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Chapter 1

Introduction

1.1 Introduction

Mori Dream Spaces and their Cox rings have been the subject of a great deal of interest since their
introduction by Hu—Keel [19] over a decade ago. From the geometric side, these varieties enjoy the
property that all operations of the Mori programme can be carried out by variation of GIT quotient,
while from the algebraic side, obtaining an explicit presentation of the Cox ring is an interesting
problem in itself. Examples include Q-factorial projective toric varieties, spherical varieties and log
Fano varieties of arbitrary dimension. In this thesis we use the representation theory of quivers to
study multigraded linear series on Mori Dream Spaces. Our main results construct Mori Dream
Spaces as fine moduli spaces of ¥-stable representations of bound quivers for a special stability
condition 1, thereby extending results of Craw—Smith [10] for projective toric varieties.

Let X be a Mori Dream Space and let ¥ = (Lo, L1,...,L;) be a collection of effective line
bundles on X with Ly = Ox. In Chapter 3 we show how to construct a quiver of sections for
2. We would like this quiver to encode the sections of L; ® Ll-_1 for every L; and L; in .2,
but we are obstructed by the lack of a canonical basis for the space H*(X,L; ® L;l). However,
every Mori Dream Space admits a natural embedding into a projective toric variety X , whose class
group is isomorphic to that of X. We harness a key property of this ambient toric variety, or
more precisely of the collection &= (Eo,...,E,) on X obtained by lifting . from X. While the
spaces HY(X, L; ® L;) have no canonical basis, HO(X, E;®E; 1) certainly does: the torus invariant
sections. We define the quiver of sections for . on X to be the quiver of sections for ZLon X , as
given in Craw—Smith [10].

The key difference in the Mori Dream Space case lies in the ideal of relations in the path algebra.
We define an ideal of relations R in the path algebra which encodes not only the “toric relations”
given in [10], but also all the relations in the Cox ring of X. Indeed, the bound quiver of sections
Q for £ is finite, acyclic and the quotient k@ /R is isomorphic to the endomorphism algebra



Ay = End(@y<,<, Li). Setting aside the ideal of relations for now, we define the multigraded
linear series of the collection % to be the toric quiver variety |.Z| = My(Q) obtained as the fine
moduli space of ¥-stable representations of ) with dimension vector (1,...,1) for the special weight
vector ¢ = (—r,1,...,1). This fine moduli space carries a collection of tautological line bundles
(%%, ..., #;) with #5 = O ¢|. Since paths in the quiver arise from sections of line bundles of the
form L; ® Li_1 on X, evaluating these sections defines a rational map ¢|g|: X --» |Z]. Our first

main result (which we prove on page 42) describes the geometry of this map.

Theorem 1.1.1. For a collection £ = (Ox,L1,...,L,) of effective line bundles on X, the map
Yl X —-» |-Z| is a morphism if and only if each L; is basepoint-free, in which case the image is

presented explicitly as a geometric quotient and the tautological bundles satisfy gprg‘(%) =L,.

If each L; on X is the restriction of a basepoint-free line bundle on X then this morphism
is simply the restriction of the morphism from [10, Theorem 1.1]. This is typically not the case,
however, because the nef cone of X may be the union of the nef cones of a finite collection of
ambient toric varieties.

We provide a necessary and sufficient criterion for ¢ g: X --» |-Z| to be a closed immersion,
and a straightforward application of multigraded regularity due to Hering—Schenck—Smith [17] (see
also Maclagan—Smith [22]) provides an efficient way to exhibit many collections that give rise to
closed immersions. The resulting geometric quotient constructions of X are new, and while they
cannot improve upon the Hu—Keel construction from the birational point of view, it is sometimes
possible to encode more refined information on X via ., such as its bounded derived category of

coherent sheaves on X.

In Chapter 4 we give our second main result. This is more algebraic, and provides a fine moduli
description of X. The ideal of relations R in the path algebra k(@ defines an ideal I in the Cox ring
of |-Z| that cuts out My(mod(A.¢)), the fine moduli space of ¥-stable A ¢-modules with dimension
vector (1,...,1). This subscheme contains the image of the morphism ¢| ¢ from Theorem 1.1.1,
and in general this inclusion is proper. Nevertheless, by saturating Ir with the irrelevant ideal for
the GIT quotient construction of the multigraded linear series, and by comparing the result with

the ideal I that cuts out the image of ¢ |, we obtain the following algebraic result.

Theorem 1.1.2. For any Mori Dream Space X, there exist (many) collections £ on X such that
the morphism ¢ ¢: X — |Z| identifies X with the fine moduli space My(mod(Ag)), and the
tautological line bundles on My(mod(Ag)) coincide with the line bundles of £ .

Our proof of this result uses as far as possible the analogous result from [10, Theorem 1.2] for the

ambient toric variety, though much remains to be done because Ir can be rather complicated.
More generally, when the morphism ¢ ¢|: X — |£] is a closed immersion it identifies X with

My(mod(Ay)) precisely when the saturation of Ir by the irrelevant ideal coincides with the ideal
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Ig. These ideals can be computed explicitly in any given example (see Chapter 5), so it is possible
to check directly whether Theorem 1.1.2 holds (subject to computational limitations).

The final two chapters of this thesis are more computational in nature. In Chapter 5 we give a
computational method to find the ideals which cut out ¢|#(X) and My(Q, R) in both the Mori
Dream Space and toric cases. In Chapter 6 we use these computations to verify the results of
Chapter 4 in three cases: for two non-toric del Pezzo surfaces and for the Grassmannian Gr(2,4).

For a list of line bundles .#, we wish to check whether X is isomorphic to the moduli space
of bound quiver representations of the quiver of sections for .. We will see that this amounts to
checking whether I = (I R: Bfé'). In Chapter 5 we present a method for computing E;, Ig, fé
and Ig for a given quiver @), and as an application we show that Ig = (I R : BE%‘) for certain
collections of line bundles on X4, X5 and Gr(2,4).

We give code which, given a quiver (), outputs a list of all paths in Q. To find E; as defined
in [10], we must simply check through all pairs of paths to find all those with the same head, tail
and label. Finding generators for Ip is more complicated. In Lemma 5.1.7, we give a generating
set for Ip conducive to calculations. We give an algorithm for computing such a generating set.

We show in Proposition 5.2.1 that the ideals I and fé can be written as kernels of k-algebra
homomorphisms. They can therefore be computed using Elimination theory. We give Macaulay 2
code for computing both fé and Ig in section 5.2.2.

In Chapter 6, we illustrate the method for a pair of del Pezzo surfaces and the Grassmannian
Gr(2,4). For the del Pezzo surfaces, we choose £ to be a full, strongly exceptional collection of
line bundles. Such collections are of particular interest because they freely generate the bounded
derived category of coherent sheaves on X, that is, the functor

RHom(.7,—): Db (coh(X)) — Db (mod(Ag))

is an equivalence of bounded derived categories. A result of Bergman—Proudfoot [3] establishes
that the del Pezzo surface X is isomorphic to a connected component of My(mod(Ag)) in each
case, and our computations demonstrate that in fact X is isomorphic to the moduli space. For the
Grassmannian X = Gr(2,4), we show that X = My(mod(Ag¢)) when .Z = (Ox,0(2),0(4)).

1.2 Acknowledgements

First and foremost, I would like to thank my supervisor, Alastair Craw. An extremely gifted
teacher, he has been a constant source of inspiration. His rigour and determination have kept this
project on track, even during the darkest days. Thanks to the inhabitants of room 522, especially
Tarig Abdelgadir. It’s been fun. I am grateful to Diane Maclagan and Jiirgen Hausen for useful
discussions. I would also like to thank my family for their words of advice and their belief in my



mathematical ability. Last but not least, I would like to thank Duncan Somerville for his constant

support.
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Chapter 2
Background

In this chapter we summarise necessary background material. In section 2.1 we first consider
toric varieties. We show how toric varieties are constructed from fans (see Fulton [15], Cox—
Little-Schenck [6]) and describe the construction of toric varieties as GIT quotients (see Cox [7],
Mukai [24], Dolgachev [13]). Secondly, we introduce a generalisation of projective Q-factorial toric
varieties: Mori Dream Spaces. These will be the primary objects of interest in this thesis. We
give background material on Mori Dream Spaces, including their construction as GIT quotients
after Hu-Keel [19], Hassett-Tschinkel [16], Laface—Velasco [21]. In section 2.2, we consider two
important families of Mori Dream Spaces. In section 2.2.1 we give background information on
Grassmannians (see Mukai [24]) and describe their Cox Rings. In section 2.2.2 we summarise
material from Batyrev—Popov [2] and Manin [23] on del Pezzo surfaces. These will be our main
source of examples of Mori Dream Spaces. We summarise results due to Batyrev-Popov giving
generators and relations for the del Pezzo Surfaces of degree 3, 4 and 5. In section 2.2.3 we give an
explicit computation of Cox(X5), following Derenthal [12].

In section 2.3 we introduce the notion of multigraded regularity for projective toric varieties (see
Maclagan—Smith [22], Hering—Schenck—Smith [17]), which will be a crucial component of the proofs
in Chapter 4. In section 2.4 we give background information on quivers from Craw—Smith [10].

This thesis continues the programme begun by Craw—Smith in [10], extending from projective
toric varieties to the Mori Dream Space case. In section 2.5, we summarise the results of [10].
For a collection of line bundles on a toric variety X, we introduce quivers of sections for toric
varieties. We show how this quiver allows us to define a new ambient space for the toric varieties,
the multilinear series, and give necessary and sufficient conditions for the existence of a morphism
from X to this ambient variety. If the morphism exists, its image is a GIT quotient. It is almost
always possible to find a list of line bundles . such that the morphism is a closed immersion, and
the image of X is a moduli space of bound representations of the quiver of sections for .Z.

We will assume throughout that k is an algebraically closed field of characteristic zero.



2.1 Mori Dream Spaces

In this section we give background information on our objects of study: Mori Dream Spaces. We first
examine a special case, projective toric varieties, paying particular attention to their construction

as GIT quotients.

2.1.1 Toric Varieties

We summarise material from Fulton [15] and Cox-Little-Schenck [6].

A projective toric variety X is an irreducible projective variety containing an algebraic torus
as a dense Zariski open set where the action of the algebraic torus on itself extends to an action of
the torus on X. We show how to construct toric varieties from fans and as GIT quotients.

Let V be a real vector space. A strongly convex polyhedral cone in V is the span over RT of
a finite collection of vectors which does not contain a line through 0. Let o be a strongly convex
polyhedral cone. We say a hyperplane H is a supporting hyperplane of ¢ if o is contained in a
halfspace defined by H and o N H # {0}. A face of o is the intersection of o with a supporting
hyperplane. Given a cone o, its dual cone ¢V is defined to be ov := {v € V*[{u,v) > 0 for all
u€Eot.

Let N = 7" be a lattice, let M := Hom(N,Z) be its dual lattice and let Ng := N @ R. We
define a rational strongly convex polyhedral cone in Ny to be a strongly convex polyhedral cone
which is the span of a finite collection of vectors in N. A fan X is a collection of rational strongly
convex polyhedral cones in Ng such that the faces of every cone in Y are also in ¥, and such that
every pair of cones in X intersects in a common face. We also assume that 3 is non-degenerate in
the sense that it is not contained in any vector subspace of Ng.

We define a toric variety X = X (X) as follows. For every cone o € ¥ we define an affine variety.
U, := Spec(k[o¥ N M]).

Explicitly, if oV is generated by my,...,m, € Z" then k[oV N M] = k[z™,...,2™"], where if
m = (my,...,my) then ™ =™ ... 2. Also, if k[z™, ..., 2™ ] 2 Kk[y1,...,y,]/J then

Spec (k[z™, ..., a™]) 2 V(J) C A"

where V(J) denotes the common zero locus of all polynomials in J.

If 7 is a face of a cone ¢ in ¥, then there is a natural embedding
U, — U,

If we consider any two cones o,0’ € ¥, then their intersection 7 := 0N’ is a common face of both.
Hence U, embeds into both U, and U,s. The toric variety X is defined to be the variety obtained
by gluing each pair of affine varieties U, and U, along the open subset of each isomorphic to U;.

8



Example 2.1.1. We describe the construction of P? as a toric variety obtained from the fan shown

below. The fan comprises seven cones, o1,...,07. We define 01, 09,03 as shown in the fan. We

Figure 2.1: Fan for P?

define 04 = 01 No3, 05 = 01MNoy and o = 02 No3. We define o7 to be the intersection of o1, ..., g,
i.e. the cone generated by 0 € Z2. We present a table which gives cones ¢ in the fan, generators of

their dual cones ¢¥ and the corresponding k-algebra, k[oV N M].



Cone Generators of Dual Cone k-Algebra
ey | e
)| e
ST IO
ANBIOIE -
SNBICIOI =
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If we change variables z +—

by three copies of A?:

x
Y

o

X2
o

10

we obtain the usual cover of P2 with coordinates xg, z1, z2




Spec(k[on N M]) = Spec(k[£, £2]) = {(zo : x1 : 22) € P?|xg # 0}

xo’ xo

Spec(k[oo N M]) = Spec(k[Z2, 2]) = {(zo : z1 : 22) € P?|2y # 0}
Spec(klos N M]) = Spec(k[$2, £1]) = {(zg : 21 : x2) € P?|z9 # 0}
Spec(kloan M]) = Spec(k[$, $2,32]) = {(zo : x1 : 22) € P?|zg # 0 and 29 # 0}

Spec(k[os " M]) = Spec(k[£, £o, £2]) = {(zo : 21 : 22) € P?|20 # 0 and z1 # 0}

E’ 1’ o

Spec(klog N M]) = Spec(k[£, &L £2]) = {(zo : 1 : x2) € P?|z1 # 0 and x5 # 0}

xo? T2 X1

Spec(kloz N M]) = Spec(k[Z, 22 2o 2o}y —  f(pg: 2 :x9) € P?|lzg # 0,21 # 0 and 9 # 0}

x_o’azo’arl’xg

Let U; denote the affine open set in P? where z; # 0. The cones 01,09 and o3 correspond to Uy, Uy
and Us respectively; o4, 05 and g correspond to Uy N Us, Uy NU; and Uy N Us respectively; and o7
corresponds to Uy N Uy NUs. We also note that points of Uy N Uy N Uy can be written as (1: a : b)

where a and b are nonzero and hence Uy N U; N Us is isomorphic to the algebraic torus (k*)2.

Indeed, the subvariety Uy, where 0 is the cone generated by 0 € N is always an algebraic torus.
Its natural action on itself extends to an action of the torus on X as follows. Say aconeac C N 2 Z"

has dual cone generated by vectors my,...,m,. This gives an affine variety
U, = Spec (k[M No”]) = Spec (k[z™, ... ,z™]) C A"
The torus (k*)™ acts on A" via

(>‘1,' e ’An) : (al" e ,ar) = (Amlala s a)‘mrar)'

n

This restricts to an action of (k*)" on U,. The affine variety U, is stable under this action and

the action respects the gluing construction so the action extends to the entire toric variety. We

illustrate this with an example.

Example 2.1.2. Let o be the cone in Z3 generated by
1 0 1 0
{ o, 1 ],]0],]1 }
0 0 1 1

11



The dual cone ¢V is given by
{ o, 11],] 0, 1
0 1 -1

1T
U, = Spec (k [xl,mz,xs, %D = Spec (k[yl,yz,ys,y4]/(y1yz - y3y4)> = V(y1y2 — ysys) C A%,

o —_
o
o
—_
5,—/

So

Where V(y192 — y3y4) denotes the zero locus of the polynomial y1ys — y3ys4 in A*. The action
of (k*)? on A% is given by

A
(A1, A2, A3) - (a1, a2,a3,a4) = (AMa1, A2az, Asas, %CM)-

For any (a1, as,as,a4) € V(y1y2 — ysys) we see that (A1, Ag, A3) - (a1, a9, as,aq) is also in V(y1ys —
Y3Y4), S0 V(y1y2 — y3y4) is stable under this action.

We say an n dimensional cone is simplicial if it has precisely n generators. We say a fan is

simplicial if every cone in the fan is simplicial.

Proposition 2.1.3. (Theorem 3.1.19 [6]) A toric variety X (X) is Q-factorial, i.e. some multiple
of every Weil divisor is Cartier, if and only if ¥ is simplicial.

Let ¥(1) denote the set of one dimensional cones (or rays) of the fan 3. We assume this set
has cardinality d and denote the jth element of this set by 7;. The elements of ¥(1) determine
irreducible codimension one torus invariant subvarieties of X (X). These subvarieties generate the
free group of torus invariant Weil divisors, Z¢. Let C1(X) denote the class group of X: the group
of Weil divisors modulo linear equivalence. We obtain a map deg : Z¢ — CI(X) which maps a

WEeil divisor to its equivalence class. The map deg fits into a short exact sequence:

0— M —7— Cl(X) —0 (2.1.1)

called the Coz Sequence. The first map sends u € M to Z?:1<u, v(j))Dj, where v(j) is the lattice
point closest to 0 € N which generates 7;, and D; is the Weil divisor corresponding to 7;.

As well as constructing projective toric varieties using a gluing construction given by a fan, we
can construct them as GIT quotients. We give an overview of this second construction, summarising
material from e.g. Cox [7], King [20], Mukai [24], Dolgachev [13], Craw [9].

We define the Cox ring of X to be
Cox(X) :==Kk[z1,...,24],

12



where we recall that d is the number of rays in the fan of X. This is the semigroup algebra of
the effective cone of Weil divisors, k[N?]. The map deg induces a Cl(X) grading of Cox(X): we
set the degree of z; to be deg(e;). We define Cox(X)p to be the Dth graded part of Cox(X). By
Proposition 1.1 of Cox [7],

Cox(X)p = H°(X, D) (2.1.2)

for any D € Cl(X). This grading of Cox(X) induces a G := Hom(Cl(X), k*) action on Spec(Cox(X)) =
Al
Remark 2.1.4. In the case that we will be interested in, when Cl(X) is free of rank p (and hence
G = (k*)?), if the lattice map
deg : Z¢ — CI(X)

is given by a matrix

then the action of (A1,...,A,) € (k*)? on a point (p1,...,pq) € Spec(Cox(X)) is given by

Ay Ap) (1 evpa) = T AP Py AT N ).

We can construct X as the GIT quotient of Spec(Cox(X)) by this action. The character group
for the action of G on Spec(Cox(X)) is the finitely-generated abelian group Cl(X). We pick a
character L € Cl(X) with the additional assumption that L is a very ample line bundle. By (2.1.2)
the k-algebra of semi-invariant functions €p,,,~, Cox(X),,r, satisfies

P =X, L™) = P Cox (X)L
m>0 m>0

since their ring structures agree. Hence

Proj(€D HO(X, L™)) = Proj(€D) Cox(X)mz),

m>0 m>0

which are also isomorphic to X since L is very ample. Let Bx be the ideal in the Cox ring

k[z1,...,zq] given by
Bx = (wa € Cox(X)|o is a top-dimensional cone in X) (2.1.3)

where 2% = [[1<j<qj, where we recall d is the number of generators of Cox(X). Cox [7] gives a
description of th]e L-unstable locus.

13



Proposition 2.1.5. ([7]) The unstable locus of Spec(Cox (X)) for the action of (k*)" is
V((H'(X, L)) = V(Bx).
Suppose sections sg, ..., sy generate @, . Cox(X),,, then the map

7 : Spec(Cox (X)) \ V(Bx) — Proj(@ Cox(X)mr)
m>0
pr(so(p) ... :sn(p))

is in fact a morphism (the unstable locus is precisely those points where the morphism would be
undefined). It has the property that 7(p) = m(q) if and only if p and ¢ are in the same G orbit since
L is very ample, and is thus a good geometric quotient — a morphism with the property that the
preimage of a point is a G-orbit. We define Proj(€p,,,~ Cox(X)mz) = X to be the GIT quotient
of Spec(Cox(X)). -

2.1.2 Mori Dream Spaces

Let X be a projective Q-factorial variety. In this thesis we will assume that the divisor class group
of X, Cl(X), is finitely generated and free of rank p. Let Dy,..., D, be Weil divisors whose classes
provide an integral basis of C1(X).

Definition 2.1.6. The Coz ring of X is defined to be the C1(X) graded ring

Cox(X,Dy,...,D,)= @ H'X,D{"®--Dp").

(ml,...,mp)EZP

Mori Dream Spaces are defined in Hu-Keel [19] Definition 1.10. However, we state the main
theorem of [19] which gives a much simpler necessary and sufficient condition for X to be a Mori
Dream Space:

Theorem 2.1.7. (Prop 2.9, [19]) A projective Q-factorial variety X is a Mori Dream Space if and
only if Cox(X, D1,...,D,) is finitely generated as a k-algebra.

Projective Q-factorial toric varieties are also Mori Dream Spaces:

Theorem 2.1.8. (Cor 2.10, [19] ) X is a projective Q—factorial toric variety if and only if Cox(X)
1 a polynomial ring.

Remark 2.1.9. By Hu-Keel [19] and Hassett-Tschinkel [16], for any two bases Di,...,D, and
Ey,...,E, of CI(X), the rings Cox(X, Dy,...,D,) and Cox(X, E1,..., E,) are isomorphic. There-
fore X being a Mori Dream Space does not depend on the choice of basis for C1(X).

14



From now on, we will assume X is a Mori Dream Space and pick a presentation
Cox(X) =k[zy,....zq]/Ix (2.1.4)

Since this does not depend on the choice of basis for C1(X), we will refer to Cox(X, D1,...,D,) as
simply Cox(X). We will assume that the number of generators in this presentation is as small as
possible.

Since we assume that C1(X) is finitely generated and free, the ideal Iy is prime by the following

theorem due to Elizondo—Kurano—Watanabe:

Theorem 2.1.10. ( [14]) Let X be a Mori Dream Space whose class group is finitely generated
and free. Then Cox(X) is a factorial k-algebra.

In particular, if we pick a presentation
Cox(X) =klz1,...,z4]/Ix

then I'x is a prime ideal.

Remark 2.1.11. We note that Theorem 2.1.10 implies that Ix does not contain any monomials. If it
did, then it would also contain a variable, since Ix is prime. This would contradict our assumption

that the number of generators d is as small as possible.

We summarise material from Hu-Keel [19] and Laface—Velsaco [21] on the construction of Mori
Dream Spaces as GIT quotients. The Cox ring Cox(X) is naturally graded by CI(X). This grading
induces a G := Hom(C1(X),k*) = (k*)? action on Spec(Cox(X)) = V(Ix) C A? (see remark 2.1.4).
We construct X as a GIT quotient of Spec(Cox(X)) under this action as follows. The abelian
group Cl(X) is the character group of X. We pick a character L € CI(X), with the additional
assumption that L is a very ample line bundle on X. The k-algebra of L-semi-invariant functions
D,,,>0 Cox(X),,1, satisfies

P =X, L™) = ) Cox(X)me

m>0 m>0
and hence

Proj(EP H'(X, L™)) = Proj(£P Cox(X)mL),
m>0 m>0
which are also isomorphic to X since L is very ample. The unstable locus of Spec(Cox(X)) for the
action of G is V((H(X, L))).
If sections s, ..., sy generate @,,~, Cox(X)pr then the map

m : Spec(Cox(X)) \ V(Bx) — Proj(€D Cox(X)mr)

m>0

15



p= (so(p) : ... sn(p))

is in fact a morphism (the unstable locus V(Bx) is precisely the locus where it would be undefined).
It has the property that m(p) = m(q) if and only if p and ¢ are in the same G orbit. Hence, after
removal of the unstable locus, 7 is a good geometric quotient. We define Proj(€D,,,~, Cox(X)pmr,) =
X to be the GIT quotient of Spec(Cox(X)) under the G action induced by the él(X)—grading of
Cox(X). We define a line bundle on a Mori Dream Space X to be basepoint free if the common zero
locus of its sections V((H°(X, L)) C Spec ( Cox(X)) is contained in the unstable locus V(Bx).
We define
T klz,. ..,z — K21, .. 24]/Ix (2.1.5)

to be the canonical k-algebra epimorphism mapping x; to ;. This induces a Zf grading of the
polynomial ring k[z1,...,x4] by defining the degree of z; € k[z1,...,24] to be that of 7(z;).
This grading induces a (k*)? action on Spec(k[z1,...,z4]) = A% which restricts to the action on
Spec(k[x1,...,zq4)/Ix) = V(Ix) C A .

Example 2.1.12. We consider the Grassmannian Gr(2,4) (for a more complete discussion of
Grassmannians we refer to Section 2.2.1). This has Cox ring

]k[xl, N ,xﬁ]/($1$6 — T9T5 + $3$4).

The class group of Gr(2,4) is isomorphic to Z. We pick a character y := O(1) which is also ample
line bundle on Gr(2,4). The k-algebra of x semi-invariant functions is Cox(Gr(2,4)), since the
sections of O(1) are precisely the generators of Cox(Gr(2,4)). Therefore

Gr(2,4) = Proj (COX(Gr(Q, 4)) = V(z126 — Tox5 + 374) C P,

We can also pick an ample character ' := O(2). The k-algebra of x’ semi-invariant functions is
generated by all monomials in six variables of degree two, hence it is:

k[x%, T172, x%, e ,x%]/(m% — XXy + x3x4) =Kklyr, ..., y2]/J
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where

Yo — Y12 + Y16, y%o — Y15Y21, Y19Y20 — Y14Y21, Y18Y20 — Y13Y21, Y17Y20 — Y12Y21,
Yi6Y20 — Y11Y21, y%g — Y10Y21, Y18Y19 — Y12¥y21 + YieY21, Y17Y19 — YsY21,
Y16Y19 — Y7Y21, Y15Y19 — Y14Y20, Y14Y19 — Y10Y20, Y13Y19 — Y12Y20 + Y11¥21,
Y12Y19 — Y8Y20, Y11Y19 — Y7420, Y6Y19 — Y5¥20 + Y421, Y5Y19 — Y3Y20 + Y2¥21,
YaY19 — Y2y20 + Y1y21, ?/%8 — Y6¥Y21, Y17Y18 — Y5Y21, Y1618 — Y4Y21, Y15Y18 — Y13Y20;
Y14Y18 — Y1220 + Y11Y21, Y13Y18 — Y6¥20, Y12Y18 — Y5420, Y11Y18 — Y4Y20,
Y10Y18 — Y8Y20 + YrY21, YsY1s — Y320 + Y2y21, Yryis — Yay0 + YY1, Yz — Y3yl
Yi6Y1r — Y2Y21, Y15Y17 — Y12Y20, Y14Y17 — Y8Y20, Y13Y17 — Y5Y20, Y12Y17 — Y3Y20,
Y11Yy17 — Y2Y20, Y10Y17 — Y8Y19, YsY17 — Y3yY19, Yry17 — Y2Y19, Y6Y17 — Y5Y18,
YsYy17 — Y3Y1s, Y4Y17 — Y2Y1s, y%@ — Y1Y21, Y15Y16 — Y11Y20, Y14Y16 — Y7Y20,
Y13Y16 — Y4Y20, Y12Y16 — Y2Y20, Y11Y16 — Y1Y20, Y10Y16 — Y7Y19, YsYi6 — Y2Y19,
Yryie — Y1Y19, YelY16 — Y4Y18, Ys5Y16 — Y2Y18,Y4Y16 — Y1Y18,Y3Yi6 — Y2Y17,
Y2Y16 — Y1yi7, y%4 = Y10Y15, Y13Y14 — Y1215 + Y11Y20, Y12Y14 — Y8Y15,
Y11Y14 — Y7Y15, Y6Y14 — YsY15 + YaY20, YsY14 — Y3Y15 + Y2Y20, YaY14 — Y2Y15 + Y120,
?/%3 — Y6Y15, Y1213 — Y5Y15, Y11Y13 — Y4Y15, Y10Y13 — Y8Y15 + Y7Y20,

Ysy13 — Y3y1s + Y220, Y7Y13 — Y2y15 + Y1420, Y1z — Y3Y15, Y1112 — Y2U15,
YioY12 — Ys¥Y14, YsY12 — Y3Y14, YryY12 — Y2Y14, Ye¥Y12 — Y5413, YsY12 — Y3Y13,
Y4Y12 — Y2Y13, ’y% — Y1Y15,Y10Y11 — YrY14, Ysyi1 — Y2Y14, Yry11 — Y1Yi4,
YeY11 — Y4Y13,YsY11 — Y2Y13, Y4Y11 — Y1Y13, Y3yi1 — Y2Y12, Y2Y11 — Y1Yyi2,
Y6Y10 — Y3Y15 + 2Y2Y20 — Y1921, YsYy10 — Y3Y14 + Y2919, YaY10 — Y2914 + Y1Y19,
Y8 — Y3Y10, Y78 — Y2Y10, Y6Ys — Y3Y13 + Y2u18, Ysys — Ysyi2 + Y2y17,

Yays — Y2912 + Y1Y17, y? — Y1Y10, Y6Y7 — Y2Y13 + Y1Y18, YsYy7 — Y2Y12 + Y117,
Yay7 — Y1y12 + Y1Yie, Y3Yy7 — Y2Ys, Y247 — Y1Ys, ygz, — Y3Y6, YaYs5 — Y2Ye;

Y3 — Y1Y6, Y3Ya — Y2Us, Y2ya — Y1Ys, Y5 — Y1Y3

This gives an embedding of the Grassmannian Gr(2,4) into P20,

The ample divisors on X form a cone, Amp(X), with a decomposition into chambers. Picking

a very ample character L in the interior of a chamber, we obtain a toric variety

)/{L := Proj < @ k[zy,... ,xd]mZ>-

m>0
The class group of )/(VL is Z” by construction. Hence there exists an isomorphism
¥ Cl(XL) — CI(X). (2.1.6)

We define the line bundle L on X/, to be the inverse image of our choice of line bundle L on X
under the map . Picking different characters in the same chamber results in isomorphic toric
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varieties. The chambers in the decomposition correspond to the ample cones for the toric varieties
obtained. The toric variety X7, has Cox(Xy) = k[z1,...,z4] and is obtained as the GIT quotient
of A? under the action of G with unstable locus V(H" (X1, E))

Remark 2.1.13. We note that the unstable locus of X is the intersection of the unstable locus of
X and Spec(Cox(X)). Hence the embedding Spec(Cox(X)) < Spec(Cox(X1)) descends to an
embedding X — X .

Remark 2.1.14. We note that X, does in general depend on the choice of L, or more precisely, on
the chamber containing L. However, in what follows it will not matter what choice of L we make,

and hence we will refer to X, as simply X from now on.

We present an example which illustrates the concepts introduced in this section, further details
on del Pezzo surfaces can be found in section 2.2.2.

Example 2.1.15. Let X4 be the del Pezzo surface obtained as the blow-up of IP)HQ{ at four points
in general position. The Picard group Pic(X,) = Z5 has a basis given by Iy, the pullback to X, of
the hyperplane class on IP’EQ(, together with the four exceptional curves ly,ls,l3,l4. The semigroup
homomorphism deg: N'© — Pic(X,) obtained as multiplication by the matrix

o oo~ o
oo r oo
o o oo
— o o o o

|

_

o

o

|

—_

I

—_

o

0 0 -1 0 -1 -1

induces a Pic(X) grading of k[xy, ..., z10]. The Pic(X)-homogeneous ideal

I ToTs — T3Te + T4T7, T1T5 — T3Tg + T4y,
Xy =
T1Xg — T2Tg + L4210, T1XT7 — T2T9 + T3T10, T5X10 — TeX9 + T7Xg

determines Cox(X4) = k|z1,...,z10]/Ix, following Batyrev—Popov [2]. We construct an ambient
toric variety as follows. Following Example 2.11 of Laface—Velasco [21] we pick a character y =
1119 — 51y — 3la — 23 —14. The line bundle x is ample on X4 and we show X, := AIO//XT is Q-factorial

as follows. The unstable locus for x,rad (H"(X,,x)) is the common zero locus of the following
ideal:
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T1T2T5T6L7, T1TIT5LELT 5 T1TALELELTy L1 LILALTEY, LILALTTIL10,
ToT3T4T 7T, T1T2T5L 7L, L2LILELTLY, L1 LALEXTLY, L1LIXELTLS,
ToT3TET 7T, T1TIT4LELY, L2LILALEXY, T1L2L5LELY, L1LIX5LELY,
ToT4T5T6L9, T1TATELTLY, L2TALELTLY, T1L2L5L8XY, L2LIL5LLLY,
ToT4T5T8T9, T1TITELYLY, L2LILELYLY, L1L4LTLXY, L2L4XTLLLY,
T1T2T4X5L10, L2L3L4T5L10, L1L2L5LEL10, L1LIL5L6L10,
T3T4T5T6L10, L1X4X5LT7L10,5 T3T4T5L7L10, L1L2L5L8L10,
T2T3T5T8L10, L1XLILELYL10, LT2L3TELIL10, L3L4LELSL10,

LITLALTLTL10, L2L4L5L9L10, LIL4LELIL10, L1L4LTL9L]0, L2LL4LTLYL10

This ideal is also defined in (2.1.3) as
Bx = (xa € Cox(X)|o is a top-dimensional cone in %)

where 27 = [li<j<ioz;. Since each monomial in rad (H O(XVX, X)) is a product of five generators,
Ti¢o

each top dimensional cone in the fan defining 5(\; has 10-5=5 generators. This follows since the
Cox ring of 5(\; has 10 generators which correspond to the rays of the fan defining 5(\;, and because
the lattice M which contains the fan is isomorphic to Z> (this follows from the fact that the Cox
sequence (2.1.1) is a short exact sequence). Therefore by Proposition 2.1.3, the toric variety 5(\; is
Q-factorial. Thus x € Pic(X) lies in an open GIT chamber for the action of T' on Aﬂlgo, and we set
)/(\Z = A0 T

Laface—Velasco note further that the ample bundle —Kx, = 3lp — 1 — lo — I3 — l4 defines a
non-Q-factorial toric quotient X_ Ky, The ideal rad (H 0(X_ Kx, — K X4)) is

LAL7TIL105 L3LEL8L105 L3LALEL10, L1X2L5L10, L2L5LELY,
L2L4TELY, L1LILELY, L1LALTLY, L2LILTLY, L1X5LELT, LIL4LELYL10,
L2X4T5LYT10, LILALTLL105 L2LIL5L8L10, L1L4L5LTL10,

T1X3T5L6L10, L2LALTLELY, L2LILEL-LY, L1 LALELTLY, L1XL2XLE5L6LY, T1XLZLELTLE, L1 L2X5LTLY

We see that there exist monomial generators which are a product of 4 variables. By the same logic
as above there exist top dimensional cones in the fan defining X_ Ky, With 6 generators which are
therefore not simplicial. Hence by Proposition 2.1.3, X_ K, is not Q-factorial. So —Kx, lies in a
GIT wall for the action on AfY.

2.2 Cox Rings of Mori Dream Spaces

In this section we introduce two families of del Pezzo surfaces: Grassmannians and del Pezzo
surfaces. We study their Cox rings.
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2.2.1 Grassmannians

The Grassmannian Gr(r,n) is the scheme which represents the functor mapping a scheme X to the
rank d vector subbundles of the trivial rank n vector bundle on X. A rank r element of Mat(r,n)
determines an r—dimensional vector subspace of n—dimensional space, up to change of basis, i.e.
up to multiplication by an element of GL(r). Hence Gr(r,n) is the space of GL(r) orbits of rank r
matrices in Mat(r,n), where the group action is multiplication on the left.

An embedding of Gr(r,n) into projective space P*, where s = (’:) — 1, is given by the determi-
nantal line bundle on Gr(r,n). Explicitly, this maps an element of Mat(r,n) to its r X r minors
(there are () such). We note that the action of GL(r) only changes the r x r minors by a nonzero
scalar multiple, hence this map is well defined. We also note that since each matrix has rank r, at
least one of the minors will be nonzero. The image of this map is cut out by the ideal of Pliicker
relations. We consider the map

D : K[z, ..., 2zs] — klaij]

mapping z; to the ith r x r minor of the generic matrix (a;;). The ideal of Pliicker relations is the
kernel of D. Hence k[z1, ..., z,]/ ker(D) is the homogeneous coordinate ring of the Grassmannian
Gr(r,n). By Remark 3.9 of Castravet—Tevelev [4], this ring coincides with Cox(Gr(r,n)).

2.2.2 Del Pezzo Surfaces

In this section, we give essential background information on del Pezzo surfaces. We describe results
of Batyrev—Popov [2] giving generators and relations for the Cox rings of certain non-toric del Pezzo
surfaces. We conclude by calculating the Cox ring of a del Pezzo surface of degree 4 following the
method of Batyrev—Popov [2] and Derenthal [12].

We summarise material on del Pezzo surfaces found in Manin [23] and Batyrev—Popov [2].

A del Pezzo surface of degree 9 —r is the blow up of P2 at 0 < r < 8 points p1,...,p, in general
position. This is a smooth surface which we denote by X,.. We say r points are in general position
if no three points lie on a line, no six points lie on a conic, and no cubic with a double point which
contains seven of the points contains the eighth.

We denote the blow-up map by 7, : X,, — P2. The Picard group of X, satisfies Pic(X,) = Z"+1,
with a basis given by Iy := 7*(O(1)),l1 = 7. Y(p1),...,lr := 7, Y(p.). To harmonize with the
literature, we denote multiplication in the Picard group using additive (rather than tensor) notation.

The intersection form is given by the following matrix
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lo U Ly
lp|1 O 0
H10 -1

: 0
10 0 -1

We denote the intersection of two curves [ and I’ by [ -1I’. We say a curve [ on a surface is a
(—1)-curve if its selfintersection number 1% := [ -1 is equal to —1.

The strict transform of a curve C under the blow up map 7 : X, — P2 is7=1(C'N (P2 \ {p1,...,pr})).
The (—1)-curves on X, are the inverse images of blown up points and the strict transforms of the
following curves on P?:

(i) Lines between pairs of blown up points;

(ii) Conics containing five blown up points;
(iii) Cubics with a double point containing seven blown up points;
(iv) Quartics with three double points containing eight blown up points;
(v) Quintics with six double points containing eight blown up points;
(vi) Sextics with seven double points containing eight blown up points.

Every del Pezzo Surface is a Mori Dream Space by Batyrev—Popov [2]. If we blow up r < 3 points
we obtain a smooth projective toric surface. Batyrev—Popov describe generators and relations for
the Cox rings of X4, X5 and X¢ in [2]. We summarise their results.

The following result can be found in Laface—Velasco [21]

Proposition 2.2.1. ( [21]) Let X be a surface. If E € Pic(X) is a (—1)-curve then H*(X, E) is
generated by a unique (up to scalar multiplication) section. This section is a generator of Cox(X).

Therefore the section of any (—1)-curve is a generator of Cox(X,). These are the only generators
of Cox(X,) by the following Theorem due to Batyev—Popov.

Theorem 2.2.2. (Theorem 3.2, [2]) For 3 < r <7, the Cox ring of the del Pezzo surface X, is
generated by global sections of O(D) where D is a (—1)-curve.

The del Pezzo surfaces X4, X5 and Xg are the blow ups of P? at the first four, five and six points
respectively from points pq,...,ps in general position. We can always pick p; = (1,0,0),p2 =
(0,1,0),p3 = (0,0,1) and py = (1,1,1). The (—1)-curves on X4, X5 and Xg are the preimages of
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Generator Degree Point or Curve in P?
1 Iy D1
T2 l2 D2
T3 I3 D3
Ty la P4
Ts 2lg — 11 — l2 | line between p; and po
g 2lg — 11 — I3 | line between p; and p3
r7 2lg — 11 — l4 | line between p; and py
g 2lg — lo — I3 | line between po and pg
Tg 2lg — lo — l4 | line between po and py
10 2lg — I3 — l4 | line between p3 and py

Figure 2.2: X, Case

blown up points, the strict transforms of lines in P? between pairs of blown up points, and the
strict transforms of conics through five blown up points. We describe these explicitly below.

The strict transform of the line containing points p; and p; is lo —1; —;, and the strict transform
of the conic containing points p;, , ..., p;; is 2lp—l;; —- - - —1;;. All the (—1)-curves are either equal to
l; for some i € {1,...,6}, or the strict transforms of lines through pairs of points or conics through
five points. Hence we can associate to each (—1)-curve the equation of a line or conic, unless it is
the preimage of a blown up point. In that case, it is a useful convention to assign a constant to
each [;. We will always choose that constant to be 1. We denote the homogeneous polynomial (or
form) associated to a line bundle [ in this way to be f; € k[z1, 29, 23].

We present the generators of X4, X5 and Xg their degree and the curve in P? of which they are

the strict transform in figures 2.2, 2.3 and 2.4 respectively.
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Generator Degree Point or Curve in P?

x1 I D1

T2 l2 D2

3 ls P3

T4 ly D4

5 ls Ps

T lo—11 — 1y line between p; and po
T7 lo—11— 13 line between p; and p3
s lo—11 — 4 line between p; and p4
Tg lo—1 — 15 line between p; and ps
10 lo—1ly— 13 line between po and p3
T11 lo—1ly— 1y line between ps and py
T19 lo—1ly— 15 line between po and ps
T13 lo—1l3—14 line between p3 and p4
T14 lp— 13— 15 line between p3 and ps
T1i5 lo—1s— 15 line between p4 and ps
T16 2lg — 11 — lo — I3 — l4 — l5 | conic containing p1, p2, p3, P4 and ps

Figure 2.3: X5 Case
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Generator Degree Point or Curve in P?

1 I P1

T2 l2 P2

T3 ls P3

T4 lg D4

x5 ls D5

T6 lg D6

T7 lo—1 — 1y line between p; and ps

s lo—1 — 13 line between p; and p3

Tg lo—11 — 1y line between p; and p4

10 lo—1 — 15 line between p; and ps

T11 lo—1 — g line between p; and pg

T19 lo—1ly— 13 line between po and p3

T13 lo—1s—14 line between py and py

T14 lp—1s— 15 line between py and ps

T15 lo— 1o — g line between py and pg

T16 lo—1I3—14 line between p3 and py

T17 lp— 13— 15 line between p3 and ps

T18 lo — I3 —Ig line between p3 and pg

T19 lo—1s— 15 line between p4 and ps

T90 lo—1ly — g line between py and pg

To1 lo—1l5— g line between ps; and pg

T99 2l — 11 — lo — I3 — l4 — l5 | conic containing p1, p2, p3, P4 and ps
T93 2l — 11 — lo — I3 — l4 — lg | conic containing p1, p2, p3, P4 and pg
Toy 2lg — 11 — lo — I3 — l5 — lg | conic containing p1, p2, p3, ps and pg
To5 2l — 11 —lo — 14 — l5 — lg | conic containing pi, p2, P4, p5 and pg
Tog 2lg — 11 — I3 — 14 — l5 — lg | conic containing p1, p3, P4, p5 and pg
To7 2lg — lo — I3 — 14 — l5 — lg | conic containing ps, p3, P4, p5 and pg

Figure 2.4: Xg Case
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Having found the generators of Cox(X, ), we turn our attention to finding the ideal of relations
Ix,. Batyrev-Popov first computed Ix,, then used induction on the number of blown up points to

obtain Ix, and Ix.

Proposition 2.2.3. (Prop 4.1, [2]) The Coz ring of X4 is isomorphic to the homogeneous coordi-
nate ring of Gr(3,5), i.e.
COX(X4) = k[:ﬂl, e ,xlo]/IX4

where

Ie ToXs — T3Te + T4T7, T1T5 — L3T8 + T4xg,
X4 =
T1Xe — T2Tg + X410, T1X7 — TaTg + T3T10, T5X10 — TeT9 + L7

The terms of each relation in Ix, are sections of a single line bundle, each of which is a ruling.

Definition 2.2.4. A ruling is a line bundle [ such that [ = [; + lo where [y, [y are (—1)-curves and
l1-1p =1.

Each ruling L can be written in 7 — 1 ways as a sum of (—1)-curves, i.e.
L:L1+LI1 :L2—|-L/2: :Lr_l—i-L;dil

where each L; and L, is a (—1)-curve. A relation in Cox(X,) arises from a ruling in the following

way. We recall that a form f; is associated to each (—1)-curve on X,. The forms

lefL'17"' afLT_1fL;71

have r — 3 relations between them. These lift to give relations between the sections of the ruling
L, in the sense that if

arfrfr,+ -+ anfr, fr, =0
then
T T+ + AL, T,
is a relation in the Cox ring, where x is the generator of the Cox ring corresponding to the

(=1)—curve L. By the following theorem due to Batyrev—Popov [2], these are the only relations.

Proposition 2.2.5. (Theorem 4.9, [2]). For r =4,5 or 6, Ix, is the ideal generated by relations

between sections of rulings as described above.
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2.2.3 Computing Cox(X5)

In the rest of this section, we use the theory due to Batyrev—Popov [2] summarised above to calculate
the ideal Ix,. This calculation can be found in Derenthal [12] using a generic fifth point (1, , 3).
For our calculation we pick a specific fifth point and give a little more detail. First we compute the
forms associated to the generators of Iy,. We give the rulings, their sections and associated forms
for X5. Once we have this information we calculate the relations between the associated forms,
and hence the relations between sections of rulings. This gives us Ix;.

Let X5 be the blow up of p1,...,ps where we choose
p1 = (1,0,0),p2 := (0,1,0),p3 := (0,0,1),ps := (1,1,1),p5 := (1,2,3).

We emphasise that X5 is not independent of this choice of points. We compute the forms f; for
X5 as described in Figure 2.3. First, it is possible to compute the equations of lines through pairs
of points by inspection. To compute the equations of conics through five points we use a simple

Maple procedure, findconics, described in Appendix B. We present the forms in the following table.

Generator of Cox(X5) (—1)-curve { f1
T ll 1
1) lo 1
I3 l3 1
Ty l4 1
xIs l5 1
xg lo—11 — 12 23
x7 lo—1l1—13 )
s lo—1l— 4 29 — 23
Tg lo—11 — 15 2z3 — 329
T10 lo—1la—13 21
x11 lo—1l2— 14 21 — 23
T12 lo—1la—1s5 z3 — 321
z13 lo—1l3—14 21 — 22
T14 lo—1l3—15 221 — 29
Z15 lo—1s—15 21 — 229 + 23
T1g 200 — 11 —lg —lg — 1y — 15 | 32120 — 42123 + 2923

We compute the rulings for X5 and their sections using the code in Appendix B. For each ruling,
we calculate the relations between the forms corresponding to its sections using Maple. There are

four forms fy, fs, f3 and f; corresponding to sections si, S92, 83 and s4 and two relations between
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them. To find the relations, we use the Maple command “solve” to find solutions to the pair of
equations:

afi +bfa+cfs =0

dfi +efo+hfy =0

thus we obtain two generators
as1 + bsg + cs3 and dsy + esg + hsy

of IX5 .
We give the rulings, their sections, associated forms in k[z1, 22, 23] and the relation between
them in the following table:

Rulings Sections | Forms in k[z1, 22, 23] Relations

lo — ll ToXg z3 ToXg — L3XL7 + T4xg
xr3x7 Z9 2.%'2.%'6 — 31‘31‘7 — X5X9
48 22 — Z3
I5X9 22’3 — 322

lo—1a 176 23 T1Te — T3T10 + T4T11
x3T10 Z1 126 — 3T3T10 — T5T12
T4T11 21— 23
T5T12 zZ3 — 32’1

lo—13 r1T7 ) T1T7 — T2T10 + T4T13
Z2%10 Z1 r1x7 — 2T2w10 + T5T14
T4213 Z1 — 22
T5T14 221 — 29

lo—1l4 128 zo — 23 T1Tg — Tox11 + T3T13
T2T11 21— 23 —2r178 + T2X11 — T5T15
T3213 21— 22
515 Z1 — 222 + z3

l(] — l5 T1x9g 223 — 322 —I1T9 + 25625612 + 3$3$14,
ToX19 z3 — 321 2x1x9 + Tox12 + 314215
T3T14 221 — 29
T4T15 21 — 229 + 23

20— 11 —lo—l3— 1y | w5716 | 32122 — 42123 + 2223 | T5T16 + TeT13 — 3TT10,

T6L13 23(21 — 22) TeT13 — T7T11 + T8T10
T7T11 29(21 — 23)
T8T10 (22 — 23)21
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200 =11 =l —Il3 =15 | x4716 | 321220 — 42123 + 2223 | T4T16 + 2T6T14 + T7T12,
TeT14 23(221 — 22) T4%16 + TeX14 + T9X10
T7T12 z2(23 — 321)
910 (223 — 322)2’1

200 —1l1 —lo =1y =15 | 23716 | 321220 — 42123 + 2223 T3T16 + TeT15 + TT12,
T6X15 z3(21 — 222 + 23) x3x16 + 2T6T15 + T9T11
T8T12 —(—22 + 23)(23 — 321)
911 (223 — 322)(21 — 23)

200 =11 — I3 —1ls =15 | xa716 | 32122 — 42123 + 2223 | T2X16 + T7T15 — 278714,
T7T15 29(21 — 222 + 23) ToT16 + 3T7x15 + 2T9T13
T8I14 (22 — 23)(221 — 22)
r9r13 | (223 — 322)(21 — 22)

200 —lo— I3 =1y =15 | T1716 | 321220 — 42123 + 2223 | T1T16 + 2710715 — T11714,
10215 z1(21 — 220 + 23) 1716 + 3T10%15 + T12713
11714 (z1 — 23)(221 — 22)
12713 (23 —321)(21 — 22)

Hence,
T5T16 + TeT13 — 3T8T10, T4T16 + 2T6X14 + T7X12, T4T16 + TeT14 + T9T10,
T3T16 + TeT15 + TgT12, T3T16 + 2TeT15 + T9T11, T2T16 + T7T15 — 228714,
ToT16 + 3T7T15 + 2T9T13, T1T16 + 2T10T15 — T11T14, T1T16 + 3T10T15 + T12T13,
Ix, = ToTe — T3T7 + T4xg, 22T — 3T3T7 — T5T9, T1Te — T3T10 + T4T11,

T1T6 — 3T3T10 — T5T12, T1XT7 — T2T10 + TaT13, T1T7 — 2T2T10 + T5T14,
T1xg — T2T11 + T3T13, —2T1T8 + T2x11 — T5T15, —T1T9 + 2T2T12 + 3T3T14,
—2x1%9 + 212 + 3T4T15, T6L13 — T7T11 + TT10

2.3 Multigraded Regularity for Projective Toric Varieties

Maclagan-Smith introduced the notion of multigraded regularity in [22] as a generalisation of
Castelnuovo-Mumford regularity. Let X be a projective toric variety, and let Cox(X) = k|x1, ..
Multigraded regularity is a useful tool for studying the geometry of X. For example, it gives a
bound for the multidegrees of the equations which cut out the subvariety corresponding to an ideal
sheaf, and it allows us to test whether an ample line bundle gives a projectively normal embedding
of X. In this thesis, we will use multigraded regularity of a line bundle L = L1 ® --- ® Lj with

respect to Ly, ..., Ly to ensure surjectivity of certain maps.

We summarise material due to Maclagan—Smith [22] and Hering—Schenck—Smith [17].
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Let % be a coherent sheaf, let B and Mj,..., M be line bundles on X. For a vector u =
(ut,...,u) € N¥ we denote M{" ® - ® M"* by M™.

Definition 2.3.1. We say .Z is B-regular (with respect to My, ..., M) if H(X, Z@BM ™) =0
for all i > 0 and all u € N* satisfying |u| := uy + -+ + ug, = 1.

The following theorem is due to Maclagan—Smith in the toric case, but was generalised by
Hering—Schenck—Smith [17].

Theorem 2.3.2. ( [22], [17])
Let . F be a coherent sheaf that is B-regular with respect to My, ..., M. For allu € N* the map

HYX,Z @ Bo M*) @ H'(X,M"¥) — H(X,.Z ® B® M"")
is surjective for all v € NF,

Corollary 2.3.3. Let Lq,..., Ly be line bundles and suppose L = Lfl ®-® Lfk be Ox -reqular
with respect to Ly, ..., L, for some B1,...,Br > 0. The multiplication map

H(Xx,L)® — HY(X, L%
18 surjective.
Proof. If the multiplication map
H(X,L)*' — HO(X, L)

is surjective, then every section of L1 can be written as a product of sections of L. Hence every
section of L% can be written as a product of sections of L, since the map

HY(X, LYo HY(X, L) — H°(X, L)

is surjective by Theorem 2.3.2. Hence by induction it is true that every section of L% can be written
as a product of sections of L (and hence H°(X, L)®¢ — H°(X, L%) is surjective) since the map

HY(X,L)®' — HY(X, L")

is clearly surjective.

O

Proposition 2.3.4. For any nef line bundles Lq,...,L; € Pic(X), if the sublattice of Pic(X)
generated by L1,..., Ly contains an ample bundle then there exist B1,...,0; € N such that L :=
Lfl R Lf’“ 18 Ox -regular with respect to Lq,..., L.
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Proof. Since the sublattice of Pic(X) generated by Lq,..., Ly contains an ample line bundle, we
can pick oq,...,ap € N such that L{? @ --- ® Ly* is ample. Suppose X is n dimensional, then
Lu) =L@ @ L) @ (L7 @ -+ ® L, "*) is also ample for any u = (ug,...,ux) with
ui + -+ + ug < n. Therefore by Demazure Vanishing (see e.g. Thm 9.2.3 Cox-Little-Schenck [6])
H(X,L(u)) = 0 for all 4 > 0 and all u such that u; + --- 4+ uy = i , since H (X, L(u)) = 0 for

i > n. Hence, letting 3; := «a; + n, we have the statement of the proposition. O

2.4 Quivers and Quiver Representations

A quiver can be defined by giving its vertices, its arrows, and the vertices at the head and tail of
each arrow. For a quiver @), define )y to be its set of vertices, ()1 to be its set of arrows, and define
maps

h,t: Q1 — Qo

mapping each arrow to its head and tail respectively. A path p is a sequence of arrows
p=an...0a1

such that t(a;) = h(a;—1). We define the support of p to be the set {a,...,an}. The path algebra
k@ is defined to be the k-algebra generated by all paths in @, including trivial paths e; for each
1 € QQo. The multiplication of two paths is defined to be their concatenation if it exists and zero
otherwise. The maps h and t can be extended to k@ by defining h(p) = h(a,) and t(p) = t(aq).
A cycle is a path where h(p) = t(p), and @ is said to be acyclic if none of its nontrivial paths are
cycles. A walk in Q) is an sequence vgagvia - - - AxVk11, Where v;’s are vertices and a; is an arrow
between v; and v;4+1 (in either direction). We say a quiver is connected if there is a walk between
any two vertices. We say a vertex is a source if it is not the head of any arrow. We say a quiver is
rooted if exactly one vertex is a source. We say a subquiver of a rooted quiver is a spanning tree if
it consists of precisely one path from the unique source to each vertex i € Qq.

Example 2.4.1. For the quiver below the maps h and t are:

@&%/;(%
o

S

L®
4 ¥
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tla) =0  h(a;) =1
t(az) =0  h(ag) =1
t(as) =0  h(ag) =2
tlas) =1  h(as) =2
tlas) =3  h(as) =4
tlag) =4  h(ag) =3

Let @ be a finite, connected quiver. A representation of @) consists of a k-vector space W; for
i € Qo and a k-linear map wy: Wyq) — Wy(q) for a € Q1. It is convenient to write W as shorthand
for ((W;)ie@o» (Wa)acq,)- The dimension vector of W is the vector r € Z?° with components
r; = dimg(W;) for i € Q. We define a subrepresentation of W to be a representation W' where
W/ is a vector subspace of W; and where w), := w, gives a well-defined map w, : t’(a) — W}:(a).
A map of representations ¢: W — W' is a family ¢;: W, — W/ of k-linear maps for i € Qo
satisfying wgr(q) = Yn@)wae for a € Q1. With composition defined componentwise, we obtain
the abelian category of finite dimensional representations of Q. For § € Z®@0, define (W) :=
> o<i<, Ui dimg(W;).  Following King [20], a representation W of @ is f-semistable if 6(W) = 0
and every subrepresentation W/ C W satisfies §(W') > 0. Moreover, W is f-stable if the only
subrepresentations W’ with (W’) = 0 are 0 and W.

2.5 Toric Varieties as Fine Moduli of Quiver Representations

In this section we summarise the findings of Craw—Smith in [10]. This paper investigates the link
between the existence of an interpretation of a projective toric variety as a fine moduli space of
quiver representations and the existence of a strong exceptional collection of line bundles.

We summarise the main results. Let X be a projective toric variety with Cox(X) = k[z1,...,z4].
Given a list of line bundles . = (Ox, L1, ..., L;) on X, Craw-Smith defined the quiver of sections
for £. They defined |-Z| to be the fine moduli space of representations of this quiver. This is a
generalisation of the linear series for a single line bundle, so they refer to |.Z| as the multilinear series
(or multigraded linear series) for 2. They showed that there exists a natural map ¢ ¢ : X — [-Z],
and that this map is a morphism if and only if L1, ..., L, are basepoint free. If this is the case then
the image of X is a GIT quotient. Then, whereas strong exceptional collections are comparatively
rare, they showed that it is almost always possible to pick line bundles .2 such that ¢ ¢| is a closed
embedding, and such that its image is the fine moduli space of bound quiver representations of the
complete quiver of sections for .. We will assume throughout this section that X is a projective

toric variety.
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2.5.1 Multilinear Series

Let & = (Ox, L1,...,L;) be a list of distinct effective line bundles on the projective toric variety
X. A torus invariant section s € HY(X, L; ® L; ') = Hom(L;, L;) is said to be irreducible if it does
not factor through some Lj with k # i, j.

Definition 2.5.1. (i) The quiver of sections for .Z is defined to be the quiver whose vertices
are in one to one correspondence with bundles in .Z. So if () is the quiver of sections for ¥
then Qo = {0,...,7}. We define the arrows from vertex i to vertex j to be in one to one
correspondence with irreducible torus-invariant sections of L; ® Ll-_l. We can think of ) as
being a labelled quiver, where each arrow is labelled by the section it corresponds to. For a
path p in @), we will say that the label of p is the product of the labels of the arrows in the
support of p. It is possible to assume that the elements in £ are ordered such that if j < 4
then L; ® L;l is not effective.

(ii) Define
div: Q1 — z?
to be the map which sends an arrow a to the divisor of zeros of the torus-invariant section

labelling a. Explicitly if the torus invariant section of a is 27" - - - 2}'* € Cox(X) then div(a) =
(m1,...,mq) € N

Lemma 2.5.2. The quiver of sections Q) is connected, acyclic, and 0 € Qg is the unique source.

Proof. Projectivity of X ensures that at most one of Hom(E;, E;) and Hom(Ej;, E;) is nonzero for
1 # j, so @ is acyclic since there cannot be paths from ¢ to j and from j to ¢ . For i € @)y, the space
Hom(FEp, ;) has a torus-invariant element since Fy, ..., E, are effective and Ey = O, giving rise
to a path in @ from 0 to ¢ € Qg so 0 is the unique source. O

Example 2.5.3. Let X = P? and let . = (Ox,O(1),0(2)). The quiver of sections for .& is:

xl\//xl
xg—/'\-/\xd./
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The map div can be extended to the path algebra. If a path p has support {a,...,a,}, define
div(p) :=div(aq) + - - - + div(ay).

Define the ideal of relations R to be a two sided ideal in the path algebra k@ generated by all
differences p — p’ where t(p) = t(p’), h(p) = h(p') and div(p) = div(p’). The pair (Q, R) is called a

bound quiver of sections, or a quiver of sections with relations.

Proposition 2.5.4. ( Proposition 3.3, [10]) If (Q, R) is the complete bound quiver of sections for
£ = (Ox,Li,...,Ly), then the quotient algebra kQ/R is isomorphic to End(@D;_, L;).

Definition 2.5.5. Let @ be a connected, rooted, acyclic quiver (e.g. the quiver of sections for a

collection of line bundles).

(i) We define Wt(Q) C Z%° to be the sublattice of functions 6: Qo — Z satisfying > i, 0i = 0.
The vectors {e; —eg : i # 0} form a Z-basis for Wt(Q).

(ii) We define the incidence map inc: Z®1 — Z0 by setting inc(e,) = €h(a) — €t(a)- L'he image of
inc is Wt(Q).

(ili) We introduce a k-algebra, kly,|a € Q1]. For a path p in ) we define y, := []
a spanning tree T in @ we define yr := [] acSupp(T) Ya-

a€Supp(p) Ya- For

(iv) We define the map pic : Wt(Q)) — Cl(X) by setting pic(e; — eg) = L.

The k-algebra k[y, : a € Q1] has a Wt(Q)-grading. We define the weight of y, to be inc(e,) for
each a € Q1. This grading induces a faithful action of the algebraic torus G := Hom(Wt(Q),k*)
on Agl = Speck[y, : @ € Q1]. An element g = (gi)icg, € (k*)"! acts on w = (wy)aco, as
g-w= (gh(a)wagt_(}l))ate. For 6 € Wt(Q), let k[y, : a € Q1]p denote the #-graded piece. We have

Agl//gG = Proj (@k[ya ta € Qﬂﬁ).
Jj=20
Let @Q be a quiver of sections, and note in particular that @ is acyclic with a unique source
0 € Qo. The toric quiver flag variety |-£| is the GIT quotient Ag ' J9G linearised by the special
weight ¥ := >, o (e; —eg) € Wt(Q). Such varieties, studied initially by Craw—Smith [10] and in
greater generality by Craw [8], can be characterised as follows:

Proposition 2.5.6. (Proposition 3.8, [10]) Let Q be a finite, connected, acyclic quiver with a
unique source 0 € Qo and special weight ¥ = 3, (e; —eg). The toric quiver flag variety |.Z|
coincides with:

i) the GIT quotient A wG linearised by 9 € Wt(Q);
k

33



(ii) the geometric quotient of Aﬂgl \ V(By) by the action of G, where the irrelevant ideal is

By = (H Yo : T is a spanning tree of Q rooted at O) = ﬂ (ya :h(a) = 2) ;
a€T i€Qo\{0}

(iii) the fine moduli space My(Q) of ¥-stable representations of the quiver Q of dimension vector
r=(1,...,1) € Z%,

Moreover, |Z| is a smooth projective toric variety obtained as a tower of projective space bundles

over Spec(k)

Definition 2.5.7. We say a scheme M is a fine moduli space for some class of objects if there is
a one—to—one correspondence between families of those objects over any scheme S and morphisms
from S to M. A tautological family over M is a family .7 over M for which any family of objects
over S is a pullback of .7 under a unique map ¢ : S — M.

Remark 2.5.8. The description of |.Z| = My(Q) as a fine moduli space of representations ensures
that it carries a tautological vector bundle P, o, #i with #y = 0| ¢| and sheaf homomorphisms
") = i) : @ € Q1} whose restriction to the fibre over My(Q) encodes the corresponding
representation {Wt(a) — Wh 1 a € Q1}. Moreover, the abelian group homomorphism Wt(Q) —
Pic(]Z|) sending (g, . .., 6,) to #;*@- - -@#," is an isomorphism. For more details, see [8, Sections
2-3).

2.5.2 Bound quiver representations

Let @ be a quiver. For any representation W of @, define wy,: Wi,y — Wy, to be the k-linear
map wp = We, * - - We, obtained by composition. Let J C k@ be a two-sided ideal of relations with
generators of the form zper cpp, where each I' is a finite set of paths that share the same head
and the same tail. A representation W of @ is a representation of the bound quiver (@, J) if and
only if ) _cpw, = 0 for each I' arising in the definition of J. A point in representation space
(wq) € AF" defines a representation of (Q,J) if and only it lies in the subscheme V(1) cut out by
the ideal

I;:= <Zcpyp €kly,:a € Q]| Zcpp is a generator of J)

pel pel’

of relations in k[y, : a € @1]. The ideal I; is Wt(Q)-homogeneous, since J is generated by sums
Zper cpp where the p’s have the same heads and tails. Hence V(I;) is G-invariant and the GIT
quotient

My(Q,J) := V(I;) [5G = Proj (Eszo (K[ya : @ € Q1] /IJ)jﬂ) (2.5.1)
is the fine moduli space of ¥)-stable representations of (Q,.JJ) with dimension vector (1,...,1). The
tautological bundles on My(Q, J) are obtained from those on My (Q) by restriction.
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Remark 2.5.9. The abelian category of finite-dimensional representations of (Q,.J) is equivalent to
the category of finitely-generated k@ /J-modules, so My(Q, J) is equivalently the fine moduli space
of ¥-stable modules over k@ /J that are isomorphic as (®ier ke;)-modules to Dico, kei-

2.5.3 Morphism to the Multigraded Linear Series

div(a)

Consider the k-algebra homomorphism ®: K[y, : a € Q1] — K[z1, ..., 24 sending y, to « for

a € Q1. This induces a map A4 — A?! which descends to a rational map oz X — |-Z|.

Proposition 2.5.10. (Proposition 4.1 [10]) The rational map ¢|.2| i a morphism if and only if
the preimage of the unstable locus V(B ) in A®1 s contained in the unstable locus V(Bx) .

Proof. The actions of the groups G = Hom(Wt(Q),k*) and T = Hom(C1(X),k*) on K[y, : a € Q1]

and k[z1, ...,z respectively arise from the horizontal semigroup homomorphisms in the diagram
N@1 _1nC Wt(Q)
divl lpic (2.5.2)

Nt 9%, C1(X)

where the vertical maps satisfy div(e,) = div(a) for a € @1 and pic(e;) = L; for i € Qy. We
recall that deg is the map giving the C1(X) grading of Cox(X) and that pic is defined in Definition
2.5.5. The map d respects gradings precisely because (2.5.2) commutes. We explain why in more
depth as follows. The map inc sends e, to ey(,) — €y(q) € Wt(Q). If h(a) =i and t(a) = j then pic
maps €p(q) — €y(a) 10 Lj ® L;l. Furthermore, div maps e, to div(a), which is mapped by deg to
L; ® L;l. This holds since the label of an arrow from ¢ to j is a section of L; ® L;l.

Since the map ® respects gradings, the induced map of affine spaces A% — A®! maps orbits
to orbits. Hence the rational map ¢|¢| is a morphism if and only if every semistable point in Ad
maps to a semistable point in A9t. This holds if and only if the preimage of the unstable locus
V(B|g|) in A®1 is contained in the unstable locus V(Bx) . O

Theorem 2.5.11. (Cor 4.2, [10]) We obtain a morphism ¢ ¢ : X — |Z| if and only if each line
bundle in the list £ is basepoint free.

If each line bundle in .# is basepoint free, then we say the quiver of sections for . is a basepoint
free quiver of sections. If this is the case, by Proposition 4.3 of [10], the image of X is given as a
GIT quotient:

p(X) = V() oG

where I is the prime ideal

I = (f € k[ya|a € @1]|f is homogeneous and f € ker(®)).
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Remark 2.5.12. The ideal I is also the kernel of the semigroup homomorphism
inc @ div : Z91 — Wt(Q) @ N¢,

Craw—Smith gave necessary and sufficient conditions for the morphism ¢ to be a closed embed-

ding.

Proposition 2.5.13 (Proposition 4.9, [10]). Let Q be a basepoint free quiver of sections, and let
V= >ico,(ei —eo) . The map ¢ : X — |Z| is a closed embedding if and only if the line
bundle L i= LY @ -+ LY is ample and ((Cox(2))/Io)ly~])g) = ((Cox(X)lz= )y for all top
dimensional cones o in the fan defining X.

We say a quiver of sections @ is wvery ample if it is basepoint free and g : X — [Z] is a
closed embedding.

Corollary 2.5.14. (Cor 4.10 [10]) Let £ be a list of basepoint free line bundles and define L :=
®icq, Li- Assume that the multiplication map H(X,L))® - ® H(X,L,) — H°X,L) is
surjective. Then g : X — |Z| is a closed embedding if and only if L is very ample.

2.5.4 Projective Toric Varieties as Fine Moduli

Recall the ideal of relations R in k@ is generated by all differences of paths p — p’ where h(p) =
h(p'),t(p) = t(p') and div(p) = div(p’). A representation of the bound quiver (@, R) is a repre-
sentation W = (W;, w,) of @ where w, — wy = 0 whenever p — p’ € R. The fine moduli space of
representations of (Q, R), My(Q, R), is the GIT quotient of V(Ir) under the action of G, where

Ir = (yp — yp|h(p) = h(p),t(p) = t(p)) and div(p) = div(p')).
The ideal I is homogeneous with respect to the Wt(Q) grading, and hence V(Ig) is a G-invariant
subset of A®T,
If @ is a very ample quiver of sections, then My(Q, R) = X if and only if V(Ig) \ V(B #|) =
V(Ir) \ V(B|g|). Furthermore

X =2 My(Q,R)if Ig = (Ig: Bf_;}‘),
where for ideals I and J in a ring R,
(I:J%) :={f € R| for every j € J there exists n € N such thatf - j" € I'}.

If this is the case, then we say that @ is fine. The next theorem gives conditions that guarantee
that we can find a list of line bundles .Z such that the complete quiver of sections for £ is fine.

Theorem 2.5.15. (Theorem 5.5, [10]) Let Ly, ..., L._o be basepoint free line bundles on X . If the
subsemigroup of Pic(X) generated by Ly,...,L._o contains an ample line bundle, then there exist
line bundles L,._1 and L, such that the quiver of sections of £ :={Ox, L1,..., L.} is fine.
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Chapter 3

Geometric Results

3.1 Quivers of Sections on Mori Dream Spaces

In this section we introduce the bound quiver of sections for a collection of line bundles on a Mori
Dream Space. These bound quivers encode the endomorphism algebra of the direct sum of the

sheaves in the collection. For r > 0, consider a collection of distinct line bundles
£ = (LQ, Ly,... ,Lr) C CI(X)

on the Mori Dream Space X, where Ly = Ox and L1, ..., L, are effective. For 0 < i < r, define
E; == p1(L;) where 1 is the isomorphism from C1(X) to C1(X) to obtain a collection

%= (Ey, Ey, ..., E,)

of distinct rank one reflexive sheaves on an ambient toric variety X. For 0 < 1,7 < r, we say that
a torus-invariant section s € H?(X, E; @ E 1) = Hom(E;, E;) is irreducible if it does not factor
through some FEj with k # ¢, j. The following definition extends the notion of a quiver of sections
for a collection of line bundles on a projective toric variety due to Craw-Smith [10] introduced in
Section 2.5.

Definition 3.1.1. The quiver of sections of the collection £ on X is defined to be the quiver of
sections of the collection .Z on X, that is, the quiver ) with vertex set Qo = {0,...,r}, and where

the arrows from ¢ to j correspond to the irreducible torus—invariant sections of E;, @ E L

Remark 3.1.2. 1. Definition 3.1.1 depends a priori on the choice of ambient toric variety X.
However, any two are isomorphic in codimension—one, so they have isomorphic class groups
and their fans have the same rays. This implies that the Cox sequence (2.1.1) is the same for

any choice of ambient toric variety, and hence @ is independent of the choice.
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2. We abuse terminology by calling @ the ‘quiver of sections of £’ because paths in @ from ¢
to j are not constructed directly from a basis of Hom(L;, L;) as in the literature, see [8,10].

We justify this abuse by recovering the Hom spaces in Proposition 3.1.4 below.

Definition 3.1.3. Consider the two-sided ideal

._ h(pi) = h(Pj),t(pi) = t(pj) for all 4, j
R <Zp e "0 el S0

in the path algebra k@. The pair (Q, R) is the bound quiver of sections of the collection .Z.

Proposition 3.1.4. The quotient algebra kQ/R is isomorphic to Endp, (@ier Li), and each

vertex i € Qo satisfies e;(kQ/R)eg = H(X, L;) where e; is the trivial path at verter i.
Proof. The endomorphism algebra Endo (@z‘er El) is constructed as a direct sum of k—vector
spaces

Endo (€D E:) = P H'(X.E; @ EY).

1€Qo ,J€Qo

A basis for each direct summand H 0(5( yE; @ E 1) is given by torus invariant sections. Multipli-
cation of two sections z; € HO()Z',EJ-1 ® E;ll) and x9 € HO()},EJ2 ® Elgl) is defined to be the
product z1z9 € HO()NC, Ej, ® E;ll) if i3 = j1 and zero otherwise.

For each i, j € Qp, there exists a map of k-vector spaces from the vector subspace of k@) spanned
by paths from i to j to HO()NC,Ej ® El_l) which maps a path to its label. This induces a map of
k-vector spaces

7 :kQ — Endo_ (@ E)
1€Qo
defined to be the direct sum of the maps described above. The map v is also a k-algebra homo-
morphism since the product of a pair of paths is defined to be their concatenation if it exists and
zero otherwise, and their concatenation is labelled by the product of the labels of each path.
The endomorphism algebra Ende, (@ier Li) is also given as a direct sum of k—vector spaces

Endox(@ L) = @ HY(X,L; ® L71).
1€Q0o 1,j€Qo

By picking a basis for each space of sections H°(X, L; ® L;), we can define multiplication in the

endomorphism algebra as in the toric case. The natural map 7 : Cox(X) — Cox(X) induces maps
7 HY(X,E; @ E7Y) — HY(X,L; © L7Y).
The direct sum of these maps over i,j € (g gives a k-algebra homomorphism

7o Endoi(@ E;) — Endoy (@ L;).

1€Q0 1€Q0
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The kernel of 7 is the direct sum of the kernels of the 7;;’s.
For each i, j € Qg, there also exists a map v of k-vector spaces from the vector subspace of k@)
spanned by paths from i to j to H(X, L; ® L;l) mapping a path to its label modulo Ix. This

induces a map of k-vector spaces

v:k@Q — Endox(@ L;)
1€Qo

defined to be the direct sum of the maps described above. The map v is also a k-algebra homo-
morphism for the same reason as above.

These maps fit into a commutative diagram:

kQ —2— Endo (Bicq, Ei)
H l% (3.1.1)
kQ —Y— Endoy (Bico, Li)

1€Qo

The map v is surjective, since for each i,j € Qg there exist paths from i to j labelled by every
section of HO()NC, E; ®E;1). The map 7 is surjective since each 7;; is. Finally, v is surjective since the
diagram commutes. Therefore by the first isomorphism theorem Endp , (EDz‘er L;) 2 kQ/ ker(v).
This is the preimage under v of the kernel of 7, i.e. the ideal generated by linear combinations of
paths > a;p; such that the paths p; have the same heads and tails and such that > a;zdvVPi) e Ty

The second statement follows from the first since we have Ly = Ox and we compose arrows

and maps from right to left. O

3.2 Multilinear Series

In this section we use the quiver of sections of a collection . of line bundles on a Mori Dream
Space X to define the corresponding multilinear series |-Z|. This variety generalises the classical
linear series of a single line bundle in that one obtains a natural map from X to |-Z| by evaluating
sections of line bundles. We give necessary and sufficient conditions for this map to be a morphism
and to be a closed embedding. In the case that the map is a morphism we describe its image as a
GIT quotient.

Let ¥ = (Ox, L1,...,L;) be a collection of effective line bundles on a Mori Dream Space X.
Lemma 2.5.2 guarantees that the corresponding quiver of sections @) is finite, connected, acyclic

and has a unique source 0 € Q.

Definition 3.2.1. The multilinear series for £ is the toric quiver flag variety |.Z| of @ from
Proposition 2.5.6.
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Remark 3.2.2. Just as @ is not precisely the quiver of sections of .Z (see Remark 3.1.2), it is
perhaps an abuse of terminology to call |.Z| the multilinear series of .Z. Indeed, for the special
case .Z = (Ox, L) we have that |.Z| = P(H°(F;)) is a projective space, but it need not coincide
: HO(X,Ey) — HY(X, L)

with the classical linear series |L1| because the epimorphism 7|, (R.E)

from diagram (2.1.5) need not be an isomorphism.

In order to study morphisms from X to the multigraded linear series |.Z|, define

O: Kklyg :a € Q1] = Kk[z1,...,24]

to be the k-algebra homomorphism sending y, to a’s label for a € Q1. We recall that the map inc
and pic are defined in Definition 2.5.5, div is defined in Definition 2.5.1 and dAeé is defined to be the
map deg given by (2.1.1). The actions of the groups G = Hom(Wt(Q),k*) and T' = Hom(C1(X), k*)
onkly, : a € Q1] and k[z1, ..., z4] respectively arise from the horizontal semigroup homomorphisms
in the diagram

N& ¢ Wi (Q)

divl lpic (3.2.1)
NG LB, Cl(X)
where the vertical maps satisfy div(x,) = div(a) for a € Q1 and pic(y;) = E; for i € Q.
The map ® is a graded ring homomorphism precisely because (3.2.1) commutes (see the proof of
Proposition 2.5.10). Under the identification of Wt(Q) with the Picard group of |-Z/|, the subspace
of the Cox ring k[y,|la € Q1] of |-Z| spanned by monomials of weight § € Wt(Q) coincides with
H @0 W)
Recall that 7 is the canonical surjection Cox(X) — Cox(X). Since the T-action on Cox(X) is
compatible with that on k[x1, ..., z4], the map

P:=70d: kly,:a € Q1] — Cox(X)

is a graded ring homomorphism. The induced equivariant morphism ®*: V(Ix) — AH? ' descends
to a rational map ¢ ¢ X --» |.Z].

Proposition 3.2.3. Let £ = (Ox, L1,...,L;) be a collection of effective line bundles on X. The
rational map | |2 X --+|Z| is a morphism if and only if L; is basepoint-free for 1 <i <r.

Proof. For x € X choose any lift 7 € V(Ix) \ V(Bx). We will show that the rational map ¢ ¢/ is
well defined at z if and only if none of the line bundles in .Z has a basepoint at z. The G-orbit
of the quiver representation ®*(z) € Ag ' which is independent of the choice of lift, is obtained

by evaluating the labels on arrows at z, that is, by evaluating sections of the bundles Ly4) ® Lt(i)
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at x. The rational map ¢ ¢ : X --» [Z| is a morphism if and only if every such ®*(¥) € Agl is
J-stable.

Let W' = ((W))icqo» (W))acq,) be a proper subrepresentation of ®*(Z). We recall that ®*()
is ¥ stable if and only if ), o ¥; dim(W;) < 0. Since ¥ = (-, 1,...,1) where r = |Qo| — 1 and
dim(W/) is either 0 or 1, this is the case if and only dim(W{) = 1 and there exists ¢ > 0 such that
dim(W;) = 0. For each path p from 0 to ¢, the map w;, is given by evaluating the label of p at Z.
This means that it is possible for dim(W}) to be 0 if and only if the map w;, = 0 for each path p
from 0 to 4, but this can happen if and only if L; has a basepoint at . Hence, ®*(7) € Ag Uis
Y-unstable if and only if there exists ¢ > 0 such that the evaluation of every section of L; at x equals
zero. Equivalently, ®*(z) € AH? ! is ¥-semistable if and only if L; is basepoint-free for 1 <7 <r. 0O

The Cox ring of X is a unique factorisation domain by Theorem 2.1.10, so ker(®) is prime and

hence so is the ideal
Ig = <f €kly, :a€ Q] : f €ker(P) is Wt(Q)—homogeneous) (3.2.2)

generated by its Wt(Q)-homogeneous elements. This ideal can be computed explicitly as the kernel

of the k-algebra homomorphism
U:Kk[ya:a € Q1) = K[z1,...,34, ki )i € Qol/(Ix + K) (3.2.3)

satisfying ¥(y,) = tt(a)xdi"(“)hh(a) for a € 1 and where K is the ideal generated by {h;t; — 1]i €
Qo}; see Chapter 5 for details. This ideal cuts out the image of the morphism constructed in
Proposition 3.2.3 as follows.

Proposition 3.2.4. Let ¥ = (Ox, L1,...,L;) be a collection of basepoint-free line bundles on X

with quiver of sections Q. Then
(i) the image of the morphism | g¢|: X — |ZL] is V(Iq) JsG; and
(i) the tautological line bundles on |Z| satisfy go‘*i,'(%) = L; forie Qo.

Proof. Since X is complete, the image of ¢|¢| is a closed subscheme of |-Z|. The geometric quo-
tient construction of |.Z| from Proposition 2.5.6(i) implies that the image is therefore the geometric
quotient of a G-invariant closed subscheme of Aﬂg "\ V(B,g|). The affine variety V(ker(®)) is the
image of the equivariant morphism Spec(Cox(X)) — AH? " induced by ®, and the variety V(Ig)
cut out by the Wt(Q)-homogeneous part of ker(®) is the minimal G-invariant algebraic set in A@!
containing all G-orbits from V(ker(®)). The image of | | is therefore the geometric quotient of
V(Ig) \ V(B|¢|) by the action of G. This coincides with the GIT quotient V(Ig)/yG by Proposi-
tion 2.5.6, so (i) holds. For part (ii), the tautological bundle #; on |.Z| corresponds to the weight
Xi — xo € Wt(Q) under the isomorphism from Remark 2.5.8. Since the equivariant morphism
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Spec(Cox (X)) — Agl factors through A¢, examining the diagrams (2.1.6) and (3.2.1) shows that
@y (#i) = (¢ o pic)(xi — xo0) = P(E;) = L for i € Qo. O

We recall that Theorem 1.1 states that for a collection . = (Ox, L1, ..., L;) of effective line
bundles on X, the map ¢ ¢: X --» |-Z| is a morphism if and only if each L; is basepoint-free, in
which case the image is presented explicitly as a geometric quotient and the tautological bundles
satisfy go"‘iﬂ'(%) =1L,

Proof of Theorem 1.1.1. Proposition 3.2.3 establishes that ¢|&: X --» [.Z| is a morphism if and
only if L; is basepoint-free for 1 < ¢ < r. Proposition 3.2.4 then presents the image explicitly as a
geometric quotient, and establishes that the tautological line bundles on |.Z| satisfy gprﬂ W) = L;
for i € Qo as required. O

Remark 3.2.5. The list of reflexive sheaves :37 on X determines the ideal
E = (f €kly,:a€ Q] f € ker(d) is Wt(Q)—homogeneouS) (3.2.4)

obtained as the toric ideal of the semigroup homomorphism inc @ div: N¢ — Wt(Q) @ N¢. If
each reflexive sheaf in .Z is a basepoint-free line bundle on X, then Theorem 1.1 of [10] gives a
morphism i X - V(I@)//gG whose restriction to X is the morphism pg: X — V(Ig)/sG
from Proposition 3.2.4. However, this is typically not the case as Example 3.3.4 shows.

3.3 Criteria for Closed Immersion

A collection £ is said to be very ample if the morphism ¢| ¢ from Proposition 3.2.3 is a closed
immersion. We now introduce a necessary and sufficient condition for .Z to be very ample. We
(enhance and) adapt the proofs of Proposition 5.7 of [8] and Corollary 4.10 of [10] to our situation
because @ is not precisely the quiver of sections for .# (see Remarks 3.1.2 and 3.2.2). We recall

that a subspace of H(X, L) is a very ample linear series if a basis gives a closed embedding of X
into P*(HY(X, L).

Theorem 3.3.1. Let £ = (Ox, L1,...,L;) be a collection of line bundles on X where we assume
each L; is basepoint free. The following are equivalent:

(i) the morphism ¢ o2 X — |£| is a closed immersion;
(ii) the image of the multiplication map
HY(L)® - @ H(L,) — H (L, ®---® L,). (3.3.1)
s a very ample linear series;

42



(iil) the map [[1<i<p Pir,: X = [La] X -+ X |Ly| ds a closed immersion.

Proof. The bundle ¥ = #] ® --- ® #; is very ample by Proposition 2.5.6. The toric variety |.Z| is
smooth, so the ample bundle ¢ determines the closed immersion g : |£]| — P*(H?(|.Z|,1)). The
composition g 0 o g: X — P*(H?(].Z|,9)) is determined by the line bundle (g © | #))*(¥) =
(¢ opic)(f) = L1 ® --- ® L, and the subspace of sections ®(H°(|.Z|,9)) € H*(X,L1 ® --- ® L,).
We claim that ®(H°(|.Z],7)) coincides with the image V of the multiplication map (3.3.1), in
which case ¢y 0 ¢ #| coincides with the (a priori rational) map ¢y : X — P*(V) to the classical
linear series. Indeed, for 6 = (6, ...,0,) € Wt(Q), the restriction of ® to the subspace spanned by

monomials of weight 6 defines a k-linear map
bg: HO(|L|,# @@ W) - HO(X, L] @ @ L))

because (1o pic)(f) = L @ --- @ LY. In particular, the map @ for ¥ = > 1<i<r(Xi — Xo0) and the

product ®1<i<r Py, —yo) fit In to a commutative diagram of k-vector spaces

HY(Z|, ) @ @ HN| L, #) —— HU( L1 @@ W)
®1§i§r¢(Xi—X0)l lq’ﬂ (3'3'2)
H(X,[))® -9 H(X,L,) —— H'X,[1® ---®L,)

in which the horizontal maps are given by multiplication. For 1 < 4 < r, the map ®(,_,) :
HY(|.Z|,#;) — H°(X, L;) can be obtained by composing two surjective maps H°(|.Z|, #;) —
H(X,E;) and H(X, E;) — H°(X, L;). First the map H°(|.Z|, #;) — H°(X, E;) is surjective,
since a basis of the space of sections of #; is given by {y,|p is a path from 0 to i}, this map sends
yp to the label of p. By definition of the quiver of sections, there exists a path p from 0 to ¢
labelled by every torus invariant section of E;. Hence this first map is surjective. The second map
HY(X,E;) — H(X, L;) is the restriction of the canonical surjection 7 : Cox(X) — Cox(X) and
is hence also surjective.

Every monomial of weight ¢ in k[y,|la € @1] can be decomposed as a product of monomials
of weight e; — eg for each i € Q¢ (see Remark 4.2.3 (ii)) therefore the top map in the diagram is
surjective. Hence commutativity of the diagram implies that the image of ®y coincides with the
image V of (3.3.1). This proves the claim.

Since V is the image of the multiplication map (3.3.1), the morphism ¢y : X — P*(V) is the
composition of the product [, ;. ¢|r,: X —> |L1][x - x|L;| of morphisms to the classical linear
series and the appropriate Segre embedding to P*(V'). This is because the map ngigr O, X —
|Ly|x---x|L,| composed with the Segre embedding is given by every possible product of one section
from each of Ly,...,L,. The claim implies that the diagram
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Segre .

|[Laf - x| L] P*(V)

P*(H(9))

[Ti<i<r®iL; ®19]
Y12|

X 2]

commutes, where ¢ is the closed immersion of projective spaces induced by ®y. Three maps in the
diagram are closed immersions, so ¢| | is a closed immersion if and only if [[,;<, ¢z, is a closed
immersion if and only if the linear series V' is very ample as required O

Remark 3.3.2. Neither of the maps from statements (i) and (iii) of Theorem 3.3.1 factors through
the other. Typically |.Z| has much lower dimension than |L;| X - - - X | L[, so the multigraded linear
series is a more efficient multigraded ambient space than the product.

Corollary 3.3.3. Let Lq,...,L,._1 be basepoint-free line bundles on X. If the subsemigroup of
Pic(X) generated by Ly, ..., L,._1 contains an ample bundle, then there exists a line bundle L, such
that the quiver of sections for £ = (Ox, L1,...,L,) is very ample.

Proof. Theorem 3.3.1 implies that ¢| ¢| is a closed immersion if Ly ® - - - ® L, is very ample and the
map (3.3.1) is surjective. The proof of [10, Proposition 4.14] now applies verbatim. O

Example 3.3.4. Continuing Example 2.1.15, let X4 be the del Pezzo surface for which the ample
linearisation x = 111y —5l1 — 3l — 2l3 — 4 defines X4 := Alo//XT. We compute using the intersection
pairing on Xy (See Section 2.2.2) that each line bundle in the list

& = (ﬁx4,lo, 2l — 11,21y — 19, 2ly — I3, 2y — Iy, 210) (3.3.3)

is nef and therefore basepoint-free but not ample. Write L = (Eg, Eq,...,Eg). Since the nef
cone of any Mori Dream Space has a chamber decomposition into the nef cones of ambient toric
varieties, each F; is basepoint-free on some ambient toric variety. This implies that the code
from [21, Example 2.11] computes the irrelevant ideal for the GIT quotient A{ /i T determined
by the corresponding linearisation F; € Cl(X). By comparing each with the irrelevant ideal of
X € CI(X) we see that Fs3, E4, E5 are not basepoint-free line bundles on X, as follows. Let J
be the radical of the ideal generated by sections of 1 ~!(x) € Cox()z ) (where we recall 9 is the
isomorphism from C1(X) to C1(X)) and let J; be the radical of the ideal generated by all sections
of F;. Explicitly, these are:
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T3TLTTTYLT10, L2LATTLIL105 T1T4TTTYL10, TIT4LELITL10,s
ToT4T5TYLT10, LIXLXTLYL105 L3T4LELIL10, LIXL4L5LTL10,
T1T4T5T7T10, LIXLXELEL105 T2L3T4T5L10, L1X2L4L5L10,
J = TQTATTTYLY, T1T4LTTYLY, L2XAL5XXY, L2X4XELTLY, L1X4LELTLY,
TTAT5TELY, T2TITATELY, T1XLITALELY, L1X4X5XTLY, L2XIXLLTLG,
T1L3TALTLY, L2XILALELY, L1 LILLALELY, L2X3LL4L5LE, L1 L2L4L5LS,

L1T4T5LELT7, L1X3IL4XELE, L1XL2L4T5T6

J1 = ( T3T4T10, L2L4LY, L2LILY, T1L4ALT, L1L3L6, L1L2L5 )

T1X4X7, L1X3L6, L1X2X5, L3T4LTL10, L3L4L6L10,
Jo = ToTATTXY, L2XAX5LY, L2XILELY, L2LIL5X8, L2X3XL4L5L10),

L2XIL4LELYy L2LILALTLY

T2X4XY, L2XIXE, T1X2X5, L3L4LYL10, L3L4LIL10,
J3 = T1X4XTLY, T1XZLELYy L1L4X5XT, L1X3X5L6,
T1T3TAX5L10, L1L3TL4LELY, L1XILALTLY

T3T4L10, L2T3XL, L1L3L6, L2L4XLIL10,
Jy = T1T4TT7X10, L2XL4XELY, L1 X2X5XL, L1 X4XELT, L1X2L5L6,
T1T2X4X5L10, L1L2X4XELY, L1X2LALTTY

T3X4L10, L2X4LY, T1X4LT7, L2XILIL10, L1XILEL10,
Js = T2XZLILY, L1X2X5L9, L1X3XELT, L1XL2X5LT,
T1T2X3L5X10, L1X2L3LELY, L1L2X3L7LY

Jo = ( T3L4T10, L2L4LY, L2LILY, LT1L4LT, L1L3L6, L1L2L5 )

Using the Macaulay 2 command “isSubset”, we see that Ji, Jo and Jg contain J, therefore the
common zero loci of the sections of [y, 2]y — I; and 2l are contained in the common zero locus of
the sections of x—the unstable locus. However, the common zero loci of 2y — lo, 2lg — I3 and 21y — 4
are not contained in the unstable locus, and therefore are not basepoint free.

In particular, whilst it would be possible to restrict ourselves to lists .Z of line bundles on X
which lift to basepoint free line bundles on X, we will show that in this example ¢|#| is a morphism
which is not the restriction of a morphism on the ambient toric variety. Indeed, since not all the
E;’s are basepoint-free the rational map from the toric variety is not a morphism by Theorem
2.5.11. This shows that we cannot deduce that ¢|¢| is a morphism simply by restriction from the

toric case (compare Remark 3.2.5).
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We now show ¢|¢| is a morphism directly. In this case, the quiver of sections () is shown in
Figure 6.1, where each arrow is labelled by the torus-invariant section of the relevant reflexive sheaf

on )?4. We list arrows with tail at 0 as aq,...,ag from the top of Figure 6.1 to the bottom; list

—
Lo ]
1aALT

T1X2T5 151?65 - 2
—

i \ xr3d8 _/

Z.

T1X4X7 lﬁ T4T9 22—

172173$g :C].xﬁ rs
\

LoX4gX9 $2x8 - >

T3T4T10 $41~10 b

Figure 3.1: A quiver of sections for a collection on X4

those with tail at 1 as ar,...,a1s from the top of the figure to the bottom; and list those with head
at 6 as ajg, ..., a from the top to the bottom. Likewise, list the coordinates of Aﬂgl as Y1, ..., Y22,
and compute the kernel of (3.2.3) to obtain the ideal

Y16 — Y17 + Y18, Y13 — Y14 + Y15, Y10 — Y11 + Y12, Y7 — Y8 + Y9, Y3 — Y5 + Ys,

Y2 — Y4+ Y6, Y1 — Y4 + Y5, Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21,
Yoy19 — Y17Y22 + Y18Y22, YsY19 — Y14Y21 + Y18Y22, Y6¥Y17 — Y5918, Y6Y14 — Y4Y15,
YsY11 — Yay12, YsYs — YeYs — YaYo + Y6Yo, YsY15Y17 — YoY14Y18 — YsY15Y18 1 Y9Y15Y18,
Y11Y15Y17 — Y12914Y18, YoY11Y17 — Y8Y12Y17 + Y8Y12Y18 — Yo¥12Y18,

Yoy11Y14 — YsY12Y14 + Y8Y11Y15 — YoY11Y15

that cuts out the image of ¢ ¢: X4 — |Z|. We claim that ¢| ¢| is a closed immersion, and hence
X4 = V(Ig)/sG. Indeed, for 1 < i < 4 we have L;y; = 2lp — [;, and the intersection pairing
shows that ¢z, |+ X4 — Fy contracts the (—1)-curves {l; : j # i} but not /;. A simple case-
by-case analysis shows that the morphism H2Si§5 |1, separates all points and tangent vectors
of X4: a pair of distinct points on X4 must either both lie on the same exceptional curve, lie on
different (non-intersecting) exceptional curves, have one point on an exceptional curve and one off
an exceptional curve or have neither lying on an exceptional curve. In each of the above cases, there
is an exceptional curve L; which has neither point on it, and hence the map ¢z, separates the two
points and their tangent vectors. Therefore H2§i§5 |,| must also separate the points and their
tangent vectors, hence so does [[,;<¢¢|z,|- We deduce from Theorem 3.3.1 that ¢ ¢: X4 — ||

is a closed immersion.
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Chapter 4

Algebraic Results

4.1 Fine Moduli of Bound Quiver Representations

This chapter establishes when the morphism ¢ ¢: X — |-Z| induces an isomorphism between the
Mori Dream Space X and a fine moduli space My(Q, R) of J-stable modules over the endomorphism
algebra of @ZEQO L;. Our main algebraic result is an efficient construction for collections of line

a€Supp(p) Ya» that ® : Klyala €
1] — kl|zq, ..., 24| maps y, to xdiv(“), and that @ : kl|y,|la € Q1] — Cox(X) is the composition
Q1] ; ps Y Y p

bundles with this property. We recall that for a path p, y, := []

70 ® where 7 is the canonical surjection Cox(X) — Cox(X).
A list £ of line bundles on X defines a pair of two-sided ideals in k@ and hence a pair of
ideals of relations in k[y, : a € Q1]. First, the ideal R from Definition 3.1.3 determines the ideal of

relations

Ip = <Zcpyp €kly, :a € Q]| (4.1.1)

I' is any set of paths sharing head and )
pel

tail for which - V) € Iy

Each generator of I is Wt(Q)-homogeneous and lies in ker(®), so I is contained in the prime
ideal of equations Ig from (3.2.2). In Chapter 6 we present code that allows us to compute Ir
explicitly. i In addition, the kernel R of the epimorphism kQ — Endo, (@ier E;) obtained by

sending p to 24V(®) determines the ideal of relations

[ is any set of paths sharing head and
. . div(p) (4.1.2)
tail for which }° & cpa =0

f]; = I§: (Zcpyp E]k[ya:ae Ql] |

pel

We have that I is contained in I and IE (see (3.2.4)) is contained in I¢ since ker(@) is contained

in ker(®). It also holds that E is contained in I since Iy is generated by homogeneous polynomials
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in k[ya|a € Q1] in the kernel of ®. Therefore we have the following inclusions:

Ir C IQ
U U
Ir C IQ

Compute the affine varieties in Ag ' cut out by the ideals j;;, fé AR, Ig Cklyg : a € Q1], remove
from each the J-unstable locus V(B ¢|), and compute the geometric quotient by the action of G to
obtain the left-hand square in the commutative diagram of GIT quotients

V(Ig) JsG —— My(Q,R) —— AP JyG

T T H (4.1.3)

V(Ig)sG —— My(Q,R) —— |.Z]

in which each morphism is a closed immersion.

Theorem 4.1.1. If £ is a list of basepoint-free line bundles on X, then the induced morphism
olz)r X — My(Q, R) (4.1.4)
is surjective if Ig coincides with the saturation
(Ig: Bﬁ%) =A{f € klyala € Q]| for every spanning tree T of Q there exists n € N such that f-y} € IR},

where we recall that for a spanning tree T,y =[] acSupp(T) Ya- In particular, if £ is very ample
and Ig = (Ip : Bfé') then (4.1.4) is an isomorphism.

Proof. The ideal I is prime since it is the homogeneous part of the kernel of map from a ring to a
domain. It suffices by Theorem 3.2.4 to show that the closed immersion V(Ig) /sG — V(IR) G is
an isomorphism. Proposition 2.5.6 shows that the ideal B | cuts out the J-unstable locus in Ag Y
so we need only show that V(Ig) \ V(B g)) is isomorphic to V(Ig) \ V(B|g|). Since I is prime,
this holds if Ig = (g : BE’,‘). The second statement is immediate. O

Remark 4.1.2. In light of Proposition 3.1.4 and Remark 2.5.9, when the map (4.1.4) is an isomor-
phism then we describe the Mori Dream Space X as the fine moduli space My(Q, R) of ¥-stable
modules over End(€D,cq, Li) that are isomorphic as (@ier ke;)-modules to Dico, kei-

4.2 Main Algebraic Result

We now work towards our main algebraic result which exhibits many collections of line bundles on
X for which the morphism from (4.1.4) is an isomorphism, thereby providing a noncommutative

algebraic construction of X as in Remark 4.1.2.
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We first introduce the collections of interest. Choose generators g1, ...,gm € k[z1,...,24] of
the ideal I'x, set dp := maxi<j<m {total degree of gj} (where total degree is as defined in Definition
1.1.3 of Cox-Little-O’Shea [5]) and define

5o { do/2 if dp is even;
B

. (4.2.1)
do +1)/2 otherwise.

We recall that 1 is the isomorphism from C1(X) to C1(X). Consider line bundles L1, ..., L,_5 on
X for which the corresponding rank one reflexive sheaves By := ¢~Y(Ly),..., B9 := ¢ 1 (L,_5) on
X are basepoint-free line bundles such that the subsemigroup of Pic()z ) generated by Eq, ..., E._o
contains an ample line bundle. Choose sufficiently large integers (1, ..., 8,_2 to ensure that E :=
Efl ®-- -®Efi§2 is O x-regular with respect to E1, ..., E,_o and, moreover, that E? is very ample.
We can always find such f1,...,8,_2 by Propositon 2.3.4. Define E,_ 1 := E% and E, := E%®.
Augment the list Ly,...,L,_9 on X with Ly := Ox, L,_1 := ¢(E,_1) and L, := ¢ (E,) to obtain
a collection

£ =(0x,L1,...,Ly) (4.2.2)

of basepoint-free line bundles on X. Let ) denote the quiver of sections of .Z. The corresponding
collection of line bundles . := (O, F1,. .., E;) on X satisfies the conditions of Theorem 2.5.15,
SO

Io=(Ig: Bf_%). (4.2.3)
Thus, the induced morphism ¢, 7 X — AQ JyG is a closed immersion whose image V(E) J9G is
isomorphic to My (Q, ﬁ)
Remark 4.2.1. 1. It follows that each collection (4.2.2) determines a commutative diagram

2]

L V(I oG —Zs Mo(Q.R) —— A )G

[ [ [

Pl

X L V(o) fsG —— My(Q,R) ——  |Z|

X
(4.2.4)

in which every morphism is a closed immersion.

2. Since E is Og-regular with respect to Fy,...,E, o and each 3; > 0, Theorem 2.3.2 shows
that the multiplication map H(E,_; ® E; ') @ H)(E,_1) — H°(E, ® E; ') is surjective for
all 1 <4 <r—1. This means that for any 7, every path from vertex ¢ to r can be decomposed
into a path from 7 to r — 1 and a path from » — 1 to r since E,_1 = E, ® E;ll In particular,

every path in @) from 0 to r passes through r — 1.

3. For clarity in what follows, we work with elements of k[y, : a € Q1] modulo the relation ~ in
which polynomials are equivalent when their difference lies in Iy. Since I is the toric ideal of
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the semigroup homomorphism inc @ div: N9 — Wt(Q) ® N? (see Remark 2.5.12) monomials
satisfy y™ ~ y™ if and only if inc(m — m’) = 0 and div(m — m’) = 0, that is, y™ ~ y™ if
and only if y™ and y™ share the same weight in Wt(Q) and have the same image under .
Before introducing the main result, we present a technical lemma for any list & = (Ox, L1,..., L)
as in (4.2.2). Write y = 3, xie; € Z9 as x = xT — x~ where x* = 3, xfe; € N9 have disjoint
supports I = {i € Qo : x; > 0} and I, = {i € Qo : x; < 0}. In particular, x € Wt(Q) gives

— +_ -
DI D PP
i€l i€l

For any spanning tree 7 in Q, set y7 := HaESUpp(T) Yq. We recall that the map inc : N1 — 77 +1

maps €, to ey(q) — €(q) and that the image of inc is Wt(Q).

Lemma 4.2.2. Assume £ is a list of line bundles as in (4.2.2), and let Q be the quiver of sections
for Z. Let T be a spanning tree in Q and let x € inc(N?1)\ {0}. There exists m € N® such that
for any monomial y¥ € kly, : a € Q1] of weight x, we have

Tx

)y ~ ™ [ ve (4.2.5)
a=1
where v1,...,n, are paths in Q, each with tail at 0 and head at r, where we recall that r is the

number of vertices in Q) excluding the source vertexr 0. Also, yV divides HZ’; 1 Yvas and the resulting
quotient ®([ ], Yv.)/P(y") depends only on T and x.

Proof. We begin by constructing the relevant m € N@1. The spanning tree 7 supports a path ¢;

from 0 € Qg to each vertex i € g and hence to each vertex in I,. We may therefore write

()™ =y™ [] W) - (4.2.6)

icly

where m; € N® depends only on 7 and . The tree 7 supports a path ~ from 0 to  whose label
is a torus-invariant section s € H 0(ET). Since E,_1 is Ox-regular with respect to F1, ..., Fr_5 and
each B; > 0, Theorem 2.3.2 implies that the multiplication map

HE, 1@ B @ @ By @ B Y @ HO(E)) — HO(E,) (4.2.7)

is surjective. In particular, for each j < r — 2 there exist sections of F, ® E;l and E; whose
product is s. By definition of the quiver of sections, there exists a pair of paths in ) labelled by
these sections, one from 0 to j denoted q}’ , and the other from j to r denoted q}. Concatenating
gives a path ¢;qj from 0 to r that passes via j and, by Remark 4.2.1(2), through r — 1 such that

j
Yv ™~ Yglq- Multiply by y7/y to obtain yr ~ ng_ym(f) for some m(j) € N@! that depends only
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on 7 and j (and on the lift of s via (4.2.7), but we fix one such lift for 7 and 7). Applying this
X;r—times for each j € I; and multiplying gives

+

)™ ~y™ [ W) -

. J
_]GIX

where my € N® depends only on 7 and y. Multiply by (4.2.6) to see that

()™ ~y™ T e TT (we)e (4.2.8)

iely jer¥

where m := m; + my € N¥! depends only on 7 and .

To complete the proof, write v = Zate vee, € N@ where inc(v) = x. Since xy # 0 there
exists i € I,
Xh(a;) < 0 then h(ay) € I;, in which case we define p; := a; and repeat the above for v/ := v —e,.

so there exists a; € @1 with t(a;) = ¢ such that v,, > 0. There are two cases. If

Otherwise, Xh(q,) < 0 in which case there exists ag € Q1 with t(az) = h(a1) such that v,, > 0. Since
@ is acyclic we can continue in this way, obtaining a path p; that traverses the arrows aq,as, ...
and satisfies xp(,,) > 0, that is, h(p1) € I;. As in the first case, we may repeat the above for
V=V = 3 coupp(p) €a- In either case, the weight X' := inc(v') satisfies n,» = n, — 1, and we
obtain by induction a set of paths p1,...,p,, satisfying y¥ = HZ’;l Ypa» Where precisely x, of
these paths have tail at ¢ € I,” and X;'F have head at 7 € I;g . Thus, for 1 < a < n,, there exists
i€l ,j€ I;r such that v, := q}paqi is a path in ) from 0 to r and

Tox o N
H Yva = H (yQi)Xi H Ypa H (yq;)xz .
a=1 a=1

i€ly il

I:Iote that yz divides HZ% Yryer - More~over, multiplying (4.2.8) by yv gives (4.2.5). The quotient
(1, ¥ra)/®(yY) equals @ ((y7)?"x)/®(y™), so depends only on T and y as required. O

Remark 4.2.3. (i) Applying ®(—) to (4.2.5) and dividing the resulting equality by ®(y¥) shows
in addition that the monomial ®(y™) divides ®((y7)?"x).

(ii) We draw the reader’s attention to the fact that we have also constructed a set of paths
D1, -+, Pn, satisfying y¥ = HZ’;I Yp,» Where precisely x; of these paths have tail at i € I/
and X;' have head at 7 € I;.

We are now in a position to state and prove our main algebraic result.

Theorem 4.2.4. Let Ly, ..., L._5 be basepoint-free line bundles on a Mori Dream Space X. If the

corresponding rank one reflexive sheaves By := ¢~ (L1),..., Er_g9 = " Y(L,_3) on X are basepoint-

free line bundles such that the subsemigroup of Pic(X) generated by En, ..., E._o contains an ample
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line bundle, then there exist line bundles L,_1, L, such that the induced morphism
olz)r X — My(Q, R) (4.2.9)
is an isomorphism for £ = (Ox,L1,...,Ly).

Proof. Define the line bundles L,_; and L, as described at the start of this section to produce a
collection .Z of the form (4.2.2). Remark 4.2.1(1) shows that . is very ample, so by Theorem 4.1.1
it suffices to prove that Io = (Ip : |O_C$j”|) To establish one inclusion, let f € (Ig : BE;;'). Since
Ir C Iq and hence (Ig : By) C (Ig - BP)); we have that (yr)N f € I for any spanning tree T
and N € N. Since Ig is prime, we have either Ig = (Ig : Bﬁ%o as required, or B¢ C Ig. The
ideal B¢ is generated by monomials, and since I is prime, this would imply that I contained
a variable. The map ® maps variables to nonzero monomials, and since the image of I under
® is contained in Iy this would imply that Ix contains a monomial. Since Ix is also prime,
this in turn would imply that Ix contained a variable, contradicting our assumption that the
number of generators d of Cox(X) is as small as possible. Therefore (Ig : BE’,') C Ig. For the
opposite inclusion, let f € Iy be a homogeneous generator of weight x € inc(N@)\ {0} and let
T be a spanning tree in Q. If we can show that (y7)Vf € E + Ip for some N € N, then by
increasing N if necessary and applying the equality fé = (Ig: Bf_%‘) from (4.2.3), we deduce that
(yr)Nf eI+ I =1Ig and hence f € (Ig : Byy)) as required.

In fact we show that (yr)Vf € E + Ir for N = 2n,.. We proceed in four steps:

STEP 1: Introduce a set of paths {4} in Q such that

(yr)"™f ~y <Z cs H Y 3) (4.2.10)

for some m € N and cs € k, where in addition we have @(ZB g Ti<a<n, Yras) € Ix.
Decompose [ as a sum of terms f = ZB cgy"? for cg € k and vg € N@1 satisfying x = inc(vg).
Since x # 0 we apply Lemma 4.2.2 to each monomial y¥# to obtain (y7)*™xy¥s ~ y™ [, Yo s
where m depends only on 7 and x (not on ) and where each 7, 3 is a path in @ with tail at 0
and head at r. This gives (4.2.10). Also, the quotient 2% := ®(]], yfyayﬁ)/é(yvﬁ) € klzy,...,zq)
depends only on 7 and x (not on ). Since f € Ig, we have ®(f) € Ix and hence we deduce that

5(25 s 105 Ve s) = xq(zﬁ 055@"3)) = 29%(f) € Ix as required.

STEP 2: We fix generators gi,...gm of Ix and introduce a second set of paths {p;jr.e} in @

such that
ZCBHy“/aB NZC%MH?JPHH

1,5,k
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for some c; j 1, € k, where for each i, j we have &)( >k Cijik Hlﬁfﬁnx ypiyij) is a term ink[zy,. .., x4
multiplied by a generator of Ix.

In light of Step 1, expand CAIS( Zﬁ cs [0, yyaﬂ) = z” hi jgi in terms of generators of Ix, where
each h; j € k[z1,...,24] is a nonzero term. Since ® is graded and y,, , has weight e, —eq € Wt(Q),
we may assume that each term in this expansion has degree pNic(nX(er —ey)) = E*. Thus,
expanding each g; := g; 1 + -+ gi s, as a sum of terms for some ¢; € N gives h; ;g; . € HO(EfX) for
all 4, j, k. Since E,_j is Ox-regular with respect to Ei,..., E,_s and E, = E2_;, Proposition 2.3.3
implies that the multiplication map H°(E,) ®y - -- @ H*(E,) — H°(E;) is surjective, so for each
1, J, k there exists ¢; j x € k and torus-invariant sections s; ;¢ € HO(ET) for 1 < ¢ < n, such that
hi ik = Cijk szl Si k- Since @) is a quiver of sections, there exists a path p; ;. in Q) from 0
to r whose label is the torus-invariant section s; ;. ¢, that is, &)(ypi’j’u) = 8; k¢ For fixed i, j, we

therefore obtain

Nx
hijGik = ci7j7k(I)<Hypi’j’k7Z>. (4.2.11)
=1

Summing over 1 < k < ¢; gives h; jg; = &)(Zk Cijk H1<£<nx ypi,j,k,l)’ and by summing this new

expression over all 7, 7 we deduce that
Ty Tox
5(2% 11 y%’6> = &’><Zci,jﬁknypi’j’u> (4.2.12)
B a=1 1,5,k (=1
lies in Ix by Step 1. The main statement of Step 2 now follows from Remark 4.2.1(3) because these
polynomials also share the same weight in Wt(Q), namely n, (e, — eg).

STEP 3: Introduce a third set of paths {q; j i} in Q such that

Tix
H Ypijre ™ ymi’qui,j,k (4.2.13)
/=1

for some m;,j € N@ | where for each i,j we have 5( >k c@j,kyqi’j’k) equal to a term inklxq,. .., x4

multiplied by a generator of Ix.
Fix i and j and define yviik := [, - t<ny Ypijae: The map P is equivariant and sends monomials

%khi,jg@k € HO(E/™) defines a torus-invariant section. Since F = Elﬁ1 X

to monomials, so —
1,

Efi‘; is Ox-regular with respect to Fy,...,E, 5 and E, = E? | = E? Proposition 2.3.3 implies
that the multiplication map

HY(E) @y - @ HY(E) — H°(E™)

is surjective, so ﬁhmgi,k is equal to the product of 2dn, torus-invariant sections of E. Since g; 1,

is a term of a generator of Iy, its total degree is at most d9 < 2§ by (4.2.1), so we may choose
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26 of these sections s; 5 1,...,5ik25 € HO(E) such that i1, divides Hlﬁuﬁ% ik € HO(E,). We
now apply the above only for k = 1. Since @ is a quiver of sections, there exists a path ¢; ;1 in @
P~ . ~ -1
from 0 to r satisfying ®(yg, ,,) = [L1<,<26 Si,1,us SO the section h; jgi1/cij1®(yq, ;) € HO(EX)
is torus-invariant. Surjectivity of the multiplication map H°(E,) ® - -- @k H°(E,) — HO(E:}X_l)
determines n, —1 sections of £, and hence paths qg,jJ, ceey qg,jmxfl in @ from 0 to r labelled by these

sections such that &)(ym;d') = hmgi’l/ci,j’l&)(yqi’j’l) for y™is = HlSVSnX—l Y., In particular,

e h . — ,
B(yVii) = 7;’??’1’1 = B(y™id'y, ). (4.2.14)
Z7]7

Both monomials ¢Vé41 and ym;d' Yg: ;1 have weight n, (e, —eg) € Wt(Q), hence y¥iit ~ y i Ygin-
This gives us (4.2.13) for the case k = 1.

For k > 1, we have h;;gir = ci7j7k&>(y"i’f”€). For 1 < i < m, the generator g; of Ix is
Cl(X)-homogeneous, so g;, and g;1 have the same degree in CI(X) for any k. Since g;; divides
$(yqi7j7l) € HO(E,), it follows that the term $(yqi’j’l)gi,k/gi,1 also has degree E,.. Divide by its
coefficient ¢; jx/cij1 € k to obtain a torus-invariant section ®(yq, ;)¢ j19ik/Cijxgi1 € HC(E,)
which in turn determines a path ¢; ; in @ with tail at 0 and head at r for which <I>(yqi7j7k) =
5(yqi,j,1)Ci,j,1g¢,k/c@',j,kgi,1- Then (4.2.14) gives

=~ . 9ik T, m. \NF 9i.k =, m .
O(yViik) =h; igi1 - ————— = ¢; 1Py 03 )D(Yg; 1) - ’ =&y iy, ., ).
( ) 1,91, CLj,k;gi,l 1,75 ( ) ( q ,j,l) Ci,j7k;gi,1 ( ‘h,],k)

It follows that the monomials yYisr and ym;’j Yg; ;» have weight n,(e, — eg), hence yYiik ~
ym;u'yqi’j’k, and we obtain (4.2.13) for all k. Then

x
q)(ymi’j )(I) < Z Civjvky%,j,k> =¢ < Z Ci gk H ypi,j,k,l) € Ix

k k =1
holds for every 4,j by combining (4.2.13) and Step 2. The ideal Ix does not contain the mono-
mial Ci(ym;u') for any i,j, otherwise it would contain a variable of k[xy,...,z4] because Ix is
prime, which would give a contradiction since we assumed that d is as small as possible. Thus,
$(Zk Ci,j,kyqi,j,k) € Ix for every i,j as required.

STEP 4: Establish that (y7)?"x f € E + IR as required by proving that

(y7) 2 f ~ y™ (Zy (ch,]kyq”k» (4.2.15)

Relation (4.2.15) is immediate from Steps 1-3. For every i, j we also have ), CijkYq ;. € IR DY
Step 3, so the right hand side of (4.2.15) also lies in Ir. The definition of ~ given in Remark 4.2.1(3)
then implies (y7)2"xf € Ig + Ir. This completes the proof of Theorem 4.2.4. O
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Chapter 5

Computing Ip and I

In this chapter we show how to compute Ig, f];, Ig and fQ/ explicitly using Maple and Macaulay 2.
As an application, in the next chapter we show that Ig = (I R: BE’,‘) for certain ample quivers of
sections @ on X4, X5 and Gr(2,4), therefore each is isomorphic to a moduli space of bound quiver
representations by Theorem 4.1.1.

We summarise our method for computing f]; and Ir using Maple below:

1. In section 5.1.1, we show how to input quivers into Maple. We give pseudocode for finding

the set of all paths in @, along with their heads, tails and labels in section 5.1.2.
2. In section 5.1.3, we give pseudocode for finding the generators of 1?1;.

3. In section 5.1.4, we prove that there is a choice of generating set for I'rp which contains the

generating set for Lv;g, plus certain additional generators in a form conducive to calculations.

4. In 5.1.5, we give pseudocode for finding the additional generators of Iz mentioned above.
We summarise our method for calculating ]5 and I using Macaulay 2:

1. In Appendix A, we give a method for computing the kernels of k-algebra homomorphisms

using Macaulay 2.

2. In section 5.2.1, we prove ./75 and I are kernels of certain k-algebra homomorphisms. Hence

we can apply the results of Appendix A to compute them.

3. In section 5.2.2 we give Macaulay 2 code for calculating ./75 and Ig.

5.1 Computing [ and [ using Maple
In this section we give a method for calculating ]’E and IR explicitly.
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5.1.1 Quivers in Maple

In order to calculate };; and Ir, we need to input quivers into Maple. We input quivers as Maple
“lists” of all arrows, plus their heads, tails and labels as shown:

Q= [[t(ai)’div(ai)’ h(ai)’yaz'”ai € Ql]

We will refer to the ith entry in @ (and more generally in any list) as Q[i]. We introduce some

notation: for a quiver @, let t(Q[i]) := Q[i][1], div(Q[i]) := Q[:][2], h(Q[]) := QIi][3] and yg;) =
Q[i][4]. We write div(Q[i]) as an element of N¢ where d is the number of generators of Cox(X).

Example 5.1.1. On Xy, . = (Ox,,lo — l1,lo — l2,lp). The quiver of sections for .Z, @, is given
below:

e
=
R

L3X4T1) ————— >

N¥

Arrows 1-3 are those from 0 to 1. Arrows 4-6 are those from 0 to 2. Arrow 7 goes from 0 to 3.

Arrow 8 goes from 1 to 3. Arrow 9 goes from 2 to 3. We input Q) into Maple as:
0, 0,1,0,0,1,0,0,0,0,0],1,41,[0,0,0,1,0,0,1,0,0,0, 0], 1,32}, [0, [0,0,0,1,0,0,1,0,0,0], 1, y3]

[0? [1? 0’ 0? 0’ 1? 0’ 0’ 0? 0? 0]’ 2’ y4]’ [0’ [0’ 0? 1’ 0? 0’ 0? 0? 1? 0? O]’ 2’ y5]? [0? [0? 0’ 0? 1’ 0? 0? 0? O? 1? O]’ 2’ y6]
[0’ [0’ 0? 1’ 1? 0’ 0? 0? 0? 0? 1]’ 3’ y?]? [1? [1? 0’ 0? 0’ 0? 0? 0? 0? 0’ 0]’ 3? yg]? [2? [0? 1’ 0? 0’ 0? 0? 0’ 0’ 0’ 0]? 3? yg]]

5.1.2 Finding all Paths in @

The ideals I and E are defined in terms of the paths of @), therefore we need to consider paths
as well as arrows of Q. With that in mind, we wrote a Maple procedure “getpaths” which outputs
the list of all paths P for a given quiver ). More specifically, for every path p in @ the output P
lists t(p), div(p), h(p) and y,. We give pseudocode and a proof of its efficacy.

We define h(P[i]), div(P[i]),t(P[i]) and ypp; to be the first, second, third and fourth terms of
PJi] respectively. We denote the number of terms in a list L by |L|.
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Pseudocode 5.1.2. Input: @

Procedure: P := @, r : = max{h(a;)|a; € Qo},a :=0,b:=|Q)|
for i from 1 tor do

for j from |P| —b+1 to |P| do

for k from 1 to |Q| do

i H(QIK]) = h(PLj]) then P = [P, [t(P1j]), div(P[j]) div(Q[k]), h(QIK]), yapypyll and a:= a+ 1.
end if

end do

end do

b:=a,a:=0

end do.

Output: P

Proof. We begin by defining P := Q). We work through all the elements of P and @, and if say the
ith element of @) has tail equal to the head of the jth element of P then we add their concatenation
(a path of length 2) to P. Once we have worked through all the elements of P and @ in this way we
will have added all the paths of length two to P. We record the number of paths we have added
(this is the role of a and b).

Next we consider all arrows in @ and all paths of length 2 (i.e. the last b paths in P). If it is
possible to concatenate them to form a path of length 3, they are added to P. Again we record the
number of additions to P.

We repeat this process r times, where r is the number of vertices in ). The paths in @) have
length at most r since () contains no cycles, hence after repeating the process r times P lists the

details of every path in Q. O

Example 5.1.3. Let @ be as in example 5.1.1. The output for “getpaths(Q)” is:

0,10, 1,0,0,1,0,0,0,0,0],1,%],0,[0,0,1,0,0,1,0,0,0,0], 1,42}, [0, [0,0,0,1,0,0, 1,0, 0,0], 1, y3],
[0,[1,0,0,0,1,0,0,0,0,0],2, 4], [0, [0,0,1,0,0,0,0,1,0,0],2,ys], [0, [0, 0,0, 1,0, 0,0, 0, 1, 0}, 2, s,
[Oa [Oa Oa 15 1, Oa Oa Oa Oa Oa 1]5 35 y7]a [1, [1, Oa Oa Oa Oa Oa Oa Oa Oa O]a 3a yS]a [2, [0, 15 Oa Oa Oa Oa Oa Oa Oa O]a 3a y9],
[Oa [15 1, Oa 0’ 15 0’ 0’ 0’ 0’ O]a 35 ySyl], [0, [1, Oa 1’ Oa 0’ 1’ 0’ 0’ Oa O]a 3’ ySyQ], [0, [1, Oa 0’ 15 0’ 0’ 15 Oa Oa O]’ 3’ y8y3],
[Oa [15 1, Oa 0’ 15 0’ 0’ 0’ 0’ O]a 35 y9y4], [0, [0, 15 1’ Oa 0’ 0’ 0’ 1’ Oa O]a 3’ y9y5], [0, [0, 15 0’ 15 0’ 0’ Oa Oa 15 O]’ 3, y9y6“
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5.1.3 Calculating 71;

We give pseudocode for finding the generators of f}; and prove its efficacy.

Pseudocode 5.1.4. Input: P:= getpaths(Q).

Procedure: L:=[] (the “empty list”).

fori from 1 to |P| do

for j from 1 to |P| do

I h(P[i]) = h(Pj), t(Pli) = (P]) and div(P[i]) = div(P[j)) then L = [L,yp — ypi)-
end if

end do

end do.

Output: L.

Proof. We check all pairs of paths p; and p;. If their heads, tails and labels are equal then y;, — yp,
is a generator of Ir so we add yp, — yp, to L. All generators are of this form, and since we check
all pairs of paths this must give a list of all generators for Ig. O

Remark 5.1.5. Note that while L is a generating set for ./7\1;, it will almost certainly contain many

redundancies. In particular, L will probably have many terms equal to zero.

Example 5.1.6. Let Q be the quiver from Example 5.1.1. If our input is the list of all paths in
@, then the output from “zeropart” is

[0, Oa 0’ Oa 0’ Oa 0’ 0’ Oa Oa Ysyi — Yoy, 0, Oa Yolya — Y8y, Oa 0’ 0]
Hence

Ir = (ysy1 — yoya).

5.1.4 A Generating Set for Iy

We give a technical lemma which describes a generating set for Ig.

Lemma 5.1.7. Fiz a presentation Ix = (g1,...,9m). The ideal Iy is generated by Sy U Sy where
S1:={yp — yp| h(p) = h(p'), t(p) = t(p'), div(p) = div(p')}

and

S, i {Zciyp¢| h(pi) = h(p;),t(pi) = t(p;) for alli,j and ZCifAIS(ypi) = hi;gi }

for some j where h; is a term in k[z1,. .., z4]
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Proof. The ideal generated by S; and Sp is contained in Ir. For the converse, let f =" ¢y, be a
generator of Ip (where paths p; share same head and same tail). It suffices to show that f lies in
the ideal generated by S; and Ss.

Since f € Ig, ®(f) = >_i;hijgi € Ix for some terms h;; € klz1,...,24]. We proceed in two
stages: first we show that f can be written as an element of E plus a linear combination of Wt(Q)
homogeneous y,,’s mapping to terms of the sum ) h;jg;. All elements of E lie in the ideal generated
by S1 by Proposition 2.5.4. Secondly, we show that the remaining part lies in the ideal generated
by Ss.

STEP 1: Identifying vertices of @ with line bundles, let E = h(p;) ® t(p;)~! for any i (note that
this is independent of 7). Since d is a toric homomorphism and maps monomials to monomials,

each term c¢;y,, maps to a term c;z™ in (S)?)E So, we can write

n n
@(Z Cilp;) = Z ™ = ¢ x™in 4 -+ ¢, 2™ after cancelling |
i=1 i=1
where {i1,...,4} C {1,...,n}. Hence we can decompose f as

f=ciyp, + -+ ciyp, + (f = (CoxYp;, + -+ CiUp;,))-
We note that f — (ci,yp; + -+ ¢i,Yp;,) is homogeneous and in the kernel of ®. It is therefore an
element of f];, and lies in the ideal generated by .S7 by Proposition 2.5.4.
STEP 2 : Redefine ¢; yp, =: cayp, and ™o =: ™. We show that 23:1 CaYp, lies in the ideal
generated by So. Since Y c,z™e € Iy, we can write
Z Cax™* = Z hijgi
a ()

where g; is a generator of Ix and h;j is a term in kfz1, ..., z4]. Since D is equivariant, Zij hi;g; is
homogeneous of degree E. We can decompose h;;g; into terms, say h;jg; = > 1 hijgir. For all 4,
and k,

hijgik = Cijkxvijk (511)
where ¢;j;, € k and xVii* is a torus-invariant section of E. By definition of the quiver of sections

there exists a path p;j; from t(p,) to h(pa) labelled by zVisk. Additionally, we can ensure that
Vijk = Vi if and only if p;jr = pirjrer, and that p;j, = p if and only if zVilk = p™e,

Z CijkYpijr = Z Ca¥pa -

ijk «

Now we will show that

For each v € N¢,

_ Cox™e if v=m,
§ Cijkw It = .
0 otherwise

i7j7k
s.t. Vijk=V
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because the sum of terms in Zijk cijrxVik which are equal modulo constant is either zero or a
: ma L Viik — o — m : :
term in ), cox™e since Y. cijrx¥it = 300 hijgik = ), cax™> which has no cancelling by

construction. Since p;jr = po if and only if v;;;, = m,, for every v € N? we must also have

Calp, if v=m,
Z CijkYpije = 0

— otherwise.
1,5,k

s.t. Vijk=V
Therefore, when we sum over all ¢, 7 and k& we must have

Z Z CijkYpijr = Z CijkYp;ji = Z Ca¥pa (5.1.2)

veNd 0,5,k ijk «
s.t. Vijk=V

as claimed.
Crucially, ), CijkYp, ;. 18 an element of the ideal generated by Sz. This is because each p;jj has
the same head and tail, and by (5.1.1)

Do (D cigktipe) = D cigpa™ = hijg;

k k

where h;;g; is a term times g;. By (5.1.2), >, ¢a¥p, is a sum of elements of Sy, therefore Y cayp,
also lies in the ideal generated by So. O
5.1.5 Finding Generators of Iy

We describe an algorithm for computing Ir. We include pseudocode for the case where Ix is
generated by quadratic polynomials with three terms, as in Xy, X5, X¢ and Grassmannians Gr(r, n)

in Appendix C. We introduce some notation. Let () be a quiver, and let P denote the list of all
paths in ) and suppose Ix := (gl, e ,gm).

Algorithm 5.1.8. Input: the generators of Ix, the list P of all paths in Q. For 1 < i < m, we
consider the generator g;. Suppose g; has n; terms:

gi = @™ 4 - A i N

where ¢;; € k and my; € N4 (recalling that d is the number of generators of Cox()?)).

For each 1 < j < n; we construct a list L;j of containing information about each path whose
label is divisible by x™ii as follows. For each j define L;; := [ ].
For each j and for 1 < k < |P| we check if 8 PKD is divisible by x™. If it is, we add

[t(P[k]), 2D /2™ h(PK]), ypip)
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to Lij. If it isn’t, we don’t. We define div(L;j[n]) to be the second entry in L;j[n].

Let M; :=[]. For 1 <kj <|Ljl|,...,1 < kin, < |Lin,| we check if

t(Li[kal) = - - = t(Lin,[Kin;])
h(Li[ki1]) = -+ = h(Lin, [kin,])

If this 1s the case then we add cinypig,,) +* + Cin,YPlksn,] t0 Mi. If it isn’t the case, we don’t.
The paths Plk;j] have the same head and tail for each j and

<1>(c@-1yp[k“] 4ot Cinin[kmi}) = (mdiV(P[kij])/xmij) (cﬁxmil + ... cimx‘“im) e Ix

80 Ci1Yplky] T+ Cin;YPlkin,] is an element of Ip. By construction, M; contains every sum ) ¢;yp,
such that t(p;) = t(p;), h(pi) = h(p;) for alli,j and such that Zcifi(ypi) is a term multiplied g;. If
we repeat this process for every g;, Lemma 5.1.7 tells us that the union of the M;’s plus the output
from Pseudocode 5.1.4 must therefore generate Ir (possibly with many redundant terms).

Example 5.1.9. With @ as in Example 5.1.1, the output from Algorithm 5.1.8 is:
(Y1 — Y2 + Y3, Ysy1 — YsY2 + YsY3, YoYa — Ysy2 + YsY3, Y4 — Y5 + Yos

YY1 — YoUs + YoUs, Yoya — YoUs + Yole, YsY2 — Yols + Y7, Ysys — Yoys + Y7l

Hence in this case

Ir = (ysy1 — Yoya, ya — Ys + Y6, Y1 — Y2 + Y3, Y3Ys — Y6Yo + Y7, Y2Ys — Ys¥o + Y7).

5.2 Calculating /gy and }5 Using Macaulay 2

In this section we give a method for computing fé and Ig explicitly.

5.2.1 I and fé as Kernels

In this section we use the theory from Appendix A to calculate Ig using Macaulay 2. In order to

do this, we show that Iy is the kernel of a k-algebra homomorphism 1:

¥ klyala € Q1] — k21, ..., 2a, i, hili € Qo] /Ix + A

xdiv(a)

Ya +* te(a) ()

where

A= (tihi — 1|Z' € Qo)

First we need a technical lemma:
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Lemma 5.2.1. Let f € kly,la € Q1] be homogeneous of weight x € inc(Wt(Q)) \ {0} and let

n = n,. We consider the map:
E : k[ya‘a € Ql] — k[l’l, ooy Xgy hl]/A

Ya = L@y D hpa).-

The image of f satisfies
Y(f) =tiy - tishjy o hyg(x1,. .., 3a)

where i1, ...,0n, 1y, Jn € Qo.

Proof. Since f is homogeneous, we can decompose f into terms, each of weight x. By Remark 4.2.3

(ii), for each term we have
k n
=2 co 1w
B=1 a=1

where cg € k, the p,g’s are paths where X;L of the pog’s have head at 7 € Qp and x; of the p,g’s
have tail at ¢ € Q.
For each yp,, we have

E(ypa[s) = 75t(paza)xdw(paﬁ) hh(Pa,B)

since we are working modulo A. So for any :

k n
E( H ypaﬁ) = H tt(pa;a)hh(paﬁ)xdW(pw)‘
a=1

a=1

k

Now since [[{_ ti(p. ) th(p.s) depends only on x, this is a common factor for DT Yp,, ;) for each

5. Hence, summing over 3 we have:

n k n
o(f) = div(pa
O = 11 (tpun) Phipas)) <Z% [T+ ﬂ>>.
a=1 B=1 i
Letting g(x) i= S5, ¢ [["_, 24¥(Pa5) we have the statement of the Lemma. .

Proposition 5.2.2. The kernel of ¢ is equal to Ig.

Proof. We note that the kernel of v is precisely the set:

keryp = {f € k[yala € Q1]|¥(f) € Ix}

where Ix is considered as an ideal of k[z1,..., x4, t;, hi]/A.
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First we show Ig C ker(¢). Let f be an element of I. We assume f is homogeneous of weight
X € inc(N@1)\ {0} and let n := n,. By Remark 4.2.3 (ii), we have

n
f=2_es [T s
p=1 a=1
and by the proof of Lemma 5.2.1 9(f) = t;, - - tinhj, - hj,g(x) where i1,...in, j1,...,Jn € Qo
and where g(z) = Zgzl g [10_, x%V(Pas) Now, since f € I, we have that ®(f) € Iy. This means
k no_ n )

ca [] @Wpos) = D s [[ #4V"?) = g(a) € Ix.

1 o= B:l a=1

o(f) = 5<Zk:1%ﬁypag> =

B=1 o= 8

—

Hence f € ker(v)).

Now to show opposite inclusion let f € ker(¢)) be homogeneous of weight x. So
k n
f=2_ s 11 vpus
B=1 a=1

where cg € k, the p,g’s are paths where X;-F of the pog’s have head at 7 € Qp and x; of the p,g’s

have tail at i € Qo. Also, ¥(f) =t;, ---ti, hj, --- hj,g9(x) € Ix where i1,... 9, j1,...,Jn € Qo. Ix
is generated by ¢1(z1,...,24q), .., gm(z1,...,24), SO

iy - tinhjl ces hjng(x) =
fi(x,t,)g1(x) + -+ + fin(x, 8, 1) g (%)

for some fi,...,fm € Kk[z1,...,24,t;, hi]/A, where x = (z1,...,24),t = (to,...,t,) and h =
(hg, ..., hy). Substituting t; = 1,h; = 1 for all i € Qy we obtain:

g(x) = fix,1,.... )1 (x) + -+ fin(x, 1, ..., 1) gm (%)

hence g(x) € Ix.
By the proof of Lemma 5.2.1, we also have

k n
g(x) =Y _cg [[ ™) = @(f) € Ix.
B=1 a=1

Hence f € Ig since it is homogeneous by assumption. ]

We note that these results also apply to the toric case by setting Ix = (0)
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5.2.2 Macaulay 2 Code

We present Macaulay 2 code for computing I and E Let g := |Q1| and denote Ig by IQ, and fé
by 1Qtilde

il: R =QQ[x 1..x d,t 0..t r,h O0..h r,y 1..y q,MonomialOrder => Eliminate d+2*(r+1)]
i2: K = ideal(y_1-xdivle) y p-xdiv(er))

i3: I = ideal(g 1,...gm, t_1%h 1-1,..., t_r*h r-1)

i4: Itilde = ideal(t _Oxh 0-1,..., t r*h r-1)

i5: H = K+I

ib: G = gens gb H

i6: J = selectInSubring(1,G)

i7: IQ = ideal(J)

i8: Htilde = K+Itilde

i9: Gtilde = gens gb Htilde

i10: Jtilde = selectInSubring(1l,Gtilde)
i11: IQtilde = ideal(Jtilde)
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Chapter 6

Examples of Mori Dream Spaces as
Fine Moduli of Quiver
Representations

As an application of our main results we illustrate how to reconstruct del Pezzo surfaces directly
from the bound quiver of sections of a collection of line bundles whose direct sum is a tilting bundle.

6.1 Tilting bundles on del Pezzo surfaces

Let X be a smooth projective variety over k and write coh(X) for the category of coherent sheaves
on X. For any vector bundle .7 on X, let A := Endp, (.7) denote its endomorphism algebra and
mod(A) the abelian category of finitely generated right A-modules. We say that 7 is a tilting
bundle on X if the functor

RHom(7, —): D’(coh(X)) — D®(mod(A))

is an exact equivalence of bounded derived categories. If 7 decomposes as a direct sum of line
bundles .7 = @,.,~, Li (we need not assume that each L; has rank one, but we choose to), then
after reordering if n?acessary, the collection (Lg, L1, ..., L,) is a full, strongly exceptional sequence
on X. That is, the line bundles in the collection generate D®(coh(X)) and they satisfy appropriate
Ext-vanishing conditions, namely, that Hom(L;, L;) = 0 for j > i and that Ext®(L;, L;) = 0 for
k>0andall 0 <1,5 <.

For 0 < k < 8, let X} denote the del Pezzo surface obtained as the blow-up of IF’H% at k points in
general position. The Picard group C1(X}) = Z**! has a basis given by Iy, the pullback to X, of
the hyperplane class on P2, together with the k exceptional curves li,...,I,. Consider the sequence
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of basepoint-free line bundles
L= (0x,,10,2lg — 11, ..., 2lp — U, 2lp) (6.1.1)

on Xy, and write Ly = Ox,, L1 = lg, Lit1 = 2lp — l; for 1 <1i <k, and Ly = 2lp. The following
result is well known. We guide the reader towards a proof.

Lemma 6.1.1. The sequence of line bundles (6.1.1) on Xy, is full and strongly exceptional, so the
vector bundle T := @o<;<p 1o Li is tilting.

Proof. We use the technology of toric systems developed by Hille-Perling [18]. Beginning with
the unique toric system Iy, lg,lop on ]P’HQ(, construct a toric system on each Xp as follows: choose
lo,lo — l1,l1,lg — [1 on X1, then repeat for k > 2, introducing [, in the second-last position while
subtracting [; from each neighbouring divisor to obtain the toric system

loylo =11, ln —loylo — I3y ooy lg—1 — Ly Iy Do — Z li
1<i<k
on Xj. List these divisors from left to right as Dy, ..., Diy3. Observe that for 1 <14 < k+2 we have
Li=0(Di+ -+ D), and —Kx, = 0(Dy + --- + Dj43), and Theorem 5.7 of Hille-Perling [18]
establishes that the sequence (Lo, L1, ..., Lgy2) is full and strongly exceptional as required. ]

Let (Qg, Jx) denote the bound quiver of sections of the collection %} on Xj. For k < 3, the
variety X} is toric, in which case £ = %, and the method of Craw-Smith [10] shows that the
morphism ¢ ¢, X — My(Qk, Ji) is an isomorphism. We now consider the cases where k = 4
and 5. We were unable to compute the case k = 6 due to computational complexity.

We also consider a collection of line bundles .2 on Gr(2,4) which gives an isomorphism with

the moduli space of bound quiver representations for the quiver of sections of .Z.

6.2 X, Tilting Example

On Xy, a strong exceptional collection of line bundles is .% := (Ox,, lo, 2lo — 1, 2l — l2, 2lg — I3, 21y —
l4,2lp) where notation is as in Section 2.2.2. The quiver of sections for . is given in Figure 6.1.
Arrows with tail at 0 are listed aq,...,as from the top of Figure 6.1 to the bottom; list those with
tail at 1 as a7,...,a1g from the top of the figure to the bottom; and list those with head at 6 as
a9, ..., a9 from the top to the bottom. Likewise, list the coordinates of Agl as y1,...,Y22.

Using the methods described in sections 5.1 and 5.2 , we calculated T};,IR,E, and Ig. We
compute By by computing the intersection

By = () (va; € klyala € Qu]| h(ay) = ).
1€Qo
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1AL
T1X2T5 $1w5 —\ '2;]
. rg —
T123T6 \ s /@\
Z.

T1X4T7 l: 4Ty 2 — N
To2X3T8 T12g 3

ToT4Xg Toxg \@/ /
T3T4T10 .1'41‘10 . o

Figure 6.1: A quiver of sections for a collection on X4

We then compared (f]; : Bg’,o) to fg), and (IR : Bg’,o) to Ig. The results were as follows:

Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21, Y9Y19 — Y16Y22,
N YsyY19 — Y13Y21, Y7Y19 — Y10Y20, Y6Y17 — Ys5Y18, Y6Y16 — Y3Y18,
Ir = YsY16 — Y3Y17,YeY14 — Y4Y15, Y6Y13 — Y2Y15, Y4Y13 — Y2Y14, YsY11 — Y4Y12,
YsY10 — Y1Y12, Y4Y10 — Y1Y11, Y3yYs — Y2Y9, Y3yYy7r — Y1Y9, Y2Y7 — Y1Ys,
Y3Y14Y21 — YaY16Y22, Y5Y13Y21 — Y2Y17Y22, Y6¥Y10Y20 — Y1Y18Y22

Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21, YoY19 — Y16Y22,
Y8Y19 — Y13Y21, Y7Y19 — Y10Y20, Y6Y17 — Y5Y18, YeY16 — Y3Y1s,
Ys5Y16 — Y3Y17, YeY14 — YaY15, Y6Y13 — Y2Y15, Y413 — Y2Y14, YsY11 — YaY12,
YsyY10 — Y1Y12, Yay10 — Y1Y11, Y3Ys — Y2Y9, Y3Yyr — Y1Y9, Y2Y7r — Y1Ys,
Ir = Ys3yi14Y21 — YaYie6Y22, Y5Y13Y21 — Y2Y17Y22, YeY10Y20 — Y1Y18Y22,

Y16 — Y17 + Y18, Y13 — Y14 + Y15, Y10 — Y11 + Y12, Y7 — Y8 + Y9, Y3 — Y5 + Ys;
Y2 — Y4 + Y6, Y1 — Y4 + Y5, Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21,
Yoy19 — Y17Y22 + Y18Y22, YsY19 — Y14Y21 + Y18Y22, Y6Y17 — Y5Y18,

Y6Y14 — Y4Y15, YsY11 — YaY12, YsYs — Y6Ys — Y4Y9 + YeYo

Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21, Yo¥Y19 — Y16Y22,
Y8Y19 — Y13Y21, Y7Y19 — Y10Y20, YeY17 — Y5418, Y6¥Y16 — Y3Y18, Y5Y16 — Y3Y17,
Y6Y14 — Y4Y15, Y6¥Y13 — Y2Y15, Y4Y13 — Y2Y14, YsY11 — Y4Y12, YsY10 — Y1Y12,
T YaYy10 — Y1Y11, Y3yYs — Y2Y9, Y3yr — Y1Y9, Y2Yr — Y1Y8, Y3y14Y21 — Y4Y16Y22,

YsyY13Y21 — Y2Y17Y22, Y6Y10Y20 — Y1Y18Y22, Y11Y15Y17 — Y12Y14Y18;
Y8Y15Y16 — YoY13Y18, YrY12Y16 — YoY10Y17, Y7Y11Y13 — Y8Y10Y14,
Ysy1oYisYy1r — YryY12Y13Y18, Y7Y11Y15Y16 — Y9Y10Y14Y1s,
Y8Y12Y14Y16 — YoY11Y13Y1i7
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Y15Y21 — Y18Y22, Y12Y20 — Y17Y22, Y11Y20 — Y14Y21, Yo¥Y19 — Y16Y22,
Y8y19 — Y13Y21, Y7Y19 — Y10Y20, Y6Y17 — YsY18, YeY16 — Y3Y18, YsYi6 — Y3Yi7,
Y6Y14 — Y4Y15,YeY13 — Y2Y15, Y4Y13 — Y2Y14, YsY11 — Y4Y12, YsY10 — Y1Y12,
Yay10 — Y1Y11, Y3yYs — Y2Y9, Y3yr — Y1Y9, Y2Y7r — Y1Y8, Y3yYy14Y21 — Y4Y16Y22,
YsyY13Y21 — Y2Y17Y22, Y6Y10Y20 — Y1Y18Y22, Y11Y15Y17 — Y12Y14Y18;
Y8Y15Y16 — Y9Y13Y18, Y7¥12Y16 — Y9Y10¥Y17, Y7Y11Y13 — YsY10Y14,
Ysy10YisYy1r — YryY12Y13Y18, Y7Y11Y15Y16 — Y9Y10Y14Y1s,
Y8Y12Y14Y16 — Y9Y11Y13Y17, Y16 — Y17 + Y18, Y13 — Y14 + Y15, Y10 — Y11 + Y12,
Y7 —Ys +Y9,Y3 — Y5 + Y6, Y2 — Ya + Y6, Y1 — Y4 + Y5, Y15Y21 — Y18Y22, Y1220 — Y17Y22,
Y11Y20 — Y14Y21, YoY19 — Y17Y22 + Y18Y22, Y8Y19 — Y14¥Y21 + Y18Y22,
YeY17 — Y5Y18; Y6Y14 — YaY15, Ys5Y11 — YaY12, Ys5Y8 — YeYs — YaY9 + Y6Y9,
Y11Y15Y17 — Y12Y14Y18, Y8Y15Y17 — YoY14Y18 — Y8Y15Y18 + YoY15Y18;
YoY11Y17 — Y8Y12Y17 + Y8Y12Y18 — YoY12Y18,

Yoy11Y14 — YsY12Y14 + YsY11Y15 — YoY11Y15

By is the intersection of the ideals:

(yl, cee ,’y6), (y7,y8,y9), (ylo,yn,ym), (y13,y14,y15), (y16,y17,y18) and (y19,y20,y21,y22)-

We present Macaulay 2 code for computing I and fé .

il: R =QQ[x 1..x 10,t 0..t_6,h 0..h 6,y_1..y 22, MonomialOrder => Eliminate 24]
i2: H = K+I

i4: G = gens gb H

i5: J = selectInSubring(1,G)

i6: IQ = ideal(J)

i6: Htilde= K +Itilde

i7: Gtilde = gens gb K

i8: Jtilde = selectInSubring(1l,Gtilde)
i9: IQtilde = ideal(Jtilde)

where

Y1 — toh1w122%5, Y2 — tohaw123%6, Y3 — toha@1T4%7, Ys — tohazox3Ts,
Y5 — toh11224%9, ys — toh1w324710, Y7 — t1howaTs, Y3 — t1hawsws,
K= Yo — t1howaz7, y10 — t1hgr125, Y11 — t1h3wszs, y12 — t1haTaTy, ;
Y13 — t1haz126, Y14 — t1hazows, Y15 — t1haza®10, Y16 — t1hsT127,
Y17 — t1hsxamg, Y18 — t1hsT3710, Y19 — t2heT1, Y20 — t3heT2, Y21 — tahews, y2o — tshexy
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- ToXs — T3T6 + TaT7, T1T5 — T3TR + T4T9, T1Te — T2T8 + T4T10,
T1T7 — T2X9 + T3T10, T5T10 — Tex9 + T728,toho — 1,... ,tehe — 1

and
I:<t0h0—1,...,t6h6—1 )

In Macaulay 2, we calculate the saturation of Ir and Iy with By using the command “saturate”,
il: IQQ = saturate(IQ,BY)

i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

03: true

In the same way we obtain ja = ./T; : BYY. Example 3.3.4 showed that .} is very ample, so
Theorem 4.1.1 implies that ¢ ¢,|: X4 — My(mod(Ag,)) is an isomorphism.

6.3 Xj; Tilting Example

On X5, a strong exceptional collection of line bundles is .Z := (Ox,,lo,2lo — 11,2l — 2,21y —
l3,2lp — ly,2ly — l5,2lp) where notation is as in section 2.2.2. The quiver of sections @ is shown in
Figure 6.2 (in fact we omit one arrow labelled xjzox425216 with tail at 0 and head at 4 to prevent
the figure from becoming illegible). Arrows with tail at 0 and head at 1 are listed a4, ..., a9 from
the top of Figure 6.2 to the bottom; list those with tail at 1 as ai1,...,as from top to bottom; list

m2m31’4m5m16

1‘17—&6

T123Z4T5T16 24T TLox0

T1T2TE 150 mszm 2
T1x3T7 ‘
Al T5T12
T1T4TY TA 2
2
r1T5T
1T5Z9 107
T2x3T10 2710 z3
3 —
ToXTAT1] 413
T5T14
T2T5L12 5 /////'
§ P
i\\\“‘--._
2%y, Tyag
9531‘1

324713
T3T5T14
T4T5T15

T1T2X3T5T16

9”3"29”39040516

Figure 6.2: A quiver of sections for a full strongly exceptional collection on Xj5

those with head at 7 as asq, ..., a5 from top to bottom; and list those with tail at 0 and head at
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1> 2 as asg,..., a4 from top to bottom, where the arrow omitted from the figure is asgg. List the
coordinates of Agl as Y1, ..., Y40

Using the methods described in sections 5.1 and 5.2, we calculated E,IR,E,IQ,By, and
compared (f]; : Bg’,o) to fé, and (IR : Bg}o) to Ig. The results were as follows:

Y34Y39 — Y35Y40, Y33Y38 — Y35Y40, Y32Y37 — Y35Y40,
Y31Y36 — Y35Y40, Y26Y34 — Y30Y35, Y22Y33 — Y29Y35,
Y21Y33 — Y25Y34, Y18Y32 — Y28Y35, Y17Y32 — Y24Y34,
Y16Y32 — Y20Y33, Y14Y31 — Y27Y35, Y13Y31 — Y23Y34,
Y12Y31 — Y19Y33, Y11Y31 — Y15Y32, Y10Y29 — Y9Y30,
Y10Y28 — Y7Y30, YoY28 — Y7Y29, Y10Y27 — Y4Y30,
Yo7 — YaY29, Yry27 — Y4Y28, Y10Y25 — Y8Y26,
Y10Y24 — YeY26, YsY24 — Ye6Y25, Y10Y23 — Y3Y26,
YsY23 — Y3Y25,YeY23 — Y3Y24, YoY21 — YgY22, YoYy20 — YsY22,
]‘E Ysy20 — YsY21,Y9Y19 — Y2922, Y8Y19 — Y2Y21, YsYy19 — Y2420,
Yry1r — YeY18, Yry16 — YsY18,YeY16 — YsY17,Y7rY15 — Y1Y18;
Y6Y1s5 — Y1Y17, YsY1s5 — Y1Y16, Y4Y13 — Y3Y14, YaY12 — Y2Y14,
Y3Y12 — Y2Y13, Y4Y11 — Y1Y14, Y3Y11 — Y1Y13, Y2Y11 — Y1Y12,
Y7Y25Y34 — Y8Y28Y35, Y4Y25Y34 — Ys8Y27Y3s,
YoY24Y34 — Y6Y29Y35, Y4Y24Y34 — YeY27Y35,
YoY23Y34 — Y3Y29Y35, Y7Y23Y34 — Y3Y28Y3s,
Y10Y20Y33 — Y5Y30Y35, Y4Y20Y33 — Y5Y27Y35,
Y3Y20Y33 — Ys5Y23Y34; Y10Y19Y33 — Y2Y30Y35,
Y7Y19Y33 — Y2Y28Y35, Y6Y19Y33 — Y2Y24Y34,
Y10Y15Y32 — Y1Y30Y35, YoY15Y32 — Y1Y29Y35, YsY15Y32 — Y1Y25Y34

Y7 + 2y9 — Y10, Y6 — 2Ys + Y10, Y5 + Ys — Y9, Y4 + Yo — 2Y10, Y3 — Y3 + Y10
Y2 + 2ys — Yo, y1 + 3Yys — Y9 — Y10, Y28 + 2y29 — Y30, Y27 + Y29 — 2Y30
Y24 — 2yY25 + Y26, Y23 — Y25 + Y26, Y20 + Y21 — Y22, Y19 + 2y21 — Y22
2y16 + Y17 + Y18, 2y15 + 3y17 + Y18, Y12 + 2y13 + Y14, Y11 + 3Y13 + Yua
Y10Y29 — Y9Y30, 2YsY29 + 2Ysy30 — 3Y9Y30 — Y40, Y10Y25 — YsY26

Ip = 2y9y2s + 2ysy26 — 3YoY26 — Y39, 2Y10Y21 + 2Ysy22 — 3Y10Y22 — Y38
Yoy21 — Ysy22, 3Y10Y17 — 2Ysy1s + 3y10Y18 — 2Y37, 3YoY17 + 2Ysyis — Y37
6Yy10Y13 — 2ysy14 + 3Y10Y14 — Y36, 3YoY13 + YsY14 — Y36, Y26Y34 — Y30Y35
Y22Y33 — Y29Y35, Y21Y33 — Y25Y34, Y18Y32 + 2Y20Y35 — Y30Y35
Y17Y32 — 2Y25Y34 + Y30Y35, Y14Y31 + Y2035 — 2Y30Y35
Y13Y31 — Y25Y34 + Y30Y3s5
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2917926929 + 2Y18Y25Y30 — Y17Y26Y30 — Y18Y26Y30,
Y13Y26Y29 + Y14Y25Y30 — 2Y13Y26Y30 — Y14Y26Y30,
2918921929 + 2Y17Y22Y29 — Y17Y22Y30 — Y18Y22Y30,
Y14Y21Y29 + Y13Y22Y29 — 2Y13Y22Y30 — Y14Y22Y30,
Ig = 2914Y17Y29 — 2Y13Y18Y20 — Y14Y17Y30 + 4Y13Y18Y30 + Y14Y18Y30,
2y18Y21Y25 + 2Y17Y22Y25 — Y17Y21Y26 — Y18Y21Y26;
Y14Y21Y25 + Y13Y22Y25 — 2Y13Y21Y26 — Y14Y21Y26,
2y14Y17Y25 — 2Y13Y18Y25 — 3Y13Y17Y26 — 2Y14Y17Y26 + Y13Y18Y26
Y14Y17Y21 — 4Y13Y18Y21 — Y14Y18Y21 — 3Y13Y17Y22 — 2Y14Y17Y22 + Y13Y18Y22

Y7+ 2Y9 — Y10, Y6 — 2ys + Y10, Y5 + Y8 — Y9, Y4 + Yo — 2y10, Y3 — ys8 + v1,
Y2 + 2ys — Yo, Y1 + 3Ys — Yo — Y10, Y28 + 2Y29 — Y30, Y27 + Y20 — 2y30,
Y24 — 2y25 + Y26, Y23 — Y25 + Y26, Y20 + Y21 — Y22,

Y19 + 2y21 — Y22, 2y16 + Y17 + Y18, 2y15 + 3Y17 + Vs,

Y12 + 2y13 + Y14, Y11 + 3y13 + Y14, 10y29 — yoys0,
2ysy29 + 2ysy30 — 3Y9Y30 — Y40, Y10Y25 — YsY26,
2y9y2s + 2ysy26 — 3YoY26 — Y39, 2Y10Y21 + 2Ysy22 — 3Y10Y22 — Y38,
Yoy21 — YsY22, 3Y10Y17 — 2Ysy1s + 3y10y18 — 2y37,
3yoy17 + 2ysy1s — Y37, 6Y10Y13 — 2ysy14 + 3y10Y14 — Y36,
3Y9y13 + Ysy14 — Y36, Y30Y35 — Y10, Y20Y35 — Y9, Y26Y34 — Y10,
Y25Y34 — Y8, Y22Y33 — Y9, Y21Y33 — Y8, Y18Y32 + 2Y9 — Y10, Y17Y32 — 2Ys + Y10,
Y14Y31 + Yo — 210, Y13Y31 — Ys + Y10, Y21Y26Y29 — Y22Y25Y30

We present Macaulay 2 code for computing I and fé .

il: R =QQ[x 1..x 16,t 0..t_7,h 0..h_7,y_1..y 40,MonomialOrder => Eliminate 32]
i2: H = I+K

i3: G = gens gb K+I

i4: J = selectInSubring(1,G)

i6: IQ = ideal(J)

i6: Htilde = K+Itilde

i7: Gtilde = gens gb Htilde

i8: Jtilde = selectInSubring(1l,Gtilde)

i9: 1IQtilde = ideal(Jtilde)

where
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y1 — toh1x12276, Y2 — toh1123%7, Y3 — toh1217408, Ys — toh1T105%9, Y5 — toh1T273710,
Y6 — toh1wox4x11,y7 — toh1T225212, Y8 — toh103w4713, Yo — Loh123T5714, Y10 — toh1 475215,
y11 — t1howoxe, y12 — t1howswr, y13 — t1hoxaxs, Y14 — t1howsxg, Y15 — t1h3w176,
Y16 — t1h3r3w10, Y17 — t1h3Ta®11, Y18 — t1h3T5T12, Y19 — t1har1w7, Y20 — t1haTam10,

" Y21 — t1hawaw13, Y22 — t1hax5214, Y23 — t1hsT128, Y24 — t1hswowe1, Y25 — t1hsx3713,
Y26 — t1h525715, Y21 — t1heT129, Yog — t1hewaT12, Y20 — t1hew3w14, Y30 — t1h6T4T15,
Y31 — tahrx1, Y32 — t3hrwo, Y3z — tahrws, ysa — tshrra, yss — tehrws, yse — tohar2237475216,
Y37 — tohsT1037405216, Y3s — LohaT1T2475T16, Y39 — LoNs 102235716, Yao — toheT1T203T4T 16
T5T16 + TeT13 — 3T8T10, T4T16 + 2T6T14 + T7T12,
T4T16 + TeT14 + T9T10, T3T16 + TeT15 + T8T12, T3T16 + 2T6T15 + ToT11,
ToT16 + T7T15 — 208T14, T2T16 + 3T7T15 + 2T9T13,
12716 + 2710715 — T11%14, L1216 + 3T10T15 + 12213, ToXe — T3T7 + T4T8
I= 2x9x6 — 3x3T7 — T5X9, T1XTe — T3T10 + T4T11, T1%6 — 3T3T10 — T5T12,
T1T7 — TaT10 + T4T13, T1X7 — 222210 + T5T14, T1X8 — T2T11 + L3713,
—2r128 + X211 — T5T15, —T1x9 + 2x2T12 + 3T3714,
—2r129 + T2X12 + 3T4715, TeX13 — T7XT11 + TT10
tohg — 1,...,t7hy — 1
and

= ( toho—l,...,t7h7—1)

In Macaulay 2, we calculate the saturation of Ir and Ig with By using the command “satu-

rate”,
il: IQQ = saturate(IQ,BY)
i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

03: true

where By is the intersection of:

(Y1, 910)s (115 Y145 936) s (Y15, - - -5 418, 437) 5 (Y19, - - - > Y22, U3s),

(y23,---,y26,?/39), (y27,...,y30,y40) and (y31,...,y35)

In the same way we obtain fé = (f]; : B?,O) The collection %5 is very ample, so Theorem 4.1.1
implies that ¢ ¢ |: X5 — My(Ag) is an isomorphism.
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6.4 Gr(2,4) Example
Let X = Gr(2,4). The Cox ring of X is
COX(X) = ﬂ([.%'l, e ,.%'6]/(1'1.%'6 — ToXs + .%'3.%'4)).

We recall that Pic(X) = Z is generated by the determinantal line bundle on X. Let & :=
(Ox,0(2),0(4)). The quiver of sections for . is:

Arrows 1-21 are those from 0 to 1. They are labeled by all monomials in k[z1,...,z¢] of degree
2. Arrows 22-42 are those from 1 to 2. They are also labelled by all monomials of degree 2.
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Y32 — Y35 + Y37, Y11 — Y14 + Y16, Y21Y41 — Y2042, Y19Y41 — YaY42,
Y17Y41 — Y16Y42, Y14Y41 — Y13Y42, Y10Y41 — Y9Y42, YsY41 — Y19Y42,
Y21Y40 — Y19Y42, Y20Y40 — Y4Y42, Y18Y40 — Y16Y42, Y15Y40 — Y13Y42,
Y14Y40 — Y16Y40 — Y9Y42, Y6Y40 — Y20Y42, Y21Y39 — Y18Y42, Y20Y39 — Y18Y41,
Y19Y39 — Y16Y42, Y17Y39 — Y3Y42, Y16Y39 — Y3Y41, Y14Y39 — Y12Y42,
Y13Y39 — Y12Y41, Y10Y39 — Ys8Y42, Y9Y39 — YgyY41, YsY39 — Y17Y42,

YaY39 — Y16Y41, Y21Y38 — Y17Y42, Y20Y38 — Y16Y42, Y19Y38 — Y17Y40,
Y18Y38 — Y3Y42, Y16Y38 — Y3Y40, Y15Y38 — Y12Y42, Y14Y38 — Y3Y40 — Y8Y42,
Y13Y38 — Y12Y40, Y9Y38 — Y8Y40, Y6Y38 — Y18Y42, Y4Y3s8 — Y16Y40,
Y21Y37 — Y16Y42, Y20Y37 — Y16Y41, Y19Y37 — Y16Y40, Y18Y37 — Y3Y41,
Y17Y37 — Y3Y40, Y16Y37 — Y12Y40 + Y8Y41, Y15Y37 — Y12Y41, Y14Y37 — Y12Y40,
Y13Y37 — Y2¥40 + Y7Ya1, Y12Y37 — Y2Y38 + Y7Y39, Y10Y37 — Y8Y40,
YoUy37 — Y7Y40 + Y1Y41, Y8Y37 — Y7Y38 + Y139, Y6Y37 — Y18Y41,

Y5937 — Y17Y40, Y4Y37 — Y13Y40 + YoY41, Y3Y37 — Y12¥38 + Y8Y39,
Y21Y36 — Y15Y42, Y20Y36 — Y15Y41, Y19Y36 — Y13Y42, Y18Y36 — Y15Y39,
Y17Y3e — Y12Y42, Y16Y36 — Y12Y41, Y14Y36 — Y2Y42,Y13Y36 — Y2Y41,
Y12Y36 — Y2Y39, Y10Y36 — Y7Y42, Y9Y3e — Yr¥Y41,YsYse — Y1Y39,
Y5Y36 — Y14Y42, Y4Y36 — Y13Y41, Y3Y36 — Y12Y39, Y21Y35 — Y14Y42,
Y20Y35 — Y13Y42, Y19Y35 — Y16Y40 — Y9Y42, Y18Y35 — Y12Y42,
Y17Y35 — Y3Y40 — Y8Y42,Y16Y35 — Y12Y40, Y15Y35 — Y2Y42,
Y14Y35 — Y12Y40 — Y7Y42, Y13Y35 — Y240, Y12Y35 — Y2Y38, Y10Y35 — Y8Y40 — Y1Y42,
YoY35 — Y1Y40, Y8Y35 — Y7Y38, Y7Y3s — Y1Y36 — Y7Y37, Y6Y35 — Y15Y42,
Y5Y35 — Y17Y40 — Y10Y42, Y4Y35 — Y13Y40, Y3Y35 — Y12Y38, Y2Y35 — Y1Y36 — Y237,
Y21Y34 — Y13Y42, Y20Y34 — Y13Y41, Y19Y34 — Y13Y40, Y18Y34 — Y12Y41,
Y17Y34 — Y1240, Y16Y34 — Y2Ya0 + Y7Y41, Y15Y34 — Y2Ya1, Y14Y34 — Y2Y40,
Y12Y34 — Y2Y37, Y10Y34 — Y7Y40, Y8Y34 — Y7Y37, Y6Y34 — Y15Y41,

YsY34 — Y16Y40 — Y942, Y3Y34 — Y2Y3g + Y7Y39, Y21Y33 — Y12Y42,
Y20Y33 — Y12Y41, Y19Y33 — Y12Y40, Y18Y33 — Y12Y39, Y17Y33 — Y12Y38;
Y16Y33 — Y238 + Y7Y39, Y15Y33 — Y2Y39, Y14Y33 — Y2Y38, Y13Y33 — Y237,
Y10Y33 — Y71Y38, Y9Y33 — Y7Y37,Y6Y33 — Y15Y39, Y5433 — Y3Y40 — YglY42,
Yay33 — Y240 + Y7Ya1, Y21Y31 — Y10Y42, Y20Y31 — YoY42, Y19Y31 — Y10Y40,
Y18Y31 — Ys8Y42, Y17Y31 — Y10Y38, Y16Y31 — Y8Y40, Y15Y31 — Y71Y42,
Y14Y31 — Y8Y40 — Y1Y42, Y13Y31 — Y7Y40, Y12Y31 — Y7Y38, Y9Y31 — Y1Y40,

Y8Y31 — Y1Y38, Y7Y31 — Y1Y35, Y6Y31 — Y14Y42 + Y16Y42, Y4Y31 — Y9Y40,
Y3Y31 — Ysy3g, Y2Y31 — Y1Y36 — Y7Y37, Y21Y30 — Y9Y42, Y20Y30 — Y9Y41,
Y19Y30 — Y9Y40, Y18Y30 — Y8Y41, Y17Y30 — Y8Y40, Y16¥Y30 — Y7Y40 + Y1Y41,
Y15Y30 — Y7Y41, Y14Y30 — Y7Y40, Y13Y30 — Y9Y34, Y12Y30 — Y7Y3r,
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Y10Y30 — Y1Y40, Y8Y30 — Y1Y37, Y7Y30 — Y1Y34, Y6¥Y30 + Y16Y41 — Y13Y42, Y5930 — Y10Y40,
Y3Y30 — Y7Y38 + Y1Y39, Y230 — Y7Y34, Y21Y29 — Y8Y42, Y20Y29 — YsY41,
Y19Y29 — Y8Y40, Y18Y29 — Y8Y39, Y17Y29 — Y8Y38, Y16Y29 — Y7Y38 + Y1Y39,
Y15Y29 — Y7Y39, Y14Y29 — Y7Y38, Y13Y29 — Y7Y37, Y12Y29 — Y8Y33, Y10Y29 — Y1Y38,
YoY29 — Y1Y37, Y7Y29 — Y1Y33, Y6¥Y29 + Y3Ya1 — Y12Y42, Y5Y29 — Y10Y38;

YaY29 — Y7Y40 + Y1Ya1, Y2Y29 — Y7Y33, Y21Y28 — Y7Y42, Y20Y28 — Y7Y41,

Y19Y28 — Y7Y40, Y18Y28 — Y71Y39, Y17Y28 — Y7Y38; Y16Y28 — Y7Y37,

Y15Y28 — Y7Y36, Y14Y28 — Y1Y36 — Y7Y37, Y13Y28 — Y7Y34, Y12Y28 — Y71Y33,
Y10Y28 — Y1Y35, YoUY28 — Y1Y34, YsY28 — Y1Y33, Y6¥Y28 + Y12Y41 — Y2Y42,

Y5Y28 — Y8Y40 — Y1Y42, Y4Y28 — Y9Y34,Y3Y28 — YsY3s3, Y21Y27 — Y6Y42,

Y20Y27 — Y6Y4a1, Y19Y27 — Y20Y42, Y18Y27 — Y6Y39, Y17Y27 — Y18Y42,

Y16Y27 — Y18Y4al, Y15Y27 — Y6Y36, Y14Y27 — Y15Y42, Y13Y27 — Y15Y41,

Y12Y27 — Y15Y39; Y10Y27 — Y14Y42 + Y16Y42, YoY27 + Y16Y41 — Y13Y42,

Y8Y27 + Y3Ya1 — Y1242, Y7Y2r + Y12Y41 — Y242, Y527 — Y21Y42, Y4Y27 — Y20Y41,
Y3Y27 — Y18Y39, Y2Y27 — Y15Y36, Y1Y27 + YsY41 — Y7Y42, Y21Y26 — Y5Y42,
Y20Y26 — Y19Y42, Y19Y26 — Y5440, Y18Y26 — Y17Y42, Y17Y26 — Y5Y38,

Y16Y26 — Y17Y40, Y15Y26 — Y14Y42, Y14Y26 — Y17Y40 — Y10Y42,

Y13Y26 — Y16Y40 — Y9Y42,Y12Y26 — Y3Y40 — Ys8Y42,Y10Y26 — Ys5Y31, Y9Y26 — Y10Y4o0,
Y8Y26 — Y10Y38, Y7Y26 — Ys8Y40 — Y1Y42,Y6Y26 — Y21Y42, Y4Y26 — Y19Y40,

Y3Y26 — Y17Y38,Y2Y26 — Y12Y40 — Y7Y42, Y1Y26 — Y10Y31, Y21Y25 — Y4Y42,
Y20Y25 — Y4Ya1, Y19Y25 — Y4Y40, Y18Y25 — Y16Y41, Y17Y25 — Y16Y40,

Y16Y25 — Y13Y40 1+ YoUYa1, Y15Y25 — Y13Y41, Y14Y25 — Y13Y40, Y13Y25 — Y4Y34,
Y12Y25 — Y240 + Y7Y4a1, Y10Y25 — YoY40, Yo¥25 — Y430, YsY25 — YrY40 + Y1Y41,
Y7Y25 — YoUy34, YeY25 — Y20Y41, Y5Y25 — Y19Y40, Y3Y25 — Y12Y40 + YsY41,

Y2Y25 — Y13Y34, Y1Y25 — Y9Y30, Y21Y24 — Y3Y42, Y20Y24 — Y3Y41, Y19Y24 — Y3¥Y4o0,
Y18Y24 — Y3Y39, Y17Y24 — Y3Y38, Y16Y24 — Y12Y38 + Y8Y39, Y15Y24 — Y12Y39;
Y14Y24 — Y12Y38, Y13Y24 — Y2Y3s + Y7Y39, Y1224 — Y3Y33, Y10Y24 — Y8Y38,
YoY24 — Y7Y38 + Y1Y39, YsY24 — Y3Y29, Y7Y24 — Y8Y33, Y624 — Y18Y39, Y524 — Y17Y38;
YaY24 — Y12Y40 1 YsYa1, Y2Y24 — Y12Y33, Y1Y24 — Y8Y29, Y21Y23 — Y2Y42, Y20Y23 — Y2Y41,
Y19Y23 — Y2Y40, Y18Y23 — Y2Y39, Y17Y23 — Y2U38, Y16Y23 — Y2Y37, Y15Y23 — Y2¥36,
Y14Y23 — Y1Y36 — Y2Y37, Y13Y23 — Y2Y34, Y12Y23 — Y2Y33,Y10Y23 — Y1Y36 — Y7Y37,
YolYy23 — Y1Y34, Ysy23 — YryY33, YrY23 — Y2Y28, Y6Y23 — Y15Y36,

Ys5Y23 — Y12Y40 — Y7Y42,Y4Y23 — Y13Y34, Y3Y23 — Y12Y33, Y1Y23 — YrY28,
Y21Y22 — Y1Y42, Y20Y22 — Y1Y41, Y19Y22 — Y1Y40, Y18Y22 — Y1Y39, Y17Y22 — Y1Y38;
Y16Y22 — Y1Y37, Y15Y22 — Y1Y36, Y14Y22 — Y1Y35, Y13Y22 — Y1Y34, Y12Y22 — Y1Y33,
Y10Y22 — Y1Y31, YoY22 — Y1930, YsY22 — Y1Y29, Y7Y22 — Y1Y28, Y6Y22 1 YsYa1 — Y7Y42,
YsY22 — Y10Y31; Y4Y22 — Y9Y30, Y3Y22 — YgY29, Y2Yy22 — Yry28
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Y32 — Y35 + Y37, Y11 — Y14 + Y16, Y40Y41 — Y25Y42, Y38Y41 — Y37Y42,
Y35Y41 — Y34Y42, Y31Y41 — Y30Y42, Y26Y41 — Y40Y42,
Y21Y41 — Y20Y42, Y19Y41 — Y4Y42, Y17Y41 — Y16Y42,
Y14Y41 — Y13Y42, Y10Y41 — Y9Y42, Ys5Y41 — Y19Y42,
Y39Y40 — Y37Y42, Y36Y40 — Y34Y42, Y35Y40 — Y37Y40 — Y30Y42,
Y27Y40 — Y41Y42, Y21Y40 — Y19Y42, Y20Y40 — Y4Y42,

Y18Y40 — Y16Y42, Y15Y40 — Y13Y42, Y14Y40 — Y16Y40 — Y9Y42,
Y6Y40 — Y20Y42, Y38Y39 — Y24Y42, Y37Y39 — Y24Y41, Y35Y39 — Y33Y42,
Y34Y39 — Y33Y41, Y31Y39 — Y29Y42, Y30Y39 — Y29Y41, Y26Y39 — Y38Y42,

Y25Y39 — Y37Y41, Y21Y39 — Y18Y42, Y20Y39 — Y18Y41,
Y19Y39 — Y16Y42, Y17Y39 — Y3Y42, Y16Y39 — Y3Y41,

Y14Y39 — Y12Y42, Y13Y39 — Y12Y41, Y10Y39 — Y8Y42, Y9Y39 — YsY41,
Y5Y39 — Y17Y42, Y4Y39 — Y16Y41, Y37Y38 — Y24Y40, Y36Y38 — Y33Y42,
Y35Y38 — Y24Y40 — Y29Y42, Y34Y38 — Y33Y40, Y30Y38 — Y29Y40,
Y27Y38 — Y39Y42, Y25Y38 — Y37Y40, Y21Y38 — Y17Y42,

Y20Y38 — Y16Y42, Y19Y38 — Y17Y40, Y18Y38 — Y3Y42, Y16Y38 — Y3Y40,

Y15Y38 — Y12Y42, Y14Y38 — Y3Y40 — Y8Y42, Y13Y38 — Y12Y40, Y9Y38 — YsY40,

Y6Y38 — Y18Y42, Y4Y38 — Y16Y40, y§7 — Y33Y40 T Y20Y41,

Y36Y37 — Y33Y4l, Y35Y37 — Y33Y40, Y34Y37 — Y23Y40 + Y28Y41,
Y33Y37 — Y23Y38 + Y28Y39, Y31Y37 — Y29Y40, Y30Y37 — Y28Y40 T Y22¥41,
Y29Y37 — Y28Y38 + Y22Y39, Y27Y37 — Y39Y41, Y2637 — Y38Y40,
Y25Y37 — Y34Y40 + Y30Y41, Y24Y37 — Y33Y38 + Y29Y39, Y21Y37 — Y16Y42,
Y20Y37 — Y16Y41, Y19Y37 — Y16Y40, Y18Y37 — Y3Y41, Y17Y37 — Y3Y40,
Y16Y37 — Y1240 + Y8Y41, Y15Y37 — Y12Y41, Y14Y37 — Y12Y40,
Y13Y37 — Y240 + Y7Ya1, Y12Y37 — Y2Y38 + Y7Y39, Y10Y37 — Y8Y40,
YoU3r — Y7Y40 + Y1Ya1, YsYsr — YrY3s + Y1¥Y39, Y6Y37 — Y18Y41,
Y5937 — Y17Y40, Y4Y37 — Y13Y40 + YoY41, Y3Y37 — Y12Y38 + YsY39,
Y35Y36 — Y23Y42,Y34Y36 — Y23Y41,Y33Y36 — Y23Y39, Y31Y36 — Y28Y42,
Y30Y36 — Y28Y41, Y29Y36 — Y28Y39, Y26Y36 — Y35Y42;

Y25Y36 — Y34Ya1, Y24Y36 — Y33Y39, Y21Y36 — Y15Y42;

Y20Y36 — Y15Y41, Y19Y36 — Y13Y42,Y18Y36 — Y15Y39, Y17Y36 — Y12Y42,
Y16Y36 — Y12Y41, Y14Y36 — Y2Y42, Y13Y36 — Y2Y41, Y12Y36 — Y2Y39,
Y10Y36 — Y7Y42, YoYse — Y7Y41,YsYy3e — Y7Y39, Ys5Y36 — Y14Y42,
Y4Y36 — Y13Y41, Y3Y36 — Y12Y39, y§5 — Y33Y40 — Y28Y42,

Y34Y35 — Y23Y40, Y33Y35 — Y23Y38, Y31Y35 — Y29Y40 — Y22Y42,
Y30Y35 — Y28Y40, Y29Y35 — Y28Y38, Y28Y35 — Y22Y36 — Y28Y37,
Y27Y35 — Y36Y42, Y26Y35 — Y38Y40 — Y31Y42, Y25Y35 — Y34Y40,
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Y24Y35 — Y33Y38, Y23Y35 — Y28Y36 — Y23Y37, Y21Y35 — Y14Y42,
Y20Y35 — Y13Y42, Y19Y35 — Y16Y40 — Y9Y42, Y18Y3s — Y12Y42,
Y17Y35 — Y3Y40 — YsY42, Y16Y35 — Y12Y40, Y15Y35 — Y2Y42, Y14Y35 — Y12Y40 — Y7Y42,
Y13Y35 — Y2Y40, Y12Y35 — Y2Y38, Y10Y35 — Ys8Y40 — Y1Y42,Y9Y35 — Y7Y40,
YsYss — Y1Y38, Y7Y3s — Y1Yse — Y7Y37,Y6Y3s — Y15Y42,
Y5935 — Y17Y40 — Y10Y42, Y4Y35 — Y13Y40, Y3Y35 — Y1238,
Y2Y3s — Y1Y36 — Y2Y37, Y33Y34 — Y23Y37, Y31Y34 — Y28Y40,
Y29Y34 — Y28Y37, Y27Y34 — Y36Y41, Y26Y34 — Y37Y40 — Y30Y42,
Y24Y34 — Y23Y38 T Y28Y39, Y21Y34 — Y13Y42, Y20Y34 — Y13Y41, Y19Y34 — Y13Y40,
Y18Y34 — Y12¥Y41, Y17Y34 — Y12Y40, Y16Y34 — Y2Y40 + Y7Y41, Y15Y34 — Y2Y41,
Y14Y34 — Y2Y40, Y12Y34 — Y2Y37,Y10Y34 — Y7Y40, Y8Y34 — Y7rY37,
Y6Y34 — Y15Y41, Y534 — Y16Y40 — YoY42, Y3Y34 — Y2Y3s 1+ Y7939, Y31Y33 — Y28Y38,
Y30Y33 — Y28Y37, Y27Y33 — Y36Y39; Y26Y33 — Y24Y40 — Y29Y42,
Y25Y33 — Y23Y40 + Y28Y41, Y21Y33 — Y12Y42, Y20Y33 — Y12Y41,
Y19Y33 — Y12Y40, Y18Y33 — Y12Y39, Y17Y33 — Y12Y38,

Y16Y33 — Y238 + Y7Y39, Y15Y33 — Y2U39, Y14Y33 — Y2Y38, Y13Y33 — Y2Y37,
Y10Y33 — Y7Y38, YoY33 — Y7Y37,YeY33 — Y15Y39, Y5Y33 — Y3Y40 — YsY42,
Yay33 — Y240 + Y7Ya1, Y30Y31 — Y22Y40, Y2031 — Y2238, Y28Y31 — Y22¥35,
Y27Y31 — Y35Y42 + Y37Y42, Y25Y31 — Y30Y40, Y24Y31 — Y2938,

Y23Y31 — Y22Y36 — Y28Y37,Y21Y31 — Y10Y42, Y20Y31 — Y9Y42,

Y19Y31 — Y10Y40, Y18Y31 — Ys8Y42, Y17Y31 — Y10Y38,

Y16Y31 — Y8Y40, Y15Y31 — Y7Y42, Y14Y31 — Y8Y40 — Y1Y42,

Y13Y31 — YrY40, Y12Y31 — Y7Y38, Y9Y31 — Y1Y40, Y8Y31 — Y1Y38;

Y7Y31 — Y1Y35, Y6Y31 — Y14Y42 + Y16Y42, Y4Y31 — Y9Y40, Y3Y31 — Y8Y3s,
Y2Y31 — Y1Y3e6 — Y7Y37, Y29Y30 — Y22Y37, Y28Y30 — Y22Y34,
Y27Y30 T Y37Y41 — Y34Y42, Y26Y30 — Y3140, Y24Y30 — Y28Y38 T Y22¥39,
Y23Y30 — Y28Y34, Y21Y30 — Y9Y42, Y20Y30 — Y9Y41, Y19Y30 — Y9Y40,
Y18Y30 — Y8Y41, Y17Y30 — Y8Y40, Y16Y30 — Y7Y40 + Y1Y41, Y15Y30 — Y7Y41,
Y14Y30 — Y7Y40, Y13Y30 — Y9Y34, Y12Y30 — Y7Y37, Y10Y30 — Y1Y4o0,
Y8Y30 — Y1Y37, Y7Y30 — Y1Y34, Y6¥Y30 + Y16Y41 — Y13Y42, Y5430 — Y10Y40,
Y3Y30 — Y7Y38 + Y1Y39, Y2Y30 — Y7Y34, Y28Y29 — Y22Y33, Y27Y29 T Y24Y41 — Y33Y42,
Y26Y29 — Y31Y38, Y2529 — Y28Y40 T Y22Y41, Y23Y29 — Y28Y33,
Y21Y29 — Y8Y42, Y20Y29 — Y8Y41, Y19Y29 — Ys8Y40, Y18Y29 — Ys8Yy39,
Y17Y29 — Y8Y38, Y16Y29 — Y7Y38 + Y1Y39, Y15Y29 — Y7939,
Y14Y29 — Y7Y38, Y13Y29 — Y7Y37, Y12Y29 — Y8Y33, Y10Y29 — Y1¥38,
YoY29 — Y1Y37, Y7Y29 — Y1Y33, Y6Y29 + Y3Y41 — Y12Y42, Y5Y29 — Y10Y38,
YaY29 — Y7Y40 + Y1Ya1, Y2Y29 — Y7933, Y27Y28 + Y33Ya1 — Y23Y42,
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Y26Y28 — Y29Y40 — Y22Y42, Y25Y28 — Y30Y34, Y24Y28 — Y29Y33,
Y21Y28 — Y7rY42, Y20Y28 — Y7Y41, Y19Y28 — Y7Y40, Y18Y28 — Y7Y39,
Y17Y28 — YrY3s, Y16Y28 — Y7Y37, Y15Y28 — Y7Y36,
Y14Y28 — Y1Y36 — Y7Y37, Y13Y28 — Y71Y34, Y12Y28 — Y7Y33,
Y10Y28 — Y1Y35, YoUY28 — Y1Y34, YsY28 — Y1Y33, Y628 + Y12Y41 — Y2Y42,
Y5Y28 — Y8Y40 — Y1Y42, Y4Y28 — Y9Y34, Y3Y28 — YgY33, Y26Y27 — yZQ,
Ya5Y27 — yzu Y24Y27 — y§9, Y23y — y§6, Y22Y27 + Y29Y41 — Y28Y42,
Y21Y27 — YeYa2, Y20Y27 — YelY41, Y19Y27 — Y20Y42, Y18Y27 — Y6Y39,
Y17Y27 — Y18Y42, Y16Y27 — Y18Y41, Y15Y27 — Y6Y36, Y14Y27 — Y15Y42,
Y13Y27 — Y15Y41, Y12Y27 — Y15Y39, Y10Y27 — Y14Y42 + Y16Y42,
Yoy27 + Y16Y4a1 — Y13Y42, Y8Y27 + Y3ya1 — Y12Y42, Y7Y27 + Y12Y41 — Y2Y42,
Ys5Y27 — Y21Y42, YaY27 — Y20Y41, Y3Y27 — Y18Y39, Y2Y27 — Y15Y36,
Y1Y27 + Y8Ya1 — Y742, Y25Y26 — Z/Zo, Y24Y26 — y§8, Y23Y26 — Y33Y40 — Y28Y42,
Y22Y26 — y%l, Y21Y26 — Ys5Y42, Y20Y26 — Y19Y42, Y19Y26 — Y5Y40,
Y18Y26 — Y17Y42, Y17Y26 — Y5938, Y16Y26 — Y17Y40, Y15Y26 — Y14Y42,
Y14Y26 — Y17Y40 — Y10Y42, Y13Y26 — Y16Y40 — Y9Y42,

Y12Y26 — Y3Y40 — YsY42,Y10Y26 — Y5Y31, Y9Y26 — Y10Y40, Y8Y26 — Y10Y38;
Y7Y26 — Y8Y40 — Y1Y42, YeY26 — Y21Y42, Y4Y26 — Y19Y40, Y3Y26 — Y17Y38,
Y2Y26 — Y1240 — Y7Y42, Y1Y26 — Y10Y31, Y24Y25 — Y33Y40 + Y29Y41,
Y23Y25 — y32,4, Y22Y25 — y?,o, Y21Y25 — Y4Y42, Y20Y25 — Y4Y41,

Y19Y25 — Y4Y40, Y18Y25 — Y16Y41, Y17Y25 — Y16Y40,
Y16Y25 — Y13Y40 + Y9Y4a1, Y15Y25 — Y13Y41, Y14Y25 — Y13Y40,
Y13Y25 — Y4Y34, Y12Y25 — Y2Y40 + Y7Y41, Y10Y25 — Y9Y40,

Y9Y25 — YaY30,Y8Y25 — Y7Y40 + Y1Y41, Y7Y25 — Y9U34, Y6¥Y25 — Y20Yal,
Y5Y25 — Y19Y40, Y3Y25 — Y12Y40 + Y8Y41, Y2Y25 — Y13Y34, Y1Y25 — Y9Y30,
Y23Y24 — y§3, Y22Y24 — ’y%g, Y21Y24 — Y3Y42, Y20Y24 — Y3Y41,
Y19Y24 — Y3Y40, Y18Y24 — Y3Y39, Y17Y24 — Y3Y38, Y16Y24 — Y12Y38 + YsY39,
Y15Y24 — Y12Y39, Y14Y24 — Y12Y38, Y13Y24 — Y2Y38 + Y7Y39,

Y12Y24 — Y3Y33, Y10Y24 — Y8Y38, Y9Y24 — Y7Y38 + Y1Y39, YsY24 — Y3429,
Y7Y24 — Y8Y33, Y6Y24 — Y18Y39, YsY24 — Y17Y38, Y4Y24 — Y12Y40 + Y841,

Y2Y24 — Y12Y33, Y1Y24 — YsY29, Y2223 — y§g7 Y21Y23 — Y2Y42,
Y20Y23 — Y2941, Y19Y23 — Y2Y40, Y18Y23 — Y2Y39, Y17Y23 — Y2Y38,
Y16Y23 — Y2Y37, Y15Y23 — Y2Y36, Y14Y23 — Y7Y36 — Y2Y37, Y13Y23 — Y2Y34,
Y12Y23 — Y2Y33, Y10Y23 — Y1Y36 — Y7Y37, Y9y23 — Y7rY34, YsYy23 — YrY33,
Y1Y23 — Y2Y28, Y6Y23 — Y15Y36, Y5Y23 — Y12Y40 — Y7Y42, Y4Y23 — Y13Y34,
Y3Y23 — Y12Y33; Y1Y23 — Y7Y28, Y21Y22 — Y1Y42, Y20Y22 — Y1Y41,
Y19Y22 — Y1Y40, Y18Y22 — Y1Y39, Y17Y22 — Y1Y38, Y16Y22 — Y1Y3r,
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Y15Y22 — Y1Y36, Y14Y22 — Y1Y35; Y13Y22 — Y1Y34, Y12Y22 — Y1Y33,
Y10Y22 — Y1Y31, YoY22 — Y1Y30, YsY22 — Y1Y29, Y7Yy22 — Y1Y28,

Y6y22 + YsYa1 — Y7Y42, Y5Y22 — Y10Y31, Y4Y22 — Y9Y30, Y3Y22 — Y8Y29,
Y2Y22 — Y7Y28,Y19Y20 — Y4Y21, Y17Y20 — Y16Y21, Y14Y20 — Y13Y21,
Y10Y20 — Y9Y21, YsY20 — Y19Y21, Y18Y19 — Y16Y21, Y15Y19 — Y13Y21,

Y14Y19 — Y16Y19 — Y9Y21, Y6¥Y19 — Y20Y21, Y17Y18 — Y3Y21,

Y16Y18 — Y3Y20, Y14Y18 — Y12Y21, Y13Y18 — Y12Y20, Y10Y18 — Ys¥Y21,
YolY18 — Y8Y20, YsY18 — Y17Y21,Y4Y18 — Y16Y20, Y16Y17 — Y3Y19,
Y15Y17 — Y12Y21, Y14Y17 — Y3Y19 — YsY21, Y13Y17 — Y12Y19, YoY17 — YsgY19,
YeY17 — Y18Y21, Y4Y17 — Y16Y19, y%@ — Y12Y19 + Y8Y20, Y15Y16 — Y12420,
Y14Y16 — Y1219, Y13Y16 — Y2Y19 + Y7920, Y12Y16 — Y2Y17 + Y7Y18,
Y10Y16 — Y8Y19, Y9Y16 — Y7Y19 + Y120, Y8Y16 — Y7Y17 + Y1Y1s,

Y6Y16 — Y18Y20, Y5Y16 — Y17Y19, Ya¥Y16 — Y13Y19 + Y9Y20,

Y3Y16 — Y12Y17 + YsY18, Y14Y15 — Y2Y21, Y13Y15 — Y2Y20, Y12Y15 — Y2Y18,
Y10Y15 — Y7Y21,Y9Y15 — Y7Y20, Y8Y15 — Y7Y18, YsY15 — Y14Y21, Y4Y15 — Y13Y20,
Y3Y1s — Y12Y18, y%4 — Y12Y19 — Y7Y21, Y13Y14 — Y2Y19, Y12Y14 — Y2Y17,
Y10Y14 — YsY19 — Y1Y21,YoY14 — Y7Y19, YsY14 — Yry17, Y7Yyi4 — Y1Yyis — Yryie,
Y6Y14 — Y15Y21, YsY14 — Y17Y19 — Y10Y21, Y4Y14 — Y13Y19, Y3Y14 — Y12Y17,
Y2Y14 — Y1Y15 — Y2Yie6, Y12Y13 — Y2Y16, Y10Y13 — Y7Y19, Y8Y13 — YrY16,
Y6Y13 — Y15Y20, Y5913 — Y16Y19 — YoY21, Y3Y13 — Y2Y17 + Y7Y18,

Y1o0Y12 — Yryi7,YoyY12 — YrYie, YeY12 — Y15Y18, Ysy12 — Y3Y19 — Ysy21,
Yay12 — Y2Y19 + Y7Y20, Y9Y10 — Y1Y19, Y8Y10 — Y1Y17, Y7Y10 — Y1Y14,
Y6Y10 — Y14Y21 + Y16Y21, Y4Y10 — YoY19, Y3Y10 — Ys8Y17, Y2Y10 — Y1Y15 — Y7Y16,
Y8Y9 — Y1Y16, Y7Y9 — Y1Y13, Y6Y9 + Y16Y20 — Y13Y21, Y5Y9 — Y10Y19,
Y3Y9 — Y7y17 + Y1Y18, Y2Y9 — Y7Y13, Y7Ys — Y1¥Y12, Y6¥Ys + Y3Y20 — Y12Y21,
YsYs — Y10Y17, Y4Y8 — Y7Y19 + Y1Y20, Y2Us — Y7Y12, Y6Y7 + Y12Y20 — Y2Y21,
Ysy7 — YsY19 — Y121, Yay7 — YoU13, Y3Y7 — YsY12, YsYs — Ya1, Y4Y6 — Yo,
Y36 — Yis, Y2l6 — Yis, Y196 + YsY20 — Y7Y21, Yals — Yig Y3Ys — Yir,
Yays — Y12Y19 — Y721, Y1Ys — Yin, Y3Ya — Y12Y19 + Y8Y20,

Yous — Ui, Y1Us — U3, Y2u3 — Yia, Y1Y3 — U3, Y1Y2 — U3

We present Macaulay 2 code for computing Iq.

R =0QQ[x 1..x 6,t_0..t_ 2, h 0..h 2, y 1..y 42, MonomialOrder => Eliminate 12 ]
G = gens gb K+I
J = selectInSubring(1,G)

IQ = ideal(J)
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where

y1 — tixthy, yo — w3k, ys — tiadha, ya — tizihe, ys — tiwdhy,
Y6 — tizghy, yr — tizzahy, ys — tiziashy, yo — tizrzaha, yio — iy zsha,
y1 — hixizehy, y12 — tiwaxshy, y13 — tiwaxahy, y1a — tizoxsha,
Y15 — t1z2xehy, y16 — tizzraha, y17 — tizzzshy, yis — tizsweha,
K- Y19 — t1zaxshy, Y20 — t1zaxeh, yo1 — tiwsweha, yag — taxths,
Y23 — tax3ha, You — tax3ho, yos — tawiha, yog — tawEho,
Yor — toxdha, yos — tax1x2ha, yog — tow1x3ho, Y30 — tax1Tahs,
Y31 — tar1x5ha, Y32 — taw1x6ha, Y33 — tawaxsha, ysa — taxaxaha,
Y35 — towaxsha, Yse — tawaxeha, Y37 — tawzxaha, yss — tarsxsha,
Y39 — toxswehe, yao — t2xaxshe, Yya1 — towsweha, yaz — taxsxehs

and

I = ( T3xy — ToTs + X126, tohg — 1,t1h1 — 1,t0he — 1 > .

In Macaulay 2, we calculate the saturation of Ir and Iy with By using the command “saturate”,
il: IQQ = saturate(IQ,BY)

i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

03: true

where By is the intersection of

(y1,.--,y21) and (y22,...,ya2).

It is also possible to calculate }E and E and that IE = (]’E : B;o) but we omit the calculations
here. By our Macaulay 2 calculation, the collection .Z is very ample, so Theorem 4.1.1 implies that
o1z Gr(2,4) — My(Ay) is an isomorphism.
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Appendix A

Appendix A: Computing Kernels of
k-Algebra Homomorphisms

A.0.1 Kernels of k -Algebra Homomorphisms.

In order to calculate the Mori Dream Space analogue of Ig from [10], we will need to be able to
compute kernels of k-algebra homomorphisms efficiently. Theorem A.0.2 gives us a way to write
kernels. Then using Elimination Theory we can compute kernels using Macaulay 2.

A.0.2 Kernels

Material from this section can be found in Adams-Loustaunau [1]. Let ¢ : k[yi,...,ym] —
k[z1,...,x,] be the k algebra homomorphism mapping y; to some f;(z1,...,z,) € k[x1,...,x,] for

each i. We want to compute ker(y). First we need a technical lemma.

Lemma A.0.1. Let R be a commutative ring. If ai,...,an,b1,...,bp € R, thenay---a,—b1---by
1s contained in the ideal
(a1 —bl,...,an — bn)

Proof. ay-+-ap—0by-+-by, =ai(ag- -an—by---by)+by---by(a; —by), hence by induction a; - - - a,, —
by - -+ b, can be written as »_ g;(a; — b;), for g; € R. O

Now we are able to prove Theorem A.0.2.

Theorem A.0.2. Let the f;’s be as above and let K = (yl—fl, o ,ym—fm) Cklx1,. oy Ty Yty -y Yml-
The kernel of ¢ satisfies
ker(p) = K Nkly1, ..., Yn)-
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Proof. First let g € K Nkly1,...,yn]. We will show g € ker(p). Since g € K and g € k[y1, ..., yn],

we must have
n

g(yla s ,ym) = Z(yz - fi(xly s ,xn))hl(yax)
=1
for some h; € k[z1,...,%m,y1,...,ym]. Hence the image of g under ¢ is

n

g(frs o fm) =Y (filwr,. o n) = filar,. o x))hi =0,

1=1
and therefore g € ker(yp).
Conversely, let g € ker(yp). We can write

g:chyv
for some v € N™ ¢, € k. Hence
g(fl,---,fm) =0= g(yla,ym) :g(yl”ym) _g(fl’afm) = ch(yv _fv)
By the lemma, this shows g is in the ideal K. O

Corollary A.0.3. Let ¢ : K[y1,...,ym] — k[x1,...,2,]/] be the k-algebra homomorphism map-
ping y; to f; € kKlzy,...,z,]/I for each i. The kernel of ¢ is

(K+1)Nkyi, ..., Ym]
where we consider
K=i—fioo ' ym— [m)
and I to be ideals of K[x1,...,Tn, Y1, Ym]-

Proof. Let g € (K +I)NKk[y1,...,Ym], then g = h + j, where h € K and j € I. We can write
J = cavjr"y¥g;, where g; € klx1,...,x,] is a generator of I. Also, since h € K so h(y1,...,Ym) =
(yi — f1)p1 + -+ + (Ym — fm)pm for some polynomials p1,...,pm € k[z1,...,Zn,y1,...,Ym]. Hence

Also, j(fi,..., fm) =2 cuviz fVgj € I, so g € ker(yp).
For the converse, suppose g € ker(¢) C k[y1,...,Ym]|. Hence g(f1,...,fm) € I Cklxy,...,z,].
We can write

g(yh,ym) :g(ylaaym) _g(flaafm)+g(f177fm)
If we have g(y1,...,ym) = > cvy" then
g(yla"'aym) _g(f157fm) = ch(yv _fV)

where Y ¢y (yV—fV) € K by Lemma A.0.1. We also have g(f1,..., fm) € I,s0g(y1,...,ym) € K+1
as required. O
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A.0.3 Elimination Theory and Macaulay 2 Calculations

Theorem A.0.2 and Corollary A.0.3 give us a way of writing kernels in a k-algebra k[yi, ..., vm] as
the intersection of an ideal in a larger ring with k[y1, ..., ym] considered as a subring. In order to
compute these intersections, we need the Elimination Theorem. Following Cox—Little-O’Shea [5],
we define the kth elimination ideal Iy of I CKk|[xy,...,z,] to be

INk[zgit, ..., oy

Theorem A.0.4 (The Elimination Theorem). Let I C k[z1,...,x,] be an ideal, and let G be a
Groebner basis of 1 with respect to lex order where x1 < xo < --- < x,,. Then, for every k < n, the
set

Gr = Gnklzy,...,zy]

is a Groebner basis of the kth elimination ideal I}.

In Macaulay 2, once we have computed the Groebner basis of K + I as in Corollary A.0.3, we

can compute the intersection with k[yi, ..., ym] using the command “selectInSubring”. Explicitly:
il: R =QQ[x 1..x n,y 1..y_m, MonomialOrder => Eliminate n]

i2: K = ideal(y_1-f_1,...y m-f m)

i3: I = ideal(g 1,...g k)

i4: G = gens gb K+I

i5: J = selectInSubring(1,G)

i6: kernel = ideal(J)
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Appendix B

Appendix B: Computing Cox(X5) after
Batyrev—Popov and Derenthal

We give code used to compute Ix, in section 2.2.3 following the method of Batyrev—Popov [2] and
Derenthal [12].
We present code for finding the equation of a conic containing 5 points in P2,

Pseudocode B.0.5. Input: coordinates of five points

p=(p1,p2,03),q = (q1,492,43),7 = (r1,72,73),5 = (81,52, 53),t = (t1,12,13).
Procedure:

L := [ap} + bp3 + cp3 + dpipa + ep1ps + fpaps,

agi +bq3 + g3 + dqig2 + eqiqs + fa2qs,

ar% + br% + crg + drire 4+ erirs + frors,

as% + bs% + csg + ds189 + es1S3 + fsos3,

at? + bt3 + ct3 + dtits + etits + ftots)]

Let L; denote the ith term of the list L.
S:=[L1=0,Ly=0,L3=0,L4y =0,L5 =0];
solve(S, [a, b, c,d, e, f]);
Output: solution of S for a,...,f.

Proof. A general conic in three variables z1, 29, z3 has the form

2 2 2
az] +bzy 4+ cz3 + dz120 + ez123 + fzoz3

for a,b,c,d,e, f € k. This procedure finds coefficients a,..., f for such a conic which contains
p,...,t. This is because S contains the equations of the general conic above evaluated at p,...,t
set equal to zero, and the Maple command “solve” solves the list of equations S for a,...,f. O
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We present lattice maps which induce the Pic(X,) grading of Cox(X,).

calculating these monomials when r = 4, the cases where r = 5 or 6 are similar.

For a Mori Dream Space X where Cox(X) = kz1, ..

lattice map

We use these maps
to calculate all monomials in H°(X,, D) for a line bundle D € Pic(X,). We give pseudocode for

., 24q)/Ix and Cl(X) = ZP, there exists a

774 — 7P

which induces the grading of Cox(X) by CI(X). Sections of a line bundle D are therefore elements
of degfl(D). We give the lattice maps 74, 75 and mg which induce deg for X4 and X5 respectively:

o000 1 1 1 1 1 1
1000 -1 -1 =1 0 0 0
m=0100 -1 0 0 -1 -1 0
0010 0 -1 0 -1 0 -1
0001 0 0 -1 0 —1 —1
ooo0oo0o0 1 1 1 1 1 1 1 1 1 1 2
10000 -1 -1 -1 -1 0 0 0 0 0 0 -1
lo1000-10 0 0 -1-1-10 0 0 -1
=fo0100 0 -1 0 0 -1 0 0 -1 -1 0 -1
000100 0 -1 0 0 -1 0 -1 0 -1 —1
00001 0 0 0 -1 0 0 -1 0 —1 -1 —1

For Xg, the matrix 7g takes up too much space. So we write a list of the degrees in Z7 of the

27 variables of Cox(Xs):
{{o,1,0,0,0,0,0},{0,0,1,0,0,0,0},{0,0,0,1,0,0,0}, {0,0,0,0,1,0,0}, {0,0,0,0,0, 1,0}, {0,0,0,0,0,0, 1}

{1,-1,-1,0,0,0,0},{1,-1,0,—1,0,0,0},{1,—1,0,0,—1,0,0}{1,—1,0,0,0, —1,0},{1,—1,0,0,0,0, —1}
{1,0,—1,-1,0,0,0},{1,0,—1,0,—1,0,0},{1,0,—1,0,0,—1,0},{1,0,—1,0,0,0,—1},{1,0,0, -1, —1,0,0}
{1,0,0,-1,0,-1,0},{1,0,0,—1,0,0,—1},{1,0,0,0, -1, —1,0},{1,0,0,0,—1,0,-1},{1,0,0,0,0, -1, -1}
{2,-1,-1,-1,-1,-1,0},{2,—1,—1,—1,—1,0, -1}, {2, -1, -1, -1,0, -1, -1}
=1, —1}}

We present pseudocode for computing torus invariant sections of a line bundle L on X4 (i.e. for

{2,-1,-1,0,—-1,-1,-1},{2,-1,0,-1,—-1,-1,-1},{2,0,—1, -1, -1

finding elements of deg™*(L)) and a proof of efficacy. The code for X5 and X is similar.
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Pseudocode B.0.6. We show how to compute the sections of a line bundle agly + a1l + asls +
asls + ayly € Pic(Xy). Our method is to find all the elements of w; *(ag,. .. ,as). We let L[i] denote
the ith term in a list L, and Lli][j] denote the jth term in L[i], and let |L| denote the number of

elements of L.

Input: L := |ag, a1, as,as3, a4)

Procedure:

L1:=[]: (i.e. the “empty list”)

for ts from 0 to ag do

for tg from 0 to ag do

for t7 from 0 to ag do

for tg from 0 to ag do

for tg from 0 to ag do

for tig from 0 to ag do

if ts + te + t7 +ts + to + t190 = lo then L1 := [L1, [t5, L, t7,ts, tg, t10]]:

L2:=1]:
fori from 1 to |L1| do
s = L[i][1]
cg := L1[1][2]
c7 := L1[i][3]
cg := L1[i][4]
cg = LA[i][5]
0 := L1[i][6]

cl1:=a1+c¢c5+cg+cy

Co = a9 + C5+cg+ ¢9

€3 :=a3+cg+cg+Ccio

Cc4i=a4+cr+cog+ci:

ifc1 >0 and ca > 0 and ¢3 > 0 and ¢4 > 0 then L2 := [L2, 27" 23 xSP ot o af ot o o’ 73]
Output: L2.

Proof. By considering the matrix 74, we see that every torus invariant section in H°(X,aglo +

aily + azls + agls + asly) is of the form x7' x5’ aSPr e’ wgl o7’ v wg’ 21l where
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B.0.1
B.0.2
B.0.3

cs+cg+ertcegtoegteo = ao ( )
(B.0.2)

(B.0.3)

€3 —Ccg—Cg—Clg = as (B.0.4)

(B.0.5)

(B.0.6)

€1 —C —C—Cr = a1

C) —C; —Cg —Cg = Qo

B.0.5
B.0.6

C4p—Cr—C—Cop = a4

We construct L1 to contain all the solutions to (B.0.1) with ¢ standing in for ¢) for non-negative inte-
gers ts, ..., t19. Then we work through all the possible solutions to (5.3.1) (indexed by 7) by defining
Cs, - .., C10 to be the first up to sixth terms respectively in the ith possible solution to (B.0.1). Given
s, ..., C10, we define ¢y, ..., ¢4 according to (B.0.2),(B.0.3),(B.0.4) and (B.0.5) respectively. We

check if this gives ci,...,cs > 0 and hence a section z7'z5’z5*r i vp® wgl o v xg’ x1l’. We gather
all such monomials in L2, and hence our output L2 contains every point in wzl(ao, c..,a4) as
required. O

Recall that a ruling is the sum of two (—1)-curves whose intersection number is 1. We give

pseudocode for finding rulings on X, and a proof of efficacy. The code for X5 and Xg is similar.

Pseudocode B.0.7. First we write a list of all (—1)-curves agly+ a1l +agle +asls +asly on X4 by
listing the corrseponding elements of Z° : [ag, a1, as, a3, a4]. In this format, the list of (—1)-curves
L is:

L:=[[0,1,0,0,0],]0,0,1,0,0],0,0,0,1,0],[0,0,0,0,1},[1,-1,-1,0,0], [1,—1,0, —1,0],

[1,-1,0,0,—1],[1,0,—1,—1,0],[1,0,—1,0,-1],[1,0,0, -1, —1]].

Again, we denote the ith element of L by Lli], and the number of elements in L by |L|. We find all
rulings as follows:
Input: the list L.

Procedure:
=1]:
flll =14
fi2] =1
f1Bl =13
fl4] =1l
fo]i=lo—lL — 1o
fl6]:==lo—1l — 13

87



e

fl8l:=1l—1la—13

f19]:

f[10] ==1lp — I3 — I

fori from 1 to|L| —1 do

for g fromi+1 to |L| do

if LI [AL[j][1] — L] [2]L[5][2] — LL][3]L[5][3] — L[4 L[5][4] — L[[S]L[7][5] = 1 then S := [S, f[i] +
flll

S:= convert(convert(S,set),list)

Output: S.

—lo—1 — 14

=lp—1Ila—1y

Proof. We define the f[i]’s to be the (—1)-curves on X;. We work through all the (—1)-curves,
indexed by ¢ and j and compute their intersection number:

LEALE] = LERILE)R] = LEBILEI8] — LEMAIL)A4) — LE[SIL][5]-

By definition, if the intersection number of a pair of (—1)-curves is 1, then their sum is a ruling.
We collect the sum of all pairs of generators with intersection number 1 in the list .S. To avoid

repetitions, we convert S to a set and then back to a list. ]
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Appendix C
Appendix C: Computing /p

We present pseudocode to compute Ir for X when Ix is generated by quadratic polynomials
with three terms, as in Xy, X5, X¢g and Grassmannians Gr(r,n). We give pseudocode and proof of
correctness in this case.

We introduce some notation. Fix a presentation for Iy. We denote the jth generator of Ix as
Ix[j], and suppose the number of generators is G. We define i, s[d], t[i], u[i], v[i], w[i], [[z], m[i], n[d]
such that:

Ix[i] = lilzp @ + mlilzg) T + iz Tw))-
We define D[i], E[i] and F[i] to be vectors of length d with 1’s in the r[i]th and s[i]th, t[¢]th

and wu[i]th, and v[i|th and w[i]th positions respectively and zeros elsewhere.

Pseudocode C.0.8. We assume Ix is quadratically generated, and that each generator has three
terms.

Input: To compute Ir for a quiver Q, our input is P := getpaths(Q).

Procedure:

S:=1]:

for g from 1 to G do
L1:=]]

L2:=]]

L3:=[]:

fori from 1 to |P| do
if Plil[2][r[g]] > 0 and P[i][2][s[g]] > 0 then L1 := [L1[}, [Pli][1], P[i][2] — Dlgl, P[i][3], P[i][4]]]

for j from 1 to |P| do
if Plj][2][tlg]] > 0 and P[j][2][ulg]] > O then L2 := [L2[], [P[j][1], P[j][2] — Elg], pl5][3], pl5][4]]
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for k from 1 to |P| do if P[k][2][v]g]] > O and P[k][2][w[g]] > O then L3 := [L3]], [P[k][1], P[k][2] —
Flg], P[K][3][4]]]

for a from 1 to |L1| do

for b from 1 to |L2| do

for ¢ from 1 to |L3| do

if L1[a][1] = L2[b][1] = L3]c|[1] and L1[a][2] = L2[b][2] = L3[c][2]and L1[a][3] = L2[b][3] = L3|c|[3]
then S := [S[}, l[g] L1[a][4] + m[g] L2[b][4] + n[g] L3[c][4]]

Output: S.

Proof. By Lemma 5.1.7, a generating set for Ip consists of the generators of j;, plus elements of
klyala € Q1] of the form ). a;y,, where the p;’s have the same heads and tails and &>(ZZ a;yp,) is
a monomial times a generator of Ix.

We have already found generators of I'E, using our Maple procedure “zeropart”. Since assume
each generator of Ix has three terms, it remains to find all triples of paths p1, p2, p3 with the same
heads and tails, where each p; is labelled by a monomial times a term of a generator of Ix, modulo
constant term a; say. We then have that aiy,, + a2yp, + azy,, is a generator of Iz, and by Lemma
5.1.7, once we have found all such generators, we will have a generating set for Ig.

We work through all generators of Ix, for the gth generator, we proceed as follows:

First, we define three empty lists L1, L2 and L3. We find all paths p whose labels are divisible by
the first, second or third term of I X[g] mod constant, and record their heads, tails, the remainder

when we divide their label by a term of I X([g], and y, in L1, L2 or L3 respectively. Explicitly:

1. We work through all paths P[i] and see if their labels P[i][2] are divisible by the first term
of IX[g] : z,(g74)g- If it is divisible, we record P[i]’s tail, the remainder when we divide its
label by x4 4[4, head and ypp;) in L1.

2. We work through all paths P[j] and see if their labels P[j][2] are divisible by the second term
of IX[g] : wygwyg- If it is divisible, we record P[j]’s tail, the remainder when we divide its

label by x(g 74, head and ypy;) in L2.

3. We work through all paths P[k] and see if their labels P[k][2] are divisible by the third term
of IX|[g] : Ty[gTw[g)- If it is divisible, we record P[k]’s tail, the remainder when we divide its
label by (4@ [y, head and ypyz) in L3.

Secondly, we work through all entries in L1, L2 and L3. If L1[a], L2[b] and L3[c] have the same
first, second and third entries, then they record information about paths pi, ps and p3 with the same
tails, heads and remainder of their label after division by a term of I X[g] mod constant. Hence,

replacing constants, U[g]yp, + m[g]yp, + n[glyp, is a generator of Ig. Ll[a][4] = yp,, L2[b][4] = yp,
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and L3[c|[4] = yp,. We record [[g]L1]a][4] + m[g]L2[b][4] + n]g]L3[c][4] in S. After working through
all such triples for all generators I X[g], S plus the generators from Pseudocode 5.1.4 will give a
generating set for Ig. O
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