
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.           (2023) 117:5 
https://doi.org/10.1007/s13398-022-01334-1

ORIG INAL PAPER

Balanced incomplete factorization preconditioner with
pivoting

J. Marín1 · J. Mas1

Received: 28 July 2022 / Accepted: 29 September 2022
© The Author(s) 2022

Abstract
In this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J
Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix A.
This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Pre-
conditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. Bru
(SIAM J Sci Comput 25(2):701–715, 2003), that using recursion formulas derived from the
Sherman-Morrison formula, obtains the direct and inverse LU factors of a matrix. We present
a modification of the ISM decomposition that allows for pivoting, and so the computation of
preconditioners for any nonsingular matrix. While the ISM algorithm at a given step com-
putes only a new pair of vectors, the new pivoting algorithm in the k-th step also modifies
all the remaining vectors from k + 1 to n. Thus, it can be seen as a right looking version
of the ISM decomposition. The results of numerical experiments with ill-conditioned and
highly indefinite matrices arising from different applications show the robustness of the new
algorithm, since it is able to solve problems that are not possible to solve otherwise.

Keywords Incomplete LU preconditioners · Iterative methods · Pivoting ·
Ill-conditioned problems · Sparse linear systems

Mathematics Subject Classification 65F08 · 65F10 · 65F50 · 65F05

1 Introduction

This paper is concerned with the computation of robust preconditioners by using standard
pivoting techniques for solving ill-conditioned sparse nonsingular linear systems of equations
of the form

Ax = b, A ∈ R
n×n, b ∈ R

n, (1)
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using Krylov subspace methods. Devising robust preconditioning algorithms for (1) such
that it can be solved efficiently by means of iterative methods still remains one of the most
active research areas in numerical linear algebra. Preconditioned Krylov methods have been
traditionally linked to the solution of large and sparse linear systems due to the relative small
amount ofmemory and computation time needed to obtain an approximate solution compared
with directmethods. There exist different techniques that can be used successfully to compute
preconditioners, as incomplete LU factorizations, approximate inverses, algebraic methods,
etc. (see [2] and the references therein). But in recent years they have also been employed in
the context of mixed precision techniques for solving dense linear systems. The accuracy of
an initial solution obtainedwith an LU factorization computed in single precision is improved
by iterative refinement using the LU factorization as preconditioner [10, 15].

Ill-conditioned nonsingular linear systems arise in many areas of scientific and engi-
neering applications, and computing numerically stable LU factorizations for these linear
systems becomes a challenge [1, 13]. Pivoting has been originally used to compute good LU
factorizations for such problems [14], but there have been also some work for incomplete
factorizations [6, 18, 21]. Also MATLAB has incorporated this possibility into his function
ilu, that computes the Incomplete LU factorization of a matrix, [17].

There are different pivoting techniques being partial, complete and rook pivoting the more
important ones [14, 19]. Basically, at a given step of Gaussian elimination pivoting looks for
an element sufficiently large inmagnitude in the remaining submatrix, the Schur complement,
to use it as the next pivot. These techniques involve row and possibly column permutations
of the matrix that supposes a computational overhead. In this sense, partial pivoting is the
cheapest pivoting technique, since it looks only in the first column of the Schur complement.
Close behind is rook pivoting [20], it selects a pivot with maximum absolute value in its row
and column, moving first to the biggest entry in magnitude in the first column, then it moves
in the corresponding row, and then again in the column, and so on until the requirement
is fulfilled. Finally, complete pivoting is the most expensive one, but guarantees the largest
pivot at any stage however because the pivot is the entry of biggest magnitude in all the Schur
complement.

In this work we study pivoting techniques for the balanced incomplete factorization
preconditioner, BIF. BIF preconditioning is based on the incomplete Sherman-Morrison
decomposition, ISM. The ISM decomposition uses recursion formulas derived from the
Sherman-Morrison formula and was introduced in [7] as a method for computing approxi-
mate inverse preconditioners. In [8] the authors show that, applying the ISM algorithm to a
symmetric and positive definite matrix A it is possible to compute an incomplete Cholesky
factorization, later in [9] they showed that applying the ISM algorithm to A and AT , it is pos-
sible to compute an incomplete LDU factorization.Moreover, in both cases the inverse factors
are also available and they influence the computation of the Cholesky or LDU factorization,
and vice versa. In addition, the availability of the direct and inverse factors is exploited to
implement norm based dropping rules [5]. The numerical results show that BIF is a robust
algorithm comparable to other techniques as ILU(τ ) [3], ILUT (Threshold Incomplete LU)
[22] and RIF (Robust Incomplete Factorization) [4]. Nevertheless, as mentioned above, com-
puting stable (incomplete) factorizations for general ill-conditioned problems still require the
application of pivoting techniques, except for some kind of matrices that can be solved with
high accuracy, [16]. In this paper we show that with a slight modification of the ISM recursion
formulas it is possible to incorporate pivoting to BIF, and obtain an algorithm which can be
efficiently implemented and with similar efficiency that the well known incomplete LU with
pivoting (ILUP). So, this study completes our previous work.
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The paper is organized as follows. In Sect. 2 an overview of the ISM decomposition is
presented. In Sect. 3 we introduce and analyze the right looking ISM decomposition. It is
shown that the Schur complement computed with Gaussian elimination is available at each
step of themodified algorithm and therefore, it is possible to incorporate any standard pivoting
technique. In Sect. 4 the BIF algorithm with pivoting is presented and the results for several
ill-conditioned matrices are reported. Our experiments show that BIF with pivoting is able
to solve such a challenging problems and it is comparable to ILUT with partial pivoting.
Finally, the main conclusions are presented in Sect. 5.

2 The ISM decomposition

The ISM decomposition was introduced in [7] as an algorithm to compute approximate
inverse preconditioners since it obtains a factorization of the (shifted) inverse matrix of A, as

s−1 I − A−1 = s−2ZD−1
s V T

s , (2)

where s > 0 is a given scalar and the columns of the matrices Z and Vs are computed using
the recursion formulas

zk = ek −
k−1∑

i=1

vTi ek
sri

zi and vk = yk −
k−1∑

i=1

yTk zi
sri

vi , (3)

for k = 1, 2, . . . , n. In (3) the vector ek (ek) denotes the k−th column (row) of the identity
matrix, yk = (ak − sek)T where ak denotes the k-th row of A, and

rk = 1 + yTk zk/s = 1 + vTk ek/s, (4)

are the entries of the diagonal matrix Ds .
It was proved in [8] that for symmetric matrices the factorization A = LDLT and the

decomposition (2) satisfy

D = sDs, Z = L−T , Vs = LD − sL−T .

The algorithm to get the decomposition of A uses explicitly the computed factors of A−1,
that is, A−1 is implicitly factorized at the same time. In [9] it is proved the following result

Theorem 1 (Theorem 2.1 of [9]) Let A = LDU be the LDU decomposition of A, and let
s−1 I − A−1 = s−2ZD−1

s V T
s be the ISM decomposition (2). Then

Z = U−1, and Vs = UT D − sL−T . (5)

Observe that L does not appear in (5). Therefore, to get the LU factorization for general
matrices it is necessary to compute also the ISM decomposition of AT that gives as result

Z̃ = L−T , and Ṽs = LD − sU−1,

where we have denoted with tilde the factors of the ISM decomposition of AT .
It is well known that a nonsingular matrix A has an LU factorization if there exists a

lower unit triangular matrix L and an upper triangular matrix U , such that A = LU . The
LDU factorization is obtained from the LU factorization by taking D as the diagonal matrix
whose entries are the diagonal entries of U , and applying its inverse to U as D−1U . Both
factorizations are closely related with Gaussian elimination. Note that not all the nonsingular
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matrices haveLUfactorization since a zeropivot canbe foundduring theGaussian elimination
process. However it is always possible to permute some rows, and maybe some columns of
the matrix in such a way that the permuted matrix PAQ has LU factorization. Here P and
Q are permutation matrices acting on rows and columns of A, respectively.

The idea is that it is possible to find permutation matrices P and Q such that at the k-th
step of the Gaussian elimination process one obtains the matrix

(PAQ)(k) =
[
L11 O
L21 I

] [
U11 U12

O S(k)

]
,

where the Schur complement S(k) = A22 − A21A
−1
22 A12 is nonsingular and its first diagonal

element is nonzero. Then, the permuted matrix PAQ is factorized as

PAQ =
[
A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
. (6)

Here, A11, A12, A21 and A22 represent the submatrices of the reordered matrix PAQ, and
the size of A11 is k × k.

Note that in practice, the permutation matrices P and Q are not known in advance and
therefore LU factorization algorithms determine which rows and columns must be inter-
changed during the elimination process. In the next section we show that it is possible to
obtain the factorization (6) from the ISM decomposition bymodifying its recursion formulas.

3 Right looking ISM algorithm

To implement pivoting in the ISM decomposition it is necessary to know the Schur comple-
ment of the LU factorization. To accomplish that, the vectors zk and vk must be computed in
a different way. Instead of computing only one pair of vectors in the k-th step of the algorithm
according to equations (3), the modification consist in updating also the remaining vectors,
from k + 1 to n. That is, the right part of the matrices Z and V are updated in each step. The
following MATLAB code implements the new right looking version of ISM.

Algorithm 1 The ISM right looking algorithm (ISMRL)
function [Z, V, D] = ismrl(A)
n = size(A,1);
Y = (A-eye(n))’;
Z = eye(n);
V = A’-eye(n);
D = zeros(n,1);
for k=1:n-1

D(k) = 1+V(k,k);
for l = k+1:n

Z(:,l) = Z(:,l) - V(l,k)/D(k)*Z(:,k);
V(:,l) = V(:,l) - (Y(:,l)’*Z(:,k))/D(k)*V(:,k);

end
end
D(n)=1+V(n,n);
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Next, we will show that the Schur complement S(k) is available from the matrix V . As
usual, we denote by ukj the entry in the row k and column j of the matrix U , and by lik the
entry in the row i and column k of the matrix L . Observe that after the k-th step the first k
columns of Z and V are computed. From A = LDU and Theorem 1, AZ = LD, and after
the k-th step

aizk = likdk, if i > k , (7)

and the j-th element of vk is
v jk = ukj , j �= k . (8)

From (7) and considering that zk has zero entries bellow the row k, an important equality
for the proof of our main result is

yTi zk = aizk − eizk = aizk = likdk, i > k. (9)

We denote by V (k)
22 the (n − k) × (n − k) submatrix of V in Algorithm 1 after step k,

with rows and columns with indexes in {k + 1, . . . , n}. Then we have the following result.
To prove it we denote the entry in the row i and column j of a matrix M as mi j .

Theorem 2 If A is a nonsingular matrix, then at the k-th step of the right looking ISM
Algorithm 1

V (k)
22 = S(k)T − I . (10)

Proof We are going to prove equation (10) by induction on the steps.
Clearly the initialization of V is V = AT − I , so we can write V (0) = S(0)T − I .
For k = 1 let us consider the element a(1)

i j of the Schur complement S(1), that is entries
with i, j > 1. It is well known

a(1)
i j = a(0)

i j − a(0)
i1 a(0)

1 j

a(0)
11

= ai j − li1u1 j

In the right looking ISM the ( j, i) entry of the matrix V (1), for i, j > 1, i �= j is

v
(1)
j i = v

(0)
j i − yTi z

(0)
1

r1
v(0)
1 ( j) = ai j − ai1

a11
a1 j = ai j − li1u1 j .

where we have used Eqs. (8) and (9).
Working in the same way when i = j , we have

v
(1)
i i = v

(0)
i i − yTi z

(0)
1

r1
v(0)
1 (i) = (aii − 1) − ai1

a11
a1i = aii − li1u1i − 1.

Then
V (1)
22 = S(1)T − I .

Assume now that
V (k−1)
22 = S(k−1)T − I .

Let us prove the equality for the k-th step. Consider the entries of the Schur complement
S(k), that is a(k)

i j for i, j > k

a(k)
i j = a(k−1)

i j − a(k−1)
ik a(k−1)

k j

a(k−1)
kk

= a(k−1)
i j − likuk j .
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Fig. 1 Matrices Vs and Ṽs at the k-th step of the right looking ISM algorithm

Again, in the right looking ISM the ( j, i) entry of the matrix V (k−1), for i, j > 1, i �= j
is

v
(k)
j i = v

(k−1)
j i − yTi z

(k−1)
k

rk
v(k−1)
k ( j) = a(k−1)

i j − a(k−1)
ik

a(k−1)
kk

a(k−1)
k j = a(k−1)

i j − likuk j ,

where we have used Eqs. (8) and (9).
Working in the same way, when i = j we have

v
(k)
i i = v

(k−1)
i i − yTi z

(k−1)
k

rk
v(k−1)
k (i) =

(
a(k−1)
i i − 1

)
− a(k−1)

ik

a(k−1)
kk

a(k−1)
ki = a(k−1)

i i − likuki − 1.

Then
V (k)
22 = S(k)T − I .

��

Since we need to compute also the factorization of AT , observe that.

Corollary 1 If the right looking algorithm is applied to AT then

Ṽ (k)
22 = S(k) − I .

Figure 1 shows a graphical representation of the above results. To introduce pivoting
strategies the relation

V (k)
22 = S(k)T − I ,

should be taken in account. The new pivot is looked for into the submatrix V (k)
22 + I that

corresponds to the transpose of the same submatrix in A(k) in Gaussian elimination. Thus, in
partial pivoting if two columns k and p > k are permuted at step k in matrix V (k), the rows
k and p should be permuted in A.

Also note that the pivoting strategy should be decided by looking into the Schur comple-
ment contained in Vs , or that in Ṽs , but not both. In contrast, for complete pivoting it is clear
that Vs or Ṽs produce the same pivot in exact arithmetic so any of them or both may be used.

123



Balanced incomplete factorization... Page 7 of 14     5 

Table 1 Test problems

Matrix n nz cond(A) Application

adder_dcop_06 1813 11,224 1.1 · 1012 Circuit simulation matrix

adder_dcop_19 1813 11,224 5.9 · 1011 Circuit simulation matrix

adder_dcop_26 1813 11,224 5.6 · 1011 Circuit simulation matrix

adder_dcop_57 1813 11,224 5.6 · 1011 Circuit simulation matrix

oscil_dcop_01 1813 11,224 5.9 · 1012 Circuit simulation problem

oscil_dcop_57 1813 11,224 1.4 · 1021 Circuit simulation problem

radfr1 1048 13,299 5.9 · 1010 Chemical process separation

west0989 989 3518 9.9 · 1011 Chemical process separation

mahindas 1258 7682 1.0 · 1013 Economic model

orani678 2529 90,158 1.0 · 107 Economic model

str_600 363 3279 1.8 · 106 Simplex method

shl_400 663 1712 1.9 · 107 Simplex method

4 Numerical experiments

In this sectionwe report the results of some numerical experiments with a set ofmatrices from
The SuiteSparseMatrix Collection [11] and theHarwell-Boeing collection [12]. Thematrices
are listed in Table 1 where their size, number of nonzeros, condition number and application
are indicated. They correspond to very ill-conditioned and highly indefinite problems for
whichGaussian eliminationwithout pivoting fails to compute good quality L andU factors, so
the same is expected to be the case for incomplete LU factorizations (see [5, 10]). Partial, rook
and complete pivoting techniques have been tested. The experiments have been implemented
and run in MATLAB R2022a. As iterative solvers the MATLAB implementation of full
GMRES [23] and BiCGStab [24] were used. The right hand side vector was computed such
that the solution was the vector of all ones, and the initial guess was the zero vector. The
iterations were stopped when the initial residual was reduced by 8 orders of magnitude with a
maximumnumber of 1, 000 iterations. To compare the results obtainedwithBIF the problems
were also solved with the MATLAB’s incomplete LU preconditioner with partial pivoting,
ILUTP.

The implementation of the BIF preconditioner is based on the algorithm described in [9]
but with the right looking modification described in Sect. 3. In [9] the authors show that in the
ISM factorization the computation of the direct and inverse LU factors is interleaved and they
mutually influence each other. These characteristics allows for the use of advanced dropping
rules, see [5]. We will not discuss in detail these rules but we recall that their application
requires the estimation of the norm of the columns of the LU factors and their inverses.
Since approximations of these factors are explicitely available the application of this kind of
dropping rules is straightforward.

For simplicity, all the experiments have been done with the the parameter s of the ISM
decomposition equal to one. The algorithm is implemented such that the ISMdecompositions
of A and AT are computed at the same time. Therefore, accessing A and AT simultaneously
is needed. The pivot is chosen from the Schur complement contained in Vs rather than Ṽs .
We note that for complete pivoting the same pivot could be obtained working either with Vs
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or Ṽs but we choose working with Vs for simplicity. Thus, if in the k-th step of the algorithm
the pivot strategy determines that the new pivot is in column p and row q , since Vs stores
the transpose of the Schur complement, then the columns p and k in Vs and AT must be
interchanged. Observe that in Ṽs , Z̃ and A the rows p and k must be pivoted instead. By the
same reason the rows q and k must be interchanged in Vs , Z and AT , and the corresponding
columns in Ṽs and A. Also, other vectors whose elements depend on the column and row
ordering, for instance vectors storing the norms of the columns needed for the dropping rule,
must be reordered accordingly. Algorithm 2 sketches the pivoted version of the BIF algorithm
described.

Algorithm 2 The BIF algorithm with pivoting (BIFP)1

function [L, U, P, Q] = bifp(A, tolZ, tolV, pivoting)2

%3

% Input parameters4

% A % input matrix,5

% tolZ, tolV % drop tolerances for Z and V, respectively6

% pivoting strategy7

%8

% Output parameters9

% L, U % LU factors of A10

% P, Q (permutation vectors PAQ = LU)11

% Initializations12

n = size(A,1);13

At = A’;14

Z = eye(n);15

Zt = eye(n);16

V = At - Z; % Matrix V17

Vt = A - Zt; % Matrix Vt18

nrm_l = zeros(n,1); % Norms of rows of L19

nrm_il = zeros(n,1); % Norms of rows of inv(L)20

nrm_u = zeros(n,1); % Norms of rows of U21

nrm_iu = zeros(n,1); % Norms of rows of inv(U)22

D = zeros(n,1); % Matrix D23

Dt = zeros(n,1); % Matrix D of A’24

% Main loop25

for k = 1:n-126

if strcmp(pivoting, ’c’) % Complete pivoting27

[indrow,indcol] = FindPivotComplete(V(k:n,k:n)+eye(n-28

k+1), k);29

elseif strcmp(pivoting, ’r’) % Rook pivoting30

[indrow,indcol] = FindPivotRook(V(k:n,k:n)+eye(n-k+1),k);31

elseif strcmp(pivoting, ’p’) % Partial pivoting32

[indrow,indcol] = FindPivotPartial(V(k:n,k:n)+eye(n-33

k+1),k);34

else % No pivoting35

indcol = k; indrow = k;36

end37

% Permutations38

P( [k, indcol] ) = P( [indcol, k] ); % Permute row39

permutation vector40

[At,V] = pivotcols(At,V,k,indcol);41
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[A,Vt,Zt] = pivotrows(A,Vt,Zt,k,indcol);42

nrm_l( [k, indcol] ) = nrm_l( [indcol, k] );43

Q( [k, indrow] ) = Q( [indrow, k] );44

[At,V] = pivotrows(At,V,k,indrow);45

[A,Vt,Z] = pivotcols(A,Vt,Z,k,indrow);46

nrm_u( [k, indrow] ) = nrm_u( [indrow, k] );47

% Apply dropping48

D(k) = 1 + V(k,k);49

temp = 1.0/(D(k)*D(k));50

nrm_il(k) = sqrt(1.0+norm(V(1:k-1,k)));51

nrm_iu(k) = sqrt(1.0+norm(Vt(1:k-1,k)));52

nrm_u(k+1:n) = nrm_u(k+1:n)+temp*V(k+1:n,k).*V(k+1:n,k);53

nrm_l(k+1:n) = nrm_l(k+1:n)+temp*Vt(k+1:n,k).*Vt(k+1:n,k);54

nrm_l(k) = sqrt(nrm_l(k) +1.0);55

nrm_u(k) = sqrt(nrm_u(k) +1.0);56

V(1:k-1,k)=V(1:k-1,k).*((abs(V(1:k-1,k))> tolV.57

/nrm_l(1: k-1)));58

V(k+1:n,k)=V(k+1:n,k).*((abs(V(k+1:n,k))>tolV*abs(D(k))59

/nrm_iu(k)));60

Vt(1:k-1,k)=Vt(1:k-1,k).*((abs(Vt(1:k-1,k))61

>tolV. /nrm_u(1:k-1)));62

Vt(k+1:n,k)=Vt(k+1:n,k).*((abs(Vt63

(k+1:n,k))>tolV*abs(D(k)) /nrm_il(k)));64

Z(1:k-1,k)=Z(1:k-1,65

k).*((abs(Z(1:k-1,k))> tolZ./nrm_l(1:k-1)));66

Zt(1:k-1,k)=Zt(1:k-1,k).*((abs(Zt(1:k-1,k))>tolZ.67

/nrm_u(1:k-1)));68

% Update matrices V, Z, Vt, Zt69

for l = k+1:n70

Z(:,l) = Z(:,l) - V(l,k)/D(k)*Z(:,k);71

V(:,l) = V(:,l) - (At(:,l)’*Z(:,k))/D(k)*V(:,k);72

Zt(:,l) = Zt(:,l) - Vt(l,k)/Dt(k)*Zt(:,k);73

Vt(:,l) = Vt(:,l) - (A(:,l)’*Zt(:,k))/Dt(k)*Vt(:,k);74

end end75

D(n)=1 + V(n,n);76

% Results77

L=tril(Vt)+eye(n);78

U=((tril(V)+eye(n))/diag(D))’;79

80

The algorithmfirst determines the pivot position according to the pivoting strategy applied,
complete, rook or partial. Then, permutation of the matrices and vectors are performed. After
that, norms of the columns of the LU factors and their inverses are updated and the dropping
rule is applied. The recursion formula of the factorization is applied. Finally, after n steps
the LU factors are extracted from matrices V and Ṽ .

In Tables 2 and 3 the pivoting strategy is indicated with C, P and R for the complete,
partial and rook pivoting strategies, respectively. Density is the ratio between the number of
nonzeros of the preconditioner and the number of nonzeros of thematrix, that is nnz(L)+nnz(U )

nnz(A)
.

Column i ter shows the number of iterations of the solver and droptol is the tolerance used
to drop elements in BIFP and ILUTP. The other columns are self explanatory. To reduce the
numbers in the tables, a blank space means that the value is the same appearing in previous
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Table 2 Test results for the University of Florida matrices

Matrix precond solver droptol piv densi ty i ter

BIFP GMRES 10−6 C 1.76 4

P 1.81 3

R 2.92 4

adder_dcop_06 BiCGStab C 1

P 1

R 1

ILUTP GMRES 10−7 P 1.67 3

BiCGStab P 1

BIFP GMRES 10−6 C 0.69 3

P 0.94 3

R 0.72 3

adder_dcop_19 BiCGStab C 2

P 1

R 2

ILUTP GMRES 10−2 P 0.70 6

BiCGStab P 2

BIFP GMRES 10−6 C 0.61 3

P 0.73 4

R 0.64 4

adder_dcop_26 BiCGStab C 2

P 1

R 2

ILUTP GMRES 10−2 P 0.60 6

BiCGStab P 2

BIFP GMRES 10−1 C 0.52 2

P 0.51 3

R 0.51 2

adder_dcop_57 BiCGStab C 4

P 3

R 4

ILUTP GMRES 10−1 P 0.56 8

BiCGStab P 3

BIFP GMRES 10−7 C 2.06 10

P 2.64 19

R 2.08 11

oscil_dcop_01 BiCGStab C 1
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Table 2 continued

Matrix precond solver droptol piv densi ty i ter

P 4

R 1

ILUTP GMRES 10−9 P 2.70 3

BiCGStab P 1

BIFP GMRES 10−16 C 2.31 11

10−11 P 2.28 28

10−16 R 2.57 11

oscil_dcop_57 BiCGStab C 1

P 2

R 1

ILUTP GMRES 10−16 P 2.74 11

BiCGStab P 1

BIFP GMRES 10−2 C 2.25 3

10−5 P 3.86 1

10−2 R 2.70 2

radfr1 BiCGStab C 9

P 3

R 8

ILUTP GMRES 10−3 P 2.69 2

BiCGStab P 10

rows. For instance, in Table 2 the droptol value for BIFP was always 10−6 and therefore it
appears only in the first row. The same holds for the preconditioner densities which are the
same for GMRES and BiCSTAB and therefore only indicated once.

Next, we will comment on the results. We note that the matrices tested can not be solved
without pivoting with both BIFP and ILUTP preconditioners. Thus, pivoting is an essential
tool to gain robustness for these factorizations. Starting with the University of Florida test
matrices, Table 2, we observe for the adder group that there are not big differences between
the different pivoting strategies for BIFP. Density is small, except for adder_dcop_06. The
same can be said for the number of iterations spent by both iterative solvers. For the rest
of matrices one can see that BIFP with complete pivoting computes sparser preconditioners
than partial and rook pivoting. The iteration count does not present remarkable differences
except for the oscil_dcop_01 matrix for which GMRES with partial pivoting, although with
larger nonzero density, doubles the number of iterations.

For the Harwell-Boeing matrices reported in Table 3 the first thing to observe is that
the preconditioners are quite dense, with the exception of partial pivoting for the matrix
orani678. Complete pivoting still produces less fill-in in the preconditioner and the number
of iterations is similar to the other pivoting strategies. Note however that partial pivoting
performs extraordinary well for the matrix orani678 since it is able to converge in the same
number of iterations with a very sparse preconditioner.

Finally, comparing the performance of BIFP with ILUTP we did not observed significant
differences, specially with the preconditioned BiCGStab method. We recall that ILUTP uses
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Table 3 Harwell-Boeing group

Matrix prec solver droptol piv densi ty i ter

BIFP GMRES 10−6 C 3.98 7

P 4.70 6

R 7.49 8

west0989 BiCGStab C 2

P 1

R 2

ILUTP GMRES 10−6 P 4.59 11

BiCGStab P 5

BIFP GMRES 10−8 C 3.78 2

P 6.28 3

R 5.59 2

mahindas BiCGStab C 1

P 1

R 1

ILUTP GMRES 10−8 P 5.49 2

BiCGStab P 1

BIFP GMRES 10−2 C 3.07 11

P 0.57 11

R 11.33 11

orani678 BiCGStab C 5

P 6

R 11

ILUTP GMRES 10−2 P 0.38 10

BiCGStab P 6

BIFP GMRES 10−2 C 1.62 9

10−3 P 1.97 9

10−2 R 1.61 9

str_600 BiCGStab C 6

P 8

R 7

ILUTP GMRES 10−3 P 1.82 6

BiCGStab P 5

BIFP GMRES 10−4 C 2.38 1

P 1.78 1

R 2.64 1

shl_400 BiCGStab C 1

P 1

R 1

ILUTP GMRES 10−4 P 1.79 1

BiCGStab P 1
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partial pivoting and we observe that BIFP with this pivoting strategy performed closely in
most cases.

5 Conclusions

In this paper we have presented an improved version of the BIF preconditioner that incorpo-
rates pivoting. The algorithm relies on a modification of the recursion formulas such that the
Schur complement of standard Gaussian elimination is available at each step of the factor-
ization. Thus, the application of different pivoting techniques, as for instance partial, rook
and complete pivoting, can be done in a straightforward manner. Incorporating pivoting turns
out to be an important step in order to achieve our initial goal of obtaining a more robust
preconditioner since it is able to solve very ill-conditioned and indefinite problems that it
may not be possible to solve in other way. The results of the numerical experiments with
several matrices arising in different applications confirm that BIF with pivoting is a robust
algorithm. Partial, rook and complete pivoting has been tested. Although complete pivoting
very often produces sparser preconditioners with a competitive iteration count, rook and
partial pivoting perform also quite well. Taking into account that partial and rook are less
expensive from a computational point of view since they need less comparisons in order to
determine the pivot, these two techniques may be preferable as default. Also, a comparison
with ILU with partial pivoting (ILUP) has been done and one can see that the results between
them are fairly close. As a final note on future work, since with the ISM decomposition one
can also compute incomplete approximate inverse preconditioners, it can be worth to explore
its application for ill-conditioned problems, as it is done for instance in [15].
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