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Abstract 

Manufacturing practices have evolved over the last quarter of a century in the light of 

changes to manufacturing technology and demand . To sustain this growth companies are 

increasingly focused on better design and quicker time to market, to stay one step ahead 

of the competition. Expanding technology capabilities have included microcomputers 

and telecommunications. In particular the Internet has allowed businesses to trade with 

an extended customer base, resu lting in a greater demand and perpetuating the cycle. To 

mirror this statement, businesses are looking increasingly far and wide for suitable 

suppliers. 

This work identifies a need in the market for an Internet based supplier selection 

function, during early product development. The development of this work differs 

significantly from other process selection methods by the use of the Internet to link 

companies. It has advantages for product development relating to the scope of the 

opportunities, diversity of possible manufacturing operations and rapid assessment of 

processes. 

In particular the system can be broken down into two main functions, Process Selection 

(PS) and Factory Selection (FS). The PS method presented enables many processes to be 

modelled, in multiple organisations for a single product. The Internet is used to gain 

access to supplier facilities by adopting the same principles as on-line banking, or 

shopping, for data input and access. The results of these assessments are retained by the 

system for later analysis. The FS method utilises this data to model and compare 

supplier attributes, allowing the user to manipulate the data to fit their requirements. 

Testing of the system has proved encouraging for many operations, including Injection 

Moulding and CNC Machining. 

It can be concluded that the identification of manufacturing operations outside the remit 

of companies ' normal scope will create further opportunities for supplier integration. 
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Introduction 

Chapter One 

Introduction 

1. 1 Background 

The desire to manufacture a product to a specific quality, within a designated time frame 

and to a minimal cost has been the driving force governing product development for a 

number of years . Over the last few decades Japanese manufacturing techniques and 

practices have been viewed as the benchn1ark for production, for the rest of the world. 

The need for companies to be more competitive, and hence to survive, has focused their 

attentions inwards towards their own internal capabilities. The implementation of new 

manufacturing technology has been aimed towards minimising operating costs, thus 

streamlining production operations (Savsar, 1996). As companies attempt to reduce 

costs further, additional pressure is exerted on the extended enterprise to reduce their 

operating costs and improve quality to retain market share. 

To compound the issue of manufacturing competitiveness, there has been a shift away 

from the general trend of continuous production. The idea that buffer stock may be used 

to control the demand and supply of products is no longer commonplace. The costs 

associated with large quantities of Work In Progress (WIP) are outweighed by the drive 

to streamline the organisation. The name given to this transfer in organisation is Just-In-
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Time (.TIT) manufacture, whereby the quantity of work processed through the factory is 

specific to an order. This has meant that suppliers need to be increasingly flexible, to 

change their product and operation parameters to suit customer requirements. One of the 

most significant results of this procedure is a reduced time to market (Free land, 1991 ). 

This is achieved by the correct scheduling of operations to ensure that products are 

dispatched after the final operation. Benefits include lower stock levels and increased 

operation flexibility. It has been observed that the general trend of companies during the 

last 1 0 years has been to move away from vertical integration. That is, non-critical 

component manufacturing is transferred from in-house facilities to supplier facilities. 

Thus, it becomes increasingly important for suppliers to meet the customers' deadlines. 

Due to the JIT philosophy, where a reduced stock control system is operated, shortages 

result in the failure of an entire production run. A 'Traditional' system would have 

resulted in a stockpile being utilised whilst a machine was being repaired or replaced. 

This thesis aims to develop a manufacturing process selection support system for the 

extended enterprise, to be adopted during the early design phase of a project. It is 

proposed that it should be possible for the design engineer to manipulate the 

manufacturing capabilities of the supply chain. It is further proposed that the design 

engineer should be able to determine the optimal manufacturing process required to 

produce a specified design, by considering multiple suppliers. 

To facilitate a system for process selection, this work requires information concerning 

methods for manufacturing process costing, to achieve a model for supplier process 

selection; internal and external transportation, to model both the movement of material 

within the factory and between factories; and supplier relationships, to appreciate the 

complexities of supply chain management. 

Ultimately the focus of this work has been greatly overlooked by current research, and it 

is therefore difficult to be overly critical about much of the research carried out into 

supply chain management. The broad theme of supply chain management can focus on 

any particular facet of supply, i.e. transportation flow, production flow, supplier 

relationships, or globalisation. All of which are of interest to this work, but do not 

capture the essence of early supplier interaction. 

2 
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1.2 Product Development 

Traditional product development allows the designer a free hand in terms of the design 

of a product. This can cause problems for production engineers who are responsible for 

transforming the design into a working product. This may not always be possible due to 

manufacturing constraints. It is at this point that a consultation period between the 

design and production departments begins. In today's volatile manufacturing 

environment it is no longer acceptable to protract this process, since valuable lead-time 

may be wasted. Production engineers are often able to influence the design by informing 

the design engineers of different manufacturing techniques. Therefore, it is logical to 

assume that their knowledge should be considered when determining the initial optimal 

solution for a given problem. Introducing the suppliers into the design process will 

enable alternative manufacturing operations outside the remit of the manufacturing 

organisation to be considered. The design and manufacturing elements of a company 

can no longer be considered as independent entities. 

This collaboration refers to the initial outlined problem of company integration and 

Concurrent Engineering. The traditional method of placing an order and then expecting 

a delivery on a specified date is no longer applicable, based on the time required to 

develop a manufacturing process or technique. The tendering period a company must 

wait prior to receiving an order is decreasing. This is due to the necessity of the 

company to get its product to market more quickly. 

1.3 The Importance of Concurrent Engineering 

The initial design of a product is the most important phase of its design life cycle. It is 

considered that approximately 80% of the production costs of a product are determined 

in the first 20% of its design life cycle (Whitney, 1986). Thus, for this reason the 

designer should be supplied with the correct manufacturing information from the start of 

the project. By combining the design phase of the product life cycle with manufacturing 

3 
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knowledge, it is possible to facilitate the design process. Such a process is known as 

Simultaneous Engineering or Concurrent Engineering (CE). 

The traditional design process can be described as a set of individual predetermined 

stages. This traditional step-by-step process has certain benefits. For example, it is 

easier to control and manage a design project, since each phase can be completed prior 

to the next phase beginning. The main disadvantage of this method is that it can be time 

consuming and costly. The aim of CE is to formalise and build structure into the design 

of a product. This is different to the traditional method of 'over-the-wall' manufacture, 

where the responsibility for the project is passed sequentially between the design and 

manufacture departments. Many new techniques have been adopted to facilitate CE, 

including Design for Manufacture and Design for Assembly, which are just two of the 

most popular techniques. In addition, another possible benefit of such a philosophy is 

the ability to reduce the time to market. Further, if the product routing has been 

considered as part of the assembly process, then this may increase the flexibility and 

agility of the design. 

As mentioned above, there is a requirement for clear and concise infonnation to be 

supplied during the design process. The methodology of CE proposes that by 

collaborating information between departments and supplier companies, at varying 

times in the design life cycle, it may be possible to design a product that requires fewer 

design modifications. This can be achieved by the integration of the supply chain. 

1.4 Supplier Relationships 

From the discussions above, it should be evident that suppliers play an important role in 

the design of a new product. The decentralisation of production operations and the 

minimising of in-house manufacturing fuel this relationship. It is now considered that it 

is no longer possible to design and build a product efficiently, without the use of 

external suppliers (Norwood and Mansfield, 1999). 

Suppliers can be considered as either, internal or external. Internal suppliers are those 

suppliers that are related to the same parent company and are used as a central source for 

4 
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a particular operation. For example, Plastic Moulding capabilities that are expensive to 

purchase may therefore be used by many sources. The external supplier is not related to 

the factory but can be used to source sub-assembly parts or raw materials. 

Recently, significant volumes of work, including that of Evans and Towill (1995), 

Harland ( 1995) and Lee and Sasser ( 1995), have been undertaken into supplier 

relationships, much of the work has focused upon the production phase of the 

relationship. This encompasses the Just-In-Time philosophy of product flow, production 

times and quality. Additionally, a significant proportion of the work considers the 

economic batch size of a product. 

Another area of interest is the relationship formed between the suppliers and customers, 

regarding design integration. It is apparent that if the CE philosophy is to be widely 

adopted, then suppliers should be incorporated into the design process. However, the 

questions remain; what information does the supplier require to generate a factory 

model? And what information does the customer require from the supplier for process 

selection? 

These issues are extremely delicate, since they may require the transfer of company 

information, often restricted for commercial security reasons. In modern manufacturing, 

if smaller companies supply large companies, then the operations performed by a Small 

to Medium sized Enterprise may constitute a substantial proportion of the supplier's 

total production capability. Therefore, it is possible for customers in this position to 

influence the profit margins and batch sizes of the supplier. These factors would be laid 

out in a contract between the two parties prior to any collaboration. 

1.4.1 Requirements of a Supplier Relationship 

Any partnership developed between two companies is required to address a number of 

different issues. From the customer's perspective the issue can be considered as "to 

provide a quality service in a specified time". This is the traditional view, such that 

little consideration is given to how the supplier should achieve the required objective. 

The main concern is that the supplier should deliver on time. The relationship has a 

number or different requirements, these are: 

5 
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o That both parties are mutually benefiting from the collaboration. 

• That realistic objectives are set. 

• That trust and security can be gained from the relationship. 

If all of these factors can be met then it may be possible for a successful relationship to 

be formed. 

1.5 Supply Chain Classification 

To obtain a clear picture of a company's capabilities the identification and analysis of 

the company's supply chain is required. The supply chain formats can be observed at an 

abstract level, which is useful since the infonnation can be used to identify material flow 

between separate factory locations. The advantage of identifying the supply chain 

formats is that it is possible to determine whether there are any elements of the supply 

chain that are surplus to requirements, due to duplication of resources. This is a 

simplification of the problem to be addressed across the entire supply chain. In a 'real 

world' situation it should be noted that most manufacturing companies have a 

combination of different supply chain configurations. 

6 
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Direction of material flow 

a) Pipeline 

b) Single source 

c) Convergence 

d) Divergence 

I I 
.I 

I I 
e) Shared resources 

I 
I .I 

J I l 

f) Networking 

Figure 1. Supply chain configurations (Hoeskra and Romme, 1992). 

The basic supply chain formats were developed by Hoeskra and Romme (1992) and are 

illustrated in Figure 1. Considering Figure 1 a, it can be seen that the general format 

encompassing the entire supply chain is termed a Pipeline. This format does not 

accommodate the flow of information/material between locations. An example of this 

format would be drive-thru restaurant, whereby placing the order, paying the money and 

collecting the goods is considered as a single operation. Realistically this is not accurate, 

since it does not accommodate the supply of raw materials into the operation. The 

Pipeline format can therefore be regarded as an ideal solution and not reflective of a real 

7 
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world operation. The simplest realistic model is the Single Route (Figure I b). The Single 

Source model has both a single entry and exit, but identifies sequential operations within 

the chain. It is considered that the fast-food restaurant chain operation is an example of 

this format. All stock is delivered from a Single Source, being the parent depot and over 

the counter service being the only outlet for the operation. However, in real terms the 

majority of companies supply chains are significantly more complex. The following are 

examples of complex supply chain configurations. Figure 1 c illustrates an example of 

supplying from many-to-one. This format is referred to as Convergence, for example a 

manufacturer who sources parts from multiple suppliers. Figure ld illustrates the 

opposite fonnat, this is supplying from one-to-many, an example of which is a steel 

mill. Raw material production from the single location is then transferred onto multiple 

customers. This format is known as Divergence. Figure le is known as Shared 

Resources or Group Technology that is grouping together of unrelated products and 

deliveries and the redistribut;M in different loads of the items. An example of this format 

would be a transportation depot, where regional loads are grouped together at a single 

source where they are sorted and later released to different locations. The last of the 

supply chain configurations is Networking (Figure 1 f), this relates to suppliers with 

multiple customers visa-versa. In essence this format might relate to either the real 

world situation of a manufacturer or retailer, where the products are distributed to 

multiple customers. From the customer perspective, the multiple suppliers that are 

required to facilitate the business activities. 

It should be stated that the configurations Shared Resources and Networking can be 

described as extended combinations of the configurations Convergence and Divergence. 

However, in order to correctly model these specific supply chains the model needs to be 

applied in its general real world format. This allows for a structured integration across 

the supply chain. Hayes and Wheelwright (1984) claim that companies may justify 

backward integration, that is, investing in supplier capabilities "to develop competence 

in the technology of a critical component, to develop proprietary products, or to stay 

abreast of technological changes". 

8 
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1. 6 Aims and Objectives 

The objectives of this research are as follows: 

1. To assess previous methods used for the generic process selection problem and 

outline process selection requirements for the extended enterprise. 

2. To develop a manufacturing process data model to accommodate genenc 

manufacturing process information. The manufacturing process families of casting, 

moulding, machining and fabrication should be represented within the system. 

3. To develop methods for Process Selection of the supply chain using the defined 

manufacturing process data model and to expand the Factory Selection method. 

4. To implement the methods for Process Selection. It is proposed that this should 

include a factory model generation package for developing new factory 

manufacturing process data models. 

5. To evaluate the implemented Process Selection and Factory Selection methods using 

data gathered from industrial collaboration. 

1. 7 Thesis Overview 

Chapter 2; the literature review presents previous relevant work. The work focuses on 

the issues of Concurrent Engineering, Product Modelling, Process Planning and Supply 

Chain Management. Also included is information on production and manufacturing 

management, scheduling and accountability. 

Chapter 3; the system overview chapter is developed to firstly explain the methods and 

then the program principles of the computer system that has been created to implement 

the methods. The type of computer software and hardware are also discussed. 

Chapter 4; the manufacturing process data generation chapter outlines the process and 

factory data required for this research. The manufacturing data comprises a framework 
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for data collection and data storage. The factory data includes both internal 

transportation and overhead details and external transportation considerations. 

Chapter 5; the process selection chapter provides an overview of the Process Selection 

method. The suggested process and resources model is implemented. Further, 

consideration is given to the external factors governing the supply chain management. 

Chapter 6; the factory selection chapter demonstrates the supplier selection problem. 

The implementation of the manipulation methods is discussed. 

Chapter 7; the testing and results chapter presents a methodical overview of the 

proposed methods. Furthermore, case studies are compiled to demonstrate and confirm 

the methods using industrial data. A comparison also provides a comparison of software 

predicted results to industrial data. 

Chapter 8; the discussion and conclusions chapter presents a summary of the results 

and reaffirms the aims and objectives outlined in Chapter 1. An outline for further work 

proposes both modifications to the given methods and topics of interest raised during 

this research. 

1.8 Summary 

It is considered that a large amount of information is required for the successful launch 

and maintenance of a product. The concept of Concurrent Engineering has been 

identified as being an influential factor in manufacturing. This in turn has expanded to 

include the activities of the extended enterprise. Additionally process modelling and 

product modelling are considered to be of interest, together with the physical 

transportation problem. 
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Chapter Two 

Literature Revoew 

2. 1 Introduction 

This chapter discusses the literature relating to the integration of manufacturing 

capabilities across the extended enterprise during early product design. This topic is 

often missed by current research, relating to product development. Therefore the general 

themes are required to piece the problem together. 

In particular, the topics relating to the requirements of Supply Chain Management 

(SCM) and the integration of Concurrent Engineering are discussed. To support these 

focal themes, current methods for Process Selection (PS) and Production Transportation 

are discussed as being of particular interest. Additionally, Operational Research relating 

to the implementation of this work, the principles and requirements for software 

communication and the security of data transfer are discussed. Peripheral topics 

concerning data handling and management are also included. 

2.2 Supply Chain Management 

Common to all manufacturing companies, regardless of size, type of product or 

manufacturing process, is the need to control the flow of material from suppliers, 
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through manufacturing to the customers (Stevens, 1989). Traditionally the flow of 

material has been considered only at an operational level, at best driven by efficiency 

improvements and cost reduction, at worst abandoned to the demands of a rapidly 

changing competitive environment. 

To gain a competitive advantage, buyers should not rely on the adversarial approach to 

supplier management. The adversarial approach can be described as 'Over-the-wall', 

whereby information is passed between divisions but no collaboration exists. Short-term 

contracts, price-driven negotiations and the threat of future supply are likely to endanger 

the commitment from suppliers. Good purchasing practice demands that a buyer seek 

multiple bids from suppliers to be assured of a competitive price. The buyer allocates 

sufficient orders to suppliers to maintain their interest. While this approach often results 

in lower purchase prices, it assumes that there are no differences in suppliers' abilities to 

provide value-added services. Such behaviour does little to encourage long-term co­

ordination or co-operation between buyer and supplier. The move away from traditional 

management has transferred the focus from the prices based criteria to other 

performance criteria such as quality and delivery. 

Historically managers have seen their responsibility lying only within their department 

or division. Increasingly they now have to look beyond this traditional internal view to 

accommodate supplier functions. As operations are focused towards defined core 

abilities there is a move to outsource more materials and services (Harland, 1995). The 

importance of the extended enterprise to a business has increased. Beyond the 

immediate supply chain there is an opportunity for strategic benefits to be gained from 

managing the flow of information and goods between customers and suppliers. When 

managers have sought to control the product flow they have found that they can obtain 

speed, dependability, flexibility, cost and quality benefits. In large organisations there 

may be numerous channels through which goods and services flow. These channels are 

more generally known as supply chains. A complete supply chain can be viewed as a 

flow of water; organisations situated closer to the original source are described as 

'upstream' and those located closer to the end customer are described as 'downstream'. 

Purchasing, supply and physical distribution relate only to single elements of the supply 

chain. Inter-company operations management is more commonly termed supply chain 

management. Supply chain management is the tern: adopted to control purchasing and 
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production operations throughout the supply chain. Supply chain management has been 

developed into a concept with a much broader span of concern and a holistic approach 

to managing across company boundaries (Inger, 1995). It is recognised that there are 

substantial benefits to be gained from strategically trying to drive a whole chain in the 

direction of satisfying the end customer. 

Barbuceanu ( 1997) reports on the use of co-ordination technology to model, design and 

simulate globally, distributed supply chains. It is shown that supply chains can be 

naturally modelled, simulated and improved in this way, within a short development 

time. The hypothesis that was tested is that in general co-ordination teclmology is 

adequately efficient for supply chain analysis and design, given that closed form 

analytical solutions are too difficult for complex multi-tiered structures like supply 

chains. 

2.2.1 Supply chain integration 

As manufacturing products become more complex, their design and manufacture 

demands increasing amounts of resources that are shared between the companies that 

have entered into the joint venture or commercial agreement (Norwood and Mansfield, 

1999). Competition is being typified less by firm versus firm and more by supply chain 

versus supply chain. Bhattacharya et al., (1996) suggested that a company has to adopt a 

more proactive approach in order to reach the strategic position that they desire. The 

degree of supply chain complexity may be determined by the number of inventory's 

through which materials, semi-finished goods and finished goods have to pass on their 

path from supplier to the customer. Jones and Clark (1990) described an "Effectiveness 

framework" designed primarily for first tier suppliers that can influence the rest of the 

supply chain. It is suggested that other partners may benefit by using the methodology to 

understand their individual role. There has been a continuing shift in the shape of 

business structures from vertically and functionally aligned to horizontal, process 

oriented, and most importantly customer focused (Evans et al., 1995). The role of 

supply chain management from a system engineering view is also highlighted. 

Many companies outsource a wide variety of materials and services. Typically the 

volume and value of these purchases are increasing an organisation's value, allowing 

them to concentrate on their core functions. There are some underlying objectives of 
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purchasing which are true for all bought materials and services. These have been termed 

'the five rights of purchasing'; at the right price, for delivery at the right time, for goods 

and services to the right quality, in the right quantity, from the right supplier (Ellram, 

1990). These factors can then be related to the departments that are responsible for 

fulfilling the demand. Purchasing and supply management are recognised terms in 

business practice for the functions that deal with the operational interface with its supply 

markets. Physical distribution management is a well-accepted term for managing the 

operation of supplying immediate customers (Balinski, 1961 ). Logistics is an extension 

of physical distribution management and usually refers to the management of materials 

and information flow from a business through a distribution channel, to end customers. 

Increased competition from global competitors, shorter product life cycles and rapidly 

changing technologies have forced customers to search for suppliers whose expertise 

and competence can be utilised. In this quiet revolution, buyers develop closer, more 

collaborative ties with fewer suppliers than traditional supply chain's. Companies 

simultaneously seek supplier input at earlier stages in product development and divulge 

more long-term information with their suppliers. Spekman (1988) suggested that, 

"strategic partnerships are increasing". In many industries such as motor and aerospace, 

collaboration is essential. Eloranta (1995) states that, "Europe has a de.!!perate need for 

effective and flexible innovation, improving industrial infrastructure where the most 

value-added nodes of the supply chains are those in the roles of subcontractors and 

distributors". Additionally it was estimated that by responsive customer-driven supply 

chains the profitability of these chains could be improved drastically. This potential for 

improvement is based on the reduction of inventory-carrying costs, reduction in indirect 

and direct labour costs and the increase of sales and sales margins. This can be achieved 

via better delivery performance at the operative level and reduction in time-to-market at 

the tactical and strategic levels (Evans et al., 1995). 

Ellram (1990) developed additional factors that should be considered in the selection of 

supply partners. Four categories of additional factors are suggested, financial issues, 

organisational culture and strategy, technology and a group of miscellaneous factors. It 

is stated that the issues included in these categories tend to be longer term and more 

qualitative than factors included in traditional supplier selection models. Also Ellram 

suggests that these additional factors supplement, rather than replace the more 
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traditional factors in developing strategic partnerships with suppliers. 

Field research investigating the relationship between the positions of a company within 

a supply chain, to 'behaviour' is described by Harland (1995). The study proved that, 

upstream relationships contained more customer dissatisfaction and more 

misperceptions about performance than did downstream relationships. Delivery 

performance was identified as the major cause of these problems. Upstream players 

appeared to be less customer oriented in their cultures than downstream businesses. In 

the supply chains, customers were more dissatisfied with delivery performance than any 

other operation performance dimension. Aderohunmu (1995) shows that a co-operative 

batching policy, based on cost information exchange between vendors and the buyer, 

can reduce total cost significantly in the Just-In-Time (JIT) environment. The study 

showed that joint optimisation of both the vendor and the buyer's operation does not 

necessarily result in a common lot size. Additionally, Chapman and Carter (1990) and 

Aditham et al., (1997) showed that strong supplier/customer linkage and fast 

communication of engineering to the supplier, are very important for efficient just-in­

time operation. 

2.2.2 Benchmarking 

An insight into benchmarking procedure is provided by Lewis and Nairn (1995). The 

critical importance of obtaining aftermarket supply chain excellence is identified. The 

new customer places greater emphasis on the received service, such as reliability, 

punctuality and efficiency, in order to rank their satisfaction of the services from their 

suppliers. It is suggested that the key to providing high levels of customer satisfaction is 

dependant upon providing what the customer wants (well designed service), when the 

customer wants it (well delivered service). 

Results are described for a benchmarking study performed by Cooper et al., ( 1995). It is 

reported that a company's overall new product performance depends on a number of 

elements relating to the New Product Development (NPD) process. These include the 

organisation, strategy, culture, climate for innovation and senior management 

commitment. The study incorporates performance measures of an NPD program 

including, success rate, percent of sales, profit objectives, teclmical success, sales and 

overall success. The conclusion drawn was that the number one driver for perfom1ance 
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was a high-quality new product process, followed by a clear and well-communicated 

new product strategy for the company, along with strategic focus and synergy. Three 

observations can be made of the functional relationship between profitability and market 

share. First, small-share businesses are not typically less successful than larger business 

units. In the service market and the market for raw or semi-finished materials small­

share businesses are just as profitable or even more profitable than larger business units. 

Second, some businesses are 'stuck in the middle', most noticeably in the service 

market but not in the retail and wholesale markets. Third, very large-share businesses 

are often less profitable. A critical market share is identified at between 65 and 70 

percent. Beyond this the level of the return on investment decreases (Schwalbach, 1991) 

The term 'competitive' has been widened to mean more than just the direct comparison 

with competitors. It is now taken to mean benchmarking to gain competitive advantage 

(perhaps by comparison with, learning from non-competitive organisations). Small 

(1995) shows that competitiveness determines our economic freedom and company 

profitability and begins with clearly identifying the market and responding to demand. 

Becoming fully competitive is a task demanding total commitment and a holistic 

approach. Really knowing your customer encompasses the quality of your process, the 

agility of the organisation, the excellence of the offered product, and global 

performance. 

2.2.3 Agility 

An enterprise is considered to be agile, or have agility if, "it has the ability to thrive in 

an environment of continuous and unpredictable change" (Ward, 1994 ). It is observed 

that there are many companies that are making agility part of the focus of their strategic 

business plans. Agility builds from much of the current continuous improvements and 

lean activity (Sharifi and Zhang, 1999). There is much confusion about the difference 

between lean and agile. A lean company may be though of as a very productive and cost 

efficient producer of goods or services. An agile company is primarily characterised as a 

very fast and efficient learning organisation. Having the ability to produce rapidly upon 

demand requires a quick and resourceful organisation that is quick and resourceful. It 

requires short lines of communication and efficient information flow throughout the 

supply chain (Ligus, 1994). 
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2.2.3.1 Design for Agile assembly 

Design for agile assembly is accomplished by considering operational issues of 

assembly systems at the early product design stage. Kusiak and He (1996) presented 

three rules applicable to the design of products for agile assembly from an operational 

perspective. These rules are intended to support the design of products to meet the 

requirements of agile manufacturing, 

1) Design a product to satisfy the manufacturing operations requirements. 

2) Design products to simplify the flow of products in a multi-product assembly line. 

3) Design new products compatible with the existing production facilities and product 

miX. 

lung et al., (1996) provide a primary sketch of the architectural requirements for rapid 

development of agile manufacturing systems (figure 2.1 ). There are several aspects of 

system architecture: control, function, process, information, communication, 

distribution, development and implementation. The reference architecture is suggested 

to provide a transparent way to the user when they are establishing the computer 

integrated manufacturing systems. Perry et al., (1999) described a model for the 

effective communication and infom1ation flow necessary for agile alliances. Information 

sharing instead of infonnation flow is identified as being of crucial importance to the 

successful outcome of the program. 

17 



Literature Review 

Development 
Architecture 

I 
Control 

Architecture 

Funct~ Information Process Communication 
Architecture I Architecture Architecture Architecture 

J 

Distribution 
Architecture 

I 

Implementation 
Architecture 

Figure 2.1: Architectural requirements for rapid development of agile manufacturing 

systems, Jung et al., (1996) 

2.2.3.2 Human Factors 

The human factors related to the communication and information infrastructure essential 

to an organisation making the change from traditional to agile product development are 

summarised by Forsythe (1997). As shown in Table 2.1, an agile enterprise differs 

greatly from that of traditional enterprise. Forsythe reports that by highlighting human 

factors issues, and applying the knowledge and skills gained from other domains, there 

is an opportunity for human factors to assume an important role, positively influencing 

the future of agile manufacturing. 

Table 2.1 General differences between Traditional and Agile Enterprise (Forsythe, 

1997) 

Traditional Enterprise Agile Enterprise 

• Geographical collocation e Geographical separation 

0 Solitary work • Collaborative work 

• Sequential information flow e Parallel information flow 
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0 Time is negotiable 0 Time is critical 

0 Standardisation of technology 0 Opportunistic technology use 

0 Artefacts relatively static 0 Artefacts change rapidly 

0 Infonnation flow correlated with 0 Information flow correlated with project 

organisational stmcture stmcture 

0 Extensive use of hard media 0 Extensive use of electronic media 

e Constant, known, internal supplier of 0 Diverse, often unknown, external 

information supplier of information 

o Many indirect lines of communication 0 Mostly direct lines of communication 

2.2.3.3 Enabling technologies 

When compared with computer integrated manufacturing, 'agile' manufacturing can be 

defined as the capability of surviving and prospering in a competitive environment of 

continuous and unpredictable change be reacting quickly and effectively to changing 

markets, driven by customer specified products and services (Cho et al, 1996). Critical 

to this success are a few enabling technologies such as Standard for The Exchange of 

Products (STEP), Concurrent Engineering (CE), Virtual Manufacturing, information 

and communication infrastructures. Cho reports that manufacturers must put a stress not 

only on high quality, productivity and reduced costs, but also on the ability to react 

quickly and effectively to changes in markets, production technologies, and computer 

and infom1ation technologies. 

2.2.3.4 Flexibility 

The term flexibility means being able to change or adapt manufacturing operations in 

some way. This may mean changing what the operation does, how it does it, or when it 

does it. Specifically customers will need the operation to change so that it can provide 

four types or requirements: product/service flexibility - different products and services, 

mix flexibility - a wide range or mix of products and services, volume flexibility -

different quantities or volumes of products and services, delivery flexibility - different 
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delivery times. Large compames are discovering that Size is not always a virtue m 

today's marketplace. These companies would like to have the flexibility and focus 

associated with small companies while maintaining the underlying strength of resources 

of the large company (Calvin, I 995). The identification and leveraging of core 

capabilities across the business structure are vital to its continuing success. Kasilingam 

( 1996) determined the capacity requirements for flexible manufacturing systems. 

Additionally Weng (I 998) presents a production control policy based on the planned 

lead-time and the manufacturing capacity requirement. The model provides a vehicle for 

examining the interrelationships among the production output, the planned lead-time 

and the actual manufacturing flow time. 

Flexibility is becoming a key dimension of firm's competitive priorities. Chen and 

Chung (1996), takes the first step in investigating the relationship between flexibility 

measurements and systems performance in the Flexible Manufacturing System 

environment. Several alternative measures are suggested for the assessment of machine 

flexibility and routing flexibility. The results indicate that flexibility improves system 

performance at a decreasing rate, and routing policy as well as operating conditions 

could have critical effects on the magnitude of performance improvements. Steke and 

Raman (1995) consider the role of system planning in determining operating flexibility 

and system performance. It is argued that while the overall flexibility of any system is 

constrained by decisions made at the system design stage, the realised short-term 

flexibility depends significantly also upon planning decisions made during pre­

production set-up. Different planning objectives lead to different system configurations, 

and simultaneously yield varying levels of process-oriented flexibility. A classification 

scheme for different types of flexibility is also presented. This is then used to give an 

illustrative comparison of conventional and flexible methods. Boyer and Leong (1996) 

focused on two methods for increasing the flexibility of the manufacturing plant so that 

production can be varied more easily to match the change in demand. Firstly process 

flexibility is defined as the ability of a single manufacturing plant to make more than a 
' 

single product, it is shown that a limited degree of process flexibility is valuable in 

dealing with variations in demand. Secondly, machine flexibility is defined in terms of a 

changeover cost. This is measured in terms of the capacity of production that is lost, 

when a plant must produce more than a single model. Machine flexibility is shown to 
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have a moderating effect on process flexibility, but one that does not necessarily cancel 

out the benefits of process flexibility. 

The performance measures required to induce change in production flexibility are 

clarified by (Takhashi et al., 1994). The flexibility of production orders in systems as 

medium range production control systems are studied. By simulating the models, the 

amplifications of production quantities and inventory levels as flexibility measures for 

each type of production ordering system are analysed and the flexibility compared 

Cho et al., (1997) presents an experimental design developed to determine a 

combination of robust planning and scheduling rules for an Intelligent Workstation 

Controller. At the top level is the shop controller that receives orders and their 

associated manufacturing information, and manage interactions among workstations. 

The Intelligent Workstation Controller defines and resolves the production control 

activities necessary to co-ordinate a group of equipment controllers so as to ensure the 

completion of orders. Specifically, the Intelligent Workstation Controller is responsible 

for selecting a specific process routing for each part, allocating resources, scheduling 

and co-ordinating the activities across the equipment, monitoring the progress of 

activities, detecting and recovering from errors, and preparing reports, Flexible 

Manufacturing System scheduling strategies are explored further by Lui and MacCarthy 

(1997). The results showed that the best planning and scheduling strategies are ~.wihl 
f"'\,1\,"""'t LD~s 

and multi-pass techniques for most performance criteria. 

2.2.4 Discussion 

A diverse range of supply chain management issues has been presented, the most 

relevant topics being supplier integration, physical distribution, capacity and flexibility. 

Other reviewed areas have illustrated the broad nature of work relating to supply chain 

management. 

Much of the work relating to supply chain management is strategic, presenting models 

for a structured supply chain. Illustrating how best to work with, and not dictate to 

suppliers. It is accepted that cost is not necessarily the only measure of perfom1ance. 

Further, Spekman (1988) stated that the standard terms of cost, quality and delivery are 

not sufficient for a strategic partnership. Instead including raw materials and 
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components as additional factors. This v1ew IS acknowledged, but this cannot 

realistically be implemented at the conceptual phase of design, where only partial 

product data is known. For partial product data, the standard terms of cost, quality and 

delivery would achieve a basis for manufacturing process selection. 

Work relating to flexibility presents useful ideas for innovative operational principles 

and supporting information (Eloranta et. al., 1995). What the work does not address is 

the question of innovative products and manufacturing solutions, thereby avoiding early 

product development. It is considered that the early identification of manufacturing 

processes during product development would add additional flexibility to the 

operational principles. 

Supplier integration goes beyond the purchasing and supply management of a 

relationship, to also include inventory, logistics infrastructure and materials 

management. Research has focused on how to either achieve a strategic partnership or 

classify a strategic pminership (Ellram, 1990 and Harland, 1995). No previous work has 

addressed the optimisation of supplier capabilities during early product development. In 

particular focusing on what type of relationship should exist to facilitate data exchange, 

or what data transfer capabilities are required between suppliers and customers to 

integrate suppliers. 

2.3 Distribution Management 

Distribution management or 'the transportation problem' has been modelling in varying 

forms for many years where considerations for application differ. Much work has been 

done on the timber industry modelling the transportation of cut timber. Harbel et al., 

(1997) state, "On the demand side of the organisation, products and services need to be 

'communicated' or moved to the customer. In the case of manufacturing operations, this 

involves the physical transportation of the goods from the manufacturing operation to 

the customer". 
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2.3.1 Production transportation problem 

The Production Transportation Problem (PTP) is a generalisation of the transportation 

problem, from single supplier and single customer to multiple levels of supply. In PTP 

not only are the level of shipment from each supplier to each customer of interest, but 

also the level of supply at each supplier. A production cost is associated with the 

assignment of supplies to suppliers. The objective function of PTP is the sum of the 

linear transportation costs and the production costs. There is much literature on the 

problem of extending the classical, finite number of origins and destinations. This 

approach has appeared in books such as Anderson and Nash (1987) and there have been 

many applications in probability and statistics. 

The single-customer fixed charge transportation problem is investigated by Herer et al., 

(1996). Various forms of problems are considered, including the supplier selection 

problem, the product distribution problem and the process selection problem. Implicit 

enumeration procedures are developed to solve this problem. These procedures include 

both domination rules and lower bounds. The methods are tested against pre-existing 

procedures and thereby demonstrate that problems that are previously computationally 

intractable can be easily solved. Harbel (1991) presented a branch-bound algorithm for 

solving a fixed-charge linear programming problem involving identical fixed charges, 

one equality constraint and explicit bounds on the variables. The motivation for this 

study is presented in the form of a sawmill problem. For an order assortment of a 

definite number of planks, to be produced with maximum profit from a given amount of 

logs of a given length, taking into consideration the costs of set-ups, the qualities of the 

logs, and the quality of the order assortment. An algorithm is presented for solving the 

special fixed-charge linear programming problem with identical fixed charges. 

Additionally Balinski ( 1961) formulated a fixed-cost transportation problem as an 

integer program, described some of its special properties, and suggested an approximate 

method of solution. Cooper and Drebes (1967) propose two heuristic methods to solve 

the linear programming fixed charge problem. The results indicate that the heuristic 

methods produce optimal solutions in well over 90% of the problems investigated. 

Hence it should be of practical significance to practitioners in the field. 

Kerantek and Yamasaki (1995) explain that the finite PTP is extended to an infinite one 
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having a countable number of origins and destinations. A constructive approximation 

procedure is given for obtaining program values arbitrarily close to the infinite program 

value of the problem. Shi (1995) presents a mathematical model using linear 

programming to solve the transportation model with multiple criteria and multiple 

constraint levels. The algorithm is adopted to find the basic feasible solutions. A number 

of research problems are indicated. From a computational point of view, large-size 

problems, another problem is constructing contingency plans for each potential solution. 

2.3.1.1 The Simplex Method 

In the standard form of the linear programming problem, the structural constraints are a 

system of linear equations. Any solution is a feasible solution to the linear programming 

problem if it also satisfies the non-negativity constraint, and an optimal solution is one 

that achieves the objective. It would be an enormous task searching the infinite set for 

an optimal solution by trial and error (Kortanek and Yamasaki, 1995). 

For a given problem with m constraints and n variables, with m<n, the total number of 

possible basic solutions is given as equation 2.1 : 

C" = n! 
111 m!(n- m)! 

(2.1) 

There are therefore at most an infinite number of basic feasible solutions. The simplex 

method further reduces the scope of the search for an optimal solution by periodically 

limiting it to the set of basic feasible solutions with 'better' objective function values 

than the one at the current iteration. 

2.3.2 Distribution planning 

To achieve high productivity in manufacturing plants and warehouses, an orderly and 

flexible flow of material is essential. Pirkul and Jayaraman (1996) developed a mixed­

integer programming model for the plant and warehouse location, where the objective is 

to minimise the total transportation and distribution cost and the fixed costs for 

operating plants and warehouses. The method is used to allocate production between X 

plants, with Y warehouses and Z customers. The method employed Lagrange relaxation 

to the model and also a heuristic method. Additionally a decision support system is 
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presented for strategic issues relating to logistics management (Korpela and Tuominen, 

1996). It is noted that a typical strategic planning process is periodic and usually lacks 

the ability to cope with changes in the operating environment. The developed decision 

suppmi system is based on a hierarchy. The priorities of the elements at each level are 

detennined and these priorities determine the overall priorities of the decision 

alternatives. 

Son (1994) attempts to solve the inherent problems with productivity by an 

unconventional use of a linear programming method. Accommodation of such strategic 

factors as manufacturing quality and flexibility are emphasised. It is demonstrated by 

linear programming based performance analysis that 'manufacturing' strategy can be the 

most important business strategy of a company. Wan and Levary (1995) described a 

linear programming based price negotiation procedure for shipping contractors with 

ocean containers. The procedure incorporated a solution to a linear programming 

transportation model with results from sensitivity analysis. The procedure described 

enables shippers to evaluate all possible means of obtaining the lowest adjusted price for 

a given shipping route in a short period of time. 

The frequencies at which several products have to be shipped on a common link to 

minimise the sum of transportation and inventory costs is dealt with by Speranza and 

Ukovich (1994). Tyworth and Zeng (1998) and Johansen and Thorstenson (1998) also 

present methods for estimating the effects of carrier transit-time performance on 

logistics costs and services. The aim was to find a rule stating when shipments must 

take place and how products must be loaded on vehicles, to minimise the overall 

transportation and inventory costs. Models are proposed for both the total loading and 

partial loading, where total loading is defined as a unit load or complete loads and 

partial loading is said to be a fraction of a total load. It is stated that the greater 

flexibility provided by partial loading, although harmful from the point of view of the 

inventory, may be exploited profitably to improve the effectiveness with which 

transportation resources are used. Hall and Racer (1995) developed an approximate 

procedure for determining whether a stop should be served by a private carrier on a local 

pickup and delivery route, or by a common carrier. Analytical techniques are presented 

for systems with (I) fixed shipping cycle for all stops with a variable fleet size, (2) fixed 

shipping cycle for all stops with a fixed fleet size, and (3) variable shipping cycles with 
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a variable fleet size. The cost approximation does not account for specific customer 

locations and the fact that some stops will be more costly spaced than others. The 

techniques presented can be used to select fleet size. 

2.3.3 Total production control 

The main computer integrated manufacture efforts are in flexibility and productivity 

improvements, but the implementation stresses the technical aspects of the factory 

integration, and the most flexible production factor, people, are overlooked. Total 

Production Control (TPC) integrates the main methods and tools for production system 

analysis and improvement, production system design and production planning and 

control (Kosturiak et al., 1995). This concept emphasises a preventive aspect to the 

problem solution in the production process and supports a production manager at three 

time intervals, past (archive and statistical database), present (shop floor data capture 

and production process monitoring) and future (simulation and modelling), see figure 

2.2. 

1. Bottleneck ident~-

4 . Bottleneck removing 

2. Looking for measures~ fr 
bottleneck elimination 

3. Testing of proposed measures 

Figure 2.2: Ongoing improvement process (adapted from Kosturiak et al., 1995) 

A transport-constrained input-output (IO) and linear programming model is proposed 

for the purpose of studying the impact of a transportation bottleneck in an economy. In 

the traditional demand-driven (10) model , it is implicitly assumed that there are no 

capacity constraints in the economy (Miller and Blair 1985). 

26 



Literature Review 

2.3.4 Material handling systems 

Since the design of a Material Handling System (MHS) involves large numbers of 

variables, it is usually accomplished by optimising subsystems in a sequential 

procedure. Manda and Palekar (1997) reviewed recent research in the design and control 

of MHS'. Approaches either, assume simple system configurations and determine 

optimal control policies, or use non-analytical models such as simulation models to 

evaluate design alternatives. 

A method is described for the systematic computer assisted selection of Material 

Handling Equipment (MI-lE) (Chu et al., 1995). Where, initially physical requirements 

are considered for equipment and later economical analysis for each equipment type is 

performed (see Figure 2.3). Although the MHE system is expert-like it recommends a 

ranked set of equipment based on user input data. 

Conveyor Chute conveyor 

..jL_ __ T_ro_l_le-=-y_c_o_n_v_ey'---o_r _ ___, 

.J etc. 'lc_ _____ _ 

Monorail and cranes Jib crane 

etc. 

Industrial vehicles 
I 

1
_ ~,--H-a_n_d_:-:rtu_c c-. kl_c_a_rt---, 

L_ __ N_o_E_q~u_i'---pm_e_nt_~~~---M_a_n_u_a_l __ ~ 

Figure 2.3: Transport equipment subcategorises (Chu et al. 1995) 

There are few packages developed specifically for manufacturing planning and control 

in repetitive contexts. A framework is proposed for the analysis of the characteristics of 

manufacturing planning and control systems utilised in repetitive contexts (di Toni et 

al., 1997). The framework describes three basic production control sub-systems, i.e. 

planning, inventory control and shop floor control. The proposed model could be useful 

in diagnosing the correct operating environment. The functions offer daily scheduling 

capabilities, reduce dependence upon manufacturing order numbers, supply point-of-use 

material handling support to minimise activity reporting. 
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Taal and Wortmann (1997) focused on solving the capacity problem by improving 

capacity planning at the Material Requirements Planning (MRP) level through the 

integration of MRP and finite capacity planning. This resulted in a planning method for 

simultaneous capacity and material platming to avoid capacity problems. Buzacott 

(1997) derives formulae to describe an MRP-controlled system, which is observed 

continuously. This representation is used to suggest that MRP-type control could be 

implemented in a distributed manner, with messages passing between stages in the 

opposite direction to material flow. The messages are related to the occurrence of 

demand or releases but are advanced in time from the actual demand or release by 

amounts depending on the lead times. 

2.3.5 Internal Transportation 

The vehicle routing problem is one of the most important problems in distribution and 

transportation. A classical technique starts by solving by linear programming relaxation 

and then uses a branch and bound strategy to find an integer solution to the set-covering 

problem (Bramel and Simchi-Levi, 1997). 

Internal transportation plays a significant role in the capacity constraints of a factory, 

since the inability to move products efficiently may deter customers. It is therefore 

beneficial for ·- !1 r\<GW. system to utilise this information in any analysis. The factors 

that are of concern include; at what velocity do products move around the factory? What 

volumes of products need to be moved to make the process most efficient? What is the 

cost rate for any given operation? 

Previously, there has been a considerable amount of work on the transportation issue. 

Internal transportation has special requirements relating to the point-to-point capabilities 

within the factory. The work of Lopez (1993) describes the typical transportation cost 

from machine x to machine y as: 

C 1. = f X X 7 . .r.y X ,y 
(2.;2) 

Where, C 1~, is the transportation cost from machine x to machine y, t x .Y is the 

transportation time and xT the cost rate of transportation equipment. The transportation 

time is given as a resultant of the distance between the said operations and the velocity 
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of the transportation mode, multiplied be an 'efficiency' factor to accommodate variance 

in the velocity. 

Transportation time is given by: 

(8771 x 0.75) 
(2.3) 

Where, L x,y is the distance between process X and process y, s1R the velocity of 

transportation mode and 0.75 the efficiency factor, to allow for average velocity 

The combined transportation cost can therefore be summed as the entry cost of the raw 

materials, plus the totalled internal cost, plus the exit cost of the final product. 

c n,. 

m-J 

c T""'"-' + I c J;_j+l + c 1;, EI<i 
j=] 

(2.~ 

Where, CB is the combined internal transportation cost, Cr. the initial entry cost, 
r l:.ntry.l 

m-1 

I C1; j•' is the summed internal cost and Cr,, 
0

,, the exit cost. 
i=l 

To compound the ideal issue of internal transportation, the actual transportation mode is 

required to validate the cost per part of the transportation. There are many forms of 

transportation, both manual and automatic (see Figure 2.3). 

The internal transportation cost as defined by the work of Lopez includes the capacity of 

the mode of transport in any cost calculation. The internal transportation is: 

QxVP 

IT,. 

Q 
* (ITd *IT,) (2.5) 

Where, Ip is the required internal transportation time per part, Q the quantity of parts, Vp 

the total volume of parts, Itv the maximum volume of transportation mode, ITd the 

distance between two processes of process and storage and Its the internal transportation 

mode speed. 
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2.3.6 Strategic transport 

The interface between the supplier and an assembly facility was analysed by Hahm and 

Yano (1995), where direct shipments are made from one to the other. A heuristic 

procedure to find a Just-in-Time (.TIT) schedule was developed in which one production 

run of each product and a subsequent delivery of these products to the assembly facility 

occur in each cycle. The objective was to find the cycle duration that minimises the 

average cost per unit time of transportation, inventory at both the supplier and the 

assembly facility, and set-up costs at the supplier. An error bound was also developed 

for the procedure and some insight gained from the analysis was used to explain how 

delivery schedules could influence the attractiveness of reductions in production set-up 

costs. Additionally the optimal strategies for the strategic transport model can be found 

by use of regression modelling (Fowkes et al., 1998). 

Brown and Ronen (1997) developed a criteria base for the consolidation process. This 

criterion base breaks the information into three files, global, plant and order. The global 

and plant level of information rarely changes. The order file changes for every run and 

provides data concerning the specific order and run parameters. This technology is 

already being used by many companies to minimise transportation time. 

2.3. 7 Discussion 

Work relating to the production transportation problem has been researched for many 

years and has been thoroughly documented. Beyond the logistical problem there is a 

requirement to understand the different methods of modelling supplier information. 

Several production transportation models have been presented, looking at the problem 

from varying angles. Firstly, fixed cost or fixed charge model and secondly as a total 

loading or partial loading model (Tyworth and Zeng 1998, and Johansen and 

Thorstenson, 1998). There are more complex formats of modelling, looking at multiple 

sites and products. Much of this work relates to the timber industry, investigating the 

sorting of a finite number of planks, utilising a limited number of logs of various lengths 

and taking into account set-up costs and quality (see, Balinski (1991), and Speranza and 

Ukovich (1994)). The presented work is useful for two reasons; firstly it outlines the 

optimisation of resources for maximum profit, and secondly, it highlights how optimal 

loading does not necessarily mean total loading. Since it may be more efficient to partial 
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load a vehicle and alter the transpmtation frequency to accommodate other production 

requirements. 

It is considered that the requirements of the production transportation problem for this 

research have been successfully covered by the outlined literature. The Simplex method 

detailed in many of the G:ited papers is the basic model for production transportation 

research (see, Kortanek and Yamasaki, 1995, and Haberl et al., 1991). The Simplex 

method has been proven to return optimal solutions, for general problems. Whereas it 

may not necessarily be the most efficient method, it is considered that the results are 

sufficiently accurate work relating to early process selection. It is not feasible to 

implement a more sophisticated model, due to a lack of time and the accuracy of the 

data input. 

Additionally, the planning and strategy required to fulfil the production demand is 

woven into the loading problem. Problems of economic batch size and cycle duration of 

an operation affect the loading. 

2.4 Knowledge Based Systems 

Rapid technological progress over the last decade has made Knowledge Based Systems 

(KBS's) an integral part of large and small organisations efforts to manage their 

knowledge assets effectively. The KBS is shown to improve productivity levels, 

increase machine utilisation and increase competitive advantage due to potential 

benefits, such as, monetary saving and improved quality for training purposes (Kodali, 

1997). Generic strategies relate to both the level of knowledge under consideration and 

the focus of responsibility for the development of the KBS. Different knowledge 

processing strategies can influence both the management of knowledge within an 

organisation and the development of the KBS within the organisation (Dutta, 1997). Toh 

et al .. (1998) offers a novel approach for the specification of the inforn1ation networks 

needed by small to medium sized enterprises, the approach supports rather than dictates 

the mode of operation of the business. 

Gaines and Shaw ( 1997) report on the development of tools for knowledge management 

31 



Literature Review 

operating through the web to support knowledge acquisition and representation. The 

information was overly complex for this research, detailing the origin and format of the 

work-wide-web. The work did however outline the use of Java as a programming 

language for write once, read anywhere software development. Adler (1989) argues that 

the increasing centrality of technology and other forms of knowledge to competitiveness 

induces long-run changes in both operations management and engineering management. 

Williams (1994) reports that the world of computing has shifted from centralised host 

centric computing to network or client/server based computing. This has resulted in 

more local autonomy or control to the using groups. The key to distributed management 

is said to be 'Interoperatability'. With various sections of the information system 

coming from different vendors, the overall need is for these vendors to implement 

standard interoperable architecture to allow the sharing of management data and control 

among the different domains within the system. 

2.4.1 The Internet and Intranet 

The Internet or World-Wide-Web (WWW) serves as a desirable platform for distributed 

access to information and design tools. Kouzes et al., (1996) reports on the tremendous 

impact computers have had on science and engineering in the past 50 years. Computer 

scientists have made progress on several fronts to create and integrate the tools required 

for internet-based collaboration. Many forms of electronic communication are suggested 

included, teleconferencing, whiteboard, e-mail, tele-mentoring and web browsers. They 

predict that collaborator's will be part of our future, "they will be rich tele-present 

environments, and that virtual laboratories will proliferate". The introduction of 

support for forms on World Wide Web in late 1993 has provided an easily 

programmable, cross platforn1 graphic-user interface that has become widely used in 

interactive systems. Chandrakasan (1997), presents a framework that enables distributed 

web based Computer Aided Design (CAD), in which web based tools can efficiently 

utilise capabilities of existing hierarchical design tools. Java, with its write once, run 

anywhere model, changes the basic teclmiques by which software is designed, 

developed, and deployed (Hamilton, 1996). Additionally, Rubin (1995) explores the 

problem of secure distribution of electronic documents in a hostile environment such as 

the Internet. 
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The definitions of an Intranet vary widely, but the simplest one is an internal Internet. 

The Internet, as described earlier is the global network of computer networks that link 

users worldwide. The underlying technology is the same standard (protocol) as is used 

for the Internet communication (Lynch, 1997). These technologies are of particular 

interest to large companies operating at geographical multiple locations. 

Virtual Manufacturing (VM) is the name given to an evolving area of research that aims 

at integrating diverse manufacturing related technologies under a common umbrella, 

using Virtual Reality (VR) technology. The scope can range from integration of the 

design sub-functions such as drafting, finite element analysis, and prototyping to 

integration of all the functions within a manufacturing enterprise (Shukla et al., 1996). 

2.4.2 Intelligent manufacture 

An intelligent knowledge based system is presented for evaluating Electrochemical 

Machining in a Concurrent Engineering environment (Amalnik and McGeough, 1996). 

The product model is specified by a feature-based approach, for further information see 

chapter 2 section 2.6.4. The attributes of 72 material types and machines are stored in a 

database. For each design feature, information needed for manufacturing, such as 

machining cycle time and cost are stored. For the same design specification, machining 

times are compared and ordered for alternative unconventional processes of 

Electrochemical Machining and Electro discharge Machining. The results show that 

knowledge based systems may be used to compare the machining cycle times and costs 

of alternative processes. It is suggested that product design engineers may use intelligent 

systems to improve the specification and machine operation conditions, see figure 2.5. 
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Figure 2.4: Flow-chart oflntelligent Manufacturability (Amalnik and McGeough, 1996) 

2.4.3 Discussion 

The use of knowledge based systems for manufacturing process data collection and 

dissemination is presented as being of particular interest for factory manufacturing 

process data storage. The need to link suppliers to facilitate manufacturing data transfer 

requires some form of network connection, an Internet connection is the obvious 

solution. A write once, read anywhere software solution is required to allow suppliers to 

operate the same software on different computers. Gaines and Shaw ( 1997) presented 

Java as a programming language, which is the most commonly referenced solution for 

Internet programming. Other forms of network solutions have been ignored by this 
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work, since benefits or faults of different programming languages is not the focus of this 

work. 

The intelligent knowledge based system presented by Amalnik and McGeough ( 1996) 

utilises a variety of manufacturing data, and is capable of translating feature based 

design information into process selection data. The work outlines the importance of 

eliminating personal knowledge and judgement from the product development. This is 

thought to be a critical view, to maximise the automation of process selection. 

Additionally this automation increases the speed of assessment and ultimately the 

flexibility of process selection. The work of Amalnik and McGeough ( 1996) is however 

specific to Electrochemical Machining and requires a great depth of information to 

perform the required tasks. The opportunity to model alternate processes for process 

comparison has been overlooked by the narrow theme of the work. Similarly, the ability 

to model external Electrochemical machining has not been included by focusing on 

detailed internal processing. 

2.5 Operational Research 

Operations Research or operational management research encompasses many different 

areas, such as suppliers, manufacturing, warehousing and transportation. Boone et al 

( 1996) presents a review of recent international operations networks research. The study 

concluded that there is no overall differences found on the topics covering the research 

methods used between Asia, Europe and North America. Three frameworks exist for the 

classification of operational networks. Firstly companies that operate internationally are 

classified on the basis of their strategic capabilities and organisational characteristics. 

The framework contains four categories; multinational, global, international and trans­

national (Bartlett and Ghoshal, 1991). The second framework proposed by Amoake­

Gyamoah and Meredith (1989) divides production and operations management research 

into many categories, these cover areas of interest categorised by Miller and Graham 

(1981) and Buff a ( 1980). The third fran1ework is the strategically oriented framework. It 

delineates manufacturing strategies into a series of structural, infrastructures and 

integration components. 
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The growing role of technology in competitiveness IS driving parallel changes in 

management practices (Adler, 1989). Adler sites two trends in management education, 

"the Krowing interest in Production Operations Management and the reliance of 

traditional approaches in this area". Decline in competitiveness can be attributed to a 

wide variety of factors, poor operations management in particular. The very nature of 

productive techniques is changing in a manner that limits the usefulness of the 

traditional methods. In particular the impact of information sharing between 

collaborating companies is considered by D' Amours et al., (1999). Networking 

strategies are characterised by different levels of shared information, including price and 

capacity, see chapter 1, section 1.5. Different styles of bidding protocol are used in 

network manufacturing. Supplying-type bids can be associated as the weakest fom1 of 

business relationship. "It is like buying from a catalogue, where products are offered at 

predetermined prices". This type of bid limits the transferred information to publicly 

known price-time packages. The customising-type bid can be associated with a richer 

form of business relationship. The networking form establishes its needs (time, capacity) 

and seeks for a maximum set of alternative contractors. Webbing-type bids can be 

associated with the most integrated network partnership relation. The networking firm 

establishes its needs and asks for the day-to-day operating characteristics of the 

contracting firm. With full knowledge of their production abilities, capabilities and 

pricing functions, the networking firm obtains a maximum level of flexibility. 

Strategic technology leveraging is a new approach that requires the re-evaluation of 

technology strategy in the context of multiple-technology suppliers and partnerships. 

Most importantly it requires a significant expansion in the role and responsibility of the 

chief technology officer - to incorporate explicit accountability for creating and 

capturing the maximum value of technology leveraged through both internal and passive 

and active suppliers, joint ventures and alliances, acquisitions and licensing (Jonash, 

1996). Accountability is more prescriptive than descriptive, it advocates how things 

should be, rather than how asserting how things are (Parris, 1996). It lives behind the 

scene as an aid to the design and trouble shooting of management systems. The 

implementation and practice of these management systems gradually moulds reality in 

the shape of the model. 
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2.5.1 Design for X 

In recent years the significance of design has been well documented. Many different 

manufach1ring design methods have been identified, from assembly to scheduling. The 

generic term for this is 'Design for X', where X can be replaced by any of the design 

methodologies. Whitney (1986) describes how design can lead to over specification. 

The paper presents a case study to show how a design can require 350 signatures to 

approve a single part at an automobile company. It states "According to General 

Motor's executives 70% of the cost of manufacturing truck transmissions is determined 

in the design stage. A study at Rolls Royce revealed that design determines 80% of the 

final production costs". Establishing a products design calls for crucial choices about 

materials made or bought and about how parts will be assembled. In short, design is a 

strategic activity. It influences flexibility of sales strategies, speed of field repair, and 

production efficiency. 

Design for Manufacture 

Many different manufacturing operations can often be used to manufacture a single part. 

For example, a joint may be constructed from a casting, weld, rivet or bolt. The stresses 

and strains for each set-up are different. The decision as to the type of process is up to 

the designer. The use of Concurrent Engineering will enable production engineers to be 

consulted at this level so that a good balance can be settled between material cost, 

manufacturing cost and quality levels. 

Design for Assembly 

Design for assembly is the aim of reducing the number of parts required for a particular 

part design. This process can be applied to both the material used and also to the chosen 

operation. By changing the operation there are different capabilities to the design. This 

has a twofold advantage. Firstly it reduces the complexity of a design and secondly by 

reducing the number of parts required the production time is also reduced. 

Design for Manufacturability 

Peters et al. (1995) states "by accommodating product design, process technology and 

operations management perspectives, it is possible to achieve the benefits of JJT supply 
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with more suppliers". The principle is to reduce the vu.rle,\j o·f i"\aw"J.. materials and 

create variety close to assembly. The requirement is to have a stable and long-term 

supplier relationship. The principle to achieve speed and efficiency is to eliminate 

variety from the inbound flow of materials and create variety in sequence on-line. From 

a supply chain perspective, the ideal is to eliminate variety in the inbound flow of 

material. This way, communication with suppliers is simple and straightforward. 

In a situation where communication in the supply chain is slow and distorted, the 

primary concern is to find the means to improve communication, reduce uncertainty and 

Improve control (Neilson et al., 1995). To do this there is a need to accommodate 

product and process technology considerations with operations management 

considerations. Taylor (1997) presented and tested new Concurrent Engineering 

strategies that focused on manufacturing and assembly operations with a global 

perspective. 

Design for Schedulability 

Kusiak and He (1994) formulate five design rules aimed at improving schedulability of 

parts and products. A design rule specifies actions to be considered by the designer in 

order to satisfy the underlying constraints. The rules are designed for automated 

manufacturing systems, requiring considerable capital investment and will benefit from 

the effective utilisation of manufacturing resources through the application of efficient 

scheduling. 

o Minimise the number ofmachines (cells) involved in machining of a part (product) 

• Assign parts (products) to the machining (assembly) cells 

e Maximise the number of parallel machining or/and assembly operations 

• Maximise the number of batches assigned to parallel machines (stations) 

It is shown that the design of parts and products has a significant impact on the quality 

of schedules in manufacturing systems. The early consideration of manufacturing 

operations is identified as a key factor in the allocation of resources. 

Design for Supply Chain Management 
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Lee and Sasser (1995) describe their experience of developing models in which the 

principles of Design for Supply Chain Management have been implemented for new 

product development. A wide range of factors was described including manufacturing 

and logistics costs - that could be used to support the design decision. Product 

standardisation has become a powerful concept in design for Supply Chain 

Management, because this design principle often results in higher material and direct 

manufacturing costs. However, there is a need to use analytical models to quantify the 

complex impact and benefits of cost drivers like Stock-outs, Factory Layout, Logistics 

and Inventory. 

2.5.2 Sequcncing production and inventory control systems 

The perfonnance of a production and inventory control system can be improved 

significantly by managing the situational factors, both internal and external (Yenradee et 

al., 1995). They suggest an approach to identity the factors that need to be improved by 

comparing the existing organisational profile of the company with the suitable 

organisational profile of JIT. 

The problem of scheduling in flow-shop and flow-line based Cellular Manufacturing 

Systems (CMS) is considered by Sridhar and Rajendran (1996). The formulation of 

timetabling in a flow-line-based CMS is discussed. A genetic algorithm is presented for 

scheduling in the flow-shop. The proposed algorithm is found to perform well for 

scheduling in a flow-line-based CMS. Liberopoulos and Caramanis (1997) investigated 

the optimal set-up change and production control policy for a failure-prone machine to 

meet constant demand rates. The computational experience is reported for several 

instances of the problem under different assumptions on holding/backlog costs and set­

up change times. The work has significant practical application in the context of 

hierarchical production planning and control. 

Arzi (1995) deals with on-line scheduling in a multi-cell flexible manufacturing system, 

operating in a produce-to-order environment. A two level Distributed Production 

Control System is developed and tested through a simulation study. The Distributed 

Production Control System allows autonomous and simultaneous operation of each cell­

controller, utilising only local and short-term information as well as simple heuristic 

rules. Simulation experiments show that the proposed Distributed Production Control 
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System achieves good results in throughput, tardiness of orders and WIP inventory level 

and that it is robust to machine and handling device failure. The real-time production­

scheduling problem for multiple-part-type flow shops is studied by Bai and Gershwin 

( 1994 ). Three classes of activities were considered, operations, failures or repairs, and 

starvation or blockages. The scheduling objectives were to keep the actual production 

close to the demand and to reduce the work in progress inventory and cycle time. A 

three-level hierarchical production control model was developed to regulate production 

for the manufacturing system. 

2.5.3 Just In Time purchasing 

It was noted that, most factories have not changed their products or processes for many 

years and that their managers are comfortable with what they know (Walleigh, 1986). It 

is observed that in this environment change comes slowly. Walleigh stated ''This 

inflexibility combined with misperceptions of Just In Time (JJT) keep a lot of executives 

from using JJT". 

A survey of JIT purchasing practices in the United States was produced by Freeland 

(1991 ). The survey reported that 45% of companies had 'formal' JIT -purchasing 

programs. Another 22% planned to implement JIT purchasing by 1992. The most 

significant findings can be summarised as, companies without JIT tended to be more 

job-shop, make-to-order oriented. The longer JIT had been in place the greater the 

perceived benefits. Quality is the most important criterion in selecting those parts to be 

purchased on a JIT basis. The distance between supplier and buyer is an unimportant 

criterion in selecting a JIT supplier, but is a great impairment to the implementation 

process. Contract agreements are more inclusive than for non-JIT purchasing. Suppliers 

are required to carry more safety stock for products not bought by JIT, but little 

difference exists in ordering and delivering policies between JIT and non-JIT. Buyer­

supplier data exchange is more important with JIT. 

Economic batch size and work in progress optimisation 

There is a direct relationship between the Work in Progress (WIP) and Economic Batch 

Size. Di Febbraro et al (1994) illustrated a manufacturing system that includes the 

repetitive production of different products, to apply performance analysis techniques. 
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The objectives of the related optimisation problems take into account the maximisation 

of the throughput of the system and the cost of the plant. The overall optimisation shows 

that the problem can be decomposed into two subsequent mathematical programming 

problems. The first one is a non-linear continuous mathematical programming problem, 

whereas the second is an integer linear programming one (Yu, 1997). Particular 

attention was focused on the optimisation of an aggregate objective, taking into account 

the system throughput and the manufacturing plant cost. The results presented illustrated 

that analytical performance tools could be used for the analysis and optimisation of 

structurally complex manufacturing systems. Additionally Han et al. ( 1998) presents a 

Genetic Based Machine Learning (GBML) system for efficient scheduling and control 

of a job shop. The GBML has the inductive learning ability based on a series of 

computer simulation experiments to discover scheduling heuristics. These heuristics are 

then used to choose scheduling rules based on a pattern manifested by the job-shop. 

Kanban 

Savsar (1996) presents the results of a simulation study of a Just-In-Time ( JIT) 

production control system and its performance under different operational conditions. 

The results of the simulation indicate that fixed order quantity policy is better with 

respect to throughput rate and average station utilisation, while fixed withdrawal cycle 

policy is better in reducing total Work In Progress (WIP) levels at all levels of 

processing time variability and number of different Kanbans allowed at each station. 

Therefore, an optimum Kanban level must be found with respect to the throughput rate 

and the total WIP level which are conflicting. 

Optimising lot size and set-up 

Lee et al. (1994) reasons that JIT involves determination of lot size and set-up time 

reduction so as to increase manufacturing flexibility while minimising the inventory 

level. The overall trade-off examination revealed that it was not possible to neither 

reduce tool set-up time to the desired level, nor minimise tool facility idle time. System 

constraints have a substantial impact by definitively limiting the periphery of solution 

possibilities, and should be verified with care to ascertain that they are indeed not 

flexible and not open to prioritisation. 
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2.5.4 Product definition 

Krause et al., (1993 ), presents an overview of the state-of-the-art and practice of product 

modelling in terms of product models and process chains. The use of methodologies and 

modelling tools in manufacturing are reviewed. Factors involved in this review include 

human organisation, product strategy and information technology. It is stated that 

product modelling is fast evolving subject, with no common theoretical foundation or 

agreed implementation strategies. This in turn poses challenges and opportunities for 

research. In a real environment a combination of these tools may be used to model a 

complete business environment (Pandya, 1995). 

McKay et al., (1986) described the use of advanced product modelling techniques to 

describe families of products without redundant data. The description of multiple views 

on a product family, without data redundancy, is a major problem to be overcome when 

product families are modelled. A solution based on the use of product data sharing to 

integrate engineering applications is presented. In principle the product variety data is 

represented in a product model such that both the product family data and the detailed 

data of particular variants is available for use by computerised product databases. A 

product family identifies the commonality and differences between the individual 

products that form a product range. A variant of a product family is an individual 

product that conforms to the product family. It has all the features that are common to 

the family and parameter values that are specific to it. A range of products is a set of 

variants of a single product family. 

2.5.5 Discussion 

Existing research into operational research forms a key theme to this research. The 

ability of an organisation to work with the extended enterprise from the initial design 

conception to production will support supply chain relationships. Design for X has 

highlighted the differing elements of the design process, and it is considered that the 

supply chain has a leading part to play in this function (Whitney, 1986). Additionally 

production optimisation and the varying methods of achieving this have been presented, 

indicating the topics for consideration when modelling an organisation. 

In particular, Design for Supply Chain Management, discussed by Lee and Sasser (1995) 
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evaluated the entire supply chain, assessing the stock levels at different points in the 

supply chain, and proposed a model for "configure-to-order" of the supply chain 

structure. This theory reaffirms the idea of supply chain classification described in 

Chapter 1, section 1.5. Additionally Design for Schedulability (Kusiak and He, (1994)) 

attempts to consider operational constraints in early design stages of parts and products, 

to improve manufacturing schedules. The work however omits the utilisation of the 

supply chain in the proposed design rules, see Chapter 2, section 2.5.1. The involvement 

of supply chain manufacturing processes would open a new paradigm to this research. 

It is suggested that product variety should be eliminated from the inbound supply chain, 

instead the objective should be to create variety as close to the production line as 

possible, this can be seen in the automotive industry (Neilson et al., (1995)). This 

concept is accepted for large production items, where standard products would both 

reduce the product structure complexity, and more practically, reduce the number of 

different stock items. However, this idea may also reduce the design optimisation, 

preferring to remain with what is known, rather than look for better materials, or 

designs. 

2. 6 Process Planning 

Process planning has been researched for many years and from many different 

perspectives, see Alting and Zhang (1989) for a detailed survey. It defines in detail the 

process of transforming raw materials into the desired form. More precisely, process 

planning can be defined by a sequence of activities. They comprise of mainly, an 

interpretation of the CAD, a selection of processes and tools, a sequencing of 

operations, a selection procedure for the given processes and an assessment of the 

selected processes, based on economic batch data. Many companies have adopted 

Computer Aided Process Planning (CAPP) as a way to schedule and model these 

operations. 

At a generic level Holmstrom et al., (1997) focused on the principal issue of production 

control, i.e. to manage the cumulative effects of individually insignificant factors that 

together contribute to the difficulties of allocating resources efficiently. It was 
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demonstrated in the 1960's by Jay Forrester that certain dynamics exist between firms in 

supply chains that cause errors, inaccuracies and volatility, and that these increase for 

operations further upstream in the supply chain. 

2.6.1 Computer aided process planning 

Modern manufacturing is characterised by low volume, high variety production and 

close tolerance high quality products. Computer Aided Process Planning (CAPP) is an 

essential key for achieving computer integrated manufacturing, see figure 2.6. The 

integration of design, CAPP and Production Planning and Control is becoming essential, 

especially in a CE environment where many product life cycle factors are of concern. 

Related issues of quality and evolving standards are also discussed by ElMaraghy et al., 

(1993). 
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Figure 2.5: Representation of Process Planning Activity (adapted from ElMaraghy et al., 

1993). 

Many forms of requirement planning exist. By way of process classification a 

technology index is presented by Kao et al., (1995). The level of technology and 

management of 15 machinery firms are evaluated. The technology index is constructed 

from various indicators including those of equipment, employee and technological 

44 



Literature Review 

capability. It was stated that the productivity of the surveyed firms indicated that the 

management-leader is the group with stronger competitiveness that the machinery firms 

should consider achieving. A system to aid designers search and evaluate manufacturing 

processes is described by Leneau and Kristensen ( 1992). The system enabled the design 

team to explore alternative manufacturing processes. The procedure searches for a 

typical component with a shape similar to the desired one, followed by an inspection of 

the processes that were used to produce it. 

Benezhad et al., (1996) presents a mathematical programming model that concurrently 

encompasses the two areas of capacity plmming and aggregate plmming. The integrated 

model incorporates production and workforce planning decisions with equipment 

procurement decisions. The evaluation is that the integrated model has cost-saving 

advantages over the individual models. 

Early models for capacity planning were based on an infinite planning horizon and 

unchanging production parmneters. Those descriptive models considered a single­

product/single-workstation situation and determined the number of required machines 

(Reed, 1961 ). The important characteristic the dynaiTiic model presented by Behnezhad 

and Khosnevis ( 1988) was the incorporation of inventory build-up and shortage 

possibilities. Vander et al., (1989) studied the trade-offs between machine investment 

and machine utilisation. 

2.6.2 Aggregate process planning 

The majority of prototype and commercial Computer Aided Process Planning (CAPP) 

systems offer good geometric capability and the operation are frequently based on the 

definition of features. However it is reported that the advantages of feature based 

technologies are mainly felt during the detailed design and planning stages. Process 

planning is predominantly an open-ended problem that accepts many solutions based on 

the knowledge of the designer (Maropoulos et al., 1998). The method presented satisfies 

the industrial need for product based manufacture and is compatible with recent 

developments in the areas of process and product modelling. 

Maropoulos (1995) presents a process planning architecture. The architecture consists of 

three levels, namely aggregate, management and detailed, which are defined according 
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to the stage of the process modelling considerations. The modularity of the architecture 

will allow the generation of flexible, customised process planning systems to meet 

specific industrial requirements, enhance the operation of modules at each level and 

reduce the overall system complexity. Maropoulos (1995a) presents an assessment of 

research in the areas of tooling technology and management of process modelling. 

Extensive research work is reported in process modelling for product development, 

whilst detailed process models are frequently constructed on an ad-hoc basis without 

any formal analysis regarding data requirements and knowledge representation. Generic 

process planning research in its present form has been saturated. Applied consolidation 

research is still required to enhance the current state-of-the-art, particularly in feature­

based techniques, and to promote the commercial exploitation of mature technologies. 

New process planning research should be placed in the integrated product development 

context, and be compatible with the concept of distributed design (Maropoulos, 1995b ). 

In the same way that formal system models are used to rationalise the implementations 

of complex computer systems, formal process models may be used to rationalise system 

requirements of complex business processes. Minkowitz (1993) examines this by way of 

a case study in the use of formal modelling to analyse systems requirements for an order 

fulfilment process. The model suggests information and functional requirements of 

systems to support the order fulfilment process. Not surprisingly, it identifies the need 

for order and supply data. A less obvious requirement raised by the model is the need to 

access key logistics information, such as product and distribution information, to check 

the legitimacy of orders and supplies. 

2.6.3 Process selection 

Alien and Swift (1990), illustrates a teclmique that can be used in early design to for the 

purpose of manufacturing process selection and costing. The model is logically based on 

material volume and material processing considerations. The process cost is determined 

using a basic processing cost and design-dependant relative cost coefficients. Material 

costs are calculated taking into account the transformation of material to yield the final 

form. The single process model for manufacturing cost (Me) can be formulated as : 

(2.7) 
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Where, V is the volume of material required in order to produce the component, CM is 

the cost of the material per unit volume, Pc is the basic processing cost for an ideal 

design of component by a specific process and Re is the relative cost coefficient 

assigned to a component design. 

The analysis was designed primarily to enable the designers to anticipate the cost of 

manufacture associated with alternative component design solutions, resulting from 

activities of design for assembly. Bloch et al., (1992) presents a method of performing 

the cost analysis by taking into account the process yield at each step of the process 

sequence and how the yield at different steps impacts on the overall cost of the module. 

This paper outlines the methodology of modelling the process and how to use the 

outputs from the process models to evaluate the different constituents of the module 

cost. The cost at each process step is calculated by using inputs from the process model 

(cost model inputs). Process-based cost modelling has been used for different types of 

decision-making problems including packaging alternatives, equipment selection and 

repair strategies. 

Originally developed by Alien and Swift (1990) and later adapted by amongst others 

Esawi (1994). Shape complexity refers to a chart method for determining the form of a 

part design. Shape complexity is based on the tubular or prism forn1, and is process 

independent. It is however not easily automated. Operator recognition is required for the 

shape complexity, and there allows an element of interpretation. This is not a repeatable 

process, since the designers' interpretation of an objects complexity may vary slightly. 

Using the basic theory that there are three basic forms: round, square and thin walled, 

the analysis is based on the features associated with the base form. 

During the early 1990's CAD systems used geometric shapes and designs created 

primarily by Boolean operations on a set of basic solid forms, and the idea of features 

did not exist (Joshi and Chang, 1990). A review of feature recognition techniques is 

presented by Joshi and Chang, along with a proposed feature based design as an 

alternative to shape complexity. The proposed feature recognition method presents a 

series of nodes, linked together in different formats to equal a feature. The work is 

limited to machining features, since features are assumed to be depressions or cavities in 

a solid billet. This work is also supported by the work of Maropoulos and Bradley 
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( 1997), on aggregate process planning for machining. The work of Maropoulos and 

Bradley classified an index of machining features, for process selection during 

embodiment design. However this work extracts features as an entity, with parameters 

such as length depth or angle. 

2.6.4 Discussion 

Process planning has been shown to be of particular interest. Individual work by Joshi 

and Chang (1990), Alien and Swift (1990), and Esawi (1994) has laid out a documented 

history of process identification. Previous models have proved very successful as cost 

predictors for manufacturing and fall into two categories, feature recognition and shape 

complexity. The feature recognition model has been tailored for specific requirements, 

for example welding or machining. An example of this process cost format can be seen 

in the work of Maropoulos and Bradley (Maropoulos et al., 1998). Feature recognition 

enables detailed information for each feature, and can therefore be as generic or specific 

as the data given. With reference to the observed work of Maropoulos and Bradley, this 

method has been adopted for specific processes, and is focused towards automated 

process and tool selection. Feature recognition enables process models to be compiled 

with features and feature combinations that are not possible with a given process. An 

example might be Blow Moulding, where internal surface profile features are not 

possible. Therefore, any specified feature combination, where an internal feature is 

required would indicate that Blow Moulding was not a suitable manufacturing process. 

To expand this format to consider all manufacturing processes would require an 

incredible amount of process data, and therefore would result in a slow process 

assessment. 

It was considered not viable to directly adopt either of the previously stated 

methodologies of shape complexity or feature recognition, since the outline to this 

research required both a rapid process cost assessment and an automated assessment. An 

amalgamation of the knowledge and procedures would be critical in any further 

developments. It is therefore proposed that feature recognition should be adopted to 

classify the product structure, and process coefficients, identified by shape complexity 

should be catalogued, stored and used for process assessment. Additionally an 

investigation is required to determine feature capabilities for a diverse range of 
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manufacturing processes. 

2. 7 Conclusion 

The mam topics described in this chapter have discussed the Issues relating to the 

operation and control of the supply chain. 

In particular it is proposed that the identification of manufacturing processes during 

early process selection will add a new paradigm of flexibility to product development. 

Additionally it is noted that no previous work discusses the role of suppliers during 

product development, addressing what manufacturing process information is required to 

assist this process. 

The transportation of products both internally and externally has been identified as a key 

function of the extended enterprise. Factors affecting the loading and frequency of 

transportation are the economic batch size of the manufacturing process, distance 

between locations, cost per part, etc. The Simplex method for load/frequency 

identification is selected, to minimise the complexity of the problem (see, Kortanek and 

Yamasaki, 1995, and Haberl eta!., 1991). 

The elimination of personal knowledge and judgement concernmg manufacturing 

processes, is noted as significant for the automation of process selection. It is also noted 

that operational constraints during process selection improve manufacturing reliability. 

It is therefore considered that the inclusion of supply chain manufacturing processes 

during process selection will enable greater choice. Additionally, the adoption of Java as 

a programming language is considered essential to the ability of the process selection 

software to operate between companies, across the Internet (D' Amours et al., 1999). 

The topic of process planning combines product identification, process classification 

and process selection. The fonnat of data for the product model is stated as feature 

recognition. This is both the simplest format to automate and is adopted by other 

members of Durham University, Design for Manufacture Research group. This is the 

full extent of commonality between this research, and that of the research group. 
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Chapter Three 

System Overview 

3. 1 Introduction 

It has thus far been illustrated that there is a fundamental requirement to model and 

evaluate the extended enterprise during early product development. It is the focus of this 

thesis to present a prototype software system to be used during the conceptual design 

phase of product development, to aid in the process selection decision. 

A generic factory selection methodology is developed and tested through the use of this 

software system that implements the proposed Process Selection (PS) and Factory 

Selection (FS) methods. This prototype system is an integrated decision support 

environment that performs automated process and factory assessment. The system is 

called Supply Chain Oriented Process modelling for Engineering (SCOPE). The data 

used for this assessment is not live data, and although true at the time of distribution it 

will undoubtedly become outdated when new data is generated. 

It is not the purpose of this work to create a rigorous and fully documented computer 

aided process planning software system for the extended enterprise. It is recognised that 

there is great merit in such a system, which would enable the customer to continually re­

evaluate the process selection throughout the life of the product. Such a system could be 
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used by the finance department to justify production cost. Typically such systems could 

be used as a bargaining tool when negotiating costs. Also this would enable the 

customer to monitor the production of a product, based on the manufacturing operations 

data. Ideally such a system would use manufacturing operations data, linked to real time 

data flow. 

It is important to note that the development of SCOPE is not the object of this thesis. 

Rather, the system has been developed in order to evaluate the PS and FS methods that 

have been applied in its development. This chapter will discuss SCOPE from a system 

viewpoint, identifying the specifications of the system in terms of the tasks that are 

required. The structure of the system will then be outlined, describing the main system 

elements, each of which are detailed in the subsequent chapters. 

3.2 Specification of SCOPE 

The SCOPE system is a prototype Concurrent Engineering (CE) support software 

package. The main function of the program is to assist a manufacturing company to 

assess their supplier capabilities and to aid in the 'make-or-buy' decision. The system 

enables designers during the conceptual stage of design to generate manufacturing 

options that include supplier capabilities. It is proposed that the alternate supplier 

considerations will in turn generate a more informed product design. 

This engineering software tool is intended to propose a standard for the transfer of 

manufacturing process information throughout the Supply Chain (SC). The purpose of 

the task is to establish a consistent costing method for manufacturing process selection 

across the SC. At a general level, supplier selection can be stated in basic queries as: I) 

What parts are required? 2) Where can they be obtained? Also, 3) What quantity needs 

to be purchased? These questions address different aspects of the selection procedure. In 

the first question there is no specification of product, only the idea that a product may be 

required. The identification of a product is the first step in process selection. In the 

second question there is no focus upon a particular supplier. It is considered that many 

organisations would be able to generate an approved supplier listing to aid the supplier 

selection. The third question relates to the situation after the relevant suppliers have 
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been identified. To pursue an inquiry the order quantity is required. It is proposed that 

the SCOPE system should follow the above procedure, to identify the product, then to 

identify the suppliers and finally to assess the individual suppliers. 

The literature review on manufacturing process modelling identified the works of Swift 

and Alien (1990), Esawi (1994) and Taylor (1997) as being of particular interest. The 

following assessment factors were highlighted by the aforementioned authors as 

contributing to the product cost; material, labour, tooling, quality, quantity, storage, 

transportation and factory operating costs. The need to optimise these factors when 

selecting a supplier can be overridden by intangible management issues such as 

customer loyalty or customer preference. It is not proposed to incorporate these issues 

into the SCOPE software, since they rely mainly on human preference. Alternatively 

there may be tangible factors such as quality or time that alter the priority of the supplier 

selection. It is therefore suggested that any assessment allows for the manipulation of 

these assessment factors. 

The security of any software system is paramount. Suppliers would not be willing to 

allow company data to be open to a system that could be accessed by unauthorised 

personnel. During the course of the data collection for the SCOPE system 'Electrolux 

Outdoor Products' were hesitant about providing hard copies of layout designs or 

manufacturing process capabilities. Electrolux Outdoor Products, better known for their 

Flymo range, are a garden product manufacturer producing a wide range of electrical 

and petrol driven lawn mowers, hedge trimmers, lawn trimmers and garden vacuums. 

Documentation was required in the fom1 of a verbal agreement that the data would not 

be passed to any third party, or that the data would be used for any other purpose than 

this work without the express permission of Electrolux Outdoor Products. It is 

considered that, for the SCOPE system to operate at a commercial level, a formal 

documentation process should be adopted to control the access to sensitive information 

and satisfy supplier fears. 
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3.3 Functional Description 

There is a functional need for SCOPE to support PS, as discussed. This is performed by 

evaluating the manufacturing operations of suppliers. The SCOPE system is designed to 

be used by design and development engineers, to explore possible design alternatives. It 

is therefore considered important to pay careful consideration to the construction of the 

software to facilitate a user-friendly environment. It is not assumed that the user has a 

comprehensive knowledge of computing. Information should be presented at the 

appropriate time in the analysis, such that there is no confusion as to what 

manufacturing processes are available. 

It is reasoned that the SCOPE software should be operable at two levels, Pl and P2 (see, 

figure 3.1 ). Firstly the manufacturing process level, where PS is compiled and stored. 

The SCOPE application connects supplier factories via the Internet, as seen in the box 

surrounding the supplier factory databases (P 1 ). Approved supplier details, including the 

computer database links, factory location, personnel contact details and factory overhead 

rates are stored within the main body of SCOPE. These details are utilised to connect 

through the internet, to the supplier database. The second level (P2) of SCOPE IS 

Factory Selection (FS), it is possible to operate FS without adding new data. 

53 



System Overview 

P1 ------------------------------------------------------------------------------ --~ 

Factory Modeller 99 

Supplier A 
- Factory 

Database 

,----. Product Model T 
Process Supplier B 

Selection Factory Database 

+ 
Process Results -

Supplier N .. 
Factory Database 

( 
Design 

Engineer 

Internet Interface 
------------------ ------------------------------------------------- -----------

P2 ·-------------------------- --------------------------- --- --------------, 

Factory ' 

Selection 
+-- - Result Set A 

+ ' 

Factory Results - Result Set X 

' ' ' ' ' ' -------------------------------------------------------------------------

Figure 3.1: SCOPE architecture encompassing the process and factory selection levels 

At the PS level (P 1, figure 3.1) the product model containing the product data, and the 

supplier data containing the manufacturing processes are joined. The generated result set 

can either be saved for later manipulation or discarded, depending upon the user 

requirements. The PS results are saved at the main factory, as a database containing the 

highlighted assessment factors. The alternative level of the application is FS (P2, figure 

3.1 ). At this level the stored PS results are retrieved from the computer system and 

manipulated to identify the most viable options for manufacture. Any number of result 

sets may be simultaneously accessed for comparison. The method of assessment will be 

described later in Chapter 6. 

Before describing the format of the SCOPE system in detail, it is important to identify 

the manufacturing process database. The manufacturing process database is the data that 

is assembled from the supplier factory concerning their factory capabilities. A 
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supplementary software system called Factory Modeller 99 (FM99) has been designed 

to facilitate this requirement. 

3.3.1 Factory Modeller 99 

The Factory Modeller 99 (FM99) software is not directly connected to the SCOPE 

system, in so much as they do not need to run simultaneously. It is proposed that the 

supplier should run this program to generate the manufacturing processes database. The 

data is saved into a database running on the PowerJ system. PowerJ is the development 

tool adopted for this project. The illustrated flowchart (see figure 3 .2) outlines the input 

process for FM99. During the input process of manufacturing data the correct factory, 

building, floor and cell are required to amend the resource level, otherwise a duplicate 

manufacturing process is created at the wrong location. The resource refers to an 

individual manufacturing process, for example an injection moulding device or pedestal 

drill. It is not possible, for example, to input a building or floor without first specifying 

the respective site or building. This is achieved by applying rules during the 

programming of FM99 that prevent access to information, unless the correct information 

is present. The system automatically formats the data into the database, linking each 

process to the hierarchy of the factory. The hierarchy of the manufacturing process data 

is discussed in chapter 4. The manufacturing process database can subsequently be 

accessed by SCOPE. The same system is also used to amend or delete manufacturing 

process information. Alternatively it is possible to write the database using Microsoft 

Access, providing that the operator is aware of the database structure. It is then possible 

to load the Microsoft Access database into the PowerJ Database. It will not therefore be 

considered during the later discussions of this chapter. The development tools adopted 

in the construction of FM99 were inherited from the development of SCOPE. 
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From the discussion on the specification of FM99 it is stated that manufacturing process 

data generation is made easy by the FM99 software. Data amendment is also simplified 

by FM99. This is achieved by highlighting the correct site, building, floor and cell for 

the required 'manufacturing process' resource, and then overwriting the information or 
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deleting the entry from the system. Alternatively data amendments can be made using a 

Microsoft Access database. The information can easily be altered or removed and then 

saved back into the PowerJ system. 

3.4 System Architecture 

It has been outlined that the SCOPE system can be operated at two levels. The two 

levels run separately and have different functions and results. It can be clearly seen in 

figure 3 .I how the different functions are linked. The SCOPE software has been 

constructed to allow the operator the maximum freedom to perfonn separate process 

selection and factory selection assessment. This is beneficial since there may not be 

sufficient time to complete a thorough assessment of both individual process selection 

and the comparative function of factory selection at any given time. The ability to 

perform separate tasks will allow the user to generate multiple PS result sets and to 

comprehensively compare the results sets using FS. 

3.4.1 Product Model 

It has not been the objective of this thesis to propose a novel product model. From the 

literature review it can be seen that different formats of product model were considered. 

They were namely the shape complexity format, (Bloch, 1992) and (Swift and Alien, 

1990) describing the shape of an object in terms of cylindrical and cubic forms, along 

with combined features. The feature generation format (Chang, 1990) and (Bradley, 

1997) fragments the design into object features such as profile and face to compile the 

part. It was considered appropriate to adopt the feature generation method for the 

product model, since this format was already in use by other members of the Design and 

Manufacturing Research Group (DMRG). Additionally the feature generation method 

was the easiest method to document with the minimum amount of details. The form of 

the component is easily outlined, detailing each feature dimension and tolerance, a task 

that would be less efficient for shape complexity. For example it is easier to describe a 

cylinder with an internal thread as exactly that, usingfeature generation, than a complex 

form being of cylindrical nature with internal features, as would be the case for shape 

complexity. The DMRG method allows synergy between this work and other work into 
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Assembly Modelling and Aggregate Process Planning. In addition, the feature 

generation model was readily available for Electrolux Outdoor Products, allowing the 

method to be easily tested. 

The product model needs to be stored in the same PowerJ database as the manufacturing 

process data, to be accessed by the SCOPE system. However the product model is 

written as a text file adopting the feature generation format used by the DMRG, see 

Figure 3.3, and then transferred into the PowerJ database. The format refers to the 

feature name, feature parent, feature properties and the feature attributes. An example 

of a product model can be seen in appendix C. For example, a feature such as a cylinder 

would have a list of properties ranging from length to surface finish. These relate to 

values for the given cylinder. Additionally the cylinder will inherit a parent name and 

that might be a bolt. The bolt in turn may have a parent class called a motor, where the 

motor is the object of the product model. It is possible to operate the PS level of the 

system without adding new data to the system, providing that suppliers already exist, 

within the SCOPE register. Product model data is retained in stored PS results. 
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Figure 3.3: Product Model Architecture 

3.4.2 Process Model 

The ability of the process model to utilise the information of the product model and the 

diverse manufacturing process data is essential to the generic nature of the system. PS 
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calculations are performed on the basis of both the features supplied by the product 

model and the supplier information, given in the manufacturing process database. 

During the PS assessment the manufacturing process data is separated into the 

fundamental tasks within the organisation, namely process attributes (power, size, 

materials, etc.), factory attributes (process location, geographical location) and 

transportation attributes (volume, speed, cost rate). Internal transportation is calculated 

on the basis of the transportation mode used by the manufacturing operation. Cost is 

given as the result of the optimal production rate, allowing for tool time and material 

shortages. The result of the process model are stored a database format on the PowerJ 

system, and they are utilised in the FS level of SCOPE. 

Different levels of manufacturing can be described as primary, secondary and tertiary 

processing. Primary processes are described as raw material operations where raw 

material, in the form of a billet, powder, granule or molten liquid is used as the material. 

These manufacturing operations are generally casting or moulding operations. 

Alternatively, primary processes for machining consists of rough cutting operations. 

These operations are used to form the required features. Secondary operations are 

normally described as finishing operations, such as secondary machining to obtain the 

required tolerances. Tertiary operations are more difficult to classify, since they have a 

broad spectrum but they are usually aesthetic or auxiliary operations such as buffing, 

coating or painting. 

3.5 Summary 

The data that has been laid out in this chapter has laid out a footprint for the 

implementation of the proposed PS and FS methods. The development of the FM99 

software that is installed at supplier factories will generate a standard format for the 

manufacturing process data. The adoption of the product model developed by the 

Design and Manufacture Research Group has standardised the product data input. It 

should also be noted that the format of the product model presented by Maropoulos et 

al., (1998) is currently adopted by other members of the research group. 
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Chapter Four 

ManUJfacturing Process Data Generation 

4. 1 Introduction 

This chapter describes the theories applied within the manufacturing process data 

generation function of SCOPE. The functions of SCOPE are identified, from the initial 

selection of the manufacturing process data through to selection of the manufacturing 

processes. Assessing the suppliers' manufacturing process data creates the process 

model. The manufacturing process information can then be used to firstly identify, and 

then calculate optimal utilisation of manufacturing processes. To aid design engineers, 

multiple process and material combinations should be considered. Computers have been 

used to aid product development for many years, in particular for product design and 

assessment. Computer Aided Process Planning (CAPP) and Material Resources 

Planning (MRP) are software systems that have been adopted as basic requirements for 

design teams to facilitate Concurrent Engineering (CE). This has resulted in flexibility 

being built into the design process, thus providing less room for error by designers. 

Concurrent engineering (CE) is based on the synergy between the design stages of a 

product and the manufacturing planning stages. CE involves the parallel processing of 

tasks, enabling groups of people to solve problems simultaneously by drawing on their 

specific abilities. 
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4.2 Process Planning 

Process plmming is a senes of decisions that uniquely specify the manufacturing 

operations required to complete a job. Once the process planner makes a decision 

concerning either the material or the manufacturing process, it becomes a constraint on 

all decisions that follow, since the material or the manufacturing process excludes 

alternate options. It is accepted that these constraints are arbitrary, since they only exist 

because of the sequence in which the decisions are made; another sequence may result 

in a different set of constraints. Similarly a decision made at the process selection stage 

will be a constraint at the factory selection stage. If product data, such as the feasible 

material or part size, is known during process selection, then benefits may be achieved 

by utilising the product data during process selection. 

Process planning is the first step in the organisation of a manufacturing plan. Certainly 

without ensuring the feasibility of a process plan, it is pointless preparing production 

management and production control plans. Conversely, it would not be economical to 

design process plans that need equipment not presently available within the company 

that would incur unnecessary expense, or would entail the use of machines that are vital 

for other manufacturing operations. It is therefore important, for example, to achieve an 

optimal balance between utilisation of machinery and queuing time of in-process 

material. 

4.2.1 Computer Aided Process Planning 

At the most fundamental level, the principle of Computer Aided Process Planning 

(CAPP) is to utilise the computer technology to assist the process planner with the 

planning and scheduling of manufacturing operations. This assistance may take varying 

forms, from a simple record of an operations utilisation, to preparing an automated 

schedule plan for each manufacturing operation. 

The trend in process plmming development is to further integrate the two functions of 

process planning and production planning via software in order to achieve a better 

understanding of the factory capabilities. The purpose of production control is to 

supervise the flow of parts on the shop floor in order to maximise the utilisation of 

production time. Time lost due to long handling transfer periods between manufacturing 
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operations is undesirable. At the same time its purpose is to respect the delivery dates of 

the product. 

4.2.2 Criteria for Process Modelling 

A fundamental element of process modelling is the group of process attributes used to 

establish a criteria base for process assessment. Process attributes, such as power 

consumption or machine name, explicitly describe the process and its geographical 

location. The criteria base also needs to differentiate between identical machines within 

the same factory. The process model must include information on the agility of the 

process; the cost of the process; the capabilities of the process; the logistics of the 

process; the key strategic issues and the location and geographical factors. These factors 

are discussed below. 

Agility I Responsiveness 

The agility of an organisation is based on its ability to profit from a rapidly changing, 

continually fragmenting, global market. Often described as a new system of commercial 

competition, responding to commercial changes ahead of the competition, agility is a 

successor to the idea that mass production-based manufacture is the ideal strategy. 

Alternatively, Lean Manufacturing focuses on process efficiency through eliminating 

manufacturing waste. This differs from agility since the aim of lean manufacture is to 

maximise the production efficiency of an operation, and the aim of agility to maximise 

the flexibility of an operation. 

Cost Ejjiciencies 

Product plans that are both timely and effective in cost terms are a foundation to 

profitability. Cost information should be generated to show the source of profit. Cost is 

not simply incurred, it is designed into the product. The parameters of production 

method and material type are determined during design, before a single product has been 

manufactured. By altering these parameters the direct cost of the product is changed. 

The indirect cost is determined by both marketing and management strategies outside 

the control of production. 

Capacity and Capabilities 
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The ability to control the planning and introduction of new and existing products is 

governed by production parameters. The capacity of a factory is limited by both the 

physical constraints of the facility and by the manufacturing processes available. The 

capabilities of the manufacturing processes control the production rate. Much work has 

been done on machine requirement planning and production planning (Minkowitz, 

1993; Maropoulos, 1998) since they play a large role in capacity and operations 

planning in manufacturing. Additionally the control of quality issues during production 

is essential to gaining customer trust and satisfaction. 

Logistics and Geographical Factors 

The sourcing possibilities during the make-or-buy decision include suppliers from all 

geographical locations. For example, if cost is the key issue then the decision to 

outsource may be influenced by the ability to move manufacture to a more cost effective 

location. Any benefits of low-cost manufacture may be offset by higher logistics costs -

higher transport costs, cost of higher inventory and longer lead times. 

Knowledge Management Issues 

Knowledge management must be considered as the key strategic process m any 

knowledge based organisation today. New communications and knowledge sharing 

technology have dramatically improved the process of acquiring, developing and 

disseminating knowledge. This knowledge is utilised internally within an organisation, 

and is also used to communicate with clients and customers. It is now possible to 

develop knowledge-based products and services faster, to a higher quality, and delivered 

at a greater value to the customer. 

4.3 General Selection of Manufacturing Processes 

The requirement to design a part, such that the manufacture is optimised, is termed 

Design for Manufacture. Manufacturability relates to how readily available the 

manufacturing processes are. An integral part of Design for Manufacture is the selection 

of material and process combinations. It is considered that design engineers conceive of 

parts in terms of processes and materials with which they are most familiar. As a 
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consequence this excludes from consideration process and material combinations that 

may be preferable. Opportunities for major manufacturing improvements may be lost 

through such limited selections of manufacturing processes and associated materials in 

the early stages of design. 

The product design cycle is denoted as the period of time between the initial product 

conception through to production. The decision as to which manufacturing method to 

adopt is often taken very early in the product design cycle (see, table 4.1 ). Similarly the 

most appropriate material is determined early in the product design cycle. Design 

engineers are neither process planners, responsible for scheduling the manufacturing 

operations, nor accountants, who rationalise the capital value of manufacturing 

operations, yet their decisions constrain the process selection. If the production engineer 

does not agree the selected manufacturing method, then a review of part design should 

be made to look at more suitable manufacturing methods and materials. Concurrent 

Engineering proposes that the decision should be mutual and should be taken after 

discussions between a multi-disciplinary team. 

Table 4.1: Initial design considerations 

Quantity 

Complexity of form 

Material 

The optimal batch stze for any manufacturing operation IS 

different. For any given batch size there is an associated set-up 

cost and time. These factors effect the processing cost for a 

given operation and are therefore an important consideration. 

The manufacturing capabilities of all manufacturing processes 

are not equal. The design of any part needs to be compared with 

each process. For example a part in the form of a cube, would 

only be feasible with manufacturing processes capable of 

producing that form. 

For any given material there are a number of associated 

manufacturing operations. For example blow moulding is only 

possible with plastics. The specification of the material will 

therefore reduce manufacturing options. 
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This factor can be important when considering the limitations 

of machining or casting operations. For example the minimum 

thickness for a wall section will control whether a casting 

operation is suitable. 

Dimensional accuracy The dimensional tolerance of a required part is important. It is 

not feasible to suggest manufacturing operations that do not 

comply, unless secondary processing is an option. An example 

may be a casting operation that cannot guarantee accuracy due 

to shrinkage of the section thickness within the die. 

Cost of raw material It may be possible to gain better dimensional tolerances or 

dimension accuracy by adopting a different material or 

manufacturing method. The cost of secondary processing to 

improve the tolerance will have to be weighed against the 

benefit of using possibly more expensive materials. 

Subsequent processes As specified above, the dimensional tolerance required by a 

given operation may require secondary processing to occur. 

Alternatively secondary or tertiary processing may involve 

painting or polishing a part. 

4.3.1 Material or Process Selection 

When designing a part, the general form of a part is confirmed. What is less definitive is 

the method of manufacture or the material for manufacture. The predetermination of 

either of these two factors will limit manufacturing options. However, to focus the 

assessment of a design, a decision on the priority of each design factor is required. By 

selecting the method of manufacture first, the material options are limited, but the 

efficiency and cost of the process can be governed. Alternatively by controlling the 

material first, the method of manufacture is limited. This option controls the material 

attributes. 
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It is suggested that the material should be selected before the manufacturing process. 

This decision is based on the assumption that, when designing a product, the designer 

has a general idea of which material group a product belongs to. For example this can be 

plastics, ferrous or non-ferrous metals, or ceramics. The designer suggests the required 

material, and the SCOPE system suggests the possible manufacturing methods. It should 

be noted that at the point of process selection, the possible manufacturing methods have 

not yet been compared to the complexity of the design features. 

4.3.2 Manufacturing process data structure 

For the purpose of process planning it is essential to identify those attributes of any 

organisation that will enable an assessment of the processes to be performed. A database 

is therefore required representing the manufacturing process data, that reflects these 

attributes. Consideration is required of the structure of any such manufacturing process 

data model to include both attributes of the factory and its facilities. More importantly, 

the information that is generated must be applied consistently for all processes and 

facilities, to reflect supply chain companies. 

The problem therefore is to identify those individual attributes of the factory that have 

the greatest significance over the costing process. These attributes may take many guises 

from management level, in the form of supplier preference, to machine level, such as the 

operational cost per hour. Since a wide variety of materials may be considered during 

the SCOPE assessment, there are more viable manufacturing operations. Many different 

manufacturing operations should be modelled, to accommodate each of the material 

groups. 

4.4 Factory Layout 

It is not the intention of this research to present a novel method for factory layout 

design. The ability to perform factory layout design requires detailed information on 

manufactured products and the manufacturing capabilities within a factory, with the 

intention of projecting efficient workflow. Rather it is the intention of this section to 

present a novel process identification format to aid process selection. 
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To organise the process classification the factory layout plan is required, see figure 4.1. 

Typical factors that influence the factory layout include the practical access of 

manufacturing processes, for either internal transportation or waste extraction purposes. 

The logical grouping of operations, for product or process benefits, is seen in figure 4.1 

by the separation of 4 cells instead of grouping all operations together. Additionally, 

space constraints within the organisation may force operations to be grouped together to 

save floor space, rather than for production benefit. Environmental issues of the factory 

environment stipulate that personal protective equipment may be required, such as ear 

protection for working environments where excessive noise is generated. This has the 

effect of grouping processes to reduce noise in other areas of the factory. Additionally 

governmental environment policies may relate to vapour pollution where extraction 

would be required. The power consumption of a factory may also influence the 

operation locations. 

0 
0 cell1 cell2 

Operation 1 Operation 2 Operation 1 

Operation 1 Operation 1 

Operation 2 Common 
feed 

Operation 1 Operation 2 

cell3 cell4 

Figure 4.1: Illustration of factory cell layout design 
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For the purpose of the required process database, the classification should encompass 

practical production issues concerning layout. As indicated, the grouping of operations 

within a factory can influence the layout design. This can be either process related or 

product related. For the purpose of operations identification a hierarchy is required to 

denote the relation of each operation in relation to all other operations. Other 

considerations should include transportation considerations, both internally and 

externally and manufacturing availability, where the availability relates to whether the 

manufacturing operations is presently being utilised. For manufacturing operations 

currently used for other business it may not be justified to monitor these facilities, due to 

the fact that they will not be available for use. Therefore, the availability of an operation 

is crucial to any assessment. 

4.4.1 Factory elements 

A number of elements are necessary to constitute a manufacturing facility. The format 

of this classification has been touched upon; it was indicated that the factory is broken 

down into a number of elements. The objective therefore should be to present the 

factory as a selection of units that would enable the SCOPE system to manipulate the 

information efficiently. From the previous factory layout (Figure 4.1) the factory can be 

broken down using horizontal and vertical criteria. The horizontal elements combine the 

site and buildings and the vertical element represent the floors (Figure 4.2). 
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~
ompany 

name 
contact 

I 

Figure 4.2: Fo.c~j model elements 

The following section lists each of the resource elements and the possible methods for 

modelling them within a computer system: 

• Site 

A site is a location for the production facility, or a depot for the storage of products. 

This is the root level of the manufacturing process data and is referred to during factory 

process selection as the reference point for internal transportation. A site is defined as 

being a single area of production. Any number of activities can be carried out at the site. 

• Factory building 

Within a site layout, an individual building or factory may be considered for production. 

Each bui lding has an individual identification and position. A factory can contain any 

number of operations and floors and can be considered as a single entity or as part of a 

site analysis. 

69 



Manufacturing Process Data Generation 

• Floor 

Any factory can be split into any number of different floors. To be able to accurately 

model internal transportation it is necessary to identify processes that are in the same 

building are on the same floor or different floors. 

• Cell/Line 

The cell/line classification consists of two separate levels. The cell level identifies a 

collection of manufacturing operations. These operations can either be grouped by 

process or by product. Grouping by manufacturing process may be required to facilitate 

the access of raw materials or for structural limitations. To group by product is more 

efficient for process flow, this generally enables reduced internal transportation. The 

line classification refers to a group of cells that have a common internal transportation 

and or manufacturing process. 

• W orkstation 

A cell or line contains X number of workstations. A workstation refers to either a single 

operation (resource or tool), or a group of operations. In practical terms this may be a 

manual assembly position, where several operations can be carried out at one location. 

• Production tool/resource 

This is the lowest level of information, where the manufacturing process data is 

identified. Data is collated in a general format, but is identified as being either a 

resource (operation) or tool (aid). All data necessary for individual process identification 

is required at this level. 

• Transportation 

The transportation mode for the site is classified as being either cellular or factory level. 

In both instances the option is given to select the mode from a list of options. 

Differentiation is given to the separate levels of the model to allow for automation or 

sequencing of operations to occur. 

• Labour 
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Manual operators are classified at the workstation level, relating the operator to the 

processes within a workstation. The operator is classified under the tool heading within 

production resources, combined with the appropriate cost rate. The reason for this is that 

an operator is an aid to the process. 

The function of the model is to know the location of any operation, within the site. Then 

relate that to other operations within the site, depending on the parameters of the 

assessment. It is therefore important to have a confirmed structure to the model that 

allows transference of data. The ground level site retains the base geometry and all other 

levels refer to those Cartesian co-ordinates. Figure 4.3 illustrates the hierarchy of the 

generated manufacturing process model. 

Site 
Building 

~-------------------------------. 

Floor 
"-c~e~I~I/L~i-ne----------------------, 

"vv~o~rk-s7ta~t~io-n-------------, 

Process Tool 

Figure 4. 3: Factory M od.e.l ttie/IJ.fG'nj 

Inheritance is a vitally important factor within the manufacturing process data model. It 

is a method of reducing the information required for any given assessment by 

identifying objects in relation to larger entities. As indicated (Figure 4.3) a Floor is a 

subset of Building, therefore it may be said that Floor is inherits Building as an 

identifier. Later assessment will emphasise the structure of the manufacturing process 

data model. 

4.4.3 Factory model implementation 

The site infmmation forms the root for the manufacturing process data model. Firstly 

the site level is used to identify the manufacturing process data model (Table 4.2). 
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Information concernmg the geographical position of the site IS used for the 

manufacturing process data model name, in addition a parent identifier is used to 

illustrate if this site is part of a larger company. 

Table 4.2: Site level implementation 

Field type Field Name 
String (site name) Name - Identifier for single site 
String (global name) Parent - Identifier for grou_p of factories 
String (town/city) Location - Geographical location of site 
String (global name + location) Database - Individual site database 

The Building level inherits the site name as the parent for each specified building (Table 

4.3). The additional information given is used to position the building within the 

confines of the site, for internal transportation reasons. 

Table 4.3: Building level implementation 

Field type Field name 
String Name - Building identifier within site. 
String (site name) Parent - required for inheritance of family structure. 
Double (units in fractions of X extension - high level identifier for time and cost 
metres) calculations. 
Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer (metres) X co-ordinate - Geographical position within site, 

required for internal transportation considerations. 
Integer (metres) Y co-ordinate - Geographical position within site, 

required for internal transportation considerations. 
Boolean (True/False) Availability- consider building for assessment. 
Integer Buildings - Identifier to indicate number of buildings 

including those not available. 

The third level that makes up the factory model is the Floor level (Table 4.4). As 

indicated earlier this level is implemented for buildings that have more than one floor. 

The information required is much the same as for the factory level as it identifies the 

location of the floor within the building and the size. 
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Table 4.4: Floor level implementation 

Field type Field name 
String Name- identifier for assessment 
String (building name) Parent- required for inheritance of family structure 
Double (units in fractions of X extensiollll - high level identifier for time and cost 
metres) calculations. 
Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer (metres) X co-ordinate - Geographical position within building, 

required for internal transportation considerations. 
Integer (metres) Y co-ordinate - Geographical position within building, 

required for internal transportation considerations. 
Boo lean (True/False) Availability- consider floor for assessment. 
Integer Floors - Identifier to indicate number of floors 

including those not available. 

4.4.4 Cell model implementation 

At the cellular level, the manufacturing process data model needs to differentiate 

between those processes that are grouped by process, and those that are grouped by 

product. The line classification that is adopted as a sub-division of the cell where 

subsequent operations are grouped together is dealt with separately. At the cell level the 

information required enables grouping to be specified, and the floor parent is 

automatically inherited (Table 4.5). 

Table 4.5: Cell level implementation 

Field type Field name 
String Name - identifier for assessment 
String (cell name) Parent - required for inheritance of family structure 
Double (units in fractions of X extension - high level identifier for time and cost 
metres) calculations. 
Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer (metres) X co-ordinate- Geographical position within floor, 

required for internal transportation considerations. 
Integer (metres) Y co-ordinate- Geographical position within floor, 

required for internal transportation considerations. 
Boolean (True/False) Availability- consider cell for assessment. 
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CeBis - Identifier to indicate number of cells including 
those not available. 

In conjunction with this, the line classification identifies the line within the cell (table 

4.6). The information required to form a line is the same as that of a cell, the benefit 

being that the main factory is able to define the type of process grouping. 

Table 4.6: Line level implementation 

Field type Field name 
String Name- identifier for assessment 
String (cell name) Parent - required for inheritance of family structure 
Double (units in fractions of X extension - high level identifier for time and cost 
metres) calculations. 
Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer (metres) X co-ordinate - Geographical position within the cell, 

required for internal transportation considerations. 
Integer (metres) Y co-ordinate - Geographical position within the cell, 

reguired for internal transportation considerations. 
Boolean (True/False) Availability - consider line for assessment. 
Integer Lines - Identifier to indicate number of cells including 

those not available. 

4.4.5 Workstation model implementation 

Like the cell level above there are actually two levels to the implementation. At the 

workstation level, as described earlier, the workstation is a collection of resources and 

tools. Alternatively it can be a singular resource or tool. The information contained at 

this level identifies the position within the cell/line hierarchy and identifies the number 

of resources and tools within this level (table 4. 7). The benefit of identifying the number 

of resources at this level is to aid the main factory in later assessment. 

Table 4.7: Workstation level implementation 

Field e 
String 
String (site name) 
Double (units in fractions of 
metres) 

Field name 
Name - re uired for assessment 
Parent - re uired for inheritance of famil structure 
X extension - high level identifier for time and cost 
calculations. 
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Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer (metres) X co-ordinate - Geographical position within the cell 

or line, required for internal transportation 
considerations. 

Integer (metres) Y co-ordinate - Geographical position within the cell 
or line, required for internal transportation 
considerations. 

Boolean (True/False) Availability- consider workstation for assessment. 
Integer Workstations- Identifier to indicate number of cells 

including those not available. 

The base level of the classification is the actual resource and tool implementation (table 

4.8). The attributes used at this level identify the functional behaviour of the operation 

in terms of cost rate, standard quality of the operation and production rate of the 

operation. These are the core values required for assessment. Other information that is 

required at this level identifies the operation position and availability. 

Table 4.8: Resource/Tool level implementation 

Field type Field name 
String Name- Assigns resources to assessment parameters 
String (workstation name) Parent - required for inheritance of family structure 
String Function - Numerical value added to general name to 

uniquely identify resource, in the event that multiple 
identical resources are within the same workstation. 

String Company - Make of manufacturing process 
String T_ypeclass - family class, for example sand casting 
Integer (metres) X co-ordinate - Geographical position within the cell 

or line, required for internal transportation 
considerations. 

Integer (metres) Y co-ordinate - Geographical position within the cell 
or line, required for internal transportation 
considerations. 

Double (units in fractions of X extension - high level identifier for time and cost 
metres) calculations. 
Double (units in fractions of Y extension - high level identifier for time and cost 
metres) calculations. 
Integer Power- Value used for cost assessment (Kw) 
Boo lean (True/False) Availability- Consider manufacturing process for 

assessment. 
Integer(%) Utilisation -Projected value supplied by user for run-

time operation (percentage). 
Double (£/hr) Cost rate - Figure used for cost assessment 
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Double (~tm) Roughness - value adopted for tolerance assessment 
against required finish ofproduct 

Integer Quality - Scrap rate value assigned to process. 

All information stored is process specific and is required for individual analysis. Each 

operation inherits from the generated manufacturing process class structure. This 

structure refers to processes that are related by operation. Initially operations can be split 

into different families. There are four main families; casting, cutting, forming and 

fabrication. Each family has subdivisions grouped by type of operation, where each 

operation is a method of manufacture. Due to the time and resources limitations of this 

thesis, it has not been possible to compile a comprehensive database of operations. 

However a full classification of the available manufacturing processes has been included 

to illustrate the different operations available during assessment. 

Casting operations 

To start with casting (Figure 4.4), the class structure identifies three main types of 

casting operation, each of which have different core characteristics. Those operations 

presently available are highlighted in bold. Permanent mould casting refers to all casting 

operations that retain a die after use. The mould complexity and quality are less than 

other forms since moulds have to be aximetric, but production rates are faster. 

Permanent pattern casting uses a double of the final product as a pattern for an 

expandable mould. This method is cheap and has good integrity, but production is slow. 

The third form has expandable mould and pattern; this enables high complexity to be 

designed into the original mould. Generic considerations for casting refer to the 

minimum and maximum weight. 

76 



Manufacturing Process Data Generation 

I Casting L _J Permanent mould L _.. Continuous casting 
___., Gravity die casting 
~ Pressure die casting 
___., Squeeze casting 
__.. Centrifugal casting 
___., Injection moulding ,_. Rotational moulding 
____.. Compression moulding 

~ Permanent pattern Sand casting 
Shell casting 

-1 Expandable mould andJt Investment casting 
pattern Ceramic mould casting 

Evaporative mould casting 

Figure 4.4: Casting hierarchy 

Cutting operations 

To consider cutting operations (Figure 4.5), the considerations required for cutting 

analysis are different than other operations. Firstly, the thickness of the material needs to 

be considered; secondly the volume of the raw material is required. There are two 

formats of cutting specified, electro machining and mechanical machining. 

Electrochemical and Electrical discharge machining (as highlighted) have been 

modelled by this research. Mechanical machining has many sub-categories, including 

CNC machining, milling and grinding, in addition to the basic formats illustrated. 

Detailed assessment of mechanical machining operations during design, encompassing 

tool selection and machining cycle times have been considered within other research, 

performed by the Design for Manufacture Research Group, and was not therefore 

closely investigated for this work. 
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Cutting Electrochemical machining 
Electrical discharge machining 1 

Electromachining 

~Mechanical machining f--E 1--~--S-i_n-'g-le_p_:_o_i_n_t c_u_t-ti_n--=g=--~-J 
Multiple point cutting 

Grinding/hopping/lapping 

Figure 4.5: Cutting hierarchy 

Forming operations 

When considering forming operations (Figure 4.6), the initial consideration is for the 

size of the raw material, and is an operation capable of processing a given volume. 

Where Sheet Forming operations are used, consideration has to be given to corners and 

edges since considerable radii have to be allowed during processing. With bulk 

processes, extra consideration is required during design concerning the strength of a 

forged part against a cast or mechanical machined operation. The manufacturing 

processes considered during this research are highlighted in bold. 

Forming ~~ ______ S_h_ee_t ____ ~ 

Bulk 

Powder processing 

Figure 4.6: Forming hierarchy 

Fabrication operations 

Sheet metal forming 
Vacuum forming 

Blow moulding 

Superplastic moulding 

Forging 
Rolling 

Extrusion 
Drawing 

Slip casting 

pressing and sintering 

isolastic pressing 

Assembly operations are complex procedures to model at the conceptual level. A 

designer may know what a product or part is going to look like. That product can then 

be modelled through primary processing and secondary processing. However it is 
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difficult to model assembly operations, without first confirming the primary operations 

and material. Fabrication methods have however been included in this analysis to show 

what options are available for assembly. Primary assembly methods can be modelled as 

welding, gluing and joining operations (Figure 4. 7), to allow rough assessment. These 

methods however have not been included as part of this thesis. 

Fabrication ~~ Fusion welding ~r- Electric arc welding 

f-1!> Gas welding 

1-~~> Laser welding 

4 Electron beam welding 

H Solid state welding t Forge welding 

Friction welding 

Diffusion bonding 

~ Gluing JE Adhesive bonding 

Brazing 

Soldering 

-· . . . .. 
~ MechanICal JOining r~L_ __ R_IV_It_m_:g=--/_c_nm__.:_p_ln--=g:____J 

Figure 4.7: Fabrication hierarchy 

For any given process, there are several mechanical attributes that are modelled. These 

include the minimum weight of a casting, moulding or billet to allow operations to be 

removed from consideration if the material is outside the process limitations. Similarly 

the maximum weight is used to discriminate the assessment at the opposite end of the 

scale. These values are not machine specific, and therefore simplify the data to consider. 

Additional attributes refer to the production of an operation, the tooling cost of a die or 

mould, the down time required to change a tool and the optimal batch size between tool 

changes. The permissible material classes for the specific operation are also listed for 

consideration prior to assessment. A full listing of the operation attributes modelled 

within this thesis can be found in Appendix A. 

In addition to the manufacturing process data models presented, limited data referring to 

the general capabilities of processes were stored within separate class files. The 

information stored at this point refers to the optimal batch size, the processing 

capabilities of the operation and will be discussed further in Chapter 5. 
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4.5 General Considerations of Outsourcing 

The integration of suppliers into the process selection phase of product development 

greatly increases the process capability options. These options should therefore be 

embraced as viable alternatives during design. There are many different reasons for 

using suppliers to outsource components, sub-assemblies and products. The main 

reasons being that either the required demand is too great for the capabilities of an 

internal operation, or the process required is not available at the given location. 

Alternatively processes in-house may already be used for jobs and outsourcing is 

required to fulfil the demand within the required time period. In any given situation 

alternative options should be considered. 

4.5.1 Supplier Relationships 

The relationship between the supplier and customer is a complex and important 

consideration in supplier selection. The two types of supply chains, internal and 

external, are explained in chapter 1. Where internal suppliers are considered to be 

partners or associated companies and external suppliers are considered to be 

unconnected companies. The main objective of internal and external suppliers is the 

same, that is, to return a quality product at an agreed process within a set time frame. 

Close working relationships or collaborations between organisations has been shown to 

facilitate improved flexibility and performance. The manufacturing process database 

information requiring supplier details such as operating hours, factory overhead and 

locations are specified in chapter 5. 

4.5.2 Suppliers and Subcontracting 

It is the general principle of the SCOPE system to model manufacturing processes 

within suppliers and subcontracting companies. It is an important element of this 

research to accept that different suppliers have varying manufacturing capabilities (see 

figure 4.8), utilising a diverse range of processes and technologies. These companies 

may vary greatly in size and sophistication, and retain different amounts of data 

referring to machine capability or performance. 
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Second tier supplier First tier supplier 

Supplier A 
(raw material) 

> Sub-Assembly 

Supplier B 
(secondary process) 

v1 
Main company 

Supplier C 
~ Metal fabrication 

(raw material) 

Supplier D 
~ Paintshop 

(raw material) 

Figure 4.8: Supplier diversification 

It is the intention of the manufacturing process database to illustrate a generic approach 

to accommodate both basic data input and specific manufacturing process details. It is 

essential that the proposed manufacturing process database be applied consistently at 

each supplier location. The SCOPE software adopted within this research has been 

outlined within Chapter 3 and the information required is presented therein. 

4.6 Existing Process Cost Methods 

Two basic manufacturing process cost models are identified as feature recognition and 

shape complexity (see chapter 2 section 2.6.3). Feature recognition separates the 

component into the individual features that create the fom1, and shape complexity 

identifies the approximate form, i.e. cylinder or prism, and by means of a complexity 

matrix. 

The process selection technique follows the basic principles set out in previous work by 

Taylor, Alien and Swift (1990) and later by Esawi (1994). The principles of process 

selection are the identification of the raw material, clarification of the basic form of the 

component and assessment of applicable manufacturing processes. These methods have 
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previously been used for process cost analysis and have been found to have reasonable 

accuracy for basic process costing (Alien and Swift, 1995). To further this work these 

methods have been adapted and remodelled to accommodate the data compiled by 

SCOPE. Additional considerations are given to the external supply chain and those 

features that make the external model unique. 

4.6.1 Limitations of Existing Methods 

Previous models have proved very successful as cost predictors for manufacturing. The 

Feature recognition model has been tailored for specific requirements, for example 

welding or machining. An example of this process cost format can be seen in the work 

of Maropoulos et al., (1998}. Feature recognition enables detailed information for each 

feature to be stored, and can be as generic or specific as the data given. With reference 

to the observed work of Maropoulos, this method has been adopted for specific 

processes, and is focused towards automated process and tool selection. Feature 

recognition enables process models to be compiled by features. Feature combinations 

that are not possible by a given manufacturing process are identified. An example might 

be Blow Moulding, where an internal surface profile features is not possible. Therefore, 

any specified feature combination, where an internal feature is required would indicate 

that Blow Moulding was not a suitable manufacturing process. 

Alternatively, models based on the Shape complexity, such as tubular or prism forms are 

process independent, but do not easily facilitate automation. Originally developed by 

Alien and Swift (1990) and later adapted by amongst others Esawi (1994). Shape 

complexity refers to a chart method for determining the form of a part design. Operator 

recognition of the Shape complexity is required, and although there are quite specific 

guidelines and descriptions to facilitate Shape complexity selection, there still allows an 

element of interpretation. This in itself is not a repeatable process, since the designers' 

interpretation of an objects complexity may vary slightly. Using the basic theory that 

there are three basic forms: round, square and thin walled, the analysis is based on the 

features associated with the base form. 
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Part envelope is largely a solid of revolution 

I Part envelope is largely a prismatic solid 

[l I 

L Flat or thin walled section component 

L 
A second criteria base for the decision is thus: 

Basic Features 

Secondary Features 

Single axis 

Multi-axis Features 

Non-uniform 

Features 

Complex Forms 

Through Features 

Straight forward processing where the operation can be carried 

out without a change of setting or the need of complex tooling. 

Parts are usually uniform in cross section 

As above, but where additional processing is necessary or more 

complex tooling is required 

This is usually the axis along the components largest dimension, 

however, in the case of cylindrical or disc shaped components, it 

is more convenient to consider the axis of revolution as the 
. . 

pnmary axis 

Parts require to be processed in more than a single axis/set-up 

Parts require the development of more complex processing 

techniques/set-up 

Parts need dedicated tooling and the development of specialised 

processing techniques 

Features which run along, across or through a component from 

one end or side to the other 
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The complexity criteria can therefore be described as single/primary axis, multi axis and 

complex forms. The minimal amount of required manufacturing process information 

enables this forn1at to be adopted for rapid process cost assessment, but requires 

considerable user intervention. 

It was considered not viable to directly adopt either of the previously stated 

methodologies of Shape complexity or Feature recognition, since the outline to this 

research specified both a rapid process cost assessment and an automated assessment. 

Alternatively, an amalgamation of the knowledge and procedures would be critical in 

any further developments. The information required for analysis is not specific enough 

for automatic assessment and the variable coefficients are too subjective. However it is 

important to identify those ideas that have been adopted to formulate the process 

selection method. 

4. 7 Process costing 

Before describing the main body of the process costing, there are several parameters 

that should be illustrated. These include the method of shape generation, either shape 

complexity or feature recognition, and material or process selection. The decision of 

whether to first specify the material or process will play an important role in the 

subsequent decision choices. This can be described as the 'chicken or the egg' question, 

but is required to format the structure of a process selection model. Additionally, 

external factors that influence the cost of production, including the factory operating 

cost, external and internal transportation costs. 

4.7.1 Costing Elements 

The proposed method has a different criteria base from previously stated methods of 

Swift and All en (1995), and Taylor ( 1990). Existing methods have been adapted to 

model internal processes, where detailed process information is available, the internal 

capabilities are known. Additional consideration needs to be given to other factory 

factors that will influence the cost of a part. These can be summarised as: 

e The operating cost for a given operation. 
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e The economic batch size for a particular manufacturing process 

e The external transportation batch size and transportation frequency necessary to 

fulfil the demand. 

e The internal cellular level transportation cost and time 

e The internal factory level transportation cost and time 

e The generic operating costs associated with the factory 

As explained in Chapter 2, section 2.4.1, linear programming techniques were adopted 

to compile the costing for process selection. This in turn required the factors that 

compiled to form the costing method to be separated. This included material costing, 

process costing and transportation costing. Material costing was the first element 

(4.1) 

Where, Me is the material cost per part (£), DM the density of the chosen material 

(kg/m3
), V the volume of the required form (m3

) and Re is the material cost (£/kg) 

multiplied by the waste coefficient (dimensionless) to give the actual cost (£/kg). 

This format allowed material density to be adopted as the controlling factor, and 

consequently material cost is calculated by the standard kilogram rate. The volume is 

obtained from the required product model, which quotes the volume as a standard rod, 

cylinder or prism. Consequently, material cost-rate is quoted in each format since there 

are small discrepancies between the costs of material in raw material form. The 

complete materials database adopted within SCOPE is detailed in Appendix B. 

After the parameters of application have been set it is time to consider the actual 

processing cost. To determine the actual processing cost it is first important to determine 

the variables required for the result. Questions like, what is the number of required 

parts? Significantly influence the calculated cost. Also what are the capabilities of the 

selected processes? 

The hot size batch refers to the optimal number of batches suggested for a specific 

process and the required quantity. This value is based on the number of parts which can 
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be produced per set-up or tooling change. By dividing the quantity by the hot size (Ho) 

(see equation 4.2), required number of set-ups is given. If the quantity does not divide 

equally between set-up and tooling batch sizes then an additional set-up or tooling 

change would be required to accommodate the surplus. An integer is added to the 

equation to ensure that the hot size is equal or greater than one. 

H,=(JL)+l 
Ho 

(4.2) 

Where, Hn is the number of tooling changes required for a given quantity. The number is 

rounded up to the next integer value, Q is the quantity of required parts and Ho the 

number of operations between tool or die changes. The addition of one is required to 

increment the number of number of batches, since the integer value of Hn is always 

taken. 

The actual production rate relates to the optimal production rate, as indicated by the 

process, and relates this to the required features. Depending on the process family and 

the required features, the production rate is manipulated to reflect realistic conditions. 

Production rate, Pa (parts/sec.), is given by: 

p = P, 
" H 

11 

(4.3) 

Where, Psis the ideal production rate (parts/sec.) for the process and Hn the number of 

set-ups required for a given quantity. 

The production time required per process per part can be calculated as follows: 

Tp = _1 + ( H, X~ J 
pa Q 

(4.4) 

Where, Tp is the required process time per part (sec.), Q the quantity of parts, Pa the 

actual production rate (parts/sec.), Hn the number of required batches and T, the tooling 

time for each set-up (sec.). 

To consider this as the actual factory time would be unrealistic. Additional 

consideration needs to be given to internal transportation. To do this, firstly the mode of 
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transportation needs to be considered. Any mode has a given cubic capacity for load, 

and a transportation time and cost rate associated with its progress. Equation 4.5 

therefore expresses the internal transportation time considerations per part. 

(4.5) 

Where, lp is the required internal transportation time per part (sec.), Vp the total volume 

of parts (m\ ITv the maximum volume of transportation mode (m\ ITd the distance 

between two processes of process and storage (m), and ITs the internal transportation 

mode speed (m/s). 

The principal factors required for process costing are almost complete. The final 

consideration is the factory operating cost. This consists of the operating overheads i.e. 

heating, lighting and paperwork, and the profit margin. 

Tooling costs are the costs involved in making the tools, dies, moulds, patterns and 

special jigs and fixtures necessary for manufacturing a product or component. The 

tooling cost is greatly influenced by the selected production process. For example, if a 

part is to be made by casting, the tooling costs for die-casting is higher than for sand 

casting. Similarly, the tooling cost in machining or grinding is much lower than that for 

powder metallurgy forging, or extrusion. In machining operations, carbide tools are 

more expensive than high-speed steel tools, but tool life is longer. If a part is to be 

manufactured by spinning, the tooling costs for conventional spinning is much lower 

than for power spinning. Tooling for rubber forming processes is less expensive than 

that for male-and-female sets used for drawing and stamping of sheet metals. High 

tooling costs on the other hand, can be justified for high-volume production of a single 

item. As stated previously, the expected life of tools and dies and their obsolescence 

because of product changes, are also important considerations. 

Fixed costs include the costs of power, fuel, taxes on real estate, rent, and insurance, 

and capital, including depreciation and interest. The company has to pay these costs 

regardless of whether or not it made a particular product. Thus, fixed costs are not 

sensitive to production volume. Capital costs represent the capital investment in land, 
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buildings, machinery, and equipment and represent major expenses for most 

manufacturing factories. 

The factory cost per part is expressed in equation 4.6. 

(4.6) 

Where, Fr is the factory cost per part (£), Tp the total processing time per part (sec.), JP 

the internal transportation time per part (sec.), F1 the standard factory cost rate (£/sec.) 

The processing cost as shown in Equation 4.7 can therefore be described as the 

accumulated material and process attribute costs. 

(4.7) 

Where, Cp is calculated cost per part(£), Me is the total material cost per part(£), Fr the 

total factory cost per part. 

The presented process costing considers the process at the factory level, and does not 

consider external transportation considerations. 

4.7.2 State of the Art manufacturing operations 

When considering existing manufacturing operations, it is important to explore all 

manufacturing options. To extend this principle further, the idea that it is possible to add 

new technologies to an existing facility would add a new paradigm to a factory. The 

ability to perform "what-if' scenarios would then be possible, utilising the existing 

operation and new processes. The fundamental idea would be to indicate what the 

effects of new processes and teclmologies would be on the production rate, cost rate and 

utilisation of a factory. Hypothetically, this information could then be used to negotiate 

future customer contracts, based on the proviso that the supplier was to adopt the new 

technology. 

The concept of attaining a distributed supplier network of factory data is a novel 

element of this research. It is possible to accommodate this idea into the schematic of 

the SCOPE system by integrating a function to allow the addition of new processes into 

the final analysis. This function will require process manufacturers to publish individual 
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process characteristics on a designated web site, for the SCOPE system to v1ew. 

Practically this is not manageable with the given time and resources, SCOPE will allow 

the manual input of process characteristics during assessment. 

4.8 Summary 

It is proposed that the data generation and process selection method outlined within this 

chapter will enable operations within the extended enterprise to be modelled using 

generic process data, during the early design phase of product development. The novelty 

laid out in section 4.7 has highlighted that existing methods for process planning and 

selection have been limited to a singular factory process or group of processes. The 

extensions to this theory have included the evaluation of different transportation modes 

within the factory, and the evaluation of external transportation. The cost models 

presented are therefore specific to the SCOPE system. 

The information required for process selection within the SCOPE system has been 

presented herein. A process classification has been identified and described, and the 

supplementary information required for analysis confirmed. 
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Chapter Five 

Process Selection 

5. 1 Introduction 

The previous chapters explained the background information required for Process 

Selection (PS). This information included the manufacturing process data generated and 

stored at the supplier locations, and the computational system designed to facilitate the 

implementation of PS. This chapter presents the proposed PS methodology for 

suppliers' manufacturing operations. To do this the PS function is separated into 

functional tasks. Looking at the individual data manipulation steps, the process can be 

separated into three functions, 1) access the product model and store the data, 2) connect 

to the supplier manufacturing process database and format their data, and 3) combine 

this data for assessment. Additionally previous relevant work is referenced during this 

chapter to validate both the data used and to confirm the focus of this research. The use 

of PS will add an extra paradigm to early design considerations. 

5.2 Product model specification 

A product model is the generated product data model, used to describe the physical 

properties of a specified product. In particular, a product model stores geometrical and 
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functional information about a product. Information stored IS restricted to the 

geometrical domain and material type. 

Product data differs in quality of information as well as m quantity of detail from 

conceptual to detailed design. In conceptual design, decisions are made between 

alternative function structures that could meet the specification of the product. This 

determines a basic list of components and their principle attributes. It is neither possible 

nor desirable at this stage to produce a geometrical representation of the part, since this 

will depend on factors yet to be considered. At this stage, however, the developer should 

be able to make some assessment of the relative manufacturability of alternative 

conceptual design options, in order to select the most appropriate. 

In embodiment design, the component or the product is designed in more detail by 

mapping the functional requirements of the product onto particular features of the 

component. The key functional dimensions of the component are identified as 

parameters in the product model and the desired values are determined. At this stage it 

becomes possible to produce a schematic representation of the component geometry. 

Further, there is a requirement for the assessment of the manufacturability of the 

component and identification of production processes. 

A key specification for early design consideration is that PS is a generic technology, 

intended to be applicable to a wide variety of manufacturing processes. The 

specification has been used to develop the operating procedure of the software. Other 

specifications are: 

Early Design 

Variable detail 

TI1e model must be developed to operate during conceptual 

design. 

The system must be designed to operate with the minimal 

amount of data, normally consisting of product volume, 

material, and basic geometry. 

Process identification Each process must be identified during analysis to allow for 

routing methods to be applied 

Resource selection The system must be able to identify individual resources for 
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assessment, and mark these processes such that their details can 

be retained for factory analysis 

The process plmming function must be able to identify the 

order of operation of primary and secondary processes 

The product model is required for PS assessment. The product model is loaded into 

SCOPE before the assessment can commence. The information stored within the 

product model contains all information relating to the identity and physical assembly of 

the product, and takes the following form. 

Table 5.1: Process attribute specification 

Field 

Product name 

Order number 

Component name 

Required features 

Required set-up 

Required tolerance 

Purpose 

The general name of the product is stored as an identifier 

during assessment. For a product containing more than one 

component the product name is essentially the 'family' or 

'root' name. 

This is the specific order number associated with the product, 

and is a unique identifier for the component, stored at the root 

level. 

This is the name of the specific component to be modelled, 

unlike the product name, the component name identifies the 

These are the features required to form the required component; 

multiple features are stored. 

For every feature there is an associated set-up. For machining 

operations the set-up equals the total required tool changeovers. 

For non-machining operations where all features are created 

simultaneously the set-up time is taken as one, since the 

operation is a single shot operation. 

Similar to the set-up, the tolerance associated with an 
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individual feature IS stored. There are therefore multiple 

tolerance settings. 

The number of parts required for a single assembly is stored in 

the product model. The operator suggests the actual 

manufacturing requirement during assessment. 

The material is required during process cost assessment to 

determine the raw material cost per component. Each 

component of the assembly identifies its own material. 

The geometry refers to the initial billet or mass of material 

prior to processing. This information is required for each 

identified material, and is required to determine the most 

appropriate raw material cost. 

The viable processes are those operations identified by the 

SCOPE system, in relation to the identified material. For 

example, if thermoplastic were identified as the required 

material, then casting operations would not be suggested. This 

information is required to identify those suppliers whom have 

the relevant manufacturing processes. 

After the product model has been loaded into the system the next step is to decide which 

factory to model against the data. This function is possible by opening a connection to 

the supplier factory. 

5.2.1 Assembly representation 

At the basic level, the product model can be considered as a set of interacting 

components. Simple products may consist of just a single component, whilst complex 

products consist of many levels of sub-assemblies and can include many components. 

An important feature of the product model is the ability to represent the logical grouping 

of product components into assemblies and sub-assemblies. At this level, the product 

model resembles the product Bill of Materials. When representing assemblies, the 

method of fixture must be stored. The product model recognises that assemblies may be 
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created by temporary fastening processes, or by permanent joining processes such as 

welding or the use of adhesives. Connections between components are represented using 

assembly features relations, described in addition to the features. 

5.2.2 Component representation 

When seeking to represent the product design in conceptual design stages, it is 

important to recognise that the design will have many undetermined aspects. Design 

theory suggests that the best designs are achieved when each decision is left as late in 

the process as possible since this imposes the minimum number of constraints for each 

subsequent decision. This leads to the identification of two requirements of the process 

selection model: 

• A flexible product model which allows the design to be changed easily 

e A model which can represent conceptual designs and detailed designs with the same 

object constraints 

5.3 Process selection functionality 

The PS functionality describes the requirements of SCOPE, focusing on presenting PS 

as a capability for early design consideration. The architectural outline for the SCOPE 

system can be seen in chapter 3, see section 3.3. From the specification it is possible to 

develop the functional description of the algorithm for PS. The algorithm must transfer 

the product model data, and analyse each described feature. Following the data 

encapsulation the algorithm should assess all of the suppliers' manufacturing processes 

against the product data and form a list of possible manufacturing processes. The PS 

algorithm may produce a number of alternative manufacturing options depending upon 

the level of assessment used. In summary, the level of assessment is the limiting factor 

in PS, where a constraint is put on the manufacturing processes available for evaluation. 

The level of assessment is set to only include manufacturing processes within a given 

area. For example, this area can be set to include the whole factory site or a single 

workstati on. 
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To facilitate the user, PS is operable in two formats; either automatic or manual process 

selection (see figure 5.1 ). Automatic process selection is designed to automatically 

assess and order manufacturing processes, based on the assessment criteria given. The 

results are then classified and stores for further work. Manual process selection requires 

the user to be familiar with both the capabilities of the SCOPE system and the 

manufacturing processes available. Specific manufacturing processes are highlighted to 

perform each task required by the given product model. Similarly, the results are stored 

in the same format as the automatic process selection for later manipulation. 

P1 

: 

Factory Modeller 99 

Product Model 

I 
Process Supplier A 

Selection - Factory 
Database 

+ 
Display window f----

Connect to Supplier B 
Supplier Factory Database 

Supplier N .. -
Manual PS Automatic PS Factory Database 

Internet Interface 

Sort Results by 
cost 

~ 

Save PS results 

l _______________________________________ i ------------------------------------------------------------------------------------------------

FS 

Figure 5.1: PS Overview, including manual and automatic process selection 

At each stage of the algorithm where important selections are made, the user should be 

able to view the alternatives that are available and the choices made by the system. The 

main tasks of process route generation are detailed in the following sections. 

5.3.1 Product model selection 

Before any analysis can be carried out, the required product model data is collated and 

stored, using the Factory Modeller 99 software. The information is stored within the 

Powersoft PowerJ database. It has not been the intention of this research to propose a 

new product model architecture. Moreover it has been the intention to show how the 
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product model integrated within PS can be used in conjunction with existing work on 

Aggregate Process Planning (APP) developed by the Design Manufacturing Research 

Group. The product model produced to accompany the APP work is a relational 

database of information. The hierarchical format of this model is explained in chapter 3, 

section 3.4. The APP is developed for specific manufacturing processes such as 

machining or welding, generating sufficient data to produce product routings and 

timings. The required product model as justified by the APP methodology is inherited as 

the prerequisite for PS. 

5.3.2 Material selection 

It has not been the focus of this work to integrate a comprehensive materials database 

into this research. Empirical material data is available from many sources, i.e. textbooks 

and raw material distributors, and this can be incorporated into a materials database. The 

required attributes are similar to those used in alternative process costing methods, such 

as Alien and Swift (1990), regarding material density and cost. The cost is specified to 

be a linear relationship between density and cost. The cost is based on values quoted by 

leading raw material manufacturers, for example Baco, Multi Metals and Corus for 

metals. 

This research has created a materials database of materials suitable for the available 

manufacturing processes. A complete listing of the included materials can be found in 

Appendix B. 
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Figure 5.2: Material selection algorithm 

Process Selection 

Upon selecting the material a list of manufacturing operations are provided. These 

indicate those manufacturing operations approved for assessment for the specified 

material (Figure 5.2). The manufacturing approval is guided by manufacturing process 

data, stating manufacturing methods for any material. The material and manufacturing 

method combinations are inserted into the materials database during development. 

Suitable manufacturing methods are therefore obtained from the materials database after 

material selection. New manufacturing methods or materials are added by amending the 

database, as described in chapter 3, section 3.3.2. At this point in the assessment the 

required features have not been compared with the suggested processes, neither a 

supplier connection established to view what actual processes are available. 

5.3.3 Manufacturing process selection 

To initiate the SCOPE software a password IS required. Initially the system 

administrator should be responsible for distributing access to SCOPE. After following 

the Login and product model generation sequence, supplier access can be started. The 

system requirements have been laid out in Chapter 2, section 2.4.3. After establishing a 

connection with the supplier factory, it is now possible to view the available 

manufacturing processes (see, figure 5.3). 
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\L____L____I -..--Login ___j__JI ~ 
check user database No 

Is login successful 

Yes 

Open product model 

Internet connection required 

Access supplier 

Open database 

List supplier details 

Figure 5.3: Manufacturing process data generation 

Available manufacturing processes belonging to the supplier are illustrated, however 

they are not necessarily feasible. At this stage in the selection process, the 

manufacturing processes have not been ordered by any form of sort algorithm and 

therefore will not necessarily comply with the required roughness and quality constraints 

stipulated by the product model. The information that is known refers to the process 

Typeclass. The Typeclass is the parent name of the process; an example of this is sand 

casting, which is the parent Typeclass for any specific sand casting operation. 

5.3.4 Task verification 

Task verification is required for those primary processes that do not initially comply 

with the all requirements of the product model. Consideration is given to the primary 

processes, to check the feature suitability, quality and roughness capabilities. If the 

primary process capabilities are not sufficient then secondary operations should be 

suggested to fulfil the requirements. An option that is given to the user allows the scope 

of the operation to be altered depending on the user preference. This is done by 

restricting the factory level view of the assessment. The factory levels for the associated 

processes can be applied at five different levels: 
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Site Any process combination within the same site 

Building Only those process combinations that are within the same building 

Floor Any process combination upon the same floor 

Cell Any process combination within the same cell/line 

W orkstation Only those process combinations that are contained within the same 

workstation 

For example, by setting this parameter to equal .floor, the assessment would only include 

primary operations, or combinations of primary and secondary operations that are on the 

same floor. The object of this function is to give the user the ability to reduce internal 

transportation, since a large proportion of the time spent in a factory is wasted, either by 

internal transportation or stockpiling during manufacture. 

5.4 Manual process selection 

Manual process selection is the individual selection of manufacturing processes for the 

required features, as specified by the product model. The method relies on the 

knowledge of the design engineer to make an informed decision concerning the 

combination of processes. This method does not comply with the 'process scope' 

principle indicated earlier, where the level of assessment is governed by the scope of 

application, since the method relies on the correct selection of manufacturing processes. 

5.4.1 Manual process option generation 

It is the purpose of the manual selection technique to allow full access to the supplier's 

factory, and full control over which features are proposed for each machine. Due to the 

nature of the assessment the designer would require a working knowledge of process 

capabilities, but if features are suggested for unsuitable processes then the software 

should highlight this fact. 

All supplier resources are indicated prior to assessment, but those resources that are not 

viable are indicated as being void. In addition, the factory availability at each level 

governs whether the information is displayed. For example, if a 'cell' has been indicated 
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as being unavailable, then the workstation resources within that cell will not be 

illustrated. This function allows the customer to work with those processes that are 

available. 

5.4.2 Manual process selection functionality 

Manual selection functionality allows specific resources to be assigned to each feature. 

Machines are selected directly and their sequence is fixed for the following assessment. 

Required process information is specified within the class hierarchy (see chapter 3, 

section 3.4). At each of the factory levels site, building, floor, cell/line and workstation, 

the available manufacturing processes are identified by a Boolean (yes/no) flag (see 

chapter 4, section 4.4.1 ). Initially the building level is indicated to the user, this lists all 

buildings within the given supplier site. Upon specifying a building, the floors contained 

within that building are shown. Consequently by specifying a particular floor, the 

available cells are shown. This progression also applies to the line level, and 

workstation level. At the workstation level the user has control over which 

manufacturing processes are applied to a given feature. 

The function operates by identifying the number of required features, and available 

manufacturing processes. When the user assigns manufacturing processes to required 

features a list of the combinations is compiled. Before the assessment is performed 

SCOPE inspects the given combinations to check for both feature duplication and 

operation commonality. For features that require secondary machining to attain the 

required quality, the user selects a second manufacturing operation that achieves that 

quality level. For example, the user is able to select a single feature and request a casting 

operation. It is feasible to suggest that a rough casting is produced, and secondary 

operations are required. Secondary operations, such as ~milling or machining add detail, 

additionally a polishing operation may be utilised to finish the part. The Typeclass for 

the casting operation (e.g. sand, shell, gravity die, etc.) retains a list of features feasible 

for any given operation. These features are then compared to ensure that there are no 

conflicts in the requested operations. The user is informed if a conflict occurs. 
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5.5 Automatic process selection 

Unlike manual selection, the automatic process selection method does not allow the user 

to manually indicate which features are associated with specified processes. 

Consideration is given to those manufacturing processes that fulfil the requirements of 

the given product model and constraints of the factory. 

5.5.1 Automatic process option generation 

By using the automatic process selection method the user is able to generate multiple 

results for the selected product model. A heuristic approach has been adopted for 

process generation. All combinations that fall within both the process scope and 

assessment criteria will be assessed. 

As with the manual selection, only those processes that are available at the time of 

assessment are included in the analysis. Before assessment commences the supplier 

capabilities are separated into three divisions, primary for all casting, moulding and 

forming operations, secondary for all machining operations and tertiary for all finishing 

operations such as polishing and buffing. It has been the intention of this thesis to focus 

the attention on the primary processes, but consideration has been given to secondary 

processes. 

5.5.2 Automatic process selection functionality 

The level of assessment controls the number of manufacturing operations available to 

the assessment. The level of assessment indicates whether the PS includes all 

manufacturing operations across the site, or only within a single building, or on a single 

floor and so on to only include those manufacturing processes in a single workstation. 

Once the scope of the assessment has been set, the selection function is then able to 

model the selected processes. Before any assessment has been performed the suggested 

processes are those that fit the process family classes designated by the product model 

(figure 5.4). Those processes that do not comply with the required tolerances and quality 

will be discarded from the assessment. 

If all processes within the supplier site are selected, then the assessment may take a 

considerable period of time to check and verify if the manufacturing combinations 
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adheres to the to product model quality, process features and tolerances. It is, however, 

possible for the operator to specify the preferred number of presented results, the 

automatic sequencing and ordering methods then uses this limit to present only the 

optimal results. 

5.5.3 Automatic sequei!Bcing 

Unlike the manual selection process, the automatic sequencing is carried out by the 

system. It is reasoned that primary processes occur before secondary processes, and this 

rule is applied throughout the sequencing. For primary processes that fulfil the product 

model requirements this is a simple process of assigning internal transportation to the 

processes. For primary processes that do not comply with the product model 

requirements, secondary processes are suggested to fulfil the requirement. If this is the 

case then the secondary process' capabilities have to be assessed against those of the 

product model. This in turn confirms if the required combination is viable. 
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Figure 5.4: Automatic process selection algorithm 
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5.5.4 Automatic order method 

The order method has been developed to optimise the generated manufacturing process 

result set. The method illustrated in figure 5.5 does not specify the function using the 

method. The method deletes the existing result set from view, and scrolls through the 

new result set for the minimum value. The algorithm is then recycled in ascending 

order. If two results are giving the same cost value, then it is the result that is 

encountered first that is given priority in the result classification. The number of results 

presented is specified by the operator (see chapter 5, section 5.5.2). 

Obtain the number of 
process-feature 

results 

create list for result 
classification 

create count for number 
,------------------1>1 of results, set min value 

to equal first value 

YES 

Check that value is greater 
than last result 

classification entry 

start count 

Select next process­
feature result from list 

for this loop 

NO 

Result already 
classified 

Set new score to 
equal min value for 

loop 

NO 

Is process-feature count 
'-----------..!equal to total of process-r------' 

feature? 
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Figure 5.5: Order method functionality 

5.5.5 Automatic machine selection functionality 

From a system viewpoint, SCOPE has performed a senes of tasks. The proposed 

manufacturing processes were identified, examined and evaluated. The identification 

has followed the principles laid out in chapter 4 (section 4.3). For each process the 

evaluation includes external transportation and factory costs considerations (see 

Equation 5.1 ). This is a reiteration of the process cost function presented in chapter 4 

(section 4. 7.;,equation 4.7 ), for an internal cost assessment. However external factory 

considerations have been included. 

(5.1) 

Where, C, the calculated cost per part (£), Me the total material cost per part (£), Pr the 

total process cost per part ( £:. ), Tp the total processing time for quantity (sec.), Fr the 

total factory cost per part (£), Hn the required batches per quantity, Tc the tooling cost 

per part (£), Q the required quantity and Te the external transportation cost(£). 

5.6 External considerations 

The proposed process model has illustrated the need for internal costing analysis that is 

more detailed than the basic process cost. Due to the nature of the distributed PS 

problem, external factors are fundamentally important in any eventual cost analysis. 

Different formats of external transportation have been discussed in chapter 2 (section 

2.3). The many formats of external transportation, from cycle courier to the postal 

service to a ship container, impose varying cost and time values on the process 

selection. Due to time limitations of this work, it has not been practical to model all 

formats of transport for this thesis. It was therefore considered that six common formats 

of external transportation should be moclellecl, as shown in Table 5.2. The values given 

for each fonnat are approximate values, and not entirely accurate. The inaccuracy occurs 

for example from variations in Transit Van capacity, between different makes. 
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Alternatively inaccuracies may occur from preferential rates from couriers or competitor 

rates. Real world models should therefore be based on actual courier rates supplied by 

the main factories couriers. The six presented formats have different capacities and 

speeds associated with the mode. 

Table 5.2: Transportation formats 

Mode Volume (m) Cost Rate (£/mile) 

Transit van 1.5 X 2.0 X 1.5 0.34 

Box truck 2.0 X 4.5 X 2.0 0.25 

Articulated truck 3.0 X 7.0 X 2.5 0.30 

Train 6.5 X 20.0 X 5.5 0.30 

Air 2.5 X 10.0 X 2.5 0.30 

Sea 3.5 X 20.0 X 3.5 0.30 

As explained, the values given for transportation capacity are approximations based on 

average freight geometry. In reality the weight of a cargo play as important a role in the 

cost calculation of freight as the size, particularly for air transport. Alternatively 

groupage charges for road transport are an alternative way to send a delivery. For 

groupage the cost is based on both the size and weight of the delivery, and whatever 

else is dispatched on the same lorry. Next-day delivery couriers often base charges on 

groupage. It is not possible to account for this scenario, since other deliveries are 

unknown to the main factory and therefore the external cost assessment will not try to 

include groupage. 

The calculations are however based on volume alone since it has not been possible to 

model exact transport forms, and to pick an arbitrary value for weight would be futile in 

the generic theme is this work. The method presented is thought sufficient to prove the 

concept of external transportation consideration. From the given table it is possible to 

assign a transport mode for the specified product quantity. The transportation cost 

associated with the external transportation is thus: 
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(5.2) 

Where, TP is the cost per part associated with external transportation (£), VP the 

volume of the part (m\ Q is the order quantity, VM the capacity of the transportation 

mode (m\ CR the cost rate associated with the transportation mode (£/m) and D the 

distance between the supplier factory and the customer site (m). 

5. 7 Result classification 

To permit the available results to be used for FS it is considered that a record of the PS 

results is retained. It was considered that a database be used to store the process results. 

Data from this database can be utilised in two formats. The stored results enable the 

same product model to be reassessed many times for different factories and processes. In 

addition, it enables the results to be made available for factory selection. 

The information that is required should relate to the individual process, the factory to 

which it belongs, and the manufacturing attributes considered during production. These 

attributes may include any of the Resource/Tool values obtained from manufacturing 

process database (see Chapter 4, section 4.4.5). It is therefore necessary to consider all 

factors in the eventual model and to select those values that will be of significance 

during factory selection (see Table 5.3). 

Table 5.3: Result attributes 

Factor 

Batch size 

Cost per part 

Material 

Significance 

This is the optiu)al batch size suggested by the PS algorithm 

For any PS calculation the calculated cost per part IS 

presented 

The field contains the material associated with the PS 

calculation 
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Denotes the number of days until the required quantity IS 

completed 

Internal transportation The time between the required processes and the cost rate is 

mode calculated 

External transportation The method of external transportation is presented 

mode 

Factory holding cost 

Process utilisation 

Quality rate 

Factory name 

Product name 

Order number 

Required features 

Volume 

Quantity 

Production rate 

Typeclass 

5.8 Discussion 

The cost associated with the operating costs of the factory 

The percentage utilisation obtained from the process 

The possible quality rate, as associated with the process 

The general name of the factory facility, used as a reference 

point during factory assessment 

The name given to the result set denotes the modelled product 

Identifier for product name 

The possible features as produced by the individual process 

The material volume specified by the product model 

The order quantity as specified by the product model 

The individual production rate depending upon the required 

features and the volume 

The family name given to each process to identify certain core 

attributes for process planning 

It has previously been shown (see Chapter 4, section 4.3) how process cost models has 

previously been adopted to assess either singular or few processes, but the PS approach 

illustrates the benefits of generic distributed process assessment. 

The product model and manufacturing process data required for PS is identified and the 

subsequent manual and automatic process selection methods described. Thus far the 
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work has been focused on the single site analysis. The rest of the thesis will encapsulate 

the supply chain. 
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Chapter Six 

Factory Selection 

6.1 introduction 

The Process Selection (PS) phase (see chapter 5) of this research has proved to be useful 

for identifying operations within a single site. However, it is not possible to visualise a 

companson between results from different sites or suppliers using the PS level of 

assessment. The Factory Selection (FS) chapter describes the methods used to 

manipulate the PS results in order to identify the most suitable supplier manufacturing 

processes, based on the attributes provided by the PS result set. Figure 6.1 shows the 

position of FS in the overall architecture of SCOPE and FM99. The mathematical 

techniques adopted during FS are described within this chapter. These methods are 

accompanied by illustrated examples of the user interface. Further manipulation of the 

FS function within SCOPE can be found in the testing and results chapter. 

As explained in chapter 3, FS is the second level of assessment, the first being PS, 

where PS results are required prior to FS. FS alters the preferences of the Quality, 

Delivery or Cost to suit a particular requirement. FS can be run at any given time using 

previously stored results from PS. 
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Figure 6.1: Dashed line indicates Factory Selection within SCOPE 

The results provided by the PS algorithm are a prerequisite for FS. It is the order in 

which the results are viewed that identifies the preferred suppliers. It is considered 

important to note that a PS result set contains those results pertaining to a specific 

product model and not to a single company. It is therefore possible for a single result set 

to contain solutions from multiple sources. A sorting algorithm is required to sift 

through the result set and rank the results. Following this, the results can be displayed to 

the user for additional manipulation according to their preference. 

6.2 Specification of factory selection 

When saving the results within the PS algorithm it is necessary to store the maximum 

amount of data possible to facilitate later assessment. It is considered that all data 

relating to operation capabilities and utilisation should be retained. As fourteen data 

fields are described within the PS result set it is not feasible to utilise every attribute 

during further assessment of the FS manipulation, bearing in mind that the focus of this 
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research is to present a rapid method for initial process selection. The available data 

would generate more data than is thought manageable. Rather, it is more important to 

identify those key variables of the PS result set that can be used to classify the results. 

Table 6.1 presents the PS result set identification. 

Table 6.1: PS result set identification 

Result field 

Factory name 

Process name 

Type class 

Delivery 

Production rate 

Quantity 

Total Cost 

Quality 

Material 

Features 

Volume 

Transport mode 

Factors 

Utilisation 

Attribute 

Identifies the supplier associated with the specific PS result. 

Recalls the model of the operation used in the PS assessment. 

Refers to the manufacturers name of the process. 

Returns the days required for production of the order quantity. 

Identifies the production rate of the operation. 

Given as the required order, this differs according to manual input. 

This is the total cost for a single part. 

Recorded as the scrap rate of production. 

This element is required since different materials may be considered 

for separate locations and this needs to be recorded in the final 

analysis. 

The features considered for manufacture confirm that the analysis is 

correct. 

The volume of raw material required. 

Identifies the method of external transportation. 

Returns the internal factory considerations, including transportation, 

operating costs and storage costs. 

Records the optimisation of the operations, if processes are not fully 

optimised then a percentage utilisation is recorded. 

6.2.1 Attribute selection 

It is considered important to select those factors that are going to influence the users 

decision during FS. The questions that need to be answered are; how many factors need 

to be integrated into the FS manipulation? And, 'N'hy include those factors in the FS 

manipulation? 
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It is critical to identify those essential factors required for factory rationalisation. The 

primary factor that should be included is Total Cost, based on the requirement that cost 

is critical for all rational manufacturing process assessments, i.e. when time is a priority. 

In particular circumstances it is appreciated that the cost is not the governing factor and 

therefore other factors are required that would influence the user decision. Factors 

relating to the Order Quantity and Production Rate may influence the assessment 

because they control the Delivery time. However, since all PS results do not have the 

same initial Order Quantity, it is recognised that the ProductionHate is reflected in the 

eventual Delivery and therefore is deemed less influential than Delivery. Quality also 

contributes to the assessment by virtue of the required value specified by the product 

model. The Quality tolerance required for a product is considered critical to process 

assessment. It is possible for a process to have a rapid Delivery time and a competitive 

Cost, but if the Quality is poor, then further consideration is necessary. It is considered 

that the Transportation Mode, which highlights the external movement of parts, is not 

critical to FS results. This is based on the link between Transportation Mode and 

Delivery time, where the Delivery attribute includes the external transportation of parts. 

Features, which describe the make-up of the product prior to PS, are not relevant to FS, 

because this attribute must be acceptable to allow PS. Other attributes relating to the 

Factory Name and Process Name are not considered in further assessment, but act as 

identifiers for FS manipulation. 

It has therefore been decided to base FS assessment on the following key attributes of 

the PS result set. Quality (parts per million for scrap rate), Cost (associated with 

production of a single part on a specific operation) and Delivery (days required to return 

required order quantity). By combining these factors, the assessment techniques will not 

only be able to model the cost of production but also be able to judge whether the cost 

of an operation is outweighed by speed of delivery or improved quality. 

6.3 Factory selection functionality 

The general purpose of FS is to optimise factory results. It is therefore the function of 

FS to present these results in a structured manner, such that they can be understood and 

113 



Factory Selection 

disseminated. It was considered that the objective of FS was to present the PS results so 

that the user was able to compare multiple results from a single PS results file. Initial 

assessment should be carried out independently of user interference for an unbiased 

view. 

A direct approach is required to formalise the FS results using the PS result set. The sort 

method should present the results based on the process attributes of Cost, Quality and 

Delivery (QCD). A less formal strategy is then required to manipulate those results of 

significant importance to the user requirements. To follow this function several 

approaches are required to analyse the FS results, see Figure 6.2. 

PS Result set X 

PS Result set Y 

PS Result set Z 

Refresh PS result display 

Open Factory Selection 

Display Factory 
Selection base panel 

Any number of result sets may be opened 

Order results 

Display results 
Display manufacturing 

Select single result----. 
process attributes 

Figure 6.2: Factory selection functionality 

It is now important to clarify how the user can assess the results presented by the 

Process Selection (PS) assessment. The results are initially shown in an optimal format 

by the order method, assuming that equal importance and merit is placed on the Cost, 
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Quality and Delivery (QCD) factors. However this does not allow the user any 

interaction to prioritise these factors. Separate methods are required to allow the user to 

manipulate the data. For example, the user may be looking to optimise a single factor of 

the assessment, i.e. Cost, Quality or Delivery. This approach may be of benefit when 

attempting to minimise the cost of a product or improve the delivery of an item. 

Alternatively the user may wish to optimise the combined QCD assessment, looking at 

all the factors. This method would highlight the combined strength or weakness of the 

results. This differs from the initial order method, since the user is able to specify 

preference during assessment. 

6.4 Results rationalisation 

Using the functionality described, the first step is to rationalise the results according to 

the QCD values. The immediate problem faced during the assessment is to determine a 

way to combine and sort results that have different units of measurement. The units of 

measurement are, pounds for Cost, days for Delivery and parts per million scrap rate for 

Quality. The requirement is therefore to normalise this data and remove the units of 

measurement from consideration. 

It is important to appreciate the variation in the PS results, how different manufacturing 

processes will perform, and how this will be reflected in the distribution. The varying 

manufacturing processes may return vastly different QCD results for a single product 

model, differing additionally in quantity, material and external transportation distance 

(the later three variables are not considered during QCD but illustrate factors that 

influence the results). 

There are many statistical techniques for sorting data, but it was decided to adopt a 

normal distribution curve. Normal distribution is the most important continuous 

distribution in statistics, and the measured quantities of QCD follow a normal 

distribution (Crawshaw and Chambers, 1988). Approximately 95% of the normal 

distribution lies within ± 2 standard deviations of the mean, and approximately 99.7% 

of the standard distribution lies within ± 3 standard deviations of the mean (see Figure 

6.3). 
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Figure 6.3: Normal distribution, showing 3 standard deviations 

The standard deviation is given by, 

S= (6.1) 
n 

The deviation values for QCD are combined to give the cumulative deviation value. 

Individual result elements can either conform to the mean of the deviation, or have a 

significant deviation value (see Figure 6.4). This significant value can be either positive 

or negative depending on the individual result (for the purpose of this work, positive 

results are significantly worse and negative results significantly better). By using this 

method to normalise the data, individual criterion are equally weighted, and a significant 

difference from the mean result will be reflected in the given combined total. For results 

that have significant difference in more than one attribute of the evaluation, the 

combined result could appear average since opposing results would have a cancellation 

effect. 
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Figure 6.4: QCD Standard deviation values 

The obtained results are ranked by the order method according to the minimum QCD 

value returned by deviation. The minimum value can have a negative value for results 

that have a combined negative deviation score. For the example shown in Figure 6.4, the 

combined result is: 

-1.0+0.0+0.5 = -0.5 (6.2) 

It is then the role of the FS manipulation methods to tailor the PS results to the users 

specification. 

6.4.1 Method justification 

Normal distribution has been illustrated and described as being the chosen method for 

combining the QCD attributes of the PS results, and displaying the initial results. It is 

accepted that the data does not classically adhere to a distribution, since a distribution 

represents multiple results compiled from a single operation, and the variation thereof. 

The generated data reflects a group of results with a common attribute, the product 
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model. Within that grouping there are many varying factors that will influence the final 

result. The following lists contain related factors that compile to generate firstly the cost, 

but also the quality and delivery of a product during assessment. 

Cost 

• Manufacturing method cost rate (£/hr) • Number of operations, (number) 

• Manufacturing capacity (parts per hour) G Order quantity (number) 

e Capacity oftransportation mode (m3
) 

1 
• Number ofloads (quantity/capacity) 2 

• Internal transportation velocity (m/s) 11 Internal transportation distance (m) 

• External transportation velocity (krn/hr) • External transportation distance (km) 

• Material cost (£/kg) • Material volume (kg) 

• Factory cost rate (£/hr) e Daily operating hours (hr) 

• Tooling cost(£) • Changeover time (hr) 

• Tooling interval quantity (number) 

Quality 

Ill Specified Quality by the product model (ppm) 

Delivery 

• External transportation distance (km) • External transportation velocity (km/hr) 

• Capacity of transportation mode (m~) 3 
• Number of loads (quantity/capacity) 4 

• Manufacturing capacity (parts/hr) • Order quantity (number) 

• Factory operating hours (hr) 

It is very difficult therefore to determine a meaningful method, to sort and display the 

initial results. The results comprise various manufacturing methods that have differing 

settings. For example, these can be Order quantity, Material, External transportation 

distance or Factory operating hours. Any PS result set may contain multiple iterations 

of results, generated though different factories, using different machines, operating at 

varying rates and producing different quantities. 

1 Relates to both Internal and external Transportation mode. 
2 Relates to both the Internal and external number of loads. 
3 See footnote I. 
4 See footnote 2. 
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Solely considering QCD results as the foundation of FS assessment is feasible. It is 

argued that since the direction of the analysis will consistently tend the results in the 

correct direction, that the principle for initial assessment is justified. 

To simplify this method, linear distribution could be achieved by dividing the results by 

the mean value of the result set. The mean value however can be distorted by 

significantly high or low individual results. To combine three dimensionless group mean 

values would only exaggerate the distortion of the mean value. Altematively Cost could 

have been considered as the sole attribute for initial assessment. In doing so all results 

would be ranked in ascending order. Bearing in mind several of the attributes from the 

cost model i.e. Material, Quantity, Extemal Transportation mode etc, this has no greater 

meaning or relevance than the given model. 

Continued manipulation by the operator, using QCD optimisation and QCD reduction, 

can categorically clarify the PS results. 

6.5 Result ordering 

From the QCD rationalisation, the results are ranked according to their combined 

standard deviation value. The ordering method is a common function of both the 

optimisation and minimisation/reduction methods used to redraw the result set 

according to the new result information. 

The order method was developed to manipulate a specific PS result set. The 

functionality does not specify which FS method is operating the algorithm. Rather it 

identifies the new order of the result set as specified by the optimisation method. A list 

is supplied to the method that contains the variance of all the FS results for a given PS 

result set, the ordering method then ranks the results to that list. The method deletes the 

existing result set from view and scrolls through the new result set list for the minimum 

value. The Simplex method (see Chapter 2, section 2.3) can be applied to this method 

for searching of the minimum value. If two results are given the same QCD standard 

deviation value, it is the result that is encountered first that is given priority in the result 

classification. This is not to say that the result is thought more significant. 
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6.5.1 Product model prcsentatiolll 

After initiating the FS order method, the results will be presented to the user. For the 

user to make best use of the available information it is thought that more information 

should be made available than the QCD ratings given. For example, it has been 

explained that a PS result set is specific to a product part, not an individual result 

generation (see Chapter 5, Section 5.8). Results are recorded for different suppliers, 

using different materials, quantities and processes. The information presented to the user 

should reflect this diversity of data. A decision was required to determine the correct 

data for rational and logical assessment. Each attribute of the PS result set was 

considered, but it was not thought relevant to include all elements. At a factory level 

internal factors that are not the users responsibility, such as internal transportation, are 

of less importance since they cannot be controlled, than controllable factors such as 

material or quantity. For each of the presented results the information includes: 

o Combined - The combined display contains the factory name, the process type and 

the production cost. This is the general information page presented to the user on 

entry to the FS result identification. 

Q Material - The material cell includes the factory name and the specified material 

0 Cost - The factory name and the specified cost is combined 

• Quality- For the quality cell the factory name and the quality are included 

• Process - The process machine name and the factory are combined 

• Delivery- The required days until delivery and the factory name are given 

• Production Rate - The process production rate and the factory name are shown 

It is possible to monitor the design attributes during FS manipulation. 
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6. 6 QCD Optimisation 

In conjunction with the deviation value returned in the initial analysis, the optimisation 

feature utilises the PS result set. From the given results the optimisation separates the 

Quality, Cost and Delivery deviation values. These individual values will be required by 

the method. 

To facilitate the user, the optimisation function has been designed to graphically indicate 

the different levels of importance for the QCD functions (see, figure 6.5). A weighted 

result can be obtained to the preference of the user. 

OCD - Rating 1£1 

Figure 6.5: QCD Optimisation 

By adjusting the scroll bars for the separate options it is possible to weight the 

preference of the result set. This can either take the form of selecting a single option, 

leaving the other two as zero, thereby setting the preferred criteria at 1 00%, or by 

adjusting more than one bar to give different results. From the illustrated example 

(figure 6.5), it can be seen that Quality has an importance score of 2, equating to 25% of 

the total importance score. Cost has an importance score of 5, equating to 62.5% of the 

total importance, and Delivery has a score of 1, which is 12.5%. 

The result as expressed in equation 6.3, is then transferred to the PS result set for the 

chosen product model and then the results are altered according to the updated 

information. 

R = Lf(Q+C +D) (6.3) 
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Wherefis the percentage function ofthe optimisation. 

6.6.1 QCD Optimisation functionality 

The purpose of the QCD optimisation method is to rank the results according to 

importance. The functionality of the optimisation is to decide what values to assign to 

the deviation value. From the QCD optimisation window (figure 6.5) the importance 

score and the QCD percentage relating to the score are 25%, 62.5% and 12.5% 

respectively. The percentage score is derived from a proportion of the combined QCD 

score, given as 2,5 and 1. The individual QCD element is then related to the combined 

QCD total. 

An individual QCD element can be described as: 

(6.4) 

Where, Eoco is the total value of quality, cost or delivery. 

By rearranging the equation to equal EQ, Ec or ED the percentage value is generated. 

I Get Quality score ~ 

I Get Cost score ~ H Determine total 

I Get Delivery score }- 1 
Determine QCD 

percentage scores 

l 
Assign percentage 
scores to result set 

l 
Use sort method to 
reorder and display 

result set 
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Figure 6.6: QCD Optimisation functionality 

The optimisation process is shown in figure 6.6. The figure shows the use of the order 

method for ranking the result set. The QCD values are obtained from the optimisation 

window and then deviation techniques are applied to combine the values, determining 

the magnitude of the value in relations the re-evaluated results. Once the results have 

been passed back through the 'order' method they can be redisplayed. 

6. 7 Reduction of QCD 

Unlike the previously mentioned technique for data manipulation, the reduction 

technique does not alter the combined deviation score of the results. Instead, the results 

are removed from consideration if they fall outside the specified threshold limits. The 

limits are set by the user to optimise the number of results considered. As illustrated in 

Figure 6.7, the maximum and minimum limit values for each criterion of a specific 

product model are obtained directly from the PS result set limits. The user then reduces 

the results to suit. 

minimise 113 

Figure 6.7: QCD Minimisation 

An example would be that the delivery criteria might range from 3 to 134 days for a 

product, but the requirement is that the product must be produced within 21 days. Even 

though result information was obtained for other values, the user now has the ability to 

delete these results from view and consider those results that are left. These results are 

not removed from the result database, rather removed from the current analysis. 
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6.7.1 QCD reduction functionality 

For the minimisation/reduction function (see Figure 6.8), the maximum and minimum 

values for QCD are determined from the PS result set. Unlike the Cost and Delivery 

scrolls, the Quality scroll can be seen to have an equal maximum and minimum value, 

which are 50. This is a result of all PS results having the same stored Quality value, for 

the given example. 

Determine minimum and 
maximum QCD values 

Quality scroll bar 

Cost scroll bar 

Delivery scroll bar 

if bar status 
altered 

Remove excess 
result from order list 

Use order method to 
redraw result set 

Figure 6.8: QCD Reduction functionality 

Mil\1/t\UP\ 
For the other attributes of the given example the maximum and values have been 

assigned, and the scroll mechanism increments, or decrements the value. For the Cost 

values, the adjustment is carried out in 0.1 increments to simulate ten pence changes, 

and for the Delivery it is increments of 1, which relates to extra days. 

6.8 Summary 

This chapter illustrates the manipulation of the PS results. Initially the attributes of the 

result set were exposed, and is followed with a discussion concerning those attributes of 

the results that are required for factory selection. The optimisation and minimisation 

methods for result rationalisation have been illustrated and explained. 
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Chapter Seven 

Testing and Results 

7. 1 Introduction 

It is the purpose of this chapter to present a framework for the testing and evaluation of 

the presented methods and software. In principle this should entail a full industrial test 

programme, whilst operating as a Java application across the Internet. It is however 

impractical and naive to contemplate such a testing schedule, since any company would 

not be prepared to install a prototype software system, with limited testing and security 

onto their computer network. The creation of a secure network, adopting rigorous data 

protection, was not a practical or economic solution considering the time and funding 

given. In addition, it is feasible to consider a manufacturing network that specialises in 

particular manufacturing processes, thus limiting the testing capabilities. It was 

therefore proposed that an alternate testing programme be designed and implemented to 

evaluate the methods and software. 

It was considered that the testing would be carried out within the local network of the 

University of Durham. An artificial network of factory databases was created using 

actual data obtained from collaborating companies, for the purpose of real product 

assessment. For the purpose of the testing programme, the SCOPE system was mn 
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independently from all satellite factories. This format is preferable for the purpose of 

testing and analysis since it is not restricted to a single company network or process 

capabilities. 

7.2 Testing Aims and Requirements 

To accurately monitor the functions of SCOPE a testing format is required that will 

allow each element to be illustrated clearly, thus allowing transparency of the analysis. 

Two methods were used for the testing of the SCOPE system models and functionality: 

1. Compile the manufacturing process data and product model and test the functionality 

of the Process Selection (PS) and Factory Selection (FS) features. 

2. Present case studies of industrial data to validate the PS and FS functions. 

The generated manufacturing process data model was initially developed usmg 

manufacturing process information from Electrolux Outdoor Products, (Newton 

Aycliffe, UK). Additional testing was performed using process information from other 

facilities. 

The evaluation of the PS function is achieved by manipulating the data provided by the 

generated manufacturing process model. It is necessary to demonstrate a number of 

aspects of PS: 

(i) It can be applied for a range of product model configurations, sourced from a 

distributed network of suppliers, 

(ii) It can produce alternative production options, identifying alternative 

production methods by either manual or automatic assessment, 

(iii) The process selection is both technically feasible and realistic (i.e. no 

manufacturing constraint are violated), 

(iv) Estimated times and quality levels are sufficiently accurate, 
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(v) Process selection results are produced in a sufficiently automated way, in an 

acceptable time scale (SCOPE is intended to evaluate all initial concepts for 

production). 

Many of these criteria relate to the overall function of the SCOPE system. The FS phase 

of the system is evaluated by the manipulation of result sets generated by the PS phase 

of the SCOPE system. Again it is necessary to demonstrate a number of aspects of the 

factory selection process. 

(i) It can be applied for a variety of manufacturing operations, 

(ii) It can produce alternative manufacturing options from the same product 

design, identifying alternative supplier operations automatically, 

(iii) The factory selection manipulation methods estimate with sufficient 

accuracy, 

(iv) Results are produced in a sufficiently automated way, in an acceptable time 

scale (SCOPE factory selection is a rapid evaluation tool, so that it may be 

run many times as the design continually evolves). 

The tests that have been carried out were designed to assess the criteria by running only 

the necessary functions of the system when possible, in order to reduce the time required 

for testing. The Process Selection evaluation can be divided into stages according to the 

main planning steps: process identification, process evaluation, process selection and 

final selection. 

7.3 Generated information assessment 

Initial assessment is carried out on components that form a Lawn Mower assembly, 

designed and manufactured by Electrolux Outdoor products. Further examples of the 

product model are then generated by using the system to model components requiring a 

variety of manufacturing operations. 
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To create an aggregate product model, the selection of the positive feature is critical. It 

is possible that there will be more than one positive feature that could represent the 

basic component shape. In these circumstances, the selection of the best feature should 

be made on the basis of preserving design intent. It should be recognised that the shape 

of the positive feature will influence the possible processing options. 

7.3.1 Product Model Analysis 

The data was manually inputted to build the feature based product model. An overview 

of the model can be seen in figure 7.1, (a full product model listing is given in Appendix 

F). It can be seen that five sub-assemblies were created. The selection of the sub­

assemblies is based purely on the assembly viewpoint. It is perfectly legitimate to 

classify the sub-assemblies from a job perspective, i.e. moulding, castings and 

fabrication, or indeed to specify each component only as part of the general assembly. 

Hood 
Assembly 

Motor Cover 
Hood 

Fixing pin 
Lever 

Blades 
Cutting disk 

lmpeller 
lmpeller mounting hub 

Washer 
Motor 

Microlite 28 

Handle lower 
Handle upper 

Washer 
Knob handle 

Screw 
Cable clip 

Retainer switch box Air filter 
Switchbox lower Screw 
Switchbox upper Cap mounting plate 
Lever switchbox 

Switch spring 
Torsion spring 

Lead 
Cable (black) 

Screw 

Figure 7.1: Microlite 28 product model 

From the product overview it is possible to identify 28 different parts that constitute the 

general assembly. The overview does not indicate the quantity of each part required, but 

the full product description as found in Appendix F, describes, for example, that 8 

impeller blades are supplied as part of the kit assembly. For a total cost assessment the 

quantities of the parts required must be taken into account. 

128 



Testing and Results 

A more detailed examination of the product model highlights the detai l of information 

required for the SCOPE assessment. One of the simplest forms is the Blade (see Figure 

7.2) . The indicated method for assessment has been described as ' moulded', the vo lume 

of the raw material is therefore described in terms of a cylinder. 

Figure 7.2: Blade configuration 

An examination of the component features can be seen in figure 7.3 . It has been stated 

that the positive feature is the most important element. For the given example, the 

required material is stated wi thin the aggregate product model ; also the designated form 

of the part is associated to the material. For a thermoplastic part as specified by the 

Blade, the positive feature is described as a moulded form (see Figure 7.3). 

Blade 

moulded sf2 sf2 sf2 pia pia ppk pet pet pia 

Figure 7.3: Feature relations 

Also detailed wi thin the aggregate product model , as described by Maropoulos et al., 

(1998) are the features that constitute the part. The structure includes sj2, a ' prismatic 

curved surface with fixed profile ' that relates to both the internal and external crescent 

form of the blade lug. The origin of the feature is set to a radius. The third sj2 feature 
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relates to the profile of the blade tip. The top and bottom face profile of the blade are 

given as pfa, 'prismatic face: any flat surface'. The indent on the face of the blade is 

described as a ' pocket' , ppk. The position of the pocket within the blade is also given by 

the feature attributes . A complete machining feature classification can be found in 

Appendix D . In conjunction with these details the geometry of each feature is illustrated 

by figure 7.4 . It is the geometry of the raw material , in this instance a 'moulded' form 

that denotes the raw material volume. 

It should be noted that positive features describe the raw material blank for a product. 

Operations performed on this material are therefore termed negative features since they 

relate to the removal of material. 

' \ 
L___, 

Blade 

~ 
moulded pia 

diameter length width depth length width depth length width depth length width depth length width depth length 

Figure 7.4: Feature descriptions. 

The product model selection screenshot in figure 7.5 illustrates the details that are given 

to the user before the part is selected for assessment. It is possible to model each 

assembly-component separately and then to build a cost model of the results. This will 

be described later. 

From a system viewpoint the initial step is to load the product model into the computer. 

The Input file field remains blank for the purpose of the assessments given in this thesis, 

since the required product models are already installed into the SCOPE system. 

Operating the Open button completes initiating the transfer sequence. This 

automatically transfers the data from the source file to a database that has the 

destination file name. The format of the destination file is the same as the input file. 
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Product Model 13 

Records~ 

· Product Model Summary · 

Assemblies ooa AsserntJI 
Motor _Assembly 
Handle_Assernbly 
Switchbox_Asse rnbly 
Air_ Filter_ Assembly 

Components MOTOR COVER5106782-00 

FIXING_PINS5148122-01 
LEVER33333 

Features pho000000191 - 1 
phoOOOOOO 192-1 
phoOOOOOO 193-1 
prroOOOOOO 194- 1 
phoOOOOOO 195-1 
nhonrt(lOQI')l a~_1 

-Update_j 

Product 

I Microlite2B 

Part Name 

I HOOD 5106875-00 

Required 
Processes 

Manual Machining 
utomatic Machrning 

Injection Moulding 
Compression Moulcllng 

acuum Forming 
Blow Moulding 
Rotational Mowu:ting 
contrnuous Extrusion (Plastics) 

Special ProtQl;Sing · 

I Painting 3 
Add I Feature List: 

Quality~ ppm 

Quantity I 1 600 

Material ,_, -Th-e-rm-o-pl-a-stics 

jThermoplaslics 3 

Material Volume · 

(X) Length I 600.0 mm 

(Y) Depth I 300 .0 mm. 

(Z) Breadth I 600. D mm 

a:.~ 
qa~ 

Cancel I 

Figure 7.5; Product model selection for the Hood Assembly 

When the Destination file has been opened, either the assemblies within the model are 

indicated, or if the model has no assemblies and only parts then the parts will be 

indicated. It is then the prerogative of the user to indicate the next ftmction of the 

system. The example that has been used shows that the Hood Assembly of the Microlitc 

28 is required. There are now a number of components shown that belong to the Ilood 

Assembly. For any given component there is a list of features relating to that component, 

these have individual signatures denoting that there can be multiple features of the same 

type in a single component. 

A second example of the product model format can be seen in figure 7.6 
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Product Model 13 
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:::::J 
Add Delete I 

Product 

I Microlite28 

Part Name 
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Injection Moulding 
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Blow Moulding 
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Quality~ ppm 

Quantity I 2000 

Material ~mCiPia5t;CS 
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Marerlal Volume · 

(X) Lengtih I 90 .0 mm. 

(Y) Depth I 1 BD 0 mm. 

(Z) Breadth I 90.0 mm. 

li!!ii8J 
Cancel I 

Figure 7.6; Product model selection for the JVlotor Assembly 

At this point in the assessment there is no reference to the supply chain. The required 

material has been selected and the Required Processes are indicated, these are all the 

processes within SCOPE that are deemed feasible for the specified material. There has 

been no assessment thus far as to the suitability of the given processes to the required 

features. 

7.3.2 Factot-y Model Analysis 

For the purpose of verifying the manufacturing process data, an examination of the 

database is required to identify the validity of the processes illustrated by Factory 

Modeller 99 (FM99). A portion of the Flymo manufacturing processes can be seen in 

figure 7.7. Two buildings exist at the Flymo site, one for assembly and one for 

moulding. Proof of the facilities can be seen in the parent listing for the buildings, as 

hjghlighted in Table 7.1, a full listing of the facility being available in appendix D. 
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Site NewtonAycliffe 

i 
r 3 Moulding Building 

I .----

Floor Shop 

I 
I I 1 

I Mo:ld4 1 Mould1 Mould2 Mould3 

I 

Cell 

I 

Workstatio n Northendsection 1 Northendsection2 

I 
Resource S1000 S800 

Figure 7.7: Flymo factory overview 

Table 7.1: Factory model classification 

NAME PARENT PROPLIST VALUE 
NewtonAycliffe SITE, site, NewtonAycliffe, 

Flymo buildings 2 
Moulding BUILDING, xgeom, 201, 

NewtonAycliffe ygeom, 142, 
xcoord, 120, 
ycoord, 0, 
avail, True, 
floors 1 

Assembly BUILDING, xgeom, 100, 
NewtonAycliffe ygeom, 142, 

xcoord, 0, 
ycoord, 0, 
avail, True, 
floors 1 
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From a system perspective, at this level in the assessment a connection has now been 

establi shed between the user location and the supplier factory. Access to the available 

processes has been clarified (sec Figure 7.8). For further assessment of the Process 

Selection functi ons it is novv necessary to detail the results of the applied functions. 

;scoPE l!ll'aEI 
'File View Se~ Run Help 

Product Model: I oHJer199%0001 

PMts: 

I 8LAOE5133~69· 0U 

Material: 

• Supplier. 

~ 
·-~-·-

Features: Available procene1 for material: 

Manu;! t.t.atnuliri9 
tom3tlc ~ac tJl ni r>; 

Jnjecfion ~ooldmg 
Compression MoUIOtn_9 
·awumFormlng 

Blo·,...Mou!ding 
Rotational Moutdlllg 
Cvntmuous Extiusion \P13r;..lits} 

Figure 7.8: Summary of product model constraints. 

7.4 Process Selection 

The assessment of the Process Selection (PS) will be described herein. Simple examples 

will be used to demonstrate the ftmctionality. For easy visualisation of the PS output, 

screen shots have been used during the assessment. Three PS stages have been 

performed; process identification, process examination and process evaluation. In the 

first stage the alternative process selection options for the given product model are 

identified. These options are checked to remove those operations that have violated the 

constraints of the product model. In the second stage the operation options me identified 

and separated into the appropriate primary, secondary and tertiary steps where required. 

The third stage is the calculation of processing and set-up times for each of these steps 
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according to the relevant process model. Finally the system generates a number of 

alternative process selection results for the component using PS. 

7.4.1 Product Data 

Manufacturing operations within Flymo have formed the basis of the testing 

requirements. Actual production data has been used by the FM99 as discussed earlier 

and Flymo also supplied a product to be modelled against that data. The cost and time 

attributes of the generated manufacturing process data is specific to the Microlite 28 

lawn mower. This is the smallest of the Flymo lawn mower range, with a cutting 

diameter of 28cm. An aggregate product model has been constructed for the complete 

product, linking the individual items by the parent structure. 

Table 7.2: Microlite28 product data 

Part Description Operation Operating Base Minutes Base Cost Total Cost 

Description cost (£/hr) (deciminutes) (£/part) (£/part) 

Impeller mounting hub Moulding 11.66 0.834 0.162 

Impeller mounting hub Labour 16.20 0.140 0.034 0.196 

Impeller Moulding 18.04 0.750 0.226 

Impeller Labour 16.20 0.150 0.041 0.267 

Cutting disc (28cm) Moulding 11.66 0.750 0.146 

Cutting disc (28cm) Labour 16.20 0.120 0.032 0.178 

Blade Moulding 11.66 0.250 0.049 

Blade Labour 16.20 0.100 0.027 0.077 

Cap filter mounting Moulding 11.66 0.667 0.130 

Cap filter mounting Labour 16.20 0.150 0.041 0.171 

Motor cover Moulding 23.61 0.750 0.295 

Motor cover Labour 16.20 0.420 0.110 0.405 

Hood Printed Printing 0.800 

Hood printed Print/Pack 16.20 0.804 0.216 0.216 

Hood (basic hover) 2 Moulding 35.54 1.08 0.646 

Hood (basic hover) 2 Labour 16.20 0.280 0.076 0.716 

Switchbox lower- UK Moulding 18.04 0.325 0.098 

Switchbox lower - UK Labour 16.20 0.080 0.022 0.120 

Lever Switchbox Moulding 23.61 0.284 0.112 

Lever Switchbox Labour 16.20 0.160 0.043 0.155 
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Cord anchor bell Moulding 11.66 1.670 0.324 

mounting 

Cord anchor bell Labour 16.20 0.360 0.098 0.422 

mounting 

Pivot pin Moulding 11.66 1.064 0.208 

Pivot pin Labour 16.20 0.480 0.130 0.338 

The Microlite 28 lawn mower is described in terms of the actual processing time and the 

labour associated with that part (see Table 7.2). For the purpose of the later assessment 

an additional column is added to this table to highlight the total cost of the operation. 

For example, a 'blade' has been described in the information supplied by Flymo as 

having a moulding cost of £0.049 and a labour content of £0.027, therefore the 

compound cost has been described as being £0.077 or 7.7p each. 

7.4.2 Factory Data 

The presented example has been examined at a workstation level, such that costing 

assessment can be carried out at either a workstation/cellular level, or at a factory/site 

level. The information contained within each level identifies the process with relation to 

the factory position for transportation purposes. Additional information pertaining to the 

availability of a given level of assessment is also given. The benefit of this is to 

minimise time wasting during assessment. A section of the Flymo factory can be seen in 

figure 7.7, showing the operations that are available for later assessment. 

The analysis presented thus far has focused upon the prerequisite requirements of the PS 

assessment. Therefore since all the data is now in place the selected component can be 

modelled against the required features. 

An optimal assessment for the Hood is given in Figure 7.9. 
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figure 7.9: flood optimal assessment 
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For the specified component Hood, the Flymo data indicates that a value in the region of 

£0.71 per component is calculated. The results that are generated have a range of £0.55 

to £1.64. This includes internal and external transportation. For the purpose of the 

SCOPE analysis it is not possible to say that the cheaper options are the preferred 

routes, since variables such as the production rate may make certain options untenable. 

The FS models this function. 

A direct comparison between actual costing against calculated results for the same 

process indicates that an actual value of £0.71 compares favourably with a calculated 

value of £0.74. Compiling the material cost, production cost and the transportation cost, 

generates this value. 

The build-up of the cost model initially determines the number of required features and 

the volume of material, where the units of measurement for volume are cubic 

millimetres. The volume of the flood is 600mm x 380mm x 600mm, based on the initial 

billet size. The material mass can then be calculated from the volume and the density of 

the chosen material. For the Mower Hood application, the density of thermoplastic IS 
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given as 0.957g/cm3
. Therefore the material mass in kilograms for this part is calculated, 

(equation 4.1 ). No exception is considered for hollow parts during material calculation: 

(0.06m x 0.038m x 0.06m) x 0.957g!cm3 = 0.13 i Kg (7.1) 

From the mass the cost is generated, see equation 41: 

(0.13lkg) X ( 2.01£/kg) = £0.263 (7.2) 

To generate the manufacturing cost there are further attributes of the product model and 

manufacturing process data required. The product order quantity for this assessment has 

been 1600. A value has been created to specifY the number of hours operated by Flymo 

per day. This is set at 14, with an hourly operating expense of £16.20 per hour. This 

value covers factory overheads, lighting, heating and maintenance. 

The number of operations required to create the Hood design is, of course, process 

specific. For example a manual machining operation would require multiple set-ups to 

generate the product design, but the injection moulding facilities of the Flymo site are 

capable of single operation cycles. To determine the suitability of the design each design 

is verified against the feature table held within the process classes. If any conflicts occur 

with a single feature, such as an internal feature request for an operation without that 

capability then the operation is rejected. Similarly for multiple operations where 

conflicts may occur, such as tolerance limits, then the operations are rejected. For 

automatic machining selection, as denoted in this example, a secondary machining 

operation would have been utilised if all features could not be fulfilled. 

Following process verification, process costing is required. To use the 'like-for-like' 

process in this example, S550 _95406831794 identifies the process as an S550 injection 

moulding operation. The following 12 digit number denotes the time and date that the 

process was created. It is therefore possible to add similar S550 processes because they 

will be identified with a different time signature. With reference to the manufacturing 

process data, the process has the following attributes: 
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X Geometry (m) 2 

Y Geometry (m) 11 

X Co-ordinate (m) 2 

Y Co-ordinate (m) 

Availability (Boo lean) TRUE 

Power (kW) 550 

Quality (parts per million) 50 

Utilisation (percentage) 50 

Cost rate ( £/hr) 18.52 

Typeclass (family name) Injection Moulding 

Company (manufacturer) UNKNOWN 

Production rate (parts per hour) 80 

Roughness (microns, surface finish) 

Flexibility (adaptability) 30 

The next step is to calculate the machining cost, based on the factory operating hour's 

machine capabilities. This is given by equation 41 

((18.52 X 25) + (25 X 16.20) + (1 X 200)) 
0.263 + = £0.74 

2000 
(7.3) 

The final element of the costing assessment is the transportation requirement. For 2000 

parts delivered in a box lorry with an internal capacity 18m2
, over a distance of 15km at 

a cost rate of £0.25 per kilometre the resultant value per part is given by equation 4.5 

( 0J3} X 2000) X ( 15 X 0.25) = £0.0273 
' 18 2000 

(7.4) 

In real terms this value is negligible in this instance. 
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A second example illustrating an alternate component is given in figure 7.10. The Motor 

Cover results indicate a calculated value range of £0.37 to £ 1.39. The actual value for 

the motor cover is given as £0.41. As with the previous result, if a direct comparison is 

drawn between the actual value to the calculated value for the same operation then the 

calculated value is given as £0.40. 

Variables that are not obvious that will alter the process costing include the internal and 

external transportation. During assessment the user is asked to specify both values. At 

an internal level there are two forms of assessment, the cellular level and the factory 

level. It was considered important to specify both levels to accommodate product driven 

factory design which may have a conveyor format for cellular transportation against a 

process driven layout that may favour an Automatic Guided Vehicle for increased 

flexibility. At the cellular level there is the ability to specify the mode (which governs 

the unit capacity of the format), the cost rate and the velocity. This format is echoed by 

the factory transportation format. At an external level the cost consideration are the 

same, but it is the transportation mode that alters, this accommodates for rail, air and sea 

use. 

Any results stored during the PS assessment will retain information on whether internal, 

external or factory costs have been included in the assessment. 
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Figure 7.10: Motor Cover PS assessment 
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The combined results indicate that, "like-for-like" the PS function calculates the process 

results with reasonable accuracy. What is therefore required is an analysis of the 

alternate operations against different factory operations. 

An analysis of these results is required to demonstrate the general validity of the costing 

model against the actual values obtained. An overview of a selection of processes tested 

from the Microlite 28 product against Flymo factory data values can be seen in figure 

7 .I L The analysis of the results show that for the examples given, part 1 the Hood 

(Basic cover) 2, 2 is the Cutting disc, 3 the Motor cover, 4 the lmpeller mounting hub, 5 

the Cord anchor bell and 6 the Hood (Basic cover) 1. Additionally a comparison to the 

actual manufacturing processes can be found in Figure 7.1 2. 
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Figure 7.11: Process result comparison 
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Figure 7.12 Process accuracy comparison 

The actual ' like-for-like' machine comparisons have been given earlier along with 

complete analyses of the PS assessment calculations. These examples are accompanied 

with screen shots of the process results. The median va lue for the accuracy is given as 

1 18%. However for four of the examples the value is as close as 108% of the actual 
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value. Discrepancies within examples 2 and 4 are considered as shortfalls in the 

moulding operation of the part. The SCOPE system does not accommodate multiple 

parts into the same mould. Therefore for examples 2 and 4 which are specified as pair 

moulds the manufacturing cost would be halved. 

A more detailed look at the 'Motor cover' identifies that for the given test, the quantity 

required was given as 10,000 parts. The assessment was carried out on a factory level 

whereby no restrictions on machine use were imposed. A graph of the given results can 

be seen in figure 7.13. 

1.2 -r---

O.B 

g 
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0 
() 

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 

Result 

Figure 7.13: Motor cover results set. 

-Value gii.En 

-+-AI.Erage value 

For this result, the average is given as £0.45, where the actual value is stated as £0.40, 

the projected value being 12% from the actual value. By the examples given, it has been 

shown that this variability is feasible for the assessed products. For figures 7.9 and 7.10, 

the factory selection result sets are created. Those results identified as being if 

significant interest can therefore be stored. 
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7.5 Factory Selection 

The objective of this assessment is to rationalise the result sets as produced by PS. It is 

important to understand that at this level of manipulation there are many operations that 

may prove ultimatel y ineffective but are included for initial assessment and comparison. 

Initially the product components can be illustrated simultaneously, as seen in figure 

7.14. This facility aids lhe selection process. since it is now possible to witness the 

selected process from each supplier. 
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Figure 7.14: Multiple factory selection 
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The attributes listed enable the companson of different attributes of the product 

components. It may be essential to know the lead-time for a given machine, therefore 

the De/ive1y function will indicate the lead-time required ror the specified quantity. It is 

important to also have a Quantity attribute listed , since additional process selection 

resu lts can be gained at any time. Thus, the specified quantity may differ. 

There are other factors that will alter the presented result sets, as indicated above the 

delivery quantity issue is just one factor that is specific to a process se lection result. 
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Additionally, there is the Process and Quantity relationship, where a specified process 

can be utilised more efficiently for a different component. 

From the basic process result set view it is possible to manipulate the order of the results 

to suit the required criteria (cost, quality, delivery, material or process). Figure 7.15 

illustrates the minimisation facility that removes those result set entries that are greater 

than the desired threshold. 
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Figure 7.15: Highlighting of the minimisation function 

For the given result set it can be seen that the "combined" view is used. The limit of the 

assessment presently allows all entries to be viewable. A simple slide bar operation is 

used to alter the results. This assessment does not alter the order of the result set, other 

than removing entries. 
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-0" 

-

Figure 7.16: Optimisation rating functionality 

Further assessment that alters the order of the presented result set is given in Figure 

7 .16. For this part of the assessment the designated results set has altered to give priority 

to the ' Cost' , 'Quality' and 'Delivery' factors. 
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Finally the details that are compiled to give the process results can be illustrated, see 

Fig me 7.17. For the given example it can be seen that both internal and external 

transportation has been considered. Also this facility enables the user to identify exactly 

the required features of the product component and the specified processes. 

Additionally, a secondary feature is the ability to predict a batch cost. This cost is based 

on the required quantity and for the given example, where the component cost is £0.37, 

then the production cost for 1600 components is approximately £592. 

To aid the overall result assessment a separate feature of the SCOPE system enables the 

user to build up a Bill of Materials for a given product. Each assembly is indicated and 

the relating components can be completed. The aim of such a facility is to approximate 

the cost and delivery requirements for a given product model. 

It is more difficult to quantify the validity of results presented by the Factory Selection 

phase of SCOPE. The individual process costing; fu·(' 4 er ihe_ lo prtclvc..J-~ 

'fl"'"Sh~c:,{ (e-tvtn.ecJ c~rt C\.C.C..~,dc.".:...J tv "-,_; ,-fhll\ il'<.pfrbl( .I!V\il.tu\~ 12%.TheFactory 
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Selection results are therefore not in question, rather the order in which the results are 

given. 

7. 6 Case Study Material 

Due to recent changes in both fuel prices and government funding, the public transport 

sector is in a phase of growth. Information for the case studies has been obtained from 

Volante PTIS, a public transport interiors company based in County Durham. The 

general business comprises of decorative high-pressure laminates used for rail and bus 

interiors. Laminates are bought from a number of international suppliers, namely 

Formica and Perstorp, in sheet fonn of various thicknesses from 0.7mm to 20mm. There 

are standard sizes for material supply, 2800mmx 1290mm and 4120mmx 1540mm being 

two examples. Volante are then able to fabricate and assemble parts using CNC 

controlled woodworking routers and presses to form ceiling panels, window surrounds 

and dado panels. 

Unlike Flymo, internal process costing at Volante is based on a flat factory cost rate for 

processes and not process specific. This therefore creates problems during assessment, 

since actual quotes are not based on real time data. 

7.6.1 Case Study 1: PS for Coving panel construction 

The traditional method for panel construction of bus interiors is bonding aluminium to 

high-pressure laminate. Volante are interested in changing this construction to suit their 

expertise, and various analyses have been performed to quote for this work. The demand 

for this work from a single bus manufacturer who produces 1 0 buses per week would be 

60 panels per week. This supply doubles if the buses are double-deckers. For Coving 

panel construction it is proposed to change the construction from a veneered aluminium 

I laminate sheet to a composite laminate form. In real terms, the options available to 

Volante are vacuum forming of a laminated structure or pressing of a compact laminate. 

In either scenario this amounts to about 40 hours of work for two people per week. 

From a general assembly drawing of the part it has been possible to construct the 

required product model. The material has been described as a Fibre Reinforced 
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composite having a volume of 2000mm x 230mm x 3mm, see Figure 7.19. The material 

composition requires a multiple layer construction. For this product it would be a 3-

layer lay-up and therefore the cost reflects this composition. Additionally, the adhesive 

used between the layers should be included in the required cost rate. 

Figure 7.18: Coving panel construction 

The Process Selection assessment of the Coving panel is disclosed hereafter, it considers 

all operations capable of fulfilling the product requirements. 

Table 7.3 Coving panel assessment 

Job Resource 

Job-1 Amaspress 

Job-2 LTpress 

Job-3 Coldjig 

Capacity 

(parts per hour) 

1.5 

1.4 

0.25 

Utilisation 

90% 

90% 

95% 

Cost(£) 

21.65 

22.53 

73.75 

The results given indicate that there are two manufacturing options, either a heated 

vacuum press (Amaspress and LTpress) or a manual jig (Coldjig) developed for the 

operation and is based on the cure rate of the adhesive used in the operation. 

The material cost associated with the operation is based on a 3-layer construction 

consisting of 2 face laminate materials and a backing board. A material sheet size of 

2800mm x 1290mm, which would allow 5 panels per sheet, at a cost of approximately 
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£15.00 per sheet for the face laminate and £8.00 for the backing board is considered. 

The material cost is 

15
·
00 

x 2 = £6.00 plus, 
8

·
00 

= 1.60 equals, £7.60. 
3 5 

(7.5) 

Additionally an adhesive cost of £1.00 per panel is allowed. 

The processing cost based on the production rate of the operation in relation to the 

possible utilisation and a flat factory rate of £12.00 per hour, is given in table 7.4. 

Table 7.4: Production cost results for Caving panel 

Operation 

Amaspress 

LTpress 

Coldjig 

Production cost 

£8.72 

£9.43 

£50.40 

An alternative solution would require a different material composition and therefore 

would be considered as an alternate assessment. 

7.6.2 Case Study 2: PS for Ceiling panel construction 

A requirement for perforated ceiling panels were placed on Volante, see figure 7.19. The 

figure is an approximation of the design, but has a reduced detail level. The actual panel 

had 50 rows of holes, each containing 20 holes. Therefore the number of features 

totalled 1004, because there are the four sides of the panel to also consider. The material 

requirement is 1020mm x 740mm x 3mm. For a sheet size of 3120mm x 1540mm the 

material utilisation is 94.25%. This assessment is required to determine the most 

appropriate sheet size. At a cost of approximately £30.00 for a 3mm sheet of this size, 

the material cost per panel can be given as £5.00. More accurately the material cost is 

calculated as (equation4.t 1: 

1400 X 0.002264 X (1.05 X 1.49) = £4.96 (7.6) 
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Where 1400 is the density of laminate (kglm\ 0.002265 is the volume of the part (m\ 

the waste coefficient is given as 1.05 for CNC operations and £1.49 is the kilogram cost 

of laminate. 

This machine detail would take considerable time for a manual operation and therefore 

CNC controlled operations are required. 

0 
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0 0 

0 0 
0 0 
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0 

Figure 7.19: Ceiling panel construction (approximation). 

For the required contract the number of panels required is 1960. For the ceiling panel 

construction there are many operations to consider, these are the routing operations for 

the channels where the panel is bent and the perforation of the panel. The hot size for 

batches of panels through a CNC router is 10, that is to say that after every 10 panels the 

machine requires retooling, see equation 4.2. Therefore the required batches as given by 

the hot size is given as: 

1960 
--+ 1 = 197 batches 

10 
(7.7) 

To follow the procedure for the costing of a single machine, the realistic production 

time, as given by Pa (see equation 4.3), for a CNC router is given by (equation 7.8): 

1850 -- = 1.84 parts per hour 
1004 

(7.8) 
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Where the specified operations her hour is given as 1850, and the operations required 

for this part is noted as 1004, where this total features of the panel. Therefore it is 

possible to produce 1.84 panels per hour. 

The actual processing time requires the tooling and batch considerations to be added to 

the realistic production time, thus (see, equation 4.4): 

_1_ + ( 197 x 0.0055) = 0. 544 hrs 
1.84 1960 

(7.9) 

Where the number of batches, multiplied by the time taken to change the tooling 

(hours), and divided by the production quantity gives the actual processing time per part. 

The internal transportation consideration of the process details the distance between the 

manufacturing process and the depot or stores (see, equation 4.5). The distance is noted 

as 30m and the Forklift used at Volante has a capacity of 3m3
, and the velocity is 

2.5m/s. 

(1.02 X 0.74 X 0.003) X 22_ = 0.0091 hrs 
3 2.5 

(7.1 0) 

The factory cost is therefore the combined process and transportation times, multiplied 

by the factory operating cost rate (see, equation 4.6). At Volante the factory cost rate is 

£12.00 per hour. 

(0.544 + 0.0091)x 12 = 6.64 (7.11) 

The cost per part, for CNC operations is given as (see, equation 4.7): 

4.96 + 6.64 = 11.60 (7.12) 

The full listing of results presented in table 7.4 reflect that both the CNC operations and 

other manufacturing processes. Additionally it can be seen that operations can be split 

between processes. 
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Table 7.5: Ceiling panel assessment 

Job Resource Capacity Utilisation Cost(£) 

Job- I UXrouter 2 90% 11.60 

Job-2 Therm wood 2 90% 11.60 

Job-3 Wadkimouter 2 90% 11.60 

Job-4 Staticrouter 80% 20.00 

Job-5 Pedestal 0.8 100% 15.00 

Job-5 Staticrouter 20 12% 99.60 

Job-6 Pedestal 0.8 100% 15.00 

Job-6 UXrouter 20 10% 120.00 

From the results given in table 8.5, it can be seen that jobs 5 and 6 are double operations 

and therefore require compiling, job-5 costing £115.60 and job-6 costing £139.00. 

These results reflect the time required to manually machine the detail into the panel. 

More importantly, the utilisation of the secondary operation can be seen to be I 0-12%, 

denoting that the routing operation spends almost 90% of the production time for this 

job unused. 

Production costs associated with the methods can be seen to vary drastically between 

manual and automated operations, and a similar difference can be seen with the delivery 

date. The results obtained were based on a required batch size of 30. 

Table 7.6: Ceiling panel result components 

Job 

2 
,.., 
.J 

4 

5 

6 

Delivery (Hours= days) 

15 = 2 

15 = 2 

15 = 2 

30 = 3 

38 = 3 

38 = 3 

!53 

Production cost 

£6.60 

£6.60 

£6.60 

£15.00 

£15.20 

£15.20 
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It can be seen that the material cost is approximately 20% of the eventual retail value. 

7.6.3 External Considerations 

The external cost consideration relating to these results is based on the transportation 

cradle required. There are a number of different standard box sizes possible for external 

transportation from Volante, each having a standard base size (1200mm x 2000mm) and 

a variable height, these include 300mm, 600mm and 1200mm. For the Coving panels, a 

300mm high box is typically used. This box would not reflect the most efficient size for 

volume to cost ratio, but it is common for the supplier to specify the required quantity 

and date for delivery. Therefore the required container is not necessarily the optimal 

container. At Volante the external cost is based in a rate of 34p per mile. Considering 

the fact that the panels are required at Wigan (approximately 120 miles (or 180km)) 

from the factory, the cost per crate is 120 x 0.34 = £40.80. The correction factor added 

to the material volume reduces the components per crate from 200 per box to 80 per box 

however the required batch quantity is 60. The transportation cost per panel is £0.68, to 

be added to the processed cost. 

7.6.4 Factory Selection at Volante 

For the purpose of eventual factory selection, the modelling of Volante as an 

independent factory is necessary, based on the presumption that the values given reflect 

those quoted to customer companies. The factory selection function is therefore feasible 

for any given customer to model new or existing parts supplied by Volante, 

independently, against the processes at Volante. The case studies presented are therefore 

legitimate for assessment. 

Viewing the compounded results (Table 7.7) highlights the differences between the 

processes used for the different operations. It is considered that from a customer 

perspective the results given allow for the evaluation of a material or process prior to 

design confirmation. 
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Table 7.7: Combined result classification 

Product Process 
Caving panel Volante Volante Volante 

Amaspress LTpress Coldjig 
£21.65 £22.53 £73.75 

Ceiling panel Volante Volante Volante Volante 
UXrouter Therm wood W adkinrouter Staticrouter 
£11.60 £11.60 £11.60 £20.00 

The delivery results shown (Table 7.8) indicate that the Coldjig method would take 

approximately 3 working weeks to produce. This value is rejected from any further 

assessment due to delivery requirements. 

Table 7.8: Delivery result classification 

Product Process 
Caving panel Volante Volante · Volante 

Am as press LTpress Cold jig 
3 days 4 days 17 days 

Ceiling panel Volante Volante Volante Volante 
UXrouter Therm wood Wadkinrouter Staticrouter 
2 days 2 days 2 days 3 days 

The case study and function material presented has illustrated the diversity of the 

SCOPE system for moulding, forming CNC automatically controlled machining and 

manual machining operations. It is considered that this is a suitable range of processes to 

test the methods properly. The main family of operations not presented herein is casting, 

the factors considered during the assessment are similar to those adopted during a 

moulding operation. Therefore it is assumed that casting operations would behave in a 

similar fashion to moulding operations. 

7.7 Summary 

To conclude, the testing and evaluation of the proposed methods have been undertaken 

through the development of SCOPE. It has been demonstrated that SCOPE is capable of 
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generating , _process plans from the given resources model data and that these 

plans are feasible. The PS function of the SCOPE system has illustrated the ability to 

calculate to a reasonable confidence level, process results that are comparable with 

values observed in industry. Additionally, the FS phase of the assessment has proved a 

useful aid in identifying suitable supplier processes, based on control factors such as 

cost, quality and delivery. 

It was unfortunately not possible to test the system in a working design environment 

where real-time design changes could be rapidly assessed and therefore no firm 

conclusions can be drawn as to the feasibility of such a system as part of an integrated 

concurrent engineering system. 
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Chapter Eight 

Discussion and Conclusions 

8. 1 Introduction 

It has been the intention of this work to illustrate the value of supplier capabilities 

during the evaluation of an initial design. The framework for the assessment of 

manufacturing operations of the extended enterprise during early product design IS 

illustrated through the implementation of the computer software system, SCOPE. 

The objectives of this research, as stated in Chapter 1, section 1.6, were as follows: 

1. To assess previous methods used for the generic process selection problem and 

outline process selection requirements for the extended enterprise. 

2. To develop a manufacturing process data model to accommodate genenc 

manufacturing process information. The manufacturing process families of casting, 

moulding, machining and fabrication should be represented within the system. 

3. To develop methods for Process Selection of the supply chain using the defined 

manufacturing process data model and to expand the Factory Selection method. 
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4. To implement the methods for Process Selection. It is proposed that this should 

include a factory model generation package for developing new factory 

manufacturing process data models. 

5. To evaluate the implemented Process Selection and Factory Selection methods using 

data gathered from industrial collaboration. 

8.2 Discussion 

8.2.1 Existing work 

A comprehensive review of published literature has been presented, discussing the main 

topics of investigation. Supply Chain Management was identified as a key element of 

this work, the most relevant topics being supplier integration, physical distribution, 

capacity and flexibility. In particular, it was proposed that the identification of 

manufacturing processes during early process selection would add a new paradigm of 

flexibility to product development. It has been stated that much of the work relating to 

supply chain management was strategic, and models were presented to demonstrate 

structured supply chain configurations. Additionally, supplier integration was said to go 

beyond the purchasing and supply management of a relationship to also include 

inventory, logistics infrastructure and materials management, illustrating how best to 

work with, and not dictate to suppliers. It was noted that no previous work discussed the 

role of suppliers during product development, addressing which manufacturing process 

information is required to assist product development. 

Supply chain literature has been very useful during the conception of this research, to 

identify management techniques currently adopted for supply chain integration (Ellran1, 

1990 and Harland, 1995). The information has also been required to understand which 

manufacturing factors (i.e. cost, delivery, quality) are thought impmiant for supplier 

assessment. It was found that cost is the predominant factor for supplier assessment, 

although it was established that cost is not sufficient for a strategic partnership 

(Spekman, 1988). Instead a diverse range of factors, including logistics and materials 

would produce more accurate results. 
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The adoption of Concurrent Engineering has lead to the restructuring of all design and 

manufacturing disciplines. In particular, computer based tools for product development. 

Computer-aided engineering illustrates that computer technology influences the 

manufacturing process, from design through to manufacture. The discipline of product 

development, including process selection and factory selection was required to identify 

existing methods for process selection. It is also noted that operational constraints 

during process selection improve manufacturing reliability. It is therefore considered 

that the inclusion of supply chain manufacturing processes during process selection will 

enable greater choice. 

Existing methods for process selection were found to fall into two categories, either 

shape complexity or feature generation. Work relating to generic process costing relied 

upon the manual assessment of shape complexity from a three dimensional form, thus 

failing to utilise any automation of this procedure. The aggregate product model adopted 

to rationalise the part geometry in terms of features has allowed processes to be selected 

on the basis of definite feature capability, instead of probable part geometry. The 

attributes of design and manufacture need to be integrated at an earlier stage than at 

present, to enable suppliers to be considered earlier in the manufacturing cycle. Work 

relating to flexibility was found to be deficient regarding the innovation of products and 

manufacturing solutions, consequently avoiding early product development. However, 

the work on flexibility did present useful ideas for innovative operational principles and 

supporting information (Eloranta et al., 1995). It was considered that the early 

identification of manufacturing processes during product development would result in 

additional flexibility. Moreover, the adoption of Java as a programming language is 

considered essential to the ability of the process selection software to operate between 

companies, across the Internet. 

8.2.2 Data collection and storage 

Primarily there are two sections to data collection and storage, firstly the adopted data 

format, for both the product and process model, and secondly, the collection format, for 

manufacturing process information. The topic of process planning combines product 

identification, process classification and process selection. The format of data for the 

product model was stated as feature recognition. It has been possible for the developed 
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software system (SCOPE), to utilise the product model developed by the Design and 

Manufacture Research Group. This is the full extent of commonality between group 

members. The information was presented in the form of an aggregate product model, 

describing the product model as a combination of features. 

Process modelling, which has been illustrated as an important issue for data modelling 

has been formalised through the presented generic manufacturing process data model. 

This thesis has highlighted the ability of the manufacturing process data model, 

illustrating both the capabilities of individual processes and combined assets of the 

factory. It has not been the intention of this research to present a detailed process 

planning function for the extended enterprise. The data required for such a system 

would require detailed information on many manufacturing operations, which was 

beyond the remit of this work. Incidentally, detailed work already exists for the 

embodiment phase of design, developed by the University of Durham, Design and 

Manufacture Research Group on machining, welding and assembly. 

The development of the Factory Modeller 99 software, installed at supplier factories, 

will generate a standard collection format for the manufacturing process data collection. 

It was not initially thought that Factory Modeller 99 required a detailed explanation, 

since the software is a basic database entry tool, compiled for easy assembly of factory 

manufacturing databases. However, the format of the factory model is a novel feature of 

this work, presenting the factory as a multi-tiered organisation. The thought process 

employed in the development was paralleled from the aggregate product model 

development by the Design and Manufacture Research group. For each tier of the 

factory there is a list of properties, and a corresponding list of attributes. Information 

retrieval is made easy at each stage by a pointer to the next level of required data. 

8.2.3 Implementation 

The implementation of the process selection and factory selection methods has been 

possible through the development of the software, SCOPE. Whereas the development of 

this system has not been the focus of this research, the development required careful 

attention and consideration to facilitate operation. The system was designed for easy 

operation, by users without an in-depth knowledge of computer software. In principle 

the system was designed to mimic a Microsoft application, using different windows to 
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input data. For example, during process selection, criteria are required to complete the 

information needed for assessment. Therefore, information windows are presented to the 

user to complete the data, similar to the Control Panel window in the Windows 

operating system. Error handling during development was carefully considered, and 

time was taken to eliminate user mistakes from SCOPE. 

Internet access required to link supplier databases to the SCOPE system was achieved 

through research into computer software development. Once again, the software has not 

been the focal theme of this research, but different software was considered during the 

development of this research. Discussions were held with other members of the research 

group, who had more programming experience, and contact was made with other 

research groups at conferences to discuss Internet programming development. It was 

discovered that larger research groups were using the Visual C programming language, 

and a Common Gateway Interface to link database technology. The benefit of such a 

system allowed different database technology to be read by the application. Many people 

were developing these systems to create the interface technology. The Java technology 

used during the development of this research was adopted because it avoided many of 

the interface problems encountered by the Visual C programming. The system was 

restricted to the Java database, required at the supplier location. The research was 

initiated in October 1996, and programming was completed by May 1999. During this 

period the Java software evolved from edition 1.01 to 1.2, with several fixes and edition 

reviews between. Presently (January, 2001) Java is at edition 3.0. The choice for the 

system was an application or a web applet (web embedded program). It would be 

perceived more appropriate to have a web applet, since Internet connectivity is the 

essence of the research. However, at the time of writing the application Java would not 

allow data transfer between databases situated on different servers. Therefore an 

application was developed. 

Implementation of this research was carried out in three distinct phases; process 

selection, factory selection and product data collection. During the development of 

process selection various methods were written to facilitate information transfer. 

Primarily the product model data, used as the input for the assessment. The Process 

Selection methodology implemented during the development of this research has proved 

a suitable strategy for modelling process selection during early product development. It 
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is considered that the analysis of existing process selection methods has clarified the 

position of SCOPE within the design cycle. Factory selection considered realistic factors 

within the design process, including process characteristics, production constraints and 

delivery. Product data collection was achieved through the development of Factory 

Modeller 99, see Chapter 8, section 8.2.2. 

8.2.4 System Evaluation 

The testing and evaluation of the implemented methods have been undertaken through 

the development of the software, SCOPE. It has been demonstrated in Chapter 7 that the 

Process Selection function has the ability to calculate to an acceptable confidence level, 

process results based on partial product model data, that are comparable with values 

observed in industry, using generated manufacturing process data. In addition, the 

presented process selection results have been compared to actual process data. The 

results have proven that the data is sufficiently accurate, i.e. within 10% of identical 

machine data for real data, to substantiate the method as a viable process selection tool. 

Manufacturing process data storage methods described throughout this work have 

proved successful for rapid assessment of manufacturing processes. Typically an 

assessment would take approximately 30 seconds to evaluate 50 manufacturing 

processes, with many different primary and secondary combinations, to produce about 

150 results. These results are then ordered in accordance to cost. Additionally, the 

factory selection phase of the assessment has proved a useful aid in identifying suitable 

supplier processes, based on control factors such as cost, quality and delivery. 

It was unfortunately not possible to test the system in a working design environment 

where real-time design changes could be rapidly assessed. Therefore no fim1 

conclusions can be drawn at this time as to the feasibility of such a system as part of an 

integrated concurrent engineering system. 

It is not feasible to suggest that Factory Selection or Process Selection should be used 

ultimately for supplier selection. Since, preliminary selection is based on partial product 

data and cost assessment is not sufficiently accurate. The cost model used for Factory 

Selection has been found to have a flaw, regarding information distribution. Normal 

distribution has been applied to the attributes of Cost, Delivery and Quality, assuming 
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that the results would tend towards a normal distribution curve. However, this does not 

appear to be the case for all assessments. Assessment concerning multiple variables is 

complex. For Cost, Quality and Delivery, all attributes need to be minimised for optimal 

calculation. The results given by the Factory Selection are not wrong, but it is 

considered that it would not be appropriate for detailed selection. 

8.3 Conclusions 

The research described in this thesis has addressed the following issues: 

• It is recognised that there is a need to optimise the design for a given problem, 

and this can be best achieved by presenting all possible manufacturing solutions. 

To facilitate this it is proposed that supplier manufacturing processes should be 

included to add a new paradigm to process selection. 

• Concurrent Engineering requires that the process selection function be initiated 

as early as feasibly possible. This means commencing the design cycle, when 

only partial design information is available. It is unsuitable to implement a 

conventional computer aided process planning systems at this stage without 

detailed design information. 

• It is necessary to compare and contrast between alternative process selection 

options at an early stage, if designs are to be optimised for a particular 

manufacturing process. It is considered that suppliers' manufacturing processes 

should be compared to evaluate different manufacturing methods. 

• It is identified that design engineers are not able to identify all possible 

manufacturing process and material combinations for a given design, leading to 

a decision based on intuition instead of assessment. Support software is required 

to aid the designer in the process and factory selection process. 

In order to address these problems: 
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o A manufacturing process data model has been proposed that allows the 

representation, and storage, of factory data at varying levels, and in a hierarchical 

way, to accommodate internal and external cost considerations of a supplier 

factory. 

o A methodology for process selection has been developed that incorporates an 

automated process selection system, for the conceptual stage of design. The 

assessment of production costs and times using generic process models operate 

on reduced product data. 

a A generic factory selection framework has been developed that includes a sort 

algorithm for initial identification and ordering of results. In addition, 

manipulation techniques have been developed that enable the design engineer to 

prioritise process attributes. 

e The above system has been implemented usmg the platform independent 

programming language, Java. The Java language enables the system to be 

operable on any computer platform (i.e. windows, UNIX, etc.) Testing of the 

system has yielded positive results, regarding identical process comparison. 

The research in this thesis demonstrates novelty in the following ways: 

Gl Alternative costing models for process selection have been based primarily on 

shape complexity and require human intervention to complete an assessment. 

The proposed method utilises the form of the design by the features generated, 

and takes into account individual process capabilities based on the required 

features. Therefore processes are selected based on their feature capability. 

o The inclusion of the extended enterprise within process selection enables 

multiple considerations to be given to any product. In addition, the research 

identifies internal and external transportation considerations within any cost 

assessment. 

o As the system generates multiple results for any given product, factory selection 

can be used to compare process capabilities. This facility provides the user with 

the ability to screen suppliers. 
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8.4 Recommendations for further work 

The development of this research has identified many new channels of investigation. 

Recommendations fall into two categories; those directly related to the continued 

development of this research, and those observed during the development of this 

research. Those directly related to the continued development include an improved 

factory selection assessment model, considering more factory attributes, and not 

distorted by the variation of manufacturing process results. Also, an improved costing 

model, to allow parallel consideration of manufacturing process operations. Factors 

observed during the development of this work include multiple loading of 

manufacturing processes, such as casting or moulding processes. Similarly, process 

optimisation, such as casting, moulding, or CNC routing for raw material optimisation. 

Concerning the further developments of SCOPE, the presented methods for process 

selection and factory selection assume a normal distribution to the data when ordering 

after assessment. This may not be the case for all assessments, and it is therefore 

considered that further investigation is required to ascertain an alternate grouping for the 

population assessment of manufacturing processes. Various forms of norn1alisation have 

been identified throughout this research, including standard deviation and mean value, 

but no singular method has been identified that would provide more accurate results 

than the method given. By developing a more accurate sort method, the data may be 

considered for detailed process selection or possibly supplier vendoring. 

At present the limitations of the software include the inability to model multiple 

processes concurrently, thus loading only single processes. Effectively this would equate 

to splitting the demand across several manufacturing processes or even factories. To 

achieve this, the user would need to specify a delivery date, and then SCOPE would 

need to spread the demand across the supplier network to achieve the required delivery 

date. The importance of supplier relationships would be amplified by such a procedure, 

requiring co-operation between suppliers. It is not anticipated that this function would 

be useful for conceptual design, but the function would be appropriate for process 

selection during embodiment or detailed design. 
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An additional feature to the system, similar to the loading problem described above, is 

the capacity loading of a single machine. Considering moulding or casting operations, 

where multiple parts may be created by one mould. The system presently assumes one 

part per cycle. Where the capacity of the machine enables multiple parts per cycle the 

SCOPE system should reflect this option. The result would allow more accurate costing 

for moulding, casting, routing, and forming operations, plus a reduction in delivery time. 

A further issue raised during the course of this research is real-time data capture. That is, 

the data provided by statistical process control, process cost and timing information. It is 

suggested that such data could be linked to the manufacturing process database to 

updated process costing, utilisation and availability. The information generated would 

therefore be utilised by the SCOPE system to maximise the accuracy of any further 

assessment. 

The integration of assembly functions, such as gluing, fastening and bolting into the 

SCOPE system would enable a subassembly operation to be evaluated as part of the 

initial design. This operation has limited impact since the idea of assembly modelling to 

generate the most efficient method of manufacture is based on a detailed time and 

motion study of the workplace. The information generated at the initial phase could be 

only based in existing operation workstations capabilities. However, the fact remains 

that information could be generated to evaluate a rough cost, quality and delivery 

assessment for a subassembly. 

Regarding observed manufacturing problems, it has become apparent during data 

collection that for moulding, casting and CNC routing operations, parts are nested 

together into moulds or sheets to minimise the production time and to improve the 

material utilisation. It is therefore suggested that a further area of research would be to 

explore these operations to optimise this characteristic. This function is valid since parts 

are presently manually nested to maximise material utilisation and this may take several 

hours depending upon the number of components to consider, it is also open to human 

error. More specifically for CNC routing operations, material utilisation is dependant 

upon sheet size and component size. The laminate or wood material is only available in 

specific sizes (4120mm x 1540mm, 3050mm x 1540mm, 3050mm x 1290mm and 

2800mm x 1290mm) and therefore the problem is one of optimising the utilisation of 
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any part geometry, of which there may be several for any particular job to a variety of 

material sizes. It is possible to nest different products instead of single components. 

A function that has not been explored is the packaging of items. From a system 

viewpoint, this is the time and cost associated with the packaging of items, including the 

costs of manufacturing crates or pallets. The implication being that if these factors are 

not properly assessed prior to manufacture then the correct profit margin would not be 

considered. The idea that parts are simply placed into a container for internal or external 

transportation is not realistic. There is a market segment devoted to the assessment and 

design of packaging. Ultimately this information is required within the sales and 

administration of any factory to generate the packing list and to inform the freight 

carrier of quantities, weight and size of the shipment. The problem therefore is to 

generate a method for the optimisation of packaging. This may take the form of 

acknowledging that there are standard forms of packaging (i.e. vertical, horizontal, end­

to-end, top-to-tail) and that for any given format there are standard box sizes (2000mm 

x I OOOmm x 300mm/600mm/900mm/1200mm). Therefore an assessment could be 

generated efficiently to assess the validity of any given box size, the content of that box 

and the fom1at of packaging. The result would be an automatically generated parts list 

for any box as required by sales and administration and the box size and weight. 

8.4.1 Summary 

The channels of investigation discussed add both new functions to the presented 

software system, and maintain the automated nature of the process and factory 

assessment. Revised manufacturing process costing assessment will enable the system to 

be operated for conceptual and detailed process selection. An appreciation of the process 

loading problem will enable more realistic process and material utilisation. Additionally 

further work relating to process packaging would exploit external transportation 

considerations. 

Process and factory selection will be enhanced by the further optimisation and 

knowledge of supplier capabilities. 
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AppendoJt A: Process dassnfncation 

Automatic Machining 

(Process diagram) 

General Description 

The removal of material by chip processes using sequenced or simultaneous machining 

operations on cut to length bar or coiled bar stock. The material is automatically fed into 

the machine. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, magnesium & alloys, zinc & alloys, lead & alloys, nickel & 

alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 300 

Tooling time: (min) 20 

Optimal batch size: 1000 
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Blow moulding is a modified extrusion and injection moulding process. In extrusion 

blow moulding, a tube is extruded (usually turned so that it is vertical), clamped into the 

mould with a cavity much larger than the tube diameter, and then blown outward to fill 

the cavity. Blowing is usually done with an air blast, at a pressure of 350-700kPa. 

Typical Applications 

Most polymer containers up to 5 gallons, toys and auto-heater ducting 

Attributes 

Materials: Thermoplastics 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 2000 

Tooling time: (min) 180 

Optimal batch size: 1000 
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General Description 

As its name implies, the centrifugal-casting process utilises the inertial forces caused by 

rotation to distribute the molten metal into the mould cavities. The three types of 

centrifugal casting are true centrifugal casting, semi centrifugal casting, and 

centrifuging. 

Typical Applications 

Gun barrels, lampposts, and wheels with spokes 

Attributes 

Materials: Irons, carbon steel, copper & alloys, aluminium & alloys, nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1000 

Tooling time: (min) 240 

Optimal batch size: 1000 
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General Description 

The ceramic moulding process uses refractory mould material for high-temperature 

applications. The method is called cope-and-drag investment casting. The slurry is 

poured over the pattern (usually made from wood or metal) and allowed to set. After 

setting the mould is removed from the pattern and baked to remove moisture. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, magnesium & alloys, zinc & alloys, tin & alloys, nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.38 

Minimum weight: (kg) 0.2 

Maximum weight: (kg) 5 

Tooling and die costing: (£) 1500 

Tooling time: (min) 300 

Optimal batch size: 50 
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Chemical Machining 

General Description 

It is known that certain chemicals attack metals and etch them, thereby removing small 

amounts of material from the surface. Thus chemical machining operates by removing 

material from the surface by dissolution, using chemical reagents, such as acids and 

alkaline solutions. 

Typical Applications 

Engraving metals and hard stones, printed circuit boards and microprocessor chips. 

Attributes 

Materials: Carbon steel, alloys steel, copper & alloys, aluminium & alloys, 

magnesium & alloys, zinc & alloys, tin & alloys, lead & alloys, nickel & 

alloys, titanium & alloys, ceramics, precious metals 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1000 

Tooling time: (min) 300 

Optimal batch size: 1000 
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Closed Die Forgi111g 

(Process diagram) 

General Description 

The block to be forged is prepared by such means as cutting or cropping from an 

extruded or drawn bar stock. The blank is then placed in the lower die and as the upper 

die begins to descend, the blanks shape gradually changes. In true closed die forging, 

flash does not form, and the work piece completely fills the die cavity. 

Typical Applications 

Crankshafts, airframe components, Tools, Nuclear components and agricultural 

equipment. 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, aluminium & alloys, copper & 

alloys, magnesium & alloys, titanium and nickel and & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.5 

Minimum weight: (kg) 0.01 

Maximum weight: (kg) 1 00 

Tooling and die costing: (£) 5000 

Tooling time: (min) 400 

Optimal batch size: 5000 
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General Description 

Cold forming uses coils of wire stock and three to four cavities in the dies. A cut-off 

machine is included in the machine. Machines are ordered to handle the limited range of 

diameters. The gripping dies are at the front of the machine and the operator places the 

stock in the one cavity and then another. Forming is done principally by the heading tool 

but can also be done by the clamping die. 

Typical Applications 

Small fasteners 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, copper & alloys, aluminium & 

alloys, magnesium & alloys, zinc & alloys, tin & alloys, lead & alloys, 

nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.06 

Minimum weight: (kg) 0.001 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1000 

Tooling time: (min) 120 

Optimal batch size: 5000 
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Cold Heading 

Kickout pin Blank Punch 

General Description 

Stock material is gripped in a die with usually one end protruding. The material is then 

formed by successive blows into the desired shape by a punch or a number of 

progressive punches. Shaping of the shank can be achieved simultaneously. 

Typical Applications 

Nails, Fasteners, spark plug pot, ball joint, shafts 

Attributes 

Materials: Carbon steel, steel alloys, stainless steel, aluminium & alloys, copper & 

alloys, nickel & alloys, precious metals 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing:(£) 1200 

Tooling time: (min) 100 

Optimal batch size: I 000 
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Compression Moulding 
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In compression moulding, the plastics compound is placed in a heated mould. The 

compound softens and becomes plastic as the upper part of the die moves, compressing 

the material to the required shape and density. Continued head and pressure produce the 

chemical reaction that hardens the thermosetting material. 

Typical Applications 

Attributes 

Materials: Them1oplastics, thermosets, FR composites 

Mechanical properties 

Minimum tolerance: (mm) 0.18 

Minimum weight: (kg) 0.004 

Maximum weight: (kg) 20 

Tooling and die costing: (£) 800 

Tooling time: (min) 100 

Optimal batch size: 1 00 
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(Process diagram) 

General Description 

Contact moulding processes use a single male or female mould made of materials such 

as reinforced plastics, wood or plaster. Contact moulding is used for making products 

with high surface area-to-thickness ratio. This is a "wet" method, in which the 

reinforcement is impregnated with the resin at the time of moulding. The material is 

placed and formed in the mould and the squeezing action repels any trapped air and 

compacts the part. 

Typical Applications 

Bathtubs, boat hulls and shower units 

Attributes 

Materials: FR composites 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 400 

Tooling time: (min) 150 

Optimal batch size: 1000 
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Continuous Extrusion (Metal) 

(Process diagram) 

General Description 

Powders can be compacted by extrusion; the powder is encased in a metal container and 

extruded. After sintering, performed powder metallurgy parts may be reheated and 

forged in a closed die to their final shape 

Typical Applications 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, copper & alloys, aluminium & 

alloys, magnesium & alloys, zinc & alloys, tin & alloys, lead & alloys, 

nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1000 

Tooling time: (min) 180 

Optimal batch size: 1000 
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Continuous Extrusion (Plastics) 

(Process diagram) 

General Description 

The raw materials in the form of thermoplastic pellets, granules, or powder are placed in 

a hopper and fed into the extruder barrel. The barrel is equipped with a screw that 

blends and conveys the pellets down the barrel. The internal friction from the 

mechanical action of the screw, along with the heaters around extruder's barrel, heats 

the pellets and liquefies them. The molten plastic is forced through a die. The extruded 

product is then cooled. 

Typical Applications 

Solid rods, channels, window frames and architectural components 

Attributes 

Materials: Thermoplastics, thermosets 

Mechanical properties 

Minimum tolerance: (mm) 0.25 

Minimum weight: (kg) 0.001 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 900 

Tooling time: (min) 120 

Optimal batch size: 1000 
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Electrical Discharge Machining 

(Process diagram) 

General Description 

Electrical discharge machining is a method of removing metal by a series of rapidly 

recurring electrical discharges between an electrode and the work piece in the presence 

of a dielectric fluid. Minute particles of metal or chips, are removed by melting and 

vaporisation, and are washed from the gap by the dielectric fluid that is continuously 

washed between the tool and the work piece. 

Typical Applications 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, copper & alloys, aluminium & 

alloys, magnesium & alloys, nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1500 

Tooling time: (min) 50 

Optimal batch size: 1000 
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Electrochemical Machining 

(Process diagram) 

General Description 

Electric energy is combined with a chemical to form a reaction of reverse plating. Direct 

current is continuously passed between the anodic work piece and cathodic tool through 

a conductive electrolyte. At the anode surface, electrons are removed by the current 

flow, and the metallic bonds are broken. Dissolved material is removed from the gap 

between the work and the tool by the flow of electrolyte, which also aids in carrying 

away the heat. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, nickel & 

alloys, titanium & alloys, ceramics 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 3500 

Tooling time: (min) 90 

Optimal batch size: 1000 
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Electron Beam Machining 

(Process diagram) 

General Description 

A pulsating stream of high-speed electrons produced by a generator is focused by 

electrostatic and electromagnetic fields to concentrate energy on a very small area of 

work. As the electron impinge on the work, their kinetic energy is transformed into 

thermal energy and evaporates the material locally. 

Typical Applications 

Rocket fuel injectors or injection nozzles on diesel engines 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 2000 

Tooling time: (min) 60 

Optimal batch size: 1 000 
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Gravity Die Casting 

(Process diagram) 

General Description 

The mouton metal is poured under gravity into the permanent mould and allowed to 

solidify. This is similar to low pressure die-casting where the pressure is maintained 

until the metal has completely solidified in the mould. The part is then ejected from the 

mould. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, copper & alloys, aluminium & alloys, magnesium & 

alloys, zinc & alloys, tin & alloys, lead & alloys, nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.15 

Minimum weight: (kg) 0.05 

Maximum weight: (kg) 10 

Tooling and die costing: (£) 5000 

Tooling time: (min) 180 

Optimal batch size: 5000 
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The pellets or granules are fed into a heated cylinder, where they are melted. The melt is 

then forced into a split-die chamber, either by a hydraulic plunger or by the rotating 

screw system of an extruder. As the pressure builds up at the mould entrance, the 

rotating screw begins to move backwards under pressure, thus controlling the volume of 

material injected. The screw is then pushed forward forcing the molten plastic into the 

mould cavity. 

Typical Applications 

Attributes 

Materials: Thermoplastics, thermosets 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 2500 

Tooling time: (min) 240 

Optimal batch size: 1000 
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Investment Casting 

(Process diagram) 

General Description 

Investment casting involves the formation of an expendable pattern in a die or mould 

and the use of the pattern to form a mould in an investment material. When the mould of 

investment material has set, the pattern is melted, burned, or dissolved out and the past 

is cast. Tllis method is sometimes known as the lost-wax process because of the loss of 

the pattern during mould formation. 

Typical Applications 

Turbine blades, burner nozzles, armament components, lock components, Industrial 

hand tools bodies 

Attributes 

Materials: Carbon steel, steel alloys, stainless steel, aluminium & alloys, copper & 

alloys, magnesium & alloys, nickel & alloys, reactive metals, precious 

metals 

Mechanical properties 

Minimum tolerance: (mm) 1.0 

Minimum weight: (kg) 0.005 

Maximum weight: (kg) 1 00 

Tooling and die costing: (£) 4000 

Tooling time: (min) 360 

Optimal batch size: 1000 
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Laser Beam Machining 
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The source of energy is a laser, which focuses optical energy on the surface of the work 

piece. The highly focused, high-density energy melts and evaporates portions of the 

work piece in a controlled manner. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance : (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 800 

Tooling time: (min) 30 

Optimal batch size: 1000 
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Mam.Jal Machining 

(Process diagram) 

General Description 

The removal of material by chip processes using sequenced or simultaneous machining 

operations on cut to length bar or coiled bar stock. The material is manually fed into the 

machine 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, magnesium & alloys, zinc & alloys, tin & alloys, lead & alloys, 

nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£)50 

Tooling time: (min) I 

Optimal batch size: 200 
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Plaster Mould Casting 
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General Description 

A permanent pattern is surrounded by plaster slurry that sets to a solid, self-supporting 

mould rigid enough to be handled. The mould parts are then stripped from the pattern 

and baked to remove moisture. Undercut areas and internal surfaces are formed by 

separate pieces and cores. 

Typical Applications 

Attributes 

Materials: Copper & alloys, aluminium & alloys, zinc & alloys, tin & alloys, lead & 

alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.25 

Minimum weight: (kg) 0.05 

Maximum weight: (kg) 1 0 

Tooling and die costing: (£) 400 

Tooling time: (min) 120 

Optimal batch size: 50 
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Powder metallurgy is a metalworking process used to consolidate particle matter, both 

metallic and/or non-metallic. There are three basic steps in conventional powder 

metallurgy. These steps are mixing together of the metal powders together with 

lubricants, compacting an exact measured amount into the die cavity and sintering. 

Typical Applications 

Gears, cams, bushings, cutting tools porous products such as filters 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, nickel & alloys, titanium & alloys, ceramics 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1500 

Tooling time: (min) 240 

Optimal batch size: 1000 
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Pll"essure Die Casting 

(Process diagram) 

General Description 

The molten metal is forced upwards by gas pressure into a graphite or metal mould. The 

pressure is maintained until the metal has completely solidified in the mould. The 

molten metal may also be forced upwards by a vacuum, which also removes dissolved 

gases and gives he casting lower porosity. 

Typical Applications 

Carburettors, motors, business-machines, appliance components, hand tools and toys. 

Attributes 

Materials: Copper & alloys, aluminium & alloys, magnesmm & alloys, zmc & 

alloys, tin & alloys, lead & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing:(£) 8000 

Tooling time: (min) 300 

Optimal batch size: 1000 
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Rotational Moulding 
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The thin-walled metal mould is made of two pieces (split female mould) and is designed 

to be rotated about two perpendicular axes. A pre-measured quantity of powdered 

plastic material is placed inside the warm mould. The mould is heated, using a large 

oven, while it is rotated about the two axes . The action tumbles the powder against the 

mould where heating fuses the powder without melting it. 

Typical Applications 

Tanks of various sizes, boat hulls, buckets, housings, toys carrying cases and footballs 

Attributes 

Materials: Thermoplastics, thermosets, FR composites 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 500 

Tooling time: (min) 240 

Optimal batch size: 1000 
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Sand Casting 
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General Description 

Simply stated, sand casting consists of placing a pattern (having the shape of the desired 

cast) in sand to make an imprint, incorporating a gate system, filling the resulting cavity 

with mouton metal, allowing the metal to cool until it solidifies, breaking away the sand 

mould, and removing the casting. It is still the most widely used form of casting. 

Typical Applications 

Engine blocks, Engine manifolds, machine bases, gears, pulleys 

Attributes 

Materials: Cast iron, carbon steel, steel alloys, stainless steel, aluminium & alloys, 

copper & alloys, zinc & alloys, magnesium & alloys and nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 1.2 

Minimum weight: (kg) 0.1 

Maximum weight: (kg) 100 

Tooling and die costing: (£) 200 

Tooling time: (min) 300 

Optimal batch size: 200 
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Sheet Metal Forming 

(Process diagram) 

General Description 

Forming is a method of producing shapes by stressing metal beyond its yield strength, 

but not past its ultimate tensile strength. The forces applied during forming are in 

opposite directions, just as in shearing. Bending forces, however, is spread further apart, 

resulting in plastic distortion of metal without failure. 

Typical application 
File cabinets, car bodies, aircraft fuselages and beverage cans 

Attributes 

Materials: Carbon steel, stainless steel, copper & alloys, aluminium & alloys, zinc & 

alloys, nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.05 

Minimum weight: (kg) 0.0001 

Maximum weight: (kg) 500 

Tooling and die costing: (£) 1500 

Tooling time: (min) 360 

Optimal batch size: 1000 
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Sheet Metal Shearing 

(Process diagram) 

General Description 

Sheet metal is cut by subjecting it to shear stresses typically between a punch and a die. 

The major processing parameters in shearing are the shape and material for the punch 

and die, the spread of the punching, lubrication, and the clearance between the punch 

and the die. The clearance is the major factor in determining the shape and quality of the 

sheared edge. 

Typical Applications 

Attributes 

Materials: Carbon steel, stainless steel, copper & alloys, aluminium & alloys, zinc & 

alloys, nickel & alloys, titanium & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.05 

Minimum weight: (kg) 0.0001 

Maximum weight: (kg) 500 

Tooling and die costing: (£) 2000 

Tooling time: (min) 420 

Optimal batch size: I 000 
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Shell Moulding 
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General Description 

In this process, a mounted pattern made of a ferrous metal is heated, coated with a 

parting agent, and clamped in a chamber containing fine sand containing thermosetting 

resin. The chamber is rotated allowing it to coat the pattern. The assembly is then placed 

in an oven for a short period to complete the curing of the resin. The shell is removed 

from the pattern using built-in ejector pins. 

Typical Applications 

Attributes 

Materials: Irons, carbon steel, alloy steel, stainless steel, copper & alloys, aluminium 

& alloys, nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.5 

Minimum weight: (kg) 0.1 

Maximum weight: (kg) 10 

Tooling and die costing: (£) 400 

Tooling time: (min) 240 

Optimal batch size: 600 
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Spinning 
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General Description 

Spinning is a chipless production method of forming axially symmetrical metal shapes. 

It is a point deformation process by which a metal disc, cylindrical work piece, or 

preform is plastically deformed into contact with a rotating chuck by axial or axial­

radial motions of the tool or rollers. 

Typical Applications 
Cones, hemispheres, tubes and cylinders 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, copper & alloys, aluminium & 

alloys, magnesium & alloys, zinc & alloys, tin & alloys, lead & alloys, 

nickel & alloys 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 1000 

Tooling time: (min) 120 

Optimal batch size: 600 
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Ultrasonic Machining 

(Process diagram) 

General Description 

Ultrasonic machining is a process by which work piece material is removed and an 

exact shape is imparted on the work piece surface via the cutting action of abrasive 

slurry that is driven by a tool vibrating at high frequency in line with its longitudinal 

axis. 

Typical Applications 
Used to produce blind and through holes, slots and iiTegular shapes 

Attributes 

Materials: Carbon steel, alloy steel, stainless steel, nickel & alloys, titanium & 

alloys, ceramics 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 2000 

Tooling time: (min) 180 

Optimal batch size: 400 
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VacuiUim Forming 
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General Description 

In this process, a thermoplastic sheet is heated in an oven to the sag point. The sheet is 

then removed from the oven, placed over a mould, and pulled against the mould through 

the application of a vacuum. Since the mould is usually at room temperature, the shape 

of the plastic is set upon contacting the mould. 

Typical Applications 

Attributes 

Materials: Thermoplastics 

Mechanical properties 

Minimum tolerance: (mm) 0.55 

Minimum weight: (kg) 0.5 

Maximum weight: (kg) 50 

Tooling and die costing: (£) 200 

Tooling time: (min) 30 

Optimal batch size: 500 
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Materials Database 

Material Density Average Bar cost Sheet cost Rod cost 

(g/cm3
) cost (£/kg) (£/kg) (£/kg) (£/kg) 

Irons 7.9 0.33 0.33 0.33 0.33 

Steel (carbon) 7.8 0.49 0.49 0.49 0.49 

Steel (Alloy) 7.81 0.7 0.7 0.7 0.7 

Stainless steel 7.85 4.07 4.07 4.07 4.07 

Copper & alloys 8.96 3.3199 3.3199 3.3199 3.3199 

Aluminium & 2.7 2.96 2.96 2.96 2.96 

alloys 

Magnesium& 1.81 2.96 2.96 2.96 2.96 

alloys 

Zinc & alloys 7.1 1.07 1.07 1.07 1.07 

Tin & alloys 7.3 6.51 6.51 6.51 6.51 

Lead & alloys 11.3 6.51 6.51 6.51 6.51 

Nickel & alloys 8.45 10.41 10.41 10.41 10.41 

Titanium & 4.96 15.07 15.07 15.07 15.07 

alloys 

Thermoplastics 0.957 2.01 2.01 2.01 2.01 

Thermosets 0.945 3.03 3.03 3.03 3.03 

FR composites 2.5 2.77 2.77 2.77 2.77 

Ceramics 2.76 2.279 2.279 2.279 2.279 
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IFLYMO MICROLITE 28: PRODUCT MODEL 

Name PARENTS PROPLIST VALUES 

order917556713l order9175567131 customer,productl Flymo, Cordless_ Srimmer, 
I 

Cordless_ Srimmerl products, amount, 1, 
order9175567131 base _part, Unknown, 

breadth, Unknown, 
hand_diff, Unknown, 
length, Unknown, 
no_comps, Unknown, 
numafcs, Unknown 
parent, ,order917556713, 
selfname, Cordless_ Srimmer, 
typeclass, products, 
value_alpha, Unknown, 
value_beta, Unknown, 
volume, Unknown, 
weight_ m b. Unknown, 
widthL Unknown ,I 

Strimmerl assemblies, amount, 1, 
Cordless_ Srimmerl base _part, Unknown, 

breadth, Unknown, 
hand_diff, Unknown, 
length, Unknown, 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Cordless_ Srimmer, 
selfname, Strimmer, 
typeclass, assemblies, 
value_alpha, 360, 
value_beta, 360, 
volume, 0.012077, 
weight_ m b. 109.459039, 
width I Unknown .I 

plain_bolt917560101l standard _parts, afrtype, threaded, 
components, amount, 11' 
Strimmerl hand_diff, 0, 

material, mild steel, 
nest_ tangle, 0, 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Strimmer, 
rs_stock_no, 525-802, 
selfname, plain_bolt9175601 01, 
typeclass, components, 
value_alpha, 360, 
value_beta, 0, 
volume, 2.92000e-07, 
weiqht mbl 0.002283,1 
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cylinder9175601 011 cylinder. diameter, 6.0, 
plain_bolt9175601 011 length, 20.0, 

parent, plain_bolt9175601 01, 
selfname, cylinder917560101, 
typeclass, features, 
volume, 4.93000e-07, 
weiqht mbl Unknown .I 

etd9175601011 etd, component, Unknown, 
plain_bolt9175601011 desc, Unknown. 

number, 1' 
parent, plain_bolt917560101, 
rank, Unknown. 
selfname, etd9175601 01, 
setup, Unknown, 
typeclass, features, 
prefix, etd, 
it, Unknown, 
rouqhnessl Unknown .I 

length_etd9175601 011 length, name, Unknown. 
etd9175601 011 upper, Unknown, 

lower, Unknown, 
nominal, 16.0, 
typeclassl geome!ry.l 

diameter_etd91756010 diameter, name, Unknown, 
11 etd9175601011 upper, Unknown. 

lower, Unknown, 
nominal, 4.0, 
typeclassl geometry,! 

pitch_ etd9175601 011 pitch, name, Unknown, 
etd9175601011 upper, Unknown, 

lower, Unknown, 
nominal, 1.0, 
typeclassl geometry,! 

Battery_ Coverl components, amount, 1' 
Strimmerl hand_diff, 0, 

material, mild steel, 
nest_ tangle, 0, 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Strimmer, 
selfname, Battery_ Cover, 
typeclass, components, 
value_alpha, 360, 
value_beta, 360, 
volume, 0.00018, 
weiqht mbl 0.005616,1 

moulded9175600221 moulded, breadth, 20.0, 
Battery_ Coverl length, 100.0, 

parent, Battery_ Cover, 
selfname, moulded917560022, 
typeclass, features, 
volume, Unknown, 
weight_ m b. Unknown, 
widthl 90.0,1 
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Handle_ T opl components, amount, 1' 
Strimmerl hand_diff, 0, 

material, mild steel, 
nest_ tangle, 0, 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Strimmer, 
selfname, Handle_ Top, 
typeclass, components, 
value_alpha, 360, 
value_beta, 360, 
volume, 0.00195, 
weight mbl 0.06084,1 

moulded9175599861 moulded, breadth, 50.0, 
Handle_ Topl length, 260.0, 

parent, Handle_ Top, 
selfname, moulded917559986, 
typeclass, features, 
volume, Unknown, 
weight_mb, Unknown, 
width I 150.0,1 

Base_Topj components, amount, 1' 
Strimmerj hand_diff, 0, 

material, mild steel, 
nest_ tangle, 0, 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Strimmer, 
selfname, Base_Top, 
typeclass, components, 
value_alpha, 360, 
value_beta, 360, 
volume, 0.00162, 
weight mbl 0.050544,1 

moulded917559950I moulded, breadth, 50.0, 
Base_Topj length, 180.0, 

parent, Base_Top, 
selfname, moulded917559950, 
typeclass, features. 
volume, Unknown. 
weight_mb, Unknown. 
width I 180.0,1 

Top_Assemblyl assemblies, amount. 1' 
Strimmerl base _part, Unknown. 

breadth, Unknown. 
hand_diff, Unknown. 
length, Unknown. 
no_comps, Unknown, 
numafcs, Unknown, 
parent, Strimmer. 
selfname, Top _Assembly, 
typeclass, assemblies. 
value_alpha, 360, 
value_beta, 360, 
volume, 0.002645, 
weight_ m b. 60.045410, 
width I Unknown .I 
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Power_Assj assemblies, amount, base _part, 1,Unknown ,Unknown ,0 
Top_Assemblyl breadth, hand_diff, ,Unknown,O,Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, ,Top_Assembly,Power_A 
parent, selfname, ss,assemblies,360,360,0. 
typeclass, value_alpha, 000667,59.965391,Unkno 
value beta, volume, 
weiaht mb, widthl 

wn .1 

Light_Wire_Assl assemblies, amount,base_part, 1,Unknown ,Unknown ,0 
Power_Assj breadth, hand_diff, ,Unknown,O,Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, ,Power_Ass,Light_Wire_A 
parent, selfname, ss,assemblies,360,360, 1. 
typeclass, value_alpha, 18855e-
value beta, volume, 
weight mb, width! 

06,0.009271 ,Unknown .I 

Black_Wirel components, amount, hand_diff, 1 ,O,mild steei,O,Unknown 
Light_Wire_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Light_Wire_Ass,Biack_W 
parent, selfname, ire,components, 180,0, 9.4 
typeclass, value_alpha, 2750e-08,0.000735,1 
value_beta, volume, 
weight mbl 

wir9175596961 wir, diameter, length, 2.0,30.0,Biack_Wire,wir91 
Black_Wirej parent, selfname, 7559696, features, Unknow 

typeclass, volume, n ,Unknown .1 
weight mbl 

Red_Wirel components, amount, hand_diff, 1 ,O,mild steei,O,Unknown 
Light_Wire_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Light_Wire_Ass,Red_Wir 
parent, selfname, e,components, 180,0,9.42 
typeclass, value_alpha, 750e-08,0.000735,l 
value_beta, volume, 
weight mbl 

wir9175596721 wir, diameter, length, 2.0,30.0,Red_Wire,wir917 
Red_Wirel parent, selfname, 559672, features, Unknown 

typeclass, volume, ,Unknown .1 
weiaht mbl 

Board_ Light! components, amount, hand_diff, 1 ,care, mild 
Light_ Wire_ Ass! material, nest_tangle, steei,O,Unknown 

no_comps, numafcs, ,Unknown 
parent, selfname, ,Light_Wire_Ass,Board_Li 
typeclass, value_alpha, ght,components,360,360, 
value beta, volume, 
weight mbl 

1.00000e-06,0.00780,1 

sheet9175596141 sheet, breadth, length, parent, 5.0,20.0,Board_Light,she 
Board_Lightl selfname, typeclass, et917559614, features, Un 

volume, weight_mb, known ,Unknown, 10.0,1 
width! 

Battery I components, amount, hand_diff, 1 ,care,mild 
Power_Assj material, nest_tangle, steei,O,Unknown 

no_comps, numafcs, ,Unknown 
parent, selfname, ,Power_Ass,Battery,comp 
typeclass, value_alpha, onents,360,360,0.00063, 1 
value beta, volume, 
weight mbl 

.90000,1 

prism9175595061 prism, breadth, length, parent, 90.0,100.0,Battery,prism9 
Battery! selfname, typeclass, 17559506, features, Unkno 

volume. weight_mb, wn ,Unknown ,70.0.1 
width! 
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Resistor[ components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Power_Ass[ material, nest_tangle, ,Unknown 

no_comps, numafcs, , Power_ Ass, Resistor, com 
parent, selfname, ponents,360,360,5.40000 
typeclass, value_alpha, e-06,0.04212,[ 
value_beta, volume, 
weight mbl 

prism9175594181 prism, breadth, length, parent, 6.0,45.0,Resistor,prism91 
Resistor[ selfname, typeclass, 7559418, features, Unknow 

volume, weight_mb, n ,Unknown ,20.0,[ 
width[ 

micro_switch91755927 assemblies, amount, base_part, 1,Unknown ,Unknown 
71 Power_Ass[ breadth, hand_diff, ,Unknown ,Unknown 

length, no_comps, ,Unknown ,Unknown 
numafcs, parent, ,Unknown 
selfname, typeclass, , micro_ switch917559277, 
value_ alpha, assemblies,360,360,3.00 
value beta, volume, 800e-
weiqht mb, width! 05,55.00000,Unknown ,I 

connecting_ tag[ weight_ flag, amount, hand_diff, 2,0,mild steei,O,Unknown 
components, material, nest_tangle, ,Unknown 
micro_switch91755927 no_comps, numafcs, , micro_ switch917 559277, 
71 parent, selfname, connecting_tag,compone 

typeclass, value_alpha, nts, 360, 180,4. OOOOOe-
value beta, volume, 
weight mb[ 

08,0.002000,[ 

sheet9175592771 sheet, breadth, length, parent, 5.0,8.0,connecting_tag,sh 
connecting_ tag[ selfname, typeclass, eet917559277,features,U 

volume, weight_mb, nknown ,Unknown ,1.0,[ 
width I 

body[ weight_ flag, amount, hand_diff, 1 ,care,mild 
components, material, nest_tangle, steei,O,Unknown 
micro_ switch917 55927 no_comps, numafcs, ,Unknown 
71 parent, selfname, ,micro_switch917559277, 

typeclass, value_alpha, body,components,360,36 
value beta, volume, 
weight mb[ 

0,3.00000e-05,0.015000,[ 

prism[ prism, breadth, length, parent, 10.0,28.0,body,prism,feat 
body[ selfname, typeclass, ures,Unknown , Unknown 

volume, weight_mb, ,15.0,[ 
width[ 

Switch_Spring[ components, amount, hand_diff, 1 ,O,mild steel, 1 ,Unknown 
Top_Assembly[ material, nest_tangle, ,Unknown 

no_comps, numafcs, , Top _Assembly, Switch_ S 
parent, selfname, pring,components, 180,0,2 
typeclass, value_alpha, .356875e-06,0.018384,[ 
value beta, volume, 
weight mbl 

cylinder9175592001 cylinder, diameter, length, 1 0.0,30.0, Switch_Spring,c 
Switch_Spring[ parent, selfname, ylinder917559200, feature 

typeclass, volume, s,Unknown ,Unknown .1 
weiqht mbl 

Safety _Button[ components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Top_Assembly[ material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Top_Assembly,Safety_B 
parent, selfname, utton, components, 360,36 
typeclass, value_alpha, 0, 1.12500e-05,0.000351 .I 
value_beta, volume, 
weiqht mbl 
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moulded9175591371 moulded, breadth, length, parent, 15.0,30.0,Safety _Button, 
Safety_ Button! selfname, typeclass, moulded917559137, featu 

volume, weight_mb, res,Unknown ,Unknown 
width I ,25.0,1 

Switch! components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Top_Assemblyl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Top_Assembly,Switch,co 
parent, selfname, mponents,360,360, 1.4250 
typeclass, value_alpha, Oe-05,0.000445.1 
value_beta, volume, 
weiQht mbl 

moulded9175590381 moulded, breadth, length, parent, 15.0,95.0,Switch,moulded 
Switch! selfname, typeclass, 917559038, features, Unkn 

volume, weight_mb, own ,Unknown, 10.0,1 
width I 

Handle _Bottom I components, amount, hand_diff, 1 ,O,mild steei,O, Unknown 
Top_Assemblyl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Top_Assembly,Handle_B 
parent, selfname, ottom,components,360,36 
typeclass, value_alpha, 0,0 00195,0.06084,1 
value beta, volume, 
weiQht mbl 

bho9175607 451 bho, component,desc,numbe Handle_ Bottom, Unknown 
Handle_Bottoml r, parent, rank, selfname, , 1 ,Handle_Bottom,Unkno 

setup, typeclass, prefix, it, wn 
roughness! ,bho9175607 45,1 ,feature 

s,bho, 10, 10.0,1 
length_bho9175607 451 length, name, upper, lower, Unknown ,Unknown 

bho9175607 451 nominal, typeclassl ,Unknown 
,20.0,geometrv,l 

diameter_bho9175607 4 diameter, name, upper, lower, Unknown ,Unknown 
51 bho9175607 451 nominal, typectassl ,Unknown 

, 15. 0, geometry, I 
itd9175606571 itd, component,desc,numbe Handle_Bottom,Unknown 

Handle_Bottoml r,parent,rank,selfname, , 1 ,Handle_Bottom,Unkno 
setup, typeclass, prefix, it, wn 
roughness! ,itd917560657, 1 ,features,i 

td, 10, 10.0,1 
pitch_itd9175606571 pitch, name, upper, lower, Unknown ,Unknown 

itd9175606571 nominal, typeclassl ,Unknown ,1.0,Qeometrv,l 
diameter_itd917560657 diameter, name, upper, lower, Unknown ,Unknown 
I itd9175606571 nominal, typeclassl ,Unknown ,4.0,geometly,l 
length_itd9175606571 length, name, upper, lower, Unknown ,Unknown 

itd9175606571 nominal, typeclassl ,Unknown 
, 10.0,geometry,l 

moulded9175586401 moulded, breadth, length, parent, 50.0,260.0,Handle_Botto 
Handle_Bottoml selfname, typectass, m, moulded917558640, fea 

volume, weight_mb, tu res, Unknown , Unknown 
width I ,150.0,1 

Middle_Assl assemblies, amount, base _part, 1,Unknown ,Unknown ,0 
Strimmerl breadth, hand_diff, ,Unknown,O,Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, ,Strimmer,Middle_Ass,ass 
parent, selfname, emblies,360,360,0.00070 
typeclass, value_alpha, 8,0.195190,Unknown .1 
value beta, volume, 
weight mb, width! 
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Sheath_ Bottom I components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Middle_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Middle_Ass,Sheath_Bott 
parent, selfname, om,components,360,360, 
typeclass, value_alpha, 0.000343,0.010702.1 
value beta, volume, 
weiqht mbl 

itd917560502l itd, cam ponent, desc, nu m be Sheath_Bottom, Unknown 
Sheath_Bottoml r,parent,rank,selfname, ,1,Sheath_Bottom,Unkno 

setup,typeclass,prefix,it, wn 
roughness! ,itd917560502,1, features,i 

td,10,10.0,1 
pitch_itd9175605021 pitch, name, upper, lower, Unknown ,Unknown 

itd9175605021 nominal, typeclassl ,Unknown ,1.0,qeometrv,l 
diameter _itd917560502 diameter, name, upper, lower, Unknown ,Unknown 
I itd9175605021 nominal,_typeclassj ,Unknown ,4.0,geometry,l 
length _itd917 5605021 length, name, upper, lower, Unknown ,Unknown 

itd9175605021 nominal, typeclassl ,Unknown 
,1 O.O,geometrv.l 

moulded9175579481 moulded, breadth, length, parent, 35.0,140.0,Sheath_Botto 
Sheath_Bottoml selfname, typeclass, m, moulded917557948, fea 

volume, weight_mb, tu res. Unknown , Unknown 
width I ,70.0,1 

Sheath_ Topl components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Middle_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs. , Middle_ Ass, Sheath_ Top, 
parent, selfname, components,360,360,0.00 
typeclass, value_alpha, 0343,0.010702.1 
value_beta, volume, 
weight mbl 

moulded9175578691 moulded, breadth, length, parent, 35.0,140.0,Sheath_ Top,m 
Sheath_Topl selfname, typeclass, oulded917557869, feature 

volume, weight_mb, s,Unknown ,Unknown 
width I ,70.0,1 

Tube_Wire_Assl assemblies, amount, base _part, 1,Unknown ,Unknown ,0 
Middle_Assl breadth, hand_diff, ,Unknown ,0 ,Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, ,Middle_Ass,Tube_Wire_ 
parent, selfname, Ass,assemblies,360,360, 
typeclass, value_alpha, 2.231133e-
value beta, volume, 
weight mb, widthl 

05,0.173787,Unknown .1 

Wire_Assl assemblies, amount,base_part, 1,Unknown ,Unknown ,0 
Tube_Wire_Assl breadth, hand_diff, ,Unknown ,0, Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, ,Tube_Wire_Ass,Wire_As 
parent, selfname, s,assemblies,360,360,3.1 
typeclass, value_alpha, 3825e-
value beta, volume, 
weight mb, widthl 

07,0.002206,Unknown .1 

flymo_capacitor917558 standard_parts, afrtype,amount, wiring,1,0,mild 
5471 components, hand_diff, material, steei,O,Unknown 

Wire_Assl nest_tangle, no_comps, ,Unknown 
numafcs, parent, ,Wire _Ass, Unknown 
rs_stock_no, selfname, ,flymo _ capacitor9175585 
typeclass, value_alpha, 47 ,components,360,360,3 
value_beta, volume, .10000e-08,2.50000e-07.1 
weiqht mbl 

prism9175585471 prism. breadth, length, parent, 17.0,38.0,flymo_capacitor 
flymo _ capacitor917558 selfname, typeclass, 917558547,prism9175585 
5471 volume, weight_mb, 4 7, features, 2. 70000e-

width I 06,Unknown ,0.02,1 
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Long_ Red_ Black_ Wire! components, amount, hand_diff, 1 ,O,mild steei,O, Unknown 
Wire_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Wire_Ass,Long_Red_Bia 
parent, selfname, ck_Wire,components,360, 
typeclass, value_alpha, 0,2.82825e-07,0.002206,1 
value beta, volume, 
weight mbl 

wir9175582501 wir, diameter, length, 2.0,90.0,Long_Red_Biack 
Long_Red_Biack_Wirel parent, selfname, _Wire, wir917 558250, feat 

typeclass, volume, ures,Unknown ,Unknown 
weight mbl .I 

Middle_ Tubel components, amount, hand_diff, 1 ,O,mild steei,O, Unknown 
Tube_Wire_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Tube_Wire_Ass,Middle_ 
parent, selfname, Tube,components, 180,0,2 
typeclass, value_alpha, .19975e-05,0.171581 .1 
value beta, volume, 
weight mbl 

pho9175605751 pho, component,desc,numbe Middle_ Tube, Unknown 
Middle_ Tube! r, parent, rank,selfname, , 1 ,Middle_ Tube, Unknown 

setup,typeclass,prefix,it, ,pho917560575, 1 ,feature 
roughness! s,pho,10,10.0,1 

length_pho9175605751 length, name, upper, lower, Unknown ,Unknown 
pho9175605751 nominal, typeclassl ,Unknown 

,70.0,qeometry.l 
diameter _pho91756057 diameter, name, upper, lower, Unknown ,Unknown 
51 pho9175605751 nominal, typeclassl ,Unknown 

,18.0,geometrv.l 
cylinder917558093l cylinder, diameter, length, 20.0, 70.0,Middle_ Tube,cy 

Middle_ T ubel parent, selfname, linder917558093, features, 
typeclass, volume, Unknown ,Unknown .1 
weight mbl 

Bottom_Assl assemblies, amount, base_part, 1, Unknown , Unknown 
Strimmerl breadth, hand_diff, , Unknown , Unknown 

length, no_comps, , Unknown , Unknown 
numafcs, parent, ,Strimmer,Bottom_Ass,as 
selfname, typeclass, semblies,360,360,0.0049 
value_alpha, 71,49.076325,Unknown .1 
value_beta, volume, 
weight mb, widthl 

Motor_Assl assemblies, amount, base_part, 1,Unknown ,Unknown 
Bottom_Assl breadth, hand_diff, ,Unknown ,Unknown 

length, no_comps, ,Unknown ,Unknown 
numafcs, parent, ,Bottom_Ass,Motor_Ass,a 
selfname, typeclass, ssemblies,360,360,0.003 
value_alpha, 309,49.0244 71, Unknown 
value_beta, volume, .I 
weight mb, widthl 

Motor _Rotor _Ass! assemblies, amount, base_part, 1,Unknown ,Unknown 
Motor_Assl breadth, hand_diff, ,Unknown ,Unknown 

length, no_comps, ,Unknown ,Unknown 
numafcs, parent, , Motor_ Ass, Motor_ Rotor_ 
selfname, typeclass, Ass,assemblies,360,360, 
value_alpha, 0.002684,47.006126, Unk 
value beta, volume, 
weight mb, widthl 

nown .1 
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Rotor_Assl assemblies, amount,base_part, 1,Unknown ,Unknown ,0 
Motor_ Rotor _Ass I breadth, hand_diff, ,Unknown,O,Unknown 

length, nest_tangle, ,Unknown 
no_comps, numafcs, , Motor_ Rotor_ Ass, Rotor_ 
parent, selfname, Ass,assemblies,360,360, 
typeclass, value_alpha, 0.000200, 1.556126,Unkn 
value beta, volume, 
weight mb, widthl 

own .1 

Spring I components, amount, hand_diff, 1 ,O,mild steel, 1 ,Unknown 
Rotor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Rotor_Ass,Spring,compo 
parent, selfname, nents, 180,0, 1.964063e-
typeclass, value_alpha, 07,0.001532.1 
value beta, volume, 
weight mbl 

cylinder917557642l cylinder, diameter, length, 5.0, 10.0,Spring,cylinder91 
Spring! parent, selfname, 7557642,features,Unknow 

typeclass, volume, n ,Unknown .1 
weight mbl 

Locking_ Button I components, amount, hand_diff, 1 ,O,mild steei,O,Unknown 
Rotor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, , Rotor _Ass, Locking_Butto 
parent, selfname, n,components,360,360,8. 
typeclass, value_alpha, 40000e-06, 0. 06552,1 
value beta, volume, 
weiqht mbl 

prism9175575771 prism, breadth, length, parent, 6.0,70.0,Locking_Button,p 
Locking_ Button I selfname, typeclass, rism917557577, features, 

volume, weight_mb, Unknown ,Unknown 
width I ,20.0,1 

Rotorl components, amount, hand_diff, 1 ,O,mild steei,O,Unknown 
Rotor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, , Rotor _Ass, Rotor, compon 
parent, selfname, ents,360,0,0.000191 ,0.28 
typeclass, value_alpha, 9074,1 
value_beta, volume, 
weiqht mbl 

bho9175602611 bho, component,desc,numbe Rotor, Unknown 
Rotorl r, parent, rank, selfname, , 1,Rotor,Unknown 

setup, typeclass, prefix, it, ,bho917560261, 1 ,feature 
roughness! s,bho, 10, 10.0,1 

length_bho9175602611 length, name, upper, lower, Unknown ,Unknown 
bho917 5602611 nominal, typeclassl ,Unknown 

,20.0,geometry,l 
diameter_bho91756026 diameter, name, upper, lower, Unknown ,Unknown 
11 bho917 5602611 nominal, typeclassl ,Unknown ,5.0,geometry,l 
cylinder9175575011 cylinder, diameter, length, 90.0,30.0,Rotor,cylinder9 

Rotorl parent, selfname, 17557501 ,features,Unkno 
typeclass, volume, wn ,Unknown .1 
weight mbl 

flymo_motor917557433 standard_parts, afrtype, amount, Unknown , 1, Unknown 
I assemblies, hand_diff, material, , Unknown , Unknown 

Motor_Rotor_Assl nest_tangle, no_comps, ,Unknown ,Unknown 
numafcs, parent, , Motor_ Rotor _Ass, Unkno 
rs_stock_no, selfname, wn 
typeclass, value_alpha, ,flymo_motor917557433,a 
value_beta, volume, ssemblies,360, 180,0.002 
weiqht mbl 484,0.450000,1 
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body917557 4331 weight_flag, amount, hand_diff, 1,care, mild 
components, material, nest_tangle, steei,O,Unknown 
flymo_motor917557433 no_comps, numafcs, ,Unknown 
I parent, selfname. ,flymo_motor917557433,b 

typeclass, value_alpha, ody917557 433,componen 
value_beta, volume, ts,360,180,0.002484,0.40 
weight mbl 000,1 

prism917557 4331 prism, breadth, length, parent, 45.0,920.0,body917557 43 
body917557 4331 selfname, typeclass, 3,prism917557 433,featur 

volume, weight_mb, es,Unknown ,Unknown 
width I ,60.0,1 

connecting_ tag917557 4 weight_ flag, amount, hand_diff, 2,0,mild steei,O,Unknown 
331 components, material, nest_tangle, ,Unknown 

flymo_motor917557433 no_comps, numafcs, ,flymo_motor917557433,c 
I parent, selfname, onnecting_tag917557 433, 

typeclass, value_alpha, components,360,180,4.00 
value_beta, volume, OOOe-08,0 020000.1 
weight mbl 

sheet917557 4331 sheet, breadth, length, parent, 5.0,8.0,connecting_tag91 
connecting_tag917557 4 selfname, typeclass, 7557 433,sheet917557 433 
331 volume, weight_mb, , features, Unknown 

width I ,Unknown ,1.0,1 
axle917557 4331 weight_ flag, amount, hand_diff, 1,0,mild steei,O,Unknown 

components, material, nest_tangle, ,Unknown 
flymo _ motor917557 433 no_comps, numafcs. ,flymo_motor917557433,a 
I parent, selfname, xle917557 433,component 

typeclass, value_alpha, s,360,0,3.928125e-
value_beta, volume, 07,0.05000,1 
weight mbl 

cylinder917557 4331 cylinder, diameter, length, 5.0,20.0,axle917557 433,c 
axle9175574331 parent, selfname, ylinder917557 433, feature 

typeclass, volume, s,Unknown ,Unknown .1 
weight mbl 

Rotor_Coverl components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Motor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, , Motor _Ass, Rotor_ Cover, 
parent, selfname, components,360,180,0.00 
typeclass, value_alpha, 0191,0.289074.1 
value beta, volume, 
weight mbl 

cylinder9175572791 cylinder, diameter, length, 90.0,30.0,Rotor_Cover,cyl 
Rotor_ Coverl parent, selfname, inder917557279, features, 

typeclass. volume, Unknown , Unknown .I 
weight mbl 

Reei_Holderl components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Motor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Motor_Ass,Reei_Holder,c 
parent, selfname, omponents, 360,0, 6. 63853 
typeclass, value_alpha, 1e-05,0.217805,l 
value beta, volume, 
weight mbl 

cylinder9175571671 cylinder, diameter, length, 65.0,20.0, Reei_Holder,cyl 
Reei_Holderl parent, selfname, inder917 557167, features, 

typeclass. volume, Unknown ,Unknown .1 
weiqht mbl 

Motor_ Case_ Bottom I components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Motor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Motor_Ass.Motor_Case_ 
parent, selfname, Bottom, components,360, 
typeclass, value_alpha, 360,0.000184,0.005733.1 
value beta, volume, 
weiqht mbl 
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moulded9175571211 moulded, breadth, length, parent, 35.0,70.0,Motor_Case_Bo 
Motor_ Case _Bottom! selfname, typeclass, ttom,moulded917557121 ,f 

volume, weight_mb, eatures, Unknown 
width I ,Unknown ,75.0,1 

Motor_Case_Topl components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Motor_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, , Motor_ Ass, Motor_ Case_ 
parent, selfname, Top,components,360,360, 
typeclass, value_alpha, 0.000184,0.005733,1 
value beta, volume, 
weight mbl 

moulded917557039l moulded, breadth, length, parent, 35.0,70.0,Motor_Case_ To 
Motor_ Case_ Top! selfname, typeclass, p,moulded917557039,feat 

volume, weight_mb, ures, Unknown , Unknown 
width I ,75.0,1 

Button! components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Bottom_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Bottom_Ass,Button,comp 
parent, selfname, onents,360,360,4.20000e 
typeclass, value_alpha, -05,0 001310,1 
value beta, volume, 
weight mbl 

moulded9175569111 moulded, breadth, length, parent, 15.0,70.0,Button,moulded 
Button! selfname, typeclass, 917556911 ,features,Unkn 

volume, weight mb, 
width! -

own ,Unknown ,40.0.1 

Base_Bottoml components, amount, hand_diff, 1,0,mild steei,O,Unknown 
Bottom_Assl material, nest_tangle, ,Unknown 

no_comps, numafcs, ,Bottom_Ass,Base_Botto 
parent, selfname, m,components,360,360,0. 
typeclass, value_alpha, 00162,0.050544.1 
value beta, volume, 
weiqht mbl 

itd917560404l itd, component,desc,numbe Base _Bottom, Unknown 
Base_Bottoml r,parent,rank,selfname, , 1 ,Base_Bottom,Unknown 

setup, typeclass, prefix, it, ,itd917560404, 1 ,features,i 
rouqhnessl td,10,10.0,1 

pitch_itd9175604041 pitch, name, upper, lower, Unknown , Unknown 
itd9175604041 nominal, typeclassl ,Unknown ,1.0,geometry,J 

diameter _itd917560404 diameter, name, upper, lower, Unknown , Unknown 
I itd9175604041 nominal, typeclassl ,Unknown ,4.0,geometry,l 
length_itd9175604041 length, name, upper, lower, Unknown ,Unknown 

itd9175604041 nominal, typeclassl ,Unknown 
, 10.0,geometry,l 

moulded9175567731 moulded, breadth, length, parent, 50.0, 180.0,Base_Bottom, 
Base_Bottoml selfname, typeclass, moulded917556773,featu 

volume, weight_mb, res,Unknown ,Unknown 
width I ,180.0,1 
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FEATURE CLASSIFICATION LISTING 

C) ~ r:: :I C) C) r:: 
:!:! 0 r:: .E .2 Ill 

ni Q) Ill 0 C) ::I :::!: _C) 
0 E "'C ~C) i5e--Q) ;: r:: 0 C) IV.E ... IV C) 

Ill Ill IV ·- .2tn -~ C) "0~ 0 Q) Q) r:: - r:: :I .2 :1 Q) Ill E .E ::!: E.5 -~ r:: LL :I: ... ·- 0·- r:: Ill ·-... Q) ·- r:: E:C Q."'C IV"'C .... _ Q).- ·- ::::1 ... Zo o.r:: :t -... IV.., 1/jC) "C '"C E:i -- cl::~ IV 0 ... 0 
.2 1: Ill ... Ill Q) 0 0 ... 0 0 

r:: ::J 
Q) ... :I IV Q) IV 

Q) "' 
.&::Ill -o 0 0 0 0 O><-

LLD. <C:!E m 00 00 u:!: uu. 0 0 U::i!: 0~ owe:. 
bho 1 1 1 1 1 0 0 0 0 1 0 
est 1 1 1 1 1 1 1 1 1 0 
ecy 1 1 1 1 1 1 1 1 1 1 
efa 1 1 1 1 1 1 1 
egv 1 1 1 1 1 1 1 1 
epf 1 1 1 1 1 1 1 
erg 1 1 1 1 1 1 1 0 
esp 1 1 1 1 1 1 1 0 
etd 1 1 1 1 1 1 0 1 
etp 1 1 1 1 1 1 1 0 
htd 1 0 0 1 1 1 0 1 
icy 1 0 1 1 1 1 1 1 1 1 
igv 0 1 1 1 0 0 0 1 0 0 
ipf 0 0 1 1 0 0 0 1 0 0 
isp 0 1 1 0 1 0 0 
itd 1 0 0 1 0 0 0 0 0 0 
itp 0 0 1 1 1 0 1 0 
pcb 1 0 1 1 1 1 1 
pcf 1 1 1 1 1 1 1 1 1 1 
pes 0 1 1 1 1 
pfa 1 1 1 1 1 1 1 
pgv 1 0 0 1 1 0 0 1 0 1 
pho 1 1 1 1 1 1 1 1 
ppk 1 1 1 1 1 1 1 1 
psd 1 1 1 1 1 1 1 1 
pst 1 1 1 1 1 1 1 1 1 1 
ptd 1 1 0 1 0 0 1 1 0 0 
sf2 1 1 1 1 1 1 1 1 0 
sf3 1 1 1 1 1 1 1 0 
pky 1 1 1 1 1 1 1 1 0 
vst 1 1 1 1 1 1 1 
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ii 
E u 

:2 ·e IV Cl) 
Ill Cl) Cl) .... Ee~ ::::::1 c Ill ::::::1 c: _Cl) Cl Q)Cl OlCl i5 c Cl 0 

-Cl) 
0 0 res Cl c .c c c.E eel Cl) ~ c c ~ Cl) Ill Ill 
::::::1 ·-en u ,_,_ U·- >,Cl o.E Ee~ m·c: -·c: ... Cl "-Cl ~Ill CI/I- ·-res c 0 c 0 c .... c ... c res ·- Cl) c ::::::1 c ::::::1 Cl) !;.c::C ... ·- ... ·- :;:l"C ... ·-:;:::::::~res .... .r:: ..... .c: ·;;:;:: u- Ill·- Q).c :::::I.C -·- Ill·-

- u c._o-o u u u u u u u Q) ::::::1 
Cl) .. c u Ill .. Ill .... 

IV 0 0 .... (1) ~ .~ IV Cl) IV Cl) IV IV Ill > Ill Ill u 
res IV IV Ill Cl) Ill 

Cl) ... u~!! 
._ res ...... 0 c res res ns _res ._ res 

u.o.. WO~ w~ w~ C)(.) -=~ _(.) ....!:lE :lE~ 0..0 0..0 
bho 0 1 1 1 1 1 1 1 1 0 1 
est 0 1 1 1 1 1 1 1 1 
ecy 1 1 1 1 1 1 1 1 1 1 1 
efa 1 1 1 1 1 1 1 1 
egv 1 1 1 1 1 1 1 1 
epf 1 1 1 1 1 1 0 1 
erg 0 1 1 1 1 1 1 1 1 1 
esp 1 1 1 1 1 1 1 1 
etd 1 1 1 1 1 1 
etp 0 1 1 1 1 1 1 0 1 
htd 1 1 1 0 1 1 1 1 0 1 
icy 1 1 1 1 1 1 1 1 1 1 
igv 0 1 1 1 1 1 
ipf 1 1 1 1 1 0 1 
isp 1 1 1 1 1 1 1 1 
itd 0 1 1 0 1 1 1 1 0 1 
itp 1 1 1 1 1 1 1 0 1 
pcb 1 1 1 1 1 1 1 0 1 
pcf 1 1 1 1 1 1 1 1 
pes 1 1 1 1 1 1 1 0 1 
pfa 1 1 1 1 1 1 1 1 1 1 
pgv 1 1 1 1 0 1 1 1 1 0 1 
pho 1 1 1 1 1 1 1 1 0 1 
ppk 1 1 1 1 1 1 1 0 1 
psd 1 1 1 1 1 1 1 1 
pst 1 1 1 1 1 1 1 1 1 1 
ptd 0 1 1 0 1 1 1 0 1 
sf2 1 1 1 1 1 0 
sf3 0 1 1 1 1 1 1 0 
pky 0 1 1 1 1 1 1 0 1 
vst 1 1 1 1 1 1 1 0 
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C) C) 
s:: ni s:: 

1/) 
'nim 

;; "' ;; Ut» ... ... 
-(I) 1/) 

(I) C) Clltn 1/) C) ·- s:: 1/) 1/) s:: s:: "' "' 
s::,_ 

E~ ~ 1/) 0·- 0 ::i!s:: ::!!: s:: 0 s:: 0 s:: 
~ (I) ·- "C a; .E ....., "i: s:: 1/)'- ~·-... _ 

"C 
(I) "' 

m.C ~ E ... u "' ~ Qj s:: 
"' 0 ... 0 s:: Q) ... Q) (I) ·a. ... u u ... 
(I) ... ~::! "' ..c:o ..c: ..c: ..c: -cu 

"' 0 LLC.. m mu. mm m m 5::!: >u. 
bho 1 1 1 0 1 0 1 1 
est 1 1 1 0 0 1 1 
ecy 1 1 1 1 1 1 1 
eta 1 1 1 1 1 1 1 
egv 1 1 1 1 0 1 0 
epf 1 1 1 0 1 1 0 
erg 1 1 1 0 1 1 
esp 1 1 0 1 1 1 
etd 1 0 1 0 1 1 
etp 1 1 1 1 1 1 1 
htd 0 1 0 0 1 0 1 0 
icy 1 1 0 1 1 1 
igv 0 1 1 0 1 0 1 1 
ipf 0 1 0 0 1 1 1 1 
isp 0 1 0 0 1 1 1 1 
itd 0 1 0 0 1 0 1 0 
itp 0 1 1 1 0 1 1 
pcb 1 1 1 1 1 1 1 
pcf 1 1 1 1 1 1 1 
pes 1 1 1 1 1 1 1 
pfa 1 1 1 1 1 0 1 1 
pgv 0 1 1 0 1 0 1 0 
pho 1 1 1 1 1 0 1 0 
ppk 0 1 1 1 0 1 0 
psd 1 1 1 1 0 1 1 
pst 1 1 1 1 1 0 1 1 
ptd 0 1 0 0 1 0 1 0 
sf2 1 1 0 1 0 
sf3 1 1 0 0 1 0 1 1 
pky 0 1 1 0 1 0 1 0 
vst 1 1 1 0 1 1 
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FLYMO RESOURCES MODEL 

j£llnteructivo SOL- Ford (db a) on OBServer I!!IIEiJI3 

·"NA~E 
_.NewtonAycliffe 
.-Moulding 
'Assembly 
iShop_9540&7157190 
::mould1_95406774611 0 
·mould2_954067802130 
·'mould3 954067879190 
·•mould(954067936240 
'mould5_9540680043t 0 
mould6_954068064340 

, Nor1hendsec:tioo1 954068234780 
{t~or1hendsec:tion2=954068250870 
••Nor1hendsectionJ_954068262900 
·-No~hendsec:tion4_954066281900 
-,'Nor1hendseC1ion5_954068300910 
·:Nm1hendsedion6_954066317940 
tl~MhendseC1ion7 _954068325900 
•t~or1hendsection 1_954068661200 

:;Nor1hendseC!ion2_95406867B 190 
···Nor1hendsection3_954068696240 
'NorlhendseC1ion4_954068711260 

. :Northendsection5_954066726250 
-::t-<orthendsec:tion6_954066745260 
d·lrdendoedion 1_954069051520 
··'Midenr:lseC1ion2_954069078540 
;::MidendseC1ion3 954069094530 
"[Midendsection4=954069124570 
•MidendseC!ion 1_954069342020 
:MidendseC1ion2_954069362730 

-•·Midendsection2_954069393050 
,MidendseC1ion2_954069405790 
·MidendseC1ion4_95406943611 0 
Midendsedion3_954069443140 
Sl 000_954068234790 
s 1 000_954068234780 
'S800_954068234780 
,saoo_9540SB2347BO 
::seoo_954osazsoa7o 
rsaoo_9540G8250870 
:ssoo_95406826290o 

r,~,ft,'L'L ,:._ 
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~ lntemctove SOL- Ford (dho) on OBServer (!lrJl) 13 
''Biic t<it1 '~aliii~:\lYllfidow tleJp( · 
(' 

l£1 Data lllii!J.3 
iNAME 

,'~~~~09~~;~~~~~~~~0 
"s8oo-954068234780 
1;5800=954068250870 
;,saoo_95406B250B70 
1 S500_954068262900 
i'S500 954068262900 
j8550=954068281900 
·.8270 954069342020 
: 8500=954068317940 

8500 954060317940 
I 8s5o=954o6o3259oo 
''8650 954060325900 
!s750=954060663200 
;:s750_954068663200 

j ~~~~~-:~:~~:~~~~ :~ 
; 8550_954068670190 
t S550_95406B69B240 

~~~~~=:~:~:~~~~~:~ 
;,s550_954060711260 
'8440_954060726250 
<'S020_954060726250 
: 5190_954069051520 
'S190 954069051520 
1 S190-954069051520 
'5190=954069078540 
5190_954069070540 

. S200_954069094530 
i8200_954069094530 

1,511 0_954069124570 
; 8110 954069124570 
.'.S11 0-954069124570 
i S270-954069342020 
! 5270=954069342020 
; 5270 954069342020 
::'5270-954069342020 
• S380=95406943611 0 
'8250_95406943611 0 

>tiWl 

f!l Interactive SOL- Ford (dbn) on DBSnrver [l!!llirJIL"J 

J!! Dolo - - - - RliJIEI 
PARENTS 
SITE.Fiymo 
BUILDINQNewlorV':vdiffe 
BUILDING.NewtonAYcJiffe 
FlOOR. Moulding 
CELLShop_954067157190 
CELLShop_ 95406715 7190 
CELLShop_954067157190 
CELLShop_954067157190 
CELLShop_954067157190 
CELLShop_954067157190 
Norlhendsection 1,mould3_954067879190 
Nor1hendsection2.mould3_954067879190 
Nor1hendsection3.mould3_954067879190 
Nor1hendsection4.mould1_9540678 79190 
Nor1hendsection5.mould3_954067879190 
Nor1hendsection6mould3_95406 7879190 
Nor1hendsection7.mould3_95406 7879190 
Nor1hendsectionl.mould4_954067938240 
Nor1hendsection2.mould4_954067938240 
Nor1hendsecllonlmould4_954067938240 
Nor1hendseclion4.mould4_954067938240 
Nor1hendsecllon5.mould4_954067938240 
NoJ1hendsection6.mould4_954067938240 
Midendsection l.mould5_95406800431 0 
Midendsection2.mould5_954068004310 
Midendsection3.mould5_954068004310 
Midendsection4.mould5_954068004310 
Midendsection1.mould6_954068064340 
Midendsection2.mould6_954068064340 
Midendsection2.mould6_954068064340 
Midendsection2.mould6_954068064340 
Midendsection4.mould6_954068064340 
Midendsection3,mould6_954068064140 
RESOURC£.Northendsection1_9540682347BO 
RESOURC£.Nor1hendsection1_954068234780 
RESOURCE.Norlhendsection1_954068234780 
RESOURCENorlhendsection1_954066234780 
RESOURCE.Nor1hendsection2_954066250870 
RESOURCE.Nor1hendsecllon2_954068250870 
R£SOURCE.Nor1hendsection3_954068262900 
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~Onto f!UiJIJ!I 

PROPUST 
site.buildlngs 
xgeom.)lgeom)(C(Iord.ycoord_IM>il_floors 
xgeom_ygeonr.xcoord.ycoord,IM>itfioors 
xgeom_ygaorrucoord.ycootd,aV6itcells 
xgeom.ygeom.xcoord.ycoord,type.availstations. 
xgeom_ygeo=ord.ycoord,type,availstations 
xgeom,ygeom..xroord,ycoord,type,availslations 
xgeom.ygeom..xroord~ycoord.t,.-pe.avaitsto.tions 
xgeom,ygeon\XCOord,ycoord,type,avails!ations 
xgeom_ygeon\XCOord,ycoord,type,availstations 
xgeom,ygeom.xcoort:LycoordavaRresources.tools 
xgeom,ygeom.xcoontycoord.eveitresources.tools 
xgeom.ygeom..xcoord,ycoord.aveilresources.lools 
xgeom.ygeom.xcoord.ycoord.aveil.retources.tools 
xgeom,ygeom,xcoord.:ycoord.e.veitresources.tools 
xgeom.~-geom,l<l:Oortlycoord,eveitresources.tools 
xgeom.ygeom;'(C{)ord.ycoord,avoiltesources.tools 
xgeom.~-geom.-.:coord,ycoord,evaitresources.tools 
xgeom.ygeom.xcoordycoord.av&il.resources.tools 
xgeom.ygeom.xcoord.ycoord.availresources.tools 
:wgeom..ygeom;-.:coord.ycoord.avoil,resources.toots 
xgeorn,ygeorn.>coord,ycoord.avaitresources.tools 
xgeorn_ygeom.xcoord,ycoord,6'10ilresources.tools 
xgearn.ygeom.:--roord.ycoord.cvoilresources.tools 
-.;gearn.ygeom.:--.coord,ycoordavttilresources.tools 
xgeom.ygeom.:-:coord.ycoord.two.ilresourcesJools 
xgeom.ygeom.xcomd.)lCOOrd.ovoilresources.tools 
xgeom.ygeom.xcoord.ycoordavo.il.resources.tools 
xgeom.ygeom.>:coord.;,-"CCordavailresources.tools 
xgeom.ygeom.>:coord.ycoordovailresources.tools 
xgeom.ygeom>:coord.ycoordevailresourcesJools 
j(geom.ygeoro .. xcoorclycoord.ovaitresources.tools 

PARENTS 
RESOURCE.Northendseelion 1_ 954068234780 
RE SOURCE,Northendsec~on 1_ 9540682 34780 
RESOURCE.Northendsec~on 1_ 9540682 34780 
RESOURCE,Northendseelion2_954068250870 
RESOURCE_t~orthendseelion2_954068250870 
RESOURCE,Northendsection3_954068262900 
RESOURCE.Northendseelion3_ 954068262900 
RESOURCE.Northendseelion4_ 954068281900 
RESOURCE.Midendsedion 1_954069342020 
RESOURCE.Northendsection6_954068317940 
RESOURCE,Northendsection6_954068317940 
RESOURCE,Northendsection7 _954068325900 
RESOURCEt~orthendsection7 _954068325900 
RESOURCE Northendsection 1_954068663200 
RESOURCENorthendsection 1_95 4068663200 
RESOURCE Northendsection2_954068678190 
RESOURCE,Northendsection2_95406867B190 
RESOIJRCENorthendsection2_954066678190 
RESOURCE.Northendsection3_954068698240 
RESOURCE.Northendseelion3_954068698240 
RESOURCE_Northendsection4_954066711260 
RESOURCENorthendsection4_954068711260 
RESOURCE_Northendsedion5_954066726250 
RESOURCENorthendsection5_954068726250 
RESOURCEMidend•ection 1_ 954069051520 
RESOURCEMidendsection 1_ 954069051520 
RESOURCEMidendsection 1_ q54069051520 
RESOURCEMidendsection2_954069073540 
RESOURCEMidendsection2_954069073540 
RESOURCE.Midendsection3_95~069094530 
RESOURCEMidendsection3_95~069094530 
RESOURCEMidendsection4_954069124570 
RESOURCE,Midendsection4_95406912 4570 
RESOURCE,Midendsection4_954069124570 
RESOURCE,Midendsection 1_954069342020 
RESOURCE,Midendsection 1_954069342020 
RESOURCE,Midendsection1_954069342020 
RESOURCE,Midendsection 1_954069342020 
RESOURCE,Midendsection4_95406943611 0 
RESOURCE.Midendsection4_95406943611 0 

xgeom.ygeom...xcoord.ycoord.avail.re~ources,tools 
xgeom_ygeom>:coord.ycoord.availpower,quali1y.utilcostr61e,typedass,company,prodreJe_rough,flexmaxw.mf>)j),maxd,maxl 
xgeom.ygeoll"t..>:coord.ycoord.avail.powar.queti\y.util.costrate.o/Pedas"S.compeny,prodra.*e.rouglttlexrna~.ma;d:..rna--:d.ma.-..1 
xgeom,ygeorn>.coortlycoord,IM>itpower,queJi1y.utitcostrate,typedass,company,prodrare,rough.flE!>'.maxw_maxb.maxtlmaxl 
xgeom,ygeorn>.coord_ycoord,IM>itpower_qu61i1y.utitcostrete.typedess,company,prodrete.lough,fle>;maxw.mer<b,maxtlma><l 
xgeom_ygeornxcoord.ycoord.avail.power_quoli1y.utitcostrete.typedess.company_prodra!eJough,flexmaxw_maxb.me:<tlmaxl 
xgeom_ygeom.xcoord.ycoortlavaiLpower_queli1y.utitcostrete,typedess.company,prodra!e,rough.flex.maxw_mf>)j)_maxd.maxl 
xgeom.ygeom>:COord.ycoord.fM>itpower_quali1y,ulilcostrate,typedass,company,prodrate_rough_ftexm"""'-mf>)j)_mav!l_maxl 

-:i;ij-c ,._.. -_c- 7:"-'j-'' --.- · ---\·;[J •-
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PROPLIST 
xgeom.ygeom.xcoord.ycoord.avail.power.quality.util.costrate.typedoss.compf111Y.prodrate.rough.Hex.maxw.maxb.mexd.mf00 
xgeom.ygeom.xcoord.ycoordflVailpower.quafity.utilcostrate.typedass.company.prodmte.rough.flex.mEIXW.maxb.mflXd.maxl 
xgeom,ygeom.xcoord.ycomd.flvail.power.quB.!ity.utilcostrate.typedoss.compeny.prodrote.rough.flex.mHXW.maxb.maxd.mrod 
xgeom.ygeom.xcoorcLycoord.flvail.power.qua.lity.utilcoslnite.typedess.compe.ny.prodrate.rough.flex.maxw.maxb.maxd.maxl 
xgeom.ygeom.xcoord.ycoord.avail.power.quality.utilcostrate.typedass.company.prodrate.rough.flex.maxw.ml!Xb.mf!Xd.maxl 
xgeom.ygeom.xcoorctycoord.fivo.iLpower.quaJity.util.costrale.typedass.company.prodrBte.rough.flex.mBXW.mt!Xb.maxd.mmd 
xgeom.ygeom.xcoord.ycoord.HVoil.power.quaJity.util.costre.te.typedass.compe.ny.prodmte.rough.flex.mrlnf.mrOOtmaxd.mexl 
xgeom.ygeom.xcoord.ycoord.ave..:il.power_quBlity.utitcostrHte.typed6Ss.company.prodrate.rough.flex.moxw.moxb.maxd.mmd 
xgeom.ygeom.xcoord.yroord.avoil.power.quolity.util.costro.te.typedass.company.prodrate.rough.flex.maxw.m<IXb.m!!Xd.mwd 
xgeom.ygeom_xcoord.ycoord.availpower.qual~.util.costmte.typedass.company.prodrflte.rough.flex.maxw.mmdl.mm:d.mflxt 
xgeom,ygeom,xcoord.ycoorcle.vail.power.quality.utilcostrate.typedass.company.prodre.te.rough.flex.me.xw.maxb.maxd.maxt 
xgeom.ygeom.xcoord.ycoord.avail.power.quolity.util.costra.te.typedass.compe.ny.prodrate.rough.flex.me.xw.maxb.mm:d.mrud 
xgeom.ygeom.xcoord.ycoordavai\.power.quality.utitcostrflte.typedass.company.prodrote.rough.flex.maxw.mflXb.maxd.maxt 
xgeom.ygeom.xcoord.ycoard.avail.power.quality.util.costrate.typedass.company.prodrate.rough.flex.moxw.maxb.maxd.mmd 
xgeom.ygeom.xcoord.ycoard.avo.il.power.quality.util.costrete.typedass.company.prodrate.rough.flex.moxw.moxb.maxd.maxl 
xgeom.ygeom.xcoord.ycoord.avail.power.qua.lily.util.costrate.typedass.compony.prodrate.rough.flexmo:xw.maxb.maxd.mmd 
xgeom.ygeom.xcoord.ycoorclavail.power.qufility.util.costrate.typedass.compony.prodrote.rough.flex.maxw.moxb.maxd.mfixi 
xgeom.ygeom.xcoord.ycoord.avo.il.power.qua.lity.utitcosttete.typecloss.company.pradro.te.rough.fle~maxw.maxb.moxd.mox\ 
xgeom.ygeom.xcoord.ycoard.avail.power.qu8Jity.util.costrate.typedoss.company.prodrate.rough.flex.miD.W.mQXb.moxd.maxl 
xgeom.ygeom.xcoord.yroord.avoil.power.quolity.util.costrate.typedass.company.pradra1e.rough.flex.maxw.maxb.me.xd.mwd 
xgeom.ygeom.xcoord.ycoord.avail.power.quality.utitcostrate.typedoss.compBny.prodrate.rough.flex.mBXW.maxb.mo.xd.moxt 
xgeom.ygeom.xcoord.ycoord.avail.power.quality.util.costrate.typedllSs.company.prodrate.rough.flex.mBXW.moxb.maxd.moxt 
xgeom.ygeom.xcoord.ycoord.avail.power,quBiity.util.cosb'flte.typedo.ss.compo.ny.prodrate.rough.flex.moxw.maxb.mo.xd.mo.xl 
xgeom.ygeom.xcoord.ycoord.avail.power.que.lity.util.costrate.1ypeclass.company.prodrate.rough.flex.maxw.maxb.maxd.maxl 
xgeom.ygeom.xcoord.ycoord.avail.power.quality.util.costrate.typeclass.company.prodmte.rough.flex.maxw.maxb.maxd.maxl 
xgeom.ygeom.xcoord.ycoord.o.vail.power.qualily.util.cosb'ale.typedBss.company.prodrate.rough.flex.mrJXtN.maxb.maxd.mo.xl 
xgeom.ygeom.xcoord.ycoord.Bvail.power.quality.util.costrate.typecloss.compony.prodmte.rough.flex.mOXN.moxb.mo.xd.moxl 
xgeom.ygeom.xcoord.yroord.avoil.power.quality.util.costro.1e.typedBss.company.prodmte.rough.flex.moxw,m!!Xb.m!lXd.mwd 
xgeom.ygeom.xcoord.yroord.avoil.power.quolity.util.costrale.typeclass.compeny.prodrate.rough.flex.moxw.maxb.maxd.mwd 
xgeom.ygeom.xcoord.ycoord.ovail.power.quality.util.costrale.~ecless.compeny.prodmte.rough.flex.maxw.maxb.maxd.maxl 
xgeom.ygeom.xcoord.ycoord.Bvail.power.que.lity.util.costrate.typedass.company.prodrate.rough.flex.mBXW.moxb.maxd.mrud 
xgeom.ygeom.xcoord.ycoord.o.voRpower.quality.util.costrate.typeclo.ss.compEiny.prodrate.roughJiex.ma:xw.mm:b.maxd.mBXI 
xgeam.ygeom.xcoord.ycoord.o.vail.power.quality.util.costrate.typedH.ss.company.pradrate.rough.tlex.maxw.mBXb.maxd.mcxl 
xgecm.ygeom.xcoord.ycaord.avaif.power.quality.util.costrate_typedass.company.prodrate.rough.flex.maxw.mexb.mexd.mBXt 
xgeom.ygeom.xcoord,ycoord.avail.power.quality,util.costrate.typedass.company.prodrH.te.rough.flelf.mBXW.mexb,mHXd.maxt 
xgeom.ygeom.xcoord.ycoord.ovail.power.quality.util.costrate.typecless.company,prodrate.rough.flex.maxw.maxb.maxd.mrud 
xgeom.ygeom.xcoord.ycoord.flvail.power.qua.lity.util.costrate.typedass.compe.ny.prodrate.rough.flex.maxw.mexb.maxd.maxl 
xgeam.ygeom.xcoord.ycoord.f!Vo.il.power.quality.utilcostrate.typedass.company.pradrote.rough.flelf.maxw.mfDdJ.mBXd.mexl 
xgeom.ygeom.xcoord.ycoord.ave.il.power.quality.util.costrate.typedass.company.prodrc.te.rough.flex.mexw.m6Xb.maxd.mf00 
xgeam.ygeom.xcoord.ycoord,ave.il.power.quaJity.util.costre.le.typedass.company.prodrate.rough.flex.maxw.mBXb.mBXd.maxl 

,:.:.~ . . ... .... . .......... ·a .. 

:~'"'' ; "' 
~ ~.A~;.,:.,C':__:. 

, ... 
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i·~E~~e~lf:!f;~:-,~P.Jil·m~o~i@"r~~i··~~!§\I~§~~~~l~·~~~f?r~ ~~-. , ~~-;t·~w.,-~~~~0-~~-~==~ ~~~::z:~:~.~~~t:{ 

VALUE 
NewtonAyditfe. 2 
201.1 ~2.120.0.True.1 
100.1 ~2.0.0.True.1 
201.1~2.0.0.True.11 
90.7.0.0.CeiLTrue.5 
77.7.0.0.CeiLTrue.S 
94.110.0.Ceii.True.7 
74.13.0.0.Ceii.True. 7 
8~.1 O.O.O.Ceii.True.2 
89.1 O.O.O.Ceii,True.6 
10,1 O,O,O,True.2,2 
10,1 0,1 O,Q True.2.2 
1 0.1 0.20.0,True.2.2 
10.1 0.30,0.True,O.~ 
10.1 O.~O.O.True.1.4 
10.1 0.50.0.True.2.2 
I 0.1 0.60,0.True.2.2 
I l.13.0.0.True.2.2 
1 3.13. t 3.0.True.2.2 
ll.13.26.0.True.1.5 
I 3.13.39.0.True.1.5 
13.13.52.0.True.2.2 
1 3.1175.0.True.2.2 
10.1 0.40.0,True.3.2 
1 Q 10.50.0 True.2.2 
1 0.1 0.60,0.True,2.2 
1 0.10.70.0.Tnre.3.2 
t 5.1 O.O.O.True.2.2 
15.1 0.15,0,True,2,2 
20. 10.30,0,True.4.2 
20.1 0.50,0. T rue.4.2 
20.1 0. 70,0.True,4.2 
20.1 0.30.0.True.4.2 
2.11.1.1,True, 1000,2Q70.5897,1njection Moulding.UNKN<l'NN,60. 1.50.1.1.1.1 
2.11, 1,1, T rue.1 000.20.70.56.97,1njection Moulding.UNKN0Vv'N,60, 1, 50.1.1.1.1 
2.11. 5.1. T rue.800. 25. 70, 45,9J.Compreooion Moulding.UNr.N<l'NN.60.1.50.1.1. 1.1 
2.11.5.1.True.800.50. 70. 4593.Contecl Moulding.UNKNCM>N.60. 1.50.1,1.1.1 
2.11.5.1.True.800.30.70.45.93.1njection Moulding.UNKN<l'NN.60.1.50.1.1.1.1 
2.11.2.1.True.B00.80.50.45.93.BiowMoulding.UNKNOV<N60. 1.30.1.1.1, 1 
2.1 1.2.1. Toue.500. 50.50. 35.52.1njection Moulding.UNKNOWN.80. 1. 30.1. 1.1.1 

.,!;: ·- .: tt.~~ ::~~i~1:·:t~~1r:·~~~t~i1f~ti·;.:. ~:~:'·~{;:-.-~-,~~-.:r~;.~~~~t .. ;. 
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VALUE 
2.11.1.1.True.I000.20.70.5B.97.1njection Moulding.UNKNOWN.60.1.50.1.1.1.1 
2.11.5.1.True.600.25.70.45.93.Compression Moulding.UNKNOWN.60.1.50, 1.1.1.1 
2.11.5.1.True.600,50.70.459J.Comae! Moulding.UNKNOWN.60.1.50.1.1.1.1 
2.11.5.1.True.800,J0.70.45.93.1njeC1ion Moulding.UNKNOWN.60.1.50.1.1.1.1 
2.11.2.1.True.BOO.B0.50.45.93.Biow Moulding.UNr~OWtl.60.1.30.1.1.1.1 
2.11.2.1.True.500.50,50.35.52Jnjeelion Moulding.UNKNOWN.B0.1.30.1.1.1.1 
2.11.6.1.True.500.50.50.3552Jnjeelion Mouldin9-UNKNOWN.60. U0.1.1.1.1 
2.11.2.1.True.550,50.50.35.52.1njeelion Moulding.UNKNOWN.60.1.30.1,1.1.1 
7.2. 9.1,T rue.270. 40. 70.2159.1njeelion Moulding. UNKNOWN.B0.1,60.1.1.1.1 
2.11.2.1.True,500.50.50.35.52.1njeelion Moulding.UNKNOWN60.1.30.1.1.1.1 
2.11.6.1.False,500,50.50.35.52.1njection Mouldin\j.UNKNOWN.60.1.30.1.1.1.1 
2.11.6.1.True.650.50.50,35.52.Compression Moulding.UNKNOWN.60.1.30.1.1, 1.1 
2.11.2,1.True,650.50.50.35.52.1njeelion Moulding. UNKNOWN. GO. 1.30.1.1.1.1 
2.11.2.1. True, 750.50. 50. 45.75.1njet1ion Moulding. UNKNOWN. 40.1.30.1,1.1.1 
2.11.6.1, True. 750.50. 70. 45.75.1njet1ion Moulding. UNKNOWN. 30.1.10.1.1.1.1 
2.11.2.1.True.800.50.80. 47.93.1ojec1ion Moulding.IJNKNOWN.50.1.30.1.1.1.1 
2.11. 6.1. True. 900. 50.80. 47.93.RolatJOnal Moulding. UNKNOWN.50.1.30.1.1.1.1 
2.11.6.1.True.550.30.B0.35.52Jnjeelion Mould<ng.UNKNOWN.50. 1.30.1.1.1.1 
2.11.6.1.True.550.30.80.35.52.1njec1ion Mould<ng.UNKNOWN.50.1.30.1.1.1.1 
2.11.2.1.True 550.30.B0.35.52Jnjec1ion Mould<ng.UNI<NOWN.50.1.30.1.1.1.1 
2.11.2.1.True.550.30.60.35.52.1njet1ion Moulding.UNI<NOWN.50.1.30.1.1.1.1 
2.11.6.1.Folse.550.30.B0.35.52.1njet1ion Moulding.UNKNOWN.50.1.30.1.1.1.1 
2.11.2.1.True.440.30.80.31.60.1njec1ion Moulding.UNKNO'ffN 70.1.30.1.1.1.1 
2.11.6.1.T rue.B20.30.B0.31.60.1njedion Moulding.UNKNOWN.60.1.30.1.1.1.1 
2.11.6.1.True.190.30.60.22.35.1njet1ion Moulding.UNKNOWN.60.1.30.1.1.1.1 
2.11.2.1.True.190.30.60.22.35.1njedion Moulding.UNKNOWN.90.1.30.1.1.1.1 
2. 11.2.1.True.190.20.90.22.35.1njedion Moulding.Ut~KNOWN.B0.1.30.1.1.1.1 
2.11.2.1.True.190.20.B0.22.35.1njedion MouldingUNKNO\'¥N.80.1.30.1.1.1.1 
2.11.6.1.True.190.40.80.22.35.1njetlion MouldingUNKNOWN.80.1.30.1.1.1.1 
2.11.2.1.True.200.40.60.22.70.1njedion MouldingUNKNOWN.90.1.30.1.1.1.1 
2.11.6.1.True.200. 40.80.22.70.1njedion MouldingUNKNO\VN.80.1.30.1.1,1.1 
2.11.2.1.True.11 0.40.80.21.70.1njeclion Moulding.Ut~KNOWN.90.1.30.1.1.1.1 
2.11.5.1.True.110.40.80.21.70.1njeclion Moulding.UNr-NO\VIJ.80.1.30.1.1.1.1 
2.11.8.1.T rue.11 0. 40. 70.21. 70.1njeclion Moulding.UNKNOV.IN.70.1.30.1.1.1.1 
72.11.1.1.T rue.2 70. 40. 70.23.58.1njeclion Moulding. UNKNOW'N.80.1.60.1.1.1.1 
2.11.1.1.True.270. 40. 70.2l58.1njec:ton Moulding.UNKNOWNB0.1.60.1.1.1.1 
7.2.1.6.True.270.40.70.23.Salnjeelion Moulding.UNKNOWN.80.1.60.1.1.1.1 
7. 2. 9.6. T rue.270. 40. 70. 23.56.1njet1ion Moulding.UNKNOWN.80.1. 60.1.1.1.1 
7.2.1.1.True.380. 40.70.27.58.Gompression Mould<ng.UNKNOWN.80.1.60,1.1.1.1 
7.2."1.1.T rue.250.40.70.25.58.1njectron Moulding.UNKNOWN.60.1.60.1.1.1.1 
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