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Abstract: In recent years, some Newton-type schemes with noninteger derivatives have been pro-
posed for solving nonlinear transcendental equations by using fractional derivatives (Caputo and
Riemann–Liouville) and conformable derivatives. It has also been shown that the methods with
conformable derivatives improve the performance of classical schemes. In this manuscript, we
design point-to-point higher-order conformable Newton-type and multipoint procedures for solving
nonlinear equations and propose a general technique to deduce the conformable version of any
classical iterative method with integer derivatives. A convergence analysis is given and the expected
orders of convergence are obtained. As far as we know, these are the first optimal conformable
schemes, beyond the conformable Newton procedure, that have been developed. The numerical
results support the theory and show that the new schemes improve the performance of the original
methods in some aspects. Additionally, the dependence on initial guesses is analyzed, and these
schemes show good stability properties.
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1. Introduction

Fractional calculus dates back to shortly after the appearance of the classical one,
when Leibniz and l’Hôpital came up with the concept of the half-derivative in 1695. Since
then, some definitions of fractional and non fractional derivatives which preserve many
properties of classical calculus have been introduced, and many real problems can be
modeled by using these derivatives [1–3].

In recent papers, some fractional Newton-type iterative procedures with Caputo and
Riemann–Liouville derivatives (see [4–9]), and fractal Newton-type iterative methods
(see [10]), have been designed in order to find the solution x̄ ∈ R of a nonlinear function
f (x), where f :I ⊆ R → R is a continuous function in I ⊆ R, but the theoretical order of
convergence is neither preserved nor held in practice. Additionally, optimal conformable
Newton-type schemes were proposed in [11,12] (in scalar and vectorial versions, respec-
tively) by using the conformable derivative/Jacobian, and the order of convergence was
obtained in theory and in practice too. As far as we know, there are no optimal conformable
multipoint iterative methods in the literature. In using the conformable derivative in this
work, we have three targets: obtain high-order optimal conformable Newton-type proce-
dures (in the sense of Kung–Traub’s conjecture [13]) based on the method in [11], devise a
general technique to obtain the conformable version of any classical scheme, and compare
each one of these procedures with its classical version. With the proposed technique, we
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are able to generate optimal conformable multipoint methods with an arbitrary order of
convergence starting with any non-conformable optimal iterative scheme.

First, let us introduce some concepts related to conformable calculus. The left con-
formable derivative of a function f : [a, ∞) → R starting from a of order α ∈ (0, 1],
α, a, x ∈ R, a < x, is defined as [14,15]

(Ta
α f )(x) = lim

ε→0

f (x + ε(x− a)1−α)− f (x)
ε

. (1)

If the limit in (1) exists, f is said to be α-differentiable. If f is differentiable, (Ta
α f )(x) = (x−

a)1−α f ′(x). If f is α-differentiable in (a, b), for some b ∈ R, (Ta
α f )(a) = limx→a+(Ta

α f )(x).
The left conformable derivative holds the property of the nonfractional derivative,

Ta
α K = 0, where K is a constant. This derivative does not require the evaluation of special

functions, as Gamma or Mittag-Leffler functions do, as it uses fractional derivatives, as in
Riemann–Liouville or Caputo functions.

The next result provides a suitable Taylor power series of a function f (x), where
the conformal derivatives start from a point a, distinct from another point a1 where they
are evaluated.

Theorem 1 (Theorem 4.1, [16]). Let f (x) be an infinitely α-differentiable function (0 < α ≤ 1),
at the neighborhood of a1, whose conformable derivative starts from a. The conformable power series
for f (x) is

f (x) = f (a1) +
(Ta

α f )(a1)δ1

α
+

(Ta
α f )(2)(a1)δ2

2α2 + R2(x, a1, a), (2)

where δ1 = Hα − Lα, δ2 = H2α − L2α − 2Lαδ1, . . . , and H = x− a, L = a1 − a.

It can be shown that δ2 = δ2
1 , δ3 = δ3

1 , etc. Now, the conformable Taylor power series
(2) can be written as

f (x) = f (a1) +
(Ta

α f )(a1)δ1

α
+

(Ta
α f )(2)(a1)δ

2
1

2α2 + R2(x, a1, a). (3)

The following result states the quadratic order of convergence obtained in [11] by
using the Taylor power series (3) for simple roots (multiplicity m = 1).

Theorem 2 (see [11]). Let f : I ⊆ R → R be a continuous function in the interval I ∈ R
containing the zero x̄ of f (x). Let (Ta

α f )(x) be the conformable derivative of f (x) starting from a,
of order α, α ∈ (0, 1]. Let us suppose that (Ta

α f )(x) is continuous and not null at x̄. If an initial
approximation x0 is sufficiently close to x̄, then the local order of convergence of the conformable
Newton-type method

xk+1 = a +
(
(xk − a)α − α

f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . , (4)

is at least 2, where 0 < α ≤ 1, and the error equation is

ek+1 = α(x̄− a)α−1CCO
2 e2

k + O
(

e3
k

)
, (5)

being CCO
j =

1
j!αj−1

(Ta
α f )(j)(x̄)
(Ta

α f )(x̄)
, j = 2, 3, 4, . . .

In [12], it is shown that the asymptotic error constant of the error equation in (5) may
be expressed as

α(x̄− a)α−1CCO
2 = C2 +

1
2

1− α

x̄− a
, (6)
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where Cj =
1
j!

f (j)(x̄)
f ′(x̄)

, j = 2, 3, 4, . . . , with this being the classical asymptotic error constant.

Morover, it is also shown in [12] that the error equation of scheme (4), by using the
classical Taylor series, is

ek+1 =

(
C2 +

1
2

1− α

x̄− a

)
e2

k + O
(

e3
k

)
, (7)

concluding that error equations in (5) and (7) are equivalents, no matter if the Taylor power
series (3) or the classical one are used in convergence analysis. So, we are going to use
classical Taylor expansions in convergence analysis later. Moreover, when α = 1, the
classical Newton procedure is obtained in (4), as well as its error equation in (5) and (7).

Knowing that the asymptotic error constant C of an iterative method φ(x) of order p
is defined as (see [17])

C = lim
x→x̄

φ(x)− x̄
(x− x̄)p , (8)

the following result allows us to calculate the asymptotic error constant of an iterative
scheme of order p if we know the asymptotic error constant of another iterative procedure
of order p.

Theorem 3 (Theorem 2-8, [17]). Let φ1(x), φ2(x) be of order p whose solution x̄ is of multiplicity
m ≥ 1. Let

G(x) =
φ2(x)− φ1(x)

(x− x̄)p , x 6= x̄. (9)

Let C1, C2 be the asymptotic error constants of φ1 and φ2, respectively. Then,

C2 = C1 + lim
x→x̄

G(x). (10)

We also confirm Theorem 3 for the conformable version of multipoint methods given
later. In all our methods, we consider multiplicity m = 1.

In the next section, we derive three higher-order Newton-type schemes. We also
provide a technique to obtain the conformable version of any classical method, and it is
applied to derive some conformable multipoint schemes. The convergence analysis of all
the proposed conformable methods is presented in Section 3; the numerical results and
numerical stability are discussed in Section 4, showing good numerical performance and
improving the original methods in some aspects of both convergence and stability; and
some conclusions are given in Section 5.

2. From One-Point to Multipoint Conformable Methods

In order to deduce higher-order schemes by means of a modification of the con-
formable Newton scheme (4), we need its error equation in (7), but up to order four. Let us
remark that this expression depends on a and α,

ek+1 =

(
C2 +

1− α

2(x̄− a)

)
e2

k +

(
2C3 − 2C2

2 +
(α− 1)C2

x̄− a
+

(1− α)(α− 2)
3(x̄− a)2

)
e3

k

+

(
3C3 − 7C2C3 + 4C3

2 +
(1− α)(5C2

2 − C3)

2(x̄− a)
+

(2α2 − 5α + 3)C2

2(x̄− a)2 +
(1− α)(2α2 − 7α + 7)

8(x̄− a)3

)
e4

k

+O
(

e5
k

)
. (11)
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In a first approximation, we want to find a value of α that nulls the quadratic term
in (11), so

α = 1 + 2(x̄− a)C2

= 1 + (x̄− a)
f ′′(x̄)
f ′(x̄)

.

By considering αk and iterate xk as approximations of α and the solution x̄, respectively,

αk = 1 + (xk − a)
f ′′(xk)

f ′(xk)
, k = 0, 1, 2, . . . (12)

Therefore, we can define a new iterative scheme that can improve the performance of
the conformable Newton scheme, which we denote by NeL3:

xk+1 = a +

(
(xk − a)αk − αk

f (xk)

(Ta
αk

f )(xk)

)1/αk

, k = 0, 1, 2, . . . , (13)

where αk is described by (12).
In a second approximation, we use a to improve the order of convergence, so

a = x̄ +
1− α

2C2

= x̄ + (1− α)
f ′(x̄)
f ′′(x̄)

.

Then, an estimation of a is obtained by means of the expression

ak = xk + (1− α)
f ′(xk)

f ′′(xk)
, k = 0, 1, 2, . . . (14)

Replacing a in (4) by (14) we obtain a new procedure, and we denote it as NeA3:

xk+1 = ak +

(
(xk − ak)

α − α
f (xk)

(Tak
α f )(xk)

)1/α

, k = 0, 1, 2, . . . (15)

where ak is described by (14).
However, we can consider simultaneously how to define a and α in order to cancel not

only the quadratic but also the cubic term of the error equation of the conformable Newton
scheme. Solving the resulting nonlinear system generated, for α and a as unknowns,
we obtain

α = 1 +
2C2

2
2C2

2 − 3C3

= 1 +
f ′′(x̄)2

f ′′(x̄)2 − f ′(x̄) f ′′′(x̄)
.

Considering αk and iterate xk as approximations of α and the solution x̄, respectively,
αk can be estimated at each iteration by

αk = 1 +
f ′′(xk)

2

f ′′(xk)2 − f ′(xk) f ′′′(xk)
, k = 0, 1, 2, . . . (16)
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Moreover, a is

a = x̄ +
C2

3C3 − 2C2
2

= x̄ +
f ′(x̄) f ′′(x̄)

f ′(x̄) f ′′′(x̄)− f ′′(x̄)2 .

So, using xk as an estimation of x̄, an iterative estimation of a can be calculated as

ak = xk +
f ′(xk) f ′′(xk)

f ′(xk) f ′′′(xk)− f ′′(xk)2 , k = 0, 1, 2, . . . (17)

Replacing α and a in (4) by (16) and (17), respectively, we obtain a new scheme, which
we denote by NeLA4:

xk+1 = ak +

(
(xk − ak)

αk − αk
f (xk)

(Tak
αk f )(xk)

)1/αk

, k = 0, 1, 2, . . . , (18)

where αk and ak correspond to (16) and (17), respectively.
So, we have designed one-point procedures that improve the order of convergence

of (4), although they use derivatives of the nonlinear function up to order four.
In [17], Traub proves that any one-point method of order p depends on the first

p− 1 derivatives of f . So, in addition to the computational complexity of NeL3, NeA3,
and NeLA4, another drawback is the evaluation of higher-order derivatives in their itera-
tive schemes; this is reason why multipoint procedures are widely used in the literature
(see [17,18]).

So, in order to devise a general technique to obtain the conformable version of any
method, we start from the assumption that any fixed-point function coming from an
iterative scheme not using conformable derivatives can be written as (see [17])

φ(x) = x− f (x)g(x), (19)

where g(x̄) is finite and not null, and x̄ is a fixed point of φ. If g(x) in (19) is 1/ f ′(x), the
classical Newton procedure is obtained.

From (19) we can obtain a general representation of classical Taylor series of f about x̄
up to order one, as

f (x) ≈ 1
g(x̄)

(x− φ(x̄)). (20)

Considering the conformable Taylor power series (3), we can obtain the conformable
version of (20) as

f (x) ≈ 1
αgα(x̄)

[(x− a)α − (φ(x̄)− a)α]. (21)

If the analytical expression of g(x) includes classical derivatives of f (x), then the
analytical expression of gα(x) includes conformable derivatives of f (x). Now, isolating
φ(x̄) from (21), we have

φ(x̄) ≈ a + ((x− a)α − α f (x)gα(x̄))1/α. (22)

As x is considered an estimation of x̄, we finally obtain the conformable version of (19) as

φ(x) = a + ((x− a)α − α f (x)gα(x))1/α. (23)

In (23), if gα(x) = 1/(Ta
α f )(x), then it corresponds to the fixed point of the con-

formable Newton scheme (4). So, by using (23), we can obtain the conformable version of
any procedure.
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Therefore, to transfer an iterative scheme to its conformable version, it is necessary to
identify its analytical expression of g(x) in the given classical method. In [11], we can see
that the theoretical order of convergence of the classical version of Newton’s procedure is
held when its conformable version is analyzed. Furthermore, sometimes it presents some
numerical advantages versus the classical version. By using the conformable version of
Newton’s scheme in [11], we have observed that

• We can find the solution when classical method fails (with α 6= 1).
• Sometimes, the conformable method requires fewer iterations than the classical

scheme, and the computational order of convergence can be slightly greater.
• It is possible to obtain a different root by choosing distinct values of index α, with the

same initial estimation.
• Complex roots can be found by starting from real initial estimates.

Now, we use the procedure defined in (23) to derive the conformable version of some
classical multipoint schemes. Let us consider the third-order Traub scheme [17,18]

ψ1(x) = φ1(x)− f [φ1(x)]
f ′(x)

, (24)

where the predictor step is

φ1(x) = x− f (x)
f ′(x)

. (25)

In this case, from (24), we deduce that g(x) =
1

f ′(x)
. Hence,

gα(x) =
1

(Ta
α f )(x)

.

As the conformable version of predictor (25) is (4), the conformable version of Traub’s
procedure is

ψ2(x) = a +
(
(φ2(x)− a)α − α

f [φ2(x)]
(Ta

α f )(x)

)1/α

, (26)

being

φ2(x) = a +
(
(x− a)α − α

f (x)
(Ta

α f )(x)

)1/α

, (27)

which we denote by TeCO.
On the other hand, let us consider now Chun–Kim’s third-order method [18,19]

ψ3(x) = x− 1
2

[
3− f ′[φ1(x)]

f ′(x)

]
f (x)
f ′(x)

, (28)

where φ1(x) = x− f (x)
f ′(x)

. From (28), we deduce that g(x) =
1
2

[
3− f ′[φ(x)]

f ′(x)

]
1

f ′(x)
. So,

gα(x) =
1
2

[
3− (Ta

α f )[φ(x)]
(Ta

α f )(x)

]
1

(Ta
α f )(x)

,

and the conformable version of Chun–Kim’s scheme denoted by CKeCO is

ψ4(x) = a +
(
(x− a)α − α

2

[
3− (Ta

α f )[φ2(x)]
(Ta

α f )(x)

]
f (x)

(Ta
α f )(x)

)1/α

, (29)

being φ2(x) as in (27).
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Now, let us consider Ostrowski’s optimal fourth-order procedure [17,18] (according to
Kung–Traub’s conjecture [13]),

ψ5(x) = φ1(x)−
[

f (x)
f (x)− 2 f [φ1(x)]

]
f [φ1(x)]

f ′(x)
, (30)

where φ1(x) is the fixed-point function of the classical Newton method. In this case, we
deduce from (30) that

g(x) =
[

f (x)
f (x)− 2 f [φ(x)]

]
1

f ′(x)
.

Therefore,

gα(x) =
[

f (x)
f (x)− 2 f [φ(x)]

]
1

(Ta
α f )(x)

,

and the conformable version of Ostrowski’s scheme, denoted by OeCO, is

ψ6(x) = a +
(
(φ2(x)− a)α − α

[
f (x)

f (x)− 2 f [φ2(x)]

]
f [φ2(x)]
(Ta

α f )(x)

)1/α

, (31)

being φ2(x) described by (27).
Finally, let us consider another fourth-order optimal procedure, Chun’s method de-

signed in [18],

ψ7(x) = φ1(x)−
[

f (x) + 2 f [φ1(x)]
f (x)

]
f [φ1(x)]

f ′(x)
, (32)

where φ1(x) is the iteration function of the classical Newton scheme. In this case, we
deduce from (32),

g(x) =
[

f (x) + 2 f [φ(x)]
f (x)

]
1

f ′(x)
,

hence,

gα(x) =
[

f (x) + 2 f [φ(x)]
f (x)

]
1

(Ta
α f )(x)

,

and the conformable version of Chun’s scheme, denoted by CeCO, is described by

ψ8(x) = a +
(
(φ2(x)− a)α − α

[
f (x) + 2 f [φ2(x)]

f (x)

]
f [φ2(x)]
(Ta

α f )(x)

)1/α

, (33)

being φ2(x) defined by (27).
In the next section, the convergence analysis of these procedures, both point-to-point

and multipoint, is performed.

3. Convergence Analysis

First, let us remember that we are going to use classical Taylor expansions in conver-
gence analysis, due to the direct relation between classical and conformable expansions.
The requirements guaranteeing the convergence of point-to-point scheme NeL3 are stated
in the following result.

Theorem 4. Let f : I ⊆ R→ R be a continuous function in the interval I containing the zero x̄
of f (x). Let (Ta

αk
f )(x) be the conformable derivative of f (x) starting from a, with order αk. Let us

suppose that (Ta
αk

f )(x) is continuous and not null at x̄. If an initial approximation x0 is sufficiently
close to x̄, then the local order of convergence of the conformable Newton-type scheme (NeL3)

xk+1 = a +

(
(xk − a)αk − αk

f (xk)

(Ta
αk

f )(xk)

)1/αk

, k = 0, 1, 2, . . . ,
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where

αk = 1 + (xk − a)
f ′′(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

is at least 3, and its error equation is

ek+1 =
1
3

(
2C2

2 − 3C3 −
C2

x̄− a

)
e3

k + O
(

e4
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

for j ≥ 2, such that a < xk, ∀k.

Proof. This scheme has been designed by replacing α in the conformable Newton scheme
by αk. Then, the error equation of NeL3 can be obtained by just replacing α in the error
equation given in (11) by the Taylor expansion of αk, defined in (12).

The Taylor expansions of f ′(xk) and f ′′(xk) around x̄ can be expressed as

f ′(xk) = f ′(x̄)
[
1 + 2C2ek + 3C3e2

k + 4C4e3
k

]
+ O

(
e4

k

)
,

and
f ′′(xk) = f ′(x̄)

[
2C2 + 6C3ek + 12C4e2

k

]
+ O

(
e3

k

)
,

respectively, where Cj =
f (j)(x̄)
j! f ′(x̄)

, for j ≥ 2. The expansion of the quotient
f ′′(xk)

f ′(xk)
is then

calculated as

f ′′(xk)

f ′(xk)
= 2C2 + 2

(
3C3 − 2C2

2

)
ek + 2

(
4C3

2 − 9C2C3 + 6C4

)
e2

k + O
(

e3
k

)
.

The expansion of the product (xk − a)
f ′′(xk)

f ′(xk)
results in

(xk − a)
f ′′(xk)

f ′(xk)
= = (x̄− a + ek)

f ′′(xk)

f ′(xk)

= 2(x̄− a)C2 + 2
(
(x̄− a)

(
3C3 − 2C2

2

)
+ C2

)
ek

+2
(
(x̄− a)

(
4C3

2 − 9C2C3 + 6C4

)
+ 3C3 − 2C2

2

)
e2

k + O
(

e3
k

)
.

Hence,

αk = 1 + (xk − a)
f ′′(xk)

f ′(xk)
= 1 + 2(x̄− a)C2 + 2

(
(x̄− a)

(
3C3 − 2C2

2

)
+ C2

)
ek

+2
(
(x̄− a)

(
4C3

2 − 9C2C3 + 6C4

)
+ 3C3 − 2C2

2

)
e2

k + O
(

e3
k

)
.

Replacing α in (11) by the Taylor expansion of αk, we finally have

ek+1 =
1
3

(
2C2

2 − 3C3 −
C2

x̄− a

)
e3

k + O
(

e4
k

)
.

This completes the proof.

Now, let us prove the third-order convergence of NeA3 under the conditions stated in
the next result.

Theorem 5. Let f : I ⊆ R → R be a continuous function in the interval I containing the zero
x̄ of f (x). Let (Tak

α f )(x) be the conformable derivative of f (x) starting from ak, with order α,
for any α ∈ (0, 1). Let us suppose that (Tak

α f )(x) is continuous and not null at x̄. If an initial
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approximation x0 is sufficiently close to x̄, then the local order of convergence of the conformable
Newton-type scheme (NeA3)

xk+1 = ak +

(
(xk − ak)

α − α
f (xk)

(Tak
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

ak = xk + (1− α)
f ′(xk)

f ′′(xk)
, k = 0, 1, 2, . . . ,

is at least 3 for 0 < α < 1, and the error equation is

ek+1 =

(
2
3
(2− α)C2

2
1− α

− C3

)
e3

k + O
(

e4
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

for j ≥ 2.

Proof. In a similar way as in Theorem 4, the expansion of the quotient
f ′(xk)

f ′′(xk)
is calculated as

f ′(xk)

f ′′(xk)
=

1
2C2

+

(
1− 3

2
C3

C2
2

)
ek +

3
2

(
3C2

3 − C2
2C3 − 2C2C4

C3
2

)
e2

k + O
(

e3
k

)
.

Then,

(1− α)
f ′(xk)

f ′′(xk)
=

1− α

2C2
+ (1− α)

(
1− 3

2
C3

C2
2

)
ek +

3
2
(1− α)

(
3C2

3 − C2
2C3 − 2C2C4

C3
2

)
e2

k + O
(

e3
k

)
.

So, the expansion of ak can be expressed as

ak = xk + (1− α)
f ′(xk)

f ′′(xk)

= x̄ + ek + (1− α)
f ′(xk)

f ′′(xk)
= x̄ +

1− α

2C2
+

(
2− α− 3

2
(1− α)C3

C2
2

)
ek

+
3
2
(1− α)

(
3C2

3 − C2
2C3 − 2C2C4

C3
2

)
e2

k + O
(

e3
k

)
.

Replacing a in (11) by the Taylor expansion of ak, we have

ek+1 =

(
2
3
(2− α)C2

2
1− α

− C3

)
e3

k + O
(

e4
k

)
,

where α 6= 1. This completes the proof.

Let us remark that when α = 1 in NeA3, we obtain the classical Newton scheme.
Analogously, the convergence hypothesis of NeLA4 are stated in the following result.

Theorem 6. Let f : I ⊆ R→ R be a continuous function in the interval I containing the zero x̄ of
f (x). Let (Tak

αk f )(x) be the conformable derivative of f (x) starting from ak, with order αk. Let us
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suppose that (Tak
αk f )(x) is continuous and not null at x̄. If an initial approximation x0 is sufficiently

close to x̄, then the local order of convergence of the conformable Newton-type procedure (NeLA4)

xk+1 = ak +

(
(xk − ak)

αk − αk
f (xk)

(Tak
αk f )(xk)

)1/αk

, k = 0, 1, 2, . . . ,

where

αk = 1 +
f ′′(xk)

2

f ′′(xk)2 − f ′(xk) f ′′′(xk)
, k = 0, 1, 2, . . . ,

and

ak = xk +
f ′(xk) f ′′(xk)

f ′(xk) f ′′′(xk)− f ′′(xk)2 , k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 = 2

(
C2C3 − 3

C2
3

C2
+ 2C4

)
e4

k + O
(

e5
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

for j ≥ 2.

Proof. The Taylor expansions of f ′(xk), f ′′(xk) and f ′′′(xk) around the root x̄ allow us to
calculate the expansion of the following products:

f ′(xk) f ′′(xk) = f ′(x̄)2
[
2C2 + 2(2C2

2 + 3C3)ek + 6(3C2C3 + 2C4)e2
k + 2(9C2

3 + 16C2C4 + 10C5)e3
k

]
+ O

(
e4

k

)
,

f ′(xk) f ′′′(xk) = f ′(x̄)2
[
6C3 + 12(C2C3 + 2C4)ek + 6(3C2

3 + 8C2C4 + 10C5)e2
k

]
+ O

(
e3

k

)
and

f ′′(xk)
2 = f ′(x̄)2

[
4C2

2 + 24C2C3ek + 12(3C2
3 + 4C2C4)e2

k + 16(9C3C4 + 5C2C5)e3
k

]
+O

(
e4

k

)
.

Hence, for αk it results that

αk = 1 +
f ′′(xk)

2

f ′′(xk)2 − f ′(xk) f ′′′(xk)
= 1 +

2C2
2

2C2
2 − C3

+

(
12C2

(
C2

2C3 − 3C2
3 + 2C2C4

)(
2C2

2 − 3C3
)2

)
ek

+

(
6
(
27C4

3 + 16C5
2C4 − 48C3

2C3C4 − 36C2C2
3C4 + C4

2
(
20C5 − 6C2

3
)
+ C2

2
(
9C3

3 + 48C2
4 − 30C3C5

))(
2C2

2 − 3C3
)3

)
e2

k

+ O
(

e3
k

)
,

and for ak we have

ak = xk +
f ′(xk) f ′′(xk)

f ′(xk) f ′′′(xk)− f ′′(xk)2 = x̄ +
C2

3C3 − 2C2
2
+

(
6C2

2C3 − 4C4
2 + 9C2

3 − 12C2C4(
2C2

2 − 3C3
)2

)
ek

+

(
6
(
2C5

2C3 + 12C4
2C4 − 36C2

2C3C4 − 9C2
3C4 − 5C3

2
(
3C2

3 − 2C5
)
+ 3C2

(
9C3

3 + 8C2
4 − 5C3C5

))(
2C2

2 − 3C3
)3

)
e2

k

+ O
(

e3
k

)
.
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Replacing α and a in (11) by the Taylor expansions of αk and ak, respectively, we have

ek+1 = 2

(
C2C3 − 3

C2
3

C2
+ 2C4

)
e4

k + O
(

e5
k

)
.

This completes the proof of the fourth-order of convergence.

Let us notice that, although NeLA4 has an order of convergence of four, it uses four
functional evaluations per iteration, so it is not an optimal method. We proceed now
with the convergence analysis of those multipoint conformable methods defined in the
previous section.

Theorem 7. Let f : I ⊆ R → R be a continuous function in the interval I containing the
zero x̄ of f (x). Let (Ta

α f )(x) be the conformable derivative of f (x) starting from a, with order α,
for any α ∈ (0, 1]. Let us suppose that (Ta

α f )(x) is continuous and not null at x̄. If an initial
approximation x0 is sufficiently close to x̄, then the local order of convergence of the conformable
Traub-type procedure (TeCO)

xk+1 = a +
(
(yk − a)α − α

f (yk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a +
(
(xk − a)α − α

f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 3, and the error equation is

ek+1 =

(
2C2

2 + 2
(1− α)C2

x̄− a
+

1
2
(1− α)2

(x̄− a)2

)
e3

k + O
(

e4
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

, for j ≥ 2, such that a < xk, ∀k.

Proof. The generalized binomial Theorem for noninteger powers is given by [20]

(x + y)r =
∞

∑
k=0

(
r
k

)
xr−kyk, k ∈ {0} ∪N,

being the generalized binomial coefficient [21](
r
k

)
=

Γ(r + 1)
k!Γ(r− k + 1)

, k ∈ {0} ∪N,

where Γ(·) is the Gamma function. Thus, the Taylor expansion of (Ta
α f )(xk) is

(Ta
α f )(xk) = (xk − a)1−α f ′(xk) = f ′(x̄)

[
(x̄− a)1−α + (x̄− a)−α(1− α + 2(x̄− a)C2)ek

+
1
2
(x̄− a)−1−α((α− 1)α + 4(1− α)(x̄− a)C2 + 6(x̄− a)2C3)e2

k

+
1
6
(x̄− a)−2−α(α3 − α + 6(1− α)α(x̄− a)C2 − 18(1− α)(x̄− a)2C3

+24(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4)e3
k

]
+ O

(
e4

k

)
.

The Taylor expansion of yk up to order three is given by the error equation in (11) as

yk − x̄ =

(
C2 +

1− α

2(x̄− a)

)
e2

k +

(
2C3 − 2C2

2 +
(α− 1)C2

x̄− a
+

(1− α)(α− 2)
3(x̄− a)2

)
e3

k + O
(

e4
k

)
.
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So, the expansion of f (yk) is

f (yk) = f ′(x̄)
[(

C2 +
1− α

2(x̄− a)

)
e2

k +

(
2C3 − 2C2

2 +
(α− 1)C2

x̄− a
+

(1− α)(α− 2)
3(x̄− a)2

)
e3

k

]
+ O

(
e4

k

)
.

Then,

α
f (yk)

(Ta
α f )(xk)

=
α

2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

+
α

6
(x̄− a)α−3((α− 1)(5α− 7) + 18(1− α)(x̄− a)C2 + 24(x̄− a)2C2

2 − 12(x̄− a)2C3)e3
k

+O
(

e4
k

)
.

By using again the generalized binomial theorem, the expansion of (yk − a)α results in

(yk − a)α = (x̄− a)α +
α

2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

+
α

3
(x̄− a)α−3((α− 1)(α− 2) + 3(1− α)(x̄− a)C2 + 6(x̄− a)2C2

2 − 6(x̄− a)2C3)e3
k + O

(
e4

k

)
,

therefore,

a +
(
(yk − a)α − α

f (yk)

(Ta
α f )(xk)

)1/α

= x̄ +

(
2C2

2 + 2
(1− α)C2

x̄− a
+

1
2
(1− α)2

(x̄− a)2

)
e3

k + O
(

e4
k

)
.

Finally, as xk+1 = x̄ + ek+1, the error equation is

ek+1 =

(
2C2

2 + 2
(1− α)C2

x̄− a
+

1
2
(1− α)2

(x̄− a)2

)
e3

k + O
(

e4
k

)
.

This completes the proof.

Let us now prove the convergence condition for the CKeCO scheme.

Theorem 8. Let f : I ⊆ R→ R be a continuous function in the interval I containing the zero x̄
of f (x). Let (Ta

α f )(x) be the conformable derivative of f (x) starting from a, with order α, for any
α ∈ (0, 1]. Let us suppose that (Ta

α f )(x) is continuous and not null at x̄. If an initial approximation
x0 is sufficiently close to x̄, then the local order of convergence of the conformable Chun–Kim-type
scheme (CKeCO)

xk+1 = a +
(
(xk − a)α − α

2

[
3− (Ta

α f )(yk)

(Ta
α f )(xk)

]
f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a +
(
(xk − a)α − α

f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 3, and the error equation is

ek+1 =

(
2C2

2 +
1
2

C3 +
5
2
(1− α)C2

x̄− a
+

1
12

(1− α)(7− 8α)

(x̄− a)2

)
e3

k + O
(

e4
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

, for j ≥ 2, such that a < xk, ∀k.

Proof. Let us use the Taylor expansions calculated in the proof of Theorem 7. So, the
expansion of (Ta

α f )(yk) is
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(Ta
α f )(yk) = (yk − a)1−α f ′(yk) = f ′(x̄)

[
(x̄− a)1−α +

1
2
(x̄− a)−1−α(α− 1− 2(x̄− a)C2)

2e2
k

+
1
3
(x̄− a)−2−α(α− 1− 2(x̄− a)C2)((α− 1)(α− 2)− 3(x̄− a)(C2(α− 1− 2(x̄− a)C2)

+2(x̄− a)C3))e3
k

]
+ O

(
e4

k

)
,

and

f (xk)

(Ta
α f )(xk)

= (x̄− a)α−1ek − (x̄− a)α−2(1− α + (x̄− a)C2)e2
k

+
1
2
(x̄− a)α−3((α− 1)(α− 2)− 2(x̄− a)(C2(α− 1− 2(x̄− a)C2) + 2(x̄− a)C3))e3

k

+O
(

e4
k

)
.

Therefore,

α

2

[
3− (Ta

α f )(yk)

(Ta
α f )(xk)

]
= α

[
1 +

(
C2 +

1
2

1− α

x̄− a

)
ek

+

(
α(5− 2α)− 3

4(x̄− a)2 +
2(α− 1)C2

x̄− a
− 3C2

2 +
3
2

C3

)
e2

k

+
1
12

(
84(1− α)C2

2
x̄− a

+ 96C3
2 + 2C2

(
(α− 1)(17α− 22)

(x̄− a)2 − 48C3

)
+

(1− α)(α(6α− 17) + 13− 30(x̄− a)2C3)

(x̄− a)3 + 24C4

)
e3

k

]
+O

(
e4

k

)
,

and

α

2

[
3− (Ta

α f )(yk)

(Ta
α f )(xk)

]
f (xk)

(Ta
α f )(xk)

= α

[
(x̄− a)α−1ek +

α(α− 1)
2

(x̄− a)α−2e2
k

−1
4
((x̄− a)α−3((α− 1)(2α− 1)

−2(x̄− a)(5(α− 1)C2 − 4(x̄− a)C2
2 − (x̄− a)C3)))e3

k

]
+O

(
e4

k

)
,

Using the generalized binomial Theorem again,

(xk − a)α = (x̄− a)α + α(x̄− a)α−1ek +
1
2

α(α− 1)(x̄− a)α−2e2
k +

1
6

α(α− 1)(α− 2)(x̄− a)α−3e3
k + O

(
e4

k

)
,

and

a +
(
(xk − a)α − α

2

[
3− (Ta

α f )(yk)

(Ta
α f )(xk)

]
f (xk)

(Ta
α f )(xk)

)1/α

= x̄

+

(
2C2

2 +
1
2

C3 +
5
2
(1− α)C2

x̄− a
+

1
12

(1− α)(7− 8α)

(x̄− a)2

)
e3

k

+O
(

e4
k

)
.
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Finally, the error equation is

ek+1 =

(
2C2

2 +
1
2

C3 +
5
2
(1− α)C2

x̄− a
+

1
12

(1− α)(7− 8α)

(x̄− a)2

)
e3

k + O
(

e4
k

)
,

and this completes the proof.

Since the error equation of the classical Traub and Chun–Kim procedures are,
respectively,

ek+1 = 2C2
2e3

k + O
(

e4
k

)
,

and

ek+1 =

(
2C2

2 +
1
2

C3

)
e3

k + O
(

e4
k

)
,

Theorem 3 is confirmed for conformable iterative schemes, and our procedure’s ability
to transform these non-optimal integer procedures to conformable ones is also supported.

Theorem 9. Let f : I ⊆ R→ R be a continuous function in the interval I containing the zero x̄
of f (x). Let (Ta

α f )(x) be the conformable derivative of f (x) starting from a, with order α, for any
α ∈ (0, 1]. Let us suppose that (Ta

α f )(x) is continuous and not null at x̄. If an initial approximation
x0 is sufficiently close to x̄, then the local order of convergence of the conformable Ostrowski-type
method (OeCO)

xk+1 = a +
(
(yk − a)α − α

[
f (xk)

f (xk)− 2 f (yk)

]
f (yk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a +
(
(xk − a)α − α

f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 =

(
C3

2 − C2C3 +
1
2
(1− α)(C2

2 − C3)

x̄− a
+

1
12

(1− α2)2C2

(x̄− a)2 +
1
24

(1− α)(1− α2)

(x̄− a)3

)
e4

k + O
(

e5
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

, for j ≥ 2, such that a < xk, ∀k.

Proof. Taking profit of the previous expansion, up to order four, we can expand the
different factors that compose the iterative expression of the OeCO scheme. Then,

f (yk)

(Ta
α f )(xk)

=
1
2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

+
1
6
(x̄− a)α−3((α− 1)(5α− 7) + 18(1− α)(x̄− a)C2 + 24(x̄− a)2C2

2 − 12(x̄− a)2C3)e3
k

+
1

24
(x̄− a)α−4

(
(α− 1)(5α− 7)(4α− 7) + 2(53α2 − 126α + 73)(x̄− a)C2

+(1− α)(x̄− a)2(276C2
2 − 132C3) + (x̄− a)3(312C3

2 − 336C2C3)

−72(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4

)
e4

k + O
(

e5
k

)
,

and
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[
f (xk)

f (xk)− 2 f (yk)

]
= 1 +

(
2C2 +

1− α

x̄− a

)
ek +

(
4C3 − 2C2

2 +
(1− α)C2

x̄− a
+

α2 − 1
3(x̄− a)2

)
e2

k

+

(
−4C2C3 −

(α− 1)(3C3 − 2C2
2)

x̄− a
− (1− α2)C2

2(x̄− a)2 −
(α− 1)(α + 1)(2α + 1)

12(x̄− a)3

− 6(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4

(x̄− a)3

)
e3

k + O
(

e4
k

)
.

Hence,

α

[
f (xk)

f (xk)− 2 f (yk)

]
f (yk)

(Ta
α f )(xk)

= α

[
1
2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

−1
3
(x̄− a)α−3((α− 1)(α− 2) + 3(1− α)(x̄− a)C2 + 6(x̄− a)2(C2

2 − C3))e3
k

+
1

24
(x̄− a)α−4

(
(α− 1)(4α2 − 15α + 17) + 36(α− 1)(x̄− a)2(C2

2 − C3)

−72(x̄− a)3C3
2 + 2(α− 1)(7α− 11)(x̄− a)C2 + 144(x̄− a)3C2C3

+ 72(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4

)
e4

k

]
+ O

(
e5

k

)
,

Using the generalized binomial theorem, the expansion of (yk − a)α results in

(yk − a)α = (x̄− a)α +
α

2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

+
α

3
(x̄− a)α−3((α− 1)(α− 2) + 3(1− α)(x̄− a)C2 + 6(x̄− a)2C2

2 − 6(x̄− a)2C3)e3
k

−α

8
(x̄− a)α−4((α− 1)(α− 2)(α− 3) + 16(α− 1)(x̄− a)2C2

2 − 32(x̄− a)3C3
2

+16(1− α)(x̄− a)2C3 − 4(α2 − 3α + 2)(x̄− a)C2 + 56(x̄− a)3C2C3

+24(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4)e4
k + O

(
e5

k

)
.

Therefore,

xk+1 = a +
(
(yk − a)α − α

[
f (xk)

f (xk)− 2 f (yk)

]
f (yk)

(Ta
α f )(xk)

)1/α

= x̄ +

(
C3

2 − C2C3 +
1
2
(1− α)(C2

2 − C3)

x̄− a
+

1
12

(1− α2)2C2

(x̄− a)2 +
1
24

(1− α)(1− α2)

(x̄− a)3

)
e4

k + O
(

e5
k

)
.

Finally,

ek+1 =

(
C3

2 − C2C3 +
1
2
(1− α)(C2

2 − C3)

x̄− a
+

1
12

(1− α2)2C2

(x̄− a)2 +
1
24

(1− α)(1− α2)

(x̄− a)3

)
e4

k + O
(

e5
k

)
.

This completes the proof.

Now, we analyze the convergence of the conformable Chun method in the following
result.

Theorem 10. Let f : I ⊆ R → R be a continuous function in the interval I containing the
zero x̄ of f (x). Let (Ta

α f )(x) be the conformable derivative of f (x) starting from a, with order α,
for any α ∈ (0, 1]. Let us suppose that (Ta

α f )(x) is continuous and not null at x̄. If an initial
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approximation x0 is sufficiently close to x̄, then the local order of convergence of the conformable
Chun-type method (CeCO)

xk+1 = a +
(
(yk − a)α − α

[
f (xk) + 2 f (yk)

f (xk)

]
f (yk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

where

yk = a +
(
(xk − a)α − α

f (xk)

(Ta
α f )(xk)

)1/α

, k = 0, 1, 2, . . . ,

is at least 4, and the error equation is

ek+1 =

(
5C3

2 − C2C3 +
(1− α)(13C2

2 − C3)

2(x̄− a)
+

(24(1− α)2 + (1− α)(13− 11α))C2

12(x̄− a)2 +
(1− α)2(13− 11α)

24(x̄− a)3

)
e4

k

+ O
(

e5
k

)
,

being Cj =
f (j)(x̄)
j! f ′(x̄)

, for j ≥ 2, such that a < xk, ∀k.

Proof. We can make use of the Taylor expansions presented in Theorem 9 so that the
calculations of some elements of the iterative expressions are the same. So,

f (xk) + 2 f (yk)

f (xk)
= 1 +

(
2C2 +

1− α

x̄− a

)
ek +

(
4C3 − 6C2

2 −
3(1− α)C2

x̄− a
− 2(α− 1)(α− 2)

3(x̄− a)2

)
e2

k

+

(
16C3

2 − 20C2C3 + 6C4 +
(α− 1)(5C3 − 10C2

2)

x̄− a
− (α− 1)C2

6(x̄− a)2

− (α− 1)(7 + α(2α− 7))
4(x̄− a)3

)
e3

k + O
(

e4
k

)
,

and

α

[
f (xk) + 2 f (yk)

f (xk)

]
f (yk)

(Ta
α f )(xk)

= α

[
1
2
(x̄− a)α−2(1− α− 2(x̄− a)C2)e2

k

− 1
3
(x̄− a)α−3((α− 1)(α− 2) + 3(1− α)(x̄− a)C2 + 6(x̄− a)2(C2

2 − C3))e3
k

+
1
24

(x̄− a)α−4
(

8α3 − 17α2 + 4α + 5 + (α− 1)(x̄− a)2(108C2
2 − 36C3)

− 24(x̄− a)3C3
2 − 2(29α2 − 54α + 25)(x̄− a)C2 − 144(x̄− a)3C2C3

− 72(a3 − 3a2 x̄ + 3ax̄2 − x̄3)C4

)
e4

k

]
+ O

(
e5

k

)
,

Using the generalized binomial theorem again,

xk+1 = a +
(
(yk − a)α − α

[
f (xk) + 2 f (yk)

f (xk)

]
f (yk)

(Ta
α f )(xk)

)1/α

= x̄

+

(
5C3

2 − C2C3 +
(1− α)(13C2

2 − C3)

2(x̄− a)
+

(24(1− α)2 + (1− α)(13− 11α))C2

12(x̄− a)2 +
(1− α)2(13− 11α)

24(x̄− a)3

)
e4

k

+O
(

e5
k

)
,

and finally,
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ek+1 =

(
5C3

2 − C2C3 +
(1− α)(13C2

2 − C3)

2(x̄− a)
+

(24(1− α)2 + (1− α)(13− 11α))C2

12(x̄− a)2 +
(1− α)2(13− 11α)

24(x̄− a)3

)
e4

k

+ O
(

e5
k

)
.

This completes the proof.

Since the error equations of the classical Ostrowski and Chun schemes are

ek+1 =
(

C3
2 − C2C3

)
e4

k + O
(

e5
k

)
,

and
ek+1 =

(
5C3

2 − C2C3

)
e4

k + O
(

e5
k

)
,

respectively, Theorem 3 and our proposed technique are again confirmed for these fourth-
order conformable schemes. Moreover, let us remark that OeCO and CeCO are the first
optimal multipoint conformable procedures, according to Kung and Traub’s conjecture [13].

In next section, we perform some numerical tests with some nonlinear equations, and
we study the stability of these methods proposed; in the case of multipoint methods, a
comparison with the classical version (when α = 1) is made.

4. Numerical Tests

The following results were obtained by using Matlab R2020a with the double-precision
arithmetic, | f (xk+1)| < 10−8 or |xk+1 − xk| < 10−8, as the stopping criterion, and at most
500 iterations. We also used the Approximated Computational Order of Convergence
(ACOC), denoted by ρ,

ρ =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
, k = 2, 3, . . . ,

and defined in [22], in order to check that the theoretical order of convergence is attained
in practice.

We are going to test four nonlinear functions to draw a comparison between one-point
and multipoint procedures; we also compare these results with the Matlab Toolbox fsolve.
In the case of methods whose a is not computed in each iteration (NeL3, TeCO, CKeCO,
OeCO, and CeCO) we choose a = −10 to ensure that a < xk ∀k.

For each test function, we calculate, in addition to its respective conformable derivative,
its classical derivatives of orders one, two, and three because they are necessary for schemes
NeL3, NeA3, and NeLA4.

For each test function we show two tables: first, the results of one-point procedures
(NeA3, NeL3, and NeLA4) and fsolve, then, the results of multipoint methods (TeCO,
CKeCO, OeCO, and CeCO). We remark that α is not used by fsolve, and this tool provides
x̄, | f (xk+1)| and the number of iterations (iter). For each pair of tables, the same initial
estimate x0 is used, as well as equispaced values of α ∈ (0, 1] for schemes whose α is not
computed in each iteration (NeA3, TeCO, CKeCO, OeCO, and CeCO).

Our first test function is f1(x) = −12.84x6 − 25.6x5 + 16.55x4 − 2.21x3 + 26.71x2 −
4.29x− 15.21, with real and complex roots x̄1 = 0.82366+ 0.24769i, x̄2 = 0.82366− 0.24769i,
x̄3 = −2.62297, x̄4 = −0.584, x̄5 = −0.21705+ 0.99911i, and x̄6 = −0.21705− 0.99911i. The
necessary derivatives for this function are
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f ′1(x) = −77.04x5 − 128x4 + 66.2x3 − 6.63x2 + 53.42x− 4.29,

f ′′1 (x) = −385.2x4 − 512x3 + 198.6x2 − 13.26x + 53.42,

f ′′′1 (x) = −1540.8x3 − 1536x2 + 397.2x− 13.26,

(Ta
α f1)(x) = (x− a)1−α f ′1(x).

In Table 1, NeA3 can require fewer (but also more) iterations when α 6= 1 than in
the case that α = 1, and the computational order of convergence is around the theoretical
third-order of convergence. It may be slightly greater for low values of α. When α = 1,
ρ is close to 2 as in this case the scheme is reduced to the classical Newton procedure (see
Theorem 5). We also see that NeL3 and NeLA4 improve the classical Newton method as
well in the number of iterations required and in the computational order of convergence.

In Table 2, TeCO requires fewer iterations than the classical Traub scheme (when
α = 0.8 and α = 0.9 regarding the case that α = 1). ρ is around 3 in most of cases, although
it reaches the maximum number of iterations for low values of α. We also observe that the
classical Chun–Kim procedure does not find any solution, whereas CKeCO converges for
some values of α, and the computational order of convergence is around 3 in most cases.
No results are shown when α = 0.1 because it converges to a point which is not a solution
of f1(x). OeCO presents a similar behavior compared to the classical Ostrowski method,
even though ρ is not expected. CeCO can require fewer iterations than the classical Chun
scheme, and the computational order of convergence tends to be 4; again, no results are
shown when α = 0.1 because it converges to a point which is not a solution of f1(x).

Table 1. Results of one-point methods and fsolve for f1(x), with initial estimate x0 = 1.

NeA3 Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄4 4.36× 10−11 6.85× 10−7 13 2.01
0.9 x̄4 3.55× 10−15 1.02× 10−9 7 2.92
0.8 x̄3 3.91× 10−13 3.58× 10−8 15 2.89
0.7 x̄6 5.33× 10−15 5.35× 10−10 38 3.01
0.6 x̄4 1.71× 10−13 8.73× 10−6 22 3.37
0.5 x̄3 6.18× 10−13 6.70× 10−10 54 2.96
0.4 x̄3 3.91× 10−13 1.69× 10−7 31 2.91
0.3 x̄4 1.03× 10−9 1.88× 10−4 19 3.57
0.2 x̄3 4.02× 10−9 8.18× 10−5 35 2.81
0.1 x̄4 9.07× 10−10 1.94× 10−4 168 3.53

NeL3 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄3 4.13× 10−13 4.10× 10−6 11 2.89

NeLA4 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄1 6.53× 10−15 1.51× 10−7 3 4.00

fsolve

- x̄ | f (xk+1)| |xk+1 − xk| iter ρ

- - - - - -
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Table 2. Results of multipoint methods for f1(x), with initial estimate x0 = 1.

TeCO Method CKeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄3 6.18× 10−13 4.49× 10−7 115 2.89 - - - >500 -
0.9 x̄4 4.04× 10−9 2.43× 10−4 69 2.80 - - - >500 -
0.8 x̄4 5.30× 10−11 5.73× 10−5 61 2.83 x̄4 9.95× 10−14 9.91× 10−10 190 3.00
0.7 x̄2 1.16× 10−13 3.57× 10−6 329 0.00 - - - >500 -
0.6 x̄4 1.07× 10−14 1.12× 10−6 119 2.90 - - - >500 -
0.5 x̄4 3.24× 10−10 1.05× 10−4 213 2.82 - - - >500 -
0.4 x̄4 1.17× 10−13 7.31× 10−9 104 2.95 x̄5 1.41× 10−11 1.88× 10−5 484 2.80
0.3 - - - >500 - x̄4 2.11× 10−13 1.11× 10−5 490 0.00
0.2 - - - >500 - - - - >500 -
0.1 - - - >500 - - - - - -

OeCO Method CeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄4 1.07× 10−14 2.77× 10−5 3 2.41 x̄3 6.18× 10−13 4.76× 10−9 47 3.73
0.9 x̄4 9.95× 10−14 1.97× 10−5 3 2.43 x̄3 3.11× 10−10 2.76× 10−4 75 3.21
0.8 x̄4 9.95× 10−14 1.36× 10−5 3 2.44 x̄3 6.18× 10−13 9.77× 10−5 66 3.28
0.7 x̄4 1.17× 10−13 9.14× 10−6 3 2.46 x̄3 2.26× 10−12 1.89× 10−10 87 3.81
0.6 x̄4 9.95× 10−14 5.93× 10−6 3 2.48 x̄3 1.81× 10−10 2.42× 10−4 108 3.22
0.5 x̄4 1.17× 10−13 3.68× 10−6 3 2.49 x̄3 4.92× 10−11 1.76× 10−4 87 3.24
0.4 x̄4 1.17× 10−13 2.16× 10−6 3 2.51 x̄4 1.17× 10−13 1.08× 10−7 212 3.68
0.3 x̄4 1.07× 10−14 1.18× 10−6 3 2.53 x̄4 1.07× 10−14 1.75× 10−7 53 3.67
0.2 x̄4 2.24× 10−13 5.90× 10−7 3 2.55 x̄4 2.24× 10−13 7.13× 10−7 45 3.61
0.1 x̄4 4.21× 10−13 2.58× 10−7 3 2.57 - - - - -

We can see that in Tables 1 and 2 a solution is found in most of cases, whereas fsolve
does not find any solution with this initial estimate. Of course, if we change the initial
estimation to a complex one, fsolve will find any root.

The second test function is f2(x) = ix1.8− x0.9− 16, with complex roots x̄1 = 2.90807−
4.24908i, and x̄2 = −3.85126 + 1.74602i. The necessary derivatives for this function are

f ′2(x) = 1.8ix0.8 − 0.9x−0.1,

f ′′2 (x) = 1.44x−0.2 + 0.09x−1.1,

f ′′′2 (x) = −0.288x−1.2 − 0.099x−2.1,

(Ta
α f2)(x) = (x− a)1−α f ′2(x).

In Table 3, NeA3 can require fewer iterations when α 6= 1, ρ is around 3, and the
computational order of convergence is 2 when α = 1, supporting the theory. We can
observe that NeL3 and NeLA4 improve the classical Newton procedure in the number of
iterations required and the estimated order of convergence ρ.

In Table 4, TeCO and CKeCO require fewer iterations than the classical Traub method
and Chun–Kim’s scheme, respectively (in some cases), and the computational order of
convergence is around 3 for any α in both procedures. OeCO does not improve the classical
Ostrowski method in terms of the number of iterations and ρ. CeCO presents a similar
behavior compared to the classical Chun scheme in some cases, and in other cases the
computational order of convergence can be slightly greater.

We can observe that in Tables 3 and 4 our methods converge in fewer iterations than
fsolve in many cases.

Our third test function is f3(x) = ex − 1, with real root x̄1 = 0. The necessary
derivatives for this function are

f ′3(x) = f ′′3 (x) = f ′′′3 (x) = ex,

(Ta
α f3)(x) = (x− a)1−α f ′3(x).
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Table 3. Results of one-point methods and fsolve for f2(x), with initial estimate x0 = 0.5.

NeA3 Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 3.31× 10−14 2.63× 10−7 8 2.00
0.9 x̄1 7.16× 10−15 4.79× 10−8 8 3.01
0.8 x̄1 2.22× 10−15 2.36× 10−9 8 2.93
0.7 x̄1 3.70× 10−9 0.003 7 2.46
0.6 x̄1 7.16× 10−15 1.97× 10−7 8 2.89
0.5 x̄1 3.11× 10−15 1.13× 10−7 10 2.90
0.4 x̄1 7.23× 10−15 2.63× 10−9 9 3.02
0.3 x̄1 4.96× 10−13 1.84× 10−4 10 2.72
0.2 x̄2 7.12× 10−15 4.59× 10−8 13 2.93
0.1 x̄1 7.89× 10−14 1.97× 10−5 13 3.34

NeL3 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄2 5.44× 10−10 0.0021 4 2.76

NeLA4 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄1 1.07× 10−14 1.09× 10−8 4 3.01

fsolve

- x̄ | f (xk+1)| |xk+1 − xk| iter ρ

- x̄1 7.58× 10−8 - 7 -

Table 4. Results of multipoint methods for f2(x), with initial estimate x0 = 0.5.

TeCo Method CKeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 7.16× 10−15 6.43× 10−7 7 3.18 x̄1 2.22× 10−15 2.34× 10−8 7 3.09
0.9 x̄1 2.42× 10−14 6.19× 10−5 11 3.46 x̄1 1.14× 10−11 4.94× 10−4 8 2.76
0.8 x̄2 9.57× 10−15 2.49× 10−7 10 2.90 x̄2 8.40× 10−9 0.005 7 3.87
0.7 x̄2 4.72× 10−15 4.02× 10−6 7 2.75 x̄2 3.97× 10−15 2.37× 10−5 8 2.76
0.6 x̄2 1.45× 10−13 1.37× 10−4 8 2.95 x̄2 3.97× 10−15 5.55× 10−6 9 3.22
0.5 x̄2 1.78× 10−15 6.41× 10−8 7 2.86 x̄2 3.66× 10−15 2.49× 10−5 6 2.94
0.4 x̄2 1.26× 10−14 3.59× 10−5 6 2.97 x̄2 9.27× 10−15 4.86× 10−6 5 2.97
0.3 x̄2 5.33× 10−15 3.10× 10−7 5 3.07 x̄2 1.65× 10−14 1.51× 10−7 7 2.96
0.2 x̄2 1.65× 10−14 2.47× 10−6 5 3.03 x̄2 1.65× 10−14 5.19× 10−9 19 3.00
0.1 x̄1 2.14× 10−14 4.53× 10−9 30 2.98 x̄2 2.31× 10−11 6.61× 10−4 9 2.97

OeCO Method CeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 2.04× 10−9 0.026 4 5.51 x̄1 2.89× 10−13 0.002 7 2.74
0.9 x̄1 4.29× 10−14 8.34× 10−9 5 3.72 x̄1 1.61× 10−14 2.34× 10−4 8 3.77
0.8 x̄1 1.39× 10−14 2.05× 10−7 5 3.65 x̄1 1.90× 10−14 2.93× 10−7 13 4.31
0.7 x̄1 3.31× 10−14 4.74× 10−6 5 3.57 x̄2 3.31× 10−9 0.0227 8 3.06
0.6 x̄1 3.30× 10−14 9.49× 10−5 5 3.52 x̄2 6.03× 10−11 0.0087 9 2.85
0.5 x̄1 2.25× 10−14 0.0015 5 3.59 x̄2 1.99× 10−15 4.90× 10−8 10 3.80
0.4 x̄1 1.00× 10−9 0.0206 5 4.07 x̄1 6.52× 10−10 0.0118 12 2.67
0.3 x̄1 2.22× 10−15 5.59× 10−6 6 3.43 x̄1 1.11× 10−14 5.65× 10−4 12 4.19
0.2 x̄1 1.38× 10−9 0.0219 6 3.47 x̄2 4.80× 10−14 5.66× 10−6 95 3.89
0.1 x̄1 1.90× 10−14 1.94× 10−8 8 4.27 x̄2 8.42× 10−14 5.83× 10−7 383 4.04

In Table 5, NeA3 requires fewer iterations when α 6= 1, and ρ is around 3. When α = 1,
the computational order of convergence is 2, as expected. We observe that NeL3 improves
NeA3 in the number of iterations required, with ρ being around 3. NeLA4 does not work
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for this function because f ′3(x) = f ′′3 (x) = f ′′′3 (x), and this involves singularities in (16)
and (17).

In Table 6, TeCO, CKeCO, OeCO, and CeCO present a very similar behaviors compared
to their classical versions, respectively, and the computational order of convergence is as
expected in each case.

Table 5. Results of one-point methods and fsolve for f3(x), with initial estimate x0 = 1.5.

NeA3 Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 2.22× 10−16 2.08× 10−8 6 2.00
0.9 x̄1 1.23× 10−9 9.05× 10−4 4 2.70
0.8 x̄1 1.65× 10−12 1.25× 10−4 4 2.83
0.7 x̄1 9.55× 10−15 2.57× 10−5 4 2.89
0.6 x̄1 1.39× 10−17 6.67× 10−6 4 2.93
0.5 x̄1 1.11× 10−16 2.05× 10−6 4 2.95
0.4 x̄1 2.78× 10−16 7.13× 10−7 4 2.96
0.3 x̄1 3.34× 10−16 2.74× 10−7 4 2.97
0.2 x̄1 4.00× 10−16 1.14× 10−7 4 2.98
0.1 x̄1 1.24× 10−16 5.06× 10−8 4 2.99

NeL3 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄1 0 1.21× 10−5 3 3.11

NeLA4 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- - - - - -

fsolve

- x̄ | f (xk+1)| |xk+1 − xk | iter ρ

- x̄1 2.08× 10−8 - 5 -

Table 6. Results of multipoint methods for f3(x), with initial estimate x0 = 1.5.

TeCO Method CKeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 5.33× 10−15 2.20× 10−5 4 2.92 x̄1 8.17× 10−14 5.18× 10−5 4 2.90
0.9 x̄1 8.88× 10−15 2.46× 10−5 4 2.92 x̄1 1.19× 10−13 5.80× 10−5 4 2.90
0.8 x̄1 1.24× 10−14 2.74× 10−5 4 2.91 x̄1 1.67× 10−13 6.48× 10−5 4 2.90
0.7 x̄1 1.60× 10−14 3.06× 10−5 4 2.91 x̄1 2.31× 10−13 7.22× 10−5 4 2.90
0.6 x̄1 2.13× 10−14 3.41× 10−5 4 2.91 x̄1 3.29× 10−13 8.04× 10−5 4 2.90
0.5 x̄1 2.84× 10−14 3.78× 10−5 4 2.91 x̄1 4.58× 10−13 8.93× 10−5 4 2.90
0.4 x̄1 4.44× 10−14 4.20× 10−5 4 2.91 x̄1 6.41× 10−13 9.90× 10−5 4 2.89
0.3 x̄1 5.86× 10−14 4.65× 10−5 4 2.91 x̄1 8.86× 10−13 1.10× 10−4 4 2.89
0.2 x̄1 8.17× 10−14 5.14× 10−5 4 2.90 x̄1 1.22× 10−12 1.21× 10−4 4 2.89
0.1 x̄1 1.12× 10−13 5.68× 10−5 4 2.90 x̄1 1.66× 10−12 1.34× 10−4 4 2.89

OeCO Method CeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄1 0 7.53× 10−6 3 3.91 x̄1 1.54× 10−10 0.0041 3 3.58
0.9 x̄1 1.18× 10−15 7.76× 10−6 3 3.91 x̄1 1.97× 10−10 0.0043 3 3.58
0.8 x̄1 1.78× 10−15 7.99× 10−6 3 3.91 x̄1 2.52× 10−10 0.0046 3 3.58
0.7 x̄1 1.78× 10−15 8.22× 10−6 3 3.90 x̄1 3.20× 10−10 0.0048 3 3.57
0.6 x̄1 0 8.44× 10−6 3 3.90 x̄1 4.05× 10−10 0.0051 3 3.57
0.5 x̄1 1.78× 10−15 8.67× 10−6 3 3.90 x̄1 5.11× 10−10 0.0054 3 3.57
0.4 x̄1 0 8.89× 10−6 3 3.90 x̄1 6.42× 10−10 0.0056 3 3.57
0.3 x̄1 0 9.10× 10−6 3 3.90 x̄1 8.04× 10−10 0.0059 3 3.56
0.2 x̄1 3.55× 10−15 9.31× 10−6 3 3.89 x̄1 1.00× 10−9 0.0062 3 3.56
0.1 x̄1 5.33× 10−15 9.52× 10−6 3 3.89 x̄1 1.25× 10−9 0.0065 3 3.56
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We can note that in Tables 5 and 6 our methods converge in fewer iterations than fsolve
in all cases.

Finally, the fourth test function is f4(x) = sin(10x)− 0.5x + 0.2, with real roots x̄1 =
−1.4523, x̄2 = −1.3647, x̄3 = −0.87345, x̄4 = −0.6857, x̄5 = −0.27949, x̄6 = −0.021219,
x̄7 = 0.31824, x̄8 = 0.64036, x̄9 = 0.91636, x̄10 = 1.3035, x̄11 = 1.5118, x̄12 = 1.9756, and
x̄13 = 2.0977. The necessary derivatives for this function are

f ′4(x) = 10 cos(10x)− 0.5,

f ′′4 (x) = −100 sin(10x),

f ′′′4 (x) = −1000 cos(10x),

(Ta
α f4)(x) = (x− a)1−α f ′4(x).

In Table 7, NeA3 requires fewer iterations for most of values when α 6= 1, and ρ is
around 3 or greater. When α = 1, the computational order of convergence is around 2. We
observe that NeLA4 improves the classical Newton procedure as well in the number of
iterations and in terms of the computational order of convergence, ρ. No results are shown
for NeL3 because it converges to a point which is not solution of f4(x).

In Table 8, TeCO, CKeCO, OeCO, and CeCO present very similar behavior compared
to their classical versions, respectively, and the computational order of convergence is
greater than expected by using TeCO, CKeCO, and CeCO. ρ cannot be provided when
using OeCO because at least three iterations are needed to compute it.

We can see that in Tables 7 and 8 our methods converge in fewer iterations than fsolve
in most of cases.

Table 7. Results of one-point methods and fsolve for f4(x), with initial estimate x0 = 2.

NeA3 Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄12 1.94× 10−11 7.01× 10−7 4 1.99
0.9 x̄12 2.78× 10−16 2.31× 10−8 4 2.80
0.8 x̄12 2.78× 10−16 5.39× 10−8 4 2.92
0.7 x̄12 2.78× 10−16 5.32× 10−8 4 3.14
0.6 x̄12 3.01× 10−9 1.59× 10−4 3 7.91
0.5 x̄12 8.16× 10−12 2.32× 10−5 3 4.38
0.4 x̄12 4.60× 10−13 9.21× 10−6 3 3.93
0.3 x̄12 6.80× 10−14 4.97× 10−6 3 3.74
0.2 x̄12 1.58× 10−14 3.15× 10−6 3 3.63
0.1 x̄12 3.61× 10−15 2.20× 10−6 3 3.55

NeL3 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- - - - - -

NeLA4 Method

αk x̄ | f (xk+1)| |xk+1− xk| Iter ρ

- x̄13 1.72× 10−15 1.15× 10−5 3 4.33

fsolve

- x̄ | f (xk+1)| |xk+1 − xk| iter ρ

- x̄12 1.85× 10−11 - 4 -
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Table 8. Results of multipoint methods for f4(x), with initial estimate x0 = 2.

TeCO Method CKeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄12 1.13× 10−12 1.27× 10−5 3 4.18 x̄12 3.37× 10−13 8.77× 10−6 3 4.07
0.9 x̄12 1.13× 10−12 1.27× 10−5 3 4.18 x̄12 3.37× 10−13 8.72× 10−6 3 4.07
0.8 x̄12 1.11× 10−12 1.26× 10−5 3 4.18 x̄12 3.27× 10−13 8.66× 10−6 3 4.07
0.7 x̄12 1.06× 10−12 1.25× 10−5 3 4.18 x̄12 2.97× 10−13 8.60× 10−6 3 4.07
0.6 x̄12 1.06× 10−12 1.25× 10−5 3 4.17 x̄12 3.17× 10−13 8.54× 10−6 3 4.07
0.5 x̄12 1.04× 10−12 1.24× 10−5 3 4.17 x̄12 3.07× 10−13 8.49× 10−6 3 4.07
0.4 x̄12 1.04× 10−12 1.24× 10−5 3 4.17 x̄12 3.17× 10−13 8.43× 10−6 3 4.06
0.3 x̄12 1.02× 10−12 1.23× 10−5 3 4.17 x̄12 3.07× 10−13 8.37× 10−6 3 4.06
0.2 x̄12 1.01× 10−12 1.22× 10−5 3 4.17 x̄12 2.77× 10−13 8.32× 10−6 3 4.06
0.1 x̄12 9.81× 10−13 1.22× 10−5 3 4.17 x̄12 2.77× 10−13 8.26× 10−6 3 4.06

OeCO Method CeCO Method

α x̄ | f (xk+1)| |xk+1− xk| Iter ρ x̄ | f (xk+1)| |xk+1− xk| Iter ρ

1 x̄12 7.85× 10−11 4.17× 10−4 2 - x̄12 4.27× 10−15 5.00× 10−7 3 4.81
0.9 x̄12 7.83× 10−11 4.17× 10−4 2 - x̄12 1.58× 10−14 4.96× 10−7 3 4.81
0.8 x̄12 7.80× 10−11 4.17× 10−4 2 - x̄12 1.58× 10−14 4.92× 10−7 3 4.81
0.7 x̄12 7.79× 10−11 4.17× 10−4 2 - x̄12 4.27× 10−15 4.89× 10−7 3 4.81
0.6 x̄12 7.76× 10−11 4.17× 10−4 2 - x̄12 4.27× 10−15 4.85× 10−7 3 4.81
0.5 x̄12 7.74× 10−11 4.16× 10−4 2 - x̄12 4.27× 10−15 4.81× 10−7 3 4.81
0.4 x̄12 7.72× 10−11 4.16× 10−4 2 - x̄12 1.44× 10−14 4.77× 10−7 3 4.81
0.3 x̄12 7.70× 10−11 4.16× 10−4 2 - x̄12 2.58× 10−14 4.74× 10−7 3 4.81
0.2 x̄12 7.67× 10−11 4.16× 10−4 2 - x̄12 5.72× 10−15 4.70× 10−7 3 4.81
0.1 x̄12 7.66× 10−11 4.15× 10−4 2 - x̄12 4.59× 10−14 4.67× 10−7 3 4.81

Numerical Stability

We are now going to analyze the dependence on the initial estimates of the methods
proposed in this work. For NeA3, TeCO, CKeCO, OeCO, and CeCO, whose α is fixed
in each iteration, we use convergence planes, defined in [23]. In these planes, we use a
400× 400 grid, where the horizontal axis corresponds to initial estimate x0, and the vertical
axis corresponds to α ∈ (0, 1]. Each color represents a different solution found with a
tolerance of 10−3, and it is painted in black when no solution is found in 500 iterations.
Moreover, for each convergence plane, we calculate the percentage of converging pairs
(x0, α) in order to compare the efficiency of the schemes.

In Figure 1, we observe that NeA3 and OeCO almost reach a 100% convergence, TeCO
and CeCO attain around 94% convergence, and CKeCO obtains around 77% convergence;
all roots are found in each plane.

In Figure 2, we see that every procedure almost reaches 100% convergence, and all
roots are found in each plane. In Figure 3, we note that NeA3, TeCO, CKeCO, and CeCO
attain between 53% and 59% convergence, whereas OeCO obtains around 74% convergence.
In this case, considering that −10 ≤ x0 ≤ 10, and a = −10, we point out that stability could
be slightly improved if we choose a < −10.

In Figure 4, we can see that NeA3 and CKeCO reach between 42% and 48% conver-
gence, TeCO and CeCO attain between 62% and 66% convergence, and OeCO obtains
around 74% convergence; again, all roots are found in each plane.



Mathematics 2023, 11, 2568 24 of 29

-2 0 2

0.2

0.4

0.6

0.8

1

(a) NeA3, 99.76% convergence

-2 0 2

0.2

0.4

0.6

0.8

1

(b) TeCO, 94.63% convergence

-2 0 2

0.2

0.4

0.6

0.8

1

(c) CKeCO, 76.76% convergence

-2 0 2

0.2

0.4

0.6

0.8

1

(d) OeCO, 99.46% convergence

-2 0 2

0.2

0.4

0.6

0.8

1

(e) CeCO, 94.04% convergence

Figure 1. Convergence planes for f1(x).
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Figure 3. Convergence planes for f3(x).
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Figure 4. Convergence planes for f4(x).

In order to visualize the dependence on the initial estimates of NeL3 and NeLA4, with
αk calculated in each iteration, we use dynamical planes. These planes are constructed with
the real part of the initial estimate x0 in the horizontal axis, and the imaginary part in the
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vertical axis. As in convergence planes, we use a 400× 400 grid, a tolerance of 10−3, and at
most 500 iterations. In these cases, we use real and complex polynomials whose roots are
known, which are represented with “white crosses” on each plane.

Our polynomials with their respective roots are

• p1(z) = z2 − 1, with z̄1 = −1 and z̄2 = 1.
• p2(z) = z3 − 1, with z̄1 = 1, z̄2 = −1/2 + (

√
3/2)i and z̄3 = −1/2− (

√
3/2)i.

• p3(z) = z2 − i, with z̄1 =
√

2/2 + (
√

2/2)i and z̄2 = −
√

2/2− (
√

2/2)i.
• p4(z) = z3 + 4z2 − 10, with z̄1 ≈ 1.3652, z̄2 ≈ −2.6826 + 0.3583i and z̄3 ≈ −2.6826−

0.3583i.

In general, we observe that NeL3 and NeLA4 tend to converge to one root in most
planes. NeL3 converges to both roots in Figure 5, but convergence is not guaranteed in most
planes because it obtains many nonconverging complex initial estimations (Re(x0), Im(x0)),
whereas in NeLA4 most initial guesses converge to one root. Performance of methods NeL3
and NeLA4 on pi(z), i = 2, 3, 4 is similar (see Figures 6–8).
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Figure 5. Dynamical planes for p1(z).
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Figure 6. Dynamical planes for p2(z).
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Figure 8. Dynamical planes for p4(z).

5. Conclusions

In this manuscript, three one-point conformable Newton-type methods have been
designed (NeL3, NeA3, and NeLA4), and their convergence analysis has been performed,
improving the quadratic order of the starting scheme. None of these procedures are
optimal because they require the evaluation of higher-order derivatives. On the other
hand, a general technique has been provided so as to obtain the conformable version of any
iterative method; later, this technique was used to derive the conformable version of four
multipoint classical schemes (TeCO, CKeCO, OeCO, and CeCO), where two of them are
the first optimal multipoint conformable procedures in the literature (OeCO and CeCO),
holding an order of convergence equal to that of the classical case. So, the technique is
supported by the results obtained. Numerical tests were performed, and the dependence
on initial estimates was analyzed by visualizing convergence and dynamical planes. We
observed that, in general, these methods can converge when the classical ones fail, or
in fewer iterations in some cases. Additionally, the theoretical order of convergence is
obtained in practice, tending to equal or improve that of classical multipoint schemes.
We also see that it is possible to obtain real or complex roots with real initial estimates,
and that we can obtain different roots by choosing a different value of α and the same
initial estimation. These methods found a solution when fsolve failed, and required fewer
iterations than the Matlab Toolbox in most cases. Finally, most of the planes in this work
confirm that these procedures have, in general, good stability properties in terms of the
wideness of basins of attraction of the roots, and all roots are found in most of such planes.
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