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Summary
Background andObjectives: The histological PRO score (I–III) helps to assess the
malignant potential of actinic keratoses (AK) by grading the dermal-epidermal
junction (DEJ) undulation. Line-field confocal optical coherence tomography (LC-
OCT) provides non-invasive real-time PRO score quantification. From LC-OCT
imaging data, training of an artificial intelligence (AI), using Convolutional Neu-
ral Networks (CNNs) for automated PRO score quantification of AK in vivomay be
achieved.
Patients and Methods: CNNs were trained to segment LC-OCT images of
healthy skin and AK. PRO score models were developed in accordance with the
histopathological gold standard and trained on a subset of 237 LC-OCTAK images
and tested on 76 images, comparing AI-computed PRO score to the imaging
experts’ visual consensus.
Results: Significant agreement was found in 57/76 (75%) cases. AI-automated
grading correlated best with the visual score for PRO II (84.8%) vs. PRO III (69.2%)
vs. PRO I (66.6%). Misinterpretation occurred in 25% of the cases mostly due to
shadowing of the DEJ and disruptive features such as hair follicles.
Conclusions: Thefindings suggest that CNNs are helpful for automatedPRO score
quantification in LC-OCT images. Thismayprovide the clinicianwith a feasible tool
for PRO score assessment in the follow-up of AK.

KEYWORDS
Actinic keratoses, artificial intelligence, Convolutional Neural Networks, LC-OCT, non-invasive diagnos-
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INTRODUCTION

Keratinocyte skin cancer (KSC) is one of the most common
skin cancers in elderly patients and is typically related to
extensive solar damageof the skin and/or immunosuppres-
sion beside other co-stimulatory factors.1
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In actinic keratosis (AK) lesions, being early stages of
KSC, keratinocyte dysplasia is limited to the epidermis.
In contrast, loss of the dermo-epidermal junction (DEJ)
can be observed in invasive KSC and defines its invasive
proliferation.2 Despite the fact that the DEJ remains intact
in AK lesions, its basal growth pattern changes under the

JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2023;21:1359–1366. wileyonlinelibrary.com/journal/ddg 1359

mailto:janis.thamm@uk-augsburg.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/ddg
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fddg.15194&domain=pdf&date_stamp=2023-09-14


1360 AI-BASED PRO SCORE ASSESSMENT IN ACTINIC KERATOSES

F IGURE 1 The histological PRO score and the PRO score detected by CNN algorithm from LC-OCT images (exemplary pictures). (a) For PRO I no
protrusions can be observed, while for PRO II the basal epidermis protrudes (orange circles) into the dermis. (e) For PRO III cone-like protrusions are
appreciated. (b, d and f) depicts the classified PRO score on LC-OCT images (image size: 1.2 × 0.5 mm2, lateral and axial resolution: 1.1 × 1.3 μm) using
CNN. (b) The green line resembles the intact DEJ, with no detected protrusions by the algorithm for PRO I. (d) For PRO II the algorithm detects slight
protrusions (orange squares) and for (f ) PRO III cone-like protrusions are detected comparable to histology.

transformation process towards invasive KSC.3 Macroscop-
ically, AK lesions appear as solitary pink to brown macules,
usually accompanied by hyperkeratosis on sun-exposed
areas of the skin.1 In the clinical setting, clinical and der-
matoscopical examinations are frequently used todiagnose
AK lesions and for therapy monitoring.4

Recently, distinct morphological changes in the basal
growth patterns were shown to predict the transformation
into invasive KSC. They can be categorized histologically
using the PRO score I-III.3,5 Early-stage PRO I is charac-
terized by the crowding of atypical keratinocytes in the
basal layer (Figure 1a), in PRO II round nests or protrusions
into the upper papillary dermis thinner than the overlying
epidermis are seen (Figure 1c). In PRO III, spikes of atypical
keratinocytes protruding into the dermis that are thicker
than the overlying epidermis can be observed (Figure 1e).5

Hence, from the clinical inspection of solitary and extensive
AK lesions alone, no valid prediction can be made about
the likelihood of progression into invasive KSC.6–8 While
histology is still considered the gold standard in diagnosis
of AK, it is often not used routinely for first-line or follow-up
diagnostics due to its invasiveness. For this reason, AK

lesions are often not assessed for their initial PRO score
and are also not monitored for changes of the PRO score
under treatment on a routine basis. Therefore, the assump-
tion of therapy response oftentimes depends on clinical
inspection alone, bearing the risk that transformation of
the basal growth patterns towards invasiveness may pro-
ceed, while the clinically apparent skin surface seems to
recover.
Line-field confocal optical coherence tomography (LC-

OCT) is a non-invasive imaging tool, providing real-time
in vivo imaging of the skin. LC-OCT creates higher reso-
lution scans of the epidermis and the upper dermis than
conventional optical coherence tomography (OCT), while
reaching a higher detection depth compared to reflectance
confocal microscopy (RCM).9 Previous studies conducted
by Ruini et al. could show that LC-OCT can provide in vivo
real-time imaging of AK lesions and allows evaluation of
the downward proliferation pattern of keratinocytes in AK
lesions in agreement with histology.9,10 Manually practiced
real time evaluation of the PRO score in AKs in LC-OCT
imagesmay considerably depend on the observers’subjec-
tive assessment and experience and therefore may show a
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high interobserver variability. Since LC-OCT imaging is used
only occasionally in the context of AK diagnosis and follow
up so far, clinicians may not be well trained in the use of
such technologies and might feel more comfortable with
making their diagnosis based on histology or clinical find-
ings. Therefore, providing the clinician with an automated
analysis of the imagesmay help to reduce the expertise gap
between invasive and non-invasive technologies and may
also lead to a more frequent use of LC-OCT imaging in the
diagnosis and follow-up of AK in daily routine. Automated
evaluation of visual data can be achieved using Convo-
lutional Neural Networks (CNN).11 Convolutional Neural
Networks are themost largely adopted deep learning archi-
tectures nowadays for computer vision. UNet is a specific
architecture of CNNs designed for medical image segmen-
tation. It allows a segmentation at pixel level, using a series
of convolutional layers with down sampling then a series
of up-sampling layers.12 In the medical field, CNNs already
demonstrated their significant value in the evaluation of
diabetic retinopathy, lymph node metastasis detection or
skin lesion classification on expert level.13–15

The aim of this study was to find out whether the use
of a CNN, that can automatically segment each skin layer
in LC-OCT images, could lead to an automated PRO score
assessment of AKs. Hypothesizing that training of an arti-
ficial intelligence (AI) on LC-OCT imaging data using CNN
may eventually allow automated real-time PRO score quan-
tification from live-imaging data, this would provide the
clinician with an adequate tool for automatized PRO score
detection and allow real-time assessment of epidermal and
dermal skin health.

PATIENTS ANDMETHODS

Dataset and annotation

The machine learning model was trained on a database of
LC-OCT vertical section images (histologic-like orientation)
acquired using the deepLive device (deepLiveTM DAMAE
Medical, Paris, France) on healthy skin (HS) volunteers and
patients with AK. The HS dataset included 3,701 LC-OCT
images obtained by DAMAE Medical from 142 individuals.
3,092 images were acquired from the face and 285 from
the upper arm of volunteers with skin phototype II (Fitz-
patrick) or less. 324 images were acquired from the face
and upper armof volunteers with skin phototype VI. The AK
data set contained a total of 534 images, gathered from 142
AK lesions of a cohort of 84 patients, recruited at the Uni-
versity Hospital of the Ludwig Maximilian University (LMU),
Munich, from December 2019 to December 2021. In 56
cases AKdiagnosiswas histopathologically confirmed. Prior
to analysis, the AK dataset was divided into two separate
study cohorts, namely a training and a test set. The train-
ing set comprised a total of 458 images, extracted from
104 AK lesions of 59 patients, obtained between Decem-
ber 2019 and June 2021. The test set consisted of 76 images

extracted from 38 AK lesions of 25 patients collected from
March 2021 to December 2021. For each lesion, a subset
of the most representative LC-OCT images was selected,
based on the visibility of the DEJ and protrusions. In cases
which exhibited a significant variation of the epidermis and
DEJ, multiple distinct images (up to 4 images per lesion
on the test set) were selected from the same lesion. For
each image of the training set the ground truth contour of
the DEJ was annotated manually by an operator at DAMAE
Medical, experienced in LC-OCT image reading. The ground
truth for PRO score assessment (PRO I–III) was obtained
from the consensus of two dermatologists and noninva-
sive imaging experts (J.W., E.S.) and a resident (J.T.) at LMU
und Augsburg University Hospitals. A subset of 76 images
of the test set was graded for the visual PRO score, applying
the same criteria as for histopathological sections. The data
pipeline used is depicted in Figure 2a.

Segmentation task

Segmentation models were first trained to segment skin
layers on the HS dataset (3,701 images, 142 individuals)
and subsequently finetuned on images from theAK dataset
(458 images, AK lesions, 59 patients). The detailed protocol
used can be followed in the supplement section.

PRO scoremodels

PRO score models were trained on a subset of 237 LC-
OCT AK images (67 lesions, 41 patients). Protrusions were
detected by comparing the position of the DEJ to a refer-
ence estimator of a flat DEJ position. The skin surface was
used as the estimator, shifted by the average thickness of
the epidermis. Areas with a DEJ below the estimator were
classified as protrusions. Once these areas were detected,
the width of the protrusion was quantified as the distance
between the two points of intersection where the DEJ
crossed the estimator. The depth was computed as the dif-
ference between the highest and lowest point of the DEJ, in
the interval described by the two crossing points expanded
by a small margin of 10 μm. This definition was congru-
ent with the definition of protrusions by Schmitz et al. and
is robust to small imperfections of the DEJ segmentation
(Figure 4).16 We used the protrusion depth (d) and DEJ
undulation metrics (σ) to subsequently compute the PRO
score, adapting the pipeline reported by Schmitz et al. to
ourmetrics.16 The following ruleswere learnedusing a shal-
low decision tree: PRO I was characterized by a low DEJ
undulation: σ < τ1, PRO II was characterized by a moder-
ate DEJ undulation: τ1 ≤ σ < τ2, PRO III is characterized by
a high DEJ undulation: τ2 ≤ σ and a high maximum pro-
trusion depth: d > τd, otherwise the image was graded
PRO II. The three thresholds were learned on the validation
data tomaximize the accuracy of the obtaineddecision tree
classifier (Figure 2c–f).

 16100387, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddg.15194 by U

niversitaetsbibl A
ugsburg, W

iley O
nline L

ibrary on [08/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1362 AI-BASED PRO SCORE ASSESSMENT IN ACTINIC KERATOSES

F IGURE 2 Training of the CNN algorithm for correct DEJ segmentation. (a) depicts the pipeline used for data annotation for the training and test set.
(b) shows exemplary LC-OCT images fed to the CNN algorithm for DEJ segmentation. (c–f ) Development of PRO score models in accordance with
histology. The segmentation was performed on LC-OCT images (image size: 1.2 × 0.5 mm2, lateral and axial resolution: 1.1 × 1.3 μm) as a 2D semantic
segmentation task using a U-Net with a SEResNeXt-50 backbone pretrained on ImageNet. Protrusions were detected by comparing the position of the
DEJ (green line) to a reference estimator (bright blue line) of a flat DEJ position. The skin surface (blue line) was used as the estimator, shifted by the
average thickness of the epidermis. (e, f ) Areas with a DEJ below the estimator were classified as protrusions (orange squares) and their width/depth
were automatically computed.

Statistics

Statistical testing was performed using Python’s SciPy
library.17 Experimental results were reported as means
and standard deviations for normally distributed data and
medians and interquartile ranges (IQR) for non-normally
distributed data. Numerical data were analyzed using Stu-
dent’s t test or Mann-Whitney Wilcoxon test, depending
on the normality of the distribution. The correlation of
the outcome of the segmentation model (DEJ undulation
and maximum protrusion depth) and the PRO score were
measured using Spearman’s correlation coefficient. Linearly
weighted Cohen Kappa coefficient with the attached 95%
CI was used to assess the agreement between visual grad-
ing and predicted PRO score. The level of significance was
set to p < 0.05 for all statistical analyses performed.

Ethical approval

Ethical approval was obtained from the Ethics Committee
of the LMUMunich under project no. 22–0781 for AI-based
training of diagnostic algorithms andproject no. 17–699 for
diagnosis of skin lesions using LC-OCT.

RESULTS

Segmentation task

The performance, as measured by IoU metric, was 0.979
± 0.016 on the healthy skin dataset and 0.968 ± 0.028 on
the AK dataset set (p < 0.001).
The average absolute distance εn (μm) in between the

ground truth contour of the DEJ and the prediction of the
model was 6.0 ± 3.8 μm on HS and 7.8 ± 6.5 μm on AK
(p < 0.001). An increase of this distance from AK PRO I
to PRO II was observed (4.7 ± 4.6 μm vs. 8.0 ± 7.3 μm,
p < 0.001), similar to PRO II to PRO III (8.0 ± 7.3 μm vs. 12.0
± 6.8 μm, p = 0.021) but not in between HS and AK PRO I
(6.0 ± 3.8 μm vs. 4.7 ± 4.6 μm, p = 0.15) (Figure 3a-c).

Visual PRO score grading and PRO score
models

For the clinical visual PRO score grading, 30/76 imageswere
identified as PRO I, 33/76 as PRO II and 13/76 as PRO III.
On this dataset, the AI undulation index and maximum
protrusion depth correlated with the visual protrusion
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AI-BASED PRO SCORE ASSESSMENT IN ACTINIC KERATOSES 1363

F IGURE 3 DEJ segmentation and PRO score models. (a) Significant increase of the DEJ undulation index and (b) the maximum protrusion depth
comparing the metrics of healthy skin to PRO I, PRO II and PRO III. (c) depicts the metrics on the segmentation task, revealing a significant increase of
average absolute distance εn (μm) in between the ground truth contour of the DEJ. (d) The AI-automated grading agreed with the experts’ visual grading
in 57/76 (75%) of the cases.

grading (r = 0.49 and r = 0.47 respectively, p << 0.001).
The undulation index increased from healthy skin to PRO I
(1.050 vs. 1.070, p < 0.05), from PRO I to PRO II (1.070 vs.
1.164, p < 0.05) and from PRO II to PRO III (1.164 vs. 1.362,
p < 0.05) (Figure 3a). The maximum protrusion depth
increased from PRO I to PRO II (0 vs. 38 μm, p < 0.05) and
from PRO II to PRO III (38 vs. 73 μm, p < 0.05) (Figure 3b).
The learned thresholds from the decision tree of the auto-
mated PRO score were τ1 = 1.09, τ2 = 1.3 and τd = 64.
Using these thresholds, the AI automated grading derived
from the undulation index andmaximumprotrusion depth
agreed with the expert visual grading in 57/76 (75%) of
the cases (Figure 3d). The weighted kappa for visual and AI
classification was κ = 0.60 (p = 6 × 10−8 < 0.001, 95% CI
= [0.43, 0.77]). 20/30 (66.7%) were identified successfully
as PRO I (Figure 1b), 28/33 (84.8%) as PRO II (Figure 1d) and
9/13 (69.2%) as PRO III (Figure 1f). Overall, in 11/76 (14.5%)
of cases AI overestimated protrusions, while in 8/76 (10.5%)
protrusions were underestimated. For PRO I, 10/30 were
falsely overestimated as PRO II. In the group of PRO II, 4/33
were underestimated as PRO I, while 1/33 was assigned to
PRO III. For PRO III, four underestimations occurred, 3/13
were falsely detected as PRO I, and1/13 as PRO II (Figure 3d).

DISCUSSION

This study was able to present the successful training of an
AI-based PRO score quantification algorithm for AK lesions
using CNNs. The AI-based PRO score quantification corre-

lated well with the experts’ visual grading (ground truth)
in 75% of the cases, with a statistically significant weighted
kappa κ = 0.60 (p = 6 × 10−8 < 0.001, 95 % CI = [0.43,
0.77]). Therefore, incidental accordance between AI-based
and visual grading was ruled out and implies effective
training of the algorithm, close to the experts’ consensus.
This level of accuracy was judged satisfactory, consider-
ing the inherent difficulty to establish PRO score ground
truth, with an inter-rater agreement Kappa of respectively
0.793 and 0.84 on histopathological and LC-OCT images
reported by Ruini et al. and Schmitz et al.9,16 Although a
highperformanceof the algorithmwasaccomplishedusing
the current database of more than 4,000 images, a larger
training databasewould consecutively improve correct DEJ
detection. Given the fact that the training database will
increase overtime, it is estimated that feeding the algo-
rithm with a larger data set of diverse skin types and AK
lesions,will lead to further improvement of theAI algorithm
over time accordingly. Convolutional Neural Networkswere
used successfully to explicitly segment the skin layers. Their
output was used to quantify the undulations of the DEJ
and the depth of protrusions with two simple and inter-
pretable features. Moreover, validation and test metrics
justified the reliability of thepipeline. Theapproachwasvol-
untarily based on segmentation results, although it would
be feasible to train a CNN classifier directly on the images.
But this would probably lead to two critical drawbacks,
which are elaborated in the following. The training to pre-
dict the PRO score directly from images would require a
lot of training images which are hard to obtain, and the
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F IGURE 4 Overestimation of the PRO score. (a) Errors in LC-OCT images (image size: 1.2 × 0.5 mm2, lateral and axial resolution: 1.1 × 1.3 μm) come
from poor segmentations, (b) other pathologies affecting the epidermis such as dermal cysts (white asterisk), (c) crust on the skin (white arrow) and (d)
ambiguous cases (AI detected a protrusion, which was not found characteristic in the experts’ evaluation).

final predictions made by the algorithm would be hard to
explain, since the model can learn from any feature of the
image and the algorithmmight not use the DEJ undulation
contrary to the histopathological gold standard. In contrast
the segmentation-based approach is performed by a very
simple machine learning algorithm on top of a complex
CNN, that segments the DEJ and the indicators used to
predict the PRO score are based on interpretable features
such as number of protrusions, protrusion depth and DEJ
undulation.
For the most challenging cases, namely identification of

PRO III, the average distance between the ground truth DEJ
segmentation and the model prediction was 12 μm, which
is lower than the average protrusion magnitude (approx-
imately 50 μm) for this score. This finding revealed that
the implemented model correctly captured protrusions,
enabling automated quantification. Both metrics inferred
from the segmentation did strongly correlate with the PRO
score, hence allowing for the use of simple rules to classify
it.
Convolutional Neural Networks for automatic PRO score

detection seemed to performbest in the detection of PRO II
with an accuracy of 28/33 (84.8%) vs. PRO III 9/13 (69.2%)
and PRO I 20/30 (66.6%) (Figure 3d).
Still, misinterpretation occurred in a quartile of the cases,

overall (Figure 3d). Overestimation of the PRO score was
found in 11/76 (14.5%) of the cases and predominantly
occurred in thegroupwithground truthPRO I. In this group,
10/30 caseswere falsely assigned to PRO II. For ground truth
PRO II, only a single case was overestimated as PRO III.
Different tint in static LC-OCT imageswasmade responsi-

ble for poor DEJ segmentation, leading to the AI’s assump-
tion of DEJ deterioration. Therefore, a PRO I was classified
falsely as PRO III (Figure 4a). In other cases, the overestima-
tion of the PRO score (PRO II instead of I) was based upon an
atrophic epidermis and anunderlying cyst, but also due to a
thick stratumcorneum, leading to anoverassessment of the
underlyingundulation (Figure4c). In contrast to theexperts’

inspection, it was clear that the thick stratum corneum truly
covered a homogenous undulation of the remaining upper
and basal epidermis and therefore a real protrusion of the
basal epidermal layer must not be assumed. Moreover, a
single, slight but broad basal protrusion, also led to the AI’s
assumption of extensive undulation (Figure 4d), whereas
the expert consensus did not identify the single protrusion
to be characteristic for PRO II. From those cases the main
two error sources for overestimation of the PRO score were
identifiedas either falseDEJ segmentationmainly related to
the limited image quality or a falsely claimed thick epider-
mis, leading to misinterpretation of basal undulation and
therefore assuming false protrusion.
Underestimation of the PRO score was found in 8/76

(10.5%) cases. For ground truth PRO II, 4/33 were under-
estimated as PRO I. More critical, for ground truth PRO III,
3/13 were falsely detected as PRO I, while a single case
was assigned to PRO II. Underestimation of the PRO score
was mostly due to a lack of sufficient image quality or epi-
dermal artifacts, such as the presence of deep adjacent
protrusion, only separated by thin papillae. The DEJ seg-
mentation tended to miss these protrusions and therefore
negatively affected the undulation metrics (Figure 5a, b). In
cases where no undulation was detected the AI assumed
a PRO I instead of III in three cases. In cases where the
ground truth was ambiguous and the small protrusions
were challenging to detect, a PRO I was assumed instead
of PRO II (Figure 5c, d). Predominantly, misinterpretation
was related to limited image quality, but this is an error
source,which caneasily be avoided. To solve theproblemof
over- or underestimation of the true PRO score, it is crucial
that the imaging data acquired needs to explicitly show the
DEJ and that possible artifacts, such as hair follicles or hair
structures overlapping the epidermis do not lead to obliter-
ation of the underlying DEJ structures. During live imaging
the expert can correct limited image quality by averting
artifacts leading to DEJ obliteration and thereby avoiding
misinterpretation of the latter.
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AI-BASED PRO SCORE ASSESSMENT IN ACTINIC KERATOSES 1365

F IGURE 5 Underestimation of the PRO score. (a, b) Errors in LC-OCT images (image size: 1.2 × 0.5 mm2, lateral and axial resolution: 1.1 × 1.3 μm)
come from protrusions missed by the segmentation model (white arrows show true protrusions), (c) not entirely visible protrusions (white circle) or (d)
images in which small protrusions are hard to detect and the ground truth is ambiguous (white circle).

While the overestimation of PRO score might be negligi-
ble in the clinical setting, underestimation of the true PRO
scoremight be significant, especially in the few caseswhere
a PRO III was misinterpreted as PRO I.
This might be critical, since histopathological findings

imply that the downward proliferation in AK is associated
with transformation towards KSC, which is reported in up
to 20% of the cases per annum.3,18 Hence, early detection
of PRO III using non-invasive imaging tool might be crucial
to implement an adequate treatment regime upon diagno-
sis. In a previous study, Schmitz et al. concluded, that from
the visual appearance of AK no clinical valid assumption of
the underlyingmalignant potential of AK can be assumed.7

Due to these findings, it was stated that AKs should be
admitted to an adequate treatment upon diagnosis and
should be monitored carefully.7 Other studies found that
Olsen III correlated with invasiveness towards KSC, while
Fernandez-Figueras et al. reported that KSC often emerges
from atypia in the lower third of the epidermis (AK I accord-
ing to Roewert-Huber) with normally appearing epidermal
upper layers.8,19 Hence, the value of clinical appearance
assessment of AK remains unclear and is discussed contro-
versially. The latest German S3 guidelines on AK and KSC do
consider that clinical appearance does not correlate with
the clinical risk or the histological grading, still there is no
advice on possible risk factors formalignant transformation
as only limited follow-up data on downward proliferation
and keratinocyte dysplasia exists.6

PRO scoring and classification of atypia in AK lesions
provide a histological grading of the malignant potential
of AK, but invasiveness of skin biopsy often prevents the
histological assessment and re-assessment, leading to the
dilemma of a possible under-assessment of AK downward
proliferation in the clinical setting.
LC-OCT was able to prove itself as a helpful non-invasive

imaging tool for epidermal and papillary dermal struc-
tures, capable of PRO Score quantification of AK lesions in

vivo. As AK show a broad intralesional histological grade
heterogenicity in even small lesions, LC-OCT guided PRO
score detection may allow a more holistic approach to
lesionmonitoring, whereas histology only allows a glimpse
underneath the biopsy site of interest.20 Therefore, LC-OCT
may tackle the need for a non-invasive imaging tool in
the follow-up of downward proliferation of AK. A possi-
ble future use of AI-automated PRO score quantification
may be provision of an assessment of the whole lesion
of interest, from which a minimum and maximum PRO
score, as well as an average score may be assessed, and
information of keratinocyte atypia may be gathered. These
characteristics may provide a more comprehensive follow-
up for the potential of malignant transformation in AK.
The implementation of a follow-up should not be time-
consuming, since it usually takes only a few minutes to
cover the entire lesion in live video mode, using LC-OCT.
Moreover, the AI computation time for the PRO score is
compatible with live display and the integration in clinical
routine would provide a live estimation of the PRO score
from each LC-OCT image at eight frames per seconds. In
conclusion, the possible integration of the AI computed
PRO score would not increase the examination time, but
would provide additional value by displaying real-time
evaluation of the computed PRO score. To achieve this
goal, additional data from three-dimensional LC-OCT
images as well as reduction of label noise are of need for
the training and test sets, to finally increase robustness and
performance of the segmentation and PRO score predic-
tion in order to quantify the protrusions’morphology more
precisely.
Quantification of the downward proliferation from LC-

OCT imaging in AK will allow a much more comprehensive
follow-up of AK. It may help to identify themost aggressive
area within the lesion or to recognize lesions resistant to
topical non-invasive therapy andmay allow the assessment
of the potential for malignant transformation.
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CONCLUSIONS

In conclusion, the findings presented, suggest that CNNs
are a helpful tool for automatic segmentation of skin lay-
ers in LC-OCT images and may be used in the process of
AI-based PRO score quantification. Use of an AI-based PRO
Score quantification tool to assess the PROScore on LC-OCT
imaging data may provide the clinician with a feasible way
to integrate PRO Score quantification as a future standard-
ized diagnostic assessment in the diagnosis and follow-up
of AKs.
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