1]
−1(X−1

k − A)(Xk − Xk−1). (5)

Next, we show a technical lemma whose result we use later.

Lemma 1. Let A, B ∈ Cn×n be invertible and commutative, AB = BA, then:

(2A− B)−1 − B−1 = 2(2A− B)−1B−1(B− A).
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Proof. Using algebraic manipulations,

2(2A− B)−1B−1(B− A) = (2A− B)−1B−1(2B− 2A)

= (2A− B)−1B−1[B− (2A− B)]

= (2A− B)−1
[

I − B−1(2A− B)
]

= (2A− B)−1 − (2A− B)−1B−1(2A− B)

= (2A− B)−1 − B−1(2A− B)−1(2A− B)

= (2A− B)−1 − B−1,

and the lemma is proven.

It is known that, for any nonsingular n× n complex matrix A, there exist n× n unitary
matrices U and V, such that U∗AV = Σ, Σ being the diagonal matrix of the singular values
of A, Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ σn > 0 and A = UΣV∗. Moreover, U∗

is the conjugate transpose of U. Then, Xk = VDkU∗, that is Dk = V∗XkU, D−1
k = U∗X−1

k V,
and X−1

k = UD−1
k V∗, and we apply them in Equation (5).

VDk+1U∗ = VDkU∗ − 2[(2VDkU∗ −VDk−1U∗)−1 −UD−1
k−1V∗]−1W1W2,

where W1 = UD−1
k V∗ −UΣV∗ and W2 = VDkU∗ − VDk−1U∗. If the initial approxima-

tions X−1, X0 satisfy D0 = V∗X0U and D−1 = V∗X−1U are diagonal matrices, then all
the matrices Dk are diagonal and DiDj = DjDi, for all i, j. Applying several algebraic
manipulations on the last equation, we can ensure:

VDk+1U∗ = VDkU∗ − 2[U(2Dk − Dk−1)
−1V∗ −UD−1

k−1V∗]−1U(D−1
k − Σ)V∗V(Dk − Dk−1)U∗

= VDkU∗ − 2V[(2Dk − Dk−1)
−1 − D−1

k−1]
−1U∗U(D−1

k − Σ)V∗V(Dk − Dk−1)U∗.

Therefore,

Dk+1 = Dk − 2[(2Dk−1 − Dk)
−1 − D−1

k−1]
−1(D−1

k − Σ)(Dk − Dk−1)

= Dk − 2[(2Dk−1 − Dk)
−1 − D−1

k−1]
−1(Dk − Dk−1)(D−1

k − Σ).

Using Lemma 1, we obtain:

[(2Dk−1 − Dk)
−1 − D−1

k−1]
−1 = [2(2Dk − Dk−1)

−1D−1
k−1(Dk−1 − Dk)]

−1

=
1
2
(2Dk − Dk−1)Dk−1(Dk−1 − Dk)

−1.

Then,

Dk+1 = Dk − (2Dk − Dk−1)(Dk−1 − Dk)
−1(D−1

k − Σ)(Dk − Dk−1)Dk−1

= Dk + (2Dk − Dk−1)D−1
k (I − DkΣ)Dk−1.

Finally,
Xk+1 = Xk + (2Xk − Xk−1)X−1

k (I − Xk A)Xk−1. (6)

In this iterative expression, still, an inverse matrix appears. Therefore, Kurchatov’s
scheme is not directly transferable for the calculation of the matrix inverses.

Therefore, we propose a slight change in the Kurchatov divided difference scheme:

f [xk, 2xk−1 − xk]KT =
f (2xk−1 − xk)− f (xk)

2(xk−1 − xk)
,
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obtaining a new iterative scheme,

xk+1 = xk −
f (xk)

f [xk, 2xk−1 − xk]KT
= xk −

2(xk−1 − xk) f (xk)

f (2xk−1 − xk)− f (xk)
.

Now, we apply this iterative procedure to the matrix equation F(X) = X−1 − A:

Xk+1 = Xk − 2(F(2Xk−1 − Xk)− F(Xk))
−1F(Xk)(Xk−1 − Xk)

= Xk − 2
[
(2Xk−1 − Xk)

−1 − X−1
k

]−1(
X−1

k − A
)
(Xk−1 − Xk).

Using the transformations defined above and Lemma 1, we obtain:

VDk+1U∗ = VDkU∗ + 2[(2VDk−1U∗ −VDkU∗)−1 −UD−1
k V∗]−1W1W2

= V
{

Dk − 2[(2Dk−1 − Dk)
−1 − D−1

k ]−1(D−1
k − Σ)(Dk−1 − Dk)

}
U∗,

and then,

Dk+1 = Dk − 2[(2Dk−1 − Dk)
−1 − D−1

k ]−1(D−1
k − Σ)(Dk−1 − Dk)

= 2Dk−1 − (Dk − 2Dk−1)ΣDk.

Finally,

Dk+1 = 2Dk−1 − (Dk − 2Dk−1)ΣDk (7)

From this expression, by using again the transformations defined above, we have

V∗Xk+1U = 2V∗Xk−1U − (V∗XkU − 2V∗Xk−1U)U∗AVV∗XkU

= V∗[2Xk−1 − (Xk − 2Xk−1)AXk]U,

and
Xk+1 = 2Xk−1 − (2Xk−1 − Xk)AXk, (8)

where three matrix products appear, but there are no inverse operators. Equation (8)
corresponds to the iterative scheme of the modified Kurchatov-type method for matrix
inversion, which we call MKTM.

2.1. Convergence Analysis

Let us consider now two n × n unitary matrices U and V, satisfying
Σ = U∗AV = diag(σ1, σ2, . . . , σn), where the singular values σi, i = 1, 2, . . . , n of A ful-
fill σ1 ≥ σ2 ≥ . . . ≥ σn > 0. We define again Dk = V∗XkU, Xk = VDkU∗. By using
Equation (7), we obtain:

Dk+1 = 2Dk−1 − (2Dk−1 − Dk)DkΣ.

Next, we demonstrate the order of convergence of the iterative procedure MKTM.

Theorem 3. Let A ∈ Cn×n be a nonsingular matrix and X−1 and X0 be the initial approximation
such that matrices V∗X−1U and V∗X0U are diagonal. Then, sequence {Xk} obtained by means of
the iterative expression (8), where Σ = U∗AV is the singular-value decomposition of A, converges
to the inverse A−1, with convergence order 1.6180.

Proof. Let us denote dk = diag(d1
k , d2

k , . . . , dn
k ). By means of component-by-component

calculations, we obtain:

dj
k+1 = 2dj

k−1 − (2dj
k−1 − dj

k)d
j
kσj, j = 1, 2, . . . , n. (9)
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Let us also denote ej
k = dj

k − 1/σj; by subtracting 1
σj

from the both sides of the last
equation, we obtain:

ej
k+1 = 2dj

k−1 − (2dj
k−1 − dj

k)d
j
kσj −

1
σj

= σj

2dj
k−1
σj
− 2dj

k−1dj
k + (dj

k−1)
2 − 1

σ2
j


= σj

[
−2dj

k−1

(
dj

k −
1
σj

)
+

(
dj

k −
1
σj

)(
dj

k +
1
σj

)]
= −2σje

j
k−1ej

k + (ej
k)

2σj.

This result shows that, for each j = 1, 2, . . . , n, dk+1 in Equation (9) converges to
1
σj

with

order of convergence (1 +
√

5)/2 ≈ 1.6180, which is the only positive root of λ2 − λ− 1 = 0
(see Theorem 1). In this way, for each j = 1, 2, . . . , n, there exists {Cj

k}k satisfying Cj
k > 0,

∀k. Moreover, Cj
k tends to zero when k → ∞. Indeed,

∣∣∣ej
k+1

∣∣∣ ≤ Cj
k

∣∣∣(ej
k)

2
∣∣∣, j = 1, 2, . . . , n.

Furthermore,∥∥∥Dk+1 − Σ−1
∥∥∥2

2
=

n

∑
j=1

(ej
k)

2 ≤
n

∑
j=1

(Cj
k)

2(ej
k)

2 ≤ nM2
k

∥∥∥Dk − Σ−1
∥∥∥2

2
,

with Mk = max
1≤j≤n

{Cj
k}. Using this result, we obtain:

∥∥∥Xk+1 − A−1
∥∥∥

2
=
∥∥∥VDk+1U∗ −VΣ−1U∗

∥∥∥
2
=
∥∥∥V(Dk+1 − Σ−1)U∗

∥∥∥
2

≤ Mk
√

n
∥∥∥Dk − Σ−1

∥∥∥
2

≤ Mk
√

n
∥∥∥Xk − A−1

∥∥∥
2
.

Therefore, we can affirm that {Xk} converges to A−1.

To demonstrate the stability of the modified Kurchatov-type iterative scheme, we
used the definition introduced by Higham in [14] for the stability of the iterative scheme
Zk+1 = H(Zk), with a fixed point Z∗. Assuming that H is Frechét differentiable in fixed
point Z∗, then the process is stable in a neighborhood of Z∗ if there exists a positive constant
C such that ‖H′(Z∗)k‖ ≤ C, ∀k > 0.

Theorem 4. The modified Kurchatov-type iterative scheme to estimate the inverse of a nonsingular
complex matrix defined by expression (8) is stable.

Proof. The modified Kurchatov-type method can be written as follows:

KT(Zk) = KT
(

Xk
Xk−1

)
=

[
2Xk−1 + (2Xk−1 − Xk)AXk

Xk

]
.

So, denoting by P = (P1, P2)
T , we conclude

KT′
(

Xk
Xk−1

)
P =

[
2Xk−1 AP1 − AXkP1 − Xk AP1 + 2P2 − 2AXkP2

P1

]
.

Now, as Z = Z∗ = (A−1, A−1)T , we get
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KT′(Z∗)P =

[
0 0
I 0

][
P1
P2

]
=

[
0
P1

]
Therefore, matrix KT′(Z∗) is idempotent, and (8) is a stable iterative process.

2.2. Qualitative Analysis of Kurchatov-Type Scheme

Now, we considered the Kurchatov-type scheme as a scalar iterative procedure for
solving nonlinear equations, analyzed its convergence, and studied its stability. In this
analysis, the stability is understood as the dependence on the initial estimations. It is made
by applying the vectorial real dynamical concepts to the Kurchatov-type scheme, whose
expression is:

xk+1 = xk −
f (xk)

f [xk, 2xk−1 − xk]
, k = 0, 1, 2, . . .

In the following result, we show that this scheme for solving nonlinear scalar equations
f (x) = 0 has superlinear convergence.

Theorem 5. Let us consider a sufficiently differentiable function f : I ⊆ R → R in an open
neighborhood I of the simple root α of nonlinear equation f (x) = 0. Furthermore, let us assume
that f ′(x) is continuous at α and that x0 and α are near enough between them. Then, sequence xk,
k = 0, 1, 2, . . ., generated by the Kurchatov-type scheme, converges to α with order of convergence
1+
√

5
2 , its error equation being:

ek+1 = 2c2ek−1ek +O2(ek−1, ek),

where O2(ek−1, ek) means that the following terms in the error equation depend on the powers of
errors ek−1 and ek such that the sum of the exponents is at least two; moreover, ek = xk − α and

cq = 1
q!

f (q)(α)
f ′(α) , q ≥ 2.

Proof. It is known that the Taylor expansion of f (xk) around α is:

f (xk) = f ′(α)
[
ek + c2e2

k + c3e3
k

]
+O

(
e3

k

)
.

By using the Genocchi–Hermite formula (see [15]) and the expansion of f ′(x + th) in
the Taylor series around x,

f [x, x + h] =
∫ 1

0
f ′(x + th) dt = f ′(x) +

1
2!

f ′′(x)h +
1
3!

f ′′′(x)h2 +O(h3), (10)

with h = 2xk−1 − 2xk = 2(ek−1 − ek), the expansion of the divided difference is:

f [xk, 2xk−1 − xk] = f ′(α)
[
1 + 2c2ek + 3c3e2

k + (c2 + 3c3ek)h + 4c3h
]
+O

(
h3
)

.

Then, the expression of the difference divided as a function of the errors ek−1 and ek is:

f [xk, 2xk−1 − xk] = f ′(α)
[
1 + 2c2ek−1 − 2c3ek−1ek + 4c3e2

k−1 + c3e2
k

]
+O3(ek−1, ek).

Therefore,
f (xk)

f [xk, 2xk−1 − xk]
= ek − 2c2ek−1ek +O2(ek−1, ek).

By applying Theorem 1, the only positive real root of λ2 − λ− 1 = 0 (where the coeffi-
cients correspond to the exponents of ek−1 and ek in the error equation) is the convergence
order of the method, that is 1+

√
5

2 .
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From now on, we denote by KT the fixed point operator associated with the Kurchatov-
type method applied on p(z) = z2 − 1. As it does not use derivatives, it is not possible to
establish a scaling theorem. Therefore, we cannot make the analysis on generic second-
degree polynomials.

The fixed point operator depends on two variables: xk (denoted by x) and xk−1
(denoted by z). Therefore,

KT(z, x) =
(

x,− x2 − 2xz− 1
2z

)
.

Let us analyze now the qualitative performance of the rational operator by means of
the asymptotic behavior of the fixed points and the existence of free critical points.

Theorem 6. The only fixed points of rational operator KT are the roots x = z = ±1, both being
superattracting. Moreover, KT has no free critical points.

Proof. We solve equation:

KT(z, x) = (x, x) ⇔ x = z and x = − x2 − 2xz− 1
2z

⇔ x = ±1,

finding that the only fixed points are (−1,−1) and (1, 1). To study their stability, we
considered:

KT′(z, x) =

(
0 1

(−1+x)(1+x)
2z2 − x−z

z

)
and therefore, its eigenvalues are:

λ1(z, x) =
z− x−

√
−2 + 3x2 − 2xz + z2

2z

and:

λ2(z, x) =
z− x +

√
−2 + 3x2 − 2xz + z2

2z
.

As λ1(−1,−1) = λ2(1, 1) = (0, 0), we concluded that fixed points (1, 1) and (−1,−1)
are superattracting.

As an immediate consequence of this analysis of KT′(z, x) and its eigenvalues λi(z, x),
i = 1, 2, the only (z, x) ∈ R2 satisfying λ1(z, x) = λ2(z, x) = (0, 0) are those (z, x) = (±1,±1),
where z = x. Then, they are the only critical points, and there do not exist free critical points.

From this results, we concluded that no other performance than convergence to
the roots is possible, when the Kurchatov-type is applied on p(x), as any other basin of
attraction would need a free critical point inside.

In Figure 1, we show the dynamical plane of the KT operator, x and z being real,
corresponding to the abscissa and ordinate axis, respectively (see [22] for the routines).
The mesh used has 1000× 1000 points, and the maximum amount of iterations is 40. The
distance to the root lower than 10−3 is the stopping criterion.

Then, if each point of the mesh is considered as a seed of the method, when it converges
to one of the roots of p(z) (located in x = z), it is represented in orange or green color,
depending on the root it has converged to. The color is brighter the lower the amount of
iterations is. When the initial estimation, after the iterative process, reaches 40 iterations
with no convergence, it is colored in black.

In Figure 1, we observe that the basins of attraction of both roots of p(z) have symmet-
ric shapes. In spite of the only basins of attraction being those of the roots (Theorem 6), there
are black areas in the dynamical planes. They correspond to areas of slow convergence,
whose initial estimations converge with a higher number of iterations.
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Figure 1. Dynamical plane of the Kurchatov-type scheme on p(z) = z2 − 1.

In [19,20], the stability analysis of the secant and Steffensen with memory schemes
was performed, among other iterative schemes with memory. In both cases, the dynam-
ical planes plotted showed full convergence to the roots, without black areas of slow
convergence or divergence. Later on, we checked how the the differences among the
Kurchatov-type and secant or Steffensen with memory stability affected their numerical
performance.

3. Steffensen with Memory

Now, we considered the Traub–Steffensen family [18], whose iterative expression is:

xk+1 = xk −
f (xk)

f [xk + γ f (xk), xk]
, (11)

where γ is an arbitrary constant different from zero. Furthermore, if γ = 1 in this iterative
scheme, we obtain the well-known Steffensen method [17]. It is easy to show that this
iterative procedure has order of convergence two for any value of γ, its error equation
being:

ek+1 = c2(1 + γ f ′(α))e2
k +O[e

3
k ], (12)

where ek = xk − α represents the error in each iteration and cj =
1
j! f (j)(α)/ f ′(α), j ≥ 2. Let

us also remark that this is a derivative-free scheme without memory, because it uses only the
information of the current iteration. Studying the equation of the error (12) of family (11),
we notice that, if γ = −1/ f (α), the iterative scheme (11) achieves the third order of
convergence. This value of the parameter cannot be used, as α is unknown. Therefore,
the approximation of f ′(α) as the first-order divided differences γ = −1/ f [xk, xk−1] is
employed, obtaining xk + γ f (xk) = xk − f (xk)/ f [xk, xk−1], which is the secant scheme,
and (11) is an iterative procedure with memory.

3.1. Iterative Scheme Design for the Matrix Inverse

Our aim now was to adapt Steffensen’s scheme with memory to solve the matrix
Equation (1). In [23] Monsalve et al. adapted the secant method to estimate the solution
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of Equation (1) for A diagonalizable, and in [13], the authors extended this result to any
nonsingular matrix by means of the expression:

Wk+1 = Wk−1 + Wk −Wk−1 AWk, k ≥ 0, (13)

where W0 and W−1 are the seeds.
In a similar way, Expression (11) for matrix equations takes the form:

Xk+1 = Xk − [F(Xk)− F(Wk)]
−1F(Xk)(Xk −Wk)

= Xk −
[

X−1
k −W−1

k

]−1
(X−1

k − A)(Xk − Xk−1), (14)

which includes the inverse calculations for the estimation of A−1. This circumstance must
be avoided.

As A is a nonsingular n× n complex matrix, there exist n× n unitary matrices U and
V, such that Σ = U∗AV = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 are the
singular values of A. We define Xk = VDkU∗ and X−1

k = UD−1
k V∗. Then, Equation (14)

takes the form:

VDk+1U∗ = VDkU∗ −
[
UD−1

k V∗ −UDw−1
k V∗

]−1
(UD−1

k V∗ −UΣV∗)(VDkU∗ −VDk−1U∗) (15)

If the initial approximations X−1 and X0 satisfy D−1 = V∗X−1U and D0 = V∗X0U,
then Dk are diagonal matrices and DiDj = DjDi for all i, j. By applying several algebraic
manipulations on Equation (15), we can ensure:

VDk+1U∗ =VDkU∗ −
[
UD−1

k V∗ − (VDk−1U∗ + VDkU∗ −VDk−1U∗UΣV∗VDkU∗)−1
]−1

(UD−1
k V∗ −UΣV∗)(VDk−1U ∗UΣV∗VDkU∗ −VDk−1U∗) (16)

=V
{

Dk − [D−1
k − (Dk−1 + Dk − Dk−1ΣDk)

−1]−1(D−1
k − Σ)Dk−1(ΣDk − I)

}
U∗,

and therefore,

Dk+1 =Dk − [D−1
k − (Dk−1 + Dk − Dk−1ΣDk)

−1]−1(D−1
k − Σ)Dk−1(ΣDk − I)

=Dk−1 + (I − Dk−1Σ)(2I − DkΣ)Dk, (17)

where I denotes the identity matrix of size n. Now, taking Dk = V∗XkU and D−1
k =

U∗X−1
k V and after more algebraic manipulations, we obtain:

Xk+1 = Xk−1 + (I − Xk−1 A)(2I − Xk A)Xk, k = 1, 2, . . . , (18)

given the initial approximations X0 and X−1. We denote this iterative scheme with memory
as SMM. Let us remark that Expression (18) does not include inverse operators, as intended.

3.2. Convergence Analysis and Stability

We present in the next result the convergence analysis of the iterative method given
by Expression (18).

Theorem 7. Let U∗AV = Σ be the singular-value decomposition of the a nonsingular matrix
A ∈ Cn×n. Furthermore, let X0 and X−1 be the initial approximations to A−1, such that V∗X−1U
and V∗X0U are diagonal matrices. Then, sequence {Xk}, generated by (18), converges to A−1 with
order of convergence 1 +

√
2 ≈ 2.4142.
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Proof. Let U and V be unitary matrices such that U∗AV = Σ, Σ being the diagonal matrix
of the singular values σ1 ≥ σ2 ≥ . . . ≥ σn > 0 of A. Furthermore, by denoting Dk = V∗XkU
and Xk = VDkU∗ for k = −1, 0, 1, . . ., from Equation (18), we obtain:

VDk+1U∗ = VDk−1U∗ + (VIV∗ −VDk−1U∗UΣV∗)(2VIV∗ −VDkU ∗UΣV∗)VDkU∗

= V[Dk−1 + (I − Dk−1Σ)(2I − DkΣ)Dk]U∗.

Let us remark that Dk = diag(d1
k , d2

k , . . . , dn
k ), for k = −1, 0, 1, . . .. Therefore,

Dk+1 = Dk−1 + (I − Dk−1Σ)(2I − DkΣ)Dk. (19)

Therefore, in Equation (19), using component-by-component calculations, we obtain:

dj
k+1 = dj

k−1 + (1− dj
k−1σj)(2− dj

kσj)d
j
k, . . . j = 1, 2, . . . , n. (20)

We denote ej
k = dj

k − 1/σj. We subtract
1
σj

from both sides of Equation (20), and

we obtain:

ej
k+1 = ej

k−1 + σj

(
1
σj
− dj

k−1

)
σj

(
2
σj
− dj

k

)
dj

k

= σ2
j (e

j
k)

2ek−1. (21)

Theorem 1 allows us to conclude that, for each j from 1 to n, dk+1 converges to
1
σj

with

the convergence order the only positive root of λ2 − 2λ− 1 = 0, λ = 1 +
√

2 ≈ 2.4142
(see [15]). In this way, for each j = 1, 2, . . . , n, there exist a sequence {Cj

k}k satisfying Cj
k > 0,

∀k, and {Cj
k}k → 0 when k→ ∞. Indeed, |ej

k+1| ≤ Cj
k|(e

j
k)

2|, 1 ≤ j ≤ n. On the other hand,

∥∥∥Dk+1 − Σ−1
∥∥∥2

2
=

n

∑
j=1

(ej
k)

2 ≤
n

∑
j=1

(Cj
k)

2
[
(ej

k)
2
]2
≤ nM2

k

∥∥∥Dk − Σ−1
∥∥∥2

2
,

where Mk = max
1≤j≤n

{Cj
k}. Using this result, we obtain:

∥∥∥Xk+1 − A−1
∥∥∥

2
=
∥∥∥V(Dk+1 − Σ−1)U∗

∥∥∥
2

≤ ‖V‖2

∥∥∥Dk+1 − Σ−1
∥∥∥

2
‖U∗‖2 =

∥∥∥Dk+1 − Σ−1
∥∥∥

2

≤ Mk
√

n
∥∥∥Dk − Σ−1

∥∥∥
2

≤ Mk
√

n
∥∥∥Xk − A−1

∥∥∥
2
.

Then, {Xk} converges to A−1, and the proof is finished.

In the following result, we prove the stability of this scheme.

Theorem 8. Steffensen’s method with memory to estimate the inverse of a given matrix with the
expression (18) is a stable iterative scheme.

Proof. Steffensen’s scheme with memory can be written as a fixed point scheme as follows:

S(Zk) = S
(

Xk
Xk−1

)
=

[
Xk−1 + (I − Xk−1 A)(2I − Xk A)Xk

Xk

]
.
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Then, given P = (P1, P2)
T , we deduce that:

S′
(

Xk
Xk−1

)
P =

[
P1 − A(2I − Xk A)XkP1 − (I − Xk−1 A)AXkP2 + (I − Xk−1 A)(2I − Xk A)P2

P1

]
.

Next, for Z = Z∗ = (A−1, A−1)T , we have:

S′(Z∗)P =

[
0 0
I 0

][
P1
P2

]
=

[
0
P1

]
;

therefore, S′(Z∗) is an idempotent matrix, and the iterative process (18) is stable.

4. Approximating the Moore–Penrose Inverse

For a complex matrix that is not necessarily square, the pseudo-inverse can be defined
as an object similar to an inverse matrix. Given a complex matrix, it is possible to define
many possible pseudo-inverses, but the most-frequent one is the Moore–Penrose inverse.

In cases when a system of equations has no solution, there is no inverse of the matrix
of the coefficients that defines the system. In these cases, it may be useful to find a value
that is an approximate solution in terms of error minimization, such as being able to find
the best fit of a dataset using the pseudo-inverse (Moore–Penrose inverse) of the coefficient
matrix. See, for example, the classical texts of Ben-Israel [24] and Higham [14].

We now extend the proposed iterative methods of this manuscript for calculating the
Moore–Penrose inverse A† of an m× n complex matrix A. This is the unique n×m matrix
X that satisfies the following conditions:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

A computationally simple and accurate way to compute the Moore–Penrose in-
verse is through the use of the singular-value decomposition of A. Then, if the rank
of A is r ≤ min(m, n), we obtain:

A = U
[

Σ 0
0 0

]
V∗ (22)

where Σ = diag(σ1, σ2, . . . , σr), σ1 ≥ σ2 ≥ . . . ≥ σr > 0, with U ∈ Cm×m and V ∈ Cn×n a
unitary matrix. Furthermore, it is known that:

A† = V∗
[

Σ−1 0
0 0

]
U, (23)

where Σ−1 = diag(1/σ1, 1/σ2, . . . , 1/σr).

Theorem 9. Let A ∈ Cm×n be a matrix with singular-value decomposition satisfying (22) whose
rank(A) = r. If X−1 and X0 are the initial estimations such that:

V∗X−1U =

[
Σ−1 0

0 0

]
and V∗X0U =

[
Σ0 0
0 0

]
,

given that Σ−1 and Σ0 are diagonal matrices of size r× r, then the sequences {Xk}, generated by
Equation (18) using SSM and (8) using MKTM, converge to A† with order of convergence 1 +

√
2

and (1 +
√

5)/2, respectively.

Proof. Given the singular-value decomposition of A (see (22)), we define the matrix Dk:

Dk = V∗XkU =

[
Σk 0
0 0

]
,
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for any fixed arbitrary value of k, with Σk ∈ Cr×r. Now, by using the iterative expression in
Equation (18) and (8), we obtain:[

Σk+1 0
0 0

]
=

[
Σk−1 + (I − Σk−1Σ)(2I − ΣkΣ)Σk 0

0 0

]
,

and [
Σk+1 0

0 0

]
=

[
2Σk−1 − (2Σk−1 − Σk)ΣkΣ 0

0 0

]
,

respectively. Because Σ−1 and Σ0 are diagonal matrices, then all matrices Σk are diagonal as
well. Then, the expression Σk+1 = Σk−1 + (I − Σk−1Σ)(2I − ΣkΣ)Σk and Σk+1 = 2Σk−1 −
(2Σk−1 − Σk)ΣkΣ represents r scalar uncoupled iterations converging to 1

σi
, 1 ≤ i ≤ r, with

order of convergence 1 +
√

2 using SSM and (1 +
√

5)/2 using MKTM, i.e.,

||Σk+1 − Σ−1||22 ≤ rM2
k ||Σk − Σ−1||22,

with Mk = max
1≤i<r

{C2
k}, C−1

k > 0, such that {ei
k} tends to zero if k tends to infinity. Just as

was argued in (8), we have that:

||Xk+1 − A†||2 ≤
√

rMk||Xk − A†||2.

Therefore, we can say that {Xk} converges to A†, with the desired order of conver-
gence.

5. Numerical Experiments

In this section, we present the numerical tests of the behavior of the Steffensen method
with memory (SMM) and Kurchatov type’s (MKTM) designed to calculate the inverse
and the Moore–Penrose inverse applied to different matrices. For comparison, we used
the Newton–Schulz method (NS) [14], and the secant method (SM) [13]. The numerical
calculations were made with MATLAB 2022a (MathWorks, USA) using a 3 GHz 10-Core
Intel Xeon W processor, 64 GB 2666 MHz DDR4 (iMac Pro). As stopping criteria for all
numerical tests, we used ||Xk+1 − Xk||2 < 10−6 or ||F(Xk+1)||2 < 10−6, F(X) = 0 being
the nonlinear matrix equation to be solved for estimating the inverse or pseudo-inverse of
a complex matrix A.

In addition, when verifying the theoretical results numerically, we used the order of
approximate computational convergence (COC) introduced by Jay [25], defined as:

order ≈ COC =
ln(||F(Xk+1)||2/||F(Xk)||2
ln(||F(Xk)||2/||F(Xk−1)||2

.

Another form of the numerical approximation of the order of theoretical convergence
presented by the authors in [26], denoted as ACOC, is defined as:

order ≈ ACOC =
ln(||Xk+1 − Xk||2/||Xk − Xk−1||2)

ln(||Xk − Xk−1||2/||Xk−1 − Xk−2||2)
.

To show the order of convergence of the methods in the numerical tests, we used any
of these estimates of computational order. In the tables, we write “-” when the COC (or
ACOC) vector is unstable. Furthermore, the mean of elapsed time after 50 executions of the
codes appears in the tables, calculated by using the CPU-time command.

Example 1. As a first example, we looked for the inverse random matrices of size n× n, where
n = 10, 100, 200, 300, 400, and 500. Since Newton–Schulz’s method needs one initial point, we
took it as X0 = AT/||A||2. The rest of the methods need two initial points, which we took as
X−1 = AT/||A||2 and X0 = 0.5X−1.



Mathematics 2023, 11, 3161 15 of 19

Table 1 shows the results obtained by approximating the inverses of nonsingular
random matrices of sizes n = 10, 100, 200, 300, 400, and 500 using the Newton–Schulz,
secant, Steffensen with memory, and Kurchatov-type methods. The number of iterations,
residuals, and the COC value are shown. The results confirmed the theoretical order of
convergence obtained from each method. Using all methods, the approximation of the
inverse of A was obtained. In all cases, the Steffensen method with memory showed better
results in terms of the number of iterations and the computational time. The graphs shown
in Figure 2 represent the results presented in Table 1 for the cases of matrices of n = 10, 300,
and 500.

Table 1. Results obtained by approximating the inverse of random matrices of different sizes.

Method n Iter ||Xk+1− Xk||2 ||F(Xk+1)||2 COC E-Time

NS 10 25 7.5× 10−3 1.9× 10−9 2.0000 0.0151
SM 10 35 7.4× 10−4 2.0× 10−9 1.6180 0.0141

SMM 10 15 1.2× 10−1 2.4× 10−8 2.4142 0.0136
MKTM 10 45 1.8× 10−3 1.3× 10−8 1.6119 0.0147

NS 100 29 2.5× 10−4 1.4× 10−11 2.0000 0.0660
SM 100 40 1.6× 10−3 3.8× 10−8 1.6181 0.1043

SMM 100 22 2.4× 10−2 5.0× 10−9 2.4142 0.0501
KT 100 53 5.7× 10−4 9.2× 10−9 1.6687 0.1293

NS 200 28 1.6× 10−4 4.4× 10−11 2.0000 0.2656
SM 200 39 8.3× 10−5 1.5× 10−9 1.6180 0.3803

SMM 200 24 4.5× 10−2 2.6× 10−7 2.4142 0.1676
MKTM 200 50 2.6× 10−3 5.8× 10−7 1.6172 0.5134

NS 300 32 2.9× 10−2 1.4× 10−7 2.0000 0.6303
SM 300 45 7.0× 10−3 2.9× 10−7 1.6180 0.8967

SMM 300 25 1.2× 10−2 5.9× 10−10 2.4142 0.4222
MKTM 300 60 1.6× 10−4 9.2× 10−10 1.6193 1.3173

NS 400 33 8.8× 10−4 1.6× 10−10 2.0000 0.9306
SM 400 46 1.5× 10−3 2.7× 10−8 1.6181 1.6293

SMM 400 25 1.3× 10−4 2.5× 10−7 2.4142 0.6986
MKTM 400 61 2.6× 10−3 9.5× 10−8 1.6841 2.4109

NS 500 36 2.5× 10−2 2.1× 10−8 2.0000 1.8538
SM 500 51 1.4× 10−3 5.8× 10−9 1.6180 2.8333

SMM 500 28 3.0× 10−2 8.0× 10−10 2.4076 1.1715
MKTM 500 67 1.1× 10−2 3.4× 10−7 1.6336 4.1268
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Figure 2. Graphs of the number of iterations vs. COC for three of the cases in Table 1.

Example 2. Now, we built square matrices of size n× n using different MATLAB functions, such as:

(a) A = gallery(′lehmer′, n). Symmetric and positive definite matrix of size n× n, ai,j = i/j, ∀i, j.
(b) A = gallery(′riemann′, n). Riemann matrix of size n× n.
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(c) A = gallery(′ris′, n). Hankel matrix of size n× n.
(d) A = gallery(′grcar′, n). Toeplitz matrix of size n× n.
(e) A = gallery(′leslie′, n). Leslie matrix of size n× n with application in problems of popula-

tion models.
(f) A = gallery(′parter′, n). Parter matrix of size n× n.

Here, we used as stopping criteria ||Xk+1 − Xk||2 < 10−10 or ||F(Xk+1)||2 < 10−10

and the same initial approximations as in Example 1. The numerical results obtained are
shown in Table 2 and Figure 3. As in the previous example, the proposed methods showed
a good performance in terms of stability, precision, and number of iterations required.

Table 2. Results obtained by approximating the inverse of classical square matrices of different sizes.

Method Matrix n Iter ||Xk+1− Xk||2 ||F(Xk+1)||2 COC E-Time

NS Lehmer 10 19 3.5× 10−7 5.7× 10−15 - 0.0162
SM Lehmer 10 26 1.9× 10−7 1.7× 10−13 1.6177 0.0157

SMM Lehmer 10 14 7.6× 10−4 4.2× 10−11 2.4142 0.0149
MKTM Lehmer 10 33 1.6× 10−7 1.8× 10−13 1.6384 0.0168

NS Riemann 100 24 5.0× 10−8 9.2× 10−14 1.5057 0.0638
SM Riemann 100 33 1.5× 10−7 2.1× 10−12 1.5057 0.0800

SMM Riemann 100 18 7.5× 10−5 4.6× 10−12 2.3949 0.0482
MKTM Riemann 100 43 1.8× 10−8 1.8× 10−12 2.3949 0.1013

NS Henkel 200 10 3.7× 10−9 1.9× 10−15 - 0.0850
SM Henkel 200 13 2.0× 10−9 2.5× 10−15 1.6070 0.1093

SMM Henkel 200 7 1.0× 10−6 9.5× 10−16 2.3550 0.0360
MKTM Henkel 200 14 3.4× 10−8 4.1× 10−13 1.5931 0.0418

NS Toeplitz 300 10 2.5× 10−9 1.1× 10−15 - 0.1672
SM Toeplitz 300 13 1.5× 10−9 4.3× 10−15 1.6165 0.2077

SMM Toeplitz 300 7 6.2× 10−6 2.0× 10−13 2.4143 0.1272
MKTM Toeplitz 300 15 2.5× 10−10 9.7× 10−16 1.5111 0.2319

NS Leslie 400 23 4.3× 10−5 4.7× 10−12 2.0000 0.5788
SM Leslie 400 32 5.3× 10−6 2.3× 10−11 1.6180 0.8384

SMM Leslie 400 18 3.4× 10−6 3.1× 10−16 2.1993 0.4909
MKTM Leslie 400 42 5.8× 10−8 1.1× 10−13 - 1.1811

NS Parter 500 10 7.5× 10−8 3.7× 10−15 1.9969 1.3828
SM Parter 500 13 4.8× 10−8 9.8× 10−13 1.6181 0.4933

SMM Parter 500 7 5.1× 10−5 2.5× 10−11 2.4144 0.2832
MKTM Parter 500 15 3.4× 10−8 8.3× 10−13 1.6433 0.5984
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Figure 3. Graphs of the number of iterations vs. COC for three of the sizes in Table 2.

Example 3. Finally, we tested the methods for computing the Moore–Penrose inverse of m× n
random matrices for different values of m and n. The matrices of the initial approximations were
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calculated in the same way as in the previous examples, and the stopping criterion was the one used
in Example 1.

The results obtained for the number of iterations, the residuals, and the ACOC value
of Example 3 are shown in Table 3 and Figure 4. The methods gave us an approximation of
the inverse Moore–Penrose and showed the same behavior as in the previous examples.

Table 3. Results obtained to approximate the Moore–Penrose inverse of a rectangular random matrix.

Method m n Iter ||Xk+1− Xk||2 ACOC E-Time

NS 20 10 11 1.2× 10−7 2.0086 0.0162
SM 20 10 17 9.5× 10−9 1.6220 0.0152

SMM 20 10 10 1.6× 10−10 2.4159 0.0158
MKTM 20 10 20 3.2× 10−7 1.7104 0.0221

NS 200 100 16 1.1× 10−8 2.0049 0.0916
SM 200 100 24 4.2× 10−9 1.6217 0.1406

SMM 200 100 14 1.3× 10−12 2.4147 0.0766
MKTM 200 100 30 1.7× 10−8 1.7264 0.1773

NS 300 400 19 3.1× 10−4 2.1197 0.3610
SM 300 400 29 8.6× 10−6 1.6446 0.5411

SMM 300 400 16 1.7× 10−4 2.5496 0.3397
MKTM 300 400 37 7.6× 10−5 1.4546 0.7319

NS 500 600 21 3.8× 10−4 2.1114 1.0525
SM 500 600 32 3.9× 10−6 1.6380 1.7327

SMM 500 600 18 2.7× 10−6 2.4445 0.8430
MKTM 500 600 41 7.0× 10−5 1.4333 2.3384

NS 1000 900 25 7.2× 10−13 2.0001 4.6221
SM 1000 900 36 1.1× 10−8 1.6217 6.8167

SMM 1000 900 20 1.2× 10−7 2.4249 3.2718
MKTM 1000 900 47 3.6× 10−7 - 9.5099
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Figure 4. Graphs of the number of iterations vs. ACOC for three of the sizes in Table 3.

6. Conclusions

In this manuscript, we widened the set of iterative methods able to be applied for
estimating generalized inverses of complex matrices, by using schemes with memory able
to improve the Newton–Schulz scheme. Two procedures with memory were designed for
approximating the inverses of nonsingular complex matrices or pseudo-inverses, in the
case that the matrices are singular. The order of convergence and stability were proven,
and in the case of the Steffensen with memory scheme, its order of convergence improved
that of the Newton–Schulz method.

The method using Kurchatov’s divided differences cannot be directly adapted to
estimate generalized inverses of complex matrices. To overcome this difficulty, Kurchatov-
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type divided differences were used. In this process, there was a decrease in the order of
convergence of the starting method and a change in its behavior.

The technique used to adapt the iterative methods can be applied to the resolution of
other types of matrix equations with an especially significant role in various areas such as
control theory, dynamic programming, ladder networks, statistics, etc.

This research opens new ways in the design of iterative procedures for solving this
kind of nonlinear matrix equation, with promising numerical performance, which showed
agreement with theoretical results and stable results.
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