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Abstract
The “exact subgraph” approach was recently introduced as a hierarchical scheme to
get increasingly tight semidefinite programming relaxations of several NP-hard graph
optimization problems. Solving these relaxations is a computational challenge because
of the potentially large number of violated subgraph constraints. We introduce a com-
putational framework for these relaxations designed to cope with these difficulties.
We suggest a partial Lagrangian dual, and exploit the fact that its evaluation decom-
poses into several independent subproblems. This opens the way to use the bundle
method from non-smooth optimization to minimize the dual function. Finally com-
putational experiments on the Max-Cut, stable set and coloring problem show the
excellent quality of the bounds obtained with this approach.
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1 Introduction

The study of NP-hard problems has led to the introduction of various hierarchies
of relaxations, which typically involve several levels. Moving from one level to the
next the relaxations get increasingly tighter and ultimately the exact optimum may be
reached, but the computational effort grows accordingly.

Among the most prominent hierarchies are the polyhedral ones from Boros, Crama
and Hammer [5] as well as the ones from Sherali and Adams [32], Lovász and Schri-
jver [25] and Lasserre [22] which are based on semidefinite programming (SDP). Even
though on the starting level they have a simple SDP relaxation, already the first non-
trivial level in the hierarchy requires the solution of SDPs in matrices of order

(n
2

)
and

on level k the matrix order is nO(k). Hence they are considered mainly as theoretical
tools and from a practical point of view these hierarchies are of limited use.

Not all hierarchies are of this type. In [5] a polyhedral hierarchy for the Max-
Cut problem is introduced which maintains

(n
2

)
variables at all levels, with a growing

number of constraints.More recently,Adams,Anjos,Rendl andWiegele [1] introduced
a hierarchy of SDP relaxations which act in the space of symmetric n×n matrices and
at level k of the hierarchy all submatrices of order k have to be “exact” in awell-defined
sense, i.e. they have to fulfill an exact subgraph constraint (ESC).

It is themain purpose of this paper to describe an efficient way to optimize over level
k of this hierarchy for small values of k, e.g. k � 7, and demonstrate the efficiency of
our approach for the Max-Cut, stable set and coloring problem. These investigations
were started in [12,13] and here we offer the full picture.

Maintaining
(n
k

)
possible ESCs in an SDP in matrices of order n is computationally

infeasible even for k = 2 or k = 3, because each ESC creates roughly
(k
2

)
additional

equality constraints and at most 2k additional variables.
We suggest the following ideas to overcome this difficulty. First we proceed itera-

tively, and in each iterationwe include only (a few hundred of) themost violated ESCs.
More importantly, we propose to solve the dual of the resulting SDP. The structure of
this SDP with ESCs admits a reformulation of the dual in the form of a non-smooth
convex minimization problem with attractive features. First, any dual solution yields a
valid bound for our relaxations, so it is not necessary to carry out the minimization to
optimality. Secondly, the dual function evaluation decomposes into two independent
problems. The first one is simply a sum of max-terms (one for each ESC), and the sec-
ond one consists in solving a “basic” SDP, independent of the ESCs. The optimizer for
this second problem also yields a subgradient of the objective function.With this infor-
mation at handwe suggest to use the bundlemethod fromnon-smooth convexoptimiza-
tion. It provides an effective machinery to get close to a minimizer in few iterations.

As a result we are able to get near optimal solutions where all ESCs for small
values of k (k � 7) are satisfied up to a small error tolerance. Our computational
results demonstrate the practical potential of this approach.

The paper is organized as follows. In Sect. 2 we briefly describe the Max-Cut,
the stable set and the coloring problem along with their semidefinite relaxations,
which are well-studied in the literature. Sect. 3 recalls the exact subgraph hierarchy,
described in [1]. We introduce a unified setting for all these problems and take a
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Exact subgraph based SDP bounds 285

look at their structural properties. In Sect. 4 we reformulate the SDP and consider a
partial Lagrangian dual. It results in many subproblems, separating the basic SDP part
from the ESC part. The bundle method from non-smooth optimization is described
in Sect. 5 as an attractive algorithmic framework to deal with the subproblems in the
partial Lagrangian dual. In Sect. 6 we describe our algorithm in order to obtain exact
subgraph based SDP bounds.We argue in Sect. 7 that standard SDP solvers are only of
limited use when dealing with our ESC hierarchy and present extensive computational
results. Finally we close with conclusions and future work in Sect. 8.

We finish this introductory section with some notation. We denote the vector of
all-ones of size n with 1n and Δn = {x ∈ R

n+ : ∑n
i=1 xi = 1}. If the dimension

is clear from the context we may omit the index and write 1 and Δ. Furthermore
let N = {1, 2, . . . , n}. A graph G on n vertices has vertex set N and edge set E .
The complement graph G of a graph G has the same vertex set N and contains an
edge {i, j} ⊆ N if and only if {i, j} /∈ E . Sn is the set of n-dimensional symmetric
matrices. A spectrahedron is a set that is obtained as the intersection of the cone of
positive semidefinite matrices with some linear affine subspace.

2 Combinatorial problems and semidefinite relaxations

2.1 TheMax-Cut problem

In the Max-Cut problem a symmetric matrix L ∈ Sn is given and c ∈ {−1, 1}n which
maximizes cT Lc should be determined.

If thematrix L corresponds to the Laplacianmatrix of a (edge-weighted undirected)
graph G, this is equivalent to finding a partition of the vertices of G into two subsets
such that the total weight of the edges joining these two subsets is maximized. Such
an edge set is also called a cut in G.

Partitions of N into two subsets can be expressed as c ∈ {−1, 1}n where the two
subsets of N correspond to the entries of c with the same sign. Given c ∈ {−1, 1}n we
callC = ccT a cutmatrix. The convex hull of all cutmatrices (of order n) is denoted by

CUTn = conv
{
ccT : c ∈ {−1, 1}n

}

or simply CUT if the dimension is clear from the context. Since cT Lc = 〈L, ccT 〉 the
Max-Cut problem can also be written as the following (intractable) linear program

zmc = max{〈L, X〉 : X ∈ CUT}.

CUT is contained in the spectrahedron

X E = {X ∈ Sn : diag(X) = 1n, X � 0} ,

hence

rmc = max
{
〈L, X〉 : X ∈ X E

}
(1)
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286 E. Gaar, F. Rendl

is a basic semidefinite relaxation for Max-Cut. This model is well-known, attributed
to Schrijver and was introduced in a dual form by Delorme and Poljak [8]. It can be
solved in polynomial time to a fixed prescribed precision and solving this relaxation
for n = 1000 takes only a few seconds.

It is well-known that the Max-Cut problem is NP-hard. On the positive side, Goe-
mans and Williamson [14] show that one can find a cut in a graph with nonnegative
edge weights of value at least 0.878zmc in polynomial time.

2.2 The stable set problem

In the stable set problem the input is an unweighted graph G. We call a subset of the
vertices stable, if no two vertices are adjacent. Moreover we call a vector s ∈ {0, 1}n
a stable set vector if it is the incidence vector of a stable set. The convex hull of all
stable set vectors of G is denoted with STAB(G). In the stable set problem we want to
determine the stability number α(G), which denotes the cardinality of a largest stable
set in G, hence

α(G) = max
{
1T s : s ∈ STAB(G)

}
.

Furthermore we denote with

STAB2(G) = conv
{
ssT : s ∈ STAB(G)

}

the convex hull of all stable set matrices ssT . Then with the arguments of Gaar [12]
it is easy to check that

α(G) = max
{
trace(X) : X ∈ STAB2(G)

}
.

Furthermore STAB2(G) is contained in the following spectrahedron

X S =
{
X ∈ Sn : Xi j = 0 ∀{i, j} ∈ E, x = diag(X),

(
1 xT

x X

)
� 0

}
,

which is known as the theta body in the literature. Therefore

ϑ(G) = max
{
trace(X) : X ∈ X S

}
(2)

is a relaxation of the stable set problem. The Lovász theta function ϑ(G) was intro-
duced in a seminal paper by Lovász [24]. We refer to Grötschel, Lovász and Schrijver
[15] for a comprehensive analysis of ϑ(G).

Determining α(G) is again NP-hard. Contrary toMax-Cut, which has a polynomial
time .878-approximation, for every ε > 0 there can be no polynomial time algorithm
that approximates α(G) within a factor better than O(n1−ε) unless P = N P , see
Håstad [17].
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Exact subgraph based SDP bounds 287

2.3 The vertex coloring problem

The coloring problem for a given graph G consists in determining the chromatic
number χ(G), which is the smallest t such that N can be partitioned into t stable
sets. Let S = (s1, . . . , sk) be a matrix where each column si is a stable set vector
and the corresponding stable sets partition N into k sets. Let us call such matrices S
stable-set partition matrices (SSPM) and denote by |S| the number of columns of S
or equivalently the number of stable set vectors of S. The n × n matrix X = SST

is called coloring matrix. The convex hull of the set of all coloring matrices of G is
denoted by

COL(G) = conv {X : X is a coloring matrix of G} .

We also need the extended coloring polytope

COLε(G) = conv

{(
k 1T

1 X

)
=

k∑

i=1

(
1

si

)(
1

si

)T

: S = (s1, . . . , sk) is a
SSPM of G, X = SST

}

.

The difficult set COLε can be relaxed to the easier spectrahedron

XC =
{(

t 1T

1 X

)
� 0 : diag(X) = 1n, Xi j = 0 ∀{i, j} ∈ E

}

and we can consider the semidefinite program

t∗(G) = min

{
t :

(
t 1T

1 X

)
∈ XC

}
. (3)

Obviously t∗(G) � χ(G) holds because the SSPM S consisting of χ(G) stable sets
yields a feasible coloring matrix X = SST with objective function value χ(G). It is
in fact a consequence of conic duality that t∗(G) = ϑ(G) holds.

It is NP-hard to find χ(G), to find a 4-coloring of a 3-colorable graph [16] and to

color a k-colorable graph with O(k
log k
25 ) colors for sufficiently large k, [20].

3 Exact subgraph hierarchy

3.1 Definition of the hierarchy

In this section we discuss how to systematically tighten the relaxations (1), (2) and (3)
with “exactness conditions” imposed on small subgraphs. We obtained the relaxations
by relaxing the feasible regionsCUT, STAB2 andCOLof the integer problem to simple
spectrahedral sets.Nowwewill use small subgraphs to get closer to the feasible regions
of the original problems again.
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For I ⊆ N let kI = |I | be the cardinality of I . Furthermore let GI be the induced
subgraph of G on the set of vertices I . If X is the n × n matrix from the relax-
ations (1), (2) or (3), then we denote with XI the principal kI × kI submatrix of
X corresponding to the rows and columns in I . Note that XI is the submatrix of X
corresponding to GI .

We first look at the exact subgraph relaxations for Max-Cut. Adams, Anjos, Rendl
and Wiegele [1] introduced additional constraints for the Max-Cut relaxation (1) in
the following way. The exact subgraph constraint (ESC) for I ⊆ N requires that the
matrix XI corresponding to the subgraph GI lies in the convex hull of the cut matrices
of GI , that is

XI ∈ CUT|I | .

The ESC for I can equivalently be phrased as

XI =
tI∑

i=1

λiC
I
i

for some λ ∈ ΔtI where C I
i is the i-th cut matrix of the subgraph GI and tI is the

total number of cut matrices. If X is a solution of (1) that fulfills the ESC for some I
we say that X is exact on I and X is exact on GI .

Now we want the ESCs to be fulfilled not only for one but for a certain selection of
subgraphs. We denote with J the set of subsets I , on which we require X to be exact,
and get the following SDP relaxation with ESCs for Max-Cut.

max{〈L, X〉 : X ∈ X E , XI ∈ CUT|I | ∀I ∈ J } (4)

Before we give theoretical justification that (4) is worth to be investigated, we
present the ESCs for the other problems. We start with the stable set problem on a
graph G and its relaxation (2). In this case the ESC for I ⊆ N , and hence for the
subgraph GI , requires that XI ∈ STAB2(GI ) holds and the SDP with ESCs for the
stable set problem is

max{trace(X) : X ∈ X S, XI ∈ STAB2(GI ) ∀I ∈ J }. (5)

Turning to the coloring problem, we analogously impose additional ESCs of the
form XI ∈ COL(GI ) to obtain the SDP with ESCs

min

{
t :

(
t 1T

1 X

)
∈ XC , XI ∈ COL(GI ) ∀I ∈ J

}
. (6)

We now want to investigate the properties of (4), (5) and (6). Towards that end
we define the k-th level of the exact subgraph hierarchy according to [1] by using
J = {I ⊆ N : |I | = k} in the SDPs (4), (5) and (6), respectively. We denote the
corresponding objective function values with zkmc, z

k
ss and zkc . So in other words the
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Exact subgraph based SDP bounds 289

k-th level of the exact subgraph hierarchy is obtained by forcing all subgraphs on k
vertices to be exact in the basic SDP relaxation.

Note that

zmc = znmc � · · · � zkmc � zk−1
mc � · · · � z2mc � z1mc = rmc

α(G) = znss � · · · � zkss � zk−1
ss � · · · � z2ss � z1ss = ϑ(G)

holds for all k ∈ {2, . . . , n}, see [1,12]. Hence (4) and (5) are relaxations of Max-Cut
and the stable set problem.

Furthermore it can be verified that

t∗(G) = z1c � z2c � · · · � zk−1
c � zkc � · · · � znc � χ(G)

holds for all k ∈ {2, . . . , n}, so for the coloring problem we do not necessarily reach
χ(G) at the n-th level. However, the following holds. Let zkcε be the optimal objective
function value if we add the inequalities t �

∑tI
i=1[λI ]i |SIi | where λI ∈ ΔtI is a

variable for the convex combination for each subgraph GI to the SDP for zkc . Then
zncε = χ(G) holds. Hence zkc is a relaxation of zkcε, which is in turn a relaxation of
the coloring problem. As a result it is clear that it makes sense to investigate (4), (5)
and (6).

Note that in the case of the stable set and the coloring problem the polytopes
STAB2(GI ) and COL(GI ) depend on the subgraph GI , whereas in Max-Cut the
polytope CUT|I | only depends on the number of vertices of GI .

Finally let us mention that an important feature of this hierarchy is that the size
of the matrix variable remains n or n + 1 on all levels of the hierarchy. On higher
levels the ESCs are included into the SDPs in the most natural way through convex
combinations. Hence on higher levels of the exact subgraph hierarchy new variables
and linear constraints representing convex hull conditions are added to the SDP of the
basic SDP relaxation.

Therefore it is possible to approximate zkmc, z
k
ss and zkc by forcing only some sub-

graphs of order k to be exact. This is our key ingredient to computationally obtain
tight bounds on zmc, α(G) and χ(G) and also a major advantage over several other
SDP based hierarchies [22,25,32] for NP-hard problems.

3.2 Structural differences of the three problems

The focus of this paper lies in computational results, so we omit further extensive
theoretical investigations, but we want to draw the attention to a major structural
difference between the Max-Cut problem and the stable set and the coloring problem.
Towards this end we consider one graph from the Erdős-Rényi model G(n, p) with
n = 100 and p = 0.15. A graph from this model is a random graph of order n, in
which each edge appears with probability p.

We compute the optimal solutions of the basic relaxations (1), (2) and (3) and
denote them by X∗. Then for each subgraph GI of order k ∈ {2, 3, 4, 5} we compute
the projection distance δ Imc, δ

I
ss and δ Ic of the submatrix X∗

I of the corresponding X∗
to CUTk , STAB(GI ) and COL(GI ), respectively. So for example
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290 E. Gaar, F. Rendl

Table 1 The percentage of violated subgraphs of order k for one random graph

k 2 3 4 5

# Subgraphs 4950 161700 3921225 75287520

% Violated subgraphs MC 0.00 49.59 91.69 99.83

% Violated subgraphs SS 7.54 21.96 41.00 60.88

% Violated subgraphs CO 5.82 16.83 31.90 49.14

Fig. 1 Histogram of δ Imc for all violated subgraphs GI of order k ∈ {3, 4, 5}

Fig. 2 Histogram of δ Iss for all violated subgraphs GI of order k ∈ {3, 4, 5}

δ Imc = min
C∈CUTk

∥∥X∗
I − C

∥∥ ,

where ‖.‖ denotes the Frobenius norm. We consider a subgraph GI as violated, if the
projection distance is larger than the small tolerance 5 · 10−5.

In Table 1 one sees that the number of violated subgraphs is much higher in the case
of the Max-Cut problem than for the stable set and the coloring problem. Figures 1, 2
and 3 show the distribution of the projection distances of the violated subgraphs. They
are normalized in such a way that 1 is the total number of violated subgraphs. Here it
becomes obvious that for the Max-Cut problem most of the violated subgraphs have a
large violation, whereas most of the violated subgraphs for the coloring problem have
a small violation and an even smaller violation for the stable set problem.
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Exact subgraph based SDP bounds 291

Fig. 3 Histogram of δ Ic for all violated subgraphs GI of order k ∈ {3, 4, 5}

Therefore in the case of the Max-Cut problem there are very many violated sub-
graphs, and typically all of them have a large projection distance. On the other hand for
the stable set and the coloring problem only very few subgraphs have a large projection
distance, the majority of the subgraphs is either not violated at all or only violated a
little bit. Hence finding significantly violated subgraphs is much more difficult for the
stable set and the coloring problem, than it is for the Max-Cut problem.

A possible explanation for this consists of the following dimension argument. Let
G be a graph on n vertices with m edges. The SDP relaxation for Max-Cut starts out
with a matrix variable of size n and n equations, while the evaluation of ϑ(G) requires
amatrix of size n+1 and n+m+1 equations and in the computation of t∗(G) there is a
matrix of size n+1 and 2n+m equations. Hence theMax-Cut, stable set and coloring
relaxation are contained in a

(n
2

)
,
(n
2

)+n−m and
(n
2

)−m+1 dimensional space, and it
makes sense that Max-Cut has the most and coloring has the least violated ESCs, just
as we see it in Table 1. Furthermore in the stable set and the coloring relaxation the
additional row and column together with the positive semidefiniteness constraint effect
all entries of X , even if they are not directly addressed by any constraint. Therefore
it is plausible that the violations for the Max-Cut problem are much larger than those
for the stable set and the coloring problem.

For our computations thatmeans that there is the hope that fewerESCs are necessary
to tighten the basic relaxation. This intuition is indeed confirmed in our computational
experiments in Sect. 7.

4 Partial Lagrangian dual

We are interested in solving relaxations (4), (5) and (6) with a potentially large number
of ESCs, where using interior point solvers is too time consuming. In this section we
will first establish a unified formulation of the relaxations (4), (5) and (6). Then we
will build the partial Lagrangian dual of this formulation, where only the ESCs are
dualized.

In order to unify the notation for the three problems observe that the ESCs XI ∈
CUT|I |, XI ∈ STAB2(GI ) and XI ∈ COL(GI ) can be represented as
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292 E. Gaar, F. Rendl

XI =
tI∑

i=1

λiC
I
i , λ ∈ ΔtI , (7)

where C I
i is the i-th cut, stable set or coloring matrix of the subgraph GI and tI is

their total number.
A formal description of ESC in (7) requires some additional notation. First we

introduce the projection PI : Sn 	→ SkI , mapping X to the submatrix XI . Second we
define a map AI : SkI 	→ R

tI , such that its adjoint map A�
I : RtI 	→ SkI is given

by A�
I (λ) = ∑tI

i=1 λiC I
i and produces a linear combination of the cut, stable set or

coloring matrices. Thus we can rewrite (7) as

A�
I (λI ) − PI (X) = 0, λI ∈ ΔtI . (8)

The left-hand side of this matrix equality is a symmetric matrix, of which some
entries (depending on which problem we consider) are zero for sure, so we do not
have to include all kI × kI equality constraints into the SDP. Let bI be the number of
equality constraints we have to include. Note that bI = (kI

2

)
, bI = (kI

2

) + kI − mI

and bI = (kI
2

) − mI for the Max-Cut, stable set and coloring problem respectively, if
mI denotes the number of edges of GI . This is because in the case of the stable set
problemwe also have to include equations for the entries of themain diagonal contrary
to Max-Cut and the coloring problem. Then we define a linear mapMI : RbI 	→ SkI
such that the adjoint operator M�

I : SkI 	→ R
bI extracts the bI positions, for which

we have to include the equality constraints, into a vector. So we can rephrase (8)
equivalently as

M�
I (A�

I (λI ) − PI (X)) = 0, λI ∈ ΔtI ,

which are bI + 1 equalities and tI inequalities. In consequence all three relax-
ations (4), (5) and (6) have the generic form

z = max{〈C, X̂〉 : X̂ ∈ X , λI ∈ ΔtI , M�
I (A�

I (λI ) − PI (X)) = 0 ∀I ∈ J }, (9)

whereC ,X ,AI ,MI and bI have to be defined in a problem specificway. Furthermore

X̂ = X in the case of Max-Cut and stable set and X̂ =
(
t 1T

1 X

)
for coloring, but for

the sake of understandability we will just use X in the following.
The key idea to get a handle on problem (9) is to consider the partial Lagrangian

dual where the ESCs (without the constrains λI ∈ ΔtI ) are dualized. We introduce a
vector of multipliers yI of size bI for each I and collect them in y = (yI )I∈J and also
collect λ = (λI )I∈J . The Lagrangian function becomes

L(X , λ, y) = 〈C, X〉 +
∑

I∈J

〈yI ,M�
I (A�

I (λI ) − PI (X))〉
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and standard duality arguments (Rockafellar [31, Corollary 37.3.2]) yield

z = min
y

max
X∈X

λI∈ΔtI

L(X , λ, y). (10)

For a fixed set of multipliers y the inner maximization becomes

max
X∈X

λI∈ΔtI

〈

C −
∑

I∈J

P�
I MI (yI ), X

〉

+
∑

I∈J

〈AIMI (yI ), λI 〉.

This maximization is interesting in at least two aspects. First, it is separable in the
sense that the first term depends only on X and the second one only on the separate
λI . Moreover, if we denote the linear map AIMI : RbI 	→ R

tI with the matrix DI ,
maximizing the summands of the second term is easy, because the feasible region is a
simplex. Hence the explicit solution of maximizing a summand of the second term is

max
λI∈ΔtI

〈DI (yI ), λI 〉 = max
1�i�tI

[DI (yI )]i . (11)

In order to consider the first term in more detail, we define the following function.
Let b = ∑

I∈J bI be the dimension of y. Then h : Rb → R is defined as

h(y) = max
X∈X

〈

C −
∑

I∈J

P�
I MI (yI ), X

〉

=
〈

C −
∑

I∈J

P�
I MI (yI ), X

∗
〉

, (12)

where X∗ is a maximizer over the set X for y fixed. Note that h(y) is convex but
non-smooth, but (12) shows that

gI = −MT
I PI (X

∗) (13)

is a subgradient of h with respect to yI .
With (11) and (12) we reformulate the partial Lagrangian dual (10) to

z = min
y

{

h(y) +
∑

I∈J

max
1�i�tI

[DI (yI )]i

}

. (14)

The dual formulation (14) of the original semidefinite relaxation (9) has the form
of a convex minimization problem over the set of multipliers y. The evaluation of the
function h at a given y requires solving a “simple” SDP, independent of the number of
ESCs included in the relaxation.The function evaluation also provides a subgradient
of h at y, given in (13). Hence we propose to use the bundle method from convex
optimization to solve (14). The details are given in the subsequent section.
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5 Solving the partial Lagrangian dual

5.1 The bundlemethod

The bundle method is a well established tool in convex optimization to minimize a
non-smooth convex function. We refer to the recent monograph Bonnans, Gilbert,
Lemaréchal and Sagastizábal [4] for a nice introduction. In our setting we want to
use the bundle method in order to solve an SDP. Helmberg and Rendl [18] were the
first to use a bundle method to solve SDPs in 2000. Later Fischer, Gruber, Rendl and
Sotirov [10] and Rendl and Sotirov [29] used the bundle method for SDPs in order to
get good relaxations for the Max-Cut and the equipartition problem and the quadratic
assignment problem, respectively.

The bundle method setting described by Frangioni and Gorgone in [11], which is
set up to handle max terms explicitly, is best suited for our purposes, so we apply it to
our problem (14).

The bundle method is an iterative procedure. It maintains the current cen-
ter y, representing the current estimate of the optimal solution, and the set B =
{(y1, h1, g1, X1), . . . , (yr , hr , gr , Xr )}, which is called bundle, throughout the itera-
tions. Here y1, . . . , yr are the points which we use to set up our subgradient model.
Moreover h j = h(y j ), g j is a subgradient of h at y j and X j is a maximizer of h at y j
as in (12).

At the start we select y1 = y = 0 and evaluate h at y, which yields the bundle
B = {(y1, h1, g1, X1)}. A general iteration consists of first determining the new trial
point, then evaluating the function at this new point, and finally updating the bundle
B. In the literature evaluating the function is referred to as calling the oracle. The
subgradient information of the bundle B translates into the subgradient model

h(y) � h j + 〈g j , y − y j 〉 for all j = 1, . . . , r .

It is common to introduce

e j = h(y) − h j − 〈g j , y − y j 〉 for j = 1, . . . , r

and to define e = (e j ) j=1,...,r . With h = h(y) the subgradient model becomes

h(y) � max
1� j�r

{
h − e j + 〈g j , y − y〉} . (15)

The right-hand side above is convex, piecewise linear andminorizes h. In each iteration
of the bundle method we minimize the right-hand side of (15) instead of h, but ensure
that we do not move too far from y by adding a penalty term of the form 1

2μ ‖y − y‖22
for a parameter μ ∈ R+ to the objective function. We introduce auxiliary variables
w ∈ R and vI ∈ R for all I ∈ J to model the maximum terms. With q = |J | and
v = (vI )I∈J ∈ R

q we end up with
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min
y,w,v

w +
∑

I∈J

vI + 1

2
μ ‖y − y‖22

s. t. w � h − e j + 〈g j , y − y〉 ∀ j = 1, . . . , r

vI � [DI (yI )]i ∀i = 1, . . . , tI ∀I ∈ J . (16)

This is a convex quadratic problem in 1 + q + b variables with r + ∑
I∈J tI linear

inequality constraints which is often referred to as the bundle master problem. Its
solution (ỹ, w̃, ṽ) provides the new trial point ỹ. In the following section we will
discuss computational issues and present a practically efficient approach starting with
its dual, see below.

The second step in each bundle iteration is to evaluate the function h at ỹ which
means solving the basic SDP relaxation as introduced in Sect. 2 with a modified
objective function. In the case of Max-Cut this function evaluation can be done very
quickly (solve an SDP with n simple equations). For the stable set and the coloring
problem the resulting SDP is computationally more demanding, as there are also
equations for each edge in the graph. The bundle iteration is finished by deciding
whether ỹ becomes the new center (serious step, roughly speaking if the increase of
the objective function is good enough) or not (null step). In either case the new point
is included in the bundle, some other elements of the bundle are possibly removed,
the bundle parameter μ is updated and a new iteration starts.

5.2 The dual of the bundle master problem

In the bundlemethod it is commonly proposed to solve the dual problem of (16), hence
next we derive the dual of (16). Towards this end we collect the subgradients gi in
the matrix G = (g1, . . . , gr ). It will be notationally convenient to partition the matrix
G into blocks of rows corresponding to the subsets I ∈ J , namely G = (GI )I∈J

where each GI has r columns and bI rows. Furthermore we make the subgradient
model and maximum term constraints more compact by reformulating them to w1 �
h1 − e + ∑

I∈J G�
I (yI − y I ) and vI1 � DI (yI ).

We denote by α ∈ R
r the dual variables to the subgradient model constraints and

with βI ∈ R
tI the dual variables of the constraints involving vI for the maximum

terms. Furthermore we define β = (βI )I∈J as the collection of all βI . Hence we
obtain the Lagrangian function

L(y, w, v, α, β) = w +
∑

I∈J

vI + 1

2
μ

∑

I∈J

∥∥yI − y I
∥∥2
2

+ 〈
α, h1 − e − w1

〉 +
∑

I∈J

〈
α,G�

I (yI − y I )
〉

+
∑

I∈J

〈βI ,DI (yI ) − vI1〉 .
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After exchanging min and max by using strong duality the dual of (16) becomes

max
α�0
β�0

min
y,w,v

L(y, w, v, α, β).

Since ∇wL = 0, ∇vIL = 0, and ∇yIL = 0 has to hold for all I ∈ J at the dual
optimum, we get α ∈ Δr , βI ∈ ΔtI and

yI = y I − 1

μ

(
GI (α) + D�

I (βI )
)

. (17)

In consequence the dual of (16) simplifies to

max
α∈Δr

βI∈ΔtI

h − eTα +
∑

I∈J

〈DI (y I ), βI
〉 − 1

2μ

∑

I∈J

∥∥∥GI (α) + D�
I (βI )

∥∥∥
2

2
. (18)

This is a convex quadratic problem with r + ∑
I∈J tI variables and 1 + q simple

equality constraints, asking that the respective block of variables adds up to one. Now
instead of solving (16) within the bundle method directly, we solve its dual (18) to get
the multipliers α and β and recover ỹ using (17).

5.3 Our bundlemethod

So far we have sketched how to use our bundle method in order to obtain a solution y
of (14), but actually we are interested in a solution X of (9). One can use the bundle
B = {(y1, h1, g1, X1), . . . , (yr , hr , gr , Xr )}, which is updated in each iteration, in
order to obtain a good approximate solution for X . In particular it follows from the
convergence theory of the bundle method that under mild conditions

X =
r∑

j=1

α j X j and λI = βI (19)

converges to the optimal values of X and λI of (9), see for example Robinson [30] for
the general theory and Gaar [12] for the convergence in our particular setting.

We are now able to present our version of the bundle method. Note that there is
no need of keeping y j in the bundle explicitly by computing and updating e in a
proper way, so we drop y j from the bundle B. Algorithm 1 summarizes the main
computational steps of our bundle method to get an approximate optimal solutions
of (9) and (14).

The generic description of our bundlemethod inAlgorithm 1 leaves some flexibility
to the user. We will present implementation details in Sect. 6.3.
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Algorithm 1 Solving (9) and (14) for a given J
1: procedure Our_Bundle(h, DI )
2: y = y1 = 0
3: Evaluate h at y1 to get h1 = h(y1), a maximizer X1 and a subgradient g1
4: Set the bundle to B = {(h1, g1, X1)}
5: while “stopping condition is not satisfied” do
6: Solve the convex quadratic problem (18) to get α and β = (βI )I∈J
7: Determine ỹ using (17)
8: Determine X and λ using (19)
9: Evaluate h at ỹ to get h(ỹ), a maximizer X̃ and a subgradient g̃
10: Decide whether ỹ becomes the new center y (serious step) or not (null step)
11: Update the bundle B and the bundle parameter μ

12: end while
13: return y, X , λ
14: end procedure

6 The computation of ESCs based bounds

6.1 The overall algorithm

The goal of this paper is to get good bounds on the optimal Max-Cut value zmc, the
stability number α(G) and the chromatic number χ(G) by including ESCs into the
basic SDP relaxations (1), (2) and (3) in order to improve the bounds from the basic
SDP relaxations. We will call bounds obtained in this way exact subgraph bounds
(ESB). In other words ESBs are attained by solving (4), (5) and (6) or, in the generic
form, by solving (9).

Up to now we have concentrated on the most subtle part of retrieving good ESBs,
which consists in solving the SDP relaxation (9) with a given set J of ESCs. Our
ultimate goal however is to reach ESBs where all ESCs of order k are (nearly) satisfied
for small values of k like k � 7.

We propose to reach this goal by proceeding iteratively. Starting with k = 3 in the
Max-Cut case (as there are no violated ESCs of order 2) and k = 2 in the other cases
we search for violated ESCs of order k and include only the most violated ESCs that
we find into J . After solving the SDP (9), we follow an extreme strategy and remove
any ESC that has become inactive. As we typically still find further badly violated
ESCs this allows us a quick exploration of the entire space of ESCs. Once we do not
find ESCs of order k with significant violation, we increase k and continue. We call
each such iteration a cycle.

In each cycle so we keep some information, such as the current dual variables yi
and the bundle B, appropriately modified to reflect possibly deleted and added new
constraints. In particular we delete from all yi the positions corresponding to deleted
ESCs, extend all yi with zeros for the newly added ESCs and deduce the update of all
other variables. This choice allows us to reuse the bundleB. Our procedure to compute
ESBs is sketched in Algorithm 2.

The typical behavior over a set of cycles for one stable set instance can be seen in
Fig. 4. After only a few cycles with k = 2 we move to k = 3. Here it takes 16 cycles
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Algorithm 2 Computation of an exact subgraph bound
1: procedure Compute_ESB(G)
2: k = 2 (or k = 3 for Max-Cut)
3: J = ∅
4: while “stopping condition is not satisfied” do
5: Get an approximate solution X of (9) and y of (14)
6: Update the ESB to the objective function value of y of (14)
7: Remove inactive ESCs from J
8: Include most violated ESCs of X with order k into J
9: if “not enough violated subgraphs found” then
10: k = k + 1
11: end if
12: end while
13: return ESB
14: end procedure

0 10 20 30 40 50

cycles

40.5

41

41.5

42

42.5

43

43.5

pr
og

re
ss

 E
S

B

reg_n100_r4

2
3
4
5
6
7
8

Fig. 4 Progress of the ESB over 50 cycles for one instance of Table 4

to reach a point with all ESCs nearly satisfied. The Figure clearly shows a continuing
improvement of the ESB over the cycles.

Note that the ESB computed in Algorithm 2 is indeed a valid bound, because any
y is feasible for (14) and hence its dual objective function value is a valid bound on
the primal optimal objective function value (9), which in turn is a valid bound on the
optimal objective function value of the combinatorial optimization problem. Hence it
is not necessary to solve (9) and (14) to optimality to obtain valid bounds. Of course
we want to use our bundle method, Algorithm 1, in order to obtain the approximate
solutions in line 5 of Algorithm 2.
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6.2 Finding violated exact subgraph constraints

The key ingredients of Algorithm 2 are on the one hand Algorithm 1, which was
detailed in Sect. 5, and on the other hand the update of the set J .

The crucial point in order to do so is to find violated ESCs. Let GI be a subgraph
of oder kI of G and X∗ be the current solution of (9) and letU be an arbitrary kI × kI
matrix. Clearly CUTkI , STAB

2(GI ) and COL(GI ) are bounded polytopes, hence
the inner product of any element of these polytopes with U is contained in a certain
interval. Thus finding I such that the inner product ofU with the submatrix X∗

I of X
∗

is minimum identifies a potentially violated subgraph.
This minimization may be recast as a quadratic assignment problem consisting of

the data matrices X∗ and the matrix U embedded in an n × n matrix. We repeatedly
use a local search heuristic for different fixedU in order to obtain potentially violated
subgraphs. Then we compute the projection distances of X∗

I to the corresponding
polytope for all these subgraphs GI and include those into J which have the largest
projection distances and hence are violated most.

Possible choices for U make use of hyperplanes for the respective target polytope,
but other choices are possible. In our computations we use a collection of different
matrices forU , for example matrices that induce facets of the corresponding polytope
(if their computation for a particular kI is possible easily, which is the case for kI � 6),
extreme copositive matrices with {0, 1,−1} entries and random matrices. For each
cycle we use at most 50 different matrices U .

6.3 Details of the bundle implementation

We now briefly discuss some details of our implementation of Algorithm 1 when used
in line 5 ofAlgorithm 2. First of all one needs to decide on a stopping condition. Ideally
we would stop, once a subgradient equal to zero is found. In our case, we either stop
once the norm of the new subgradient is small enough (in the case of Max-Cut), or
once the difference of the value of the function at the current center point and the
value of the subgradient model of the function at the new trial point is smaller than
some tolerance (as it is done in [4], the tolerance is 0.005 in our implementations) or
once we reach amaximum number of iterations (30 in our implementations). The third
condition is motivated by the fact that we typically will continue adding new violated
ESCs, so there is no real need to get the exact minimum of (14). Note however that it
is important to come close to the optimal solution, because otherwise the resulting X
does not have a high enough precision in order to be useful for finding new violated
subgraphs.

For updating the bundle we always add the new trial point to the bundle, but remove
subgradients from the bundle that have become inactive. This extreme choice of updat-
ing the bundle led to the best performance in our computational experiments. In order to
update the bundle parameterμwe use a modification of an update proposed by Kiwiel
[21]. We perform a serious step whenever the improvement of the objective function
value of the new trial point is at leas a certain fraction of the expected improvement.
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This is a standard criterion, see for example [19]. We solve the bundle master problem
as a rotated second-order cone program (see [2] for more details) with MOSEK.

7 Computational results

7.1 Bundle approach versus interior point methods

We start our computational investigation with a comparison of our bundlemethodwith
an interior point method in order to solve (9). In our overall Algorithm 2 presented in
Sect. 6 this has to be done in each cycle, so we are highly interested in fast running
times.

From a theoretical point of view it is clear which method will win this competition:
Assume we include q = 1000 ESCs (so q = |J |) for subgraphs of order kI = 5
in (9) for the stable set problem. Then we have tI � 25 = 32 stable set matrices
that potentially span STAB2(GI ), and up to bI �

(kI
2

) + kI = 15 equality and one
inequality constraint for each ESC. In total we have up to 32000 variables that have
to fulfill up to 16000 constraints in (9)—additionally to the variables and constraints
of the basic SDP relaxation (2). It is clear that the number of constraints will be a
challenge for an interior point solver. In particular an interior point solver has to solve
this SDP with a large number of constraints at once, whereas our bundle method
in Algorithm 1 “only” has to solve the basic SDP relaxation and the bundle master
problem over several iterations. Therefore, we expect the bundle method to be the
clear winner in this competition and refrain from a large scale comparison.

Instead, we compare the two methods only on some instances to confirm our the-
oretical inspection. In Table 2 we list the results for one Max-Cut and one stable set
instance, both are taken from the Erdős-Rényi model G(n, p). We vary the number
of included ESCs for subgraphs of order 3, 4 and 5, so we solve (4) and (5) for dif-
ferent J . We choose J such that the total number of equality constraints induced by
the convex hull formulation of the ESCs b ranges between 6000 and 15000. On the
one hand we solve the instances with two interior point solvers, namely MOSEK and
SDPT3 [33,34] and list the running times in seconds. On the other hand we use our
bundle method. In our context we are mostly interested to improve the upper bounds
quickly, so we do not run Algorithm 1 until we reach a minimizer, but stop after 30
iterations. We list the running time for the oracle, i.e. the sum of the solution times
of the basic SDP relaxation, and the overall running times. Additionally we present
how much % of the MOSEK running time the bundle method needs and how close
the solution found by the bundle method is to solution of MOSEK in % (100% means
the solutions coincide).

In Table 2 one sees that the running times decrease drastically if we use the bundle
method compared to interior point solvers. For b ≈ 15000 it takes the bundle method
only around 8% of the MOSEK running time to get as close as 95% to the optimal
value, which is sufficient for our purposes. One sees that our bundle method scales
much better for increasing |J |, so for an increasing number of ESCs. Furthermore
MATLAB requires 12 Gigabyte of memory with interior point solvers for b = 15000,
showing also memory limitations.
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Table 2 Running times for one Max-Cut and one stable set instance with different sets of ESCs, where the
graphs of order n = 100 are from the Erdős-Rényi model

Interior point Algorithm 1

#ESC of order Time (s) Time (s) % of MOSEK

3 4 5 b MOSEK SDPT3 Oracle Overall Time Value

MC 2000 0 6000 18.37 49.22 1.01 6.05 32.93 97.20

2000 300 9000 55.24 134.78 1.18 9.33 16.90 95.02

4000 0 12000 104.56 289.78 1.71 11.13 10.64 93.66

3000 600 15000 184.43 525.85 1.56 14.83 8.04 94.54

SS 1050 0 0 5914 23.54 79.25 7.86 10.65 45.22 98.25

1050 212 63 8719 50.11 174.33 10.61 16.52 32.96 97.89

2100 0 0 11780 126.40 388.07 7.43 12.27 9.71 93.65

1575 318 212 14653 241.29 648.83 10.79 20.21 8.38 94.44

To summarize our small computational investigation confirms our intuition that the
bundle method is much better suited for our purposes.

We want to point out that the number of bundle iterations can be increased in order
to get closer to the optimum. For the larger instances in Table 2 this will still result in
significantly shorter running times.

Note that the bundle method has another advantage: A warm start with the bundle
B and the solution y of the previous iteration in line 5 of Algorithm 2 is possible. Since
many ESCs remain the same in J the problem to solve in line 5 does not change too
much and a warm start can be very beneficial.

As a last remark we want to draw the attention to the running times for the oracle
in Table 2. For the stable set problem the oracle needs over half of the running time,
whereas in the Max-Cut problem the oracle evaluation is much faster. This is due to
the fact that the basic SDP relaxation is a simpler SDP for the Max-Cut problem.

In the following we present several computational results for obtained ESB by
using the bundle method. Note that we refrain from comparing the running times of
our bundle method with the running time of interior point methods, because interior
point methods would reach their limit very soon.

7.2 The stable set and the coloring problem

In this section we will extend the computational results from [13] for the stable set
and the coloring problem. The computational investigations show that (i) the ESB
obtained by including ESCs of fixed order kI improve for increasing kI and (ii) after
including several ESCs for subgraphs of order kI the maximum projection distance of
the violated subgraphs found decreases drastically.

We extend these computational results by deriving one final ESB for several
instances with Algorithm 2. We stop as soon as we have performed 50 cycles and
only include subgraphs of order k � 8. We add at most 100 ESCs in each cycle and
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Table 3 Stable set results for torus graphs

d n m ϑ(G) Final ESB α(G) Time oracle Time other

5 25 50 11.180 10.002 10 14.45 18.58

7 49 98 23.224 21.009 21 95.06 31.96

9 81 162 39.241 36.021 36 277.98 66.37

11 121 242 59.249 55.066 55 728.78 122.46

13 169 338 83.254 79.084 78 859.73 170.85

15 225 450 111.257 106.287 105 1390.52 224.97

17 289 578 143.259 136.821 135 3123.41 314.29

warmstart the bundle with the information of the previous cycle. We already saw the
typical behavior of the ESB over the cycles in Fig. 4.

As a first structural easy class of graphs we consider two-dimensional torus graphs
which are constructed as follows. For given d, the graph Td has d2 vertices which we
label by (i, j) for i, j ∈ {1, . . . , d}. The vertical edges join vertices with neighboring
i indices (and j fixed), yielding edges {(i, j), (i + 1, j)} modulo d, and similarly the
horizontal edges join vertices with i fixed {(i, j), (i, j + 1)} modulo d. So there is a
total of n = d2 vertices and m = 2n edges. It is not hard to verify that in case of odd
d = 2t+1,we getα(Td) = t(2t+1) and if d = 2t wehaveα(Td) = 2t2. The even case
is not interesting, as ϑ(Td) = α(Td). For d odd we summarize some computational
results in Table 3. We observe that for these graphs our ESB is substantially better
than ϑ(G) and we close the integer gap for all instances with n � 121.

When considering the running times observe that the majority of the running time
(given in seconds in Table 3) is used for the oracle, because the SDP to evaluate
ϑ(G) given in (2) with a slightly modified objective function is nontrivial. We tried
several solver to solve this SDP, among them the interior point solver MOSEK [26],
and solvers based on alternating direction method of multipliers as DADAL [7] and
SDPNAL+ [35]. Both these solvers show very good results on computing ϑ(G), but
as soon as the objective function slightly changes they do not perform well anymore.
Hence it will be future research to develop an SDP solver dedicated to these kind of
instances. Note that the running time in order to perform Algorithm 2 is not very high
and in particular only increases mildly for larger instances.

As a second class of problemswe consider random near-r -regular graphs, whichwe
generate as follows. We select a perfect matching on nr vertices and then we identify
consecutive groups of r vertices into a single vertex. This yields a regular multigraph
on n vertices.We remove loops andmultiple edges resulting in a near-regular graph. In
Tables 4 and 5 we provide results for random graphs. We compare near-regular graphs
with random graphs from the Erdős-Rényi model where the density p is chosen so
that the number of edges roughly matches those of the regular graphs. We compute
our ESB and use a heuristic to compute large stable sets. In the results the gap between
ϑ(G) and α(G) seems to be bigger for regular graphs, but we see in both cases that the
ESB reduce the gap between ϑ(G) and the cardinality of the largest stable set found in
a nontrivial way. Concerning running times we observe the same behavior as before.
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Table 4 Stable set results for near-regular graphs

graph n r m ϑ(G) Final ESB α(G) � Time oracle Time other

reg_n100_r4 100 4 195 43.449 40.687 40 1020.60 143.12

reg_n100_r6 100 6 294 37.815 35.246 34 935.69 125.93

reg_n100_r8 100 8 377 34.480 32.190 31 939.27 127.46

reg_n200_r4 200 4 400 87.759 83.732 80 1278.61 158.67

reg_n200_r6 200 6 593 79.276 75.555 68 1362.04 160.90

reg_n200_r8 200 8 792 70.790 67.785 60 1751.27 192.74

reg_n200_r10 200 10 980 66.418 62.894 57 2356.94 199.12

Table 5 Stable set results for graphs from the Erdős-Rényi model G(n, p)

graph n m ϑ(G) Final ESB α(G) � Time oracle Time other

rand_n100_p004 100 212 46.067 45.021 45 338.77 93.34

rand_n100_p006 100 303 40.361 38.439 38 769.80 117.33

rand_n100_p008 100 443 34.847 32.579 32 1126.16 135.89

rand_n100_p010 100 489 34.020 32.191 32 1004.05 134.39

rand_n200_p002 200 407 95.778 95.032 95 679.90 155.80

rand_n200_p003 200 631 83.662 81.224 80 1672.94 193.75

rand_n200_p004 200 816 73.908 70.839 67 2035.58 191.42

rand_n200_p005 200 991 69.039 66.091 62 2195.78 215.50

As a last experiment for the stable set problem in Table 6 we consider instances
from the literature, taken mostly from the DIMACS challenge [9]. On some instances
there is hardly any improvement of the bound, while other instances are solved to
optimality. It requires future research to get a better understanding for the fluctuation
in quality on these instances, but for almost all instances the bound improves by at
least one integer value.

The computation times for these instances range from 200 to 500 s for the smaller
instances (n � 125) to several hours for the biggest graphs. As in the instances before
a faster oracle would improve the running times substantially.

Note that in our computations we aim for getting as good bounds as possible. If
one wants to use the bounds in a branch-and-bound setting, a much more aggressive
strategy with increasing kI faster and stopping as soon as we do not expect to reach
the next integer value is favorable.

Results for a selection of coloring instances from [27] are provided in Table 7. As
in the case of the stable set problem we use Algorithm 2 to obtain ESBs. We include
at most 100 ESCs in each cycle, only include ESCs for subgraphs of order k � 8 and
perform at most 25 cycles. The results are similar in quality to those for stable set from
Table 6, so for the most instances we are able to obtain bounds, which are one integer
value better than the original bounds from t∗(G). The large running times are due to
the difficult basic SDP relaxation (3).
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Table 6 Tighten ϑ(G) towards α(G)

Graph n m ϑ(G) Final ESB α(G) � Time oracle Time other

Circulant47_030 47 282 14.302 13.019 13 193.31 39.95

PaleyGraph61 61 915 7.810 7.027 5 319.37 51.79

hamming6_4 64 1312 5.333 4.005 4 71.37 13.93

spin5 125 375 55.902 50.004 50 342.20 71.68

keller4 171 5100 14.012 13.505 11 1923.60 62.34

sanr200_0_9 200 2037 49.274 47.614 42 5171.69 253.94

c_fat200_5 200 11427 60.345 58.001 58 3601.56 85.42

p_hat300_1 300 8773 160.345 160.342 158 5106.69 112.59

p_hat300_2 300 6092 160.345 158.000 158 31228.51 187.41

p_hat300_3 300 3072 160.345 158.000 158 19563.05 252.68

Table 7 Tighten t∗(G) towards χ(G)

Graph n m t∗(G) Final ESB χ(G) � Time overall

myciel3 11 20 2.400 3.276 4 236.95

myciel4 23 71 2.529 3.505 5 1422.71

myciel5 47 236 2.639 3.510 6 4240.61

mug88_1 88 146 3.000 3.022 4 4709.40

1_FullIns_4 93 593 3.124 3.939 5 7219.83

myciel6 95 755 2.734 3.534 7 1540.82

myciel7 191 2360 2.820 3.582 8 2295.24

2_FullIns_4 212 1621 4.056 4.700 6 10106.29

flat300_26_0 300 21633 16.998 17.121 26 7535.75

7.3 TheMax-Cut problem

Finally we are ready to present computational results for the Max-Cut problem. It is
well known that in the basic SDP relaxation of Max-Cut (1) all ESCs of order 3 can
equivalently be represented by the metric polytope [23]. Optimizing over it gives the
exact solution to Max-Cut on graphs not contractible to K5, in particular on planar
graphs. It is also well known that optimizing over the metric polytope may lead to
rather weak relaxations for general graphs. In contrast, the simple SDP relaxation (1)
provides an upper bound at most 14% above the optimal value of Max-Cut for graphs
with nonnegative edge weights, see [14].

In our computational experiments withMax-Cut we noted that the number of ESCs
necessary to insure that all ESCs for a given value k are satisfied can be quite large
(see Sect. 3.2), even for small values of n, such as n = 100. We therefore simplify
the ESC relaxation further. If a subgraph GI violates the ESC, then instead of asking
that XI ∈ CUTk , we generate a single linear inequality separating XI from CUTk
and include it instead of the ESC. This weakens the relaxation, but also reduces the

123



Exact subgraph based SDP bounds 305

Table 8 Max-Cut results for
graphs from the Erdős-Rényi
model G(n, p)

n p 3 7 zmc #ESC

0.10 0.70 0.07 118 2687

100 0.25 3.77 0.86 180 3705

0.50 5.20 2.53 246 3521

0.10 7.50 4.78 184 4755

150 0.25 7.39 5.02 310 4779

0.50 9.71 7.51 459 4605

computational effort, so that the total number of ESCs in the model may be quite
large, and we can still compute the ESB. The computational effort is quite moderate,
requiring no more than about 120 s for each of the instances.

Wefirst consider randomgraphs on n vertices from theErdős-RényimodelG(n, p).
Each edge is then assigned the weight 1 or −1 (each with probability 1/2). In Table 8
we report our computational results for n ∈ {100, 150} and p ∈ {0.1, 0.25, 0.5}. We
compare the ESB with k = 3 (column labeled 3) to the ESB with k = 7 (column
labeled 7). The column labeled 3 provides the deviation (in %) of the ESB with k = 3
from zmc. Thus if p is the value in the column labeled 3, then the ESB is equal to
(1 + p/100)zmc. The column labeled 7 is to be understood in an analogous way for
k = 7. In all cases we note a substantial gap reduction going from k = 3 to k = 7. The
last column contains the number of ESCs at termination. It ranges from about 3000
for n = 100 to about 4500 for n = 150 and justifies our strategy to represent each
ESC through a single cutting plane.

Next we consider graphs from the Beasley collection [3] with n = 250. Rendl,
Rinaldi andWiegele [28] used 10 of these instances in a branch-and-bound setting. The
“hardest” instance 250-08 reported in [28] resulted in 4553 nodes in the branch-and-
bound tree and took several days of computation time. All the other 9 instances from
this collection resulted in branch-and-bound trees having between 17 and 223 nodes
with computation times in the order of hours, see Table 6 from [28]. We recomputed
the root bound for all these instances and present our root gap in Table 9. We find it
remarkable that our new bounding procedure is strong enough to prove optimality for
all these instances right at the root node with the exception of problem 250-08. For
this problem the gap at the root node was 2.19%. We recomputed the root bound in
our setting and came up with a root gap of only 0.5%, thus reducing the gap by 75%.

As a final experiment we consider Max-Cut instances on Chimera graphs. This
class of graphs has found increased interest in connection with quantum annealing,
see [6] for further details. In Table 10 we provide computational results with such
graphs on n = 512 vertices. We compute our ESB and also use a heuristic to find
a good cut. It turns out that our bounding approach works nicely on these graphs,
leading to provably optimal solutions in 2 out of 5 instances and the smallest possible
positive gap (of 1) in the remaining cases. The computation times for each of these
(big) instances range from 700 to 900 s, which we consider remarkable when dealing
with more than 20000 ESCs.
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Table 9 Max-Cut results for graphs from the OR library

Graph Opt. cut # Branch-and-bound nodes [28] Root gap [28] Our root gap

250-01 45607 37 0.44 *

250-02 44810 19 0.56 *

250-03 49037 19 0.14 *

250-04 41274 17 0.39 *

250-05 47961 21 0.35 *

250-06 41014 223 1.03 *

250-07 46757 37 0.44 *

250-08 35726 4553 2.19 0.5

250-09 48916 47 0.78 *

250-10 40442 63 0.62 *

Table 10 Max-Cut results for
Chimera graphs with n = 512

Graph Final ESB Best found cut #ESC

chimera-1 434.38 433 22275

chimera-2 452.69 451 24707

chimera-3 447.35 447 22390

chimera-4 439.90 439 20748

chimera-5 441.66 440 22838

We conclude that for Max-Cut our ESB constitute a substantial improvement com-
pared to the previously used strongest bounds based on SDP with triangle inequalities
[28]. These correspond to the column labeled 3 in Table 8.

8 Conclusions and future work

Summarizing, we offer the following conclusions from the computational results.
Our computational approach based on the partial Lagrangian dual is very efficient
in handling also a large number of ESCs. The dual function evaluation separates the
SDP part from the ESCs and therefore opens the way for large-scale computations.
Theminimization of the dual function is carried out as a convex quadratic optimization
problemwithout any SDP constraints, and therefore is also suitable for a large number
of ESCs.

Our computational results for stable set and coloring confirm the theoretical hard-
ness results for these problems. Including ESCs of rather small size (k � 8) yields a
noticeable improvement of the bounds.

The limiting factor for stable set instances is the solution time of the oracle. Hence
it is desirable to have a fast solver for these kind of instances.

On the practical side we consider the cutting plane weakening of the ESCs for
Max-Cut a promising new way to tighten bounds for this problem.
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It will be a future project to explore these bounds in a branch-and-bound setting in
order to solve Max-Cut, stable set and coloring instances to optimality.
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