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Chapter 1

Introduction

1.1 Introduction

Mori Dream Spaces and their Cox rings have been the subject of a great deal of interest since their

introduction by Hu–Keel [19] over a decade ago. From the geometric side, these varieties enjoy the

property that all operations of the Mori programme can be carried out by variation of GIT quotient,

while from the algebraic side, obtaining an explicit presentation of the Cox ring is an interesting

problem in itself. Examples include Q-factorial projective toric varieties, spherical varieties and log

Fano varieties of arbitrary dimension. In this thesis we use the representation theory of quivers to

study multigraded linear series on Mori Dream Spaces. Our main results construct Mori Dream

Spaces as fine moduli spaces of ϑ-stable representations of bound quivers for a special stability

condition ϑ, thereby extending results of Craw–Smith [10] for projective toric varieties.

Let X be a Mori Dream Space and let L = (L0, L1, . . . , Lr) be a collection of effective line

bundles on X with L0 = OX . In Chapter 3 we show how to construct a quiver of sections for

L . We would like this quiver to encode the sections of Lj ⊗ L−1
i for every Li and Lj in L ,

but we are obstructed by the lack of a canonical basis for the space H0(X,Lj ⊗ L−1
i ). However,

every Mori Dream Space admits a natural embedding into a projective toric variety X̃ , whose class

group is isomorphic to that of X. We harness a key property of this ambient toric variety, or

more precisely of the collection L̃ = (E0, . . . , Er) on X̃ obtained by lifting L from X. While the

spaces H0(X,Lj⊗Li) have no canonical basis, H0(X̃, Ej⊗E
−1
i ) certainly does: the torus invariant

sections. We define the quiver of sections for L on X to be the quiver of sections for L̃ on X̃ , as

given in Craw–Smith [10].

The key difference in the Mori Dream Space case lies in the ideal of relations in the path algebra.

We define an ideal of relations R in the path algebra which encodes not only the “toric relations”

given in [10], but also all the relations in the Cox ring of X. Indeed, the bound quiver of sections

Q for L is finite, acyclic and the quotient kQ/R is isomorphic to the endomorphism algebra
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AL = End(
⊕

0≤i≤r Li). Setting aside the ideal of relations for now, we define the multigraded

linear series of the collection L to be the toric quiver variety |L | = Mϑ(Q) obtained as the fine

moduli space of ϑ-stable representations of Q with dimension vector (1, . . . , 1) for the special weight

vector ϑ = (−r, 1, . . . , 1). This fine moduli space carries a collection of tautological line bundles

(W0, . . . ,Wr) with W0 = O|L |. Since paths in the quiver arise from sections of line bundles of the

form Lj ⊗ L−1
i on X, evaluating these sections defines a rational map ϕ|L | : X 99K |L |. Our first

main result (which we prove on page 42) describes the geometry of this map.

Theorem 1.1.1. For a collection L = (OX , L1, . . . , Lr) of effective line bundles on X, the map

ϕ|L | : X 99K |L | is a morphism if and only if each Li is basepoint-free, in which case the image is

presented explicitly as a geometric quotient and the tautological bundles satisfy ϕ∗
|L |(Wi) = Li.

If each Li on X is the restriction of a basepoint-free line bundle on X̃ then this morphism

is simply the restriction of the morphism from [10, Theorem 1.1]. This is typically not the case,

however, because the nef cone of X may be the union of the nef cones of a finite collection of

ambient toric varieties.

We provide a necessary and sufficient criterion for ϕ|L | : X 99K |L | to be a closed immersion,

and a straightforward application of multigraded regularity due to Hering–Schenck–Smith [17] (see

also Maclagan–Smith [22]) provides an efficient way to exhibit many collections that give rise to

closed immersions. The resulting geometric quotient constructions of X are new, and while they

cannot improve upon the Hu–Keel construction from the birational point of view, it is sometimes

possible to encode more refined information on X via L , such as its bounded derived category of

coherent sheaves on X.

In Chapter 4 we give our second main result. This is more algebraic, and provides a fine moduli

description of X. The ideal of relations R in the path algebra kQ defines an ideal IR in the Cox ring

of |L | that cuts out Mϑ(mod(AL )), the fine moduli space of ϑ-stable AL -modules with dimension

vector (1, . . . , 1). This subscheme contains the image of the morphism ϕ|L | from Theorem 1.1.1,

and in general this inclusion is proper. Nevertheless, by saturating IR with the irrelevant ideal for

the GIT quotient construction of the multigraded linear series, and by comparing the result with

the ideal IQ that cuts out the image of ϕ|L |, we obtain the following algebraic result.

Theorem 1.1.2. For any Mori Dream Space X, there exist (many) collections L on X such that

the morphism ϕ|L | : X → |L | identifies X with the fine moduli space Mϑ(mod(AL )), and the

tautological line bundles on Mϑ(mod(AL )) coincide with the line bundles of L .

Our proof of this result uses as far as possible the analogous result from [10, Theorem 1.2] for the

ambient toric variety, though much remains to be done because IR can be rather complicated.

More generally, when the morphism ϕ|L | : X → |L | is a closed immersion it identifies X with

Mϑ(mod(AL )) precisely when the saturation of IR by the irrelevant ideal coincides with the ideal
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IQ. These ideals can be computed explicitly in any given example (see Chapter 5), so it is possible

to check directly whether Theorem 1.1.2 holds (subject to computational limitations).

The final two chapters of this thesis are more computational in nature. In Chapter 5 we give a

computational method to find the ideals which cut out ϕ|L |(X) and Mϑ(Q,R) in both the Mori

Dream Space and toric cases. In Chapter 6 we use these computations to verify the results of

Chapter 4 in three cases: for two non-toric del Pezzo surfaces and for the Grassmannian Gr(2, 4).

For a list of line bundles L , we wish to check whether X is isomorphic to the moduli space

of bound quiver representations of the quiver of sections for L . We will see that this amounts to

checking whether IQ =
(
IR : B∞

|L |

)
. In Chapter 5 we present a method for computing ĨR, IR, ĨQ

and IQ for a given quiver Q, and as an application we show that IQ =
(
IR : B∞

|L |

)
for certain

collections of line bundles on X4,X5 and Gr(2, 4).

We give code which, given a quiver Q, outputs a list of all paths in Q. To find ĨR as defined

in [10], we must simply check through all pairs of paths to find all those with the same head, tail

and label. Finding generators for IR is more complicated. In Lemma 5.1.7, we give a generating

set for IR conducive to calculations. We give an algorithm for computing such a generating set.

We show in Proposition 5.2.1 that the ideals IQ and ĨQ can be written as kernels of k-algebra

homomorphisms. They can therefore be computed using Elimination theory. We give Macaulay 2

code for computing both ĨQ and IQ in section 5.2.2.

In Chapter 6, we illustrate the method for a pair of del Pezzo surfaces and the Grassmannian

Gr(2, 4). For the del Pezzo surfaces, we choose L to be a full, strongly exceptional collection of

line bundles. Such collections are of particular interest because they freely generate the bounded

derived category of coherent sheaves on X, that is, the functor

RHom(T ,−) : Db
(
coh(X)

)
−→ Db

(
mod(AL )

)

is an equivalence of bounded derived categories. A result of Bergman–Proudfoot [3] establishes

that the del Pezzo surface X is isomorphic to a connected component of Mϑ(mod(AL )) in each

case, and our computations demonstrate that in fact X is isomorphic to the moduli space. For the

Grassmannian X = Gr(2, 4), we show that X ∼= Mϑ(mod(AL )) when L = (OX ,O(2),O(4)).

1.2 Acknowledgements
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Chapter 2

Background

In this chapter we summarise necessary background material. In section 2.1 we first consider

toric varieties. We show how toric varieties are constructed from fans (see Fulton [15], Cox–

Little–Schenck [6]) and describe the construction of toric varieties as GIT quotients (see Cox [7],

Mukai [24], Dolgachev [13]). Secondly, we introduce a generalisation of projective Q-factorial toric

varieties: Mori Dream Spaces. These will be the primary objects of interest in this thesis. We

give background material on Mori Dream Spaces, including their construction as GIT quotients

after Hu–Keel [19], Hassett-Tschinkel [16], Laface–Velasco [21]. In section 2.2, we consider two

important families of Mori Dream Spaces. In section 2.2.1 we give background information on

Grassmannians (see Mukai [24]) and describe their Cox Rings. In section 2.2.2 we summarise

material from Batyrev–Popov [2] and Manin [23] on del Pezzo surfaces. These will be our main

source of examples of Mori Dream Spaces. We summarise results due to Batyrev-Popov giving

generators and relations for the del Pezzo Surfaces of degree 3, 4 and 5. In section 2.2.3 we give an

explicit computation of Cox(X5), following Derenthal [12].

In section 2.3 we introduce the notion of multigraded regularity for projective toric varieties (see

Maclagan–Smith [22], Hering–Schenck–Smith [17]), which will be a crucial component of the proofs

in Chapter 4. In section 2.4 we give background information on quivers from Craw–Smith [10].

This thesis continues the programme begun by Craw–Smith in [10], extending from projective

toric varieties to the Mori Dream Space case. In section 2.5, we summarise the results of [10].

For a collection of line bundles on a toric variety X, we introduce quivers of sections for toric

varieties. We show how this quiver allows us to define a new ambient space for the toric varieties,

the multilinear series, and give necessary and sufficient conditions for the existence of a morphism

from X to this ambient variety. If the morphism exists, its image is a GIT quotient. It is almost

always possible to find a list of line bundles L such that the morphism is a closed immersion, and

the image of X is a moduli space of bound representations of the quiver of sections for L .

We will assume throughout that k is an algebraically closed field of characteristic zero.
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2.1 Mori Dream Spaces

In this section we give background information on our objects of study: Mori Dream Spaces. We first

examine a special case, projective toric varieties, paying particular attention to their construction

as GIT quotients.

2.1.1 Toric Varieties

We summarise material from Fulton [15] and Cox–Little–Schenck [6].

A projective toric variety X is an irreducible projective variety containing an algebraic torus

as a dense Zariski open set where the action of the algebraic torus on itself extends to an action of

the torus on X. We show how to construct toric varieties from fans and as GIT quotients.

Let V be a real vector space. A strongly convex polyhedral cone in V is the span over R+ of

a finite collection of vectors which does not contain a line through 0. Let σ be a strongly convex

polyhedral cone. We say a hyperplane H is a supporting hyperplane of σ if σ is contained in a

halfspace defined by H and σ ∩ H 6= {0}. A face of σ is the intersection of σ with a supporting

hyperplane. Given a cone σ, its dual cone σ∨ is defined to be σ∨ := {v ∈ V ∗|〈u, v〉 ≥ 0 for all

u ∈ σ}.

Let N ∼= Zr be a lattice, let M := Hom(N,Z) be its dual lattice and let NR := N ⊗ R. We

define a rational strongly convex polyhedral cone in NR to be a strongly convex polyhedral cone

which is the span of a finite collection of vectors in N . A fan Σ is a collection of rational strongly

convex polyhedral cones in NR such that the faces of every cone in Σ are also in Σ, and such that

every pair of cones in Σ intersects in a common face. We also assume that Σ is non-degenerate in

the sense that it is not contained in any vector subspace of NR.

We define a toric variety X = X(Σ) as follows. For every cone σ ∈ Σ we define an affine variety.

Uσ := Spec(k[σ∨ ∩M ]).

Explicitly, if σ∨ is generated by m1, . . . ,mr ∈ Zn then k[σ∨ ∩ M ] = k[xm1 , . . . , xmr ], where if

m = (m1, . . . ,mn) then x
m := xm1

1 · · · xmn
n . Also, if k[xm1 , . . . , xmr ] ∼= k[y1, . . . , yr]/J then

Spec
(
k[xm1 , . . . , xmr ]

)
∼= V(J) ⊆ Ar

where V(J) denotes the common zero locus of all polynomials in J .

If τ is a face of a cone σ in Σ, then there is a natural embedding

Uτ →֒ Uσ

If we consider any two cones σ, σ′ ∈ Σ, then their intersection τ := σ∩σ′ is a common face of both.

Hence Uτ embeds into both Uσ and Uσ′ . The toric variety X is defined to be the variety obtained

by gluing each pair of affine varieties Uσ and Uσ′ along the open subset of each isomorphic to Uτ .
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Example 2.1.1. We describe the construction of P2 as a toric variety obtained from the fan shown

below. The fan comprises seven cones, σ1, . . . , σ7. We define σ1, σ2, σ3 as shown in the fan. We

12

3

Figure 2.1: Fan for P2

define σ4 = σ1∩σ3, σ5 = σ1∩σ2 and σ6 = σ2∩σ3. We define σ7 to be the intersection of σ1, . . . , σ6,

i.e. the cone generated by 0 ∈ Z2. We present a table which gives cones σ in the fan, generators of

their dual cones σ∨ and the corresponding k-algebra, k[σ∨ ∩M ].
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Cone Generators of Dual Cone k-Algebra

σ1

{(
1

0

)
,

(
0

1

)}
k[x, y]

σ2

{(
−1

0

)
,

(
−1

1

)}
k[x−1, x−1y]

σ3

{(
1

−1

)
,

(
0

−1

)}
k[xy−1, y−1]

σ4

{(
1

0

)
,

(
0

1

)
,

(
0

−1

)}
k[x, y, y−1]

σ5

{(
1

0

)
,

(
−1

0

)
,

(
0

1

)}
k[x, x−1, y]

σ6

{(
1

−1

)
,

(
0

−1

)
,

(
−1

1

)}
k[x−1y, y−1, x−1y]

σ7

{(
1

0

)
,

(
−1

0

)
,

(
0

1

)
,

(
0

−1

)}
k[x, x−1, y, y−1]

If we change variables x 7→ x1
x0
, y 7→ x2

x0
we obtain the usual cover of P2 with coordinates x0, x1, x2

by three copies of A2:
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Spec(k[σ1 ∩M ]) = Spec(k[x1
x0
, x2
x0
]) = {(x0 : x1 : x2) ∈ P2|x0 6= 0}

Spec(k[σ2 ∩M ]) = Spec(k[x0
x1
, x2
x1
]) = {(x0 : x1 : x2) ∈ P2|x1 6= 0}

Spec(k[σ3 ∩M ]) = Spec(k[x0
x2
, x1
x2
]) = {(x0 : x1 : x2) ∈ P2|x2 6= 0}

Spec(k[σ4 ∩M ]) = Spec(k[x1
x0
, x2
x0
, x0
x2
]) = {(x0 : x1 : x2) ∈ P2|x0 6= 0 and x2 6= 0}

Spec(k[σ5 ∩M ]) = Spec(k[x0
x1
, x0
x1
, x2
x0
]) = {(x0 : x1 : x2) ∈ P2|x0 6= 0 and x1 6= 0}

Spec(k[σ6 ∩M ]) = Spec(k[x0
x2
, x1
x2
, x2
x1
]) = {(x0 : x1 : x2) ∈ P2|x1 6= 0 and x2 6= 0}

Spec(k[σ7 ∩M ]) = Spec(k[x1
x0
, x2
x0
, x0
x1
, x0
x2
]) = {(x0 : x1 : x2) ∈ P2|x0 6= 0, x1 6= 0 and x2 6= 0}

Let Ui denote the affine open set in P2 where xi 6= 0. The cones σ1, σ2 and σ3 correspond to U0, U1

and U2 respectively; σ4, σ5 and σ6 correspond to U0 ∩U2, U0 ∩U1 and U1 ∩U2 respectively; and σ7

corresponds to U0 ∩ U1 ∩ U2. We also note that points of U0 ∩ U1 ∩ U2 can be written as (1 : a : b)

where a and b are nonzero and hence U0 ∩ U1 ∩ U2 is isomorphic to the algebraic torus (k∗)2.

Indeed, the subvariety U0, where 0 is the cone generated by 0 ∈ N is always an algebraic torus.

Its natural action on itself extends to an action of the torus on X as follows. Say a cone σ ⊆ N ∼= Zr

has dual cone generated by vectors m1, . . . ,mr. This gives an affine variety

Uσ = Spec
(
k[M ∩ σ∨]

)
= Spec

(
k[xm1 , . . . , xmr ]

)
⊆ Ar

The torus (k∗)n acts on Ar via

(λ1, . . . , λn) · (a1, . . . , ar) = (λm1a1, . . . , λ
mrar).

This restricts to an action of (k∗)n on Uσ. The affine variety Uσ is stable under this action and

the action respects the gluing construction so the action extends to the entire toric variety. We

illustrate this with an example.

Example 2.1.2. Let σ be the cone in Z3 generated by

{


1

0

0


 ,




0

1

0


 ,




1

0

1


 ,




0

1

1



}
.
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The dual cone σ∨ is given by

{


1

0

0


 ,




0

1

0


 ,




0

0

1


 ,




1

1

−1



}
.

So

Uσ = Spec

(
k
[
x1, x2, x3,

x1x2
x3

])
= Spec

(
k[y1, y2, y3, y4]/(y1y2 − y3y4)

)
= V(y1y2 − y3y4) ⊆ A4,

Where V(y1y2 − y3y4) denotes the zero locus of the polynomial y1y2 − y3y4 in A4. The action

of (k∗)3 on A4 is given by

(λ1, λ2, λ3) · (a1, a2, a3, a4) = (λ1a1, λ2a2, λ3a3,
λ1λ2
λ3

a4).

For any (a1, a2, a3, a4) ∈ V(y1y2 − y3y4) we see that (λ1, λ2, λ3) · (a1, a2, a3, a4) is also in V(y1y2 −

y3y4), so V(y1y2 − y3y4) is stable under this action.

We say an n dimensional cone is simplicial if it has precisely n generators. We say a fan is

simplicial if every cone in the fan is simplicial.

Proposition 2.1.3. (Theorem 3.1.19 [6]) A toric variety X(Σ) is Q-factorial, i.e. some multiple

of every Weil divisor is Cartier, if and only if Σ is simplicial.

Let Σ(1) denote the set of one dimensional cones (or rays) of the fan Σ. We assume this set

has cardinality d and denote the jth element of this set by τj. The elements of Σ(1) determine

irreducible codimension one torus invariant subvarieties of X(Σ). These subvarieties generate the

free group of torus invariant Weil divisors, Zd. Let Cl(X) denote the class group of X: the group

of Weil divisors modulo linear equivalence. We obtain a map deg : Zd −→ Cl(X) which maps a

Weil divisor to its equivalence class. The map deg fits into a short exact sequence:

0 −→M −→ Zd −→ Cl(X) −→ 0 (2.1.1)

called the Cox Sequence. The first map sends u ∈M to
∑d

j=1〈u, v(j)〉Dj , where v(j) is the lattice

point closest to 0 ∈ N which generates τj, and Dj is the Weil divisor corresponding to τj .

As well as constructing projective toric varieties using a gluing construction given by a fan, we

can construct them as GIT quotients. We give an overview of this second construction, summarising

material from e.g. Cox [7], King [20], Mukai [24], Dolgachev [13], Craw [9].

We define the Cox ring of X to be

Cox(X) := k[x1, . . . , xd],
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where we recall that d is the number of rays in the fan of X. This is the semigroup algebra of

the effective cone of Weil divisors, k[Nd]. The map deg induces a Cl(X) grading of Cox(X): we

set the degree of xi to be deg(ei). We define Cox(X)D to be the Dth graded part of Cox(X). By

Proposition 1.1 of Cox [7],

Cox(X)D ∼= H0(X,D) (2.1.2)

for anyD ∈ Cl(X). This grading of Cox(X) induces aG := Hom(Cl(X),k∗) action on Spec(Cox(X)) ∼=

Ad.

Remark 2.1.4. In the case that we will be interested in, when Cl(X) is free of rank ρ (and hence

G = (k∗)ρ), if the lattice map

deg : Zd −→ Cl(X)

is given by a matrix 


a11 · · · a1d
...

. . .
...

aρ1 · · · aρd




then the action of (λ1, . . . , λρ) ∈ (k∗)ρ on a point (p1, . . . , pd) ∈ Spec(Cox(X)) is given by

(λ1, . . . , λρ) · (p1, . . . , pd) = (λa111 · · ·λ
aρ1
ρ p1, . . . , λ

a1d
1 · · · λ

aρd
ρ pd).

We can construct X as the GIT quotient of Spec(Cox(X)) by this action. The character group

for the action of G on Spec(Cox(X)) is the finitely-generated abelian group Cl(X). We pick a

character L ∈ Cl(X) with the additional assumption that L is a very ample line bundle. By (2.1.2)

the k-algebra of semi-invariant functions
⊕

m≥0 Cox(X)mL satisfies

⊕

m≥0

H0(X,Lm) ∼=
⊕

m≥0

Cox(X)mL

since their ring structures agree. Hence

Proj(
⊕

m≥0

H0(X,Lm)) ∼= Proj(
⊕

m≥0

Cox(X)mL),

which are also isomorphic to X since L is very ample. Let BX be the ideal in the Cox ring

k[x1, . . . , xd] given by

BX =
(
xσ̂ ∈ Cox(X)|σ is a top-dimensional cone in Σ

)
(2.1.3)

where xσ̂ =
∏

1≤j≤d
τj*σ

xj, where we recall d is the number of generators of Cox(X). Cox [7] gives a

description of the L-unstable locus.
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Proposition 2.1.5. ( [7]) The unstable locus of Spec(Cox(X)) for the action of (k∗)r is

V(
(
H0(X,L)

)
) = V(BX).

Suppose sections s0, . . . , sN generate
⊕

m∈N Cox(X)mL, then the map

π : Spec(Cox(X)) \ V(BX) −→ Proj(
⊕

m≥0

Cox(X)mL)

p 7→ (s0(p) : . . . : sN (p))

is in fact a morphism (the unstable locus is precisely those points where the morphism would be

undefined). It has the property that π(p) = π(q) if and only if p and q are in the same G orbit since

L is very ample, and is thus a good geometric quotient — a morphism with the property that the

preimage of a point is a G-orbit. We define Proj(
⊕

m≥0 Cox(X)mL) ∼= X to be the GIT quotient

of Spec(Cox(X)).

2.1.2 Mori Dream Spaces

Let X be a projective Q-factorial variety. In this thesis we will assume that the divisor class group

of X,Cl(X), is finitely generated and free of rank ρ. Let D1, . . . ,Dρ be Weil divisors whose classes

provide an integral basis of Cl(X).

Definition 2.1.6. The Cox ring of X is defined to be the Cl(X) graded ring

Cox(X,D1, . . . ,Dρ) :=
⊕

(m1,...,mρ)∈Zρ

H0(X,Dm1
1 ⊗ · · · ⊗D

mρ
ρ ).

Mori Dream Spaces are defined in Hu–Keel [19] Definition 1.10. However, we state the main

theorem of [19] which gives a much simpler necessary and sufficient condition for X to be a Mori

Dream Space:

Theorem 2.1.7. (Prop 2.9, [19]) A projective Q-factorial variety X is a Mori Dream Space if and

only if Cox(X,D1, . . . ,Dρ) is finitely generated as a k-algebra.

Projective Q-factorial toric varieties are also Mori Dream Spaces:

Theorem 2.1.8. (Cor 2.10, [19] ) X is a projective Q–factorial toric variety if and only if Cox(X)

is a polynomial ring.

Remark 2.1.9. By Hu-Keel [19] and Hassett-Tschinkel [16], for any two bases D1, . . . ,Dρ and

E1, . . . , Eρ of Cl(X), the rings Cox(X,D1, . . . ,Dρ) and Cox(X,E1, . . . , Eρ) are isomorphic. There-

fore X being a Mori Dream Space does not depend on the choice of basis for Cl(X).
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From now on, we will assume X is a Mori Dream Space and pick a presentation

Cox(X) = k[x1, . . . .xd]/IX (2.1.4)

Since this does not depend on the choice of basis for Cl(X), we will refer to Cox(X,D1, . . . ,Dρ) as

simply Cox(X). We will assume that the number of generators in this presentation is as small as

possible.

Since we assume that Cl(X) is finitely generated and free, the ideal IX is prime by the following

theorem due to Elizondo–Kurano–Watanabe:

Theorem 2.1.10. ( [14]) Let X be a Mori Dream Space whose class group is finitely generated

and free. Then Cox(X) is a factorial k-algebra.

In particular, if we pick a presentation

Cox(X) = k[x1, . . . , xd]/IX

then IX is a prime ideal.

Remark 2.1.11. We note that Theorem 2.1.10 implies that IX does not contain any monomials. If it

did, then it would also contain a variable, since IX is prime. This would contradict our assumption

that the number of generators d is as small as possible.

We summarise material from Hu–Keel [19] and Laface–Velsaco [21] on the construction of Mori

Dream Spaces as GIT quotients. The Cox ring Cox(X) is naturally graded by Cl(X). This grading

induces a G := Hom(Cl(X),k∗) = (k∗)ρ action on Spec(Cox(X)) = V(IX) ⊆ Ad (see remark 2.1.4).

We construct X as a GIT quotient of Spec(Cox(X)) under this action as follows. The abelian

group Cl(X) is the character group of X. We pick a character L ∈ Cl(X), with the additional

assumption that L is a very ample line bundle on X. The k-algebra of L-semi-invariant functions⊕
m≥0 Cox(X)mL satisfies ⊕

m≥0

H0(X,Lm) =
⊕

m≥0

Cox(X)mL

and hence

Proj(
⊕

m≥0

H0(X,Lm)) ∼= Proj(
⊕

m≥0

Cox(X)mL),

which are also isomorphic to X since L is very ample. The unstable locus of Spec(Cox(X)) for the

action of G is V(
(
H0(X,L)

)
).

If sections s0, . . . , sN generate
⊕

m≥0Cox(X)mL then the map

π : Spec(Cox(X)) \ V(BX) −→ Proj(
⊕

m≥0

Cox(X)mL)
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p 7→ (s0(p) : . . . : sN (p))

is in fact a morphism (the unstable locus V(BX) is precisely the locus where it would be undefined).

It has the property that π(p) = π(q) if and only if p and q are in the same G orbit. Hence, after

removal of the unstable locus, π is a good geometric quotient. We define Proj(
⊕

m≥0Cox(X)mL) ∼=

X to be the GIT quotient of Spec(Cox(X)) under the G action induced by the Cl(X)-grading of

Cox(X). We define a line bundle on a Mori Dream Space X to be basepoint free if the common zero

locus of its sections V
(
(H0(X,L)

)
⊆ Spec

(
Cox(X)

)
is contained in the unstable locus V(BX).

We define

τ : k[x1, . . . , xd] −→ k[x1, . . . , xd]/IX (2.1.5)

to be the canonical k-algebra epimorphism mapping xi to xi. This induces a Zρ grading of the

polynomial ring k[x1, . . . , xd] by defining the degree of xi ∈ k[x1, . . . , xd] to be that of τ(xi).

This grading induces a (k∗)ρ action on Spec(k[x1, . . . , xd]) = Ad which restricts to the action on

Spec(k[x1, . . . , xd]/IX) = V(IX) ⊆ Ad .

Example 2.1.12. We consider the Grassmannian Gr(2, 4) (for a more complete discussion of

Grassmannians we refer to Section 2.2.1). This has Cox ring

k[x1, . . . , x6]/
(
x1x6 − x2x5 + x3x4

)
.

The class group of Gr(2, 4) is isomorphic to Z. We pick a character χ := O(1) which is also ample

line bundle on Gr(2, 4). The k-algebra of χ semi–invariant functions is Cox(Gr(2, 4)), since the

sections of O(1) are precisely the generators of Cox(Gr(2, 4)). Therefore

Gr(2, 4) ∼= Proj
(
Cox(Gr(2, 4)

)
= V(x1x6 − x2x5 + x3x4) ⊆ P5.

We can also pick an ample character χ′ := O(2). The k–algebra of χ′ semi–invariant functions is

generated by all monomials in six variables of degree two, hence it is:

k[x21, x1x2, x
2
2, . . . , x

2
6]/
(
x1x6 − x2x5 + x3x4

)
∼= k[y1, . . . , y21]/J
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where

J =




y9 − y12 + y16, y
2
20 − y15y21, y19y20 − y14y21, y18y20 − y13y21, y17y20 − y12y21,

y16y20 − y11y21, y
2
19 − y10y21, y18y19 − y12y21 + y16y21, y17y19 − y8y21,

y16y19 − y7y21, y15y19 − y14y20, y14y19 − y10y20, y13y19 − y12y20 + y11y21,

y12y19 − y8y20, y11y19 − y7y20, y6y19 − y5y20 + y4y21, y5y19 − y3y20 + y2y21,

y4y19 − y2y20 + y1y21, y
2
18 − y6y21, y17y18 − y5y21, y16y18 − y4y21, y15y18 − y13y20,

y14y18 − y12y20 + y11y21, y13y18 − y6y20, y12y18 − y5y20, y11y18 − y4y20,

y10y18 − y8y20 + y7y21, y8y18 − y3y20 + y2y21, y7y18 − y2y20 + y1y21, y
2
17 − y3y21,

y16y17 − y2y21, y15y17 − y12y20, y14y17 − y8y20, y13y17 − y5y20, y12y17 − y3y20,

y11y17 − y2y20, y10y17 − y8y19, y8y17 − y3y19, y7y17 − y2y19, y6y17 − y5y18,

y5y17 − y3y18, y4y17 − y2y18, y
2
16 − y1y21, y15y16 − y11y20, y14y16 − y7y20,

y13y16 − y4y20, y12y16 − y2y20, y11y16 − y1y20, y10y16 − y7y19, y8y16 − y2y19,

y7y16 − y1y19, y6y16 − y4y18, y5y16 − y2y18, y4y16 − y1y18, y3y16 − y2y17,

y2y16 − y1y17, y
2
14 − y10y15, y13y14 − y12y15 + y11y20, y12y14 − y8y15,

y11y14 − y7y15, y6y14 − y5y15 + y4y20, y5y14 − y3y15 + y2y20, y4y14 − y2y15 + y1y20,

y213 − y6y15, y12y13 − y5y15, y11y13 − y4y15, y10y13 − y8y15 + y7y20,

y8y13 − y3y15 + y2y20, y7y13 − y2y15 + y1y20, y
2
12 − y3y15, y11y12 − y2y15,

y10y12 − y8y14, y8y12 − y3y14, y7y12 − y2y14, y6y12 − y5y13, y5y12 − y3y13,

y4y12 − y2y13, y
2
11 − y1y15, y10y11 − y7y14, y8y11 − y2y14, y7y11 − y1y14,

y6y11 − y4y13, y5y11 − y2y13, y4y11 − y1y13, y3y11 − y2y12, y2y11 − y1y12,

y6y10 − y3y15 + 2y2y20 − y1y21, y5y10 − y3y14 + y2y19, y4y10 − y2y14 + y1y19,

y28 − y3y10, y7y8 − y2y10, y6y8 − y3y13 + y2y18, y5y8 − y3y12 + y2y17,

y4y8 − y2y12 + y1y17, y
2
7 − y1y10, y6y7 − y2y13 + y1y18, y5y7 − y2y12 + y1y17,

y4y7 − y1y12 + y1y16, y3y7 − y2y8, y2y7 − y1y8, y
2
5 − y3y6, y4y5 − y2y6,

y24 − y1y6, y3y4 − y2y5, y2y4 − y1y5, y
2
2 − y1y3




.

This gives an embedding of the Grassmannian Gr(2, 4) into P20.

The ample divisors on X form a cone, Amp(X), with a decomposition into chambers. Picking

a very ample character L in the interior of a chamber, we obtain a toric variety

X̃L := Proj

(⊕

m≥0

k[x1, . . . , xd]mL̃

)
.

The class group of X̃L is Zρ by construction. Hence there exists an isomorphism

ψ : Cl(X̃L) −→ Cl(X). (2.1.6)

We define the line bundle L̃ on X̃L to be the inverse image of our choice of line bundle L on X

under the map ψ. Picking different characters in the same chamber results in isomorphic toric
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varieties. The chambers in the decomposition correspond to the ample cones for the toric varieties

obtained. The toric variety X̃L has Cox(X̃L) = k[x1, . . . , xd] and is obtained as the GIT quotient

of Ad under the action of G with unstable locus V
(
H0(X̃L, L̃)

)
.

Remark 2.1.13. We note that the unstable locus of X is the intersection of the unstable locus of

X̃ and Spec(Cox(X)). Hence the embedding Spec(Cox(X)) →֒ Spec(Cox(X̃L)) descends to an

embedding X →֒ X̃L.

Remark 2.1.14. We note that X̃L does in general depend on the choice of L, or more precisely, on

the chamber containing L. However, in what follows it will not matter what choice of L we make,

and hence we will refer to X̃L as simply X̃ from now on.

We present an example which illustrates the concepts introduced in this section, further details

on del Pezzo surfaces can be found in section 2.2.2.

Example 2.1.15. Let X4 be the del Pezzo surface obtained as the blow-up of P2
k at four points

in general position. The Picard group Pic(X4) ∼= Z5 has a basis given by l0, the pullback to X4 of

the hyperplane class on P2
k, together with the four exceptional curves l1, l2, l3, l4. The semigroup

homomorphism deg : N10 → Pic(X4) obtained as multiplication by the matrix




0 0 0 0 1 1 1 1 1 1

1 0 0 0 −1 −1 −1 0 0 0

0 1 0 0 −1 0 0 −1 −1 0

0 0 1 0 0 −1 0 −1 0 −1

0 0 0 1 0 0 −1 0 −1 −1




induces a Pic(X) grading of k[x1, . . . , x10]. The Pic(X)-homogeneous ideal

IX4 :=

(
x2x5 − x3x6 + x4x7, x1x5 − x3x8 + x4x9,

x1x6 − x2x8 + x4x10, x1x7 − x2x9 + x3x10, x5x10 − x6x9 + x7x8

)

determines Cox(X4) = k[x1, . . . , x10]/IX4 following Batyrev–Popov [2]. We construct an ambient

toric variety as follows. Following Example 2.11 of Laface–Velasco [21] we pick a character χ =

11l0−5l1−3l2−2l3−l4. The line bundle χ is ample on X4 and we show X̃χ := A10//χT is Q-factorial

as follows. The unstable locus for χ, rad
(
H0(X̃χ, χ)

)
is the common zero locus of the following

ideal:
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


x1x2x5x6x7, x1x3x5x6x7, x1x4x5x6x7, x1x3x4x7x8, x3x4x7x9x10,

x2x3x4x7x8, x1x2x5x7x8, x2x3x5x7x8, x1x4x5x7x8, x1x3x6x7x8,

x2x3x6x7x8, x1x3x4x6x9, x2x3x4x6x9, x1x2x5x6x9, x1x3x5x6x9,

x2x4x5x6x9, x1x4x6x7x9, x2x4x6x7x9, x1x2x5x8x9, x2x3x5x8x9,

x2x4x5x8x9, x1x3x6x8x9, x2x3x6x8x9, x1x4x7x8x9, x2x4x7x8x9,

x1x2x4x5x10, x2x3x4x5x10, x1x2x5x6x10, x1x3x5x6x10,

x3x4x5x6x10, x1x4x5x7x10, x3x4x5x7x10, x1x2x5x8x10,

x2x3x5x8x10, x1x3x6x8x10, x2x3x6x8x10, x3x4x6x8x10,

x3x4x7x8x10, x2x4x5x9x10, x3x4x6x9x10, x1x4x7x9x10, x2x4x7x9x10




.

This ideal is also defined in (2.1.3) as

BX =
(
xσ̂ ∈ Cox(X)|σ is a top-dimensional cone in Σ

)

where xσ̂ =
∏

1≤j≤10
τj*σ

xj. Since each monomial in rad
(
H0(X̃χ, χ)

)
is a product of five generators,

each top dimensional cone in the fan defining X̃χ has 10-5=5 generators. This follows since the

Cox ring of X̃χ has 10 generators which correspond to the rays of the fan defining X̃χ, and because

the lattice M which contains the fan is isomorphic to Z5 (this follows from the fact that the Cox

sequence (2.1.1) is a short exact sequence). Therefore by Proposition 2.1.3, the toric variety X̃χ is

Q-factorial. Thus χ ∈ Pic(X) lies in an open GIT chamber for the action of T on A10
k , and we set

X̃4 := A10//χT .

Laface–Velasco note further that the ample bundle −KX4 = 3l0 − l1 − l2 − l3 − l4 defines a

non-Q-factorial toric quotient X̃−KX4
The ideal rad

(
H0(X̃−KX4

,−KX4)
)
is




x4x7x9x10, x3x6x8x10, x3x4x5x10, x1x2x5x10, x2x5x8x9,

x2x4x6x9, x1x3x6x9, x1x4x7x8, x2x3x7x8, x1x5x6x7, x3x4x6x9x10,

x2x4x5x9x10, x3x4x7x8x10, x2x3x5x8x10, x1x4x5x7x10,

x1x3x5x6x10, x2x4x7x8x9, x2x3x6x8x9, x1x4x6x7x9, x1x2x5x6x9, x1x3x6x7x8, x1x2x5x7x8




We see that there exist monomial generators which are a product of 4 variables. By the same logic

as above there exist top dimensional cones in the fan defining X̃−KX4
with 6 generators which are

therefore not simplicial. Hence by Proposition 2.1.3, X̃−KX4
is not Q–factorial. So −KX4 lies in a

GIT wall for the action on A10
k .

2.2 Cox Rings of Mori Dream Spaces

In this section we introduce two families of del Pezzo surfaces: Grassmannians and del Pezzo

surfaces. We study their Cox rings.
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2.2.1 Grassmannians

The Grassmannian Gr(r, n) is the scheme which represents the functor mapping a scheme X to the

rank d vector subbundles of the trivial rank n vector bundle on X. A rank r element of Mat(r, n)

determines an r–dimensional vector subspace of n–dimensional space, up to change of basis, i.e.

up to multiplication by an element of GL(r). Hence Gr(r, n) is the space of GL(r) orbits of rank r

matrices in Mat(r, n), where the group action is multiplication on the left.

An embedding of Gr(r, n) into projective space Ps, where s =
(
n
r

)
− 1, is given by the determi-

nantal line bundle on Gr(r, n). Explicitly, this maps an element of Mat(r, n) to its r × r minors

(there are
(
n
r

)
such). We note that the action of GL(r) only changes the r× r minors by a nonzero

scalar multiple, hence this map is well defined. We also note that since each matrix has rank r, at

least one of the minors will be nonzero. The image of this map is cut out by the ideal of Plücker

relations. We consider the map

D : k[z0, . . . , zs] −→ k[aij ]

mapping zi to the ith r× r minor of the generic matrix (aij). The ideal of Plücker relations is the

kernel of D. Hence k[z1, . . . , zn]/ ker(D) is the homogeneous coordinate ring of the Grassmannian

Gr(r, n). By Remark 3.9 of Castravet–Tevelev [4], this ring coincides with Cox(Gr(r, n)).

2.2.2 Del Pezzo Surfaces

In this section, we give essential background information on del Pezzo surfaces. We describe results

of Batyrev–Popov [2] giving generators and relations for the Cox rings of certain non-toric del Pezzo

surfaces. We conclude by calculating the Cox ring of a del Pezzo surface of degree 4 following the

method of Batyrev–Popov [2] and Derenthal [12].

We summarise material on del Pezzo surfaces found in Manin [23] and Batyrev–Popov [2].

A del Pezzo surface of degree 9− r is the blow up of P2 at 0 ≤ r ≤ 8 points p1, . . . , pr in general

position. This is a smooth surface which we denote by Xr. We say r points are in general position

if no three points lie on a line, no six points lie on a conic, and no cubic with a double point which

contains seven of the points contains the eighth.

We denote the blow-up map by πr : Xr −→ P2. The Picard group ofXr satisfies Pic(Xr) ∼= Zr+1,

with a basis given by l0 := π∗r (O(1)), l1 := π−1
r (p1), . . . , lr := π−1

r (pr). To harmonize with the

literature, we denote multiplication in the Picard group using additive (rather than tensor) notation.

The intersection form is given by the following matrix
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


l0 l1 · · · lr

l0 1 0 · · · 0

l1 0 −1
. . .

...
...

...
. . .

. . . 0

lr 0 · · · 0 −1




We denote the intersection of two curves l and l′ by l · l′. We say a curve l on a surface is a

(−1)-curve if its selfintersection number l2 := l · l is equal to −1.

The strict transform of a curve C under the blow up map π : Xr −→ P2 is π−1(C ∩ (P2 \ {p1, . . . , pr})).

The (−1)-curves on Xr are the inverse images of blown up points and the strict transforms of the

following curves on P2:

(i) Lines between pairs of blown up points;

(ii) Conics containing five blown up points;

(iii) Cubics with a double point containing seven blown up points;

(iv) Quartics with three double points containing eight blown up points;

(v) Quintics with six double points containing eight blown up points;

(vi) Sextics with seven double points containing eight blown up points.

Every del Pezzo Surface is a Mori Dream Space by Batyrev–Popov [2]. If we blow up r ≤ 3 points

we obtain a smooth projective toric surface. Batyrev–Popov describe generators and relations for

the Cox rings of X4,X5 and X6 in [2]. We summarise their results.

The following result can be found in Laface–Velasco [21]

Proposition 2.2.1. ( [21]) Let X be a surface. If E ∈ Pic(X) is a (−1)-curve then H0(X,E) is

generated by a unique (up to scalar multiplication) section. This section is a generator of Cox(X).

Therefore the section of any (−1)-curve is a generator of Cox(Xr). These are the only generators

of Cox(Xr) by the following Theorem due to Batyev–Popov.

Theorem 2.2.2. (Theorem 3.2, [2]) For 3 ≤ r ≤ 7, the Cox ring of the del Pezzo surface Xr is

generated by global sections of O(D) where D is a (−1)-curve.

The del Pezzo surfaces X4,X5 and X6 are the blow ups of P2 at the first four, five and six points

respectively from points p1, . . . , p6 in general position. We can always pick p1 = (1, 0, 0), p2 =

(0, 1, 0), p3 = (0, 0, 1) and p4 = (1, 1, 1). The (−1)-curves on X4,X5 and X6 are the preimages of
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Generator Degree Point or Curve in P2

x1 l1 p1

x2 l2 p2

x3 l3 p3

x4 l4 p4

x5 2l0 − l1 − l2 line between p1 and p2

x6 2l0 − l1 − l3 line between p1 and p3

x7 2l0 − l1 − l4 line between p1 and p4

x8 2l0 − l2 − l3 line between p2 and p3

x9 2l0 − l2 − l4 line between p2 and p4

x10 2l0 − l3 − l4 line between p3 and p4

Figure 2.2: X4 Case

blown up points, the strict transforms of lines in P2 between pairs of blown up points, and the

strict transforms of conics through five blown up points. We describe these explicitly below.

The strict transform of the line containing points pi and pj is l0− li− lj, and the strict transform

of the conic containing points pi1 , . . . , pi5 is 2l0−li1−· · ·−li5 . All the (−1)-curves are either equal to

li for some i ∈ {1, . . . , 6}, or the strict transforms of lines through pairs of points or conics through

five points. Hence we can associate to each (−1)-curve the equation of a line or conic, unless it is

the preimage of a blown up point. In that case, it is a useful convention to assign a constant to

each li. We will always choose that constant to be 1. We denote the homogeneous polynomial (or

form) associated to a line bundle l in this way to be fl ∈ k[z1, z2, z3].

We present the generators of X4,X5 and X6 their degree and the curve in P2 of which they are

the strict transform in figures 2.2, 2.3 and 2.4 respectively.
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Generator Degree Point or Curve in P2

x1 l1 p1

x2 l2 p2

x3 l3 p3

x4 l4 p4

x5 l5 p5

x6 l0 − l1 − l2 line between p1 and p2

x7 l0 − l1 − l3 line between p1 and p3

x8 l0 − l1 − l4 line between p1 and p4

x9 l0 − l1 − l5 line between p1 and p5

x10 l0 − l2 − l3 line between p2 and p3

x11 l0 − l2 − l4 line between p2 and p4

x12 l0 − l2 − l5 line between p2 and p5

x13 l0 − l3 − l4 line between p3 and p4

x14 l0 − l3 − l5 line between p3 and p5

x15 l0 − l4 − l5 line between p4 and p5

x16 2l0 − l1 − l2 − l3 − l4 − l5 conic containing p1, p2, p3, p4 and p5

Figure 2.3: X5 Case
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Generator Degree Point or Curve in P2

x1 l1 p1

x2 l2 p2

x3 l3 p3

x4 l4 p4

x5 l5 p5

x6 l6 p6

x7 l0 − l1 − l2 line between p1 and p2

x8 l0 − l1 − l3 line between p1 and p3

x9 l0 − l1 − l4 line between p1 and p4

x10 l0 − l1 − l5 line between p1 and p5

x11 l0 − l1 − l6 line between p1 and p6

x12 l0 − l2 − l3 line between p2 and p3

x13 l0 − l2 − l4 line between p2 and p4

x14 l0 − l2 − l5 line between p2 and p5

x15 l0 − l2 − l6 line between p2 and p6

x16 l0 − l3 − l4 line between p3 and p4

x17 l0 − l3 − l5 line between p3 and p5

x18 l0 − l3 − l6 line between p3 and p6

x19 l0 − l4 − l5 line between p4 and p5

x20 l0 − l4 − l6 line between p4 and p6

x21 l0 − l5 − l6 line between p5 and p6

x22 2l0 − l1 − l2 − l3 − l4 − l5 conic containing p1, p2, p3, p4 and p5

x23 2l0 − l1 − l2 − l3 − l4 − l6 conic containing p1, p2, p3, p4 and p6

x24 2l0 − l1 − l2 − l3 − l5 − l6 conic containing p1, p2, p3, p5 and p6

x25 2l0 − l1 − l2 − l4 − l5 − l6 conic containing p1, p2, p4, p5 and p6

x26 2l0 − l1 − l3 − l4 − l5 − l6 conic containing p1, p3, p4, p5 and p6

x27 2l0 − l2 − l3 − l4 − l5 − l6 conic containing p2, p3, p4, p5 and p6

Figure 2.4: X6 Case
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Having found the generators of Cox(Xr), we turn our attention to finding the ideal of relations

IXr . Batyrev–Popov first computed IX4 , then used induction on the number of blown up points to

obtain IX5 and IX6 .

Proposition 2.2.3. (Prop 4.1, [2]) The Cox ring of X4 is isomorphic to the homogeneous coordi-

nate ring of Gr(3, 5), i.e.

Cox(X4) = k[x1, . . . , x10]/IX4

where

IX4 :=

(
x2x5 − x3x6 + x4x7, x1x5 − x3x8 + x4x9,

x1x6 − x2x8 + x4x10, x1x7 − x2x9 + x3x10, x5x10 − x6x9 + x7x8

)

The terms of each relation in IX4 are sections of a single line bundle, each of which is a ruling.

Definition 2.2.4. A ruling is a line bundle l such that l = l1 + l2 where l1, l2 are (−1)-curves and

l1 · l2 = 1.

Each ruling L can be written in r − 1 ways as a sum of (−1)-curves, i.e.

L = L1 + L′
1 = L2 + L′

2 = · · · = Lr−1 + L′
r−1

where each Li and L
′
i is a (−1)-curve. A relation in Cox(Xr) arises from a ruling in the following

way. We recall that a form fl is associated to each (−1)-curve on Xr. The forms

fL1fL′
1
, . . . , fLr−1fL′

r−1

have r − 3 relations between them. These lift to give relations between the sections of the ruling

L, in the sense that if

a1fL1fL′
1
+ · · ·+ anfLnfL′

n
= 0

then

a1xL1xL′
1
+ · · · + anxLnxL′

n

is a relation in the Cox ring, where xL is the generator of the Cox ring corresponding to the

(−1)–curve L. By the following theorem due to Batyrev–Popov [2], these are the only relations.

Proposition 2.2.5. (Theorem 4.9, [2]). For r = 4, 5 or 6, IXR
is the ideal generated by relations

between sections of rulings as described above.
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2.2.3 Computing Cox(X5)

In the rest of this section, we use the theory due to Batyrev–Popov [2] summarised above to calculate

the ideal IX5 . This calculation can be found in Derenthal [12] using a generic fifth point (1, α, β).

For our calculation we pick a specific fifth point and give a little more detail. First we compute the

forms associated to the generators of IX5 . We give the rulings, their sections and associated forms

for X5. Once we have this information we calculate the relations between the associated forms,

and hence the relations between sections of rulings. This gives us IX5 .

Let X5 be the blow up of p1, . . . , p5 where we choose

p1 := (1, 0, 0), p2 := (0, 1, 0), p3 := (0, 0, 1), p4 := (1, 1, 1), p5 := (1, 2, 3).

We emphasise that X5 is not independent of this choice of points. We compute the forms fl for

X5 as described in Figure 2.3. First, it is possible to compute the equations of lines through pairs

of points by inspection. To compute the equations of conics through five points we use a simple

Maple procedure, findconics, described in Appendix B. We present the forms in the following table.

Generator of Cox(X5) (−1)-curve l fl

x1 l1 1

x2 l2 1

x3 l3 1

x4 l4 1

x5 l5 1

x6 l0 − l1 − l2 z3

x7 l0 − l1 − l3 z2

x8 l0 − l1 − l4 z2 − z3

x9 l0 − l1 − l5 2z3 − 3z2

x10 l0 − l2 − l3 z1

x11 l0 − l2 − l4 z1 − z3

x12 l0 − l2 − l5 z3 − 3z1

x13 l0 − l3 − l4 z1 − z2

x14 l0 − l3 − l5 2z1 − z2

x15 l0 − l4 − l5 z1 − 2z2 + z3

x16 2l0 − l1 − l2 − l3 − l4 − l5 3z1z2 − 4z1z3 + z2z3

We compute the rulings for X5 and their sections using the code in Appendix B. For each ruling,

we calculate the relations between the forms corresponding to its sections using Maple. There are

four forms f1, f2, f3 and f4 corresponding to sections s1, s2, s3 and s4 and two relations between

26



them. To find the relations, we use the Maple command “solve” to find solutions to the pair of

equations:

af1 + bf2 + cf3 = 0

df1 + ef2 + hf4 = 0

thus we obtain two generators

as1 + bs2 + cs3 and ds1 + es2 + hs4

of IX5 .

We give the rulings, their sections, associated forms in k[z1, z2, z3] and the relation between

them in the following table:

Rulings Sections Forms in k[z1, z2, z3] Relations

l0 − l1 x2x6 z3 x2x6 − x3x7 + x4x8

x3x7 z2 2x2x6 − 3x3x7 − x5x9

x4x8 z2 − z3

x5x9 2z3 − 3z2

l0 − l2 x1x6 z3 x1x6 − x3x10 + x4x11

x3x10 z1 x1x6 − 3x3x10 − x5x12

x4x11 z1 − z3

x5x12 z3 − 3z1

l0 − l3 x1x7 z2 x1x7 − x2x10 + x4x13

x2x10 z1 x1x7 − 2x2x10 + x5x14

x4x13 z1 − z2

x5x14 2z1 − z2

l0 − l4 x1x8 z2 − z3 x1x8 − x2x11 + x3x13

x2x11 z1 − z3 −2x1x8 + x2x11 − x5x15

x3x13 z1 − z2

x5x15 z1 − 2z2 + z3

l0 − l5 x1x9 2z3 − 3z2 −x1x9 + 2x2x12 + 3x3x14,

x2x12 z3 − 3z1 2x1x9 + x2x12 + 3x4x15

x3x14 2z1 − z2

x4x15 z1 − 2z2 + z3

2l0 − l1 − l2 − l3 − l4 x5x16 3z1z2 − 4z1z3 + z2z3 x5x16 + x6x13 − 3x8x10,

x6x13 z3(z1 − z2) x6x13 − x7x11 + x8x10

x7x11 z2(z1 − z3)

x8x10 (z2 − z3)z1
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2l0 − l1 − l2 − l3 − l5 x4x16 3z1z2 − 4z1z3 + z2z3 x4x16 + 2x6x14 + x7x12,

x6x14 z3(2z1 − z2) x4x16 + x6x14 + x9x10

x7x12 z2(z3 − 3z1)

x9x10 (2z3 − 3z2)z1

2l0 − l1 − l2 − l4 − l5 x3x16 3z1z2 − 4z1z3 + z2z3 x3x16 + x6x15 + x8x12,

x6x15 z3(z1 − 2z2 + z3) x3x16 + 2x6x15 + x9x11

x8x12 −(−z2 + z3)(z3 − 3z1)

x9x11 (2z3 − 3z2)(z1 − z3)

2l0 − l1 − l3 − l4 − l5 x2x16 3z1z2 − 4z1z3 + z2z3 x2x16 + x7x15 − 2x8x14,

x7x15 z2(z1 − 2z2 + z3) x2x16 + 3x7x15 + 2x9x13

x8x14 (z2 − z3)(2z1 − z2)

x9x13 (2z3 − 3z2)(z1 − z2)

2l0 − l2 − l3 − l4 − l5 x1x16 3z1z2 − 4z1z3 + z2z3 x1x16 + 2x10x15 − x11x14,

x10x15 z1(z1 − 2z2 + z3) x1x16 + 3x10x15 + x12x13

x11x14 (z1 − z3)(2z1 − z2)

x12x13 (z3 − 3z1)(z1 − z2)

Hence,

IX5 =




x5x16 + x6x13 − 3x8x10, x4x16 + 2x6x14 + x7x12, x4x16 + x6x14 + x9x10,

x3x16 + x6x15 + x8x12, x3x16 + 2x6x15 + x9x11, x2x16 + x7x15 − 2x8x14,

x2x16 + 3x7x15 + 2x9x13, x1x16 + 2x10x15 − x11x14, x1x16 + 3x10x15 + x12x13,

x2x6 − x3x7 + x4x8, 2x2x6 − 3x3x7 − x5x9, x1x6 − x3x10 + x4x11,

x1x6 − 3x3x10 − x5x12, x1x7 − x2x10 + x4x13, x1x7 − 2x2x10 + x5x14,

x1x8 − x2x11 + x3x13, −2x1x8 + x2x11 − x5x15, −x1x9 + 2x2x12 + 3x3x14,

−2x1x9 + x2x12 + 3x4x15, x6x13 − x7x11 + x8x10




.

2.3 Multigraded Regularity for Projective Toric Varieties

Maclagan-Smith introduced the notion of multigraded regularity in [22] as a generalisation of

Castelnuovo-Mumford regularity. LetX be a projective toric variety, and let Cox(X) = k[x1, . . . , xd].

Multigraded regularity is a useful tool for studying the geometry of X. For example, it gives a

bound for the multidegrees of the equations which cut out the subvariety corresponding to an ideal

sheaf, and it allows us to test whether an ample line bundle gives a projectively normal embedding

of X. In this thesis, we will use multigraded regularity of a line bundle L = L1 ⊗ · · · ⊗ Lk with

respect to L1, . . . , Lk to ensure surjectivity of certain maps.

We summarise material due to Maclagan–Smith [22] and Hering–Schenck–Smith [17].
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Let F be a coherent sheaf, let B and M1, . . . ,Mk be line bundles on X. For a vector u =

(u1, . . . , uk) ∈ Nk, we denote Mu1
1 ⊗ · · · ⊗Muk

k by Mu.

Definition 2.3.1. We say F is B-regular (with respect toM1, . . . ,Mk) ifH
i(X,F⊗B⊗M−u) = 0

for all i > 0 and all u ∈ Nk satisfying |u| := u1 + · · ·+ uk = i.

The following theorem is due to Maclagan–Smith in the toric case, but was generalised by

Hering–Schenck–Smith [17].

Theorem 2.3.2. ( [22], [17])

Let F be a coherent sheaf that is B-regular with respect to M1, . . . ,Mk. For all u ∈ Nk the map

H0(X,F ⊗B ⊗Mu)⊗H0(X,Mv) −→ H0(X,F ⊗B ⊗Mu+v)

is surjective for all v ∈ Nk.

Corollary 2.3.3. Let L1, . . . , Lk be line bundles and suppose L = Lβ1
1 ⊗ · · · ⊗ Lβk

k be OX -regular

with respect to L1, . . . , Lr for some β1, . . . , βk ≥ 0. The multiplication map

H0(X,L)⊗d −→ H0(X,Ld)

is surjective.

Proof. If the multiplication map

H0(X,L)⊗d−1 −→ H0(X,Ld−1)

is surjective, then every section of Ld−1 can be written as a product of sections of L. Hence every

section of Ld can be written as a product of sections of L, since the map

H0(X,Ld−1)⊗H0(X,L) −→ H0(X,Ld)

is surjective by Theorem 2.3.2. Hence by induction it is true that every section of Ld can be written

as a product of sections of L (and hence H0(X,L)⊗d −→ H0(X,Ld) is surjective) since the map

H0(X,L)⊗1 −→ H0(X,L1)

is clearly surjective.

Proposition 2.3.4. For any nef line bundles L1, . . . , Lk ∈ Pic(X), if the sublattice of Pic(X)

generated by L1, . . . , Lk contains an ample bundle then there exist β1, . . . , βk ∈ N such that L :=

Lβ1
1 ⊗ · · · ⊗ Lβk

k is OX -regular with respect to L1, . . . , Lk.
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Proof. Since the sublattice of Pic(X) generated by L1, . . . , Lk contains an ample line bundle, we

can pick α1, . . . , αk ∈ N such that Lα1
1 ⊗ · · · ⊗ Lαk

k is ample. Suppose X is n dimensional, then

L(u) := (Lα1+n
1 ⊗ · · · ⊗ Lαk+n

k ) ⊗ (L−u1
1 ⊗ · · · ⊗ L−uk

k ) is also ample for any u = (u1, . . . , uk) with

u1 + · · ·+ uk ≤ n. Therefore by Demazure Vanishing (see e.g. Thm 9.2.3 Cox–Little–Schenck [6])

H i(X,L(u)) = 0 for all i > 0 and all u such that u1 + · · · + uk = i , since H i(X,L(u)) = 0 for

i > n. Hence, letting βi := αi + n, we have the statement of the proposition.

2.4 Quivers and Quiver Representations

A quiver can be defined by giving its vertices, its arrows, and the vertices at the head and tail of

each arrow. For a quiver Q, define Q0 to be its set of vertices, Q1 to be its set of arrows, and define

maps

h, t : Q1 −→ Q0

mapping each arrow to its head and tail respectively. A path p is a sequence of arrows

p = an . . . a1

such that t(ai) = h(ai−1). We define the support of p to be the set {a1, . . . , an}. The path algebra

kQ is defined to be the k-algebra generated by all paths in Q, including trivial paths ei for each

i ∈ Q0. The multiplication of two paths is defined to be their concatenation if it exists and zero

otherwise. The maps h and t can be extended to kQ by defining h(p) = h(an) and t(p) = t(a1).

A cycle is a path where h(p) = t(p), and Q is said to be acyclic if none of its nontrivial paths are

cycles. A walk in Q is an sequence v0a0v1a1 · · · akvk+1, where vi’s are vertices and ai is an arrow

between vi and vi+1 (in either direction). We say a quiver is connected if there is a walk between

any two vertices. We say a vertex is a source if it is not the head of any arrow. We say a quiver is

rooted if exactly one vertex is a source. We say a subquiver of a rooted quiver is a spanning tree if

it consists of precisely one path from the unique source to each vertex i ∈ Q0.

Example 2.4.1. For the quiver below the maps h and t are:

0

1

2
3

4

5

a1
a2

a
3

a
4

a
5

a
6
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t(a1) = 0 h(a1) = 1

t(a2) = 0 h(a2) = 1

t(a3) = 0 h(a3) = 2

t(a4) = 1 h(a4) = 2

t(a5) = 3 h(a5) = 4

t(a6) = 4 h(a6) = 3

Let Q be a finite, connected quiver. A representation of Q consists of a k-vector space Wi for

i ∈ Q0 and a k-linear map wa : Wt(a) →Wh(a) for a ∈ Q1. It is convenient to write W as shorthand

for
(
(Wi)i∈Q0 , (wa)a∈Q1

)
. The dimension vector of W is the vector r ∈ ZQ0 with components

ri = dimk(Wi) for i ∈ Q0. We define a subrepresentation of W to be a representation W ′ where

W ′
i is a vector subspace of Wi and where w′

a := wa gives a well-defined map w′
a : W ′

t(a) −→ W ′
h(a).

A map of representations ψ : W → W ′ is a family ψi : Wi → W ′
i of k-linear maps for i ∈ Q0

satisfying w′
aψt(a) = ψh(a)wa for a ∈ Q1. With composition defined componentwise, we obtain

the abelian category of finite dimensional representations of Q. For θ ∈ ZQ0 , define θ(W ) :=∑
0≤i≤ρ θi dimk(Wi). Following King [20], a representation W of Q is θ-semistable if θ(W ) = 0

and every subrepresentation W ′ ⊂ W satisfies θ(W ′) ≥ 0. Moreover, W is θ-stable if the only

subrepresentations W ′ with θ(W ′) = 0 are 0 and W .

2.5 Toric Varieties as Fine Moduli of Quiver Representations

In this section we summarise the findings of Craw–Smith in [10]. This paper investigates the link

between the existence of an interpretation of a projective toric variety as a fine moduli space of

quiver representations and the existence of a strong exceptional collection of line bundles.

We summarise the main results. LetX be a projective toric variety with Cox(X) ∼= k[x1, . . . , xd].

Given a list of line bundles L = (OX , L1, . . . , Lr) on X, Craw-Smith defined the quiver of sections

for L . They defined |L | to be the fine moduli space of representations of this quiver. This is a

generalisation of the linear series for a single line bundle, so they refer to |L | as the multilinear series

(or multigraded linear series) for L . They showed that there exists a natural map ϕ|L | : X −→ |L |,

and that this map is a morphism if and only if L1, . . . , Lr are basepoint free. If this is the case then

the image of X is a GIT quotient. Then, whereas strong exceptional collections are comparatively

rare, they showed that it is almost always possible to pick line bundles L such that ϕ|L | is a closed

embedding, and such that its image is the fine moduli space of bound quiver representations of the

complete quiver of sections for L . We will assume throughout this section that X is a projective

toric variety.
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2.5.1 Multilinear Series

Let L = (OX , L1, . . . , Lr) be a list of distinct effective line bundles on the projective toric variety

X. A torus invariant section s ∈ H0(X,Lj ⊗L−1
i ) = Hom(Li, Lj) is said to be irreducible if it does

not factor through some Lk with k 6= i, j.

Definition 2.5.1. (i) The quiver of sections for L is defined to be the quiver whose vertices

are in one to one correspondence with bundles in L . So if Q is the quiver of sections for L

then Q0 = {0, . . . , r}. We define the arrows from vertex i to vertex j to be in one to one

correspondence with irreducible torus-invariant sections of Lj ⊗ L−1
i . We can think of Q as

being a labelled quiver, where each arrow is labelled by the section it corresponds to. For a

path p in Q, we will say that the label of p is the product of the labels of the arrows in the

support of p. It is possible to assume that the elements in L are ordered such that if j < i

then Lj ⊗ L−1
i is not effective.

(ii) Define

div : Q1 −→ Zd

to be the map which sends an arrow a to the divisor of zeros of the torus-invariant section

labelling a. Explicitly if the torus invariant section of a is xm1
1 · · · xmd

d ∈ Cox(X) then div(a) =

(m1, . . . ,md) ∈ Nd.

Lemma 2.5.2. The quiver of sections Q is connected, acyclic, and 0 ∈ Q0 is the unique source.

Proof. Projectivity of X̃ ensures that at most one of Hom(Ei, Ej) and Hom(Ej , Ei) is nonzero for

i 6= j, so Q is acyclic since there cannot be paths from i to j and from j to i . For i ∈ Q0, the space

Hom(E0, Ei) has a torus-invariant element since E1, . . . , Er are effective and E0
∼= O

X̃
, giving rise

to a path in Q from 0 to i ∈ Q0 so 0 is the unique source.

Example 2.5.3. Let X = P2 and let L = (OX ,O(1),O(2)). The quiver of sections for L is:

0 1 2

x1

x2

x3

x1

x2

x3
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The map div can be extended to the path algebra. If a path p has support {a1, . . . , an}, define

div(p) := div(a1) + · · ·+ div(an).

Define the ideal of relations R to be a two sided ideal in the path algebra kQ generated by all

differences p − p′ where t(p) = t(p′), h(p) = h(p′) and div(p) = div(p′). The pair (Q,R) is called a

bound quiver of sections, or a quiver of sections with relations.

Proposition 2.5.4. ( Proposition 3.3, [10]) If (Q,R) is the complete bound quiver of sections for

L = (OX , L1, . . . , Lr), then the quotient algebra kQ/R is isomorphic to End(
⊕r

i=0 Li).

Definition 2.5.5. Let Q be a connected, rooted, acyclic quiver (e.g. the quiver of sections for a

collection of line bundles).

(i) We define Wt(Q) ⊂ ZQ0 to be the sublattice of functions θ : Q0 → Z satisfying
∑

i∈Q0
θi = 0.

The vectors {ei − e0 : i 6= 0} form a Z-basis for Wt(Q).

(ii) We define the incidence map inc: ZQ1 → ZQ0 by setting inc(ea) = eh(a) − et(a). The image of

inc is Wt(Q).

(iii) We introduce a k-algebra, k[ya|a ∈ Q1]. For a path p in Q we define yp :=
∏

a∈Supp(p) ya. For

a spanning tree T in Q we define yT :=
∏

a∈Supp(T ) ya.

(iv) We define the map pic : Wt(Q) −→ Cl(X) by setting pic(ei − e0) = Li.

The k-algebra k[ya : a ∈ Q1] has a Wt(Q)-grading. We define the weight of ya to be inc(ea) for

each a ∈ Q1. This grading induces a faithful action of the algebraic torus G := Hom(Wt(Q),k×)

on AQ1

k = Speck[ya : a ∈ Q1]. An element g = (gi)i∈Q0 ∈ (k∗)r+1 acts on w = (wa)a∈Q1 as

g · w = (g
h(a)wag

−1
t(a))a∈Q1 . For θ ∈ Wt(Q), let k[ya : a ∈ Q1]θ denote the θ-graded piece. We have

AQ1

k //θG = Proj
(⊕

j≥0

k[ya : a ∈ Q1]jθ

)
.

Let Q be a quiver of sections, and note in particular that Q is acyclic with a unique source

0 ∈ Q0. The toric quiver flag variety |L | is the GIT quotient AQ1

k //ϑG linearised by the special

weight ϑ :=
∑

i∈Q0
(ei − e0) ∈ Wt(Q). Such varieties, studied initially by Craw–Smith [10] and in

greater generality by Craw [8], can be characterised as follows:

Proposition 2.5.6. (Proposition 3.8, [10]) Let Q be a finite, connected, acyclic quiver with a

unique source 0 ∈ Q0 and special weight ϑ =
∑

i∈Q0
(ei − e0). The toric quiver flag variety |L |

coincides with:

(i) the GIT quotient AQ1

k //ϑG linearised by ϑ ∈ Wt(Q);
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(ii) the geometric quotient of AQ1

k \ V(BY ) by the action of G, where the irrelevant ideal is

B|L | :=

(
∏

a∈T

ya : T is a spanning tree of Q rooted at 0

)
=

⋂

i∈Q0\{0}

(
ya : h(a) = i

)
;

(iii) the fine moduli space Mϑ(Q) of ϑ-stable representations of the quiver Q of dimension vector

r = (1, . . . , 1) ∈ ZQ0.

Moreover, |L | is a smooth projective toric variety obtained as a tower of projective space bundles

over Spec(k)

Definition 2.5.7. We say a scheme M is a fine moduli space for some class of objects if there is

a one–to–one correspondence between families of those objects over any scheme S and morphisms

from S to M. A tautological family over M is a family T over M for which any family of objects

over S is a pullback of T under a unique map ϕ : S −→ M.

Remark 2.5.8. The description of |L | = Mϑ(Q) as a fine moduli space of representations ensures

that it carries a tautological vector bundle
⊕

i∈Q0
Wi with W0

∼= O|L | and sheaf homomorphisms

{Wt(a) → Wh(a) : a ∈ Q1} whose restriction to the fibre over Mϑ(Q) encodes the corresponding

representation {Wt(a) → Wh(a) : a ∈ Q1}. Moreover, the abelian group homomorphism Wt(Q) →

Pic(|L |) sending (θ0, . . . , θr) to W
θ1
1 ⊗· · ·⊗W θr

r is an isomorphism. For more details, see [8, Sections

2-3].

2.5.2 Bound quiver representations

Let Q be a quiver. For any representation W of Q, define wp : Wt(p) → Wh(p) to be the k-linear

map wp = wak · · ·wa1 obtained by composition. Let J ⊂ kQ be a two-sided ideal of relations with

generators of the form
∑

p∈Γ cpp, where each Γ is a finite set of paths that share the same head

and the same tail. A representation W of Q is a representation of the bound quiver (Q,J) if and

only if
∑

p∈Γ cpwp = 0 for each Γ arising in the definition of J . A point in representation space

(wa) ∈ AQ1

k defines a representation of (Q,J) if and only it lies in the subscheme V(IJ) cut out by

the ideal

IJ :=

(
∑

p∈Γ

cpyp ∈ k[ya : a ∈ Q1] |
∑

p∈Γ

cpp is a generator of J

)

of relations in k[ya : a ∈ Q1]. The ideal IJ is Wt(Q)-homogeneous, since J is generated by sums∑
p∈Γ cpp where the p’s have the same heads and tails. Hence V(IJ) is G-invariant and the GIT

quotient

Mϑ(Q,J) := V(IJ)//ϑG = Proj
(⊕

j≥0

(
k[ya : a ∈ Q1]/IJ )jϑ

)
(2.5.1)

is the fine moduli space of ϑ-stable representations of (Q,J) with dimension vector (1, . . . , 1). The

tautological bundles on Mϑ(Q,J) are obtained from those on Mϑ(Q) by restriction.
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Remark 2.5.9. The abelian category of finite-dimensional representations of (Q,J) is equivalent to

the category of finitely-generated kQ/J-modules, so Mϑ(Q,J) is equivalently the fine moduli space

of ϑ-stable modules over kQ/J that are isomorphic as
(⊕

i∈Q0
kei
)
-modules to

⊕
i∈Q0

kei.

2.5.3 Morphism to the Multigraded Linear Series

Consider the k-algebra homomorphism Φ̃: k[ya : a ∈ Q1] → k[x1, . . . , xd] sending ya to xdiv(a) for

a ∈ Q1. This induces a map Ad −→ AQ1 which descends to a rational map ϕ|L | : X −→ |L |.

Proposition 2.5.10. (Proposition 4.1 [10]) The rational map ϕ|L | is a morphism if and only if

the preimage of the unstable locus V(B|L |) in AQ1 is contained in the unstable locus V(BX) .

Proof. The actions of the groups G = Hom(Wt(Q),k∗) and T = Hom(Cl(X̃),k∗) on k[ya : a ∈ Q1]

and k[x1, . . . , xd] respectively arise from the horizontal semigroup homomorphisms in the diagram

NQ1
inc

−−−−→ Wt(Q)

div

y
ypic

Nd deg
−−−−→ Cl(X̃)

(2.5.2)

where the vertical maps satisfy div(ea) = div(a) for a ∈ Q1 and pic(ei) = Li for i ∈ Q0. We

recall that deg is the map giving the Cl(X) grading of Cox(X) and that pic is defined in Definition

2.5.5. The map Φ̃ respects gradings precisely because (2.5.2) commutes. We explain why in more

depth as follows. The map inc sends ea to eh(a) − et(a) ∈ Wt(Q). If h(a) = i and t(a) = j then pic

maps eh(a) − et(a) to Lj ⊗ L−1
i . Furthermore, div maps ea to div(a), which is mapped by deg to

Lj ⊗ L−1
i . This holds since the label of an arrow from i to j is a section of Lj ⊗ L−1

i .

Since the map Φ̃ respects gradings, the induced map of affine spaces Ad −→ AQ1 maps orbits

to orbits. Hence the rational map ϕ|L | is a morphism if and only if every semistable point in Ad

maps to a semistable point in AQ1 . This holds if and only if the preimage of the unstable locus

V(B|L |) in AQ1 is contained in the unstable locus V(BX) .

Theorem 2.5.11. (Cor 4.2, [10]) We obtain a morphism ϕ|L | : X −→ |L | if and only if each line

bundle in the list L is basepoint free.

If each line bundle in L is basepoint free, then we say the quiver of sections for L is a basepoint

free quiver of sections. If this is the case, by Proposition 4.3 of [10], the image of X is given as a

GIT quotient:

ϕ(X) = V(IQ)//ϑG

where IQ is the prime ideal

IQ =
(
f ∈ k[ya|a ∈ Q1]|f is homogeneous and f ∈ ker(Φ)

)
.
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Remark 2.5.12. The ideal IQ is also the kernel of the semigroup homomorphism

inc⊕ div : ZQ1 −→ Wt(Q)
⊕

Nd.

Craw–Smith gave necessary and sufficient conditions for the morphism ϕ to be a closed embed-

ding.

Proposition 2.5.13 (Proposition 4.9, [10]). Let Q be a basepoint free quiver of sections, and let

ϑ =
∑

i∈Q0
(ei − e0) . The map ϕ : X −→ |L | is a closed embedding if and only if the line

bundle L := Lϑ0
0 ⊗ · · · ⊗ Lϑr

r is ample and ((Cox(|L |)/IQ)[y
−σ̂ ])[0] ∼= ((Cox(X)[x−σ̂ ])[0] for all top

dimensional cones σ in the fan defining X.

We say a quiver of sections Q is very ample if it is basepoint free and ϕQ : X −→ |L | is a

closed embedding.

Corollary 2.5.14. (Cor 4.10 [10]) Let L be a list of basepoint free line bundles and define L :=⊗
i∈Q0

Li. Assume that the multiplication map H0(X,L1) ⊗ · · · ⊗ H0(X,Lr) −→ H0(X,L) is

surjective. Then ϕQ : X −→ |L | is a closed embedding if and only if L is very ample.

2.5.4 Projective Toric Varieties as Fine Moduli

Recall the ideal of relations R in kQ is generated by all differences of paths p − p′ where h(p) =

h(p′), t(p) = t(p′) and div(p) = div(p′). A representation of the bound quiver (Q,R) is a repre-

sentation W = (Wi, wa) of Q where wp − wp′ = 0 whenever p − p′ ∈ R. The fine moduli space of

representations of (Q,R), Mϑ(Q,R), is the GIT quotient of V(IR) under the action of G, where

IR =
(
yp − yp′| h(p) = h(p′), t(p) = t(p′) and div(p) = div(p′)

)
.

The ideal IR is homogeneous with respect to the Wt(Q) grading, and hence V(IR) is a G-invariant

subset of AQ1 .

If Q is a very ample quiver of sections, then Mϑ(Q,R) ∼= X if and only if V(IQ) \ V(B|L |) =

V(IR) \ V(B|L |). Furthermore

X ∼= Mϑ(Q,R) if IQ =
(
IR : B∞

|L |

)
,

where for ideals I and J in a ring R,
(
I : J∞

)
:= {f ∈ R| for every j ∈ J there exists n ∈ N such thatf · jn ∈ I}.

If this is the case, then we say that Q is fine. The next theorem gives conditions that guarantee

that we can find a list of line bundles L such that the complete quiver of sections for L is fine.

Theorem 2.5.15. (Theorem 5.5, [10]) Let L1, . . . , Lr−2 be basepoint free line bundles on X. If the

subsemigroup of Pic(X) generated by L1, . . . , Lr−2 contains an ample line bundle, then there exist

line bundles Lr−1 and Lr such that the quiver of sections of L := {OX , L1, . . . , Lr} is fine.
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Chapter 3

Geometric Results

3.1 Quivers of Sections on Mori Dream Spaces

In this section we introduce the bound quiver of sections for a collection of line bundles on a Mori

Dream Space. These bound quivers encode the endomorphism algebra of the direct sum of the

sheaves in the collection. For r ≥ 0, consider a collection of distinct line bundles

L := (L0, L1, . . . , Lr) ⊂ Cl(X)

on the Mori Dream Space X, where L0 = OX and L1, . . . , Lr are effective. For 0 ≤ i ≤ r, define

Ei := ψ−1(Li) where ψ is the isomorphism from Cl(X̃) to Cl(X) to obtain a collection

L̃ := (E0, E1, . . . , Er)

of distinct rank one reflexive sheaves on an ambient toric variety X̃. For 0 ≤ i, j ≤ r, we say that

a torus–invariant section s ∈ H0(X,Ej ⊗ E−1
i ) = Hom(Ei, Ej) is irreducible if it does not factor

through some Ek with k 6= i, j. The following definition extends the notion of a quiver of sections

for a collection of line bundles on a projective toric variety due to Craw-Smith [10] introduced in

Section 2.5.

Definition 3.1.1. The quiver of sections of the collection L on X is defined to be the quiver of

sections of the collection L̃ on X̃, that is, the quiver Q with vertex set Q0 = {0, . . . , r}, and where

the arrows from i to j correspond to the irreducible torus–invariant sections of Ej ⊗ E−1
i .

Remark 3.1.2. 1. Definition 3.1.1 depends a priori on the choice of ambient toric variety X̃ .

However, any two are isomorphic in codimension–one, so they have isomorphic class groups

and their fans have the same rays. This implies that the Cox sequence (2.1.1) is the same for

any choice of ambient toric variety, and hence Q is independent of the choice.
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2. We abuse terminology by calling Q the ‘quiver of sections of L ’ because paths in Q from i

to j are not constructed directly from a basis of Hom(Li, Lj) as in the literature, see [8, 10].

We justify this abuse by recovering the Hom spaces in Proposition 3.1.4 below.

Definition 3.1.3. Consider the two-sided ideal

R :=

(
∑

i

cipi ∈ kQ |
h(pi) = h(pj), t(pi) = t(pj) for all i, j

and
∑

i cix
div(pi) ∈ IX

)

in the path algebra kQ. The pair (Q,R) is the bound quiver of sections of the collection L .

Proposition 3.1.4. The quotient algebra kQ/R is isomorphic to EndOX

(⊕
i∈Q0

Li

)
, and each

vertex i ∈ Q0 satisfies ei(kQ/R)e0 ∼= H0(X,Li) where ei is the trivial path at vertex i.

Proof. The endomorphism algebra EndO
X̃

(⊕
i∈Q0

Ei

)
is constructed as a direct sum of k–vector

spaces

EndO
X̃

(⊕

i∈Q0

Ei

)
=
⊕

i,j∈Q0

H0(X̃, Ej ⊗ E−1
i ).

A basis for each direct summand H0(X̃, Ej ⊗ E−1
i ) is given by torus invariant sections. Multipli-

cation of two sections x1 ∈ H0(X̃, Ej1 ⊗ E−1
i1

) and x2 ∈ H0(X̃, Ej2 ⊗ E−1
i2

) is defined to be the

product x1x2 ∈ H0(X̃, Ej2 ⊗ E−1
i1

) if i2 = j1 and zero otherwise.

For each i, j ∈ Q0, there exists a map of k-vector spaces from the vector subspace of kQ spanned

by paths from i to j to H0(X̃, Ej ⊗ E−1
i ) which maps a path to its label. This induces a map of

k-vector spaces

ν̃ : kQ −→ EndO
X̃

(⊕

i∈Q0

Ei

)

defined to be the direct sum of the maps described above. The map ν̃ is also a k-algebra homo-

morphism since the product of a pair of paths is defined to be their concatenation if it exists and

zero otherwise, and their concatenation is labelled by the product of the labels of each path.

The endomorphism algebra EndOX

(⊕
i∈Q0

Li

)
is also given as a direct sum of k–vector spaces

EndOX

(⊕

i∈Q0

Li

)
=
⊕

i,j∈Q0

H0(X,Lj ⊗ L−1
i ).

By picking a basis for each space of sections H0(X,Lj ⊗ Li), we can define multiplication in the

endomorphism algebra as in the toric case. The natural map τ : Cox(X̃) −→ Cox(X) induces maps

τij : H
0(X̃, Ej ⊗ E−1

i ) −→ H0(X,Lj ⊗ L−1
i ).

The direct sum of these maps over i, j ∈ Q0 gives a k-algebra homomorphism

τ̂ : EndO
X̃

(⊕

i∈Q0

Ei

)
−→ EndOX

(⊕

i∈Q0

Li

)
.
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The kernel of τ̂ is the direct sum of the kernels of the τij’s.

For each i, j ∈ Q0, there also exists a map ν of k-vector spaces from the vector subspace of kQ

spanned by paths from i to j to H0(X,Lj ⊗ L−1
i ) mapping a path to its label modulo IX . This

induces a map of k-vector spaces

ν : kQ −→ EndOX

(⊕

i∈Q0

Li

)

defined to be the direct sum of the maps described above. The map ν is also a k-algebra homo-

morphism for the same reason as above.

These maps fit into a commutative diagram:

kQ
ν̃

−−−−→ EndO
X̃

(⊕
i∈Q0

Ei

)
∥∥∥

yτ̂

kQ
ν

−−−−→ EndOX

(⊕
i∈Q0

Li

)
(3.1.1)

The map ν̃ is surjective, since for each i, j ∈ Q0 there exist paths from i to j labelled by every

section ofH0(X̃, Ej⊗E
−1
i ). The map τ̂ is surjective since each τij is. Finally, ν is surjective since the

diagram commutes. Therefore by the first isomorphism theorem EndOX

(⊕
i∈Q0

Li

)
∼= kQ/ ker(ν).

This is the preimage under ν̃ of the kernel of τ̂ , i.e. the ideal generated by linear combinations of

paths
∑
aipi such that the paths pi have the same heads and tails and such that

∑
aix

div(pi) ∈ IX

.

The second statement follows from the first since we have L0 = OX and we compose arrows

and maps from right to left.

3.2 Multilinear Series

In this section we use the quiver of sections of a collection L of line bundles on a Mori Dream

Space X to define the corresponding multilinear series |L |. This variety generalises the classical

linear series of a single line bundle in that one obtains a natural map from X to |L | by evaluating

sections of line bundles. We give necessary and sufficient conditions for this map to be a morphism

and to be a closed embedding. In the case that the map is a morphism we describe its image as a

GIT quotient.

Let L = (OX , L1, . . . , Lr) be a collection of effective line bundles on a Mori Dream Space X.

Lemma 2.5.2 guarantees that the corresponding quiver of sections Q is finite, connected, acyclic

and has a unique source 0 ∈ Q0.

Definition 3.2.1. The multilinear series for L is the toric quiver flag variety |L | of Q from

Proposition 2.5.6.
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Remark 3.2.2. Just as Q is not precisely the quiver of sections of L (see Remark 3.1.2), it is

perhaps an abuse of terminology to call |L | the multilinear series of L . Indeed, for the special

case L = (OX , L1) we have that |L | ∼= P(H0(E1)) is a projective space, but it need not coincide

with the classical linear series |L1| because the epimorphism τ |
H0(X̃,Ei)

: H0(X̃, E1) → H0(X,L1)

from diagram (2.1.5) need not be an isomorphism.

In order to study morphisms from X to the multigraded linear series |L |, define

Φ̃ : k[ya : a ∈ Q1] → k[x1, . . . , xd]

to be the k-algebra homomorphism sending ya to a’s label for a ∈ Q1. We recall that the map inc

and pic are defined in Definition 2.5.5, div is defined in Definition 2.5.1 and d̃eg is defined to be the

map deg given by (2.1.1). The actions of the groups G = Hom(Wt(Q),k∗) and T = Hom(Cl(X),k∗)

on k[ya : a ∈ Q1] and k[x1, . . . , xd] respectively arise from the horizontal semigroup homomorphisms

in the diagram

NQ1
inc

−−−−→ Wt(Q)

div

y
ypic

Nd d̃eg
−−−−→ Cl(X̃)

(3.2.1)

where the vertical maps satisfy div(χa) = div(a) for a ∈ Q1 and pic(χi) = Ei for i ∈ Q0.

The map Φ̃ is a graded ring homomorphism precisely because (3.2.1) commutes (see the proof of

Proposition 2.5.10). Under the identification of Wt(Q) with the Picard group of |L |, the subspace

of the Cox ring k[ya|a ∈ Q1] of |L | spanned by monomials of weight θ ∈ Wt(Q) coincides with

H0(W θ1
1 ⊗ · · · ⊗ W θr

r ).

Recall that τ is the canonical surjection Cox(X̃) −→ Cox(X). Since the T -action on Cox(X) is

compatible with that on k[x1, . . . , xd], the map

Φ := τ ◦ Φ̃ : k[ya : a ∈ Q1] −→ Cox(X)

is a graded ring homomorphism. The induced equivariant morphism Φ∗ : V(IX) → AQ1

k descends

to a rational map ϕ|L | : X 99K |L |.

Proposition 3.2.3. Let L = (OX , L1, . . . , Lr) be a collection of effective line bundles on X. The

rational map ϕ|L | : X 99K |L | is a morphism if and only if Li is basepoint-free for 1 ≤ i ≤ r.

Proof. For x ∈ X choose any lift x̃ ∈ V(IX) \ V(BX). We will show that the rational map ϕ|L | is

well defined at x̃ if and only if none of the line bundles in L has a basepoint at x̃. The G-orbit

of the quiver representation Φ∗(x̃) ∈ AQ1

k , which is independent of the choice of lift, is obtained

by evaluating the labels on arrows at x̃, that is, by evaluating sections of the bundles Lh(a) ⊗ L−1
t(a)
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at x. The rational map ϕ|L | : X 99K |L | is a morphism if and only if every such Φ∗(x̃) ∈ AQ1

k is

ϑ-stable.

Let W ′ =
(
(W ′

i )i∈Q0 , (w
′
a)a∈Q1

)
be a proper subrepresentation of Φ∗(x̃). We recall that Φ∗(x̃)

is ϑ stable if and only if
∑

i∈Q0
ϑi dim(W ′

i ) < 0. Since ϑ = (−r, 1, . . . , 1) where r = |Q0| − 1 and

dim(W ′
i ) is either 0 or 1, this is the case if and only dim(W ′

0) = 1 and there exists i > 0 such that

dim(Wi) = 0. For each path p from 0 to i, the map w′
p is given by evaluating the label of p at x̃.

This means that it is possible for dim(W ′
i ) to be 0 if and only if the map w′

p = 0 for each path p

from 0 to i, but this can happen if and only if Li has a basepoint at x̃. Hence, Φ∗(x̃) ∈ AQ1

k is

ϑ-unstable if and only if there exists i > 0 such that the evaluation of every section of Li at x equals

zero. Equivalently, Φ∗(x̃) ∈ AQ1

k is ϑ-semistable if and only if Li is basepoint-free for 1 ≤ i ≤ r.

The Cox ring of X is a unique factorisation domain by Theorem 2.1.10, so ker(Φ) is prime and

hence so is the ideal

IQ :=
(
f ∈ k[ya : a ∈ Q1] : f ∈ ker(Φ) is Wt(Q)-homogeneous

)
(3.2.2)

generated by its Wt(Q)-homogeneous elements. This ideal can be computed explicitly as the kernel

of the k-algebra homomorphism

Ψ: k[ya : a ∈ Q1] → k[x1, . . . , xd, hi, ti|i ∈ Q0]/
(
IX +K

)
(3.2.3)

satisfying Ψ(ya) = tt(a)x
div(a)hh(a) for a ∈ Q1 and where K is the ideal generated by {hiti − 1|i ∈

Q0}; see Chapter 5 for details. This ideal cuts out the image of the morphism constructed in

Proposition 3.2.3 as follows.

Proposition 3.2.4. Let L = (OX , L1, . . . , Lr) be a collection of basepoint-free line bundles on X

with quiver of sections Q. Then

(i) the image of the morphism ϕ|L | : X → |L | is V(IQ)//ϑG; and

(ii) the tautological line bundles on |L | satisfy ϕ∗
|L |(Wi) = Li for i ∈ Q0.

Proof. Since X is complete, the image of ϕ|L | is a closed subscheme of |L |. The geometric quo-

tient construction of |L | from Proposition 2.5.6(i) implies that the image is therefore the geometric

quotient of a G-invariant closed subscheme of AQ1

k \ V(B|L |). The affine variety V(ker(Φ)) is the

image of the equivariant morphism Spec(Cox(X)) → AQ1

k induced by Φ, and the variety V(IQ)

cut out by the Wt(Q)-homogeneous part of ker(Φ) is the minimal G-invariant algebraic set in AQ1

containing all G-orbits from V(ker(Φ)). The image of ϕ|L | is therefore the geometric quotient of

V(IQ) \ V(B|L |) by the action of G. This coincides with the GIT quotient V(IQ)//ϑG by Proposi-

tion 2.5.6, so (i) holds. For part (ii), the tautological bundle Wi on |L | corresponds to the weight

χi − χ0 ∈ Wt(Q) under the isomorphism from Remark 2.5.8. Since the equivariant morphism
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Spec(Cox(X)) → AQ1

k factors through Ad
k, examining the diagrams (2.1.6) and (3.2.1) shows that

ϕ∗
|L |(Wi) = (ψ ◦ pic)(χi − χ0) = ψ(Ei) = Li for i ∈ Q0.

We recall that Theorem 1.1 states that for a collection L = (OX , L1, . . . , Lr) of effective line

bundles on X, the map ϕ|L | : X 99K |L | is a morphism if and only if each Li is basepoint-free, in

which case the image is presented explicitly as a geometric quotient and the tautological bundles

satisfy ϕ∗
|L |(Wi) = Li.

Proof of Theorem 1.1.1. Proposition 3.2.3 establishes that ϕ|L | : X 99K |L | is a morphism if and

only if Li is basepoint-free for 1 ≤ i ≤ r. Proposition 3.2.4 then presents the image explicitly as a

geometric quotient, and establishes that the tautological line bundles on |L | satisfy ϕ∗
|L |(Wi) = Li

for i ∈ Q0 as required.

Remark 3.2.5. The list of reflexive sheaves L̃ on X̃ determines the ideal

ĨQ =
(
f ∈ k[ya : a ∈ Q1] : f ∈ ker(Φ̃) is Wt(Q)-homogeneous

)
(3.2.4)

obtained as the toric ideal of the semigroup homomorphism inc⊕ div : NQ1 → Wt(Q) ⊕ Nd. If

each reflexive sheaf in L̃ is a basepoint-free line bundle on X̃, then Theorem 1.1 of [10] gives a

morphism ϕ
|L̃ |

: X̃ → V(I
Q̃
)//ϑG whose restriction to X is the morphism ϕ|L | : X → V(IQ)//ϑG

from Proposition 3.2.4. However, this is typically not the case as Example 3.3.4 shows.

3.3 Criteria for Closed Immersion

A collection L is said to be very ample if the morphism ϕ|L | from Proposition 3.2.3 is a closed

immersion. We now introduce a necessary and sufficient condition for L to be very ample. We

(enhance and) adapt the proofs of Proposition 5.7 of [8] and Corollary 4.10 of [10] to our situation

because Q is not precisely the quiver of sections for L (see Remarks 3.1.2 and 3.2.2). We recall

that a subspace of H0(X,L) is a very ample linear series if a basis gives a closed embedding of X

into P∗(H0(X,L).

Theorem 3.3.1. Let L = (OX , L1, . . . , Lr) be a collection of line bundles on X where we assume

each Li is basepoint free. The following are equivalent:

(i) the morphism ϕ|L | : X → |L | is a closed immersion;

(ii) the image of the multiplication map

H0(L1)⊗ · · · ⊗H0(Lr) −→ H0(L1 ⊗ · · · ⊗ Lr). (3.3.1)

is a very ample linear series;
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(iii) the map
∏

1≤i≤r ϕ|Li| : X → |L1| × · · · × |Lr| is a closed immersion.

Proof. The bundle ϑ = W1 ⊗ · · · ⊗ Wr is very ample by Proposition 2.5.6. The toric variety |L | is

smooth, so the ample bundle ϑ determines the closed immersion ϕ|ϑ| : |L | −→ P∗
(
H0(|L |, ϑ)

)
. The

composition ϕ|ϑ| ◦ ϕ|L | : X → P∗(H0(|L |, ϑ)) is determined by the line bundle (ϕ|ϑ| ◦ ϕ|L |)
∗(ϑ) =

(ψ ◦ pic)(θ) = L1 ⊗ · · · ⊗ Lr and the subspace of sections Φ(H0(|L |, ϑ)) ⊆ H0(X,L1 ⊗ · · · ⊗ Lr).

We claim that Φ(H0(|L |, ϑ)) coincides with the image V of the multiplication map (3.3.1), in

which case ϕ|ϑ| ◦ ϕ|L | coincides with the (a priori rational) map ϕV : X → P∗(V ) to the classical

linear series. Indeed, for θ = (θ0, . . . , θr) ∈ Wt(Q), the restriction of Φ to the subspace spanned by

monomials of weight θ defines a k-linear map

Φθ : H
0(|L |,W θ1

1 ⊗ · · · ⊗ W
θr
r ) → H0(X,Lθ1

1 ⊗ · · · ⊗ Lθr
r )

because (ψ ◦ pic)(θ) = Lθ1
1 ⊗ · · · ⊗Lθr

r . In particular, the map Φϑ for ϑ =
∑

1≤i≤r(χi −χ0) and the

product ⊗1≤i≤rΦ(χi−χ0) fit in to a commutative diagram of k-vector spaces

H0(|L |,W1)⊗ · · · ⊗H0(|L |,Wr) −−−−→ H0(|L |,W1 ⊗ · · · ⊗ Wr)
⊗

1≤i≤r Φ(χi−χ0)

y
yΦϑ

H0(X,L1)⊗ · · · ⊗H0(X,Lr) −−−−→ H0(X,L1 ⊗ · · · ⊗ Lr)

(3.3.2)

in which the horizontal maps are given by multiplication. For 1 ≤ i ≤ r, the map Φ(χi−χ0) :

H0(|L |,Wi) −→ H0(X,Li) can be obtained by composing two surjective maps H0(|L |,Wi) −→

H0(X̃, Ei) and H
0(X̃, Ei) −→ H0(X,Li). First the map H0(|L |,Wi) −→ H0(X̃, Ei) is surjective,

since a basis of the space of sections of Wi is given by {yp|p is a path from 0 to i}, this map sends

yp to the label of p. By definition of the quiver of sections, there exists a path p from 0 to i

labelled by every torus invariant section of Ei. Hence this first map is surjective. The second map

H0(X̃, Ei) −→ H0(X,Li) is the restriction of the canonical surjection τ : Cox(X̃) −→ Cox(X) and

is hence also surjective.

Every monomial of weight ϑ in k[ya|a ∈ Q1] can be decomposed as a product of monomials

of weight ei − e0 for each i ∈ Q0 (see Remark 4.2.3 (ii)) therefore the top map in the diagram is

surjective. Hence commutativity of the diagram implies that the image of Φϑ coincides with the

image V of (3.3.1). This proves the claim.

Since V is the image of the multiplication map (3.3.1), the morphism ϕV : X → P∗(V ) is the

composition of the product
∏

1≤i≤r ϕ|Li| : X −→ |L1|×· · ·×|Lr| of morphisms to the classical linear

series and the appropriate Segre embedding to P∗(V ). This is because the map
∏

1≤i≤r ϕ|Li| : X −→

|L1|×· · ·×|Lr| composed with the Segre embedding is given by every possible product of one section

from each of L1, . . . , Lr. The claim implies that the diagram
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|L1| × · · · × |Lr| P∗(V ) P∗(H0
(
ϑ)
)

X |L |

Segre ι

∏
1≤i≤r ϕ|Li|

ϕ|L |

ϕ|ϑ|

commutes, where ι is the closed immersion of projective spaces induced by Φϑ. Three maps in the

diagram are closed immersions, so ϕ|L | is a closed immersion if and only if
∏

1≤i≤r ϕ|Li| is a closed

immersion if and only if the linear series V is very ample as required

Remark 3.3.2. Neither of the maps from statements (i) and (iii) of Theorem 3.3.1 factors through

the other. Typically |L | has much lower dimension than |L1|× · · ·× |Lr|, so the multigraded linear

series is a more efficient multigraded ambient space than the product.

Corollary 3.3.3. Let L1, . . . , Lr−1 be basepoint-free line bundles on X. If the subsemigroup of

Pic(X) generated by L1, . . . , Lr−1 contains an ample bundle, then there exists a line bundle Lr such

that the quiver of sections for L = (OX , L1, . . . , Lr) is very ample.

Proof. Theorem 3.3.1 implies that ϕ|L | is a closed immersion if L1⊗· · ·⊗Lr is very ample and the

map (3.3.1) is surjective. The proof of [10, Proposition 4.14] now applies verbatim.

Example 3.3.4. Continuing Example 2.1.15, let X4 be the del Pezzo surface for which the ample

linearisation χ = 11l0−5l1−3l2−2l3− l4 defines X̃4 := A10//χT . We compute using the intersection

pairing on X4 (See Section 2.2.2) that each line bundle in the list

L = (OX4 , l0, 2l0 − l1, 2l0 − l2, 2l0 − l3, 2l0 − l4, 2l0) (3.3.3)

is nef and therefore basepoint-free but not ample. Write L̃ = (E0, E1, . . . , E6). Since the nef

cone of any Mori Dream Space has a chamber decomposition into the nef cones of ambient toric

varieties, each Ei is basepoint-free on some ambient toric variety. This implies that the code

from [21, Example 2.11] computes the irrelevant ideal for the GIT quotient Ad
k//Ei

T determined

by the corresponding linearisation Ei ∈ Cl(X). By comparing each with the irrelevant ideal of

χ ∈ Cl(X) we see that E3, E4, E5 are not basepoint-free line bundles on X̃4 as follows. Let J

be the radical of the ideal generated by sections of ψ−1(χ) ∈ Cox(X̃) (where we recall ψ is the

isomorphism from Cl(X̃) to Cl(X)) and let Ji be the radical of the ideal generated by all sections

of Ei. Explicitly, these are:
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J =




x3x4x7x9x10, x2x4x7x9x10, x1x4x7x9x10, x3x4x6x9x10,

x2x4x5x9x10, x3x4x7x8x10, x3x4x6x8x10, x3x4x5x7x10,

x1x4x5x7x10, x3x4x5x6x10, x2x3x4x5x10, x1x2x4x5x10,

x2x4x7x8x9, x1x4x7x8x9, x2x4x5x8x9, x2x4x6x7x9, x1x4x6x7x9,

x2x4x5x6x9, x2x3x4x6x9, x1x3x4x6x9, x1x4x5x7x8, x2x3x4x7x8,

x1x3x4x7x8, x2x3x4x6x8, x1x3x4x6x8, x2x3x4x5x8, x1x2x4x5x8,

x1x4x5x6x7, x1x3x4x5x6, x1x2x4x5x6




J1 =
(
x3x4x10, x2x4x9, x2x3x8, x1x4x7, x1x3x6, x1x2x5

)

J2 =




x1x4x7, x1x3x6, x1x2x5, x3x4x7x10, x3x4x6x10,

x2x4x7x9, x2x4x5x9, x2x3x6x8, x2x3x5x8, x2x3x4x5x10,

x2x3x4x6x9, x2x3x4x7x8




J3 =




x2x4x9, x2x3x8, x1x2x5, x3x4x9x10, x3x4x8x10,

x1x4x7x9, x1x3x6x8, x1x4x5x7, x1x3x5x6,

x1x3x4x5x10, x1x3x4x6x9, x1x3x4x7x8




J4 =




x3x4x10, x2x3x8, x1x3x6, x2x4x9x10,

x1x4x7x10, x2x4x8x9, x1x2x5x8, x1x4x6x7, x1x2x5x6,

x1x2x4x5x10, x1x2x4x6x9, x1x2x4x7x8




J5 =




x3x4x10, x2x4x9, x1x4x7, x2x3x8x10, x1x3x6x10,

x2x3x8x9, x1x2x5x9, x1x3x6x7, x1x2x5x7,

x1x2x3x5x10, x1x2x3x6x9, x1x2x3x7x8




J6 =
(
x3x4x10, x2x4x9, x2x3x8, x1x4x7, x1x3x6, x1x2x5

)

Using the Macaulay 2 command “isSubset”, we see that J1, J2 and J6 contain J , therefore the

common zero loci of the sections of l0, 2l0 − l1 and 2l0 are contained in the common zero locus of

the sections of χ–the unstable locus. However, the common zero loci of 2l0− l2, 2l0− l3 and 2l0− l4

are not contained in the unstable locus, and therefore are not basepoint free.

In particular, whilst it would be possible to restrict ourselves to lists L of line bundles on X

which lift to basepoint free line bundles on X̃, we will show that in this example ϕ|L | is a morphism

which is not the restriction of a morphism on the ambient toric variety. Indeed, since not all the

Ei’s are basepoint-free the rational map from the toric variety is not a morphism by Theorem

2.5.11. This shows that we cannot deduce that ϕ|L | is a morphism simply by restriction from the

toric case (compare Remark 3.2.5).
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We now show ϕ|L | is a morphism directly. In this case, the quiver of sections Q is shown in

Figure 6.1, where each arrow is labelled by the torus-invariant section of the relevant reflexive sheaf

on X̃4. We list arrows with tail at 0 as a1, . . . , a6 from the top of Figure 6.1 to the bottom; list

0 1

2

3

4

5

6

x1x2x5
x1x3x6
x1x4x7
x2x3x8
x2x4x9
x3x4x10

x2x5
x3x6
x4x7

x1x5
x3x8
x4x9

x1x6
x2x8
x4x10
x
1x7x

2x
9x

4x
10

x
1

x
2

x3

x4

Figure 3.1: A quiver of sections for a collection on X4

those with tail at 1 as a7, . . . , a18 from the top of the figure to the bottom; and list those with head

at 6 as a19, . . . , a22 from the top to the bottom. Likewise, list the coordinates of AQ1

k as y1, . . . , y22,

and compute the kernel of (3.2.3) to obtain the ideal

IQ =




y16 − y17 + y18, y13 − y14 + y15, y10 − y11 + y12, y7 − y8 + y9, y3 − y5 + y6,

y2 − y4 + y6, y1 − y4 + y5, y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21,

y9y19 − y17y22 + y18y22, y8y19 − y14y21 + y18y22, y6y17 − y5y18, y6y14 − y4y15,

y5y11 − y4y12, y5y8 − y6y8 − y4y9 + y6y9, y8y15y17 − y9y14y18 − y8y15y18 + y9y15y18,

y11y15y17 − y12y14y18, y9y11y17 − y8y12y17 + y8y12y18 − y9y12y18,

y9y11y14 − y8y12y14 + y8y11y15 − y9y11y15




that cuts out the image of ϕ|L | : X4 → |L |. We claim that ϕ|L | is a closed immersion, and hence

X4
∼= V(IQ)//ϑG. Indeed, for 1 ≤ i ≤ 4 we have Li+1 = 2l0 − li, and the intersection pairing

shows that ϕ|Li+1| : X4 → F1 contracts the (−1)-curves {lj : j 6= i} but not li. A simple case-

by-case analysis shows that the morphism
∏

2≤i≤5 ϕ|Li| separates all points and tangent vectors

of X4: a pair of distinct points on X4 must either both lie on the same exceptional curve, lie on

different (non-intersecting) exceptional curves, have one point on an exceptional curve and one off

an exceptional curve or have neither lying on an exceptional curve. In each of the above cases, there

is an exceptional curve Lj which has neither point on it, and hence the map ϕ|Li| separates the two

points and their tangent vectors. Therefore
∏

2≤i≤5 ϕ|Li| must also separate the points and their

tangent vectors, hence so does
∏

1≤i≤6 ϕ|Li|. We deduce from Theorem 3.3.1 that ϕ|L | : X4 → |L |

is a closed immersion.
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Chapter 4

Algebraic Results

4.1 Fine Moduli of Bound Quiver Representations

This chapter establishes when the morphism ϕ|L | : X → |L | induces an isomorphism between the

Mori Dream SpaceX and a fine moduli spaceMϑ(Q,R) of ϑ-stable modules over the endomorphism

algebra of
⊕

i∈Q0
Li. Our main algebraic result is an efficient construction for collections of line

bundles with this property. We recall that for a path p, yp :=
∏

a∈Supp(p) ya, that Φ̃ : k[ya|a ∈

Q1] −→ k[x1, . . . , xd] maps ya to xdiv(a), and that Φ : k[ya|a ∈ Q1] −→ Cox(X) is the composition

τ ◦ Φ̃ where τ is the canonical surjection Cox(X̃) −→ Cox(X).

A list L of line bundles on X defines a pair of two-sided ideals in kQ and hence a pair of

ideals of relations in k[ya : a ∈ Q1]. First, the ideal R from Definition 3.1.3 determines the ideal of

relations

IR =

(
∑

p∈Γ

cpyp ∈ k[ya : a ∈ Q1] |
Γ is any set of paths sharing head and

tail for which
∑

p∈Γ cpx
div(p) ∈ IX

)
. (4.1.1)

Each generator of IR is Wt(Q)-homogeneous and lies in ker(Φ), so IR is contained in the prime

ideal of equations IQ from (3.2.2). In Chapter 6 we present code that allows us to compute IR

explicitly. i In addition, the kernel R̃ of the epimorphism kQ → EndO
X̃
(
⊕

i∈Q0
Ei) obtained by

sending p to xdiv(p) determines the ideal of relations

ĨR := I
R̃
=

(
∑

p∈Γ̃

cpyp ∈ k[ya : a ∈ Q1] |
Γ̃ is any set of paths sharing head and

tail for which
∑

p∈Γ̃ cpx
div(p) = 0

)
. (4.1.2)

We have that ĨR is contained in IR and ĨQ (see (3.2.4)) is contained in IQ since ker(Φ̃) is contained

in ker(Φ). It also holds that ĨR is contained in ĨQ since IR is generated by homogeneous polynomials
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in k[ya|a ∈ Q1] in the kernel of Φ̃. Therefore we have the following inclusions:

IR ⊂ IQ

∪ ∪

ĨR ⊂ ĨQ

Compute the affine varieties in AQ1

k cut out by the ideals ĨR, ĨQ, IR, IQ ⊂ k[ya : a ∈ Q1], remove

from each the ϑ-unstable locus V(B|L |), and compute the geometric quotient by the action of G to

obtain the left-hand square in the commutative diagram of GIT quotients

V(ĨQ)//ϑG −−−−→ Mϑ(Q, R̃) −−−−→ AQ1

k //ϑGx
x

∥∥∥

V(IQ)//ϑG −−−−→ Mϑ(Q,R) −−−−→ |L |

(4.1.3)

in which each morphism is a closed immersion.

Theorem 4.1.1. If L is a list of basepoint-free line bundles on X, then the induced morphism

ϕ|L | : X −→ Mϑ(Q,R) (4.1.4)

is surjective if IQ coincides with the saturation

(IR : B∞
|L |) := {f ∈ k[ya|a ∈ Q1]| for every spanning tree T of Q there exists n ∈ N such that f ·ynT ∈ IR},

where we recall that for a spanning tree T, yT :=
∏

a∈Supp(T ) ya. In particular, if L is very ample

and IQ = (IR : B∞
|L |) then (4.1.4) is an isomorphism.

Proof. The ideal IQ is prime since it is the homogeneous part of the kernel of map from a ring to a

domain. It suffices by Theorem 3.2.4 to show that the closed immersion V(IQ)//ϑG→ V(IR)//ϑG is

an isomorphism. Proposition 2.5.6 shows that the ideal B|L | cuts out the ϑ-unstable locus in AQ1

k ,

so we need only show that V(IQ) \ V(B|L |) is isomorphic to V(IR) \ V(B|L |). Since IQ is prime,

this holds if IQ = (IR : B∞
|L |). The second statement is immediate.

Remark 4.1.2. In light of Proposition 3.1.4 and Remark 2.5.9, when the map (4.1.4) is an isomor-

phism then we describe the Mori Dream Space X as the fine moduli space Mϑ(Q,R) of ϑ-stable

modules over End(
⊕

i∈Q0
Li) that are isomorphic as

(⊕
i∈Q0

kei
)
-modules to

⊕
i∈Q0

kei.

4.2 Main Algebraic Result

We now work towards our main algebraic result which exhibits many collections of line bundles on

X for which the morphism from (4.1.4) is an isomorphism, thereby providing a noncommutative

algebraic construction of X as in Remark 4.1.2.
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We first introduce the collections of interest. Choose generators g1, . . . , gm ∈ k[x1, . . . , xd] of

the ideal IX , set δ0 := max1≤j≤m

{
total degree of gj

}
(where total degree is as defined in Definition

1.1.3 of Cox–Little–O’Shea [5]) and define

δ :=

{
δ0/2 if δ0 is even;

(δ0 + 1)/2 otherwise.
(4.2.1)

We recall that ψ is the isomorphism from Cl(X̃) to Cl(X). Consider line bundles L1, . . . , Lr−2 on

X for which the corresponding rank one reflexive sheaves E1 := ψ−1(L1), . . . , Er−2 := ψ−1(Lr−2) on

X̃ are basepoint-free line bundles such that the subsemigroup of Pic(X̃) generated by E1, . . . , Er−2

contains an ample line bundle. Choose sufficiently large integers β1, . . . , βr−2 to ensure that E :=

Eβ1
1 ⊗· · ·⊗E

βr−2

r−2 is OX–regular with respect to E1, . . . , Er−2 and, moreover, that E2δ is very ample.

We can always find such β1, . . . , βr−2 by Propositon 2.3.4. Define Er−1 := Eδ and Er := E2δ .

Augment the list L1, . . . , Lr−2 on X with L0 := OX , Lr−1 := ψ(Er−1) and Lr := ψ(Er) to obtain

a collection

L = (OX , L1, . . . , Lr) (4.2.2)

of basepoint-free line bundles on X. Let Q denote the quiver of sections of L . The corresponding

collection of line bundles L̃ := (O
X̃
, E1, . . . , Er) on X̃ satisfies the conditions of Theorem 2.5.15,

so

ĨQ = (ĨR : B∞
|L |). (4.2.3)

Thus, the induced morphism ϕ
|L̃ |

: X̃ → AQ1//ϑG is a closed immersion whose image V(ĨQ)//ϑG is

isomorphic to Mϑ(Q, R̃).

Remark 4.2.1. 1. It follows that each collection (4.2.2) determines a commutative diagram

X̃
ϕ
|L̃ |

−−−−→ V(ĨQ)//ϑG
∼=

−−−−→ Mϑ(Q, R̃) −−−−→ AQ1

k //ϑGx
x

x
∥∥∥

X
ϕ|L |

−−−−→ V(IQ)//ϑG −−−−→ Mϑ(Q,R) −−−−→ |L |

(4.2.4)

in which every morphism is a closed immersion.

2. Since E is O
X̃
-regular with respect to E1, . . . , Er−2 and each βi > 0, Theorem 2.3.2 shows

that the multiplication map H0(Er−1 ⊗E−1
i )⊗kH

0(Er−1) → H0(Er ⊗E−1
i ) is surjective for

all 1 ≤ i ≤ r−1. This means that for any i, every path from vertex i to r can be decomposed

into a path from i to r− 1 and a path from r− 1 to r since Er−1 = Er ⊗E−1
r−1. In particular,

every path in Q from 0 to r passes through r − 1.

3. For clarity in what follows, we work with elements of k[ya : a ∈ Q1] modulo the relation ∼ in

which polynomials are equivalent when their difference lies in ĨQ. Since ĨQ is the toric ideal of
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the semigroup homomorphism inc⊕ div : NQ1 → Wt(Q)⊕Nd (see Remark 2.5.12) monomials

satisfy ym ∼ ym
′
if and only if inc(m −m′) = 0 and div(m −m′) = 0, that is, ym ∼ ym

′
if

and only if ym and ym
′
share the same weight in Wt(Q) and have the same image under Φ̃.

Before introducing the main result, we present a technical lemma for any list L = (OX , L1, . . . , Lr)

as in (4.2.2). Write χ =
∑

i χiei ∈ ZQ0 as χ = χ+ − χ− where χ± =
∑

i χ
±
i ei ∈ NQ0 have disjoint

supports I+χ = {i ∈ Q0 : χi > 0} and I−χ = {i ∈ Q0 : χi < 0}. In particular, χ ∈ Wt(Q) gives

nχ :=
∑

i∈I+χ

χ+
i =

∑

i∈I−χ

χ−
i .

For any spanning tree T in Q, set yT :=
∏

a∈supp(T ) ya. We recall that the map inc : NQ1 −→ Zr+1

maps ea to eh(a) − et(a) and that the image of inc is Wt(Q).

Lemma 4.2.2. Assume L is a list of line bundles as in (4.2.2), and let Q be the quiver of sections

for L . Let T be a spanning tree in Q and let χ ∈ inc(NQ1) \ {0}. There exists m ∈ NQ1 such that

for any monomial yv ∈ k[ya : a ∈ Q1] of weight χ, we have

(yT )
2nχyv ∼ ym

nχ∏

α=1

yγα (4.2.5)

where γ1, . . . , γnχ are paths in Q, each with tail at 0 and head at r, where we recall that r is the

number of vertices in Q excluding the source vertex 0. Also, yv divides
∏nχ

α=1 yγα, and the resulting

quotient Φ̃(
∏

α yγα)/Φ̃(y
v) depends only on T and χ.

Proof. We begin by constructing the relevant m ∈ NQ1 . The spanning tree T supports a path qi

from 0 ∈ Q0 to each vertex i ∈ Q0 and hence to each vertex in Iχ. We may therefore write

(yT )
nχ = ym1

∏

i∈I−χ

(yqi)
χ−
i . (4.2.6)

where m1 ∈ NQ1 depends only on T and χ. The tree T supports a path γ from 0 to r whose label

is a torus-invariant section s ∈ H0(Er). Since Er−1 is OX -regular with respect to E1, . . . , Er−2 and

each βi > 0, Theorem 2.3.2 implies that the multiplication map

H0(Er−1 ⊗ Eβ1
1 ⊗ · · · ⊗ E

βr−2

r−2 ⊗E−1
j )⊗k H

0(Ej) → H0(Er) (4.2.7)

is surjective. In particular, for each j ≤ r − 2 there exist sections of Er ⊗ E−1
j and Ej whose

product is s. By definition of the quiver of sections, there exists a pair of paths in Q labelled by

these sections, one from 0 to j denoted q′′j , and the other from j to r denoted q′j. Concatenating

gives a path q′jq
′′
j from 0 to r that passes via j and, by Remark 4.2.1(2), through r − 1 such that

yγ ∼ yq′jq′′j . Multiply by yT /yγ to obtain yT ∼ yq′jy
m(j) for some m(j) ∈ NQ1 that depends only
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on T and j (and on the lift of s via (4.2.7), but we fix one such lift for T and i). Applying this

χ+
j -times for each j ∈ I+χ and multiplying gives

(yT )
nχ ∼ ym2

∏

j∈I+χ

(yq′j)
χ+
j .

where m2 ∈ NQ1 depends only on T and χ. Multiply by (4.2.6) to see that

(yT )
2nχ ∼ ym

∏

i∈I−χ

(yqi)
χ−
i

∏

j∈I+χ

(yq′j)
χ+
j . (4.2.8)

where m := m1 +m2 ∈ NQ1 depends only on T and χ.

To complete the proof, write v =
∑

a∈Q1
vaea ∈ NQ1 where inc(v) = χ. Since χ 6= 0 there

exists i ∈ I−χ , so there exists a1 ∈ Q1 with t(a1) = i such that va1 > 0. There are two cases. If

χh(a1) < 0 then h(a1) ∈ I+χ , in which case we define p1 := a1 and repeat the above for v′ := v− ea.

Otherwise, χh(a1) ≤ 0 in which case there exists a2 ∈ Q1 with t(a2) = h(a1) such that va2 > 0. Since

Q is acyclic we can continue in this way, obtaining a path p1 that traverses the arrows a1, a2, . . .

and satisfies χh(p1) > 0, that is, h(p1) ∈ I+χ . As in the first case, we may repeat the above for

v′ := v −
∑

a∈supp(p1)
ea. In either case, the weight χ′ := inc(v′) satisfies nχ′ = nχ − 1, and we

obtain by induction a set of paths p1, . . . , pnχ satisfying yv =
∏nχ

α=1 ypα, where precisely χ−
i of

these paths have tail at i ∈ I−χ and χ+
i have head at i ∈ I+χ . Thus, for 1 ≤ α ≤ nχ, there exists

i ∈ I−χ , j ∈ I+χ such that γα := q′jpαqi is a path in Q from 0 to r and

nχ∏

α=1

yγα =
∏

i∈I−χ

(yqi)
χ−
i

nχ∏

α=1

ypα
∏

i∈I+χ

(yq′i)
χ+
i .

Note that yv divides
∏nχ

α=1 yγα . Moreover, multiplying (4.2.8) by yv gives (4.2.5). The quotient

Φ̃(
∏

α yγα)/Φ̃(y
v) equals Φ̃

(
(yT )

2nχ
)
/Φ̃(ym), so depends only on T and χ as required.

Remark 4.2.3. (i) Applying Φ̃(−) to (4.2.5) and dividing the resulting equality by Φ̃(yv) shows

in addition that the monomial Φ̃(ym) divides Φ̃
(
(yT )

2nχ
)
.

(ii) We draw the reader’s attention to the fact that we have also constructed a set of paths

p1, . . . , pnχ satisfying yv =
∏nχ

α=1 ypα , where precisely χ−
i of these paths have tail at i ∈ I−χ

and χ+
i have head at i ∈ I+χ .

We are now in a position to state and prove our main algebraic result.

Theorem 4.2.4. Let L1, . . . , Lr−2 be basepoint-free line bundles on a Mori Dream Space X. If the

corresponding rank one reflexive sheaves E1 := ψ−1(L1), . . . , Er−2 = ψ−1(Lr−2) on X̃ are basepoint-

free line bundles such that the subsemigroup of Pic(X̃) generated by E1, . . . , Er−2 contains an ample
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line bundle, then there exist line bundles Lr−1, Lr such that the induced morphism

ϕ|L | : X −→ Mϑ(Q,R) (4.2.9)

is an isomorphism for L = (OX , L1, . . . , Lr).

Proof. Define the line bundles Lr−1 and Lr as described at the start of this section to produce a

collection L of the form (4.2.2). Remark 4.2.1(1) shows that L is very ample, so by Theorem 4.1.1

it suffices to prove that IQ = (IR : B∞
|L |). To establish one inclusion, let f ∈ (IR : B∞

|L |). Since

IR ⊆ IQ and hence (IR : B∞
|L |) ⊆ (IQ : B∞

|L |), we have that (yT )
Nf ∈ IQ for any spanning tree T

and N ∈ N. Since IQ is prime, we have either IQ = (IQ : B∞
|L |) as required, or B|L | ⊆ IQ. The

ideal B|L | is generated by monomials, and since IQ is prime, this would imply that IQ contained

a variable. The map Φ̃ maps variables to nonzero monomials, and since the image of IQ under

Φ̃ is contained in IX this would imply that IX contains a monomial. Since IX is also prime,

this in turn would imply that IX contained a variable, contradicting our assumption that the

number of generators d of Cox(X) is as small as possible. Therefore (IR : B∞
|L |) ⊆ IQ. For the

opposite inclusion, let f ∈ IQ be a homogeneous generator of weight χ ∈ inc(NQ1) \ {0} and let

T be a spanning tree in Q. If we can show that (yT )
Nf ∈ ĨQ + IR for some N ∈ N, then by

increasing N if necessary and applying the equality ĨQ = (ĨR : B∞
|L |) from (4.2.3), we deduce that

(yT )
Nf ∈ ĨR + IR = IR and hence f ∈ (IR : B∞

|L |) as required.

In fact we show that (yT )
Nf ∈ ĨQ + IR for N = 2nχ. We proceed in four steps:

Step 1: Introduce a set of paths {γα,β} in Q such that

(yT )
2nχf ∼ ym

(∑

β

cβ

nχ∏

α=1

yγα,β

)
(4.2.10)

for some m ∈ NQ1 and cβ ∈ k, where in addition we have Φ̃
(∑

β cβ
∏

1≤α≤nχ
yγα,β

)
∈ IX .

Decompose f as a sum of terms f =
∑

β cβy
vβ for cβ ∈ k and vβ ∈ NQ1 satisfying χ = inc(vβ).

Since χ 6= 0 we apply Lemma 4.2.2 to each monomial yvβ to obtain (yT )
2nχyvβ ∼ ym

∏nχ

α=1 yγα,β
,

where m depends only on T and χ (not on β) and where each γα,β is a path in Q with tail at 0

and head at r. This gives (4.2.10). Also, the quotient xq := Φ̃(
∏

α yγα,β
)/Φ̃(yvβ ) ∈ k[x1, . . . , xd]

depends only on T and χ (not on β). Since f ∈ IQ, we have Φ̃(f) ∈ IX and hence we deduce that

Φ̃
(∑

β cβ
∏nχ

α=1 yγα,β

)
= xq

(∑
β cβΦ̃(y

vβ )
)
= xqΦ̃(f) ∈ IX as required.

Step 2: We fix generators g1, . . . gm of IX and introduce a second set of paths {pi,j,k,ℓ} in Q

such that
∑

β

cβ

nχ∏

α=1

yγα,β
∼
∑

i,j,k

ci,j,k

nχ∏

ℓ=1

ypi,j,k,ℓ
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for some ci,j,k ∈ k, where for each i, j we have Φ̃
(∑

k ci,j,k
∏

1≤ℓ≤nχ
ypi,j,k,ℓ

)
is a term in k[x1, . . . , xd]

multiplied by a generator of IX .

In light of Step 1, expand Φ̃
(∑

β cβ
∏nχ

α=1 yγα,β

)
=
∑

i,j hi,jgi in terms of generators of IX , where

each hi,j ∈ k[x1, . . . , xd] is a nonzero term. Since Φ̃ is graded and yγα,β
has weight er−e0 ∈ Wt(Q),

we may assume that each term in this expansion has degree p̃ic(nχ(er − e0)) = E
nχ
r . Thus,

expanding each gi := gi,1 + · · ·+ gi,ti as a sum of terms for some ti ∈ N gives hi,jgi,k ∈ H0(E
nχ
r ) for

all i, j, k. Since Er−1 is OX-regular with respect to E1, . . . , Er−2 and Er = E2
r−1, Proposition 2.3.3

implies that the multiplication map H0(Er)⊗k · · · ⊗kH
0(Er) → H0(E

nχ
r ) is surjective, so for each

i, j, k there exists ci,j,k ∈ k and torus-invariant sections si,j,k,ℓ ∈ H0(Er) for 1 ≤ ℓ ≤ nχ such that

hi,jgi,k = ci,j,k
∏nχ

ℓ=1 si,j,k,ℓ. Since Q is a quiver of sections, there exists a path pi,j,k,ℓ in Q from 0

to r whose label is the torus-invariant section si,j,k,ℓ, that is, Φ̃(ypi,j,k,ℓ) = si,j,k,ℓ. For fixed i, j, we

therefore obtain

hi,jgi,k = ci,j,kΦ̃

( nχ∏

ℓ=1

ypi,j,k,ℓ

)
. (4.2.11)

Summing over 1 ≤ k ≤ ti gives hi,jgi = Φ̃
(∑

k ci,j,k
∏

1≤ℓ≤nχ
ypi,j,k,ℓ

)
, and by summing this new

expression over all i, j we deduce that

Φ̃

(∑

β

cβ

nχ∏

α=1

yγα,β

)
= Φ̃

(∑

i,j,k

ci,j,k

nχ∏

ℓ=1

ypi,j,k,ℓ

)
(4.2.12)

lies in IX by Step 1. The main statement of Step 2 now follows from Remark 4.2.1(3) because these

polynomials also share the same weight in Wt(Q), namely nχ(er − e0).

Step 3: Introduce a third set of paths {qi,j,k} in Q such that

nχ∏

ℓ=1

ypi,j,k,ℓ ∼ ym
′
i,jyqi,j,k (4.2.13)

for some m′
i,j ∈ NQ1, where for each i, j we have Φ̃

(∑
k ci,j,kyqi,j,k

)
equal to a term in k[x1, . . . , xd]

multiplied by a generator of IX .

Fix i and j and define yvi,j,k :=
∏

1≤ℓ≤nχ
ypi,j,k,ℓ. The map Φ̃ is equivariant and sends monomials

to monomials, so 1
ci,j,k

hi,jgi,k ∈ H0(E
nχ
r ) defines a torus-invariant section. Since E = Eβ1

1 ⊗ · · · ⊗

E
βr−2

r−2 is OX -regular with respect to E1, . . . , Er−2 and Er = E2
r−1 = E2δ, Proposition 2.3.3 implies

that the multiplication map

H0(E)⊗k · · · ⊗k H
0(E) → H0(E

nχ
r )

is surjective, so 1
ci,j,k

hi,jgi,k is equal to the product of 2δnχ torus-invariant sections of E. Since gi,k

is a term of a generator of IX , its total degree is at most δ0 ≤ 2δ by (4.2.1), so we may choose
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2δ of these sections si,k,1, . . . , si,k,2δ ∈ H0(E) such that gi,k divides
∏

1≤µ≤2δ si,k,µ ∈ H0(Er). We

now apply the above only for k = 1. Since Q is a quiver of sections, there exists a path qi,j,1 in Q

from 0 to r satisfying Φ̃(yqi,j,1) =
∏

1≤µ≤2δ si,1,µ, so the section hi,jgi,1/ci,j,1Φ̃(yqi,j,1) ∈ H0(E
nχ−1
r )

is torus-invariant. Surjectivity of the multiplication map H0(Er) ⊗k · · · ⊗k H
0(Er) → H0(E

nχ−1
r )

determines nχ−1 sections of Er and hence paths q′i,j,1, . . . , q
′
i,j,nχ−1 in Q from 0 to r labelled by these

sections such that Φ̃(ym
′
i,j ) = hi,jgi,1/ci,j,1Φ̃(yqi,j,1) for y

m
′
i,j :=

∏
1≤ν≤nχ−1 yq′i,j,ν . In particular,

Φ̃(yvi,j,1) =
hi,jgi,1
ci,j,1

= Φ̃(ymi,j
′
yqi,j,1). (4.2.14)

Both monomials yvi,j,1 and ym
′
i,jyqi,j,1 have weight nχ(er − e0) ∈ Wt(Q), hence yvi,j,1 ∼ ym

′
i,jyqi,j,1 .

This gives us (4.2.13) for the case k = 1.

For k > 1, we have hi,jgi,k = ci,j,kΦ̃(y
vi,j,k). For 1 ≤ i ≤ m, the generator gi of IX is

Cl(X)-homogeneous, so gi,k and gi,1 have the same degree in Cl(X) for any k. Since gi,1 divides

Φ̃(yqi,j,1) ∈ H0(Er), it follows that the term Φ̃(yqi,j,1)gi,k/gi,1 also has degree Er. Divide by its

coefficient ci,j,k/ci,j,1 ∈ k to obtain a torus-invariant section Φ̃(yqi,j,1)ci,j,1gi,k/ci,j,kgi,1 ∈ H0(Er)

which in turn determines a path qi,j,k in Q with tail at 0 and head at r for which Φ̃(yqi,j,k) =

Φ̃(yqi,j,1)ci,j,1gi,k/ci,j,kgi,1. Then (4.2.14) gives

Φ̃(yvi,j,k) = hi,jgi,1 ·
gi,k

ci,j,kgi,1
= ci,j,1Φ̃(y

m
′
i,j )Φ̃(yqi,j,1) ·

gi,k
ci,j,kgi,1

= Φ̃(ym
′
i,jyqi,j,k).

It follows that the monomials yvi,j,k and ym
′
i,jyqi,j,k have weight nχ(er − e0), hence yvi,j,k ∼

ym
′
i,jyqi,j,k , and we obtain (4.2.13) for all k. Then

Φ̃(ym
′
i,j)Φ̃

(∑

k

ci,j,kyqi,j,k

)
= Φ̃

(∑

k

ci,j,k

nχ∏

ℓ=1

ypi,j,k,ℓ

)
∈ IX

holds for every i, j by combining (4.2.13) and Step 2. The ideal IX does not contain the mono-

mial Φ̃(ym
′
i,j ) for any i, j, otherwise it would contain a variable of k[x1, . . . , xd] because IX is

prime, which would give a contradiction since we assumed that d is as small as possible. Thus,

Φ̃
(∑

k ci,j,kyqi,j,k
)
∈ IX for every i, j as required.

Step 4: Establish that (yT )
2nχf ∈ ĨQ + IR as required by proving that

(yT )
2nχf ∼ ym

(∑

i,j

ym
′
i,j

(∑

k

ci,j,kyqi,j,k

))
. (4.2.15)

Relation (4.2.15) is immediate from Steps 1-3. For every i, j we also have
∑

k ci,j,kyqi,j,k ∈ IR by

Step 3, so the right hand side of (4.2.15) also lies in IR. The definition of ∼ given in Remark 4.2.1(3)

then implies (yT )
2nχf ∈ ĨQ + IR. This completes the proof of Theorem 4.2.4.
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Chapter 5

Computing IR and IQ

In this chapter we show how to compute IR, ĨR, IQ and ĨQ explicitly using Maple and Macaulay 2.

As an application, in the next chapter we show that IQ =
(
IR : B∞

|L |

)
for certain ample quivers of

sections Q on X4,X5 and Gr(2, 4), therefore each is isomorphic to a moduli space of bound quiver

representations by Theorem 4.1.1.

We summarise our method for computing ĨR and IR using Maple below:

1. In section 5.1.1, we show how to input quivers into Maple. We give pseudocode for finding

the set of all paths in Q, along with their heads, tails and labels in section 5.1.2.

2. In section 5.1.3, we give pseudocode for finding the generators of ĨR.

3. In section 5.1.4, we prove that there is a choice of generating set for IR which contains the

generating set for ĨR, plus certain additional generators in a form conducive to calculations.

4. In 5.1.5, we give pseudocode for finding the additional generators of IR mentioned above.

We summarise our method for calculating ĨQ and IQ using Macaulay 2:

1. In Appendix A, we give a method for computing the kernels of k-algebra homomorphisms

using Macaulay 2.

2. In section 5.2.1, we prove ĨQ and IQ are kernels of certain k-algebra homomorphisms. Hence

we can apply the results of Appendix A to compute them.

3. In section 5.2.2 we give Macaulay 2 code for calculating ĨQ and IQ.

5.1 Computing ĨR and IR using Maple

In this section we give a method for calculating ĨR and IR explicitly.
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5.1.1 Quivers in Maple

In order to calculate ĨR and IR, we need to input quivers into Maple. We input quivers as Maple

“lists” of all arrows, plus their heads, tails and labels as shown:

Q := [[t(ai),div(ai), h(ai), yai ]|ai ∈ Q1].

We will refer to the ith entry in Q (and more generally in any list) as Q[i]. We introduce some

notation: for a quiver Q, let t(Q[i]) := Q[i][1],div(Q[i]) := Q[i][2], h(Q[i]) := Q[i][3] and yQ[i] :=

Q[i][4]. We write div(Q[i]) as an element of Nd where d is the number of generators of Cox(X).

Example 5.1.1. On X4, L = (OX4 , l0 − l1, l0 − l2, l0). The quiver of sections for L , Q, is given

below:

0

1

2

3

x2x
5

x3x
6

x4x
7

x
1x

5x
3x

8x
4x

9

x3x4x10

x
1

x 2

Arrows 1-3 are those from 0 to 1. Arrows 4-6 are those from 0 to 2. Arrow 7 goes from 0 to 3.

Arrow 8 goes from 1 to 3. Arrow 9 goes from 2 to 3. We input Q into Maple as:

[[0, [0, 1, 0, 0, 1, 0, 0, 0, 0, 0], 1, y1 ], [0, [0, 0, 1, 0, 0, 1, 0, 0, 0, 0], 1, y2 ], [0, [0, 0, 0, 1, 0, 0, 1, 0, 0, 0], 1, y3 ]

[0, [1, 0, 0, 0, 1, 0, 0, 0, 0, 0], 2, y4 ], [0, [0, 0, 1, 0, 0, 0, 0, 1, 0, 0], 2, y5 ], [0, [0, 0, 0, 1, 0, 0, 0, 0, 1, 0], 2, y6 ]

[0, [0, 0, 1, 1, 0, 0, 0, 0, 0, 1], 3, y7 ], [1, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3, y8 ], [2, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 3, y9 ]]

5.1.2 Finding all Paths in Q

The ideals IR and ĨR are defined in terms of the paths of Q, therefore we need to consider paths

as well as arrows of Q. With that in mind, we wrote a Maple procedure “getpaths” which outputs

the list of all paths P for a given quiver Q. More specifically, for every path p in Q the output P

lists t(p),div(p), h(p) and yp. We give pseudocode and a proof of its efficacy.

We define h(P [i]),div(P [i]), t(P [i]) and yP [i] to be the first, second, third and fourth terms of

P [i] respectively. We denote the number of terms in a list L by |L|.
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Pseudocode 5.1.2. Input: Q

Procedure: P := Q, r : = max{h(ai)|ai ∈ Q0}, a := 0, b := |Q|

for i from 1 to r do

for j from |P | − b+ 1 to |P | do

for k from 1 to |Q| do

if t(Q[k]) = h(P [j]) then P := [P, [t(P [j]),div(P [j]) div(Q[k]), h(Q[k]), yQ[k]yP [j]]] and a := a+ 1.

end if

end do

end do

b := a, a := 0

end do.

Output: P

Proof. We begin by defining P := Q. We work through all the elements of P and Q, and if say the

ith element of Q has tail equal to the head of the jth element of P then we add their concatenation

(a path of length 2) to P. Once we have worked through all the elements of P and Q in this way we

will have added all the paths of length two to P . We record the number of paths we have added

(this is the role of a and b).

Next we consider all arrows in Q and all paths of length 2 (i.e. the last b paths in P ). If it is

possible to concatenate them to form a path of length 3, they are added to P . Again we record the

number of additions to P.

We repeat this process r times, where r is the number of vertices in Q. The paths in Q have

length at most r since Q contains no cycles, hence after repeating the process r times P lists the

details of every path in Q.

Example 5.1.3. Let Q be as in example 5.1.1. The output for “getpaths(Q)” is:

[[0, [0, 1, 0, 0, 1, 0, 0, 0, 0, 0], 1, y1 ], [0, [0, 0, 1, 0, 0, 1, 0, 0, 0, 0], 1, y2 ], [0, [0, 0, 0, 1, 0, 0, 1, 0, 0, 0], 1, y3 ],

[0, [1, 0, 0, 0, 1, 0, 0, 0, 0, 0], 2, y4 ], [0, [0, 0, 1, 0, 0, 0, 0, 1, 0, 0], 2, y5 ], [0, [0, 0, 0, 1, 0, 0, 0, 0, 1, 0], 2, y6 ],

[0, [0, 0, 1, 1, 0, 0, 0, 0, 0, 1], 3, y7 ], [1, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3, y8 ], [2, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], 3, y9 ],

[0, [1, 1, 0, 0, 1, 0, 0, 0, 0, 0], 3, y8y1], [0, [1, 0, 1, 0, 0, 1, 0, 0, 0, 0], 3, y8y2], [0, [1, 0, 0, 1, 0, 0, 1, 0, 0, 0], 3, y8y3],

[0, [1, 1, 0, 0, 1, 0, 0, 0, 0, 0], 3, y9y4], [0, [0, 1, 1, 0, 0, 0, 0, 1, 0, 0], 3, y9y5], [0, [0, 1, 0, 1, 0, 0, 0, 0, 1, 0], 3, y9y6]]
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5.1.3 Calculating ĨR

We give pseudocode for finding the generators of ĨR and prove its efficacy.

Pseudocode 5.1.4. Input: P:= getpaths(Q).

Procedure: L:=[ ] (the “empty list”).

for i from 1 to |P | do

for j from 1 to |P | do

If h(P [i]) = h(P [j]), t(P [i]) = t(P [j]) and div(P [i]) = div(P [j]) then L := [L, yP [i] − yP [j]].

end if

end do

end do.

Output: L.

Proof. We check all pairs of paths pi and pj. If their heads, tails and labels are equal then ypi − ypj
is a generator of ĨR so we add ypi − ypj to L. All generators are of this form, and since we check

all pairs of paths this must give a list of all generators for ĨR.

Remark 5.1.5. Note that while L is a generating set for ĨR, it will almost certainly contain many

redundancies. In particular, L will probably have many terms equal to zero.

Example 5.1.6. Let Q be the quiver from Example 5.1.1. If our input is the list of all paths in

Q, then the output from “zeropart” is

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, y8y1 − y9y4, 0, 0, y9y4 − y8y1, 0, 0, 0].

Hence

ĨR =
(
y8y1 − y9y4

)
.

5.1.4 A Generating Set for IR

We give a technical lemma which describes a generating set for IR.

Lemma 5.1.7. Fix a presentation IX = 〈g1, . . . , gm〉. The ideal IR is generated by S1 ∪ S2 where

S1 := {yp − yp′| h(p) = h(p′), t(p) = t(p′),div(p) = div(p′)}

and

S2 :=

{
∑

ciypi|
h(pi) = h(pj), t(pi) = t(pj) for all i, j and

∑
ciΦ̃(ypi) = hijgi

for some j where hij is a term in k[x1, . . . , xd]

}
.
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Proof. The ideal generated by S1 and S2 is contained in IR. For the converse, let f =
∑
ciypi be a

generator of IR (where paths pi share same head and same tail). It suffices to show that f lies in

the ideal generated by S1 and S2.

Since f ∈ IR, Φ̃(f) =
∑

i,j hijgi ∈ IX for some terms hij ∈ k[x1, . . . , xd]. We proceed in two

stages: first we show that f can be written as an element of ĨR plus a linear combination of Wt(Q)

homogeneous yp’s mapping to terms of the sum
∑
hijgi. All elements of ĨR lie in the ideal generated

by S1 by Proposition 2.5.4. Secondly, we show that the remaining part lies in the ideal generated

by S2.

Step 1: Identifying vertices of Q with line bundles, let E = h(pi) ⊗ t(pi)
−1 for any i (note that

this is independent of i). Since Φ̃ is a toric homomorphism and maps monomials to monomials,

each term ciypi maps to a term cix
mi in (S

X̃
)E . So, we can write

Φ̃(

n∑

i=1

ciypi) =

n∑

i=1

cix
mi = ci1x

mi1 + · · ·+ citx
mit after cancelling ,

where {i1, . . . , it} ⊆ {1, . . . , n}. Hence we can decompose f as

f = ci1ypi1 + · · ·+ citypit + (f − (ci1ypi1 + · · ·+ citypit )).

We note that f − (ci1ypi1 + · · ·+ citypit ) is homogeneous and in the kernel of Φ̃. It is therefore an

element of ĨR, and lies in the ideal generated by S1 by Proposition 2.5.4.

Step 2 : Redefine ciαypiα =: cαypα and xmiα =: xmα . We show that
∑t

α=1 cαypα lies in the ideal

generated by S2. Since
∑
cαx

mα ∈ IX , we can write
∑

α

cαx
mα =

∑

i,j

hijgi

where gi is a generator of IX and hij is a term in k[x1, . . . , xd]. Since Φ̃ is equivariant,
∑

i,j hijgi is

homogeneous of degree E. We can decompose hijgi into terms, say hijgi =
∑

k hijgik. For all i, j

and k,

hijgik = cijkx
vijk (5.1.1)

where cijk ∈ k and xvijk is a torus–invariant section of E. By definition of the quiver of sections

there exists a path pijk from t(pα) to h(pα) labelled by xvijk . Additionally, we can ensure that

vijk = vi′j′k′ if and only if pijk = pi′j′k′ , and that pijk = pα if and only if xvijk = xmα .

Now we will show that ∑

ijk

cijkypijk =
∑

α

cαypα .

For each v ∈ Nd,
∑

i,j,k
s.t. vijk=v

cijkx
vijk =

{
cαx

mα if v = mα

0 otherwise
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because the sum of terms in
∑

ijk cijkx
vijk which are equal modulo constant is either zero or a

term in
∑

α cαx
mα since

∑
ijk cijkx

vijk =
∑

ijk hijgik =
∑

α cαx
mα which has no cancelling by

construction. Since pijk = pα if and only if vijk = mα, for every v ∈ Nd we must also have

∑

i,j,k
s.t. vijk=v

cijkypijk =

{
cαypα if v = mα

0 otherwise.

Therefore, when we sum over all i, j and k we must have

∑

v∈Nd

∑

i,j,k
s.t. vijk=v

cijkypijk =
∑

ijk

cijkypijk =
∑

α

cαypα (5.1.2)

as claimed.

Crucially,
∑

k cijkypijk is an element of the ideal generated by S2. This is because each pijk has

the same head and tail, and by (5.1.1)

Φ̃Q

(∑

k

cijkypijk
)
=
∑

k

cijkx
vijk = hijgi

where hijgi is a term times gi. By (5.1.2),
∑

α cαypα is a sum of elements of S2, therefore
∑

α cαypα
also lies in the ideal generated by S2.

5.1.5 Finding Generators of IR

We describe an algorithm for computing IR. We include pseudocode for the case where IX is

generated by quadratic polynomials with three terms, as in X4,X5,X6 and Grassmannians Gr(r, n)

in Appendix C. We introduce some notation. Let Q be a quiver, and let P denote the list of all

paths in Q and suppose IX :=
(
g1, . . . , gm

)
.

Algorithm 5.1.8. Input: the generators of IX , the list P of all paths in Q. For 1 ≤ i ≤ m, we

consider the generator gi. Suppose gi has ni terms:

gi = ci1x
mi1 + · · · + cini

xmini

where cij ∈ k and mij ∈ Nd (recalling that d is the number of generators of Cox(X̃)).

For each 1 ≤ j ≤ ni we construct a list Lij of containing information about each path whose

label is divisible by xmij as follows. For each j define Lij := [ ].

For each j and for 1 ≤ k ≤ |P | we check if xdiv(P [k]) is divisible by xmij . If it is, we add

[t(P [k]), xdiv(P [k])/xmij , h(P [k]), yP [k]]
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to Lij . If it isn’t, we don’t. We define div(Lij [n]) to be the second entry in Lij [n].

Let Mi := [ ]. For 1 ≤ ki1 ≤ |Li1|, . . . , 1 ≤ kini
≤ |Lini

| we check if

t(Li1[ki1]) = · · · = t(Lini
[kini

]),

h(Li1[ki1]) = · · · = h(Lini
[kini

]),

and div(Li1[ki1]) = · · · = div(Lini
[kini

]).

If this is the case then we add ci1yP [ki1] + · · · + cini
yP [kini

] to Mi. If it isn’t the case, we don’t.

The paths P [kij ] have the same head and tail for each j and

Φ̃(ci1yP [ki1] + · · ·+ cini
yP [kini

]) =
(
xdiv(P [kij])/xmij

)(
ci1x

mi1 + · · · cini
xmini

)
∈ IX

so ci1yP [ki1]+ · · ·+ cini
yP [kini

] is an element of IR. By construction, Mi contains every sum
∑
ciypi

such that t(pi) = t(pj), h(pi) = h(pj) for all i, j and such that
∑
ciΦ̃(ypi) is a term multiplied gi. If

we repeat this process for every gi, Lemma 5.1.7 tells us that the union of the Mi’s plus the output

from Pseudocode 5.1.4 must therefore generate IR (possibly with many redundant terms).

Example 5.1.9. With Q as in Example 5.1.1, the output from Algorithm 5.1.8 is:

[y1 − y2 + y3, y8y1 − y8y2 + y8y3, y9y4 − y8y2 + y8y3, y4 − y5 + y6,

y8y1 − y9y5 + y9y6, y9y4 − y9y5 + y9y6, y8y2 − y9y5 + y7, y8y3 − y9y6 + y7].

Hence in this case

IR =
(
y8y1 − y9y4, y4 − y5 + y6, y1 − y2 + y3, y3y8 − y6y9 + y7, y2y8 − y5y9 + y7

)
.

5.2 Calculating IQ and ĨQ Using Macaulay 2

In this section we give a method for computing ĨQ and IQ explicitly.

5.2.1 IQ and ĨQ as Kernels

In this section we use the theory from Appendix A to calculate IQ using Macaulay 2. In order to

do this, we show that IQ is the kernel of a k-algebra homomorphism ψ:

ψ : k[ya|a ∈ Q1] −→ k[x1, . . . , xd, ti, hi|i ∈ Q0]/IX +A

ya 7→ tt(a)x
div(a)hh(a)

where

A =
(
tihi − 1|i ∈ Q0

)
.

First we need a technical lemma:
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Lemma 5.2.1. Let f ∈ k[ya|a ∈ Q1] be homogeneous of weight χ ∈ inc(Wt(Q)) \ {0} and let

n := nχ. We consider the map:

ψ : k[ya|a ∈ Q1] −→ k[x1, . . . , xd, ti, hi]/A

ya 7→ tt(a)x
div(a)hh(a).

The image of f satisfies

ψ(f) = ti1 · · · tinhj1 · · · hjng(x1, . . . , xd)

where i1, . . . , in, j1, . . . , jn ∈ Q0.

Proof. Since f is homogeneous, we can decompose f into terms, each of weight χ. By Remark 4.2.3

(ii), for each term we have

f =

k∑

β=1

cβ

n∏

α=1

ypαβ

where cβ ∈ k, the pαβ ’s are paths where χ+
i of the pαβ’s have head at i ∈ Q0 and χ−

i of the pαβ’s

have tail at i ∈ Q0.

For each ypαβ
we have

ψ(ypαβ
) = tt(pαβ)x

div(pαβ)hh(pαβ)

since we are working modulo A. So for any β:

ψ
( k∏

α=1

ypαβ

)
=

n∏

α=1

tt(pαβ)hh(pαβ)x
div(pαβ).

Now since
∏n

α=1 tt(pαβ)hh(pαβ) depends only on χ, this is a common factor for ψ(
∏k

α=1 ypαβ
) for each

β. Hence, summing over β we have:

ψ(f) =
n∏

α=1

(
tt(pαβ)hh(pαβ)

)
×

( k∑

β=1

cβ

n∏

α=1

xdiv(pαβ)

)
.

Letting g(x) :=
∑k

β=1 cβ
∏n

α=1 x
div(pαβ) we have the statement of the Lemma.

Proposition 5.2.2. The kernel of ψ is equal to IQ.

Proof. We note that the kernel of ψ is precisely the set:

kerψ = {f ∈ k[ya|a ∈ Q1]|ψ(f) ∈ IX}

where IX is considered as an ideal of k[x1, . . . , xd, ti, hi]/A.
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First we show IQ ⊆ ker(ψ). Let f be an element of IQ. We assume f is homogeneous of weight

χ ∈ inc(NQ1) \ {0} and let n := nχ. By Remark 4.2.3 (ii), we have

f =
k∑

β=1

cβ

n∏

α=1

ypαβ

and by the proof of Lemma 5.2.1 ψ(f) = ti1 · · · tinhj1 · · · hjng(x) where i1, . . . , in, j1, . . . , jn ∈ Q0

and where g(x) =
∑k

β=1 cβ
∏n

α=1 x
div(pαβ). Now, since f ∈ IQ, we have that Φ̃(f) ∈ IX . This means

Φ̃(f) = Φ̃

( k∑

β=1

cβ

n∏

α=1

ypαβ

)
=

k∑

β=1

cβ

n∏

α=1

Φ̃(ypαβ
) =

k∑

β=1

cβ

n∏

α=1

xdiv(pαβ) = g(x) ∈ IX .

Hence f ∈ ker(ψ).

Now to show opposite inclusion let f ∈ ker(ψ) be homogeneous of weight χ. So

f =

k∑

β=1

cβ

n∏

α=1

ypαβ

where cβ ∈ k, the pαβ ’s are paths where χ+
i of the pαβ’s have head at i ∈ Q0 and χ−

i of the pαβ’s

have tail at i ∈ Q0. Also, ψ(f) = ti1 · · · tinhj1 · · · hjng(x) ∈ IX where i1, . . . , in, j1, . . . , jn ∈ Q0. IX

is generated by g1(x1, . . . , xd), . . . , gm(x1, . . . , xd), so

ti1 · · · tinhj1 · · · hjng(x) =

f1(x, t,h)g1(x) + · · ·+ fm(x, t,h)gm(x)

for some f1, . . . , fm ∈ k[x1, . . . , xd, ti, hi]/A, where x = (x1, . . . , xd), t = (t0, . . . , tr) and h =

(h0, . . . , hr). Substituting ti = 1, hi = 1 for all i ∈ Q0 we obtain:

g(x) = f1(x, 1, . . . , 1)g1(x) + · · ·+ fm(x, 1, . . . , 1)gm(x)

hence g(x) ∈ IX .

By the proof of Lemma 5.2.1, we also have

g(x) =

k∑

β=1

cβ

n∏

α=1

xdiv(pαβ) = Φ̃(f) ∈ IX .

Hence f ∈ IQ since it is homogeneous by assumption.

We note that these results also apply to the toric case by setting IX =
(
0
)
.
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5.2.2 Macaulay 2 Code

We present Macaulay 2 code for computing IQ and ĨQ. Let q := |Q1| and denote IQ by IQ, and ĨQ

by IQtilde

i1: R = QQ[x 1..x d,t 0..t r,h 0..h r,y 1..y q,MonomialOrder => Eliminate d+2*(r+1)]

i2: K = ideal(y 1-xdiv(a1), . . . y m-xdiv(a1))

i3: I = ideal(g 1,. . .g m, t 1*h 1-1,..., t r*h r-1)

i4: Itilde = ideal(t 0*h 0-1,..., t r*h r-1)

i5: H = K+I

i5: G = gens gb H

i6: J = selectInSubring(1,G)

i7: IQ = ideal(J)

i8: Htilde = K+Itilde

i9: Gtilde = gens gb Htilde

i10: Jtilde = selectInSubring(1,Gtilde)

i11: IQtilde = ideal(Jtilde)
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Chapter 6

Examples of Mori Dream Spaces as

Fine Moduli of Quiver

Representations

As an application of our main results we illustrate how to reconstruct del Pezzo surfaces directly

from the bound quiver of sections of a collection of line bundles whose direct sum is a tilting bundle.

6.1 Tilting bundles on del Pezzo surfaces

Let X be a smooth projective variety over k and write coh(X) for the category of coherent sheaves

on X. For any vector bundle T on X, let A := EndOX
(T ) denote its endomorphism algebra and

mod(A) the abelian category of finitely generated right A-modules. We say that T is a tilting

bundle on X if the functor

RHom(T ,−) : Db
(
coh(X)

)
−→ Db

(
mod(A)

)

is an exact equivalence of bounded derived categories. If T decomposes as a direct sum of line

bundles T =
⊕

0≤i≤r Li (we need not assume that each Li has rank one, but we choose to), then

after reordering if necessary, the collection (L0, L1, . . . , Lr) is a full, strongly exceptional sequence

on X. That is, the line bundles in the collection generate Db(coh(X)) and they satisfy appropriate

Ext-vanishing conditions, namely, that Hom(Lj , Li) = 0 for j > i and that Extk(Li, Lj) = 0 for

k > 0 and all 0 ≤ i, j ≤ r.

For 0 ≤ k ≤ 8, let Xk denote the del Pezzo surface obtained as the blow-up of P2
k at k points in

general position. The Picard group Cl(Xk) ∼= Zk+1 has a basis given by l0, the pullback to Xd of

the hyperplane class on P2
k, together with the k exceptional curves l1, . . . , lk. Consider the sequence
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of basepoint-free line bundles

Lk :=
(
OXk

, l0, 2l0 − l1, . . . , 2l0 − lk, 2l0
)

(6.1.1)

on Xk, and write L0 = OXk
, L1 = l0, Li+1 = 2l0 − li for 1 ≤ i ≤ k, and Lk+2 = 2l0. The following

result is well known. We guide the reader towards a proof.

Lemma 6.1.1. The sequence of line bundles (6.1.1) on Xk is full and strongly exceptional, so the

vector bundle Tk :=
⊕

0≤i≤k+2 Li is tilting.

Proof. We use the technology of toric systems developed by Hille–Perling [18]. Beginning with

the unique toric system l0, l0, l0 on P2
k, construct a toric system on each Xk as follows: choose

l0, l0 − l1, l1, l0 − l1 on X1, then repeat for k ≥ 2, introducing lk in the second-last position while

subtracting lk from each neighbouring divisor to obtain the toric system

l0, l0 − l1, l1 − l2, l2 − l3, . . . , lk−1 − lk, lk, l0 −
∑

1≤i≤k

li

on Xk. List these divisors from left to right as D1, . . . ,Dk+3. Observe that for 1 ≤ i ≤ k+2 we have

Li = O(D1 + · · · +Di), and −KXk
= O(D1 + · · · +Dk+3), and Theorem 5.7 of Hille–Perling [18]

establishes that the sequence (L0, L1, . . . , Lk+2) is full and strongly exceptional as required.

Let (Qk, Jk) denote the bound quiver of sections of the collection Lk on Xk. For k ≤ 3, the

variety Xk is toric, in which case L = L̃k and the method of Craw–Smith [10] shows that the

morphism ϕ|Lk| : Xk → Mϑ(Qk, Jk) is an isomorphism. We now consider the cases where k = 4

and 5. We were unable to compute the case k = 6 due to computational complexity.

We also consider a collection of line bundles L on Gr(2, 4) which gives an isomorphism with

the moduli space of bound quiver representations for the quiver of sections of L .

6.2 X4 Tilting Example

On X4, a strong exceptional collection of line bundles is L := (OX4 , l0, 2l0− l1, 2l0− l2, 2l0− l3, 2l0−

l4, 2l0) where notation is as in Section 2.2.2. The quiver of sections for L is given in Figure 6.1.

Arrows with tail at 0 are listed a1, . . . , a6 from the top of Figure 6.1 to the bottom; list those with

tail at 1 as a7, . . . , a18 from the top of the figure to the bottom; and list those with head at 6 as

a19, . . . , a22 from the top to the bottom. Likewise, list the coordinates of AQ1

k as y1, . . . , y22.

Using the methods described in sections 5.1 and 5.2 , we calculated ĨR, IR, ĨQ, and IQ. We

compute BY by computing the intersection

BY =
⋂

i∈Q0

(
yaj ∈ k[ya|a ∈ Q1]| h(aj) = i

)
.
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Figure 6.1: A quiver of sections for a collection on X4

We then compared
(
ĨR : B∞

Y

)
to ĨQ, and

(
IR : B∞

Y

)
to IQ. The results were as follows:

ĨR =




y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21, y9y19 − y16y22,

y8y19 − y13y21, y7y19 − y10y20, y6y17 − y5y18, y6y16 − y3y18,

y5y16 − y3y17, y6y14 − y4y15, y6y13 − y2y15, y4y13 − y2y14, y5y11 − y4y12,

y5y10 − y1y12, y4y10 − y1y11, y3y8 − y2y9, y3y7 − y1y9, y2y7 − y1y8,

y3y14y21 − y4y16y22, y5y13y21 − y2y17y22, y6y10y20 − y1y18y22




IR =




y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21, y9y19 − y16y22,

y8y19 − y13y21, y7y19 − y10y20, y6y17 − y5y18, y6y16 − y3y18,

y5y16 − y3y17, y6y14 − y4y15, y6y13 − y2y15, y4y13 − y2y14, y5y11 − y4y12,

y5y10 − y1y12, y4y10 − y1y11, y3y8 − y2y9, y3y7 − y1y9, y2y7 − y1y8,

y3y14y21 − y4y16y22, y5y13y21 − y2y17y22, y6y10y20 − y1y18y22,

y16 − y17 + y18, y13 − y14 + y15, y10 − y11 + y12, y7 − y8 + y9, y3 − y5 + y6,

y2 − y4 + y6, y1 − y4 + y5, y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21,

y9y19 − y17y22 + y18y22, y8y19 − y14y21 + y18y22, y6y17 − y5y18,

y6y14 − y4y15, y5y11 − y4y12, y5y8 − y6y8 − y4y9 + y6y9




ĨQ =




y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21, y9y19 − y16y22,

y8y19 − y13y21, y7y19 − y10y20, y6y17 − y5y18, y6y16 − y3y18, y5y16 − y3y17,

y6y14 − y4y15, y6y13 − y2y15, y4y13 − y2y14, y5y11 − y4y12, y5y10 − y1y12,

y4y10 − y1y11, y3y8 − y2y9, y3y7 − y1y9, y2y7 − y1y8, y3y14y21 − y4y16y22,

y5y13y21 − y2y17y22, y6y10y20 − y1y18y22, y11y15y17 − y12y14y18,

y8y15y16 − y9y13y18, y7y12y16 − y9y10y17, y7y11y13 − y8y10y14,

y8y10y15y17 − y7y12y13y18, y7y11y15y16 − y9y10y14y18,

y8y12y14y16 − y9y11y13y17



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IQ =




y15y21 − y18y22, y12y20 − y17y22, y11y20 − y14y21, y9y19 − y16y22,

y8y19 − y13y21, y7y19 − y10y20, y6y17 − y5y18, y6y16 − y3y18, y5y16 − y3y17,

y6y14 − y4y15, y6y13 − y2y15, y4y13 − y2y14, y5y11 − y4y12, y5y10 − y1y12,

y4y10 − y1y11, y3y8 − y2y9, y3y7 − y1y9, y2y7 − y1y8, y3y14y21 − y4y16y22,

y5y13y21 − y2y17y22, y6y10y20 − y1y18y22, y11y15y17 − y12y14y18,

y8y15y16 − y9y13y18, y7y12y16 − y9y10y17, y7y11y13 − y8y10y14,

y8y10y15y17 − y7y12y13y18, y7y11y15y16 − y9y10y14y18,

y8y12y14y16 − y9y11y13y17, y16 − y17 + y18, y13 − y14 + y15, y10 − y11 + y12,

y7 − y8 + y9, y3 − y5 + y6, y2 − y4 + y6, y1 − y4 + y5, y15y21 − y18y22, y12y20 − y17y22,

y11y20 − y14y21, y9y19 − y17y22 + y18y22, y8y19 − y14y21 + y18y22,

y6y17 − y5y18, y6y14 − y4y15, y5y11 − y4y12, y5y8 − y6y8 − y4y9 + y6y9,

y11y15y17 − y12y14y18, y8y15y17 − y9y14y18 − y8y15y18 + y9y15y18,

y9y11y17 − y8y12y17 + y8y12y18 − y9y12y18,

y9y11y14 − y8y12y14 + y8y11y15 − y9y11y15




BY is the intersection of the ideals:

(
y1, . . . , y6

)
,
(
y7, y8, y9

)
,
(
y10, y11, y12

)
,
(
y13, y14, y15

)
,
(
y16, y17, y18

)
and

(
y19, y20, y21, y22

)
.

We present Macaulay 2 code for computing IQ and ĨQ.

i1: R = QQ[x 1..x 10,t 0..t 6,h 0..h 6,y 1..y 22, MonomialOrder => Eliminate 24]

i2: H = K+I

i4: G = gens gb H

i5: J = selectInSubring(1,G)

i6: IQ = ideal(J)

i6: Htilde= K +Itilde

i7: Gtilde = gens gb K

i8: Jtilde = selectInSubring(1,Gtilde)

i9: IQtilde = ideal(Jtilde)

where

K =




y1 − t0h1x1x2x5, y2 − t0h1x1x3x6, y3 − t0h1x1x4x7, y4 − t0h1x2x3x8,

y5 − t0h1x2x4x9, y6 − t0h1x3x4x10, y7 − t1h2x2x5, y8 − t1h2x3x6,

y9 − t1h2x4x7, y10 − t1h3x1x5, y11 − t1h3x3x8, y12 − t1h3x4x9,

y13 − t1h4x1x6, y14 − t1h4x2x8, y15 − t1h4x4x10, y16 − t1h5x1x7,

y17 − t1h5x2x9, y18 − t1h5x3x10, y19 − t2h6x1, y20 − t3h6x2, y21 − t4h6x3, y22 − t5h6x4



,
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I =

(
x2x5 − x3x6 + x4x7, x1x5 − x3x8 + x4x9, x1x6 − x2x8 + x4x10,

x1x7 − x2x9 + x3x10, x5x10 − x6x9 + x7x8, t0h0 − 1, . . . , t6h6 − 1

)

and

Ĩ =
(
t0h0 − 1, . . . , t6h6 − 1

)
.

In Macaulay 2, we calculate the saturation of IR and IQ with BY using the command “saturate”,

i1: IQQ = saturate(IQ,BY)

i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

o3: true

In the same way we obtain ĨQ = ĨR : B∞
Y . Example 3.3.4 showed that L4 is very ample, so

Theorem 4.1.1 implies that ϕ|L4| : X4 −→ Mϑ(mod(AL4)) is an isomorphism.

6.3 X5 Tilting Example

On X5, a strong exceptional collection of line bundles is L := (OX5 , l0, 2l0 − l1, 2l0 − l2, 2l0 −

l3, 2l0 − l4, 2l0 − l5, 2l0) where notation is as in section 2.2.2. The quiver of sections Q is shown in

Figure 6.2 (in fact we omit one arrow labelled x1x2x4x5x16 with tail at 0 and head at 4 to prevent

the figure from becoming illegible). Arrows with tail at 0 and head at 1 are listed a1, . . . , a10 from

the top of Figure 6.2 to the bottom; list those with tail at 1 as a11, . . . , a30 from top to bottom; list

0 1

2

3

4

5

6

7

x1x2x6

x1x3x7

x1x4x8

x1x5x9

x2x3x10

x2x4x11

x2x5x12

x3x4x13

x3x5x14

x4x5x15

x2
x6 x3

x7

x4
x8 x5

x9

x1
x6

x3x10

x4
x11

x5x12

x1x7

x2x10

x4x13

x5x14

x
1x8

x
2x

11

x3x13

x
5x

15

x
1x

9
x
2x

12

x
3x14

x
4x

15

x
1

x
2

x3

x4

x 5

x2x3x4x5x16

x1x3x4x5x16

x1x2x3x5x16

x1x2x3x4x16

Figure 6.2: A quiver of sections for a full strongly exceptional collection on X5

those with head at 7 as a31, . . . , a35 from top to bottom; and list those with tail at 0 and head at
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i ≥ 2 as a36, . . . , a40 from top to bottom, where the arrow omitted from the figure is a38. List the

coordinates of AQ1

k as y1, . . . , y40

Using the methods described in sections 5.1 and 5.2, we calculated ĨR, IR, ĨQ, IQ, BY , and

compared
(
ĨR : B∞

Y

)
to ĨQ, and

(
IR : B∞

Y

)
to IQ. The results were as follows:

ĨR =




y34y39 − y35y40, y33y38 − y35y40, y32y37 − y35y40,

y31y36 − y35y40, y26y34 − y30y35, y22y33 − y29y35,

y21y33 − y25y34, y18y32 − y28y35, y17y32 − y24y34,

y16y32 − y20y33, y14y31 − y27y35, y13y31 − y23y34,

y12y31 − y19y33, y11y31 − y15y32, y10y29 − y9y30,

y10y28 − y7y30, y9y28 − y7y29, y10y27 − y4y30,

y9y27 − y4y29, y7y27 − y4y28, y10y25 − y8y26,

y10y24 − y6y26, y8y24 − y6y25, y10y23 − y3y26,

y8y23 − y3y25, y6y23 − y3y24, y9y21 − y8y22, y9y20 − y5y22,

y8y20 − y5y21, y9y19 − y2y22, y8y19 − y2y21, y5y19 − y2y20,

y7y17 − y6y18, y7y16 − y5y18, y6y16 − y5y17, y7y15 − y1y18,

y6y15 − y1y17, y5y15 − y1y16, y4y13 − y3y14, y4y12 − y2y14,

y3y12 − y2y13, y4y11 − y1y14, y3y11 − y1y13, y2y11 − y1y12,

y7y25y34 − y8y28y35, y4y25y34 − y8y27y35,

y9y24y34 − y6y29y35, y4y24y34 − y6y27y35,

y9y23y34 − y3y29y35, y7y23y34 − y3y28y35,

y10y20y33 − y5y30y35, y4y20y33 − y5y27y35,

y3y20y33 − y5y23y34, y10y19y33 − y2y30y35,

y7y19y33 − y2y28y35, y6y19y33 − y2y24y34,

y10y15y32 − y1y30y35, y9y15y32 − y1y29y35, y8y15y32 − y1y25y34




IR =




y7 + 2y9 − y10, y6 − 2y8 + y10, y5 + y8 − y9, y4 + y9 − 2y10, y3 − y8 + y10

y2 + 2y8 − y9, y1 + 3y8 − y9 − y10, y28 + 2y29 − y30, y27 + y29 − 2y30

y24 − 2y25 + y26, y23 − y25 + y26, y20 + y21 − y22, y19 + 2y21 − y22

2y16 + y17 + y18, 2y15 + 3y17 + y18, y12 + 2y13 + y14, y11 + 3y13 + y14

y10y29 − y9y30, 2y8y29 + 2y8y30 − 3y9y30 − y40, y10y25 − y8y26

2y9y25 + 2y8y26 − 3y9y26 − y39, 2y10y21 + 2y8y22 − 3y10y22 − y38

y9y21 − y8y22, 3y10y17 − 2y8y18 + 3y10y18 − 2y37, 3y9y17 + 2y8y18 − y37

6y10y13 − 2y8y14 + 3y10y14 − y36, 3y9y13 + y8y14 − y36, y26y34 − y30y35

y22y33 − y29y35, y21y33 − y25y34, y18y32 + 2y29y35 − y30y35

y17y32 − 2y25y34 + y30y35, y14y31 + y29y35 − 2y30y35

y13y31 − y25y34 + y30y35



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ĨQ =




2y17y26y29 + 2y18y25y30 − y17y26y30 − y18y26y30,

y13y26y29 + y14y25y30 − 2y13y26y30 − y14y26y30,

2y18y21y29 + 2y17y22y29 − y17y22y30 − y18y22y30,

y14y21y29 + y13y22y29 − 2y13y22y30 − y14y22y30,

2y14y17y29 − 2y13y18y29 − y14y17y30 + 4y13y18y30 + y14y18y30,

2y18y21y25 + 2y17y22y25 − y17y21y26 − y18y21y26,

y14y21y25 + y13y22y25 − 2y13y21y26 − y14y21y26,

2y14y17y25 − 2y13y18y25 − 3y13y17y26 − 2y14y17y26 + y13y18y26

y14y17y21 − 4y13y18y21 − y14y18y21 − 3y13y17y22 − 2y14y17y22 + y13y18y22




IQ =




y7 + 2y9 − y10, y6 − 2y8 + y10, y5 + y8 − y9, y4 + y9 − 2y10, y3 − y8 + y1,

y2 + 2y8 − y9, y1 + 3y8 − y9 − y10, y28 + 2y29 − y30, y27 + y29 − 2y30,

y24 − 2y25 + y26, y23 − y25 + y26, y20 + y21 − y22,

y19 + 2y21 − y22, 2y16 + y17 + y18, 2y15 + 3y17 + y18,

y12 + 2y13 + y14, y11 + 3y13 + y14, 10y29 − y9y30,

2y8y29 + 2y8y30 − 3y9y30 − y40, y10y25 − y8y26,

2y9y25 + 2y8y26 − 3y9y26 − y39, 2y10y21 + 2y8y22 − 3y10y22 − y38,

y9y21 − y8y22, 3y10y17 − 2y8y18 + 3y10y18 − 2y37,

3y9y17 + 2y8y18 − y37, 6y10y13 − 2y8y14 + 3y10y14 − y36,

3y9y13 + y8y14 − y36, y30y35 − y10, y29y35 − y9, y26y34 − y10,

y25y34 − y8, y22y33 − y9, y21y33 − y8, y18y32 + 2y9 − y10, y17y32 − 2y8 + y10,

y14y31 + y9 − 2y10, y13y31 − y8 + y10, y21y26y29 − y22y25y30




We present Macaulay 2 code for computing IQ and ĨQ.

i1: R = QQ[x 1..x 16,t 0..t 7,h 0..h 7,y 1..y 40,MonomialOrder => Eliminate 32]

i2: H = I+K

i3: G = gens gb K+I

i4: J = selectInSubring(1,G)

i5: IQ = ideal(J)

i6: Htilde = K+Itilde

i7: Gtilde = gens gb Htilde

i8: Jtilde = selectInSubring(1,Gtilde)

i9: IQtilde = ideal(Jtilde)

where
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K =




y1 − t0h1x1x2x6, y2 − t0h1x1x3x7, y3 − t0h1x1x4x8, y4 − t0h1x1x5x9, y5 − t0h1x2x3x10,

y6 − t0h1x2x4x11, y7 − t0h1x2x5x12, y8 − t0h1x3x4x13, y9 − t0h1x3x5x14, y10 − t0h1x4x5x15,

y11 − t1h2x2x6, y12 − t1h2x3x7, y13 − t1h2x4x8, y14 − t1h2x5x9, y15 − t1h3x1x6,

y16 − t1h3x3x10, y17 − t1h3x4x11, y18 − t1h3x5x12, y19 − t1h4x1x7, y20 − t1h4x2x10,

y21 − t1h4x4x13, y22 − t1h4x5x14, y23 − t1h5x1x8, y24 − t1h5x2x11, y25 − t1h5x3x13,

y26 − t1h5x5x15, y27 − t1h6x1x9, y28 − t1h6x2x12, y29 − t1h6x3x14, y30 − t1h6x4x15,

y31 − t2h7x1, y32 − t3h7x2, y33 − t4h7x3, y34 − t5h7x4, y35 − t6h7x5, y36 − t0h2x2x3x4x5x16,

y37 − t0h3x1x3x4x5x16, y38 − t0h4x1x2x4x5x16, y39 − t0h5x1x2x3x5x16, y40 − t0h6x1x2x3x4x16




I =




x5x16 + x6x13 − 3x8x10, x4x16 + 2x6x14 + x7x12,

x4x16 + x6x14 + x9x10, x3x16 + x6x15 + x8x12, x3x16 + 2x6x15 + x9x11,

x2x16 + x7x15 − 2x8x14, x2x16 + 3x7x15 + 2x9x13,

x1x16 + 2x10x15 − x11x14, x1x16 + 3x10x15 + x12x13, x2x6 − x3x7 + x4x8,

2x2x6 − 3x3x7 − x5x9, x1x6 − x3x10 + x4x11, x1x6 − 3x3x10 − x5x12,

x1x7 − x2x10 + x4x13, x1x7 − 2x2x10 + x5x14, x1x8 − x2x11 + x3x13,

−2x1x8 + x2x11 − x5x15,−x1x9 + 2x2x12 + 3x3x14,

−2x1x9 + x2x12 + 3x4x15, x6x13 − x7x11 + x8x10

t0h0 − 1, . . . , t7h7 − 1




and

Ĩ =
(
t0h0 − 1, . . . , t7h7 − 1

)

In Macaulay 2, we calculate the saturation of IR and IQ with BY using the command “satu-

rate”,

i1: IQQ = saturate(IQ,BY)

i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

o3: true

where BY is the intersection of:

(
y1, . . . , y10

)
,
(
y11, . . . , y14, y36

)
,
(
y15, . . . , y18, y37

)
,
(
y19, . . . , y22, y38

)
,

(
y23, . . . , y26, y39

)
,
(
y27, . . . , y30, y40

)
and

(
y31, . . . , y35

)

In the same way we obtain ĨQ =
(
ĨR : B∞

Y

)
. The collection L5 is very ample, so Theorem 4.1.1

implies that ϕ|L5| : X5 −→ Mϑ(AL5) is an isomorphism.
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6.4 Gr(2, 4) Example

Let X = Gr(2, 4). The Cox ring of X is

Cox(X) = k[x1, . . . , x6]/
(
x1x6 − x2x5 + x3x4)

)
.

We recall that Pic(X) ∼= Z is generated by the determinantal line bundle on X. Let L :=

(OX ,O(2),O(4)). The quiver of sections for L is:

0 1 2

x21
x1x2 ...

x5x6

x21

x1x2
...

x5x6

Arrows 1-21 are those from 0 to 1. They are labeled by all monomials in k[x1, . . . , x6] of degree

2. Arrows 22-42 are those from 1 to 2. They are also labelled by all monomials of degree 2.
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IR =




y32 − y35 + y37, y11 − y14 + y16, y21y41 − y20y42, y19y41 − y4y42,

y17y41 − y16y42, y14y41 − y13y42, y10y41 − y9y42, y5y41 − y19y42,

y21y40 − y19y42, y20y40 − y4y42, y18y40 − y16y42, y15y40 − y13y42,

y14y40 − y16y40 − y9y42, y6y40 − y20y42, y21y39 − y18y42, y20y39 − y18y41,

y19y39 − y16y42, y17y39 − y3y42, y16y39 − y3y41, y14y39 − y12y42,

y13y39 − y12y41, y10y39 − y8y42, y9y39 − y8y41, y5y39 − y17y42,

y4y39 − y16y41, y21y38 − y17y42, y20y38 − y16y42, y19y38 − y17y40,

y18y38 − y3y42, y16y38 − y3y40, y15y38 − y12y42, y14y38 − y3y40 − y8y42,

y13y38 − y12y40, y9y38 − y8y40, y6y38 − y18y42, y4y38 − y16y40,

y21y37 − y16y42, y20y37 − y16y41, y19y37 − y16y40, y18y37 − y3y41,

y17y37 − y3y40, y16y37 − y12y40 + y8y41, y15y37 − y12y41, y14y37 − y12y40,

y13y37 − y2y40 + y7y41, y12y37 − y2y38 + y7y39, y10y37 − y8y40,

y9y37 − y7y40 + y1y41, y8y37 − y7y38 + y1y39, y6y37 − y18y41,

y5y37 − y17y40, y4y37 − y13y40 + y9y41, y3y37 − y12y38 + y8y39,

y21y36 − y15y42, y20y36 − y15y41, y19y36 − y13y42, y18y36 − y15y39,

y17y36 − y12y42, y16y36 − y12y41, y14y36 − y2y42, y13y36 − y2y41,

y12y36 − y2y39, y10y36 − y7y42, y9y36 − y7y41, y8y36 − y7y39,

y5y36 − y14y42, y4y36 − y13y41, y3y36 − y12y39, y21y35 − y14y42,

y20y35 − y13y42, y19y35 − y16y40 − y9y42, y18y35 − y12y42,

y17y35 − y3y40 − y8y42, y16y35 − y12y40, y15y35 − y2y42,

y14y35 − y12y40 − y7y42, y13y35 − y2y40, y12y35 − y2y38, y10y35 − y8y40 − y1y42,

y9y35 − y7y40, y8y35 − y7y38, y7y35 − y1y36 − y7y37, y6y35 − y15y42,

y5y35 − y17y40 − y10y42, y4y35 − y13y40, y3y35 − y12y38, y2y35 − y7y36 − y2y37,

y21y34 − y13y42, y20y34 − y13y41, y19y34 − y13y40, y18y34 − y12y41,

y17y34 − y12y40, y16y34 − y2y40 + y7y41, y15y34 − y2y41, y14y34 − y2y40,

y12y34 − y2y37, y10y34 − y7y40, y8y34 − y7y37, y6y34 − y15y41,

y5y34 − y16y40 − y9y42, y3y34 − y2y38 + y7y39, y21y33 − y12y42,

y20y33 − y12y41, y19y33 − y12y40, y18y33 − y12y39, y17y33 − y12y38,

y16y33 − y2y38 + y7y39, y15y33 − y2y39, y14y33 − y2y38, y13y33 − y2y37,

y10y33 − y7y38, y9y33 − y7y37, y6y33 − y15y39, y5y33 − y3y40 − y8y42,

y4y33 − y2y40 + y7y41, y21y31 − y10y42, y20y31 − y9y42, y19y31 − y10y40,

y18y31 − y8y42, y17y31 − y10y38, y16y31 − y8y40, y15y31 − y7y42,

y14y31 − y8y40 − y1y42, y13y31 − y7y40, y12y31 − y7y38, y9y31 − y1y40,

y8y31 − y1y38, y7y31 − y1y35, y6y31 − y14y42 + y16y42, y4y31 − y9y40,

y3y31 − y8y38, y2y31 − y1y36 − y7y37, y21y30 − y9y42, y20y30 − y9y41,

y19y30 − y9y40, y18y30 − y8y41, y17y30 − y8y40, y16y30 − y7y40 + y1y41,

y15y30 − y7y41, y14y30 − y7y40, y13y30 − y9y34, y12y30 − y7y37,



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


y10y30 − y1y40, y8y30 − y1y37, y7y30 − y1y34, y6y30 + y16y41 − y13y42, y5y30 − y10y40,

y3y30 − y7y38 + y1y39, y2y30 − y7y34, y21y29 − y8y42, y20y29 − y8y41,

y19y29 − y8y40, y18y29 − y8y39, y17y29 − y8y38, y16y29 − y7y38 + y1y39,

y15y29 − y7y39, y14y29 − y7y38, y13y29 − y7y37, y12y29 − y8y33, y10y29 − y1y38,

y9y29 − y1y37, y7y29 − y1y33, y6y29 + y3y41 − y12y42, y5y29 − y10y38,

y4y29 − y7y40 + y1y41, y2y29 − y7y33, y21y28 − y7y42, y20y28 − y7y41,

y19y28 − y7y40, y18y28 − y7y39, y17y28 − y7y38, y16y28 − y7y37,

y15y28 − y7y36, y14y28 − y1y36 − y7y37, y13y28 − y7y34, y12y28 − y7y33,

y10y28 − y1y35, y9y28 − y1y34, y8y28 − y1y33, y6y28 + y12y41 − y2y42,

y5y28 − y8y40 − y1y42, y4y28 − y9y34, y3y28 − y8y33, y21y27 − y6y42,

y20y27 − y6y41, y19y27 − y20y42, y18y27 − y6y39, y17y27 − y18y42,

y16y27 − y18y41, y15y27 − y6y36, y14y27 − y15y42, y13y27 − y15y41,

y12y27 − y15y39, y10y27 − y14y42 + y16y42, y9y27 + y16y41 − y13y42,

y8y27 + y3y41 − y12y42, y7y27 + y12y41 − y2y42, y5y27 − y21y42, y4y27 − y20y41,

y3y27 − y18y39, y2y27 − y15y36, y1y27 + y8y41 − y7y42, y21y26 − y5y42,

y20y26 − y19y42, y19y26 − y5y40, y18y26 − y17y42, y17y26 − y5y38,

y16y26 − y17y40, y15y26 − y14y42, y14y26 − y17y40 − y10y42,

y13y26 − y16y40 − y9y42, y12y26 − y3y40 − y8y42, y10y26 − y5y31, y9y26 − y10y40,

y8y26 − y10y38, y7y26 − y8y40 − y1y42, y6y26 − y21y42, y4y26 − y19y40,

y3y26 − y17y38, y2y26 − y12y40 − y7y42, y1y26 − y10y31, y21y25 − y4y42,

y20y25 − y4y41, y19y25 − y4y40, y18y25 − y16y41, y17y25 − y16y40,

y16y25 − y13y40 + y9y41, y15y25 − y13y41, y14y25 − y13y40, y13y25 − y4y34,

y12y25 − y2y40 + y7y41, y10y25 − y9y40, y9y25 − y4y30, y8y25 − y7y40 + y1y41,

y7y25 − y9y34, y6y25 − y20y41, y5y25 − y19y40, y3y25 − y12y40 + y8y41,

y2y25 − y13y34, y1y25 − y9y30, y21y24 − y3y42, y20y24 − y3y41, y19y24 − y3y40,

y18y24 − y3y39, y17y24 − y3y38, y16y24 − y12y38 + y8y39, y15y24 − y12y39,

y14y24 − y12y38, y13y24 − y2y38 + y7y39, y12y24 − y3y33, y10y24 − y8y38,

y9y24 − y7y38 + y1y39, y8y24 − y3y29, y7y24 − y8y33, y6y24 − y18y39, y5y24 − y17y38,

y4y24 − y12y40 + y8y41, y2y24 − y12y33, y1y24 − y8y29, y21y23 − y2y42, y20y23 − y2y41,

y19y23 − y2y40, y18y23 − y2y39, y17y23 − y2y38, y16y23 − y2y37, y15y23 − y2y36,

y14y23 − y7y36 − y2y37, y13y23 − y2y34, y12y23 − y2y33, y10y23 − y1y36 − y7y37,

y9y23 − y7y34, y8y23 − y7y33, y7y23 − y2y28, y6y23 − y15y36,

y5y23 − y12y40 − y7y42, y4y23 − y13y34, y3y23 − y12y33, y1y23 − y7y28,

y21y22 − y1y42, y20y22 − y1y41, y19y22 − y1y40, y18y22 − y1y39, y17y22 − y1y38,

y16y22 − y1y37, y15y22 − y1y36, y14y22 − y1y35, y13y22 − y1y34, y12y22 − y1y33,

y10y22 − y1y31, y9y22 − y1y30, y8y22 − y1y29, y7y22 − y1y28, y6y22 + y8y41 − y7y42,

y5y22 − y10y31, y4y22 − y9y30, y3y22 − y8y29, y2y22 − y7y28



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IQ =




y32 − y35 + y37, y11 − y14 + y16, y40y41 − y25y42, y38y41 − y37y42,

y35y41 − y34y42, y31y41 − y30y42, y26y41 − y40y42,

y21y41 − y20y42, y19y41 − y4y42, y17y41 − y16y42,

y14y41 − y13y42, y10y41 − y9y42, y5y41 − y19y42,

y39y40 − y37y42, y36y40 − y34y42, y35y40 − y37y40 − y30y42,

y27y40 − y41y42, y21y40 − y19y42, y20y40 − y4y42,

y18y40 − y16y42, y15y40 − y13y42, y14y40 − y16y40 − y9y42,

y6y40 − y20y42, y38y39 − y24y42, y37y39 − y24y41, y35y39 − y33y42,

y34y39 − y33y41, y31y39 − y29y42, y30y39 − y29y41, y26y39 − y38y42,

y25y39 − y37y41, y21y39 − y18y42, y20y39 − y18y41,

y19y39 − y16y42, y17y39 − y3y42, y16y39 − y3y41,

y14y39 − y12y42, y13y39 − y12y41, y10y39 − y8y42, y9y39 − y8y41,

y5y39 − y17y42, y4y39 − y16y41, y37y38 − y24y40, y36y38 − y33y42,

y35y38 − y24y40 − y29y42, y34y38 − y33y40, y30y38 − y29y40,

y27y38 − y39y42, y25y38 − y37y40, y21y38 − y17y42,

y20y38 − y16y42, y19y38 − y17y40, y18y38 − y3y42, y16y38 − y3y40,

y15y38 − y12y42, y14y38 − y3y40 − y8y42, y13y38 − y12y40, y9y38 − y8y40,

y6y38 − y18y42, y4y38 − y16y40, y
2
37 − y33y40 + y29y41,

y36y37 − y33y41, y35y37 − y33y40, y34y37 − y23y40 + y28y41,

y33y37 − y23y38 + y28y39, y31y37 − y29y40, y30y37 − y28y40 + y22y41,

y29y37 − y28y38 + y22y39, y27y37 − y39y41, y26y37 − y38y40,

y25y37 − y34y40 + y30y41, y24y37 − y33y38 + y29y39, y21y37 − y16y42,

y20y37 − y16y41, y19y37 − y16y40, y18y37 − y3y41, y17y37 − y3y40,

y16y37 − y12y40 + y8y41, y15y37 − y12y41, y14y37 − y12y40,

y13y37 − y2y40 + y7y41, y12y37 − y2y38 + y7y39, y10y37 − y8y40,

y9y37 − y7y40 + y1y41, y8y37 − y7y38 + y1y39, y6y37 − y18y41,

y5y37 − y17y40, y4y37 − y13y40 + y9y41, y3y37 − y12y38 + y8y39,

y35y36 − y23y42, y34y36 − y23y41, y33y36 − y23y39, y31y36 − y28y42,

y30y36 − y28y41, y29y36 − y28y39, y26y36 − y35y42,

y25y36 − y34y41, y24y36 − y33y39, y21y36 − y15y42,

y20y36 − y15y41, y19y36 − y13y42, y18y36 − y15y39, y17y36 − y12y42,

y16y36 − y12y41, y14y36 − y2y42, y13y36 − y2y41, y12y36 − y2y39,

y10y36 − y7y42, y9y36 − y7y41, y8y36 − y7y39, y5y36 − y14y42,

y4y36 − y13y41, y3y36 − y12y39, y
2
35 − y33y40 − y28y42,

y34y35 − y23y40, y33y35 − y23y38, y31y35 − y29y40 − y22y42,

y30y35 − y28y40, y29y35 − y28y38, y28y35 − y22y36 − y28y37,

y27y35 − y36y42, y26y35 − y38y40 − y31y42, y25y35 − y34y40,




76






y24y35 − y33y38, y23y35 − y28y36 − y23y37, y21y35 − y14y42,

y20y35 − y13y42, y19y35 − y16y40 − y9y42, y18y35 − y12y42,

y17y35 − y3y40 − y8y42, y16y35 − y12y40, y15y35 − y2y42, y14y35 − y12y40 − y7y42,

y13y35 − y2y40, y12y35 − y2y38, y10y35 − y8y40 − y1y42, y9y35 − y7y40,

y8y35 − y7y38, y7y35 − y1y36 − y7y37, y6y35 − y15y42,

y5y35 − y17y40 − y10y42, y4y35 − y13y40, y3y35 − y12y38,

y2y35 − y7y36 − y2y37, y33y34 − y23y37, y31y34 − y28y40,

y29y34 − y28y37, y27y34 − y36y41, y26y34 − y37y40 − y30y42,

y24y34 − y23y38 + y28y39, y21y34 − y13y42, y20y34 − y13y41, y19y34 − y13y40,

y18y34 − y12y41, y17y34 − y12y40, y16y34 − y2y40 + y7y41, y15y34 − y2y41,

y14y34 − y2y40, y12y34 − y2y37, y10y34 − y7y40, y8y34 − y7y37,

y6y34 − y15y41, y5y34 − y16y40 − y9y42, y3y34 − y2y38 + y7y39, y31y33 − y28y38,

y30y33 − y28y37, y27y33 − y36y39, y26y33 − y24y40 − y29y42,

y25y33 − y23y40 + y28y41, y21y33 − y12y42, y20y33 − y12y41,

y19y33 − y12y40, y18y33 − y12y39, y17y33 − y12y38,

y16y33 − y2y38 + y7y39, y15y33 − y2y39, y14y33 − y2y38, y13y33 − y2y37,

y10y33 − y7y38, y9y33 − y7y37, y6y33 − y15y39, y5y33 − y3y40 − y8y42,

y4y33 − y2y40 + y7y41, y30y31 − y22y40, y29y31 − y22y38, y28y31 − y22y35,

y27y31 − y35y42 + y37y42, y25y31 − y30y40, y24y31 − y29y38,

y23y31 − y22y36 − y28y37, y21y31 − y10y42, y20y31 − y9y42,

y19y31 − y10y40, y18y31 − y8y42, y17y31 − y10y38,

y16y31 − y8y40, y15y31 − y7y42, y14y31 − y8y40 − y1y42,

y13y31 − y7y40, y12y31 − y7y38, y9y31 − y1y40, y8y31 − y1y38,

y7y31 − y1y35, y6y31 − y14y42 + y16y42, y4y31 − y9y40, y3y31 − y8y38,

y2y31 − y1y36 − y7y37, y29y30 − y22y37, y28y30 − y22y34,

y27y30 + y37y41 − y34y42, y26y30 − y31y40, y24y30 − y28y38 + y22y39,

y23y30 − y28y34, y21y30 − y9y42, y20y30 − y9y41, y19y30 − y9y40,

y18y30 − y8y41, y17y30 − y8y40, y16y30 − y7y40 + y1y41, y15y30 − y7y41,

y14y30 − y7y40, y13y30 − y9y34, y12y30 − y7y37, y10y30 − y1y40,

y8y30 − y1y37, y7y30 − y1y34, y6y30 + y16y41 − y13y42, y5y30 − y10y40,

y3y30 − y7y38 + y1y39, y2y30 − y7y34, y28y29 − y22y33, y27y29 + y24y41 − y33y42,

y26y29 − y31y38, y25y29 − y28y40 + y22y41, y23y29 − y28y33,

y21y29 − y8y42, y20y29 − y8y41, y19y29 − y8y40, y18y29 − y8y39,

y17y29 − y8y38, y16y29 − y7y38 + y1y39, y15y29 − y7y39,

y14y29 − y7y38, y13y29 − y7y37, y12y29 − y8y33, y10y29 − y1y38,

y9y29 − y1y37, y7y29 − y1y33, y6y29 + y3y41 − y12y42, y5y29 − y10y38,

y4y29 − y7y40 + y1y41, y2y29 − y7y33, y27y28 + y33y41 − y23y42,



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


y26y28 − y29y40 − y22y42, y25y28 − y30y34, y24y28 − y29y33,

y21y28 − y7y42, y20y28 − y7y41, y19y28 − y7y40, y18y28 − y7y39,

y17y28 − y7y38, y16y28 − y7y37, y15y28 − y7y36,

y14y28 − y1y36 − y7y37, y13y28 − y7y34, y12y28 − y7y33,

y10y28 − y1y35, y9y28 − y1y34, y8y28 − y1y33, y6y28 + y12y41 − y2y42,

y5y28 − y8y40 − y1y42, y4y28 − y9y34, y3y28 − y8y33, y26y27 − y242,

y25y27 − y241, y24y27 − y239, y23y27 − y236, y22y27 + y29y41 − y28y42,

y21y27 − y6y42, y20y27 − y6y41, y19y27 − y20y42, y18y27 − y6y39,

y17y27 − y18y42, y16y27 − y18y41, y15y27 − y6y36, y14y27 − y15y42,

y13y27 − y15y41, y12y27 − y15y39, y10y27 − y14y42 + y16y42,

y9y27 + y16y41 − y13y42, y8y27 + y3y41 − y12y42, y7y27 + y12y41 − y2y42,

y5y27 − y21y42, y4y27 − y20y41, y3y27 − y18y39, y2y27 − y15y36,

y1y27 + y8y41 − y7y42, y25y26 − y240, y24y26 − y238, y23y26 − y33y40 − y28y42,

y22y26 − y231, y21y26 − y5y42, y20y26 − y19y42, y19y26 − y5y40,

y18y26 − y17y42, y17y26 − y5y38, y16y26 − y17y40, y15y26 − y14y42,

y14y26 − y17y40 − y10y42, y13y26 − y16y40 − y9y42,

y12y26 − y3y40 − y8y42, y10y26 − y5y31, y9y26 − y10y40, y8y26 − y10y38,

y7y26 − y8y40 − y1y42, y6y26 − y21y42, y4y26 − y19y40, y3y26 − y17y38,

y2y26 − y12y40 − y7y42, y1y26 − y10y31, y24y25 − y33y40 + y29y41,

y23y25 − y234, y22y25 − y230, y21y25 − y4y42, y20y25 − y4y41,

y19y25 − y4y40, y18y25 − y16y41, y17y25 − y16y40,

y16y25 − y13y40 + y9y41, y15y25 − y13y41, y14y25 − y13y40,

y13y25 − y4y34, y12y25 − y2y40 + y7y41, y10y25 − y9y40,

y9y25 − y4y30, y8y25 − y7y40 + y1y41, y7y25 − y9y34, y6y25 − y20y41,

y5y25 − y19y40, y3y25 − y12y40 + y8y41, y2y25 − y13y34, y1y25 − y9y30,

y23y24 − y233, y22y24 − y229, y21y24 − y3y42, y20y24 − y3y41,

y19y24 − y3y40, y18y24 − y3y39, y17y24 − y3y38, y16y24 − y12y38 + y8y39,

y15y24 − y12y39, y14y24 − y12y38, y13y24 − y2y38 + y7y39,

y12y24 − y3y33, y10y24 − y8y38, y9y24 − y7y38 + y1y39, y8y24 − y3y29,

y7y24 − y8y33, y6y24 − y18y39, y5y24 − y17y38, y4y24 − y12y40 + y8y41,

y2y24 − y12y33, y1y24 − y8y29, y22y23 − y228, y21y23 − y2y42,

y20y23 − y2y41, y19y23 − y2y40, y18y23 − y2y39, y17y23 − y2y38,

y16y23 − y2y37, y15y23 − y2y36, y14y23 − y7y36 − y2y37, y13y23 − y2y34,

y12y23 − y2y33, y10y23 − y1y36 − y7y37, y9y23 − y7y34, y8y23 − y7y33,

y7y23 − y2y28, y6y23 − y15y36, y5y23 − y12y40 − y7y42, y4y23 − y13y34,

y3y23 − y12y33, y1y23 − y7y28, y21y22 − y1y42, y20y22 − y1y41,

y19y22 − y1y40, y18y22 − y1y39, y17y22 − y1y38, y16y22 − y1y37,



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


y15y22 − y1y36, y14y22 − y1y35, y13y22 − y1y34, y12y22 − y1y33,

y10y22 − y1y31, y9y22 − y1y30, y8y22 − y1y29, y7y22 − y1y28,

y6y22 + y8y41 − y7y42, y5y22 − y10y31, y4y22 − y9y30, y3y22 − y8y29,

y2y22 − y7y28, y19y20 − y4y21, y17y20 − y16y21, y14y20 − y13y21,

y10y20 − y9y21, y5y20 − y19y21, y18y19 − y16y21, y15y19 − y13y21,

y14y19 − y16y19 − y9y21, y6y19 − y20y21, y17y18 − y3y21,

y16y18 − y3y20, y14y18 − y12y21, y13y18 − y12y20, y10y18 − y8y21,

y9y18 − y8y20, y5y18 − y17y21, y4y18 − y16y20, y16y17 − y3y19,

y15y17 − y12y21, y14y17 − y3y19 − y8y21, y13y17 − y12y19, y9y17 − y8y19,

y6y17 − y18y21, y4y17 − y16y19, y
2
16 − y12y19 + y8y20, y15y16 − y12y20,

y14y16 − y12y19, y13y16 − y2y19 + y7y20, y12y16 − y2y17 + y7y18,

y10y16 − y8y19, y9y16 − y7y19 + y1y20, y8y16 − y7y17 + y1y18,

y6y16 − y18y20, y5y16 − y17y19, y4y16 − y13y19 + y9y20,

y3y16 − y12y17 + y8y18, y14y15 − y2y21, y13y15 − y2y20, y12y15 − y2y18,

y10y15 − y7y21, y9y15 − y7y20, y8y15 − y7y18, y5y15 − y14y21, y4y15 − y13y20,

y3y15 − y12y18, y
2
14 − y12y19 − y7y21, y13y14 − y2y19, y12y14 − y2y17,

y10y14 − y8y19 − y1y21, y9y14 − y7y19, y8y14 − y7y17, y7y14 − y1y15 − y7y16,

y6y14 − y15y21, y5y14 − y17y19 − y10y21, y4y14 − y13y19, y3y14 − y12y17,

y2y14 − y7y15 − y2y16, y12y13 − y2y16, y10y13 − y7y19, y8y13 − y7y16,

y6y13 − y15y20, y5y13 − y16y19 − y9y21, y3y13 − y2y17 + y7y18,

y10y12 − y7y17, y9y12 − y7y16, y6y12 − y15y18, y5y12 − y3y19 − y8y21,

y4y12 − y2y19 + y7y20, y9y10 − y1y19, y8y10 − y1y17, y7y10 − y1y14,

y6y10 − y14y21 + y16y21, y4y10 − y9y19, y3y10 − y8y17, y2y10 − y1y15 − y7y16,

y8y9 − y1y16, y7y9 − y1y13, y6y9 + y16y20 − y13y21, y5y9 − y10y19,

y3y9 − y7y17 + y1y18, y2y9 − y7y13, y7y8 − y1y12, y6y8 + y3y20 − y12y21,

y5y8 − y10y17, y4y8 − y7y19 + y1y20, y2y8 − y7y12, y6y7 + y12y20 − y2y21,

y5y7 − y8y19 − y1y21, y4y7 − y9y13, y3y7 − y8y12, y5y6 − y221, y4y6 − y220,

y3y6 − y218, y2y6 − y215, y1y6 + y8y20 − y7y21, y4y5 − y219, y3y5 − y217,

y2y5 − y12y19 − y7y21, y1y5 − y210, y3y4 − y12y19 + y8y20,

y2y4 − y213, y1y4 − y29, y2y3 − y212, y1y3 − y28, y1y2 − y27




We present Macaulay 2 code for computing IQ.

i1: R = QQ[x 1..x 6,t 0..t 2, h 0..h 2, y 1..y 42, MonomialOrder => Eliminate 12 ]

i2: G = gens gb K+I

i3: J = selectInSubring(1,G)

i4: IQ = ideal(J)
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where

K =




y1 − t1x
2
1h1, y2 − t1x

2
2h1, y3 − t1x

2
3h1, y4 − t1x

2
4h1, y5 − t1x

2
5h1,

y6 − t1x
2
6h1, y7 − t1x1x2h1, y8 − t1x1x3h1, y9 − t1x1x4h1, y10 − t1x1x5h1,

y11 − t1x1x6h1, y12 − t1x2x3h1, y13 − t1x2x4h1, y14 − t1x2x5h1,

y15 − t1x2x6h1, y16 − t1x3x4h1, y17 − t1x3x5h1, y18 − t1x3x6h1,

y19 − t1x4x5h1, y20 − t1x4x6h1, y21 − t1x5x6h1, y22 − t2x
2
1h2,

y23 − t2x
2
2h2, y24 − t2x

2
3h2, y25 − t2x

2
4h2, y26 − t2x

2
5h2,

y27 − t2x
2
6h2, y28 − t2x1x2h2, y29 − t2x1x3h2, y30 − t2x1x4h2,

y31 − t2x1x5h2, y32 − t2x1x6h2, y33 − t2x2x3h2, y34 − t2x2x4h2,

y35 − t2x2x5h2, y36 − t2x2x6h2, y37 − t2x3x4h2, y38 − t2x3x5h2,

y39 − t2x3x6h2, y40 − t2x4x5h2, y41 − t2x4x6h2, y42 − t2x5x6h2




and

I =
(
x3x4 − x2x5 + x1x6, t0h0 − 1, t1h1 − 1, t2h2 − 1

)
.

In Macaulay 2, we calculate the saturation of IR and IQ with BY using the command “saturate”,

i1: IQQ = saturate(IQ,BY)

i2: IRR = saturate(IR,BY)

i3: IRR == IQQ

o3: true

where BY is the intersection of

(
y1, . . . , y21

)
and

(
y22, . . . , y42

)
.

It is also possible to calculate ĨR and ĨQ and that ĨQ =
(
ĨR : B∞

Y

)
but we omit the calculations

here. By our Macaulay 2 calculation, the collection L is very ample, so Theorem 4.1.1 implies that

ϕ|L | : Gr(2, 4) −→ Mϑ(AL ) is an isomorphism.
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Appendix A

Appendix A: Computing Kernels of

k-Algebra Homomorphisms

A.0.1 Kernels of k -Algebra Homomorphisms.

In order to calculate the Mori Dream Space analogue of IQ from [10], we will need to be able to

compute kernels of k-algebra homomorphisms efficiently. Theorem A.0.2 gives us a way to write

kernels. Then using Elimination Theory we can compute kernels using Macaulay 2.

A.0.2 Kernels

Material from this section can be found in Adams–Loustaunau [1]. Let ϕ : k[y1, . . . , ym] −→

k[x1, . . . , xn] be the k algebra homomorphism mapping yi to some fi(x1, . . . , xn) ∈ k[x1, . . . , xn] for

each i. We want to compute ker(ϕ). First we need a technical lemma.

Lemma A.0.1. Let R be a commutative ring. If a1, . . . , an, b1, . . . , bn ∈ R, then a1 · · · an− b1 · · · bn

is contained in the ideal (
a1 − b1, . . . , an − bn

)
.

Proof. a1 · · · an−b1 · · · bn = a1(a2 · · · an−b2 · · · bn)+b2 · · · bn(a1−b1), hence by induction a1 · · · an−

b1 · · · bn can be written as
∑
gi(ai − bi), for gi ∈ R.

Now we are able to prove Theorem A.0.2.

Theorem A.0.2. Let the fi’s be as above and letK =
(
y1−f1, . . . , ym−fm

)
⊆ k[x1, . . . , xn, y1, . . . , ym].

The kernel of ϕ satisfies

ker(ϕ) = K ∩ k[y1, . . . , yn].
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Proof. First let g ∈ K ∩ k[y1, . . . , yn]. We will show g ∈ ker(ϕ). Since g ∈ K and g ∈ k[y1, . . . , yn],

we must have

g(y1, . . . , ym) =

n∑

i=1

(yi − fi(x1, . . . , xn))hi(y, x)

for some hi ∈ k[x1, . . . , xm, y1, . . . , ym]. Hence the image of g under ϕ is

g(f1, . . . , fm) =

n∑

i=1

(fi(x1, . . . , xn)− fi(x1, . . . , xn))hi = 0,

and therefore g ∈ ker(ϕ).

Conversely, let g ∈ ker(ϕ). We can write

g =
∑

cvy
v

for some v ∈ Nm, cv ∈ k. Hence

g(f1, . . . , fm) = 0 ⇒ g(y1, . . . , ym) = g(y1, . . . , ym)− g(f1, . . . , fm) =
∑

cv(y
v − fv)

By the lemma, this shows g is in the ideal K.

Corollary A.0.3. Let ϕ : k[y1, . . . , ym] −→ k[x1, . . . , xn]/I be the k-algebra homomorphism map-

ping yi to fi ∈ k[x1, . . . , xn]/I for each i. The kernel of ϕ is
(
K + I

)
∩ k[y1, . . . , ym]

where we consider

K =
(
y1 − f1, . . . , ym − fm

)

and I to be ideals of k[x1, . . . , xn, y1, . . . , ym].

Proof. Let g ∈ (K + I) ∩ k[y1, . . . , ym], then g = h + j, where h ∈ K and j ∈ I. We can write

j =
∑
cuvjx

uyvgj , where gj ∈ k[x1, . . . , xn] is a generator of I. Also, since h ∈ K so h(y1, . . . , ym) =

(y1 − f1)p1 + · · ·+ (ym − fm)pm for some polynomials p1, . . . , pm ∈ k[x1, . . . , xn, y1, . . . , ym]. Hence

h(f1, . . . , fm) = (f1 − f1)p1 + · · ·+ (fm − fm)pm = 0.

Also, j(f1, . . . , fm) =
∑
cuvjx

ufvgj ∈ I, so g ∈ ker(ϕ).

For the converse, suppose g ∈ ker(ϕ) ⊆ k[y1, . . . , ym]. Hence g(f1, . . . , fm) ∈ I ⊆ k[x1, . . . , xn].

We can write

g(y1, . . . , ym) = g(y1, . . . , ym)− g(f1, . . . , fm) + g(f1, . . . , fm).

If we have g(y1, . . . , ym) =
∑
cvy

v then

g(y1, . . . , ym)− g(f1, . . . , fm) =
∑

cv(y
v − fv)

where
∑
cv(y

v−fv) ∈ K by Lemma A.0.1. We also have g(f1, . . . , fm) ∈ I, so g(y1, . . . , ym) ∈ K+I

as required.
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A.0.3 Elimination Theory and Macaulay 2 Calculations

Theorem A.0.2 and Corollary A.0.3 give us a way of writing kernels in a k-algebra k[y1, . . . , ym] as

the intersection of an ideal in a larger ring with k[y1, . . . , ym] considered as a subring. In order to

compute these intersections, we need the Elimination Theorem. Following Cox–Little–O’Shea [5],

we define the kth elimination ideal Ik of I ⊆ k[x1, . . . , xn] to be

I ∩ k[xk+1, . . . , xn].

Theorem A.0.4 (The Elimination Theorem). Let I ⊆ k[x1, . . . , xn] be an ideal, and let G be a

Groebner basis of I with respect to lex order where x1 < x2 < · · · < xn. Then, for every k ≤ n, the

set

Gk = G ∩ k[x1, . . . , xn]

is a Groebner basis of the kth elimination ideal Ik.

In Macaulay 2, once we have computed the Groebner basis of K + I as in Corollary A.0.3, we

can compute the intersection with k[y1, . . . , ym] using the command “selectInSubring”. Explicitly:

i1: R = QQ[x 1..x n,y 1..y m, MonomialOrder => Eliminate n]

i2: K = ideal(y 1-f 1,. . .y m-f m)

i3: I = ideal(g 1,. . .g k)

i4: G = gens gb K+I

i5: J = selectInSubring(1,G)

i6: kernel = ideal(J)
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Appendix B

Appendix B: Computing Cox(X5) after

Batyrev–Popov and Derenthal

We give code used to compute IX5 in section 2.2.3 following the method of Batyrev–Popov [2] and

Derenthal [12].

We present code for finding the equation of a conic containing 5 points in P2.

Pseudocode B.0.5. Input: coordinates of five points

p = (p1, p2, p3), q = (q1, q2, q3), r = (r1, r2, r3), s = (s1, s2, s3), t = (t1, t2, t3).

Procedure:

L := [ap21 + bp22 + cp23 + dp1p2 + ep1p3 + fp2p3,

aq21 + bq22 + cq23 + dq1q2 + eq1q3 + fq2q3,

ar21 + br22 + cr23 + dr1r2 + er1r3 + fr2r3,

as21 + bs22 + cs23 + ds1s2 + es1s3 + fs2s3,

at21 + bt22 + ct23 + dt1t2 + et1t3 + ft2t3]

Let Li denote the ith term of the list L.

S := [L1 = 0, L2 = 0, L3 = 0, L4 = 0, L5 = 0];

solve(S, [a, b, c, d, e, f ]);

Output: solution of S for a, . . . , f .

Proof. A general conic in three variables z1, z2, z3 has the form

az21 + bz22 + cz23 + dz1z2 + ez1z3 + fz2z3

for a, b, c, d, e, f ∈ k. This procedure finds coefficients a, . . . , f for such a conic which contains

p, . . . , t. This is because S contains the equations of the general conic above evaluated at p, . . . , t

set equal to zero, and the Maple command “solve” solves the list of equations S for a, . . . , f .
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We present lattice maps which induce the Pic(Xr) grading of Cox(Xr). We use these maps

to calculate all monomials in H0(Xr,D) for a line bundle D ∈ Pic(Xr). We give pseudocode for

calculating these monomials when r = 4, the cases where r = 5 or 6 are similar.

For a Mori Dream Space X where Cox(X) = k[x1, . . . , xd]/IX and Cl(X) ∼= Zρ, there exists a

lattice map

π : Zd −→ Zρ

which induces the grading of Cox(X) by Cl(X). Sections of a line bundle D are therefore elements

of deg−1(D). We give the lattice maps π4, π5 and π6 which induce deg for X4 and X5 respectively:

π4 =




0 0 0 0 1 1 1 1 1 1

1 0 0 0 −1 −1 −1 0 0 0

0 1 0 0 −1 0 0 −1 −1 0

0 0 1 0 0 −1 0 −1 0 −1

0 0 0 1 0 0 −1 0 −1 −1




π5 =




0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2

1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 −1

0 1 0 0 0 −1 0 0 0 −1 −1 −1 0 0 0 −1

0 0 1 0 0 0 −1 0 0 −1 0 0 −1 −1 0 −1

0 0 0 1 0 0 0 −1 0 0 −1 0 −1 0 −1 −1

0 0 0 0 1 0 0 0 −1 0 0 −1 0 −1 −1 −1




For X6, the matrix π6 takes up too much space. So we write a list of the degrees in Z7 of the

27 variables of Cox(X6):

{{0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1}

{1,−1,−1, 0, 0, 0, 0}, {1,−1, 0,−1, 0, 0, 0}, {1,−1, 0, 0,−1, 0, 0}{1,−1, 0, 0, 0,−1, 0}, {1,−1, 0, 0, 0, 0,−1}

{1, 0,−1,−1, 0, 0, 0}, {1, 0,−1, 0,−1, 0, 0}, {1, 0,−1, 0, 0,−1, 0}, {1, 0,−1, 0, 0, 0,−1}, {1, 0, 0,−1,−1, 0, 0}

{1, 0, 0,−1, 0,−1, 0}, {1, 0, 0,−1, 0, 0,−1}, {1, 0, 0, 0,−1,−1, 0}, {1, 0, 0, 0,−1, 0,−1}, {1, 0, 0, 0, 0,−1,−1}

{2,−1,−1,−1,−1,−1, 0}, {2,−1,−1,−1,−1, 0,−1}, {2,−1,−1,−1, 0,−1,−1}

{2,−1,−1, 0,−1,−1,−1}, {2,−1, 0,−1,−1,−1,−1}, {2, 0,−1,−1,−1,−1,−1}}

We present pseudocode for computing torus invariant sections of a line bundle L on X4 (i.e. for

finding elements of deg−1(L)) and a proof of efficacy. The code for X5 and X6 is similar.
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Pseudocode B.0.6. We show how to compute the sections of a line bundle a0l0 + a1l1 + a2l2 +

a3l3+a4l4 ∈ Pic(X4). Our method is to find all the elements of π−1
4 (a0, . . . , a4). We let L[i] denote

the ith term in a list L, and L[i][j] denote the jth term in L[i], and let |L| denote the number of

elements of L.

lnput: L := [a0, a1, a2, a3, a4]

Procedure:

L1 := [ ] : ( i.e. the “empty list”)

for t5 from 0 to a0 do

for t6 from 0 to a0 do

for t7 from 0 to a0 do

for t8 from 0 to a0 do

for t9 from 0 to a0 do

for t10 from 0 to a0 do

if t5 + t6 + t7 + t8 + t9 + t10 = l0 then L1 := [L1, [t5, t6, t7, t8, t9, t10]]:

L2 := [ ] :

for i from 1 to |L1| do

c5 := L1[i][1]

c6 := L1[i][2]

c7 := L1[i][3]

c8 := L1[i][4]

c9 := L1[i][5]

c10 := L1[i][6]

c1 := a1 + c5 + c6 + c7

c2 := a2 + c5 + c8 + c9

c3 := a3 + c6 + c8 + c10

c4 := a4 + c7 + c9 + c10 :

if c1 ≥ 0 and c2 ≥ 0 and c3 ≥ 0 and c4 ≥ 0 then L2 := [L2, xc11 x
c2
2 x

c3
3 x

c4
4 x

c5
5 x

c6
6 x

c7
7 x

c8
8 x

c9
9 x

c10
10 ] :

Output: L2.

Proof. By considering the matrix π4, we see that every torus invariant section in H0(X, a0l0 +

a1l1 + a2l2 + a3l3 + a4l4) is of the form xc11 x
c2
2 x

c3
3 x

c4
4 x

c5
5 x

c6
6 x

c7
7 x

c8
8 x

c9
9 x

c10
10 where
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c5 + c6 + c7 + c8 + c9 + c10 = a0 (B.0.1)

c1 − c5 − c6 − c7 = a1 (B.0.2)

c2 − c5 − c8 − c9 = a2 (B.0.3)

c3 − c6 − c8 − c10 = a3 (B.0.4)

c4 − c7 − c9 − c10 = a4 (B.0.5)

(B.0.6)

We construct L1 to contain all the solutions to (B.0.1) with t standing in for c) for non-negative inte-

gers t5, . . . , t10. Then we work through all the possible solutions to (5.3.1) (indexed by i) by defining

c5, . . . , c10 to be the first up to sixth terms respectively in the ith possible solution to (B.0.1). Given

c5, . . . , c10, we define c1, . . . , c4 according to (B.0.2), (B.0.3), (B.0.4) and (B.0.5) respectively. We

check if this gives c1, . . . , c4 ≥ 0 and hence a section xc11 x
c2
2 x

c3
3 x

c4
4 x

c5
5 x

c6
6 x

c7
7 x

c8
8 x

c9
9 x

c10
10 . We gather

all such monomials in L2, and hence our output L2 contains every point in π−1
4 (a0, . . . , a4) as

required.

Recall that a ruling is the sum of two (−1)-curves whose intersection number is 1. We give

pseudocode for finding rulings on X4 and a proof of efficacy. The code for X5 and X6 is similar.

Pseudocode B.0.7. First we write a list of all (−1)-curves a0l0+a1l1+a2l2+a3l3+a4l4 on X4 by

listing the corrseponding elements of Z5 : [a0, a1, a2, a3, a4]. In this format, the list of (−1)-curves

L is:

L := [[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [1,−1,−1, 0, 0], [1,−1, 0,−1, 0],

[1,−1, 0, 0,−1], [1, 0,−1,−1, 0], [1, 0,−1, 0,−1], [1, 0, 0,−1,−1]].

Again, we denote the ith element of L by L[i], and the number of elements in L by |L|. We find all

rulings as follows:

Input: the list L.

Procedure:

S := [ ] :

f [1] := l1

f [2] := l2

f [3] := l3

f [4] := l4

f [5] := l0 − l1 − l2

f [6] := l0 − l1 − l3
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f [7] := l0 − l1 − l4

f [8] := l0 − l2 − l3

f [9] := l0 − l2 − l4

f [10] := l0 − l3 − l4

for i from 1 to |L| − 1 do

for j from i+ 1 to |L| do

if L[i][1]L[j][1]−L[i][2]L[j][2]−L[i][3]L[j][3]−L[i][4]L[j][4]−L[i][5]L[j][5] = 1 then S := [S, f [i] +

f [j]]

S:= convert(convert(S,set),list)

Output: S.

Proof. We define the f [i]’s to be the (−1)-curves on X4. We work through all the (−1)-curves,

indexed by i and j and compute their intersection number:

L[i][1]L[j][i] − L[i][2]L[j][2] − L[i][3]L[j][3] − L[i][4]L[j][4] − L[i][5]L[j][5].

By definition, if the intersection number of a pair of (−1)-curves is 1, then their sum is a ruling.

We collect the sum of all pairs of generators with intersection number 1 in the list S. To avoid

repetitions, we convert S to a set and then back to a list.
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Appendix C

Appendix C: Computing IR

We present pseudocode to compute IR for X when IX is generated by quadratic polynomials

with three terms, as in X4,X5,X6 and Grassmannians Gr(r, n). We give pseudocode and proof of

correctness in this case.

We introduce some notation. Fix a presentation for IX . We denote the jth generator of IX as

IX [j], and suppose the number of generators is G. We define r[i], s[i], t[i], u[i], v[i], w[i], l[i], m[i], n[i]

such that:

IX [i] = l[i]xr[i]xs[i] +m[i]xt[i]xu[i] + n[i]xv[i]xw[i].

We define D[i], E[i] and F [i] to be vectors of length d with 1’s in the r[i]th and s[i]th, t[i]th

and u[i]th, and v[i]th and w[i]th positions respectively and zeros elsewhere.

Pseudocode C.0.8. We assume IX is quadratically generated, and that each generator has three

terms.

Input: To compute IR for a quiver Q, our input is P := getpaths(Q).

Procedure:

S := [ ] :

for g from 1 to G do

L1 := [ ] :

L2 := [ ] :

L3 := [ ] :

for i from 1 to |P | do

if P [i][2][r[g]] > 0 and P [i][2][s[g]] > 0 then L1 := [L1[], [P [i][1], P [i][2] −D[g], P [i][3], P [i][4]]]

for j from 1 to |P | do

if P [j][2][t[g]] > 0 and P [j][2][u[g]] > 0 then L2 := [L2[], [P [j][1], P [j][2] − E[g], p[j][3], p[j][4]]]
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for k from 1 to |P | do if P [k][2][v[g]] > 0 and P [k][2][w[g]] > 0 then L3 := [L3[], [P [k][1], P [k][2] −

F [g], P [k][3][4]]]

for a from 1 to |L1| do

for b from 1 to |L2| do

for c from 1 to |L3| do

if L1[a][1] = L2[b][1] = L3[c][1] and L1[a][2] = L2[b][2] = L3[c][2]and L1[a][3] = L2[b][3] = L3[c][3]

then S := [S[], l[g]L1[a][4] +m[g]L2[b][4] + n[g]L3[c][4]]

Output: S.

Proof. By Lemma 5.1.7, a generating set for IR consists of the generators of ĨR, plus elements of

k[ya|a ∈ Q1] of the form
∑

i aiypi where the pi’s have the same heads and tails and Φ̃(
∑

i aiypi) is

a monomial times a generator of IX .

We have already found generators of ĨR, using our Maple procedure “zeropart”. Since assume

each generator of IX has three terms, it remains to find all triples of paths p1, p2, p3 with the same

heads and tails, where each pi is labelled by a monomial times a term of a generator of IX , modulo

constant term ai say. We then have that a1yp1 + a2yp2 + a3yp3 is a generator of IR, and by Lemma

5.1.7, once we have found all such generators, we will have a generating set for IR.

We work through all generators of IX , for the gth generator, we proceed as follows:

First, we define three empty lists L1, L2 and L3. We find all paths p whose labels are divisible by

the first, second or third term of IX[g] mod constant, and record their heads, tails, the remainder

when we divide their label by a term of IX[g], and yp in L1, L2 or L3 respectively. Explicitly:

1. We work through all paths P [i] and see if their labels P [i][2] are divisible by the first term

of IX[g] : xr[g]xs[g]. If it is divisible, we record P [i]’s tail, the remainder when we divide its

label by xr[g]xs[g], head and yP [i] in L1.

2. We work through all paths P [j] and see if their labels P [j][2] are divisible by the second term

of IX[g] : xt[g]xu[g]. If it is divisible, we record P [j]’s tail, the remainder when we divide its

label by xt[g]xu[g], head and yP [j] in L2.

3. We work through all paths P [k] and see if their labels P [k][2] are divisible by the third term

of IX[g] : xv[g]xw[g]. If it is divisible, we record P [k]’s tail, the remainder when we divide its

label by xv[g]xw[g], head and yP [k] in L3.

Secondly, we work through all entries in L1, L2 and L3. If L1[a], L2[b] and L3[c] have the same

first, second and third entries, then they record information about paths p1, p2 and p3 with the same

tails, heads and remainder of their label after division by a term of IX[g] mod constant. Hence,

replacing constants, l[g]yp1 +m[g]yp2 + n[g]yp3 is a generator of IR. L1[a][4] = yp1 , L2[b][4] = yp2
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and L3[c][4] = yp3 . We record l[g]L1[a][4] +m[g]L2[b][4] +n[g]L3[c][4] in S. After working through

all such triples for all generators IX[g], S plus the generators from Pseudocode 5.1.4 will give a

generating set for IR.
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