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The Breeding Ecology of Homed Puffins (Fratercula corniculata) in Alaska. 

M.Sc. thesis submitted by Ann Marie Aglionby Harding, 2001. 

ABSTRACT 

The Horned Puffin (Fratercula corniculata) is one of three North Pacific puffin 

species. Horned Puffins almost always nest amongst boulders and in rock crevices. 

This makes access to nest-sites and chicks difficult and, as a result, sample sizes are 

small for many their breeding parameters. I studied the breeding ecology of Horned 

Puffins at Duck Island, Alaska, over a period of five years (1995-1999) in order to 

improve our baseline knowledge of this species and the variability in its breeding 

ecology. 

Adults fed their chicks primarily on sandlance (Ammodytes hexapterus), 

which comprised over 90% of the diet. Chick survival to fledging was generally high 

(83-97% ), and there was no apparent difference among years in breeding success, 

despite evidence of poor food availability in 1998. There was, however, a large range 

of chick growth rates and fledging ages. Chick mass growth rate was lowest in 1998, 

and chicks also fledged at youngest ages in that year. The impacts of reduced food 

supply on growth differed between different body components, suggesting 

differential allocation of energy and nutrients into the growth of different body 

structures. There was no difference among years in either chick diet or the mass of 

food loads bought to the colony by adults. 

Daily counts of Horned Puffins attending the colony were made throughout 

the breeding season in three consecutive years in order to examine the diurnal, 

seasonal and annual variation in colony attendance, and the implications of this 

variation for population monitoring. Peak diurnal attendance occurred between 2030-

2130. Despite high seasonal and annual variation in colony attendance, overall mean 

numbers of birds present at the colony during both incubation and chick-rearing did 

not differ among years. There was greater variability in attendance during chick

rearing than during incubation, indicating that counts conducted during incubation 

may provide the better index of breeding population size. 
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Chapter One- Genera/Introduction 

Species exhibit a wide range of life histories, with large va~iation in traits 

such as number of breeding attempts (semelparous species reproduce only 

once, iteroparous species may breed repeatedly), age at sexual maturity, 

reproductive rate after commencement of breeding, development pattern of 

offspring and adult life span. Life-history strategies result from trade-offs in 

the allocation of limited resources to competing demands, with natural 

selection favouting those trade-offs that result in the greatest evolutionary 

fitness (Cody 1966, Steams 1992). 

In many species, life-history evolution is constrained by physical or 

ecological factors that require the commitment of resources to particular 

systems (Boggs 1992, Steams 1992). For example, allocation of resources to 

reproduction may be constrained by limited opportunities for breeding (e.g. 

Pruett-Jones and Lewis 1990), by specialized food resources or ecological 

requirements (e.g. Ligon and Ligon 1990), or by a high risk of predation (e.g. 

Wisenden 1993). Body size may additionally constrain growth and foraging 

(e.g. Bonduriansky and Brooks 1999), and in long-lived species, there may 

also be a high requirement for allocation of resources to self-maintenance, at 

the cost of a reduction in reproductive rate (e.g. Ashman and Schoen 1997). 

Among avian species, the life histories of seabirds are characterized 

by long life-spans, deferred maturity, and low annual reproductive output 

(Charlesworth 1980, Ricklefs 1990). These traits are generally thought to 

reflect a low ceiling on annual reproductive rate, restricted by the sparse, 

patchy and unpredictable distribution of marine food resources (Lack 1968). 

However, Hamer et. al. (in press) have argued that low reproductive rates in 

seabirds may result more from preferential allocation of resources to 

promoting long life-spans than from chronically low food availability. 

According to Life History Theory, breeding adults trade-off cunent and 

future reproduction (Steams 1992), and in variable environments they should 

adjust their behaviour during each breeding attempt to maximize their lifetime 

reproductive success (Williams 1966). Since a small reduction in adult 

survival of long lived species has a large negative impact on lifetime 

reproductive output (Charlesworth 1980), where food availability is low, 
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adults should abandon a breeding attempt if risks to survival are too high 

(Drent and Daan 1980). 

Many studies have demonstrated that food availability can have a 

profound effect on seabird reproduction (e.g. Riklefs et al. 1984, Coulson and 

Thomas 1985, Oka et al. 1987, Mat1in 1989, Monaghan et al. 1989, Burger 

and Piatt, 1990, Hatch and Hatch 1990, Hamer et al. 1991a, Danchin 1992, 

Shea and Ricklefs 1996). Both within and between species, different breeding 

parameters respond to changes and variation in prey availability in distinct 

ways (Cairns 1987, Baird 1990). For example, small species that spend a high 

proportion of their time feeding and have a restricted foraging range, like the 

Common Tern (Stema hirundo ), are more vulnerable than other species to 

food shortage (Pearson 1968, Monaghan et al. 1989). Species with 

specialized feeding habits or food searching techniques that are energetically 

expensive are also more vulnerable in this respect (see Furness and Ainley 

1984 for a review). Responses to variation in food availability can be 

examined in the context of life-history resource allocation, life history traits 

and physiological and ecological constraints, and there is a need for further 

data on responses to changes in food availability among species with 

contrasting life-histories (Monaghan 1996, Ricklefs 2000). 

The family Alcidae 

The Alcidae are a group of marine birds, within the order Charadriifmmes, 

that pursue prey beneath the water using wing-propelled diving (Strauch 

1985). Within seabirds, the Alcidae are an ideal family to examine the 

influence of food availability and physiological and ecological constraints on 

resource allocation and life history traits, with a wide range in adult body 

size, breeding habitat, social behavior, feeding ecology and developmental 

pattern exhibited among the 22 extant species. 

Alcids exhibit high variation in adult body size, with Least Auklets 

(Aethia pusilla) the smallest species, weighing only ea. 80-90 g, and 

Guillemots (Uria spp.) about 10 times heavier, weighing ea 900-1000 g 

(Gaston and Jones 1998). There are also large geographic and intersexual 
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Chapter One- Genera/Introduction 

differences in body size within some species (e.g. the Atlantic Puffin, 

Fratercula arctica; Bedard 1985). 

Within some genera, there can be high diversity among species m 

nesting habitat and degree of coloniality. For example, whereas the Kittlitz's 

Murrelet (Brachyamphus brevirostris) nests solitarily on talus slopes in the 

mountains, often on stony areas between snow patches (Day 1995), the 

Marbled Murrelet (B. marmoratus) typically nests in old-growth trees (Singer 

et al. 1991). In contrast, both the Common Guillemot (Uria aalge) and 

Bri.innich's Guillemot (U. lomvia) are highly colonial, usually breeding at 

high density in exposed habitat such as cliff ledges or low-lying, flat islands. 

Other alcids, such as the puffins (tribe Fraterculini) nest colonially, usually in 

bmTows or crevices, with enclosed nests protected from both avian predation 

and the weather. Species also differ in their diet, foraging range and diving 

ability, with some auklets (tribe Aethiini) planktivorous, whilst other alcids, 

such as puffins, are mainly piscivorous (Gaston and Jones 1998). 

The Alcidae exhibit marked variation in chick development and 

fledging patterns, between species (Gaston 1985, Ydenberg 1989). This 

variation encompasses three broad categories; precocial, intermediate and 

semi-precocial development (Sealy 1973a). For example, Ancient MmTelet 

chicks (Synthliboramphus antiquus) are precocial, spending only 1-2 days in 

the burrow before leaving for sea. Chicks are not fed at the colony, but 

parents continue to feed their chicks at sea until they are fully-grown (Gaston 

and Jones 1998). In contrast, the Common Guillemot, Bri.innich's Guillemot 

and Razorbill (Alca torda) demonstrate intermediate chick development, with 

the chick leaving the nest-site at only 22/25% adult body weight (Birkhead 

and Harris 1985), and continuing development at sea whilst being fed by the 

male parent (Prince and Harris 1988). These three species use exposed 

breeding sites where one parent must remain with the egg or chick to protect 

against weather and predation. Puffin chicks have semi-precocial 

development, being fed at the nest-site until they have reached near adult size 

and possess complete juvenile plumage (Sealy 1973a), and are independent 
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Chapter One - General Introduction 

after fledging. The four puffin species breed underground, 111 bunows or 

crevices (Gaston and Jones 1998). 

There has been considerable interest 111 the selective pressures 

determining the evolution of different fledging strategies in the Alcidae (e.g. 

Lack 1968, Sealy 1973, Gaston 1985, Ydenberg 1989, Ydenberg et al. 1995, 

Houston et al. 1996). It has been suggested that the relative mortality risks 

associated with the open ocean and the nest-site play key roles (Cody 1971, 

Munay et al. 1983, Ydenberg 1989). Predator pressure at the colony may be 

important (Cody 1971), with intermediate species, using open or exposed 

nest-sites, at more risk of predation than the semi-precocial species that all 

use enclosed breeding sites. The enclosed breeding sites of the semi-precocial 

species provide protection against weather and avian predators, which allows 

both parents to forage simultaneously, leaving the chick unguarded once it 

has attained endothermy (Banett and Rikardsen 1992). 

Taking an inclusive fitness approach, Y denberg (1989) assessed the 

costs and benefits associated with the nest-site and ocean, from both the 

chick's and parents' perspective. Ydenberg suggested that while the nest-site 

is a safe place, with lower mortality than the ocean, growth at the nest-site is 

slower due to the adults having to fly further for food. He suggested that 

differences between species in the balance between chick growth and 

mortality at the colony and at sea may select for different fledging strategies 

in different species. A model incorporating this trade-off accurately predicted 

chick mass and age at fledging in Common Guillemots (Ydenberg 1989). 

Several authors have suggested that the intermediate pattern of 

development is the result of constraints on life-history evolution imposed by 

body size (Sealy 1973a, Birkhead and Hanis 1985, Gaston 1985). Egg mass 

is a smaller proportion of adult body mass in larger species, and this may 

preclude them from a fully precocial pattern of development (Birkhead and 

Han·is 1985). Conversely, the maximum food load that adults can cany is a 

smaller proportion of body mass in the larger species of alcid, a consequence 

of the exceptionally low wing area to weight ratio in the genera Uria and Alca 

(Gaston 1985). This may preclude them from a semi-precocial mode of 
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development if it prevents adults delivering food sufficient food to allow 

chicks to reach 70-90% adult weight at the nest-site (Birkhead and Hanis 

1985, Gaston 1985). 

These ideas are supported to some extent by the fact that the largest 

alcids (Common and Brtinnich's Guillemots) have an intermediate pattern of 

development. However, the data are confounded by the fact that in addition to 

being smaller that guillemots, the semi-precocial alcids are also bmTow or 

crevice-nesters. This means that both parents can forage simultaneously 

without leaving the chick at high risk of predation. Thus, it may be buiTow

nesting rather than small body size that has favoured semi-precocial 

development in the Alcidae. Moreover, there is an overlap in body size 

between the intermediate species and the largest semi-precocial species, 

Homed Puffins (Fratercula corniculata) and Tufted Puffins (Fratercula 

cirrhata). Most of our knowledge of the semi-precocial alcids is based on the 

smallest of the four puffin species, the Atlantic Puffin, and there are many 

fewer data on the larger semi-precocial species. 

The Horned Puffin 

The family Alcidae consists of five main lineages or tribes (Strauch 1985). 

Within the tribe Fraterculini there are four species of puffin; the Atlantic 

Puffin, and three species of Pacific puffin; the Homed Puffin, the Tufted 

Puffin and the Rhinoceros Auklet (Cerorhinca monocerata). Although the 

Atlantic Puffin has been studied extensively (e.g. Ashcroft 1979, Hanis 1984, 

Hanis et al. 1997), relatively little information exists on the breeding ecology 

of the larger congeneric Homed Puffin. There is some overlap in body size 

between Atlantic and Homed Puffins (Piatt and Kitaysky 2001), but whilst 

some studies of Atlantic Puffins have been conducted in Norway and Canada 

(e.g. Nettleship 1972, Barrett and Rikardsen 1992), the majority of studies on 

this species have been in Britain, where birds belong to the smallest 

subspecies F. arctica grabae (Hanis 1984). 

The Horned Puffin has a summer distribution ranging from 50° to 70° 

North latitude (Amaral 1977), breeding along the coast and on offshore 
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islands in British Columbia, the Gulf of Alaska, Aleutian Islands, Sea of 

Okhotsk, Kuril Islands, and the Bering and Chukchi Seas (Piatt and Kitaysky 

2001). The estimated world population is 1.2 million birds (Gaston and Jones 

1998), with ea. 80% found in Alaska and the majority (ea. 62%) breeding off 

the Alaska Peninsula. 

Puffins spend the winter at sea, returning to the colony in the spring to 

breed (in May in Alaska). Homed Puffins almost always nest either in cracks 

in cliff faces, amongst boulders or in rock crevices. A single egg is laid in 

June, and is incubated by both parents for an average of 41 days (n=20, SD ± 

3.4, Petersen 1983). After hatching, the chick is brooded constantly for the 

first 5-7 days (Wehle 1980). Once the chick has attained endothermy it is left 

alone, attended only briefly during food delivery. Chick development is slow, 

with a typical nestling period of 37 to 46 days (n=12) (Peterson 1983). Both 

parents feed the chick, with loads of several small fish transported crosswise 

in the bill. Chicks are fed almost entirely fish, with sandlance (Ammodytes 

hexapterus), capelin (Mallotus villosus) and gadids (Gadidae) the most 

impottant prey species across their whole range (Piatt and Kitaysky 2001). 

Young at a single colony fledge over a period of about a month (Petersen 

1983), with adult birds departing from the colony over this period after their 

chick has fledged. 

Study Site 

This study was conducted on Duck Island, a small island located about 0.4 km 

off the east of Chisik Island, in western Cook Inlet, Alaska (60° 09'N, 152° 

34'W) (Figure 1:1). Duck Island has an area of approximately 2.4 hectares and 

maximum elevation of 49 meters. Chisik and Duck Islands were made part of 

the Alaska Maritime National Wildlife Refuge in 1980, and are important 

locations for breeding seabirds. A total of ea. 22,000 individual Black-legged 

Kittiwakes (Rissa tridactyla) and 6000 Common Guillemots breed on the two 

islands. Smaller numbers of Glaucous-winged Gulls (Larus glaucescens), 

Parakeet Auklets ( Cyclorlzynchus psittacula ), Double-Crested Cormorants 

(Phalacrocorax auritus), Tufted Puffins, Pigeon Guillemots (Cepphus 
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Chapter 011e- General Introduction 

calumba) and Common Eiders (Somateria mollissima) also breed there. An 

estimated 4-5000 individual Homed Puffins nest annually on Duck Island, in 

caves and in crevices amongst boulders. 

This study was conducted in the context of a larger project, 'Cook Inlet 

Seabird and Forage Fish Studies' (USGS and USFWS 2001). Waters that 

surround Duck Island are estuarine, receiving glacier-fed freshwater from 

Tuxedni Bay and from rivers at the head of Cook Inlet (Robards et al. 1999). 

The water is stratified and relatively warm, with low salinity and low levels of 

primary productivity. As a result the area is unable to support a high biomass 

of planktivorous forage fish, with the fish present having a highly dispersed 

distribution (USGS and USFWS 2001). The waters have low densities of 

foraging seabirds, and concurrent study on the breeding Common Guillemot 

and Black-legged Kittiwake, suggested that birds breeding on Chisik and Duck 

Island have longer foraging trips and higher work rates during incubation and 

chick-rearing than other colonies in Alaska (Kitaysky et al. 1999, Zador and 

Piatt 1999, USGS and USFWS 2001). Field workers were present on Duck 

Island between May/June to August/September in 1995-1999. 

Study context and thesis outline 

Some species of seabird in Alaska have shown decreased productivity, diet 

change and population decline during the last few decades (Piatt and 

Anderson 1996). This decline is thought to be associated with a shift in fish 

community composition (Anderson and Piatt 1999), as a direct result of the 

ocean climate 'regime shift' that occmTed in the North Pacific during the late 

1970s (Hare and Mantua 2000). 

Seabirds in Alaska also face a number of threats from oil and gas 

exploitation. The economy of Alaska has been become increasingly reliant on 

the oil and natural gas industry, and development of these resources continues 

in offshore areas. Alcids are among birds most vulnerable to oil pollution, 

spending much time swimming on the slllface and often aggregating together 

in large rafts (King and Sanger 1979, Piatt et al. 1990a). The Exxon Valdez oil 

spill in 1989 killed more than 300,000 seabirds, with alcids (predominately 

8 



Chapter One- General Introduction 

Common Guillemots) comprising at least 80% of the dead birds retrieved 

after the spill (Piatt et al. 1990). As oil and gas development increases, the 

1isk to alcids will increase. 

In addition to oil and mineral exploitation, alcids are also vulnerable 

to commercial fishing operations, and many drown in gill nets. Fisheries can 

also affect seabird food webs, changing the levels of prey stocks and 

influencing predator-prey interactions. For example, the extended breeding 

failure of Atlantic Puffins in Norway has been linked to the over-fishing of 

North Sea herring (Clupea harengus) (Barrett et al. 1987). Intensive fisheries 

may also indirectly increase seabird forage fish abundance. For example, 

there are documented increases in sandeel (Ammodytes sp.) stocks as a 

response to reduced competition with mackerel (Scomberidae) and herring 

(Furness and Ainley 1984). Pollock (Theragra chalcogramma) and capelin 

are important species both commercially and in the diet of Horned Puffin 

chicks in Alaska, but little is known about the impact of commercial fisheries 

for these species on food availability and breeding success of Horned Puffins. 

In addition to interest in the context of resource allocation and life 

history traits, many people have suggested that seabirds are potentially 

valuable indicators of oceanic conditions, and monitors of changes in the 

abundance and distribution of prey species (e.g. Ricklefs et al. 1984, Cairns 

1987, Montevecchi et al. 1988, Baird 1990, Barrett and Furness 1990, Harris 

and Wanless 1990, Nettleship 1990, Springer el al. 1996). 

Very few studies have focused on the Horned Puffin (e.g. Amaral 

1977, Wehle 1980, Wehle 1983) and despite Alaska holding an estimated 

80% of the world population of Horned Puffins, it remains one of the least 

studied seabirds in the state. There are data on the breeding ecology of 

Horned Puffins in Alaska, but sample sizes are small for many breeding 

parameters, especially chick growth and fledging age, and monitoring studies 

have focused on very few colonies. To be able to interpret changes in Horned 

Puffin breeding ecology much more information is needed on the 'normal' 

variability in breeding parameters, both between colonies and between years 

at the same colony. Although surveys suggest that populations of some 
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Chapter One- General Introduction 

seabird species in Alaska have declined over the last few decades (e.g. Piatt 

and Anderson 1996), there is no standardized population census method for 

the Homed Puffin, and consequently very little is known about absolute 

numbers or trends in population size. Without firm knowledge of both the 

breeding ecology and population sizes of Homed Puffins, it is impossible to 

detect changes and distinguish between effects due to natural changes in the 

marine environment or those arising from human impact. 

This thesis presents results from a five-year study (1995-1999) of 

Homed Puffin breeding and population ecology on Duck Island, Alaska. 

Chapter Two presents data on the breeding ecology of Homed Puffins, and 

examines annual variation in different breeding parameters. Chapter Three 

presents data on the pattem of colony attendance of Homed Puffins, examines 

the daily, seasonal and annual variation in colony attendance, and discusses 

the implications of this variation for population monitoring. In Chapter Four, 

the General Discussion, I discuss the wider implications of these results in the 

context of life-history theory, food availability and population monitoring. 
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Chapter One - Genera/Introduction 

Figure 1:1 . Map showing the location of Chisik and Duck Islands in Cook 
In let, Alaska. (Courtesy G. Drew, ABSC.) 
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CHAPTER TWO 

HORNED PUFFIN BREEDING ECOLOGY OVER A FIVE
YEAR PERIOD. 
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Chapter Two -Breeding Ecology 

Introduction 

The Homed Puffin (Fratercula comiculata) is one of three N01th Pacific 

puffin species with a summer distribution ranging from 50° to 72° North 

latitude (Amaral 1977). Alaska holds over 80% of the world population of 

Homed Puffins, with the majority (ea. 62%) breeding off the Alaska Peninsula 

(Gaston and Jones 1998). In contrast to the burrow-nesting habits of the 

Atlantic Puffin (F. arctica), Tufted Puffin (F. cirrhata), and the Rhinoceros 

Auklet (Cerorhinca monocerata), the Homed Puffin almost always nests 

among boulders and in rock crevices, making access to nest-sites and chicks 

difficult and complicating the study of their breeding biology. Consequently, 

very few studies have focused on the Homed Puffin (e.g. Amaral 1977, Wehle 

1980, 1983), and it remains one of the least studied seabirds in Alaska. 

Some data exist on the breeding ecology of Homed Puffins in Alaska, 

but sample sizes are small for many breeding parameters, especially chick 

growth and fledging age, and monitoring studies have focused on very few 

colonies. Many seabird species exhibit high inter-year variability in their 

breeding ecology, and numerous studies demonstrate that local food 

availability can influence breeding parameters (e.g. Coulson and Thomas 1985, 

Monaghan et al. 1989, Burger and Piatt 1990, Hamer et al. 1991a). For 

example, the Atlantic Puffin shows high variability within breeding 

parameters, both geographically and at the same colony among years (e.g. 

Harris 1985), with well documented evidence of reduced growth rates, 

extended fledging periods, shifts in chick diet, and even complete breeding 

failure in response to reduced food availability (e.g. Barrett and Rikardsen 

1992). Such variability emphasises the need for knowledge of the breeding 

ecology of Homed Puffins to be based on different colonies and from a number 

of years. 

Seabirds may act as valuable indicators of oceamc conditions and 

changes in the abundance and distribution of prey species (e.g. Cairns 1987, 

Baird 1990, Barrett and Fumess 1990, Harris and Wanless 1990, Nettleship 
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Chapter Two- Breeding Ecology 

1991). Some seabird species m Alaska have shown decreased productivity, 

changes in diet and population declines dming the last few decades (e.g. Piatt 

and Anderson 1996). These changes are thought to be associated with a shift in 

fish community composition (Anderson and Piatt 1999), as a direct result of 

the ocean climate 'regime shift' that occuned in the North Pacific during the 

late 1970s (Hare and Mantua 2000). Seabirds in Alaska are also vulnerable to 

both oil and mineral exploitation and to commercial fishing operations. 

To be able to detect and interpret changes in Horned Puffin breeding 

ecology, much more information is needed on the 'normal' variability in 

breeding parameters both among colonies and between years at the same 

colony. Without such knowledge, it is impossible to distinguish between 

effects due to natural changes in the mmine environment and those arising 

from human impacts. In this study, Horned Puffins were studied on Duck 

Island, Lower Cook Inlet, Alaska, for five consecutive seasons (1995-1999). 

The aim of the study was to examine the breeding ecology of the Horned 

Puffin, in order to improve our baseline knowledge of this species and the 

variability in its breeding ecology. 

Methods 

Puffins are sensitive to disturbance during the incubation phase of their 

breeding cycle, and may abandon breeding in response to disturbance during 

incubation (Lockley 1934, Harris 1984, Rodway et al. 1996). Thus, nests were 

not disturbed until towards the end of the incubation period, when the island 

circumference was searched for active nest-sites with visible nest-chambers. 

Active sites were identified with a painted number on an adjacent rock. Nest

sites were visited every 3-5 days until hatching. During each visit the nest 

chambers were checked using a headlamp, and the presence of adult, egg or 

chick was recorded. Visits were kept as b1ief as possible to minimise 

disturbance. Where an adult blocked the sight of an egg or chick, the adult's 

brooding posture and the presence of egg-shell fragments were used as 

evidence of hatching. In the few nest-chambers where chicks could move out 
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Chapter Two- Breeding Ecology 

of sight, additional evidence of hatching was obtained from chick vocalisation 

and the presence of dropped fish in the nest chamber Median chick hatch date 

was used as a measure of annual timing of breeding. 

Chick Measurements 

Chicks were visited every 4-7 days during the chick-rearing period, and every 

3-5 days during the fledging period. During each visit, the following body 

dimensions were measured (following Wernham and Byrant 1998): tarsus 

length using Vernier calipers, with precision ± 0.1 mm; culmen length, using 

Vernier calipers, from the tip of the upper mandible to the anterior edge of the 

growing cere; straightened wing length with precision of ± 0.1 mm using a 

stopped ruler and body mass using a Pesola balance, with precision of ± 1.0 g. 

Repeat measurements, taken in accordance with the procedure recommended 

by Barrett et al. (1989), were within 0.2 mm for tarsus and culmen, 1.0 mm for 

wing length and 1.0 g for body mass. Chicks were first handled when they 

were older than 5 days, and the parents had finished brooding. For the few nest 

sites with accessible chicks that were found later in the season, where hatch 

date was unknown, chicks were aged using the following linear regression of 

age on wing-length for chicks of known age; chick age (days) = 0.26 (SE ± 

0.006) wing length (mm) -0.54 (SE± 0-6) (R2 = 0.86; Figure 2: 1). Known-age 

chicks (n=40) were aged to within 88.8% of their absolute age using the 

predictive value. 

Productivity 

Fledging success was calculated each year. Maximum hatching success and 

breeding success were also calculated; both these parameters are likely to be 

overestimates since nest-sites were not located until late in incubation, before 

which some eggs may have been laid and lost. The timing of the first nest

check during incubation varied among years (23 June to 16 July); to control for 

a possible bias in recorded egg-loss and therefore maximum hatching success 

in different years, I excluded from calculations of maximum hatching success 

each year all nest-sites where an egg was followed and lost before July 15. 
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Due to deteriorating weather conditions, and consequent departure of 

field crew, at the end of the field season I was only able to follow a total of 

47% of chicks to fledging during the 5 years. Considering chicks from all 5 

years (n = 161), twenty chicks (12%) were known to have died in the nest, with 

80% of these deaths occurring at age 10 days or less, and with no mortality 

after 20 days old. To calculate fledging success, chicks ;:::: 20 days old at the end 

of fieldwork were thus considered to have survived until fledging. 

Dead chicks were not removed from the nest by parents or predators, 

and so, in order to calculate fledging age, I assumed that fully-feathered chicks 

(aged +25 days ) that disappeared from the nest between visits had fledged. 

Due to the early departure of field crew in some years, fledging age was 

calculated only in 1996, 1998 and 1999. 

Chick Diet 

The diets of Horned Puffin chicks were assessed throughout the chick-rearing 

period each year (at different nest-sites from those used to estimate 

productivity and chick growth) using the following four methods: 

1. SCREEN: Entrances to ea. 15 nest-sites were temporarily blocked using 

wire mesh screens (Hatch and Sanger 1992). After ea. 2 h, nest-sites were 

revisited, screens were removed, and food samples dropped by adults at the 

nest entrance were collected. 

2. GILL NET: Gill nets (2-3 cm mesh) or mist nets were draped over boulder 

piles, blocking the entrances to several puffin nest-sites simultaneously, 

and observed from a distance. Adults caught in the nets were immediately 

removed and measured prior to release; any dropped food items were 

collected. 

3. DROPPED: Food loads were sometimes dropped by flying or landing adult 

puffins, particularly when they were startled by a worker's presence. 

Freshly dropped fish were collected opp01tunistically throughout each 

season. Many complete bill-loads were collected whilst working in large 

caves with several Horned Puffin nests. 
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4. VISUAL: Puffins sometimes stand outside their nest-site for a shm1 time 

before provisioning their chick. Bill loads held by adult puffins standing 

on boulders and cliffs in the colony were recorded. Prey species were 

identified using 10 x 42 binoculars and the number of fish in the bill was 

counted. 

All prey collected were identified (using taxonomic keys; Hart 1973), 

weighed (using an electronic balance, ± 0.01 g) and measured (length to tail 

fork, using a steel ruler with precision of ± 0.1 mm). All prey items were 

weighed and measured within two hours of collection. Energy contents of prey 

were calculated using published wet mass energy density conversions (Van 

Pelt et al. 1997). All meal collections were identified as either a complete or 

incomplete bill-load. Items classified as complete bill-loads were either 

observed dropped loads, observed gill-net loads where no fish were lost, or 

visual identifications. 

Feeding rates 

Daily meal delivery rates to chicks were recorded for two days (0630-2200) at 

five nests in 1996 and for three days (0500-2300) at 5-7 nests in 1997. The low 

density of nest-sites on Duck Island and the high proportion of sites in crevices 

or caves with multiple or shared entrances made the simultaneous observation 

of many nests very difficult. During observations, the time of sunrise varied 

from 0430 on 26 July to 0540 on 24 August. All watches began within one 

hour of sunrise and continued until darkness. Speed of delivery made 

identification of meal size and composition difficult. Meal sizes were not 

measured, but the total numbers of daily meal deliveries were calculated per 

chick. 

Adult Measurements 

Breeding adult Horned Puffins were measured in 1998 and 1999. Adults were 

captured at their nest during the chick-rearing period by hand, or by using a gill 

net placed over the nest entrance during food delivery. The same body 
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measurements were taken as for chicks. In addition, total head plus bill length 

(headbill) was measured, to the nearest 0.1 mm using Vernier calipers, as the 

greatest distance from the back of the head to the tip of the upper mandible, 

with the upper surface of the calipers resting on the top of the head. Three 

additional bill measurements were also made; bill width, bill depth and length 

of cutting edge, all to the nearest 0.1 mm using Vernier calipers (Plate 2:1). 
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Chapter Two- Breeding Ecology 

Figure 2:1. Linear regression of Homed Puffin chick age on wing length 

(n = 67 chicks) 
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Chapter Two- Breeding Ecology 

Plate 2:1. Horned Puffin adult bill measurements. Side view: A=cutting edge, B=bill 
depth. Aerial view: C=culmen and D=bill width 

20 



Chapter Two- Breeding Ecology 

!Results 

Productivity and Timing of Breeding 

Maximum hatching success varied from 67% to 84% of eggs, and fledging 

success varied from 83% to 97% of chicks. No eggs were depredated and eggs 

failing to hatch were cracked or addled, either as a consequence of embryo 

death or a lack of fertilisation. There was no difference among years in 

hatching success, fledging success or maximum breeding success (P >0.05 in 

all cases; Table 2:1). Median chick hatching date ranged from 19 July in 1996 

to 29 July in 1998. There was a significant difference in medium chick 

hatching date between years (Kruskal Wallis ANOVA H4 = 39.05, P <0.001); 

Table 2:1). 

Chick growth and Fledging 

Fledging success was highest (97%) in 1999, and so I took this year to indicate 

normal chick growth during favourable conditions. Figure 2:2 shows growth of 

body mass and extemal measurements in 1999. There was an initial rapid 

linear increase in mass (10.8 g/day on average) until about age 30 days. This 

linear phase of growth was followed by a period of very slow mass gain ( 1.39 

g/day on average), up to a peak of 386 g (SD ± 51.9) at about 38 days. A short 

period of mass recession (1.25 g/day on average) then occurred prior to 

fledging. Mean adult body mass was 531 g (n = 21, SD ± 44.0; Table 2.2), and 

chicks in 1999 fledged on average at 75.5% of this mass (Table 2.3). 

Wing, culmen and tarsus lengths had different growth trajectOiies (Fig 

2.2). Wing length increased more or less linearly throughout the nesting period, 

and the mean wing length of chicks at the last check before fledging was 

156mm (n = 16, SD ± 5.2), which was 79.2% of adult wing length (mean= 197 

mm, n = 22, SD ± 5.5). In contrast, tarsus had a longer decelerating period of 

growth, and tarsus lengths of fledglings were very similar (within 2%) to those 

of adults (Tables 2:2 and 2:3). Although there are a number of equations for 

describing chick growth (eg. Ricklefs 1967), these rely on good data on the 
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asymptotes and fledging and I therefore restricted growth analysis to the linear 

phase. To compare growth among years, I calculated growth rate (using linear 

regression) for different body components during the linear phase of growth 

(10-30 days for body mass and wing length; 0-15 days for culmen and tarsus 

length; Fig 2.2). These data were used to calculate a single growth rate, for 

each body component, for each chick, which were then compared among years 

using analysis of variance (ANOV A) followed by post-hoc range tests. 

There was a significant difference among years in mass growth rates of 

chicks (Table 2.4), with much slower growth in 1998 than in other years. This 

was due to a marked difference in growth at age 15-30 days (Figure 2.3: one

way ANOVA: F4,71 = 7.3, P <0.001), whilst there was no difference in growth 

at age 0-15 days (Figure 2.3: one-way ANOVA: F4,SI = 1.2, P = 0.337). In 

addition to mass growth rate, chick body mass at age 30 ± 3 days also differed 

significantly among years (Table 2.5: one-way ANOV A: F3,53 = 10.2, P 

<0.001), with chicks in 1999 heavier than chicks in 1996 and 1998. 

There was a significant difference among years in wing growth rates of 

chicks (Table 2:4), with growth highest in 1997 and lowest in 1998. Wing 

lengths of chicks aged 30 ± 3 days differed among years (one-way ANOVA: 

F3,53 = 4.2, P = 0.01), with wing length in 1999 significantly longer than in 

1998 (Table 2.5). Culmen and tarsus growth rates did not differ significantly 

among years (Kruskal Wallis ANOVA for non-normal data: Table 2:4). Chick 

tarsus length at 30 days old was, however, shm1er in 1998 that in 1997 or 1999 

(Table 2.5; one-way ANOVA F3,53 = 9, P <0.001), but there was no significant 

difference in culmen length at age 30 days old between years (Table 2.5; F3,51 = 
2.35, p = 0.1). 

Chick fledging ages were recorded in 1996, 1998 and 1999 (Table 2:6). 

There was a significant difference among years (oneway ANOVA: F 2,69 = 
15.66, P <0.001), with chicks fledging youngest in 1998, which was the year in 

which chick mass growth was poorest (Figure 2:4). 
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Chick Diet 

A total of 1738 prey items was collected between 1995 and 1999. Sandlance 

(Anunodytes hexapertus) was the dominant prey species nume1ically, 

constituting~ 90% of the chick's diet in each year (Table 2:7). Most other prey 

were capelin (Mallotus villosus) or salmon (Onchorhynchus sp.). Invertebrates 

comprised< 0.5% of chick diet. 

Sandlance differed significantly among years in length (Table 2:8; one

way ANOVA: F4,JOl9 = 9.2, P <0.001), mass (F4,9ss = 13.6, P <0.001), and 

predicted energy content (F4,718 = 5, P <0.001). Differences in the size of 

sandlance among years may be explained by sandlance growth and annual 

differences in the time of Horned Puffin breeding (Table 2: 1). 

Meal Size and Feeding Frequency 

Mean bill-load mass over all 5 years was 16.4g (n = 63, SD ± 6.4), and the 

mean number of prey items per load was 6.2 (n = 132, SD ± 3.4). There was no 

significant difference among years in either the mean mass of prey per load 

(Table 2:9; oneway ANOV A: F3,57 = 0.8, P = 0.97) or the mean number of prey 

items per load (F3,124 = 1.54, P = 0.2). 

Chicks were delivered a mean of 6.1 meals/day (n = 20 chick-days on 

two days, SD ± 2.1) duting the late chick-rearing period in 1996; 3.2 meals/day 

(n = 12 chick-days on two days, SD ± 1.0) during early chick-rearing in 1997 

and 2.6 meals/day (1 day, n = 7, SD ± 1.0) during mid-chick-rearing in 1997. 
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Table 2:1. Horned Puffin productivity and timing of breeding in different years 
at Duck Island, Alaska. 

Year 1995 1996 1997 1998 1999 x2 df 2 
Total no. nests 21 51 48 61 47 

Maximum hatching Success 0.71 0.84 0.67 0.69 0.77 5.19 4 >0.5 

Fledging Success 0.92 0.83 0.96 0.89 0.97 4.71 4 >0.5 

Maximum breeding Success 0.66 0.70 0.64 0.62 0.70 5.19 4 >0.5 

Median chick hatch date 21-Jul 19-Jul 25-Jul 29-Jul 26-Jul 

Hatching, fledging and reproductive success are compared between years using 

chi-square contigency tables. 
All tests were non-significant, with four degrees of freedom. 

Table 2:2. Body measurements of breeding adult Horned Puffins in 1999 

mean n SD 

mass (g) 530.6 21 44.0 

wing (mm) 197.2 21 5.6 

tarsus (mm) 31.9 21 2.1 

headbill (mm) 82.7 21 2.2 

culmen (mm) 49.2 21 1.7 

depth (mm) 41.9 21 2.0 

cutting edge (mm) 26.9 21 0.5 

width (mm) 13.1 15 1.0 
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Table 2:3. Fledging measurements for Homed Puffin chicks in 1999 

mean n SD 
Fledging age (days) 40.7 28 4.1 

Fledging mass (g) 400.6 16 45.2 

Fledging wing (mm) 155.8 16 5.2 

Fledging tarsus (mm) 31.3 16 1.3 

Fledging headbill (mm) 70.2 15 1.7 

Fledging culmen (mm) 31.9 16 1.6 

Table 2:4. overleaf 

Table 2:5. Body mass and external measurements of chicks at age 30 days in 
different years. 

tarsus 
Year mass (g) wing (mm) (mm) culmen (mm) 

mean n SD mean n SD mean n SD mean n SD 
1996 325.0 a 14 45.8 123.4 14 12.1 29.7 14 1.3 28.5 13 1.6 

1997 337.9 10 51.6 128.3 10 10.8 30.4 a 10 1.3 28.5 10 2.0 

1998 285.8 b 16 43.6 119.2 a 16 8.2 28.6 ab 16 1.3 28.4 16 1.9 

1999 375.0 ab 17 48.2 131.0 a 17 10.4 30.7 b 17 1.3 29.8 16 1.6 

Means followed by different letters are significantly different as determined 
from Tukey multiple comparison tests. 
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Table 2:4. Linear growth rates of Homed Puffin chicks at Duck Island in different years. 

Year Bodl: Mass (g/dal:) Wing (mm/day) Culmen length (mm/day) Tarsus (mm/dal:) 
mean n SD mean n SD mean n SD mean n SD 

1995 12.8 b 14 3.1 3.9 ab 14 1.05 0.39 a 14 0.08 0.37 a 15 0.08 
1996 9.4 b 18 2.6 3.5 ab 18 0.91 0.28a 11 0.16 0.39 a 12 0.21 
1997 10.5 b 16 3.3 4.3 a 16 0.57 0.39 a 11 0.11 0.46 a 13 0.10 
1998 3.7 a 22 6.9 3.4 b 22 1.08 0.27 a 10 0.13 0.30 a 12 0.16 
1999 9.6 b 21 3.0 4.0 ab 21 0.43 0.29 a 10 0.13 0.36 a 10 0.10 

F df p F df p H df p H df p 

treatment 11.7 4 <.001 3.33 4 0.014 8.3 4 0.081 6.51 4 0.164 
error 86 86 

Means followed by different letters are significantly different as determined from Tukey multiple comparison tests. 9 
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Chapter Two - Breeding Ecology 

Table 2:6. Homed Puffin chick fledging ages in different years. 

Year Fledging Age (days) 
mean n SD range 

1996 42.06 25 4.925 31-48 

1998 34.74 23 5.667 29-49 

1999 40.71 28 4.099 33-45 
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Table 2:7. Homed Puffin chick diet composition at Duck Island. 

Prey Items 1995 1996 1997 1998 1999 
n % n % n % n % n % 

Pacific sandlance 91 98 825 94 465 95 158 90 103 99 
Ammodytes hexapterus 

Capelin 2 2 27 3 9 2 3 1.7 0 0 
Mallotus villosus 

Salmon sp. 0 0 16 2 7 1 8 4.6 1 1 
Onchorhynchus sp. 

Pacific Lamprey 0 0 4 0.5 0 0 2 1.1 0 0 
Lampetra tridentatus 

Gadidae 0 0 0 0 2 0 0 0 0 0 

Euphasiid 0 0 0 0 6 1 1 0.6 0 0 

Sculpin sp. 0 0 0 0 1 0 0 0 0 0 
Cottidae sp. 

Sandfish 0 0 1 0.1 0 0 0 0 0 0 
Trichodon trichodon 

Unidentified Smelt 0 0 0 0 0 0 1 0.6 0 0 
Osmeridae 

Unidentified fish species 0 0 0 0 0 1 2 1.1 0 0 

Total prey items 93 875 491 175 104 
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Table 2:8. Mean size and energy content of sandlance in Horned Puffin chick diets in different years. 

length (mm) mass (g) energy content (kJ) 
year mean n SD range mean n SD range mean n SD 
1995 92.7 abc 93 24.7 45-180 2.9 bed 93 2.6 0.5-21.0 16.1 ab 93 15.2 

1996 85.2 a 542 31.5 47-223 2.1 a 560 1.8 0.3-14.3 13.8 b 293 10.1 

1997 86.0 ac 143 19.1 57-164 2.5 ad 142 2.3 0.6-18.7 13.1 b 142 13.7 

1998 93.0 be 158 16.2 51-146 2.7 bed 94 1.5 0.5-7.8 14.4 ab 94 8.0 

1999 100.2 b 101 8.5 64-123 3.3 be 104 1.0 0.8-7.0 18.7 a 101 6.2 
Means followed by different letters are significantly different as determined from Tukey multiple comparison tests 
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Chapter Two- Breeding Ecology 

'fable 2:9. Homed Puffin bill-loads (complete chick meals). 

YEAR Mass/load (g) No. prey items/load 
mean n SD range mean n SD range 

1995 15.2 3 4.2 12.0-20.0 7.7 3 3.8 5-12. 

1996 17.4 15 8.1 2.5-34.5 6.9 16 2.8 4-15. 

1997 16.0 16 7.2 6.6-32.0 6.3 67 3.3 1-22. 

1998 16.5 8 7.1 7.8-21.5 6.0 24 3.4 1-13. 

1999 15.7 22 6.1 6.4-25.6 4.9 21 1.8 2-8. 

1995-1999 16.4 64 6.4 2.5-34.5 6.2 131 3.4 1-22. 
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Chapter Two- Breeding Ecology 

Figure 2:2. Horned Puffin chick growth in 1999, (mean± lSE). 
Sample sizes are shown above each age class (total n=28 chicks). 
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Figure 2:3. Mass growth of Horned Puffin chicks in different years. 
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Figure 2:4. Chick fledging age and chick mass growth rate in different years 
(means± SE). Sample sizes given in Tables 2:4 and 2:6. 
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Discussion 

Productivity 

Since I only followed eggs from late incubation, it is difficult to compare the 

hatching and breeding success on Duck Island with other studies of Homed 

Puffins. The mean fledging success for the 5 years (91.4% ), was, however, 

relatively high in compmison with other studies which have reported fledging 

success ranging from 25-100%, with a mean of 73% (n = 39 colony-years at 9 

colonies; Piatt and Kitaysky 200 1). 

Chick Growth and Fledging 

Previous knowledge of Homed Puffin chick growth has been based on small 

sample sizes. The large range of growth rates observed over the 5 years of this 

study (yearly mean range 3.7-12.7g/day; Fig 2:4) encompasses the range of values 

reported in other studies (from 3.4 g/day (n = 3) in the Semidi Islands, to 

12.6g/day (n = 8) at the Shumagin Islands; Petersen 1983), and indicates the 

impottance of collecting data in more than one year. 

Under favourable conditions in 1999, chicks fledged at 75% of adult body 

mass on average, a similar pattem to that observed in Atlantic Puffins, which 

fledged at 78% adult mass (Ashcroft 1979). The total range of fledging ages in 

this study was 29-49 days (Table 2:6), a slightly wider range than those previously 

recorded in the field, although earlier data were based on very small sample sizes 

(38-42 days, n = 2 (Amaral 1977); 34-43 days, n = 4, (Wehle 1980); 37-46 days, n 

= 12 (Petersen 1983)). 

1998 was an exceptional year with unusually early nest site departures. 

This could be ascribed to relatively high pre-fledging mottality, with starving 

chicks departing the nest-site prematurely. However, whereas studies on Atlantic 

Puffin colonies during seasons of breeding failure and nestling starvation have 

recorded hungry young chicks leaving their burrow, either dying or being 

depredated outside the nest-site (e.g. Lid 1981), no chicks were observed either 

predated or dead outside nest-sites or near their nest-entrance in this study. 

Furthe1more, although chicks in 1998 left the nest-site at an early age on average, 
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the youngest fledglings had similar amounts of down to chicks fledging in other 

years. Although there can be no certainty of successful fledging, I therefore 

assume that data from 1998 indicates younger fledging ages and not higher pre

fledging mortality of chicks. However, it must be pointed out that the youngest 

fledglings in 1998 may have been unable to fly from the nest. Although most 

Atlantic Puffin fledglings fly from the colony (Harris 1984), Homed Puffins may 

fledge by flight or by walking from the nest-site directly to the water (Piatt and 

Kitaysky 2001). Nest sites on Duck Island are within 20m of the shore and puffin 

fledglings have been observed to walk to the water's edge before swimming away 

from the colony in other years (pers. obs.), thus flight is not necessarily a 

requirement for successful fledging. 

The wide range in fledging ages observed on Duck Island indicates that 

Homed Puffins have a high degree of flexibility in age of fledging. Body mass 

and condition at fledging play an important role in determining the survival of 

chicks in some species (Gaston 1985, Phillips and Hamer 1999). However, 

evidence for a positive relationship between body mass at fledging and post

fledging survival has not been found in Atlantic Puffins (Harris 1984, Harris and 

Rothery 1985), and Y denberg (1989) suggested that since puffins fledge at on! y 

approximately 70% of adult body mass, fledgling size may not be as closely 

linked to post-fledging survival in puffins as it is in species that complete their 

growth at the nest-site. Flexibility in age of fledging is usually interpreted as a 

trait associated with highly variable and unpredictable food supplies (Lack 1968). 

I return to this topic below, when variability among years is discussed. 

Chick Diet 

Homed Puffin chicks are fed almost on entirely fish, with sandlance, capelin and 

gadids being the most impmtant prey species across their North Pacific range 

(Piatt and Kitaysky 2001). Over the five years of this study, chick diet was 

dominated numerically by sandlance, comprising ~ 90% of the prey in each year 

(Table 2:7). Capelin and juvenile salmonids together comprised up to 5% of the 

diet and various other species, including euphausiid crustacea, were observed in 

very small numbers. These data are similar to those recorded on Duck Island in 
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1979, where 99% of prey fed to chicks were sandlance (Jones et al. 1980). Across 

their North Pacific range, sandlance comprise 60% of Homed Puffin chick diet 

(Piatt and Kitaysky 2001), indicating a relatively high reliance on sandlance at 

Duck Island. 

The size of sandlance delivered to chicks at Duck Island differed 

among years (Table 2:8), but were similar to the range repmted in other studies 

(56-164mm (Wehle 1983); 25-164mm, mean=70mm (Hatch and Sanger 1992)). 

Chicks in this study received meal loads weighing 16g and comprising six fish on 

average (Table 2:9). Other studies have recorded a similar number of prey items 

per bill-load (1-11 (n=15) (Wehle 1983); mean=7, (n=619) (Hatch and Sanger 

1992)). Mean bill load mass in this study is high compared to other studies, which 

reported an average of 9.3 g per load across 12 colony-years (Piatt and Kitaysky 

2001). This difference may be explained by the different methods of meal load 

collection. Whereas most studies have collected meal loads by blocking nest-sites 

using wire mesh screens (Hatch and Sanger 1992), this study only classified and 

weighed bill-loads either where a whole load was observed to be dropped or when 

loads were collected using a gill-net, and it was known that no fish had been lost. 

Loads collected using the screening method are probably underestimated since 

adults may eat food if prevented from delivering to the chick (Piatt et al. 1998) 

and meals may be taken by gulls (pers. obs.). 

Due to the crevice-nesting and often scattered location of Homed Puffin 

nest sites, little is known about their feeding frequency. Data from this study are 

limited, ranging from an average of 2.6 meals/day during mid chick-rearing to 6.1 

meals a day during late chick-rearing. These are similar frequencies to those 

reported elsewhere (2-6 meals/day; Manuwal and Boersma 1977), but more data 

are needed to accurately desc1ibe changes in feeding frequency during chick 

growth. 

Variation between Years 

Oceanographic data indicate that the marked El Nifio Southern Oscillation in 

1997-8 resulted in reduced salinity of surface water in the vicinity of Duck Island 

and an increase of 1-2 °C in winter water temperature (USGS and USFWS 2001). 

35 



Chapter Two- Breeding Ecology 

In association with this anomaly, Common Guillemots (Uria aalge) at Duck 

Island experienced almost complete breeding failure in 1998, in contrast to high 

breeding success in the other four years of this study (USGS and USFWS 200 l ). 

The diet of guillemots on Duck Island overlaps with the Homed Puffins, with 

guillemot diet composition averaging 24% sandlance (USGS and USFWS 2001). 

Guillemots have the ability to switch prey, and normally have considerable 

leeway in their time and activity budgets to increase their foraging effort in 

response to a reduction in food supply (Burger and Piatt 1990, Monaghan et al. 

1994, Uttley et al. 1994, Zador and Piatt 1999). I therefore assume that the 

breeding failure of guillemots indicates the likelihood that forage fish availability 

in general, including sandlance, was relatively poor in the waters around Duck 

Island in 1998. This presented the opportunity to examine the relationship 

between prey availability and Homed Puffin breeding parameters. 

Productivity 

Complete breeding failure resulting from poor food availability has been 

frequently reported in the Atlantic Puffin, usually related to over-fishing (e.g. Lid 

1981, Anker-Nilssen 1987, Barrett et al. 1987, Martin 1989, Barrett and 

Rikardsen 1992). Breeding failure has also been recorded in other burrow-nesting 

alcids (Vermeer et al. 1979, Vetmeer 1980, Byrd et al. 1993). 

In contrast, breeding failure has been rarely recorded in the Homed Puffin, 

and evidence from other studies suggests that the variability in the reproductive 

success of Homed Puffins among years and at different colonies is normally very 

low (Piatt and Kitaysky 2001, but see Byrd et al. 1993). In keeping with this, 

there was no apparent difference among years in Homed Puffin reproductive 

success at Duck Island. These results should, however, be viewed with some 

caution in view of the small proportion of chicks (ea 50%) that were followed to 

fledging each year. Moreover, the data from this and most other studies are 

limited by lack of knowledge of the proportion of birds that attempt to breed, and 

do not measure incubation success, which may be a key factor for overall 

reproductive success in puffins (Hatch and Hatch 1990). 
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Chick Growth and Fledging 

Food limitation is known to reduce the daily growth rates of Atlantic Puffin 

chicks (HatTis 1984), with well documented evidence from both expetimental 

(Harris 1978, Hudson 1979, 0yan and Nilssen 1996) and field studies (e.g. 

Tzchanz 1979, Hanis 1985, BatTett et al. 1987, Barrett and Rikardsen 1992). 

Mass growth rates of Homed Puffin chicks at Duck Island were exceptionally low 

in 1998 (Table 2:4), presumably reflecting poor food availability in surrounding 

waters. 

The impacts of reduced food supply on growth differed between different 

body components (Tables 2:4 and 2:5), suggesting differential allocation of 

energy and nutrients into the growth of different body structures. Differences in 

chick size at age 30 days were most pronounced for body mass and wing length, 

with a smaller difference in tarsus length and no difference in culmen length. 

These results are in accord with those of experimental studies of Atlantic Puffins 

(0yan and Nilssen 1996), and of Homed and Tufted Puffins (Kitaysky 1996), 

which also recorded that under conditions of reduced food supply, highest primity 

was given to the growth of the skull and bill and low priority to the tarsus. Wing 

feathers can continue to grow after fledging, and slightly shorter wings at fledging 

will not necessarily reduce flight or diving performance, since body mass at 

fledging is also lower in conditions of poor food supply. Culmen growth may be 

coupled with the growth of the skull and neurological development, or may 

indicate the impmtance of culmen growth for prey capture after fledging (0yan 

and Nilssen 1996). The development of the brain and wing length relative to body 

mass may be especially important for puffin fledgling survival, since chicks are 

independent at fledging and require the skill and ability to chase and catch fast 

moving prey (Kitasky 1996, 0yan and Nilssen 1996). 

Chick mass growth in 1998 was sharply reduced after chicks reached 

about 15 days of age (Fig 2:3). Atlantic Puffin chicks receive most food in the 

middle third of their six week development (Harris 1984), when the combined 

requirements of body maintenance and growth are highest. Due to low food 

availability, Homed Puffin parents on Duck Island in 1998 may have been unable 

to increase their provisioning rates as chick requirements increased with age. The 
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reduction in growth after chicks reached 15 days old may also have reflected a 

decrease in local food availability during the second half of chick-rearing. 

The young fledging ages of Homed Puffins in 1998 contrast with older 

fledging ages in conditions of poor food supply in the Atlantic Puffin (e.g. 

Nettleship 1972, Anker-Nilssen 1987, Barrett et al. 1987, Barrett and Rikardsen 

1992, Y denberg et al. 1995). The wide range of puffin growth rates and fledging 

ages recorded in the wild (eg. Nettleship 1972, Harris 1984) probably reflect a 

range in feeding conditions. Assumed younger fledging ages in 1998 may have 

resulted from adults abandoning breeding in order to preserve their future 

reproductive potential. Alternatively, chicks may have fledged early as an 

adaptive response to low food availability, if they could achieve higher growth 

rates by foraging for themselves at sea than by depending on their parents to 

deliver food from distant foraging areas. 

Chick Diet 

Annual or seasonal change in chick diet associated with a reduction in local food 

availability have been well documented (e.g. Lid 1981, Hislop and Harris 1983, 

Martin 1989, Baird 1990, Barrett and Fumess 1990, Hamer et al. 1991b, Barrett 

and Rikardsen 1992). Seabird species differ in their level of flexibility and ability 

to switch prey in response to changes in local prey abundance (Baird 1990), with 

specialist surface feeders more vulnerable (Fumess and Ainley 1992). Increased 

diversity in the diet of Atlantic Puffin chicks has been recorded during seasons of 

poor food availability (Barrett et al. 1987, Barrett and Rikardsen 1992), with 

breeding failure observed in colonies with no alternative prey (Martin 1989, 

Barrett and Rickarden 1992). It has also been suggested that the inability of 

Tufted Puffins to switch diet when sandlance were in short supply resulted in 

breeding failure (Vermeer et al. 1979). In contrast to the Tufted Puffin, 

Rhinoceros Auklets at the same colony maintained high reproductive success, 

having the ability to switch from sandlance to sauries (Cololabis saira; Vermeer, 

1980). The diurnal feeding habits of the Tufted Puffin prevented the exploitation 

of sauries as an alternative food source, since sauries undergo ve1tical migration 

and only rise to the water's surface at sunset (Vermeer et al. 1979). 
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Although sandlance are a dominant prey species for Homed Puffin chicks, 

changes in chick diet composition have been observed in response to large scale 

shifts in the forage fish species composition in the Gulf of Alaska (Piatt and 

Kitaysky 2001). These documented changes in chick diet and the higher diversity 

of prey items observed in the adult's winter diet, including myctophids and squid 

(Piatt and Kitaysky 2001), suggest that although chick diet is highly dependent on 

sandlance, Homed Puffins do have the ability to feed on a vatiety of species and 

switch prey if local food abundance shifts or is reduced. 

However, I found no change in chick diet composition over the 5 years of 

this study, despite suspected food shortage in 1998. Sandlance remained the 

dominant prey species, comprising :::=: 90% of chick diet in each year (Table 2:7). 

Relative prey abundance is important in determining chick diet composition under 

reduced food availability. Data from annual mid-water trawl surveys conducted in 

Lower Cook Inlet suggested that although the absolute abundance of sandlance 

was presumably lower in 1998, relative abundance was high in comparison to 

other species of forage fish (USGS and USFWS 2001). This may suggest that 

although food resources were generally low in 1998, sandlance dominated the 

local forage fish species composition, allowing Homed Puffins to continue to 

specialize on sandlance as food for chicks. 

In the Atlantic Puffin the frequency of chick feeds (Martin 1989, Barrett 

and Rickardsen 1992) and the mass of bill-loads (Harris 1985, Ban·ett et al. 1987, 

Mmtin 1989, Nettleship 1990, Barrett and Rickardsen 1992) have been commonly 

observed to decrease in years of poor food availability. In this study I observed no 

difference between years in bill-load mass or derived/predicted energy content 

(Table 2:8 and 2:9). Homed Puffins at Duck Island forage at long distances from 

the colony: at-sea surveys in Lower Cook Inlet recorded Homed Puffins regularly 

foraging 50-llOkm from Duck Island (Piatt and Kitaysky 2001). In accordance 

with the economic foraging perspective of central place foraging theory (Schoener 

1979, Kacelnik and Cuthill 1990), Homed Puffins foraging at long distances from 

Duck Island should always maximize their bill-load mass per journey, and so low 

food availability would be expected to affect feeding frequencies of chicks rather 

than meal size. 
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Fmther study is now needed to increase our knowledge of annual and 

geographic variability in Horned Puffin breeding parameters, and our 

understanding of the causes underlying this variability. Specific gaps of 

knowledge include data on feeding frequency and the relationships between 

fledging age, fledging mass and post-fledging survival of chicks. 
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Introduction 

Reliable census methods are needed for seabird population monitoring. 

Seabirds are vulnerable to a variety of anthropogenic factors, such as oil 

pollution (e.g. Piatt and Lensink 1989, Evans et al. 1993, Irons et al. 2000) and 

the fishing industry (e.g. Anker-Nilssen and R~stad 1993), and they may also 

be valuable monitors of changes in marine ecosystems (e.g. Montevecchii 

1993). As a result, many studies have focused on examining variation in colony 

attendance and on developing standard methods for population monitoring for 

a wide range of seabird species (e.g. Birkhead 1978, Birkhead and Nettleship 

1980, Seabird Group 1980, Slater 1980, Wanless et al. 1982, Harris 1987, 

Hatch and Hatch 1988, Jones 1992, Byrd et al. 1983, Hilden 1994, Walsh et al. 

1995, Weidinger 1996). 

Accurate censusing of many species of auks is pm1icularly difficult 

because numbers of birds attending the colony can be highly variable (e.g. 

Jones 1992). It is not uncommon to observe thousands of birds at the colony on 

one day, and none or very few the next day. Due to such extreme variation in 

colony attendance, methods of monitming populations of Atlantic Puffins 

(Fratercula arctica) have focused on counts of apparently occupied buiTows 

(e.g. Seabird Group 1980, Harris and MuiTay 1981, Anker-Nilssen and R~stad 

1993, Walsh et al. 1995). Whilst such counts can provide accurate estimates of 

the sizes of breeding populations of Atlantic Puffins, this method is not 

normally suitable for the Horned Puffin (F. corniculata). In contrast to the 

burrow nesting habits of the Atlantic Puffin, Horned Puffins almost always nest 

in cracks in cliff faces, amongst boulders, or in rock crevices. To complicate 

matters fm1her, many crevice nest-sites have multiple or shared entrances and 

are often deep within unstable piles of boulders, making access hazardous and 

nest-sites difficult to count or even identify. As a result, there is no 
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standardized method for censusing Homed Puffins and very little is known 

about absolute numbers or trends in population sizes. 

In species such as the Homed Puffin where counts of nest sites are not 

possible, counts of birds attending the colony can provide a useful index of 

population size (e.g. Piatt et al. 199Gb). For these counts to be used for 

monitoring population changes, patterns of colony attendance and the 

variability in numbers attending must be examined to determine the optimum 

time of day and breeding season for censusing, and the number of counts 

required to detect change. This chapter describes the results of daily counts of 

Homed Puffins made throughout the breeding seasons of 1997, 1998 and 1999 

on Duck Island, Alaska. The main aim of this study was to examine daily, 

seasonal and annual variation in colony attendance and the implications of this 

variation for population censusing. 

Methods 

Seasonal variation in attendance of Homed Puffins at the colony was recorded 

in 1997, 1998 and 1999. A total of six all-day observations, covering the 

incubation and chick-reating period, were made in order to determine the time 

of peak diurnal attendance. Observations were made from a marked station 

overlooking North Cove, with 10 x 42 binoculars. Homed Puffins present in 

North Cove were counted from 0500 - 2300 at 30-minute intervals. Birds were 

counted separately on water and land at each half hour. Water counts included 

all birds on the water, inside the cove boundaries and within 200 m. from 

shore; a set buoy was used for reference. Land counts included birds on all 

north-facing land visible from the observation station. 

In addition to all-day observations, daily counts were made from 27 

June to 31 August in 1997, from 26 May to 4 September in 1998 and from 23 

May to 14 September in 1999. Counts of birds on water and land were made at 

15 minute intervals dUiing the evening peak in colony attendance (2030-2145; 

see results). Up to five counts were made during this period each day, and these 

were used to calculate mean daily values for the number of birds counted on 
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water, land and the total (land and water combined). Due to shortening daylight 

hours, counts towards the end of the season were bought forward to 2015h. 

Daily count data was split into two groups, using breeding chronology 

(incubation and chick rearing). Chick-rearing was defined as starting at the 

median chick hatch date each year, and continuing until the median fledging 

date. The mean incubation petiod for Homed Puffins is 41 days (Petersen 

1983), and so the period of incubation was defined as the 41 days prior to the 

median chick hatch date. 

Results 

There was high vmiability in both the diurnal pattern of attendance and the 

absolute numbers of birds attending the colony on different days (Fig 3:1 ). 

Diurnal attendance was more variable during chick-rearing than during 

incubation (Fig 3:2). Nonetheless, numbers of birds at the colony were 

generally lowest during the afternoon (1400-1600), with higher numbers in the 

morning and evening, and a peak in numbers from 2030-2130 (Fig 3:2). There 

was a strong correlation between the counts of birds on land and water at 

different times of day (Spearman rank correlation: r = 0.71, n = 37, P <0.01). 

There was marked vmiation in peak attendance from one day to the next 

(Fig 3:3), with no indication of any cyclicity in the data (Serial autocorrelations 

for time intervals of 1-10 days). The data were significantly heterostochastic 

(Levene's test: F = 5.02, n = 201, P <0.001), with greater variability during 

chick-rearing (mean coefficient of variation 0.67) than during incubation (mean 

CV= 0.44) in all years, and greater variability during incubation in 1998 than 

in other years (Table 3: 1). There were consistently more birds observed on 

water (Fig 3:3). Counts on water were more representative of the total numbers 

of birds attending the colony than counts on land, especially during incubation 

(Fig 3:4). 

Five-day running means of the daily total number of birds (water and 

land combined) were calculated to smooth out daily variability and to examine 
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the seasonal pattern in colony attendance (Fig 3:5). Data on pre-lay attendance 

are limited by the duration of seasonal counts, and are confined to 1998 and 

1999. Mean attendance in 1998 during the pre-lay period (22 days) was 116 

individuals SD ± 21, and mean prelaying attendance in 1999 (23 days) was 127 

individuals SD ± 14. Mean attendance was lower during prelaying than 

incubation (two-way ANOV A on ranked data, Sokal and Rohlf 2000: H = 58.6, 

df =1, P <0.001), but did not differ between years (H = 3.13, df= 1, P >0.05). 

In each year, the highest numbers of birds were present at the colony 

during the incubation phase of breeding. After the onset of chick rearing, 

numbers of birds at the colony declined progressively, except for a sharp 

increase at the end of August 1999 (Fig 3:5). Mean attendance was higher 

dming incubation than during chick-rearing (two-way ANOV A on ranked data: 

H = 283.2, df=1, P <0.001), but did not differ between years (Figure 3:6; H = 

1.3, df=2, p >0.05). 

Table 3:1. Numbers of puffins attending the colony during the incubation and 

the chick-rearing period in different years. 

Chick 
Incubation 1997 1998 1999 reanng 1997 1998 1999 

mean 173.6 183.8 168.6 mean 104.0 99.8 99.8 
SD 55.8 110.2 66.1 SD 53.9 74.3 76.2 

CV 0.32 0.6 0.39 CV 0.52 0.74 0.76 
Min 52 0 38 m in 2 0 0 
Max 287 402 383 max 243 227 393 

n (days) 27 37 35 n (days) 38 27 37 
C. V.= Coefficient of variation. 
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Figure 3:1. Diurnal attendance patterns of Horned Puffins on Duck Island. 
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Chapter Three - Colony Attendance 

Figure 3:3. The seasonal colony attendance of Horned Puffins on 
Duck Island in different years. Daily mean water (W), land (L) 
and total (T) counts presented. Years aligned by date. 
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Figure 3:4. The proportion of birds on land and water in relation to the total 

number of birds (land and water combined) attending the colony during the 
incubation and chick rearing period. All years are combined. 
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Figure 3:5. Pattern of Homed Puffin seasonal colony attendance 
in different years. 5-day running means. 
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Figure 3:6. Overall mean colony attendance for the duration of 

incubation and chick rearing in different years. Mean ± 1 SE. 
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Discussion 

This study examined the seasonal colony attendance of Homed Puffins 

during 3 consecutive years in order to examine seasonal and annual variability 

in attendance patterns, and the implications of this vatiation for population 

censusing. A key assumption in this approach was that colony population size 

did not change between the 3 years of the study. Annual adult survival of 

Homed Puffins is assumed to be high and similar to the Atlantic Puffin, which 

averages 95% (Ashcroft 1979), and has relatively high colony fidelity (Harris 

1984). We therefore assume that the actual population size on Duck Island was 

relatively stable between the 3 years of this study. 

Patterns in colony attendance may be partly determined by food 

availability, with the distance and density of prey influencing foraging time at 

sea and therefore time spent at the colony (e.g. Birkhead 1978, Gaston and 

Nettleship 1982). Numbers attending the colony will be high when food is 

abundant and foraging time minimal. A few studies (e.g. Hatch and Hatch 

1988, Jones 1992) have highlighted the complexity of population count 

interpretation, discussing the effect that annual variation in food availability 

and breeding effort and behaviour have on colony attendance. Population 

censuses should be aimed at the time a) of peak diurnal attendance, b) of least 

seasonal variability, c) with the maximum presence of breeders, d) with the 

minimum presence of immatures and failed breeders e) of least sensitivity to 

food supply. 

In this study, numbers of birds attending the colony showed a general 

evening peak in attendance between 2030 and 2130. The timing of this peak 

presumably varies with latitude. Atlantic Puffins also show an evening peak in 

colony attendance, about 2 hours before sunset (Ashcroft 1979). 

Despite the high seasonal and annual variation in colony attendance 

patterns, overall mean numbers of birds present at the colony dming both the 

incubation and chick-rearing period were very similar between years. Several 

lines of evidence suggest that food availability for Horned Puffins at Duck 

Island was low in 1998 (see Chapter 2). Despite this, there was no difference 
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among years in the overall mean numbers of birds attending the colony dwing 

incubation or chick rearing (Fig 3:6), indicating the importance of using mean 

values to characterize attendance for the purpose of population monitoring. 

Pre-laying numbers may provide a good measure of the size of breeding 

population, with few sub-adults present (Ashcroft 1979). However, numerous 

counts would be required since daily attendance is very erratic during this 

period (Fig 3:3), and the duration of pre-lay colony attendance differs 

considerably between colonies (Moe and Day 1977, Seal y 1973b ). Moreover, 

Moe and Day (1977) reported a difference of two weeks in the mean arrival 

date at two colonies, despite similar laying dates. Thus data collected during 

incubation and chick-rearing could be more reliable. Although overall mean 

counts during both incubation and chick-rearing were similar between years, I 

suggest that counts conducted during the incubation period may provide the 

better index of breeding population size for the following reasons: 

1. The number of birds attending the colony dming incubation was 

consistently higher than during chick rearing in all 3 years, and the 

variation in daily counts was lower during the incubation petiod. (Table 

3:1; mean CV= 0.44 during incubation, 0.67 during chick rearing). 

2. Young, prospecting individuals have been documented to arrive later in 

the season than breeders in a number of seabird species (eg. Hatch 

1989, Brooke, 1990, Warham 1990). Although there are no data on the 

return dates of Homed Puffin sub-adults, I assume that the pattern is 

similar to the Atlantic Puffin, with younger birds arriving later than 

breeders (Ashcroft 1979). Non-breeding Atlantic Puffin four-year olds 

return to the colony during the incubation stage, three-year olds arrive 

about a month later during chick-rearing, and two-year olds arrive even 

later towards the end of the breeding season (Davidson 1994). Counts 

during incubation should therefore be more focused on the breeding 

population, whereas counts during chick rearing may include a high and 

varying proportion of sub-adults and non-breeders. 
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3. Local feeding conditions are known to influence time spent at the 

colony (eg. Gaston and Nettleship 1982). Although there are costs 

associated with egg formation and incubation (Monaghan and Nager 

1997), parental time budgets should be especially sensitive to local food 

availability during chick rearing, due to the added foraging effort 

required for chick provisioning. Foraging behaviour during incubation 

should be less constrained by local feeding conditions, and 

consequently less sensitive to annual variation in food availability. 

In this study, counts on water were more representative of the total 

number of birds attending the colony, especially during incubation, and I 

therefore suggest that counts should include numbers on water. Evening counts 

during incubation may be used to give an indication of the whole population 

size for small and accessible colonies, where the coast can be easily 

circumnavigated and viewed. Where colonies are extensive, or have 

inaccessible stretches of breeding habitat or coastline, sample plots can be 

established to monitor trends in population size. 

The extent of daily variation in numbers attending the colony differed 

considerably between years, making it hard to suggest the minimum number of 

days needed to accurately characterize attendance. For example, many more 

counts would have been needed in 1998 to give an accurate measure of the 

mean number of birds attending during incubation. Data from this study 

suggest that the overall mean numbers of birds attending the colony during 

incubation may provide a reasonably accurate index of population size, thus 

data would ideally need to be collected for the whole incubation period. 

A detailed study on a banded population is needed to determine the age 

of first breeding and colony return and the presence of failed and non-breeding 

Homed Puffins at a colony. Daily and seasonal variation in the colony 

attendance of Common Guillemots (Uria aalge) is largely due to the high 

fluctuation of non-breeding individuals attending the colony (Gaston and 

Nettleship 1982, Han·is et al. 1986). The proportion of non-breeding adults 
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may vary between colonies, and populations that are increasing in size may 

contain proportionately more non-breeders than stable populations. 

Until more information is available, the interpretation of attendance 

patterns and the use of counts to assess population changes must be made with 

caution. For long-lived species with low annual productivity and high adult 

survival, such as the Horned Puffin, adult survival is one of the most important 

factors regulating populations (Croxall and Rothery 1991 ). Thus, effort should 

be aimed towards establishing banded populations of Horned Puffins for 

monitoring of adult survival. 
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GENERAL DISCUSSION. 
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Chapter Four- General Discussion 

This study has provided a more detailed understanding of the breeding ecology 

of Homed Puffins (Fratercula corniculata) than was previously available, in 

pa1ticular extending our knowledge of chick development patterns, adult food 

loads, and annual variability in breeding parameters. 

Homed Puffins were able to maintain high fledging success over the 

five years of this study, despite poor local feeding conditions and the almost 

complete breeding failure of Common Guillemots (Uria aalge) at the same 

colony in 1998. The ability of Homed Puffins to successfully rear a chick over 

a wide range of food availability reflects a number of adaptations for exploiting 

a variable and sometimes scarce food supply. These adaptations include 

flexible chick development and fledging age, and the differential allocation of 

limited food resources to the growth of different body structures (Chapter 

Two). Puffins are also able to adjust the number of fish carried per chick meal 

delivery, unlike the Common Guillemot that only carries one prey item at a 

time. In addition to these physiological and behavioural adaptations, burrows 

may provide puffins with an ecological buffer affording protection against 

adverse weather and avian predators dming chick-rearing, allowing parents the 

added flexibility to forage simultaneously and/or increase foraging ttip 

duration. 

The breeding ecology of Homed Puffins showed many similarities with 

that of the congeneric Atlantic Puffin (Fratercula arctica). Both species exhibit 

a high degree of developmental plasticity, with flexibility in the rate of growth, 

the allocation of growth to different body structures, and the ages of chicks at 

fledging (This thesis Chapter Two, Harris 1985, Barrett et al. 1987, 0yan and 

Nilssen 1996). There is also close similarity in the general pattern of mass 

growth, with chicks of both species entering a short period of mass recession 

before fledging at ea. 70-80% adult body mass (Chapter Two, Ashcroft 1979, 

Han·is 1985). However, unlike Atlantic Puffins where food shortage resulted in 

chicks fledging at an older age (e.g. Nettleship 1972, Anker-Nilssen 1987, 

HmTis 1985, Ban·ett and Rikardsen 1992), Homed Puffin chicks expe1iencing 

presumed food shmtages in 1998 fledged at younger ages than in other years 

with more normal food availability. 
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This difference between species may possibly be explained by the 

generally larger body size of Horned Puffins. Flight costs associated with 

transport of food to the nest are proportionately higher in larger alcid species, 

and so the maximum food load that adults can carry is a smaller prop01tion of 

body mass in the larger species (Gaston 1985). This may result in Horned 

Puffins having less capacity than smaller species such as the Atlantic Puffin to 

maintain adequate food supply to the chick in conditions of poor food 

availability at sea. Thus, from the chick's perspective, the tradeoff between 

growth rate and predation risk at the colony and at sea (Chapter One) may 

favour early fledging in Horned Puffins and delayed fledging in Atlantic 

Puffins when food supply is poor. Conversely, from the parents' perspective, 

the tradeoff between current and future reproduction may favour early 

termination of chick-rearing in Horned Puffins and prolonged chick-rearing in 

Atlantic Puffins under such conditions. As a result of their greater body size, 

Horned Puffins may thus be closer than Atlantic Puffins to the alcid species 

with an inte1mediate pattern of development (see Chapter One). However, 

these data are based on only one year of poor food supply and there are 

currently no data on the relationships among fledging age, size and post

fledging survival in Horned Puffins. Moreover, there is some overlap in body 

size between the largest bodied populations of Atlantic Puffin and the smallest 

bodied populations of Horned Puffins (Bedard 1985, Piatt and Kitaysky 200 1), 

and there is little difference in the relative sizes of food loads carried by both 

puffin species (see below). Thus, more information is needed before any firm 

conclusions can be drawn. 

Chapter Three presented data on the variation in colony attendance of 

Horned Puffins on Duck Island. In addition to providing essential information 

needed for effective population censusing, colony attendance patterns are of 

general ecological interest, often indicating important features of a species' 

social system and annual breeding cycle (Hatch 1989). There has been much 

interest in the highly variable colony attendance observed in many species of 

seabirds, with studies examining the influence of weather variables, tidal 

cycles, food availability, and social behaviour such as defense or acquisition of 
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breeding sites and partners (e.g. Ashcroft 1976, Slater 1976, Gaston and 

Nettleship 1982, Hatch and Hatch 1988, Hatch 1989, Jones et al. 1989, Piatt et 

al. 1990). Such studies have indicated that in some cases the patterns in colony 

attendance may be influenced by food availability, with the distance and 

density of prey influencing foraging time at sea and therefore time spent at the 

colony (e.g. Birkhead 1978, Gaston and Nettleship 1982). 

The decrease in numbers of Homed Puffins attending Duck Island after 

the start of chick rearing (Chapter Three) may be explained to some extent by 

the increased foraging effort required by parents to provide food for chick 

provisioning. However, Homed Puffins on the Semidi Islands (Hatch 1978 in 

Petersen 1983) and Atlantic Puffins on Skomer Island, Wales, (Ashcroft 1976, 

1979; Davidsen 1994) showed no such decrease. This difference may reflect a 

greater impact of increased nutritional requirements post-hatching on Homed 

Puffin adult time-activity budgets at Duck Island, where food availability is 

generally low (This thesis Chapter One, USGS and USFWS 2001). 

There was a progressive decrease in the numbers of Homed Puffins 

attending Duck Island from the start to the end of chick-rearing, perhaps 

reflecting the increasing nutritional requirements of growing chicks. In 

contrast, the average number of Atlantic Puffins on Skomer Island increased 

throughout chick rearing, reaching a peak towards the end of the breeding 

season. This pattern was partly explained by the successive arrival of younger 

non-breeding birds as the season progressed (Ashcroft 1976,1979, Davidsen 

1994). The pattern at Duck Island could thus indicate a relatively small 

proportion of subadults at the colony. Foraging efficiency increases with age in 

seabirds (Burger 1980, Greig et al. 1983), and so low food availability would 

be expected to have a marked effect on young pre-breeders. For instance, a 

study of colony attendance by prospecting pre-breeding Brunnich's Guillemots 

(Uria lomvia) indicated that older birds with higher feeding efficiency were 

able to spend more time at the colony than younger birds (Gaston and 

Nettleship 1982). The seasonal decline in numbers of Homed Puffins attending 

Duck Island may therefore be partially explained by an inability of young 

prebreeding birds to spend much time at the colony. However, there are 
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cunently no individually marked birds of known age with which to test this 

hypothesis. 

There has been much interest in the selective pressures favouring the 

evolution of different chick development patterns in the Alcidae, and it has 

been suggested that the intermediate pattern of development is the result of 

constraints on life history evolution imposed by body size (Chapter One). 

However, despite a general association between pattern of chick development 

and adult size there is an overlap in body size between the smallest of the 

intermediate species, the Razorbill (Alca torda), and the larger semi-precocial 

puffins (Houston et al. 1996). For example, whereas the body mass of 

Razorbills on Skokholm, Wales, ranged from 530 -720g (Houston et al. 1996), 

the Tufted Puffin (Fratercula cirrhata) weighs 763±70g (n=263) in the Alaska 

Peninsula (J. Piatt unpublished) and Homed Puffin body mass varies from 

487g in the Western Aleautians to 633g in the Chuchi Sea (Chapter Two, Piatt 

and Kitaysky 2001). 

Moreover, Birkhead and Harris (1985) suggested that the large size of 

Common Guillemots and Razorbills limits chick meal size, with both species 

able to cany only 1-2% of their body mass (Chapter One). Yet, Atlantic, 

Tufted and Homed Puffins deliver meal loads with small relative masses 

comparable to those of the intermediate species. For example, Atlantic Puffins 

on the Isle of May, Scotland, delivered loads averaging just over 2% of adult 

body mass (mean load mass = 9.4g, average breeding adult mass = 405g 

(Harris 1984, 1985)). Similarly, an average 16g chick-meal for Horned Puffins 

at Duck Island (Chapter Two) represents 3% adult body mass, and Tufted 

Puffins deliver food loads representing 1-2% of adult body mass (average load 

mass= 14.9g from the Banen Islands, adult body mass= 763g from the Alaska 

Penninsula (Amaral 1977, Gaston and Jones 1998)). 

These data suggest that although the small semi-precocial species may 

cany relatively large chick meals (e.g. 7% of adult body mass in Crested 

Auklets (Aethis critatella) (Birkhead and Harris 1985)), differences in relative 

meal size cannot fully explain the difference in chick developmental strategy 

exhibited between the intermediate species and the semi-precocial puffins. 
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Guillemots may have high energy demands at the colony associated with 

brooding and the often antagonistic interactions with close-neighbouring 

conspecifics, and neither guillemot or Razorbill leave their chicks unattended. 

Guillemot chicks may also face higher energetic costs than the chicks of 

bun·ow nesting species due to their higher mobility, social interaction and 

exposure to the elements. Chick development pattern may thus be influenced as 

much by nest-site characteristics as by body size. 

Whilst this study has provided much needed information on the 

breeding ecology of Horned Puffins, further data are now required on adult 

survival and longevity, the relationships between chick fledging age, condition 

and post-fledging survival, chick feeding frequency and adult foraging trip 

duration, measures of parental effort and the behaviour of subadults and non

breeding birds. Collection of many of these data would be greatly facilitated by 

the establishment of a sample of individually marked birds. Study at colonies 

with breeding Tufted Puffins, Rhinoceros Auklets, and Horned Puffins would 

also allow inter-specific comparison of the way closely related species respond 

to the same environmental conditions. Integration of population dynamics and 

breeding ecology would allow greater understanding of the life history of 

Horned Puffins, and would advance inter-specific comparisons of life history 

strategies within the Alcidae. 
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