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Abstract

Nowadays, it is of great importance in ecological and environmental studies to

investigate some prominent features in environmental determinants using appro-

priate statistical approaches. The initial motivation of this work was provided

by the enthusiasm of the limnologist, biologist and statistician, interested in ex-

ploring and investigating certain features of time series data at different temporal

resolutions to environmental parameters in freshwater.

This thesis introduces a variety of statistical techniques which are used to provide

sufficient information on the features of interest in the environmental variables

in freshwater.

Chapter 1 gives the background of the work, explores the details of the locations

of the case studies, presents several statistical and ecological issues and outlines

the aims and objectives of the thesis.

Chapter 2 provides a review of some commonly used statistical modelling ap-

proaches to model trend and seasonality. All the modelling approaches are then

applied to low temporal resolution (monthly data) of temperature and chlorophyll
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measurements from 1987-2005 for the north and south basins of Loch Lomond,

Scotland. An investigation into the influence of temperature and nutrients on

the variability of log chlorophyll is also carried out.

Chapter 3 extends the modelling for temperature in Chapter 2 with the use of

a mixed-effects model with different error structures for temperature data at a

moderate temporal resolution (1 and 3 hourly data) in the north, mid and south

basins. Three approaches are proposed to estimate the positions of a sharp change

in gradient of temperature (thermocline) in deeper basins, using the maximum

relative rate of change, changepoint regression and derivatives of a smooth curve.

Chapter 4 investigates several features in semi-continuous environmental variables

(15 and 30 minutes data). The temporal pattern of temperature, pH, conduc-

tivity and barometric pressure, and the evidence of similarity of the signals of

pH and conductivity is determined, using wavelets. The time taken for pH and

conductivity to return to ‘baseline levels’ (recovery period) following extreme dis-

charge is determined for different thresholds of ‘extreme discharge’ for the Rivers

Charr and Drumtee Burn, Scotland and models for the recovery period are pro-

posed and fitted. Model validation is carried out for the River Charr and the

occurrence of clusters of extreme discharge for both rivers is investigated using

the extremal index.

Chapter 5 summarises the main findings within this thesis and several potential

areas for future work are suggested.
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Chapter 1

Background

In a wide range of environmental fields, the process of explaining the features of

the environmental parameters of interest often lead to a detailed statistical anal-

ysis. Different temporal resolutions of environmental data sets may reveal certain

features that require thorough understanding through the use of the various sta-

tistical techniques. Time series measurements of environmental and ecological

variables with different temporal resolutions in freshwater offer a vast opportu-

nity for exploring, investigating and developing appropriate statistical models,

which extract valuable information at all temporal scales.

1.1 Freshwater

Freshwater is important in terms of ecological systems. Freshwaters are predom-

inantly low salt concentration water such as lakes and rivers and therefore, they

are often used as the main natural source of water. They are naturally character-

ized by their biological, chemical and physical determinants that vary temporally

1
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and spatially.

However, freshwaters are among the most currently threatened ecosystems in

the world (Abell, 2002). The introduction of alien organisms, dam construc-

tion, habitat modification and alteration of water chemistry are among the most

harmful anthropogenic impacts to the ecosystems (Malmqvist and Rundle, 2002).

1.1.1 Lakes and Rivers

Lakes are important for flood control, water supply, cultivation, irrigation, navi-

gation and tourism (Shuijing et al., 2010). Lake ecosystems are rarely influenced

by only a single pressure. Eutrophication (a growing deterioration of water qual-

ity resulting from the rise of algae concentration from the increase of nutrient

loading) (Wetzel, 2001) is commonly observed in lakes. Such a phenomenon is

part of the huge ecological problem that has mostly damaged ecosystem condition

and resulted in imbalances among different biological processes and a decrease in

ecosystem biodiversity (Shuijing et al., 2010). The symptoms of ecosystem dam-

age (Hu et al., 2008) compromise phytoplankton blooms, fish kills and decline in

useful water. Chlorophylla, a major component in phytoplankton, is a primary

photosynthetic pigment of all oxygen-evolving photosynthetic organisms and is

the main indicator for water quality (Wetzel, 2001). Apart from the deterioration

of the water quality caused by phytoplankton abundance, climate change could

be another pressure that may give rise to significant impact on water tempera-

ture and as a consequence, the ecological system is highly likely to be affected

(Ferguson, 2007). Hence, the condition of the ecosystem of the lakes is assessed
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using several statistical approaches.

While lakes are important due to several factors as mentioned above, rivers are

central to the process of economic and social development (John and Michael,

2011). Rivers contribute about 0.0001% of the water on earth and are central to

surface water ecosystems (Wetzel, 2001). Despite these low quantities, running

waters are hugely significant to human life by providing a rich source of fish and

other aquatic life, and are a major source of clean water for drinking and irriga-

tion. Small streams and rivers often join together and subsequently form large

river network systems. The water chemistry in rivers is complex and it is influ-

enced by input from the atmosphere and human activities, and geological factors

such as type of rock in the river basin. The ecological condition for the animals

and plants is influenced by the chemistry of rivers and so, it is of importance

to understand the state of the environment of rivers. The condition of the river

environment is therefore critical to its management and this thesis contributes

to our understanding by examining a variety of statistical techniques to present

several features of the environmental determinands in rivers.

1.2 Case Studies

The importance of environmental and ecological determinants in lakes and rivers

is in characterizing the status of the freshwaters and so, some of their features

have been studied. Three case studies from Loch Lomond, and the River Charr

and River Drumtee are used to explore and investigate some of the important

features that may contribute to the condition of the water body.
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1.2.1 Loch Lomond

The following descriptions of Loch Lomond are taken from (Krokowski, 2007).

Loch Lomond is located in the north-west of Glasgow and close to the Trossachs

National Park (First Scottish Park). Both Loch Lomond and the National Park

encompass an area of 1,865km2. The areas of Loch Lomond are characterized as

Ramsar sites in terms of rare plants, aquatic invertebrates and wetland plant, and

Greenland goose under International and European designations. Loch Lomond

is also a Special Area of Conservation for its wood and otters. The loch is occu-

pied by 19 species of freshwater fish such as powan, brook lampreys and Atlantic

Salmon (Loch Lomond and Trossachs National Park Authority, 2005).

Loch Lomond is an icy highland loch, which is the largest in the United Kingdom,

covering an area of 71.1km2. In addition, the depth of the north basin is 189.9m

which is the third deepest in Great Britain (Loch Lomond and Trossachs National

Park Authority, 2005). The volume, mean depth and catchment area of the loch

are 2628×106m3, 37m and 781km2, respectively. Research has been extensively

carried out at the loch in terms of its ecological and geological features (see for

example, Slack (1957), Maitland (1981), and Murphy et al. (1994)).

The loch is generally divided into three basins which are distinguished by the

differences in their geological features and types of catchment of the main river.

The highland boundary divides the loch into northern and southern basins, lying

across the loch from the north east to south west. The north basin is generally

highland with hard rock and deep, and is surrounded by woodland. The hard
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rock in the north provides less nutrients with acidic water, and receive less expo-

sure to solar radiation. The main inflow river in the north comes from the river

Falloch, flowing through a mountainous catchment. The south basin, which is

much shallower than the north basin, is occupied by several islands. The inflow

to the loch comes from the river Endrick, flowing through agricultural land before

entering the loch. The outflow from the loch comes from the river Leven, which

is preserved for water supply. The mid basin of the loch is occupied by a large

number of islands (Habib et al., 1997).

1.2.2 River Charr

The following descriptions of the river Charr are taken from (Waldron et al.,

2009).

The river Charr flows through various habitats, is 10m wide and is located in

Glen Dye (56o56
′
27N, 2o35

′
00W), a headwater subcatchment of the River Dee in

north east of Scotland. The altitude of the catchment is in range of 100m up to

580m.

Waldron et al. (2007) describe the topography and sampling points, soil coverage,

geology and land use of the Glen Dye catchment. The area of the catchments

is dominated by granite. The catchment features include elevated areas above

450m which are covered by carbonized vegetable (up to 5m deep) and leached

soil (less than 1m deep). (Waldron et al., 2009) stated ‘The main river valley

generally has freely draining alluvial deposits and soils. Regular burning of small
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areas of moorland may have contributed to some peat degradation and hagging

(Thompson et al., 2001) and in places erosion extends to the organomineral inter-

face. A high density of ephemeral drainage channels cover the peat, connecting

it to the perennial stream channel network’.

1.2.3 River Drumtee

The following descriptions of the river Drumtee are taken from (Waldron et al.,

2009).

The river Drumtee Burn is one of the main river networks in Whitelee in the

north west region of the biggest wind farm in Europe and encompasses 9.4 km2.

The following description of the Whitelee wind farm is provided by the Envi-

ronmental Impact Statement (EIS) and has been prepared by Scottish Power for

planning consent for the windfarm (CRE Energy, 2002). The wind farm is lo-

cated in central Scotland and consists of 140 turbines covering an area of 176 km2

across grids of 55o40
′
24N and 4o16

′
00W. (Waldron et al., 2009) stated that ‘Land

use is predominantly forestry, with rough grazing on open moorland, and more

improved pasture and arable land on the northern lower slopes. The windfarm

is mostly located in areas of peat, underlain by a clay seal and weakly perme-

able igneous or moderately permeable sedimentary rocks. Peat depth, measured

at 161 locations, ranges from five to over 500cm, mean depth of 190cm (±1

S.D.134.7cm)’.
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(Waldron et al., 2009) also stated that ‘All of the peat lands in the development

area are blanket bog, but in some locations have features associated with inter-

mediate bogs. There are several large sphagnum-dominated pools and lawns with

the peat exceeding 4.5m deep. This contrasts with the surrounding drier, heather-

dominated, less species-rich Calluna vulgaris-Eriophorum vaginatum vegetation.

Only 35ha (3.5%) of the unforested blanket bog is primary natural bog whilst

the remaining area has been impacted, mostly due to the Whitelee forest, a first

rotation plantation of 5917ha of mainly Sitka spruce, established between 1962

and 1992 and at altitude from 220m to 376m. Most of the bog exhibits varying

degrees of surface damage and drying in the forest area. Bog vegetation has

generally been highly modified or lost completely under canopy closure. Acid

grassland habitat dominates outwith the forest and unmodified peatland’.

1.3 Data

The environmental data used in this thesis comprise three different time resolu-

tions; low, moderate and high frequencies measurements.

Low frequency data consists of monthy temperature, chlorophyll, phosphate and

nitrate measurements from 1987-2005 in the north and south basins of Loch

Lomond. The data were supplied by the Scottish Environment Protection Agency

(SEPA).

The moderate frequency data consists of 3 hourly temperature measurements
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recorded from thermistor chains at 11 different depths at Cailness (north), Creinch

(south), lower and upper chain of Ross Points in Loch Lomond from 1 Septem-

ber 2002 - 31 August 2003. Additionally, 1 hourly temperature measurements

collected from a thermistor chain at 11 different depths at the mid basin of Loch

Lomond are also available from 17 April 2008 - 27 May 2009. The 1 hourly and 3

hourly data sets were supplied by the Scottish Centre for Ecology and the Natu-

ral Environment (SCENE) and Professor Susan Waldron from the University of

Glasgow, respectively.

The high frequency data sets collected from monitoring buoys, measured every

15 and 30 minutes over the time period, were also supplied by Professor Wal-

dron. The data sets are temperature, barometric pressure, pH, conductivity and

discharge measurements from the rivers Charr and Drumtee Burn in Aberdeen

and Whitelee, respectively. The data sets from Aberdeen are measured every

15 minutes from October 2004 - September 2007 whilst in Whitelee, they are

recorded every 30 minutes from October 2007 - September 2010.

1.4 Ecological Issues

It is of interest to investigate the changes of temperature and chlorophyll at the

surface of Loch Lomond since each of them is naturally related to the changes

in weather and water quality, respectively. The trend in temperature provides a

good indicator of climate change over a particular period and may reflect changes

in the ecological processes in the lake. An increase in temperature may result

in a phytoplankton bloom. The abundance of phytoplankton resulting from the
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influence of nutrients may lead to deterioration in water quality.

Temperature monitored at different depths of the loch may provide further infor-

mation about the ecological process by understanding the temperature changes

over depth. However, is depth really required to precisely explain the variability

of temperature over the time period in the loch? This question could be an-

swered by fitting an appropriate statistical model to temperature over the time

period with depth incorporated as a random effect. Deeper water of the loch may

highlight different characteristics of temperature over the time period, compared

to shallower water and so, different ecological processes may occur between the

north and south basins. A natural feature that often appears in the water col-

umn, is where there is a large change in the temperature gradient (a thermocline).

This can result in different ecological processes at different depths. Its position

is of interest since for a given time point it may divide a particular layer in the

water column into different biological and chemical features.

Changes of temperature, barometric pressure, pH and conductivity in rivers over

the year may provide certain conditions of dynamic behaviour in large streams.

The occurrence of a particular temporal pattern in a single environmental variable

over a short time period is important as this may reflect an immediate response

in the ecological process. Two environmental variables with a similar temporal

pattern may reveal some kind of relationship in winter and summer over different

years and so, the coherency of the signals have to be identified. Additionally, two

environmental variables with a significant coherence and naturally influenced by

hydrological events may provide a particular change in response to the occurrence

of such events. Therefore, such a change is identified and an important feature
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related to the response of both variables is determined. Further investigation on

such a prominent feature is carried out to allow prediction in later years.

1.5 Statistical Issues

Time series models are often useful to explore and investigate the variability of

particular environmental and ecological variables. However, their application is

often constrained by the modelling assumptions. In particular, the assumptions

of constant mean and variance over the time period often do not hold with real

data which manifest nonstationary behaviour. However, the nonstationary na-

ture of the data can be of specific interest to investigate natural features in the

time series.

The occurrence of a seasonal pattern in low temperature measurements in fresh-

water over the time period can be evidence of nonstationary data. The occurrence

of a diurnal pattern in moderate and high frequency temperature measurements

provides additional information about the nature of the data. Hence, the appear-

ance of the daily and annual cycle need to be removed prior to modelling to avoid

any violation of standard model assumptions. This would normally be modelled

in the mean/deterministic part of a model to deal with seasonality. The acf and

pacf can highlight a possible seasonal pattern but this would be removed before

assessing the residuals for remaining correlation.

Missing data often occur in real data monitoring due to several causes. A large

number of missing data in a particular period should be given much attention
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since it may greatly affect the parameters in the model. Missing data (i.e. not

occurring at random) often appear in cases where no data are recorded over a

sufficiently long period due to failure of the monitoring device. The above issue

may greatly affect the fitted model by inflating the bias. For instance, a large

number of missing data at the beginning or end of the period may lead to biased

estimates of trend in a model of temperature and as a result, incorrect judgement

is likely be made on the mean changes of temperature.

Modelling trend and seasonality of low frequency temperature and chlorophyll

measurements provided by SEPA over the time period requires flexible models.

In particular, models which allow the relationships to be investigated as para-

metric, nonparametric or varying with respect to another covariate.

Modelling moderate frequency temperature measurements from thermistor chains

over the time period at different depths requires an appropriate technique in such

a way that the random effect can be incorporated to provide more information.

A mixed-effects model could be appropriate for the above case if there is a clear

difference of the variability of temperature over the time period for each depth.

Higher variance of the random effects in the model may also provide additional

information on the potential use of the mixed-effects model. Conversely, a fixed

effect model could be more appropriate if similar variability of temperature pat-

tern is exhibited for each depth. Moreover, modelling the moderate frequency

temperature measurements with depth at a given time point provides statisti-

cal challenges in modelling complex shapes of a curve with a small amount of
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data, identifying appropriate correlation structure between depths and identify-

ing changepoint and inflection point that represent the position of the thermo-

cline.

The introduction of semi-continuous temperature, barometric pressure, pH and

conductivity measurements from monitoring buoys requires a reliable statistical

technique to show evidence of the variability of each determinant and the rela-

tionship between the determinands. The statistical techniques previously used

for the low and moderate frequency data may not be appropriate here since a

strong correlation between adjacent data over the time period is expected, leading

to nonstationary data. Hence, the technique of wavelets which is not constrained

by a stationarity assumption could be appropriate for this case. Furthermore,

an appropriate regression model is required to estimate and predict the recovery

period of pH and conductivity following an extreme discharge corresponding to

particular thresholds. Extreme discharges can be clustered and hence it is nec-

essary to explore this since it can affect the modelling

Modelling low frequency environmental data up until now has been very com-

mon and this was what agencies such as SEPA routinely collect. Moreover, with

the introduction of moderate frequency data from thermistor chain and semi-

continuous data from monitoring buoys, the use of other statistical approaches

is required. While current approaches are appropriate for data from thermistor

chains and monitoring buoys, the availability of more advanced technology such

as remote sensing requires more complex statistical techniques to model the vari-

ability in nonstationary data explicitly.
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1.6 Aims and Objectives

The aims of this thesis are to explore and investigate some important features

of environmental determinants in lake and rivers via appropriate statistical ap-

proaches. Loch Lomond, the rivers Charr and Drumtee Burn are used as case

studies.

Motivated by the importance of prominent features in environmental parameters

in freshwaters, the main objectives of this thesis are as follows:

• To investigate trend and seasonal patterns of environmental variables.

• To investigate the stratification of temperature with depth.

• To investigate temporal pattern within and between environmental variable,

and recovery period of environmental variable following extreme event in

hydrological determinand.

• To develop and apply statistical methodology appropriate to the temporal

frequency of environmental monitoring.

The R package (Venables et al., 2011) is used throughout this thesis for analyzing

the data sets.



Chapter 2

Trends, Seasonality and

Relationships

2.1 Introduction

Surface water temperature is one of the most important parameters for determin-

ing the ecological conditions in lakes (Horne and Glodman, 1994) and can be an

indicator of the regional weather and climate near large lakes (Austin and Col-

man, 2007). The ecological conditions in lakes could be affected resulting from

the influence of temperature on the nutrients in lakes (Spears et al., 2008). Sev-

eral studies have recently been undertaken to determine changes of temperature

in lakes. A previous investigation of annual average surface water temperature

at Loch Lomond shows an increase of 5oC from 1987 - 2005 (Krokowski, 2007).

Such a change is relatively high compared to freshwaters in other countries. For

instance, the mean annual temperature of the surface water in Lake Geneva in-

creased by only 1oC from 1983 to 2000 (Gillet and Quetin, 2006).

14
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The use of chlorophylla concentrations to represent phytoplankton loading as a

general measure of lake water quality is widely adopted around the world as

the phytoplankton community will grow in response to available excess nutrients

(Nitrogen and Phosphate) a phenomenon known as eutrophication (Smith et al.,

1999), resulting in a deterioration in water quality. The use of chlorophylla con-

centrations as a part of the ecological quality determinant in lakes is essential

and through the Freshwater Framework Directive most of the European coun-

tries have adapted this indicator as a good general measure of ecological impact

of eutrophication. There has been very little scientific research examining how

such an element in phytoplankton varies naturally, in the absence of nutrient

pressures (Carvalho et al., 2008).

The importance of temperature and chlorophylla concentrations in characteriz-

ing the ecological characteristics in lakes has stimulated interest in investigating

their changes over the year in Loch Lomond and hence, two objectives are out-

lined for this work. Firstly, the trends and seasonal patterns of temperature and

chlorophylla are investigated and secondly, the evidence of effects of trend, sea-

sonality, temperature and nutrients on the changes in chlorophylla concentrations

is determined.

2.2 Data

Monthly temperature and chlorophylla measurements from 1987 to 2005 from

the north and south basins of Loch Lomond were supplied by the Scottish En-

vironment Protection Agency (SEPA). The time series for both variables are

incomplete in the sense that there are missing values in a number of years.
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Figure 2.1 shows plots of temperature (top) and chlorophylla (bottom) from

1987-2005 in the north (left) and south (right) basins. The points represent

the measurements for each variable over the time period. The variability in the

temperature appears mainly constant over the year in both basins. Conversely,

the variability in chlorophylla is not constant across the 19 years and so, a log

transform is used to stabilize the variance.

Figure 2.1. Plots of temperature (top) and chlorophylla (bottom) in the north
(left) and south (right) basins from 1987-2005.

Figure 2.2 shows plots of log chlorophylla from 1987-2005 in the north (left)

and south (right) basins, highlighting more stable variability in the transformed

measurements compared to the actual measurements. A large number of missing

values are apparent in log chlorophylla, more so than in temperature, particularly

between 1999 and 2001 (between the two vertical dashed lines in each plot).
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Figure 2.2. Plots of log chlorophylla in the north (left) and south (right) basins
from 1987-2005.

Table 2.1 shows the percentage of missing temperature and chlorophylla values

for each month across the 19 years. A high number of missing temperature and

chlorophylla values are observed from December - February and therefore, the

missing values are not occurring at random.

Month Temperature (%) Chlorophylla (%)

North South North South

Jan 68.4 68.4 68.4 68.4
Feb 63.2 63.2 68.4 73.7
Mar 63.2 47.4 63.2 57.9
Apr 26.3 21.1 47.4 36.8
May 31.6 31.6 36.8 42.1
June 26.3 15.8 52.6 36.8
Jul 26.3 15.8 31.6 36.8
Aug 15.8 21.1 26.3 21.1
Sept 42.1 42.1 63.2 63.2
Oct 15.8 15.8 47.4 42.1
Nov 52.6 52.6 57.9 68.4
Dec 73.7 73.7 79.0 78.9

Table 2.1. Percentage of missing data for temperature and chlorophylla, by
month.

Table 2.2 displays the percentage of missing temperature and chlorophylla values

for each year. A high number of missing temperature and chlorophylla values are

observed from 1999-2005. The temperature and chlorophyll measurements are

mainly missing in winter from 1999-2005. A complete case analysis may result



CHAPTER 2. TRENDS, SEASONALITY AND RELATIONSHIPS 18

in misleading conclusions and so, statistical methods to impute data will be ex-

plored for temperature and chlorophyll.

The missing values in temperature from 1987-2005 are imputed using several

approaches described below. Since there is a large period of missing data in

chlorophyll from 1999-2001, the unobserved data in this period are not imputed.

The missing values in log chlorophylla between 1987-1998 and 2002-2005 are

imputed using similar approaches to those for temperature.

Year Temperature (%) Chlorophylla (%)

North South North South

1987 41.7 41.7 33.3 33.3
1988 16.6 25.0 8.3 8.3
1989 33.3 25.0 25.0 25.0
1990 41.7 33.3 0 0
1991 25.0 25.0 8.3 8.3
1992 33.3 25.0 25.0 25.0
1993 25.0 25.0 16.7 16.7
1994 41.7 25.0 33.3 33.3
1995 33.3 41.7 16.7 16.7
1996 33.3 33.3 16.7 16.7
1997 33.3 25.0 50.0 41.7
1998 25.0 16.7 66.7 58.3
1999 66.7 58.3 100.0 100.0
2000 66.7 66.7 91.7 91.7
2001 66.7 66.7 83.3 75.0
2002 41.7 41.7 33.3 33.3
2003 41.7 41.7 41.7 41.7
2004 58.3 58.3 58.3 58.3
2005 75.0 66.7 58.3 58.3

Table 2.2. Percentage of missing data for temperature and chlorophylla, by year.
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2.2.1 Data Imputation Procedures

Temperature

The problem of missing data has been recognized and increasingly debated in the

statistical literature (for example, see Little and Rubin (2002); Allison (2002)).

Missing data may affect statistical power by reducing sample size or, in more

serious case, estimates of statistics derived by deleting cases with missing values

may be biased, particularly if the missing values are different from those with

complete data (Diane et al., 2010).

Hence, four potential imputation approaches are used to impute data for tem-

perature. The mean square errors (MSE), defined as
∑n

i=1
(yi−ŷi)2

n
, is used for

comparing the observed measurements (yi) and the corresponding fitted values

(ŷi), and the approach that contributes to the lowest mean square errors is chosen.

The first approach is mean substitution in which the mean of the temperature

for a given month is determined and used to replace all the missing values in that

month.

In the second approach, a harmonic model which includes a trend and seasonal

term (equation 3.3) is used,

yi = β0 + β1ti + γ cos

{
2π (ti − θ)

p

}
+ εi; i = 1, 2, . . . , n (2.1)



CHAPTER 2. TRENDS, SEASONALITY AND RELATIONSHIPS 20

where yi is the ith temperature, ti is the ith month, β0 and β1 are the intercept

and slope, εi are random errors which are identically and normally distributed

with zero mean and constant variance, p is the number of months in a year, γ

is amplitude and θ is the phase angle. γ and θ are defined as
√
β2
1 + β2

2 and

pcos−1
(
β2
2

β2
1

)
, respectively.

For computational simplicity model 3.3 can be written to be linear as defined in

equation 3.5.

yi = β0 + β1ti + β2cos

(
2πti
p

)
+ β3sin

(
2πti
p

)
+ εi (2.2)

where β0, β1, β2 and β3 are the coefficients of the model.

The steps for imputing the missing values are as follow:

1. The harmonic model from equation 3.5 is fitted to the monthly temperature

measurements from 1987-2005.

2. The assumptions of linearity and constant variance of the erros are checked.

3. The estimates from the fitted model are used to impute the missing data

from 1987 to 2005.

4. The imputed value is added to an estimated error, generated from a Normal

distribution with zero mean and variance based on the residuals from the

fitted model in step (1).
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In the third approach, a model which decomposes the time series into trend,

seasonal, cyclical, and irregular (error) terms (equation 2.3) is used,

yt = TRt + SNt + CLt + IRt; t = 1, 2, . . . , n (2.3)

where TRt, SNt, CLt, IRt are trend, seasonal, cyclical and irregular components

at time t and n is the number of measurements (Bowerman and O’Connell, 1993).

The steps of imputation are as follow:

• All the missing values in the first year (1987) are imputed by substituting

the mean value for the specific missing month’s data since a complete data

set is required in the first year prior to decomposing the time series.

• The estimates of TRt + CLt are determined using the centered moving

average CMAt from 1987-2005.

• The estimates of SNt+IRt, defined by the difference between measurements

and CMAt at each time t, are computed and they are grouped by month.

The mean of these estimates is determined for each month.

• The seasonal factors SNt are obtained by normalizing the SN t values and

the estimate of SNt is SNt = SN t − (
∑L
i=1 SNt

12
).

• The deseasonalized measurements at time t are determined by the difference

between the measurements and SNt.

• The estimate of trend at time t, TRt is determined by fitting a linear

regression model to the above deseasonalized measurements.

• The estimate of CLt + IRt is yt − (TRt + SNt) and the moving average of

order p, CLt =
(CLt−1+IRt−1)+(CLt+IRt)+(CLt+1+IRt+1)

p
is used for estimation.
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• IRt are assumed to be the errors and they are generated from a Normal

distribution with zero mean and variance equal to the mean square of de-

viation of the residuals and added to the imputed values.

In the final approach, a linear regression model of water temperature in the loch

is fitted to air temperature from Paisley (which hosts the nearest MET office

station) as defined in equation 3.1 and the fitted values are used to impute the

missing values,

yi = β0 + β1xi + εi; i = 1, 2, . . . , n (2.4)

where yi is the ith water temperature in Loch Lomond, xi is the ith air temper-

ature at Paisley and εi are random errors which are assumed to be identically

and normally distributed with zero mean and constant variance. The use of air

temperature from a nearby location is due to the fact that temperature between

two local areas is highly correlated. The minimum and maximum monthly air

temperatures at Paisley are available from 1987-2005 and so, the mean of these

two values is computed for each of the months over the year and its correlation

with water temperature in the north and south basins are initially checked prior

to model fitting. Evidence of a strong linear relationship highlighted by the cor-

relation indicates the appropriateness of the use of a linear regression model of

water temperature on air temperature to impute the missing data.
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Chlorophylla

The first three approaches used for imputing missing values in temperature are

applied to log chlorophylla, however, the fourth approach used for temperature

is not considered due to the fact that the air temperature from Paisley and log

chlorophylla in Loch Lomond are not highly correlated. The imputation process

is initially carried out for the log chlorophylla measurements in the first period

(1987-1998) and the best approach with the lowest mean square errors is used for

imputing missing values in the second period (2002-2005).

2.3 Modelling Temperature and Chlorophylla

A variety of regression approaches are presented to determine the appropriate

model that can best describe the variability in temperature and chlorophylla.

The details of each of the models are as follows:

2.3.1 Parametric Regression

The first approach considered uses a parametric model including a sinusoidal/

harmonic function, which consists of trend and a seasonal pattern (equation 3.3).

This harmonic model is fitted to temperature and log chlorophylla for each of the

basins.
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2.3.2 Nonparametric Regression

Modelling via nonparametric regression is more flexible than the first approach as

it is not constrained by any particular functional form i.e. the trend and seasonal

pattern are not constrained to be linear or monotonic or to have a particular

functional form.

Let equation 2.5 be a model of ith response Yi on an unknown smooth function

f of a covariate Xi,

Yi = f(Xi) + εi; i = 1, 2, . . . , n (2.5)

where εi are independent random errors with zero mean and constant variance σ2.

The estimate of the smooth function f(Xi) can often be conveniently expressed

in vector-matrix notation as SY , where S denotes a smoothing matrix whose

rows consist of weights appropriate to estimation at each evaluation point and Y

denotes the response in vector form.

The smooth function f(X) from the above equation can be determined via a

number of approaches. Nadaraya (1964) and Watson (1964) proposed a simple

kernel approach by constructing the local mean estimator. Cleveland (1979) fit-

ted a local linear regression as an alternative to the construction of a local mean

for the data. Fan (1993) and Fan and Gijbels (1992) showed the advantage of the

local linear estimator compared to the local mean estimator since better theoret-

ical properties are highlighted, particularly features near the edges of the region
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of the data. Instead of a local linear estimator, (Fan and Gijbels, 1996) used

polynomial regression of degree p for estimating the smooth function.

A local polynomial estimator of pth order as defined in equation 2.6 is minimized,

min
βj

n∑
i=1

(
Yi −

p∑
j=o

βj(Xi − x)j
)2
w
(Xi − x

h

)
(2.6)

where w
(
Xi−x
h

)
is the kernel density function which is generally a symmetric

probability density function with finite second derivative (Simonoff, 1996). The

smoothing parameter h, which is also known as the span or bandwidth, deter-

mines the size of the neighbourhood of x and controls the smoothness of the

final estimates (Cleveland and Devlin, 1988); (Cleveland, 1979). A poor choice

of bandwidth may result in a low quality estimate (Wand and Jones, 1995). The

solution of equation 2.6 at a local point x is obtained as follows,

β̂ = (XTWX)−1XTWY

where Y is the n-vector with ith element of Yi, X is an n × (p + 1) matrix with

(i, j)th element of (Xi − x)j and W is the n × n diagonal matrix with (i, j)th

element w
(
Xi−x
h

)
. β0 is the estimate at x since this intercept term denotes the

position of the local regression line at the local point x.

Two different kernel density functions; gaussian and tricube weight functions are
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used for the curve fitting in this thesis. The gaussian kernel density function

used with local linear regression is defined as exp
{
−1

2
(Xi−x)2

h

}
where h is the

standard deviation while the tricube weight function used with lowess (or loess)

(Cleveland, 1979) is defined as follows,

w
( |Xi − x|

h

)
=



[
1−

( |Xi − x|
h

)3]3
;w
( |Xi − x|

h

)
≤ 1

0;w
( |Xi − x|

h

)
> 1

Obviously, the order of the polynomial terms in equation 2.6 can be increased

to derive other types of polynomial estimators. Typical choices of p are 0, 1,

2 and 3, with a better asymptotic and boundary bias correction on the local

linear (p=1) and local cubic (p=3) compared to local constant (p=0) and local

quadratic (p=2) estimators, respectively (Clifford et al., 1998). The local linear

approach, however, has a very attractive property of smoothing since the bias

component does not depend on the pattern of the design points (Bowman and

Azzalini, 1997); Fan (1993). Another attractive theoretical property is the good

behaviour near the extreme of the design points (Fan and Gijbels, 1996).

Another class of nonparametric regression estimators is based on continuous

piecewise polynomials or smoothing splines (Eubank, 1988). One way of esti-

mating the smoothing spline function is by minimizing the penalized criterion

(equation 2.7),

1

n

n∑
i=1

{Yi − f(xi)}2 + h

∫ b

a

{f(x)
′′}2dx (2.7)
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where h is the global smoothing parameter that determine the trade-off between

goodness of fit (in terms of mean square error) and smoothness (in terms of the

integrated squared second derivative of f(x)). The unique minimizer for the

above penalized least squares (equation 2.7) is a natural cubic spline with knots

at the distinct values of xi and spline coefficients that are shrunk according to h

(Wahba, 1990). The knot sequence must be carefully chosen since a poor choice

can have adverse effects on the estimates (de Boor, 1978).

If the smooth function f is restricted to be a periodic function, then the solution

of equation 2.7 is defined by a periodic spline basis expansion,

f̂(x) =
N∑
i=1

αiK(x, xi)

where K(x, xi) is the reproducing kernel
∑∞

k=1
2cos(2πk(x−xi))

(2πk)4
. This enables a cyclic

smoother to be used for the variable.

Smoothing parameter

The smooth function produced from nonparametric regression will be close to a

straight line as the amount of smoothing increases whilst the line will begin to

interpolate the data as the smoothing decreases. Choosing the right h is a crucial

step in estimating the smooth function f . There are various methods for choosing

the smoothing parameters. Akaike Information Criterion (AIC) (Akaike, 1973),

cross validation (CV ) (Stone, 1974), generalized cross validation (GCV) (Craven

and Wahba, 1979) and Improved Akaike Information Criterion (AICc) (Hurvich
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et al., 1998) are among the typical ways to do so.

The cross-validation (CV ) function, defined in equation 2.8, is among the most

popular criteria used in local linear regression,

CV (h) =
1

n

n∑
i=1

(
yi − f̂h(i)(xi)

)2
(2.8)

where n is the number of data points, yi is the ith response, f̂h(i) indicates the

fitted value at xi and is computed by leaving out the ith observation. The h,

that minimizes this criterion is adopted. This smoothing selection is also used

in the smooth spline (Rice and Silverman, 1991), however, generalized cross-

validation GCV (equation 2.9), is often used as an approximation to CV in

penalized smoothing splines to avoid the computational complexity of CV ,

GCV (h) =
1

n

n∑
i=1

{yi − f̂h(xi)
1− tr(S)

n

}2

(2.9)

where tr(S) is the trace of smoother matrix. The trace is often interpreted by

the number of linearly independent explanatory variables in the model (Hastie

and Tibshirani, 1990). The generalized maximum likelihood and unbiased risk

estimation are other alternatives used in smoothing splines (Cari et al., 2005).

The automatic smoothing selection described above may not always work well
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especially when the data are correlated in time. Alternatively, a graphical ap-

proach is commonly used for selecting smoothing parameters by specifying the

degree of freedoms of a model component. Hence, the latter approach is used as

a guidance to the required smoothing parameter. Hastie and Tibshirani (1990)

define the degrees of freedom for the parameter, variance and error as follows:

dfpar = tr(S)

dfvar = tr(SST )

dferr = n− tr(2S − SST )

The above definitions are used throughout this thesis for all models that involve

the smoothing parameter.

2.3.3 Additive Models

An additive model, introduced by Stone (1985), which is a generalization of a

nonparametric regression model, taking more than one explanatory variable into

account, is considered in the third approach. This model, which is additive in

smoothing functions, is defined in equation 2.10,

y = a0 +

p∑
j=1

fj(xj) + ε (2.10)
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where ao is the intercept, fj(xj) is the univariate smoothing function of the jth

explanatory variable, ε are the random errors with E(ε) = 0 and V ar(ε) = σ2.

The mean of the response y is the sum of smoothing functions of fj(xj), defined

in equation 2.11.

E (y|x) = a0 +

p∑
j=1

fj (xj) ; j = 1, 2, . . . , p (2.11)

The backfitting procedure (Hastie and Tibshirani, 1990) is one approach that can

be used to estimate the smooth functions in the above model and the algorithm

is as follows.

1. Initialize: fj = f
(0)
j , j = 1, 2, . . . , p

2. Cycle: j = 1, 2, . . . , p, 1, 2, . . . , p, . . .

fj = Sj (y −
∑

(fk/xj))

3. Continue (2) until the individual smooth functions converge,

where fj = {fj(x1j), . . . , fj(xnj)}T .

The additive model for each of temperature and log chlorophylla is fitted for two

distinct smooth functions of month and year (equation 2.12),

y = a0 + f1(x1) + f2(x2) + ε (2.12)

where y is temperature and log chlorophylla, respectively, f(x1) and f(x2) are the

univariate smoothing functions of month and year, and ε are the random errors
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with zero mean and constant variance.

The gam function in the mgcv library (Wood, 2005), is used to fit the additive

model. The degree of smoothness of model terms is estimated as part of the

fitting. The mgcv implementation of gam represents the smooth functions using

penalized regression splines, and by default uses basis functions for these splines

that are designed to be optimal, given the number of basis functions used. The

smooths of noncyclical and cyclical terms are controlled by cubic regression spline

and a circular smoothing spline, respectively where both splines are determined

by a number of knots that leads to the appropriate trend and cyclical patterns.

2.3.4 Bivariate Models

The second approach considered the extension of model (2.5) to two dimensions

(Bivariate Model), defined by equation (2.13),

Yi = f(X1i, X2i) + εi (2.13)

where εi are the random errors with zero mean and constant variance.

If X denotes an n × 3 design matrix in which its ith rows consist of all the el-

ements {1(x1i − x1)(x2i − x2)}, and W denotes a matrix of 0s with the weights

w(x1i−x1
h1

)w(x2i−x2
h2

) for each observation down the diagonal, the local linear esti-

mator can be written as the first element of the solution by weighted least squares
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(XTWX)−1XTWY , where Y is the column matrix of response for each observa-

tion (Ruppert et al., 2003).

The estimate at point (x1, x2) can be carried out via weighted least squares as

defined in equation (2.14),

min
a0,b1,b2

n∑
i=1

{yi−a0−b1(x1i−x1)−b2(x2i−x2)}2w(x1i−x1;h1)w(x2i−x2;h2) (2.14)

where w(x1i − x1;h1) and w(x2i − x2;h2) are weights for x1 and x2 which are

formed by the two-dimensional kernel function w
(
x1i−x1
h1

, x2i−x2
h2

)
.

The bivariate model 2.13 for each of temperature and log chlorophylla is fitted to

the bivariate smooth function of month and year, where Yi are temperature and

log chlorophylla, f(X1i, X2i) is a bivariate smoothing functions of month (X1i)

and year (X2i).

The sm.regression function from the sm library (Bowman and Azzalini, 2003),

is used to fit the bivariate model 2.13. The smoothing parameter is defined by

the degrees of freedom and the value that results in the appropriate trend and

seasonal pattern is chosen. The smoothing parameter of model 2.13 is determined

by setting df = tr(S) = 13 to give a reasonable amount of smoothing in both

directions.
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2.3.5 Semiparametric Models

The semiparametric model which consists of both parametric terms and smooth

functions of explanatory variables as defined in equation 2.15, is used to quantify

the influence of covariates on the response variable in the fourth approach,

y = a0 + β1x1 + f2(x2) + ε (2.15)

where β(x1) is the parametric term of first explanatory variable x1, f2 is the uni-

variate smoothing function of the second explanatory variable x2 and ε are the

random errors with E(ε)=0 and Var(ε)=σ2.

Cleveland (1979), Silverman (1985), Hastie and Tibshirani (1986), Green (1987)

and Speckman (1988) discussed this type of model for independent responses

whilst Zeger and Diggle (1994) discuss the semiparametric model for longitudi-

nal data.

This model is fitted via a backfitting algorithm (Moyeed and Diggle, 1994), which

can be thought of as having two distinct smoothers S1 and S2. Let X be the full-

rank design matrix of explanatory variables and β consist of intercept and slope

components. The projection of S1 = X(XTX)−1XT produces a least squares fit

of Xβ simply denoted by a smooth function f̂1 whilst S2 gives a projection of

estimate f̂2. The steps of the backfitting are as follows:

f̂1 = S1(Y − f̂2) = X(XTX)−1XT (Y − f̂2) = Xβ̂
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f̂2 = S2

(
Y −Xβ̂

)

Hastie and Tibshirani (1986) show that the estimates of β̂ and f̂2 can be solved

explicitly using equations 2.16 and 2.17, respectively.

β̂ = {XT (I − S2)X}−1XT (I − S2)Y (2.16)

f̂2 = S2(Y −Xβ̂) (2.17)

The semiparametric model (equation 2.18) of temperature and log chlorophylla,

respectively, is fitted,

y = a0 + β0(t) + β1 cos

{
2π (x− θ)

p

}
+ ε (2.18)

where y is temperature and log chlorophylla, respectively, x is the month, β0(t)

is the nonparametric trend which depends on time t, β1 is the amplitude, θ is

the phase angle, p is the number of month in a year and ε are the random errors

which have zero mean and constant variance.

The steps of fitting the semiparametric model 2.18 are as follows. The sm.weight

function (Bowman and Azzalini, 2003) is used to estimate the smoothing matrix

S2 for the index of month from 1987-2005. The smooth matrix S2 is used in

equation 2.16 to estimate β̂. The fitted values for the semiparametric model is

computed as follows;
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ŷ = â0 + f̂2 + β̂1 cos

{
2π (x− θ)

12

}

where β̂1 is the slope component from β̂ and θ is determined from the previous

harmonic model 3.3.

2.3.6 Varying Coefficient Models

A varying coefficient model is an extension of a generalized linear model and is

useful for longitudinal studies where the effect of explanatory variables on the

response may change over time. Hoover et al. (1998) and Fan and Zhang (2000)

discuss and show a few examples of this model in different fields.

This model is generally defined in equation 2.19 where the regression coefficients

are allowed to depend on certain explanatory variables (Hastie and Tibshirani,

1986),

yi = βi0(ri) +

p∑
j=1

βi0(ri)xij + εi (2.19)

and the above model can be simplified in a matrix-vector notation form as in

equation 2.20,

yi = xTi β(ri) + εi; i = 1, 2, . . . , n (2.20)
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where yi is the ith response, xi = (xi0, xi1, . . . , xip)
T are ith explanatory variables

with xi0 = 1 which depend on another covariate ri, βi = (βi0, βi1, . . . , βip)
T are

the ith coefficients and εi are the ith random errors which have zero mean and

constant variance.

A nonparametric time varying coefficient time series model with a time trend

(equation 2.19) is fitted when ri is denoted by time {ti}, with E(εi|xi) = 0 and

E(ε2i |xi) = σ2
i (xi) (Cai et al., 2000a). Cai et al. (2000b) highlight the advantage

of this model as it allows an increase of predictive utility over a parametric model

and the bias of estimates can be reduced significantly.

The following two varying coefficient models are fitted for the fifth and final

approaches:

1. Nonparametric trend with varying amplitude and fixed phase angle.

2. Nonparametric trend with varying amplitude and phase angle.

and the above models are defined by equations 2.21 and 2.22, respectively,

y = β0(t) + β1(t) cos

{
2π (x− θ)

p

}
+ ε (2.21)

y = β0(t) + β1(t) cos

{
2π (x− θ(t))

p

}
+ ε (2.22)

where y are temperature and log chlorophylla, x is the month, β0(t) is the non-

parametric trend which depends on time t, β1(t) is the amplitude which also
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depends on time t, θ is the fixed phase angle and θ(t) is the varying phase angle

which depends on time t, p is the number of month in a year and ε are the random

errors which have zero mean and constant variance.

The steps of fitting the first varying coefficient model 2.21 are as follows.

1. A bivariate model of each temperature and log chlorophyll is fitted on

cos
{

2π(month−θ)
12

}
and index of month; ŷ = f̂(cos

{
2π(month−θ)

12

}
,month).

2. The weight function for a matrix W = [f̂(cos
{

2π(month−θ)
12

}
,month] is de-

termined using sm.weight2 function (Bowman and Azzalini, 2003).

3. A linear model is fitted to ŷ (step (1)) on the local point (evaluation point)

(x) for cos
{

2π(month−θ)
12

}
(step (2)) for each year as follows; ŷ = β0 + β1x.

4. The fitted values for each year are determined using the following varying

coefficient model; ẑ = β0 + β1 cos
{

2π(month−θ)
12

}
where β0 and β1 are the

varying intercept and slope for each year from step (3).

Finally, the steps of fitting the second varying coefficient model 2.22 are as follows.

1. The weight function for each index of month (1, 2, . . . , n) is defined using a

Gaussian weight function as follows, exp
{
−1

2
(xi−x)2

h

}
where xi is the index

of month and x is the local point.

2. A nonlinear model of temperature and log chlorophyll, respectively, is fitted

using the following model; ŷ = β0 + β1 cos
{

2π(month−θ)
12

}
, where β0, β1 and

β2 are the initial parameters determined from the simple harmonic model

3.3 and the weight function corresponding to the first month from step (1)

is incorporated in the model.
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3. The estimates of the parameters in the first month from step (2), denoted

by β0(1), β1(1) and θ(1), are used to determine the fitted values for the first

time point using the following model; ẑ = β0(1)+β1(1) cos
{

2π(month−θ(1))
12

}
.

4. Steps (2) - (3) are repeated for the next time points 2, 3, . . . , n.

Correlation Structure of the Errors

In addition to the trends and seasonality in time series data, autocorrelation is

likely to be present in the errors. After fitting a model to account for trend and

seasonality, an investigation of the relationship of the residuals over time could

then be carried out accordingly. In particular, a correlation structure of the

residuals can be assessed with both autocorrelation and partial autocorrelation

functions. Typically, models of Autoregressive, Moving Average or Autoregres-

sive Moving Average may represent the correlation structure of the errors.

The sample autocorrelation, rk at lag k > 0 is defined in equation 2.23,

rk =

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)∑T

t=1(yt − ȳ)2
(2.23)

where t is time, T is total number of times, k is lag, yt is the error at time t, yt+k

is the error at time t+ k, and ȳ is the mean of the errors.

A plot of r(k) with k ≥ 0 is known as a correlogram and the uncertainty of such

correlations is often displayed at a certain level of significance. Such an uncer-

tainty is subject to the mean and variance of the sample autocorrelation at lag k

as follows.
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Let e1, e2, ..., eN be a series of errors which are independent and identically dis-

tributed with arbitrary mean and N is the number of errors. Kendall et al. (1983)

show that the mean and variance of the autocorrelation of the errors at lag k, rk

could be approximated by equations 2.24 and 2.25, respectively,

E(rk) '
−1

N
(2.24)

V ar(rk) '
1

N
(2.25)

where rk is asymptotically normally distributed under weak conditions. The

approximate 95% confidence interval of rk are −1
N
± 2√

N
, which is often further

approximated to ±2/
√
N (Chatfield, 1996).

A partial autocorrelation as defined in equation 2.26 is used as a complement to

the autocorrelation function. The uncertainty of the correlation is determined

by comparing the coefficients of the partial autocorrelation against the critical

region with lower and upper limits, given by ±2√
n
.

Φkk =
rk −

∑k−1
j=1 Φk−1,jrk−1

1−
∑k−1

j=1 Φk−1,jrk
(2.26)
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2.4 The Approximate F-Test

The following models have been evaluated for temperature and log chlorophylla

and the most appropriate model is determined by comparing the models using

the approximate F-test.

• Model 1: Harmonic Model (Linear Trend and Constant Seasonal Pattern)

• Model 2: Semiparametric Model (Nonparametric Trend and Constant Sea-

sonal Pattern)

• Model 3: Nonparametric Trend with Varying Amplitude model

• Model 4: Nonparametric Trend with Varying Amplitude and Phase Angle

Model.

• Model 5: Additive Model (Nonparametric Trend and Constant Seasonal

Pattern)

• Model 6: Bivarate Model (Nonparametric Trend and Varying Seasonal Pat-

tern)

The approximate F-test proposed by Hastie and Tibshirani (1990) is used to

assess the model components in each of the six models and the F-statistic of the

nested models is defined in equation 2.27,

F =
(RSSo −RSS1)/(dfo − df1)

RSS1/df1
(2.27)

where this value is F-distributed with degrees of freedom for errors dfo − df1

and df1, RSSo and RSS1 are residual sum of squares from the full and reduced
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models, respectively. The residual sum of squares for model k with independent

errors is defined in equation 2.28.

RSSk =
n∑
i=1

(yi − ŷi)2 (2.28)

2.5 Application to Loch Lomond

2.5.1 Imputed Values

Table 2.3 summarizes the mean square errors for each of the imputation ap-

proaches for temperature and log chlorophylla. The lowest mean squares errors

for temperature and log chlorophylla in both basins are given by the second ap-

proach and so, the imputed values from the harmonic model are used to replace

the missing temperature and log chlorophylla measurements.

Approach Temperature Log chlorophylla
North South North South

1 3.91 4.12 0.22 0.35
2 2.71 2.83 0.06 0.12
3 3.14 3.43 0.13 0.20
4 2.91 3.12 − −

Table 2.3. Comparison of the Mean Square Errors of different imputation ap-
proaches on temperature and log chlorophylla.

2.5.2 Modelling on Temperature and Log chlorophylla

Figures 2.3 and 2.4 present the models for temperature for the north (left) and

south (right) basins. The fitted models are displayed and the points represent

the measurements including the imputed values. Generally, the fitted models for
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temperature are very similar for each modelling approach.

Fitted Model 1 for the north and south basins are defined in equations 2.29 and

2.30, respectively, and they are illustrated in Figure 2.3 (top). The standard error

for each coefficient is marked in parentheses underneath the coefficient. There is

evidence of positive trend in the north but no trend in the south basin, indicating

a rise in temperature in the north but no statistically significant change in temper-

ature in the south basin during 1987 - 2005. The amplitude of the seasonal cycle

in the south is slightly larger than the north basin, suggesting higher variability

in temperature is exhibited in the shallower basin. The adjusted coefficients of

determination of the models with respect to the north and south basins are 58.4%

and 71.9%, indicating that a moderate percentage of temperature variability is

explained by the trend and seasonality terms in both basins. The models indi-

cate an increase of temperature in the north basin of approximately 1.6oC and

no increase in the south basin.

temp(t) = 9.43 + 0.007t− 5.12cos

{
2π

(
t− 45.47o

12

)}
(2.29)

(0.42) (0.003) (0.29) (0.10)

temp(t) = 10.28− 6.00cos

{
2π

(
t− 44.59o

12

)}
(2.30)

(0.17) (0.25) (0.07)

Figure 2.3 (centre) shows Model 2 where smooth trends and constant seasonal



CHAPTER 2. TRENDS, SEASONALITY AND RELATIONSHIPS 43

patterns are exhibited in both basins. The smooth trend rises gradually in the

north whilst it is approximately constant in the south basin. Figure 2.3 (bottom)

displays Model 3 with varying trends and small changes in seasonal patterns

which are more apparent in the north than in the south basin. The temperature

in the north increases slowly over the year, however, an approximately constant

temperature is evident in the south basin.

Figure 2.4 (top) shows Model 4 where the varying trend in the north rises gradu-

ally but there is an approximately constant temperature in the south basin. The

varying seasonal pattern in the south is almost constant but larger than that in

the north basin. Figure 2.4 (centre) shows Model 5 where smooth trends and

constant seasonal patterns are apparent in both basins. The smooth trend in-

creases gradually in the north whilst no clear changes in trend are highlighted in

the south basin. Figure 2.4 (bottom) shows Model 6 in which the smooth trends

highlight a small increase from 1995 until middle of the period and starting to

decrease up to 2005 in both basins.

For log chlorophylla, all of the fitted models for the north and south basins are

shown in Figures 2.5 and 2.6. The fitted models and points represent the fitted

values and measurements including imputed values, respectively. The differences

between the fitted models are very small and from the pictures, Model 1 appears

to represent the data as well as the others.

Model 1 for the north and south basins is defined in equations 2.31 and 2.32 and

is depicted in Figure 2.5 (top). There is evidence of positive trends and constant

seasonal patterns in both basins, indicating the rise of log chlorophylla with an
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annual cycle from 1987-2005. The amplitude of the seasonal pattern in the north

is relatively larger than the south basin, indicating a higher variability in log

chlorophylla in the deeper water of the north basin. The adjusted coefficient of

determination of the models with respect to the north and south basins are 64%

and 23%, showing that a moderate variability of log chlorophylla is explained by

the explanatory variables for the north basin whilst considerably lower variability

is apparent in the model for the south basin.

log(chla)t = −0.33 + 0.002t− 0.41cos

{
2π

(
t− 63.54o

12

)}
(2.31)

(0.03) (0.0002) (0.02) (0.11)

log(chla)t = 0.09 + 0.002t− 0.18cos

{
2π

(
t− 49.26o

12

)}
(2.32)

(0.03) (0.0002) (0.02) (0.31)

Figure 2.5 (centre) shows model 2 where smooth trends and constant seasonal

patterns are exhibited in both basins. The smooth trends in both basins increase

from 1987-1998 but become approximately constant from 2002-2005. Figure 2.5

(bottom) displays Model 3 which highlights an increase of levels over time in both

basins. Similar seasonal patterns are clearly shown in the north than in the south

basin from 1987-1998, however, differences in seasonality between 2002 and 2005

in both basins are apparent.
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Figure 2.6 (top) shows Model 4 where the varying trends slightly increase in both

basins. A constant seasonal pattern is highlighted in the north whilst in the south

basin, a change in the seasonality is observed from 1987-1998 but this become

more constant from 2002-2005. Figure 2.6 (centre) shows Model 5, with similarity

in smooth trends and constant seasonal patterns evident in both basins. Figure

2.6 (bottom) shows Model 6 in which the smooth trends gradually increase in

both basins. In the north basin, the seasonal pattern is approximately constant

from 1987-1998 but tends to change in the latter part (2002-2005) of the periods.

Conversely, the seasonal pattern in the south gradually changes in the first part

of the period (1987-1998) but then become more constant from 2002-2005.
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Figure 2.3. Fitted models of surface water temperature from 1987 - 2005 via
Model 1 (top), Model 2 (centre) and Model 3 (bottom) for the north (left) and
south (right) basins.
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Figure 2.4. Fitted models of surface water temperature from 1987 - 2005 via
Model 4 (top), Model 5 (centre) and Model 6 (bottom) for the north (left) and
south (right) basins.
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Figure 2.5. Fitted models of log chlorophylla from 1987 - 2005 via Model 1
(top), Model 2 (centre) and Model 3 (bottom) for the north (left) and south
(right) basins.
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Figure 2.6. Fitted models of log chlorophylla from 1987 - 2005 via Model 4
(top), Model 5 (centre) and Model 6 (bottom) for the north (left) and south
(right) basins.
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2.5.3 Comparison of Models of Temperature and Log Chloro-

phyll

Tables 2.4 and 2.5 show the residual sum of squares (RSS) and degrees of freedom

(df) for different models of temperature and log chlorophylla, respectively. The

lowest RSS is produced by fitted Model 5 for temperature for both basins but for

log chlorophylla, the fitted Models 4 and 5 provide similarly low RSS. A formal

statistical comparison is essential to determine the most appropriate model. In

particular, the approximate F-test is required to show any evidence of parametric

trend and seasonality in temperature over the year whilst for log chlorophylla,

the smooth trend and seasonality for 19 years needs to be investigated.

The approximate F-test allows a comparison between a complex and simple

model, with the lower and higher RSS, respectively. For temperature in the

north and south basins, Model 5 shows the lowest RSS followed by Models 4 and

1, suggesting that they are the only models that can be reasonably compared.

Similar models can be compared for log chlorophylla in the north basin, how-

ever, a greater number of models for log chlorophylla in the south basin can be

compared.
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Model RSS df

North South North South

1 2135.26 1593.57 224 224
2 2497.24 2116.55 222.8 222.8
3 2506.41 2121.78 221.1 221.1
4 2049.82 1544.76 217.7 217.7
5 1924.41 1451.84 217.00 217.1
6 2249.99 2273.98 215 215

Table 2.4. Residual Sum of Squares (RSS) and degree of freedoms (df) of
different models of temperature for the north and south basins.

Model RSS df

North South North South

1 10.61 18.49 188 188
2 14.47 18.56 187.3 187.3
3 14.02 18.00 186.6 186.6
4 10.02 17.80 181.8 181.8
5 10.06 17.84 181.3 181.1
6 10.80 18.38 179 179

Table 2.5. Residual Sum of Squares (RSS) and degree of freedoms (df) of
different models of log chlorophylla for the north and south basins.

The approximate F-statistic and its p-values for models of temperature and log

chlorophylla are tabulated in Tables 2.6 and 2.7, respectively. The results in Table

2.6 show the appropriateness of Model 5 to explain the variability of temperature

in the north and south basins. Table 2.7, however, shows evidence of a para-

metric trend and constant seasonal pattern for log chlorophylla for both basins,

highlighting the appropriateness of the harmonic model (Model 1) to explain the

variability of log chlorophylla from 1987-1998 and 2002-2005.

The above results show that the additive model appears to be the most appro-

priate for temperature whilst the harmonic model with positive trend is more

appropriate for log chlorophylla.
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Model F-value p-value

North South North South North South

1 and 4 1 and 4 1.45 1.09 0.152 0.370
1 and 5 1 and 5 3.39 3.02 0.01 0.030

Table 2.6. The approximate F-test for the models of temperature for the north
and south basins.

Model F value p-value

North South North South North South

1 and 4 1 and 3 1.73 3.17 0.1163 0.078
− 1 and 4 − 1.13 − 0.346
− 1 and 5 − 0.98 − 0.457
− 1 and 6 − 0.11 − 0.988

Table 2.7. The approximate F-test for the models of log chlorophylla for the
north and south basins.

The assumptions of linearity and constant variance of the residuals from the ad-

ditive models of temperature in both basins are checked. For illustration, the

diagnostic plots for the north basin are illustrated in Figure 2.7. The plot of the

residuals against fitted values (top left) highlights linearity and constant variance

of the residuals whilst the plots of acf (top right) and pacf (bottom left) suggest

no correlation structure of the residuals since the correlation coefficients lie within

the 95% confidence intervals (horizontal dashed lines).

Similarly, the assumptions of linearity and constant variance of the residuals are

checked for the harmonic model of log chlorophylla in both basins. Additionally,

the normality plot is produced to determine the distribution of the residuals from

the parametric model 1. The diagnostic plots of the residuals for model 1 in the

north basin are displayed in Figure 2.8. The plot of residuals (top left) suggests
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the linearity and constant variance of the residuals and the plots of acf (top right)

and pacf (bottom left) suggest no correlation structure for the residuals. The nor-

mality plot (bottom right) suggests that the residuals are normally distributed.

Similar results are given for temperature and log chlorophylla in the south basins,

satisfying the model assumptions.

Figure 2.7. Diagnostic plots for the additive model of temperature (model 5)
for the north basin.

Hence, the additive models for temperature in both basins are defined in equation

2.33, respectively, whilst the harmonic models of log chlorophylla for the north

and south basins are defined in equations 2.31 and 2.32, respectively.

temp = f1(month) + f2(year) + ε (2.33)
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Figure 2.8. Diagnostic plots for the harmonic model of log chlorophylla (model
1) for the north basin.

2.6 Assessing Ecological Relationships

Increasing temperature in lakes may enhance the photosynthesis in the phyto-

plankton (Helmut and Thomas, 2008) and so, the rise of chlorophylla concentra-

tions could be observed. Additionally, changes in phytoplankton abundance is

likely to occur following the rise of nutrients in lakes. For instance, Smith et al.

(1999) shows that the increase of nitrogen (N) and phosphate (P) concentrations

results in the bloom of the phytoplankton community structure in lakes. Since

the previous findings show the evidence of trends and seasonal patterns in log

chlorophylla in the north and south basins of Loch Lomond, it is of interest to

investigate the influence of temperature, nitrate and phosphate in the model of

log chlorophylla.

In the following, the relationships between log chlorophylla and temperature, P

and N are initially explored and their patterns of relationships are used as a basis
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to model log chlorophylla. The correlation structure of log chlorophylla is then

investigated and finally, model testing is carried out via approximate F-tests to

determine the appropriate models for the north and south basins.

2.6.1 Plots of relationships of log chlorophylla on temper-

ature and nutrients.

For illustration, Figure 2.9 displays the plots of relationships between log chlorophylla

and each of temperature, phosphate and nitrate in the south basin. The log

chlorophylla gradually increases as temperature rises up to 10oC and this phe-

nomenon is expected as they are often related naturally. However, the unexpected

decline in log chlorophylla as the temperature continues to increase from 10oC

- 20oC is exhibited and this feature is likely due to unidentified factors. While

an approximate quadratic relationship is shown between the log chlorophylla and

temperature, no clear relationships are highlighted between log chlorophylla and

nitrate or phosphate. Rather, log chlorophylla remains constant as both phos-

phate (top right) and nitrate (bottom left) increase, contradicting the natural

behaviour of their relationships in lakes. The constant relationships may suggest

the inadequacy of the nitrate and phosphate concentrations to reflect the rise of

chlorophyll concentrations naturally.

Higher variability of each of the nutrients on log chlorophylla is also highlighted

in the above plots and so, a natural log transformation is used to stabilize the

variance. Figure 2.10 presents the plots of relationships between log chlorophylla

with each of log phosphate and log nitrate, highlighting greater stability in the

variance of log phosphate compared to the actual measurements. The variability
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Figure 2.9. Plots of the relationships between log chlorophylla and each of
the temperature (top left), phosphate (top right) and nitrate (bottom left) at
Creinch.

of log nitrate, however, is similar to the actual measurements, suggesting that

both the actual and transformed nitrate measurements show no clear differences

in term of their variability with log chlorophylla.

Figure 2.10. Plots of the relationships of log chlorophylla on log phosphate
(left) and log nitrate (right) at Creinch.

2.6.2 Correlation Structure of the Residuals

The previous investigation shows the appropriateness of a harmonic model (Model

1) for log chlorophylla on trend and seasonal pattern for the north and south
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basins. In addition, Figures 2.9 and 2.10 above highlight the approximate quadratic

pattern between log chlorophylla and temperature but no clear patterns are shown

between log chlorophylla and each of log phosphate and log nitrate. A formal

investigation on the influence of all potential predictors on log chlorophylla is

then carried out via a statistical modelling approach. In the initial part of the

modelling strategy, the residuals from a parametric model 2.34 are extracted for

testing the correlation structure in the time series.

log(chla)t = β0 + β1yeart + β2cos

{
2π

(
yeart − θ

12

)}
+

β3tempt + β4temp
2
t + β5log(P )t +

β6log(N)t + εt (2.34)

For illustration, diagnostic plots of the above model for the south basin are shown

in Figure 2.11. The plot of residuals against the fitted values (top left) shows the

linearity and slightly constant variance of the residuals. Both plots of the au-

tocorrelation (top right) and partial autocorrelation (bottom left) highlight that

almost all of the correlations are within 95% confidence intervals. The normality

plot (bottom right) indicates the normality of the residuals is satisfied. Hence,

the diagnostic plots suggest that the residuals are essentially white noise which

is identically and normally distributed with zero mean and constant variance.

Similar results are given in the north basin, highlighting no evidence of correlation

in the residuals time series.
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Figure 2.11. Plot of residuals against fitted values (top left), autocorrelation
(top right) and partial autocorrelation (bottom left) functions of the residuals
and normality plots of the standardised residuals (bottom right), from Model
2.34 at Creinch.

2.6.3 Comparison between Models of Log Chlorophyll on

Temperature and Nutrients

As an alternative to Model 2.34, the nonparametric Model 2.35 of log chlorophylla

is fitted to the log chlorophyll for the north and south basins to allow smooth

functions of each predictors. In particular, this model allows smoothing func-

tions of trend, seasonality, temperature, log nitrate and log phosphate on the log

chlorophyll,

log(chla)t = β0 +m1(yeart) +m2(montht) +m3(tempt)
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+m4{(log(P )t)}+m5{(log(N)t)}+ εt (2.35)

where εt are random errors with zero mean and constant variance. Model 2.35 is

fitted using the gam function in the mgcv library of R. The cubic spline basis is used

to construct weights for year, temperature, log P and log N components whilst

a circular smoother is used for constructing the weights for month. The number

of chosen knots allows a reasonable amount of smoothness for each component

in the additive model 2.35 and results in the approximate degree of freedom of

15 for model 2.35. For illustration, the smooth model for log chlorophyll with its

component functions from model 2.35 are displayed in Figure 2.12.

Figure 2.12. Plot of smooth function of log chlorophyll against each of the
predictors for the south basin.

Models 2.34 and 2.35 are statistically compared using the approximate F-test to

determine the most appropriate model and the results are tabulated in Table 2.8,
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suggesting the appropriateness of Model 2.34 for the north and south basins since

the p-values are greater than 0.05 and hence, no complex model is required.

Model F value p-value

North South North South North South

2.34 and 2.35 2.34 and 2.35 1.364 2.746 0.183 0.100

Table 2.8. The approximate F-test for the models of log chlorophylla on the
year, month, temperature, log P and log N.

Thus, the significance of each predictor in model 2.34 for both basins is deter-

mined using F-test. In particular, the non-significant terms are removed and the

model which consists of only significant predictors is refitted. The appropriate

models of log chlorophylla for the north and south basins are defined in equations

2.31 and 2.36, respectively.

The trend and seasonality are the only significant predictors in the model of log

chlorophylla for the north basin, indicating a similar model as previously fitted

on year and month (equation 2.31). The model indicates that the non-significant

influence of temperature and nutrients on variability of log chlorophylla in the

deeper location of the loch. In the south basin, however, trend, seasonality and

temperature are significant predictors in the model of log chlorophylla. The ad-

dition of temperature in the model results in the increase of information on the

variability of log chlorophyll over the year from 23% (model 2.32) to 33% (model

2.36).

log(chla)t = 0.02(0.11) + 0.002(0.0003)(year)t
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−0.20(0.05)cos

{
2π

(
yeart − 50o(0.21)

12

)}
+0.04(0.01)(temp)t − 0.003(0.0008)(temp)

2
t + εt (2.36)

The diagnostic plots of Model 2.36 for the south basin are illustrated in Figure

2.13, suggesting that the residuals are identically and normally distributed with

zero mean and constant variance. Since all the statistical assumptions for models

of log chlorophylla for both basins are satisfied, they could be used for predicting

phytoplankton in the deeper (north) and shallower (south) locations of the loch.

Figure 2.13. Plot of residuals against fitted values (top left), autocorrelation
(top right) and partial autocorrelation (bottom left) functions of the residuals
and normality plots of the standardised residuals (bottom right), from Model
2.36 at Creinch.
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2.7 Summary

A series of statistical models fitted to temperature and log chlorophylla for the

north and south basins in Loch Lomond highlight constant seasonal patterns for

both sites. Temperature rises smoothly whilst log chlorophylla increases linearly

in both basins.

The analysis of the 19 year temperature time series highlights smooth trends of

temperature in the north and south basins. In general, there is an increase of

temperature in the north but approximately constant in the south basin. There

are no particular large changes over the year for both basins which is quite differ-

ent to the 4-5oC increase proposed by Krokowski (2007). This difference might

be due to the consideration of only a parametric models with trend and using

a complete case analysis, which ignores the missing values in winter in the later

years. Constant and smooth seasonal patterns are exhibited for both basins, sug-

gesting constant annual cycle over the 19 years.

In log chlorophylla, there are increases in the north and south basins of about

0.29 µg/l from 1987 to 1998 and 0.1 µg/l from 2002 to 2005, in broad agreement

(after transformation) with that reported by Krokowski (2007). Constant sea-

sonal patterns are highlighted in both basins for both periods.

The addition of temperature, log nitrate and log phosphate in the time series

models of log chlorophylla leads to the evidence of linear trend and seasonal pat-

tern in the north but for the south basin, the evidence of temperature, linear
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trend and seasonal pattern are observed. The changes in temperature have sig-

nificant impact on the bloom of phytoplankton in the south basin. Nitrate and

phosphate appear to be in significant in the north and south basins, suggesting

that they are not part of the primary controls on the changes of log chlorophylla.

As an implication, it is likely that eutrophication has not occurred in the north

and south basins for 19 years, indicating a good quality water can be obtained

from the loch.



Chapter 3

Temporal Temperature Patterns

with Depth

3.1 Introduction

The investigation of temporal patterns in surface temperature in Loch Lomond

is extended by considering temperature data from thermistor chains with a mod-

erate temporal frequency of 1 and 3 hourly data, at 11 different depths. The

investigation of higher frequency temperature data, recorded at several locations

and at different depths in the loch may provide further insights into any apparent

changes in ecological processes. Two questions of interest are as follows:

• Are changes in temperature over time consistent at different depths and

different sites in the loch?

• How does the temperature profile stratify with depth?

64
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For the first question, a statistical model is an appropriate way to explain the

mean change in temperature over the year at different depths.

For the second question, the temperature profiles with depth for each time point

over the year may have particular patterns and therefore, a certain prominent

and natural feature in the lake could be identified (that of a thermocline).

A well known natural phenomenon that occurs within most lakes during the sum-

mer is the development of temperature stratification. Conversely, no apparent

deposition of layers in lakes appears over winter. The stratification of temperature

in the water column in summer results in different characteristics of temperature

profiles with depth over time. In particular, the temperature profiles with depth

in summer, can be essentially viewed as a smooth and continuous curve with two

bends of different degrees of curvature as illustrated in Figure 3.1 (Victor and

Robin, 2005). The two bends divide the profile into 3 zones, which are an upper

warmer zone, an intermediate zone and a bottom colder zone which are known as

epilimnion, metalimnion and hypolimnion, respectively. The upper stratum (the

epilimnion) is more or less uniformly warm, circulating and fairly turbulent. The

lowest stratum (the hypolimnion) is relatively calm and cold. The metalimnion

exhibits a marked thermal discontinuity. The metalimnion is defined as ’the wa-

ter stratum of steep thermal gradient, bounded by the intersections of the nearby

zones i.e. epilimnion and hypolimnion’ (Wetzel, 2001).
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Figure 3.1. Thermal stratification in lakes during summer season

Early analysis by Ricker (1937) and Hutchinson (1937) has shown that the heat-

ing of a stratified lake is a result of several factors such as solar radiation, turbu-

lent conduction and biological processes. The radiation and turbulence from the

epilimnion transfers the heat to the strata underneath, particularly in warmer

periods of the year (Imberger and Patterson, 1990). The heat conduction in the

epilimnion and metalimnion decreases as the stratification process reaches com-

pletion. In hypolimnion, the heat conduction is very small, resulting from the

biological oxidation during decomposition process in lakes (Wetzel, 2001).

The above process is often referred to as the formation of the thermocline with its

conceptual basis extensively discussed by Hutchinson (1957). According to widely

accepted limnological convention, the thermocline is defined as an imaginary

plane located at the depth where the rate of change of decrease (temperature
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gradient) in the temperature profile is maximum (Victor and Robin, 2005). This

phenomenon is depicted in Figure 3.2, where the thermocline plane is somewhere

in between the mixed layer and deep water. Mathematically, the thermocline

depth is the inflection point of the temperature curve with depth where the

temperature gradient changes sign of second derivatives (Victor and Robin, 2005).

Figure 3.2. The thermocline zone in the water column

Therefore, the objectives of this chapter are twofold:

• to model the temperature over time with depth at different sites in the loch.

• to investigate the position of the thermocline since it partitions the wa-

ter column into two strata with different biological and chemical features,

reflecting the ecological process in lakes.
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3.2 Data

The study is carried out on thermistor data which consist of temperature mea-

surements at four different sites in Loch Lomond. The temperature was recorded

at 3-hourly intervals at 11 different depths, from 1 September 2002 until 31

August 2003, at Cailness (north basin), Creinch (south basin) and Ross Point.

From 17 April 2008 to 27 May 2009, 1-hourly temperature measurements (oC)

were recorded at 11 different depths in the mid basin. Each of these sites has

different depths of temperature measurements.

The data of 3-hourly temperature measurements were supplied by the Scottish

Centre for Ecology and the Natural Environment (SCENE) whilst the 1-hourly

temperature measurements were contributed by the Scottish Centre for Ecology

and the Natural Environment (SCENE) and Prof. Susan Waldron from the Uni-

versity of Glasgow.

3.3 Exploratory Analysis

The hydrological year is a 12-month period, usually selected to begin and end

during a relatively dry season and used as a basis for processing streamflow and

other hydrological data. The periods from September - August or October -

September are often used in Britain to represent the hydrological year. Since the

temperature in the loch could be influenced by hydrological events, the patterns

of 3-hourly temperature measurements over the hydrological year, with depths,

at Cailness, Creinch and Ross Point are explored. The plots of temperature over
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the hydrological year at different depths are used to provide an early impression

of the temperature profiles. The occurrence of different patterns in temperature

over the year at different depths may highlight different features down the depth

profile of the loch.

Figures 3.3 and 3.4 show the temperature pattern over the hydrological year at

different depths at Cailness, Creinch and for the lower and upper chains of Ross

Points, respectively. The depths vary between sites and some of the measure-

ments are missing.

In the north basin (Figure 3.3) (top), the temperature shows strong patterns in

the shallower depths while at greater depths, the temperature exhibits only a

weak fluctuation. These characteristics might be due to constant solar radiation

over the surface water, resulting in heat transfer via a conduction process down

to a certain depth. However, the deeper water only gains heat from the upper

layer as it is not directly affected by the solar radiation and therefore, remains

cooler with less variability.

In the south basin (Figure 3.3) (bottom), the temperature shows a strong pattern

at each depth. This might be due to the fact that the south is shallower than

the north basin and therefore, the patterns of the temperature at all depths do

not change much since all depths could be affected by a similar amount of heat

transfer from radiation and so, the temperature profile at a series of depths seems

very similar.
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The lower chain of Ross Point (Figure 3.4) (top) and upper chain of Ross Point

(Figure 3.4) (bottom) highlight similar step functions in the temperature pat-

tern. The strange pattern is mostly likely due to instrumental problems and so,

no further analyses are carried out for this site.

Figure 3.5 shows an alternative view of the temperature patterns over the year,

with depths in the north (top) and south (bottom) basins. The red and green

curves represent the measurements in 2002 and 2003, respectively. In the north

basin, there is an apparent difference in the variability of the temperature pat-

tern for each depth from September to November 2002 and April to August 2003.

However, the temperature pattern for each depth exhibits less variability from

December 2002 - March 2003. This is due to the fact that heat conduction, begin-

ning from the water surface down the depth profile is not largely affected by the

radiation process and so, the conduction rate from the top down to the bottom

of the lake slowed considerably. The depth profile indicates weak heat conduc-

tion. In the south basin, the variability of the temperature pattern with depth

is similar from September 2002 - May 2003 and starts to diverge thereafter. The

similarity of the temperature over these months, with depth, could be a result of

similar heat conduction from solar radiation over the surface down to 12 metres

depths. A slightly difference in the variability of temperature over the remaining

months could be reflected by the continuous solar radiation in a longer daylight

period.
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Figure 3.3. The 3-hourly temperature measurements over the year (1 Sept 2002
- 31 August 2003) with depths, in the north (top) and south (bottom) basins
with the red and green curves represent the measurements in 2002 and 2003,
respectively.
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Figure 3.4. Series of 3-hourly temperature measurements (1 Sept 2002 - 31
August 2003) with depth, at lower chain (top) and upper chain (bottom) of Ross
Point with the red and green curves represent the measurements in 2002 and
2003, respectively.
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The temperature pattern over the year in the loch could be naturally described by

a seasonal pattern. However, since the temperature measurements in the north

and south basins are recorded in only one year period, the temperature patterns

over the year are approximately quadratic for most of the depths, despite unclear

patterns for the depths closed to the bottom of the water body in the north basin.

Hence, the temperature measurements throughout the year at the deeper (north)

and shallower (south) locations in Loch Lomond can be modelled, accordingly.

A greater variability in the temperature profile is exhibited over the warmer

months in 2002 and 2003 in the north than the south basin. Such a feature may

suggest the development of the thermocline in the north basin but this natural

feature in lakes could not be identified graphically in the south basin. This is

highly likely due to the fact that the thermocline is only developed in deep wa-

ter over the warmer months and so, the south basin which is shallower, is not

given much attention for further exploration and investigation of the thermocline.
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Figure 3.5. The 3-hourly temperature measurements at 11 different depths in
the north (top) and south (bottom) basins from 1 September 2002 to 31 August
2003.



CHAPTER 3. TEMPORAL TEMPERATURE PATTERNS WITH DEPTH75

Table 3.1 shows the summary for temperature for the north and south basins.

Since the possible number of measurements for each depth is 2920, 44 and 15

measurements are missing in the north and south basins, respectively. The 1.5%

and 0.5% missing values with respect to the north and south basins represent

a sufficiently small percentage of unobserved measurements that they may have

little effect on the model and so, imputing the missing values is not required. The

lowest and highest values of the sites are observed at Creinch, indicating that the

shallow water body keeps and releases more heat in summer and winter, respec-

tively, than the deep water body (north). As expected, the average temperature

in the south is higher than the north basin.

Site Sample for each depth Minimum Maximum Mean

North 2876 5.30 18.50 7.80
South 2905 3.90 19.50 10.30

Table 3.1. Summary statistics for the temperature measurements in the north
and south basins from 1 September 2002 to 31 August 2003.

Correlation Structure

The correlation structures of the residuals over the time period for each depth

in the north and south basins are explored. Observations at different depths for

a given time are assumed independent since there are only 11 observations for

each time point. The temperature considered at a given depth features a diurnal

pattern and so, a moving average of order 8 is used to remove the daily pattern.

A moving average is a smoothing technique that allow a clear view of the trend

of a time series. It could be used to remove the periodic fluctuation and random
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noise variation within time series (Spyros et al., 1997).

The moving average (MA) of order m is defined as zi in equation 3.1,

zi =
i∑

j=i−(m−1)

yj
m

; j = m,m+ 1, . . . , n (3.1)

where n is the number of observations, yj is the temperature at jth time point

and zi is the ith moving average.

Since there are 8 sets of 3 hours measurements for each day in the north and

south basins, the diurnal pattern is removed using m = 8 and hence, the first

value of the MA(8) is defined as z1 in equation 3.2,

z1 =
8∑
j=1

yj
8

(3.2)

Each of the temperature measurements could be denoted by a model for temper-

ature over the time period with a quadratic trend and diurnal pattern at a given

depth for each of the north and south basins (equation 3.3),

yi = β0 + β1ti + β2t
2
i + γ cos

{
2π (ti − θ)

p

}
+ εi; i = 1, 2, . . . , n (3.3)

where yi is the ith measurements, ti is the ith time, p is the number of measure-

ments in 24 hours and n is the number of measurements in the time series. The

use of moving average of order 8 on a series of temperature measurements (model
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3.3) results in equation 3.4.

zi = β0 + β1ti + β1t
2
i + εi; i = 8, 9, . . . , n (3.4)

A modified series which consist of the random noise and diurnal cycle components

are extracted by subtracting the new value of the moving average (equation 3.4)

from the actual measurements (equation 3.3) and is defined in equation 3.5.

yi − zi = γ cos

{
2π (ti − θ)

8

}
+ εi (3.5)

The above method may have implications for autocorrelation in the modified se-

ries and so, 9 values of y1, y2, . . . , y9 from a Normal distribution with zero mean

and constant variance are generated. The moving average of order 8 is applied

on this series resulting to two moving average values z1 and z2, and the differ-

ence between each of these moving average values and the actual values from

the previous Normal distribution are computed. The correlation between the

two differenced values are determined. The above process is repeated for 10000

times and the mean of the correlation for the modified series are determined.

The results shows a low correlation of -0.10, indicating the appropriateness of

this method to reduce the correlation in the modified time series.

Plots of autocorrelation and partial autocorrelation functions of the residuals af-

ter deseasonalizing are used to highlight any possible correlation structures for

both basins. The 95% confidence intervals of the correlations for both functions

are also displayed and the correlation structure is identified.
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Figures 3.6 and 3.7 show the autocorrelation functions (acf) for the deseasonalised

residuals for each depth in the north and mid basins. The acfs for both basins

exhibit an exponential decreasing pattern, suggesting the appropriateness of an

Autoregressive (AR) model for the correlation structure of the residual series.

The evidence of correlation at lags one and two for each depth is apparent in the

north. In the south basin, the significant correlation is highlighted at lags one,

two and three. The low correlation at lags two and three in the north and south

basins, respectively, indicate that the linear relationships of the deseasonalised

residuals with respect to 6 and 9 hour time shifts are weak and so, they could be

ignored. The pacf for the deseasonalised residuals at each depth for the north and

south basins are displayed in Figures 3.8 and 3.9, respectively, showing a cut-off

after lag 1. The acf suggests the appropriateness of AR(1) and AR(2) models for

the north and south basins, respectively. The pacf for the deseasonalised residuals

suggests similar AR(1) model for the north basin but contradicts the models of

residuals for the mid and south basins resulting from the acf. Since the errors

in real environmental time series are often and reasonably defined by the AR

process, the AR(1) and AR(2) models for deseasonalised residuals for the north

and south basins could be plausible for the error structures to be incorporated in

the further modelling.
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Figure 3.6. The acf of the deseasonalised residuals for 11 different depths in the
north basin
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Figure 3.7. The acf of the deseasonalised residuals for 11 different depths in the
south basin
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Figure 3.8. The pacf of the deseasonalised residuals for 11 different depths in
the north basin
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Figure 3.9. The pacf of the deseasonalised residuals for 11 different depths in
the south basin
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The apparent differences between the two basins suggest it is worth exploring the

temperature measurements in the mid basin.

Table 3.2 shows the summary of temperature in the mid basin. The possible

number of measurements for each depth from 17 April 2008 - 27 May 2009 is

9719, indicating 622 missing values. However, the incomplete data sets, with

approximately 6.7% missing at each depth is fairly small and so, imputed values

are not necessary for modelling the temperature over the time period. The min-

imum and maximum values are 1.5oC and 19.8oC, and the mean temperature

is 8.36oC. The mean temperature in the mid basin is lower than the south but

slightly greater than the north basin as expected. However, the lowest tempera-

ture observed in the mid basin compared to much shallower (south) and deeper

(north) locations of the loch is unexpected and is likely due to an error in the

measurements.

Sample for Each Depth Minimum Maximum Mean

9097 1.50 19.80 8.36

Table 3.2. Summary statistics for the temperature measurements in the mid
basin from 17 April 2008 - 27 May 2009.

Figure 3.10 shows the temperature patterns over the year, with depths, in the

mid basin. The variability of the temperature for each depth could be distin-

guished in the warmer months from April - October 2008 and March - May 2009.

Conversely, the temperature for each depth in the colder months displays similar

variability from November 2008 - February 2009. Since the mid basin is predom-

inantly a deep water body, the thermocline development is likely to be identified

in summer.
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Figure 3.10. The 1-hourly temperature measurements at 11 different depths in
the mid basin from 17 April 2008 - 27 May 2009.

The data from the mid basin is then explored for the occurrence of any correla-

tion structure of the deseasonalised residuals. Firstly, the 1 hourly temperature

measurements are aggregated to 3 hourly values to allow adequate comparison

with the previous two basins and the moving average of order 8 is used to re-

move the diurnal cycle. The same lag of time between two adjacent measurements

may allow consistent description of the correlation structure of the deseasonalised

residuals for each basin.

Figures 3.11 and 3.12 show the acf and pacf for the deseasonalised residuals at

each depth in the mid basin. The acf for each depth exhibits an exponential decay

pattern, suggesting the appropriateness of an Autoregressive (AR) model for the

correlation structure. The evidence of the correlation at lags one, two and three

are noticeable, however, the low correlation at lag three indicates the weak linear
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relationships of the residuals separated by 9 hours time shift and so, they are

not given much attention. The pacf, on the other hand, does not match the acf.

However, the AR(2) model for the deseasonalised residuals could be a reasonable

error structure as it provide more meaningful explanation on the relationships of

the residuals, ecologically.

While the small percentage of missing values in the north and mid basins may not

affect the fitted model of temperature over the year very much, with depths, such

missing values may greatly affect the estimates of the thermocline since only 11

temperature measurements are recorded with depths at each time point. This is

due to the fact that the missing values at particular depths may result in a large

uncertainty in the estimates of the positions of the thermocline. Hence, complete

data sets are required to achieve the second objective and the imputation of the

missing values in the north and mid basins are carried out via appropriate ap-

proaches as follows.

For the north basin, the missing values are imputed by substituting the mean of

the temperature measurements at the same time on the day before and after the

missing observation.
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Figure 3.11. The acf of the deseasonalised residuals for 11 different depths in
the mid basin
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Figure 3.12. The pacf of the deseasonalised residuals for 11 different depths in
the mid basin
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For the mid basin, the number of missing data in summer and autumn are smaller

than in winter. Since a small number of missing data occurs in summer and au-

tumn, the same imputation technique as in the north basin is used whilst a differ-

ent imputation techniques is applied to the winter. In winter, a harmonic model

is fitted to the temperature measurements over the time period for each depth

since a natural sinusoidal pattern is observed over the year from the exploratory

plots. The amplitude of the harmonic patterns at each of 1 to 15 metres from

the surface is larger than those below 15 metres and so, two harmonic models

with different sizes of amplitude are fitted. Since the missing values occur in the

mid winter, the observed temperature measurements in this season are divided

into two parts, before and after the period of the missing data. The mean of

the observed temperature measurements in winter is added to each of the fitted

values within the period of missing data in mid winter. For the missing data at

depths below 15 metres, however, the same imputation method as used in the

north basin is carried out.

The random errors generated from a normal distribution with zero mean and

constant variance are then added to each of the imputed values from the north

and mid basins.

Scatter plots of depth against temperature at each of the time points grouped

by month, are used to obtain an initial impression of the temperature profiles

with depth, in the water column. A large change in temperature between two

contiguous depths may indicate the thermocline.

Figures 3.13 and 3.14 depict scatter plots of the depth(m) against 3-hourly
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temperature(oC) measurements in each month, in the north and mid basins,

respectively. The approximate constant temperature with depth is portrayed

over the colder months in both basins, highlighting no particular feature in the

water column.

The temperature profiles with depth in the north basin are constant from Decem-

ber 2002 to March 2003 and appear to follow a linear pattern, whilst a similar

feature in the temperature profile is also shown in the mid basin from November

2008 to February 2009. Conversely, non constant temperature profiles with depth

are shown in the remaining months of the year in both basins. The non constant

temperature profiles with depth appear to highlight some features in the data

measurements as described below. In particular, the quadratic and cubic pat-

terns in the temperature profiles with depth in the warmer months may suggest

the development of the thermocline.

In the north basin, the approximate cubic pattern of temperature with depth is

shown from September - November 2002. The approximate quadratic pattern of

the temperature with depth (Figure 3.13) is more apparent from April to August

in the following year. The thermocline may appear at the positions of 11 and 26

metres below the water surface in the north basin.

In the mid basin (Figure 3.14), both linear and quadratic patterns are evident

from April - May 2008 whilst a combination of quadratic and cubic patterns

are shown in June 2008. The approximate cubic pattern seems plausible for the

temperature pattern with depth from July to October 2008. It is likely that the

thermocline is developed between 10 and 30 metres below the surface. However,
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no specific pattern is highlighted from March to May 2009. Such a pattern may

suggest different features in the water column, however, the apparent tempera-

ture changes between 5 and 20m below the surface is likely due to an unexpected

ecological disturbance.

Figure 3.13. Scatter plots of depth(m) against temperature(oC) at each time
point, grouped by month, for the north basin.
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Figure 3.14. Scatter plots of depth(m) against temperature(oC) at each time
point, grouped by month, for the mid basin.
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Finally, a contour plot of temperature across depth and year, with a contour

step of 1oC, is also displayed to show the entire temperature profile and the pos-

sibility of the formation of the thermocline. The contour plots of temperature

for the north (top) and mid (bottom) basins are shown in Figure 3.15, with a

contour step of 1oC, highlighting the homogeneous temperature in the water col-

umn between December 2002 and March 2003, and between December 2008 and

February 2009, respectively, but greater changes are evident in the other months.

Areas of sharp temperature gradients, which are shown by several contours close

to each other, may indicate the position of the thermocline. In the north basin,

this feature is observed from September to November 2002 at about 16 - 26 me-

tres from the surface and at the shallower levels of less than 16 metres down the

depth profile from June - August 2003. In the mid basin, such a characteristic

is exhibited at approximately 25 metres down the depth profile from May - Oc-

tober 2008, and between 10 and 20 metres down the depth profile from March

to May 2009. However, the sharp temperature gradient in 2009 may suggest a

different characteristic in the water body due to a similar degree of temperature

as highlighted by indistinct colours.
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Figure 3.15. Contour plot of temperature across depth and year for the north
(top) and mid (bottom) basins.
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3.4 Methods

The first question of interest is answered by fitting a linear mixed-effects model

to the temperature over the year, with depth, in the north and south basins

(September 2002 - August 2003) and mid basin (17 April 2008 - 27 May 2009).

Model comparison is carried out to determine the appropriate model for each

basin.

For the second question, three approaches are used to investigate the possible

position of the thermocline development in the north and mid basins from 1 Sept

2002 - 31 August 2003 and 17 April 2008 to 27 May 2009, respectively; the max-

imum relative rate of change of the temperature curve, changepoint regression

and estimation of the derivative of a smooth temperature curve.

The details of the above approaches are as follows:

3.4.1 Linear Mixed-Effects Model

A general representation of a linear mixed-effects model is defined in equation

3.6.

yij = Xijβ + Zijbj + εij;

 i = 1, 2, . . . , n time points

j = 1, 2, . . . ,m levels of a grouping factor
(3.6)

bj ∼ N(0, D), εij ∼ N(0,Σ)
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where yij is a matrix of response at the ith time point and jth level, Xij is

(Xij1, Xij2, . . . Xijp) is the design matrix for p fixed effects at ith time point

and jth level of the grouping factor, β = (β0, β1, . . . , βp−1)
T denotes the vec-

tor corresponding to the (p − 1) fixed effects, Zij = (Zij1, Zij2, . . . , Zijq) is the

design matrix for q random effects at ith time point and jth level of the group-

ing factor, bj = (bj1, bj2, . . . , bjq) is the vector of random effects at jth level and

εij = (ε1j, ε2j, . . . , εnj)
T is the vector of random error at ith time point and jth

level

Now having defined the linear mixed-effects model, the appropriate explanatory

variables are determined prior to fitting the mixed model. Plots of temperature

over the time period at different depths (Figure 3.3) indicate that a model of

temperature over the year with a quadratic pattern (equation 3.7) could be ap-

propriate at most of the depths j in the north and south basins. The plot of

temperature across the year for each depth in the mid basin (Figure 3.10), how-

ever, indicates the adequacy of a cubic pattern to be incorporated in the model

of temperature over the year (equation 3.8),

yi = βo + β1ti + β2t
2
i + εi (3.7)

yi = βo + β1ti + β2t
2
i + β3t

3
i + εi (3.8)

where yi is the temperature at time ti, βo, β1, β2 and β3 are fixed effects and εi

are random errors which follow a particular correlation structure. Equations 3.7
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and 3.8 allow a separate temperature-time model for each of the depths. The

incorporation of the temperature-time model for all depths results in fitting the

linear mixed effects model. Hence, the linear mixed effects Model 3.9 is fitted for

the north and south basins whilst Model 3.10 is fitted to the temperature in the

mid basin,

yij = β0 + β1tij + β2t
2
ij + b0j + b1jtij + b2jt

2
ij + εij (3.9)

yij = β0 + β1tij + β2t
2
ij + β3t

3
ij + b0j + b1jtij + b2jt

2
ij + b3jt

3
ij + εij (3.10)

where i is the time point, j is the level of depth, yij and tij denotes vector of

temperature measurements and time at ith time point and jth level, respectively,

βo, β1, β2 and β3 are fixed effects, boj, b1j, b2j and b3j are random effects for depth

j and εij are random errors at ith time point and jth level. The reason for in-

corporating all the random effects boj, b1j, b2j and b3j corresponding to the fixed

effects βo, β1, β2 and β3 is due to the fact that the coefficients in the model may

change with depth.

The following are the details of the linear mixed effects model as explained by

Pinheiro and Bates (2000). The random effect, bj and the random error, εij are

assumed to be identically and normally distributed with zero mean and variance-

covariance D and Σ, respectively. In the simple case, the variance-covariance of

the random error at any level j, Σj is assumed to be σ2I as follows
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Σj = σ2



1 0 . . . 0

0 1 . . . 0

...
... 1

...

0 0 . . . 1


and the variance-covariance matrix of the random effect D at all levels j is as

follows.

D =



d211 d12 . . . d1q

d21 d222 . . . d2q
...

...
. . .

...

dq1 dq2 . . . d2qq


The likelihood maximised of the parameters β, D and Σ is formed from the

marginal distribution of yij, where yij is identically and normally distributed

with mean Xijβ and variance Vj, yij ∼ N(Xijβ, Vj) where Vj is a covariance

matrix and yij has a marginal Normal distribution with mean Xijβ and variance

Vj. The estimate of Vj is defined by V̂j = ZijD̂jZ
T
ij + Σ̂ij, which incorporates the

variance from random errors and random effects.

The log likelihood of the marginal distribution of yij is defined in equation 3.11,

li = −1

2
(yij −Xijβ)TV −1j (yij −Xijβ)− 1

2
log |Vj| (3.11)

where |Vj| denotes the determinant of Vj. In fact, given the variance-covariance

matrices D and Σ, the maximum likelihood estimator of β can be computed by
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using the best linear unbiased estimator (BLUE) as defined in equation 3.12.

β̂ = (
m∑
i=1

(XT
ijV

−1
j Xij)

−1)(
m∑
i=1

(XT
ijV

−1
j yij)) (3.12)

The components of the random effects, bi are needed to predict a future response

and can be predicted using the best linear unbiased prediction (BLUP), as defined

in equation 3.13.

b̂ij = D̂ZT
ij V̂
−1(yij −Xijβ) (3.13)

Pinheiro and Bates (2000) show that the profile log likelihood function of the

variance-covariance matrices D and Σ is produced by substituting the BLUE of

β from equation 3.12 into the log likelihood of the marginal distribution (equation

3.11) and the variance components can be obtained by maximizing this profile

log likelihood. A restricted maximum likelihood estimator (REML) method is

preferred as the maximum likelihood method tends to underestimate the variance

components (Pinheiro and Bates, 2000).

Optimization of the profile log likelihood of a linear mixed-effects model is typi-

cally done by the use of EM iterations or via Newton-Raphson iterations (Laird

and Ware (1982); Lindstrom and Bates (1988); Longford (1993)). The EM al-

gorithm (Dempster et al., 1977) is a popular iterative algorithm for likelihood

estimation in the presence of incomplete data, however, the Newton-Raphson al-

gorithm (Thisted, 1988) is one of the most widely used optimization procedure.

The previous exploration of the deseasonalised residuals suggest particular error
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structures for the north, mid and south basins. In particular, the AR(1) corre-

lation structure for εij is incorporated in the model for the north whilst AR(2)

error structure is used for the mid and south basins. The lme function from nlme

library in R (Pinheiro and Bates, 2000), is used for fitting the linear mixed-effects

models 3.9 and 3.10.

Linear mixed-effects models are used here since they have widely been used in

environmental studies when repeated measurements are made on groups of re-

lated statistical units. Lai and Helser (2004) compared Atlantic scallops by using

simple linear regression (group factor is ignored) and linear mixed-effects model

(group factor is incorporated as fixed-effect) approaches in the field of biology

and proposed that the linear mixed-effects model was an effective way to analyze

and compare weight-length relationship of scallops between groups. Meng et al.

(2007) used linear fixed-effects and linear mixed-effects models in their forestry

study to fit the relationship between either forest biomass or volume of trees and

normalized difference vegetation index (NDVIsa), in which NDVISa was used as

the predictor which implies the area of trees, whilst biomass or volume was used

as the response and discovered that the linear mixed-effects model was the best

modelling approach.

Model Selection

Two approaches for model selection are considered in this study.

The first approach is based on model selection tools; Akaike Information Criteria
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(AIC) and Bayesian Information Criteria (BIC) as defined in equations 3.14 and

3.15, respectively. Both criteria consist of two terms, which consider the measure

of fit and the complexity of a model,

AIC = −2L(θ) + 2p (3.14)

BIC = −2L(θ) + 2p log(N
′
) (3.15)

where L(θ) is either likelihood, ML or REML, p is the number of parameters,

N is the number of observations. In ML, N
′

= N , but for REML, N
′

= N − p

(Alain et al., 2009). The log likelihood function from REML or ML can be used

to measure the fit, whilst the number of parameters indicate the complexity of the

model. Unlike AIC, the number of observations is also taken into account in BIC.

The second approach for assessing the model is a formal statistical analysis on

the comparison of two nested models. A general approach for comparing two

models fit by maximum likelihood is via a likelihood ratio test (Lehmann, 1986),

however, formal comparison can also be carried out on models fit by REML. The

nested models can be compared if they are fitted by REML and the fixed-effects

for both models are the same (Pinheiro and Bates, 2000). The likelihood ratio

test (LRT) statistic is defined as,

2 log

(
L2

L1

)
= 2 [log(L2)− log(L1)]

where L1 and L2 are the likelihood of restricted model (simple model) and general
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model (full model), respectively, and the value of the above equation is positive.

If nk is the number of parameters to be estimated in model k, then the asymptotic

distribution of LRT statistic under the null hypothesis that the restricted model

is more appropriate is χ2 distributed with n2 − n1 degrees of freedom (Pinheiro

and Bates, 2000).

Since a model comparison requires two nested models, the second model of tem-

perature over the time period, with depths, for each basin is fitted with a simple

correlation structure than that used in the first model. In particular, the use of

AR(1) for the north and AR(2) for the mid and south basins for the correlation

structures in the model of temperature over the year, with depths, results in

defining no correlation structure for the north but AR(1) for the mid and south

basins in the second mixed-effects model.

3.4.2 Maximum Relative Rate of Change

By referring to the recent thermocline definition among limnologists, it is of inter-

est to determine the rate of change in the temperature with depth. A meaningful

and easily interpreted normalization approach would be through the ratio of rate

of change in temperature between three adjacent depths and total rate of change

in temperature across all depths. The maximum of the ratio is used as the basis

of the results.

Let xij and yij denote depth and temperature at time i from 1 to 2920 and position

j of 2 to 10, respectively. The absolute rate of change (RC) in temperature yij at a
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particular depth xij is the absolute difference in slopes between the temperature

at such a depth and the depths immediately above and below, as defined in

equation 3.16

RCj =

∣∣∣∣( yij+1 − yij
xij+1 − xij

)
−
(
yij − yij−1
xij − xij−1

)∣∣∣∣
 i = 1, 2, . . . , 2920,

j = 2, 3, . . . , 10
(3.16)

where n is the number of time points over the year.

There are 9 values of the RC in temperature, produced at each of the time points.

Figure 3.16 highlights one of the RC at depth of 6m from the water surface.

The ratio of the absolute rate of change at a given depth j and the total absolute

rate of change, denoted by the relative rate of change (RRC) as defined in equation

3.17 is used to normalize the value.

RRCj =
RCj∑10
j=2RCj

; j = 2, . . . , 10 (3.17)

Figure 3.16. The absolute rate of change in temperature at depth of 6m
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The RRC for each time gives a value, ranging from 0 to 1. The depth corre-

sponding to the highest value of RRC may informally indicate the position of a

thermocline.

3.4.3 Changepoint Regression

Changepoint regression can be used in situations where the regression slope is

not constant but could change rapidly at a given point (see for example, Quandt

(1958), Hudson (1966), Krisnaiah and Miao (1988), and Julious (2001)). A

changepoint may highlight the position on a curve of temperature with depth

for a given time point where a rapid change of temperature has occurred. Hence,

such a point may represent the thermocline depth.

Estimation of the parameters in the model is straightforward if the position of

the changepoint is known, however, the changepoint must be estimated if the

position is unknown and so, a numerical optimization is required to estimate the

parameters in the model (Julious, 2001).

The determination of the changepoint on the curve of temperature with depth

for a given time point is adapted from (Julious, 2001) as follows:

For any interval of depths (Xo, X1), two lines are defined by equation 3.18:

f(xi) =

 f1(xi; β1);Xo ≤ xi ≤ τ,

f2(xi; β2); τ ≤ xi ≤ X1

(3.18)
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where f(xi) is the temperature at depth xi where f1(xi; β1) = f1(xi; β2) at τ . For

a simple two-line regression this is equivalent to equation 3.19:

f(xi) =

 α1 + β1xi;Xo ≤ xi ≤ τ,

α2 + β2xi; τ ≤ xi ≤ X1

(3.19)

where the parameters in the two models are constrained by α1 +β1xi = α2 +β2xi

at τ . The parameters for each half of the two models can be estimated from

equation 3.20.

 β̂1

β̂2

 =

 β∗1

β∗2

− s

t
C−1q (3.20)

where,

β∗1 = (X ′oXo)
−1X ′oY0

β∗2 = (X ′1X1)
−1X ′1Y1

s = (β∗
′

1 , β
∗′
2 )q

t = q′C−1q

C−1 =

 (X ′oXo)
−1 0

0 (X ′1X1)
−1


q = (1, τ,−1,−τ)′
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β̂1 and β̂2 are the unconstrained estimates of the parameters from the two linear

models in the domains of (Xo, τ) and (τ,X1), respectively. However, the problem

is not linear if the changepoint is unknown and so, the parameters can be esti-

mated via numerical optimization (Julious, 2001), which is simplified in equation

3.20 with the following considerations (Hudson, 1966).

For a given time point, two unconstrained linear models of temperature are fitted

on a series of depths x1, x2, . . . , xt and xt+1, xt+2, . . . , xT , respectively.

1. If the two lines from the unconstrained models join between the adjacent

depths xt and xt+1, then the residual sum of squares from this model is

less than any constrained model for these two depths that is forced to meet

between xt and xt+1.

2. Conversely, if the two lines do not join between the adjacent depths xt and

xt+1, then the constrained model with the smallest residual sum of squares

will have a changepoint at either xt or xt+1

3. The linear model that is constrained to meet at a particular point will not

reduce the residual sum of squares.

The algorithm to estimate all the parameters in the model is derived by Julious

(2001) and simplified as follows,

• For a given time point, all the unconstrained two-line models of temper-

ature are fitted on depths (X1, Xt) and (Xt+1, Xn), respectively, where

t = 2, 3, . . . , 9.
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• The two lines from the unconstrained models that meet within adjacent

depths Xt and Xt+1 are recoded as constrained model.

• If the residual sum of squares from the best constrained model RSSc is

smaller than the best unconstrained model RSSuc, the algorithm stops and

the parameters in such a constrained model are chosen.

• However, if RSSc ≥ RSSuc, than the best fitting unconstrained model is

constrained by forcing the two lines to meet at each Xt and Xt+1 using

equation 3.20 and the best fitted model with the lower RSS is added to the

previous recoded constrained models.

• If the new RSSc is smaller than the RSSuc from the best unconstrained

model, the algorithm stops and the parameters from the new constrained

model are chosen.

• However, if new RSSc ≥ RSSuc, either no changepoint or more than one

changepoint is assumed to have occurred.

3.4.4 Derivative of a Smooth Curve

By referring to the mathematical definition of the thermocline, an inflection point

on a smooth curve of temperature with depth can be determined from the second

derivative of a temperature function with respect to depth. The inflection point

can be mathematically defined as a point at which the second derivative or the

curvature of the smooth curve is zero. Such an inflection point is a position on a

curve at which the curvature changes sign, meaning that the curve changes from

being concave upwards (positive curvature) to concave downwards (negative cur-

vature), or vice versa.
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Let Y and X denote the temperature and depth, respectively. The thermocline

depth xo is defined as the depth where:

d2Y

dX2

∣∣∣
xo

= 0

A nonparametric regression model as defined in equation 3.21, is used to estimate

a smooth curve for each temperature profile with depth, at each of the time points.

Yi = f(Xi) + εi (3.21)

where the properties of the above model has been discussed in the early chapter.

The smooth.lf function in locfit library in R (Loader, 1999) is used to fit

the smooth curve of temperature profiles with depth, where the Gaussian kernel

density function is used as a weight function. The estimates of the derivative for

each of the local points are determined from the above package. The derivative

of a smooth function is widely discussed and used. The bandwidth is chosen to

be 70% of the local nearest neighbourhood for each local point. The above per-

centage is used since it could sufficiently provide an appropriate smooth curve of

temperature with depth for each time point since about 8 out of 11 measurements

are taken to estimate the derivatives at each of the depths.

A cubic trend seems to be appropriate to represent the temperature profiles with
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depth in a number of the warmer months. Therefore, a local polynomial re-

gression of order 3 is used. The local/evaluation points used, ranging from the

shallowest to the deepest level of the depths, an interval of 0.1 between two con-

secutive evaluation points. The third order local polynomial estimator (equation

3.22) is minimized.

minβj

n∑
i=1

(
Yi −

3∑
j=o

βj(Xi − x)j
)2
w
(Xi − x

h

)
(3.22)

Figure 3.17 (top) shows an example of a temperature profile with depth in one

of the 3 hourly temperature measurements for the north basin in September

2002. Obviously, the pattern of temperature profile with depth may subjectively

be represented by a cubic pattern as the figure is rotated in -90o about the y-axis.

The appropriate inflection point is chosen subject to the following criterion.

Firstly, such an inflection point must be somewhere within the metalimnion

as subjectively exhibited from the exploratory analysis where the temperature

changes abruptly with a small change in depth. This zone is known to be a pos-

sible position for the development of the thermocline (Victor and Robin, 2005).

Since the local regression model is fitted based on a series of local/evaluation

points, it is more likely that the second derivative corresponding to the inflection

points is around zero and thus, such a feature can be mathematically defined as

follows:
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d2Y

dX2

∣∣∣
xo
≈ 0

where xo is the depth corresponding to the position of thermocline.

Secondly, where there are several estimated inflection points, an appropriate point

is chosen subject to a minimum value of the first derivative as such a point may

highlight the position of no change in temperature with depths.

Figure 3.17 shows some illustrations of the first (center) and second (bottom)

derivatives of a temperature curve with depth (top). Both derivatives suggest

the position of a thermocline is likely to be at approximately 20m below the

water surface.
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Figure 3.17. A smooth curve of temperature with depth (top), estimate of the
first (center) and second (bottom) derivatives at one of the time points in summer
month, in the north basin
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3.5 Results

The fitted model for temperature over the year for each depth in the north,

mid and south basins are defined and its features are explained in this section.

Additionally, the estimates of the thermocline in the deeper water (north and

mid basins) from different approaches are presented. The details of the results

are as follows.

3.5.1 Temperature Variability Over The Year, With Depths

The results of the fixed effects from the mixed-effects Models 3.9 and 3.10 are

tabulated in Tables 3.13, 3.4 and 3.5, showing the evidence of each fixed effect in

the models for the north, mid and south basins, respectively. Similar estimates

for the fixed-effects of the two models with different error structures at a given

site are presented. Since the temperature measurements for the north and south

basins are recorded in the same hydrological year, their fixed effects can be reason-

ably compared. However, there are only few fixed effects in the model for the mid

basin than can directly be compared to the north and south basins due to the dif-

ferent predictors in the models and distinct time points of the first recorded data.

The estimate of the initial temperature at 12am on 1 September 2002 shows that

the fixed effect β0 in the south basin (Table 3.5) is relatively larger than that in

the north basin (Table 3.13) and is likely due to greater solar radiation in the

south basin. The fixed effect β1 denotes the mean of changes in temperature

over the time period and therefore, can be used for comparing the changes from

different basins. The temperature declines in the north and south basins from
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September 2002 - August 2003. Conversely, in the mid basin, β1 (Table 3.4) in-

dicates the rise of temperature from April 2008 - May 2009. β1 for the north and

south basins shows the decrease in temperature over the time period and is likely

due to similar ecological process over the same hydrological year. The increase

of temperature in the mid basin does not tailor to the changes in the other two

basins and such a feature could be attributed by the distinct ecological condi-

tions in different years. The fixed effect β2 for the north and south basins may

highlight the degree of curvilinear pattern of temperature over the year where

similar degrees are shown for both basins.

The standard error for the fixed effect β0 from the model in the north is slightly

larger than the mid and south basins, indicating that the largest variability of the

temperature at the first time point of the hydrological year could be observed in

the north basin. The low variability of the β0 in the mid basin is likely due to a

similar measurements in the first time point at each of the depths. The standard

errors for the fixed effect β1 and β2 of the model for the north are larger than the

south basin, indicating a greater variability in the mean change and the degree

of curvilinear pattern observed in the north basin. The above features are likely

due to the deeper water body (north) that contribute to a larger variation in β1

and β2 than the shallower water body (south).

The fixed effects β2 for the north and south basins are very small and are due

to the way of defining the time in the model. The fixed effects β1 and β2 in the

mid basin are relatively larger than that in the north and south basins whilst the

estimates of fixed effects β3 for the mid basin are very small.
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Term No Correlation AR(1)

Estimate s.e. P-value Estimate s.e. P-value

βo 11.04 1.33 < 0.001 11.03 1.31 < 0.001
β1 -0.22 0.05 < 0.001 -0.24 0.04 < 0.001
β2 2.0 ×10−3 5.0 ×10−4 < 0.001 2.0 ×10−3 4.0 ×10−4 < 0.001

Table 3.3. The fixed-effects from the mixed-effects models with and without
AR(1) error structure for the north basin.

Term AR(1) AR(2)

Estimate s.e. P-value Estimate s.e. P-value

βo 6.66 0.10 <0.001 6.67 0.06 <0.001
β1 0.52 0.10 <0.001 0.51 0.09 <0.001
β2 -0.01 2.1 ×10−3 <0.001 -0.01 2.0 ×10−3 <0.001
β3 6.7 ×10−5 1.4 ×10−5 <0.001 7.0 ×10−5 1.3 ×10−5 <0.001

Table 3.4. The fixed-effects from the mixed-effects models with AR(1) and
AR(2) error structures for the mid basin.

Term AR(1) AR(2)

Estimate s.e. P-value Estimate s.e. P-value

βo 16.28 0.24 < 0.001 16.25 0.17 < 0.001
β1 -0.49 3.4 ×10−3 < 0.001 -0.50 3.3 ×10−3 < 0.001
β2 5.3 ×10−3 6.0 ×10−5 < 0.001 5.2 ×10−3 5.9 ×10−5 < 0.001

Table 3.5. The fixed-effects from the mixed-effects models with AR(1) and
AR(2) error structures for the south basin.
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The variance of the random effects is used to highlight the variability of the

fixed-effect from each of the corresponding random effects at different depths.

The variance of the random effects from the models for the north, mid and south

basins are tabulated in Tables 3.6, 3.7 and 3.8, respectively. Models with different

error structures for each basin shows similar variance for a given random effect.

The largest variability of the random effect b0 is noticeable in the north compared

to other basins, highlighting greater variability in the mean intercept for the north

basin. The variability of the random effect b2 in the north is slightly larger than

the south basin, suggesting a greater variability in the curvilinear pattern of

temperature over the year between depths in the deeper location of the loch.

The above features of the random effects b0 and b2 for the north and mid basins

are in broad agreement with the initial exploratory plots in Figures 3.5 and 3.10.

The smaller variability of the random effects b0, b1 and b2 for the south basin are

apparent compared to the north and mid basins, suggesting the adequacy of the

model of temperature without any random effect. Hence, the fixed effect Model

3.7 is fitted to the temperature in the south basin with the error structure as

defined by the AR(2) model. The gls function in nlme library in R (Pinheiro

and Bates, 2000) is used for fitting the fixed effect model with correlated errors.

The lowest variance of the residuals is shown in the north basin, highlighting the

smallest deviation of the errors produced by the model.
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Term Model

No Corr. AR(1)

σ2o 18.75 19.53
σ21 0.03 0.03
σ22 2.2 ×10−6 4.0 ×10−6
σ2e 0.46 0.22

Table 3.6. The variance of the random-effects in the mixed-effects models for
the north basin.

Term Model

AR(1) AR(2)

σ2o 0.92 0.90
σ21 0.10 0.10
σ22 7.57 ×10−5 7.40 ×10−5
σ23 3.25 ×10−9 3.36 ×10−9
σ2e 0.67 0.58

Table 3.7. The variance of the random-effects in the mixed-effects models for
the mid basin.

Term Model

AR(1) AR(2)

σ2o 0.01 0.01
σ21 1.21 ×10−4 1.44 ×10−4
σ22 3.61 ×10−8 3.50 ×10−8
σ2e 0.66 0.35

Table 3.8. The variance of the random-effects in the mixed-effects models for
the south basin.
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A comparison between the two mixed models with different error structures for

the north and mid basins is carried out with the use of AIC and BIC and fol-

lowed by the likelihood ratio test. For the south basin, the fixed effect Model

3.7 with AR(2) error structure is compared to the mixed-effects Model 3.9 with

AR(1) correlation structure and the significant model is then compared to the

mixed-effects Model 3.9 with AR(2) correlation structure. The goodness of fit of

each model; AIC and BIC are also presented.

Model df AIC BIC Loglik L. Ratio p-value

No Correlation 10 12320.44 12392.02 -6150.22 6829.53
AR(1) Correlation 11 -6420.34 -6341.61 3221.17 18742.79 < 0.001

Table 3.9. Model comparison via AIC, BIC and Likelihood Ratio Test for the
north basin.

Model df AIC BIC Loglik L. Ratio p-value

AR(1) Correlation 16 -9398.48 -9273.89 4715.24 190.58
AR(2) Correlation 17 -9428.39 -9296.00 4731.19 31.90 <0.001

Table 3.10. Model comparison via AIC, BIC and Likelihood Ratio Test for the
mid basin.

Model df AIC BIC Loglik L. Ratio p-value

Simple 6 -25987.56 -25953.91 12997.78
AR(1) Correlation 11 -27154.33 -27075.60 13588.17 1180.78 <0.001
AR(2) Correlation 12 -27429.33 -27343.60 13726.17 276.79 <0.001

Table 3.11. Model comparison via AIC, BIC and Likelihood Ratio Test for the
south basin.

The results of the model testing for the north, mid and south basins are shown

in Tables 3.9, 3.10 and 3.12, respectively. The lowest AIC and BIC are shown

for the mixed-effects model with the most complex error structure for each basin,
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indicating that such a model is a considerable model improvement to the model

with the less complex error structure. The p-values (< 0.001) corresponding to

the likelihood ratio strongly suggests that the models of temperature over the

year with depth taken to be a random effect provide a substantially better fit to

the data following the incorporation of the complex correlation structure of the

deseasonalised residuals.

Therefore, the mixed-effects models of temperature with a quadratic pattern

is adequate for the north and south basins, whilst the cubic pattern is more

appropriate for the mid basin. The mixed-effects models of temperature over

the year for the north, mid and south basins incorporate the fixed-effects models

3.23, 3.24 and 3.25, respectively,

{Temp}ij = 11.03− 0.24tij + (2.00× 10−3)t2ij + εij (3.23)

{Temp}ij = 6.67 + 0.51tij − 0.01t2ij + (7.0× 10−5)t3ij + εij (3.24)

{Temp}ij = 16.25− 0.50tij + (5.2× 10−3)t2ij + εij (3.25)

with the random effects corresponding to the fixed effects are incorporated in

each of the model and the error structure within depth in the north basin is

defined by the AR(1) model whilst the AR(2) model represents the correlation

structures of εij for the mid and south basins.
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The use of depth as a random effect in the above linear mixed-effects model on

temperature over the time period with depths, however, could be criticized since

it could also become a fixed effect. The inability of the mixed effects model to

provide an estimate of temperature at a particular time point and depth could be

overcome by the use of a fixed effects model with the interaction terms as follows.

Two fixed effects models of temperature over the time period for the north basin

are fitted and they are compared for the identification of any similar significant

predictors. The details of the modelling are as follows.

A regression model is used to model the temperature using time and depth as

predictors as well as the interaction between depth and time. Models of temper-

ature, defined in equations 3.26 and 3.27, are initially fitted and a comparison

between them is carried out via the F-test. The full model 3.27 incorporates the

interaction between depth and each of time and time2. The reduced model 3.26,

on the other hand, only incorporates the interaction between depth and time.

The depth factors from the surface down to the bottom of the water body are

denoted by 1 until 11.

tempi = β0 + β1{time}i + β2{time}2i + β3{depth}i +

β4{time}i ∗ {depth}i + εi (3.26)
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tempi = β0 + β1{time}i + β2{time}2i + β3{depth}i +

β4{time}i ∗ {depth}i + β5{time}2i ∗ {depth}i + εi (3.27)

A comparison between the above model is carried out using an F-test to determine

the appropriate model. The F-statistic and its p-value for models of temperature

is tabulated in Table 3.12. The results show evidence of all the predictors and

its interaction terms, indicating the appropriateness of the full model to explain

the variability of temperature in the north basin.

Model df F-value p-value

Reduced 4
Full 5 24006 <0.001

Table 3.12. Model comparison via F-test for the north basin.

Table 3.13 shows the estimates for the fixed effects from the full model. The

estimate of the fixed effect β1 shows that the mean temperature declines over the

time period. The fixed effect β2 may highlight the degree of curvilinear pattern

of temperature over the year. The standard error for each of the fixed effects are

small (close to 0). The fixed effect β3 indicates that the temperature decreases

as the level of depth goes closer to the bottom of the loch. The fixed effects β2,

β4 and β5 are very small (close to 0) due to the way of defining the time in the

model. The standard error for each of the fixed effects are also very small.
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Term Estimate s.e. P-value

β0 19.1 3.5 ×10−2 < 0.001
β1 -0.51 1.6 ×10−3 < 0.001
β2 5.1 ×10−3 1.5 ×10−5 < 0.001
β3 -1.2 5.3 ×10−3 < 0.001
β4 4.9 ×10−2 2.4 ×10−4 < 0.001
β5 -5.1 ×10−4 2.3 ×10−6 < 0.001

Table 3.13. The fixed-effects model for the north basin.

Figure 3.18 shows the diagnostic plots from model 3.27. Strong autocorrelation

and a long tail distribution are highlighted. The skewness problem could be

overcome by using the log transform on the temperature measurements and the

incorporation of an appropriate AR model for the error structure is required to

deal with the violation of the autocorrelation assumption.

Figure 3.18. Diagnostic plots for model 3.27
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3.5.2 Maximum Relative Rate of Change in Temperature

with Depth

Figure 3.19 shows plots of the maximum relative rate of change in temperature

with depth in the north (top) and mid (bottom) basins, respectively. The x-axis

in both figures are matched in terms of months to highlight differences in terms

of the position of the estimated thermocline, between these two basins, although

the data are from different years.

For the north basin, the maximum relative rate of change lies between 0.2 and

0.65 between September and November 2002, and June and August 2003, but in

January - May 2003, the range is much smaller (0.2 - 0.3). For the mid basin,

the maximum changes are mainly between 0.2 and 0.5 with a few closer to 1.0 in

April 2008. Such large changes in the mid basin, particularly above 0.8 might be

due to a dominant change within three consecutive depths near to the surface in

April 2008 when the loch is warmed up.

A question arises about what is the appropriate cut-off point for the maximum

relative rate of change approach to reasonably estimate the position of the ther-

mocline.

Hence, several cut-off points between 0.2 and 0.6 at a range of 0.05 were tested

and the results for the north and mid basins are depicted in Figures 3.20 and 3.21,

respectively. In addition, the depth corresponding to each of the cut-off points

for the north and mid basins are presented in Figures 3.22 and 3.23, respectively.
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Figure 3.19. A series of maximum relative rate of change over time for the
north (top) and mid (bottom) basin.
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Figure 3.20. The maximum relative rate of change over the years in the north
basin with cut-off points, between 0.2 and 0.6, ranged 0.05
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Figure 3.21. The maximum relative rate of change over the years in the mid
basin with cut-off points, between 0.2 and 0.6, ranged 0.05
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For the north and mid basins; at cut-off points between 0.2 and 0.45, the plots

do not represent the occurrence of the thermocline very well as there is a large

number of points appearing in the winter months and this finding contradicts

the feature of the temperature profiles with depth in the exploratory analysis.

Conversely, for cut-off points above 0.45, there is no indication that the thermo-

cline occurs in colder months but the drawback is, the number of points becomes

extremely small in the warmer months as the cut-off point increases.

Figure 3.22. The depth position over the years in the north basin, with cut-off
points between, 0.2 and 0.6, in steps of 0.05
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Figure 3.23. The depth position over the years in the mid basin, with cut-off
points between, 0.2 and 0.6, in steps of 0.05
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A possible cut-off point of 0.45, which is subject to the following criteria; a rea-

sonable number of depth positions throughout the year with a small number of

depth positions in the winter months, is therefore chosen for both basins. Figure

3.24 displays the results from Figures 3.23 and 3.22 for the north and mid basins

at a cut-off of 0.45.

For the north basin; Figure 3.24 (top) suggests that the thermocline initially

appears at 11 metres in September and in the depth profile at 26 metres from

the surface in November 2002, however, the points determined in December 2002

are more likely to be unidentified features in the lake since the thermocline is

not expected to develop in the colder months. There is no evidence of the ther-

mocline development between January and May 2003 as the temperature in the

water column is almost constant, as shown by the fairly linear temperature pro-

files with depth from the exploratory plot. Since the exploratory plot highlights

the potential of the thermocline development between April and May 2003, the

unobserved points within this period are likely due to the small changes in tem-

perature between depths at a given time point. In mid 2003, the thermocline

appears to develop at 11 and 16 metres in June near to the water surface and

remains until August.

For the mid basin; Figure 3.24 (bottom) highlights the possible position of the

thermocline in several warmer months in 2008. The thermocline appears to de-

velop near to the surface, with no clear temporal pattern, from April to October

2008. The points in the colder months between November 2008 and March 2009,

are not taken into consideration as they are not believed to be evidence of the

thermocline. This is due to the fact that no thermocline is developed in such
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periods and this is also highlighted from the feature of the temperature profiles

with depth in the exploratory analysis.

Figure 3.24. The depth series through years, corresponding to the cut-off point
of 0.45, for the north (top) and mid (bottom) basins
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3.5.3 Changepoint Regression of Temperature Over Depth

The above ’exploratory’ approach is not satisfactory and highly subjective. There-

fore, a statistical approach is more appropriate and hence, the investigation is

extended using a statistical modelling approach for estimating the thermocline

depth. The changepoint regression method as suggested by Julious (2001), is

therefore, used to determine the approximate thermocline depth.

Figure 3.25 exhibits time series plots of the estimates of changepoint using this

approach for the north (top) and mid (bottom) basins from 1 September 2002 to

31 August 2003 and 17 April 2008 to 27 May 2009, respectively.

Figure 3.25 (top) highlights a cluster of changepoints identified at about 5 - 48

metres to the surface from the end of October to November 2002 and between

5 - 25 metres close to the surface from April to August 2003 in the north basin.

There are no changepoints identified in September, in most of October 2002 and

between January and March 2003. The results in September and October 2002

contradict the characteristics of the temperature profiles in the exploratory analy-

sis, which suggest evidence of the thermocline formation in these warmer months.

This is a result of the fact that the changepoint regression method used here can-

not detect the multiple changepoints evident in these months. The changepoints

identified in November and December 2002 are more likely to be other features

in the temperature profile since the thermocline can only occur in the warmer

months. In 2003, there is evidence of the thermocline, appearing at about 25

metres to the surface in April and moving upwards through the water column

(although there is no clear temporal pattern), between June and August. These
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results are consistent with the previous approach.

Figure 3.25 (bottom) shows a cluster of changepoints at about 1 - 48 metres to

the surface from April to July 2008 as well as more scattered points near to the

surface and bottom of the lake in November 2008, but no changepoints are shown

in the same summer months of the following year. The results in November

2008 contradict the features, highlighted from the exploratory analysis, which

suggest no evidence of the thermocline formation in the colder months. The

changepoints identified in such periods are more likely to be other features in

the water body. There is evidence of the thermocline in several warmer months,

appearing in April near to the surface and moving down to the middle of the

water column of about 25 metres to the surface in July 2008, with a moderately

clear temporal pattern. However, no changepoints are estimated in the remaining

warmer months, specifically between August and October 2008. This is a result

of the lack of potential to pick up several changepoints in each of the temperature

profiles with depth using this approach.
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Figure 3.25. The estimated change points in the north (top) and mid (bottom)
basins.
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3.5.4 Derivative of A Smooth Curve of Temperature Over

Depth

The results from the changepoint regression approach essentially do not show

any signs of the thermocline formation in several of the warmer months where

it would be expected to occur. The temperature profiles with depth from the

exploratory analysis highlight the occurrence of inflection points at particular

depths in warmer months. In addition, more than one changepoint is appar-

ent in the temperature profiles with depths, hugely affecting the effectiveness

of estimates in the current changepoint regression approach. A final approach

will therefore investigate derivatives of smooth curves of the temperature profiles.

Figure 3.26 shows a series of depths throughout the years, corresponding to the

inflection points on the smooth curve of the temperature profiles with depth,

with respect to the north (top) and mid (bottom) basins. The inflection points

associated with the north and mid basins are from September 2002 until August

2003 and April 2008 until May 2009, respectively.

In the north basin, there is evidence of the thermocline, appearing in September

at about 18 metres near to the surface and gradually moving down through the

water column until 50 metres from the surface in November 2002, with a clear

temporal pattern. The thermocline re-appears at about 3-26 metres from April

to June 2003. The constant and curvilinear patterns of temperature with depth

in the colder and warmer months, respectively, producing inflection points at a

position which is far beyond the metalimnion. As a result, some of the inflection

points in the north basin, were identified at the bottom and top of the water
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column between November 2002 and May 2003 and from April to August 2003,

respectively.

In the mid basin, there is evidence of the thermocline, developed at approximately

3 metres near to the surface in April and moving down the water column until

15 metres near the surface in May and remains constant in about the same

position in the water column until August 2008. Finally, the thermocline moves

down the water column until 40 metres from the surface in October 2009. The

results from November 2008 to March 2009 do not match the characteristics of

the temperature profiles in the exploratory analysis, showing no proof of the

thermocline formation. The points observed within this period are due to the

almost zero curvature of the temperature pattern down the depth profile at a

given time point. The thermocline re-appears in April 2009 at about 10-15 metres

and remains constant until May 2009. The inflection points marked at about 10m

from the surface, between November 2008 and March 2009 are not given much

attention since no evidence of the thermocline in the colder months is displayed

in the exploratory plot. In fact, the inflection points, appearing at these positions

may represent other features in the water column.
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Figure 3.26. The estimated inflection points throughout years in the north
(top) and mid (bottom) basins.



CHAPTER 3. TEMPORAL TEMPERATURE PATTERNS WITH DEPTH135

3.5.5 The Plausible Month of the Thermocline

Tables 3.14 and 3.15 show the months of the observed thermocline resulting from

different approaches; the maximum relative rate of change, changepoint regres-

sion and derivative of a smooth curve of temperature denoted by 1, 2 and 3,

respectively, for the north and mid basins. The warmer months are of interest

here due to the fact that the thermocline develops in summer.

The maximum relative rate of change shows no thermocline is observed in April

and May 2003 for the north and October 2009 for the mid basin. The unob-

served points within these warmer months are likely due to the small changes

in temperature between depths at a given time point. The changepoint regres-

sion highlights the unobserved thermocline in September 2002 for the north and

September 2008 and April-May 2009 for the mid basin and are likely due to the

fact that the changepoint regression used here cannot detect the multiple change-

points evident in these months. Despite the previous results from the derivative of

a smooth curve for the north basin, showing the observed thermocline as discrete

values close to the surface of the loch from June-August 2003, these positions are

not taken into attention since the results are unlikely to occur. The curvilinear

pattern of temperature with depth within this period leads to the estimates of

the infection points at a position which is far beyond the metalimnion.
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Month Year Approaches

1 2 3

Sept 2002 / − /
Oct 2002 / / /
Nov 2002 / / /
Dec 2002 − − −
Jan 2003 − − −
Feb 2003 − − −
Mar 2003 − − −
Apr 2003 − / /
May 2003 − / /
June 2003 / / −
Jul 2003 / / −
Aug 2003 / / −

Table 3.14. The observed thermocline for each month over the year from differ-
ent approaches; the maximum relative rate of change (1), changepoint regression
(2) and derivative of a smooth curve of temperature (3), for the north basin.

Month Year Approaches

1 2 3

Apr 2008 / / /
May 2008 / / /
June 2008 / / /
Jul 2008 / / /
Aug 2008 / / /
Sept 2008 / − /
Oct 2008 − − /
Nov 2008 − − −
Dec 2008 − − −
Jan 2009 − − −
Feb 2009 − − −
Mar 2009 − − −
Apr 2009 / − /
May 2009 / − /

Table 3.15. The observed thermocline for each month over the year from differ-
ent approaches; the maximum relative rate of change (1), changepoint regression
(2) and derivative of a smooth curve of temperature (3), for the mid basin.
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3.6 Discussion

The exploratory plots show some important features in the pattern of tempera-

ture over the year, with depths, in the north, mid and south basins. In particular,

there is apparent variability of temperature over warmer months at a given depth

in the north and mid basins. A similar temperature pattern is depicted for each

depth in the south basin over warmer months in 2002 but it begins to deviate

in the warmer months of the following year (2003). The temperature over the

colder months for each basin are similar at a given depth.

Such a feature in the shallower part (south basin) of the loch over the warmer

months in 2002 is expected since the rate of the heat conduction, attributed by

solar radiation on the water surface down the depth profile is similar and so,

the entire water body in the south basin is affected by a similar amount of heat

transfer. The deviation of the temperature over the warmer months in 2003 is

likely due to the influence of the wind on the water surface. The north and

mid basins on the other hand, are dominantly influenced by solar radiation. In

addition, higher wind speed on the surface of the loch may contribute to the

large variability in the temperature pattern over the summer period, with depth.

Dissimilarity of temperature profile over the summer, with depths, may suggest

different ecological process in the water body. In winter, similar temperature

pattern for each depth may indicate the similarity of the ecological process in the

water column.

The evidence of correlation in the time series of deseasonalised residuals for each

depth in the north, mid and south basins as highlighted by the autocorrelation
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functions, is anticipated as the dependency of the errors is often observed in en-

vironmental time series data. The AR(1) model for the north and AR(2) model

for the error structures in the mid and south basins were appropriate. The north

and mid basins are predominantly deeper water and so, similar error structure is

expected in the north and mid basins.

Several diagnostic tools are used for assessing the adequacy of the linear mixed-

effects models such as AIC and BIC and likelihood ratio tests of two nested

models.

The lowest AIC and BIC in measuring the relative goodness of fit of the models

shows the adequacy of AR(1) for the north and AR(2) for the mid and south

basins error structures. Despite the lowest variability of the random effects cor-

responding to the fixed effects in the model of temperature over the year, with

a quadratic pattern, the likelihood ratio test shows evidence of the mixed model

incorporating the most complex error structure for each basin. Hence, the linear

mixed-effects models, which accomodate depth-specific variation in its random

effects and ties together all levels of depth by fixed-effect and variance-covariance

matrix are the appropriate model for each basin.

The mixed-effects model provides information on changes in temperature over

the year for each basin. The incorporation of the random effect b1j may highlight

the mean of changes of temperature at a given depth and so, the variability of

the random effect b1j can also be highlighted. The above feature shows that the

mixed-effects model is an efficient way to highlight the variability in temperature
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measurements at different depths compared to the classical approach that re-

quired model fitting for each depth. Additionally, the mixed-effects model allows

the estimates of the variability for the fixed effects via its random effect and,

more informative features can be gained.

While the exploratory plots highlight the variability of temperature pattern over

the year for a given depth in each basin, the homogeneity of the temperature pro-

file with depth at a given time point in the north and mid basins are also explored

prior to estimating the position of the thermocline. In the colder months, a con-

stant temperature with depth is highlighted whilst approximately quadratic and

cubic patterns of temperature profiles with depth appear in the warmer months.

However, the odd patterns in the mid basin from March - May 2009 might be the

result of the presence of unrecognized physical disturbance in the water column

as the temperature with depth is reasonably constant over the colder months.

The contour plots of temperature across depth and year highlight the occurrence

of the thermocline and so, few approaches are used to identify the position of this

natural feature in the loch.

The maximum relative rate of change, changepoint regression and derivative of

a smooth curve methods have proven to be useful in determining the formation

of the thermocline in the north and mid basins in warmer months. Ecologically

there appear to be some differences between the two basins and the two time-

periods considered. In particular, deeper water in the north than the mid basin

provides distinct lower and upper positions of the thermocline. The different

periods of temperature measurements between the two basins may results in dif-

ferent estimates of the positions of the thermocline in the loch. Such a result is
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likely due to the difference in ecological processes in the warmer months. Since

the period of temperature measurements can be distinguished between the two

basins, the ecological processes that characterize the variability of temperature

with depths at a given month may not always be similar. For instance, the ex-

ploratory plot of temperature with depth in November highlight homogeneous

temperature down the depth profile in the mid basin but fairly nonhomogeneous

in the south basin. Consequently, the estimates of the thermocline for the mid

basin in November 2008 should be given much attention since it is likely that the

thermocline is developed in the water column compared to November 2002 in the

north basin.

In the north and mid basins of Loch Lomond, the maximum relative rate of

change approach with a cut-off point of 0.45 shows that the number of depths

corresponding to maximum changes in the temperature gradient with depth in

the warmer months are large.

Despite providing the positions of the thermocline subject to proposed criteria,

several drawbacks in the maximum relative rate of change approach should be

taken into account. The depth corresponding to the maximum relative rate of

change simply depends on three measurements from each of the temperature

profiles with depth, indicating that only a small number of observations con-

tribute to the determination of the identified position of the thermocline. In

addition, this approach is constrained by the value of the cut-off point, which is

subjective. Furthermore, the approximate thermocline depths presented by this

method, which are treated as discrete instead of continuous values, do not ade-

quately tailor to the natural ecological perspective. The problems of insufficient
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statistical property and unnatural positions of the thermocline provided by this

approach is therefore, overcome by the use of a changepoint regression approach.

The changepoint regression has proved to be a useful and effective way to esti-

mate the changepoints corresponding to the thermocline depths in a few warmer

months because of its capability to highlight the positions of a sudden change in

temperature with depth in both basins. Despite providing appropriate positions

of the thermocline in the warmer months, this method is unable to highlight the

occurrence of the thermocline when there is more than one changepoint.

The derivative of a smooth curve approach is essentially an effective way to inves-

tigate the position of the thermocline since it has provided appropriate estimates

of inflection points in several warmer months in both basins. This approach es-

sentially provides estimates at each of the time points and so, the entire results

have to be carefully examined to avoid any misleading interpretations. A good

knowledge of freshwater ecology is essential and therefore, should be acquired

prior to perform this approach. Despite using third order local polynomial re-

gression, the smooth curves of the temperature profiles with depth in the colder

months provide estimates which do not make sense as the points lie at the top

and bottom of the lake. These point estimates, however, have not received as

much attention as in the warmer months as no thermocline develops in the colder

period.

A combination of changepoint regression and derivative of a smooth curve are es-

sentially providing appropriate estimates of the thermocline depths in the warmer
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months and therefore, is suggested here. This is due to the fact that the change-

point regression and derivative approaches satisfies the thermocline definition

in the perspective of limnologist and mathematician, respectively. Additionally,

the effectiveness of each of these approaches could be distinguished in different

warmer months and therefore, they are given attention.

Despite several advantages in the proposed approach to estimate appropriate

thermocline depths in the warmer months, a number of drawbacks should be

taken into consideration for future study. The present approach has inadequate

physical basis which results in less information of dynamical interaction on the

development of the thermocline. The absence of influence of physical factor such

as wind’s velocity, which may effect the turbulence of the water and the creation

of the thermocline, may result in a lack of ability to estimate the position of such

a natural feature in lakes in warmer months. A model of the position of the ther-

mocline over the years is not produced by the current approaches and therefore,

any predictions of such an important feature in a lake could not be carried out.



Chapter 4

Variability, Coherence and

Recovery

4.1 Introduction

The previous two chapters have investigated statistical models for low and mod-

erate frequency environmental time series. Moreover, with the introduction of

automatic monitoring buoys, semi-continuous measurements are becoming much

more common (Kuh et al., 2005), providing greater insight with instantaneous

ecological processes within waterbodies.

Three objectives are outlined in this chapter. Firstly, to assess if there are tem-

poral patterns in temperature, pH, conductivity and barometric pressure at short

time scales. Secondly, to investigate the nature of the relationship between pH

and conductivity at short time scales. Finally, to determine and model the re-

covery period of pH and conductivity following extreme discharge events.

143
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Continuous 15-minute and 30-minute measurements of temperature, barometric

pressure, pH, conductivity and discharge are available for the River Char in Ab-

erdeen and Drumtee stream in Whitelee over three hydrological years. The data

from Charr and Drumtee were recorded from October 2004 - September 2007

and October 2007 - September 2010, respectively. The data were supplied by

Professor Susan Waldron from the University of Glasgow.

Continuous environmental time series measurements are useful as they can reveal

evidence of short-term variability and extremes in river water quality become ap-

parent and they allow the examination of water quality signals over short time

scales (Jarvie et al., 2001). Short-term water quality events and patterns may

include acid excursion during periods of high rainfall and variation in the diurnal

cycle in pH related to biological processes in the rivers (see (Neal et al., 1998) for

examples).

Diurnal fluctuation of physical and chemical parameters are typical in many

drainage systems (Tobias et al., 2010). Water chemistry, particularly CO2 in

rivers may affect the variability of pH (Stumm and Morgan, 1981). Closer exam-

ination of pH revealed distinct diurnal variations during base flow in the River

Dee, most apparent in the summer when pH was high and its signal showed a

moderately large amplitude in the diurnal cycle (Jarvie et al., 2001). Florentina

et al. (1999) shows that river pH is also influenced by discharge where organic

acids and soil CO2 exported under high flow result in lower pH. Where discharge

is not a controlling factor however, the relationship between CO2 and pH is es-

sentially related to photosynthesis. Additionally, Florentina et al. (1999) shows
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that the daily variations in pH are closely related to changes in solar radiation

and water temperature.

The changes in temperature in rivers could be influence by biological and phys-

ical processes which occur periodically. For instance, a diurnal variation in wa-

ter temperature is a result of the occurrence of photosynthesis and respiration.

Superimposed on this daily fluctuation are seasonal fluctuations, reflecting the

hydrological regime, seasonal climate changes, corresponding seasonality of bio-

geochemical cycling and additionally anthropogenic impacts (Tobias et al., 2010).

Conductivity can show significant temporal variation as this is a measure of the

ionic concentration in the rivers and so is primarily controlled by the influence of

rock weathering derived water. However, CO2 may contribute to the changes in

cations (negative ions). This under high event flow conductivity, can also change

due to influx of water rich in CO2 and low in dissolved ions. Conductivity is

also influenced by hydrological events. For instance, Tobias et al. (2010) show

that a rapid decrease in conductivity in rivers over a few hours in late spring is a

result of a large amount of snow melting. In particular, the increase of CO2 may

contribute to changes in cations (negative ions) and so, conductivity may also be

affected.

Barometric pressure, also known as air pressure or atmospheric pressure, is the

pressure brought down by the weight of air (Phillis, 1997). The rise of barometric

pressure may result in increase in water movement in windy days (Stevenson and

Van Schaik, 1967) and hence, the river flow could be affected by such air pres-

sure. The following characteristics of barometric pressure are taken from (Phillis,
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1997). The amount of air pressure is a combination of the number of molecules

of air, the rate of movement of the molecules and the frequency of their collision.

In particular, a strong gravity results in a large number of molecules of air. The

increase of mass in the air resulting from the large air molecules contribute to

the increase in air pressure. The air pressure may change constantly, resulting in

the occurrence of wind and it is useful for weather forecasting. In particular, the

rise of barometric pressure often coincides with fair weather whilst the decline of

pressure is associated with severe storms.

Discharge also known as streamflow, is defined as the volumetric rate of flow

water (volume per unit time) including sediment or other dissolved solids in an

open channel of water (Turnipseed and Sauer, 2010). Discharge may vary over

many time scales and is influenced by hydrological events. In particular, the

longer time scales can be interannual or seasonal, whereas shorter time scales can

last only several days, such as during a flood (Yucheng et al., 2011). Rajendra

and David (2002) show that the increase of discharge at the onset of the winter

period is characterized by high rainfall. Theoretically both pH and conductivity

may show changes corresponding with discharge. Josep and Anna (1992) show

an inverse relationship between pH and discharge for the weekly stream water

measurements in Prades and Montseny catchments and a similar relationship be-

tween discharge and conductivity is expected. The increase of discharge results

in the rise of CO2 (Josep and Anna, 1992) and so, both pH and conductivity

are likely to be influenced. Hence, pH and conductivity may behave similarly

following particular features in discharge.

Gurnell et al. (1992) and Hodgkins (2001) found that a combination of time
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domain statistical techniques such as linear regression, cross-correlation, autore-

gressive integrated moving average (ARIMA) and transfer functions models are

acceptable to explain the variability of the process in climatic and hydrological

time series data. However, different statistical approaches are required to provide

further insight on the relationship between timing and magnitude of the events

via a time scale (or frequency method). In principle, the identification of scales

of variability in a time series can be achieved by the use of spectral analysis,

which is strictly based on the assumption of stationarity in time series. This

frequency-based approach decomposes a time series into its frequency compo-

nents. The time series is broken up into sine waves and hence, the signal can be

expressed in terms of the frequency and power of its constituent waves. However,

real world processes are often non-stationary, resulting in changes in their statis-

tical correlation properties over time and thus, the assumption required for this

approach is violated. It has become a standard practice for time series analysts

to consider differencing or transforming their time series to achieve stationary

time series (Jin and Yao, 2006), however, these approaches do not always work

well. Higher time resolution always appear with a lower frequency resolution

and vice versa, causing another problem and so, a compromise between time and

frequency uncertainties is therefore required to describe the process. The wavelet

method is capable of providing the above compromise and its advantages over the

Fourier transform is that the chosen time resolution is proportional to scale and

it is designed for both stationary and non-stationary processes over numerous

frequencies scale (Daubechies, 1990); (Kumar and Fouroula-Georgiou, 1997) and

therefore, misleading interpretation can be avoided. The key to wavelet analysis

is partitioning the variations of signals into scale (frequency/period) and time

localization and hence, the detailed variation with respect to temporal scale and

time locations can be acquired.
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An increase in discharge may result in a decline of pH and conductivity following

high precipitation and snow melting. However, both pH and conductivity could

increase and return to their natural levels if none of these hydrological processes

occur. Hence, the period taken by each of pH and conductivity to recover may

characterize certain ecological features in rivers. There does not appear to have

been previous work on the estimation of such a recovery period and therefore,

the terminology of the period of this natural process in rivers is required. The

recovery period is defined as the duration of time taken by pH and conductiv-

ity to recover following high river flows. Specifically, the recovery period for a

particular environmental variable in rivers begins from the time point where the

measurements start to decrease in response to an event in discharge, until the

values return to the pre-event levels. Such a discharge event is determined by a

particular threshold. It is generally considered that a threshold can be found that

is high enough to ensure the independence of the occurrences in the hydrological

series (Santiago, 2005). The baselines are defined as the measurements of pH

and conductivity corresponding to the 2 hours before the extreme discharge. The

recovery period for pH and conductivity at both rivers is determined based on its

definition. In particular, the recovery period is determined based on considerably

higher river flow.

4.2 Exploratory Analysis

The initial impressions of temporal variability in temperature, barometric pres-

sure, pH and conductivity, and the relationship between pH and conductivity are

presented for the River Charr. The above work is followed by the exploration
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of the recovery period of pH and conductivity at the same river. However, the

exploration of recovery period for pH and conductivity at any other river is es-

sential for comparison since literature on previous studies done on this natural

process has not been found and so, the initial analysis is then extended to the

River Drumtee in Whitelee.

The features and properties of the time series of temperature, barometric pres-

sure, pH and conductivity measurements from October 2004 - September 2007 at

the River Charr are explored graphically. Plots of temperature, barometric pres-

sure, pH and conductivity measurements within each of the days for each month

in the study period are then explored to ascertain any daily temporal pattern.

Additionally, the relationship between pH and conductivity is explored for any

similar patterns throughout the year.

Time series plots for each of the environmental determinands over the time pe-

riod are displayed to obtain initial impressions of any particular patterns. Plots

of temperature, barometric pressure, pH and conductivity from October 2004

- September 2007 are shown in Figure 4.1. There are large amounts of vari-

ability for each of the time series measurements. Temperature shows a clear

seasonal pattern over the 3 years period following a natural cyclical pattern for

each year. Conversely, pH, conductivity and barometric pressure show indistinct

annual cyclicals with the lower values more pronounced in winter than summer

for each year. The lower values could be as a result of any hydrological events

such as precipitation and discharge.
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Figure 4.1. Plots of 15 minutes temperature (top left), barometric pressure (top
right), pH (bottom left) and conductivity (bottom right) measurements from Oct
2004-Sept 2007.

Previous studies show that the observed time series has to often be pre-treated

before applying the wavelet power spectrum to remove components of the sig-

nal that are not of interest. For instance, Torrence and Compo (1998) removed

the seasonal means for the entire record of temperature time series of El Nino-

Southern oscillation, Torrence and Webster (1999) treated the rainfall time series

by removing the mean of the measurements and Schaefli et al. (2007) deseason-

alized the time series of temperature by substracting the interannual mean value

from the measurements and followed by division by the interannual variance.

They also applied the log-transform and cubic root for discharge and precipita-

tion series, respectively.
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Here, a first order differencing is used for each of the observed time series to re-

move the trend component which is not of interest. As a result, the linear trend

could be removed and the large variability of each variable could be reduced, and

the resulting data are plotted in Figure 4.2. There are obviously no linear trend

exhibited by each of the post-differenced data.

A direct interpretation for each of the post-treated data to the actual measure-

ments is used by the above researchers in the wavelet analysis. Hence, a direct

interpretation for the wavelet spectrum which does not take the occurrence of a

linear trend into account is used in this work.

The variability of temperature is lower and stable compared to the remaining vari-

ables, despite highlighting a seasonal pattern over the year. Barometric pressure

shows more variability than pH and conductivity. pH and conductivity highlight

clearly unstable variability over the year.

(Jarvie et al., 2001) show the effectiveness of 15-minute measurements in environ-

mental time series measurements - short-term variability is apparent in summer

at the River Dee at Mar Lodge in Scotland. Therefore, I first explore the tempo-

ral variability in temperature, barometric pressure, pH and conductivity for the

River Charr but not for Drumtee as this site is logged less frequently: 30 min-

utes measurements rather than 15 minute. However, exploration of the recovery

period for pH and conductivity is carried out for both rivers and a comparison

between them is made.
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Figure 4.2. Plots of first order differencing on 15 minutes temperature (top
left), barometric pressure (top right), pH (bottom left) and conductivity (bottom
right) measurements from Oct 2004-Sept 2007.

Figures 4.3 to 4.6 display plots with respect to temperature, barometric pressure,

conductivity and pH measurements for each day, grouped by month. The black,

red and green curves are for the period of 2004-2005, 2005-2006 and 2006-2007,

respectively. Figure 4.3 shows a pronounced diurnal pattern in temperature with

high variability from April to September for each of the years, indicating that

a daily temporal pattern has occurred in the warmer months. The daily pat-

tern is similar within the day for the same month, whilst its variability could

be distinguished between months. In contrast, no clear daily pattern in winter

(October - March) is apparent since the time series are fairly flat. Figure 4.4

shows no apparent daily pattern in barometric pressure for each month, however,

the variability in winter (October-March) is slightly larger than in the summer

(April-September) months. Figure 4.5 reveals weak diurnal cycle in conductivity
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over the summer (April-September) for most of the years. In winter (October-

March), however, no clear daily pattern is shown as highlighted by time series

which are fairly flat. There are several odd patterns, particularly in March and

May, which might be due to measurements errors. Figure 4.6 shows a weak diur-

nal cycle in pH over the summer (April-September) and winter (Feb-March and

October) for most of the years. No clear daily pattern is shown in the remaining

months in winter as exhibited by approximately constant curves across the day.

Figure 4.3. 15-minute measurements for temperature in a daily period for each
of the years, grouped by months, with the black, red and green lines are for the
periods of 2004-2005, 2005-2006 and 2006-2007, respectively.
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Figure 4.4. 15-minute measurements for barometric pressure in a daily period
for each of the years, grouped by months, with the black, red and green lines are
for the periods of 2004-2005, 2005-2006 and 2006-2007, respectively.



CHAPTER 4. VARIABILITY, COHERENCE AND RECOVERY 155

Figure 4.5. 15-minute measurements for conductivity in a daily period for each
of the years, grouped by months, with the black, red and green lines are for the
periods of 2004-2005, 2005-2006 and 2006-2007, respectively.
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Figure 4.6. 15-minute measurements for pH in a daily period for each of the
years, grouped by months, with the black, red and green lines are for the periods
of 2004-2005, 2005-2006 and 2006-2007, respectively.
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It is likely that pH and conductivity at the River Charr may exhibit similar

patterns as a result of events in discharge and therefore, their relationships are

explored more fully. Figure 4.7 shows the 15-minute discharge (top), conductivity

(centre) and pH (bottom) measurements at the River Charr from October 2004

to Sept 2007.

A large number of missing values are apparent in discharge in a few consecutive

months at the end of the period, suggesting the failure of the monitoring device

to record the data in this period. A big shift in pH measurements is apparent

in September 2007, which could be due to the change in the gauge during the

calibration process. As a result of these two features, the time series at the River

Charr will only be investigated until August 2007. The patterns for pH and

conductivity are similar over the years, suggesting a close relationship between

them. There is also suggestion of a response in both of these variables to events

in discharge. In particular, conductivity and pH have a large number of low val-

ues following high discharge. Conversely, low discharge appears to be associated

with high pH and conductivity. Higher discharge in winter is often a result of

a large amount of precipitation and snow melting and hence, an exploration of

such events is carried out next by exploring the data seasonally.

For illustration, Figures 4.8 - 4.9 depict plots of discharge, pH and conductiv-

ity with respect to winter and summer months over the hydrological year from

October 2004 to September 2005. The magnitude and variability of high values

in discharge (top) are greater in winter than summer. A number of low val-

ues for pH (centre) and conductivity (bottom) are apparent in winter following

high discharge events and this feature is exhibited, for instance, in October 2004.
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Moreover, there are fewer extreme events in discharge in summer with higher lev-

els evident for conductivity and pH. Both pH and conductivity appear to behave

similarly over both seasons.

Figure 4.7. 15-minute measurements of discharge (top), conductivity (centre)
and pH (bottom) at the River Charr from October 2004 to September 2007
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Figure 4.8. Plots of discharge (top), pH (centre) and conductivity (bottom)
in winter over the hydrological year of October 2004 - March 2005 at the River
Charr.
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Figure 4.9. Plots of discharge (top), pH (centre) and conductivity (bottom) in
summer over the hydrological year of April - September 2005 at the River Charr.
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4.3 Methods

The first and second objectives in this chapter are achieved by using the wavelet

technique (Schaefli et al., 2007). In particular, the wavelet power spectrum and

wavelet coherence of the environmental time series are investigated. For the third

objective, the recovery periods for the environmental variables following the ex-

treme events in discharge are determined, a regression model is fitted and the

extremal index is used to check the dependency of clustering in extreme dis-

charge. Details of each of the above approaches are as follows.

4.3.1 Wavelet Transform

Generally, there are two classes of wavelet transform; the Continuous Wavelet

Transform (CWT) and Discrete Wavelet Transform (DWT). The CWT is suit-

able for extracting the features of the time series whilst the Discrete Wavelet

Transform (DWT) is useful for noise reduction and data compression of a time

series (Torrence and Compo, 1998).

The CWT has been widely used in geophysics and meteorology to characterize

the temporal variability in storms (Kumar, 1996); (Szilagyi et al., 1996) and to

analyze localized variations within geophysical time series including climatic in-

dices (Lucero and Rodriguez, 1999). It has also increasingly been used in the field

of hydrology to investigate stream flow features (Smith et al., 1981), to charac-

terize daily stream flow (Saco and Kumar, 2000), to interpret temporal patterns
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of different basin responses that include rapid process and slow recharges (Anc-

til and Coulibaly, 2004) and to examine temporal patterns in discharge (Labat

and Ronchail, 2005). The CWT can also be used to analyze coherence between

two geophysical and meteorological variables, particularly to identify coherent

convective storm structures (Kumar, 1996); (Szilagyi et al., 1996). The wavelet

coherence is used to determine the statistical persistence and the relationship of

the persistence to discharge and rainfall (Shesh et al., 2010).

Firstly, the CWT of a discrete sequence of observations xn is described according

to (Torrence and Compo, 1998). The CWT is defined as the convolution of xn

with a scaled and translated wavelet function ψ(η) (equation 4.1),

W x
n (s) =

N∑
n′=1

xn′ψ
∗
[

(n
′ − n)δt

s

]
(4.1)

where n
′

is local point, N is the number of points in the time series, ψ(η) is

the wavelet function at scale s and translated in time n, δt is the time step and

asterisk (∗) indicates the complex conjugate. The above transformation can also

be determined using a Fourier transform (equation 4.2) due to faster calculations

in Fourier space,

W x
n (s) =

N∑
k=1

x̂kψ̂∗(sωk)e
iωknδt (4.2)

where x̂k (equation 4.3) is the discrete Fourier transform of xn , k is the frequency

index (1, 2, . . . , N) and ψ̂∗ is the Fourier transform of the wavelet function at scale

s and frequency ωk .
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x̂k =
1

N

N∑
n=1

xne
−2πik n

N (4.3)

The wavelet transforms 4.1 or 4.2 are normalized as defined in equations 4.4 and

4.5, respectively, allowing a reasonable comparison of two or more time series for

each scale s,

W x
n (s) =

(
δt

s

) 1
2

N∑
n=1

xn′ψ0

[
(n
′ − n)δt

s

]
(4.4)

W x
n (s) =

(
2πs

δt

) 1
2

N∑
k=1

x̂kψ̂0(sωk)e
iωknδt (4.5)

where ψ0 is a wavelet basis function and ωk is the angular frequency, defined as:

ωk =


2πk

Nδt
; k ≤ N

2

−2πk

Nδt
; k >

N

2

A wavelet function ψ(η) is a signal that has zero mean and can be localized in

both time and frequency space (Farge (1992); Misiti et al. (1996)). Torrence

and Compo (1998) stated that the types of chosen wavelet functions rely on the

objectives of the analysis and the nature of the time series, orthogonality of the

basis and features of width and shape as follows.

Information on the amplitude and phase of the time series data are provided by

a complex wavelet function which is suitable to capture the oscillatory charac-

teristics whilst a real wavelet function can distinguish the features of peaks of a
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time series data (Torrence and Compo, 1998).

The wavelet function with an orthogonal basis can be used with a discrete wavelet

transform whilst a nonorthogonal basis is appropriate for either the discrete

or continuous wavelet transform (Farge, 1992). In orthogonal wavelet trans-

forms, the number of convolutions at each scale is proportional to the width

of the wavelet basis at that scale, leading to discrete blocks of wavelet power

which is useful for signal processing (Torrence and Compo, 1998). In contrast, a

nonorthogonal wavelet analysis is highly redundant at large scales in which the

wavelet spectrum at adjacent times is highly correlated. Such a wavelet transfor-

mation is useful if the wavelet spectrum has continuous variations (Torrence and

Compo, 1998).

The shape of the wavelet function determines the characteristic of the time se-

ries and the width of the function determines whether a good resolution in time

or frequency is produced. A broad wavelet function provides a good frequency

resolution but poor resolution in time and vice versa (Torrence and Compo, 1998).

The work throughout this chapter uses a complex Morlet function in the CWT.

This basis function consists of a plane wave modulated by a Gaussian process as

defined in equation 4.6,

ψ(η) = π−
1
4 eiω0ηe−

η2

2 (4.6)

where ω0 is dimensionless frequency and η is dimensionless time, depending on
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the time and scale of the data (Torrence and Compo, 1998). The Morlet wavelet

with ω0 = 6 provides a good balance between time and frequency localization as

it can describe the shape of time series data more clearly than any other wavelet

functions such as the Mexican wavelet function and classical sine function (La-

bat et al., 2000). For a given ω0 = 6, the Morlet wavelet scale is similar to the

Fourier period and so, they produce similar values. This is due to the fact that

the Fourier period (λwt) is similar to the scale (λwt = 1.03s) (Grinsted et al.,

2004).

4.3.2 Wavelet Power Spectrum

The wavelet power spectrum is used to investigate any temporal patterns for

each environmental determinant. The wavelet power spectrum is defined as the

square of the amplitude of the wavelet transform |W x
n (s)|2. Since the Morlet

wavelet function is a complex number z of real (a) and imaginary (bi) parts,

where z = a+ bi, the square of the absolute value of z is defined as the product

of z and its complex conjugate z∗ as follow,

(zz∗ = (a+ bi)(a− bi) = a2 + b2)

Hence, the wavelet power spectrum is defined by equation 4.7,

W xx
n (s) = W x

n (s)W x∗
n (s) = |W n

x (s)|2 (4.7)

producing the variance in the time series at a given scale s and time n.



CHAPTER 4. VARIABILITY, COHERENCE AND RECOVERY 166

The statistical significance of the wavelet power spectrum can be assessed by

comparing the spectrum with a background spectrum (noise). The structure

of the background spectrum depends on the nature of the time series. For in-

stance, the background spectrum in geophysical processes is often denoted by

either white noise (constant variance across all scales or frequency) or red noise

(decreasing variance with decreasing scale or increasing frequency), Torrence and

Compo (1998). However, Grinsted et al. (2004) shows that an AR(1) model is

representative for most of the background spectrum in a geophysical time series.

The mean Fourier power of the background spectrum is defined as :

Pk =
1− α2

1 + α2 − 2α cos(2πk
N

)

where α is the lag-1 autocorrelation for the time series (Torrence and Compo,

1998). The wavelet power spectrum of the time series is significant if it exceeds

the above background spectrum at a particular significance level.

Torrence and Compo (1998) introduce a pointwise significance test for the wavelet

power spectrum by assuming the background spectrum as a red noise for the

Null hypothesis and the significance testing is carried out for each time-scale.

However, pointwise testing has several disadvantages that leads to false results

(Schaefli et al., 2007).

Firstly, a repetition of the test for N wavelet coefficients provides an average of
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αN false positive results (multiple testing effect) for a given significance level of

1− α. Secondly, it is highly likely that there is a correlation of the neighbouring

wavelet coefficients (intrinsic correlation effect), which appear in a contiguous

patch and so, the occurrence of false positive results could be observed since the

correlation issue in the wavelet power spectrum is not taken into consideration.

The effect of intrinsic correlation appears in every time-frequency analysis and

represents a time-scale uncertainty. The above effects leads to an unclear signif-

icant patch, since the observed patch might be reflected by the actual physical

characteristics or just simply result of a multiple testing effects and intrinsic cor-

relation of the wavelet coefficients. However, the above problems in pointwise

significance testing of the wavelet power spectrum are overcome using an area-

wise significance testing Maraun et al. (2007) as follows.

For the CWT with a Gaussian white noise ψ(η), the intrinsic correlation be-

tween two wavelet coefficients at (n, s) and (n
′
, s
′
) is given by a kernel Kψ,ψ((n−

n
′
)/s

′
, s/s

′
) moved to the time n

′
and stretched to the scale s

′
(Schaefli et al.,

2007) as defined in equation 4.8,

C(n, s;n
′
, s
′
) ∼ Kψ,ψ

(
n− n′

s′
,
s

s′

)
(4.8)

Since the intrinsic correlations are given by the above kernel function, the patch

areas for random fluctuations are also given by such a kernel and so, any patches

from the pointwise test that are smaller than the above reproducing kernel are

assumed to be similar to the noise (Maraun et al., 2007).
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Given a set of patches with pointwise significant values Ppw, the areawise signifi-

cant patches Schaefli et al. (2007) are defined as follows.

For each (s, n), a critical area Pcrit(s, n) is given by the reproducing kernel at

(s, n) that exceeds a particular critical levels Kcrit (equation 4.9),

Pcrit(s, n) =
{

(s
′
, n
′
)|(K(s, n; s

′
, n
′
) > Kcrit)

}
(4.9)

where the critical area represents the size of the reproducing kernel for a given

significance level Kcrit.

The subset of several areawise significant wavelet spectral coefficients is given by

the incorporation of all critical areas that lie completely inside the patches of

pointwise significant values (equation 4.10).

Paw =
⋃

Pcrit(s,n)⊂Ppw

Pcrit(s, n) (4.10)

The above areawise testing is summarized as follows:

• A pointwise testing is performed on the significance level 1-α.

• A significance level for the reproducing kernel 4.8, 1-αaw for the areawise

testing and the corresponding critical area Pcrit(s, n) of the reproducing

kernel are chosen.

• The evidence of the wavelet power spectrum for each (s, n) is determined by

comparing with the critical area Pcrit(s, n). A point inside a patch is defined
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as areawise significant, if any critical area containing this point totally lies

within the patch.

The above areawise significance testing may highlight the significant patches that

exceed the noise level, resulting from the occurrence of extreme events Schaefli

et al. (2007).

Here, the wavelet power spectrum for each environmental variable is investigated

at short time scales with the use of wsp function in sowas library (Maraun et al.,

2007).

4.3.3 Wavelet Coherence

In wavelet analysis, the coherence of two signals of two different time series can

be determined by the use of wavelet coherence as follows.

Let xn and yn be two time series of pH and conductivity, respectively. The

similarity of the pattern of the two processes can be identified using cross wavelet

transform 4.11, providing the covariance of xn and yn.

W xy
n (s) = W x

n (s)W y∗
n (s) = |W xy

n (s)| (4.11)

Another useful property of the cross wavelet spectrum is the phase angle (equation

4.12), defined as the local relative phase between xn and yn,
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θxyn (s) = Tan−1
(
=(W xy

n (s))

<(W xy
n (s))

)
(4.12)

where =(W xy
n (s)) and <(W xy

n (s)) are the imaginary and real parts of the cross

wavelet spectrum, respectively.

The two time series xn and yn are assumed to have independent power at over-

lapping time and scale intervals, indicating no covariance between the two power

spectra. Hence, the information about one of the processes is not sufficient for

predicting the other process. However, the real wavelet cross spectrum can al-

ways be different from zero. Any significant peaks can occur not only in the case

of covarying power but also if either one or both of the individual wavelet spectra

show strong power (Schaefli et al., 2007) and so, the wavelet coherence which

produce a normalized measure is more appropriate.

The wavelet coherence (equation 4.13) is defined as the square of the cross wavelet

spectrum normalized by the individual power spectrum from each of the time

series xn and yn.

|W xy
n (s)|2

|W x
n (s)|2|W y

n (s)|2
(4.13)

Wavelet coherence can highlight high common power of two time series at par-

ticular scales and time points. In particular, a common oscillation between the

two signals which have a rather stable phase difference (Maraun et al., 2007) can

be revealed. The statistical significance of the wavelet coherence can be assessed

by using the pointwise and areawise significance testing, however, the areawise
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testing is preferred due to the previous advantages in the wavelet power spectrum.

Significant coherence is identified based on a 90% confidence level of areawise

testing. The cross phase angle of the wavelet coherence is a useful property to

highlight any phase distinctions between peaks of two signals of two processes

at particular time points and scales. Positive and negative differences are often

referred to as in and out of phase, respectively. The steps of areawise testing is

exactly the same as in the previous wavelet power spectrum but the only different

is the critical patch-size Pcrit that need to be re-estimated in the areawise testing

(Maraun et al., 2007).

Here, the wavelet coherence between pH and conductivity is investigated at each

time point and short time scale using wco function in sowas library (Maraun

et al., 2007).

4.3.4 The Determination of Recovery Period

The recovery period is the duration of time taken by pH and conductivity to

recover following high river flows. Specifically, the recovery period for pH and

conductivity in rivers begins from the time point where the measurements start

to decrease in response to an event in discharge, until the values return to the

pre-event levels. This period is determined using the following approach.
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1. Discharge measurements are sorted from highest to lowest and their cu-

mulative distribution function is determined corresponding to a particular

percentage of extreme discharge. For instance, the threshold for discharge

corresponding to 2% of the complement for cumulative probability distri-

bution is defined as 1− p(X ≤ xi) = 0.02.

2. All of the times which are at 2 hours before the extreme discharge events

i are determined where i = 1, 2, . . . , p. Let ti = t1, t2, . . . , tp be the times

corresponding to 2 hours before the extreme events and Xti are conductivity

and pH measurements corresponding to time ti.

3. The first baseline (Xt1) for conductivity and pH is chosen corresponding to

t1 and the time point at the end of the recovery period corresponds to the

time at which the level of conductivity and pH returns to the baseline level

Xt1 .

4. Each of the conductivity and pH measurements after time t1 is subtracted

from Xt1 and the sign of conductivity and pH measurements (+ or -) high-

light the positions of the measurements, above or below the baseline, respec-

tively. Negative values are of interest here as they highlight the occurrence

of measurements below the baseline. The first positive value would indicate

the time point of recovery and end of the process. The recovery period is

determined by the difference between the end and initial time points. The

unit of the recovery period is standardized by converting into a daily scale.

5. The subsequent baselines are determined by repeating steps 3-4 at the re-

maining times t2, t3, . . . , tp and the corresponding recovery periods are es-

timated.
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The same approach is then applied on pH and conductivity at the River Drumtee

to check for similarity of the recovery in summer and winter. Since the baselines

of the recovery period for pH and conductivity rely on the threshold for extreme

discharge, three levels of threshold for extreme discharge for both rivers are cho-

sen. The first threshold is chosen at considerably high discharge during storm

events as defined in the earlier part of this chapter. The second threshold is cho-

sen at moderately high discharge and finally, the third threshold is determined

at lower discharge. The first, second and third thresholds are 2%, 3% and 10%

of the extreme discharge, respectively.

4.3.5 Regression Model

The recovery period for conductivity and pH could be influenced by particular

features in their own time series as well as in discharge and so, six potential ex-

planatory variables have been identified. They are baseline of the conductivity

and pH, maximum value of discharge within recovery period, minimum conduc-

tivity and pH within recovery period, rate of change (slope) of the conductivity

and pH from the baseline time point to the minimum value within the recovery

period, number of extreme event in discharge within recovery period and the area

encompassed by extreme discharge within the recovery period.

The recovery period, area of extreme discharge, rate of change of pH and con-

ductivity and number of extreme discharge are log transformed to stabilize the

variance. For illustration, Figure 4.10 shows the relationships of log recovery for

pH with each of the previously identified predictors at the River Charr by season,

subject to a 2% threshold for discharge. The circle and cross symbols represent
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winter and summer, respectively. No clear differences are shown between sea-

son in terms of the relationships of log recovery with each of the explanatory

variables. A strong and positive linear relationship of each log number extreme

discharge and log area of the extreme discharge with log recovery is highlighted

whilst a weak linear relationship is shown between log recovery and log rate of

change for pH. Conversely, minimum pH has a negative linear relationship with

log recovery. Baseline seems to have a weak linear relationship with log recovery

for pH. The relationship between log recovery for pH and maximum discharge

appears to possibly follow a curvilinear pattern.

The same potential explanatory variables are used for each river. Models of re-

covery period for pH and conductivity for the River Charr and River Drumtee

are fitted and they are compared for the identification of any similar significant

predictors. The details of the modelling are as follows,

A regression model is used to model log recovery using all previously identified

predictors as well as the interaction between season and these predictors. Models

of log recovery at the River Charr, defined in equations 4.14 and 4.15, are ini-

tially fitted and a comparison between them is carried out via the F-test. The

full model 4.14 incorporates a quadratic term in log(max extreme discharge) as

a curvilinear pattern is highlighted by the previous plots of relationships, whilst

the remaining predictors are assumed to follow linear relationships. The reduced

model 4.15, on the other hand, assumes linearity in all the predictors. The sea-

sonal factors are winter and summer, denoted by 0 and 1, respectively.



CHAPTER 4. VARIABILITY, COHERENCE AND RECOVERY 175

Figure 4.10. Plots of relationship between log recovery for pH with each of the
predictors at the River Charr, subject to 2% threshold for discharge.

log(recovery)i = β0 + β1{baseline}i + β2{maxdis}i + β3{maxdis}2i

+β4{min}i + β5{log(slope)}i + β6{log(areadis)}i

+β7{log(numextremedis)}i + β8{season}i

+β9{baseline}i ∗ {season}i + β10{maxdis}i ∗ {season}i

+β11{min}i ∗ {season}i + β12{log(slope)}i ∗ {season}i

+β13{log(areadis)}i ∗ {season}i

+β14{log(numextremedis)}i ∗ {season}i + εi (4.14)
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log(recovery)i = β0 + β1{baseline}i + β2{maxdis}i + β3{min}i

+β4{log(slope)}i + β5{log(areadis)}i

+β6{log(numextremedis)}i + β7{season}i

+β8{baseline}i ∗ {season}i + β9{maxdis}i ∗ {season}i

+β10{min}i ∗ {season}i + β11{log(slope)}i ∗ {season}i

+β12{log(areadis)}i ∗ {season}i

+β13{log(numextremedis)}i ∗ {season}i + εi (4.15)

Diagnostic plots on the residuals are checked to determine that the residuals εi

are independent and normally distributed with zero mean and constant variance.

The above approach is repeated by using different levels of threshold for discharge

at 3% and 10% for both conductivity and pH.

Additionally, models of recovery for pH and conductivity measurements at the

River Drumtee are fitted, subject to the same threshold levels of discharge as

at the River Charr. The two fitted models from the two locations for conduc-

tivity/pH are then compared to determine any similarities or differences in the

significant predictors.
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4.3.6 Model Validation

The models for pH and conductivity for the River Charr are validated by us-

ing the available measurements from January - October 2008. Model validation

is carried out to see how well the model performs on future data. The recov-

ery periods for both pH and conductivity from January - September 2008 are

used and the recent fitted models are validated using mean square error, i.e. the

sum of the difference between the estimates from the fitted model (ŷi) and actual

recovery period (yi) relative to the number of recovery period (n) as
∑n

i=1
(yi−ŷi)2

n
.

4.3.7 Extremal Index

It is of interest to determine the features of extreme discharge. In particular, the

independence extreme discharge is investigated and the corresponding thresholds

could be identified since clustering of the extreme events in discharge may vary

corresponding to different thresholds. Extreme events in discharge are often clus-

tered together and so, the independence of the exceedences is likely to be violated

(Ferro, 2003).

Previous work carried out by several researchers show some development of the

approaches used for dealing with the issue of independence of extreme values as

follows. Hsing (1987) considered the use of clustering and shows that clusters

of extreme values could be independent within a particular limit. Davison and

Smith (1990) characterized cluster maximum where a peaks-over-threshold ap-

proach was used to determine the independence of the extreme values prior to

fitting a model of extreme events. Smith and Weissman (1994) and Weissman
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and Novaks (1998) developed the estimation of the extremal index in order to

determine the declustering of exceedences.

The extreme discharge is therefore investigated for evidence of any signs of clus-

ters throughout the years. The evidence of clustered extreme discharge for each of

the thresholds is determined by the use of an extremal index in order to measure

the level of clustering (Ferro, 2003). However, the thresholds corresponding to

the declustering of extreme discharge here are not necessarily the same thresholds

used in the previous model fitting on log recovery for pH and conductivity.

Ferro (2003) defines the extremal index as follows. Let ξ1, ξ2, . . . , ξn be station-

ary sequence random variables that have a marginal distribution F , a right end

point ω = sup {F (x) < 1} and a tail function F̄ = 1 − F . If Mk,l is defined

as max {ξi : i = k + 1, 2, . . . , l} for integers 0 ≤ k ≤ l, then ξ1, ξ2, . . . , ξn has

extremal index θ that lies between 0 and 1 if for every τ > 0, a sequence of

u1, u2, . . . , un exists such that as n→∞

• nF̄ (un)→ τ

• P (M0,n ≤ un)→ e−θτ

Leadbetter et al. (1983) shows that there is no evidence of clustering in extreme

data if the extremal index θ = 1 while the exceedences above threshold tend to

cluster as θ < 1. F is essentially hard to determine for the real extreme events and

alternatively, the following approach is used to obtain the index. The estimation

of θ involves choosing a threshold u as in the Pareto distribution and defining N

as:
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N =
n∑
i=1

I(ξi > u)

where ξ1, ξ2, . . . , ξn is the extreme discharge above threshold u. N is the number

of exceedences of u and 1 ≤ S1 < . . . < SN ≤ n are the exceedence times. The

interexceedence times Ti are defined as Si+1 − Si where i = 1, 2, . . . , N − 1.

Ferro and Segers (2002) shows that two estimates of extremal index θ̂ can be

produced, subject to the conditions of whether the interexceedence time Ti is

above or below than 2 (equation 4.16).

θ̃n(u) =

 1 ∧ θ̂n(u);max {Ti : 1 ≤ i ≤ N − 1} ≤ 2,

1 ∧ θ̂∗n(u);max {Ti : 1 ≤ i ≤ N − 1} > 2,
(4.16)

where the estimates of the extremal index θ̂n(u) and θ̂∗n(u) are defined in equations

4.17 and 4.18, respectively.

θ̂n(u) =
2
(∑N−1

i=1 Ti

)2
(N − 1)

∑N−1
i=1 T 2

i

(4.17)

θ̂∗n(u) =
2
(∑N−1

i=1 (Ti − 1)
)2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)
(4.18)

The confidence interval for the extremal index is then determined by using a

bootstrap sampling method where the quartiles of 2.5% and 97.5% of the 1000

estimates of an extremal index represent the lower and upper of 95% confidence
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limits. The extremal index corresponding to a series of thresholds from suffi-

ciently low to high discharge measurements are computed and the confidence

interval corresponding to each of extremal index is determined. The exi func-

tion in the evd library in R (Ferro, 2003), is used to estimate the extremal index.

4.4 Results

4.4.1 Temporal Variability in Temperature, Barometric

Pressure, pH and Conductivity

The scalograms of wavelet power spectrum for the differenced temperature, baro-

metric pressure, pH and conductivity values from October 2004 - September 2007

are portrayed in Figure 4.11. The dubious contiguous patches from lower up to

considerably higher time scales are more likely to be attributed to the occurrence

of extreme events.

The temporal pattern for temperature at a 1 day scale is clearly exhibited in the

warmer months over the year, showing an evidence of a diurnal cycle in summer.

The conductivity and pH show similar temporal patterns as for temperature over

warmer months. However, the occurrence of noise denoted by several continuous

dubious patches from the lower up to higher scales at a given time point restricts a

clear presentation of the significant diurnal cycle. The small patches in baromet-

ric pressure are constantly highlighted at 1-2 day scales over the year, suggesting

that the air pressure is not as seasonally dependant as for temperature, pH and

conductivity.
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A large number of spurious patches within the three years results in an unclear

power spectrum and so, the evidence of the individual temporal patterns is in-

vestigated over a smaller time period. Here, the power spectrum for the above

variables are investigated by year.

Figure 4.11. Wavelet Power Spectrum of temperature (top left), barometric
pressure (top right), pH (bottom left) and conductivity (bottom right) from Oc-
tober 2004 - September 2007, with patches to identify areawise significance.

The scalograms of wavelet power spectrum for temperature, barometric pres-

sure, pH and conductivity from October 2004 - September 2005, October 2005

- September 2006 and October 2006 - September 2007 are shown from Figures

4.12 - 4.14, respectively. There are several small significant patches in pH and

conductivity that are connected by thin bridges, lying from lower to higher scales.

Schaefli et al. (2007) explain about these type of patches and have defined it as

spurious power spectrum and so, they are not studied further here.
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The temporal patterns highlighted from the wavelet power spectrum for tem-

perature, pH, conductivity and barometric pressures over each of the years are

more apparent than the previous 3 years. There is evidence of a daily tempo-

ral pattern in temperature, pH and conductivity in warmer months as exhibited

by large significant patches at a 1 day scale over the year. Barometric pres-

sure shows evidence of the temporal patterns at a 1-2 days scale over each of

the hydrological years, with a strong temporal pattern shown clearly in each of

the years. In particular, strong evidence of a temporal pattern for barometric

pressure is constantly occurring from October 2004 - September 2005, however in

the later years, the strong temporal patterns are more apparent in colder months.

Figure 4.12. Wavelet Power Spectrum of temperature (top left), barometric
pressure (top right), pH (bottom left) and conductivity (bottom right) from Oc-
tober 2004 - September 2005, with patches to identify areawise significance.
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Figure 4.13. Wavelet Power Spectrum of temperature (top left), barometric
pressure (top right), pH (bottom left) and conductivity (bottom right) from Oc-
tober 2005 - September 2006, with patches to identify areawise significance.

Figure 4.14. Wavelet Power Spectrum of temperature (top left), barometric
pressure (top right), pH (bottom left) and conductivity (bottom right) from Oc-
tober 2006 - September 2007, with patches to identify areawise significance.
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4.4.2 Relationship between pH and Conductivity

Similar features in pH and conductivity are noticeable from the previous temporal

patterns across the year. High pH may occur along with high conductivity and

vice versa, suggesting a relationship between them. Here, the post-differencing

pH and conductivity measurements are used and the similarity of their oscilla-

tions is further investigated via the wavelet coherence.

Similar results are highlighted in each of the hydrological years and therefore,

only one of the hydrological years is chosen and presented here. Figure 4.15

shows the wavelet coherence (top) and cross phase angle (bottom) between pH

and conductivity from October 2004 - September 2005. Patches, representing

the significant coherence between pH and conductivity are apparent at particular

time points and scales.

There are numerous small patches at a scale of less than 24 hours in both seasons.

According to Schaefli et al. (2007), these small areas of significant coherence at

lower scales is a result of the occurrence of two extreme events of the two pro-

cesses, coinciding and exceeding the noise level (assumed to be Gaussian). These

patches probably do not reflect the actual coherency of pH and conductivity but

tend to be coincidence of extreme events of both processes. In fact, the occurrence

of many extreme events (low values) for both pH and conductivity as depicted

from the exploratory plots (Figure 4.1) are apparent in both seasons of the year,

suggesting that significant coherence at a scale of less than one day is contributed

by such events.
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At a daily scale, the significant coherence is clearly shown by a mixture of patches

over the year. The significant coherence denoted by large patches constantly ap-

pear in summer, particularly from June to August 2005 (from about 273 to 335

days). The significant coherence is likely due to the fact that the variability of

pH and conductivity are approximately constant as they are not significantly in-

fluenced by the hydrological events and so, the signals of the two processes are

similar.

The significant coherence of the two processes at a higher scale of 2-3 days is

apparent and appears to be constant over the year. There are few small patches

in both seasons while a relatively large patch is apparent in December 2004 (ap-

proximately from 70 - 92 days) and May - June 2005 (about 220 - 243 days).

Out of phase signals of about 90o is apparent during a 24-hour period in summer

months but no clear phase difference is exhibited at scales of 2-3 days, indicating

that the peaks of both signals are at similar time points.

For illustration, Figure 4.16 shows plots of pH (top left) and conductivity (top

right) in July 2005. The snapshots of pH (bottom left) and conductivity (bottom

right) on 25th July (298th day) are displayed. The displayed feature indicates

that peaks of pH lead conductivity by about 6 hours.

The significant coherence at a 1 and 2 days scale over the summer and both

seasons, respectively, can be distinguished by a particular feature of the signals

of pH and conductivity. The cross phase angle presents the differences of such a
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characteristic of the two signals at different scales. In particular, the evidence of

coherence at a 1 day scale is resulting from the similarity of the two signals. The

variable pH responds more quickly than conductivity at this scale but at a 2 day

scale, both pH and conductivity respond similarly.

Figure 4.15. Wavelet coherence (top) and cross phase angle (bottom) between
the 15-minute measurements of pH and conductivity from Oct 2004 - Sept 2005,
with patches to identify the areawise significance
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Figure 4.16. Plots of pH (top left) and conductivity (top right) in July 2005;
pH (bottom left) and conductivity (bottom right) on 25 July 2005, with patches
to identify areawise significance.

4.4.3 Recovery Periods for pH and Conductivity

Table 4.1 shows the values of discharge(m3s−1) corresponding to 2%, 3% and 10%

of the complement of the cumulative probability distribution for both rivers. The

values of extreme discharge corresponding to each of the above complement are

as follows.

Threshold(%) River Charr River Drumtee

2 7.20 1.62
3 5.78 1.37
10 3.00 0.63

Table 4.1. Discharge (m3s−1) corresponding to 2%, 3% and 10% thereshold
levels for Charr and Drumtee.
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For illustration, the above thresholds for discharge at the River Charr and River

Drumtee are highlighted in Figure 4.17. The blue, green and red horizontal lines

across the year are 2%, 3% and 10% threshold levels.

Figure 4.17. Time series plots of 15 minutes discharge measurements at Charr
(top) and Drumtee (bottom), with the blue, green and red horizontal lines denote
2%, 3% and 10% of the threshold levels, respectively.
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The recovery period for pH and conductivity for both rivers corresponding to each

of the 3 levels of threshold is determined. For illustration, the recovery period

for pH and conductivity from Charr and Drumtee over one hydrological year are

presented. Plots of discharge, pH and conductivity at the River Charr in winter

and summer from October 2004 - September 2005 are shown in Figures 4.18 and

4.19, respectively. Blue and red vertical dashed lines denote the initial and end

time points of each of the recovery periods. The recovery periods corresponding

to a threshold of 7.2m3s−1 (2%) for discharge are marked by blue horizontal lines.

Figures 4.20 and 4.21 depict plots of discharge, pH and conductivity measure-

ments at the River Drumtee over two different seasons from October 2007 -

September 2008. The recovery period corresponding to a threshold of 1.62m3s−1

(2%) for discharge is highlighted. A continuous period of missing values from mid

November until December 2007 is clearly exhibited in the three determinands.

The number of recovery periods in winter is larger than in summer for both rivers.

This feature is expected as extreme events in discharge (high values) are more

apparent in winter than summer and as a result, more extreme events in pH and

conductivity (lower values) are observed in colder months. High discharge and

low pH and conductivity between the two rivers are comparable in winter. The

distinction of the levels is due to the fact that the water flow at the River Charr

is likely to be a result of snow melting and water runoff from a nearby moun-

tainous area and so, higher discharge is clearly observed compared to the River

Drumtee. Lower river flow in Whitelee, however, is due to less influence of the

above two factors, resulting in slightly lower conductivity and pH at the River

Charr compared to the River Drumtee.



CHAPTER 4. VARIABILITY, COHERENCE AND RECOVERY 190

Figure 4.18. Time series plots of 15 minutes discharge (top) and conductivity
(bottom) measurements at the River Charr in winter from Oct 2004-March 2005,
with the blue and red vertical dashed lines denote the initial and end time points
of each of the recovery period.
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Figure 4.19. Time series plots of 15 minutes discharge (top) and conductivity
(bottom) measurements at the River Charr in summer from Apr - Sept 2005,
with the blue and red vertical dashed lines denote the initial and end time points
of each of the recovery period.
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Figure 4.20. Time series plots for 30 minutes discharge (top) and conductivity
(bottom) measurements at the River Drumtee over winter from Oct 2007-March
2008, with the blue and red vertical dashed lines denote the initial and end time
points of each of the recovery period.
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Figure 4.21. Time series plots for 30 minutes discharge (top) and conductivity
(bottom) measurements at the River Drumtee over summer from Apr - Sept 2008,
with the blue and red vertical dashed lines denote the initial and end time points
of each of the recovery period.
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4.4.4 Models of Log Recovery Period for pH and Conduc-

tivity

The final regression models for log recovery for pH at the River Charr correspond-

ing to 2%, 3% and 10% threshold levels of extreme discharge are defined from

equations 4.19 - 4.21, respectively. These models were determined using F-tests

for model comparison as described earlier.

Table 4.2 summarizes the significant predictors for each model for pH and con-

ductivity corresponding to threshold levels of 2%, 3% and 10% for the River

Charr. The details of the model are as follow.

Predictor pH Conductivity
2% 3% 10% 2% 3% 10%

baseline / / /
max dis / / / /
max dis2 / / /
min(pH/cond) / / / / /
log(slope) / / /
log(area dis) / / / / / /
log(num extreme dis) / / / /
season / / /
baseline*season
max dis*season /
min*season / / /
log(slope)*season
log(area dis)*season / / /
log(extreme dis)*season

Table 4.2. Significant predictors at α=0.05 for model of log recovery for con-
ductivity corresponding to 2%, 3% and 10% threshold levels at the River Charr.

The fitted model 4.19 corresponding to 2% of extreme discharge shows linearity

in all of the predictor terms, however, the quadratic term of maximum discharge
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is observed as the threshold decreases. Each of the fitted models shows evidence

of maximum discharge, minimum pH, log of rate of change for pH, log of area

above extreme discharge, the seasonal factor and an interaction between season

and minimum pH as predictors in explaining the variability in log recovery for pH

at all levels of threshold, indicating that these predictors are not affected by the

levels of threshold. The seasonal factor indicates that the log recovery in winter

corresponding to thresold levels of 2%, 3% and 10% is larger than summer by

about 5.24, 3.67 and 6.06 units, respectively.

̂log(recovery) = −2.43− 0.03{maxdis}i − 0.55{minpH}

−0.06{log(slopepH)}+ 0.76{log(areadis)}

+0.17{log(numextremedis)} − 5.24{season}

+0.71{minpH} ∗ {season}

+0.26{log(areadis)} ∗ {season} (4.19)

̂log(recovery) = −2.18 + 0.31{baseline} − 0.07{maxdis}

+0.001{maxdis}2 − 0.67{minpH} − 0.07{log(slopepH)}

+0.59{log(areadis)}+ 0.20{log(numextremedis)}

−3.67{season}+ 0.38{minpH} ∗ {season}

+0.25{log(areadis)} ∗ {season} (4.20)
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̂log(recovery) = −0.27 + 0.66{baseline} − 0.20{maxdis}

+0.004{maxdis}2 − 1.24{minpH} − 0.18{log(slopepH)}

+0.64{log(areadis)} − 6.06{season}

+0.19{maxdis} ∗ {season}

+0.85{minpH} ∗ {season} (4.21)

Additionally, equations 4.22 - 4.24 display the final models of log recovery for

conductivity at the River Charr corresponding to thresholds of 2%, 3% and 10%

for extreme discharge. The strong effect of log of area above extreme discharge is

highlighted at each threshold levels. The recovery is not influenced by seasonal

factors, indicating that the length of the recovery periods following the extreme

discharge in both winter and summer is similar.

Models of log recovery for pH and conductivity become more complex as the

threshold levels increase. Different seasons may result in different length of days

of recovery in pH, however, similar recovery period for conductivity is given over

the year. This distinction suggests that pH takes slightly longer than conductiv-

ity to recover in the presence of extreme discharge over the winter season.

Models for pH are slightly more complex than conductivity for the same levels of

threshold.

̂log(recovery) = −4.83 + 0.83{log(areadis)} (4.22)



CHAPTER 4. VARIABILITY, COHERENCE AND RECOVERY 197

̂log(recovery) = −3.68− 0.02{mincond}+ 0.68{log(areadis)}

+0.20{log(numextremedis)} (4.23)

̂log(recovery) = −2.98 + 0.02{baseline} − 0.10{maxdis}

+0.002{maxdis}2 − 0.04{mincond}

+0.17{log(numextremedis)}

+0.72{log(areadis)} (4.24)

Table 4.3 summarizes the significant predictors for model of log recovery for pH

and conductivity corresponding to threshold levels of 2%, 3% and 10% for the

River Drumtee. The fitted models for pH and conductivity are shown in equa-

tions 4.25 - 4.30.

For the River Drumtee, the significant models of log recovery for pH correspond-

ing to threshold levels of 2%, 3% and 10% for extreme discharge are defined

from equations 4.25 - 4.27, respectively. All the fitted models show significant

minimum pH, log of area above extreme discharge and log of number of extreme

discharge. No evidence of a seasonal factor is highlighted in each of the models,

indicating that the recoveries for both determinand are comparable between win-

ter and summer.
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Predictor pH Conductivity
2% 3% 10% 2% 3% 10%

baseline / / / / /
max dis / / /
max dis2

min(pH/cond) / / / / /
log(slope) / / /
log(area dis) / / /
log(num extreme dis) / / / / / /
season /
baseline*season
max dis*season /
min*season
log(slope)*season
log(area dis)*season
log(extreme dis)*season

Table 4.3. Significant predictors at α=0.05 for model of log recovery for conduc-
tivity corresponding to 2%, 3% and 10% threshold levels at the River Drumtee.

̂log(recovery) = −1.53− 0.33{minpH} − 0.13{log(slopepH)}

−0.23{maxdis}+ 0.66{log(areadis)}

+0.26{log(numextremedis)} (4.25)

̂log(recovery) = −2.36 + 0.58{baseline} − 0.60{minpH}

−0.21{maxdis} − 0.11{log(slopepH)}

+0.50{log(areadis)}

+0.24{log(numextremedis)} (4.26)
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̂log(recovery) = −9.64 + 0.55{baseline}

−0.57{minpH}+ 0.38{log(areadis)}

+0.51{log(numextremedis)} (4.27)

Equations 4.28 - 4.30 represent the best fitted models for log recovery for con-

ductivity at Drumtee, corresponding to 2%, 3% and 10% of extreme discharge.

Each of the fitted models is significantly influenced by baseline for conductivity,

minimum conductivity, log of rate of change for conductivity and log of extreme

discharge corresponding to each of the thresholds. Season appears to be not

significant in models 4.28 - 4.30.

̂log(recovery) = −5.00− 0.004{baseline}

+0.004{mincond}+ 1.09{log(numextremedis)}

(4.28)

̂log(recovery) = −4.19− 0.003{baseline}+ 0.003{mincond}

+0.01{log(slopecond)}+ 1.08{log(numextremedis)}

(4.29)
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̂log(recovery) = −7.65− 0.01{baseline}+ 0.59{maxdis}

+1.04{log(numextremedis)}+ 2.70{season}

−0.38{log(maxdis)} ∗ {season} (4.30)

The above models for both rivers highlight that the number of significant pre-

dictors that contribute to the variability in pH are relatively larger than that in

conductivity for each threshold. Additionally, this suggests that pH is obviously

influenced by certain features of discharge such as the area under the curve of

extreme discharge and the number of extreme discharge. In particular, the rise of

the number of extreme discharge and area under the extreme discharge results in

the increase of recovery period for pH and conductivity. The adjusted coefficients

of determination for each of the above fitted models are above 90%, suggesting

that the recovery periods for pH and conductivity are reasonably well explained

at each of three threshold levels for the two rivers. The diagnostic checking is

carried out for the above fitted models of log recovery for pH and conductivity

for both rivers.

Diagnostic Plots

For illustration, Figure 4.22 presents the diagnostic plots for the models of log

recovery for pH, subject to a threshold of 10% for the extreme discharge at the

rivers Charr (left). The plot of residuals against the fitted values (top left) show

the residuals are approximately scattered around zero mean. However, there are
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particular patterns in the residuals, highlighting heteroscedasticity of the residu-

als. Such patterns of the residuals around zero mean suggest a non-linear fitted

model could be more appropriate for the log recovery for pH, however, no prior

information on the previous models of log recovery for pH restrict the fitting of

any nonlinear models. The normality plots (top right) show a small number of

points at both tails of each of the normal distribution. However, most of the

points are scattered around the dashed line and so, the normality assumption

is reasonably satisfied. The acf (bottom left) and pacf (bottom right) shows no

evidence of correlation structure for residuals. The current models for the log

recovery for pH could be considerably accepted since most of the assumptions of

the linear model are satisfied despite a small violation of the constancy of the

residuals.

Diagnostic checks for the log recovery for pH corresponding to the thresholds of

2% and 3% of the extreme discharge provide similar results as above. Similarly,

the model assumptions are satisfied for the model of log recovery for conductivity

corresponding to each of the thresholds for both rivers.
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Figure 4.22. Diagnostic plots for model of log recovery for pH corresponding to
a threshold of 10% for the extreme discharge at the River Charr.

4.4.5 Model Validation for River Charr

The previous fitted models for log recovery for pH and conductivity at the River

Charr corresponding to each of the chosen thresholds are used to predict recovery

periods in the period January - October 2008.

The mean square error (MSE) of the log recovery for pH and conductivity from the

fitted models corresponding to the three levels of thresholds for extreme discharge

are shown in Table 4.4. The MSE for models of log recovery for conductivity cor-

responding to threshold levels of 2% and 3% are fairly small. Similarly, low MSEs
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are observed for log recovery for pH at a threshold of 2% and this small value

indicates that the current fitted models allow reasonable prediction. The MSE

increases as the number of extreme discharge decreases, suggesting that better

models are produced at higher thresholds.

Threshold(%) pH Conductivity

2 0.22 0.25
3 15.78 0.58
10 23.14 15.94

Table 4.4. Mean square error of models of log recovery for pH and conductivity

For illustration, Figure 4.23 shows the plots of fitted values against actual values

of log recovery for pH (left) and conductivity (right) corresponding to threshold

of 2% for extreme discharge. The line of equality is denoted by a blue line for each

plot to highlight the similarity between the actual and fitted values of log recovery

period. The similarity between the predicted and actual values of log recovery

are more apparent in conductivity since the points are equally scattered above

and below the line of equality compared to pH. Despite lower MSE for pH of 0.22

(Table 4.4), the actual log recovery for pH are greater than the corresponding

predicted values, suggesting that the features of log recovery in 2008 are slighty

different than in the previous 3 years and fitted values for log recovery for pH

underestimates the actual values systematically.

4.4.6 Extremal Index for Discharge

Figure 4.24 illustrates the interval estimates of the extremal index (black line)

over a series of thresholds for discharge at the River Charr (left) and the River
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Figure 4.23. Plots of fitted against actual values of log recovery for pH (left)
and conductivity (right), subject to threshold level of 2% for extreme discharge.

Drumtee (right). The bootstrap confidence limits (dashed colour lines) are high-

lighted around the extremal indexes and a horizontal line at θ=1 (black dashed

line) is marked on each plot to distinguish the feature of extreme discharge. Clus-

ters of extreme discharge can be observed if the upper confidence limit for the

extremal index lies below 1. Conversely, declustering of extreme discharge is

highlighted if the upper confidence limits for the extremal index lies beyond 1.

Similar features of the extremal index for extreme discharge are highlighted for

both rivers. However, a different characteristic of the upper confidence limit for

the extremal index is observed at sufficiently large thresholds between Charr and

Drumtee. The two plots show that the extremal index rises as the threshold

goes up, indicating that the degree of clustering becomes smaller as the levels of

threshold increase. The width of the confidence limits increases as the thresh-

olds increases, indicating that higher variability could be observed in the extreme

discharge as the chosen threshold increases. In particular, the independence of

extreme discharge for River Charr and River Drumtee are observed at thresholds

of 29m3s−1 and 4.7m3s−1, respectively.
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The above results show the dependency of the extreme discharge at both rivers

in a series of low up to sufficiently high thresholds. This is highly likely due

to the fact that the extreme discharge occurs in a series of time points over a

particular period. Hydrologically, such a feature is expected since a high discharge

is observed during storm events and snow melting in the colder months of the

year and so, their appearance can be highlighted in the winter.

Figure 4.24. Plots of extremal indexes over a series of thresholds for discharge
at Charr (left) and Drumtee (right).

4.5 Discussion

This study demonstrates important findings from analyzing a semi-continuous

series of 15-minute and 30-minute measurements of environmental variables at

Charr and Drumtee in Scotland, respectively. It also highlights what can be

learned from approaches such as wavelets. The main advantage of this statistical

approach is the ability to quantify the individual temporal patterns as well as

the relationship of two processes at a number of shorter time scales at the River

Charr, leading to better understanding of the dynamics of short-term variability
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in rivers. In addition, the recovery periods for the environmental variables at

Charr and Drumtee following the extreme events in discharge have been demon-

strated in the latter part of this chapter.

The estimated wavelet power spectrum provides precious information after first

order differencing of the temperature, barometric pressure, pH and conductiv-

ity measurements at particular time points and scales. The integration of this

wavelet spectrum and areawise significance testing is a powerful tool to assist

the viewing and identification of dominant environmental processes. The use of

first order differencing to remove the linear trend and further stabilise the vari-

ance of each time series provides apparent temporal pattern for temperature over

summer. The wavelet power spectrum has shown some evidence of constant pe-

riodicities in temperature, pH and conductivity in warmer months whilst there

is no apparent variation in barometric pressure over the year. Water temper-

ature shows periodic features, particularly within a 24 hour period in summer

and it is essentially attributed to physical factors in rivers. A large amount of

solar radiation in summer results in increases in water temperature in the broad

daylight, however, a significant heat transfer, released from the water into the air

at night may cause a big drop in temperature in rivers and this natural diurnal

cycle continues over the warmer months. Similar daily patterns in the pH and

conductivity in warmer months could be a result of changes in carbonic acid in

river in response to diurnal temperature variation. Barometric pressure is an

independent meteorological determinant in the sense that there are no specific

biological and chemical determinants in the water system that may reflect its

temporal variation, however, it is controlled by the movement of air masses. The
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constant temporal change at 1 and 2 day scales are more likely due to the tempo-

ral variation in air masses that reflect high and low air pressures in several days

of the colder months.

The wavelet coherence of pH and conductivity exposes regions with high com-

mon power and further provides valuable information on the phase relationship

between the two signals. Wavelet coherence has proven useful to reveal the ev-

idence of common oscillations between the two time series at particular scales

and time points, suggesting a strong relationship between them from 1 to 3 days

scale over each year. In particular, a significant relationship is shown at 1 day

and 2-3 days bands in summer and both seasons, respectively. Seasonal changes

in pH and conductivity could be a result of certain features of discharge. High

discharge in winter typically occurs in response to high precipitation and snow

melting and the excess partial pressure of carbon dioxide associated with this

discharge level may result in low pH. The influence of solar radiation in a shorter

day time during colder season is smaller and therefore, daily periodicity is not

likely to be observed. In addition, the rise of a carbonic acid from carbon dioxide

in stream water is likely to contribute to the drop of conductivity. While reducing

carbon dioxide, the acidity of the stream may decrease, resulting in an increase of

pH. However, the release of carbon dioxide in the water via respiratory processes

during the night time may result in decline of pH.

The cross phase angle between pH and conductivity highlights the time shift be-

tween the two signals and so, the sequence of peaks of these signals has been

identified and the corresponding ecological processes is as follows. The lead of

peaks of pH over conductivity by about 6 hours in summer might be due to the
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prompt response to changes in carbon concentration in rivers following a diurnal

cycle in water temperature. Similar time location of peaks from both signals at

scales of 2-3 days over the year could be a result of small influence of temperature

on the amount of carbon dioxide in the stream.

Further analysis on pH and conductivity contributes to the estimates of recovery

period of each determinant following the extreme discharge at Charr and Drum-

tee. There are apparent differences in the recovery period for pH between the

two rivers which might be explained by certain features of the areas. A seasonal

factor appears to be significantly influential at the River Charr and is likely due

to a large amount of snowfall. Furthermore, the River Charr is fairly close to the

ocean and so, it is likely that frequency of precipitation is higher in Aberdeen

than in Whitelee. The large amount of acid rain in the north east of Scotland

over the winter season may result in seasonal dependence of recovery for pH com-

pared to the east of Scotland which is much drier.

The number of predictors in the model of log recovery for pH at the River Charr

is larger than the River Drumtee for the same level of threshold. This charac-

teristic is expected since Aberdeenshire, which is mountainously area and often

blanketed by snow fall in winter results in more variability in recovery as the

snow melting occurs. This natural phenomenon which is often identified at the

end of winter may require more predictors to explain the variability of recovery

for pH.

However, a similarity of the predictors in the models of log recovery for pH be-

tween the two areas is observed. There is evidence of log area above extreme
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discharge and minimum pH in the models of log recovery for pH at both rivers,

suggesting the occurrence of primary contributors of recovery, which is not re-

stricted by threshold levels as well as the features of the locations.

Dissimilarity of the predictors between the two rivers is shown from the fitted

models of log recovery for conductivity corresponding to each threshold, suggest-

ing that the recovery process of this environmental variable from the two different

areas could be influenced by different contributors. Distinct complexity of the

models of recovery period for conductivity at the River Charr are observed as

the thresholds of extreme discharge increase. A simple model of log recovery for

conductivity corresponding to a 2% threshold for extreme discharge is more ap-

propriate at the River Charr than the River Drumtree Burn, suggesting a unique

contributor of the recovery period. However, the models of recovery for conduc-

tivity at the River Charr become more complex as thresholds decrease, suggesting

that the independence feature of the extreme discharge plays an important role

in producing a simple model of log recovery. Such a feature at the River Charr

is highlighted as the fitted models are validated, indicating that better models of

recovery for conductivity are acquired.

Despite a clear difference of the range of discharge measurements between Charr

and Drumtee, they exhibit a similar characteristic of extreme discharge. In par-

ticular, the declustering tends to occur as the thresholds increase. Such a feature

is noticeable from the plots of extremal index on a series of thresholds. The clus-

tering of extreme discharge for each river is apparent and occurs over a wide range

of thresholds. The evidence of declustering of extreme discharge is highlighted

for each river as the thresholds reach up to sufficiently large values. However,
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the declustering as a result of high thresholds does not affect the previous fitted

model of recovery period for pH and conductivity despite smaller thresholds of

2%, 3% and 10% chosen for the extreme discharge. This is due to the fact that

the diagnostic check is satisfied, highlighting the adequacy of the models of log

recovery for pH and conductivity.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The key concept of this thesis is to present a variety of different statistical ap-

proaches that are appropriate to model time series data recorded at low, moderate

and high temporal resolutions. This is important to answer questions of inter-

est regarding the environmental and ecological issues of freshwaters as frequently

raised by limnologists, biogeochemists and regulators. In particular, the statisti-

cal analysis has been applied to the environmental data with different temporal

resolutions from Loch Lomond, the rivers Charr and Drumtee Burn in Scotland.

The first part of this work is based on analysis of monthly temperature and

chlorophyll measurements from 1987-2005 in Loch Lomond. It was of interest to

investigate trend and seasonal pattern in temperature and chlorophyll. The non-

constancy of the variability of the chlorophyll is addressed prior to model fitting,

by applying a natural log transform to stabilize the variance. A large number of

211
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missing values for temperature and chlorophyll do not occur at random since they

mostly appear in winter and these have been imputed using a variety of statistical

approaches. Moreover, the extended period of missing data for chlorophyll was

not included in the analysis.

A variety of models were explored for the low temporal data for surface tempera-

ture and chlorophyll for the north and south basins of Loch Lomond. Local linear

regression is used for the models which involve estimation of a smooth function

for the trend and the flexibility of the model is controlled by the bandwidth, de-

termined by the degrees of freedom. Moreover, a spline smoothing method with

the smoothness of the function controlled by the number of knots, is used in the

additive model since a cyclical smoother is required for the seasonality term.

The evidence of smooth trend and seasonal pattern for monthly temperature in

the north and south basins of Loch Lomond highlighted by the additive model

indicates that the pattern changes smoothly over time. In general, the temper-

ature increases from 1987-2005. For log chlorophyll, the significant linear trend

and constant seasonal pattern in both basins, resulting from the appropriateness

of the harmonic model provide an indicator for the mean changes in the deeper

and shallower basins. The same trends for log chlorophyll in the north and south

basins may suggest similar influences of physical, chemical and biological determi-

nants in the water body. Further investigation of the contribution of phosphate,

nitrate and temperature to the variation of log chlorophyll over the year provides

further insight on the ecological process in lake.
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Phosphate and nitrate are not significant predictors in the model of log chloro-

phyll for the north and south basins, suggesting that higher resolution data might

be required to explain their significant relationship. There is evidence of a tem-

perature effect in the model of log chlorophyll for the south basin, indicating

that the blooms of phytoplankton in shallower water of the loch is highly likely

influenced by the temperature. However, no significant influence of temperature

and nutrients on log chlorophyll in the north basin and it is more likely that the

low frequency data did not pick up the significant relationship.

The second part of the work is the extension of the previous work done on temper-

ature to higher frequency of 1 and 3 hourly data from thermistor chains. Data

were recorded at 11 different depths in the north, mid and south basins. The

changes of temperature over the year by considering depth as a random effect,

at different locations of the loch is determined from the mixed-effects model. In

addition, the estimates of the the position of the thermocline due to its impor-

tance of partitioning the water column into two strata with different biological

and chemical features that reflect the ecological process in lakes, is determined

from the deeper water (north and mid basins).

The determination of the correlation structure of the deseasonalised residuals

using the autocorrelation function indicates an AR(1) model for the north and

AR(2) model for the mid and south basins may provide a plausible description

of the autocorrelation structure in the residuals of the temperature. Ecologically,

the use of an AR model for defining the correlation structure of the residuals

of temperature for each depth in the loch tailors to the natural relationship in

the real environmental time series. Both fixed and random effects models were
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investigated but random effects are most appropriate for all basins.

There is evidence of a decrease of temperature in the north and south basins but

for the mid basin, the significant increase of temperature is highlighted over the

year. Such a difference is likely due to the different ecological process in different

years despite the temperature measurements being collected in the same loch.

The changes of temperature at different locations of the loch are fairly similar as

marked by the small values of the fixed effects β1. Nevertheless, the incorporation

of a random effect b1 in the mixed-effects model that represent the mean changes

of temperature at different depths may lead to different changes of temperature

at different depths.

Further investigation on the moderate temperature measurements with depths at

the deeper locations of the loch provides estimates of the position of the thermo-

cline. Different approaches corresponding to different mathematical and limno-

logical terminologies of the thermocline, are used as a basis for estimating such

a natural feature in lakes in warmer months. The maximum relative rate of

change and changepoint regression approaches, which rely on the mathematical

definition, produce potential estimates of the thermocline depths. In addition,

the derivative of a smooth curve approach following the limnological definition

produce similar results to the previous approaches.

For the maximum relative rate of change approach, the lack of statistical prop-

erties, unnatural estimates and the restriction to the cut-off point are drawbacks

to the method. Therefore, a changepoint regression, which is able to capture

the position of the thermocline at a depth corresponding to a rapid change of
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temperature with depth at a given time point, was investigated, following the

limnological definition of identifying the point of abrupt change.

While the changepoint approach indicates the occurrence of maximum changes

of temperature with depth at a particular time point, the approach used here

cannot deal with the situation of an inflection point. Therefore, derivatives of

smooth curves at each time point were investigated to follow the mathematical

definition of detecting inflection points.

The different variability of the estimates of the thermocline depth over the time

period produced by the changepoint regression and derivative of a smooth curve

in the north basin agree to the limnological and mathematical terminologies of

the thermocline but for the mid basin, similar variability is displayed from both

statistical approaches. It is likely due to the fact that different ecological pro-

cesses occur in the water column over different years and so, the position of the

thermocline may vary at a given time point in warmer months.

The final part of this work deals with environmental data of high temporal reso-

lution. The temporal patterns for temperature, pH, conductivity and barometric

pressure, and the relationship between pH and conductivity at short temporal

scales are investigated at the river Charr, and the models of log recovery periods

are fitted to pH and conductivity following extreme discharge at the rivers Charr

and Drumtree Burn.

Using wavelets, there is strong evidence of a temporal pattern for temperature
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exhibited in the warmer months but weak evidence of temporal patterns for con-

ductivity and pH in the warmer months are presented by the wavelet spectrum.

The evidence of temporal patterns at a scale of 1-2 days are exhibited by the

barometric pressure over the year. The areawise significant test does not remove

the dubious significant patches for each pH and conductivity. The determination

of the relationship between pH and conductivity via wavelet coherence show ev-

idence of the similarity of the signals of the two time series at a 1 day scale in

summer and a 2 day scale in summer and winter.

The wavelet power spectrum provides strong evidence of a diurnal pattern for

temperature over summer throughout the years as expected whereas, pH and con-

ductivity show a moderate variability over summer, despite the dubious patches.

In barometric pressure, the wavelet power spectrum shows temporal patterns at

scales of 1-2 days. Further investigation on the coherence between pH and con-

ductivity provide evidence of the similarity of the two signals at a 1 day scale in

summer but a more consistent relationship at a 2 day scale in both seasons of

the year.

The recovery period for each of pH and conductivity, which begins from the time

point where the measurements start to decrease in response to extreme discharge,

until the values return to the pre-event levels, is determined. Linear regression

models of log recovery period for pH and conductivity are fitted on the baseline

of pH and conductivity, maximum values of discharge within the recovery period,

minimum pH and conductivity within the recovery period, the area bounded the

thresholds and curve of extreme discharge, seasonal factor and the interaction of

each of the above predictor with the seasonal factor. The evidence of significant
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predictors is determined for model of log recovery for pH and conductivity corre-

sponding to three thresholds of extreme discharge determined from its cumulative

distribution function.

The fitted models of log recovery for pH and conductivity show the significant in-

fluence of a particular feature of the extreme discharge. In particular, the model

of log recovery for pH and conductivity corresponding to each of the thresholds

for extreme discharge show evidence of the log area of discharge to explain the

variability of the log recovery for the river Charr. For the river Drumtee Burn,

log number of extreme discharge are significant in the models of log recovery for

pH and conductivity corresponding to each of the thresholds for extreme dis-

charge. The area bounded by the the horizontal line of threshold and the curve

of extreme discharge contributes significantly to the recovery period for pH and

conductivity at the River Charr but for the River Drumtee Burn, the number of

extreme discharge appears to be more influential to the recovery period for both

pH and conductivity at any of the three levels of threshold for extreme discharge.

Moreover, the investigation of cluster of extreme discharge at the rivers Charr

and Drumtee Burn provides a sufficiently large thresholds that characterize the

independence of the cluster of extreme discharge. In comparison, the threshold

for extreme discharge for the river Charr is comparably larger than the river

Drumtee Burn.
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5.2 Future Work

The extension of current works on a low, moderate and high temporal resolutions

of environmental data could possibly be carried out in future.

For environmental measurements in lakes with low temporal resolution, the inves-

tigation of potential biological determinants on the variability of log chlorophyll

in the north and south basins could be carried out to determine the evidence of

biological determinants on the bloom of phytoplankton. The effect of biological

determinants to the increase of chlorophyll should be given much attention in

accordance to the drop of water quality. The number of local aquatic animals for

each basin of the lake may also be incorporated in the model of chlorophyll since

it may affect the changes of the bloom of phytoplankton.

Additional moderate frequency of temperature measurements in later years may

lead to the investigation of the trend and seasonality term for each depth. The

linear mixed model with a trend and seasonal term over several years may not

only enable the estimation of temperature within the time period of measure-

ments at a particular depth but also allow prediction of the temperature in the

later years.

Meanwhile, in the issue of the thermocline, physical factors should be incorpo-

rated in determining the position of this natural phenomenon in lakes during the

summer since this might increase the precision of the estimates of its position as

well as providing more informative results with regard to other significant natu-

ral effects. The time series of temperature, physical factors and depth could be
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modelled together over the year to allow prediction of the position of the ther-

mocline in the later years. Consequently, the estimates could be improved and

more understanding on the prominent natural features in lakes could be gained.

For the environmental determinant in rivers with a high temporal resolution, dif-

ferent ways of treating the actual measurements of pH and conductivity could be

tested to allow a clear presentation of a significant power spectrum without the

disturbance of dubious patches. For an example, the extreme events in pH and

conductivity could be removed prior to wavelet analysis. The wavelet coherence

shows evidence of a common signal of pH and conductivity at particular short

scales. However, no investigation is carried out on the relationship between each

of pH and conductivity, and discharge. Such an investigation is also important

since it may provide sufficient information on the relationship between environ-

mental and hydrological variables in rivers. The temporal pattern at short time

scales can be used as a basis in modelling the corresponding variables. For in-

stance, a clear diurnal cycle for temperature over summer may lead to fitting

a model of temperature which incorporate the diurnal term for summer but for

winter, this daily cyclical term is not defined.

Despite a simple regression model used to fit the recovery period for pH and

conductivity, this model has shown significant relationships between the recovery

period and several potential predictors following the extreme discharge corre-

sponding to particular thresholds. This can be extended by incorporating other

potential predictors in the model.

The semi-continuous to continuous data monitoring will become more common
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practice in the future and increasingly sophisticated and complex models will be

required to extract features of interest from very noisy, nonstationary data
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