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a b s t r a c t

For non-negative integers k, we consider graphs in which every vertex has exactly k
vertices at distance 2, i.e., graphs whose distance-2 graphs are k-regular. We call such
graphs k-metamour-regular motivated by the terminology in polyamory.

While constructing k-metamour-regular graphs is relatively easy – we provide a
generic construction for arbitrary k – finding all such graphs is much more challenging.
We show that only k-metamour-regular graphs with a certain property cannot be built
with this construction. Moreover, we derive a complete characterization of k-metamour-
regular graphs for each k = 0, k = 1 and k = 2. In particular, a connected graph with n
vertices is 2-metamour-regular if and only if n ≥ 5 and the graph is

• a join of complements of cycles (equivalently every vertex has degree n − 3),
• a cycle, or
• one of 17 exceptional graphs with n ≤ 8.

Moreover, a characterization of graphs in which every vertex has at most one meta-
mour is acquired. Each characterization is accompanied by an investigation of the
corresponding counting sequence of unlabeled graphs.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For a given graph, let us construct its distance-2 graph as follows: It has the same vertices as the original graph, and
there is an edge between two vertices if these vertices are at distance 2 in the original graph. Here, distance 2 means that
such two vertices are different, not adjacent, and have a common neighbor. An example is shown in Fig. 1.1. Distance-2
graphs and properties of vertices at distance 2 have been heavily studied in the literature; see the survey in Section 1.2.
We pursue the theme of characterizing all graphs whose distance-2 graphs are in a given graph class. We specifically set
our focus on the graph class of regular graphs.

The research is motivated by the relationship concept polyamory,3 where every person might be in a relationship with
any number of other persons. Naturally, this can be modeled as a graph, where each vertex represents a person, and two

∗ Corresponding author.
E-mail addresses: elisabeth.gaar@jku.at (E. Gaar), math@danielkrenn.at, daniel.krenn@plus.ac.at (D. Krenn).
URL: http://www.danielkrenn.at (D. Krenn).

1 Supported by the Austrian Science Fund (FWF): I 3199-N31.
2 Supported by the Austrian Science Fund (FWF): P 28466-N35.
3 Hyde and DeLamater [17] describe polyamory as ‘‘the non-possessive, honest, responsible, and ethical philosophy and practice of loving multiple

people simultaneously’’. Other descriptions of polyamory are around; see for example Haritaworn, Lin and Klesse [16] or Sheff [24]. The word
polyamory appeared in an article by Zell-Ravenheart [23] in 1990 and is itself a combination of the Greek word ‘‘ ’’ (poly) meaning ‘‘many’’
and of the Latin word ‘‘amor’’ meaning ‘‘love’’.
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Fig. 1.1. A graph and its distance-2 graph A line presents an edge in the graph and an edge in its distance-2 graph.

ertices are adjacent if the corresponding persons are in a relationship. In polyamory, two persons that are both in a
elationship with the same third person, but are not in a relationship with each other, are called metamours4 We adopt
his terminology and use the term metamour of a vertex for a vertex at distance 2. Correspondingly, we call the distance-2
raph of a graph G, the metamour graph of G.
We have discussed the context and set-up the necessary vocabulary, so we are now ready to talk about the content

nd results of this article. We investigate graphs where each vertex has the same number of metamours. If this number
s k, we say that the graph is k-metamour-regular. Reformulated, a k-metamour-regular graph is a graph whose distance-2
raph is k-regular. The leftmost connected component of the graph in Fig. 1.1 shows an example of a 2-metamour-regular
sub)graph with six vertices. We ask:

uestion. Can we find all k-metamour-regular graphs and give a precise description of how they look like?

Certainly not every graph satisfies this property, but some do. For example, for k = 2 it is not hard to check that in
connected) graphs with at least five vertices, where

• every vertex has two neighbors, i.e., cyclic graphs, or
• every vertex is adjacent to every other vertex but two, i.e., complements of cyclic graphs,

ach vertex indeed has exactly two metamours. Hence, these graphs are 2-metamour-regular.
The second construction above can be generalized, and in this article we provide a generic construction that allows

o create k-metamour-regular graphs for any number k. One of our key results is that the vast majority of these graphs
an indeed be built by this generic construction. To be more precise, only k-metamour-regular graphs whose metamour
raph consists of at most two connected components cannot necessarily be constructed this way.
This key result lays the foundations for another main result of this article, namely the identification of all 2-metamour-

egular graphs, so we answer the question above for k = 2. Our findings are as follows: Every 2-metamour-regular graph
f any size falls either into one of the two groups (cyclic or complements of cyclic graphs) above or into the third group
f

• 17 exceptional graphs with at least six and at most eight vertices.

e provide a systematic and explicit description of the graphs in the first two groups. All 2-metamour-regular graphs
ith at most nine vertices – this includes the 17 exceptional graphs of the third group – are shown in Figs. 3.2 to 3.6.
ummarized, we present a complete characterization of all 2-metamour-regular graphs. Note that as a consequence,
xceptional graphs exist only for up to eight vertices.
In addition to the above result we derive several structural properties of k-metamour-regular graphs for any number k.
e also characterize all graphs in which every vertex has no metamour (k = 0), exactly one metamour (k = 1), and at
ost one metamour. As a byproduct of every characterization including the one for k = 2, we are able to count the number
f graphs with these properties. Moreover – and this might be the one sentence take-away message of this article – our
indings imply that besides the graphs that are simple to discover (i.e., can be built by the generic construction), only a
ew (if any) small exceptional graphs are 0-metamour-regular, 1-metamour-regular, graphs where every vertex has most
ne metamour and 2-metamour-regular.

4 For metamour see for example Hardy and Easten [15, p. 219ff, 298] or Veaux and Rickert [30, p. 397ff, 455], or online at https://www.
morethantwo.com/polyglossary.html#metamour.
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.1. Outline

We now provide a short overview on the structure of this paper. The terms discussed so far are formally defined in
ection 2. Moreover, there we introduce joins of graphs which are used in the systematic and explicit description of the
raphs in the characterizations of metamour-regular graphs. The section also includes some basic properties related to
hose concepts.

Section 3 is a collection of all results derived in this article. This is accompanied by plenty of consequences of these
esults and discussions. The proofs of all results are given in Sections 4 to 9. We conclude in Section 10 and provide many
uestions, challenges and open problems for future work.
So far not mentioned is the next section. There, literature related to this article is discussed.

.2. Related literature

In this section we discuss concepts that have already been examined in literature and that are related to metamours
i.e., vertices having distance 2, or ‘‘neighbors of neighbors’’) and the metamour graphs induced by their relations.
etamour graphs are called distance-2 graphs in Iqbal, Koolen, Park and Rehman [18], and some authors also call them

2-distance graphs (e.g., Azimi and Farrokhi [3]) or 2nd distance graphs (e.g., Simić [25]). This notion also appears in the
ook by Brouwer, Cohen and Neumaier [9, p. 437].
The overall question is to characterize all graphs whose distance-n graph equals some graph of a given graph class.

imić [25] answers the question when the distance-n graph of a graph equals the line graph of this graph. Characterizing
hen the distance-2 graph is a path or a cycle is done by Azimi and Farrokhi [3], and when it is a union of short paths
r and a union of two complete graphs by Ching and Garces [12]. Azimi and Farrokhi [4] also tackled the question when
he distance-2 graph of a graph equals the graph itself. This question is also topic of the online discussion [29]. Bringing
he context to our article, we investigate the above question for the graph class of regular graphs.

Moreover, vertices in a graph that have distance two, i.e., metamours, or more generally vertices that have a given
pecific distance, are discussed in the existing literature in many different contexts. The persons participating in the
xchange [11] discuss algorithms for efficiently finding vertices having specific distance on trees. Moreover, the notion of
ominating sets is extended to vertices at specific distances in Zelinka [32] and in particular to distance two in Kiser and
aynes [20].
Also various kinds of colorings of graphs with respect to vertices of given distance are studied. Typically, the

orresponding chromatic number is analyzed, for instance Bonamy, Lévêque and Pinlou [5], Borodin, Ivanova and
eustroeva [7], and Bu and Wang [10] provide such results for vertices at distance two. Algorithms for finding such
olorings are also investigated. We mention here Bozdağ, Çatalyürek, Gebremedhin, Manne, Boman and Özgüner [8] as
n example. Kamga, Wang, Wang and Chen [19] study variants of so-called vertex distinguishing colorings, i.e., edge
olorings where additionally vertices at distance two have distinct sets of colors. Their motivation comes from network
roblems. The concept is studied more generally but for more specific graph classes in Zhang, Li, Chen, Cheng and Yao [33].
Many of the mentioned results also investigate vertices at distance at most two (compared to exactly two). This is

losely related to the concept of the square of a graph, i.e., graphs with the same vertex set as the original graph and
wo vertices are adjacent if they have distance at most two in the original graph. More generally, this concept is known
s powers of graphs; see Bondy and Murty [6, p. 82]. The overall question to characterize all graphs whose nth distance
raph equals some graph of a given graph class is studied also for powers of graphs instead of distance-n graphs; see
kiyama, Kaneko and Simić [1]. Colorings are studied for powers of graphs by a motivation coming, among others, from
ireless communication networks or graph drawings. The corresponding chromatic number is analyzed, for example, in
ramer and Kramer [21], Alon and Mohar [2] and Molloy and Salavatipour [22]. Results on the hamiltonicity of powers
f graphs are studied in Bondy and Murty [6, p. 105] and Underground [28].
Finally, there are distance-regular graphs. Even though the name might suggest that these graphs are closely related

o metamour graphs, this is not the case: A graph is distance-regular if it is regular and for any two vertices v and w, the
umber of vertices at distance j from v and at distance k from w depend only upon j, k and the distance of u and v. The

book by Brouwer, Cohen and Neumaier [9] is a good starting point for this whole research area. Plenty of publications
related to distance-regular graphs are available, in particular recently Iqbal, Koolen, Park and Rehman [18] considered
distance-regular graphs whose distance-2 graphs are strongly regular.

2. Definitions, notation & foundations

This section is devoted to definitions and some simple properties. Moreover, we state (graph-theoretic) conventions
and set up the necessary notation that will be used in this article. The proofs of the properties of this section are postponed
to Section 4.
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.1. Graph-theoretic definitions, notation & conventions

In this graph-theoretic article we use standard graph-theoretic definitions and notation; see for example Diestel [13].
e use the convention that all graphs in this article contain at least one vertex, i.e., we do not talk about the empty graph.
oreover, we use the following convention for the sake of convenience.

onvention 2.1. If two graphs are isomorphic, we will call them equal and use the equality-sign.

In many places it is convenient to extend adjacency to subsets of vertices and subgraphs. We give the following
efinition that is used heavily in Sections 3.5 and 5.

efinition 2.2. Let G be a graph, and let W1 and W2 be disjoint subsets of the vertices of G.

• We say that W1 is adjacent in G to W2 if there is a vertex v1 ∈ W1 adjacent in G to some vertex v2 ∈ W2.
• We say that W1 is completely adjacent in G to W2 if every vertex v1 ∈ W1 is adjacent in G to every vertex v2 ∈ W2.

By identifying a vertex v ∈ V (G) with the subset {v} ⊆ V (G), we may also use (complete) adjacency between v and a
subset of V (G). Moreover, for simplicity, whenever we say that subgraphs of G are (completely) adjacent, we mean that
the underlying vertex sets are (completely) adjacent.

We explicitly state the negation of adjacent: We say that W1 is not adjacent in G to W2 if no vertex v1 ∈ W1 is adjacent
in G to any vertex v2 ∈ W2. We will not need the negation of completely adjacent.

We recall the following standard concepts and terminology to fix their notation.

• For a set W ⊆ V (G) of vertices of a graph G, the induced subgraph G[W ] is the subgraph of G with vertices W and
all edges of G that are subsets of W , i.e., edges incident only to vertices of W .

• A set µ ⊆ E(G) of edges of a graph G is called matching if no vertex of G is incident to more than one edge in µ. In
particular, the empty set is a matching. The set µ is called perfect matching if every vertex of G is incident to exactly
one edge in µ.

• For a set ν ⊆ E(G) of edges of a graph G, we denote by G − ν the graph with vertices V (G − ν) = V (G) and
edges E(G − ν) = E(G) \ ν.

• The union of graphs G1 and G2, written as G1∪G2, is the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2).
• A path π of length n in a graph G is written as π = (v1, . . . , vn) for vertices vi ∈ V (G) that are pairwise distinct.
• A cycle γ of length n or n-cycle γ in a graph G is written as γ = (v1, . . . , vn, v1) for vertices vi ∈ V (G) that are

pairwise distinct.
• For a graph G, we write C(G) for the set of connected components of G. Note that each element of C(G) is a subgraph

of G.
• We write G for the complement of a graph G, i.e., the graph with the same vertices as G but with an edge between

vertices exactly where G has no edge.
• We use the complete graph Kn for n ≥ 1, the complete t-partite graph Kn1,...,nt for ni ≥ 1, i ∈ {1, . . . , t}, the path

graph Pn for n ≥ 1, and the cycle graph Cn for n ≥ 3.

Remark 2.3. We will frequently use the complement Cn of the cycle graph Cn for n ≥ 3. Note that

• C3 is the graph with 3 isolated vertices,
• C4 is the graph with 2 disjoint single edges, and
• C5 equals C5 (see also Fig. 3.2).

We close this section and continue with definitions and concepts that are specific for this article.

.2. Metamours

We now formally define the most fundamental concept of this article, namely metamours.

efinition 2.4. Let G be a graph.

• A vertex v of the graph G is a metamour of a vertex w of G if the distance of v and w on the graph G equals 2.
• The metamour graph M of G is the graph with the same vertex set as G and an edge between the vertices v and w

of M whenever v is a metamour of w in G.

We can slightly reformulate the definition of metamours: A vertex v having a different vertex w as metamour,
i.e., having distance 2 on a graph, is equivalent to saying that v and w are not adjacent and there is a vertex u such
that both v and w have an edge incident to this vertex u, i.e., u is a common neighbor of v and w.

Clearly, there is no edge in a graph between two vertices that are metamours of each other. This is reflected in the
relation between the metamour graph and the complement of a graph, and put into writing as the following observation.
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bservation 2.5. Let G be a graph. Then the metamour graph of G is a subgraph of the complement of G.

The question whether the metamour graph equals the complement will appear in many statements of this article. The
ollowing simply equivalence is useful.

roposition 2.6. Let G be a connected graph with n vertices. Then the following statements are equivalent:

(a) The metamour graph of G equals G.
(b) The graph G has diameter 2 or G = Kn.

2.3. Metamour-degree & metamour-regularity

Having the concept of metamours, it is natural to investigate the number of metamours of a vertex. We formally define
this ‘‘degree’’ and related concepts below.

Definition 2.7. Let G be a graph.

• The metamour-degree of a vertex of G is the number of metamours of this vertex.
• The maximum metamour-degree of the graph G is the maximum over the metamour-degrees of its vertices.
• For k ≥ 0 the graph G is called k-metamour-regular if every vertex of G has metamour-degree k, i.e., has exactly k

metamours.

We finally have k-metamour-regularity at hand and can now start to relate it to other existing terms. We begin with
the following two observations.

Observation 2.8. Let k ≥ 0, and let G be a graph and M its metamour graph. Then G is k-metamour-regular if and only if
the metamour graph M is k-regular.

The number of vertices with odd degree is even by the handshaking lemma. Therefore, we get the following
observation.

Observation 2.9. Let k ≥ 1 be odd. Then the number of vertices of a k-metamour-regular graph is even.

Proposition 2.10. Let G be a connected graph with n vertices. Then the following statements are equivalent:

(a) The metamour graph of G equals G.
(b) For every vertex of G, the sum of its degree and its metamour-degree equals n − 1.

Note that if k ≥ 0 and G is a connected k-metamour-regular graph with n vertices, then (b) states that the graph G is
(n − 1 − k)-regular. We use this in Proposition 2.13.

2.4. Joins of graphs

Given two graphs, we already have defined the union of these graphs in Section 2.1. A join of graphs is a variant of
that. We will introduce this concept now, see also Harary [14, p. 21], and then discuss a couple of simple properties of
joins, also in conjunction with metamour graphs.

Definition 2.11. Let G1 and G2 be graphs with disjoint vertex sets V (G1) and V (G2). The join of G1 and G2 is the graph
enoted by G1 ∇ G2 with vertices V (G1) ∪ V (G2) and edges

E(G1) ∪ E(G2) ∪
{
{g1, g2}

⏐⏐ g1 ∈ V (G1) and g2 ∈ V (G2)
}
.

Some graphs in Figs. 3.3 to 3.6 are joins of complements of cycle graphs. All of the joins of graphs in this paper are
‘disjoint joins’’. We use the convention that if the vertex sets V (G1) and V (G2) are not disjoint, then we make them disjoint
efore the join. We point out that the operator ∇ is associative and commutative.
Let us get to know joins of graphs in form of a supplement to Remark 2.3. We have

K3,3,...,3 = C3 ∇ C3 ∇ · · · ∇ C3

or the complete multipartite graph K3,3,...,3.
There are connections between joins of graphs and metamour graphs that will appear frequently in the statements

nd results of this article. We now present first such relations.
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roposition 2.12. Let G be a connected graph and M its metamour graph. Then the following statements are equivalent:

(a) The metamour graph M equals G and |C(M)| ≥ 2.
(b) The graph G equals G = M1 ∇ · · · ∇ Mt with {M1, . . . ,Mt} = C(M) and t ≥ 2.
(c) There are graphs G1 and G2 with G = G1 ∇ G2.

Proposition 2.13. Let k ≥ 0 and G be a connected k-metamour-regular graph with n vertices. Let M be the metamour graph
of G. Then the following statements are equivalent:

(a) The metamour graph M equals G.
(b) The graph G has diameter 2 or G = Kn.
(c) The graph G equals G = M1 ∇ · · · ∇ Mt with {M1, . . . ,Mt} = C(M).
(d) The graph G is (n − 1 − k)-regular.

Note that we have G = Kn in (b) if and only if k = 0.

3. Characterizations & properties of metamour-regular graphs

It is now time to present the main results of this article and their implications. In this section, we will do this in a
formal manner using the terminology introduced in Section 2. This section also includes brief sketches of the proofs of
the main results. The actual and complete proofs of the results follow later, from Section 5 on to Section 9. Proof-wise
the results on k-metamour-regular graphs for k ∈ {0, 1, 2} build upon the result for arbitrary k ≥ 0; this determines the
order of the sections containing the proofs. We will in this section, however, start with k = 0, followed by k = 1 and
k = 2 and only deal with general k later on.

3.1. 0-metamour-regular graphs

As a warm-up, we start with graphs in which no vertex has a metamour. The following theorem is not very surprising;
the only graphs satisfying this property are complete graphs.

Theorem 3.1. Let G be a connected graph with n vertices. Then G is 0-metamour-regular if and only if G = Kn.

An alternative point of view is that of the metamour graph. The theorem simply implies that in the case of 0-metamour-
regularity, the metamour graph is empty and also equals the complement of the graph itself. The latter property will occur
frequently later on which also motivates its formulation in the following corollary.

Corollary 3.2. A connected graph is 0-metamour-regular if and only if its complement equals its metamour graph and this
graph has no edges.

The characterization provided by Theorem 3.1 makes it also easy to count how many different 0-metamour-regular
graphs there are and leads to the following corollary.

Corollary 3.3. The number m=0(n) of unlabeled connected 0-metamour-regular graphs with n vertices is

m=0(n) = 1.

The Euler transform, see Sloane and Plouffe [26], of this sequence gives the numbers m′

=0(n) of unlabeled but not
ecessarily connected 0-metamour-regular graphs with n vertices. The number m′

=0(n) equals the partition function p(n),
.e., the number of integer partitions5 of n. The corresponding sequence starts with

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
m′

=0(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

nd is A000041 in The On-Line Encyclopedia of Integer Sequences [27].
This completes the properties of 0-metamour-regular graphs that we bring here. We will, however, see in the following

ections how these properties behave in context of other graph classes.

5 An integer partition of a positive integer n is a way of representing n as a sum of positive integers; the order of the summands is irrelevant.
The parts of a partition are the summands.
186
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n

Fig. 3.1. The path graph P4 where each vertex has exactly 1 metamour.

3.2. 1-metamour-regular graphs

The next easiest case is that of graphs in which every vertex has exactly one other vertex as metamour. As the
metamour relation is symmetric, these vertices always come in pairs. We write this fact down in the following proposition.

Proposition 3.4. Let G be a graph with n vertices. Then the following statements hold:

(a) If every vertex of G has at most one metamour, then the edges of the metamour graph of G form a matching, i.e., the
vertices of G having exactly one metamour come in pairs such that the two vertices of a pair are metamours of each
other.

(b) If G is 1-metamour-regular, then n is even and the edges of the metamour graph of G form a perfect matching.

By this connection of 1-metamour-regular graphs to perfect matchings, we can divine the underlying behavior. This
leads to our main result of this section, a characterization of 1-metamour-regular graphs; see the theorem below. It turns
out that one exceptional case, namely the graph P4 (Fig. 3.1), occurs.

Theorem 3.5. Let G be a connected graph with n vertices. Then G is 1-metamour-regular if and only if n ≥ 4 is even and
either

(a) G = P4 or
(b) G = Kn − µ for some perfect matching µ of Kn

holds.

When excluding G = P4, then the graphs in the theorem are exactly the cocktail party graphs [31].
Let us again view this from the angle of metamour graphs. As soon as we exclude the exceptional case P4, the metamour

graph and the complement of a 1-metamour-regular graph coincide; see the following corollary.

Corollary 3.6. A connected graph with n ≥ 5 vertices is 1-metamour-regular if and only if its complement equals its metamour
graph and this graph is 1-regular.

Note that a 1-regular graph with n vertices is a graph induced by a perfect matching of Kn. In view of Proposition 2.13,
we can extend the two equivalent statements.

As we have a characterization of 1-metamour-regular graphs (provided by Theorem 3.5) available, we can determine
the number of different graphs in this class. Clearly, this is strongly related to the existence of a perfect matching; details
are provided below and also in Section 7, where proofs are given.

Corollary 3.7. The sequence of numbers m=1(n) of unlabeled connected 1-metamour-regular graphs with n vertices starts
with

n 1 2 3 4 5 6 7 8 9 10
m=1(n) 0 0 0 2 0 1 0 1 0 1

and we have

m=1(n) =

{
0 for odd n,
1 for even n ≥ 6.

The Euler transform, see [26], of the sequence of numbers m=1(2n) gives the numbers m′

=1(2n) of unlabeled but not
ecessarily connected 1-metamour-regular graphs with 2n vertices. The sequence of these numbers starts with

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m′

=1(2n) 0 2 1 4 3 8 7 15 15 27 29 48 53 82 94 137 160 225 .

This sequence also counts how often a part 2 appears in all integer partitions6 of n+2 with parts at least 2. The underlying
bijection is formulated as the following corollary.

6 For integer partitions, see footnote 5.
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orollary 3.8. Let n ≥ 0. Then the set of unlabeled 1-metamour-regular graphs with 2n vertices is in bijective correspondence
o the set of partitions of n + 2 with smallest part equal to 2 and one part 2 of each partition marked.

.3. Graphs with maximum metamour-degree 1

Let us now slightly relax the metamour-regularity condition and consider graphs in which every vertex of G has at
ost one metamour. In view of Proposition 3.4, matchings play an important role again. Formally, the following theorem
olds.

heorem 3.9. Let G be a connected graph with n vertices. Then the maximum metamour-degree of G is 1 if and only if either

(a) G ∈ {K1, K2, P4} or
(b) n ≥ 3 and G = Kn − µ for some matching µ of Kn

holds.

As in the sections above, the obtained characterization leads to the following equivalent statements with respect to
metamour graph and complement.

Corollary 3.10. A connected graph with n ≥ 5 vertices has the property that every vertex has at most one metamour if and
only if its complement equals its metamour graph and this graph has maximum degree 1.

Note that graphs with maximum degree 1 and n vertices are graphs induced by a (possibly empty) matching of Kn. In
view of Proposition 2.6, we can extend the two equivalent statements by a third saying that G has diameter 2 or G = Kn.

Counting the graphs with maximum metamour-degree 1 relies on the number of matchings; see the relevant proofs
in Section 8 for details. We obtain the following corollary.

Corollary 3.11. The sequence of numbers m≤1(n) of unlabeled connected graphs with n vertices where every vertex has at
most one metamour starts with

n 1 2 3 4 5 6 7 8 9 10
m≤1(n) 1 1 2 4 3 4 4 5 5 6

and we have

m≤1(n) = ⌊
n
2⌋ + 1

or n ≥ 5.

The Euler transform, see [26], gives the sequence of numbers m′

≤1(n) of unlabeled but not necessarily connected graphs
ith maximum metamour-degree 1 and n vertices which starts with

n 1 2 3 4 5 6 7 8 9 10 11 12 13
m′

≤1(n) 1 2 4 9 14 26 43 76 122 203 322 523 814 .

.4. 2-metamour-regular graphs

We now come to the most interesting graphs in this article, namely graphs in which every vertex has exactly two
ther vertices as metamours. Also in this case a characterization of the class of graphs is possible. We first consider
bservation 2.8 in view of 2-metamour-regularity. As a graph is 2-regular if and only if it is a union of cycles, the following
bservation is easy to verify.

bservation 3.12. Let G be a graph and M its metamour graph. Then G is 2-metamour-regular if and only if every connected
omponent of the metamour graph M is a cycle.

We are ready to fully state the mentioned characterization formally as the theorem below. We comment this result and
iscuss implications afterwards. Note that Theorem 3.13 generalizes the main result of Azimi and Farrokhi [3, Theorem 2.3]
hich only deals with metamour graphs being connected.

heorem 3.13. Let G be a connected graph with n vertices. Then G is 2-metamour-regular if and only if n ≥ 5 and one of

(a) G = Cn1 ∇ · · · ∇ Cnt with n = n1 + · · · + nt for some t ≥ 1 and ni ≥ 3 for all i ∈ {1, . . . , t},
(b) G = Cn, or

(c)

G ∈
{
Ha

4,4,H
b
4,4,H

c
4,4,

Ha
7,H

b
7 ,H

a
4,3,H

b
4,3,H

c
4,3,H

d
4,3,

a b c a b c d e } with graphs defined by Figs. 3.3, 3.4 and 3.5
H6,H6 ,H6,H3,3,H3,3,H3,3,H3,3,H3,3
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Fig. 3.2. The only graph of order 5 ( + one differently drawn copy ) where each vertex has exactly 2 metamours.

Fig. 3.3. All 11 graphs ( + 2 differently drawn copies ) of order 6 where each vertex has exactly 2 metamours.

holds.

A representation of every 2-metamour-regular graph with at most 9 vertices can be found in Figs. 3.2, 3.3, 3.4, 3.5
and 3.6. For 10 vertices, all 2-metamour-regular graphs – there are 6 of them – are C10, C10, C7 ∇ C3, C6 ∇ C4, C5 ∇ C5,
C4 ∇ C3 ∇ C3.

For rounding out Theorem 3.13, we have collected a couple of remarks and bring them now.

Remark 3.14.

1. The smallest possible 2-metamour-regular graph has 5 vertices, and there is exactly one with five vertices,
namely C5; see Fig. 3.2. This graph is covered by Theorem 3.13(a) as well as (b) because C5 = C5.

2. Theorem 3.13(a) can be replaced by any other equivalent statement of Proposition 2.13.
3. For t = 1, Theorem 3.13(a) condenses to G = Cn. Implicitly we get n = n1 ≥ 5.
4. The graphs Cn1 , . . . , Cnt of Theorem 3.13(a) satisfy

Cni = Mi

with {M1, . . . ,Mt} = C(M). This means that the decomposition of the graph G = Cn1∇· · ·∇Cnt reveals the metamour
graph of G and vice versa.

5. For Theorem 3.13(a) as well as for (b) with n = 5, every graph satisfies that its complement equals its metamour
graph. For all other cases, this is not the case. A full formulation of this fact is stated as Corollary 3.17.

The proof of Theorem 3.13 is quite extensive and we refer to Section 9 for the complete proof; at this point, we only
sketch it.
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Fig. 3.4. All 9 graphs of order 7 where each vertex has exactly 2 metamours.

Fig. 3.5. All 7 graphs of order 8 where each vertex has exactly 2 metamours.
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Fig. 3.6. All 5 graphs of order 9 where each vertex has exactly 2 metamours.

ketch of Proof of Theorem 3.13. Let G be 2-metamour-regular. We apply Theorem 3.20 (to be presented in Section 3.5)
ith k = 2, which leads us to one of three cases. The generic case is already covered by Theorem 3.20 combined with
bservation 3.12.
If the metamour graph of G is connected, then we first rule out that G is a tree. If not, then the graph contains a cycle,

nd depending on whether G contains a cycle of length n or not, we get G = Hb
7 or G ∈ {Ha

6,H
b
6 ,H

a
7}, respectively. (This

parts of the proof are formulated as Proposition 9.6, Lemmas 9.2 and 9.1.) We prove these parts by studying the longest
cycle in the graph G and step-by-step obtaining information between which vertices edges, non-edges and metamour
relations need to be. Knowing enough, 2-metamour-regularity forces the graph to be bounded in the number of vertices.
As this number is quite small, further case distinctions lead to the desired graphs. Furthermore, a separate investigation
is needed when every vertex has degree 2 or n − 3 or a mixture of these to degrees; here n is the number of vertices
of G. This leads to G = Cn and n odd, G = Cn and G ∈ {C5,Hc

6}, respectively. (These parts of the proof are formulated as
Lemmas 9.4, 9.3 and 9.5.)

If the metamour graph of G is not connected, it consists of exactly two connected components (by Theorem 3.20),
and the graph is split respecting the connected components of the metamour graph of G. Due to 2-metamour-regularity,
Theorem 3.20 guarantees that the number of vertices of each piece is a most 2. Studying each configuration separately
lead to the graphs G = Cn and n even, or G ∈ {Ha

4,4,H
b
4,4,H

c
4,4,H

a
4,3,H

b
4,3,H

c
4,3,H

d
4,3,H

a
3,3,H

b
3,3,H

c
3,3,H

d
3,3,H

e
3,3}. (This part

of the proof is formulated as Proposition 9.7.) □

The characterization provided by Theorem 3.13 has many implications. We start with the following easy corollaries.

Corollary 3.15. Let G be a connected graph with n ≥ 9 vertices. Then G is 2-metamour-regular if and only if G is either Cn
or Cn1 ∇ · · · ∇ Cnt with n = n1 + · · · + nt for some t ≥ 1 and ni ≥ 3 for all i ∈ {1, . . . , t}.

orollary 3.16. Let G be a connected graph with n ≥ 9 vertices. Then G is 2-metamour-regular if and only if G is either
-regular or (n − 3)-regular.

As before, we consider the relation of metamour graphs and complement more closely; see the following corollary.
gain, we feel the spirit of Proposition 2.13.

orollary 3.17. Let G be a connected 2-metamour-regular graph with n vertices. Then the following statements are equivalent:

(a) The metamour graph of G is a proper subgraph of G.
(b) We have either G = Cn and n ≥ 6 (Theorem 3.13(b)) or G is one of the graphs in Theorem 3.13(c).
(c) The graph G has diameter larger than 2.

Theorem 3.13 makes it also possible to count how many different 2-metamour-regular graphs with n vertices there
re. We provide this in the following corollary.
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orollary 3.18. The sequence of numbers m=2(n) of unlabeled connected 2-metamour-regular graphs with n vertices starts
ith

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m=2(n) 0 0 0 0 1 11 9 7 5 6 7 10 11 14 18 22 26 34 40 50

and for n ≥ 9 we have

m=2(n) = p3(n) + 1,

where p3(n) is the number of integer partitions7 of n with parts at least 3.

The sequence of numbers m=2(n) is A334275 in The On-Line Encyclopedia of Integer Sequences [27].
We apply the Euler transform, see Sloane and Plouffe [26], on this sequence and obtain the numbers m′

=2(n) of
nlabeled but not necessarily connected 2-metamour-regular graphs with n vertices. The sequence of these numbers
tarts with

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m′

=2(n) 0 0 0 0 1 11 9 7 5 7 18 85 117 141 143 179 277 667 .

.5. k-metamour-regular graphs

In this section, we present results that are valid for graphs with maximummetamour-degree k and k-metamour-regular
graphs for any non-negative number k.

We start with Proposition 3.19 stating that the join of complements of k-regular graphs is a k-metamour-regular graph.

Proposition 3.19. Let M be a graph having t ≥ 2 connected components M1, . . . , Mt . Set

G = M1 ∇ · · · ∇ Mt .

hen G has metamour-graph M. In particular, if M is k-regular for some k ≥ 0, then G is k-metamour-regular.

We call this construction of a graph with given metamour graph generic construction. In particular this generic
construction allows us to build k-metamour-regular graphs. We will not investigate further options to construct
k-metamour-regular graphs (as, for example, with circulant graphs), as the above construction suffices for the ultimate
goal of this paper to characterize all k-metamour-regular graphs for k ≤ 2. Last in our discussion of Proposition 3.19,
e note that, as we have G = M1 ∇ · · · ∇ Mt , we can also extend Proposition 3.19 by the equivalent statements of

Propositions 2.12 and 2.13.
Next we state the main structural result about graphs with maximum metamour-degree k as Theorem 3.20. A

consequence of this main statement is that every k-metamour-regular graph is the join of complements of k-regular
raphs as in Proposition 3.19, or has in its metamour graph only one or two connected components; see Corollary 3.21
or a full formulation.

heorem 3.20. Let k ≥ 0. Let G be a connected graph with maximum metamour-degree k and M its metamour graph. Then
xactly one of the following statements is true:

(a) The metamour graph M is connected.
(b) The metamour graph M is not connected and the induced subgraph G[V (Mi)] is connected for some Mi ∈ C(M).

In this case we have G = M1 ∇ · · · ∇ Mt with {M1, . . . ,Mt} = C(M) and t ≥ 2, and any other equivalent statement of
Proposition 2.12.

(c) The metamour graph M is not connected and no induced subgraph G[V (Mi)] is connected for any Mi ∈ C(M).
In this case the metamour graph M has exactly two connected components and the following holds. Set GM

= G[V (M1)]∪
G[V (M2)] with {M1,M2} = C(M), i.e., GM is the graph G after deleting every edge between two vertices that are from
different connected components of the metamour graph M. Then we have:

(i) Every connected component of GM has at most k vertices.
(ii) If G is k-metamour-regular, then every connected component of GM is a regular graph.
(iii) Every connected component Gi of GM satisfies Gi = M[V (Gi)].
(iv) If two different connected components of GM are adjacent in G, then these connected components are completely

adjacent in G.
(v) If two vertices of different connected components Gi and Gj of GM have a common neighbor in G, then every vertex

of Gi is a metamour of every vertex of Gj.

7 For integer partitions, see footnote 5 on page 8. The function p (n) is A008483 in [27].
3
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(vi) If a connected component Gi of GM is adjacent in G to another connected component Gj consisting of k−d vertices
for some d ≥ 0, then the neighbors (in G) of vertices of Gi are in at most d+2 (including Gj) connected components.

The complete and extensive proof of Theorem 3.20 can be found in Section 5; we again only sketch it at this point.

Sketch of Proof of Theorem 3.20. Suppose the metamour graph of G is not connected. We split the graph respecting
he connected components of the metamour graph of G.

First, we lift adjacency of some vertices of different components of this split to all vertices and likewise, metamour
elations between vertices of different components. By this structural property, we show on the one hand that the
aximum metamour-degree k implies that each of the components has at most k vertices. On the other hand, by

nvestigating an alternating behavior on shortest paths between different components, we deduce that the metamour
raph of G has exactly two connected components.
Before gluing everything together, two more properties need to be derived: We show that within each of the

omponents, the non-edges correspond exactly to metamour relations, and we bound the number of neighboring
omponents of a component. This provides enough structure completing the proof. □

Let us discuss the three outcomes of Theorem 3.20 in view of the characterizations provided in Sections 3.1 to 3.4.
oward this end note that in case (b), the graph G is obtained by the generic construction.
For 0-metamour-regular graphs due to Theorem 3.1 there is no graph that is not obtained by the generic construction.

o only (b) happens, except if the graph consists of only one vertex in which case a degenerated (a) happens. For 1-
etamour-regular graphs we know that there is only one graph not obtained by the generic construction by Theorem 3.5.
his exceptional case is associated to (c), otherwise we are in (b). Finally Theorem 3.13 states that beside the generic case
ssociated to (b), there is only the class with graphs Cn and 17 exceptional cases of 2-metamour-regular graphs associated
o (a) and (c).

At last in this section, we bring and discuss the full formulation of a statement mentioned earlier.

orollary 3.21. Let k ≥ 0. Let G be a connected graph with maximum metamour-degree k and M its metamour graph. Let
M1, . . . ,Mt} = C(M). If t ≥ 3, then we have

G = M1 ∇ · · · ∇ Mt .

By this corollary every k-metamour-regular graph that has at least three connected components in its metamour graph
s a join of complements of k-regular graphs and therefore can be built by the generic construction. As a consequence, it
s only possible that a 2-metamour-regular graph is not obtained by the generic construction if its metamour graph has
t most two connected components.

. Proofs regarding foundations

We start by proving Proposition 2.6 which relates the metamour graph, the complement and the diameter of a graph.

roof of Proposition 2.6. Suppose (a) holds. Let v and w be vertices in G. If v = w, then their distance is 0. If v and
w are adjacent in G, then their distance is 1. Otherwise, there is no edge {v, w} in G. Therefore, this edge is in G = M ,
here M is the metamour graph of G. This implies that v and w are metamours. Thus, the distance between v and w is 2.
onsequently, no distance in G is larger than 2, which implies that the diameter of G is at most 2. As a result, either the
iameter of G is exactly 2, or it is at most 1. If the diameter is equal to 1, then all vertices of G are pairwise adjacent and
herefore G = Kn. Furthermore, there are at least two vertices at distance 1 and hence n ≥ 2. If the diameter is 0, then
= K1.
Now suppose (b) holds. If G = Kn, then its diameter is either equal to 0 if n = 1 or equal to 1 if n ≥ 2. Therefore, in

his case the diameter of G is at most 2. Now let {v, w} be an edge in G. Then v ̸= w and these vertices are not adjacent
in G, so their distance is at least 2. As the diameter is at most 2, the distance of v and w is at most 2. Consequently their
distance is exactly 2 implying that they are metamours. So the edge {v, w} is in M , and hence the complement of G is a
subgraph of the metamour graph of G. Due to Observation 2.5, the metamour graph of G is a subgraph of the complement
of G, hence the metamour graph of G and G coincide, so we have shown (a). □

Next we prove Proposition 2.10 which relates the metamour graph, the complement, and the degree and metamour-
degree of the vertices of a graph.

Proof of Proposition 2.10. We use that for a graph G with n vertices, the sum of the degrees of a vertex in G and in the
complement G always equals n − 1.

If (a) holds, then the degree of a vertex in the metamour graph equals the degree in the complement G. This yields (b)
by using the statement at the beginning of this proof.

If (b) holds, then the sum of the degree and the metamour-degree of a vertex equals the sum of the degree in G and the
degree in G of this vertex by the statement at the beginning of this proof. Therefore, the metamour-degree of a vertex is
equal to the degree in G of this vertex. Due to Observation 2.5, the metamour graph of G is a subgraph of G, and therefore
he metamour graph of G equals G. □
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Finally we prove Propositions 2.12 and 2.13 that relate the metamour graph and joins.

roof of Proposition 2.12. We start by showing that (a) implies (b). In M there are no edges between its different
onnected components. Therefore, in the complement M = G, there are all possible edges between the vertices of different
components. This is equivalent to the definition of the join of graphs; the individual graphs in C(M) are complemented,
and consequently (b) follows.

For proving that (b) implies (c), we simply set G1 = M1 and G2 = M2 ∇ · · · ∇ Mt . By the definition of the operator ∇ ,
(c) follows.

We now show that (c) implies (a). Every pair of vertices of G1 has a common neighbor in G2. This implies that the
ertices of this pair are metamours if and only if they are not adjacent in G1. The same holds for any pair of vertices of
2 by symmetry or due to commutativity of the operator ∇ . As a consequence of this and because G = G1 ∇ G2 and the
efinition of the operator ∇ , the metamour graph M and the complement of G coincide. As every possible edge from a
ertex of G1 to a vertex of G2 exists in G, this complement G has at least two connected components, hence t ≥ 2. □

Proof of Proposition 2.13. (a) and (b) are equivalent by Proposition 2.6.
If |C(M)| = t = 1, then (a) and (c) are trivially equivalent. If |C(M)| = t ≥ 2, then this equivalence is part of

Proposition 2.12.
Finally, the equivalence of (a) and (d) follows from Proposition 2.10. □

At this point we have shown all results form Section 2 and therefore have laid the foundations of the subsequent
results.

5. Proofs regarding k-metamour-regular graphs

Next we give the proofs of results from Section 3.5 concerning graphs with maximum metamour-degree k and
k-metamour-regular graphs that are valid for arbitrary k ≥ 0.

Proof of Proposition 3.19. Let v be a vertex of G. Then v is in Mi and therefore in Mi for some i ∈ {1, . . . , t}.
Let u ̸= v be a vertex of G and j ∈ {1, . . . , t} such that u is in Mj. If j ̸= i, then u and v are adjacent in G by construction.

Therefore, they are not metamours. If j = i, then any vertex not in Mi, i.e., in any of M1, . . . , Mi−1, Mi+1, . . . , Mt , is a common
neighbor of u and v. Therefore, u and v are metamours if and only if they are not adjacent in Mi, and this is the case if
and only if they are adjacent in Mi.

Summarized, we have that u is a metamour of v if and only if u is in Mi and adjacent to v in Mi. This yields that the
metamour graph of G is M = M1 ∪ · · · ∪ Mt which was to show.

The k-metamour-regularity follows directly from Observation 2.8. □

Proof of Theorem 3.20. If the metamour graph M is connected, then we are in case (a) and nothing is to show. So suppose
that the metamour graph is not connected.

We partition the vertices of M (and therefore the vertices of G) into two parts V ′
⊎ V ∗ such that the vertex set of each

connected component of M is a subset of either V ′ or V ∗ and such that neither V ′ nor V ∗ is empty, i.e., we partition by
the connected components C(M) of the metamour graph M . As M is not connected, it consists of at least two connected
components, and therefore such a set-partition of the vertices of M is always possible. We now split up the graph G into
the two subgraphs G′

= G[V ′
] and G∗

= G[V ∗
].

Rephrased, we obtain G′ and G∗ from G by cutting it (by deleting edges) in two, but respecting and not cutting the
connected components of its metamour graph M . Note that the formulation is symmetric with respect to G′ and G∗,
therefore, we might switch the two without loss of generality during the proof. This also implies that in the statements
of the following claims we may switch the roles of G′ and G∗.

A. If G′

1 ∈ C(G′) is adjacent in G to G∗

1 ∈ C(G∗), then G′

1 is completely adjacent in G to G∗

1.

Proof of A. Suppose u′
∈ V (G′

1) and v∗
∈ V (G∗

1) are adjacent in G. Let u ∈ V (G′

1) and v ∈ V (G∗

1). We have to prove that
{u, v} ∈ E(G). There is a path πu′,u = (u1, u2, . . . , ur ) from u1 = u′ to ur = u in G′

1 because G′

1 is connected. Furthermore,
there is a path πv∗,v = (v1, v2, . . . , vs) from v1 = v∗ to vs = v in G∗

1 because G∗

1 is connected.
We use induction to prove that {u1, vℓ} ∈ E(G) for all ℓ ∈ {1, . . . , s}. Indeed, this is true for ℓ = 1 by assumption. So

assume {u1, vℓ} ∈ E(G). We have {vℓ, vℓ+1} ∈ E(G) because this is an edge of the path πv∗,v . If {u1, vℓ+1} ̸∈ E(G), then u1
and vℓ+1 are metamours. But u1 has all its metamours in G′, a contradiction. Hence, {u1, vℓ+1} ∈ E(G), which finishes the
induction. In particular, we have proven that {u1, vs} ∈ E(G).

Now we prove that {uℓ, vs} ∈ E(G) holds for all ℓ ∈ {1, . . . , r} by induction. This holds for ℓ = 1 by the above. Now
assume {uℓ, vs} ∈ E(G). We have {uℓ, uℓ+1} ∈ E(G) because this edge is a part of the path πu′,u. If {uℓ+1, vs} ̸∈ E(G), then

ℓ+1 and vs are metamours, a contradiction since every metamour of uℓ+1 is in G′. Therefore, {uℓ+1, vs} ∈ E(G) holds and
he induction is completed. As a result, we have {u, v} = {u , v } ∈ E(G). ◁
r s
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B. Let C(M) = {M1, . . . ,Mt}. If the graph G′ is connected, then G = G′
∇ G∗

= M1 ∇ · · · ∇ Mt with t ≥ 2.

roof of B. The graph G is connected, so every connected component of G∗ is adjacent in G to G′. By A this implies that G′

is completely adjacent in G to G∗, i.e., all possible edges between G′ and G∗ exist. Therefore, G = G′
∇ G∗ by the definition

f the join of graphs.
By Proposition 2.12, the full decomposition into the components C(M) follows. ◁

As a consequence of B, we are finished with the proof in the case that G[V (Mi)] is connected for some Mi ∈ C(M)
because statement (b) follows by setting G′

= G[V (Mi)].
So from now on we consider the case that every G[V (Mi)] with Mi ∈ C(M) has at least two connected components.

This is the set-up of statement (c).

C. Suppose we are in the set-up of (c). Let G′

1 ∈ C(G′) and {G∗

1,G
∗

2} ⊆ C(G∗). If both G∗

1 and G∗

2 are adjacent in G to G′

1, then
every vertex of G∗

1 is a metamour of every vertex of G∗

2.

Proof of C. As both G∗

1 and G∗

2 are adjacent in G to G′

1, they are both completely adjacent in G to G′

1 due to A. Furthermore,
G∗

1 is not adjacent in G to G∗

2, i.e., no vertex of G∗

1 is adjacent in G to any vertex of G∗

2, because they are in different connected
components of G∗. Hence, every vertex of G∗

1 is a metamour of every vertex of G∗

2. ◁

. Suppose we are in the set-up of (c). Then every connected component of G′ has at most k vertices and this connected
component’s vertex set is a subset of the vertex set of one connected component of the metamour graph M.

Proof of D. Let G′

1 ∈ C(G′). As G′ is not connected but the graph G is connected, there is a path π from a vertex of G′

1 to
some vertex in some connected component of C(G′) other than G′

1. By construction of G′ and G∗, the path π splits from
start to end into vertices of G′

1, followed by vertices of some G∗

1 ∈ C(G∗), followed by some vertices of G′

2 ∈ C(G′), and
remaining vertices. Therefore, we have connected components G′

2 and G∗

1 such that at least one vertex of G′

1 is connected
to some vertex of G∗

1 and at least one vertex of G′

2 is connected to some vertex of G∗

1.
Then, due to C every vertex of G′

1 is a metamour of every vertex of G′

2. From this, we now deduce two statements.
First, if we assume that G′

1 contains at least k + 1 vertices, then every vertex of G′

2 has at least k + 1 metamours, a
contradiction to k being the maximum metamour-degree of G. Therefore, G′

1 contains at most k vertices.
Second, every vertex of G′

1 is adjacent in the metamour graph M to every vertex of G′

2, so G′

1 is completely adjacent
in M to G′

2. Therefore, all these vertices are in the same connected component of the metamour graph M . In particular,
this is true for the set of vertices of G′

1 as claimed, and so the proof is complete. ◁

E. Suppose we are in the set-up of (c). Let v1 and v2 be two vertices of different connected components of G′. Then every
shortest path from v1 to v2 in G consists of vertices alternating between G′ and G∗.

Proof of E. Let {G′

1,G
′

2} ⊆ C(G′) such that v1 ∈ G′

1 and v2 ∈ G′

2. Let π = (u1, u2, . . . , ur ) be a shortest path from u1 = v1
to ur = v2 in G. Note that u1 and ur are both from G′ but from different connected components. Hence, π consists of at
least two vertices from G′ and at least one vertex from G∗.

Assume that the vertices of π are not alternating between G′ and G∗. Then, without loss of generality (by reversing
the enumeration of the vertices in the path π ), there exist indices i < j and graphs {̃G, Ĝ} = {G′,G∗

} with the following
properties: Every vertex of the subpath πi,j = (ui, ui+1, . . . , uj) of π is of G̃, and the vertex uj+1 exists and is in Ĝ.

As πi,j is a path, all of its vertices are of the same connected component of G̃. As uj is adjacent to uj+1 and due to A,
the vertex uj+1 is adjacent to every vertex of πi,j, in particular, adjacent to ui. But then u1, . . . , ui, uj+1, . . . , ur is a shorter
path between v1 and v2, a contradiction. Hence, our initial assumption was wrong, and the vertices of π are alternating
between G′ and G∗. ◁

F. Suppose we are in the set-up of (c). Then the metamour graph M has exactly two connected components.

Proof of F. The metamour graph M is not connected, therefore it has at least two connected components. Assume it
has at least three components. Then, without loss of generality (by switching G′ and G∗), the graph G′ contains vertices
of at least two different connected components of M . Let v1 and v2 be two vertices of G′ that are in different connected
components of M . If follows from D that v1 and v2 are in different connected components of G′. Let {G′

1,G
′

2} ⊆ C(G′) such
that v1 ∈ G′

1 and v2 ∈ G′

2. Let π = (u1, . . . , ur ) be a shortest path from u1 = v1 to ur = v2 in G.
Now consider two vertices u2i−1 and u2i+1 for i ≥ 1 of π . Both u2i−1 and u2i+1 are from G′ because π consists of

alternating vertices from G′ and G∗ due to E and u1 is from G′. If both u2i−1 and u2i+1 are from the same connected
component of G′, then they are in the same connected component of the metamour graph M by D. If u2i−1 and u2i+1 are
in different connected components of G′, then they are metamours because they have the common neighbor u2i and they
are not adjacent. Therefore, they are in the same connected component of M as well. Hence, in any case u2i−1 and u2i+1
re in the same connected component of M . By induction this implies that u1 = v1 is in the same connected component

of M as ur = v2, a contradiction to v1 and v2 being from different connected components of M . Hence, our assumption
was wrong and the metamour graph consists of exactly two connected components. ◁
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P
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G. Suppose we are in the set-up of (c). Then every connected component G′

1 of G′ satisfies G′

1 = M[V (G′

1)]. If G is
k-metamour-regular, then the connected component is a regular graph.

roof of G. Let G′

1 be a connected component of G′. As G is connected, there is an edge from a vertex v1 of G′

1 to G∗ and
this is extended to every vertex of G′

1 by A. Therefore, two different vertices of G′

1 are metamours if and only if they are
not adjacent in G′. Restricting this to the subgraph G′

1 yields the first statement.
Furthermore, by construction of G′ and G∗, every metamour of v1 is in G′. Let v′ be such a metamour, and suppose

that v′ is not in G′

1. The vertices v1 and v′ have a common neighbor u that has to be in G∗ as v1 and v′ are in different
connected components of G′. The vertex u is completely adjacent in G to G′

1 because of A. Hence, v′ is a metamour of
every vertex of G′

1. As a consequence, every vertex of G′

1 has the same number of metamours outside of G′

1, i.e., in G′ but
not in G′

1. If no such pair of vertices v1 of G′

1 and v′ not of G′

1 that are metamours exists, then every vertex of G′

1 still has
the same number of metamours outside of G′

1, namely zero.
Now let us assume that G is k-metamour-regular. As every vertex of G′

1 has the same number of metamours outside of
G′

1, this implies that every vertex of G′

1 must also have the same number of metamours inside G′

1. We combine this with
the results of first paragraph and conclude that every vertex of G′

1 is adjacent to the same number of vertices of G′

1, and
hence G′

1 is a regular graph. ◁

. Suppose we are in the set-up of (c). If a connected component G′

1 ∈ C(G′) is adjacent in G to a connected component
G∗

1 ∈ C(G∗) consisting of k − d vertices for some d ≥ 0, then the neighbors (in G) of vertices of G′

1 that are in G∗ are in at
most d + 2 connected components of G∗ (including G∗

1).

Proof of H. Let G∗
⊆ C(G∗) be such that a connected components of G∗ is in G∗ if and only if it is adjacent in G to G′

1. G
∗

1
consists of k − d vertices and there is some vertex v′ of G′

1 that is adjacent to some vertex of G∗

1.
We have to prove that |G∗

| ≤ d + 2 in order to finish the proof. So assume |G∗
| > d + 2. Let v∗ be a vertex of

some connected component G∗

2 ∈ G∗ other than G∗

1. Then v∗ is adjacent to v′ due to A. Because of C, every vertex in any
connected component in G∗ except G∗

2 is a metamour of v∗. The component G∗

1 contains k − d vertices and there are at
least d + 1 other components each containing at least one vertex. In total, v∗ has at least (k − d) + (d + 1) = k + 1
metamours, a contradiction to k being the maximum metamour-degree of G. Therefore, our assumption was wrong and
|G∗

| ≤ d + 2 holds. ◁

Now we are able to collect everything we have proven so far and finish the proof of statement (c). Due to F, the
metamour graph M of G consists of exactly two connected components, and consequently the connected components of
GM coincide with the union of the connected components of G′ and G∗. Then D implies (i), G implies (ii), G implies (iii),
A implies (iv), C implies (v) and H implies (vi). This completes the proof. □

Proof of Corollary 3.21. As the metamour graph consists of at least 3 connected components, we cannot land in the
cases (a) and (c) of Theorem 3.20. But then the statement of the corollary follows from (b). □

Now we have proven everything we need to know about graphs with maximum metamour-degree k and k-regular-
metamour graphs for general k and can use this knowledge to derive the results we need in order to characterize all
k-regular-metamour graphs for k ∈ {0, 1, 2}.

6. Proofs regarding 0-metamour-regular graphs

We are now ready to prove all results concerning 0-metamour-regular graphs from Section 3.1. In order to do so we
first need the following lemma.

Lemma 6.1. Let G be a connected graph. If a vertex has no metamour, then it is adjacent to all other vertices of G.

Proof. Let n be the number of vertices of G. Clearly the statement is true for n = 1 as no other vertices are present and
for n = 2 as the two vertices are adjacent due to connectedness. So let n ≥ 3, and let v be a vertex of G that has no
metamour.

Assume there is a vertex w ̸= v ∈ V (G) such that {v, w} ̸∈ E(G). G has a spanning tree T because G is connected. Let
v = u1, u2, . . . , ur = w be the vertices on the unique path from v to w in T . Then {ui, ui+1} ∈ E(G) for all i ∈ {1, . . . , r −1},
so due to our assumption r ≥ 3 holds. In particular, {u1, u2} ∈ E(G). If {u1, u3} ̸∈ E(G), then both u1 and u3 are adjacent
to u2, but not adjacent to each other and therefore would be metamours. But u1 = v does not have a metamour, hence
{u1, u3} ∈ E(G). By induction {u1, ui} ∈ E(G) for all i ∈ {1, . . . , r} and thus {v, w} = {u1, ur} ∈ E(G), a contradiction. □

Now we are able to prove Theorem 3.1 that provides a characterization of 0-metamour-regular graphs.

Proof of Theorem 3.1. If G is 0-metamour-regular then every vertex of G has no metamour and hence G = Kn due to
Lemma 6.1. Furthermore, K is 0-metamour-regular as every vertex is adjacent to all other vertices. □
n
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Next we prove the corollaries which yield an alternative characterization of 0-metamour-regular graphs and allow to
ount 0-metamour-regular graphs.

roof of Corollary 3.2. Due to Theorem 3.1, a connected graph with n vertices is 0-metamour-regular if and only if is
qual to Kn. This is the case if and only if its complement has no edges. In this case the complement also equals the
etamour graph. □

roof of Corollary 3.3. This is an immediate and easy consequence of the characterization provided by Theorem 3.1. □

. Proofs regarding 1-metamour-regular graphs

In this section we present the proofs of the results from Section 3.2. They lead to a characterization of 1-metamour-
egular graphs.

roof of Proposition 3.4. Whenever a vertex v ∈ V (G) is a metamour of a vertex w ̸= v ∈ V (G) then also w is a metamour
f v. Therefore, supposing that v has exactly one metamour, so has w and the vertices v and w form a pair such that the
wo vertices of the pair are metamours of each other. This also leads to an edge from v to w in the metamour graph of G.
s every vertex has at most one metamour, the edge from v to w is isolated in the metamour graph of G, so v and w have
o other adjacent vertices in the metamour graph of G. Therefore, the edges of the metamour graph form a matching,
hich yields (a).
Suppose now additionally that G is 1-metamour-regular. Then we can partition the vertices of G into pairs of

etamours. Hence, n is even and the edges of the metamour graph form a perfect matching, so (b) holds. □

For proving Theorem 3.5, we need some auxiliary results. We start by showing that the graphs mentioned in the
heorem are indeed 1-metamour-regular.

roposition 7.1. The graph P4 depicted in Fig. 3.1 is 1-metamour-regular.

roof. This is checked easily. □

The following proposition is slightly more general than needed in the proof of Theorem 3.5 and will be used later on.

roposition 7.2. Let n ≥ 3. In the graph G = Kn − µ with a matching µ of Kn, every vertex has at most one metamour.

roof. Let v be an arbitrary vertex of G. Suppose v is not incident to any edge in µ, then v is adjacent to all other vertices.
hus, v has no metamour.
Now suppose that v is incident to some edge in µ, and let the vertex v′ be the other vertex incident to this edge. Then

learly {v, v′
} ̸∈ E(G), so both v as well as v′ have to be adjacent to all other vertices of G by construction of G. Due to

he assumption n ≥ 3, there is at least one other vertex besides v and v′, and this vertex is a common neighbor of them.
ence, v and v′ are metamours of each other. Both v and v′ do not have any other metamour because they are adjacent
o all other vertices. As a result, v has exactly one metamour. □

roposition 7.3. Let n ≥ 4 be even. The graph G = Kn − µ with a perfect matching µ of Kn is 1-metamour-regular.

roof. As the matching µ is perfect, every vertex v of G is incident to one edge in µ. Thus, by the proof of Proposition 7.2,
very v has exactly one metamour. □

We are now ready for proving Theorem 3.5.

roof of Theorem 3.5. The one direction of the equivalence follows directly from Propositions 7.1 and 7.3, so only the
ther direction is left to prove.
Suppose we have a graph G with n vertices that is 1-metamour-regular. Due to Proposition 3.4(b), n is even, and the set

f edges of the metamour graph of G forms a perfect matching. In particular, each connected component of the metamour
raph consists of two adjacent vertices.
If the metamour graph is connected, then it consists of only two adjacent vertices and n = 2. This can be ruled out

asily, so we have n ≥ 4 and the metamour graph is not connected. Now we can use Theorem 3.20 and see that one of
he two cases (b) and (c) applies.

In the first case (b) we have G = M1 ∇ · · · ∇ Mt with n = |M1| + · · · + |Mt | for some t ≥ 2, where Mi is a connected
1-regular graph for all i ∈ {1, . . . , t}. The only connected 1-regular graph is P2, therefore |V (Mi)| = 2 and Mi = P2 for all
i ∈ {1, . . . , t}. Hence, we have G = P2 ∇ · · · ∇ P2, which means nothing else than G = Kn − µ for a perfect matching µ of
K .
n
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In the second case (c) the metamour graph of G consists of two connected components, so the metamour graph consists
f n = 4 vertices with two edges that form a perfect matching. It is easy to see that G = P4 or G = C4 = K4 − µ for some
erfect matching µ of K4 are the only two possibilities in this case.
As a result, we obtain in any case G = P4 or G = Kn −µ for a perfect matching µ of Kn, which is the desired result. □

To finish this section we prove the three corollaries of Theorem 3.5.

roof of Corollary 3.6. Due to the characterization of 1-metamour-regular graphs of Theorem 3.5, we know that a
onnected graph with n ≥ 5 vertices is 1-metamour-regular if and only if it is equal to Kn − µ for some perfect matching
of Kn. This is the case if and only if the complement is the graph induced by µ. Furthermore, a graph is induced by a

perfect matching if and only if it is 1-regular. To summarize, a connected graph with n ≥ 5 vertices is 1-metamour-regular
f and only if its complement is a 1-regular graph. In this case the complement also equals the metamour graph, which
mplies the desired result. □

roof of Corollary 3.7. We use the characterization provided by Theorem 3.5. So let us consider 1-metamour-regular
raphs. Such a graph has at least n ≥ 4 vertices, and n is even. Every perfect matching µ of Kn results in the same
nlabeled graph Kn − µ; this brings to account 1. For n = 4, there is additionally the graph P4. In total, this gives the
laimed numbers. □

roof of Corollary 3.8. Let G be an unlabeled graph with n pairs of vertices that each are metamours. We first construct
pair (λ1 + · · · + λt , s), where λ1 + · · · + λt is a partition of n with λi ≥ 2 for all i ∈ {1, . . . , t} and s is a non-negative

nteger bounded by rλ which is defined to be the number of i ∈ {1, . . . , t} with λi = 2.
Let {G1, . . . ,Gt} = C(G), set λi = |V (Gi)|/2 for all i ∈ {1, . . . , t}, and let us assume that λ1 ≥ · · · ≥ λt . Then

= λ1+· · ·+λt , so this is a partition of n. As there is no graph Gi with only 1 metamour-pair, λi ≥ 2 for all i ∈ {1, . . . , t}.
e define s to be the number of i ∈ {1, . . . , t} with Gi = P4. We clearly have s ≤ rλ.
Conversely, let a pair (λ1 + · · · + λt , s) as above be given. For every i ∈ {1, . . . , t} with λi ≥ 3 there is exactly one

hoice for a 1-metamour-regular graph Gi with 2λi vertices by Theorem 3.5. Now consider parts 2 of λ1 + · · · + λt . We
hoose any (the graphs are unlabeled) s indices and set Gi = P4. Then we set Gi = C4 for the remaining rλ − s indices. The
raph G = G1 ∪ · · · ∪ Gt is then fully determined. Thus, we have a found a bijective correspondence.
We still need to related our partition of n to the partition of n + 2 of Corollary 3.8. A partition of n + 2 is either

+ 2 = (n + 2), n ≥ 1, in which case no additional part 2 appears, or n + 2 = λ1 + · · · + λt + 2 for a partition
= λ1 + · · · + λt . Here one additional part 2 appears. Therefore, every pair (λ1 + · · · + λt , s) from above maps bijectively

to a partition λ1 + · · · + λt + 2 of n + 2 together with a marker of one of the rλ + 1 parts 2 in this partition that is
niquely determined by s (by some fixed rule that is not needed to be specified explicitly). This completes the proof of
orollary 3.8. □

. Proofs regarding graphs with maximum metamour-degree 1

Next we prove the results of Section 3.3 on graphs with maximum metamour-degree 1. We start with the proof of the
haracterization of these graphs.

roof of Theorem 3.9. It is easy to see that in the graphs K1 and K2 no vertex has any metamour, so the condition that
ach vertex has at most one metamour is satisfied. Furthermore, by Propositions 7.1 and 7.2, every vertex has indeed at
ost one metamour in the remaining specified graphs. Therefore, one direction of the equivalence is proven, and we can

ocus on the other direction.
So, let G be a graph in which every vertex has at most one metamour. Due to Theorems 3.1 and 3.5, it is enough to

estrict ourselves to graphs G, where at least one vertex of G has no metamour and at least one vertex of G has exactly
ne metamour. We will show that n ≥ 3 and that G = Kn − µ for some matching µ that is not perfect and contains at
east one edge.

Let V0 ⊆ V (G) and V1 ⊆ V (G) be the set of vertices of G that have no and exactly one metamour, respectively,
nd let v ∈ V0. Due to Lemma 6.1, every vertex in V0, in particular v, is adjacent to all other vertices. Furthermore,
y Proposition 3.4, the vertices in V1 induce a matching µ in both the metamour graph and the complement of G. This
atching µ contains at least one edge because V1 is not empty, and µ is not perfect because V0 is not empty. Furthermore,

his implies that V1 contains at least two vertices and in total that n ≥ 3.
Let w and w′ be two vertices in V1 that are not metamours. Since v is a common neighbor of both w and w′, this

mplies that {w, w′
} ∈ E(G). Hence, all possible edges except those in µ are present in G and therefore G = Kn − µ. □

Next we prove the two corollaries of Theorem 3.9.

roof of Corollary 3.10. Due to Theorem 3.9, in a connected graph G with n ≥ 5 vertices every vertex has at most one
etamour if and only if G = Kn −µ for some matching µ of Kn. This is the case if and only if the complement is the graph

nduced by µ. Furthermore, a graph is induced by a matching if and only if it has maximum degree 1. To summarize, a
onnected graph with n ≥ 5 vertices has maximum metamour-degree 1 if and only if its complement is a graph with
aximum degree 1. In this case the complement also equals the metamour graph, which implies the desired result. □
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roof of Corollary 3.11. We use the characterization provided by Theorem 3.9. So let us consider graphs with maximum
etamour-degree 1. For n ∈ {1, 2}, we only have K1 and K2, so m≤1(n) = 1 in both cases.
So let n ≥ 3. Every perfect matching µ of Kn having the same number of edges results in the same graph Kn − µ. A

atching can contain at most ⌊n/2⌋ edges and each choice in {0, . . . , ⌊n/2⌋} for the number of edges is possible. This
rings to account ⌊n/2⌋ + 1. For n = 4, there is additionally the graph P4. In total, this gives the claimed numbers. □

. Proofs regarding 2-metamour-regular graphs

This section is devoted to the proofs concerning 2-metamour-regular graphs from Section 3.4. It is a long way to obtain
he final characterization of 2-metamour-regular graphs of Theorem 3.13, so we have outsourced the key parts of the proof
nto several lemmas and propositions.

For the proofs of Lemmas 9.1, 9.2, 9.5 and Proposition 9.7 we provide many figures. Every proof consists of a series
f steps, and in each of the steps vertices and edges of a graph are analyzed: It is determined whether edges are present
r not and which vertices are metamours of each other. The figures of the actual situations show subgraphs of the graph
and additional assumptions) in the following way: Between two vertices there is either an edge or a non-edge

or nothing drawn. If nothing is drawn, then it is not (yet) clear whether the edge is present or not. A
etamour relation might be indicated at a non-edge.
Note that we frequently use the particular graphs defined by Figs. 3.3, 3.4 and 3.5.

9.1. Graphs with connected metamour graph

The proof of the characterization of 2-metamour-regular graphs in Theorem 3.13 is split into two main parts, which
represent whether the metamour graph of G is connected or not in order to apply the corresponding case of Theorem 3.20.

If the metamour graph of a graph with n vertices is connected, then according to Observation 3.12 the metamour
raph equals Cn. Here we make a further distinction between graphs that do and that do not contain a cycle of length n
s a subgraph. First, we characterize all 2-metamour-regular graphs whose metamour graph is connected and that do not
ontain a cycle of length n.

emma 9.1. Let G be a connected 2-metamour-regular graph with n vertices

• whose metamour graph equals the Cn,
• that is not a tree, and
• that does not contain a cycle of length n.

Then

G ∈ {Ha
6,H

b
6 ,H

a
7}.

roof. As G is not a tree, let γ = (v1, v2, . . . , vr , v1), vi ∈ V (G) for i ∈ {1, . . . , r}, be a longest cycle in G. In all the figures
accompanying the proof, the longest cycle is marked by . By assumption, we have r < n. For proving the lemma,
e have to show that G ∈ {Ha

6,H
b
6 ,H

a
7}.

As a cycle has length at least 3, we have r ≥ 3 for the length of the cycle γ . As we also have n > r , we may
assume n ≥ 4.

We start by showing the following claims.

A. A vertex u in G that is not in the cycle γ is adjacent to at most one vertex in γ . If u is adjacent to a vertex v in γ , then u
is a metamour of each neighbor of v in γ .

Proof of A. Let u ∈ V (G) be a vertex not in γ . We assume that u is adjacent to v1 (without loss of generality by
renumbering) and some vj in the cycle γ . We first show that v1 and vj are not two consecutive vertices in γ . So let
us assume that they are, i.e., j = 2 (see Fig. 9.1(a)) or j = r which works analogously. Then (v1, u, v2, . . . , vr , v1) would
be a longer cycle which is a contradiction to γ being a longest cycle. Hence, v1 and vj are not consecutive vertices in γ .
Then r ≥ 4 as there need to be at least one vertex between v1 and vj on the cycle on each side. If r = 4, then vj = v3
nd we are in the situation shown in Fig. 9.1(b). There, (u, v1, v2, v4, v3, u) is a 5-cycle which contradicts that the longest
ycle is of length 4. Therefore, r = 4 cannot hold.
If r > 4, then u is a metamour of v2, vr , vj−1 and vj+1, because it has a common neighbor (v1 or vj) with these vertices

and is not adjacent to them. At least one of vj−1 and vj+1 is different from v2 and vr , so |{v2, vr , vj−1, vj+1}| ≥ 3. This
contradicts the 2-metamour-regularity of G.

Therefore, we have shown that u is adjacent to at most one vertex in γ . Now suppose u is adjacent to a vertex v in γ .
Then u is not adjacent to any neighbor of v in γ and therefore a metamour of every such neighbor. ◁

B. There exists a vertex w in G but not in γ that is adjacent to (without loss of generality) v1, but not to any other vj, j ̸= 1,

in γ .
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Fig. 9.1. Subgraphs of the situations in the proof of A.

Fig. 9.2. Subgraph of the situation between B and C.

Fig. 9.3. Subgraph of the situation in the proof of C.

roof of B. As r < n, there exists a vertex w′ not in the cycle γ . The graph G is connected, so there is a path from a
ertex of γ to w′. Therefore, there is also a vertex w not in γ which is adjacent to a vertex vi. By renumbering, we can
ssume without loss of generality that i = 1.
As the vertex w is adjacent to v1, w is not adjacent to any other vj by A. ◁

t this point, we assume to have a vertex w as in B; the situation is shown in Fig. 9.2.

C. The graph G contains the edge {v2, vr}.

roof of C. Assume that there is no edge between v2 and vr ; see Fig. 9.3. Then v2 and vr are metamours of each other,
and consequently (w, v2, vr , w) forms a 3-cycle in the metamour graph of G. This contradicts that the metamour graph
of G is Cn and n ≥ 4. ◁

At this point, we have the situation shown in Fig. 9.4. In the next steps we will rule out possible values of r .

. If r = 3, then G = Ha
6 .

roof of D. Our initial situation is shown in Fig. 9.5(a).
Suppose there is an additional vertex v′

1 of G adjacent to v1; see Fig. 9.5(b). Then by A, v′

1 has metamours v2 and
3. Therefore, (w, v2, v

′

1, v3, w) is a 4-cycle in the metamour graph of G. As this cycle does not cover v1, we have a
ontradiction to the metamour graph being the single cycle Cn for n > r = 3. Therefore, there is no additional vertex
djacent to v .
1
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Fig. 9.4. Subgraph of the situation between C and D.

Fig. 9.5. Subgraph of the situation in the proof of D.

At this point, we know that w is a metamour of both v2 and v3; see again Fig. 9.5(a). We now look for the second
metamour of v2 and v3, respectively. As we ruled out an additional vertex adjacent to v1, there need to be an additional
vertex adjacent to v2 or to v3.

Without loss of generality (by symmetry), suppose there is an additional vertex v′

3 of G adjacent to v3; see Fig. 9.5(c).
Then by A, v′

3 has metamours v1 and v2. Therefore, these two vertices are the two metamours of v′

3. There cannot be an
additional vertex v′′

3 of G adjacent to v3, because due to the same arguments as for v′

3 this vertex would be a metamour
of v2, hence v2 would have three metamours, and this contradicts the 2-metamour-regularity of G.

Suppose there is no additional vertex adjacent to v2. Then, in order to close the metamour cycle containing
(v1, v

′

3, v2, w, v3), there needs to be a path from v′

3 to w. This implies the existence of a cycle longer than r = 3, therefore
cannot be. So there is an additional vertex adjacent to v′

2; the situation is shown in Fig. 9.5(d).
By the same argument as above, v1 and v3 are the two metamours of v′

2. Therefore, (w, v2, v
′

3, v1, v
′

2, v3, w) is a 6-cycle
in the metamour graph of G and n = 6. This is the graph G = Ha

6 . We can only add additional edges between the vertices w,
v′

2 and v′

3, but this would lead to a cycle of length larger than 3. So there are no other edges present. There cannot be any
additional vertex because this vertex would need to be in a different cycle in the metamour graph, contradicting that the
metamour graph is the Cn. ◁

As a consequence of D, the proof is finished for r = 3, because then G = Ha
6 . What is left to consider is the case r ≥ 4

and consequently n ≥ 5. The situation is again as in Fig. 9.4.
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a

Fig. 9.6. Subgraph of the situation between E and F.

Fig. 9.7. Subgraph of the situation in the proof of F.

E. The only vertices of γ that are adjacent to v1 are v2 and vr . In particular, v1 is metamour of v3 and of vr−1.

Proof of E. Suppose there is a vertex vi with i ∈ {3, . . . , r − 1} adjacent to v1. Then, as w is not adjacent to vi by A or B,
vi is a third metamour of w. This contradicts the 2-metamour-regularity of G.

As v1 has distance 2 on the cycle γ to both v3 and vr−1, and is not adjacent to these vertices, the vertices v3 and vr−1
re metamours of v1. ◁

At this point, we have the situation shown in Fig. 9.6. Note, that it is still possible that v3 = vr−1.

F. We cannot have r = 4.

Proof of F. As r = 4, we have v3 = vr−1. This situation is shown in Fig. 9.7.
Suppose there is an additional vertex v′

3 of G adjacent to v3. Then by A, v′

3 has metamours v2 and v4. Therefore,
(w, v2, v

′

3, v4, w) is a 4-cycle in the metamour graph of G. This is a contradiction to the metamour graph being Cn and
n ≥ 6, so there is no additional vertex adjacent to v3. This implies that we cannot have a vertex at distance 1 from v3
other than v2 and v4.

Now suppose there is an additional vertex v′

2 of G adjacent to v2. Again by A, v′

2 has metamours v1 and v3. Therefore,
(v′

2, v1, v3, v
′

2) is a 3-cycle in the metamour graph of G. This is again a contradiction to the metamour graph being Cn and
n ≥ 6, so there is no additional vertex adjacent to v2 either. Likewise, by symmetry, there is also no additional vertex
adjacent to v4.

As v2 and v4 are the only neighbors of v3, we cannot have a vertex at distance 2 from v3 other than v1. This means
that there is no second metamour of v3 which contradicts the 2-metamour-regularity of G. ◁

At this point, we can assume that r ≥ 5 as the case r = 4 was excluded by F, and consequently also n ≥ 6. The
situation is still as in Fig. 9.6.

G. We have r ≤ 6. Specifically, either r = 5, or r = 6 and there is an edge {v2, v5} in G. In the second case, the two metamours
of the vertex v2 are w and v4.

Proof of G. As r ≥ 5, the two metamours of v1 are on the cycle γ , namely the distinct vertices v3 and vr−1; see Fig. 9.8(a).
We now consider the neighbors of v2. Suppose v2 is adjacent to some vi with i ̸∈ {1, 3, r − 1, r}. As the vertex v1 is

not connected to vi by E, the vertex vi is a metamour of v1 different from v3 and vr−1. This contradicts the 2-metamour-
regularity of G. Furthermore, v2 is adjacent to v1, v3 and vr . This implies that the neighborhood of v2 on γ is determined
up to vr−1. We will now distinguish whether vr−1 is or is not in this neighborhood.

Suppose {v2, vr−1} ̸∈ E(G). If vr−1 ̸= v4, then {v2, v4} ̸∈ E(G) because of what is shown in the previous paragraph. But
then, the metamours of v2 would be w, vr−1 and v4. This contradicts the 2-metamour-regularity of G and implies that
v = v and r = 5; see Fig. 9.8(b).
r−1 4
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Fig. 9.8. Subgraphs of the situations in the proof of G.

Fig. 9.9. Subgraphs of the situations in the proof of H.

Suppose {v2, vr−1} ∈ E(G). We again distinguish between two cases. If r ≥ 6, then w, v4 and vr−2 are metamours of v2.
In this case, the 2-metamour-regularity of G implies that vr−2 = v4 and therefore r = 6; see Fig. 9.8(c). If r < 6, then by
he findings so far, we must have r = 5, and therefore we are also done in this case. ◁

By G we are left with the two cases r = 5 and r = 6. One possible situation for r = 5 and the situation for r = 6 are
hown in Fig. 9.8(b) and (c), respectively, and we will deal with these two situations now.

. If r = 5, then G ∈ {Hb
6 ,H

a
7}.

roof of H. The full situation for r = 5 is shown in Fig. 9.9(a).
Clearly the situation is symmetric in the potential edges {v2, v4} and {v3, v5}, so we have to consider the three cases

hat both, one and none of these two edges are present.
First let us assume that neither {v2, v4} nor {v3, v5} is an edge; see Fig. 9.9(b). Then v2 and v4 as well as v3 and v5

re metamours, so we have the 6-cycle (w, v2, v4, v1, v3, v5, w) in the metamour graph of G. This is the graph G = Hb
6 .

here cannot be any additional vertex because this vertex would need to be in a different cycle in the metamour graph
ontradicting that the metamour graph is the Cn. There also cannot be any additional edges because all edges and
on-edges are already determined.
Next let us assume that there is exactly one of the edges {v2, v4} and {v3, v5} present in G, without loss of generality

let {v3, v5} ∈ E(G); see Fig. 9.9(c). At this point we know that v3 and v1 as well as v5 and w are metamours, and we are
looking for the second metamours of v3 and v5. As the vertices w, v1 and v4 already have two metamours each, there
need to be additional vertices for these metamours.

Statement A implies that there is no additional vertex of G adjacent to v5 as v1 has already the two metamours v3
and v4. Likewise, by symmetry, there is no additional vertex adjacent to v2. Moreover, by the same argument, there is
also no additional vertex adjacent to v3 as v4 has the two metamours v1 and v2.

Therefore, there need to be an additional vertex v′

4 adjacent to v4. By A, v′

4 has metamours v3 and v5. This gives the
7-cycle (w, v2, v4, v1, v3, v

′

4, v5, w) in the metamour graph of G and the graph G = Ha
7 . There cannot be any additional

vertex because this vertex would need to be in a different cycle in the metamour graph contradicting that the metamour
graph is the Cn. There also cannot be any additional edges because all edges and non-edges are already determined.

At last, let us consider the case that both of the edges {v2, v4} and {v3, v5} are present in G. We already know that w
is a metamour of v2 and are now searching for the second metamour of v2. There does not exist a vertex v′

1 adjacent to
v in G but not in γ , because this would induce a C in the metamour graph by the same arguments as in the proof of D.
1 4
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Fig. 9.10. Subgraphs of the situations in the proof of I.

Furthermore, there cannot be a vertex v′

2 in G but not in γ that is adjacent to v2, due to the fact that this vertex would be
a third metamour of v1, a contradiction. By symmetry, there is no vertex of G without γ adjacent to v5. If there would be
a vertex v′

3 in G but not in γ which is adjacent to v3, then due to A, this vertex would have v2, v4 and v5 as a metamour,
a contradiction to the 2-metamour-regularity of G. Again by symmetry, there is no vertex of G without γ adjacent to v4.
Therefore, v2 cannot have a second metamour in G and this case cannot happen. ◁

Statement H finalizes the proof for r = 5. Hence, r = 6 is the only remaining value for r we have to consider.

I. We cannot have r = 6.

Proof of I. As r = 6, there is an edge {v2, v5} in G by G. The initial situation is shown in Fig. 9.10(a).
Suppose v3 and v5 are not adjacent. Then (v1, v3, v5, v1) is a 3-cycle in the metamour graph of G. This contradicts that

the metamour graph is Cn and n > r = 6, so we can assume {v3, v5} ∈ E(G). Likewise, suppose that v4 and v6 are not
adjacent. Then (w, v2, v4, v6, w) is a 4-cycle in the metamour graph of G. This contradicts that the metamour graph is Cn
and n > r = 6, so we can assume {v4, v6} ∈ E(G). The current situation is shown in Fig. 9.10(b).

Statement A implies that there is no additional vertex of G adjacent to v2 as v1 has already the two metamours v3
nd v5. By symmetry, there is also no additional vertex adjacent to v6. By the same argumentation as above, there is no
dditional vertex adjacent to v1 as well as to v3 because of vertex v2 and its metamours. Moreover, we slightly vary the
rgumentation to show that there cannot be an additional vertex adjacent to v5. Suppose there is an additional vertex v′

5
f G adjacent to v5. Then, v′

5 is not adjacent to v2 as we have shown above, so v′

5 is as well a metamour of v2. This
contradicts the 2-metamour-regularity of G again.

The vertex v4 has v2 as metamour. We are now searching for its second metamour. It cannot be w or v1 as these
vertices have already two other metamours each. It cannot be any of v3, v5 or v6 either as all of them are adjacent to v4.
Moreover, the second metamour of v4 cannot be adjacent to v3, v5 or v6, as we above ruled additional neighbors to these
vertices out. Therefore, there has to be an additional vertex v′

4 adjacent to v4. By A, this vertex v′

4 has metamours v3
and v5. This results in the 4-cycle (v1, v3, v

′

4, v5, v1) in the metamour graph of G and contradicts our assumption that this
graph is Cn and n > r = 6. ◁

We have now completed the proof of Lemma 9.1 as in all cases we were able to show that G ∈ {Ha
6,H

b
6 ,H

a
7} holds. □

After characterizing all 2-metamour-regular graphs whose metamour graph is connected and that do not contain a
cycle of length n, we can now focus on 2-metamour-regular graphs whose metamour graph is connected and that contain a
cycle of length n. Here, we make a further distinction depending on the degree of the vertices and begin with the following
lemma.

Lemma 9.2. Let G be a connected 2-metamour-regular graph with n vertices

• whose metamour graph equals the Cn,
• that contains a cycle of length n, and
• that has a vertex of degree larger than 2 and smaller than n − 3.

Then

G = Hb
7 .

Proof. Let γ be a cycle of length n in G. First, we introduce some notation. Let v be a vertex of G, and let u and u′ be
the two metamours of v. We explore the vertices on the cycle γ starting with v: The set of vertices on both sides of v

strictly before u and u′ are called the fellows of v. The remaining set of vertices strictly between u and u′ on γ is called
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D

Fig. 9.11. Fellows and opponents of a vertex v in the proof of Lemma 9.2.

the opponents of v; see Fig. 9.11. In other words for each vertex v of G the set of vertices of G can be partitioned into v,
its fellows, its metamours and its opponents.

We start with the following claims.

A. Every vertex of G is adjacent to each of its fellows.

Proof of A. Let v1 be a vertex of G and γ = (v1, . . . , vn, v1). Suppose vp is the vertex with smallest index p that is
not adjacent to v1. We have to show that vp is a metamour of v1. The index p exists because v1 is not adjacent to its
metamours. Moreover, this index satisfies p > 2 as v2 is adjacent to v1 because they are consecutive vertices on γ . Thus,
v1 and vp have vp−1 as common neighbor and are therefore metamours.

By symmetry, the vertex vq with largest index q that is not adjacent to v1, is also a metamour of v1. Note that as v1
has exactly two metamours, vp and vq are these metamours, so v1 is adjacent to each of its fellows. ◁

B. Every vertex of G is either adjacent to each of its opponents, or not adjacent to any of its opponents.

Proof of B. It is enough to show that if a vertex v1 of G is adjacent to at least one opponent of v1, then it is adjacent to
every opponent of v1. Let γ = (v1, . . . , vn, v1), and let W be a subset of the opponents of v1 that consists of consecutive
vertices of γ , say from vi to vj for some i ≤ j, such that each of these vertices is adjacent to v1, and W is maximal (with
respect to inclusion) with this property. Note that the set W is not empty because of our assumption.

Clearly none of the vertices in W is a metamour of v1. However vi−1 and vj+1 are metamours of v1 because of their
common neighbors vi and vj, and the maximality of W . Therefore, as v1 has exactly two metamours, W equals the set of
opponents of v1 which was to show. ◁

Now we are ready to start with the heart of the proof of Lemma 9.2. Suppose v1 is a vertex of G with 2 < deg(v1) <

n − 3. In order to complete the proof we have to show that G = Hb
7 .

Let γ = (v1, . . . , vn, v1) be a cycle of length n, and let vp and vq be the metamours of v1 with p < q. In the following
claims we will derive several properties of G.

C. The vertex v1 is adjacent to its fellows v2, . . . , vp−1, vq+1, . . . , vn and not adjacent to any metamour or opponent vp, . . . , vq.
Furthermore, p + 1 < q holds, i.e., there exists at least one opponent of v1.

Proof of C. Clearly v1 is not adjacent to its metamours vp and vq. Furthermore, v1 is adjacent to all its fellows v2, . . . ,
vp−1, vq+1, . . . , vn by A. This together with deg(v1) < n− 3 implies that v1 has an opponent to which it is not adjacent, so
p + 1 < q. Then by B, v1 is not adjacent to any of its opponents. ◁

Now deg(v1) > 2 together with C imply that v1 has at least one fellow different from v2 and vn. Without loss of
generality (by renumbering the vertices in the opposite direction of rotation along γ ) assume that vq+1 is a fellow of v1
different from vn, so in other words we assume q + 1 < n. The situation is shown in Fig. 9.12.

We will now prove several claims about edges, non-edges and metamours of G.

. No opponent vp+1, . . . , vq−1 is adjacent to any fellow v2, . . . , vp−1, vq+1, . . . , vn.

Proof of D. Assume that vj is adjacent to vi for some j ∈ {p+ 1, . . . , q− 1} and some i ∈ {2, . . . , p− 1} ∪ {q+ 1, . . . , n}.
Then vj and v1 have the common neighbor vi because of C. Furthermore, vj and v1 are not adjacent by C, so vj and v1 are
metamours. This is a contradiction to vp and vq being the only metamours of v1, therefore our assumption was wrong. ◁

The known edges and non-edges at this moment are shown in Fig. 9.13(a).
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Fig. 9.12. Subgraph of the situation between C and D.

Fig. 9.13. Subgraphs of the situations between D, E, and F.

Fig. 9.14. Subgraph of the situation in the proof of F.

E. The vertices vq−1 and vq+1 are metamours of each other. Also the vertices vp−1 and vp+1 are metamours of each other.

Proof of E. The vertices vq−1 and vq+1 have the common neighbor vq and are not adjacent due to D, so they are metamours.
Also vp−1 and vp+1 are metamours because they have vp as a common neighbor and are not adjacent because of D. ◁

Now we are in the situation shown in Fig. 9.13(b).

F. The vertices vq and vq+2 are metamours of each other.

Proof of F. This proof is accompanied by Fig. 9.14. Assume vq and vq+2 are adjacent. Then vq−1 and vq+2 have the common
neighbor vq and are not adjacent because of D. Hence, vq+2 is a metamour of vq−1. Due to E, vq+1 is the second metamour
of vq−1. Both metamours are consecutive vertices on the cycle γ , therefore, every other vertex except vq−1 is a fellow
of vq−1, thus adjacent to vq−1 by A. In particular, v1 is adjacent to vq−1 which contradicts C.

Therefore, v and v are not adjacent and because of their common neighbor v , metamours. ◁
q q+2 q+1
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H

Fig. 9.15. Subgraph of the situation between G and H.

Fig. 9.16. Subgraphs of the situations between H, I and J.

G. The vertex vq is adjacent to v2, . . . , vp−1, vp, vp+1, . . . , vq−1.

Proof of G. The two metamours of vq are v1 and vq+2 because of F. This implies that v2, . . . , vq−1 are fellows of vq and
therefore adjacent to vq because of A. ◁

Fig. 9.15 shows the current situation.

. The vertices vq−1 and vp−1 are metamours of each other. Furthermore, vp−1 = v2 holds, so there is exactly one fellow of v1
on the cycle γ between v1 and vp.

Proof of H. The vertex vq−1 is not adjacent to any of v2, . . . , vp−1 due to D. Furthermore, vq−1 has the common
neighbor vq with each of these vertices because of G. So every vertex v2, . . . , vp−1 is a metamour of vq−1. This implies
|{v2, . . . , vp−1}| ≤ 1 because vq−1 also has vq+1 as metamour and has in total exactly two metamours. Moreover, as
v2 is adjacent to v1, v1 and v2 are not metamours, thus v2 and vp cannot coincide. This implies p > 2 has to hold. In
consequence, we obtain p = 3 implying vp−1 = v2 has to hold. ◁

We are now in the situation shown in Fig. 9.16(a).

I. It holds that vp+1 = vq−1, so v1 has exactly one opponent.

Proof of I. The vertices vq+1 and vp−1 are metamours of vq−1 because of E and H. Furthermore, vp−1 and vp+1 are
metamours because of E.

Now assume p+1 < q−1, so the vertices vp+1 and vq−1 are distinct. Then vp+1 and vq+1 have the common neighbor vq
because of G and they are not adjacent because of D, so they are metamours. This implies that (vq−1, vq+1, vp+1, vp−1, vq−1)
is a cycle in the metamour graph that does not contain all vertices, a contradiction to our assumption. So p+1 = q−1. ◁

Now we are in the situation shown in of Fig. 9.16(b).
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Fig. 9.17. Subgraphs of the situations between J, K and L.

J. The vertices vp and vq+1 are metamours of each other. Furthermore, vp is not adjacent to any of the vertices vq+2, . . . , vn.

roof of J. If vp is adjacent to vi for i ∈ {q+2, . . . , n}, then vp+1 and vi are metamours because they have vp as a common
neighbor, and they are not adjacent due to D. This is a contradiction as vp+1 already has the two metamours vp−1 and
vq+1 because of E and an implication of I. As a result, vp is not adjacent to any of vq+2, . . . , vn.

If vp would be adjacent to vq+1, then vp and vq+2 are metamours because of the common neighbor vq+1 and because
they are not adjacent by the above. But then, due to F, (vp, v1, vq, vq+2, vp) is a cycle in the metamour graph which does
not contain all vertices, a contradiction to our assumption. Therefore, vp is not adjacent to vq+1. The vertex vp is adjacent
to vq due to G, therefore vq is a common neighbor of vp and vq+1, and hence these vertices are metamours. ◁

Fig. 9.17(a) shows the situation.

K. It holds that q + 2 = n, so there are exactly two fellows of v1 on the cycle γ between vq and v1. Furthermore, the vertices
vp−1 and vq+2 are metamours of each other, and vp−1 is adjacent to all vertices except its metamours.

Proof of K. The vertex vp−1 is a metamour of vq−1 due to H, and it is adjacent to vq because of G. This together with
p + 1 = q − 1 by I implies that vp−1 is adjacent to one of its opponents, namely vq. Then by B and A, this implies that
vp−1 is adjacent to all vertices except its metamours.

If vp−1 is adjacent to a vertex vi for i ∈ {q+2, . . . , n}, then vp and vi are metamours because they have vp−1 as common
neighbor and are not adjacent due to J. But vp already has the two metamours v1 and vq+1 due to J, a contradiction. As a
result, vp−1 is not adjacent to any vertex of vq+2, . . . , vn.

Now assume q + 2 < n, so the vertex vq+3 exists. Due to the fact that vp−1 is adjacent to all vertices except its
metamours and that it has vp+1 as metamour by E, it follows that it is adjacent to at least one of vq+2 and vq+3. But we
showed that vp−1 is not adjacent to any of these two vertices, a contradiction. Therefore, q + 2 = n holds. Furthermore,
vp−1 is not adjacent to vq+2, and therefore these two vertices are metamours of each other. ◁

Our final figure is Fig. 9.17(b).

L. It holds that G = Hb
7 .

Proof of L. We have p − 1 = 2 by H, we have p + 1 = q − 1 by I and q + 2 = n by K. This implies that n = 7.
The properties we have derived so far fix all edges and non-edges of G except between v2 and v7. This has to be a

non-edge to close the metamour cycle. The result is G = Hb
7 . With respect to Fig. 3.4, v1 is the top left vertex of Hb

7 and
the vertices are numbered clock-wise. ◁

This completes the proof of Lemma 9.2. □

Next we consider all cases of 2-metamour-regular graphs whose metamour graph is connected, that contain a cycle
of length n and whose degrees are not as in the previous lemma.
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emma 9.3. Let G be a connected 2-metamour-regular graph with n vertices

• whose metamour graph equals the Cn,
• that contains a cycle of length n, and
• in which every vertex has degree n − 3.

hen

G = Cn.

roof. If a vertex v of G has degree n − 3, then v is adjacent to all but two vertices. These two vertices are exactly the
metamours of v. This implies that G equals the complement of the metamour graph. Hence, G = Cn as the metamour
graph of G is the Cn. □

Lemma 9.4. Let G be a connected 2-metamour-regular graph with n vertices

• whose metamour graph equals the Cn,
• that contains a cycle of length n, and
• in which every vertex has degree 2.

Then

G = Cn

and n is odd.

Proof. Let γ be a cycle of length n in G. If every vertex of G has degree 2, then every vertex in the induced subgraph
G[γ ] has degree 2 as γ contains every vertex by assumption. As G[γ ] is connected, it equals Cn. In total this implies
G = G[γ ] = Cn.

It is easy to see that if n is even, then the metamour graph consists of exactly two cycles of length n
2 which contradicts

ur assumption. Therefore, n is odd. □

Lemma 9.5. Let G be a connected 2-metamour-regular graph with n vertices

• whose metamour graph equals the Cn,
• that contains a cycle of length n,
• in which every vertex has degree 2 or n − 3, and
• that has a vertex of degree 2 and a vertex of degree n − 3.

Then

G ∈ {C5,Hc
6}.

Proof. Let γ = (v1, . . . , vn, v1) be a cycle of length n such that deg(v1) = 2 and deg(v2) = n − 3.

A. We have 5 ≤ n ≤ 7 and the metamours of v1 are v3 and vn−1.

Proof of A. Clearly v1 is only adjacent to v2 and vn. Hence, v3 and vn−1 have to be the two metamours of v1 and G contains
at least 5 different vertices, so n ≥ 5.

If v2 is adjacent to some vi for i ∈ {4, . . . , n − 2}, then v1 is a metamour of vi due to the common neighbor v2; see
Fig. 9.18. Hence, v2 is not adjacent to any vertex v4, . . . , vn−2. However, because deg(v2) = n− 3, the vertex v2 is adjacent
to every vertex but its two metamours. This implies that |{v4, . . . , vn−2}| ≤ 2, because v2 has at most two metamours
among v4, . . . , vn−2. As a result, we have n ≤ 7. ◁

This implies that n = 5, n = 6 and n = 7 are the only cases to consider. We do so in the following claims.

B. If n = 5, then G = Cn.

Proof of B. If n = 5, then v3 and vn−1 = v4 are the two metamours of v1; see Fig. 9.19(a). Then v2 is the only option as
second metamour of v4, and v5 is the only option as second metamour of v3. Then v2 and v5 have to be metamours in
order to close the cycle in the metamour graph; see Fig. 9.19(b). As a result, we have G = C5. ◁

C. If n = 6, then G = Hc
6 .

Proof of C. If n = 6, then v3 and vn−1 = v5 are the two metamours of v1.
If v3 is not adjacent to v5, then v3 and v5 are metamours because of their common neighbor v4; see Fig. 9.20(a). But

then (v , v , v , v ) is a cycle in the metamour graph that does not contain all vertices, a contradiction to our assumption.
1 3 5 1
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Fig. 9.18. Subgraph of the situation in the proof of A.

Fig. 9.19. Subgraphs of the situations in the proof of B.

Fig. 9.20. Subgraphs of the situations in the proof of C.

ence, v3 and v5 are adjacent; see Fig. 9.20(b). Then v6 is the only option left as the second metamour of v3, and v2 is
he only option left as the second metamour of v5.

If v2 and v6 are not adjacent, then they are metamours because of their common neighbor v1. But then (v1, v3, v6, v2,

5, v1) is a cycle in the metamour graph that does not contain v4, a contradiction. So v2 and v6 are adjacent; see Fig. 9.20(c).
But then v4 has to have v2 and v6 as metamours, because they are the only options left. Hence, we obtain G = Hc

6 . ◁

. We cannot have n = 7.

roof of D. If n = 7, then v3 and vn−1 = v6 are the two metamours of v1. As deg(v1) = 2, the vertices v1 and v5 are
ot adjacent, and they are also not metamours; see Fig. 9.21(a). Therefore, deg(v5) < n − 3 = 4. As the only options are
eg(v ) ∈ {2, n − 3}, we conclude deg(v ) = 2.
5 5
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Fig. 9.21. Subgraphs of the situations in the proof of D.

As a result, v5 is only adjacent to v4 and v6, and the vertices v3 and v7 have to be the two metamours of v5;
ee Fig. 9.21(b). In particular, v5 is not adjacent to v2, and the vertices v5 and v2 are not metamours. This implies
eg(v2) < n − 3 = 4 which is a contradiction to deg(v2) = 4. Hence, n = 7 is not possible. ◁

To summarize, in the case that not all vertices of G have the same degree in {2, n − 3}, G = C5 and G = Hc
6 are the

nly possible graphs due to A, B, C and D. This finishes the proof of Lemma 9.5. □

Eventually, we can collect all results on 2-metamour-regular graphs that have a connected metamour graph in the
ollowing proposition.

roposition 9.6. Let G be a connected 2-metamour-regular graph with n vertices whose metamour graph is the Cn. Then
≥ 5 and one of

(a) G = Cn and n is odd,
(b) G = Cn, or
(c) G ∈ {Ha

6,H
b
6 ,H

c
6,H

a
7,H

b
7}

olds.

roof. First we derive two properties of G in the following claims.

A. We have n ≥ 5.

roof of A. The graph G is connected, hence it contains at least n−1 edges. Furthermore, the graph G has the metamour
raph Cn, so the complement of G contains at least n edges. As the sum of the number of edges of G and of the complement
f G is equal to

(n
2

)
, we have

(n
2

)
≥ (n − 1) + n. This is only true for n ≥ 5. ◁

B. The graph G is not a tree.

roof of B. Suppose that G is a tree. We first show that the maximum degree of G is at most 2.
Let v be a vertex and d its degree, and let v1, . . . , vd its neighbors. Then no vertices of a pair in {v1, . . . , vd} are adjacent,

s otherwise we would have a cycle. Therefore, the vertices of every such pair are metamours.
We cannot have d ≥ 4, as otherwise one vertex of {v1, . . . , vd} would have at least three metamours, and this

ontradicts the 2-metamour-regularity of the graph G. If d = 3, then there is a 3-cycle in the metamour graph of G
hich contradicts that the metamour graph is Cn and n ≥ 5. Therefore, d ≤ 2, and consequently we have indeed shown
hat the maximum degree of G is at most 2.

This now implies that G has to be the path graph Pn which is again a contradiction to G being 2-metamour-regular, as
n end vertex of Pn only has one metamour. ◁

So by B, G is not a tree, therefore it contains a cycle. If G does not contain a cycle of length n, then we can apply
emma 9.1 and conclude that G ∈ {Ha

6,H
b
6 ,H

a
7}. We are finished in this case.

Otherwise, the graph G contains a cycle of length n. If there is a vertex v of G with 2 < deg(v) < n − 3, then we can
use Lemma 9.2, deduce that G = Hb

7 and the proof is complete in this case.
Otherwise, every vertex has degree at most 2 or at least n − 3. Due to the fact that G contains a cycle of length n, the

degree of every vertex is at least 2. Because G is 2-metamour-regular, every vertex is not adjacent to at least two vertices,
so the degree of every vertex is at most n − 3. This implies that every vertex has degree 2 or n − 3.

If all vertices of G have the same degree, then Lemma 9.3 (for degrees n − 3) implies G = Cn and Lemma 9.4 (for
degrees 2) implies G = C and n odd. Hence, in these cases we are finished with the proof as well.
n
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What is left to consider is the situation that there are two vertices with different degrees in G. This is done in Lemma 9.5,
nd we conclude G ∈ {C5,Hc

6} in this case.
This completes the proof. □

.2. Graphs with disconnected metamour graph

After characterizing all graphs that are 2-metamour-regular and that have a connected metamour graph, we now
urn to 2-metamour-regular graphs that do not have a connected metamour graph. In this case either statement (b)
r statement (c) of Theorem 3.20 is satisfied. In the case of (b) there is nothing left to do, because it provides a
haracterization. In the other case we determine all graphs and capture them in the following proposition.

roposition 9.7. Let G be a connected 2-metamour-regular graph with n vertices. Suppose statement (c) of Theorem 3.20 is
atisfied. Then n ≥ 6 and one of

(a) G = Cn and n is even, or
(b) G ∈ {Ha

4,4,H
b
4,4,H

c
4,4,H

a
4,3,H

b
4,3,H

c
4,3,H

d
4,3,H

a
3,3,H

b
3,3,H

c
3,3,H

d
3,3,H

e
3,3}

holds.

Proof. Theorem 3.20(c) implies that the metamour graph is not connected. First observe that by Observation 3.12, each
connected component of the metamour graph of a 2-metamour-regular graph is a cycle.

The proof is split into several claims. As a first step, we consider the number of vertices of G.

A. We have n ≥ 6.

Proof of A. As the metamour graph of G is not connected, the metamour graph contains at least two connected
components, which are cycles. Each cycle has to contain at least three vertices, so n ≥ 6. ◁

Now we come to the main part of the proof. Theorem 3.20(c) states that the metamour graph consists of exactly
two connected components; we denote these by M ′ and M∗. Set G′

= G[V (M ′)] and G∗
= G[V (M∗)]. Then GM (as in

Theorem 3.20) equals G′
∪ G∗. The definitions of G′ and G∗ are symmetric and we might switch the roles of the two

without loss of generality during the proof and in the statements.
We introduce the following notion: The signature σ of a graph is the tuple of the numbers of vertices of its connected

components,sorted in descending order. If follows from (i) of Theorem 3.20(c) that all connected components of G′ and
G∗ have at most 2 vertices. As a consequence, the signatures σ (G′) and σ (G∗) have entries in {1, 2}. Note that in case a
connected component has two vertices, then these vertices are adjacent, i.e., this component equals P2.

We perform a case distinction by the signatures of the graphs G′ and G∗; this is stated as the following claims. We
start with the case that at least one connected component of G′ or G∗ has two vertices.

B. If the first (i.e., largest) entry of σ (G′) is 2, then either σ (G′) = (2, 2) or σ (G′) = (2, 1, 1). In the latter case, the two vertices
of the two connected components containing only one vertex do not have any common neighbor in G.

Proof of B. Suppose we have G′

1 ∈ C(G′) with |V (G′

1)| = 2. Let v1 be one of the two vertices of G′

1. Then v1 is adjacent
to the other vertex of G′

1, therefore it must have its two metamours in another component of G′. Let us assume that a
metamour of v1 is in a connected component G′

2 of G′ that consists of two vertices. Then every vertex of G′

1 is a metamour
of every vertex of G′

2 due to (v) of Theorem 3.20(c). This implies that the four vertices of G′

1 and G′

2 form a C4 in the
metamour graph and consequently that M ′

= C4. Therefore, G′ cannot contain other vertices and σ (G′) = (2, 2).
Let us now assume that the two metamours of v1 are in different connected components G′

2 and G′

3 of G′ that consist
of only one vertex each. Then also the other vertex of G′

1 is a metamour of the two vertices in G′

2 and G′

3 due to (v) of
Theorem 3.20(c). Hence, these four vertices form again a C4 in the metamour graph and consequently M ′

= C4. As a result,
G′ cannot contain any more vertices, so σ (G′) = (2, 1, 1).

If the two vertices of G′

2 and G′

3 have a common neighbor, then they are metamours of each other because they are
not adjacent. This is a contradiction to the fact that the vertex of G′

2 already has two metamours; they are in G′

1. Hence,
the vertices of G′

2 and G′

3 do not have any common neighbor. ◁

By B we can deduce how the graphs G′ and G∗ look like, if one of their connected component contains 2 vertices. We
will now continue by going through all possible combinations of signatures of G′ and G∗ implied by B. In every case, we
have to determine which edges between vertices of G′ and G∗ exist and which do not exist in order to specify the graph G.

Due to(iv) of Theorem 3.20(c), we know that as soon as there is an edge in G between a connected component of G′

and a connected component of G∗, then there are all possible edges between these two components in G. This implies,
now rephrased in the language introduced in Section 2.1,adjacency of two connected components of GM is equivalent to
complete adjacency of these components. Therefore, we equip GM

= G′
∪ G∗ with a graph structure:The set C(GM ) is the

vertex set and the edge set – we simply write it as E(GM ) – is determined by the adjacency relation above. Note that this
graph is bipartite.
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Fig. 9.22. Subgraphs of the situations in the proofs of C and D.

C. If σ (G′) = (2, 2) and σ (G∗) = (2, 2), then we have

G ∈ {C4 ∇ C4,Ha
4,4}.

roof of C. Let {G′

1,G
′

2} = C(G′) and {G∗

1,G
∗

2} = C(G∗). Each of these four components has size 2, therefore, n = 8.
his proof is accompanied by Fig. 9.22(a). The components G′

1 and G′

2 need a common neighbor in G∗ with respect to GM

because their vertices are metamours; see the proof of B. So, we assume without loss of generality (by renumbering the
connected components of G∗) that {G′

1,G
∗

1} ∈ E(GM ) and {G′

2,G
∗

1} ∈ E(GM ). Furthermore, G∗

2 needs to be adjacent to at
least one connected component of G′ because G is connected, so assume without loss of generality (by renumbering the
connected components of G′) that {G′

2,G
∗

2} ∈ E(GM ). Now there is only the edge between G′

1 and G∗

2 left to consider. If
{G′

1,G
∗

2} ∈ E(GM ), then G = C4 ∇ C4 and if {G′

1,G
∗

2} ̸∈ E(GM ) then G = Ha
4,4. This completes the proof. ◁

. If σ (G′) = (2, 2) and σ (G∗) = (2, 1, 1), then we have

G = Hb
4,4.

roof of D. Let {G′

1,G
′

2} = C(G′) and {G∗

1,G
∗

2,G
∗

3} = C(G∗) such that |V (G∗

1)| = 2. The size of each other component is
hen determined, specifically we have |V (G′

1)| = 2, |V (G′

2)| = 2, |V (G∗

2)| = 1 and |V (G∗

3)| = 1. Therefore, n = 8. This proof
s accompanied by Fig. 9.22(b).

The component G∗

1 need to be adjacent in GM to at least one connected component of G′, so assume without loss of
enerality (by renumbering the connected components of G′) that {G′

1,G
∗

1} ∈ E(GM ). It is not possible that both G∗

2 and G∗

3
re adjacent in GM to G′

1 due to B, so assume without loss of generality (by renumbering G∗

2 and G∗

3) that {G′

1,G
∗

3} ̸∈ E(GM ).
But G∗

3 must have a common neighbor in G′ with G∗

1 because their vertices are metamours, so this implies {G′

2,G
∗

3} ∈ E(GM )
and {G′

2,G
∗

1} ∈ E(GM ). Due to B, this implies that {G′

2,G
∗

2} ̸∈ E(GM ). But as G∗

2 needs to be adjacent to at least one connected
component of G′, we find {G′

1,G
∗

2} ∈ E(GM ). As a consequence, we obtain G = Hb
4,4. ◁

E. If σ (G′) = (2, 1, 1) and σ (G∗) = (2, 1, 1), then we have

G = Hc
4,4.

roof of E. Let {G′

1,G
′

2,G
′

3} = C(G′) and {G∗

1,G
∗

2,G
∗

3} = C(G∗) such that |V (G′

1)| = 2 and |V (G∗

1)| = 2. The size of each
ther component is then determined. We get n = 8.
Because of B, not both G∗

2 and G∗

3 can be adjacent in GM to G′

1, so assume without loss of generality (by renumbering
∗

2 and G∗

3) that {G′

1,G
∗

3} ̸∈ E(GM ). If {G′

1,G
∗

2} ̸∈ E(GM ), then G∗

1 is the only possible common neighbor in GM for G′

1 and G′

2
s well as G′

1 and G′

3. But then G′

2 and G′

3 would have the common neighbor G∗

1 in GM , a contradiction to B. As a result,
we obtain {G′

1,G
∗

2} ∈ E(GM ).
By symmetric arguments for G∗, we can assume without loss of generality (by renumbering G′

2 and G′

3) that {G′

3,G
∗

1} ̸∈

E(GM ) and then deduce that {G′

2,G
∗

1} ∈ E(GM ). The current situation is shown in Fig. 9.23(a).
As a result, G′

2 is the only possible common neighbor in GM of G∗

1 and G∗

3, so {G′

2,G
∗

3} ∈ E(GM ). Analogously, we obtain
{G′

3,G
∗

2} ∈ E(GM ). Now due to B, we can deduce that {G′

2,G
∗

2} ̸∈ E(GM ) and {G′

3,G
∗

3} ̸∈ E(GM ). So far G′

1 and G′

2 do not have
a common neighbor, and G∗

1 is the only possibility for that left, so {G′

1,G
∗

1} ∈ E(GM ); see Fig. 9.23(b).
This fully determines G and it holds that G = Hc

4,4. ◁

With C, D and E we have considered all cases in which both G′ and G∗ have a connected component consisting of two
vertices.

So from now on we can assume that at least one of G′ and G∗ has no connected component consisting of two vertices.
Next we will deduce a result in the case that the signature of one of G′ and G∗ is (1, . . . , 1) with at least four entries.
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F. If σ (G′) = (1, . . . , 1), r times with r ≥ 4, then we have

G = Cn

and n is even.

Proof of F. Let {G′

1, . . . ,G
′
r} = C(G′). Let without loss of generality (by renumbering the connected components of G′) the

vertices of G′

i−1 and G′

i+1 be the two metamours of the vertex of G′

i . Note that we take the indices modulo r and that we
keep doing this for the remaining proof.

Let i ∈ {1, . . . , r}. Then clearly G′

i and G′

i+1 have a common neighbor G∗

i ∈ C(G∗). If G∗

i is adjacent to any other connected
component of C(G′), then the vertex of this component together with the two vertices of G′

i and G′

i+1 form a C3 in the
metamour graph. This is a contradiction, because M ′ is Cr with r ≥ 4. Hence, G∗

i is adjacent in G to only G′

i and G′

i+1 of G′.
In particular, this implies that the components G∗

1, . . . , G
∗
r are pairwise disjoint due to (iv) of Theorem 3.20(c).

Now because of the common neighbors, the vertices of G∗

i have the vertices of G∗

i−1 and G∗

i+1 as metamours. Therefore,
as we are 2-metamour-regular, every component G∗

i consists of exactly one vertex. As a consequence, G∗

1, . . . , G
∗
r lead to

a Cr in the metamour graph of G, specifically M∗
= Cr . It is easy to see that the vertices of G′

1, G
∗

1, G
′

2, G
∗

2, . . . , G
′
r , G

∗
r form

a C2r . As we have ruled out all other possible edges, this implies that G = C2r . Hence, n = 2r and G = Cn for n even. ◁

In F, we have dealt with signatures (1, . . . , 1) of length at least 4. We will consider (1, 1, 1) below. There cannot be
fewer than three connected components of only single vertices because each connected component of the metamour
graph is a cycle and therefore has at least 3 vertices.

So what is left to consider are the two cases that G′ contains a connected component with two vertices and G∗ has three
isolated vertices and the case that both G′ and G∗ have three isolated vertices. We consider these cases in the following
claims.

G. If σ (G′) = (2, 2) and σ (G∗) = (1, 1, 1), then we have

G ∈ {C4 ∇ C3,Ha
4,3,H

b
4,3}.

roof of G. Let {G′

1,G
′

2} = C(G′) and {G∗

1,G
∗

2,G
∗

3} = C(G∗). The size of each component is then determined, and we get
= 7.
The single-vertex components G∗

1 and G∗

2 need a common neighbor, as well as G∗

2 and G∗

3, and G∗

1 and G∗

3. At least two of
these common neighbors are from the same connected component of G′, because G′ has only two connected components.
Let without loss of generality (by renumbering G′

1 and G′

2) this connected component be G′

1. As a result, every component
G∗

1, G
∗

2 and G∗

3 is adjacent to G′

1, and {G′

1,G
∗

1}, {G
′

1,G
∗

2} and {G′

1,G
∗

2} ∈ E(GM ).
The connected component G′

2 has to be adjacent to some component of G∗ because G is connected, so assume without
loss of generality (by renumbering G∗

1, G
∗

2 and G∗

3) that {G′

2,G
∗

1} ∈ E(GM ). The current situation is shown in Fig. 9.24(a).
Now if both {G′

2,G
∗

2} and {G′

2,G
∗

3} are in E(GM ), then G is fully determined and G = C4 ∇ C3. If only one of {G′

2,G
∗

2} and
{G′

2,G
∗

3} is in E(GM ), then we have G = Ha
4,3, and if none of {G′

2,G
∗

2} and {G′

2,G
∗

3} is in E(GM ), then G = Hb
4,3. As one of

these three settings has to occur, this proof is completed. ◁

. If σ (G′) = (2, 1, 1) and σ (G∗) = (1, 1, 1), then we have

G ∈ {Hc
4,3,H

d
4,3}.

Proof of H. Let {G′

1,G
′

2,G
′

3} = C(G′) and {G∗

1,G
∗

2,G
∗

3} = C(G∗) such that |V (G′

1)| = 2. The size of each other component is
then determined. We get n = 7.

As G is connected, let us assume without loss of generality (by renumbering G∗

1, G
∗

2 and G∗

3) that {G′

2,G
∗

2} and {G′

3,G
∗

3} ∈

E(GM ). Because of B, the vertices of G′

2 and G′

3 cannot have a common neighbor, therefore {G′

2,G
∗

3} and {G′

3,G
∗

2} ̸∈ E(GM )
holds.
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Fig. 9.24. Subgraphs of the situations in the proofs of G and H.

Fig. 9.25. Subgraphs of the situation in the proof of I.

The only choice for a common neighbor of G∗

2 and G∗

3 is G′

1, therefore {G′

1,G
∗

2} and {G′

1,G
∗

3} ∈ E(GM ).
If G′

1 is not adjacent in GM to G∗

1, then we have to have {G′

2,G
∗

1} and {G′

3,G
∗

1} ∈ E(GM ) so that G∗

1 and G∗

2 as well as G∗

1 and
G∗

3 have a common neighbor. But then G′

2 and G′

3 get the common neighbor G∗

1 which is a contradiction to B. Therefore,
we have {G′

1,G
∗

1} ∈ E(GM ). The current situation is shown in Fig. 9.24(b).
Furthermore, not both of G′

2 and G′

3 can be adjacent to the vertex of G∗

1, so assume without loss of generality (by
renumbering G′

2 and G′

3) that {G′

3,G
∗

1} ̸∈ E(GM ).
Now if {G′

2,G
∗

1} ∈ E(GM ), then G = Hc
4,3. If {G′

2,G
∗

1} ̸∈ E(GM ), then G = Hd
4,3. This completes the proof. ◁

Now the only case left to consider is that both G′ and G∗ contain three isolated vertices.

I. If σ (G′) = (1, 1, 1) and σ (G∗) = (1, 1, 1), then we have

G ∈ {C6, C3 ∇ C3,Ha
3,3,H

b
3,3,H

c
3,3,H

d
3,3,H

e
3,3}.

roof of I. Let {G′

1,G
′

2,G
′

3} = C(G′) and{G∗

1,G
∗

2,G
∗

3} = C(G∗). Then clearly n = 6.
We first consider the case that every connected component has at most degree 2 in GM . If a vertex has degree 1, then

n order to have a common neighbor with its both metamours, the component it is adjacent to has to have degree 3, a
ontradiction. Therefore, every vertex has degree 2. Due to the fact that G is connected, this implies that G = C6, so in
his case we are done.

Now assume there is at least one component that has degree 3 in GM . Let without loss of generality (by switching G′

nd G∗ and by renumbering the connected components of G′) this component be G′

1. Then we have {G′

1,G
∗

1}, {G
′

1,G
∗

2} and
{G′

1,G
∗

3} ∈ E(GM ).
If every component of G′ has degree 3 in GM , then G = C3 ∇ C3, so also in this case we are done. Hence, we can assume

without loss of generality (by renumbering G′

2 and G′

3 and by renumbering the components of G∗) that {G′

3,G
∗

3} ̸∈ E(GM ).
Now G′

3 and G′

2 need a common neighbor. This cannot be G∗

3. Assume without loss of generality (by renumbering G∗

1
and G∗

2) that the common neighbor is G∗

2. Then this implies that {G′

2,G
∗

2} and {G′

3,G
∗

2} ∈ E(GM ). The current situation is
shown in Fig. 9.25.

The potential edges, which status is still undetermined, are {G′

2,G
∗

1}, {G
′

2,G
∗

3} and {G′

3,G
∗

1}. At this stage, if each of these
pairs is a non-edge in GM , then it is easy to see that whenever two vertices should be metamours they are metamours,
to be precise all components of G′ have the common neighbor G∗

2 and all components of G∗ have the common neighbor
G′

1. Therefore, we have enough edges in GM , so that additional edges between components of G′ and G∗ can be included
without interfering with the metamours.

Now we first consider all cases where {G′

2,G
∗

3} ∈ E(GM ). In this case if both of {G′

2,G
∗

1} and {G′

3,G
∗

1} are in E(GM ), then
G = Ha

3,3. If {G′

2,G
∗

1} ̸∈ E(GM ) and {G′

3,G
∗

1} ∈ E(GM ), then G = Hb
3,3. If {G′

2,G
∗

1} ∈ E(GM ) and {G′

3,G
∗

1} ̸∈ E(GM ), then G = Hc
3,3.

And finally, if {G′

2,G
∗

1} ̸∈ E(GM ) and {G′

3,G
∗

1} ̸∈ E(GM ), then G = Hd
3,3.

Next we consider the case where {G′

2,G
∗

3} ̸∈ E(GM ). If in this case both of {G′

2,G
∗

1} and {G′

3,G
∗

1} are in E(GM ), then
G = Hc

3,3. If one of {G′

2,G
∗

1} and {G′

3,G
∗

1} is in E(GM ), then G = Hd
3,3. If none of {G′

2,G
∗

1} and {G′

3,G
∗

1} is in E(GM ), then
G = He .
3,3
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Eventually, we have considered all cases and proven what we wanted to show. ◁

Finally, we are finished in all cases and therefore the proof of Proposition 9.7 is complete. □

.3. Assembling results & other proofs

With all results above, we are now able to prove the main theorem of this section which provides a characterization
f 2-metamour-regular graphs.

roof of Theorem 3.13. Let G be 2-metamour-regular and M its metamour graph. We apply Theorem 3.20 with k = 2.
his leads us to one of three cases.
Case (b) of Theorem 3.20 gives

G = M1 ∇ · · · ∇ Mt

ith {M1, . . . ,Mt} = C(M) and t ≥ 2. By Observation 3.12 every connected component Mi, i ∈ {1, . . . , t}, is a cycle Cni .
This results in (a) of Theorem 3.13 for t ≥ 2.

If we are in case (a) of Theorem 3.20, then the metamour graph M is connected and we apply Proposition 9.6. If we are
in case (c) of Theorem 3.20, then the metamour graph consists of exactly two connected components and we can apply
Proposition 9.7. Collecting all graphs coming from these two propositions yields the remaining graphs of (a), (b) and (c)
of Theorem 3.13.

For the other direction, Proposition 3.19 implies that the graph G in (a) of Theorem 3.13 is a 2-metamour-regular graph
for t ≥ 2. Furthermore, it is easy to check that all other mentioned graphs are 2-metamour-regular, which proves this
side of the equivalence and completes the proof. □

Finally we are able to prove the following corollaries of Theorem 3.13.

Proof of Corollary 3.15. The result is an immediate consequence of Theorem 3.13. □

Proof of Corollary 3.16. Corollary 3.15 provides a characterization of all 2-metamour-regular graphs with n ≥ 9 vertices.
It is easy to see that all of these graphs are either 2-regular (in the case of Cn) or (n−3)-regular. This proves one direction
of the equivalence.

For the other direction first consider a connected 2-regular graph on n vertices. Clearly, this graph equals Cn, therefore
this graph is 2-metamour-regular. If a connected graph is (n − 3)-regular, then its complement G is a 2-regular graph.
s a result, each connected component of G is a cycle graph. Let Cn1 , . . . , Cnt be the connected components of G. It is
asy to see that then ni ≥ 3 and n = n1 + · · · + nt hold. In consequence, G = Cn1 ∇ · · · ∇ Cnt holds and therefore G is
-metamour-regular. This completes the proof. □

roof of Corollary 3.17. The statement of the corollary is a direct consequence of Theorem 3.13. □

roof of Corollary 3.18. We use the characterization provided by Theorem 3.13. So let us consider 2-metamour-regular
raphs. Such a graph has at least n ≥ 5 vertices.
In case (a), there is one graph per integer partition of n into a sum, where each summand is at least 3. Note that the

raph operator ∇ is commutative which coincides with the irrelevance of the order of the summands of the sum. There
re p3(n) many such partitions.
Case (b) gives exactly one graph for each n ≥ 5. The graph C5 is counted in both (a) and (b); see first item of

emark 3.14. Case (c) brings in additionally 8 graphs for n = 6, 6 graphs for n = 7 and 3 graphs for n = 8.
In total, this gives the claimed numbers. □

This completes all proofs of the present paper.

0. Conclusions & open problems

In this paper we have introduced the metamour graph M of a graph G: The set of vertices of M is the set of vertices of
and two vertices are adjacent in M if and only if they are at distance 2 in G, i.e., they are metamours. This definition is
otivated by polyamorous relationships, where two persons are metamours if they have a relationship with a common
artner, but are not in a relationship themselves.
We focused on k-metamour-regular graphs, i.e., graphs in which every vertex has exactly k metamours. We presented

generic construction to obtain k-metamour-regular graphs from k-regular graphs for an arbitrary k ≥ 0. Furthermore,
n our main results, we provided a full characterization of all k-metamour-regular graphs for each k ∈ {0, 1, 2}. These
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haracterizations revealed that with a few exceptions, all graphs come from the generic construction. In particular,

• for k = 0 every k-metamour-regular graph is obtained by the generic construction.
• For k = 1 there is only one exceptional graph that is k-metamour-regular and not obtained by the generic

construction.
• In the case of k = 2 there are 17 exceptional graphs with at most 8 vertices and a family of graphs, one for each

number of vertices at least 6, that are 2-metamour-regular and cannot be created by the generic construction.

dditionally, we were able to characterize all graphs where every vertex has at most one metamour and give properties
f the structure of graphs where every vertex has at most k metamours for arbitrary k ≥ 0. Every characterization is
ccompanied by counting for each number of vertices how many unlabeled graphs there are.
The obvious unanswered question is clearly the following.

uestion 10.1. What is a characterization of k-metamour-regular graphs for each k ≥ 3?

This is of particular interest for k = 3. As our generic construction yields k-metamour-regular graphs for every k ≥ 0,
e clearly already have determined a lot of 3-metamour-regular graphs. It would, however, be lovely to determine all
emaining graphs. Another interesting question is about fixed maximum metamour-degree.

uestion 10.2. What is a characterization of all graphs that have maximum metamour-degree k?

We have answered this question for k ∈ {0, 1} and would be delighted to know the answer in general, but as first
teps specifically for k = 2 and k = 3.
It would also be interesting to find some structure in the graphs that are k-metamour-regular and cannot be obtained

ith our generic construction. In particular, we ask the following.

uestion 10.3. Is it possible to give properties (necessary or sufficient) of the exceptional graphs or graph classes?

When dealing with metamour graphs, one question to ask is whether it is possible to characterize all graphs whose
etamour graph has a certain property. In the present paper we have started to give an answer for the feature that

he metamour graph is k-regular. But what about other graph classes? Of course it would be interesting to answer the
ollowing questions.

uestion 10.4. Is it possible to characterize all graphs whose metamour graph is in some graph class like planar, bipartite,
ulerian or Hamiltonian graphs or like graphs of a certain diameter, girth, stability number or chromatic number?

Another question of interest concerns constructing graphs, namely given a graph M , is there a graph G such that M is
he metamour graph of G? If M is not connected, then the answer is easy and also provided in this paper, namely G = M
s such a graph. However, if M is connected this question is still open and an answer more complicated. This give rise to
he following question.

uestion 10.5. What is a characterization of the class of graphs with the property that each graph in this class is the metamour
raph of some graph?

Motivated by [29] we ask the following.

uestion 10.6. What is a characterization of the class of graphs, where every graph is isomorphic to its metamour graph?

Going into another direction, one can also think about random graphs like the graphs from the Erdős–Rényi model
(n, p).

uestion 10.7. Given a random graph of G(n, p), which properties does its metamour graph have? Is there a critical value for
(depending on n) such that the metamour graph is connected?

In enumerative and probabilistic combinatorics the following question arise.

uestion 10.8. Given a random graph model, for example that all graphs with the same number of vertices are equally likely,
hat is the expected value of the metamour-degree? What about its distribution?

Most of the results and open questions focus on the number of vertices of the graph and metamour graph respectively,
s these two numbers match. But it would be interesting to know how the number of edges of the metamour graph of a
raph relates to the number of edges in this graph. Specifically, we ask the following questions.

uestion 10.9. Given a graph G with m edges, in which range can the number of edges of the metamour graph of G be?

uestion 10.10. What is the distribution of the number of edges of the metamour graph over all possible graphs with m edges?
217



E. Gaar and D. Krenn Discrete Applied Mathematics 324 (2023) 181–218

R
eferences

[1] Jin Akiyama, Kimiko Kaneko, Slobodan Simić, Graph equations for line graphs and n-th power graphs. I, Publ. Inst. Math. (Beograd) (N.S.) 23
(37) (1978) 5–8.

[2] Noga Alon, Bojan Mohar, The chromatic number of graph powers, Combin. Probab. Comput. 11 (1) (2002) 1–10.
[3] Ali Azimi, D.G. Mohammad Farrokhi, Simple graphs whose 2-distance graphs are paths or cycles, Matematiche (Catania) 69 (2) (2014) 183–191.
[4] Ali Azimi, D.G. Mohammad Farrokhi, Self 2-distance graphs, Canad. Math. Bull. 60 (1) (2017) 26–42.
[5] Marthe Bonamy, Benjamin Lévêque, Alexandre Pinlou, 2-distance coloring of sparse graphs, J. Graph Theory 77 (3) (2014) 190–218.
[6] John A. Bondy, Uppaluri S.R. Murty, [Graph theory], in: Graduate Texts in Mathematics. Vol. 244, Springer, New York, 2008.
[7] Oleg V. Borodin, Anna O. Ivanova, Tatyana K. Neustroeva, 2-distance coloring of sparse planar graphs, Sib. Èlektron. Mat. Izv. 1 (2004) 76–90.
[8] Doruk Bozdağ, Ümit V. Çatalyürek, Assefaw H. Gebremedhin, Fredrik Manne, Erik G. Boman, Füsun Özgüner, Distributed-memory parallel

algorithms for distance-2 coloring and related problems in derivative computation, SIAM J. Sci. Comput. 32 (4) (2010) 2418–2446.
[9] Andries E. Brouwer, Arjeh M. Cohen, Arnold Neumaier, Distance-regular graphs, in: Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. Vol.

18, (3) Springer-Verlag, Berlin, 1989.
[10] Yuehua Bu, Lixia Wang, 2-distance coloring of sparse planar graphs, Adv. Math. (China) 48 (2) (2019) 145–155.
[11] Deepak Chaudhary, Pairs of vertices in graph having specific distance, StackOverflow, 2018, https://stackoverflow.com/q/50890827. (version:

2018-11-16).
[12] Ramuel P. Ching, Ian J.L. Garces, Characterizing 2-distance graphs, Asian-Eur. J. Math. 12 (1) (2019) 1950006, 10.
[13] Reinhard Diestel, [Graph theory], in: Graduate Texts in Mathematics, Vol. 173, fifth ed., Springer, Berlin, 2017.
[14] Frank Harary, Graph Theory, Addison-Wesley Publishing Co. Reading, Mass.-Menlo Park, Calif.-London, 1969.
[15] Janet W. Hardy, Dossie Easton, The Ethical Slut: A Practical Guide to Polyamory, Open Relationships, and Other Freedoms in Sex and Love,

third ed., Ten Speed Press, 2017.
[16] Jin Haritaworn, Chin ju Lin, Christian Klesse, Poly/logue: A critical introduction to polyamory, Sexualities 9 (5) (2006) 515–529.
[17] Janet S. Hyde, John D. DeLamater, Understanding Human Sexuality, ninth ed., McGraw-Hill Higher Education, 2006, accessed at http:

//highered.mcgraw-hill.com/sites/0072986360/student_view0/chapter12/glossary.html. (version 2020-08-31).
[18] Quaid Iqbal, Jack H. Koolen, Jongyook Park, Masood Ur Rehman, Distance-regular graphs with diameter 3 and eigenvalue a2 −c3 , Linear Algebra

Appl. 587 (2020) 271–290.
[19] Victor Loumngam Kamga, Weifan Wang, Ying Wang, Min Chen, 2-distance vertex-distinguishing index of subcubic graphs, J. Comb. Optim. 36

(1) (2018) 108–120.
[20] Derek Kiser, Teresa W. Haynes, Distance-2 domatic numbers of grid graphs, Congr. Numer. 225 (2015) 55–62.
[21] Florica Kramer, Horst Kramer, A survey on the distance-colouring of graphs, Discrete Math. 308 (2–3) (2008) 422–426.
[22] Michael Molloy, Mohammad R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B 94

(2) (2005) 189–213.
[23] Morning Glory Zell-Ravenheart, A bouquet of lovers, green egg xxiii no. 89, 1990.
[24] Elisabeth Sheff, When Someone You Love Is Polyamorous: UnderstandIng Poly People and Relationships, Thorntree Press, 2016.
[25] Slobodan K. Simić, Graph equations for line graphs and nth distance graphs, Publ. Inst. Math. (Beograd) (N.S.) 33 (47) (1983) 203–216.
[26] Neil J.A. Sloane, Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, Inc. San Diego, CA, 1995.
[27] The On-Line Encyclopedia of Integer Sequences, 2020, http://oeis.org.
[28] Polly Underground, On graphs with Hamiltonian squares, Discrete Math. 21 (3) (1978) 323.
[29] Dominic van der Zypen, Graphs formed of vertices of distance 2, MathOverflow, 2019, https://mathoverflow.net/q/321877 (version: 2019-01-28).
[30] Franklin Veaux, Eve Rickert, More than Two: A Practical Guide to Ethical Polyamory, Thorntree Press, 2014.
[31] Eric W. Weisstein, Cocktail party graph, 2020, https://mathworld.wolfram.com/CocktailPartyGraph.html, 2020, from MathWorld—A Wolfram

Web Resource.
[32] Bohdan Zelinka, On k-domatic numbers of graphs, Czechoslovak Math. J. 33 (2) (1983) 309–313, (108).
[33] Zhong Fu Zhang, Jing Wen Li, Xiang En Chen, Hui Cheng, Bing Yao, D(β)-Vertex-distinguishing proper edge-coloring of graphs, Acta Math.

Sinica (Chin. Ser.) 49 (3) (2006) 703–708.
218

http://refhub.elsevier.com/S0166-218X(22)00367-5/sb1
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb1
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb1
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb2
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb3
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb4
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb5
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb6
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb7
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb8
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb8
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb8
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb9
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb9
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb9
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb10
https://stackoverflow.com/q/50890827
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb12
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb13
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb14
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb15
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb15
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb15
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb16
http://highered.mcgraw-hill.com/sites/0072986360/student_view0/chapter12/glossary.html
http://highered.mcgraw-hill.com/sites/0072986360/student_view0/chapter12/glossary.html
http://highered.mcgraw-hill.com/sites/0072986360/student_view0/chapter12/glossary.html
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb18
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb18
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb18
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb19
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb19
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb19
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb20
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb21
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb22
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb22
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb22
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb23
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb24
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb25
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb26
http://oeis.org
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb28
https://mathoverflow.net/q/321877
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb30
https://mathworld.wolfram.com/CocktailPartyGraph.html
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb32
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb33
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb33
http://refhub.elsevier.com/S0166-218X(22)00367-5/sb33

	A characterization of graphs with regular distance-2 graphs
	Introduction
	Outline
	Related literature

	Definitions, notation & foundations
	Graph-theoretic definitions, notation & conventions
	Metamours
	Metamour-degree & metamour-regularity
	Joins of graphs

	Characterizations & properties of metamour-regular graphs
	0-metamour-regular graphs
	1-metamour-regular graphs
	Graphs with maximum metamour-degree 1
	2-metamour-regular graphs
	k-metamour-regular graphs

	Proofs regarding foundations
	Proofs regarding k-metamour-regular graphs
	Proofs regarding 0-metamour-regular graphs
	Proofs regarding 1-metamour-regular graphs
	Proofs regarding graphs with maximum metamour-degree 1
	Proofs regarding 2-metamour-regular graphs
	Graphs with connected metamour graph
	Graphs with disconnected metamour graph
	Assembling results & other proofs

	Conclusions & open problems
	References


