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Abstract— Due to the fact that the brain activity hardly
ever diminishes in healthy individuals, analysis of resting state
functionality of the brain seems pertinent. Various resting state
networks are active inside the idle brain at any time. Based
on various neuro-imaging studies, it is understood that various
structurally distant regions of the brain could be functionally
connected. Regions of the brain, that are functionally connected,
during rest constitutes to the resting state network. In the
present study, we employed the complex network measures
to estimate the presence of community structures within a
network. Such estimate is named as modularity. Instead of
using a traditional correlation matrix, we used a coherence
matrix taken from the causality measure between different
nodes. Our results show that in prolonged resting state the
modularity starts to decrease. This decrease was observed in
all the resting state networks and on both sides of the brain.
Our study highlights the usage of coherence matrix instead of
correlation matrix for complex network analysis.

I. INTRODUCTION

Recent research has shown that the brain activity exhibits
impulsive changes in blood oxygen level-dependent (BOLD)
signal. The BOLD signal is an indirect measure of the
action potentials and neuronal activity of the brain. Hence,
functional magnetic resonance imaging (fMRI) can help us to
understand the functional working of the brain, particularly
during the resting state [1]. The resting state is the state
of brain when it is not subjected to carry out an evoked
task. Since the extent of neuronal activity only changes
marginally between the resting and activity states, analysis
of neuronal activity during resting state is important [2].
The default mode network (DMN) gets activated instead of
the task positive network (TPN) during resting state. The
DMN is comprised of several different regions in the brain.
In addition to DMN other networks also get activated, e.g.,
attention and auditory networks. The resting state networks
are associated with low frequency fluctuations (LFF) of
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BOLD signal (0.01-0.1 Hz), hence the analysis of resting
state networks in LFF frequency range seems promising [3].
Correlation provides the basis of understanding the func-
tional segregation of the brain. If two regions of the brain
show high correlation then both of them account for the same
functional network inside the brain. The positive and negative
values of correlation between two signals quantify if they are
contributing in similar or dissimilar manner. Furthermore, the
maximum value of correlation can also help to understand if
one signal is delayed or advanced with respect to another one
[4]. Despite being one of the foremost tools for analyzing the
similarity between two signals (regions), correlation does not
shed any light on the causality, i.e., direction of information
flow between two signals. Such directionality can expose
the inherent chronological time ordering of the signals. The
direction of information between multiple signals can only
be inferred by employing causality estimating measures on
the signals of interest [4].
The classical methods of causality estimation for fMRI
signals include structural equation modeling (SEM) and dy-
namic causal modeling (DCM). These methods rely on some
a-priori assumption about underlying anatomical network,
hence limiting interpretation of their results [5]. Another
class of methods, known as parametric methods, is based
on the idea that the subjected time series follows a linear
regression and their regression coefficients can be exploited
to quantify causality between them [6]. Parametric meth-
ods include methods like partial directed coherence (PDC)
and directed transfer function (DTF). Further detail about
parametric methods of causality estimation can be found
elsewhere [4] [7].
Complex network analysis is another approach of under-
standing the functionally associated regions of the brain. It
offers conveniences such as meaningful and easily measur-
able parameters to assess the degree of organization between
different functionally connected regions of the brain [8]. In
complex network analysis, we calculate various parameters
to understand the relations and partitions present within the
network. Further explanation about network analysis and
various network parameters can be found elsewhere [8] [9].
Modularity is one network parameter, which quantifies the
degree of different community structures within a network
[10]. Furthermore, modularity has been reported to be of
great significance in the assessment of time-varying attributes
of functional brain connectivity [11]. There is a growing
acceptance of the fact that most biological networks have
a high degree of modularity within them, hence analyzing

                                          

                                                                                                                                            



the modularity between different brain networks seems prag-
matic [12].

II. METHODS

The parametric methods of causality estimation can only
be applied to the stationary signals, however, in reality most
of the physiological signals are non-stationary in nature
[8]. This can better be explained by considering a general
expression of auto-regressive (AR) model with order p as
[13]

yi(t) =

r=p∑
r=1

aij,ryj(t− r) + η(t). (1)

In Equation 1, η(t) is the random white noise while aij,r
are the multivariate auto-regressive coefficients (MVAR),
describing the effect of time series yj on time series yi
corresponding to delay r. The model order p specifies the
memory of the model, i.e., how many past values of yj are
required to completely describe its influence on yi. In case
of non-stationary signals, Equation 1 becomes [13]

yi(t) =

r=p∑
r=1

aij,r(t)yj(t− r) + η(t). (2)

As we can see that in Equation 2, MVAR coefficients have
now become time-dependent aij,r(t), hence now accommo-
dating the non-stationarity of the signals. The estimation of
these time-varying coefficients is complicated. However, it
can be solved using the dual extended Kalman filters (DEKF)
to calculate them [12]. The details about the usage of DEKF
to calculate time-varying MVAR coefficients can be found
elsewhere [14]. After the estimation of these parameters,
a variant of PDC known as time-resolved partial directed
coherence (tPDC) is used to quantify the causality from one
signal to another signal. The expression of tPDC, based on
the original expression of PDC [15], can be given as

|πi←j(ω, t)| =
|Aij(ω, t)|√∑
k |Akj(ω, t)|2

. (3)

In the above expression, the term πi←j(ω, t) expresses the
absolute magnitude of causality, in terms of coherence,
normalized to be between zero and one. The term Aij(ω, t) is
the Fourier transform of aij,r(t), already defined in Equation
2. Mathematically, πi←j(ω, t) is a matrix with scalar coher-
ence values stored inside. On one axis there is a frequency
range, while the other axis gives a complete time range,
hence using tPDC we can target any frequency and time of
our interest, while analyzing the causality between signals. In
the current study, we used tPDC to focus on LFF frequency
range and derived a directed coherence matrix based on
causality magnitudes. The resulting matrix can then be used
to estimate the network attributes by estimating modularity.
The mathematical expression of modularity can be given as
[8] [16]

Q =
∑
u∈M

euu − ∑
v∈M

evu

)2
 , (4)

where M is the number of distinct modules into which the
network is partitioned. The proportion of all the links that
join nodes in module u with nodes in module v [8]. The
modularity Q is a scalar measure, having either a positive
or a negative value. The positive modularity indicates the
presence of community structure within a network [10].

III. DATA ACQUISITION

In the present study, the resting state fMRI was recorded
from eleven healthy subjects (mean age 25 years, seven
females) for 10 minutes. BOLD-sensitive MRI was per-
formed with a 3-Tesla MR scanner (Philips, the Netherlands).
A single-shot T1-weighted, gradient-echo planar imaging
sequence was used for fMRI (TR = 2500 ms, TE = 45 ms, 32
slices, 64 x 64 matrix, slice thickness = 3.5 mm, FOV = 200
mm, flip angle = 90). With a repetition time of 2.5 seconds,
240 fMRI volumes were acquired in 600 seconds. A written
consent was taken from all the subjects and experiment was
carried out in compliance with Helsinki declaration.
Afterwards, all volumes were realigned to mitigate the
movement-related artifacts. Realignment was followed by
normalization, smoothing and slice time correction. The first
10 fMRI volumes were disposed off in order to lessen the
contributions of initial noise and magnetic saturation effects.
Using automated anatomical labeling (AAL), the brain was
parcellated into 116 regions and time course from each
region was extracted using toolboxes named CONN15 and
SPM08 (http://www.fil.ion.ucl.ac.uk/spm) [17] [18] [19]. Out
of those 116 regions of the brain, 45 were chosen on the basis
of their involvement in resting state networks. The details of
these regions and corresponding networks are highlighted in
Table I and II [20].
By choosing an optimum model order, the tPDC was applied
to fMRI time courses within each network in the both
hemispheres. Since, fMRI was recorded at a sampling rate
of 0.4 Hz, we can resolve till the frequency of 0.2 Hz on
the frequency axis of tPDC matrix. Since we are interested
in only low frequency fluctuations (LFF), the portion of
tPDC matrix corresponding to 0.01-0.1 Hz was taken. Then
the whole time axis of tPDC matrix was divided into eight
windows and the data within each window was averaged
to a yield single value for each window. Finally, a coher-
ence matrix was constructed between all the nodes of each
network based on the magnitudes of tPDC. This coherence
matrix has an intrinsic directed information and hence can
be used to analyze the complex network parameters for
each resting state network. This matrix was fed to the Brain
Connectivity Toolbox (BCT) and modularity was estimated
for each resting state network and for each time window.

IV. RESULTS

The results of this analysis are shown in Figures 1 and
2. We can observe that the typical modularity values for all
RSNs lie within range of 0.3 to 0.4. Furthermore, over the
course of time we can see that the values of modularity
decrease for all RSNs on both the hemispheres of the
brain. Since the difference in amplitudes between successive

    

                                                                                                                                            



TABLE I
NAMES AND ABBREVIATIONS OF DIFFERENT BRAIN REGIONS WHICH

CONSTITUTE TO RESTING STATE NETWORKS. EACH NODE IS PRESENT IN

BOTH HEMISPHERES [20].

Regions Abbreviation Regions Abbreviation
Amygdala AMYG Orbitofrontal ORBmid

cortex (middle)
Angular gyrus ANG Orbitofrontal ORBsup

cortex (superior)
Anterior ACG Pallidum PAL

Cingulate gyrus
Calcarine CAL Paracentral PCL

cortex Lobule
Caudate CAU Parahippocampal PHG

gyrus
Cuneus CUN Postcentral PoCG

gyrus
Fusiform FFG Posterior PCG

gyrus cingulate gyrus
Heschl HES Precentral PreCG
gyrus gyrus

Hippocampus HIP Precuneus PCUN

Inferior IOG Putamen PUT
ocipital gyrus

Inferior IFGoperc Rectus REC
frontal gyrus gyrus

(opercula)
Inferior IFGtriang Rolandic ROL

frontal gyrus operculum
(triangular)

Inferior IPL Superior SOG
parietal lobule occipital gyrus

Inferior ITG Superior SFGdor
temporal gyrus frontal gyrus

(dorsal)
Insula INS Superior SFGmed

frontal gyrus
(medial)

Lingual LING Superior SPG
gyrus parietal gyrus

Middle MCG Superior STG
cingulate gyrus temporal gyrus

Middle MOG Supplementary SMA
occipital gyrus motor area

Middle MFG Supramarginal SMG
frontal gyrus gyrus

Middle MTG Temporal TPOmid
temporal gyrus pole (middle)

Olfactory OLF Temporal TPOsup
temporal gyrus pole (superior)
Orbitofrontal ORBinf Thalamus THA

cortex (inferior)
Orbitofrontal ORBmed

cortex (medial)

windows is very small, we only performed the t-test between
first and last window. The results of the t-test show that
there is a significant (p < 0.05) decrease in the last window
as compared to the first window, except for RSN4 on right
side. The results of the t-test analysis between the first and
last windows is shown in Table III and Table IV.

V. CONCLUSIONS

In the presented work, we applied complex network anal-
ysis measures on the tPDC generated coherence matrices
to examine the changes in network traits over the course

TABLE II
DETAILS ABOUT COMPOSITION OF DIFFERENT RESTING STATE

NETWORKS. NAMES OF NODES ARE GIVEN IN ABBREVIATED FORM. FOR

FULL NAMES PLEASE REFER TO TABLE I [20].

Network Regions Involved
RSN1 Default Mode Network ORBmed, SFGdor, PCUN,

MTG, TPOmid, ACG, ANG,
REC, PCG, SFGmed

RSN2 Attention Network IFGtriang, ORBmid, IPL,
IFGoperc, SPG, ORBsup,

MFG, ORBinf
RSN3 Visual Recognition Network LING, IOG, FFG, CUN,

CAL, SOG, MOG
RSN4 Auditory Network SMG, ROL, HES,

INS, TPOsup, STG
RSN5 Sensory-motor Network PCL, PoCG, SMA, PreCG
RSN6 Sub-cortical Network OLF, THA, PUT, HIP,

CAU, AMYG, MCG, ITG,
PHG, PAL

Fig. 1. Results of modularity between different windows on left side of the
brain. A clear downward trend among all resting state networks is visible.

of time. We focused on modularity, since it helps us to
quantify the segregation within the network by estimating
the number of smaller communities. The presence of smaller
communities in the brain network has long been established
[21]. On the basis of our results, we can see that as the
resting state goes on, the modularity within each RSN
starts to reduce slightly. This implies that as the brain goes
into an extended resting state, functional segregation of
different sub-communities starts to cease. As per literature,
a decrease in modularity was observed in the case of aging
and disease [22] [23] [24]. Moreover, a change in modularity
over the course of time during the resting state fMRI was
also observed [25]. We speculate that as the brain steps
into ’pre-sleep’ mode, brain communities start to lose their
distinctiveness. However, further studies need to be done in
order to better understand the working of the brain during
resting state.
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