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Abstract

Objectives: In this study, we evaluate how to estimate diagnostic test accuracy (DTA) correctly in the presence of longitudinal patient
data (ie, repeated test applications per patient).

Study Design and Setting: We used a nonparametric approach to estimate the sensitivity and specificity of three tests for different
target conditions with varying characteristics (ie, episode length and disease-free intervals between episodes): 1) systemic inflammatory
response syndrome (n = 36), 2) depression (n = 33), and 3) epilepsy (n = 30). DTA was estimated on the levels ‘time’, ‘block’, and ‘pa-
tient-time’ for each diagnosis, representing different research questions. The estimation was conducted for the time units per minute, per
hour, and per day.

Results: A comparison of DTA per and across use cases showed variations in the estimates, which resulted from the used level, the time unit,
the resulting number of observations per patient, and the diagnosis-specific characteristics. Intra- and inter-use-case comparisons showed that the
time-level had the highest DTA, particularly the larger the time unit, and that the patient-time-level approximated 50% sensitivity and specificity.

Conclusion: Researchers need to predefine their choices (ie, estimation levels and time units) based on their individual research aims,
estimands, and diagnosis-specific characteristics of the target outcomes to make sure that unbiased and clinically relevant measures are
communicated. In cases of uncertainty, researchers could report the DTA of the test using more than one estimation level and/or time

unit.
creativecommons.org/licenses/by-nc/4.0/).
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What is new?

Key findings

e Diagnostic test accuracy (DTA) estimation in lon-
gitudinal study settings (ie, repeated test applica-
tions per subject) requires  appropriate
methodological approaches that account for the
clustering of the data.

What this adds to what was known?

e Use cases showed that DTA estimates differed de-
pending on the estimation level (ie, time-level,
block-level, and/or patient-time-level) and time
unit (eg, per minute, per hour, per day, etc.); they
were even misleading if they did not reflect the
diagnosis-specific characteristics (eg, epilepsy sei-
zures last seconds to a few minutes, therefore the
time unit ‘day’ is inadequate as small differences
between the index test and the reference standard
may not be captured).

What is the implication and what should change

now?

e Researchers should preselect their choices of esti-
mation level and time unit in accordance with
diagnosis-specific characteristics of the target con-
dition for the DTA estimation. If possible, multiple
reporting options are desirable.

1. Introduction

A diagnostic test can be any device (eg, biomarker quan-
tification, magnetic resonance imaging, etc.) [1—3] with
which healthcare professionals classify a condition (eg,
diseased vs disease-free) [1—6] and make an informed de-
cision based on the test’s result. Each test is required to be
assessed for its diagnostic test accuracy (DTA) before its
usage in practice [7]. Any diagnostic test should provide
a correct classification of the presence or absence of a con-
dition (ie, true positive [TP], true negative [TN]) while be-
ing safe and effective [2,3,5]; thus, the quantity of false
positive (FP) and false negative (FN) test results should
be minimal [5]. Misdiagnoses can have serious conse-
quences for the patient’s health [2,5] and/or a country’s
health care system [2].

The diagnostic validity of the diagnostic test (referred to
as the index test) is best assessed in a DTA study using an
established reference standard as the ground truth [5,7]. To
minimize potential influences, test read-outs should be
blinded to each other and performed without time delay
[2,5]. Information on test performance is usually reported
in terms of sensitivity and specificity (Table 1).

Lately, researchers have shown that many DTA studies are
of low quality, do not necessarily represent the situation of
interest, and/or are associated with a considerable risk of bias
[8,9]. Consequently, the diagnostic test under review might
not be used in practice or the research may be involuntarily
distorted [9,10]. Particularly, repeated measurements per pa-
tient require adequate DTA analysis approaches as the
within-person correlation can inflate the diagnostic test’s un-
corrected accuracy compared to only including a single mea-
surement per patient [11—13]. A systematic review
highlighted that most DTA studies did not report sufficient
information on the usage of or adjustment for longitudinal
data (ie, repeated measurements per patients with disease-
free and/or diseased intervals) in the DTA estimation [8].
Those that accounted for longitudinal data used various
methods to adjust their DTA estimates [14].

When evaluating repeated diagnostic tests on the same
person, treatment effects must also be considered. An early
intervention may hinder the condition’s onset, while treat-
ment after diagnosis may cause a health improvement. An a
priori definition of the estimand that is the target for a DTA
estimation to address the scientific question of interest posed
by the study objective [15—18] is, therefore, necessary.

This study evaluates how to analyze and report longitu-
dinal data from DTA studies using datasets on systematic
inflammatory response syndrome (SIRS), depression, and
epilepsy as use cases. The longitudinal data challenge will
be addressed by:

- presenting DTA estimates at three estimation levels (ie,
time-level, block-level, and patient-time-level), and

- introducing a nonparametric estimation method
[11,19].

2. Methods

We report this study in accordance with the Standard for
Reporting Diagnostic Accuracy guideline [20] (Appendix
1). We use the following nomenclature: A “‘time unit™ is
chosen by the researcher, that is, diagnosis assessment
every minute/hour/day. A “time point” refers to a specific
minute/hour/day within the longitudinal setting. A “‘block”
is an aggregation of labeled time points based on the rules
explained below.

2.1. DTA estimation levels

We present three DTA estimation levels (Figs 1—3)
determining an index test’s performance using longitudinal
data. More elaborate descriptions, including step-by-step
labeling instructions, are presented in Appendix 2.

2.1.1. Time-level
The time-level provides a label for every time point.
This level’s estimand is the diagnostic status (ie, target
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Table 1. Key terminology of diagnostic test accuracy and diagnostic test accuracy studies

Terminology

Description

Index test

Reference standard

True positive (TP)

True negative (TN)

False positive (FP)

False negative (FN)

Sensitivity

Specificity

Positive Predictive Value (PPV)

Negative Predicative Value (NPV)

Diagnostic accuracy

Receiver Operating Characteristic (ROC) Curve

Area under the Curve (AUC)

The test of interest is called the index test. It can be “any medical device that is a reagent,

reagent product, calibrator, control material, kit, instrument, apparatus, piece of equipment,

software or system, whether used alone or in combination [...] for the purpose of providing
information [...] concerning a physiological or pathological process or state.” [3]

“This is the test used to define the target condition, and the underlying assumption is that it
reflects the truth. By design, the reference standard is assumed to be flawless. The reference
standard sets the reference, and sensitivity and specificity are expressed as the proportion of
reference standard positives with a positive index test result, and the proportion of reference
standard negatives with a negative index test result, respectively. It is therefore impossible to
show that an index test is better than the reference standard, even if this would be the case in
reality.” [2]
At a given time point, both the index test and the reference standard detect the occurrence of
the target condition.

At a given time point, both the index test and the reference standard do not detect the
occurrence of the target condition.

At a given time point, the index test detects the occurrence of the target condition, but the
reference standard does not.

At a given time point, the reference standard detects the occurrence of the target condition,
but the index test does not.

The probability of a positive index test given that the reference standard detects the
occurrence of the target condition, estimated by > TP/(3> TP + > FN).

The probability of a negative index test given that the reference standard does not detect the
occurrence of the target condition, estimated by > TN/(3-TN + >"FP).

The probability of having the target condition given a positive index test result, estimated by
STP/(S-TP + S OFP).

The probability of not having the target condition given a negative index test result, estimated
by >TN/(G"FN + >"TN).

The proportion of all test results, both positive and negative, that is correctly identified by the
index test given the reference standard diagnostic health status (i.e., the true diagnostic health
status), estimated by (>-TP + > TN)/(3_TP + > FN + > FP + > TN).

Expresses the relationship between the sensitivity and the specificity by plotting the true-
positive rate (sensitivity) against the FP rate (1 - specificity) over a range of cut-off values. The
ROC curve of a test that discriminates well is crowed toward the upper-left corner of the plane.

Provides an aggregate measure of performance across all possible cut-off values. One way of
interpreting AUC is as the probability that the index test for a random individual with the target
condition is higher than for a random individual without the target condition.

condition present/absent) per time point without any

aggregation.

2.1.2. Block-level

DTA estimation. FP and FN labels overrule TP and TN la-
bels, ie, this labeling penalizes any differences between the
diagnostic tests. We can control for this by applying modi-
fying rules, eg, applying a clinician-based tolerance margin

The block-level aggregates consecutive, labeled time
points based on diagnostic status. This level requires that
the estimand is a change in the diagnostic status.

2.1.2.1. Blocks based on reference standard. The time
point at which the reference standard changes its diagnostic
status determines the end of the previous block and the start
of the new block. With this definition, the result of the
reference standard is assumed to be known, while the result
of the index test is a random variable that follows a Ber-
noulli distribution.

For DTA estimation, the time point labels per block are
summarized into one single label which is included in the

rule, so that if the index test starts or ends within the toler-
ance margin of the reference standard, the index test’s diag-
nostic status at the specific time points is changed in
accordance with the reference standard’s diagnostic status
(ie, no “punishment” if the index test starts and/or ends
too early or too late). However, if the index test starts or
ends outside of the tolerance margin, the index test’s diag-
nostic status of these specific time points remains un-
changed. A %-correctness rule can also be applied
according to which the index test’s diagnostic status per pa-
tient is corrected in accordance with the reference stan-
dard’s diagnostic status if at minimum P j;seq500% of single
time points per a diseased block and at minimum
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A BLOCK-LEVEL
A blocks based on change in the reference standard or the
index test or both
(group all identically labeled consecutive observations to one block)

BLOCK-LEVEL

blocks based on change in the
reference standard
(group all consecutive observations with the
same label of reference standard to one block;
correction rules for the index test
label can be applied)

PATIENT-TIME-
LEVEL

(single occurrence
of a label)

Number of subunits

Figure 1. Visualization of the data structure and its subunits that are included in the diagnostic test accuracy estimation. Two options for the block-
level are presented that differ regarding their groupings of labeled time points into blocks. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

Piscase—free% of single time points per a disease-free block
are correctly classified. The P’s are diagnosis-specific. For
our analysis, we used a tolerance margin of *1 time inter-
val around the reference standard’s disease episode start
and end and an 85% correction rule for diseased and
disease-free blocks (Appendix 3).

2.1.2.2. Blocks based on index test and reference standard.
Each new block starts and ends with a change in the diag-
nostic status of the index test and/or the reference standard
and is given a single summary label that is used for the
DTA estimation. Modifying rules can be applied. With this
definition, the results of both diagnostic tests are random
variables, which violate one assumption of our proposed
nonparametric approach.

2.1.3. Patient-time-level

The patient-time-level summarizes the occurrence of all
labels per patient during the defined period; thus, a patient
adds at minimum one label or at maximum four labels to
the DTA estimation. This level’s estimand is the occurrence
of the possible labels without considering their respective
frequency. It is not suited for usage because with time the
probability of observing all four labels increases; hence,
this level is a biased estimate of 50% sensitivity and 50%
specificity.

2.2. Nonparametric approach for DTA estimation

The DTA can be estimated using a nonparametric
approach [11,19] which is robust and reliable when ac-
counting for intra- and intercluster correlations [21] without
having to assume specific dependence structures and

distributions within a cluster. It categorizes the patients into
three clusters (Appendix 4), regardless of the individual
participant’s number of repeated measurements [19,21]:

- ‘Absent’ (icp): Patient was consistently disease-free
during the total observation period.

- ‘Present’ (icy): Patient was consistently diseased during
the total observation period.

- ‘Mix’ (c): Patient experienced diseased and disease-
free phases during the total observation period.

This method uses a unified nonparametric model to esti-
mate the sensitivity and specificity accounting for the clus-
tered longitudinal data [11,22]. It applies a nonparametric
rank statistic using the weighted estimation strategy (ie,
weighting by the size of the cluster) [11,21]. This allows as-
signing an equal weight to all subunits of the same cluster
[21]. Each DTA estimate is presented with its 95% logit
Wald confidence interval (CI). For details, we refer to
[11,19].

2.3. Use cases

We used three publicly available datasets as use cases
(Table 2) to show the application of our proposed methods.
The dataset descriptions, labeling, and information on the
diagnostic tests are presented in Appendices 2—3 and 5.
The use cases were representative examples for distinctive
target conditions that varied in episode and disease-free in-
terval lengths and their respective frequencies (Table 2).

2.3.1. SIRS dataset
The SIRS dataset includes 168 pediatric patients. All
participants were consecutively recruited at a single study
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Time points 0 1 2 3 4 5 6 7 8 9 10 [ 11 (12 [ 13 | 14 | 15 | 16 | 17 | 18 [ 19 [ 20 | 21 | 22 | 23 | 24

Reference

dandaidd
d

Index test

Time-level

Block-level
(blocks based on RS)
- unmodified -
Block-level
(blocks based on RS)
- modified -

Block-level
(blocks based on IT
and RS)

Patient-time-
level

RS = reference standard, IT = index test, TP = true positive, FP = false positive, FN = false negative, TN = true negative

Diagnostic test accuracy labeling using the various estimation levels. Each label per estimation level is included in the diagnostic test accuracy estimation.

« Time-level: Each individual time point is labeled by comparing the reference standard diagnostic status to the index test diagnostic status.

¢ Block-level (blocks based on reference standard): The time points where the reference standard changes its diagnostic status determined the end of the previous block and the start of the new
block; thus, the result of the reference standard is assumed to be not influenced by chance while the result of the index test is a random variable that follows a Bernoulli distribution. For the
unmodified version, the individual labeled time points per block are summarized to one single label (i.e., FN and FP labels are always overruling TP and TN labels). For the modified version, a
tolerance margin of £1 time point at the start and end of diseased reference standard block (see grey boxes at time points 1-2 and 21-22 of the index test) and an 85% correctness rule (see blue box
at time points 10-11 of the index test) per block (here: diseased and disease-free blocks) is applied according to which the index test is modified. Afterwards, the labeled time points per block are
summarized to one single label.

Block-level (blocks based on index test and reference standard): All labeled, consecutive time points with an identical diagnostic label are group together into blocks. Each new block starts and
ends with a change of the diagnostic status of the index test and/or the reference standard. Afterwards, each block is given a single summary label. ATTENTION: This level is not suited for usage
since it violates one assumption of our proposed nonparametric approach!

Patient-time-level: Each single occurrence of a label is only once included in the diagnostic test accuracy estimation; hence, the frequency of labels is ignored. ATTENTION: This level is not
suited for usage because with time the likelihood of observing all four labels increases; hence, this level, at best, is a biased estimate of 50% sensitivity and 50% specificity.

.

Figure 2. Example of labeling on the three levels. The time-level adds 18 true positive (TP), three false positive (FP), two false negative (FN), and
two true negative (TN) observations to the DTA estimation. The DTA estimation of the block-level using blocks based on the reference standard
(modified) adds 1 TP, 1 FP, and 1 TN to the DTA estimation, while the block-level using blocks based on both tests adds 2 TP, 2 FP, 1 FN,
and 2 TN observations. On the patient-time-level, all four labels were observed; thus, this patient adds one observation to each label. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

ystemic Infl Yy Resp Syndrome (SIRS)
Subset of observation period of subject 50
i ! [} 1
! I 1 1
Stay - 1 1 !
I 1 1
@ ® @ @06
Ref ' ; 1 1
eference i 3
standard —
! 1 i 1
! I 1 1
Index ! ! 1 1
test i 1 L — s ]
! 1 i ]
. ] 1 1
g8 & & §§ g 8 § ¢ ®R 88 & %
e . 0 0 © @ © © © o ~ NS
B Hours
Rater Hours C Unmodified Modified*
Block Hours o ol
Index test 485-537 event-leve event-leve
Reference standard | 486-623 1 480-485 FP N
Index test 575-623 2 486-623 FN EN
Index test 661-724 3 624-701 FP EP
Reference standard | 702-727 4 702-727 TP TP
Diagnostic test information of A 5 728-744 TN TN

Diagnostic test labelling according to information from B
*+1 hour tolerance marginand 285%-correctness rule

Figure 3. Subset (hours 488—744) of the full study period of a patient in the SIRS dataset. The black lines indicate the presence of the target
condition at the specific time points. A total of five blocks according to the reference standard were summarized (ie, block 1: hours 480—485;
block 2: hours 486—623; block 3: hours 624—701; block 4: hours 702—727; block 5: hours 728—744). (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 2. Demographic characteristics of participants (ie, information on the eligible and included participants) and summary of the test settings per

modified diagnostic dataset

Demographic characteristics

SIRS? dataset(n = 36)

Depression dataset (n = 33)

Epilepsy dataset (n = 30)

Main characteristic of target
condition

Cohort

Age
Years at enrollment
Missing
Sex
Male
Female
Missing
Disease status
Diseased (at least one episode)
Disease-free at any time
Length of observation period
Total
Range per patient (Min—Max)
Number of episodes per patient
0O (ie, disease-free)
1
2
3
>4
Episode length®
Min; Max

Median
Interval between episodes®
Min; Max

Median

Test setting

Smallest available frequency
of testing®

Index test
Reference standard
Ideal estimation set(s) for

diagnostic test accuracy
Estimation level(s)

Time unit(s)

Medium-to-long episode and
disease-free interval length
(measured in hours), with a low
frequency of recurrence

Pediatric intensive care patients,
Hannover Medical School,
Germany

0-17
0

22 (61.1%)
14 (38.9%)
0 (0.0%)

26 (72.2%)
10 (27.8%)

10,233 h
21-1122 h

10 (27.8%)

13 (36.1%)

10 (27.8%)
1(2.8%)
2 (5.6%)

94 min; 10,959 min (=7.5 d)

1349 min

1 min; 43,290 min (=30 d)

2267 min (=1.5d)

Per minute (time of episode’s
start and end given in format
hh:mm)

Rule-based detection model

Clinician’s diagnosis

Medium-to-long episode and

disease-free interval length

(measured in days), with a
medium frequency of recurrence

Psychiatric adults, Haukeland
University Hospital, Norway

20-69

17 (51.5%)
16 (48.5%)
0 (0.0%)

23 (69.7%)
10 (30.3%)

62,932 h
1583—-2399 h

10 (30.3%)

17 (51.5%)
6 (18.2%)
0 (0.0%)

0 (0.0%)

19,298 min; 42,600 min
(=29.5d)

22,146 min

1440 min; 106,821 min
(=74 d)

2281 min (=1.5d)

Per minute (time of episode’s
start and end given in format
hh:mm)

Not available (proxy: altered
motor activity)

Not available (proxy: motor
activity)

Short-to-medium episode and
disease-free interval length
(measured in minutes), with a
high frequency of recurrence

Pediatric and young adults,
Boston Children’s Hospital, USA

5 (16.7%)
17 (56.7%)
8 (26.7%)"

24 (80.0%)
6 (20.0%)

2783 h
50—-233 h

6 (20.0%)
0 (0.0%)

0 (0.0%)

6 (20.0%)

18 (60.0%)

5 min; 751 min

46 min

1 min; 8681 min (=6 d)

315 min

Per minute (time of episode’s
start and end given in format
hh:mm)

Not available (proxy: altered
electroencephalogram recording)

Electroencephalogram recording

Time-level and/or block-level with blocks based on reference standard

Per minute and/or hour

Per minute, hour, and/or day

Per minute

@ SIRS = Systematic Inflammatory Response syndrome.
b Patient with two records and the patient, who was later added, are added here due to lack of information on gender as well as the additional six

disease-free cases.

¢ Only on participants who experience at least one episode based on the reference standard.
4 The smallest available frequency of testing allows to summarise the testing using any other larger testing frequency (ie, per minute can be

transformed to, eg, per hour, per day, ...

).
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center in Germany between August 01, 2018 and March 31,
2019. For details, we refer to [23—25]. We used the data of
36 consecutive patients (10 disease-free) to ensure compa-
rability with the other datasets regarding the sample size
and to comply with the restrictions imposed by the data
owners.

2.3.2. Depression dataset

The depression dataset includes records of 55 adult pa-
tients, of whom 23 experienced a depressive episode. All
individuals were recruited at Haukeland University, Nor-
way. In total, data from 693 days was recorded [26]. For
this study’s purpose, the dataset included all cases and only
the first 10 disease-free controls (n = 33 patients).

2.3.3. Epilepsy dataset

The epilepsy dataset entails electroencephalogram
(EEG) recordings of 24 pediatric and young adult patients
with intractable seizures of the Boston Children’s Hospital,
in the USA. Each patient was likely to develop an epileptic
episode due to having stopped the antiseizure medication
under medical supervision in an inpatient setting. A total
of 197 episodes were recorded. Modifications were applied
to the dataset to meet this study’s research purpose: Six
additional disease-free synthetic patient records were added
(ie, total sample size: 30 patients).

2.4. Analysis

Sensitivities and specificities were estimated for each
diagnosis per time unit (ie, minute, hour, and day) and
per estimation level (ie, time-level, block-level, and pa-
tient-time-level) using the labeling as shown above
(Appendix 2—3 and Fig 2) and the nonparametric approach
[11,19]. For comparability, sensitivities and specificities
were also estimated ignoring data clustering (ie, using the
standard formulae (Table 1) with a) time-level data [time
unit: minute] or b) only one label per patient [“patient-
level”: TP or FN for a diseased patient; TN or FP for a
disease-free patient]). Missing values were not observed.
Indeterminate test results were not registered.

3. Results

We observed relevant differences across and within the
use cases for the three estimation levels and time units
(Fig 4 and Table 3).

Across the use cases, we observed that the highest
DTAs, irrespective of the used time unit and/or diagnosis,
were estimated on the time-level, while the DTAs of the
block-levels and patient-time-level were lower. The
block-level analysis with blocks based on the reference
standard showed that the unmodified DTA estimates were
lower than the DTA estimates after index test correction.
Moreover, the DTA estimates using ‘day’ as a time unit

were closer to 100%, irrespective of the estimation level,
than the DTA estimates using ‘minute’ or ‘hour’ as a time
unit. We observed a similar pattern of DTA estimates for
the time units ‘minute’ and ‘hour’ across the individual
estimation levels, although estimates were slightly higher
given the ‘hour’ time unit. An exception was the sensitivity
of the use case of depression which was identical for the in-
dividual estimation levels irrespective of the used time unit.
Furthermore, the number of observations decreased dramat-
ically from the time-level to the block-level and/or patient-
time-level which is somewhat mirrored by the estimates
and their CIs. The comparison of the DTA evaluation ac-
counting for data clustering vs ignoring data clustering
highlighted the risk of distorted estimates. If all test results
were included in the estimation but considered uncorre-
lated, the point estimates were identical to the time-level,
but their corresponding CIs were narrower. If, however,
all test results were aggregated into a single test result
per patient, the sensitivities were higher and the specific-
ities lower compared to the time-level, while the CIs were
wider.

The within-use-case comparison showed that some of
the DTA evaluations were clinically more meaningful and
informative than others considering the disease-specific
characteristics (Tables 2—3). For SIRS, the time units ‘min-
ute’ and/or ‘hour’ were most relevant considering the index
test. The sensitivities and specificities for these time units
were relatively similar (ie, a maximum difference of 10.8
percentage points), and dataset-specific information on
the episode and disease-free interval lengths highlighted
that differences between the diagnostic tests would be un-
detected if the time unit ‘day’ were to be used. Generally,
the DTA estimates were higher using the time unit ‘day’
than any of the smaller time units except for the specific-
ities of the time unit ‘day’ on the time-level (94.4%) and
the modified block-level with blocks based on the reference
standard (90.5%). For depression, we observed that the
larger the time unit, the smaller the differences between
the point estimates across the estimation levels. The
block-level with blocks based on the reference standard
showed higher DTAs after correcting the index test (ie, in-
creases of 5 percentage points for sensitivity and 30—40
percentage points for specificity). Finally, for epilepsy, we
observed that the time unit ‘minute’ was the most meaning-
ful considering the index test because the length of episodes
and disease-free intervals were on a smaller scale. The DTA
estimates using the time unit ‘hour’ were higher than the
estimates of the time unit ‘minute’, which were even further
elevated for the time unit ‘day’.

4. Discussion

Our study shows that two features — estimation level
and time unit — should be considered in accordance with
diagnosis-specific characteristics so that the test is
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Figure 4. Summary of the diagnostic test accuracy of all three diagnoses stratified by the diagnostic test accuracy indices (ie, sensitivity and spec-
ificity), by the estimation level (i.e, time-level, block-level, and patient-time-level), and by the time unit (ie, minute, hour, and day). The levels ‘all
test results’ and ‘single, aggregated test result’ (aka patient-level) present the diagnostic test accuracy when data clustering is ignored. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

meaningful and decision-informing (Table 4) when present-
ing an index test’s DTA in a longitudinal setting. They are
determining the number of observations included in the
DTA estimation. Estimand and statistical approach should
be chosen appropriately, that is, accounting for data clus-
tering [18]. Using a simple approach without accounting
for the data structure leads to an overestimation of DTA
and its precision, especially if using a single aggregated test
result, when compared with what is relevant for clinical
practice.

Various estimation levels can be used for the analysis
and reporting of an index test’s DTA, but researchers should
carefully consider their research objective(s), related esti-
mand(s), and potential differences of interpretation between
the estimation levels, particularly in the context of longitu-
dinal data. So far, most studies have reported their analyt-
ical procedures and reporting level [27] intransparently;
only few provided details on the estimation level. As an

example, Wulff et al. [23] used the time- and patient-time-
level. Bode et al. [28] used the block-level with blocks
based on both diagnostic tests. The time-level includes
every single time point which makes it a good technical
starting point, while the block-level summarizes these time
points per diseased and disease-free block into a single,
block-specific label. This requires that the blocks are based
on the diagnostic status of the reference standard so that the
length of the blocks is fixed. We recommend using the
time-level when having a disease with short episodes (eg,
epilepsy) or to assess the index test’s precision (ie,
maximum of labels defined by time unit). The block-level
with blocks based on reference standard can be used if
the aim is to assess the index test’s performance in a clin-
ical setting (ie, focus on periods that have correctly or
incorrectly been classified by the index test) without having
a constant decision to make. For example, a rule-based
detection model could be used in the intensive care setting



Table 3. Summary of the diagnostic test accuracy per diagnostic level (ie, per time-level, per block-level, and per patient-time-level) per time unit (ie, per minute, per hour, and per day) for the
diagnoses ‘Systemic Inflammatory Response Syndrome’ (SIRS), depression, and epilepsy. The levels ‘all test results’ and ‘single, aggregated test result’ (aka patient-level) present the
diagnostic test accuracy when data clustering is ignored

True False False True
Diagnosis Time unit Level Sensitivity (95% Cl) Specificity (95% CI) Positive Positive  negative Negative
Systemic Inflammatory Minute Time 84.8% (76.1-90.7%) 97.6% (94.8—98.9%) 84,243 12,315 15,124 500,847
Response syndrome (SIRS)
Block® (blocks based on reference 43.5% (31.1-56.8%) 68.1% (57.0—77.5%) 20 29 26 62
standard)
Block® (blocks based on reference 71.7% (59.8—81.2%) 96.7% (90.2—98.9%) 33 3 19 88
Standard)
Block (blocks based on index test and 62.0% (565.6—68.1%) 75.4% (69.2—80.6%) 49 33 30 101
reference standard)
Patient-time 58.0% (51.5-64.2%) 71.6% (64.0—78.2%) 29 19 21 48
Hour Time 85.4% (77.5-90.9%) 97.5% (94.6—98.8%) 1454 216 248 8315
Block® (blocks based on reference 54.3% (42.3—65.9%) 72.0% (60.7—81.0%) 25 23 21 59
standard)
Block® (blocks based on reference 73.9% (61.2—83.6%) 97.6% (90.6—99.4%) 34 2 12 80
standard)
Block (blocks based on index test and 67.1% (60.9-72.8%) 77.6% (71.2—82.9%) 49 26 24 90
reference standard)
Patient-time 60.4% (562.8—67.6%) 72.6% (64.1-79.7%) 29 17 19 45
Day Time 93.6% (88.3—96.6%) 94.4% (89.7—97.1%) 102 19 321
Block® (blocks based on reference 86.4% (74.5—-93.2%) 82.5% (70.7—90.2%) 38 11 6 b2
standard)
Block® (blocks based on reference 93.2% (81.0-97.8%) 90.5% (78.0—96.2%) 41 6 3 57
standard)
Block (blocks based on index test and 86.3% (76.3—92.5%) 83.7% (74.5—90.1%) 44 13 7 67
reference standard)
Patient-time 82.9% (69.6—91.1%) 81.1% (70.5—88.6%) 29 10 6 43
Not applicable  All test results (ignoring data clustering) — 84.8% (84.6—85.0%) 97.6% (97.6—97.6%) 84,243 12,315 15,124 500,847
Not applicable Single, aggregated test result (ignoring 100% (100—100%) 77.8% (58.6—97.0%) 30 4 0 14
data clustering)
Depression Minute Time 93.9% (82.9-98.0%) 97.5% (90.4—99.4%) 728,122 75,338 46,926 2,886 594
Block® (blocks based on reference 79.3% (59.4—91.0%) 29.0% (18.7—42.0%) 23 44 6 18
standard)
Block® (blocks based on reference 86.2% (67.2—95.0%) 69.4% (61.2—76.4%) 25 19 4 43
standard)
Block (blocks based on index test and 80.6% (65.1-90.2%) 58.9% (54.9—62.7%) 29 44 7 63
reference standard)
Patient-time 78.6% (63.0—88.8%) 60.0% (55.6—64.2%) 22 22 6 33

(Continued)
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Table 3. Continued

True False False True
Diagnosis Time unit Level Sensitivity (95% Cl) Specificity (95% CI) Positive Positive  negative Negative
Hour Time 93.9% (82.8—98.0%) 97.5% (90.3—99.4%) 12,159 1232 788 48,104
Block® (blocks based on reference 79.3% (59.4—91.0%) 38.7% (26.5—52.5%) 23 38 6 24
standard)
Block® (blocks based on reference 86.2% (67.2—95.0%) 69.4% (61.2—76.4%) 25 19 4 43
standard)
Block (blocks based on index test and 80.6% (65.1-90.2%) 62.4% (57.4—67.1%) 29 38 7 63
reference standard)
Patient-time 78.6% (63.0—88.8%) 61.1% (56.2—65.8%) 22 21 6 33
Day Time 93.6% (82.5-97.8%) 98.3% (87.7—99.8%) 523 35 36 2045
Block® (blocks based on reference 79.3% (59.4—91.0%) 98.4% (88.5—99.8%) 23 1 6 61
standard)
Block® (blocks based on reference 86.2% (67.2—95.0%) 98.4% (88.5—99.8%) 25 1 4 61
standard)
Block (blocks based on index test and 80.6% (65.1-90.2%) 98.4% (91.8—99.7%) 29 1 7 63
reference standard)
Patient-time 78.6% (63.0—88.8%) 97.1% (83.0—99.6%) 22 1 6 33
Not applicable  All test results (ignoring data clustering)  93.9% (93.9—94.0%) 97.5% (97.4—97.5%) 728,122 75,338 46,926 2,886,594
Not applicable Single, aggregated test result (ignoring 95.7% (87.3—100%)  90.0% (71.4—100%) 22 1 1 9
data clustering)
Epilepsy Minute Time 80.5% (70.9—87.4%) 98.5% (97.5—99.0%) 8485 2409 2061 153,075
Block® (blocks based on reference 73.4% (64.8—80.5%) 67.3% (56.4—76.7%) 124 65 45 134
standard)
Block® (blocks based on reference 74.0% (65.6—80.9%) 91.5% (85.2—95.2%) 125 17 44 182
standard)
Block (blocks based on index test and 74.2% (66.5—80.6%) 76.6% (72.2—80.6%) 132 71 46 233
reference standard)
Patient-time 55.8% (50.4—61.1%) 58.8% (55.2—62.3%) 24 21 19 30
Hour Time 88.2% (83.1-91.9%) 98.1% (96.8—98.9%) 277 47 37 2422
Block® (blocks based on reference 79.2% (70.2—86.1%) 79.9% (72.0—86.1%) 103 32 27 127
Standard)
Block® (blocks based on reference 88.5% (81.8—92.9%) 95.6% (88.3—98.4%) 115 7 15 152
standard)
Block (blocks based on index test and 82.2% (75.8—87.3%) 82.2% (76.4—86.8%) 125 35 27 162
reference standard)
Patient-time 60.0% (562.6—67.0%) 61.2% (56.4—65.8%) 24 19 16 30
Day Time 98.7% (92.0-99.8%) 98.1% (84.8—99.8%) 74 1 1 52
Block® (blocks based on reference 96.9% (79.0-99.6%) 96.0% (72.6—99.5%) 31 1 1 24

(Continued)
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Table 3. Continued

True
Negative

False
negative

False

Positive

True

Positive

Specificity (95% CI)

Sensitivity (95% CI)

Level

Time unit

Diagnosis

standard)
Block® (blocks based on reference

24

32

96.0% (72.6—99.5%)

100% (100—100%)

standard)
Block (blocks based on index test and

24

33

96.0% (72.6—99.5%)

97.1% (85.1-99.5%)

reference standard)

19
153,075

24
8485

95.0% (68.8—99.4%)

96.0% (77.6—99.4%)

Patient-time

2064

249

98.5% (98.4—98.5%)

All test results (ignoring data clustering)  80.5% (79.7—81.2%)

Not applicable

24

100% (100—100%)

100% (100—100%)

Single, aggregated test result (ignoring

Not applicable
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data clustering)

@ Block-level based on reference standard: No correction rules applied.

® Block-level based on reference standard: Application of =1 time point tolerance margin at start/end of reference standard episode and 85%-correction within diseased and disease-free

blocks.

to help clinicians detecting SIRS episodes [23,29] so that
they are alerted when the patient’s health deteriorates.

Diagnosis-specific characteristics must be considered
before performing the DTA estimation, as they determine
the required time unit. Many DTA studies withhold suffi-
cient information on their time unit, how they account for
the inflation of the type 1 error in the DTA estimation
[30], and/or whether they used longitudinal data [8]. We
identified few studies (eg, [8,23,28,31—35]) that indi-
cated/hinted at their used time unit. As with the estimation
level, the used time unit influences the interpretation and
understanding of the DTA estimates [30]. An inappropriate
time unit, especially if too large, causes an increase in TP
and TN observations so that the estimates are distorted
due to losing information about diagnostic test differences.
For example, epileptic seizures last seconds to minutes,
which excludes ‘day’ as a time unit. In our use case, the
DTA estimates using ‘day’ as a time unit approached
100%, showing barely any differences between the estima-
tion levels. However, a smaller unit increases accuracy [36],
which we could not determine to be potentially misleading.
For example, given diagnosis-specific characteristics of
depression, we considered ‘day’ to be an adequate time
unit, but with the smaller time units, we observed differ-
ences between the diagnostic tests potentially driven by
episode onset and end classifications; thus, they are not
incorrect. Diseases characterized by medium to long
episode periods and disease-free intervals between epi-
sodes, such as SIRS [37] or depression [38—40], can be as-
sessed using any of the three time units. Moreover, the
date-time classification of an episode should be specific.
If, eg, both tests classify per day (ie, starting at 00:00 am
and finishing at 11:59 pm), then the DTA estimates are iden-
tical irrespective of time unit and estimation level. This is
caused by equally inflating the number of observations
included in the clusters in comparison to fewer numbers
of observations. We suggest using a time unit that best rep-
resents the diagnosis-specific characteristics. If in doubt,
smaller time units are preferable because they allow for
the precise assessment the episode start and end date-times.
However, the translation of observed DTA into clinically
meaningful DTA is often hampered as it is inflated when
compared to larger time units.

4.1. Limitations

All original datasets were collected with a defined study-
specific purpose and modified to some extent; thus, they are
subject to a certain risk of data-generating pitfalls [41].
Especially the depression and epilepsy datasets lacked in-
formation on index tests and reference standard diagnoses;
hence, index tests and reference standard diagnoses were
produced based on the available information in the datasets.
Incorporation bias is most likely present in both datasets
[42]. However, for this study’s purpose, it remains
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Table 4. Generalized interpretation of diagnostic test accuracy estimates per estimation level under the consideration of the time unit. These should

be a reflection of the research question’s estimand(s)

Level

Interpretation

Time Throughout the whole observation period, the index test detects at each time point (here: per [time unit])
the presence of [diagnosis] with a sensitivity of [sensitivity]% (95% Cl: lower-upper%) and the absence
of [diagnosis] with a specificity of [specificityl% (95% Cl: lower-upper%) given the ground truth

Block® (based on reference standard)

definition of the reference standard.

Throughout the whole observation period, the index test detects [diagnosis] events (ie, period of a

[diagnosis] episode) with a sensitivity of [sensitivity]% (95% Cl: lower-upper%) and disease-free periods
with a specificity of [specificity]% (95% Cl: lower-upper%) given the ground truth definition of the

Block® (based on reference standard)

reference standard.

Throughout the whole observation period, the index test detects [diagnosis] events (ie, period of a

[diagnosis] episode) with a sensitivity of [sensitivity]% (95% Cl: lower-upper%) and disease-free periods
with a specificity of [specificity]% (95% Cl: lower-upper%) given the ground truth definition of the
reference standard after allowing the episode start and end to deviate by =+ [tolerance margin] [time unit]
and correcting of individual incorrect time points (ie, per [time unit]) per block if > [percent
correctnessi% of the block-specific time points were correctly classified.

@ Block-level based on reference standard: No correction rules applied.

® Block-level based on reference standard: Application of + t time point tolerance margin at start/end of reference standard episode and/or p

%-correction within diseased and disease-free blocks.

unconcerning because we aimed to demonstrate the prob-
lem of estimating an index test’s DTA using longitudinal
data.

In this study, we assumed that the reference standards
perfectly diagnosed the diseases. Depending on the clinical
setting, this might not be true, especially in situations where
the diagnostic test is expected to alert clinicians before the
reference standard becomes positive. Researchers should
keep in mind that the index tests and/or reference standard
can change over time (eg, updated guidelines for
diagnosis).

5. Conclusion

Using longitudinal data in a DTA study requires re-
searchers to consider methodological choices and a clear,
predefined estimand early in the planning phase. Choices
need to be made on the estimation level(s) and the time
unit(s) considering diagnostic-specific characteristics.
When reporting the DTA study’s findings, researchers
should be transparent and state their rationales. Researchers
are not limited to reporting only one estimation level and/or
time unit. As a next step, these methodological approaches
could be improved by using a nonparametric approach that
incorporates the structured correlation of the time series
evaluation as well as other characteristics of a real-life data-
set (eg, missing values).
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