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Abstract— The sources of somatosensory evoked potentials
(SEPs) and fields (SEFs), which is a standard paradigm, is
investigated using multichannel EEG and MEG simultaneous
recordings. The hypothesis that SEP & SEF sources are gener-
ated in the posterior bank of the central sulcus is tested, and
analyses are compared based on EEG only, MEG only, band-
pass filtered MEG, and both combined. To locate the sources,
the forward problem is first solved by using the boundary-
element method for realistic head models and by using a locally-
fitted-sphere approach for averaged head models consisting of
a set of connected volumes, typically representing the skull,
scalp, and brain. The location of each dipole is then estimated
using fixed MUSIC and current-density-reconstruction (CDR)
algorithms. For both analyses, the results demonstrate that the
band-pass filtered MEG can localize the sources accurately at
the desired region as compared to only EEG and unfiltered
MEG. For CDR analysis, it looks like MEG affects EEG during
the combined analyses. The MUSIC algorithm gives better
results than CDR, and when comparing the two head models,
the averaged and the realistic head models showed the same
result.

I. INTRODUCTION
The current sources of electrically stimulated somatosen-

sory evoked potentials (SEPs) following the median-nerve
stimulation have been reported in a large number of pa-
pers [e.g., 1-3]. Recently, multichannel simultaneous mea-
surements of both electric potentials, which provide in-
formation about the entire activity of the brain, including
deep and radially oriented sources, and magnetic fields,
which provide the most accurate localization of tangentially
oriented, superficially located sources, are used to record
SEPs and somatosensory evoked fields (SEFs), respectively.
The combination of both technologies with 3D magnetic-
resonance imaging (MRI) yields further information that
helps in separation and localization of focal brain activity.
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In order to locate the source for the specific activity
seen on the scalp, two problems need to be solved which
are the forward and the inverse problem. Finding the rules
of the signal propagation is the first step in every source-
analysis approach and is termed the ’forward problem’ [4].
This problem involves calculating the electric potentials or
magnetic fields generated by known current sources for a
given head model. Two head models are used: spherical
and realistic head geometries. Depending on the geometry
assumed for the volume-conductor model, the approaches
that lead to a solution for the forward problem are either
numerical or analytical [5]. Analytical solutions exist for
simplified geometries, e. g., if the head is assumed to consist
of a set of nested concentric homogeneous spherical shells
representing the skull, scalp, and brain. The forward EEG
and MEG problem can then be solved by approximating
the skull using a locally fitted sphere, for which closed-
form solutions exist [6]. In this case, the forward EEG and
MEG problem can be solved numerically using a boundary-
element method (BEM). In the second step, signal-processing
techniques are applied to solve the ’inverse problem’ [7], that
is, to estimate the current sources inside the brain that best
fit the measured data. In our work, we used two approaches,
which apply certain constraints to obtain a unique solution.
The most common approach used is the dipole model, each
active brain region being modeled with at least one point-like
dipole with its position and orientation being fixed. Instead of
point-like sources, the other approach, the distributed-source
or current-density model, searches for the best estimate of a
distributed primary current and is known as the minimum-
norm algorithm, where the solution with the smallest norm
is selected from all those current distributions that could
explain the measured potential or magnetic field [8].

Thus, these two approaches based on realistic (using the
individual MRI and known individual electrode locations
from each of the subjects) and averaged (contained in the
CURRY software) head models is tested, using only EEG,
only MEG, band-pass filtered MEG, and both combined.

II. DATA ACQUISITION

Simultaneous EEG and MEG recording and storage of
the data to a single file, taken from five healthy subjects,
was done using the Elekta Neuromag system. The EEG data
were recorded with 128 electrodes, the MEG data from 306
sensors consisting of a triple sensor array, which optimally

                                                     
                                                        

                                          
                                                                                                                                            



combines the focal sensitivity of 204 planar gradiometers
and the widespread sensitivity of 102 magnetometers.

The right median nerve was stimulated at the wrist by
placing the anode between the tendons of the palmaris longus
muscle to record SEPs & SEFs. The nerve was stimulated
200 times with the interval of approximately 300ms between
each stimulus. The stimulus intensity was set high enough
to produce a consistent muscle twitch, which usually is
tolerable by the subject. The recording lasts for 2 minutes
for each subject. The EEG, band-pass filtered between 0.01
and 200Hz, and MEG signals were sampled at 1000Hz.

III. METHODS

Since SEPs & SEFs are typically not visible in the raw
data recorded from the surface electrodes, signal averaging is
used to extract the SEPs & SEFs picked up by the recording
electrodes. After being averaged, the most predominant peak
is observed in EEG and MEG signals known as N20 which
refers to a negative peak (N) at 20 ms after the median nerve
is stimulated. The stimulated signal reaches the somatosen-
sory cortex with a delay of 20 ms.

To reconstruct the N20-peak generators, first, the realistic
volume-conductor head model, consisting of three layers
with conductivity values 0.33, 0.0042, and 0.33S/m for the
brain, skull, and scalp, respectively, was constructed by BEM
for each subject. The surfaces required for computation of
the forward solution (boundaries of scalp, brain-skull, skull-
scalp, and cortical surface within the head) were automati-
cally determined from individual MRIs using a segmentation
technique by setting a threshold value in such a way that
the boundaries separating the tissues from each other do not
overlap. The second head model is the averaged head model.

The resulting forward model is then used to solve the
inverse problem. Dipole source analysis (fixed MUSIC) and
the minimum-norm estimate (MNE) from CDR algorithms
and standardized low-resolution brain electromagnetic to-
mography (sLORETA) are used to reconstruct the N20-peak.

A. Fixed MUSIC

A parametric approach, which requires an explicit a-priori
assumption about the cerebral current sources, is termed
”fixed MUSIC”. Parametric-optimization methods are also
known as equivalent current-dipole (ECD) methods or spatio-
temporal dipole-fit models. The final result is highly de-
pendent on the initial assumptions regarding the number of
dipoles to estimate the sources. In this approach, the fitting
procedure leads to an over-determined system of equations
since the number of unknown dipole parameters is less than
the number of electrodes and sensors. Thus, to estimate the
optimal number of dipoles, different optimization algorithms
are proposed in [7]. Here, the spatio-temporal decomposition
approach based on principal and independent-component
analysis (PCA/ICA) is used for defining the source space
and estimating the minimum number of dipoles.

MUSIC is a scanning method which does not compute
the misfit of a given dipole model per location as in the
case of least-squares estimation, but a specific MUSIC

metric, namely, the signal subspace. A signal subspace is
first estimated from the data by finding the singular value
decomposition (SVD) [9].

M = UΣRT (1)

The signal subspace is associated with the leading sin-
gular values of the spatio-temporal measured (m x n) data
matrix M for m channels and n time points. U stands
for the subspace orthogonal to the signal subspace which
is associated with the trailing singular values of M and
RT is the rotational component of the dipole. The number
of singular values that make up the signal subspace is a
parameter for this method. The MUSIC algorithm then scans
a single dipole model through the head volume and computes
projections onto this subspace. The MUSIC cost function to
be minimized is:

||NS
⊥f(r, e)||2

||f(r, e)||2
(2)

Here, NS
⊥ = I - (UsUT

s ) is the orthogonal projector
onto the noise subspace with Us being the signal subspace
spanned by the first left-singular vectors of U, f(r, e) is a
function consisting of r, location and e, orientation vectors.
This cost function is zero when f(r, e) is equivalent to one
of the true source locations and orientations.

An advantage over least-squares estimation is that each
source is found one by one, rather than searching simul-
taneously for all sources. The MUSIC algorithm gives the
best results for temporarily independent sources with fixed
orientations (e.g., SEPs) [10].

The drawback of the ECD approach is that it is not
possible to localize extended or distributed sources. This
gives rise to distributed source models.

B. Minimum Norm Estimate

An increasing interest in current-density reconstruction
algorithms has occurred during the past few years. All these
algorithms have in common that elementary dipoles are
distributed on regular grids inside the head or in cortically
constrained implementations on the gray-matter layer [11].
The calculation of the strengths and orientations of these
dipoles usually leads to a highly under-determined system of
equations - the number of unknown dipole components are
greater than the number of electrodes and sensors. Thus, it
requires additional mathematical constraints (e.g., minimum-
norm and variance-weighted minimum-norm) to yield unique
solutions.

A generalized formulation for the minimum-norm solution
of the inverse problem with a squared deviation, ∆2, and the
dipole component vector, j, can be written as follows:

∆2 = |D(M− Lj)|2 + λ2|Cj|2 (3)

The data term, |D(M− Lj)|2, (measuring the closeness
of the obtained solution to the data) and the constraining
model term, M(j), (measuring the closeness to a given

    
                                                                                                                                            



source model) are optimized simultaneously. Both are linked
using a regularization parameter, λ. M is the spatiotemporal
measured data matrix (m x n), lead-field matrix L (m x
c current dipole components), D is an (m x m) weighting
matrix of the sensors, and C is a (c x c) weighting matrix of
the current dipole components. CURRY offers the goodness-
of-fit (1/SNR) criterion for determining the optimal value
of the regularization parameter so that no overfitting or
underfitting of the data occurs. Thus, within the minimum-
norm least-squares (MNLS) framework, the solution that has
the minimum power is chosen from the non-unique solution
set. This standard solution is known to generate very smooth
solutions and favors superficial source distributions, even if
the true source is a deeper, more focal, current generator. This
is due to the reason that small currents close to the detectors
can produce fields of similar strengths as larger currents
at greater depths. To compensate for the undesired depth
dependency of this approach, the currents can be weighted
to account for the lower gains of deeper dipole components
(lead-field normalization) which leads to the second method
known as sLORETA.

C. Standardized Low-Resolution Brain Electromagnetic To-
mography

sLORETA is a method in which localization is based on
images of standardized current density. It is a post-processing
step for MNLS solutions, where it uses the current-density
estimate obtained from the MNE and standardizes or divides
each source by its variance, which is due to the actual source
variance and variation due to the noisy measurements.

It was found that, sLORETA had exact zero-error local-
ization when reconstructing single sources, in all noise-free
simulations although the image was blurred, that is, the
maximum of the estimated current-density power matches
with that of the exact dipole location. In all noisy simulations,
it had the lowest localization errors as compared with MNE
[9].

IV. RESULTS

The two source-localization approaches (dipole-fit ap-
proach using fixed MUSIC algorithm and CDR approach
using MNE and sLORETA algorithms) were applied on
only EEG, only MEG, band-pass filtered MEG, and both
combined, based on averaged and individual head model of
five healthy subjects to find out the correct approach for
estimating the sources having the location as an a-priori
information. For SEPs & SEFs, the sources are expected to
be located in the contralateral side of the applied stimulus.
In this study, the stimulus was given on the subject’s right
hand which implies that the corresponding source location
should be on the left posterior bank of the central sulcus.

The steps used for source localization are as follows:
1) Detect events based on the stimuli. The stimuli time

intervals are not consistent (∼ 300 ms) throughout the
whole recording. Thus to avoid overlapping of events
during detection, -50ms before the start of the stimulus

and +50ms after the end of the stimulus were used to
separate them.

2) Pre-processing steps like notch filtering to avoid the
50 Hz power line artifact and its harmonics and base-
line correction to remove a constant offset from the
data were used. For a constant baseline correction, a
constant pre-trigger was used to determine for each
channel the offset that is subtracted from the data.

3) Average the pre-processed detected events. The noise
level was estimated during the 40ms prestimulus pe-
riod, which is the region considered as noise for SNR
calculation.

4) Define the ground truth signal interval for the source
analysis, that is, the interval where the N20-peak is
clearly seen in the selected channels of EEG and MEG
that are located on the left posterior bank of the central
sulcus.

5) Perform PCA/ICA analysis to determine the number
of dipoles, depending on the SNR values (SNR’s>1),
that are used for the dipole-fit algorithm (fixed MU-
SIC). PCA/ICA filtering was applied to remove the
deselected components from the measured data that are
obtained after PCA/ICA decomposition, which were
considered as noise (SNR’s<0.9).

6) Finally, perform the dipole-fit algorithm on individual
and averaged head models and apply CDR algorithms
on the individual head models.

The consistency of localization was quite variable from
subject to subject as can be seen from table 1. Comparison
of source locations are done using visual inspection.

TABLE I
NUMBER OF SUBJECTS THAT SHOWED THE CORRECT ESTIMATES OF THE

SOURCE FOR THE INDIVIDUAL AND AVERAGED HEAD MODEL USING

DIPOLE (FIXED MUSIC) AND CDR (MNE AND SLORETA) SOURCE

ANALYSIS.

EEG MEG MEG BP EEG+MEG
Dipole-Individual 3 3 5 3
Dipole-Averaged 3 4 5 3
MNE-Individual 4 1 5 2

sLORETA-Individual 3 1 5 2

In the dipole analysis, both the averaged and the individual
head models resulted in almost the same number of subjects
that showed the correct estimates of the source. In the
CDR analysis, both MNE and sLORETA gave almost the
same results. The effect of MEG on EEG is also observed
during the combined analyses where the number of subjects
showing correct estimates of the source decreases from four
to two when using MNE and from three to two when using
sLORETA. In both dipole and CDR analysis, the result for
MEG shows an improvement after being band-pass (25-330
Hz) filtered, where all five subjects showed correct estimates
of the source.

Schematically, the results obtained for one of the represen-
tative subjects using dipole and CDR algorithms are shown
in Fig. 1 and Fig. 2, respectively.

    
                                                                                                                                            



Fig. 1. Single slice plot showing the location of the sources, indicated inside
the circles, using dipole fit analysis for EEG only based on A: realistic and
B: 3-shell spherical; MEG only based on C: realistic and D: spherical; band-
pass filtered MEG based on E: realistic and F: spherical; and both combined
based on G: realistic and H: 4-shell spherical head model respectively.

V. CONCLUSIONS
We have analyzed the electric and magnetic localization

of the N20 dipole source relative to the individual anatomy
and averaged head model. In addition to comparing the
different source-analysis algorithms, the differences between
two forward head-modeling techniques, namely, a boundary
element method and a locally fitted-sphere approach were
also compared. In conclusion, as was expected, the dipole
analysis, where both the averaged and the individual head
models resulted in almost similar result, showed better results
than current-density-reconstruction algorithms. An effect of
MEG on EEG is observed during combined analyses when
using CDR algorithms, due to the software limitation which
does not enable us to perform the band-pass filtering sepa-
rately on the MEG data when analyzing both EEG and MEG.
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