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Abstract: Invasive plants pose a significant threat to biodiversity, especially under the current unstable
climatic conditions. This study aimed to test the salt and drought tolerance of two ornamental species
of the genus Ipomoea during germination and vegetative growth. Germination tests were performed
in the presence of increasing NaCl concentrations or iso-osmotic PEG concentrations—to mimic the
osmotic stress caused by drought. Both species showed great invasive potential because of their high
seed germination percentages and rapid germination under control (distilled water) and salt stress
conditions, up to 200 mM NaCl. Germination and early seedling development were more affected in
the presence of PEG. Subsequently, water stress (complete withholding of irrigation) and salt stress
(watering with 100 mM and 200 mM NaCl) treatments were applied to young plants for three weeks,
when all plants were harvested, to determine several morphological and biochemical parameters.
Both species were sensitive to water deficit but relatively resistant to salt stress. Their salt stress
responses were similar, based mainly on the inhibition of Na+ and the activation of K+ transport from
roots to leaves and the uptake and accumulation of Ca2+; however, I. tricolor showed a slightly higher
tolerance to salt stress than I. purpurea. Although I. tricolor has only been locally reported as invasive
and is generally considered a ‘low-risk’ species, our results indicate that it may have an invasive
potential even higher than I. purpurea, a recognised invasive weed, spread into areas with moderate
salinity, affecting agricultural land or natural habitats of ecological interest.

Keywords: ornamental plants; invasive potential; seed germination; vegetative growth;
photosynthetic pigments; compatible solutes; ion concentrations

1. Introduction

One of the most significant risks for biodiversity on a global scale is represented by
the spread of invasive species, which is exacerbated by globalisation and climate change.
They are often the result of intentional or accidental introductions of alien species into new
territories, followed by their naturalisation and spread, which provokes a detriment to
native species and ecosystems. Invasive species have been recognised for several decades
as one of the main threats to endangered plants, exceeded only by habitat loss [1]. At
the beginning of this century, 57% of threatened species were reported to be negatively
affected by non-native competitors [2]. Invasive alien species compete with native species,
alter food webs, nitrogen [3] and hydrological [4] cycles, and thus, disrupt the functioning
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of ecosystems and the services they provide [5]. In addition to these ecological effects,
invasive species can have a negative economic impact [6] or affect human health [7,8]. The
risks posed by invasive alien species are well understood [9,10], as reflected in a growing
number of papers and metadata analyses [11–16]. However, the spread and establishment
of alien species worldwide is not slowing down [17] and is expected to increase [18] despite
prevention measures.

The leading cause of plant invasions is ornamental horticulture, as most invasive alien
plants were either actively introduced for ornamental purposes or accidentally, such as
seeds brought in by chance [19,20]. The economic importance of plants is a driver of their
condition as potential invaders. In this sense, species used for ornamental, medicinal or
culinary purposes or for fodder have the highest likelihood of naturalisation [2]. Horti-
culture might promote plant invasions by selecting species and genotypes of ornamental
value based on features that inadvertently encourage spread [20]. Adaptability to the
environment, quick germination and profusion of seedling emergence, rapid vegetative
development, and early flowering or prolonged flowering periods are all characteristics of
invasive plants that are also desirable as ornamental plants.

Plant invasions and climate change are closely linked [21]. Europe, the north-eastern
United States, Central America, Africa, Indonesia, and Pacific Island regions are considered
the areas with the highest susceptibility to invasion by alien species as their climatic condi-
tions could be significantly altered [22]. Increasing temperatures promote the growth of
introduced ornamental plants from warmer areas, allowing them to spread into temperate
regions [23,24]. Before other species were forced to migrate due to climate change, these
invasive species will have a “head start” in the new climatic conditions [25]. Moreover,
abiotic stress-tolerant cultivars are preferred for ornamental horticulture in some regions
to overcome problems derived from climate change and global warming [23]. Finally, the
higher phenotypic plasticity of invasive plants, reported in many comparative studies on
invasive and non-invasive taxonomically related species [26,27], favours its spread to new
habitats.

With 600–700 species primarily found in tropical and warm temperate regions of the
world and known as “morning glories”, Ipomoea L. is one of the prominent genera within
the family Convolvulaceae. Most species in this genus are climbers, annual or perennial
herbaceous plants, and shrubs [28]. The genus includes I. batatas (L.) Lam, the sweet potato,
originated in America and is cultivated throughout the world where the climate conditions
allow its growth [29], as well as many other species used for ornamental purposes due to
the outstanding appearance of their flowers and their climbing habit, which makes them
suitable for covering walls, fences, and pergolas. Plants of this genus have rapid growth
and high seed production that confers them a high adaptability and microevolutionary
capacity, which are typical “weedy traits” [30]. Around 170 species within the Ipomoea
genus are listed in the Global Compendium of Weeds, and many are reported as invasive
worldwide [31]. Two species of this genus, I. purpurea (L.) Roth and I. tricolor Cav. were
selected for this study. The two are popular in temperate and warm regions of the world as
cover plants for walls, fences and pergolas due to their large, showy flowers of beautiful
colours, white to pink, blue and dark purple. Both have abundant seed production and fast
growth, traits that favour invasiveness. Their ability to withstand abiotic stress has been
analysed only in a few studies, and there is virtually no information on their biochemical
responses to salinity and drought.

Ipomoea purpurea, the tall morning glory, is an annual vine first reported in England,
where it was introduced via Spain from Central America. Nowadays, it is classified as
a common weed rated with high global risk in many warm regions, including southern
Europe [31,32]. Ipomoea purpurea affects different crops, orchards, and nursery production,
inducing stunted growth, reduced yields, and hindering harvesting [33]. In warm, humid
environments, the species outcompetes native plants, mainly invading riparian forests,
wetlands, and coastal areas [32,34]. Once established in natural places, the tall morning
glory can spread quickly by climbing on mature trees, shrubs, and other plant species,



Agronomy 2023, 13, 2198 3 of 21

generating a dense canopy that competes with the supporting species for nutrients, water,
and solar radiation [35,36].

Ipomoea tricolor, the Mexican morning glory, is an annual vine species native to Mexico
and cultivated worldwide in mild climates. The species has been long cultivated in Spain
and reported as naturalised in the last decades of the 19th century [37] but is generally
not problematic as invasive. Although included in the Global Compendium of Weeds [31],
it is rated as low risk. It has been reported as a weed for loofah, forage legumes, mango,
okra, and sorghum fields in Mexico [38] and recently reported as naturalised in Turkey and
predicted to spread to the areas near the Black Sea, Aegean, Mediterranean, and some parts
of central Anatolia [39].

This study aimed to unveil the reason for the higher invasive risk of I. purpurea over I.
tricolor by analysing their germination and growth under optimal control conditions and
two common environmental stresses, salinity and water scarcity. Osmolyte synthesis and
ion accumulation, two main mechanisms of stress responses, were also analysed to better
comprehend the differences between the two species. The working hypothesis is that I.
purpurea, with a higher invasive potential, will show a broader tolerance to stress based on
more efficient biochemical responses.

2. Materials and Methods
2.1. Plant Material

Plants were obtained by germinating seeds purchased from Vilmorin Seed Generation,
Paris, France.

2.2. Seed Germination

Seeds were placed in standard 90 mm diameter Petri dishes on two disks of filter
paper moistened with 2.5 mL of distilled water for the control treatment or with increas-
ing concentrations of NaCl or PEG 6000 (Polyethylene Glycol) for the stress treatments.
Controls and treated seeds were covered with two other filter paper disks moistened with
the same amount of distilled water or the respective stress treatment solutions. The ger-
mination assays were carried out with four replications per treatment and species, with
ten seeds in each plate. The salt concentrations tested were 50, 100, 200 and 400 mM NaCl
in aqueous solutions, and the corresponding iso-osmotic PEG concentrations ensuring
osmotic potentials of −22, −44, −88, and −1.76 MPa, calculated by applying the Van’t Hoff
equation [40]. Germination was performed in an EQUiTEC germination chamber (LAF
Technologies, Bayswater North, VIC, Australia) at 30 ◦C for 16 h and at 20 ◦C for 8 h, with
a relative humidity of 65%.

The number of germinated seeds was counted every two days for three weeks, consid-
ering germination as the emergence of a radicle of at least 2 mm. The germination capacity
was expressed as the percentage of germination (GP), and the velocity of germination
rate as mean germination time (MGT), calculated according to the formula by Ellis and
Roberts [41]:

MGT = ∑Dn/∑n,

where D represents the number of days from the beginning of the germination test, and n
is the number of seeds newly germinated on day D.

Lengths of the radicle and hypocotyl were measured at the end of the germination
assay using Digimizer v.4.6.1 software (MedCalc Software, Ostend, Belgium, 2005–2016).

Other germination indexes calculated were: first germination day (FGD), last germina-
tion day (LGD), first day of germination (FDG), last day of germination (LDG), time spread
of germination (TSG; differences in time between the last germination day and the first
germination day), speed of emergence (SE), and seedling vigour index (SVI), calculated as
follows [42]:

SVI = (Seedling length, in mm × Germination percentage)/100.
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2.3. Plant Growth and Stress Treatments

The seedlings from the controls in the germination experiments mentioned above
were manually transferred into plastic pots (12 cm in diameter) filled with commercial
peat (26% organic carbon, pH = 7.0, and EC = 0.6 dS m−1), placed in the greenhouse, and
watered twice a week with tap water. Four weeks after transplanting, stress treatments were
initiated, using five biological replicas (individual plants) per species and treatment. The
pots were placed in plastic trays (10 pots per tray) and watered twice weekly, adding 1.5 L
tap water to each tray for the control plants and the same amount of the corresponding NaCl
solutions for the salt treatments. The water stress treatment consisted of total irrigation
suppression. After three weeks of treatment, when the soil moisture of the water stress
group reached 5–8%, plants were harvested, and the aerial part and roots were sampled and
processed separately, the latter after being thoroughly cleaned with a brush. The following
morphological parameters were registered: root length (RL), stem length (SL), number of
leaves (LN), fresh weight of roots (RFW) and leaves (LFW), and water content of roots
(RWC) and leaves (LWC). For the calculation of water content (WC), a fraction of the root
and leaf material was weighed before (fresh weight, FW) and after drying at 65 ◦C for 72 h
(dry weight, DW), and the following equation was used:

WC% = [(FW − DW)/FW] × 100 (1)

Fresh plant material was frozen in liquid N2 and stored at −75 ◦C, and dry material
was kept at room temperature in tightly closed bags for further analysis.

2.4. Photosynthetic Pigments

Fresh shoot material (0.05 g) was ground and extracted overnight in ice-cold 80% acetone.
The absorbance of the supernatant was then measured at 470 nm, 646 nm and 663 nm. Concen-
trations of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids (Caro) were calculated
according to Lichtenthaler and Wellburn [43] and expressed in mg g−1 DW.

2.5. Ion Content Measurements

The concentrations of sodium (Na+), potassium (K+), calcium (Ca2+) and chloride
(Cl−) were determined separately in roots and leaves following the method described by
Weimberg [44]. Samples of 0.1 g ground dry material were extracted in boiling Milli-Q
water, cooled on ice and filtered through a 0.45 µm Gelman nylon filter (Pall Corporation,
Port Washington, NY, USA). The cations were quantified with a PFP7 flame photometer
(Jenway Inc., Burlington, VT, USA), and Cl− was measured using a chlorimeter Sherwood
926 (Cambridge, UK).

2.6. Osmolyte Concentrations

Proline (Pro) concentration was quantified following the classical protocol by Bates
et al., as previously described [45]. Fresh ground material (0.05 g) was extracted in 3%
(w/v) aqueous sulphosalicylic acid. Samples were sequentially mixed with acid ninhydrin,
incubated in a water bath for 1 h at 95 ◦C, cooled on ice, and then extracted with toluene.
The absorbance of the organic phase was measured at 520 nm, using toluene as the blank.
Samples of known Pro concentration were assayed in parallel to obtain a standard curve,
and Pro concentrations were expressed as µmol g−1 DW.

Total soluble sugars (TSS) were determined following the method of Dubois et al. [46].
Samples of 0.05 g fresh ground material were extracted overnight with 80% (v/v) methanol,
and the supernatant obtained upon centrifugation was mixed with 5% phenol and concen-
trated sulphuric acid. Spectrophotometric measurements were then performed at 490 nm.
TSS concentrations were expressed as equivalents of glucose, used as the standard (mg eq.
glucose g−1 DW).
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2.7. Statistical Analysis

Statgraphics Centurion XVI (Statgraphics Technologies, The Plains, VA, USA) and
SPSS Statistics statistical software, version 25.0.0 (IBM SPSS Statistics) were used to analyse
the statistical data.

The effects of the stress treatments on the characteristics examined for each species
were estimated using a one-way analysis of variance (ANOVA). If the null hypothesis
was rejected, the Tukey test was employed as a post-hoc test using a 0.05 p-value to
analyse the differences. Principal Component Analyses were carried out independently for
plant growth and germination, considering the mean values of germination variables and
significant biochemical and growth parameters.

3. Results
3.1. Seed Germination

Seeds of both, I. purpurea and I. tricolor, germinated up to concentrations of 400 mM
NaCl, considering germination as radicle emergence. Seeds under PEG treatments showed
a lower germination percentage and speed than the isosmotic solutions for both species;
under the highest PEG concentration, equivalent to an osmotic potential of −1.76 MPa, no
radicle emergence occurred (Figure 1). The pattern of germination evolution over 21 days
was similar in the two species under NaCl and PEG treatments (compare Figure 1a,c, and
Figure 1b,d).
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Figure 1. Evolution of germination during 21 days in Ipomoea purpurea under increasing concen-
trations of NaCl (a) and polyethylene glycol PEG 6000 (b) and in Ipomoea tricolor under increasing
concentrations of NaCl (c) and polyethylene glycol PEG 6000 (d).
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The two species showed a very high germination percentage under control conditions
in distilled water: 97.50% for I. purpurea (Figures 1a and 2a) and 96.66% for I. tricolor
(Figures 1c and 2b). Under salt stress conditions, high germination percentages above
90% were recorded in all salt treatments, except for 400 mM NaCl, for which only 47.5%
of I. purpurea seeds (Figures 1a and 2a) and 42.5% of I. tricolor seeds (Figures 1c and 2b)
were able to germinate after 21 days of treatment. Under isosmotic PEG concentrations
at −1.76 MPa, seeds did not germinate at all when PEG was applied (Figure 1b,d and
Figure 2). At −0.44 and −0.88 MPa, mean germination percentages of 75% and 72.5% were
recorded in I. purpurea and I. tricolor seeds, respectively, lower but not significantly different
from the non-stressed controls (Figure 1b,d and Figure 2).
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Figure 2. Final germination percentages in Ipomoea purpurea (a) and I. tricolor (b) after 21 days of
treatment with increasing iso-osmotic concentrations of NaCl and PEG. Control: germination in
distilled water. The values plotted are the means ± SE (n = 4). Different lowercase and uppercase
letters within the bars indicate significant differences between treatments, for each species, according
to the Tukey post hoc test (p < 0.05).

In addition to germination percentages, germination speed was calculated as mean
germination time (MGT). Both species had very fast germination in the absence of stress,
as low as 1.5 days (Figure 3). For both species, MGT increased gradually in parallel to
the increase in NaCl concentration in the germination medium. However, significant
differences were only observed for 400 mM NaCl, reaching 8.7 and 7.8 days in I. purpurea
(Figure 3a) and I. tricolor (Figure 3b), respectively. On the other hand, the effect of PEG
on germination time was stronger than that of NaCl since a significant increase of close to
7 days in both species was registered at a PEG osmotic potential of −0.88 MPa (Figure 3).

Other germination parameters, such as the first day of germination (FGD), last day of
germination (LGD), and total spread of germination (TSG), indicate that the two species
have very rapid germination in the absence of stress. For both species under control
conditions, germination started on the first day and finished before the fifth day (Table 1)
of the trial. Indeed, a shorter TSG was found in I. purpurea (2.8) than in I. tricolor (3.5)
(Table 1). A significant germination delay was recorded for I. purpurea at −0.88 MPa, either
with salt or PEG treatments (Table 1). In contrast, for I. tricolor, it was only observed at
−1.76 MPa (Table 1). Although a delay in the last day of germination and an extension of
the germination spread were recorded in both species under NaCl and PEG, these were not
significantly different from the control due to the large variability between replicates.
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Figure 3. Mean germination time (MGT) in I. purpurea (a) and I. tricolor (b) after 21 days of treatment
with increasing iso-osmotic concentrations of NaCl and PEG. Control: germination in distilled water.
The values plotted are the means ± SE (n = 4). Different lowercase and uppercase letters within the
bars indicate significant differences between treatments, for each species, according to the Tukey post
hoc test (p < 0.05). For both species, no germination was observed for PEG treatments equivalent to
−1.79 MPa; thus, no MGT is measured and plotted for this condition.

Table 1. Germination parameters related to the velocity of germination. Control: germination in distilled
water. Values are the means ± SE (n = 4). Different lowercase and uppercase letters indicate significant
differences between treatments, for each species, according to the Tukey post hoc test (p < 0.05).

Species Osmotic Potential Treatment
First Day of
Germination

(FGD)

Last Day of
Germination

(LGD)

Total Spread of
Germination

(TSG)

I. purpurea

0 Control 1.0 ± 0.0 a 3.8 ± 1.1 a 2.8 ± 1.1 a

−0.22 MPa NaCl 1.0 ± 0.0 a 5.0 ± 1.4 a 4.0 ± 1.4 a

−0.44 MPa NaCl 1.0 ± 0.0 a 7.5 ± 3.1 a 6.5 ± 3.1 a

−0.88 MPa NaCl 3.0 ± 0.0 bc 7.5 ± 1.5 a 4.5 ± 1.5 a

−1.76 MPa NaCl 7.3 ± 1.2 d 10.3 ± 1.2 a 3.0 ± 0.0 a

−0.22 MPa PEG 1.5 ± 0.5 ab 6.5 ± 1.3 a 5.0 ± 1.0 ab

−0.44 MPa PEG 2.3 ± 0.6 ab 9.5 ± 3.5 a 7.3 ± 2.9 a

−0.88 Mpa PEG 4.0 ± 0.5 c 13.5 ± 2.5 a 9.5 ± 2.6 a

−1.76 Mpa - - - -

I. tricolor

0 Control 1.0 ± 0.0 A 4.5 ± 0.2 A 3.5 ± 0.2 A

−0.22 Mpa NaCl 1.0 ± 0.0 A 6.5 ± 0.5 A 5.5 ± 0.5 A

−0.44 Mpa NaCl 1.0 ± 0.0 A 7.3 ± 3.0 A 6.3 ± 3.0 A

−0.88 MPa NaCl 1.5 ± 0.2 A 6.0 ± 1.7 A 4.5 ± 1.4 A

−1.76 MPa NaCl 5.8 ± 1.1 B 11.0 ± 0.8 A 5.3 ± 1.6 A

−0.22 MPa PEG 1.0 ± 0.0 A 8.0 ± 1.2 A 7.0 ± 1.2 A

−0.44 MPa PEG 1.0 ± 0.0 A 5.5 ± 1.3 A 4.5 ± 1.3 A

−0.88 Mpa PEG 4.5 ± 0.5 B 9.5 ± 0.5 A 5.0 ± 0.0 A

−1.76 MPa PEG - - -



Agronomy 2023, 13, 2198 8 of 21

After 21 days, the seedlings’ length was analysed by measuring radicle and hypocotyl
length separately (Table 2). Although radicle emergence was observed in seeds subjected to
the highest NaCl concentration (400 mM) in the two species, the radicle did not grow over
2–3 mm, and seedlings were not viable. Thus, the osmotic potential of −1.76 MPa inhibited
post-germination development under NaCl and PEG treatments in the two species. In I.
purpurea, radicle length was significantly reduced, starting with the −0.88 MPa osmotic
potential generated by PEG and NaCl, but hypocotyl length was significantly reduced in
all stress treatments. The seedling vigour index (SVI) decreased significantly, starting with
the −0.44 MPa osmotic potential treatment. Germination under 400 mM NaCl was blocked
and was not even initiated in the PEG treatment at the same osmotic potential in I. purpurea
and I. tricolor. However, in the latter species, radicle and hypocotyl length did not undergo
significant reductions with respect to the control under all other experimental conditions
tested; also, a significant reduction in SVI was only observed at an osmotic potential of
−0.88 MPa (Table 2). Thus, I. tricolor showed better resistance to high osmotic pressure
provoked by NaCl and PEG than I. purpurea.

Table 2. Seedlings analysis after 21 days, at the end of the germination assays. Control: germination
in distilled water. Values are the means ± SE (n = 4). Different lowercase and uppercase letters
indicate significant differences between treatments, for each species, according to the Tukey post hoc
test (p < 0.05).

Species Osmotic Potential Treatment Radicle Length
(mm)

Hypocotyl Length
(mm)

Seedling Vigour Index
(SVI)

I. purpurea

0 Control 56.1 ± 1.8 c 39 ± 1.4 d 92.8 ± 1.6 c

−0.22 MPa NaCl 44.7 ± 3.1 bc 25.2 ± 2.8 c 70.0 ± 5.4 bc

−0.44 MPa NaCl 39.5 ± 2.9 bc 20.2 ± 2.4 c 55.1 ± 4.9 b

−0.88 MPa NaCl 15.0 ± 3.8 a 7.2 ± 0.8 a 21.4 ± 4.9 a

−1.76 MPa NaCl - - -

−0.22 MPa PEG 60.8 ± 12.2 c 13.3 ± 1.7 b 71.2 ± 14.4 bc

−0.44 MPa PEG 40.9 ± 15.7 bc 8.6 ± 1.9 ab 43.1 ± 19.6 ab

−0.88 MPa PEG 28.3 ± 4.1 ab 7.2 ± 1.0 a 24.9 ± 0.7 a

−1.76 MPa PEG - - -

I. tricolor

0 Control 61.3 ± 3.6 A 25.7 ± 0.6 A 85.0 ± 4.8 CD

−0.22 MPa NaCl 66.9 ± 3.5 A 20.5 ± 0.9 A 87.4 ± 4.3 CD

−0.44 MPa NaCl 53.2 ± 5.5 A 22.4 ± 2.0 A 75.6 ± 6.6 BC

−0.88 MPa NaCl 44.5 ± 10.2 A 13.4 ± 0.8 A 56.7 ± 9.9 AB

−1.76 MPa NaCl - - -

−0.22 MPa PEG 65.3 ± 7.7 A 13.5 ± 1.7 A 75.6 ± 10.4 BC

−0.44 MPa PEG 68.9 ± 20.2 A 37.5 ± 23.6 A 106.4 ± 10.9 D

−0.88 MPa PEG 42 ± 6.3 A 14.5 ± 0.8 A 48.4 ± 7.3 A

−1.76 MPa PEG - - -

3.2. Plant Growth

Both species had rapid growth, increasing during the three weeks of treatments by
105 cm in I. purpurea and 126 cm in I. tricolor (Figure 4b), reaching heights at the harvest
date of 1.96 m for the former and 2.2 m for the latter. The roots were considerably shorter
than the aerial part and showed a similar size in I. purpurea and I. tricolor under control
conditions, circa 91 cm and 74 cm, respectively (Figure 4a). Plant growth was inhibited
under stress conditions for both species, mainly by water stress followed by the higher salt
concentration, but not so much by the 100 mM NaCl solution. For instance, the growth
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of I. purpurea roots was reduced 3-fold by water stress and high (i.e., 200 mM NaCl) salt
concentration, whereas water stress but not salt stress treatment shortened I. tricolor roots
(Figure 4a). On the other hand, the increase in stem length, calculated as the differences
between final and initial stem length, revealed only a significant 1.6-fold reduction in the
water-stressed I. tricolor plants (Figure 4b).
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Figure 4. Root length (a) and increase in stem length (b) after three weeks of treatment in the two
Ipomoea species. The values plotted are the means ± SE (n = 5). Different lowercase and uppercase
letters indicate significant differences between treatments, for each species, according to the Tukey
post hoc test (p < 0.05).

The fresh weight (FW) of roots, stems, and leaves was registered. The highest FW
was found in the two species in the absence of stress, with an average total FW of 37 g in
I. purpurea and 42 g in I. tricolor. Under stress, a similar pattern of variation was found in
the two species, with the strongest effect induced by the water stress treatment, followed
by 200 mM NaCl (Figure 5a). Specifically, under water stress, there was a marked 14-fold
reduction in I. purpurea root FW, an 11-fold reduction in I. tricolor root FW, a 3.2- and 4.3-fold
reductions in leaf FW, and a 1.4- and a 2.2-fold in steam FW registered for I. purpurea and I.
tricolor, respectively (Figure 5a). Only a small variation with respect to control plants was
recorded in 100 mM NaCl growing plants, significant only in I. purpurea roots (Figure 5a).
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Figure 5. Fresh weight (a) and dry weight (b) of roots, stems and leaves after three weeks of treatment
in the two Ipomoea species. The values plotted are the means ± SE (n = 5). Different lowercase and
uppercase letters indicate significant differences between treatments, for each species, according to
the Tukey post hoc test (p < 0.05).
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Similarly, the dry weight of roots, stems, and leaves was registered. The highest
dry weight values for roots, stems, and leaves were found in plants grown under control
conditions, slightly lower for I. purpurea than in I. tricolor plants (Figure 5b). These values
agree with the fresh weight values observed (Figure 5a). The pattern of DW variation
in plants subjected to stress treatments was similar to that of FW, although reductions
between treatments were not as marked. The most significant DW decrease was recorded
in water-stressed plants, especially in roots (3-fold in I. purpurea and 4-fold in I. tricolor,
Figure 5b). Salt treatments had no effect in stem and leaf DW, neither in I. purpurea nor
I. tricolor, and significant losses were only registered in the roots of plants treated with
200 mM NaCl for both species (Figure 5b).

The smaller reduction in dry weight than in fresh weight was related to the water
loss under the stress treatment, shown in Figure 6. The strongest dehydration occurred
in the plants of the water stress treatments, where significant variations from the control
were recorded in the water content of roots and leaves but not of stems. I. purpurea plants
under water stress showed a 1.6 and 1.1-fold reduction compared to the control in roots and
leaves, respectively (Figure 6a), whereas in I. tricolor the water loss was more pronounced
in leaves (1.6-fold) than in roots (1.4-fold; Figure 6b).
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Figure 6. Water content in roots, stems, and leaves in I. purpurea (a) and I. tricolor (b) after three weeks
of treatment in the two Ipomoea species. The values plotted are the means ± SE (n = 5). Different
lowercase and uppercase letters indicate significant differences between treatments, for each species,
according to the Tukey post hoc test (p < 0.05).

3.3. Photosynthetic Pigments

The highest concentration of leaf photosynthetic pigments was recorded in plants
grown under control conditions. Chlorophyll values were higher in I. purpurea than in
I. tricolor (8.74 and 5.35 mg/g DW), whereas chlorophyll b concentrations were similar
(Figure 7a). Carotenoid concentrations were also higher in I. purpurea (1.5 mg/g DW) than
in I. tricolor (1.0 mg/g DW) (Figure 7b). Salinity but no water stress had a negative effect on
chlorophyll a and carotenoid concentrations in I. purpurea, whereas I. tricolor accumulated
similar pigment concentrations under all growing conditions (Figure 5a,b). Chlorophyll b
concentrations were constant for both species in all treatments.
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Figure 7. Chlorophylls a and b (a) and carotenoids (b) after three weeks of treatment in the two
Ipomoea species. The values plotted are the means ± SE (n = 5). Different lowercase and uppercase
letters indicate significant differences between treatments, for each species, according to the Tukey
post hoc test (p < 0.05).

3.4. Ion Contents

As expected, an increase in Na+ and Cl− concentrations were only found in the
salt-treated plants but not in the water stress treatment (Table 3). However, the pattern
of Na+ accumulation was different in the two species. In I. purpurea roots, a significant
2.3- and 1.8-fold increase was measured in 100 and 200 mM NaCl-treated plants, respec-
tively, but no variation was observed in leaves, neither in water-stressed nor salt-treated
plants (Table 3). Surprisingly, an opposite pattern was observed for I. tricolor; Na+ concen-
trations increased significantly only in the leaves of salt-treated plants (1.7-fold higher in
200 mM NaCl-treated plants, compared to control plants) but not in the roots (Table 3). On
the other hand, Cl− concentration measured in the two species increased significantly in
roots and leaves in the salt stress treatments but not in the water-stressed plants. Only I.
tricolor grown under water stress showed a significant decrease of Cl− in roots (Table 3). A
difference in the accumulation pattern of these two monovalent ions was observed in the
two species, Na+ concentrations were substantially higher in roots than in leaves, whereas
Cl− concentrations were similar in both organs.

Table 3. Root and leaf ion concentrations after three weeks of treatment in plants of the two Ipomoea species.
The values are the means ± SE (n = 5). Different lowercase and uppercase letters indicate significant
differences between treatments, for each species, according to the Tukey post hoc test (p < 0.05).

Ion Treatment I. purpurea I. tricolor

Na+ roots
(µmol/g)

C 963.6 ± 102.3 a 1028.3 ± 55.3 A
WS 821.3 ± 34.0 a 946.7 ± 73.9 A

100 mM NaCl 2185.4 ± 163.4 b 1440.9 ± 189.6 A
200 mM NaCl 1714.0 ± 261.4 b 1298.4 ± 153.7 A

Na+ leaves
(µmol/g)

C 522.9 ± 84.8 a 426.6 ± 108.5 A
WS 473.8 ± 39.4 a 347.5 ± 54.0 A

100 mM NaCl 409.0 ± 34.7 a 583.4 ± 34.6 AB
200 mM NaCl 531.6 ± 26.4 a 732.2 ± 48.6 B

K+ roots
(µmol/g)

C 503.1 ± 71.2 b 553.5 ± 59.8 B
WS 573.1 ± 24.7 b 563.5 ± 23.8 B

100 mM NaCl 278.5 ± 32.2 a 219.0 ± 57.7 A
200 mM NaCl 250.5 ± 23.4 a 132.5 ± 16.3 A
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Table 3. Cont.

Ion Treatment I. purpurea I. tricolor

K+ leaves
(µmol/g)

C 518.4 ± 41.4 a 649.8 ± 93.5 AB
WS 507.2 ± 18.2 a 576.2 ± 81.6 A

100 mM NaCl 555.4 ± 45.3 a 920.4 ± 51.3 BC
200 mM NaCl 656.2 ± 67.3 a 995.4 ± 38.9 C

Cl− roots
(µmol/g)

C 442.1 ± 63.1 a 520.8 ± 65.4 A
WS 429.5 ± 44.5 a 456.3 ± 30.3 B

100 mM NaCl 1986.0 ± 175.4 b 1655.4 ± 171.9 B
200 mM NaCl 1977.9 ± 169.5 b 1352.7 ± 150.7 B

Cl− leaves
(µmol/g)

C 663.3 ± 40.6 a 439.6 ± 72.0 A
WS 649.3 ± 51.3 a 313.1 ± 48.9 A

100 mM NaCl 1610.8 ± 103.4 b 2029.4 ± 178.1 B
200 mM NaCl 1624.9 ± 75.9 b 1978.5 ± 141.0 B

Ca2+ roots
(µmol/g)

C 74.5 ± 8.7 a 79.0 ± 6.4 A
WS 59.6 ± 2.8 a 49.1 ± 0.9 A

100 mM NaCl 305.1 ± 43.6 b 257.7 ± 33.7 B
200 mM NaCl 283.9 ± 35 b 226.6 ± 49.1 B

Ca2+ leaves
(µmol/g)

C 259.4 ± 59.9 ab 126.8 ± 35.0 A
WS 151.3 ± 34.4 a 77.7 ± 14.0 A

100 mM NaCl 267.4 ± 67.5 ab 411.4 ± 32.0 B
200 mM NaCl 399.3 ± 28.4 b 362.3 ± 38.7 B

A significant decrease in K+ concentrations was measured in the roots of salt-treated
plants of both species but not in those of water-stressed plants (Table 3). K+ concentration in
the roots of 200 mM NaCl-treated I. purpurea plants was reduced by ca. 50% with respect to
control plants, and an even more substantial decrease was observed in I. tricolor. Regarding
leaf K+ levels, they were not affected by the water or salt stress treatments in I. purpurea
but increased significantly in plants of I. tricolor grown in the presence of 200 mM NaCl
(Table 3). In non-stressed control plants, K+ concentrations were similar in roots and leaves.

Finally, Ca2+ levels in control plants were higher in leaves than in roots, about 3.5- and
1.6-fold in I. purpurea and I. tricolor, respectively. In both species, Ca2+ root or leaf contents
were not significantly affected by the water stress treatment but increased in response to
salt stress (Table 3).

3.5. Osmolytes Contents

Proline (Pro) and total soluble sugars (TSS) were quantified in the leaf tissue of all
plants harvested after the different treatments. In I. purpurea, no significant differences were
found in Pro contents between control and water-stressed or salt-stressed plants (Figure 8a,
left). On the contrary, in I. tricolor Pro increased significantly, ca. 18-fold over control
values, in plants subjected to water stress; salt stress also induced the accumulation of Pro,
although to a lesser extent and with significant differences with respect to non-stressed
controls observed only in the 200 mM NaCl-treated plants (Figure 8a, right). In any case, it
should be pointed out that absolute Pro values are too low to have any significant osmotic
effect.

A different pattern was observed for TSS contents, which decreased significantly in
I. purpurea plants subjected to water stress and increased in response to salt treatments,
especially at 100 mM NaCl (Figure 8b, left). On the other hand, in I. tricolor, TSS levels
did not vary significantly in the stressed plants with respect to those grown under control
conditions (Figure 8b, right).
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3.6. Multivariate Analysis

The mean values of the germination and seedling data were used in a Principal Com-
ponent Analysis (PCA). The variables considered were clustered by the PCA and reduced
to two main components with an eigenvalue greater than one, which together accounted
for 86.65% of the total variability. The loading plots of the vectors and the scores of the two
species in relation to these components are shown in Figure 9. Most of the overall variability
of the analysed data was explained by the first component (72.74%). The variables with a
positive correlation with the highest weight value in this component were the germination
percentage, hypocotyl length (HL), and seedling vigour index (SVI). The variables related
to the speed of germination, namely the first germination day (FGD), the last germination
day (LGD), and the mean time of germination (MG), were negatively correlated. The first
component separated the scores from the control treatments on its positive side and those
of lower osmotic potential on the negative side. The second component, explaining an addi-
tional 13.90% of the total variability, was positively correlated with radicle length (RL) and
the total spread of germination (TSG) and negatively correlated with the final percentage
of germination (Germ %). The scores of I. purpurea at −0.88 MPa osmotic potential were
separated along the OY axis, with the PEG score on the positive and the NaCl score on the
negative extreme.

Growth and biochemical parameters were combined in a second PCA (Figure 10).
Only variables that changed significantly were taken into consideration. Four components
had an eigenvalue higher than one, accounting for 95% of the total variability. The first,
explaining 42.74% of the variation, was positively correlated with the fresh weight of leaves
(FWl), the water content of leaves (WCl) and Ca2+ concentrations in roots and leaves, and
negatively correlated with K+ in roots. The second axis, explaining 25.97% of the data
variability, was positively related to root length (RL), root fresh weight (FWr), root dry
weight (DWr) and chlorophyll a and negatively correlated with proline (Pro), Ca2+ and
Cl− in roots.
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4. Discussion

High seed production and efficient vegetative propagation are common traits of inva-
sive species, regardless of their phylogenetic relationships or ecology. Sexually reproducing
invasive species usually produce a large number of seeds, ensuring a high rate of off-
spring. However, their ability to germinate earlier and faster is more relevant than their
usually high germination rates [47–49]. The two Ipomoea species tested showed a very
high germination percentage in the absence of stress, which is a common trait in commer-
cial seeds of ornamental species. However, the most remarkable feature was their very
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rapid germination, with a high percentage of seeds already germinated on the first day,
whereby a very short germination spread (TSG) was found, especially in I. purpurea, with
an average of 2.8 days. Rapid germination is a functional trait that confers advantages
in the early stages of interspecific competition [50,51]. Invasive species of ornamental
origin are favoured by a selective introduction [51,52], with horticulture being the largest
source of plant invasions [20]. The two Ipomoea species were also characterised by rapid
seedling growth, which may play an additional role in outcompeting species with slower
germination and seedling development [51]. Another exceptionally relevant trait character-
ising many invasive species is their ability to germinate in a wide range of environmental
conditions [51,53–55]. Global warming is increasing the risk of exposure to unfavourable
conditions and favours species with greater abiotic resistance. Comparison of germination
success under environmentally constrained conditions between native and invasive species
revealed in many cases that the latter have wider ranges of tolerance to temperatures and
water potentials [56,57]. Low water availability delayed the germination of alien species
less than that of native species coexisting in the same habitat in SW Australia [58], and
salinity did not affect germination rates of woody invasive species in inland soils of the
Mississippi region, contributing to the spread of these species [59]. The invasive Spartina
densiflora in SW Spain had a broader range of salt tolerance than a cordgrass species na-
tive to the SW Iberian Peninsula [60], and its seeds germinated even at the hypersaline
conditions of 0.75 M NaCl. The two Ipomoea species analysed here maintained over 90%
germination in saline solutions up to 200 mM NaCl. In the treatment with 400 mM NaCl
over 40% of seed-initiated germination was measured as radicle emergence, but their
development was stopped immediately as this concentration was lethal for all seedlings.
Seeds also germinated in the treatment with increasing concentrations of PEG, but in the
two species, the percentage of germination at low osmotic potentials was reduced than
in the salt treatments. Salinity affects germination due to the accumulation of toxic levels
of Na+ and Cl− and to its osmotic component, as increased osmotic potential prevents
water uptake and alters water imbibition by seeds [61,62]. Germination in polyethylene
glycol (PEG) solutions is the standard method to test this osmotic effect, which mimics
environmental drought conditions [54,63]. Similar findings indicating that germination is
more affected by osmotic stress than by ionic toxicity have been previously reported in I.
purpurea [64–66]. Additionally, in agreement with the results shown here, high germination
percentages under salt stress conditions were found in this species [65,66], as in others of
this genus [67,68]. A comparative study on several environmental constraints in I. purpurea
revealed that germination was more affected by temperature than by salinity and seedling
emergence by flooding and burial depths of over 13 cm [69]. The two species analysed
here had similar germination patterns and percentages, except germination at −0.88 MPa
osmotic potential in I. purpurea, which was more affected by stress than I. tricolor. The
seedlings analysis also indicated a relatively higher tolerance to NaCl and PEG of the
latter, as only in I. purpurea stress treatments significantly reduced the length of radicle and
hypocotyl.

The two species have not only a high velocity of germination but also fast growth.
I. purpurea has been reported to have a growth of about 20 cm per day under optimal
conditions [70], although, under our growing conditions, an average increase of only 5 cm
daily was recorded in plants from the control treatments. A higher growth rate of about
6 cm/day in control and 7 cm/day in plants from the 100 mM NaCl was found in I. tricolor.
Quick growth is an essential trait of weeds [71] often associated with the species’ invasive
potential [72]. In circumstances where there is competition, plants that grow faster have an
advantage as they can emerge from the vegetation to exploit photosynthetic resources [73].
Both Ipomoea species are vining weeds, able to compete by “choking growth” [70]. Growth
of the two species was not hampered at 100 mM NaCl and only a few parameters were
significantly reduced at 200 mM, indicating that the two species are moderately salt-tolerant.
Salt tolerance is a common trait in this genus, which has been reported in species such as
the littoral or wetland species I. cairica [74], I. sagittata [75], I. pescaprae [76], or even in the
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sweet potato I. batatas [77]. However, the growth of the two species was severely affected
by lack of irrigation, as reflected in the significant reduction of most of the traits analysed,
as previously reported in I. purpurea [78]. Severe drought, in combination with leaf damage,
had a drastic effect on the growth of this species [79], but other studies indicate a substantial
plasticity of its ecophysiological traits [80].

Biochemical analysis indicated a variation of photosynthetic pigments in stressed
plants, but significant reductions in chlorophyll a and carotenoids were only observed
in I. purpurea, indicating a possible higher tolerance of I. tricolor, where only small, non-
significant fluctuations were observed between treatments. Total chlorophyll and carotenoid
concentrations correlated well with growth parameters and were recommended as reliable
stress markers in multi-parameter assessments in the congener I. aquatica [81].

The compatible solutes analysed, proline (Pro) and total soluble sugars (TSS), showed
a different pattern in the two species. Proline contents increased significantly, especially
in I. tricolor plants subjected to water stress, followed by those subjected to 200 mM NaCl.
A smaller and not significant increase was registered in I. purpurea, but its levels of Pro in
control plants were considerably higher than in the other species, which had only a low
content in the absence of stress. On the other hand, TSS increased significantly only in I.
purpurea plants subjected to salt treatments. Proline, one of the most common osmolytes
in plants, has an essential role in stress responses [82]. In addition to its function in os-
motic adjustment, Pro plays multiple additional functions under stress, such as acting
as a low-molecular-weight chaperone, metal chelator, ROS scavenger involved in antiox-
idant defence mechanisms, or signalling molecule [82–84]. The maximum absolute Pro
concentrations reached in the two Ipomoea species are insufficient to produce a significant
osmotic effect but are in the same range as those reported in the halophyte I. pescaprae [85].
However, there is evidence of Pro implication in stress tolerance in species of this genus,
based on its additional biological functions. In a study on transgenic sweet potatoes, plants
overexpressing IbSIMT1 accumulated more proline, which improved their salt tolerance
not only by maintaining osmotic balance but also by activating SOD gene expression and
enhancing ROS scavenging capacity [77]. Proline was reported to play an important role in
drought resistance in Ipomoea, well documented in sweet potato and its hybrids [86–88].
Several publications also revealed the role of TSS in salt tolerance in sweet potatoes [87,89],
although these compounds are involved in many physiological processes ranging from seed
germination and flowering to plant senescence; therefore, variations in their concentrations
are not always related to stress defence mechanisms [90,91].

Regulation of ion uptake and transport is of great importance in the response of plants
to salinity stress. Halophytic dicots are generally salt includers, increasing the uptake
and transport to the shoots of Na+ and Cl− where they are sequestered in vacuoles [92],
whereas glycophytes and halophytic monocots are salt excluders. Their main mechanism of
resistance to salt stress is to avoid the foliar accumulation of toxic ions, either by reducing
the uptake by the roots or by blocking their transport to the aerial parts of the plant
[93,94]. We detected differences between the two species in relation to the pattern of Na+

accumulation. Under salt stress, the root levels of this cation increased in I. purpurea, but
not in I. tricolor plants; in leaves, on the contrary, they were maintained in I. purpurea and
increased in I. tricolor plants, although only under 200 mM NaCl, the highest salinity tested.
Most important, leaf Na+ concentrations were maintained lower in leaves than in roots
under all tested experimental conditions. These data suggest the presence of mechanisms
blocking Na+ transport to the aerial part of the plants, slightly more efficient in I. purpurea
than in I. tricolor, which could contribute to salt tolerance in these species. In contrast, Cl−

increased in both roots and leaves of the two species in response to salt and showed similar
concentrations in roots and leaves.

Na+ accumulation is generally accompanied by decreased intracellular K+ levels, as
the two cations compete for the same transporters, and increased Na+ concentrations inhibit
K+-requiring enzymes [93]. K+ plays an essential role in multiple physiological processes in
plants, and its homeostasis is a general adaptive trait to different environmental stresses [95].
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The primary survival mechanism of many glycophytes under saline conditions is the
regulation of Na+ transport and increased K+ uptake and accumulation [96]. Following
the general pattern of response to salt stress, a significant decrease in root K+ content was
observed in both Ipomoea species, somewhat more pronounced in I. tricolor. However,
foliar K+ concentrations remained constant in I. purpurea and even increased in 200 mM
NaCl-treated plants of I. tricolor. This finding indicates that K+ transport from the roots
to the aerial part of the plants is activated under salt stress slightly more efficiently in I.
tricolor than in I. purpurea, which probably represents a relevant tolerance mechanism in the
two analysed species. Reports on other species of the genus support this idea. For example,
a transcriptome profiling of salt-tolerant I. imperati revealed that one of the most promising
genes for tolerance, HKT1 (high-affinity potassium transporter), was over-represented in
salt-stressed tissue libraries [97]. Moreover, in a comparative analysis of salt tolerance of
12 sweet potato genotypes, the more tolerant ones retained higher K+ levels in their shoots
under increasing salinity, revealing the importance of K+ as the “main driver of salinity
tolerance” in this species [98]. Salt and drought tolerance in transgenic sweet potato was
enhanced by IbNHX2, a vacuolar Na+/K+ antiporter gen [99], whereas NXH1 involved in
the active transport of Na+ and/or K+ from the cytosol to the vacuoles was found to be
responsible for an increased vacuolar pH in the petals of I. tricolor, which triggers a change
in colour from purple-red to blue during flower opening [100].

Finally, the bivalent cation Ca2+ showed substantially higher concentrations in leaves
than in roots in both species. Regarding changes in Ca2+ contents in response to the salt
stress treatments, they increased significantly in the roots of the two species and the leaves
only of I. tricolor plants. The role of Ca2+ in salt tolerance mechanisms is well established and
has been previously reported, for example, in the related species I. batatas [89]. Calcium is
crucial for the structure and functional integrity of plants, as it is involved in the stabilisation
of membrane and cell wall structures, regulating ion transport and selectivity, or cell wall
enzyme activities. Under stress conditions, Ca2+ is a key component of stress signalling
pathways that trigger essential stress tolerance mechanisms, including accumulation of
osmoprotectants, stimulation of antioxidants, polyamines and nitric oxide machinery [101].

5. Conclusions

The knowledge of the limits of stress tolerance of invasive species is extremely relevant,
as they can predict how specific invasive species may behave under an altered climate
and which new species may emerge as invasive. Our results indicate that the two Ipomoea
species are relatively tolerant to salinity but susceptible to water stress in the analysed
developmental stages, seed germination and vegetative growth. Salt tolerance is based
mainly on blocking Na+ while activating K+ transport from roots to shoots and the uptake
and accumulation of Ca2+ in response to increased soil salinity. The two species responded
similarly to salt stress, although these tolerance mechanisms appear to be more efficient
in I. tricolor than in I. purpurea, so the former species is slightly more tolerant. Currently,
I. purpurea is generally recognised as a common invasive weed, whereas I. tricolor is con-
sidered ‘low-risk’, only locally reported as invasive. However, our results indicate that I.
tricolor may have an invasive potential as high, if not higher than I. purpurea, and spread
into new areas, affecting cropland or natural habitats of ecological interest with moderate
salinity. Such studies could be applied to practice when monitoring natural areas of high
ecological value, such as wetlands, where early warning and eradication programmes
against stress-tolerant invasive species are necessary under changing climatic conditions.
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