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Thomas Winiecki 

Abstract 

In this thesis we demonstrate the power of the Gross-Pitaevskii and the time
dependent Ginzburg-Landau equations by numerically solving them for various fun
damental problems related to superfluidity and superconductivity. We start by 
studying the motion of a massive object through a quantum fluid modelled by the 
Gross-Pitaevskii equation. Below a critical velocity, the object does not exchange 
momentum or energy with the fluid. This is a manifestation of its superfluid nature. 
We discuss the effect of applying a constant force to the object and show that for 
small forces a vortex ring is created to which the object becomes attached. For a 
larger force the object detaches from the vortex ring and we observe periodic shed
ding of rings. All energy transfered to the system is contained within the vortex rings 
and the drag force on the object is due to the recoil of the vortex emission. If we 
exceed the speed of sound, there is an additional contribution to the drag from sound 
emission. To make a link to superconductivity, we then discuss vortex states in a 
rotating system. In the ground state, regular arrays of vortices are observed which, 
for systems containing many vortices, mimic solid-body rotation. In the second part 
of the thesis, we initially review solutions to the Ginzburg-Landau equations in an 
applied magnetic field. For superconducting disks we observe vortex arrays similar 
to those in rotating superfluids. Finally, we study an electrical current flow along a 
superconducting wire subject to an external magnetic field. We observe the motion 
of flux lines, and hence dissipation, due to the Lorentz force. We measure the V- I 
curve which is analogous to the drag force in a superfluid. With the introduction of 
impurities, flux lines become pinned which gives rise to an increased critical current. 
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Chapter 1 

Introduction 

For many years superfluid 4He was considered to be the only experimental example 

of the occurrence of Base-Einstein condensation (BEC). In recent years, however, the 

phenomenon of BEC has been identified in various systems [1], for instance amongst 

excitations in semiconductors; as a pairing of quarks and anti-quarks in elementary 

particles; in neutron stars and; most recently, in dilute alkali gases. BEC is also 

related to the BCS transition in 3He and superconductors. Another compelling 

example concerns the cascade of phase transitions in the early universe. According 

to the Kibble mechanism [2, 3], defects such as domain walls, cosmic strings and 

monopoles may have been formed spontaneously during the rapid cooling through 

the condensation point. The following table, taken from [1 ], gives an idea of the 

diversity of systems in which Base-Einstein condensation takes place and shows the 

large temperature range at which the transition occurs. 

Particle System Tc(K) 
1 H 7Li 23Na 87Rb 

' ' ' 
atomic vapours 10-6 

3He pair superfluid 10-3 

exciton (e-, h+) semiconductor 10-2 
4He atom superfluid 2.17 

Cooper pair superconductor 10 
neutron pair neutron stars 108 

qq vacuum 1034 

A common theme for these systems is the occurence of a long-range quantum phase 

coherence. In 1924 Satyendra Nath Base [4] and Albert Einstein [5] studied a uni-

1 
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form non-interacting gas of bosons at low temperatures and found a phase transition 

at a characteristic temperature below which a macroscopic number of particles oc

cupy the same quantum state. In contrast to fermions (which obey Pauli's exclusion 

principle) bosons tend to cluster in the lowest energy state and form a coherent 

macroscopic wavefunction, or order parameter, which is accompanied with the ob

served long-range correlations. Far below the transition temperature, the fraction 

of non-condensate particles is often small and the system can be described solely by 

this order parameter. 

The aim of this thesis is to study two quite distinct systems that can be described by 

a macroscopic order parameter: superfluids and superconductors. For both systems 

the dynamics may be modelled using non-linear equations of motion, the Gross

Pitaevskii (GP) equation for superfluids and the time-dependent Ginzburg-Landau 

(TDGL) equation for superconductors. Strictly speaking, these equations are for

mulated for idealised systems and only give an accurate description under particular 

conditions. However, they provide sophisticated fluid-dynamical models and can be 

expected to offer considerable qualitative insight into the physics of quantum fluids. 

One of the main issues in this thesis is the mechanism of breakdown of superfluid 

and superconducting behaviour. In both cases, the onset of dissipation involves 

the creation, the growth or the motion of quantised vortices [6]. For example, in 

superfluid helium, vortex rings can be produced experimentally by injecting ions 

into the fluid [7]. However, the exact mechanism of vortex nucleation is not well

known because existing semi-classical theories of vortex nucleation cannot treat the 

intermediate states where the vortex loops are small [8]. The advantage of the GP 

model is that fluid healing and the quantisation of circulation are included explicitly, 

making it possible to identify a complete path of vortex nucleation. 

In superconductors, dissipation is accompanied with the motion of vortices [9]. In 

commercially used superconductors, pinning sites prevent the vortices from sliding 

up to a critical current density. The depinning transition involves a complex non

equilibrium dynamics of an elastic lattice through a disordered medium. We will 

approach the problem by direct numerical solution of the TDGL equations and corn-
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pare the result to experiments and theoretical studies based on molecular dynamics 

simulations [10, 11]. 

In the following sections we shall give a very brief review of the history of experi

mental and theoretical research on superfluids and superconductors. 

1.1 Superfiuids 

Under normal pressure 4He becomes liquid at 4.211 K and does not freeze even 

at zero temperature. Below the >.. point, Tc = 2.186 K, it develops some peculiar 

properties. Its viscosity and heat capacity become smaller and go to zero forT ---+ 0. 

On the contrary, the thermal conductivity becomes very large. In this state, often 

referred to as He-11, the fluid creeps up the walls of the container that holds it and 

sound waves propagate through it without significant damping. Remarkably, none 

of these effects can be seen in liquid 3He above a few mK. 

In 1939, a few months after the discovery of He-11, Fritz London drew a connection 

between the experiments and Einstein's earlier work on non-interacting bosons and 

explained the observations assuming that a macroscopic number of atoms were in the 

same coherent quantum state. For a non-interacting gas with the mass and density 

of 4He, the BEC transition would occur at 3.3 K, close enough to the >.. point to 

defend his idea. Soon after, Laszlo Tisza suggested that the He-ll phase was made 

up of two inter-penetrating fluids, a normal component that behaves like an ordinary 

fluid and a superfluid component that is characterised by a lack of viscosity. Close 

to the transition temperature, the superfluid fraction would be small whereas the 

normal fluid component disappeared as T ---+ 0. On the basis of this model, Tisza 

was able to predict a new collective excitation of the fluid, the second sound, in 

which the two components oscillate out of phase [12]. 

The two-fluid model was further developed by Lev Landau who studied the quasi

particle excitation spectrum [13]. Besides phonons, whose dispersion relation is 

E (p) = cp, he postulated the existence of ratans with a dispersion relation of the 

form E(p) = ~ +p2 /2m, where m is the mass of a helium atom. At low temperature, 
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kBT «: ~' phonons dominate and rotons have a negligible contribution to the 

specific heat. From the excitation spectrum it can immediately be seen that an 

excitation in the fluid can only be created by a moving object, when its velocity 

is larger than some non-zero critical velocity, Uc. This is known as the Landau 

criterion for superfluidity. 

Although the two-fluid model was successful in explaining most of the hydro-dynami

cal properties, a microscopic theory for He-ll that would, for instance, be able 

to explain the excitation spectrum, is difficult to formulate. To this day there 

is still no satisfactory complete theory for superfluid helium. This is due to the 

strong inter-particle interactions that result in a depletion of the condensate. Even 

close to absolute zero, only around 10% of the atoms are in the ground state and 

fluctuations dominate. In contrast, the fundamental many-body theory of BEC is 

well understood for a dilute, weakly-interacting gas of bosons where interactions 

can be treated within the mean-field approximation as a perturbation to the ideal 

(non-interacting) gas case. 

1.1.1 Dilute Bose gases 

The first realisation of Bose-Einstein condensation in magnetically trapped alkali 

vapours in 1995 [14, 15, 16] opened a new chapter of experimental and theoretical 

research on systems that undergo a Bose-Einstein phase transition. Since then, a 

spectacular record of experimental and theoretical research has enhanced the knowl

edge of these systems. At the time of writing, the BEC transition has been demon

strated with the alkali gases 87Rb, 23Na, 7Li, and recently with 85 Rb [17] as well 

as with spin-polarised atomic hydrogen [18] and metastable helium (19, 20]. In the 

experiments, the atoms are confined in magnetic traps and cooled down to temper

atures of the order of f..IK using elaborate techniques [21]. 

There is a variety of techniques available to probe the condensate. For example, 

the atomic cloud can be set into rotation by laser beams and one observes regular 

arrays of quantised vortices, an unambiguous signature of the quantum nature of 
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the condensate [22, 23]. In another landmark experiment, a laser beam was swept 

back and forth through a cylindrical condensate [24]. The measured heating rate 

revealed the existence of a critical velocity in agreement with the theory [25]. 

A condensate of 7Li bosons was also utilised to cool down a gas offermions, 6Li such 

that the distinct behaviour ofbosons and fermions at ultra-low temperatures became 

evident [26]. It is expected that at even lower temperatures pairs of two 6Li couple to 

form boson-like Cooper pairs that can then condense [27]. The process is known as 

the BCS transition and occurs, for example, in superfiuid 3He and superconductors 

(see below). 

A long-standing goal has been the construction of an atom laser that will provide a 

bright, narrow and continuous beam of coherent atoms. Up to now pulsed [28, 29] 

and continuous output couplers that can be operated for several hundred milliseconds 

[30] have been demonstrated. 

The attractiveness of atomic vapour condensates is that the dynamics can be ac

curately described by the Gross-Pitaevskii (GP) equation [31], a form of non-linear 

Schrodinger equation [32]. Consequently, this system provides a near ideal testing 

ground for advancing our knowledge of superfiuid flow. 

1.1.2 The Gross-Pitaevskii equation 

A major tool for the theoretical study of weakly-interacting Bose condensates is the 

Gross-Pitaevskii (GP) equation [32]. Because this equation is used in the following 

chapters to model superfluids, we shall sketch its derivation. 

In the formalism of second quantisation, a many-body problem is described using 

field operators. One defines creation and annihilation operators, J;t and J;, on the 

many-particle Hilbert space as linear combinations of single-particle wavefunctions. 

The operators are chosen in such a way that the commutation relations, 

(1.1) 



Chapter 1. Introduction 6 

are satisfied. The brackets [, ] denote the commutator in which the correct quantum 

statistics for bosons is incorporated. Neglecting spin, the many-particle Hamiltonian 

of the system can be represented as 

I d3r ;j;t (- 2:\72 + V(r)) ;f;(r) 
(1.2) 

+ ~I d3r d3r' ;j;t(r);f;t(r')U(r,r');f;(r);f;(r'), 

where V ( r) is an external potential and the inter-particle interactions are repre

sented by U(r, r'). The one-particle reduced density matrix can be expressed as a 

correlation function, 

(1.3) 

It is possible to find a complete orthonormal basis of single particle wavefunctions 
~---

Xi(r) for which the density matrix is diagonal,· 

(1.4) 

where ni and the basis functions Xi(r) depend on time in the general case. A system 

shows Bose-Einstein condensation if any of the eigenvalues ni is of order of the total 

number of particles [33]. In this case, it is convenient to write the field operator 

as a sum of the condensate wavefunction and an operator representing the non

condensed bosons: ;f;(r) = 'lj;(r) + ;j;(r), where 'lj;(r) = Xi(r). A pure condensate 

exhibits perfect spatial phase coherence, a property that is fundamental to BEC. 

The GP model neglects the non-condensed atoms and the alkali vapours are solely 

described by one macroscopic wavefunction. As a further approximation, the inter

particle interactions are treated as collisions of hard-body spheres with infinitesi

mally small radii, 

U(r, r') = g8(r- r') , (1.5) 
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where g is a measure of the effective strength of the interaction. Positive values of 

g indicate a repulsion between the particles whereas g is negative if the effective 

interactions are attractive. Substituting into Eq. (1.2) yields 

(1.6) 

With Heisenberg's relation for the time evolution for a field operator, i8t~ = [~, il], 

one obtains a Schrodinger type equation with an additional non-linear term, 

(1. 7) 

This equation is known as the Gross-Pitaevskii (GP) equation [31] or as the non

linear Schrodinger equation (NLSE). 

The use of Heisenberg's relation presupposes the conservation of energy and number 

of particles of the system. Gajda and Rzazewski [34] formulated a definition of the 

Bose-Einstein phase transition for such a Microcanonical ensemble of a finite number 

of bosons. On the contrary, the Bose-Einstein phase transition is usually derived 

for a grand-canonical ensemble of spin-less particles, i. e. assuming the presence of 

a temperature and a particle bath [35]. Because the GP model does not include any 

reservoir of heat or particles, it is inappropriate for modelling the phase transition 

itself, for example the growth of the condensate out of a 'thermal cloud' of non

condensed particles. The GP equation only describes the dynamics of an already 

existing condensate in a closed system [33]. 

In summary, the GP equation provides an accurate description of the time evo

lution of the condensate if almost all of the particles are in the condensate (no 

fluctuations); the range of the interactions is small compared to the length scale 

at which the wavefunction varies; and if the energy and number of particles are 

conserved. Fortunately, most experiments on trapped alkali vapours condensates lie 

in this regime [32]. Only recently, an experiment on bosons with attractive inter

actions demonstrated the limitations of the model. The dynamics of the observed 
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'bosenova', the collapse of the condensate, cannot be explained by the GP equation 

[36]. 

The approximations that lead to the GP equation are not valid for superfluid helium. 

In this system strong interactions lead to a depletion of the condensate and a different 

dispersion curve to the dilute Bose gas [6, 7]. A modified GP model which includes 

the non-local nature of the interactions has been proposed to reproduce the correct 

dispersion curve [37, 38]. The GP equation can also be extended to describe a finite 

temperature system, or similarly, the depletion of the condensate due to interactions 

[39, 40]. 

1.2 Superconductors 

If one immerses mercury that is naturally solid at such low temperatures into liquid 

helium, its resistance suddenly becomes unmeasurably small. This was first observed 

by Kamerlingh Onnes in 1911 in Leiden, in the same laboratory in which helium had 

been liquefied for the first time three years before. Since then, superconductivity 

has been found in more than a thousand metals, alloys, compounds and even in 

semiconductors. It was only a few months ago that the phenomenon was discovered 

in MgB2 [41]. The high transition temperature of 39 K was a surprise to the super

conductivity community and has brought new excitement to the area of basic and 

applied research on superconducting materials. 

Besides the zero resistivity, which is analogous to the flow without viscosity in a 

superfluid, superconductors show a second remarkable phenomenon known as the 

Meissner-Ochselfeld effect. If a sample above the transition temperature is placed 

in a magnetic field, the field lines run through it without any significant deflection 

(only non-ferromagnetic materials with 11- ~ 1 become superconducting). As soon 

as it is cooled below the critical temperature, the field lines are completely excluded 

from the bulk. The effect becomes understandable if one assumes persistent currents 

circulating in a surface layer of the superconductor that prevent external field lines 

from penetrating into the material. The creation of the currents requires work to be 
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done which is proportional to the square of the external magnetic field. However, the 

free energy of the superconducting phase is lower by an amount given by the so-called 

energy gap, .6., so that the sample remains superconducting unless the external field 

exceeds a critical value. This energy gap is zero at the transition temperature and 

increases with decreasing temperature. Its existence was first explained by Bardeen, 

Cooper and Schrieffer (BCS) in 1956. 

1.2.1 BCS theory 

The Bardeen-Cooper-Schrieffer theory interprets the energy gap as the work needed 

to break a Cooper pair. According to the theory, there is an attractive interaction 

between pairs of electrons at low temperatures. This interaction can be understood 

in the following way. One electron perturbs the lattice of the superconductor by 

attracting the neighbouring ions. In this way it creates its own shallow potential 

well. The other electron can benefit from this well. However, this simple picture 

does not explain why only two electrons are involved and why the coupling works 

over distances as large as 104 A [42]. 

The electrons in a Cooper pair have opposite spins and equal and opposite linear 

momenta. Thus, each Cooper pair may be considered as a single particle with zero 

spin. Such particles obey Bose-Einstein statistics and any number of Cooper pairs 

can occupy the same quantum state. 

The Cooper pairs can also tunnel trough a thin insulating layer. If a de voltage, V, is 

applied across such a junction, one observes an alternating current with a frequency 

given by 2eV/h [9]. In 1962 Josephson explained this effect by assigning a phase to 

the superconductors on both ends of the junction. A voltage shifts the energy levels 

so that the Cooper pairs on the two sides get out of tune and an ac current flows 

with a frequency given by the beat frequency between the two sides. 
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1.2.2 Ginzburg-Landau theory 

The superconducting state may also be described by a macroscopic complex pseudo

wavefunction. In the Ginzburg-Landau theory [43] the complex order parameter 

'lj;( r) was introduced. Initially, the theory was purely phenomenological. However, 

in 1959 Gor'kov [44] showed that it was derivable as a rigorous limiting case of the 

BCS theory. The validity was shown to be restricted to temperatures sufficiently 

close to the transition temperature, Tc, and to spatial variations of '1/J that were not 

too rapid. 

In the Ginzburg-Landau model the local density of superconducting electrons is 

represented by I'I/JI 2 . According to Gor'kov, I'I/JI 2 is also proportional to the energy 

gap. The theory postulates that the free energy of the system coupled with a static 

magnetic field can be expanded in a series of the form 

(1.8) 

where a and bare phenomenological parameters that depend on external parameters 

such as temperature, A denotes the vector potential, H an external magnetic field, 

and e8 and m 8 are the effective charge and the effective mass of the Cooper pairs. 

Below the transition temperature a becomes negative, whereas b > 0 for all T. 

The field configurations '1/J(r) and A(r) in an equilibrium state are determined by 

the condition 8:F I 8'1/J* = 0 and 8:F I 8A = 0. Explicit expressions of these conditions 

are 

(1.9) 

1 ( A ) lies ( * *) e; I l2 -\7 X \7 x - JtoH = -. '1/J \7'1/J - '1/J\7'1/J - - '1/J A . 
Jto 2m8 1 m 8 

(1.10) 

Equation (1.10) is Maxwell's equation for the magnetic field and the right hand 

side is interpreted as the current of superelectrons, j 8 • In homogeneous regions the 
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order parameter takes the value of 1~1 2 = lal/b, which falls to zero at the transition 

temperature. Equation (1.9) also describes the ground state for a superfluid if one 

sets A = 0. Indeed, the Ginzburg-Landau theory is a very general model for the 

description of second-order phase transitions. It is used to explain many other 

critical phenomena such as ferro magnetism or the phase transitions in van der 

Waals gases and it is also a starting point in string theory [45]. 

Equations (1.9) and (1.10) have been utilised by many groups to study equilibrium 

states in a superconductor. However, often one finds several meta-stable states 

that satisfy these time-independent GL equations and it is not clear which of these 

states will occur in an experiment. An expression for the time evolution of the 

order parameter is needed that makes it possible to study the transition between 

meta-stable states driven by changes of external parameters such as magnetic field, 

voltage or temperature. 

The simplest assumption is that the order parameter relaxes towards a local min

imum of the free energy with a rate proportional to the slope of the free energy 

[46], 

a;: 
8~* ' 

(1.11) 

where D is a phenomenological diffusion constant that characterises the decay time 

of an excitation. The relaxation mechanism is due to an interaction with the lattice 

via exchange of quasi-particles. A more rigorous derivation shows that the time 

derivative must be replaced in the following way [46]: 

ojot-+ ojot + iesfni!J , (1.12) 

where ifJ is the electric potential. To the left hand side of equation (1.10), a normal 

current in is added to account for non-condensed electrons which obey Ohm's law, 

(1.13) 
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In summary, the full time-dependent Ginzburg-Landau equations are given by 

where 

nes_ ('lj;*\l'lj;- '1/J\7'1/J*)- e; I'I/JI2 A 
2m8 I m 8 

Jn (j(-\Jq>-8tA). 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

The main difference between equation (1.14) for the order parameter and the NLSE, 

Eq. (1. 7), for the superfluid wavefunction is the missing 'i' in front of the time 

derivative in the GL model. This profoundly changes the character of the equation 

from a wave to a diffusion equation. 

1.2.3 Extensions to the GL equations 

The BCS and GL theories were celebrated as a 'remarkably complete and satisfactory 

picture' [47] of superconducting phenomena until 1986, when Georg Bednorz and 

Alexander Miiller found a complete new class of superconductors [48], the high

temperature superconductors (HTSC). Although the BCS theory appears to be the 

correct starting place for understanding these new superconductors, they have many 

features that are not clearly understood. The main difference between HTSC and 

ordinary superconductors stems from the layered structure of the materials that 

causes an anisotropy of the order parameter (d-wave instead of s-wave). To some 

degree this can be modelled with the TDGL equations by assuming a sinusoidal 

profile of the coherence length [49]. 

Many experiments with superconductors are sensitive to thermal fluctuations of 

the order parameter. According to statistical mechanics the probability of finding 

the system with a given '1/J is proportional to exp( -F('I/J)/ksT). Thus the order 

parameter '1/Jo that minimises F is not the only possible solution but simply the most 
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probable one. The Ginzburg-Landau theory ignores the fact that 'if; varies around 

'l/Jo. Close to Tc, where the order parameter is small, fluctuations are substantial 

and the Landau theory loses its validity. However, for most superconductors, the 

fluctuations become very small for temperatures just below the critical temperature 

whereas the fluctuations in superfluid helium dominate at all temperatures. This is 

believed to be due to the small coherence length of He-II [6]. The finite temperature 

effects can be simulated by adding small random forces to the TDGL equations 

[50, 51]. 

A problem with the TDGL equations stated above is that the Hall effect is not 

modelled correctly [52]. In Chapter 8 we will discuss the motion of flux lines due to 

a Lorentz force. According to the TDGL equations, the flux lines drift perpendicular 

to the current and no Hall voltage can be measured. In experiments, however, a 

small Hall effect is observed which means that the velocity of the flux lines has a 

component in direction of the background current. Apparently, the dynamics of 

the order parameter is not only due to a relaxation towards a minimum of the free 

energy. Flux can also be carried by the background flow, as in a liquid. To take 

this into consideration the diffusion constant, D, in the TDGL must be replaced by 

a complex number so that arg(D) equals the Hall angle [53]. 

1.3 Structure of this thesis 

In this thesis we shall explore some fundamental problems related to superfluidity 

and superconductivity by solving the appropriate equations of motion for the order 

parameter. The applied numerical methods are explained in detail in the Appen

dices. 

In Chapter 2, we review the hydro-dynamical properties of the GP model and gather 

some information on well-known fundamental solutions to the NLSE. Chapters 3 to 5 

are concerned with the motion of an object through a quantum fluid. We first study 

stationary flow solutions around a moving object. In Chapter 4 we utilise the GP 

equation coupled to an equation of motion for the object to study the response of the 
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fluid to external forces. The results are compared to experiments on ions dragged 

through superfluid helium. In Chapter 5, we study the motion of a heavy obstacle 

for which the back-action of the fluid can be neglected. In Chapter 6 some results 

are presented on rotating Bose gases in a flat-bottom potential. 

In the last two Chapters the properties of the GL equations for superconductivity are 

examined and the origin of dissipation in a type-II superconductor is investigated. 

The Conclusion will summarise the results and it will become evident that the 

numerical solution of equations of motion for the macroscopic order parameter can 

provide new insight into the physics of condensed quantum systems. 

Several parts of this thesis have been published in the following papers: 

• Pressure drag in linear and nonlinear quantum fluids, 

T. Winiecki, J. F. McCann, and C. S. Adams, Phys. Rev. Lett. 82, 5186 (1999) 

• Vortex structures in dilute quantum fluids, 

T. Winiecki and C. S. Adams, Europhys. Lett. 48, 475 (1999) 

• Vortex shedding and drag in dilute Bose-Einstein condensates, 

T. Winiecki, B. Jackson, J. F. McCann, and C. S. Adams, J. Phys. B 33, 4069 

(2000) 

• Motion of an object through a quantum fluid, 

T. Winiecki and C. S. Adams, Europhys. Lett. 52, 257 (2000) 

• A fast semi-implicit finite difference method for the TDGL equations, 

T. Winiecki and C. S. Adams, J. Comput. Phys. (submitted). 

• Vortex dynamics, pinning, and critical currents in a Ginzburg-Landau type-If 

superconductor, 

T. Winiecki and C. S. Adams, Phys. Rev. Lett. (submitted). 



Chapter 2 

The Gross-Pitaevskii model 

This chapter summarises some interesting properties of the solutions to the Gross

Pitaevskii equation. The dilute Bose-Einstein condensate is identical to a classical 

Euler fluid except for the quantisation of circulation and the influence of the kinetic 

energy term appearing in the GP equation. The latter produces fluid healing and 

shear stresses which enable vortex formation without viscosity. We relate the NLSE 

to equations known from fluid mechanics. Some fundamental solutions to the GP 

equation are discussed at the end of this chapter. 

2.1 Quantum fluid mechanics 

At low temperatures and low densities atoms interact by elastic s-wave scattering, 

and collisions can be parameterised by a single variable, the scattering length, a. 

For atoms of mass m, the wavefunction of the condensate, 'lj;(r, t), is given by the 

solution of the time-dependent Schrodinger equation: 

i1i8t'l/J(r, t) = [- :~ \72 + V(r, t) + gj'lj;(r, t)1 2
] 'lj;(r, t) , (2.1) 

where the wavefunction is normalised to the number of atoms, N, the coefficient 

of the non-linear term, g, describes the interactions within the fluid, and V(r, t) 

represents external potentials. 

15 
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2.1.1 Fluid equations 

In this section we gather some of the key concepts and equations that relate the 

NLSE and equations known from fluid mechanics. Classical (isentropic) fluid me

chanics is based on two coupled differential equations: one describing the transport 

of mass, the other the transport of momentum [54]. The relevant quantum variables 

can be constructed from the wavefunction, '1/; = n 112ei8 : the mass density p and 

momentum current density J are defined according to the Madelung transformation 

[55], 

p=mn (2.2) 

where the index k denotes the vector component and n the number density of the 

particles. The fluid velocity is defined by vk = Jkf p, or equivalently in terms of the 

phase, S, of the wavefunction, vk = (1i/m)8kS. Clearly, the velocity field is a po

tential flow, however it is also compressible and furthermore can support circulation 

( vorticity) as will be seen. 

The conservation of mass (probability), i. e. the continuity equation, follows from 

the definition of p and equation (2.1) 

(2.3) 

We use Einstein's summation convention throughout. The conservation of momen

tum equation may be found by considering the rate of change of the momentum 

current density 

(2.4) 

where the momentum flux density tensor takes the form 

(2.5) 
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This can be rewritten as 

(2.6) 

where the stress tensor CTjk is given by 

(2.7) 

2.1.2 Pressure, sound and force 

The form of equations (2.3), (2.4), and (2.6) is identical to those for classical fluid 

flow [54], the difference emerges from the nature of the stress, equation (2.7). A 

classical ideal fluid is characterised by CTjk = 0, for all j, k. In a viscous fluid, the 

shear stress (ajk,j 1- k) is produced by velocity gradients between neighbouring 

streams such that CTjk = ry(8jvk + akvj), where 77 is the coefficient of viscosity. This 

creates a frictional force which gives rise to energy loss. In a pure dilute Bose

Einstein condensate there is no frictional viscosity, but a shear stress arises from 

density gradients, the second term in equation (2. 7). This property gives rise to the 

possibility of vortex formation and drag without viscosity. 

The pressure (normal stress, -CTjk,j = k) within the quantum fluid has a non-linear 

and non-local dependence on the density, 

(2.8) 

The second term, called the quantum pressure, is weak in homogeneous regions of the 

fluid, that is far from obstacles or boundaries, vortex lines or shocks. The essential 

difference between interacting and noninteracting (ideal) fluids is the existence of 

interaction pressure which supports sound propagation. The speed of sound in a 

fluid is given by c = J8pj8p [54, 56]. For small amplitude waves of the form 

p( x) = p0 + E sin kx, we obtain the Bogoliubov expression for the speed of sound 

c(k) = w(k) = 
k 

9 ( n )2 -po+ - k2 . 
m 2 2m 

(2.9) 
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The dispersion relation w(k) is linear for small k and approaches the free-particle 

dispersion law for short wavelengths. The Landau criterion for superfiuidity is based 

on a non-zero slope of the excitation spectrum in the limit k --+ 0 [6]. Therefore, 

we expect superfiuid behaviour for any g > 0 with a Landau critical velocity of 

V£= y'gPOjm. 

The force on a sub-volume of the condensate can be calculated by integrating 

Eq. (2.4). One finds for the k-th component of the force, 

(2.10) 

where an is the surface of the volume n, nj is the j-component of the normal vector 

to an, and d2r is a surface element. The first term on the right-hand side arises 

from pressures acting on the boundary of the considered volume whereas the second 

term is due to forces exerted by external potentials. 

2.1.3 Quantisation of circulation 

The quantum Euler equation follows from combining the equations describing the 

conservation of mass and momentum, (2.3) and (2.4), along with the identity 

(2.11) 

allowing the momentum equation to be written as 

(2.12) 

The conservation of energy (Bernoulli equation) then follows as an integral of Euler's 

equation, or more directly from the real part of equation (2.1): 

(2.13) 

For steady flow, in which v and p are independent of time, the phase S changes 

linearly in time, S = -{tt, where 1-l is the chemical potential. The Bernoulli equation 
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then takes the form 

(2.14) 

Perhaps the most significant quantum effect on the mechanics of the fluid is the 

quantisation of angular momentum. The circulation is given by 

f = f dr ·V= (nlm)21rS , s = 0, 1, 2, ... ' (2.15) 

where the closed contour joins fluid particles. The conservation of angular momen

tum (Kelvin's theorem) follows from Euler's equation (2.12) and states that the 

circulation around a closed 'fluid' contour does not change in time. This means that 

within the fluid vortex lines must created in pairs which emerge from a point. The 

exception is at boundaries, where the wavefunction is clamped to zero and no closed 

fluid loop can be drawn, e.g. at the surface of an impenetrable object [54], or at the 

edge of a trapped condensate [57]. 

2.2 Choice of units 

For a homogeneous fluid flow it is convenient to re-scale length and velocity in 

terms of the healing length, e = nl JPO§, and the asymptotic speed of sound, c = 

Jp0glm2, respectively. In this case, equation (2.1) becomes 

(2.16) 

where ;j; = '1/JI.;nD and no= Palm is the asymptotic number density. Unless other

wise stated we use these units throughout and write 'ljJ instead of -J;. 

For all particle masses and interaction strengths the NLSE can be reduced to a 

dimensionless form which implies that, in principle, all weakly-interacting Bose con

densates exhibit exactly the same physical behaviour at the appropriate scales of 

time and space. If no is taken to be the asymptotic density at infinity, the asymp

totic mass density is p = m no = ( n noe I c) I e. In the reduced unit system e is the 
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unit of volume, therefore, mass is measured in units of linoe 1 c. rt follows that the 

units of mass flux per unit area, momentum flux per unit area and force are lino/~, 

lin0cj~, and lino~, respectively. Accordingly, momentum and energy are measured 

in multiples of linoe and linoce' respectively. 

For a dilute alkali gas, the number density ranges from no = lOll cm-3 to 5 x 1015 

cm-3 [33]. The speed of sound and the healing length are of order of c = 6.2 mm s-1 

and ~ = 0.3 J.Lm, respectively [24]. 

To convert between dimensionless units and values for He-II, one may use the mea

sured values of the number density, no = 2.18 x 1028 m - 3 , the quantum of circulation, 

K, = hjm = 9.98 X 10-8 m2 s- 1, and the healing length ~~.j'i = 0.128 nm [58] lead

ing to a mass unit, m = mnoe = 0.13m, where m is the mass of a helium atom 

and a speed of sound of c = 88 m s- 1 which is significantly less than the measured 

value of 238 m s-1. The origin of this disagreement probably lies in the GP model's 

simplified description of the inter-particle interactions that cause the propagation of 

sound. Another reason could be the large number of atoms that are not condensed 

but still contribute to the transport of sound. 

2.3 Coordinate systems and Galilean transformation 

Consider an object moving through a homogeneous condensate with velocity U. 

The GP equation takes the form 

ifki/J(r, t) = ( -~~2 + V(r- Ut)+ 11/J(r, t)1 2
) 1/J(r, t) . (2.17) 

The wavefunction 1/J( r) describes the condensate around a moving body in the fluid 

rest frame F and is suppressed near r = Ut (see Fig. 2.1(c)) due to the potential 

term sketched in figure 2.1(b). In the frame of the obstacle F' moving with velocity 

U with respect to F, r' = r-Ut and t' = t, the statement of Galilean invariance 

has the form: if1jJ(r) is solution to Eq. (2.17), then 

i8t'1/J'(r', t') = ( -~~'2 + V(r') + 11/J(r', t')l 2
) 1/J(r', t') , (2.18) 
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r=r'+vt 
a) b) V(x) 

8•r' ::;. 

X 

c) I'I'(r)l2 d) I'I''(r')l2 

r' 

vt 

Figure 2.1: (a) Shows the relation of the fluid rest frame F to the object frame F', 
(b) Typical shape of the potential well used to simulate the effect of an object in a 
condensate, (c) and (d) Appearance of wavefunctions in F and F' 

in which 

'1/J' ( r', t') exp(-iU · r'- ~U2t')'lj;(r' + Ut',t') 

exp(-iU·r'-~U2t')'lj;(r,t). 
(2.19) 

The reciprocal relation follows from exchanging primed and unprimed coordinates 

and the mapping U---+ -U: 

'lj;(r, t) exp( +iU · r- ~U2t)'lj;'(r- Ut, t) 

exp(+iU · r- ~U2 t)'lj;'(r',t'). 
(2.20) 

The phase gradient of the wavefunction in the object frame at infinity can be elim

inated by adding a gradient term to the NLSE so that -J'(r', t') = 'lj;(r' +Ut', t') is 

the solution to the equation 

i8t,,(f'(r', t') = ( -~\7'2 + V(r') + 1-J(r', t')l 2 + iU ·V'') ,(f'(r', t'). (2.21) 

Here ,(f'(r', t') can also be interpreted as the wavefunction in F written down in 

variables r' and t'. 

The following chapter is concerned with the time-independent solutions in the mov

ing frame that are often called solitary wave solutions to the NLSE. They can be 
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written as 7f;'(r',t') = ~'(r')e-iJ-Lt'. The chemical potential is constant in space and 

equal to one if the density of the wavefunction is one at infinity. Omitting the 

primes, the equations for solitary wave solutions moving with velocity U reads 

<j;(r) = ( -~\72 + V(r) + /</J(r)/ 2 + iU · \7) <j;(r). (2.22) 

2.4 Lagrangian 

The Lagrangian density of the NLSE (2.16) in scaled units is given by 

(2.23) 

Note the /'1/J/ 4 dependence of the free energy according to the Ginzburg-Landau 

theory, Eq. (1.8). From the Hamiltonian, 1l = J d3r[(8£j8-J;)-J;- £], we define the 

energy and momentum density of the fluid. 

2.4.1 Energy 

The energy relative to the ground state (i.e. 'ljJ = 1 and V = 0) having the same 

number of particles, is defined by 

(2.24) 

Any deviation of the local particle density /'1/J/
2 from 1 constitutes an excitation. The 

first term in Eq. (2.24) can be written as 

(2.25) 

(2.26) 

where v = \7 S and n = /'1/J/ 2 are the local velocity and density, respectively. It 

contains the classical kinetic energy of the particles as well as an energy due to 

density fluctuations. 
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2.4.2 Momentum 

The momentum is given by 

(2.27) 

Eq. (2.24) may be re-written using Eq. (2.22) for time-independent wavefunctions 

in a frame moving with velocity U: 

(2.28) 

Here, partial integration has been employed and the surface terms proportional to 

V' cp have been assumed to be zero. 

2.4.3 Dispersion curve 

Consider a class of solitary solutions to the equation cp = - ~ \12'1/J + lc/JI 2'1/J + V 'lj; + 

iU8zc/J, moving along the z-direction for different values of U. One expects that 

for an infinitesimal change of the velocity, U ---+ U + 8U, the wavefunction adapts 

steadily, cp ---+ c/J+8cp, where 8cp and all its derivatives fall to zero at least quadratically 

at large distances from the object V. The change in momentum in the z-direction 

is then given by 

Pz(c/J + 8cp)- Pz(c/J) 

-i I d3r (8cp*8zc/J- 8cfJ8zcfJ*) . 

(2.29) 

(2.30) 

Using equation (2.22) and after partial integration, we find for the energy of the flow 

8£ I d3r (8cp* ( -~\12 c/J + lc/JI 2 c/J +V cp- cp) + 

8cp (- ~ \12c/J* + lc/JI 2c/J* + V cp* - cp*)) 

I d3r ( 8cp* ( -iU azcp) + 8cp ( +iU azcp*)) 
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(2.31) 

This means the slope of the dispersion curve for solitary wave solutions is always 

equal to the group velocity U of the solution. 

2.5 Simple solutions to the NLSE 

Here we present some special solutions to the NLSE in simple geometries. Many of 

the properties of these solutions will appear throughout the thesis. 

2.5.1 Trapped BECs 

Most of the numerical work employing the GP equation has been concerned with 

BECs that are confined in a potential well, V, 

(2.32) 

Here V is an ellipsoid quadratic potential of the form V = Exx
2 + Eyy

2 + Ezz
2 and g 

determines the nature of the inter-particle interaction with g = 0 for non-interacting 

bosons and g = 1 or -1 (in dimensionless units) for repulsive and attractive interac

tions, respectively. Fig. 2.2 shows the ground state solutions in a spherical trap for 

different interactions. The number of particles, J d3xi1/JI 2
, is the same in all cases. 

In the case of an attractive inter-particle potential, g = -1, both the interaction and 

the trap potential push the wavefunction towards the centre of the trap. However, 

up to a critical number of particles the kinetic energy term due to the curvature of 

the wavefunction prevents the condensate from collapsing. Let us approximate 1/1 by 

a Gaussian, aexp (-(~) 2 ) that is normalised to N. The energy of the condensate is 

given by 

£(b, N) (2.33) 

(2.34) 
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Figure 2.2: Ground state solutions in a spherical trap. A positive scattering length 
pushes the particles to the edges of the trap whereas for attractive interactions the 
distribution is narrower. For g = 0, the ground state is a Gaussian. The number of 
particles is normalised to 14 in each case. 

We find that there exists a local minimum in the energy for a certain width b 

of the wavefunction for values of N < V(81r) 3 j# :::::: 16.9. From the numerical 

solution of the wave equation (2.32) we find that the condensate collapses for particle 

numbers N > 14.4, a value close to the one predicted above. The existence of a 

critical number of atoms in condensates with negative scattering length has been 

confirmed in experiments [59]. In general, the criterion for collapse depends on the 

dimensionality and asymmetry of the trap [60]. In the absence of a trap (V = 0) 

condensates with negative interactions are unstable whereas bosons with positive 

interaction strength form a homogeneous condensate. In the following we will focus 

on the case g = 1. 

2.5.2 Objects and walls 

A potential term V in the NLSE suppresses the density of the wavefunction and 

can therefore be used to simulate the effect of a foreign object such as a far detuned 

laser beam in the condensate. An infinite potential barrier is simulated by applying 

the condition 'ljJ = 0 at the edge of an object. The wavefunction recovers to its mean 
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Figure 2.3: The wavefunction recovers from zero to its mean value within a couple 
of healing lengths. The slope at the origin equals 1. 

value, 1 in dimensionless units, within a length scale given by the healing length, ~

Fig. 2.3 shows a one-dimensional solution to the NLSE with zero boundary condition 

for the wavefunction at the origin. The solution is given by 'lj;(x) = tanh(x). 

2.5.3 Vortex tubes and rings 

In the Madelung transformation, a gradient in the phase of 'lj; is interpreted as the 

local velocity of the fluid. This picture implies that the circulation of the fluid must 

be quantised and fully contained in one-dimensional so-called vortex lines in space. 

Assume a wavefunction of the form 'lj;(r, (}) = p112 (r) exp(im(}), where m is an integer 

and r measures the distance from the vortex line. The circulation defined in (2.15) 

is given by ,., = 21rm. The density p112 (r) close to the vortex core can be written as 

an expansion 

00 

plf2(r) = L airi . (2.35) 
i=O 

Substituting this Ansatz into the NLSE, we find that coefficients with i < lml are 

zero. The exact density profile inside a vortex core with 1,.,1 = 21r is shown in Fig. 2.4 

(solid line). The broken and dotted lines show the series expansion up to the 3rd and 
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Figure 2.4: The density in a vortex core (solid line). The slope at the origin is about 
0.824, smaller than for the tanh solution due to the centrifugal force. The broken 
(dotted) line show the series expansion, Eq. (2.35) in 3rd (25th) order. 

25th order, respectively. The velocity profile around a vortex is given by 1/r. Vortex 

tubes therefore constitute one-dimensional singularities in the superfluid velocity. 

The mere existence of stable vortices and persistent currents implies the superfluid 

nature of the liquid. 

A vortex tube can be bent to a circular shape to form a vortex ring. Fig. 2.5 shows 

a surface plot of ring solutions with circulation, K. = 21r, 47r, and 61r. A superfluid 

vortex ring moves with a constant velocity through the fluid. This self-induced 

motion is exactly analogous to the propagation of vortex rings in classical fluids. 

Here, the vortex rings are solitary wave solution to the NLSE in the sense that 

the they do not change their shape or circulation due to internal friction. In the 

appropriate frame, a vortex ring is a stationary, time-independent solution to the 

NLSE. 

The corresponding 2D solitary wave solutions are vortex pairs consisting of two 

vortex tubes with anti-parallel circulation. The flow induced by one of the vortices 

pushes the other one forward in a direction perpendicular to the circulation and 

perpendicular to the line that connects the two cores. 
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Figure 2.5: Surfaces of constant density (1~1 2 = 0.02) for vortex rings with r;, = 21r, 
47r, and 61r for v = 0.5. The motion is parallel to the axis of the rings. The 
core structure is only resolved at very low density: the surface density surface for 
1~1 2 = 0.08 appears as a single ring in each case. 

The double (r;, = 47r) and triple (r;, = 61r) rings only exist for U < 0.56 and U < 

0.67, and their cores consists of 2 and 3 lines of zero density, respectively. The 

separation of the density minima increases with decreasing ring radius, suggesting 

that it results from the interaction between segments of the ring. For r;, = 61r, the 

central minima has a larger radius (Fig. 2.5). Similar core structures are also found 

in the corresponding 2D solutions. Although vortex rings with multiple circulation 

have higher energy (E ex r;,2 ) than the corresponding number of single rings (E ex r;,), 

we find that they are stable when subject to a perturbation in a time-dependent 

simulation. Similar robustness has also been found for vortex lines with multiple 

circulation [61 ]. 

Fig. 2.6 shows a plot of the ring propagation velocity and momentum as a function 

of ring radius, R. For R > 5, the velocity can predicted accurately by the expression 

U = r;, [ln(8R/a)- b] j41fR, (2.36) 

where a is the core radius (a= 1/V2 in our units) and b is a constant which depends 

on the structure of the core (b = 0.25 for a classical fluid, whereas b = 0.615 has 

been predicted for a dilute quantum fluid [62]). Numerical fits give b = 0.615 (as 

expected), 1.58, and 2.00 for r;, = 21r, 47r and 61r, respectively. For r;, = 21f (single 

ring), the ring collapses (i.e. the on-axis density becomes zero) when U = 0.88, 

however, the 'collapsed ring' leaves a lower density region, termed a rarefaction 
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Figure 2.6: Vortex ring velocity (left) and momentum (right) for"'= 21r, 47r, and 61r: 
The numerical data (dots) are compared to U = "'[ln(8R/a)- b] /41TR (a= 1/V'i, 
b = 0.615, 1.58, and 2.00), and P = 7ri'\,R2 , respectively. 

pulse by Jones and Roberts [63] which gradually fills up as the velocity approaches 

the speed of sound. 

A very good estimate for the momentum of a vortex ring is given by the classical 

formula [7]: 

(2.37) 

For small radius the momentum is slightly smaller due to the hollow core. 

2.5.4 lD Solitary wave solutions 

The rarefaction pulses or 'collapsed vortex rings' mentioned above have very similar 

behaviour to one-dimensional solitary wave solutions to the NLSE given by 

'1/J(x, t) = [ J1 - U2 tanh ( J1 - U2(x- Ut)) + iU) e-it . (2.38) 

The density and the local velocity, i.e. the gradient of the phase, are plotted in 

figure 2.7. The density dips shown in figure 2.7 (a) propagate with a constant 

velocity U. Their depth decrease with increasing velocity and the wave solution 

becomes equal to 1 at the speed of sound. In analogy to optical solitons, solitons 
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Figure 2.7: Density (left) and local velocity (right) of lD soliton solutions to the 
NLSE for different group velocities U. 

with zero density (U = 0) are termed black solitons in contrast to grey solitons for 

O<U<l. 

It is interesting to note, that the local or phase velocity has a different sign to the 

group velocity U. Assuming that the density wave in figure 2.7 (a) is moving to 

the right with velocity U, the individual partic!~~ of the fluid are moving to the 

left through the density hollow reaching the largest velocity in the region of lowest 

density. The phase velocity is given by -1rb"(x) for a black soli ton. 

2.6 Summary 

We have reviewed the fluid properties of the Gross-Pitaevskii model and presented 

some fundamental solutions to the equations. We have investigated vortex line and 

ring structures and found that vortex tubes with multiple circulation consist of 

separate minima. In the following chapters we will focus on the flow of a quantum 

fluid around moving objects. 



Chapter 3 

Motion of an object through a 
quantum fluid: The force free 
case 

Vortex structures in dilute quantum fluids are studied using the time-independent 

Gross-Pitaevskii equation. For a spherical object, we study encircling and pinned 

ring solutions, and determine their excitation energies as a function of velocity for 

both penetrable and impenetrable objects. The ring and laminar flow solutions con

verge at a critical velocity, which decreases with increasing object size. We also 

study the vortex solutions associated with flow past a surface bump which indicate 

that surface roughness also reduces the critical velocity. 

3.1 Introduction 

Vortex solutions of the NLSE equation have been studied for a number of simple 

geometries. Flow past an object has been studied in one [64, 65] and two dimensions 

[66], and it is found that stationary vortex solutions exist only for motion slower than 

a critical velocity. Above this velocity, one observes the periodic emission of vortices 

leading to a pressure imbalance which produces drag on the object (Chapter 4). 

Consequently, the critical velocity also determines the transition between superfluid 

and normal flow. 

31 
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In the following section, we investigate stationary vortex solutions near an object 

in three dimensions. For a spherical object there are two vortex solutions: the 

encircling ring, where the object is positioned at the centre of the ring; and the 

pinned ring, where the object lies within the core of the vortex line. For all object 

potentials laminar flow evolves smoothly into the encircling ring solution. Finally, 

we study flows parallel to a plane and illustrate the effect of surface roughness on 

the critical velocity, which may have important implications for the threshold of 

dissipation in superfluids [67]. 

All results presented below are calculated by numerically solving the time-indepen

dent Gross-Pitaevskii equation, 

<jJ(r) = [-~\72 + V(r) + I</J(r)l 2 + iU · \7] </J(r), (3.1) 

where </J( r) is the wavefunction in the fluid rest frame written in terms of the object 

frame coordinates, see Appendix 1. 

3.2 Motion of a sphere 

The free ring solutions discussed in chapter 2 are modified by the presence of an 

object or surface. In this section, we present results for a spherical object with 

radius R = 3.3 and potential V, i. e. V(r) = 1 (r ~ R) and V(r) = 0 (r > R) 

moving with velocity U. Fig. 3.1 shows surface density images of the three possible 

solutions: laminar flow; the pinned ring or vortex loop; and the encircling ring (the 

corresponding 2D solutions: laminar flow; a free and a bound vortex, and a vortex 

pair, were studied by Huepe and Brachet [66]). Fig. 3.2 shows a section of the 

velocity field pattern around the obstacle for each case. As the velocity increases, 

the ring shrinks in a manner similar to that of a free vortex ring (see Fig. 2.6 (left)). 

Close to the critical velocity, the vortex core merges into the surface of the object 

and the flow patterns converge (Fig. 3.2 lower). 

The pinned ring solution merges into the encircling ring solution far below the critical 

velocity as illustrated in Fig. 3.3. The left and the middle figure show the core of 
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Figure 3.1: Surfaces of constant density (I<PI 2 = 0.25) showing the three steady-state 
solutions associated with motion of a spherical object: from left to right, laminar 
flow; pinned ring; encircling ring. 
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Figure 3.2: The velocity field pattern in the equatorial plane of a spherical object 
with radius R = 3.3 for U = 0.3 (above) and U = 0.56 (below) (the critical velocity, 
Uc = 0.71). The three columns correspond to laminar flow (left), the pinned ring 
(middle), and the encircling ring (right). Note the circulation around the object in 
the pinned ring solution. Only one quarter of actual grid points are shown. 

vortex rings at U = 0.4 and U = 0.54, respectively and the object pinned to it. 

At low velocities, the vortex tube runs through the centre of the object whereas for 

vortex rings that are of the size of the object, the object moves towards the centre 

of the ring. The position of the vortex core relative to the centre of the object is 

plotted in Fig. 3.3 (right). At U = 0.58, the 'pinned' ring solution (broken line) 

disappears. With increasing velocity, the ring shrinks further but still has a finite 

size at the critical velocity. 

The solid line in Fig. 3.3 that is zero for velocities U < 0. 70 corresponds to the 

laminar flow solution. A small vortex ring forms at velocities close to Uc. This 

point highlights the gradually nature of the transition from laminar flow to flows 

containing vortices. The conservation of circulation (Kelvin's theorem) requires that 

vortex lines are created in pairs or as rings which emerge from a point [68], or at 
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Figure 3.3: The density plots illustrate the steady transition from the pinned to the 
encircling ring solution. At U = 0.4 (left) the vortex line goes through the centre of 
the object. For a smaller ring (middle, U = 0.54), however, a location fully inside 
the object becomes energetically favourable. The right graph shows the position of 
the 1/J = 0 lines with respect to the centre of the sphere for the different solutions: 
pinned ring (broken line), encircling ring (solid line) and laminar flow (joining into 
the encircling ring solution at Uc = 0.71). Apparent is the emergence of a vortex 
ring at the centre of the sphere in the laminar flow branch just below the critical 
velocity. 

boundaries [57]. The laminar flow solution converges to the encircling ring solution 

at Uc. In this and indeed all the following plots, the two solutions appear as two 

parts of the same continuous graph, the transition between the laminar flow and the 

vortex flow is smooth. 

3.3 Energy of the flow 

The energy as a function of velocity for different obstacle heights is shown in Fig. 3.4. 

For a free ring (V = 0), Fig. 3.4 (a), the energy and momentum decrease with 

increasing velocity, reaching a minimum at U = 0.93, which corresponds to the cusp 

in the dispersion curve (see inset). For U > 0.93, the collapsed ring leaves a lower 

density, higher velocity region (see Section 2.5.3) with energy E ,..._, cP. Inserting 

E = cP in Eq. (2.28), one finds that as v decreases, 14>1 2 must also decrease, but 

this becomes impossible when 14>1 2 = 0, so the rarefaction pulse is replaced by a 

vortex ring. The process of supersonic flow creating a localised sound wave which 

evolves into a vortex ring (or pair in 2D) appears to be central to the mechanism of 

vortex nucleation in dilute quantum fluids (see e.g. Fig. 4 in Ref. [68]). For V > 0, 
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Figure 3.4: The energy of the stationary solutions of the NLSE as a function of the 
flow velocity. With no obstacle (a), free ring solutions are found up to the speed of 
sound U = 1.0, however, the ring collapses at U = 0.88 leaving a localised solitary 
wave with energy, E'"" cP (see inset). For V> 0 (R = 3.3) (b)-(d) there are three 
branches: (1) laminar flow; (2) the pinned ring; and (3) the encircling ring. The 
encircling and pinned solutions merge below the critical velocity, see (d) inset. 

Fig. 3.4 (b), the energy of the laminar flow solution (1) is no longer zero, and the 

ring solution bifurcates into two branches corresponding to the pinned ring (2) and 

the encircling ring (3). For low velocities (large radii), the energy of the encircling 

ring is higher than the pinned ring by an amount corresponding to the energy of 

the ring segment excluded by the object. Note that the pinned and encircling ring 

solutions always merge below the critical velocity, Fig. 3.4 (d) inset. 

3.4 The critical velocity 

The critical velocity for the breakdown of superfluidity is often expressed in terms 

of the Landau condition [56], Uc = (E/P)min, where E and p are the energy and 

momentum of elementary excitations in the fluid, and Uc is the flow velocity in the 
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direction of motion .. 

Figure 3.5: Sketch of streamlines around a sphere for an incompressible fluid, 
Eq. (3.2). The flow velocity at the equator of the sphere (r = R and (} = ~) is 
enhanced by a factor of l The compressibility of the quantum fluid further en
hances the local velocity there because the fluid has to go faster in regions of lower 
density in order to satisfy the continuity equation. 

fluid bulk. In the dilute Bose gas, the long wavelength elementary excitations are 

sound waves and the Landau criterion predicts that Uc =c. However, for flow past 

an object, the local velocity near the obstacle, v, can become supersonic even when 

the flow velocity, U, is sub-sonic. Consequently, the critical flow velocity, Uc, where 

laminar flow becomes unstable occurs at a fraction of the sound speed. 

Fig. 3.5 sketches the streamlines of a flow past a sphere. The flow speed is highest 

at the equatorial plane of the sphere. To calculate the flow velocity, consider the 

continuity equation, 0 = \l(p'\18), where S is the phase and v = '\IS the local 

velocity. For an incompressible fluid (p = const) the stream functionS is 

U cos(} R3 

S(r,(})=Urcose+ 2 r 2 (3.2) 

This corresponds to a laminar flow past a sphere with the correct boundary condition 

at infinity. As expected, the maximum flow velocity occurs at the equatorial plane, 

Vequ = ~ ~! lr=R,0=1r/2 = ~U . (3.3) 

However, the NLSE describes a compressible fluid and the local density in regions 

of high velocity is reduced according to Bernoulli's equation (2.14) (neglecting the 
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quantum pressure), 

(3.4) 

This leads to a further enhancement of the local velocity near the obstacle. The 

correction can be expressed in a series expansion involving higher order terms of the 

flow speed at infinity [37]: 

3 3 5 
Vequ = 2u + 0.313U + 0.392U + ... (3.5) 

In the limit of large radius, R--+ oo (where one can neglect the boundary layer and 

hence the quantum pressure term), one can predict the critical velocity analytically 

using this asymptotic expansion for the speed at the equator. The solution becomes 

unstable when the flow velocity becomes equal to the sound speed, v = JP, Eq. (2.9). 

Combining these results (including terms up to un) gives Uc = 0.53004 for R--+ oo. 

To illustrate the behaviour of the exact solutions near the critical velocity, we solve 

equation (3.1) in 3D for an impenetrable sphere with radius R =50. The wavefunc

tion, velocity and quantum pressure term near the object are shown in Fig. 3.6. Note 

that these parameters are related via the Bernoulli equation (2.14). The intersection 

of the velocity v and wavefunction amplitude (11/11) curves defines the position where 

the velocity is equal to the 'bulk' sound speed (2.9). Note that close to the object the 

effective sound speed is increased due to the quantum pressure term, (2.8), therefore 

even though the density is low the flow is not 'supersonic'. The critical velocity is 

reached when flow velocity exceeds the speed of sound in the bulk of the fluid, i.e., 

when the intersection between the velocity and wavefunction curves moves into the 

region where the quantum pressure term is close to zero, see Fig. 3.6 (right). 

For R = 50 we find a critical velocity of Uc = 0.53285 in good agreement with 

the value obtained from the analysis of the laminar flow around a large sphere. 

The critical velocity decreases with increasing R tending asymptotically towards 

the R = oo value of Uc = 0.53004, see Fig. 3.8. 
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Figure 3.6: Laminar flow past a sphere with radius R = 50 for two flow velocities 
(a) U = 0.2 and (b) U = 0.53285. The three curves show, (1) the 'bulk' sound speed 
c = y'ri = 1~1, (2) the velocity, v, and (3) the quantum pressure, \72 1~1/21~1, as a 
function of position. Note that at the critical velocity Uc = 0.53285 (b), the fluid 
velocity is equal to the sound speed where the quantum pressure is exactly zero. 

3.5 Flow adjacent to a plane boundary 

Two classes of solution may be distinguished for flow adjacent to a plane boundary: 

laminar flow and vortex loops. The loop behaves similarly to a free ring, i.e., the 

radius decreases with increasing velocity, and merges into the plane at a critical 

velocity, U = 1. To comment on the flow of superfluids in real systems, we consider 

the effect of a surface bump. In this case, the vortex loop can either encircle or 

pin to the bump (again the pinned loop has a lower energy). The key effect of the 

bump is to reduce the critical velocity, Uc, see Fig. 3.8. In the limit of large radius, 

R = 104 , the critical velocity tends to rv 0.53 for both surface and volume defects. 

Figure 3. 7: Surfaces of constant density illustrating the stationary vortex structures 
near a bump on a plane surface: vortex loops pinned (left) or encircling the bump 
(right). 
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Figure 3.8: The critical velocity as a function of the defect radius, R, for an impen
etrable hemisphere on a plane and sphere in the bulk. For large radii, Uc -+ 0.53. 

As Uc coincides with the appearance of drag in superfluids, one may conclude that 

surface roughness is a significant factor in determining the dissipation at low flow 

velocities. 

3.6 Summary 

We have investigated the flow of a quantum fluid around a moving sphere and find 

three classes of solutions. Ordered according to their energy, these are laminar flow, 

encircling ring solutions and pinned ring solutions. Both laminar flow and vortex 

solutions become unstable at a critical velocity. The critical velocity is equal to the 

speed of sound for an unbounded flow or adjacent to a wall, but decreases near an 

object or surface bump. As the critical velocity corresponds to a transition between 

normal and drag-free flow, this dependence indicates how impurities and surface 

roughness can produce a marked effect on the flow of superfluids. 



Chapter 4 

Motion of an object subject to 
an external force 

We simulate the motion of a massive object through a dilute Bose-Einstein conden

sate by numerical solution of the Gross-Pitaevskii equation coupled to an equation 

of motion for the object. Under a constant applied force, the object accelerates up to 

a maximum velocity where a vortex ring is formed which slows the object down. If 

the applied force is less than a critical value, the object becomes trapped within the 

vortex core. We show that the motion follows the time-independent solutions, and 

use these solutions to predict the conditions required for vortex detachment. 

4.1 Introduction 

One of the most elementary questions that can be asked about a fluid is how will 

an object move through it? In quantum fluids, it is expected that the object moves 

without resistance at velocities, U, up to a critical value, Uc, where energy and 

momentum conservation allow excitations. Experiments on the motion of small 

objects in superfluid helium (He-II) suggest that the appearance of drag is often 

associated with the formation of vortices [7]. For example, ions dragged through He

ll nucleate vortex rings and become trapped within the vortex core [7, 58]. However, 

it is not known whether the rings emerge via quantum transition, where the ion 

creates an encircling ring and subsequently attaches itself to the vortex core; or 

40 
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peeling, where the ion creates a vortex loop which grows to form a pinned ring [6, 7]. 

Here, we study the general case of the motion of an object with finite mass moving 

through a dilute Bose-Einstein condensate and include the fluid back-action on the 

object. The time-evolution is found by solving the GP equation coupled to an 

equation of motion for the object. The grid contains 140 points in each dimension 

and we use a time step dt = 0.02. For the object we choose a penetrable sphere 

with mass M = 200 and radius R = 3.3 (V = 1.0 for lrl ~ 3.3 and 0 elsewhere). 

For He-II, these parameters correspond to 25 helium atoms with radius 0.6 nm (see 

Section 2.2), similar to the 'snowball' that surrounds a positive ion [7]. For an 

atomic condensate our object would correspond to a small cluster or condensate of 

impurity atoms in a sphere with a diameter of a few microns. 

4.2 Evolution of the object velocity 

An important result is that the time-dependent evolution of the object velocity is 

found to follow the time-independent stationary solutions, '1/J(r', t) = ify(r')ei~tt, of 

the uniform flow equation, (3.1). For an object velocity below the critical velocity, 

one finds three solutions, which in order of increasing energy correspond to laminar 

flow, a vortex ring pinned to the object, and a vortex ring encircling the object (see 

chapter 3). The velocity vs. momentum for these solutions for a spherical object 

with mass M = 200 and radius R = 3.3 are plotted as thin lines in Fig. 4.1. The 

laminar, encircling ring, and pinned ring branches are labelled (1), (2), and (3), 

respectively. 

The time-dependent evolution of the object velocity due to a constant applied force, 

F, is plotted as a bold line in Fig. 4.1. With increasing momentum, P = Ft, the 

object velocity increases along the laminar flow branch, (1). Even though there is 

no drag, momentum is transferred from the object to the fluid. This momentum 

transfer can be described in terms of an increase in the effective or hydro-dynamical 

mass of the object, ffieff = ( au I 8P) -l. The effective mass becomes infinite at the 

critical velocity, Uc = 0.68, and then negative as the object begins to slow down. 
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Figure 4.1: The evolution of the object velocity due to a constant applied force, 
F. The velocity is plotted (bold line) against the total momentum P = Ft for 
(a) F = 0.05, (b) F = 2 and (c) F = 4. The other curves, (1) to (3), show the 
time-independent solutions of the uniform flow equation, (3.1). The dotted line in 
(a) shows the velocity vs. momentum curve for a free vortex ring. The dots in 
(b) and (c) correspond to the times of the isosurface plots shown in Fig. 4.2. In 
each case, we begin with a laminar flow state with velocity U = 0.5. The applied 
force accelerates the object along the laminar flow solution (1) up to a peak velocity, 
Uc = 0.68, where an encircling vortex ring emerges and begins to slow the object 
down. In (a), an abrupt decrease in velocity occurs when the object moves into the 
vortex core, i.e., when the time-dependent curve switches from the encircling ring 
solution (2) to the pinned ring solution (3). This jump excites vibrations of the 
ring leading to large oscillations of the object velocity (inset). The oscillations are 
damped as the vortex ring grows. When the ring radius is large the object velocity 
tends to the velocity of a free vortex ring, indicated by the dotted line in (a). In (c), 
the force is sufficient to detach the object from the ring and the cycle repeats. 

Close to the peak velocity, Uc, a vortex ring emerges encircling the object. The 

encircling vortex ring is apparent in frame 2 of Fig. 4.2 (a) which shows an isosurface 

of constant fluid density. The object is weakly bound in the direction of motion, 

therefore as the ring grows, it decelerates the object. 

When the vortex core begins to separate from the object boundary, the encircling 

ring configuration, corresponding to the stationary solution (2), becomes unstable 

with respect to transverse motion, and stochastic fluctuations induce a transition 

to a pinned ring solution (3), where the object is bound within the vortex core as 

in frame 4 of Fig. 4.2 (a). In our simulations, defining the external force, F, at 

a slight angle to the numerical grid axis is sufficient to induce the transition. On 
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Figure 4.2: Sequence of surface contour plots of the fluid density for (a) F = 2 and 
(b) F = 4. The motion is from left to right, and the real space deflection due to the 
attraction of the vortex core is indicated by the transverse position. The momentum 
(or time) of each frame is indicated by a dot in Fig. 4.1 (b) and (c), except for the 
last frame in (a), where P = 1562. Note that after detachment, (b), the ring size 
remains constant and the object and ring move at different velocities. 

moving into the core, the object acquires a transverse velocity thereby deflecting its 

trajectory (Fig. 4.2). The deflection angle is a few degrees, so this effect could be 

observable in experiments. Because the object slows down in the direction of the 

force but keeps a constant velocity in the transverse direction, the trajectory is bent 

(Fig. 4.3) and the deflection angle increases steadily. 

If the ring detaches, a second ring forms and the object is pulled back in the opposite 

direction. Consequently, vortices are emitted on alternating sides of the object, 

similar to the vortex shedding behaviour observed in classical fluids. 

The jump into the core also leads to the excitation of oscillatory modes of the 

vortex ring Fig. 4.2 (a). One mode of oscillation dominates [69] and the frequency 

is independent of the applied force. As the fluid is compressible, an accelerating 

object creates sound waves which damp the motion. This damping is apparent 
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Figure 4.3: The trajectory of an ion for M = 200 and F = 0.05. On hopping into 
the core, the ion acquires a transverse momentum and moves with constant velocity 
in the transverse direction. The trajectory is bent because the system slows down 
in forward direction under the influence of a constant force. 

in the oscillations of the object velocity in Fig. 4.1 (a) inset. If the applied force 

is maintained the vortex radius continues to increase and eventually the motion 

becomes indistinguishable from that of a free vortex ring, indicated by the dotted 

line in Fig. 4.1 (a). 

From Fig. 4.1 (a) it follows that, excluding the ring excitations, the motion closely 

follows the time-independent solutions, therefore these solutions may be used to 

predict the motion of more complicated objects. To test whether a spherical object 

favours the encircling vortex ring configuration, we performed calculations on a 

sphere (R = 3.3) with a hemispherical surface bump (R = 1.5). The largest effect 

occurs when the bump lies in the equatorial plane. In this case, the critical velocity 

is reduced from 0.68 to 0.65, and the vortex ring emerges asymmetrically with its 

axis pulled towards the bump. However, the initial ring radius is still similar to the 

no bump case. Subsequently, the object or ring rotate such that the vortex core is 

pinned to the bump. 
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Figure 4.4: Uniform flow solutions for a sphere (R = 3.3) with a bump (R = 

1.5). Left: The velocity-momentum dependence of the laminar and four vortex 
solutions. Right: Cross sections showing the fluid density (dark corresponds to low 
density around the object) for the four allowed vortex configurations: (1) Vortex ring 
encircling the object and bump; (2) pinned to the object; (3) encircling the bump; 
and (4) pinned to the bump. Note that laminar flow evolves continuously into a 
vortex ring encircling the bump, solution (3). Subsequently, the system evolves to 
the lowest energy state (4). 

4.3 Oscillations in the vortex core 

As is apparent in Fig. 4.3, large amplitude oscillations of the object in the transverse 

direction decay rapidly whereas small oscillations in the direction of motion can 

persist for hundreds of cycles before they decay into sound waves, see Fig. 4.1 (a). 

To study these oscillations, we prepare a time-independent solution for U = 0.3 

which corresponds to a vortex ring with radius R = 6.0 and elongate the object 

with a short impulse of P = 10. The subsequent oscillation is shown in Fig. 4.5 (a). 

The amplitude is smaller than the healing length in this case. An object trapped in 

the core (bold line) oscillates about twice as fast as an object at the centre of the 

ring (thin line) due to a stronger coupling. The Fourier spectrum of the oscillation 

in the core are plotted for different masses, M = 30, M = 60, and M = 200 in 

Fig. 4.5 (b). 
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Figure 4.5: (a) Oscillations of an object of M=200 in the vortex core (bold line) and 
in the centre of the ring (thin line) after a small kick of momentum P = 10. The 
frequency of the oscillation in the core is higher due to a stronger binding. (b) The 
frequency spectra are shown for oscillations in the core for different masses 

The frequency spectra are sharply peaked which suggests a simple oscillation of two 

linearly coupled masses with a frequency, 

1~ Mm f = - - , where fl = M . 
27r fl +m 

(4.1) 

Here M is the mass of the object and m the mass of a part of the fluid. From the 

simulations, we find m= 1400 and a coupling constant of k = 2.7. Apparently, the 

long-lasting oscillations do not involve the entire vortex ring because its mass mvr 

is negative (which can be seen from the negative curvature of the dispersion curve, 

Fig. 3.4 (a) inset). 

4.4 Vortex detachment 

If the applied force is sufficient, the object can detach from the vortex ring as 

in Fig 4.2 (b). After detachment the size of the ring remains constant, and the 

object can accelerate again up to the critical velocity where another ring forms. 

This process repeats. The beginning of this repetitive cycle is apparent in the time 

evolution shown in Fig. 4.1 (c). If detachment occurs, the initial encircling ring 

system evolves into an object and a free vortex ring which moves more slowly as in 
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Figure 4.6: Energy and momentum conservation during vortex formation and de
tachment. The allowed energy and momentum states of a moving object with mass 
M = 200 (1-3) and a free vortex ring (4) determined from the time-independent 
solutions of the uniform flow equation, Eq. (3.1). Under a constant force, the object 
moves up the laminar flow branch of the dispersion curve (1) passing through the 
critical point where a vortex ring is formed, then continues along or just above the 
encircling ring branch (2). When the system reaches the shaded region, it is possible 
for the bound object-vortex ring (A) to decay into an object dressed by a laminar 
flow (B) and a free vortex ring (C). If, before detachment, the object moves into 
the core, the energy tends towards the pinned ring branch (3), and detachment is 
forbidden. The grey scale indicates the radius of the scattered vortex ring (darker 
is smaller). The velocity is determined by the slope of the dispersion curves. 

Fig. 4.2 (b). One can regard this as a 'decay' of an encircling ring state into a free 

vortex ring and a new laminar flow state. In Fig. 4.6, we plot the dispersion curves 

for a moving object and a free vortex ring [63] obtained from the time-independent 

solutions of Eq. (3.1). The shaded region indicates the range of initial energies and 

momenta where vortex detachment may occur, i.e., for which there exists final vortex 

ring and laminar states which satisfy the conservation laws. In a time-dependent 

simulation with a constant external force, the object moves up the dispersion curve 

passing through the critical point where a vortex is formed and then continues along 

the encircling ring branch (2). When the system enters the shaded region, (point 

A in Fig. 4.6), energy and momentum conservation permit 'decay' into an object 

dressed by laminar flow (B) and a free vortex ring (C). Note that the energy at point 
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A is higher than the time-independent value because the object is dragged out of 

the plane of the ring (see Fig 4.2). If the applied force is low, the object moves into 

the vortex core and the system relaxes towards the lower branch of the dispersion 

curve (3) and detachment is forbidden. 

4.5 Comparison with ions in He-ll 

As discussed in the Introduction, the GP equation cannot be expected to model the 

dynamics of He-II correctly. However, it is interesting to note that the velocity vs. 

momentum profile shown in Fig. 4.1 (a) is similar to the velocity vs. electric field 

profiles observed for ions in He-II (see e.g. [70]). If we define the healing length, 

~ = 0.18 nm [58], we obtain a critical velocity Uc '"'"' 60 ms-1, in rough agreement 

with experiments [70]. 

However, it should be noted that the situation in the He-II experiments is very differ

ent to that modelled here due to the effects of roton and impurity eHe) scattering. 

In the experiments, the ions are accelerated up to a constant velocity where the ex

ternal force is equal to the drag force due to ratan/impurity scattering. This would 

correspond to sitting at a fixed point on the laminar flow branch of the velocity

momentum curve (labelled (1) in Fig. 4.1). From there, the transition to higher 

momentum (higher energy) pinned vortex state (labelled (3) in Fig. 4.1) is driven 

by thermal or quantum fluctuations. For ions in He-II, there is strong experimental 

evidence that vortex nucleation involves an energy barrier [71]. In the GP model 

the energy barrier corresponds to the energy required to transfer from the laminar 

flow (1) to the pinned ring solution (3). This energy decreases with increasing flow 

velocity but remains finite at the critical velocity because the pinned ring branch 

(3) joins the laminar-encircling ring curve (1) - (2) at an energy above the critical 

point, as apparent in Fig. 4.6. The size of the energy barrier depends on the object 

radius, mass, and penetrability. For an impenetrable sphere with radius R = 3.3, we 

find an energy barrier of approximately 8nnoce. For He-II, this would correspond 

to '"'"' 3.8 K, similar to the value derived by Muirhead et al. using arguments based 

on classical fluid mechanics [8]. 
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4.6 Summary 

In summary, we have studied the motion of an object with finite mass through a 

dilute quantum fluid. We include the back action of the fluid on the object and 

show that under a constant applied force there is a continuous transition from lam

inar flow to an encircling ring followed by a jump where the object moves into the 

vortex core. This jump leads to a deflection of the object trajectory and excita

tions of the vortex ring. If the object has a surface bump near the equator, the 

encircling vortex emerges asymmetrically. If the applied force is large, the object 

evades capture by the ring leading to periodic vortex shedding. We show that the 

motion and the conditions required for vortex detachment can be predicted from 

the allowed time-independent states. This approach could be extended to provide 

useful insight into other complex problems in quantum fluid mechanics such as vor

tex re-connections and sound emission. Finally, we consider the applicability of the 

model to experiments on ions in He-II. 



Chapter 5 

Motion at constant velocity 

Above the critical velocity, the motion of an object through a dilute Base gas becomes 

dissipative. In this chapter, we study the mechanism of energy transfer from the 

object to the fluid for a cylinder moving at constant velocity. We observe vortex 

emission at supercritical velocities and, in addition, the formation of bow waves at 

supersonic velocities. We measure the drag force on the object and discuss the link 

between vortex shedding and dissipation. We compare the drag law with that of an 

ideal Base gas, and show that interactions reduce the drag force. Also, we show that 

the effective size of the obstacle is increased due to the healing length of the fluid, 

and consequently the drag is non-zero even for point-like objects. 

5.1 Introduction 

A central issue in fluid flow concerns the origin of resistance or drag. In a viscous 

fluid, shear stresses induced by friction at a surface lead to skin drag. In a superfluid, 

the effects of shear stress vanish, but normal stresses induced by pressure gradients 

across an obstacle still produce pressure drag. 

One could envisage an experiment to measure the pressure drag in a dilute Bose

Einstein condensate by studying the flow past an obstacle such as a far-detuned 

laser beam [68] or a foreign condensate species [72, 73]. 

50 
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A recent experiment at MIT [24] measured the heating effects of a far-detuned laser 

beam that was swept back and forth at constant velocity within the central region 

of an inhomogeneous condensate, where the density is approximately uniform. The 

heating rate is directly proportional to the velocity, U, of the laser beam and the 

drag force exerted on the fluid: 

dE 
dt = Fdrag·U · (5.1) 

At low velocities, no significant energy transfer could be measured. Above a critical 

velocity, Uc "' 0.1 (in units of the sound speed), the drag force increases approx

imately linearly with velocity. However, only a small range of velocities could be 

studied. 

In a previous numerical simulation [74], it was predicted that for a uniform system, 

there is a critical velocity Uc "' 0.4 for the onset of drag, and that for velocities, 

U > Uc, the drag force increases linearly. However, we find that the drag force 

varies nearly quadratically with U, similar to an ideal Bose gas, i.e. a condensate of 

non-interacting bosons. 

5. 2 The linear fluid 

For non-interacting bosons, the drag law may be derived analytically. We scale 

the units of time and space in the same way as for the weakly interacting Bose 

gas (Section 2.2) to be able to compare the results directly. Consider the time

independent Schrodinger equation 

(5.2) 

where V is a potential used to model an object. The solutions to this equation 

describe steady state flows of particles with momentum or velocity U and energy 

U2 /2. The particles scatter off the potential as sketched in Fig. 5.1. We assume an 

infinitely high barrier V and pin the wavefunction to zero at r = R. In cylindrical 



Chapter 5. Motion at constant velocity 52 

y 

El 

X 

Figure 5.1: Incoming plane waves scatter off the obstacle of radius R. We use 
polar coordinates to solve the linear wave equation. The boundary condition at the 
cylinder is chosen to be 'lj; = 0 which corresponds to an infinitely high potential. 

coordinates, the Nabla-operator takes the form 

(5.3) 

We employ the following Ansatz to separate the wavefunction into a radial and an 

angular part 

'lj;(r, e)= f(r)g(e) with g(e) = { c~sme, m~ 0, ±1, ±2, .. . 
sm me, m - 0, ±1, ±2, ... . 

(5.4) 

In general, 'lj; is a linear combination offunctions of the form f(r)g(e). As apparent 

in Fig. 5.1, the flow solutions are symmetric about e. Therefore, the wavefunction 

is only composed of the even functions cos me. We substitute the Ansatz (5.4) into 

the Schrodinger equation (5.2), to obtain 

- + -- - - + U2 f(r) ( 
a2 1 a m2 ) 
ar2 r ar r 2 0, (5.5) 

1 ( 2 a
2 

a ( 2 2)) r 2 (Ur) a(Ur)2 + (Ur) a(Ur) + (Ur) -m f(r) 0. (5.6) 
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This is Bessel's differential equation. Its solutions are the so-called Hankel functions, 

(5.7) 

where Jm are Bessel functions and Nm the Neumann functions of order m. The 

Hankel functions H~) describe a complete set of solutions to the Bessel equation. 

Alternatively, their complex conjugates H~) = H~) may be used as a basis set for 

the solution. The wavefunction around the cylinder is the superposition of incoming 

plane waves '1/Jin and outgoing scattered waves '1/Jout· We write down the plane wave 

solutions as a series expansion involving Hankel functions: 

eiUr cos() 

00 

Jo(Ur) + 2 2:::: im cos(mO)Jm(Ur) . 
m=l 

Adding a general expression for the scattered wave leads to 

00 00 

(5.8) 

(5.9) 

'1/J(r, 0) = Jo(Ur) + 2 2:::: im cos(mO)Jm(Ur) + 2:::: Am cos(m0)H~l(Ur).(5.10) 
m=l m=l 

The coefficients Am can be determined from the boundary condition at the obstacle 

'1/J(r = R) = 0: 

m=O: 

m i= 0: 

Ao = _ Jo(UR) 
H~1)(UR) 

A __ 2imJm(UR) 
m- H~)(UR) 

(5.11) 

We have found the explicit solution to equation (5.2) and are now able to calculate 

the drag force analytically. In cylindrical coordinates and dropping the interaction 

pressure, Eq. (2.10) becomes 

lo27f 18'1j;l2 Fy = R dO cos 0 -
8 

. 
0 r r=R 

(5.12) 

The slope of the wavefunction at the edge of the cylinder is given by 

(5.13) 
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Figure 5.2: The force on a cylinder in a linear fluid calculated from Eq. (5.14) 
including all terms up to the 250th order. The limits for short and long wavelengths, 
Eq. (5.15), are indicated by the dashed lines. 

After some algebra we find the following expression for the drag force in flow direction 

(5.14) 

where all Hankel functions are evaluated at U R which is a dimensionless parameter 

in our units. Fig. 5.2 shows the drag force on a cylinder together with its two 

asymptotic functions given by 

UR« 1 
(5.15) 

UR » 1. 

For high velocity or large object size (UR » 1), the force per unit length on an 

impenetrable cylinder of radius R approaches its classical limit that can be found 

by summing over all momenta transfered by massive particles colliding with the 

cylinder per unit time. As apparent in figure 5.2, the drag force exerted on the 
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cylinder by long wavelength particles can be many orders of magnitude larger than 

one would expect from the classical calculation. 

In summary, a steady state solution to the linear Schrodinger equation exists for all 

values of U. In principle, time-dependent solutions leading to an additional drag 

force may be superimposed to this solution. However, due to the infinite volume 

of the system, they are expected to spread out or decay in the limit of long times. 

The drag force is non-zero for all velocities U. This can be explained by asymmetry 

of the solution given in (5.10) about the angle e = 1r /2 which results is a pressure 

difference across the object. In the following section we will see that the effects of 

the nonlinear term are firstly to symmetrisise the solution at small velocities and 

therefore cancel the pressure imbalance across the object and secondly to prohibit 

time-independent solutions at larger velocities. 

5.3 The nonlinear fluid 

For a weakly-interacting condensate the drag force must be evaluated numerically. 

We solve the time-dependent NLSE, 

(5.16) 

in two dimensions for both penetrable (V finite) and impenetrable (V infinite) cylin

drical objects. 

The calculations are performed using a time step, b..t = 0.01, in a box of 200x200 

healing lengths, divided into 800x800 points (Appendix 2). In order to minimise the 

reflection of sound waves from the edges of the box, the amplitude of waves within 

an absorbing border of width b.. = 20 is reduced each time step by the replacement 

't/J-+ 't/J (1 + (i't/JI- 1)(8/ b..) 3
), where 8 is the distance to the edge of the box. 

As we have seen in the previous chapters, the solutions to (5.16) relax to time

independent flow solutions below a critical velocity which depends on the geometry 

of the object. This section is concerned with the dynamics above the critical velocity. 
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5.3.1 Vortex formation 

The critical velocity for an infinitely long cylinder of radius R = 3 is approximately 

Uc = 0.45. For higher velocities there are no steady-state flow solutions. Instead, 

vortices are emitted almost periodically at the poles of the cylinder. The motion 

of the vortices is complex: the first pair may be overtaken by subsequent pairs and 

becomes 'trapped' for a while behind the obstacle. A snapshot of the superfluid 

density is shown in Fig. 5.3. 

In the frame of the object, the background flow is from right to left in Fig. 5.3 and 

the vortex - anti-vortex pairs generate a flow which opposes the background flow. 

Consequently, the two vortex trails create a stationary wake behind the object. 

For supersonic velocities (U > 1), standing waves are formed in the front of the 

object similar to those arising in a non-interacting Bose gas. For very large velocities 

(U > 3), steep sound waves are emitted around the object which eventually decay 

into vortex pairs of opposite sign. A similar behaviour has been found for grey 

solitons [75]. 

Fig. 5.4 shows a comparison between the time-averaged density distribution for a 

nonlinear (interacting) quantum fluid (left) and a linear (non-interacting) quantum 

fluid (right). One sees that the finite compressibility of the nonlinear fluid tends 

to suppress large density fluctuations leading to a smoothing of the standing wave 
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Figure 5.3: Cylinder moving through the condensate at a velocity U = 0.6. At the 
poles of the disk vortex pairs are nucleated which drop back as the obstacle moves 
faster than a pair of vortices separated by the diameter of the object. 
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Figure 5.4: The time-averaged density distribution for U = 2.0 with (left) and 
without (right) interactions. The obstacle is an impenetrable cylinder with radius 
R = 3 centred at the origin and moving upward. The repulsive particle interactions 
tend to smooth density variations, thereby reducing the pressure experienced by the 
obstacle. For the nonlinear fluid (left), the dark line in the wake, close to the axis 
of symmetry, corresponds to the vortex 'street'. 

in front of the obstacle. This smoothing reduces the pressure experienced by the 

obstacle. 

The direction of the bow waves approaches the Mach angle, a = sin-1(c/U) [54], 

whereas for the non-interacting fluid Fig. 5.4 (right), c = 0 and a= 0, i.e., the bow 

waves run adjacent to the geometric shadow behind the obstacle. In the nonlinear 

fluid, the 'shadow' is far less pronounced: the dark streaks in the wake, close to the 

axis of symmetry, correspond to sound waves emitted by interacting vortices. As a 

pair of vortex lines loses energy they move closer together and eventually annihilate. 

Far downstream, a significant fraction of the vortex energy is converted into sound. 

This conversion of vortex energy into sound due to vortex motion and re-connections 

is an important contributory process in the the decay of superfluid turbulence [76]. 

5.3.2 Vortex shedding frequency 

The vortices separate an almost stationary wake behind the object from the back

ground flow. The vortex shedding frequency follows from the phase-slip between 
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Figure 5.5: The vortex shedding frequency, J, as a function of the object velocity, U. 
The numerical results lie between the dashed lines, U2 /47r and (U2 + 2)/47f, which 
correspond to the upper and lower bounds predicted by considering the phase-slip 
between the main flow and a stationary wake. The error bars reflect the fluctuations 
in the vortex shedding frequency. At sub-critical velocity, the shedding frequency 
drops to zero. 

the two regions. The wavefunctions for the flow and the wake may be written as 

'ljJ = e-i(l+U2
/ 2)te-iUy and 't/J = n 112e-int, respectively, where n is the mean density 

behind the obstacle (0 < n < 1, decreasing at higher velocity). A vortex pair is 

emitted each time the phase difference accumulates to 27f, giving a shedding fre

quency, f = (1 + U2 /2- n)/27f. Fig. 5.5 shows a comparison between the numerical 

results and the phase-slip model. As expected, the shedding frequency is close to 

the lower bound (corresponding to maximum wake density, n = 1) at low velocity, 

and approaches the upper bound at higher velocity as the wake density decreases. 

Small fluctuations as indicated by the error bars in Fig. 5.5 in the vortex shedding 

frequency occur because as the vortices move downstream they interact with each 

other creating fluctuations in the flow pattern around the object. 
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5.3.3 Drag force 

In principle, the instantaneous drag force can be determined by numerical integra

tion of the stress tensor at the surface of the obstacle, Eq. (2.10). However, for 

penetrable objects, this procedure is complicated because the fluid-object boundary 

is ill-defined. For impenetrable objects, the finite grid size introduces errors in the 

differencing approximations. At the boundary of an impenetrable object, '1/J = 0, 

however, the product '1/J*aij'l/J i- 0. If these terms are neglected in the calculation of 

the drag force, the numerical results reported in Ref. [7 4] are obtained. The numer

ical integration can be greatly simplified by recognising that the time-averaged drag 

force must be equal to the back-action on the fluid, i.e., the instantaneous force, 

(5.17) 

where an defines the outer border of a simply-connected region of fluid, n, encircling 

the object. The second term corresponds to the rate of change of the fluid momentum 

within n and averages to zero if the flow velocity remains constant. Eq. (5.17) may 

be used to calculate the drag for both penetrable and impenetrable objects. 

Fig. 5.6 shows a plot of the instantaneous drag, Fy(t), on an impenetrable cylinder 

with radius R = 3 moving with velocity U = 1.5. Initially, the force is dominated 

by transients which depend on how the flow is turned on. For an instantaneous 

turn-on, reflections from the obstacle produce sound waves, which are subsequently 

absorbed at the edges of the box. However, for longer times the time-averaged drag 

is independent of the initial conditions. Also, the time-averaged force is independent 

of the integration path an, and for barrier height V > 1, only weakly dependent on 

the penetrability of the obstacle. 

The oscillatory behaviour of the instantaneous drag is produced by the periodic 

emission of vortex pairs, therefore the data shown in Fig. 5.6 (right) correspond 

to an average over many vortex emission cycles. The error bars correspond to the 

residual fluctuations after averaging. The drag curve for an ideal Bose gas (linear 

fluid), Eq. (5.14), is shown as a dashed line. One sees that the main effect of the 



Chapter 5. Motion at constant velocity 

Q) 20 
~ 
.E 
g> 
-o 10 

0 
0 50 100 150 

time 

Q) 
(.) ..... 
.E 
Cl 
eo ..... 
'0 

100 
50 

80 
40 
30 
20 
10 "' 60 ~ 

"' 0 
0 

40 

20 

,r 
;r 

/ 
/ ,r 

/ 

I 

5 10 I 
I 

radius / 

t V 
/ l' 

/ 

; rJ· 
/ J:· I,· 

/ %. 

r . 

2 
velocity 

60 

: 
I 

I r 
.r 

I .. r 
.r 

I.-' 

3 4 

Figure 5.6: The instantaneous force (left), Fy in units of 1inoct,2, on an obstacle 
placed in a nonlinear quantum flow with velocity U = 1.5, as a function of the 
time t. The two curves correspond to switching on the flow gradually (solid) or 
instantaneously (dashed). The oscillations are produced by the periodic emission 
of vortex pairs. The time-averaged drag (right) does not depend on the initial 
conditions. It is plotted as a function of flow velocity U, for an impenetrable cylinder 
with radius R = 3. The error bars indicate the magnitude of residual fluctuations 
in the time-averaged drag. The drag law for a non-interacting fluid is indicated 
by the dashed line. The effect of the nonlinearity is to reduce the drag which can 
be understood in terms of collisional screening of the object. The reduced drag 
predicted for a screened object is indicated by the dotted line. The force as a 
function of the object size for U = 1.5 is shown inset. Note that the drag is non-zero 
even for objects much smaller then the healing length. 

repulsive particle interactions is to reduce the drag. For the weakly-interacting fluid, 

below a critical velocity, Uc, the shedding frequency (Fig. 5.5) and the drag (Fig. 5.6) 

fall to zero. 

Above the critical velocity, a pressure drag appears with a velocity dependence 

similar to an ideal Bose gas. In fact, the force can be predicted accurately by a 

semi-classical modification of the ideal gas drag law, i. e. 

F = ~R'U'2 
3 ' 

(5.18) 

where R' and U' are an effective object radius and flow velocity, respectively. A plot 

of the drag force as a function of object size, Fig. 5.6 (right, inset), indicates that 

the effective object size is extended by the healing length of the fluid. For U = 1.5 
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we find that R' = R + 0.6. An important consequence of this result is that the force 

does not vanish for small objects, R « 1. 

The effective flow velocity, U', may be estimated by considering how the flow is mod

ified by the collisional mean-field. Above the critical velocity, incoming waves are 

reflected by the obstacle producing a standing wave or bow wave [54] (see Fig. 5.4), 

with a density 0 < 11PI < 2. The resulting interaction potential Eint = I7PI 2 varies 

in the range from 0 to 4. In a semi-classical treatment, an oscillatory potential 

slows incoming particles by an amount corresponding to half the maximum barrier 

height above the background level, i.e. (Eint -1)/2, and therefore the effective flow 

velocity, U' is given by U'2 /2 = U2 /2 - (Eint - 1)/2. The dotted line in Fig. 5.6 

is a plot of Eq. (5.18) using values of Eint obtained from the numerical solution. 

This 'collisional screening' model is only accurate at high velocity, U > 2, where a 

semi-classical particle treatment is valid. 

5.3.4 Vortex shedding, sound radiation, and drag 

The main significance of the critical velocity is that it marks the threshold for the 

breakdown of superfluidity and the on-set of dissipation. The motion of objects at 

supercritical velocities, U > Uc, results in periodic vortex shedding. The energy and 

momentum transfer to the fluid leads to a drag force on the object. 

The contribution of vortex shedding to the total drag force can be estimated by 

considering the momentum transfer due to vortex emission, i. e. 

F vp = fvpPvp ' (5.19) 

where fvp is the vortex shedding frequency and Pvp is the momentum of a vortex 

pair as it is created in the equatorial plane. The momentum Pvp is given by 21rd, 

where d is the separation of the vortices [63]. 

The comparison between the measured drag force and (5.19) shown in Fig. 5.7 

suggests that for U < c, ( c = 1), vortex shedding is the dominant dissipation 

mechanism, whereas for U > c, an increasingly significant contribution arises from 
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Figure 5. 7: The time-averaged drag force as a function of velocity for an impenetrable 
cylinder with radius R = 3. The open circles indicates the contribution due to vortex 
shedding. The error bars indicate the residual fluctuations in the time-averaged drag. 

sound waves. For U > c, the reflected matter waves create a standing wave pattern 

in front of the object as shown in the time-averaged density images of Fig. 5.8. 

5.3.5 The critical velocity in inhomogeneous condensates 

Experiments on moving laser beams in trapped atomic condensates suggest a crit

ical velocity of Uc ,....., 0.1 [24, 77], much lower than the homogeneous value for an 

cylindrical object Uc ,....., 0.4. Vortex stretching [78] and enhanced phonon excitation 

at low velocity due to the spatial inhomogeneity [79] have been proposed as possible 

mechanisms for this reduction. Numerical simulations of trapped atomic conden

sates in three dimensions indicate that Uc ,....., 0.1 - 0.2 [25] in rough agreement with 

experiment. It is suggested that the lower critical velocity is mainly due to formation 

of vortices where the object intersects lower density regions of the condensate [25]. 

The inhomogeneous density profile and finite size of trapped condensates means that 

a steady, uniform flow is difficult to achieve. The MIT experiment [24] partially 

overcame this problem by sweeping the object back and forth at constant velocity 
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Figure 5.8: Time-averaged density of the wavefunction around a moving cylinder 
(radius R = 3) for speeds of0.9 (left) and 1.2 (right). For supersonic flow a standing 
wave pattern appears in front of the object. The area shown has a dimension of 
100 x 100 healing length whereas the computational box is 200 x 200 healing length. 

within the central region of the condensate, where the density is approximately 

uniform. In this case, the object moves through its own low-density wake, and 

consequently the drag law is different from the uniform flow case discussed above. 

5.4 Summary 

The motion of an object through a dilute Bose-Einstein condensate provides an ideal 

system to study the fundamental problem of the onset of dissipation in superfluids. 

We have explained the role of vortex shedding and sound emission in energy transfer 

between the object and the condensate: No energy transfer is observed under the 

condition of uniform, steady flow at speeds below a critical velocity. Above the 

critical velocity vortices are emitted leading to a drag force and energy transfer to 

the fluid. Vortex shedding dominates the energy transfer for intermediate velocities, 

while sound emission becomes increasingly important for supersonic motion. The 

drag force is proportional to the screened energy of the flow, and to the object 

cross-section extended by the effect of fluid healing. 



Chapter 6 

The rotating Base gas 

In this chapter we study the dynamics of a superfiuid under rotation. The circulation 

of the fluid is quantised and given by the number of vortices. In the lowest energy 

state vortices of equal sign are arranged in regular arrays so that the averaged density 

of circulation equals its classical value. The effect of a centrifugal potential on a 

superfiuid is very similar to the effect of a magnetic field on a superconductor as will 

be seen in the next chapter. 

6.1 Introduction 

The description of the superfiuid by a macroscopic wave function, 'ljJ = ynexp(iS), 

leads to a straightforward definition for the superfiuid velocity, v, Eq. (2.2). The 

circulation of the fluid is usually defined as 

K, = i V· dl = i \18 · dl . (6.1) 

Since the superfiuid wavefunction is single-valued, going around a closed contour 

r must leave it unchanged, with the result that the change in the phase S can be 

only an integral multiple of 27f or zero. Therefore, the circulation is fully contained 

within the zeros of 'ljJ and is quantised in units of 27f. 

64 
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The quantised character of the superfluid circulation has been proved in many ex

periments with He II [6]. For equilibrium rotation, hexagonal vortex arrays have 

been predicted theoretically [6, 80] and have been observed in experiments [81]. 

Theoretical [82, 83] and experimental [22, 23] work has also been done to investigate 

vortex arrays and vortex nucleation in trapped atomic condensates under rotation. 

Here, stable vortex arrays are presented as solutions to the Gross-Pitaevskii equa

tion for a flat-bottom potential (rotating bucket). It is known that these solutions 

minimise the free energy and are, therefore, stable. However, in the case of dilute 

Bose condensates, no dissipation occurs and it cannot be expected that dynamically 

produced vortices arrange in these stable patterns by relaxation. The rotation of 

the container is modelled by an additional centrifugal term in the NLSE: 

(6.2) 

where Lz is the angular momentum operator (in Cartesian coordinates Lz = i(y8x

x8y)) and w the angular frequency. The geometry of an infinitely long cylinder is 

modelled by adding the following potential term: 

V(r) = { : 
ifr < R, 
if r 2: R. 

6.2 Vortex arrays 

(6.3) 

Hexagonal arrays of vortices are found by solving the time-independent NLSE: 

(6.4) 

Here, the chemical potential f-l depends on the particular solution and has to be 

chosen in such a way that the average particle density is conserved and equal to 1 

in dimensionless units. Eq. (6.4) is solved by Newton's method (see Appendix 1). 

Fig. 6.1 (left) shows an array of K =56 vortices in the rotating cylinder. The average 

density at the axis of rotation is suppressed due to the centrifugal force. Such arrays 
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Figure 6.1: A stable array of K = 56 vortices in a container with R = 29 rotating 
with w = 0.08. The density of the fluid between the vortex cores clearly shows a 
meniscus (left). The circulation of the entire fluid in the bucket is given by the 
sum of the circulations of each single vortex as can be seen from the phase pattern 
(right). 

of vortices exist only in confined geometries because each vortex is balanced by an 

image vortex behind the wall of the container. In an infinite system, two or more 

equally charged vortices repel each other [84]. 

Fig. 6.1 (right) shows the phase pattern of a large vortex array. The number of 

phase slips of 21r at the edge of the cylinder equals the number of vortices. The 

velocity at the edge is fairly constant with an average value of 27r K /27r R = K / R. 

This velocity and the actual velocity of the container wall wR differ by not more 

than a critical velocity which gives a range for the number of vortices depending on 

the rotation speed, 

R(wR- Uc) :::; K :::; R(wR + Uc) . (6.5) 

The critical velocity Uc is close to one for a flat wall and lower for a rough surface. 

The equilibrium value for which the fluid velocity matches that of the wall is K = 

R2w. This picture suggest that monotonic acceleration from rest always produces 

a state with fewer vortices than the equilibrium state and similarly deceleration 

produces states with more vortices. This hysteresis behaviour has been found in 

experiments [81]. 
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The meniscus in the density profile along the radius of the cylinder arises as a result 

of the balance between the centrifugal and the interaction pressure. For a time

independent solution in the rotating frame, the mass density performs a solid body 

rotation in the rest frame, i.e. all mass elements revolve around the axis of the 

container with a velocity w x r. Therefore, the circulation per unit area, which is 

proportional to the number of vortices per unit area, is constant. Neglecting the 

density holes around the vortex cores one obtains for the centrifugal force of a ring 

with radius r and width dr: 

dF = 27rr dr n(r)w2r , (6.6) 

where n(r) is the number density of the Base gas at a distance r from the axis 

of rotation. The effect of the interaction pressure is proportional to the number 

density, 

dF 
1 

21rr dp = 21rr 2dn2 (r) 

21rr n(r)n'(r) dr . (6.7) 

In equilibrium, the two forces balance, w2r = n'(r), giving 

(6.8) 

The constant no is determined by the total number of particles in the cylinder of 

radius R. A comparison of this parabolic profile to the actual density profile in a 

bucket containing 137 vortices is shown in Fig. 6.2. Apart from the density dips that 

correspond to seven concentric circles of vortices, the two shapes agree very well. At 

very large angular velocities, if w > 2/ R, or expressed by the equilibrium number of 

vortices, if K > 2R, single vortices merge to form multiply charged vortices in the 

centre of the container, forming a 'giant vortex' state. 

The chemical potential in Eq. (6.4) can be estimated with a similar approach. The 

solid body rotation suggests a wavefunction of the form 'lj;(r, <p) = Vn(T} exp(ik(r)<p). 

From the simulation it can be seen that the vortices lie on concentric circles. The 
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Figure 6.2: This figure shows the meniscus of the particle density in a bucket of 
radius R = 99, rotating with an angular frequency of w = 0.019. The particle 
density n is averaged over all angles t.p. The-density minima correspond to 137 
vortices arranged in concentric circles. The numerical result (thick line) is in good 
agreement with the theoretical profile (thin line) which follows from the assumption 
of a constant density of vorticity. 

number of vortices k(r) enclosed in a circle with radius r increases in steps with 

increasing r. However, we assume a smooth quadratical increase of k(r) that cor

responds to a classical solid body rotation and should give good estimates for large 

numbers of vortices. With K being the total number of vortices within the radius 

R of the cylinder, an approximate wave function in the rotating frame is given by 

(6.9) 

For the chemical potential we then have 

(6.10) 

Replacing K by the equilibrium number of vortices, R2w, and using the approxi

mated density profile Eq. (6.8), we find 

(6.11) 

The chemical potential becomes zero when multiple charged vortices start to form 

and is negative for higher speeds of rotation. 
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6.3 Spin up of a superfiuid 

An array of vortices having all the same sign of rotation as the wall corresponds to 

the ground state of the system (except for very special cases, where the geometry 

plays a role, see [85]). The question is whether the vortex arrays can be formed 

in a rotating bucket-type of experiment, i. e. by a rotating the wall. In a time

dependent simulation, a stirrer is used to transfer angular momentum to the fluid. 

Below a critical angular velocity, the fluid flows in a laminar way around the stirrer 

and remains irrotational. At higher speeds, a number of vortices of equal sign are 

nucleated which increase the angular momentum of the fluid until the fluid velocity at 

the edge roughly matches the velocity of the stirrer. However, the vortices keep close 

to the edge of the container and do not arrange in stable patterns (see Fig. 6.3). Note, 

that one vortex of opposite sign has formed in Fig. 6.3 that has paired up with one of 

the other vortices and moves with constant velocity across the bucket. The state of 

lowest energy is not found using dynamic creation of vortices because no mechanism 

of dissipation is contained in the Gross-Pitaevskii equations. However, dissipation 

can easily be incorporated in the GP model by propagating the wavefunction in 

'complex' time: 

(6.12) 

The imaginary part of the time changes the character of the equation from a wave

equation to a diffusion equation. Here D denotes the diffusion constant. The system 

is driven towards the ground state. The chemical potential M is subtracted to avoid a 

relaxation to the state 1/J = 0. For large values of D, the vortices quickly arrange into 

hexagonal arrays. This corresponds to the scenario observed for superconducting 

disks in a magnetic field (see next Chapter). 
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Figure 6.3: Density plot of a time-dependent solution after the stirrer has moved 
along the edge of the bucket with a velocity of v = 0.5 fort= 1100. The obstacle sets 
the fluid into rotation by nucleating single vortices of equal sign of circulation. The 
subsequent motion of the vortices is complex. Two equally charged vortices rotate 
around the centre of symmetry with a frequency of about 4/d2 (d is the distance 
between the vortices), whereas a vortex close to the edge of the container moves 
along the wall with a velocity of about 1/d (d is the distance to the wall), following 
the stirrer. If a vortex comes very close to the edge it reaches high velocities and 
eventually hits the stirrer. In the above simulation, such an event nucleated a vortex 
of opposite sign which combined with one of the other vortices to form a vortex pair. 
This pair moves with a constant velocity through the bucket. 

6.4 Summary 

Above a critical angular velocity, circulation enters the superfluid along vortices. 

Effectively the superfluid is set into rotation although the superfluid velocity is still 

irrotational. At equilibrium the average circulation of the fluid matches the angular 

rotation of the wall. The lowest energy state corresponds to a stable array of vortices 

all having the same sign. As we will see in the following chapter, the effect of an 

external magnetic field on charged particles is very similar to the effects of rotation 

on a neutral Bose gases. 



Chapter 7 

The Ginzburg-Landau Model 

The time-dependent Ginzburg-Landau (TDGL) equations are obtained from the free 

energy functional by assuming that the order parameter relaxes towards an energy 

minimum with a rate proportional to the gradient of the free energy. It follows that 

the dynamics of a superconductor is driven by a diffusion of particles in contrast 

to the convection-type dynamics we have seen in superftuids. For the ground state, 

the order parameter obeys the same equation as the wave function of a superftuid 

except that it can interact with external electric and magnetic fields. In the following 

chapter, general properties of the solutions to the GL equations are discussed and 

the magnetisation of a thin disk in an external field is studied as an example. 

7~1 The time-dependent Ginzburg-Landau equations 

In the Ginzburg-Landau model, a superconductor is characterised by a complex 

order parameter '1/J. The local density of superconducting electrons is represented by 

l'l/JI 2 . The theory postulates that close to the critical temperature, the free energy 

can be expanded in a series of the form 

(7.1) 
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where a and bare phenomenological constants which depend on external parameters 

such as temperature; A denotes the vector potential; H an external magnetic field; 

and e8 and m 8 are the effective charge and the effective mass of the Cooper pairs. 

Below the transition temperature Tc, a becomes negative, whereas b > 0 for all T. 

The equations of motion for the order parameter and the vector potential are the 

Euler-Lagrange equations of the free energy functional, 

where 

lies. ('1/J*\7'1/J _ '1/J\1'1/J*) _ e; l'l/JI2 A 
2m8 1 ms 

Jn er(- \l<P- 8tA) . 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

D is a phenomenological diffusion constant, and <P is the electric potential, included 

to retain the gauge invariance of the equations. Equation (7.3) is the Maxwell equa

tion for the magnetic field, where the displacement current EoE has been neglected 

[86]. The total current is given by the sum of the supercurrent, j 8 , and the normal 

current, in, which obeys Ohm's law. 

7.2 Dimensionless units 

We scale length in multiples of the coherence length, ~ = li/ J2mlal; time in T = 

~2 j D; the wavefunction in '1/Jo = Jfallb; the vector potential in Ao = V'iK.Hc~; 

where He= 11-olal2 jb; the electric potential in <Po = (~/T)Ao; and resistivity in units 

of the normal resistivity cr0 = 1/ K.
2 D~Lo· The so-called Ginzburg-Landau parameter 

is given by K.2 = 2m2b/ e21i2f1-o· The characteristic length scale for variations of 

the magnetic field is .A = "'~ and \7 x A measures the magnetic field in units of 

V'iK.Hc = Hc2· 
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Metals that undergo a superconducting phase transition, e. g. Ga, Al, Sn, Hg, Pb 

and Nb, have a critical temperature of Tc < 10 K, a critical field of He in the 

range 0.01 to 0.1 T and the coherence length ~ and London penetration depth A 

range between 30 and 160 nm, and 10 and 40 nm, respectively. Commercially 

used metallic compounds (such as NbTi, Nb3Sn, Nb3Ge, V 3Ga); high-temperature 

superconductors (e.g. YBa2Cu307); and the recently discovered MgB2 [41] have a 

Tc > 10 K and show a much larger critical field, typically Hc2 > 15 T, a shorter 

coherence length, ~ = 2 nm to ~ = 5 nm and a larger penetration depth, A = 100 

nm to A = 300 nm. 

In scaled units equations (7.2) and (7.3) become 

(8t + i<I>) V; = (\7- iA)2 V;+ V;- IV;I2V; (7.6) 

,.
2\7 X \7 X A (\7 s- A) IV;I 2 + (- \7<!> - OtA) + ,.2\7 X H ' (7. 7) ........__... 

Js iext 

where S denotes the phase of V;. The last term in equation (7.7) can be understood 

as an external current j ext with \7 j ext = 0 and can be used to model external fields 

or magnetic impurities in the material. In dimensionless units, the dynamics of the 

superconductor depends on the dimensionless Ginzburg-Landau parameter ""only. 

7.3 Charged BEC 

The main difference between the first Ginzburg-Landau equation, Eq. (7.6), and the 

NLSE for superfluids, Eq. (2.16), is the missing imaginary constant in front of the 

time derivative. Let us replace the time t in (7.6) by -it and the electric potential 

by i<I> to retain the general gauge invariance of the equations (see Section 7.4). The 

consequences of this substitution are discussed below. Eq. (7.6) becomes 

(7.8) 

With this replacement, we obtain an equation that is very similar to the NLSE 

and we can employ the Madelung transformation as discussed in Section 2.1. The 
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continuity equation n+ V' j = 0 is satisfied if we define n = 1~1 2 as the number density 

and j = 2(\78- A)l~l 2 as the current density. The local velocity is identified as 

v = 2(\7 S-A). Following the same steps as in Section 2.1, Eq (7.8) becomes 

(7.9) 

where 

(7.10) 

As in the superfluid, the dependence of the pressure p on the particle density is given 

by a non-local and non-linear expression. Simplifying further, one obtains 

!::! 1 2 utV = -'Vw- -'Vv - 2\i'<I>- 28tA 
2 ' 

(7.11) 

wherew = -\72n 112 j2n112+2n. Withhelpoftherelation !V'v2 = (v'V)v+vx\lxv, 

one arrives at the Euler equation with an additional force term due to the Lorentz 

force: 

OtV+ (v'V)v = -\7w-2v x \7 x \7S+2(E+v x B) (7.12) 

Euler fluid Lorentz force 

Here E = - 'V<I>-8tA, B = V' x A. The term v x V' x \7 S is zero everywhere except in 

the vortex core where it acts in the radial direction pushing particles away from the 

vortex line. Clearly, equation (7.12) describes a Bose-Einstein condensate of charged 

particles. This agrees with the picture that the Cooper pairs in a superconductor are 

condensed to form a macroscopic wavefunction just like the bosons in dilute alkali 

condensates. 

However, the dynamics is greatly changed due to the 'imaginary time' derivative 

in the TDGL equations. The flow of superelectrons does not necessarily conserve 

energy and momentum as suggested from the above analysis. Instead the super

electrons constantly exchange energy with the lattice of the superconductor thereby 



Chapter 7. The Ginzburg-Landau Model 75 

minimising the free energy. The lattice acts at a heat bath for the Cooper pairs. 

Therefore, the TDGL equations model a constant temperature1 whereas the NLSE 

describes the motion of bosons under the assumption that the energy is conserved. 

As mentioned in the Introduction, the phenomenological diffusion constant in (7.2) 

must be chosen to be a complex number to account for the small Hall effect ob

served in superconductors [53]. Therefore, the dynamics of supercurrents may be 

understood as the motion of charged bosons in the limit of strong damping towards 

the ground state. 

7.4 Gauge transformation 

The measurable quantities E, B, I7/JI 2 , and j are invariant under the transformation 

(7.13) 

where A is an arbitrary scalar field. We choose the zero potential gauge, A(r, t) = 

J dt<P(r, t), in other words, <P(r) = 0 at all times. For this choice, equations (7.6) 

and (7.7) become 

(\7 - iA) 2 7/J + 7/J - I7/JI 27/J 

(\78- A)I7/JI 2
- /),

2 \7 X (\7 X A- H) 

(7.14) 

(7.15) 

In Appendix C, we suggest a fast and reliable numerical method to find an approx

imate solution to these equations. 

7.5 The depairing current 

Within the zero potential gauge it is possible to write down the TDGL equations 

using only measurable quantities. We write the order parameter as a product of the 

1 From the microscopic theory it can be shown that T /Tc = 1 - ~ flij [9] 
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superelectron density and a phase factor, 'ljJ = vfnexp(iS), and separate Eq. (7.14) 

into real and imaginary parts, 

V'2vn+ (1-n-j2/n2) Vn 

-V'E 

j - ~2 \7 X (B -H) . 

(7.16) 

(7.17) 

(7.18) 

In this gauge, E = -8tA, B =V' x A and j = (\18- A)l'l/JJ 2, and clearly the time 

derivative of the phase must be interpreted as a local charge. From the first equation 

it can be seen that in equilibrium and in homogeneous regions, the superelectron 

density and supercurrent are related: j 2 = n 2 - n 3. Thus, the supercurrent reaches 

a maximum for n = 2/3, in other words j ::; jD = 3~, where jD is known as the 

depairing current, an upper limit for the critical current density in superconductors 

characteristic for every material. 

7.6 Energy 

The free energy in dimensionless units reads 

(7.19) 

where the different contributions to the energy can be understood as the kinetic 

energy of particles in an external field, the condensation energy, and an energy 

related to the difference of the magnetic field inside and outside the superconducting 

sample. In analogy to Eq. (2.26), the kinetic term may be written in the form 

i(V'- iA)'l/JI2 = (7.20) 

(7.21) 

where v = 2(\i'S- A). As for superfiuids, the kinetic energy is made up of a term 

arising from density variations and a classical term. 



Chapter 7. The Ginzburg-Landau Model 77 

The possibly unexpected appearance of factors of 2 and ~ in the local velocity and 

kinetic energy are due to the choice of dimensionless units, namely the coherence 

length which differs by a factor of J2 from the healing length defined in Section 2.2. 

7. 7 Boundary conditions 

For a superfluid wavefunction we choose the boundary condition near objects and 

walls to be 'ljJ = 0. This boundary condition is not appropriate for the order pa

rameter as it wrongly predicts a zero current through wires that are thinner than 

a couple of coherence lengths [87]. Using the microscopic theory, de Gennes [88] 

has shown that for a metal-superconductor interface with no current, the following 

boundary condition for the order parameter must be used 

(\7 - iA)'l/Jin = ~'1/J , (7.22) 

where b is a real constant ranging from zero for a magnetic material to infinity for 

an insulator. In the following, we model a superconductor - vacuum interface and 

set the supercurrent across the boundary to zero, ('V- iA)'l/Jin = 0. 

7.8 G L vortices 

The simplest property of a superconductor is its ability to conduct an electrical 

current, if it is small enough, without any resistance. In other words, the existence 

of persistent currents. In a superfluid, stable vortices demonstrate the presence of 

persistent currents. The GL equations also exhibit vortex solutions characterised 

by a circular flow pattern with a central core. In cylindrical coordinates, the wave

function can be put in the form 'ljJ = cp112 (r)eimrp, where cp(r) is real-valued and m is 

restricted to integer numbers. The phase gradient of the order parameter combined 

with the vector potential determine the direction of the supercurrent. For a circular 

flow pattern we set A = (0, Arp(r), 0). The magnetic field is then parallel to the 

vortex line, B = ( 0, 0, ~ gr (r Arp)). Thus, the time-independent GL equations for 
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Figure 7.1: Density (left) and magnetic field (right) around a vortex line of unit 
circulation (lml = 1) for different values of the Ginzburg-Landau parameter, 
K, = 0.1, 0.5, 1, 2, 5, oo. For small /'i, the the magnetic flux is confined in a narrow 
tube, whereas for large K, the magnetic field becomes more homogeneous. Note, that 
in the limit /'i, -+ oo, the shape of the vortex core tends to the profile of a super
fluid vortex (left, bold line). The magnetic flux carried by a vortex is quantised as 
271' fr~or drBz(r) = 27rm. The peak value of the magnetic field in the vortex core 
is given by Bz (0) ~ 0.6302/'i,-1.444 . 

an isolated vortex line are 

0 1 d ( difJ) (m ) 2 
3 -- r- - --A +ifJ-ifJ 

r dr dr r 'P 
(7.23) 

0 (
m ) 2 2 d 1 d --A cp +J'i, ---(rA). 
r 'P dr r dr 'P 

(7.24) 

The profiles of the density and magnetic field are shown in Fig. 7.1. Note, that in 

the limit of large K,, the solutions to the GL equation converge to the solutions of 

the Gross-Pitaevskii equation, i. e. the magnetic field and the vector potential tend 

to zero everywhere and the current density is given by r-1 . For finite K,, the current 

density drops faster which leads to a reduced centrifugal force. In effect, the vortex 

core is narrower for finite K, (see Fig. 7.1). 

At large distances form the vortex line, the order parameter can be approximated 

by unity and Eq. (7.24) may be solved analytically: 

Js,rp =m- A (r) = mH(l)(r/K,) , 
n r 'P m 

(7.25) 
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where H~) is the Hankel function (see Section 5.2). The supercurrent Js,rp encircling 

the vortex line drops to zero exponentially as r -+ oo and thereby faster than in a 

superfluid vortex. Therefore, the total flux through a circle of radius R « "' is 

quantised as 

21r 1~0 r drBz(r) = 1=R ds · A(r) = 21rm. (7.26) 

If a vortex is located near the surface of a superconductor, the magnetic flux may 

be less than 21rm as the integral in Eq. (7.26) does not extend to infinity. 

7. 9 The Meissner effect 

The second fundamental property of a superconductor was discovered by Meissner 

and Ochselfeld in 1933 and consists of the complete exclusion of magnetic flux from 

the specimen for applied fields H less than a critical value He. More precisely, the 

magnetic field drops from its value at the surface of the superconductor to zero over 

a distance A = "'~' called the London penetration depth. Figure 7.2 shows a one

dimensional scenario of a superconductor placed in an external H field perpendicular 

to the surface. Both the vector potential and the magnetic field drop to zero as 

exp( -lxl/ 11,). 

The Meissner effect is due to surface currents that exactly cancel the external mag

netic field. Figure 7.2 also shows the current density }y which peaks just below 

its theoretical limit of JD ;:::j 0.385. Note that the current along the surface is not 

associated with a phase gradient of the order parameter in this particular gauge. 

The simplest argument for the existence of the Meissner state, i. e. 11PI = 1 and 

A = 0 in the bulk, is that, up to a critical field, it has a lower energy than the 

normal state, i. e. a zero order parameter and V' x A= H. According to Eq. (7.19), 

the energy of the Meissner state and normal state for a volume n is £M= "'2 H 2 r! and 

En = ~n, respectively. Thus, the Meissner state becomes energetically favourable 

when H <He= 1/V'iK,. 
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Figure 7.2: Meissner effect for a one-dimensional superconductor with "' = 5. The 
vector potential A= (0, A(x), 0) that is associated with a magnetic field Hz gener
ates a persistent supercurrent }y along the the superconductor that exactly cancels 
the external magnetic field. The external field is just below He= 1/v"iK.. 

The value of He is changed in small samples with more complicated geometry. Con

sider firstly a cylinder of radius R in an longitudinal field H = (0, 0, Hz). To min

imise the energy, the superelectrons will create surface currents going around the 

cylinder. Unless the radius is much larger than "'' the magnetic flux at the axis of 

the cylinder is non-zero and the surface currents do not completely cancel the exter

nal field. For a given external field, the current density in a thin cylinder is smaller 

than in the 1D case discussed above and the critical current density is reached at a 

higher value of the external field. Therefore, the curvature of the cylinder increases 

He as shown in Figure 7.3 (left). 

As a second example of how the curvature of a superconducting sample influ

ences the Meissner critical field, consider a cylinder in a circular external field 

H = (0, Hcp(R)Rjr, 0), where Hcp(R) is the magnetic field strength at the surface of 

the cylinder. The induced surface currents now run parallel to the axis or the cylin

der. This models a superconducting wire with a transport current I= 2nRK.2 Hcp(R). 

In this case, the total current is restricted by the depairing current, I :::; 1r R2 j D which 

for the magnetic field means Hcp(R) :::; Rjnf2K.2 . Fig. 7.3 (right) shows the exact 

behaviour of the Meissner critical field on a current carrying wire as well as the 

upper limit set by the depairing current (bold line at 1/ R = 0.1). 
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Figure 7.3: Meissner critical fields for a cylinder of radius R placed in a field parallel 
to the axis of the cylinder (left) and in a circular field (right). For large radius, 
1/ R --+ 0, the critical field converges to its 1D value He = 1/ .;2/'l,. A finite radius 
increases the critical field parallel to the wire but decreases the circular critical field. 
The bold line at 1/ R = 0.1 in the right plot indicates an upper estimate for the 
critical field, Hcp(R):::; Rjn/21\,2 , where ]D is the depairing current. 

In summary, the critical magnetic field can always be related to a critical current 

density which corresponds to the critical velocity in superfiuids. 

7.10 The mixed state 

For certain values of the Ginzburg-Landau parameter /\,·and the external field H, the 

presence of a vortex line lowers the free energy given in Eq. (7.19) compared to the 

Meissner state. Figure 7.4 (left) shows the energy difference, /:1£, between a vortex 

line solution and Meissner state for different values of the external field. For zero 

field, the currents and density variations of the vortex constitute a higher energy 

than the homogeneous Meissner state for all /'l,. However, if the magnetic field of 

the vortex is aligned with some non-zero external field, the last term in Eq. (7.19) 

is lowered locally so that /:1£ changes sign for a certain value of /'l,. The bold line 

shows the energy difference for H = 1 which becomes zero at /'l, = 1/V'i. For higher 

fields, no Meissner state exists for /'l, > 1/V'iH and /:1£ > 0 for all other /'l,. 
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Figure 7.4: Left: Energy difference between a vortex and a homogeneous solution 
for external fields H = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.4, 1.8. The vortex solution becomes 
energetically favourable from some value of K, that depends on the external field. 
The bold line shows the energy for H = 1 which becomes zero at K, = 1/.../2. For 
higher fields, no Meissner state exists for H > 1/.../2/'i, and vortex solutions always 
have higher energy than the Meissner state. Right: Phase diagram showing the 
lowest energy state for given external field and Ginzburg-Landau parameter. The 
Meissner critical field He= 1/.../2/'i, is higher than the field Hc1 at which the mixed 
state becomes energetically favourable. The first critical field may be approximated 
by Hc1 ~ (InK,+ 0.116)/2/'i,2 (dashed line) for large K, [46]. The density of the order 
parameter falls to zero in the mixed state at Hc2 = 1 [46]. 

For a given value of K, > 1/.../2, vortices have a lower energy than the Meissner 

state for H > Hc1, the value at which b.£(/'i,, H) becomes negative. For those fields, 

the superconductor fills up with vortices and the magnetic flux runs through the 

sample in the form of flux tubes. This so-called mixed state is an intermediate 

state between the Meissner and the normal state. The average density of the order 

parameter goes to zero as H -t Hc2 = 1 [46], which marks the transition from 

the mixed to the normal state. The complete phase diagram for superconductors 

with different K, is shown in Fig. 7.4 (right). In general, one distinguishes between 

type-! superconductors for 0 < K, < 1/.../2 and type-II superconductors for larger 

values of the Ginzburg-Landau parameter. Most metals such as Ga, AI, Sn, Hg 

and Pb are type-I superconductors whereas all compounds and high temperature 

superconductors show a mixed state. 



Chapter 7. The Ginzburg-Landau Model 83 

The vortices in the mixed state are arranged in triangular arrays which were first 

studied by Abrikosov [89]. The density of the vortices increases with increasing 

external magnetic field. In equilibrium, the average internal field matches the applied 

external field. 

7.11 Magnetisation of a disk 

As an example, we study the magnetisation of a thin disk placed in a magnetic field 

perpendicular to its cross-section. The order parameter is expected to be homoge

neous along the height of the disk and the field lines are approximately parallel so 

that the problem is equivalent to that of an infinitely long superconducting cylinder 

with a longitudinal magnetic field. This geometry has been studied experimentally 

[90] and theoretically [91, 92]. A type-I superconductor is found in the Meissner 

state up to the critical field He where the order parameter vanishes abruptly. Here, 

we present some results for a type-II superconductor (K = 5) and a disk radius of 

R= 10. 

Fig. 7.5 shows the the density of the order parameter in the Meissner state and in 

mixed states with up to nine vortices. The mean density decreases with increasing 

field and goes to zero at H = Hc2 = 1. Each vortex carries a magnetic flux of 

21r so that the field partially penetrates the superconductor. Outside the disk or 

the cylinder the field is constant. Because the value of K is large compared to the 

separation of the vortices, the magnetic field inside the cylinder can be approximated 

to be homogeneous, B = (0, 0, Bz)· In Cartesian coordinates, a possible choice for 

the vector potential is given by A = ~( -y, x, 0). With this choice, the time

independent GL equation (7.14) reads, 

(7.27) 

where Lz = i(y8x- x8y) is the angular momentum operator. Comparing this equa

tion to Eq. (6.2) which described a superfiuid in a rotating frame, one can see that 

a homogeneous magnetic field has exactly the same effect on the order parameter 
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Figure 7.5: Vortex states in a small disc of radius R = 10 and "' = 5 at different 
applied fields (H = 0 · · · 0.6). Shown is the density of the order parameter from 
white (11PI 2 = 0) to black (11PI 2 = 1) The average density decreases with increasing 
field and reaches zero at H = Hc2 = 1 independent of the vortex configuration. 

as a centrifugal potential. In a superfluid, a meniscus forms in the density profile 

due to rotation. However, the additional quadratic potential term, Jt-(x2 + y2 ), 

in the above equation suppresses the meniscus and leads to array of vortices in a 

homogeneous background density. 

The states shown in Fig. 7.5 are solutions to the time-independent GL equations. 

The dynamics modelled by the TDGL is expected to drive the system to the lowest 

energy solution. We plot the energy (compared to the normal state) for each of the 

states shown in Fig. 7.5 versus the applied field, Fig. 7.6 (left). At very small fields, 

the Meissner state has lowest energy. As expected for a type-II superconductor, 

vortex solutions become energetically favourable for intermediate fields. First one 

vortex enters, then a second one and so on. With increasing field, there is a sequence 

of numbers of vortices characterising the lowest energy state that for our parameters 

is given by 

0 -+ 1 -+ 2 -+ 3 -+ 4 -+ 5 -+ 6 -+ 7 ---7 8 ---7 7 ---7 6 ---7 14 ---7 13 ---7 12 ---7 1 ' 

where a subscript m stands for vortices with a circulation m> 1. Multiple vortices 

at the axis of the disk are often called giant vortex states. 

The right plot in Fig. 7.6 shows the magnetisation of the disk in the different states, 
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Figure 7.6: Energy of different vortex states in a small disk (R = 10) versus external 
field (left) and the according magnetisation curves (right). At small fields, the Meiss
ner state with no vortex is the ground state and the disk shows perfect diamagnetic 
behaviour. If the system follows the path of lowest energy solutions (bold line), the 
first vortex enters at H = 0.097 reducing the magnetisation. Further vortices enter 
one by one if the field is increased further. For external fields close to the upper 
critical field Hc2 = 1, giant vortex states, i. e. states with a multiply charged vortex 
at the axis of the disk become energetically favourable. 

where magnetisation is simply defined as the difference of internal and external 

magnetic field multiplied by the (two-dimensional) volume. The bold line indicates 

the lowest energy solution for each field. 

In practise, the magnetisation curve of a disk in a varying field may not follow 

the path of lowest energy states because there is an energy barrier for vortices to 

enter or leave the disk [93]. This nucleation barrier was first proposed by Bean and 

Livingston [94] and depends very strongly on the surface curvature and roughness 

[51]. 

In figure 7. 7 we plot a complete cycle of the magnetisation curve for a larger disk, 

R = 40, that is found by integrating the TDGL (see Appendix 3). For this size of 

the disk, the jumps in the magnetisation curve are far less pronounced. Like in the 

rotating bucket experiment, we observe a hysteresis in the magnetisation, i. e. the 

disk contains fewer vortices when the external field is ramped up than in the case 

of a decreasing field. 
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Figure 7. 7: Magnetisation curve for a larger disk, R = 40 and "' = 5. This curve 
has been obtained by integrating the TDGL equations. The magnetisation does not 
follow the sequence of lowest energy states. For example, the magnetisation is non
zero even if the external field is zero (remanent magnetisation). Some vortices remain 
in the disk and their sign depends on the history of the magnetisation process. The 
area enclosed is determined by the energy barrier and the mobility of the vortices 
inside. 

Starting from the Meissner state (at the origin of the plot 7. 7) one still observes a 

perfect diamagnetic behaviour of the superconductor. The field at which vortices 

start overcoming the nucleation barrier and penetrating the disk is called the third 

critical field, Hc3 and can be as high as Hc3 = 1.695Hc2 [9, 95]. 

7.12 Summary 

We have reviewed the properties of the Ginzburg-Landau equations of superconduc

tivity and shown the connection between the various phases that can be observed to 

internal and external parameters. As an example, we have presented results on the 

magnetisation of a mesoscopic type-II superconductor subjected to external fields. 



Chapter 8 

Vortex dynamics, pinning, and 
critical currents 

The dynamics of vortices in a type-If superconductor with defects are studied by 

solving the time-dependent Ginzburg-Landau equations in two and three dimensions. 

We show that vortex flux tubes are trapped by volume defects up to a critical current 

density where they begin to jump between pinning sites along static flow channels. 

We study the dependence of the critical current on the pinning distribution and find 

for random distributions a maximum critical current equal to a few percent of the 

depairing current at a pinning density three times larger than the vortex line density. 

Conversely, for a regular triangular pinning array, the critical current is significantly 

larger when the pinning density matches the vortex line density. 

8.1 Introduction 

In a type-II superconductor dissipation is associated with the motion of the vortex 

lattice [9, 86, 96]. Consider a slab of superconductor in a transverse magnetic field, 

Fig. 8.1. Above Hell an Abrikosov vortex lattice forms so that, in equilibrium, the 

internal magnetic field matches the external field (B = H). If a current is passed 

through the sample in the x-direction, a gradient of the magnetic field builds up, 

(8.1) 

87 



Chapter 8. Vortex dynamics, pinning, and critical currents 

Vl 
Q) 

~ 
X 
:::1 
I;: 

0 
c 
0 :g 
E 

® ®· ® ® ® ® ® ® ® 
magnetic field 

88 

current 

~L 
X 

Figure 8.1: Schematic representation of a flux flow state in a slab of type-II super
conductor. A sufficiently strong external magnetic field passes through the material 
along vortex tubes (black in this density plot). A current in the x-direction generates 
a field gradient in transverse direction. A Lorentz force arises that leads to motion 
of the flux lattice. 

We have assumed a homogeneous current density. Across the slab, the magnetic field, 

B z (y), varies from B~ + LlB z to B~ and the total current is given by I = K.
2 f).B z. 

The energy density associated with the magnetic field is K.
2 B;(y), Eq. (7.19). Its 

gradient, the Lorentz force density, Eq. (7.12) or the magnetic pressure, is given by 

(8.2) 

and pushes the vortices in the y-direction. Consequently, vortices enter the sample 

at the underside (see figure 8.1), move across and leave the specimen on the upper 

side, thereby transporting magnetic flux from a region of high magnetic field to a 

region of lower magnetic field. Because the energy density is given by the square 

of the magnetic field strength, this transport releases energy that is converted into 

a voltage along the slab. The local density of the vortices is proportional to the 

local magnetic field, B(y). Therefore, the velocity of the vortices is related to the 

local field by vy(Y) = ajBz(y). To determine the coefficient a we relate the energy 

released from the relaxing magnetic field to the electrical energy, - !).£ = V I /).t, 

where V = El is the voltage along the slab and l its length. A magnetic flux 

vy(y) Llt Bz(Y) enters and leaves the superconductor, and we can write for the total 
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dissipated energy per time unit Llt: 

( 
a 2 2 a 2 2) 

Ll£ = l Llt Bo"' B0 - Bo + LlB"' (Bo + b.B) . (8.3) 

Under the simplest assumption that the electric field does not depend on y (no local 

charges) we find for the velocity of the vortices 

E 
v(y) = Bz(Y) . (8.4) 

The above analysis is also correct if IB~I < lb.Bzl, in other words, if Bz(y) = 0 on 

some line. In this case, vortices of opposite sign enter from both sides of the sample 

and annihilate where Bz(Y) = 0. 

This dissipation associated with the flux flow is reduced by the presence of defects, 

which pin the vortex lattice up to a critical current density where depinning oc

curs. In many applications, such as superconducting magnets, one is interested in 

optimising the vortex pinning to achieve the maximum critical current. However, 

the details of the depinning transition are complex, involving the non-equilibrium 

dynamics of an elastic lattice in a disordered medium. Theoretical studies based on 

molecular dynamics simulations suggest the existence of various dynamical phases of 

vortex motion including plastic flow, uncoupled static channels and coupled channels 

[10, 11, 98]. It is also possible to simulate vortex dynamics by solving the TDGL 

equations [51, 99, 100], where the vortex-vortex interaction is completely charac

terised by the GL parameter, "'· However, previous studies are restricted to two 

dimensions and often the limit "' -+ oo and they do not show the effect of pinning 

of a sliding vortex lattice. To solve the three-dimensional equations for finite "' is 

computationally intensive, in part because the standart explicit integration methods 

require very small time-steps. 

We have developed a semi-implicit method to solve the time-dependent Ginzburg

Landau equations in three dimensions (see Appendix 3). For intermediate values of 

"'' the semi-implicit method is two orders of magnitude faster than explicit meth- · 

ods, making it feasible to study dynamical vortex phases, depinning, and the de-
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pendence of the critical current on the density and distribution of pinning sites. 

Although pinning may arise due to magnetic defects, dislocations, grain boundaries, 

and correlated disorder such as twin planes in high-Tc superconductors, we restrict 

the current study to volume defects which exclude the supercurrent. 

The time-dependent Ginzburg-Landau equations (7.14) and (7.15) are discretised 

using a grid of 51 x 51 x 51 points with a grid spacing h = 0.4. A current flow 

along xis induced by imposing a magnetic field difference, t::.Bz, between the upper 

(y = 10) and lower (y = -10) boundaries. The supercurrent across the boundary 

is set to zero. We impose periodic boundary conditions at x = ±10 and z = ±10. 

The average current density is given by j = K.
2 t::.Bz/d, where d is the width of the 

superconductor. 

8.2 Three dimensional vortex flow 

A pinning array is produced by adding a potential term to equation (7.14) consisting 

of a random distribution of cubic potential steps with side length a = 1.2 and height 

Vo = 5.0. In agreement with other studies [101], we find that the pinning strength 

increases with a for a < ~, and saturates for a > ~· A more sophisticated pinning 

model would be needed to account for the larger pinning forces observed for small 

defects [102]. 

Fig. 8.2 shows a sequence of images illustrating the motion of the vortex lattice 

through the pinning array. In frame 1, six flux tubes are visible. By comparing 

frames 1, 2 and 3, one sees that the central flux tubes are moving whereas the two 

pairs on either side are pinned. However, between frames 4 and 5 the flux tubes on 

the left and right jump to the next pinning site. This differential motion between 

neighbouring planes in the vortex lattice plays an important role in the voltage

current characteristic (see Section 8.4). After frame 6, a similar but not identical 

sequence recurs. For the simulations presented in Fig. 8.2, the bending of the vortex 

lines is increased by the choice of a larger value of K and strong pinning. However, no 

entangling of vortex lines is observed. For smaller K, the vortex lines become more 
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Figure 8.2: A sequence of three dimensional images showing the motion of a r;, = 5 
vortex lattice through a random pinning array. The axes are shown inset in frame 
6. The current flows along x, the external magnetic field is along z, and the vortices 
move in the -y direction. Each frame shows a region with dimensions 9 x 7 x 20 
coherence lengths containing 12 pinning sites (shown in black, not to scale). The 
external magnetic field and current are Bext = 0.4 and j = 5 x w-3 , respectively. The 
grey flux tubes corresponds to surfaces of constant supercurrent density, I'I/JI2 = 0.05. 
The time interval between successive frames is 100. 

rigid, and the behaviour of the three dimensional system and a two dimensional cross 

section are qualitatively very similar. For high-Tc superconductors, a comparison 

between the two and three dimensional dynamics should consider possible effects of 

the layered structure [103]. 
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8.3 Two dimensional vortex flow 

We use two dimensional simulations to study the effect of pinning on the voltage

current characteristic or V- I curve of a superconductor with "' = 3, where three 

dimensional effects are suppressed. In addition, we reduce the size and strength 

of the pinning sites to a = 0.8 and Vo = 2.0, respectively. In Fig. 8.3 we present 

contour plots illustrating the vortex lattice in two dimensions. Fig. 8.3 (a) shows the 

instantaneous vortex distribution for a perfect superconductor (no pinning). The 

vortex density is proportional to the magnetic field which decreases linearly from 

the bottom to the top. The vortices move upwards with a speed v = E / B, where 

B is the local magnetic field and the electric field, E, is constant throughout the 

sample. Consequently, the vortex flow obeys a Bernoulli-like equation where the 

flow is faster in regions of lower density (lower magnetic field) and the dissipation 

can be thought of as a relaxation of the magnetic flux lattice. 

Adding defects transforms the triangular lattice into an irregular vortex glass, see 

Fig. 8.3 (b). For low driving fields, the vortex glass is frozen. As the current is 

increased, individual vortices begin to jump between pinning sites. As in the three 

dimensional simulations, Fig. 8.2, this motion begins along channels. The existence 

of static channels confirms the results of molecular dynamics simulations [10, 11]. 

In the Ginzburg-Landau model channels can merge or divide at intermediate drive 

currents, as shown in Fig. 8.3 (c). At larger currents, all the vortices are moving 

but the channels are still evident, Fig. 8.3 (d). 
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Figure 8.3: Contour plots of the supercurrent density for a section of a supercon
ductor with dimensions 60 x 20 coherence lengths, and K, = 3, subject to an external 
magnetic field in the z direction, Bext = 0.4. The current flows in the x direction 
and the vortices move in they direction. (a) For a current j = 0.06 and no pinning, 
the vortices form a triangular lattice with lattice spacing proportional to the local 
magnetic field. (b) The addition of pinning (density 0.056 ~-2 ) creates a vortex 
glass, which at low currents, j = 0.004, is pinned. (c) At intermediate currents, 
j = 0.005, vortex motion begins along channels, indicated by the grey scale image 
of the local electric field, superimposed on a time-averaged contour plot of the su
percurrent density. (d) At larger currents, j = 0.011, all the vortices are moving 
and the electric field is non-zero everywhere, however, the channels, where vortex 
motion mainly occurs, are still visible. (e) A regular array of volume defects pins 
the vortex lattice more effectively. Here, the density of vortices is three times the 
density of pinning sites and j = 0.005. 
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8.4 V-1 curve 

The on-set of vortex motion coincides with the on-set of dissipation or breakdown 

of superconductivity. In Fig. 8.4 we plot the V- I curve for a two-dimensional thin 

film for different defect densities. The voltage is measured by decreasing the current 

at a very slow rate of ad = -1.2 x w-7 , and the V - I curves is obtained from a 

200 point moving average. As our sample size is relatively small, surface effects tend 

to dominate. The critical current due to the Bean-Livingston barrier for vortices 

entering and leaving the calculation region [51 J is the same order of magnitude as 

the pinning effect. In order to study pinning only we remove the surface effects by 

adding a boundary layer of width 9 e on either side of a calculation region with width 

30 e. Within the boundary layer, a linear ramp potential reduces the supercurrent 

density gradually to zero. The current density and the voltage are measured within 

the calculation region (IYI ~ 15) only. 
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Figure 8.4: The V - I curves for a two dimensional section of superconductor with 
pinning densities (from the right) 0.14, 0.28, 0.39, and 0.56 e-2 (at these relatively 
high densities, the critical current decreases with increasing pinning density). The 
thin black line corresponds to the V - I curve without pinning, and the dotted line 
shows the normal resistance, E = j. Note that at large currents the slope of the 
V- I curves is similar to the normal resistance curve. 
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The shape of the V - I curve is dependent on the details of the vortex dynamics. 

The characteristic 'curved foot' can be explained by the combination of an increase 

in the number of vortex flow channels and increased flow along each active channel, 

as illustrated in Fig. 8.3 (c) and (d). The V- I curve becomes linear when all the 

vortices start to move. The ratio between the V -I curves and the normal resistance 

(the dotted line in Fig. 8.4) gives the dimensionless resistivity, which measures the 

fraction of current carried by normal electrons. 

8.5 Critical current density 

As the current is decreased the voltage becomes zero, i.e., all the vortices become 

pinned, at some finite current which we define as the critical current density, Jc· In 

the absence of finite temperature induced fluctuations or vortex creep, the value of 

Jc is well defined. However the critical current is sensitive to the exact distribution 

of pinning sites, therefore we average over six random distributions with the same 

density. Fig. 8.5 shows a plot of the average value of Jc against pinning density. The 

maximum critical current density is about 2 % of the depairing current, JD· For 

comparison, the optimum critical current density of Nb-Ti alloy is rv 3 % of j D. The 

maximum value of Jc occurs at a pinning density about three times larger than the 

vortex line density (indicated by the dotted line in Fig. 8.5). 

The dependence of the critical current on the defect density fits reasonably well to a 

function of the form Ax exp (-B x). The linear increase at low pinning density follows 

from the linear dependence of the critical current on the pinning force. However, 

at large pinning densities the effect of supercurrent depletion by defects leads to 

the exponential decrease. The shape of the curve and the relatively high optimum 

pinning density also agree qualitatively with experimental results on silver doped 

high-Tc superconductors [104]. 

For certain random distributions one finds persistence static channels which can 

dramatically reduce the critical current. This is illustrated in Fig. 8.5 (inset), where 

the curve with lower dissipation at large currents has a much lower critical current. 
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Figure 8.5: The critical current density as a function of the defect density (in units 
of ~-2 ) for both random distributions (\7) and regular triangular arrays (•). The 
data points are determined from an average of six random distributions. The error 
bars (shown for the high density distribution only) indicate the standard deviation. 
An example illustrating the effect of the distribution on the V - I curves is shown 
in the inset. The bold curve is a fit using the function Ax exp (-B x), where A and 
B are fit parameters. The critical current density for a regular triangular array is 
a maximum when the pinning density is equal to vortex line density (indicated by 
the dotted line). 

One approach to increase the critical current is to introduce a regular pinning array 

by nanostructuring [105, 106, 107]. In Fig. 8.5 we show that a regular triangular 

array increases the critical currents by more than a factor of two, however, the 

optimum pinning density is sharply peaked around the vortex line density. Conse

quently, the enhancement is only obtained within a narrow range of the external 

magnetic field. This agrees with experimental studies where a sharp enhancement 

peak is obtained at matching magnetic field values [107]. There are two additional 

critical current peaks, one at one third the vortex line density where every third 

vortex is trapped (see Fig. 8.3 (e)), and one at half the vortex line density, which 

is weaker because the matching only occurs on alternate planes. For small pinning 

sites (a= 0.8 compared to the vortex cores size of 2) the maximum critical current 

is about 5 % of the depairing current, JD· For a= 2 we obtain Jc = 0.074jv, which 

suggests that other pinning mechanisms may be needed to obtain Jc,....., JD· 
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8.6 Summary 

We have studied vortex dynamics and pinning in a three dimensional superconduc

tor by solving the time-dependent Ginzburg-Landau equations. We find that above 

a critical current density vortex flux tubes jump between pinning sites following spe

cific channels. The main features of the dynamics are reproduced by two dimensional 

simulations. We study the effect of pinning on the voltage-current characteristic of 

the superconductor, and show that the breakdown of superconductivity is associated 

with the appearance of channelled vortex flow. The characteristic curved foot in the 

V -I curve arises due to the combination of the formation of more channels and 

faster vortex flow along each channel. For a random pinning array we find a max

imum critical current equal to 2 % of the depairing current occurring at a pinning 

density of about three times the vortex line density. Finally, we study the critical 

currents produced by vortex matching pinning arrays. The results suggest that time

dependent Ginzburg-Landau simulations are ideally suited to provide quantitative 

predictions of critical currents in type-II superconductors. 



Conclusion 

In this thesis we have studied the dynamical properties of quantum fluids by numer

ically solving nonlinear equations of motion. 

The Gross-Pitaevskii equation, which is a form of the non-linear Schrodinger equa

tion, describes a gas of weakly interacting bosons under the assumption that energy 

is conserved. The dilute Bose gas is an Euler fluid that differs from a classical fluid 

only by the restriction to quantised vorticity and a non-linear and non-local depen

dence of the pressure on the particle density. The excitation spectrum has a finite 

slope in the limit of long wavelength for repulsive inter-particle interactions. This 

fact, and the lack of a viscosity term, are the essential ingredients to superfluidity. 

According to the Landau criterion, the system energy cannot be lowered by creating 

an elementary excitation when the flow velocity is smaller then the speed of sound. 

We have studied stable vortex and vortex ring solutions in the vicinity of a moving 

object. 

If the object is subject to a small external force, it accelerates up to the critical 

velocity where a vortex ring forms that slows the object down. We observe a smooth 

transition from laminar flow to a state where a vortex ring encircles the object. 

A small perturbation drives the object towards the vortex core where it becomes 

trapped. The hopping of the object into the core excites oscillations that decay 

rapidly. Apart from the transition between the encircling ring and the pinned ring 

state, the dynamics closely follows a sequence of time-independent states which 

indicates that the entire energy transfered to the fluid is stored in the vortex ring 

and that the process is reversible. Above a critical force, a succession of vortex 
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rings may detach from the object. We consider the vortex ring as an elementary 

excitation of the fluid and extend the Landau criterion to objects with finite mass. 

At very large forces, when the object velocity exceeds the speed of sound, energy 

is also transfered into sound waves and the drag force on the object approaches its 

classical limit. 

Our simulations of objects moving through a dilute Bose gas agree surprisingly well 

with experimental results on ions in superfluid helium. In particular, the observa

tions that the motion of ions is governed by the nucleated vortex ring and that the 

energy transferred to the system is fully contained in the ring suggest that the Gross

Pitaevskii model does not miss any essential physics as long as only hydro-dynamical 

properties of helium are probed. The situation becomes more complicated if rotons, 

normal fluid or 3He are present in He-II. Extensions to the GP model that include 

a more detailed description of the inter-particle interactions and finite temperature 

effects are discussed in the Introduction and may be able to explain experimental re

sults that indicate a stochastic tunnelling during vortex formation. The description 

of a quantum fluid as a macroscopic wavefunction is certainly superior to previ

ously used semi-classical models in which quantum effects such as tunnelling and 

the quantisation of circulation were introduced in an ad-hoc manner. In summary, 

the GP model provides a relatively simple and accurate method for modelling dilute 

Bose gases and gives new qualitative insight into the more complex dynamics of 

superfluid helium. 

The time-dependent Ginzburg-Landau equations describe a charged Bose gas under 

the assumption that the temperature is held constant. We have developed a fast 

algorithm for solving the TDGL equations by recognising that the time evolution is 

dominated by a diffusion of the order parameter and vector potential. 

We have studied the flow of an electrical current through a superconductor placed in 

an external magnetic field transverse to the current and observed vortex motion due 

to the Lorentz force in a clean superconductor. This flux flow can be suppressed u,p to 

a critical current density by introducing a number of randomly distributed volume 

defects in the sample. We have measured the voltage along the superconducting 
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sample that is associated with the flux flow and explained the curved foot of the 

V- I curve that marks the onset of dissipation. We have also determined the density 

of pinning sites at which optimum vortex pinning occurs. The critical current density 

can be increased for a certain strength of the external magnetic field by arranging 

the pinning sites in a regular triangular array so that each vortex is trapped by 

one pinning site. However, even for perfect matching of the vortex lattice and the 

pinning centres we find a critical current density of only about 5% of the depairing 

current indicating that other pinning mechanisms (e. g. magnetic impurities) must 

be applied to achieve current densities close to the theoretical limit. 

The theoretical study of superconductors using the TDGL equations is computa

tionally very expensive and has only very recently become feasible. However, it is 

a very promising method especially because different boundary conditions; struc

tures in the material; and finite temperature effects can be included very easily and 

modelled accurately. 

As discussed in the Introduction, Bose-Einstein condensation is of great importance 

in many areas of modern physics. We have studied two very different systems in 

which macroscopic quantum phenomena occur and have demonstrated that the di

rect numerical solution of appropriate wave equations is a fruitful approach and can 

provide new insight and answers to long standing questions. 



Appendix A 

Newton's method 

The following appendices give some details about the numerical methods that have 

been applied in the simulations. Here, we describe a globally convergent method for 

nonlinear systems of equations, known as the Newton-Raphson method {108}. It has 

been used to find all time-independent solutions to the Gross-Pitaevskii and to the 

Ginzburg-Landau equations. 

A.l Root finding in one dimension 

Perhaps the most basic of tasks is to solve a given equation numerically. Moving all 

terms of the equation to the left hand side, the problem can be written as 

f(x) = 0 . (A.1) 

A very efficient root-finding routine is Newton's method, also called the Newton

Raphson method. Starting with an initial guess, x(l), it approximates the function 

f(x) locally by its tangent line at the current point x(P) and uses the crossing point of 

the tangent with the abscissa as the next guess x(P+l) (see Fig. A.1). Algebraically, 

the function f(x) is approximated by the first two terms of its Taylor series expan-

sion: 

f(x + 8x) ~ f(x) + f'(x)8x . (A.2) 
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X 

Figure A.l: Newton's method extrapolates the local derivative to find the next 
estimate of the root. 

In many cases, the method converges quadratically, i. e. near the root, the number 

of significant digits approximately doubles with each step. However, the method can 

fail, for example, if the approximations encounter a local extremum. In this case, 

the tangent line is almost horizontal and a the next Newton step 8x changes the 

initial guess dramatically. A cure for this problem will be discussed later. Implicit 

problems of the form (A.l) may have none or several solutions. Therefore, different 

initial values might cause the algorithm to converge to different roots. For some 

equations or initial values, the method might not converge at all. 

A.2 Non-linear sets of equations 

Newton's method is readily generalised to anN-dimensional problem 

f(x) = 0, (A.3) 

where x denotes the vector { xu}u=l, ... ,N and f the vector offunctions Uu}u=l, ... ,N. 

The first derivative is now replaced by the Jacobian matrix. In the neighbourhood 
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of x, each component fu can be approximated by 

N ofu 
fu(x +ox)~ fu(x) + L ox OXv = 0. 

v=1 v 

For each Newton step, x(P+1) = x(P) +ox, theN x N matrix lu,v given by 

ofu 
luv = ~' ' UXv 
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(A.4) 

(A.5) 

has to be inverted. The algorithm fails if the procedure runs into a local extremum, 

i. e. the Jacobian matrix becomes singular. 

As an example, we demonstrate how Newton's method can be applied to find time

independent solutions to the Gross-Pitaevskii equation in a moving frame, 

(A.6) 

Stationary flow solutions correspond to wavefunctions 'lj;( r, t) ·= e-i~Ltcp( r) with a 

chemical potential of J-t = 1. We discretise the equation on a three-dimensional 

Cartesian grid and separate the wavefunction into real and imaginary parts, because 

the term I'I/JI 2 '1/J cannot be differentiated unambiguously in the complex plane. The 

spatial derivatives are then approximated by second order accurate finite difference 

approximations. Defining c/JijkO = Re(cp(xi, Yj, zk)) and c/Jijk1 = Im(cp(xi, Yj, zk)), and 

taking the flow direction to define the z-axis, Eq. (A.6) becomes 

Jijkr = ( c/Ji-1,j,k,r - 2c/Ji,j,k,r + c/Ji+1,j,k,r) /2h; 

( A.. . 1 k - 2"-· . k + A.. . 1 k ) /2h2 
'f't,J- , ,r 'f't,J, ,r 'f't,J+ , ,r y 

( A.. "k 1 - 2"-· "k +A.. "k 1 ) /2h2 
"PZ,J, - ,r 'f'z,J, ,r 'f'z,J, + ,r z 

+ (v; . k + "'2 
. k 0 + "'2 

. k 1 - 1) A. .. k z,J, I..Pt,J, , '+'t,J, , ¥'t,J, ,r 

+ (2r- 1)U(c/Ji,j,k+1,1-r- c/Ji,j,k-1,1-r)/2hz = 0 , (A.7) 
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where h is the grid spacing (values between 1
1
6 and ~ were used). The solution of 

these equations is found using the linearisation 

f ( ,~,.(p) ) "" (,~,.(p+1) ,~,.(p) ) [ [) Jijkr ] (p) O 
ijkr 'l'lmns + ~ 'l'lmns - '~'lmns 0 ,~,. ~ ' 

tmns '!'lmns 
(A.8) 

where cp(P+1) is determined from the approximation cp(P) by solving Eq. (A.8) using 

the hi-conjugate gradient method explained below. The iterative solution depends 

on the initial guess cp(1); for example, laminar flows are found by choosing q;(l) = 1, 

whereas vortex solutions are found by imposing the vortex phase pattern on q;(ll, 

and then relaxing the imposed phase after a few iterations. 

A.3 Hi-conjugate gradient method 

Newton's method requires the solution of a linear system, 

J8x = -f, (A.9) 

where J is the Jacobian of the non-linear system of equations and Jx the Newton 

step. In our simulations, we use grid sizes up to 1003 points. The length of the 

vectors x and f is 2 · 1003 because the complex wavefunction is represented by two 

real-valued fields. That means the Jacobian matrix contains 4·1012 elements. There 

are very few computers that could store this amount of data and even fewer that 

can invert such a matrix within a reasonable time. Luckily, the Jacobian matrix 

corresponding to Eq. (A.7) is very sparse; indeed, about 99.9995% of the matrix 

elements are zero. 

We employ the so-called hi-conjugate gradient method [108] to find a solution to 

the matrix equation (A.9). The attractiveness of this method is that it references J 

only through its multiplication of a vector or the multiplication of its transpose and 

a vector, and J can be stored in a compact way making use of its sparseness. 
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The idea is to minimise the value of the scalar function 

(A.10) 

which is equivalent to solving (A.9). The minimisation is performed by creating 

a succession of linearly independent search directions and going 'downhill' in each 

direction. After N =dim J iterations, the algorithm arrives at the global minimum 

of g(x) and therefore at the solution of (A.9). However, an approximate solution of 

the form 

a rv w-2 

' 
(A.ll) 

which is often sufficient for the Newton method, is typically generated after fewer 

than 103 iterations making it possible to solve very large sets of non-linear equations. 

A.4 Truncated Newton steps 

As discussed above, Newton's method converges quadratically close to a simple root 

of an equation but also has the tendency to jump away from the actual guess x(P) 

if it encounters any local extremum. Far away from the solution, it is not clear if 

the linearised equation (A.4) is a good approximation to the the original set of the 

equations. However, it is guaranteed that 1/12 decreases initially as we move along 

the direction of the Newton step. To ensure global convergence of the algorithm, 

only a fraction of the calculated step is taken to update the approximation for the 

root, 

(A.12) 

Close to a solution, A can be set to 1 and the algorithm will converge rapidly. For 

the first couple of steps, a value of about 0.1 is often necessary to guide the Newton 

steps along the N dimensional surface described by the system (A.3). 
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A.5 Coordinate system and the choice of variables 

Symmetries in the underlying geometry can reduce the expense of the calculations. 

For example, if the potential V is symmetric along the flow direction V (-z) = V ( z), 

then clearly c/J* (-z) = cp( z), and only half of the wavefunction needs to be modelled 

if appropriate boundary conditions are applied at z = 0. Both the GP and the GL 

equations have been solved using a number of different coordinate systems, namely 

• Cartesian coordinates in one, two and three dimensions: x, y, z, 

• polar and cylindrical coordinates: p, cp, z, 

• spherical coordinates: r, cp, (}, and 

• 'stretched' coordinates: x, f), i or f. 

The 'stretched' coordinates have been used to model very large box sizes by mapping 

the axis to the interval [-1, 1] using the transformation x = xf(lxl +D), where D 

is a constant which determines the scaling. A more sophisticated example is the 

transformation 

f = [0, 1) ' (A.13) 

that allows to study the flow around very large spheres with radii up toR= 10000. 

The non-linear transformation provides both sufficient point coverage of the healing 

length and a good resolution of the flow at large distances from the sphere. 

It is important to note that the Newton method in combination with the hi-conjugate 

gradient method only finds simple zeros. For the time-independent Ginzburg

Landau equations, 

0 

0 

(V' - iA) 2 V; + (1 - IV;I 2 )V; 

(V'S- A)IV;I 2
- r;,

2 \7 X V' X A' 
(A.l4) 

a whole class of solutions exists due to the gauge freedom (A -+ A + V' A and 

V; -+ V;eiA). There is one particular choice of gauge that removes all the phase 
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gradients from the wavefunction. Writing 'ljJ 

equations (A.l4) become 

0 

0 

'\l2R+ (A2 + 1- R2 )R 

AR2 + /'\,2'\l X "V X A . 
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Rei5 and setting A -S, the 

(A.l5) 

This set of equations is ideal for studying the Meissner state because all gauge 

freedom has been removed. However, in this gauge, the vector potential A diverges 

inside a vortex core so that a finite-difference approximation of the spatial derivatives 

cannot be used. We therefore rewrite the equations (A.l5) using the gauge-invariant 

quantities: density, D = R 2, and the supercurrent, j = AR2: 

0 D '\72 D- ~("V D)2 + j2 + D2- D3 
2 4 

0 D3j + "'2 ('\7 x '\7 x (D2j) - 3'\l x (D'\7 D x j) (A.16) 

-3'\JD x '\7 x (Dj) + 6'\JD X ("VD x j)) 

These equation have been used to calculate the vortex solutions in Chapter 7. Both 

the density and the supercurrent are smooth functions inside a vortex core as shown 

in Fig. A.2. 

Figure A.2: One component of the supercurrent, ix(x, y), around a vortex. The 
vortex line is vertical in this plot and going through the middle. The supercurrent 
is an ideal variable for Newton's method: It is a gauge invariant and smooth. 
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Crank-Nicholson method 

Here we describe the method used to solve the time-dependent Gross-Pitaevskii equa

tion numerically. The Crank-Nicholson algorithm is second accurate in space and 

time and is renowned for its stability. 

B.l A semi-implicit finite difference scheme 

The Crank-Nicholson algorithm [108, 109], is one of the standard routines for solving 

the multi-dimensional Schrodinger type equation, 

i! '1/J(x, t) = H'lj;(x, t) . (B.1) 

The time evolution of the wavefunction is formally given by 

'lj;(x, t + ~t) = exp( -i~tH)'lj;(x, t) . (B.2) 

The operator exp( -i~tH) is replaced by a finite difference representation, called 

Cayley's form, which is second order accurate and uni-modular: 

-i~tH 1 - !i~tJl 
e ~ 1 + !i~tll · 

(B.3) 
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In other words, 

( 1 + ~i~tH(n+l)) '1/J(n+l) = ( 1 - ~i~tH(n)) '1/J(n) , . (B.4) 

where the superscript n denotes the time step. In the case of the NLSE, the Hamil

tonian H depends on the wavefunction and is therefore time-dependent. It has been 

shown [110] that a second order accuracy in time can be retained if the Hamiltonian 

on the left hand side of the equation depends on the wavefunction at the new time 

level, n + 1, whereas the Hamiltonian on the right hand side depends on the previous 

time level, n, as indicated in Eq. (B.4). The wavefunction at the new time level is 

obtained by an iteration technique and we assume '1/J(n+l) = '1/J(n) initially. 

In three dimensions, the kinetic energy part of the Hamiltonian contains derivatives 

in all three directions. However, the operators can be split into three one-dimensional 

operators within the second order accuracy [109]. This approximate factorisation 

allows fast matrix inversion routines to be employed. 

B.2 The motion of a classical object in a quantum fluid 

In chapter 4 we simulate the motion of a massive object through a quantum fluid. 

The object is modelled by a potential term V(r-r 0 (t)), where r 0 marks the position 

of the object. The dynamics of the quantum fluid is given by the NLSE while we 

assume a classical trajectory for the object: 

iOt'I/J(r, t) = ( -~ \72 + V(r- ro(t)) + 1'1/J(r, t)1 2
) '1/J(r, t) . (B.5) 

The equation of motion of the object is given by 

.. I 3 dV I ( )12 Mr 0 =F+ dr dr '1/Jr,t , (B.6) 

where F is an external force and the second term is the force on the object due 

to the fluid. The computation is simplified by transforming into the frame of the 
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object, where Eq. (B.5) may be rewritten as 

i8t'(/;(r', t) = ( -~V'2 + V(r') + l~(r', t)1 2 + iU ·V') ~(r', t) , (B.7) 

where ~(r', t) = 7/J(r, t) is the wavefunction in the fluid frame written in terms of the 

object frame coordinates, r' = r- r 0 (t), and U is the object velocity at timet. The 

system is prepared in a time-independent laminar flow state, ~ ( r', t) = ifJ( r' kJLt, 
where f.L is the chemical potential. From this initial state, the time evolution due 

to an applied force, F, is evaluated by integrating Eq. (B.7) using a semi-implicit 

Crank-Nicholson formula. The conservation of momentum 

(B.8) 

where Po is the initial momentum, is used to calculate the velocity of the object at 

each time step. The velocity at the new time level enters in H(n+l) on the left hand 

side of Eq. (B.4) and is found by iteration. 

For the simulations in Chapter 4, the equations (B. 7) and (B.8) are discretised on a 

three dimensional grid using the non-linear mapping x = xj(D + lxl), where D = 12 

is used as a scaling parameter, to map an infinite box onto the space [ -1, 1]. The 

grid contains 140 points in each dimension and we use a time step dt = 0.02. 

The accuracy of the solution is assessed by comparing it to known solutions for 

special cases, and with solutions obtained using a much finer grid spacing and shorter 

time steps. In addition, physical features of the time-dependent solution such as the 

conservation of the number of particles, momentum, and energy can be considered 

to check the code is working correctly. 
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B.3 Imaginary time - The Gauss-Seidel method 

The Crank-Nicholson formula can also be applied to find time-independent solutions 

to the NLSE of the form 

(B.9) 

where J-L is the chemical potential, J-L = 1 for homogeneous systems, and the momen

tum operator iU · \7 is incorporated to find soliton solutions around a moving object 

represented by the potential term V. 

Consider the diffusion equation 

(B.10) 

with a diffusion constant of 1 and a source term p. As t --+ oo, the initial wave

function relaxes to an equilibrium solution, usually to the time-independent ground 

state. This is known as the Gauss-Seidel method for solving the inhomogeneous 

Laplace equation \72 '1j; = p. The equation (B.10) is the NLSE where the time has 

been replaced by a negative 'imaginary' time. Therefore, propagating the wave

function in an Crank-Nicholson code using negative and imaginary time-steps D..t is 

another way (besides the Newton method (Appendix 1)) of finding the ground state 

of a system. The procedure fails to converge if no ground state exists, for example, 

there are no time-independent solutions for flow around a sphere at supercritical 

velocities. 

A 'complex time', i. e. the time step i:l.t has a real and imaginary components, can 

be used to incorporate dissipation into the Gross-Pitaevskii equations. Whereas the 

real part of the time drives the convection of the fluid, the negative imaginary part 

smoothes out excitations. However, care must be taken to conserve the number of 

particles in the system. 



Appendix C 

Semi-Implicit Finite Difference 
Method for the TDGL 
Equations 

Here we present the finite-difference algorithm used for solving the time-dependent 

Ginzburg-Landau equation coupled to the appropriate Maxwell equation in this thesis. 

The time derivatives are discretised using a second order semi-implicit scheme which, 

for intermediate values of the Ginzburg-Landau parameter 1),, allows time-steps two 

orders of magnitude larger than commonly used in explicit schemes. As an extra 

demonstration we use the method to solve a fully three-dimensional problem of a 

current-carrying wire with longitudinal and transverse magnetic fields. 

C .1 Numerical methods 

The most popular approach to the solution of the TDGL equations, (7.14) and 

(7.15), is a gauge-invariant discretisation that is second order accurate in space and 

first order in time [99, 97, 111, 112, 113]. In addition, a number of other finite 

difference [114, 115] and finite element methods (116, 117] have been developed. For 

large values of /'i, the magnetic field is nearly homogeneous and equation (7.15) can be 

dropped. This case is often referred to as the London limit. The remaining equation 

has been solved by a semi-implicit Fourier spectral method which is second order 

112 
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accurate in time [118]. Here, we modify the very robust and accurate semi-implicit 

Crank-Nicholson algorithm discussed in Appendix 2 to include the equation for the 

vector potential. 

C.l.l The U- 'ljJ method 

The widely used U- 'lj; method is described in detail by Gropp et al. [111]. As 

this method forms the basis of our algorithm we briefly review the main points here. 

Complex link variables ux, UY and uz are introduced to preserve the gauge invariant 

properties of the discretised equations: 

ux(x,y,z) = exp ( -i ~x: Ax(x',y,z)dx') 

UY(x, y, z) = exp ( -i ~u: AY(x, y', z)dy') 

uz(x, y, z) = exp ( -i 1: Az(x, y, z')dz') , 

(C.1) 

where (xo, yo, zo) is an arbitrary reference point. The TDGL equations can then be 

expressed as functions of 'lj; and these link variables. Both the order parameter and 

the link variables are discretised on a three dimensional grid with grid spacing hx, 

hy, and hz, respectively. The mesh points for the link variables are half way between 

the mesh points for the order parameter (see Fig. C.1). All spatial derivatives are 

approximated by finite differences to second order accuracy. Denoting the complex 

conjugate of U by U, the finite difference representations of the TDGL equations 

read 

8t'l/Ji,j,k 

+ 

+ 

+ 
atux. k 

t,], 

-x 
ui-1,j,k'l/Ji-1,j,k- 2'1/Ji,j,k + ui~j,k'l/Ji+1,j,k 

h2 
X 

fl'f,j-1,k'l/Ji,j-1,k- 2'1/Ji,j,k + ui~j,k'l/Ji,j+1,k 
h2 y 

-z 
ui,j,k-1'1/Ji,j,k-1- 2'1/Ji,j,k + ui~j,k'l/Ji,j,k+1 

h2 z 

(1 - I1/Ji,j,ki 2 )1/Ji,j,k 

-i Im (Fx·k) ux.k 
t,], t,], ' 

(C.2) 

(C.3) 
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where 
-x TTY x y -xTTY x y u. "+1ku .. ku .. ku .. k-u .. ku .. 1ku .. ku . . k 2 ~.J , ~.], ~.), ~+1,], ~.J, ~.)- , ~.J-1, t+1,J-1, 

~ h2 
-z -x y -z -x 
U· 1 ·k 1U· ·k 1uz.k ux.k- U-+1 ·kU· ·kU!!.kU~-k 

+ 2 ~+ ,], - t,J, - ~.], -1 ~.J, ~ ,], ~.], t,], t,], +1 
~ ~ 

z 

+ ui~j,k1./Ji,j,k1./Ji+l,j,k . 

Analogous expressions for OtUl,j,k and OtUi~j,k can be obtained by permutating the 

coordinates and indices as follows: 

(x,y,z;i,j,k)-+ (y,z,x;j,k,i)-+ (z,x,y;k,i,j)-+ (x,y,z;i,j,k). (C.4) 

The standard method approximates the time evolution by a simple Euler step, 

1./Ji,j,k(t + flt) 

ui~j,k(t + flt) 

1./Ji,j,k(t) + flt 8t1./Ji,j,k(t) + O(flt2
) 

Ui~j,k(t) + b.t 8tUi~j,k(t) + O(b.t2
) . 

To keep Ui~j,k uni-modular, equation (C.6) is often modified to 

(C.5) 

(C.6) 

(C.7) 

The Euler method is only first order accurate in time, i.e., the truncation error made 

due to the finite difference approximation of the time derivative is proportional to 

flt2 . However, the main problem is that the code becomes unstable iflong time steps 

are used. The cause of this instability is the diffusion-like character of the dynamics 

described by the equations (C.2) and (C.3). Equation (C.2) can immediately be 

written as a diffusion equation with an additional non-linear term 

(C.8) 

where f stands for (1-I1./Ji,j,ki 2 )1./Ji,j,k and Lx, Ly, and Lz denote the weighted Lapla-

cian operators, 

(C.9) 
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with lai-ll = lai+ll = 1 in our case. The diffusion constant is 1 in dimensionless 

units. Equation (C.3) is also dominated by diffusive terms as will become evident 

in the next section. The diffusion constant for the vector potential is /'i,
2 . This can 

be seen by taking the curl of equation (7.15), iJ = /'i,
2\72 B + \1 x j 8 • The one-step 

forward Euler method is only stable as long as the time step is shorter than the 

diffusion time across a cell of width h [108]. For example, using a grid spacing of 

h = 0.5e and /'i, = 4, the theoretical limit for the time step is 

(C.lO) 

In practice, a time step of l::i.t = 0.0025 is used to ensure stability [111 J. In contrast, 

a semi-implicit two-step algorithm is unconditionally stable for diffusive problems 

and enables much larger time-steps to be employed. 

C.1.2 Semi-implicit algorithm 

We propose a spatial discretisation of the equations very similar to the above U - 'lj; 

method. The link variables are uni-modular, IUi~j,kl = 1, and can be written as 

the exponential of a phase, Ui~j,k = exp( -i<Pf,j,k). We use the real-valued variable 

<Px instead of the complex-valued ux. The fields 'lj; and f/> are represented on a 

three-dimensional grid. The mesh points of the phase factors are placed between 

the mesh points of the order parameter (see Fig. C.1). For the field 'l/Ji,j,k, the grid 

point indices are i = l...Nx + 1, j = l...Ny + 1, and k = l...Nz + 1. For <Pf1· k• the , , 

indices in the x direction range i = l...Nx only, due to the relative displacement of 

the grids. Similarly, j = l...Ny for <Pf
1
. k and k = l...Nz for <Pf

1
· k· 

... , l , ) 

We now discretise the spatial derivatives in equations (7.14) and (7.15) using the 

modified link variables <Px, <PY, and <Pz. For equation (7.14), we can reuse the expan-
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Figure C.l: The evaluation points for the fields 'ljJ and cp in the x- y plane. A finite 
difference approximation for the magnetic field Bz is given in (C.27). 

sion (C.2) except that Ui~j,k is replaced by exp(-ic/Ji,j,k), etc, 

_ exp(icpf_1,j,k)'l/Ji-1,j,k - 2'l/Ji,j,k + exp( -ic/Ji,1,k)'l/Ji+1,j,k 
h2 

X 

exp(ic/JY1·_1 k)'l/Ji 1-1 k - 2'l/Ji 1· k + exp( -ic/JY1· k)'l/Ji J'+1 k + ... , ' ' ' '' "'' ' ' h2 y 

exp(ic/Jf1· k-1)'l/Ji 1· k-1 - 2'l/Ji 1· k + exp( -ic/Jf1· k)'l/Ji 1· k+1 + "'' '' ,, ... ,, '' 
h2 z 

(C.ll) 

With help of the relation -V' x V' x A = \72 A - V' (V' A), the second order accurate 

finite difference representation of (7.15) is 

2 2 

8tc/Jx · k '5:_(cpx · k- 2cpx · k + c/Jx k) + '5:_(cpx · k - 2cpx k + c/Jx · k 1) ~.], h2 ~.J+1, ~.J, ~.J-1, h2 ~.], +1 ~.J, ~.J, -
y z 
2 

+ ~2 ( -c/JY+l,j,k + c/JY,j,k + c/Jf+1,j-1,k- c/JL-1,k) 
y 

2 

+ ~2 ( -c/Ji+l,j,k + c/Ji,j,k + c/Ji+1,j,k-1 - c/Ji,j,k-1) 
z 
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(C.12) 

The expressions for 8t<PI,j,k and 8t<Pi,j,k are given by cyclic permutation (C.4). 

Note, that the discretised equations are still invariant under the gauge transforma

tion 

{ 

"1'· · k ---+ •1•· · k exp(iA- · k) 'f't,J, 'f't,J, t,J, 

<Pf,j,k ---+ </Jf,j,k + (Ai+l,j,k - Ai,j,k) 
<Pf,j,k ---+ <Pf,j,k + (Ai,j+I,k - Ai,j,k) 
<Pi,j,k ---+ <Pi,j,k + (Ai,j,k+I - Ai,j,k) · 

(C.13) 

Retaining the gauge invariance at the discrete level is often equivalent to preserving 

certain conservation laws and physical principles. It is crucial that the numerical 

approximation does not depend on the particular choice of gauge. If, for example, 

one studies the motion of a vortex lattice due to an applied electric field Ex, the 

measurable quantities B, 17/JI 2 and j oscillate in time (see Chapter 8). The system is 

driven through a series of equivalent solutions and the dynamics is roughly described 

by A = Exxt. This means that the phase gradients in the order parameter build 

up in time and the phase difference between two neighbouring grid points eventu

ally exceeds 27!". This is normally a problem as the finite difference approximation 

becomes invalid. However, using the link variables U or <P these phase gradients are 

exactly cancelled by the change in the vector potential. 

We now want to introduce a new scheme to update the wavefunction V;(n) and the 

link variables q;(n) from the nth to the (n + l)th step. The idea is to treat the 

diffusive terms semi-implicitly whereas all other terms are still treated explicitly. In 

this way we reduce the stability constraints associated with the simple Euler method 

but avoid the expensive solution of non-linear equations. The technique is known as 

the method of fractional steps [109]. A second-order accuracy in the time-step can 

be achieved by a simple 3 step iteration. 

As mentioned above, the diffusive character of equation (7.15) becomes apparent in 

the new discretisation and both equation (C.ll) and equation (C.l2) can be written 
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as a initial value problem of the form 

(C.14) 

where u stands for the fields '1/J or cpx, cpY or cpz, respectively, D is the diffusion 

constant with D = K.
2 in ( C.12) and f indicates all the other terms, (1-I'I/Ji,j,k 12)'1/Ji,j,k 

in (C.ll) and the last three lines in equation (C.12). Note, that Lx = 0 in (C.12). 

The second derivatives are approximated in the usual way by an expression involving 

three neighbouring grid points. For any pair (j, k) the action of Lx on the vector 

{ Ui,j,kh=2 ... Nx, can be represented by a tri-diagonal matrix b"i, 

(C.15) 

As emphasised before, the instabilities of the Euler method have their origin in the 

explicit treatment of the diffusive terms. We now discretise the time derivative in 

equation (C.14) in the following way, 

(C.16) 

This discretisation is semi-implicit as the right hand side of the equation depends 

on the fields at the old and the new time level. This mixing leads to an improved 

accuracy and prevents the algorithm from developing instabilities. After rearranging 

the equation we get 

( 
_ Df::l.t 82 _ Db..t 82 _ Df::l.t 82) (n+l) = b..t (J(n+l) J(n)) 

1 2h2 X 2h2 y 2h2 z U 2 + 
X y Z 

( 
Df::l.t ..-2 Df::l.t ..-2 Df::l.t ..-2) (n) O(f::l. 3) 

1 + 2h2 Ux + 2h2 Uy + 2h2 Uz U + t • 
X y Z 

(C.17) 
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We now employ an approximate factorisation [109], 

(C.l8) 

The multidimensional operator is split into three operators that involve difference 

approximations in only one dimension. With the abbreviations 

(C.l9) 

and considering (u(n+l)- u(n)) = 0(.6.t) equation (C.l7) becomes 

(C.20) 

The tri-diagonal matrices A and B are actually time dependent because the differ

ential operators L in equation (C.ll) depend on the link variables. In the above 

equation, A is a function of cjJ(n+l) whereas B depends on cjJ(n). Consequently, the 

equations are solved in the following step-wise manner 

Axu(n+l/3) 

A u(n+2/3) 
y 

AzU(n+l) 

BxByBzU(n) + ~t (f(n+l) + f(n)) 

u(n+l/3) 

u(n+2/3) 
' 

(C.21) 

where the 'fractional' time levels indicate intermediate results. The explicit term 

f(n+l) as well as the matrix elements of A may depend on the values of the link 

variables at the new time level and are unknown initially. We assum~ that u(n+l) = 

u(n) to start with. After the first iteration of equation (C.21) for all variables 'lj; 

and c/J, the updated values at the new time level are used in the matrix elements 

of A for the second iteration, and so on. The product BxByBzu(n) is a function of 

known values at the previous time level and can be stored in an auxiliary variable 

for subsequent iterations. As the matrices A are tri-diagonal, fast inversion routines 

can be applied [108]. 
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The entire algorithm relies on the convergence of this iteration technique. To test 

whether the procedure converges, we calculate a total update, S(m), of the fields 

after m iterations by comparing all values at the time level ( n + 1) to all values at 

the previous time step, (n), 

S(m) =""""' ((1'1/J(n+1,m)l2 -1'1/J(n) 12)
2 
+ (<P~(n+l,m) _ </Jx(n))2 + ···) (C.22) 

~ t,J,k t,J,k t,J,k t,J,k ' 
i,j,k 

where the three dots indicate the corresponding terms for the fields <jJY and <Pz. 

Fig. C.2 shows a typical evolution of the update for a time step of tlt = 0.5. After 

as few as five iterations the approximated increment is very close to the exact value. 

For smaller time steps, the procedure converges faster. We find an optimum trade

off between accuracy and performance for three iterations. We further check, if the 

correction between two successive iterations, 

T(m) = L 
i,j,k 

( (l
'l/J(n+1,m) 12 -l'l/J(n+1,m-1) 12) 

2 
t,J,k t,J,k 

(C.23) 
+ ("-x(n+1,m) _ A.~(n+l,m-1))2 + ) 

'l't,J,k 'l't,J,k . . . ' 

converges to zero. Fig. C.2 (inset) confirms an exponential convergence. 

The accuracy of the method is assessed by comparing the solution to simulations 

using the Euler method with a much smaller time step, tlt = 0.0025. Up to a 

time step of tlt = 0.5, no significant deviations could be observed. The program 

runs about 40 times faster than the Euler method for these parameters. For the 

calculations below we use a finer grid (h = 0.4) and a slightly larger Ginzburg

Landau parameter (~ = 5). The speed-up for these values is about 100. 

Our implicit method is less memory intensive than the standard U - 'ljJ method 

because it uses real-valued link variables rather than complex-valued ones that must 

be represented by two real numbers. For a grid of N 3 points, the Euler method 

uses an equivalent of 22N3 real-valued variables (the complex wavefunction and the 

three complex link variables at two time levels plus three complex fields W, see 

[111]) whereas the implicit method requires the storage of a total of 19N3 variables 
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Figure C.2: The modification to the solution after one time step (total update) versus 
the number of iterations. For smaller time-steps, the solution converges faster. We 
find an optimum of speed and accuracy for a combination of three iterations and a 
time-step of fl.t = 0.5. The correction between iterations, T(m) is shown inset. 

(the complex wavefunction and the three real link variables at two time levels, the 

products BxByBzu(n) in (C.21) plus four auxiliary fields). 

C.1.3 Boundary conditions 

The correct implementation of the boundary conditions requires great care because 

of the relative displacement of the grids. The matrices Ax and Bx only act on 

the interior points, i = 2 ... Nx, of the vectors '1/Ji, cpf, and c/Ji for all j = 1.. .Ny + 
l,k = l...Nz + 1. Note, that Ax = Bx = 1 in the case u = q;x. The end points 

i = 1 and i = Nx + 1 are computed for book-keeping purposes. Similarly, the 

operators By and Bz do not automatically include information on the end points 

at j = 1, Ny + 1 and k = 1, Nz + 1, respectively. In addition, there are different 

boundary conditions, namely periodic, Dirichlet and Neumann boundary conditions, 

that require an adaption of the matrix elements on the first and last row [108]. 

Another complication is that the physical boundary conditions that apply for the 

vectors u(n) and u(n+l) in equation (C.21) do not necessarily apply for the interme-
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diate results u(n+l/S) and u(n+213). When, for example, solving the second equation 

of the system (C.21), 

(C.24) 

a correct treatment of the boundary condition for u(n+213) = Azu(n+l) must be 

implemented into Ay. The matrices Ax, Ay, and Az commute as they act in different 

directions. It is therefore advisable to solve (C.21) starting in the direction with the 

simplest boundary condition. For a periodic boundary condition, for example, the 

relations u1 =UN and UN+l = u2 hold at all time levels, including 'fractional' ones. 

The boundary conditions depend on the geometry of the problem. We choose a 

system with a periodic boundary condition in the z-direction. At the interfaces in 

the x- and they-direction, boundary conditions for the magnetic field and the order 

parameter are applied. For the order parameter, '1/Ji,j,k, conditions are needed for 

all values at the faces of the three-dimensional box. The grid representation of the 

periodic boundary condition reads 

'1/Ji,j,l 
c/Jf,j,l 

'1/Ji,j,Nz l 

c/Jf,],Nz ' 
'1/Ji,j,Nz+l 
c/Jf,j,Nz+l 

'l/Ji,j,2 
c/Jf,j,2 . 

(C.25) 

In they and z direction we set the supercurrent across the boundary to zero [111], 

i. e., 

'1/Jl,j,k 
'1/JN,+l,j,k 
'1/Ji,l,k 
'1/Ji,Ny+l,k 

'l/J2,j,k exp( -ic/Jf,j,k) 
'1/JN,,j,k exp( +ic/Jh,,j,k) 
'l/Ji,2,k exp( -ic/Jf,l,k) 
7f;i,Ny,k exp( +ic/Jf,Ny,k) · 

(C.26) 

Expressions for the end points of the link variables can be found by incorporating 

information of the magnetic field at the boundaries of the box. The three compo

nents of the magnetic field are given by the following second order finite-difference 

approximations. 

s~j,k h 
1
h (c/Jr,j,k- c/Jt,j,k+l- c/Ji,j,k + c/Ji,j+l,k) 

y z 
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-
1

-(</Jz · k- </Jz 1 · k- </Jx · k +,+.X· k 1) hzhx 2,J, 2+ ,J, 2,J, 'h,J, + (C.27) 

h:hy (<Pf,j,k- <Pf,j+1,k- <PY,j,k + <P¥+1,j,k) . 

From these expressions, appropriate boundary conditions can be obtained. For 

example, the field <Pf,j,k is unknown at j = 1, and we use the last equation to relate 

the values of <Pf,1,k to known values 

<Pi1 k = -Bllkhxhy + <Pi2k + <PY1 k- <PY+11 k · '' '' , ' "', " '' 
(C.28) 

Equation (C.11), (C.12) and (C.21) combined with the boundary conditions (C.25), 

(C.26), and (C.28) provide all the information needed to solve a three-dimensional 

problem. 

C.2 Example 1: Wire with longitudinal field 

As an example, we model an infinite cylindrical wire in three dimensions with an 

external magnetic field, Hz, applied along its axis. Such a configuration has been 

studied in [115, 119, 120]. Experiments have shown that the magnetic field can 

increase the critical current down the wire [121]. 

In a type-11 superconductor, a sufficiently strong magnetic field, Hz, will enter the 

cylinder and become trapped in vortex tubes aligned parallel to the axis of the 

cylinder. A current I along the wire induces an additional circular field Hr.p(r) 

such that I = 27rp/'i,2 Hr.p(p) at a distance p from the axis of the wire. The vortex 

tubes corresponding to the current- induced Hr.p field are rings coaxial with the wire. 

Above a critical current, these vortex rings enter at the edge of the cylinder and 

shrink until they annihilate on the axis of the cylinder. This process repeats and 

leads to dissipation. There is no stable mixed state associated with a Hr.p field unless 

the vortex rings are pinned by impurities in the material. Blackburn et al. [115] 

have argued, that by entangling the vortex rings with vortex lines due to a strong 

longitudinal field, the rings can be prevented from shrinking and thereby increase 

the critical current in the wire. 
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Figure C.3: Time-independent arrangement of spiral vortices in a cylinder of radius 
12e, r;, = 5. Five vortex lines are entangled with two rings. The applied fields are 
Hz = 0.2 and Hrp = 1.5/ p, respectively. The tubes show the density of the order at 
the level 11/11 2 = 0.3. The left slice shows the magnetic field component parallel to 
the wire, Hz, dark regions indicate a high field. The black lines mark the boundaries 
of the wire. 

We model a cylindrical shape of the wire in a rectangular box by adding a potential 

term V 1/J with V = 5 to equation (7.14) at all grid points outside a cylindrical region 

with radius R = 12e. The density of the order parameter outside the cylinder de

creases rapidly to zero. An array of longitudinal vortex tubes is created by imposing 

boundary conditions for an external magnetic field parallel to the wire. A current 

is ramped up by slowly increasing a circular field (Bx and By) around the box until 

vortices enter. The Bean-Livingston surface barrier was lowered by adding a weak 

sinusoidal potential at the surface of the cylinder. Fig. C. 3 shows a time-independent 

state that arises after two vortex rings have entered the cylinder and entangled with 

the vortex lines. The critical current is dominated by the surface barrier as expected 

for small samples. Consequently, we do not observe any improvement in the critical 

current due to the presence of a longitudinal field. However, the effect could become 

more significant for larger sample sizes or if the surface effects are suppressed. 
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C.3 Example 2: Wire with transverse field 

In superconducting magnets, the external magnetic field is typically aligned perpen

dicular to the wire (Bx for example). In the mixed state, an array of vortex lines 

fills the superconductor (see Fig. C.4). Any current carried by the wire superim

poses a circular field onto this applied field. As a result, a gradient of the magnetic 

field develops that can be associated with a Lorentz force on the vortices. In most 

applications, different pinning mechanisms balance this Lorentz force and freeze the 

flux lattice up to a critical current density. For larger currents, the Lorentz force 

exceeds the pinning force and vortices start moving (Chapter 8). The motion of the 

flux lattice coincides with the breakdown of superconductivity. 

Figure C.4: Array of vortices in a wire exposed to a perpendicular magnetic field 
Bx = 0.4. The vortex tubes enter end exit the surface of the superconductor nor
mally. The Ginzburg-Landau parameter is "'= 5, the radius of the wireR= 8~. 

In this geometry the magnetic field at the boundary of the computational box 

strongly depends on the currents inside unless the box size is much larger than 

the radius R of the cylinder. In the Meissner state, for example, no flux lines pen

etrate the wire and supercurrents in the surface of the superconductor cancel the 

external field in the bulk of the wire. The field lines of these surface currents also ex

tend outside the sample at length scales of order R. In the mixed state, the induced 

field is smaller and can be regarded as a small correction. To find a self-consistent 
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solution, the fields induced by both the supercurrents and normal currents have to 

be added to the applied field and included in the boundary conditions at each time 

step. We calculate the induced field Hind(r) using the Biot-Savart law, which in 

our units has the form, 

( ) 1 j 3 1 • ( ') r - r' 
Hind r = -4 2 d r J r x I '13 

JrJ'i, r- r 
(C.29) 

This calculation is computationally expensive. The integral is approximated by 

summing over all grid points for each boundary point requiring a total of O(N5 ) 

calculations, whereas a time step takes O(N3 ) calculations for a box of N 3 grid 

points. With periodic boundary conditions, the integration must also be extended 

to regions outside the box. The effect of including Hind is to bend the vortex lines, 

especially near the top and the bottom of the sample as apparent in Fig. C.4. To 

model the motion of flux lines, a fully self-consistent time-dependent solution can be 

found by iterating the boundary conditions at each time-step. However, in practice 

the study of the motion of vortices above the critical current does not seem to be 

feasible. Possible ways around this problem are to increase the box size so that 

the induced currents can be neglected, to cut-off the integral in (C.29) at a certain 

distance from the boundary, ir - r'i < R, or to update Hind(r) only in larger 

intervals rather than every time step. The latter approach is especially suitable for 

finding time-independent solutions. 
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