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Abstract 

This study examines the relationship between inflation and greenhouse gas (GHG) emissions in three major econo-
mies: the United States of America (USA), the European Union (EU), and China. The analysis spans from 1960 to 2021 
for the USA and EU, and from 1971 to 2021 for China. A feedforward neural network model, optimized using the Lev-
enberg–Marquardt backpropagation algorithm, was employed to predict GHG emissions based on annual inflation 
rates and fossil fuel energy consumption. The study integrates historical data on inflation trends with GHG emis-
sions, measured in CO2 equivalents, and fossil fuel energy consumption, expressed as a percentage of total energy 
use. This multidimensional approach allows for a nuanced understanding of the economic-environmental interplay 
in these regions. Key findings indicate a nonlinear response of GHG emissions to inflation rates. In the USA, GHG 
emissions begin to decrease when inflation rates exceed 4.7%. Similarly, in the EU, a steep reduction in emissions 
is observed beyond a 7.5% inflation rate. China presents a more complex pattern, with two critical inflection points: 
the first at a 4.5% inflation rate, where GHG emissions start to decline sharply, and the second at a 7% inflation rate, 
beyond which further increases in inflation do not significantly reduce emissions. A critical global insight is the iden-
tification of a uniform inflation rate, around 4.4%, across all regions, at which GHG emissions consistently increase 
by 1%, hinting at a shared global economic behavior impacting the environment. This discovery is vital for policymak-
ers, emphasizing the need for tailored regional strategies that consider unique economic structures, energy policies, 
and environmental regulations, alongside a coordinated global approach.
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Introduction
Background
In the realm of global environmental economics, the con-
fluence of macroeconomic forces and ecological impacts 
has garnered increasing attention, signaling a pivotal 
shift in the way economic and environmental policies are 
conceived and implemented. The recent global economic 
crisis, marked by high inflation rates, has unfolded con-
currently with a significant rise in greenhouse gas (GHG) 
emissions. This scenario presents a dual challenge, par-
ticularly for leading economies such as the United 
States of America (USA), the People’s Republic of China 
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(China), and the European Union1 (EU). It underscores 
the urgency of understanding the complex interactions 
between fiscal and monetary policies, economic growth, 
inflation, and their broader implications for GHG emis-
sions. This understanding is critical in developing robust, 
sustainable economic and environmental strategies [1]. 
The integration of climate change considerations into 
macroeconomic policy models is essential. This integra-
tion illuminates the intrinsic interplay between economic 
policy decisions and their environmental consequences, 
emphasizing the interconnected nature of these domains 
[2]. Despite the critical importance of understanding how 
macroeconomic elements influence GHG emissions, this 
area remains underexplored. This gap in research is pri-
marily due to the intricate and multifaceted nature of the 
influencing factors.

The drive towards economic stability and environmen-
tal sustainability necessitates a deep understanding of 
the factors contributing to climate change, chief among 
them being GHG emissions. These emissions, stemming 
from various economic activities, are pivotal in shaping 
our planet’s future climate scenarios. Recognizing the 
composition and impact of GHG becomes fundamental 
in this context. GHGs are not monolithic but a collection 
of gases that include CO2, N2O, and CH4 [3]. Research-
ers measure the global warming impact of these gases 
using carbon dioxide equivalents (CO2eq). This stand-
ardized unit allows for a comparison of the warming 
impacts of various greenhouse gases. The conversion to 
CO2eq depends on each gas’s global warming perspective 
(GWP), which assesses its warming impact compared 
to CO2 over a specific timescale, commonly 100  years 
(GWP100). CO2 has a GWP of 1, however, N2O and CH4 
have far greater GWP100 values of 265-298 and 28-36, 
respectively [4, 5]. CO2eq emissions can be computed by 
multiplying the mass of each GHG by its GWP100 value. 
Total CO2eq emissions are calculated by adding the indi-
vidual CO2eq values for each gas. This method allows for 
an exhaustive evaluation of the overall warming effect of 
multiple GHGs, which simplifies the assessment of their 
combined effect on the environment.

Inflation can influence GHG emissions through multi-
ple pathways rooted in underlying macroeconomic prin-
ciples and empirical observations. High inflation affects 
consumer purchasing power, inhibits economic growth, 
and reduces energy demand and consumption, par-
ticularly in the fossil fuel sector. Market volatility limits 

long-term investments and consumer demand, distress-
ing supply systems. However, excessive inflation might 
encourage enterprises to cut costs and adopt clean tech-
nology, consequently supporting the low-carbon tran-
sition. Inflation also affects interest rates, combining 
economic fluctuation with market responses that influ-
ence emission patterns. These factors, both direct and 
intermediary, significantly sway the correlation between 
economic activities and emissions levels.

Nevertheless, environmental economists have been 
actively working to unravel the intricate link between 
monetary and fiscal policies and GHG emissions [6–8]. 
The complexity of these interlinked systems, further 
complicated by variables like technological innovation, 
consumer behavior, global supply chains, and energy 
policies, makes comprehensive analysis a daunting task 
[9]. This is particularly true given the divergent economic 
and policy trajectories observed in major economies [10]. 
The role of globalization in shaping these trajectories, as 
discussed by Frankel, highlights how international eco-
nomic integration affects environmental policy effec-
tiveness [11]. The International Energy Agency’s report 
provides a sector-specific perspective on emissions in 
the USA, China, and the EU [12], illustrating how simi-
lar economic conditions can lead to varied environmen-
tal impacts due to differences in policy approaches and 
industrial structures.

In the context of ongoing, environmental and eco-
nomic challenges that are shaping global policies and pri-
orities, the International Energy Agency [12] has revealed 
the emissions patterns of the world’s leading economies: 
the USA, China, and the EU in which combined they are 
responsible for nearly 50% of total worldwide emissions 
in recent years. Also, the report revealed that China is 
presently the world’s largest emitter, responsible for 31% 
of total global GHG emissions. the USA ranked second, 
generating 14% of worldwide GHG emissions as of 2021. 
Meanwhile, the EU contributed 7%.

According to the IEA report, China experienced a 
marginal decrease of 0.2% in CO2 emissions during the 
period between 2021 and 2022. The observed reduction 
in emissions can be attributed to several key factors. Pri-
marily, a decline in energy consumption coupled with 
a significant shift towards the generation of renewable 
energy has played a pivotal role. This transition towards 
cleaner energy sources has effectively mitigated a por-
tion of the emissions traditionally associated with coal 
production, a well-known major source of greenhouse 
gases. Conversely, the USA saw a slight increase of 0.8% 
in emissions, which is considered marginal compared 
to the percentage increase in previous years. Accord-
ing to the same report, the rise in inflation rates played a 
major role in this slight increase, as it led to a reduction 

1  In accordance with the datasets utilized in this study, the European Union 
member states included: Bulgaria, Croatia, Cyprus, Czechia, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, 
Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, 
Slovak Republic, Slovenia, Spain, and Sweden.



Page 3 of 18AlShafeey and Saleh Saleh ﻿Environmental Sciences Europe           (2024) 36:73 	

in energy consumption compared to 2019 and 2021. This 
reduction was particularly notable in coal emissions, 
while there was a slight increase in natural gas emis-
sions. Moreover, the report revealed that regardless of 
the massive obstacles such as the oil and gas shortages, 
hydrocarbon constraints caused by the dry spell, and the 
shutdown of multiple nuclear units, the EU succeeded in 
cutting its emissions by 2.5%. The observed decrease can 
be attributed to a confluence of factors, notably a reduc-
tion in overall energy consumption, the implementa-
tion of energy efficiency measures, and a strategic pivot 
towards alternative fuel sources.

Literature
The theoretical background for the relationship between 
inflation and  GHG  emissions relies on a wide range of 
environmental theories. The current study is influenced 
by one of the most widely known theories in the realm of 
environmental economics characterized by the Kuznets 
curve (EKC) hypothesis. The EKC suggests a U-shaped 
reversal relationship between economic progress and 
environmental pollution. This theory states that the envi-
ronment is primarily negatively affected by economic 
growth but begins to decline after a particular income 
threshold as countries shift to less polluting economies. 
The EKC serves as a foundation for examining how 
inflation affects emissions. High inflation may reduce 
economic output and consumption, pushing nations 
backward across the EKC curve and cutting emissions. 
However, due to nonlinear interactions, the nexus  is 
questionable.

The academic investigation into the relationship 
between inflation and GHG emissions has produced var-
ied results. On one hand, some studies highlight a direct 
correlation between high inflation rates and reduced 
GHG emissions due to dampened industrial and con-
sumer activities [13, 14]. On the other hand, research 
points to an inverse relationship, suggesting that inflation 
can drive up energy costs and stimulate investments in 
energy efficiency, potentially reducing emissions [15, 16]. 
These conflicting findings indicate a complex and multi-
faceted relationship that demands a more sophisticated 
analytical approach. Furthermore, the work of Ham-
ilton on the impact of oil prices on the macroeconomy 
provides insights into how energy markets can influence 
inflation and, consequently, environmental outcomes 
[17].

The contrasting findings regarding the impact of infla-
tion on GHG emissions were recently supported by 
insights from the Inflation Reduction Act (IRA) [18]. 
The IRA’s influence on GHG emissions is notably inter-
twined with inflationary trends. While it aims to reduce 
the costs associated with decarbonization and promote 

the adoption of clean energy, its effectiveness is signifi-
cantly shaped by broader macroeconomic factors, includ-
ing inflation. Manifestations of inflation, such as rising 
interest rates and increasing costs of materials and labor, 
have the potential to decelerate the pace of decarboniza-
tion. However, the IRA introduces various incentives, like 
tax credits and grants, specifically designed to counter-
balance these challenges posed by inflation. These meas-
ures aim to reduce the cost of clean energy technologies, 
thereby mitigating the adverse effects of inflation on 
efforts to lower GHG emissions. This situation highlights 
a complex interaction where, although the IRA contrib-
utes to emission reductions, its overall effectiveness is 
closely linked to the fluctuating economic conditions 
dominated by inflationary factors.

Building on the nuanced academic discourse sur-
rounding inflation and GHG emissions, Ronaghi et  al.’s 
2019 study offers a compelling perspective [13]. Analyz-
ing data from 2006 to 2015 within OPEC countries, they 
investigated the interplay between economic and govern-
ance factors against CO2 emissions. Their methodology, 
encompassing variables like GDP, foreign investment, 
and governance, alongside advanced statistical models, 
revealed a nuanced inverse relationship: each 1% increase 
in inflation corresponded to a 1.19% reduction in CO2 
emissions.

Furthermore, Ahmad et  al.’s 2020 study delved into 
the relationship between inflation instability and envi-
ronmental pollution across 40 Asian economies from 
1990 to 2018 [14]. Their analysis focused on variables 
such as inflation instability, CO2 emissions, and energy 
consumption, employing statistical techniques like 
cross-sectional tests, panel unit root tests, cointegration 
analysis, and FMOLS estimation. Their findings indi-
cate a positive effect of inflation instability on the envi-
ronment, evidenced by changes in CO2 emission levels. 
This research adds another layer to the complex interplay 
between economic factors and environmental outcomes, 
echoing the diverse perspectives in the field.

Ullah et al.’s 2020 study examined the impact of infla-
tion instability and GDP growth volatility on environ-
mental pollution in Pakistan from 1975 to 2018 [15]. 
Focusing on variables like inflation instability, GDP vol-
atility, and financial development, the study measured 
their effects on environmental indicators such as CO2, 
nitrous oxide, and methane emissions. The study utilized 
the asymmetric autoregressive (ARDL) statistical method 
to assess the impacts of both positive and negative infla-
tion shocks. In contrast to the previous findings, they dis-
covered that negative shocks in inflation instability led to 
an increase in CO2 and nitrous oxide emissions.

In 2021, Musarat et  al. conducted a study focused on 
the Malaysian construction industry to explore the effect 
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of inflation on CO2 emissions [16]. Recognizing the chal-
lenge of directly linking inflation and CO2 emissions, 
they employed intermediary variables like construction 
rates, building material prices, and the value of con-
struction work, alongside inflation as an independent 
variable and CO2 emissions as the dependent variable. 
Their methodological approach, using Spearman corre-
lation to account for the nonlinear relationship between 
these variables, led to the discovery that low inflation 
rates correlate with reduced CO2 emissions. However, 
their findings also present a paradox: in conditions of 
high inflation, efforts to curb inflation through economic 
growth paradoxically lead to an increase in CO2 emis-
sions, underscoring the intricate and sometimes counter-
intuitive dynamics at play between economic indicators 
and environmental impact.

A recent study by Grolleau and Weber explores the 
relationship between inflation and CO2 emissions over 
the period 1970–2020 across 189 countries [19]. The 
authors utilized fixed effects regressions and panel coin-
tegration tests, uncovering a modest but significant 
negative correlation between core inflation and CO2 
emissions. The study emphasizes that while inflation 
impacts emissions, this effect alone is insufficient for rec-
ommended CO2 reduction targets, indicating the need 
for additional policies.

Research objectives and motivations
The existing research regarding inflation-GHG emis-
sions nexus reveals conflicting findings, highlighting the 
need for more sophisticated analytical approaches. Cur-
rent methodologies, though robust, may not fully capture 
the complex, nonlinear dynamics of the economic-envi-
ronmental interplay. As the need for advanced analytical 
methods to address the conflicting findings in the infla-
tion-GHG emissions nexus is evident, machine learning 
(ML) offers a potential solution in this regard. Although 
the direct application of ML to study the impact of infla-
tion on GHG emissions is limited in existing literature, its 
capabilities are well-demonstrated in related fields. ML’s 
proficiency in handling complex, nonlinear data make it 
a promising tool for unraveling the intricate dynamics of 
economic and environmental interactions [20, 21].

Although there is a scarcity of studies using ML to 
assess the direct effect of inflation on GHG emissions in 
the literature, several studies have employed ML tech-
niques to analyze other aspects influencing GHG emis-
sions. For instance, a study in China used various ML 
algorithms, including k-nearest neighbors (KNN), to 
explore the relationship between economic growth, 
industrialization, and CO2 emissions, demonstrating 
the nuanced role of urbanization and industrial develop-
ment in emission levels [22]. Another research focused 

on agricultural soils in Canada, employing deep learning 
models like Long Short-Term Memory (LSTM) to predict 
CO2 and N2O emissions, showcasing ML’s ability to han-
dle complex environmental data [23]. Additionally, the 
Gaussian Process Regression (GPR) method was applied 
to predict CO2 emissions, offering a nonparametric 
approach to understanding emissions dynamics [24].

Addressing gaps found in the literature, this study 
employs a feedforward neural network model opti-
mized with the Levenberg–Marquardt backpropaga-
tion algorithm to assess the effects of inflation on GHG 
emissions in three major economies: the USA, EU, and 
China. The selection of the USA, EU, and China for com-
parative analysis is based on their significant influence in 
the global economic and environmental spheres. Each 
of these economies presents a unique mix of economic 
structures, policy orientations, and environmental chal-
lenges, offering a diverse array of scenarios to explore the 
inflation-GHG emissions interplay [25]. The comparative 
analysis reveals how the interplay between inflation and 
emissions varies under different economic structures, 
policy frameworks, and developmental contexts, provid-
ing insights that can inform more targeted policymaking. 
This comparative analysis aims to shed light on how dif-
fering economic contexts and policy frameworks impact 
the relationship between economic indicators and envi-
ronmental footprints.

The suggested approach in this study employs advanced 
machine learning techniques to explore the intricate 
dynamics between inflation, GHG emissions, and energy 
consumption, implying a deeper and more nuanced 
understanding than previous methodologies. Tradi-
tional research in this area has often been constrained to 
examining direct, linear relationships between singular 
economic indicators and emissions, typically within iso-
lated geographic regions or specific sectors. Such studies, 
while informative, tend to overlook the complex, non-
linear interactions that exist across global economic and 
environmental systems.

In stark contrast, this study proposes a holistic frame-
work that integrates a wide array of data points across a 
broad temporal scale. By leveraging the comprehensive 
analytical capabilities of machine learning algorithms, 
this research is poised to uncover subtle, context-specific 
patterns and trends. Moreover, this approach allows for 
the examination of feedback loops and indirect effects, 
such as how inflation-driven economic slowdowns might 
reduce emissions, or conversely, how rising costs of car-
bon-intensive energy sources could spur inflation and 
simultaneously drive shifts towards cleaner alternatives.

By employing this advanced methodology and com-
parative analysis, the study seeks to provide a more inte-
grated and temporally informed perspective, shedding 
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light on the multifaceted ways in which economic factors, 
energy use, and environmental outcomes are interlinked. 
It aspires to contribute to both academic knowledge and 
policy formulation, particularly in an era where the bal-
ance between economic growth and environmental sus-
tainability is becoming increasingly crucial [26]. This 
research aligns with the calls for an interdisciplinary 
approach to tackling global environmental challenges, 
echoing the sentiments of scholars like Rockström et al., 
who advocate for a comprehensive understanding of the 
interdependence between economic and ecological sys-
tems [27]. Additionally, it draws upon the principles out-
lined by the United Nations Sustainable Development 
Goals, particularly Goal 13 on Climate Action, highlight-
ing the critical need for integrated policies that address 
both economic stability and environmental preservation 
[28].

The manuscript is structured as follows: "Introduction" 
section introduces the topic. "Data collection and analy-
sis" section is dedicated to data collection and analysis. 
The methodology is discussed in "Methods" section. The 
findings are detailed in "Results" section, while "Discus-
sion" section provides an in-depth discussion of these 
results. Finally, the conclusion in the last section summa-
rizes the study’s main findings and implications.

Data collection and analysis
The research centers on three primary datasets cover-
ing the period from 1960 to 2021. These datasets pre-
dominantly focus on the regions of the USA, the EU, and 
China. It is noteworthy that certain data subsets specific 
to China began in 1971 and 1987.

The inflation dataset highlights the metric of infla-
tion, expressed in terms of consumer prices on an 
annual percentage basis. The dataset captures the 
essence of the annual inflation rate, gauged using the 
Consumer Price Index (CPI). CPI offers insights into 
the year-on-year percentage alterations in an average 
consumer’s expenditure pattern on a variety of goods 
and services. The central calculation model employed 
here is the Laspeyres formula [29]. The data pertain-
ing to the USA and EU span from 1960 to 2021, while 
for China, they span from 1987 to 2021. The primary 
source of this information is the World Bank’s data-
bank, with the foundational data being derived from 
the International Monetary Fund’s (IMF) International 
Financial Statistics Archive.

The fossil fuel energy consumption dataset represents 
the percentage of total energy consumption that arises 
from fossil fuels. This encompasses energy derivatives 
such as coal, oil, petroleum, and natural gas products. 

The dataset for the USA and EU spans from 1960 to 
2015, and for China, it starts from 1971 and extends 
through 2014. These data are extracted from the World 
Bank’s databank, whose roots are traced back to the 
International Economic Association (IEA) Statistics, 
copyrighted to the OECD/IEA in 2014.

Finally, the GHG emissions dataset is an amalgama-
tion of annual emission data on greenhouse gases. 
These emissions are transcribed into CO2 equivalents, 
covering the expansive timeline from 1850 to 2021. To 
standardize the emissions data, conversion multipliers 
sourced from the Intergovernmental Panel on Climate 
Change (IPCC) methodology in the IPCC AR6 report 
and based on a 100-year timescale were used [30]. The 
temporal coverage of this dataset ranged from 1960 to 
2021. Our World in Data is the primary source for this 
information, while the foundational data can be cred-
ited to Jones et  al. [31]. The dataset seamlessly inte-
grates the national emission records of CO2, CH4, and 
N2O, inclusive of both fossil fuel combustion and land 
use derivatives. Table  1 provides an overview of the 
three primary datasets used in the present research, 
detailing their essential characteristics for the USA, the 
EU, and China.

Descriptive data analysis overview
The inflation trends for the EU and USA from 1960 to 
2021 and for China from 1987 to 2021 can be found in 
Fig.  1. The data reflect annual inflation rates, providing 
insight into the economic fluctuations each region has 
experienced.

The EU and the USA showed relatively similar pat-
terns of inflation until the late 1980s, with the EU typi-
cally exhibiting slightly higher rates. Inflation rates 
peaked during the mid-1970s, with the EU reaching as 
high as 13.16% in 1974, coinciding with the global oil 
crisis, which significantly impacted Western economies. 
The USA experienced its highest inflation rate in 1980, at 
13.55%.

China’s data, which began in 1987, present a more vola-
tile inflation landscape with a dramatic spike in the late 
1980s and early 1990s, peaking at 24.26% in 1994. This 
period coincides with China’s transition from a planned 
economy to a more market-oriented economy. Post-1994, 
China showed a notable stabilization in inflation rates, 
with occasional fluctuations that reflected various stages 
of economic policy adjustments and market reforms.

The early 2000s marked a period of relative stability 
and lower inflation for the EU and the USA, whereas 
China’s rates show a mix of mild inflation and deflation, 
indicating a diverse impact of global economic condi-
tions on these economies. Notably, in 2009, following 
the global financial crisis, all three regions reported a 
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drop in inflation rates, with the USA and China even 
experiencing deflation.

The most recent data from 2020 and 2021 reflect the 
economic impact of the COVID-19 pandemic, with 
notable increases in inflation rates.

Annual greenhouse gas (GHG) emission data, meas-
ured in CO2 equivalents across the three studied 
regions spanning from 1960 to 2021, were also col-
lected, as shown in Fig. 2. The EU, starting at 3.7 billion 
tons of CO2 equivalents in 1960, initially experienced 
a gradual increase in emissions, reaching a peak in the 

mid-1970s. A subsequent pattern of decline and fluc-
tuation emerged, reflecting Europe’s proactive envi-
ronmental policies and shifts toward cleaner energy 
sources.

The US emissions trajectory paralleled that of the EU 
until the late 1980s, signifying similar industrial and eco-
nomic growth patterns. However, the USA peaks later, 
in the early 2000s, reaching more than 7 billion tons of 
CO2 equivalents, indicating a more prolonged period 
of high emission levels before showing signs of a down-
ward trend, which is consistent with a shift toward 

Table 1  Summary of datasets utilized in this study

Dataset name Variable Temporal 
scope (USA 
& EU)

Temporal 
scope 
(China)

Source

Inflation dataset Annual inflation (consumer prices, %) 1960–2021 1987–2021 World Bank’s databank; Original data 
from International Monetary Fund’s 
International Financial Statistics

Greenhouse gas emissions dataset Annual greenhouse gas emissions 
in CO2 equivalents

1960–2021 1960–2021 Our World in Data; Underlying data 
based on Jones et al. [31]; CO2-
equivalent conversions from IPCC AR6 
report

Fossil fuel energy consumption 
dataset

Fossil fuel energy consumption (% 
of total)

1960–2015 1971–2014 World Bank’s databank; Originally 
sourced from IEA Statistics © OECD/
IEA 2014

Fig. 1  Inflation trends in the USA, the EU, and China.  Source: Authors
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service-oriented economies and increased environmental 
regulation.

Regarding China’s emissions data, the 2000s marked a 
pivotal point in its rapid industrialization and economic 
development. The progression is stark, with emissions 
soaring from 4 billion tons to over 13 billion tons by 
2020. This rise reflects China’s emergence as a manu-
facturing powerhouse, with significant implications for 
global GHG emissions.

Notably, the data highlight a critical point in the early 
twenty-first century, where China surpassed both the EU 
and the USA, becoming the largest emitter of GHG. This 
shift underscores the changing dynamics of global indus-
trialization and the urgent need for environmental poli-
cies to address the surge in emissions.

The most recent figures from 2020 and 2021 reveal a 
decrease in emissions for the EU and USA, likely influ-
enced by the economic slowdown due to the COVID-
19 pandemic. Conversely, China’s emissions continue to 
rise, albeit at a slower pace, highlighting the challenges 
of balancing economic growth with environmental 
sustainability.

Data on annual fossil fuel energy consumption, 
expressed as a percentage of total energy use, were col-
lected for the three regions. The figures span from 1960 

to 2015 for the EU and USA and from 1971 to 2014 for 
China, as shown in Fig. 3.

In the 1960s, both the USA and the EU started with fos-
sil fuel energy consumption rates above 93%, indicative of 
the global reliance on traditional energy sources during 
this period. Over the following decades, the data reveal 
a gradual but consistent decline in the USA’s and EU’s 
dependence on fossil fuels. This trend reflects the diver-
sification of energy sources, including nuclear power, and 
increasing investment in renewable energy.

For the EU, the decrease is steady, with a more pro-
nounced decrease beginning in the mid-1970s. By the 
end of the observation period, the EU’s reliance on fos-
sil fuels had decreased to approximately 69.89% by 2015, 
indicating a significant shift toward alternative energy 
sources.

The USA exhibits a similar downward trajectory, albeit 
with slight fluctuations. From a peak in 1966 of approxi-
mately 95.96%, there was a noticeable decline to 82.43% 
by 2015, underscoring policy shifts and technological 
advancements in energy consumption.

China’s data, available from 1971, starts at 59.90%, 
which is notably lower than that of the USA and EU 
at that time. However, China’s reliance on fossil fuels 
sharply increased in the following decades, reaching a 

Fig. 2  Annual GHG emissions in the U.S., China, and the EU.  Source: Authors
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peak of 88.90% in 2011. This increase corresponds with 
China’s rapid industrialization and economic develop-
ment phase, where fossil fuels played a critical role in 
supporting this growth.

The subsequent minor reduction observed in China’s 
percentage suggested initial steps toward a more bal-
anced energy mix. However, it remains the highest 
among the three, highlighting its continued dependence 
on fossil fuels compared to the USA and the EU.

Methods
This study adopted a robust approach to investigate the 
complex relationships between economic metrics and 
environmental outcomes. A feedforward neural network 
model optimized with the Levenberg–Marquardt back-
propagation algorithm was utilized to quantitatively assess 
the effects of inflation on GHG emissions. As illustrated in 
Fig. 4 which shows the flowchart of the general methods, 
the selected variables, based on their empirical relevance 
and data availability, served as input features for the mod-
els, ensuring the reliability and comprehensiveness of the 
results. The annual inflation rate, fossil fuel energy con-
sumption, and annual GHG emissions were used to train 
three separate Artificial Neural Network (ANN) models 
for the USA, the EU, and China. These models were sub-
sequently used to predict GHG emissions over a range of 

inflation values from 0 to 10%, with increments of 0.1%, 
while holding the fossil fuel energy consumption percent-
age constant (at the latest available value). This approach 
allowed for a detailed examination of the relationship 
between inflation and GHG emissions across different 
economic contexts. The use of a constant fossil fuel energy 
consumption percentage across the inflation range ensured 
that changes in the predicted GHG emissions could be 
attributed primarily to the variations in inflation.

Feedforward neural network with the levenberg‒
marquardt backpropagation algorithm
Three different ANN models were developed, each tailored 
to a specific region: the USA, the EU, and China. These 
models were trained using a feedforward architecture cou-
pled with Levenberg–Marquardt backpropagation algo-
rithm [32], as illustrated in Fig. 5.

The input data, represented by x , undergo propagation 
through the network to generate output. The activation 
vector for any given layer l is defined by Eq. 1:

Moreover, the activation is represented using the func-
tion described by Eq. 2:

(1)a(1) = x

Fig. 3  Fossil fuel energy consumption percentages in the USA, China, and the EU.  Source: Authors
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The weighted input for layer l is given by:

where the activation vector is denoted as a(l) , the 
weighted input vector as h(l) , the weight matrix connect-
ing two consecutive layers as w(l − 1) , the bias vector of 
the preceding layer as b(l − 1) , and the activation func-
tion as σ.

Following the feedforward phase, the network’s result-
ant output is juxtaposed against the desired output to 
discern the error.

Errors for each layer are quantified using:

Here, ∇h(L)L is the gradient of the loss with respect 
to the output of the network. δ(L) denotes the error at 
the output layer, while δ(l) is the error at any layer l . The 

(2)a(l) = σ(h(l))

(3)a(l) = σ(w(l − 1)a(l − 1)+ b(l − 1))

(4)δ(L) = ∇h(L)L⊙ σ
′

(h(L))

(5)δ(l) = ((w(l))Tδ(l + 1))⊙ σ
′

(h(l))

symbol ⊙ represents elementwise multiplication, and σ ′ 
is the derivative of the activation function.

The weights and biases are then updated using the fol-
lowing equations:

In the training process, the weights and biases for 
layer l  are updated using the regularized Gauss–New-
ton equation (Eqs. 8 and 9). Regularization ensures that 
the updates are not pushed to extreme values, promot-
ing stability in the learning process.

where the weight and bias updates for layer l are repre-
sented by �wl and �bl , respectively. � is identified as the 

(6)wl
:=wl

−�wl

(7)bl :=bl −�bl

(8)�wl
=

(

JT J + �I
)−1

JT δl+1
(

al
)T

(9)�bl =
(

JT J + �I
)−1

JT δl+1

Fig. 4  Flowchart of the general methods.  Source: Authors



Page 10 of 18AlShafeey and Saleh Saleh ﻿Environmental Sciences Europe           (2024) 36:73 

Levenberg–Marquardt parameter, and J  is the Jacobian 
matrix, which is defined as:

(10)J
(l)
ij =

∂h
(l)
i

∂w
(l−1)
ij

(11)=
∂

∂w
(l−1)
ij

(

∑

k
w
(l−1)
ik a

(l−1)
k + b

(l−1)
i

)

(12)= a
(l−1)
j

(13)δ(L) = J (L)
(

f
(

h(L)
)

− y
)

(14)δ(l) =

(

J (l)
)T

(

J (l)
(

J (l)
)T

+ µI

)−1

δ(l+1)

where the error vector at the output layer is represented 
by δ(L) , the Jacobian matrix of layer l is denoted by J (l) , 
and the regularization parameter that controls the step 
size is given by µ . I is defined as the identity matrix. The 
derivative of the cost function with respect to the weights 
and biases is determined as follows:

(15)
∂E

∂w
(l)
ij

= a
(l−1)
j δ

(l)
i

(16)
∂E

∂b
(l)
i

= δ
(l)
i

(17)
∂E

∂w
(l)
ij

=
∂E

∂h
(l)
i

∂h
(l)
i

∂w
(l)
ij

(18)= δ
(l)
i a

(l−1)
j

Fig. 5  A feedforward neural network with n inputs and one output.  Source: Authors
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The weights and biases are then updated using the fol-
lowing rules in each iteration:

Here, the step size of the weight and bias updates is 
controlled by the learning rate, denoted by η . The algo-
rithm is applied repeatedly until convergence of the error 
is achieved or until a predefined maximum number of 
epochs is met.

In this study, a feedforward ANN with Levenberg–
Marquardt backpropagation, as described in Eqs.  1–22 
[25], is employed in Python. The dataset was partitioned 
using a 70–30 split for model training and validation. 
This means that 70% of the collected data was utilized for 
training the neural network models, while the remain-
ing 30% of the data, which was not exposed to the model 
during the training phase, was then used to test and 
evaluate the model’s predictive performance. The choice 
of a Feedforward Neural Network with Levenberg–
Marquardt Backpropagation is justified by its superior 
efficacy in handling complex, non-linear predictive prob-
lems. This algorithm combines the advantages of gradi-
ent descent for stability and the Gauss–Newton method 
for speed, leading to more rapid convergence compared 
to conventional backpropagation techniques. Particularly 
in data-scarce environments, this method demonstrates 

(19)
∂E

∂b
(l)
i

=
∂E

∂h
(l)
i

∂h
(l)
i

∂b
(l)
i

(20)= δ
(l)
i

(21)w
(l)
ij := w

(l)
ij − η

∂E

∂w
(l)
ij

(22)b
(l)
i := b

(l)
i − η

∂E

∂b
(l)
i

exceptional performance, providing a high degree of pre-
cision without the need for extensive training datasets, 
distinguishing it from other machine learning methodol-
ogies [33]. The ANN optimization process involved test-
ing various hyperparameters to identify the configuration 
that yielded the best performance, as detailed in Table 2. 
The parameters tested included the number of input and 
output variables, which were two and one, respectively. 
A single hidden layer was employed, with a range of 2 to 
20 neurons explored for optimization. The training pro-
cess was constrained by a maximum of 1000 epochs and 
a performance goal set to minimize the mean squared 
error (MSE) to a target of zero. Additionally, fivefold 
cross-validation was incorporated during the grid search 
to validate the model, and training was terminated when 
the error reached a threshold of 1e-8.

This method involves segmenting the entire dataset 
into five equal parts and then using each segment in turn 
as a test set while the remaining data serve as the training 
set. Importantly, this process was not conducted sequen-
tially but rather by taking chunks of data at random inter-
vals within the time frame, thereby minimizing temporal 
bias and reflecting more general conditions. This strategy 
allows our models to train and validate against diverse 
subsets of data, ensuring that the identified inflation rate 
thresholds are not artifacts of specific time periods but 
rather robust indicators that have been validated across 
various temporal contexts.

Results
The neural network models for predicting GHG emis-
sions from inflation and fossil fuel energy consumption 
were optimized for each region of interest: the USA, the 
EU, and China. The optimal network structures were 
determined by the number of hidden neurons that maxi-
mized the coefficient of determination ( R2 ) between the 
observed and predicted GHG emissions, with the Root 

Table 2  ANN hyperparameter values and descriptions

Parameter Description Tested values 
during ANN 
optimization

Number of inputs Number of input data variables 2

Number of outputs Number of output forecasted variables 1

Number of hidden layers Number of hidden layers 1

Number of hidden neurons Number of hidden neurons 2–20

Maximum epochs Max. number of training iterations before training is stopped 1000

Performance goal The minimum target value of MSE 0

Cross-validation Cross-validation folds to be used during the grid search 5

Termination Error The threshold where training terminates when the error is less than or equal 
to it

1e-8
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Mean Squared Error (RMSE) used as a measure of model 
accuracy. The USA model had 14 hidden neurons and 
an R2 of 0.88 indicating a high degree of fit and explan-
atory power with an RMSE value of 9.75 ∗ 106 . The EU 
model had 6 hidden neurons and an R2 of 0.89, implying 
a slightly higher accuracy and precision, with an RMSE 
value of 7.48 ∗ 106 . The China model had 2 hidden neu-
rons and an R2 of 0.87, suggesting that a simple network 
structure can still capture the significant relationship 
between the economic and energy consumption variables 
and GHG emissions, with an RMSE value of 9.79 ∗ 106.

The results from the ANN for the USA show the trend 
of GHG emissions in relation to inflation rates, which 
can be found in Fig. 6. As inflation deviates from the cur-
rent rate of 4.7%, the model predicts varying impacts on 
GHG emissions. Below the current inflation rate, there is 
an observed increase in GHG emissions, with the most 
significant increase of 4.31% occurring at an inflation rate 
of 0.8%. Conversely, as inflation rates exceed 4.7%, the 
ANN forecasts a consistent reduction in GHG emissions. 
The trend suggests a nonlinear response, with emissions 
reduction gaining momentum as inflation climbs, reach-
ing a decrease of 4.61% at an inflation rate of 10%. This 
indicates that inflation rates higher than current infla-
tion rates may be associated with factors that lead to 
lower GHG emissions, such as potential reductions in 
consumption.

The ANN results for the EU also exhibit a trend toward 
GHG emissions relative to varying inflation rates, as 
shown in Fig. 7. When inflation rates are below the cur-
rent level of 2.5%, the model predicts a steady trend in 
GHG emissions similar to the current levels. Conversely, 
as inflation rates rise above the current level, there is a 
notable shift, with GHG emissions initially decreasing 
slightly and then decreasing more steeply after crossing 
the 7.5% inflation rate. This steep increase intensifies as 
inflation grows, underscoring a significant relationship 
where higher inflation rates could lead to a substantial 
decrease in GHG emissions, potentially due to decreased 
industrial activity and energy consumption.

In Fig.  8, the ANN results for China indicate stable 
GHG emissions as inflation rates increase to 4.5%, mir-
roring the current emission trends at an inflation level 
of 1%. Beyond the 4.5% threshold, GHG emissions begin 
to decrease, with a sharper decline observed past a 5.5% 
inflation rate. This notable decrease in emissions con-
tinues with rising inflation, emphasizing the significant 
inverse relationship between higher inflation rates and 
GHG emissions. The emissions decrease plateau around 
a 7% inflation rate, where emissions changes remain rela-
tively constant even as inflation increases further.

Fig. 6  Projected GHG Emissions Relative to Inflation Rates in the US.  Source: Authors



Page 13 of 18AlShafeey and Saleh Saleh ﻿Environmental Sciences Europe           (2024) 36:73 	

Discussion
The research presented in this paper examines the pre-
dicted changes in GHG emissions in relation to varying 

levels of inflation for three major economic regions: the 
USA, the EU, and China. The findings reveal a nuanced 
relationship between inflation rates and GHG emission 

Fig. 7  Projected GHG Emissions Relative to Inflation Rates in the EU.  Source: Authors

Fig. 8  Projected GHG emissions relative to inflation rates in China.  Source: Authors
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changes that differs across these regions, illustrating the 
complexity of economic-environmental interactions.

Figure  9 integrates the insights of the prior analysis, 
aligning them on the same scale for direct comparison. A 
noteworthy observation from Fig. 9 is that across all three 
studied regions, there is a uniform point where the infla-
tion rate of 4.4% correlates with a consistent 1% increase 
in GHG emissions. This could suggest potential global 
economic behavior at this specific inflation rate that uni-
formly impacts GHG emissions, regardless of regional 
differences. The consistency of these results warrants fur-
ther scientific investigation to understand the underlying 
mechanisms that could influence this phenomenon. This 
raises questions about the role of economic activities, 
energy usage, and environmental policies that converge 
at this inflation rate to produce similar environmental 
impacts across diverse economies. However, China’s pat-
tern differs from that of the USA and the EU, as China 
has two critical inflection points: the first at 4.5% infla-
tion, where GHG emissions start to decline sharply, and 
the second at 7% inflation, beyond which additional infla-
tion does not appear to induce further decreases in GHG 
emissions.

The interplay between inflation and GHG emissions is 
influenced by a range of factors, such as economic poli-
cies, energy consumption patterns, and investments in 

sustainable technologies [34]. This interplay varies by 
region, reflecting distinct economic structures, energy 
policies, and environmental regulations. The unique 
responses of the USA, the EU, and China to inflation in 
terms of GHG emissions emphasize the need for tailored 
regional strategies in climate change mitigation efforts 
that are in sync with economic objectives and the broader 
socioeconomic landscape.

The observed negative correlation2 between inflation 
and GHG emissions in the USA at lower inflation levels 
suggests a link between low inflation and higher con-
sumption, possibly due to increased economic activities 
and consumer demand. As inflation increases, there is a 
pivot point where the pressures of inflation may prompt 
cost-cutting measures that could be detrimental to the 
environment. This could indicate a shift toward more 
carbon-intensive energy sources as businesses strive to 
manage increased costs, leading to a decrease in demand 
and a subsequent reduction in GHG emissions. This 
relationship highlights the complex interplay between 
economic forces and environmental impacts, suggest-
ing that inflation can influence environmental outcomes 
in nonlinear ways. The flattening of GHG emissions in 
the USA after a certain increase in inflation could be 

Fig. 9  Comparative analysis of predicted GHG emission changes in response to inflation across the USA, the EU, and China.  Source: Authors

2  "negative correlation" used in this study refers to the statistical relationship 
observed between the two variables: as inflation increases, GHG emissions 
tend to decrease, based on the data analyzed.
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due to a stabilization in the trade-offs between economic 
growth and environmental impact. As inflation rises, the 
cost of goods and services typically increases, which can 
dampen consumer spending and slow economic activity. 
This slowdown may lead to reduced energy consump-
tion and thus plateauing GHG emissions. Additionally, 
high inflation can trigger efficiency drives and techno-
logical innovations aimed at reducing costs, which may 
inadvertently reduce emissions. However, this might also 
mean that any further potential for emission reductions 
through cost-cutting measures has been exhausted, lead-
ing to a steady state of emissions despite further increases 
in inflation.

In the EU, the results suggest a period of stability where 
GHG emissions do not significantly change with vary-
ing levels of inflation. This plateau in emissions could 
be reflective of a balance between economic activity and 
consumption that is maintained despite rising prices. 
However, the significant decline in emissions after a cer-
tain point of almost –43% could be more indicative of 
inflation’s impact on economic production than of the 
success of environmental policies alone. As a significant 
importer of energy, the EU’s economic activities—and 
thereby its emissions—may be heavily influenced by the 
costs of imported energy. When inflation increases, the 
costs of energy imports increase, leading to reduced con-
sumption and production. This reduction in economic 
activity, especially in energy-intensive industries, could 
lead to a sharp decrease in emissions. This does not 
entirely dismiss the role of environmental policies or con-
sumer behavior in the EU. The region has indeed been 
proactive in implementing measures such as investing 
in renewable energy sources, advancing energy-efficient 
technologies, and promoting sustainable consump-
tion practices. These efforts may contribute to the over-
all decline in emissions. However, the severity of the 
decrease suggests that external economic factors, such as 
inflation impacting energy import costs, play a consider-
able role.

The EU’s sharp decline in GHG emissions raises ques-
tions about the long-term sustainability of this trend. If 
the decline is primarily due to reduced economic activ-
ity, there could be a risk of emissions rebounding once 
economic conditions improve unless there is a concur-
rent structural shift toward a greener economy. Hence, 
it is critical for policymakers to differentiate between 
temporary reductions caused by economic contractions 
and genuine, lasting decreases achieved through inten-
tional policy actions and structural changes. The chal-
lenge for the EU is to ensure that the decline in emissions 
is not solely a byproduct of economic downturns but 
also a result of systemic transformation toward sustain-
ability. This involves enhancing energy independence, 

accelerating the transition to renewable energy, and 
encouraging energy-saving behaviors that are less vul-
nerable to inflationary pressures. Policymakers need to 
carefully analyze emissions trends to craft strategies that 
maintain the momentum of emissions reduction while 
fostering economic resilience.

Likewise, the observed shifts in GHG emissions in the 
EU, as inflation rates fluctuate, could be significantly 
influenced by the operational dynamics of the EU Emis-
sions Trading System (EU-ETS). EU-ETS is a corner-
stone of the European Union’s policy to combat climate 
change, operating as a cap-and-trade system that sets a 
limit on overall emissions from high-emitting industries 
and allows companies to buy and sell emission allow-
ances. The EU-ETS might be acting as a moderating force 
against the backdrop of economic changes. As industries 
face higher inflation, the cost pressures could drive them 
to cut down on operations leading to reduced emissions. 
However, the EU-ETS adds another layer to this scenario. 
By capping the total level of emissions and allowing 
trading of emission allowances, the system incentivizes 
companies to reduce their carbon footprint more aggres-
sively than they might under economic pressure alone. 
This creates a scenario where, even in varying inflation-
ary environments, the EU-ETS encourages companies 
to continue investing in cleaner technologies and prac-
tices. The trend toward lower emissions at higher infla-
tion rates may not just reflect reduced economic activity 
but could also indicate a structural change towards sus-
tainability, accelerated by the EU-ETS. In other words, 
the EU-ETS may help decouple economic growth from 
GHG emissions, even as it faces the challenges of infla-
tion fluctuation.

In China, the relationship between inflation and GHG 
emissions shows an initial phase of stability, suggest-
ing that low to moderate inflation does not significantly 
affect consumption patterns or economic activities in 
terms of their environmental impact. However, as infla-
tion surpasses a specific threshold, there is a notable 
decrease in emissions. The nearly 30% reduction in Chi-
na’s GHG emissions associated with high inflation may 
be attributed more to reduced demand and production 
rather than to the adoption of more efficient practices 
or a shift to less carbon-intensive consumption pat-
terns. This significant decrease continues until reaching 
another point where emissions stabilize, implying a new 
equilibrium in the cost efficiency and environmental 
impact of economic activities. In China’s case, the sta-
bilization after a significant drop could reflect a satura-
tion point where high inflation may not necessarily result 
in reduced GHG emissions due to economic resilience 
and the nature of international trade. Despite infla-
tion, a devalued Yuan could keep exports competitive, 
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sustaining industrial output and its associated emissions. 
Simultaneously, robust internal demand, fuelled by a 
large population and urbanization, may continue to drive 
high energy consumption, often from coal-dependent 
sources, counteracting any potential emissions reduc-
tion from decreased economic activity due to inflation. 
Moreover, China’s efforts to stabilize its economy amidst 
inflation could involve stimulus measures that bolster 
production, potentially negating the emission declines 
typically expected with reduced economic growth.

Across these regions, the key takeaway is that while 
emissions may decline as a result of economic fac-
tors such as inflation, the goal is to achieve reductions 
through sustainable development and proactive environ-
mental policies. It is essential for policymakers to ensure 
that the observed emission trends are a result of moving 
toward a more sustainable and resilient economy and not 
merely a consequence of economic downturns.

Furthermore, the observed 1% increase in GHG emis-
sions at a 4.4% inflation rate in all the studied regions 
highlights the need for a global dialog on policy coher-
ence between economic and environmental objectives. 
This suggests a critical point where the interplay between 
inflation and GHG emissions intersects across diverse 
economies, pointing to potential common economic 
behavior with environmental implications. International 
cooperation, information exchange, and policy harmo-
nization could be instrumental in understanding and 
managing the relationship between inflation and GHG 
emissions. This global approach ensures that individual 
regions’ economic measures do not inadvertently com-
promise global environmental targets.

The findings of the current study align with the find-
ings of Ronaghi et  al. [13], which indicate that a 1% 
increase in inflation across OPEC nations is responsible 
for a 1.19% decrease in CO2 emissions. Moreover, the 
current study findings align with Djedaiet’s [35] findings, 
which, observed that inflation negatively impacts CO2 
emissions. It also revealed that inflation shocks asym-
metrically affect CO2 emissions, posing challenges for 
balancing economic stability with environmental sustain-
ability. On the other side, the current study findings are 
partially contrary to Ullah et al. [15], which indicate that 
inflation instability impacts environmental quality differ-
ently: decreases in inflation (negative shocks) increase 
CO2 and N2O emissions, while increases in inflation 
(positive shocks) have negligible environmental effects. 
Also, the current study findings are partially contrary to 
Xu et al. [36] which posited a linear relationship between 
inflation and carbon returns. Our results indicate that, 
while inflation impacts emissions, the relationship 

exhibits variability across different contexts, contradict-
ing the uniform linear impact suggested by Xu et al.

Moreover, the observed relationship between inflation 
rates and GHG emissions in the studied regions aligns 
with certain aspects of the EKC framework. For instance, 
in the USA and EU, emissions tend to decrease as infla-
tion rises beyond specific thresholds (4.7% and 7.5%, 
respectively), indicating a transition towards lower-emit-
ting activities due to economic pressures. On the other 
hand, China exhibits a more complex pattern, with two 
inflection points where emissions first decline sharply 
at 4.5% inflation, and then stabilize beyond 7% inflation, 
suggesting a multistage response to economic factors. 
While the EKC traditionally focuses on income levels, 
this study extends its applicability by showing that infla-
tionary forces, closely tied to economic growth trajecto-
ries, can lead to similar results in emission patterns. The 
findings underscore the EKC theory’s relevance in inter-
preting the complex relationship between economic poli-
cies and environmental outcomes.

The findings also indicate a critical tipping point where 
the balance between economic growth and environ-
mental sustainability becomes unfavorable. This insight 
is vital for policymakers, who must weigh the environ-
mental costs of inflationary policies and consider imple-
menting countermeasures to prevent an increase in GHG 
emissions. In light of the nuanced relationship between 
inflation and GHG emissions demonstrated by the anal-
ysis, it is clear that central banks should not consider 
expansionary monetary policies as a straightforward 
mechanism for reducing GHG emissions. While it was 
found that there is a correlation between inflation and 
emissions, this does not directly translate into a causal 
pathway suitable for policy prescription. Therefore, we 
suggest that policymakers should prioritize integrated 
economic strategies that are environmentally aware 
rather than relying on inflation adjustments alone. Such 
strategies should be underpinned by a comprehensive 
understanding of the economic-environmental nexus, 
informed by empirical data and tailored to regional spe-
cificities. Thus, there is a pressing need for policymakers 
to distinguish between ephemeral emission reductions, 
spurred by economic downturns, and sustainable 
decreases resulting from deliberate policy initiatives and 
structural shifts towards greener practices.

In addressing the limitations of our study, it is impor-
tant to note that the feedforward neural network 
model, optimized with the Levenberg–Marquardt 
backpropagation algorithm, inherently faces challenges 
such as potential overfitting, sensitivity to initial condi-
tions, and dependency on the diversity of the training 
dataset. To mitigate these issues, we have employed a 
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fivefold cross-validation technique. Moreover, further 
research is warranted to delve into the sector-specific 
ramifications of inflation on GHG emissions. Such 
studies should aim to dissect the intricate dynamics 
within various economic sectors, enhancing our under-
standing of how inflationary pressures differentially 
impact these sectors in terms of their environmental 
footprint. Additionally, an in-depth exploration of the 
policy frameworks that underpin the observed data 
patterns would be instrumental in formulating more 
targeted and effective environmental and economic 
strategies. This would not only enrich the existing body 
of knowledge but also provide a more granular perspec-
tive on the interplay between macroeconomic policies 
and environmental outcomes.

Conclusions
This study has analyzed the intricate relationship 
between inflation and GHG emissions in the USA, EU, 
and China, utilizing a robust methodological approach. 
The research employed feedforward neural network 
models, optimized with the Levenberg–Marquardt 
backpropagation algorithm, to predict GHG emissions 
based on inflation rates and fossil fuel energy consump-
tion. The analysis of historical inflation data reveals 
distinct patterns in each region. The EU and USA dis-
played similar inflation trends until the late 1980s, with 
notable peaks during the 1970s linked to the global 
oil crisis. China’s inflation landscape, starting in 1987, 
showed a more volatile pattern with dramatic spikes in 
the late 1980s and early 1990s, reflecting its transition 
to a market-oriented economy. The study’s key find-
ings include the identification of specific points where 
inflation rates correlate with changes in GHG emis-
sions. In the USA, GHG emissions tend to decrease as 
inflation rates rise above 4.7%. The EU follows a similar 
trend, with emissions declining sharply after exceed-
ing a 7.5% inflation rate. Notably, China exhibits two 
critical inflection points where GHG emissions start to 
decline at a 4.5% inflation rate and then stabilize after 
reaching 7%. A pivotal finding is the uniform increase 
in GHG emissions at a 4.4% inflation rate across all 
three regions, suggesting a common global economic 
behavior impacting environmental outcomes. This dis-
covery underscores the need for globally coordinated 
economic and environmental policies. The study also 
highlights that while there is a correlation between 
inflation and GHG emissions, central banks should not 
solely rely on monetary policy adjustments to reduce 
emissions due to the complex relationship involved. 
Policymakers should adopt comprehensive strategies 
that focus on long-term environmental sustainability 

rather than short-term economic fluctuations. There 
is a pressing need for policymakers to distinguish 
between ephemeral emission reductions, spurred by 
economic downturns, and sustainable decreases result-
ing from deliberate policy initiatives and structural 
shifts towards greener practices.

As a final remark, it is recommended that future inves-
tigations explore how the relationship between inflation 
and GHG emissions progresses over time, considering 
economic cycles. This approach could provide a more 
dynamic understanding of their interplay.
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