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This research has evaluated the engineering behaviour of the tropical clay soils of 

Dhak:a, Bangladesh. Attempts have been made to show the relationship of 

mineralogy and fabric with engineering properties. The engineering behaviour 

has been investigated by comparing the soil properties in a natural and 

destructured state at the same void ratio. Consolidation behaviour of the soils are 

discussed, based on oedometer and triaxial tests. Undrained and drained 

mechanical behaviour have been evaluated from triaxial tests in terms of stress

strain curves, stress paths, bonding effects, critical state conditions, stiffness and 

yielding behaviour. A framework for the tropical clay soils of Dhaka is 

presented. 

The tropical clay soils of Dhaka are intermediate to high plasticity inorganic 

clay. These soils are mainly composed of illite,. kaolinite, chlorite and some non 

clay minerals mainly quartz and feldspar. It was observed that these soils showed 

a random open microfabric of silt and clay. There was also some evidence that 

aluminosilicates, iron compounds and silica formed bonds between and within 

the grains. 

An apparent preconsolidation pressure of 170 kPa to 250 kPa was estimated for 

the natural soils, which is likely to be due to the bonded structure of the soils. 

The compressibility of the soil is very low to medium. The consolidation results 

are consistent with the mineralogy of the soils. 

It is established that the tropical clay soils of Dhak:a are bonded. Bonding has an 

influence on the development of stress-strain and stiffness of these soils .. Under 

undrained shearing, samples initially showed peak positive values of excess pore 

water pressure followed by negative values at higher strains due to the tendency 

of the samples to dilate. No negative pore water pressures were observed at high 
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confining pressures. Only a few samples at low confining pressures reach the 

critical state at very large strains approximately in excess of 20%. High confining 

pressure samples may not have reached the critical state due to the formation of 

distinct shear surfaces. 

A significant difference between the natural and destructured failure surfaces was 

observed due to the presence of bonds in the natural soils. Differences in failure 

type were observed between the natural and destructured soils of three boreholes. 

It was observed that stiffness values gradually decreased with increasing strain. 

For the natural soils, two yield points could be identified at low confining 

pressures below the final yield. It was also observed that bond breakdown would 

occur in isotropic compression for tests at high confining pressures. At the final 

yield, the soillooses almost all of its stiffness due to bonding. After final yield, a 

soil's behaviour is controlled only by friction. It was observed that three zones of 

behaviour could be identified for these soils in the stress space. 

V Ill 



ACKNOWLEDGEMENTS 

This research work has been carried out in the Geotechnical Engineering division 

of the School of Engineering, University of Durham. I would like to express my 

heartiest gratitude and thanks to my supervisors Dr. D.G. Toll and Dr. A.R. 

Selby for their supervision to carry out this research work. Their friendly manner, 

encouragement, guidance and helpful suggestions throughout the work inspired 

me in many ways and made it possible for me to complete the work. The efforts 

of my supervisors are gratefully acknowledged. 

Financial assistance to carry out this research work provided by the 

Commonwealth Scholarship Commission is gratefully acknowledged. 

The author would like to thank all teaching members of the Department of 

Geological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh and 

Department of Geology, University of Dhaka, Bangladesh for their cooperation 

during field work and sample collection in Bangladesh. 

Assistance provided by Dr. Bryn Jones, X-ray diffraction laboratory, University 

of Newcastle for access to their X-ray diffraction unit is duly acknowledged. I 

would also like to express my thanks to Mr. An drew Y ates of the Scanning 

Electron Microscope unit, School of Engineering, University of Durham for his 

suggestions on Scanning Electron Microscope. 

My appreciation goes to Bernard MacEleavey and Steve Richardson of the 

Geotechnical Engineering laboratories for their continuous support during 

laboratory work. I am thankful to them. Thanks are also due to Michael for some 

computational support during data acquisition. 

ix 



My thanks are also due to all my friends and especially to John Martin, lilias, 

Eva and Kanan for their support in many occasions. 

I am very much grateful to my parents for their constant encouragement and 

support over the years. I must express my appreciation to my wife Sabrina, who 

not only tolerated many late nights and working weekends, but also encouraged 

me continuously in various ways to complete this work successfully. Thanks to 

my daughter Oloka Shushupti for adjusting herself with the situation when I was 

terribly busy with my thesis writing. 

X 



e 

Cv 

P
1

c 

A 

k 

cl 

q 

cri 3 

PI 

r 
M 

V 

NOTATION 

void ratio 

coefficient of consolidation 

coefficient of volume compressibility 

compression index 

apparent preconsolidation pressure 

slope of the normal consolidation line (negative) 

coefficient of permeability 

axial strain 

shear strain 

volumetric strain 

effective cohesion 

deviatoric stress ( cr 11 -cr3
1

) 

effective major principal stress 

effective minor principal stress 

mean effective stress ( cr 1 
1 + 2cr3

1)/3 

specific volume of the soil at critical state with p1 = 1 kPa. 

critical state stress ratio 

tangential shear modulus 

specific volume (1 +e) 

XI 



L~S'T OIF FiGURES 

Figures Page 

Fig. 1 Possible division of plasticity chart for use with residual 33 

soils (Wesley, 1988) 

Fig. 2 Two stress-strain curves for Labrador clay (Sangrey, 1972) 33 

Fig. 3 Stress paths for Ham river sand (HRS) and Chalk (C) samples 34 

(Jardine et al.; 1984) 

Fig. 4 Stress paths for London clay (LC) (Jardine et al.; 1984) 34 

Fig.5.a. Undrained stress paths b. Initial stress strain behaviour and 

c. Stiffness-strain results on an undisturbed London clay 35 

( Burland, 1989) 

Fig.6 Triaxial test results on mtificially bonded soil (Vaughan, 1985) 36 

Fig.7 Yield of the soil with bonded structure when loaded at constant 36 

stress ratio (Vaughan, 1988) 

Fig.8 Convergence of failure surface for various bonded natural 37 

soils (Vaughan, 1988) 

Fig.9 Yield surface observed in volcanic agglomerate 37 

(Vaughan et al.; 1988) 

Fig.lO Yield observed in residual soil from basalt 38 

(Vaughan et al., 1988) 

Fig.11 Yield observed in artificial soils (Vaughan et al., 1988) 38 

Fig.12 Definition of initial and second bond yields on deviator stress 

versus axial strain space (Maccarini, 1987) 39 

Fig.13 Effect of stress path on yield and failure of artificially bonded 39 

soils (Bressani and Vaughan, 1989) 

Fig.14 Schematic figure showing different zones of yielding (Leroueil 

and Vaughan; 1990) 40 

Fig.15 Undrained stress strain relations on natural and destructured 40 

natural clays (Leroueil and Vaughan; 1990) 

Fig.l6 Strength envelopes for undrained triaxial compression tests on 

Todi clay (Leroueil and Vaughan; 1990) 41 

XII 



Fig.17 Stress paths for undrained tests on bonded samples (Toll and 41 

Malandraki, 1993) 

Fig.18 A comparison of bounding surfaces for bonded and destructured 

samples (Toll and Malandraki, 1993) 42 

Fig.19 Yield surfaces for bonded soil (Toll and Malandraki, 1993) 42 

Fig.20 Deviatoric stress versus mean effective stress for three different chalk 

samples (Leddra et al., 1993) 43 

Fig.21 Void ratio versus mean effective stress for three chalk samples 

(Leddra et al., 1993) 43 

Fig.22 Undrained stress paths on chalk samples (Leddra et al., 1993) 44 

Fig.23 Pore pressure/ mean effective stress for isotropically consolidated 

undrained tests on chalk samples (Leddra et al., 1993) 44 

Fig.24 Stress-strain results on Oolitic limestone (Gens & Nova, 1993) 45 

Fig. 25 Stress paths for some tropical clay soils of Java, Indonesia (Hobbs et 

al.; 1988) 45 

Fig. 26 e vs logp curves for some tropical clay soils of Java, Indonesia 

(Hobbs et al.; 1988) 46 

Fig. 27 Typical stress-strain curves for a desiccated tropicallateritic soil 

(Sridharan, 1988) 46 

Fig.28 Effective stress paths and stress-strain curves of Bothkennar clay 

under triaxial compression (Hight et al., 1992) 47 

Fig.29 Stress strain curves for Boom clay (Taylor and Coop, 1993) 47 

Fig. 30 Stress strain behaviour on reconstituted (a) and undisturbed (b) 

specimens of Keuper Marl (Little and Hataf, 1993) 48 

Fig. 31 Effective stress paths for reconstituted (a) and undisturbed (b) 

specimens of Keuper Marl (Little and Hataf, 1993) 48 

Fig.32 Stiffness of undisturbed London clay during drained shearing 

(Atkinson et al.; 1993) 49 

Fig. 33 Stiffness of cemented and uncemented carbonate sands in drained 

triaxial compression tests (Atkinson et al., 1993) 49 

Fig.34 Three zones of yield surfaces (Smith et al., 1992) 50 

Fig.35 Definition of three yield conditions for bonded soils (Malandraki 

and Toll, 2000) 50 

xiii 



Fig.36 

Fig.37 

Fig.38 

Fig.39 

Fig.3.1 

Fig. 3.2 

Fig. 4.1 

Fig. 4.3 

Fig. 4.4 

Fig. 5.1 

Fig. 5.2 

Fig. 5.3 

Fig. 5.4 

Fig. 5.5 

Fig. 5.6 

Fig. 5.7 

Fig. 5.8 

Fig. 5.9 

Fig. 5.10 

Fig. 5.11 

Fig. 5.12 

Fig. 5.13 

Tangential stiffness versus mean effective stress for the bonded and 

destructured soils at different percentages of strain (Malandraki and 

Toll, 1994) 51 

Strain contours for the bonded and destructured soils plotted in the 

q-p' space (Malandraki and Toll, 1994) 51 

Conceptual picture of yield for bonded structured materials 

(Malandraki and Toll, 2001) 52 

Four zones of behaviour for an artificially bonded soil 

(Malandraki and Toll, 1996) 52 

Map showing borehole locations of the study area 64 

Geological map of Dhaka region 65 

Flow chart showing experimental programme carried out on 

The collected samples 77 

Installation details of miniature pore water probe (after 

(Hight, 1982) 79 

An inclinometer gauge (after Burland 1989) 79 

X-ray diffractograms of samples 1S 1 (above) and 1S2 (below) 103 

X-ray diffractograms of samples 1S3 (above) and 1S4 (below) 104 

X -ray diffractograms of samples 2S 1 (above) and 2S2(below) 105 

X-ray diffractograms of samples 2S3 (above) and 2S4 (below) 106 

X-ray diffractograms of samples 3S 1 (above) and 3S2 (below) 107 

X-ray diffractograms of samples 3S3 (above) and 3S4 (below) 108 

Scanning electron micrograph of sample 1 SEM 1 109 

Scanning electron micrograph (2nd image) of sample 1SEM1 109 

Energy dispersive X-ray spectrum (EDX) of area X of sample 

1SEMI 110 

Energy dispersive X-ray spectrum (EDX) of area Y of sample 

1SEMI 110 

Energy dispersive X-ray spectrum (EDX) of area Z of sample 

1SEMI 110 

Scanning electron micrograph of sample 2SEM 1 111 

Scanning electron micrograph of sample 2SEM2 111 

XIV 



Fig. 5.14 Energy dispersive X-ray spectrum (EDX) of area X of sample 

2SEMI 112 

Fig. 5.15 Energy dispersive X-ray spectrum (EDX) of area Y of sample 

2SEMI 112 

Fig. 5.16 Energy dispersive X-ray spectrum (EDX) of area X of sample 

2SEM2 112 

Fig. 5.17 Scanning electron micrograph of sample 3SEM1 113 

Fig.5.18 Scanning electron micrograph (2nd image) of sample 3SEM1 113 

Fig. 5.19 Scanning electron micrograph (3rct image) of sample 3SEM1 114 

Fig. 5.20 Scanning electron micrograph of sample 3SEM2 114 

Fig. 5.21 Energy dispersive X-ray spectrum (EDX) of area X of sample 

3SEMI 115 

Fig. 5.22 Energy dispersive X-ray spectrum (EDX) of area Y of sample 

3SEMI 115 

Fig. 5.23 Energy dispersive X-ray spectrum (EDX) of area X of sample 

3SEM2 115 

Fig. 5.24 Particle size distribution of borehole one samples 116 

Fig. 5.25 Particle size distribution of borehole two samples 116 

Fig. 5.26 Particle size distribution of borehole three samples 116 

Fig.5.27 Vertical variations of Atterberg consistency limits of natural 

samples of borehole one 117 

Fig. 5.28 Vertical variations of Atterberg consistency limits of natural 

samples of borehole two 117 

Fig. 5.29 Vertical variations of Atterberg consistency limits of natural 

samples of borehole three 117 

Fig. 5.30 Liquid limits and plasticity indices for the three boreholes 118 

Fig. 6.1 Triaxial consolidation graphs of natural samples of borehole one 133 

Fig. 6.2 Triaxial consolidation graphs of natural samples of borehole two 134 

Fig. 6.3 Triaxial consolidation graphs of natural samples of borehole three 135 

Fig. 6.4 Triaxial consolidation graphs for destructured samples of 

borehole one 136 

Fig. 6.5 Triaxial consolidation graphs for destructured samples of 

borehole two 137 

XV 



Fig. 6.6 Triaxial consolidation graphs for destructured samples 

of borehole three 138 

Fig. 6.7 Relationship of void ratio versus coefficient of consolidation 139 

Fig. 6.8 Relationship of coefficient of consolidation & effective press. 139 

Fig. 6.9 Relationship of coefficient of volume compressibility and 

consolidation pressure 140 

Fig.6.10 Relationship between coefficient of compressibility and void 

ratio 140 

Fig. 6.11 Comparison of e-p' curves for natural and destructured soils 

of borehole one 141 

Fig. 6.12 Comparison of e-p' curves for natural and destructured soils 

of borehole two 142 

Fig. 6.13 Comparison of e-p' curves for natural and destructured soils 

of borehole three 143 

Fig. 6.14 Void ratio versus log p' curves obtained from oedometer 

consolidation tests 144 

Fig. 6.15 Variation of insitu overburden pressure and the quasi-

preconsolidation pressure with depth for oedometer 

samples of borehole one 145 

Fig.6.16 Relationship of coefficient of permeability and consolidation 

Pressure 146 

Fig. 6.17 Relationship of coefficient of permeability with void ratio 146 

Fig. 6.18 Relationship between coefficient of permeability and coefficient 

of and coefficient of consolidation 146 

Fig. 7.1 Deviator stress vs. axial strain curves of natural soils of 

borehole one 198 

Fig. 7.2 Deviator stress vs. axial strain curves of natural soils of 

borehole two 199 

Fig. 7.3 Excess p.w.p. vs. axial strain curves for natural soils 

of borehole one 200 

Fig. 7.4 Excess p.w.p. vs. axial strain curves for natural soils 

of borehole two 201 

xvi 



Fig. 7.5 q/p' ratio versus axial strain graphs for natural soils of 

borehole one 202 

Fig. 7.6 q/p' ratio versus axial strain graphs for natural soils of 

borehole two 203 

Fig. 7.7 Stress paths derived from a series of triaxial tests on 

natural soils of borehole one 204 

Fig. 7.8 Stress paths derived from a series of triaxial tests on 

natural soils of borehole two 205 

Fig. 7.9 Failure surface for natural soils of borehole one 206 

Fig. 7.10 Failure surface for natural soils of borehole two 207 

Fig. 7.11 Stress strain curve for 1 un50 showing first and second 

yield points plotted on natural scale 208 

Fig. 7.12 Stress strain curve for 1 un50 showing first and second yield 

points plotted on log-log scale 208 

Fig. 7.13 Stress strain curve for 1 un400 showing first and second 

yield points plotted on natural scale 209 

Fig. 7.14 Stress strain curve for 1 un400 showing first and second yield 

points plotted on log-log scale 209 

Fig. 7.15 First and bond yield for test 1 un50 210 

Fig. 7.16 First and bond yield for test 1 un 100 210 

Fig. 7.17 First and bond yield for test 1 un200 211 

Fig. 7.18 First and bond yield for test 1 un300 211 

Fig. 7.19 Bond yield for test 1 un400 212 

Fig. 7.20 Stiffness versus strain for test 1 un500 212 

Fig. 7.21 Stiffness versus strain for test 1 un600 213 

Fig. 7.22 Stiffness versus strain for test 1 un800 213 

Fig. 7.23 First and bond yield for test 2un50 214 

Fig. 7.24 First and bond yield for test 2un 100 214 

Fig. 7.25 First and bond yield for test 2un200 215 

Fig. 7.26 First and bond yield for test 2un300 215 

Fig. 7.27 First and bond yield for test 2un400 216 

Fig. 7.28 Stiffness versus strain for test 2un500 216 

Fig. 7.29 Stiffness versus strain for test 2un600 217 

xvii 



Fig. 7.30 Stiffness versus strain for test 2un800 217 

Fig. 7.31 Three yield surfaces and failure surface for natural 

soils of borehole one 218 

Fig. 7.32 Failure surface and three yield surfaces for natural soils of 

borehole two 219 

Fig. 7.33 Loss in stiffness with increasing strain (from 0.01% to 

0.1%) for natural soils of borehole one 220 

Fig. 7.34 Loss in stiffness with increasing strain (from 0.1% to 

2%) for natural soils of borehole one 221 

Fig. 7.35 Loss in stiffness with increasing strain (from 0.01% to 

2%) for natural soils of borehole two 222 

Fig. 7.36 Strain contours of natural soils of borehole one from 

0.01% to 2% strain 223 

Fig. 7.37 Strain contours of natural soils of borehole two from 

0.01% to 2% strain 224 

Fig. 7.38 Deviator stress versus axial strain curves for destructured 

soils of borehole one 225 

Fig. 7.39 Deviator stress versus axial strain curves for destructured 

soils of borehole two 226 

Fig. 7.40 Excess p.w.p. vs. axial strain curves for destructured soils 

of borehole one 227 

Fig. 7.41 Excess p.w.p. vs. axial strain curves for destructured soils 

of borehole two 228 

Fig. 7.42 q/p' ratio versus axial strain graphs for destructured soils of 

borehole one 229 

Fig. 7.43 q/p' ratio versus axial strain graphs for destructured soils of 

borehole two 230 

Fig. 7.44 Stress paths derived from a series of triaxial tests on 

destructured soils of borehole one 231 

Fig. 7.45 Stress paths derived from a series of triaxial tests on 

destructured soils of borehole two 232 

Fig. 7.46 Failure surface for destructured soils of borehole one 233 

Fig. 7.47 Failure surface for destructured soils of borehole two 234 

XVIII 



Fig. 7.48 Loss in stiffness with increasing strain (from 0.01% to 

0.1%) for de structured soils of borehole one 

Fig. 7.49 Loss in stiffness with increasing strain (from 0.1% to 

2%) for destructured soils of borehole one 

Fig. 7.50 Loss in stiffness with increasing strain (from 0.01% to 

0.1%) for destructured soils of borehole two 

Fig. 7.51 Loss in stiffness with increasing strain (from 0.1% to 

2%) for destructured soils of borehole two 

Fig. 7.52 Strain contours of destructured soils of borehole one from 

0.01% to 2% strain 

Fig. 7.53 Strain contours of de structured soils of borehole two from 

0.01% to 2% strain 

Fig. 7.54 Comparison of deviator stress versus axial strain curves for 

natural and destructured soils of borehole one 

235 

236 

237 

238 

239 

240 

241 

Fig. 7. 55 Comparison of deviator stress versus axial strain curves for natural 

Fig. 7.56 

Fig. 7.57 

Fig. 7.58 

Fig. 7.59 

and destructured soils of borehole two 

Comparison of stress paths derived from a series of triaxial 

tests on natural and destructured soils of borehole one 

Comparison of stress paths derived from a series of triaxial 

tests on natural and destructured soils of borehole two 

Comparison of failure surfaces for natural and destructured 

soils of borehole one 

Comparison of failure surfaces for natural and destructured 

soils of bore hole two 

Fig. 7.60 Comparison between stiffness values with increasing 

Fig. 7.61 

strain from 0.01% to 0.1% strain for natural 

and destructured soils of borehole one 

Comparison between stiffness values with increasing 

strain from 0.1% to 2% strain for natural 

and destructured soils of borehole one 

Fig. 7.62 Comparison between stiffness values with increasing 

strain from 0.01% to 0.1% strain for natural 

and destructured soils of borehole two 

xix 

242 

243 

244 

245 

246 

247 

248 

249 



Fig. 7.63 Comparison between stiffness values with increasing 

strain from 0.2% to 2% strain for natural 

and destructured soils of borehole two 250 

Fig. 7.64 Comparison between strain contours (up to 2%) for the natural 

and destructured soils of borehole one 251 

Fig. 7.65 Comparison between strain contours (up to 2%) for the natural 

and destructured soils of borehole two 252 

Fig. 7.66 Specific volume vs. p' for natural soils of borehole one 253 

Fig. 7.67 Specific volume vs. p' for natural soils of borehole two 254 

Fig. 7.68 Specific volume vs. p' for destructured soils of borehole one 255 

Fig. 7.69 Specific volume vs. p' for destructured soils of borehole two 256 

Fig. 7.70 Comparison between specific volume vs .. p' for natural 

and destructured soils of bore hole one 257 

Fig. 7.71 Comparison between specific volume vs .. p' for natural 

and destructured soils of borehole two 258 

Fig. 7.72 Comparison of deviator stress versus axial strain curves of 

natural soils of borehole one and two 259 

Fig. 7.73 Comparison of stress paths derived from natural samples of 

borehole one and two 260 

Fig. 7.74 Comparison between three yield surfaces for natural soils 

of borehole one and two 261 

Fig. 7.75 Comparison of deviator stress versus axial strain curves for 

destructured soils of borehole one and two 262 

Fig. 7.76 Comparison of stress paths derived from destructured samples of 

borehole one and two 263 

Fig. 7.77 Zones of behaviour for borehole one samples under 

undrained shearing 264 

Fig. 8.1 Deviator stress versus axial strain curves for natural soils 

of borehole three 297 

Fig. 8.2 Volumetric strain versus axial strain for natural soils of 

borehole three 298 

Fig. 8.3 Deviator stress versus axial strain curves for natural soils 

of borehole three 299 

XX 



Fig. 8.4 Volumetric strain versus axial strain for natural soils of 

borehole three 299 

Fig. 8.5 Stress paths derived from a series of drained tests on natural 

soils of borehole three 300 

Fig. 8.6 Failure surface for natural soils of borehole three 301 

Fig. 8.7 First and bond yield for test 3dn50 302 

Fig. 8.8 First and bond yield for test 3dn200 302 

Fig. 8.9 First and bond yield for test 3dn300 303 

Fig. 8.10 Stiffness versus axial strain for test 3dn400 303 

Fig. 8.11 Stiffness versus axial strain for test 3dn500 304 

Fig. 8.12 Stiffness versus axial strain for test 3dn600 304 

Fig. 8.13 Stiffness versus axial strain for test 3dn800 304 

Fig.8.14 Three yield surfaces and failure surface for natural soils of 

borehole three 305 

Fig. 8.15 Loss in stiffness with increasing strain (from 0.01% to 

1%) for natural soils of borehole three 306 

Fig. 8.16 Strain contours ( 0.01% to 2% strain) for natural soils of 

borehole three 307 

Fig. 8.17 Deviator stress versus axial strain curves for destructured soils 

of borehole three 308 

Fig. 8.18 Volumetric strain versus axial strain for destructured soils of 

borehole three 309 

Fig. 8.19 Deviator stress versus axial strain curves for destructured soils 

of borehole three 310 

Fig. 8.20 Volumetric strain versus axial strain for destructured soils of 

borehole three 310 

Fig. 8.21 Stress paths derived from a series of drained tests on 

destructured soils of borehole three 311 

Fig. 8.22 Failure surface for destructured soils of borehole three 312 

Fig. 8.23 Loss in stiffness with increasing strain (from 0.01% to 

1%) for destructured soils of borehole three 313 

Fig. 8.24 Strain contours ( 0.01% to 2% strain) for destructured soils of 

borehole three 314 

xxi 



------- -------------

Fig. 8.25 Comparison of deviator stress vs. axial strain curves for 

natural and destructured soils of borehole three 315 

Fig. 8.26 Comparison of volumetric strain vs. axial strain curves for 

natural and destructured soils of borehole three 316 

Fig. 8.27 Comparison of failure surfaces for natural and 

destructured soils of borehole three 317 

Fig. 8.28 Comparison between stiffness values with increasing 

strain from 0.01% to 0.1% strain for natural 

and destructured soils of borehole three 318 

Fig. 8.29 Comparison between stiffness values with increasing 

strain from 0.1% to 1% strain for natural 

and destructured soils of borehole three 319 

Fig. 8.30 Comparison between strain contours (0.01% to 0.5%) for the natural 

and destructured soils of borehole three 320 

Fig. 8.31 Comparison between strain contours (from 0.5% to 2%) 

for the natural and destructured soils of borehole three 321 

Fig. 8.32 Specific volume vs. p' for natural soils of borehole three 322 

Fig. 8.33 Specific volume vs. p' for destructured soils of bore hole three 323 

Fig. 8.34 Comparison between specific volume vs .. p' for natural 

and destructured soils of borehole three 324 

Fig. 8.35 Comparison of failure surfaces for natural soils of boreholes 

one, two and three 325 

Fig. 8.36 Zones of behaviour for borehole three samples under 

drained shearing 326 

xxii 



CHAPTER 1 

INTRODUCTION 

1.1 General 

Dhaka is the capital of Bangladesh, which is expanding rapidly. Rapid urbanization 

in the city area has led to an increased interest in the engineering behaviour of the 

soils which are present within the city area. Geotechnical information of the subsoil 

in an urban area is important for various civil engineering works. Lack of 

sophisticated laboratory facilities and non-availability of the proper geotechnical 

information of the subsoil makes foundation and engineering works expensive, 

difficult and sometimes hazardous. 



The soils within the city area are fonned under a warm to hot and humid to 

subtropical climatic conditions and derived from a residual soil horizon. In addition, 

these red clay soils are of different nature from the other sedimentary soils of 

Bangladesh. The red colours indicate the presence of iron oxide common in well

oxidized soil. Therefore the present research was performed with a view to evaluate 

the mineralogy, fabric, mechanical behaviour of the tropical clay soils of Dhaka to 

establish the stress strain characteristics at small and large strains, stiffness and 

yielding behaviour and finally to establish a framework of behaviour based on stress 

history and bonding (physical linkage between particles) for these soils. 

:L2 Objectives 

The main aim of this research work was to attain the following objectives for the 

tropical clay soils of Dhaka, Bangladesh. 

1. To evaluate the mineralogy of the soil. 

ii. To study the fabric of the soil. 

iii. To identify and evaluate the basic geotechnical parameters. 

tv. To show the relationship of basic geotechnical parameters with mineralogy. 

v. To evaluate the consolidation characteristics viz. the coefficient of volume 

compressibility, the coefficient of consolidation and compression index. 

vi. To identify the stress-strain characteristics of the soil. 

vtt. To derive stress paths for these soils. 

viii. To understand yield behaviour of the tropical clay soil of Dhaka. 

ix. To evaluate the small strain behaviour of the soil. 

x. To measure the stiffness of the soil and to see the changes in stiffness with 

increasing strain. 

xi. To compare the results of natural and destructured soils to understand 

bonding effects of the soils. 
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xii. To observe the critical state behaviour at large strains and 

xiii. Finally to establish a framework of behaviour for the tropical clay soils of 

Dhaka based on stress history and bonding. 

To achieve the above objectives an extensive experimental laboratory testing 

programme was carried out on undisturbed natural and destructured samples of the 

tropical clay soils of Dhaka. Basic geotechnical parameters were determined in 

accordance with standard test procedures. A series of undrained and drained triaxial 

tests was also carried out on natural and destructured samples using a range of 

effective confining pressures. In addition, X-Ray Diffraction (XRD) and Scanning 

Electron Micrograph (SEM) were also done on some samples to evaluate the 

mineralogy and fabric of the soil. 

1.3 Thesis Layout 

The thesis is arranged in nine chapters. Chapter I describes the background and 

objectives of the thesis. Apart from this introduction chapter a brief review of 

previous literature relating to the general aspects of tropical soils has been made in 

Chapter 2. In Chapter 2 some previous research on the engineering behaviour of 

natural and artificial soils are also discussed in terms of strength, stiffness and 

yielding. 

In Chapter 3, geology, the site locations, borehole descriptions, a brief description of 

undisturbed sample collection and preparation of natural and destructured samples 

are discussed. 
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Chapter 4 describes the experimental methods of testing to carry out all the 

laboratory tests. The basic principle of the computer control system used in the 

testing is discussed. 

The results of the testing programme carried out on samples collected from three 

boreholes are presented in Chapters 5,6,7 and 8. Mineralogy, fabric and other basic 

geotechnical parameters of the soils are discussed in chapter 5. The relationship 

between mineralogy and some basic geotechnical parameters are also discussed in 

this chapter. 

Chapter 6 mainly deals with the triaxial consolidation results. The volume change 

during consolidation and the measured values of coefficient of volume 

compressibilty, the coefficient of consolidation and the compression index are 

discussed. Some oedometer test results are also presented in this chapter. 

Results of undrained triaxial tests are discussed in Chapter 7. Results on samples 

taken from two boreholes at different sites are discussed in terms of stress strain 

curves, stress paths, stress ratios and excess pore water pressures with increasing 

strains. Stiffness and yielding characteristics are also discussed in Chapter 7. Small 

strain characteristics are evaluated. Critical state conditions are discussed. Undrained 

triaxial test results of natural and destructured soils are also compared and evaluated 

in Chapter 7. Comparisons between the results of samples from two boreholes are 

also presented in this chapter. Finally a framework for the tropical clay soils of 

Dhaka, Bangladesh is discussed. 

Chapter 8 presents the results of drained triaxial tests on both natural and 

destructured samples taken from a third borehole from the same geologic formation. 
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Drained stress strain behaviour of the soils is discussed in terms of stress strain 

curves, stress paths and volumetric strains. Small strain drained test results are also 

presented. A comparison has been made in Chapter 8 between the drained test 

results of natural and destructured soils. Zones of behaviour under drained shearing 

are also discussed. 

Graphical results are grouped at the end of each chapter. The thesis ends with 

Chapter 9, which contains the main conclusions of the research work carried out. 

Some future recommendations are also made in Chapter 9. 
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CHAPTER2 

LITERATURE REVIEW 

2.1. Introduction 

A literature review was undertaken on the engineering characteristics of tropical 

soils from different parts of the world. Bonding in tropical soils plays an important 

role in the stress-strain development, strength, stiffness and yielding characteristics 

of these natural soils. Therefore a review was also done for the stress-strain, 

strength, stiffness and yielding characteristics of natural and artificially bonded soils. 

Previous work carried out both on natural and destructured samples to interpret the 

mechanical behaviour of the bonded soils are discussed in this chapter. Mineralogy 

and fabric of some of the natural soils and their relationship with engineering 

properties are also discussed. 
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In this section a brief review of the general aspects including the classification, basic 

geotechnical properties, mineralogy and fabric of tropical soils from different parts 

of the world are discussed. There is a huge literature on tropical soils, which has 

been variously defined. However, from an engineering point of view, there is a little 

confusion in defining tropical soils, their formations and properties. Much has been 

written on various tropical residual soils, m pedological, geological, 

geomorphological and engineering literature (Fookes, 1997). 

Blight ( 1988) pointed out that generally the soils which are formed in the tropics 

under a warm to hot and humid to subtropical climate and derived from a residual 

soil horizon are considered as tropical soils. He discussed the origin and formation 

of tropical and residual soils. Tropical soils are formed by in situ weathering of 

rocks, the three major agencies of weathering being physical, chemical and 

biological processes. In the weathering process the parent rock and rock minerals 

break down, releasing internal energy and forming substances having a lower 

internal energy which are therefore more stable. He also mentioned chemical 

processes; chiefly hydrolysis, cation exchange and oxidation alter the original rock 

minerals to more stable clay minerals. Residual soils form from igneous, 

sedimentary or metamorphic parent rocks. Chemical processes tend to predominate 

in the weathering of igneous rocks whereas physical processes dominate the 

weathering of sedimentary and metamorphic rocks. He also pointed out that 

presence of iron oxide in these soils has an influence on the specific gravity and void 

ratio results. 

Smith (1985) pointed out that meaningful research into the engineering properties of 

natural lateritic soils should be multidisciplinary and include geotechnical 

engineering, mineralogy, geology and fabric of the soils. He also suggested some 
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modus operandi for research into natural lateritic soils. Some of these vtz. site 

investigation, drilling and sampling, classification tests, oedometer and triaxial tests 

are common in any engineering investigation. In addition, he emphasized the 

importance of studying mineralogy and fabric of the residual soils, which have an 

influence on the engineering properties. 

Fookes ( 1997) noted that in tropical regions weathering of primary minerals is more 

intense and occurs at greater depths. The alteration of minerals is often so intense 

that the soil materials behave, in an engineering sense, quite differently from the 

parent materials from which they were derived. He also noted that iron oxide is 

crystallized as haematite when the soil is seasonally desiccated, or as goethite in a 

constantly humid environment; haematite giving the soil a red colour, goethite a 

brown or ochreous colour. Gibbsite is the main aluminium oxide formed. He also 

noted that silica is lost in solution or combines with other weathering products to 

form silicate clay minerals (mainly smectite) or silica deficient clay minerals 

(mainly kaolinite). Bases (K, Na, Ca, and Mg) are either lost in solution or are 

incorporated into silicate clay minerals. Kaolinite accommodates little or no bases. 

Fookes (1997) mentioned that the engineering behaviour of the tropical residual 

soils cannot be so easily predicted because: 

i. The weathering products that result under certain tropical conditions may 

contain minerals with unusual properties. 

ii. Weathering of a material in situ implies the presence of a relict structure, which 

may persist as a form of weak bonding even in the most extremely weathered 

products. Such a bonding can influence metastable behaviour. 

Fookes ( 1997) noted that tropical soils differ from transported soils, which are 

principally derived from coastal, alluvial, wind blown or glacial processes. He 

pointed out that these soils have particular characteristics, which distinguish them 
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from material deposited from a fluid medium such as wind or water. He proposed a 

formal classification of residual soils. The major subdivisions of the formal 

classification of residual soils are listed in Table 1. 

Table 1: Major subdivisions of formal classification of residual soils (Fookes, 

1997) 

RESIDUAL SOILS 
A. DURICRUSTS B. MATURE SOILS 
Silcrete Vertisols 
Calcrete Fersiallitic (andosols) 
Gypcrete Fersiallitic (senso stricto) 
Ferricrete Ferruginous (senso stricto) 
Alcrete ( alucrete) Ferrallitic 

Fookes ( 1997) mentioned the following characteristics of insitu residual soils to show 

the influence of these characteristics on the engineering behaviour. 

i. Mineralogy. 
ii. Variable structure and the presence of bonding between particles. 
iii. Variable void ratio unconnected with stress history. 
iv. Permeability often unrelated to particle size and grading. 
v. Discontinuities of low strength. 
vi. Partial saturation, which frequently occurs to considerable depth in these soils. 

Fookes ( 1997) discussed the problems of measuring index properties of tropical 

residual soils. He noted that even partial drying at moderate temperatures might 

change the structure and physical behaviour of tropical residual soils. Oven-drying 

from I 05° to 11 0°C frequently has a substantial effect on soil properties but drying at 

a lower temperature (e.g. 50°C), and even partial air-drying at ambient laboratory 

temperature can also produce significant changes. He also discussed that as a general 

rule it should be assumed that all tropical residual soils would be affected in some 

way by drying. Classification tests should therefore be applied to natural soil with as 

little drying as possible, at least until it can be established from comparative tests 

that drying has no significant effect on the test results. The method of preparation 

should always be reported. 

9 



Wesley (1973) discussed some basic engineering properties of halloysite and 

allophane clays of Java, Indonesia. He noted that engineering properties of these 

soils are more closely related to mineralogical composition than to pedological 

grouping. He points out that air or oven drying of the halloysite samples produces a 

small, although quite significant, changes in properties, but air or oven drying of the 

allophane samples completely alters the nature of the materials. 

Sridharan (1988) mentioned that residual soil from insitu weathering of parent rock 

in a tropical climate could be defined as tropical soil. He discussed the importance of 

structure and microfabric of fine grained tropical soils. He concluded that 

microfabric and associated interparticle forces could play an important role in 

controlling the strength and volume change behaviour of fine grained tropical soils. 

The macrofabric features such as stratification, fissuring, voids and large scale 

inhomogenities can also play an important role in affecting the shearing resistance 

and volume change behaviour of the fine grained tropical soils (Sridharan, 1988). 

Duchaufour (1982) distinguished three phases of residual soil development in 

tropical areas, which is summarised in Table 2. They are characterized by increasing 

weathering of primary minerals, increasing loss of silica and increasing dominance 

of new clay minerals formed from dissolved materials. 
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Table 2: Dilfferent residual soil phases in relation to climatic lfactors 
(Duchaufour (1982) 

Phase Soil type Zone Mean Annual Dry 
annual rainfall (m) season 
temp. (0C) 

1 fersiallitic Mediterranean, 13-20 0.5-1.0 yes 
subtropical 

2 ferruginous subtropical 20-25 1.0-1.5 some-
ferrisols times 
(transitional) 

3 ferrallitic tropical >25 >1.5 no 

Wesley ( 1988) mentioned three bases for classification of residual soils, which are at 

present in use for grouping residual soils. These are listed below. 

1. Methods based on the weathering profile 

2. Methods based on pedological groups 

3. Method intended for local use on specific soil type only. 

On the basis of degree of weathering he mentioned six categories of soil type. These 

are fresh rock, slightly weathered, moderately weathered, highly weathered, and 

completely weathered and soil. Based on pedology, Wesley (1988) classified 

tropical soil groups as Lateritic soils, Latsols and Red clay in the first group, 

Volcanic ash soils and Andosols in the second group and Black cotton soils, Black 

clays, Tropical black earths and Grumusols in the third group. He also noted that 

halloysite and kaolinite are the dominant clay minerals of Lateritic soils, Latsols and 

Red clay. Allophane and minor halloysite are common in Volcanic ash soils and 

Andosols. Smectite is common in black cotton soils, black clays and Grumusols. 

Based on the influences of composition and structure on soils, Wesley ( 1988) 

grouped residual soils as Group A, Group B and Group C for local use. In Group A 

soils are without a strong mineralogical influence but these are soils in which macro 
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or micro structure plays important role on the engineering behaviour of the soil. The 

most important form of microstructure is the inter-particle bonding or cementation. 

Group B type of residual soils is strongly influenced by conventional clay minerals 

such as are common in sedimentary soils. Group C type of residual soils are strongly 

influenced by the presence of clay minerals which are not found in sedimentary 

clays viz. Halloysite and Allophane. In addition to these silicate minerals, tropical 

soils may contain non-silicate minerals (or 'oxide' minerals), in particular the 

hydrated forms of aluminium and iron oxide (the sesquioxides), gibbsite and 

goethite. The main role of sesquioxides appears to be to act as cementing agents, 

which bind the other mineral constituents into clusters or aggregations. 

Wesley (1988) also-mentioned that with residual soils the position which a soil 

occupies on the conventional plasticity chart provides a good indication of soil 

properties, possibly just as good as for sedimentary soils. He reported that soils 

which plot well below A-line behave as silts while those which plot well above the 

A-line behave as clays (Figure 1 ). He emphasized the position above or below the 

A-line, which is of most significance, especially with tropical residual soils. The 

lines drawn parallel to A-line (Figure 1) divide soils into three labelled clay, silty 

clay and silt and would be more relevant to residual soils. He also mentioned many 

residual soils behave as silty clays for engineering purposes, and rightly fall into the 

category of silty clay on this chart. 

Fookes (1997) and Cook & Newill (1988) mentioned a framework for the field 

description, examination, identification of soils. This framework links soil material 

characteristics of the soil profile to the soil mass characteristics. The main elements 

of describing this framework are listed in Table 3. 
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Table 3: Main elements for field description, examination and identification 
of tropical residual soils (after Newill and Cook, 1988 and Fookes, 1997) 

Site characteristics 

Location 
Landform 
Geology 
Current climate 
Hydrology 
Vegetation 

Soil material characteristics Soil mass characteristics 

Moisture 
Colour 
Strength 
Fabric 
Texture 
Density and relative density 
Apparent behaviour 
Mineralogy 
Classification 

Composition 
Geological structure 
Behaviour 
Nomenclature 

Vargas (1988) pointed out that soil identification and classification must be done on 

the basis of index properties only. The purpose of a classification system is only to 

group a sample of soil in a class with common index properties. He also pointed out 

that preparation of tropical soil samples, for identification tests must be done with 

appropriate methods in order to completely destroy any aggregation of their grains 

or any structure imposed on their fabric by any eventual state that occurred to the 

soil. 

Newill (1961) studied the basic engineering properties of two red clays from Kenya 

He mentioned that kaolinite clays (which include halloysites) are commonly 

associated in the tropics with high iron oxide contents. He observed an increase in 

liquid and plastic limit values by removing free iron from the red clay soils and 

noted that the presence of halloysite influences the engineering properties of red clay 

soils. He suggested that oven drying causes the clay particles to aggregate into 

clusters that could partially be broken down by the dispersion process. 
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Rao et al. ( 1988) pointed out that iron oxide has a significant influence on the index 

and compressibility characteristics of kaolinite rich red tropical soils. They observed 

a decrease in liquid and plastic limits of the kaolinite rich red soils, despite an 

increase in fines content on iron oxide removal. In comparison, iron oxide removal 

from the montmorillonitic soil leads to an increase in liquid and plastic limits of the 

soil specimen. They mentioned that iron oxide present in the kaolinitic soil binds 

individual soil particles into coarser aggregates and contributes to the development 

of a random soil structure. The flocculated structure in turn exerts an important 

influence on the liquid limit and compressibility behaviour of the kaolinitic soil. 

Sabba Rao et al. ( 1988) discussed the influence of climate specially the effect of 

humidity and temperature on the index properties of tropical soils. They concluded 

that the liquid limit of Na, Ca-montmorillonite is significantly affected by humidity 

changes owing to changes in the adsorbed water layers. The liquid limits of black 

cotton soil and kaolinite are unaffected by humidity changes. The plastic limit is 

unaffected by humidity and temperature. The shrinkage limit of black cotton soil 

increases with humidity (Sabba Rao et al., 1988). 

Tropical residual soils are formed by quite different processes from other 

sedimentary soils. Weathering has a strong influence on the formation of tropical 

residual soils. Vaughan and Kwan (1984) pointed out that the initial structure and 

porosity are the important parameters for residual soil characteristics. The initial 

structure and porosity are a product of the weathering process rather than insitu 

stress history. They emphasised that the structure is modified from that of the parent 

rock by chemical alteration and the leaching or precipitation of soluble material. 

Vaughan ( 1988) and Vaughan et al. ( 1988) mentioned that there are clear differences 

between the factors influencing transported and residual soils. In transported soils 
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the particles are 'pre-formed', delivered by some transporting agency and deposited 

in a certain way. Residual soils are developed in place without transportation. The 

particles and their arrangement evolve progressively as a consequence of chemical 

weathering, with widely varying mineralogy and void ratio. Most residual soils are 

weakly bonded and the bonding may be broken by loading and strain. Once broken, 

it is irrecoverable. They also pointed out that some factors (namely the particles, 

mineralogy and stress history) control the engineering behaviour of residual soils. 

They mentioned that mineralogy of a residual soil is partly inherited from the parent 

rock and partly generated by weathering. 

Smectites are often present in vertisols. They are active clay minerals and their 

presence in quantity can cause large volume changes in response to small changes in 

effective stress. Kaolinites occur in many residual soils particularly in fersiallitic, 

ferruginous and ferralitic profiles. A soil containing kaolinite has higher strength and 

a lower compressibility than a soil of the same clay fraction containing smectite. 

Vaughan ( 1988) also mentioned that typically a soil with less than 15% clay content 

behaves much like a granular material. A soil with more than 40% clay content has 

properties dominated by the presence of the clay. In such a soil the platy clay 

minerals can orientate and a continuous shear surface can form. Clay minerals 

present are sometimes coated with other minerals, which change their behaviour. 

2.3 Research on bonded soils 

2.3.1 General on bonded soils 

A review of the previous work shows that bonding or cementation is common in a 

large range of materials viz. soft and stiff clays, sands, residual soils and weak rocks. 

Bonding in natural soils plays an important role in the stress-strain development, 

strength, stiffness and yielding characteristics of natural soils. All these materials 

show similarities in their mechanical behaviour. A review on the mechanical 
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behaviour of naturally and artificially bonded soils are discussed in the following 

sections. Stress-strain, strength, stiffness and yielding characteristics of some natural 

soils from different parts of the world are also reviewed. 

Vaughan (1985) noted that bonding and porosity entirely control the properties of 

residual soils. He explained the necessity for developing a general framework for 

describing and clarifying the engineering properties of residual soils. He concluded 

that the framework for a weakly bonded, particulate material, in which the yielding 

of the bonds is represented by a yield locus in stress space, is a potentially relevant 

and helpful one for a wide range of residual soils. Vaughan et al. (1988) confirmed 

that yield of the bonded structure can be mapped as a yield surface in deviatoric 

stress/ mean effective stress/void ratio space in a manner similar to the yield of 

sedimentary clays. In the classical soil mechanics of sedimentary clays, porosity is a 

function of stress history, and bonding is ignored. 

Vaughan (1985) also suggested that the behaviour of soils with bonded structure can 

be best understood through comparing their properties with those of the same soils 

in a remoulded and destructured state. Bonded structure, as used by Vaughan (1988) 

indicated a component of strength and stiffness and which behaved as if it was due 

to physical connections between particles. He noted that the bonded structure is 

destroyed by remoulding and destructuring even if the porosity of the soil is 

unaltered. 

Vaughan (1985, 1988) mentioned the effects of bonded structure in residual soils. 

He pointed out that residual soils typically exhibit a yield stress. This yield stress 

(the apparent pre-consolidation pressure) is related to structure and bonding and not 

to stress history. A bonded soil exhibits a peak shear strength envelope in terms of 

effective stress, which has a cohesion intercept, c'. This is due to bonded structure 

rather than dilation (although the latter may also be present) and is thus unrelated to 
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density. In bonded soils this component of strength is destroyed by yield. He also 

mentioned that if the cohesion intercept were due to overconsolidation and dilation 

during shear it would not exist at a normal stress in excess of the yield stress. 

Many soils have been subject to bonding agencies during their geological history; 

such as deposition of carbonate and iron salts which physically bond particles 

together. Vaughan (1988) and Leroueil and Vaughan (1990) described possible 

causes of bonding, which are listed below: 

i. Cementation through the deposition of carbonates, hydroxides, organic matter, 

etc. 

ii. Deposition of silica at particle contacts after dissolution from sand particles. 

iii. Cold welding at interparticle contacts in soils subjected to high pressure. 

iv. Growth of bonds during the chemical alteration of minerals accompanying 

weathering. 

Leroueil and Vaughan (1990) also discussed the role of structure in many naturally 

structured soils (including soft clays, stiff over-consolidated clays, clay-shales, sand, 

weak and porous rock and residual soil). They noted that a soil from which the 

structure has been removed or destroyed by straining and remoulding would be 

referred to as destructured. They also noted that the interparticle bonding plays an 

important role in the case of weakly bonded natural soils. The weakly bonded soils 

have components of tensile and shear strength and stiffness which will have a strong 

influence on the engineering behaviour. The strength and stiffness behaviour of a 

weakly bonded soil can be explained by means of yield stress. They also noted that 

structuring has similar effects in all these materials. Stiff behaviour, followed by 

yield above certain stress levels, is mainly observed in each case. They also noted 

that structuring increases strength and enlarges the stress domain in which the soil 

shows stiff behaviour. 
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2.3.2 Stress-strain, strength, stiffness and yielding in bonded soils 

Vargas (1953) discussed the influence of structure in residual soils. He pointed out 

that bonding within the soil structure gives the well known 'quasi-preconsolidation 

pressure". He observed from Oedometer tests the presence of additional strength in 

natural samples, when compared to remoulded samples, and defined this as 

"apparent or virtual-preconsolidation pressure". Wesley (1974) also presented one

dimensional compression test results on undisturbed and remoulded residual soils 

from Java. He observed that undisturbed soil is initially stiffer than the remoulded 

one and it can show much larger strength than the remoulded soil at the same void 

ratios. 

Sangrey (1972) discussed typical results of some naturally cemented clays of 

Canada. He mentioned that although the causes of cementation may vary, they all 

exhibit some common mechanical characteristics. He discussed the drained stress

strain curves of Labrador Clay (figure 2) and noted that at low confining pressure 

(test LA 7) the cementation dominates and little frictional resistance is left once the 

bonding is destroyed by shear failure. At low stresses, these soils appear to be 

stronger than expected, with less strain being required prior to yield and they show 

brittle behaviour (test LA 7). However, higher stresses (test LA8) enable sufficient 

frictional resistance to be built up after the cementation bonds are broken and the 

behaviour changes to ductile (test LA8in figure 2). 

Uriel and Serrano (1973) presented drained stress-strain behaviour of two porous 

volcanic soils of different bulk densities from Canary Island (Spain). They noted that 

these volcanic soils are strongly dependent on bonding and their conclusions were 

similar to those previously presented by Sangrey ( 1972). They noted that at low 

confining pressures the behaviour of the samples was brittle while at higher stresses 

it changed to ductile. 
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Jardine et al. (1984) discussed the undrained stress-strain, stiffness characteristics for 

London Clay, Ham River Sand and chalk. These soils owe their stiffness to bonding, 

density, strength and initial effective stresses in various degrees, and exhibit 

different post-yield behaviour pattern. The stress paths for Ham River Sand are 

marked by HRS 1 and HRS2 and those of chalk are marked by C 1 and C2 

respectively (figure 3). The figure also shows the strain levels at appropriate 

intervals. They observed that sand samples show a stiff response to loading over the 

initial portions of each test but the samples rapidly lost stiffness as the stress paths 

approached the dilatant part of their state boundary surface. After yield the stress 

paths curved to the right and climbed the state boundary surface until, at large 

strains, peak strengths are developed. The samples did not reach an undrained 

critical state condition. The stress paths of the chalk tests C 1 and C2 are presented in 

the same figure. They observed that these two tests show stiff behaviour up to brittle 

failure. The failure strains for tests Cl and C2 were both around 0.075%. The post

failure behaviour can be seen to be characterized by a progressive weakening with 

the effective stresses roughly following the unloading paths. The stress paths for 

London Clay marked by LC 1 and LC2 are shown in figure 4. They observed stiff 

response of the stress paths up to axial strains of around 0.1 %. They also observed 

that stress paths deviated to the right after attaining an axial strain of 1% until peak 

strengths were mobilized at strains of 4.5% and 3.5% respectively. They also 

reported that the samples had formed polished shear surfaces within the specimens. 

They observed that the stiffness curves are non-linear and showed a reduction of 

stiffness with increasing strain. 

Bur land ( 1989) discussed the stiffness of soils at small strains. He presented results 

of a typical unconsolidated undrained test on an undisturbed sample of London Clay. 

The measured effective stress path is shown in figure 5.a, with locally measured 

values of axial strain indicated. A comparison between the externally and locally 

measured stress-strain curves are shown in figure 5.b. It can be seen that the initial 

part of the externally measured stress-strain curve at very small strain is apparently 

linear but the local measurements show much stiffer non-linear behaviour. At axial 

19 



strains less than about 0.1% local measurements give much higher stiffness than 

those determined from traditional external measurements. Stiffness measured from 

internal measurements versus strain curve (in log scale) are shown in figure 5.c. The 

strongly non-linear nature of the sample response is evident in figure 5.c, with a 

decrease of stiffness value from 1700 kPa at 0.003% to about 150 kPa at 1.0% strain. 

He noted that this small strain region requires more study. 

Vaughan (1985) pointed out that in order to study the effects of bonding on soil 

behaviour, artificially bonded samples should be used. He defined a yield stress as a 

stress state at which a material shows a discontinuity in stress-strain behaviour. He 

also suggested that yield is best identified from the stress-strain curve plotted to a 

natural or log-log scale. Vaughan (1985) also noted that in drained tests, samples 

continue to contract after a constant shear stress has been reached. At low confining 

stresses, yield and failure nearly coincide (figure 6). At higher confining stresses 

yield is much more gradual. The stress paths for saturated undrained tests on the 

bonded soil end on the critical state line CSL at virtually the same points as the paths 

for the same tests on unbonded soil tested at the same density. He also noted that the 

soil when loaded beyond the initial yield surface without failure, the current state of 

soil involves the combined influences of both the remaining bonding and plastic 

strains imposed by stress history. 

Vaughan (1988) suggested the existence of two yields and identified that once the 

soil has exceeded its yield stress its bonding is progressively destroyed as large 

strains develop. He explained that post yield deformation depends on yield stress 

and initial porosity, rather than on the intrinsic compressibility of the 'destructured' 

soil. In figure 7, there is an initial stage [a] where no bonds break. This is followed 

by an initial yield and some bonds start to break progressively [stage (b)] with 

increasing yield. A much more dramatic second yield produces large subsequent 

strains [stage (c)]. At first yield some of the bonds starts to yield, and the total bond 

strength in the soil reduces. However, the bond strength is still greater than the 
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average stress carried by the bonds, and the soil remains stiff (figure 7). Therefore, 

before second yield a bonded soil will be stiff and deformation will be small. At 

second yield the increasing average bond stress becomes equal to the decreasing 

average bond strength and general bond failure and large strains follow. The bond 

strength is not completely destroyed immediately after second yield, but is destroyed 

progressively by increasing strain. Deformation will always be small unless the 

second yield stress is exceeded. If the bond strength is significant, second yield will 

not occur until the stress/void ratio path has moved to a point which is impossible 

for the destructured soil (Vaughan, 1988). He also mentioned that after yield, as the 

bonded structure is destroyed by increasing strain, the stress path translates towards 

that for the destructured soil (figure 8). He reviewed the results of many residual 

soils and concluded that the compression curve for the weak soil converges with that 

of the destructured soil. Convergence of the path for the strong soil might occur at 

much higher stresses. Vaughan (1988) pointed out that tangential stiffness versus 

strain might give a clearer indication of yield. 

Vaughan et al. (1988) discussed the yield behaviour of different bonded residual 

soils and artificially bonded soils. They observed two consistent yield surfaces for 

both the natural and artificial soils. Two examples of the observed yield surfaces in 

volcanic agglomerate and in a residual soil from basalt are shown in figures 9 and I 0 

respectively. They observed a sharp yield in the line plot of strain versus stress from 

drained tests under isotropic stress. A more gradual yield from (a) to (b) (figure 9) 

was observed at high confining pressures. Yield was then followed by plastic 

behaviour and failure at a much higher shear stress (c). At lower confining stress, 

yield is abrupt and is very close to the failure surface (figure 9). It can be seen from 

these figures that the yield behaviour observed for these natural soils are similar to 

the yield behaviour observed in artificially bonded soils as shown in figure 11. 
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Vaughan et al. (1988) also noted that first yield may only involve a slight change in 

stiffness. It is often indistinct, and it can only be observed if precise measurements 

of strain are made. They also noted that second yield does not coincide with the 

complete destruction of bonds. This occurs at much larger strains. They also 

mentioned that at low effective confining pressures, first, second and final failure 

occur close together, with second yield and failure coinciding (figure 11). 

Maccarini (1987) in his study of an artificially bonded soil (made up of quartz sand, 

a kaolin sand (cfk) and a small quantity of kaolin slurry) defined the first and second 

yield of the bonds, which are shown in figure 12. He defined first yield of the bonds 

at the end of the linear part of the curve of deviator stress versus axial strain plotted 

on natural scale (figure 12), the second yield at the maximum point of curvature of 

the same graph (figure 12). Bressani (1990) also used the same graph to interpret the 

first and second yield of the bonds plotted on a log-log scale to show the clearer 

change in behaviour. 

Bressani and Vaughan ( 1989) carried out drained triaxial compression tests on 

artificial bonded soil (the same as Maccarini, 1987). The results are shown in figure 

13. As can be seen in figure 13, yield at low mean stress occurs only slightly before 

peak deviator stress is reached (test 'n' of figure 13). At higher mean stress yield 

occurs well before failure (test 'o' of figure 13). Failure coincides with critical state 

and the complete destruction of bonding by large strains. They also concluded that 

the bond strength would decrease with increasing strain (figure 13) and the stress 

path can have a marked influence on the strength observed at low effective stresses 

in weakly bonded materials, even when the path does not approach yield prior to 

failure. 

Leroueil and Vaughan (1990) pointed out that the yield curve could be divided into 

three zones, as shown in figure 14. These are: 
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i. Compression yield, where yield occurs remote from the eventual failure 

envelope. 

ii. Shearing yield, where yield and shear failure more or less coincide at low 

confining stresses and 

iii. Swelling yield, in which yield occurs remote from the failure envelope due to 

swelling. The swelling yield may not be present in some materials if their 

swelling is not large enough to break the bonds. 

The complete yield curve represented in figure 14 may not be present in all soils and 

the orientation and shape of it may change. 

Leroueil and Vaughan (1990) also discussed the stress strain curves obtained in 

undrained triaxial compression tests carried out on the intact and destructured 

natural clays after consolidation under the same overconsolidation ratio (figure 15). 

They showed that destructured clay presents lower strength, lower stiffness and 

reaches a smaller peak at a larger strain than an intact clay due to the destruction of 

bonds in the destructured clay. They also compared the strength envelopes of the 

intact soil with that from the same soil which was allowed to swell under zero stress 

and then reconsolidated before undrained triaxial testing. They observed that the 

strength envelope for the swelled soil was lower than the envelope of the intact soil, 

due to destructuring (figure 16). 

Toll and Malandraki ( 1993) carried out undrained triaxial compression tests on 

artificially bonded and destructured samples at effective confining stresses ranging 

between 5 and 600 kPa. They used the technique developed by Maccarini ( 1987), 

but without the c.f.k.(crushed fired kaolin) sand. The stress paths for undrained tests 

on bonded samples are shown in figure 17. They prepared the samples in a relatively 

dense condition (void ratio = 0.6). Based on the analysed samples they concluded 

the following remarks: 
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1. For confining stress below 400 kPa the bonded soil can sustain higher stress ratios 

than the destructured soil, showing that the bond does affect the failure surface at 

low stresses (figure 18). 

2. At confining stresses above 400 kPa the failure surfaces for the bonded and 

destructured soil coincide (figure 18), suggesting that sufficient straining occurs 

before reaching the surface so that all the bonding is destroyed. 

3. A consistent yield surface can be observed for the bonded soil (defined by a 

change in stiffness). 

They identified the position of the two yield surfaces in the q-p' space and showed 

their relationship with the failure surfaces as shown in figure 19. 

Leddra et al. (1993) studied the deformation characteristics of a weakly bonded 

chalk, from two different sites with a wide variation in porosity. They carried out 

undrained triaxial experiments following isotropic and Ko consolidation to define the 

failure line for chalks subject to different consolidation pressures with different 

degrees of pore filling cementation. They suggested that chalk behaves as an elastic 

material at low stresses, but as the applied stress increases the cementation 

progressively breaks down and the material undergoes yield and the structure begins 

to deform in a ductile manner. Yield is followed by strain softening and/or strain 

hardening. They also observed that as the void ratio decreases the yield stress 

increases and the importance of strain softening decreases (figure 20 and 21). It was 

also observed that deformation proceeds through a decrease in void ratio as the 

effective stress increases (figure 21 ). 

They presented the undrained stress paths for isotropically consolidated chalk 

samples as shown in figure 22. From these stress paths they indicated that undrained 

behaviour is dependent upon the magnitude of the consolidation stress (p') at the 

onset of undrained shear (figure 22). They also noted that the stress path for an 

experiment conducted at a low mean effective stress (i.e. below the yield stress) 
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climbed above the projection of the failure line, yielded and then rapidly strain 

softened with little excess pore pressure generation (figure 22 and 23) until it 

reached the failure line. It then continued to strain soften whilst following the failure 

line. Samples subject to mean effective stresses within the yield and immediate post 

yield regime underwent severe strain softening as they followed the projection of the 

failure line. Samples consolidated into a strain hardening regime continue to strain 

harden once their stress paths have reached the failure line (Leddra et. al. 1993). 

Gens and Nova ( 1993) noted that there is a clear need to include the effects of 

bonding (among other factors) in order to model soil behaviour realistically. They 

noted that most bonded soils with increasing confining pressure show a transition 

from a brittle/dilatant behaviour to a ductile/compressive behaviour (as shown in 

figure 24). They also noted that initial stiffness and deviator stress at yield might 

also decrease at high confining stresses. After yield, bond degradation occurs in a 

gradual manner. 

Hobbs et al. ( 1988) discussed isotropically consolidated, undrained (CIU) triaxial 

tests on single, I OOmm diameter and 200mm high, cylindrical specimens to 

investigate the insitu stress-strain characteristics of some undisturbed tropical red 

clay soils from west Java, Indonesia. These red clay soils achieved a peak strength at 

low strains. From the observed effective stress paths they concluded that the clay 

showed a transition from pseudo-overconsolidated to normally consolidated 

behaviour. A series of stress paths for some of the samples is shown in figure 25. 

From the e-log p curves they identified two yield points as the soil structure deforms 

under different levels of effective stress (figure 26). A first yield point occurred 

under effective loads of 100-200 kPa (interpreted as reflecting failure of inter-ped 

bonding as the soil destructures) and a second yield point at higher stress levels of 

500-600 kPa (interpreted as further destructuring of the ped clusters due to failure of 

intra-ped bonds). 
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Sridharan ( 1988) presented some typical stress-strain curves of undisturbed and 

remoulded samples for a desiccated lateritic soil (figure 27). He observed that the 

undisturbed soil exhibits larger shear strength and a stiffer stress-strain response. He 

also noted that strains at failure were larger for remoulded soils than for undisturbed 

soils. By removing the chemical bonds they observed a reduction in strength in these 

tropical soils. 

Hight et al. (1992) discussed the stress-strain, strength and stiffness characteristics of 

the Bothkennar clay. From the undrained triaxial test results they discussed that the 

Bothkennar soil showed pronounced brittleness in triaxial compression, with the 

effective stress path progressively collapsing inside the initial bounding surface but 

not reaching a well defined critical state. It was also observed that reconstituted 

samples showed lower strength, lower stiffness, less brittleness and larger strains to 

peak than the natural samples due to the presence of structure in natural soils (figure 

28). They also mentioned that the Bothkennar Clay has a high, non-linear pre-yield 

stiffness and a low pre-yield compressibility. They noted that the clay showed 

recoverable behaviour up to strains of 0.02%. They observed that the resistance of 

the soil due to its bonded structure was reduced progressively by shear and 

volumetric strains. They also observed that undrained strengths are highest in triaxial 

compression and least in triaxial extension. 

All man and Atkinson ( 1992) discussed triaxial test results, comparing the behaviour 

of reconstituted samples and intact samples of Bothkennar clay soil. They observed 

that in undrained compression tests most samples reached a reasonably well defined 

constant stress ratio state at strains above about 15%; only the samples at the higher 

overconsolidation ratio showed any well-defined peak stress ratios. They also noted 

that the undrained strength of intact samples is significantly greater than that of 

reconstituted samples at the same water content. From the observed stiffness 

characteristics they noted that the stiffness and strain curves are non-linear. They 
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observed a decrease in stiffness values with increasing strain and with increasing 

confining pressures. 

Paul et al. (1992) mentioned that the increased strength and apparent 

preconsolidation of the Bothkennar clay may be due in part to bonding between silt 

particles by aluminosilicates, iron compounds and silica. They mentioned that two 

levels of bonding might occur. One providing a link between aggregates called inter

aggregate bonds and the other providing a link between particles within an aggregate 

called intra-aggregate bonds. 

Clayton et al. (1992) pointed out that in Bothkennar Clay, bonds formed by 

aluminosilicates, iron compounds and silica are observed between aggregates and 

silt grains. They suggested that there is a progressive breakdown of inter-aggregate 

pores, proceeding from the largest to the smallest pores. Strains in inter-aggregate 

bonds are likely to be directly related to inter-aggregate pore size and the soil would 

be expected to fail first between those aggregates having the largest inter-aggregate 

pore size. They observed a progressive degradation in stiffness with increasing 

amplitude of the strain cycle above 0.5% 

Taylor and Coop (1993) studied the undrained stress strain and strength 

characteristics of Boom Clay from Mol, Belgium. They observed initially a very stiff 

response of the samples and after an axial strain of about 2% the samples were close 

to the peak strength with the formation of a polished slip planes. Some samples 

(tests G and B in figure 29) showed a sudden drop in strength at an axial strain of 

2%. They discussed an irregular reduction in stiffness with increasing strain and 

observed the close similarity of stiffness values for undisturbed samples at strain 

levels greater than 0.1 %. 
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Little and Hataf (1990) studied the undrained stress-strain behaviour of weathered 

undisturbed and reconstituted Keuper Marl. They observed that the reconstituted 

samples did not show any maximum stress level even at high values of shear strain. 

For undisturbed specimens the peak stresses are identifiable and brittle behaviour 

can be seen in some cases (figure 30). The effective stress paths showed the 

characteristics of isotropically normally consolidated and overconsolidated soils 

(figure 31 ). They also discussed that the higher stress ratio value for the undisturbed 

specimens might be related to larger grain size of the undisturbed soil due to 

aggregation of the clay particle into larger silt-size units by some cementing or 

aggregating agent. This bonding was broken down in the process of reconstitution 

and reconstituted samples showed lower strength than the undisturbed samples. 

Atkinson et al. (1993) worked on the measurement of stiffness of soils and weak 

rocks in the laboratory. They concluded that the stress-strain behaviour of many stiff 

soils and weak rocks is highly non-linear and to obtain parameters for calculation of 

ground movements it is necessary to take account of changing stiffness with strain. 

They discussed the results of stiffness of undisturbed London Clay during drained 

shearing. They mentioned that the stress strain curve appears to be non-linear 

(figure 32.a) and it is very difficult to determine this clearly near the start of the test 

where the strains were very small. The non-linear stress-strain behaviour of stiff 

soils and weak rocks can be examined more easily by plotting the stress-strain curve 

with strains in logarithmic scale as in figure 32.b. They observed large changes in 

shear modulus (G') over relatively small ranges of strain (figure 32.c). It was 

observed that the shear modulus falls from about G'= 56 MPa at a shear strain (Es) = 

0.005% to about G'= 30 MPa at a shear strain Es = 0.05%. In their study they also 

compared the stiffness values for uncemented and artificially cemented carbonate 

sands. They noted that cementing increases the stiffness substantially at small 

strains, but after modest straining the stiffness reduces to values comparable to those 

for the uncemented sand. It can be seen from figure 33 that the value of shear 

modulus for cemented samples is about G'= 95 MPa at a shear strain Es = 0.1% and 
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reduces to values comparable to those for uncemented samples at a shear strain Es = 
0.6%. 

Based on small strain behaviour on reconstituted soil, Jardine et al. (1991) and 

Jardine ( 1992) suggested that three yield conditions could be identified. These are: 

Yl indicating the limit of linear elastic behaviour (i.e. the end of the elastic region); 

Y2 indicating the limit of recoverable behaviour (The behaviour up to Y2 may be 

non-linear but no significant plastic strains are generated); Y3 indicating the 

complete destruction of any structure within the soil when the stiffness has dropped 

to comparatively low values. The zones represented by Yl and Y2 are kinematic and 

move according to the current stress path direction. Y3 is static and independent of 

stress history. 

Smith et al. (1992) from triaxial stress path tests discussed the yielding 

characteristics of undisturbed Bothkennar Clay. They mentioned that the stress space 

within the initial bounding surface may be divided into three zones separated by 

yield surfaces of different types. These zones are shown in figure 34. They noted 

that yielding is classically associated with a sharp change from elastic to plastic 

behaviour. They identified two kinematic sub-yield surfaces existing within an 

initial bounding surface. They also pointed out that within the innermost zone (zone 

1) the soil's behaviour is linear elastic. The first elastic zone (before Y 1) could not 

be mapped accurately (figure 34) and the zone I was located at very small strains. 

The second zone (before Y2), where the soil behaviour changed to become non

linear and the behaviour of the soil under shear was recoverable, was found at axial 

strain (Ea) = 0.02%. They mentioned that it is also more difficult to map the zone 2 

(Y2) than the Y3 envelope. In summary they stated that irrecoverable straining starts 

when the stress path enters zone 3 (Y3). This third zone (before Y3) determined the 

onset of large strain yielding. They discussed that stiffness behaviour is stiff and 

non-linear before large scale yielding. 
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A conceptual picture of yield for bonded structured materials is given by Malandraki 

and Toll (2001), which is shown in figure 35. There are various proposals in the 

literature for identifing yield in natural and artificial soils. Some of which are 

discussed earlier of this section. Different definitions of yield for bonded materials 

have been reviewed by Malandraki and Toll (1996). They pointed out that 

traditionally 'yield' has been described as a clear change in behaviour. Atkinson 

( 1990) described yield as the end of the elastic range, which is the classical meaning 

of yielding in mechanics. Malandraki and Toll ( 1994, 1996) defined yield for a 

weakly bonded artificial soil based on changes in the tangential stiffness (Etan) 

versus axial strain plotted to log-log scale. They mentioned that a first loss in 

stiffness defines the 'first yield' (figure 36). They mentioned that in final yield, the 

bonded soil losses all of its stiffness due to bonding. Malandraki and Toll 

(1994, 1996) also identified an additional yield point called 'second yield' for an 

artificially bonded soil between the first and the final yield points. The term 'second 

yield' was used by Vaughan (1988) and Malandraki and Toll (1994, 1996). To avoid 

confusion between the term 'second yield' and 'Y2' as used by other researchers, 

Malandraki and Toll (2000) introduced the term 'bond yield' to represent the point 

where a major change in tangential stiffness occurs between the first and the final 

yield condition (figure 36). 

Two modes of failure for bonded soils have been identified by Malandraki and Toll 

(1996). They mentioned that a first mode of failure is defined when shearing a 

bonded soil at low confining stresses. Here the bonded soil exhibits greater strengths 

than those of the destructured soil and yield (bond yield) coincides with failure. The 

second mode of failure is defined when shearing at high confining stresses, and bond 

yield occurs under shear or isotropic compression. In this case, the soil's strength 

coincides with that of the destructured soil. 
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Malandraki and Toll ( 1994, 1996) observed that bonded soils showed higher 

stifffness values than the destructured soils up to I% strain and after that stiffness 

values of both the natural and destructured soils are close to each other. They also 

pointed out that E1an increases almost linearly with an increase in p' for the low stress 

levels (figure 37). Similarly the strain contours for the bonded soil are also 

approximately linear in the same region (figure 38). 

A model of yield behaviour was proposed by Malandraki and Toll ( 1996) using 

Vaughan's ideas about yield (Vaughan, 1985, 1988; Vaughan et al., 1988). They 

identified four zones of behaviour from the relative positions of the failure surface 

and the second yield surface for an artificially bonded soil under shear in triaxial 

compression (figure 39). They found that in the first zone the bonds entirely control 

the soil's behaviour at failure. In the second zone, the bonds only partially control 

the soil's behaviour at failure. In the third and fourth zone, the soil's behaviour at 

failure is independent of bonding and its behaviour is governed by that of the 

destructured material. However, bond yield occurs under shear in the third zone and 

under isotropic compression in the fourth zone (figure 39). 

2.4 Summary 

In this chapter a literature review was undertaken of the general aspects of tropical 

soils from different parts of the world. Weathering has a strong influence on the 

formation of the tropical residual soils. Mineralogy and fabric of these soils play an 

important role on the engineering behaviour of these soils. In addition, the presence 

of cementation or bonding in tropical residual soils also plays an important role on 

the mechanical behaviour of these soils. Therefore, a review was also undertaken on 

bonded soil behaviour. 
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Most of the previous research work on tropical soil behaviour has focused on the 

formation, classification and basic geotechnical properties. But a multidisiplinary 

approach to research on tropical soil behaviour is very limited. It is discussed that 

soil's mechanical behaviour can be best explained by comparing their properties in a 

natural and destructured state at the same grading and at the same void ratio to 

understand the effects of bonding on the soil's behaviour, in respect of the peak 

strength and stiffness. However, only a small amount of data from triaxial tests on 

undisturbed samples of natural tropical residual soils has been published, which 

emphasized the need to carry out research on the tropical clay soils of Dhaka. 

Research on various bonded soils suggests that although bonding of these materials 

has arisen from different reasons their mechanical behaviour is very similar. These 

bonded materials initially show stiff behaviour followed by yield. Yield of the bonds 

can be represented in the stress space by a yield curve. Defining yield from the 

stress-strain curve has caused some confusion in the past. There are various 

suggestions in the literature to define yield of the bonded structure in bonded soils. 

Some of the researchers suggested an initial yield surface, followed by a final yield 

surface at higher stresses close to the failure surface. Some of the researchers also 

pointed out that there might be an additional yield point between the initial and the 

final yield points. 

Bonding in tropical residual soils has a special significance in the stress-strain 

development, strength, stiffness and yielding characteristics of these soils. No 

attempt has yet been made to study the mineralogy, fabric and the effects of bonding 

on the tropical clay soils of Dhaka. This is the first attempt to take an integrated 

multidisciplinary approach to evaluate the engineering behaviour of the tropical clay 

soils of Dhaka and to show the influence of mineralogy and fabric on the 

engineering behaviour. The work carried out in this study clarifies the stress-strain 

behaviour, stress paths, bonding effects at low and high confining pressures, peak 

strength, critical state condition, stiffness and yielding behaviour within which test 

data for the tropical clay soils of Dhaka, Bangladesh can be interpreted. 
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GIEOLOGY9 §AMlP'LIE C01L1LIEC1I'JION AND 
lP'JruElP' ARA 1I'JION 

In this chapter a brief description of the geology of the study area, borehole locations 

and collection of undisturbed natural samples are described. Sample preparation for 

both natural and destructured samples is also described. 

Dhaka city is located in the central part of Bangladesh, which is situated in the 

southern tip of a Pleistocene terrace, the Madhupur Tract. Dhaka is characterized by 
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tropical, humid climatic conditions. This is marked by cool and short winters, long 

and wet hot summers with high rainfall. The mean annual rainfall is 2238mm. 

(Source: Bangladesh Meteorological Department). The city is bounded by the Turag 

River in the north-west, the Buriganga River in the south and southeast, the Balu 

River in the east and the Buriganga and the Turag River in the west (figure 3.1). 

Most of the streams and rivers are seasonal, ill-drained and fed by monsoon water. 

Dhaka city occupies land of low relief with many low depressions. The city shows 

significant variation in the ground surface. The surface elevation of the city ranges 

from 1.5m to 15m above Mean sea level, reaching a maximum in the Mirpur Area 

and a minimum at the periphery of the city. The average elevation of the city is 

about 6m above Mean sea level (M.S.L.). 

The reddish brown clayey deposits which outcrop over the land surface of Madhupur 

Tract is the oldest exposed rock in the study area (figure 3.2). These reddish brown 

soils contain ferruginous cements, concretions and nodules. It is unconformably 

underlain by Dupi Tila Formation and overlain by the recent Alluvium. Islam (1974) 

and Bakr ( 1977) named these reddish brown deposits the Madhupur Clay without 

giving a proper lithostratigraphical rank. A lam and Khan ( 1980) subdivided the 

Madhupur Clay into two lithologic sub units: the Lower Mottled Clay sub unit and 

the Upper Red Clay sub unit. Monsur (1990) renamed the Madhupur Clay 

Formation as the Madhupur Clay and Sand Formation and produced a formal 

stratigraphical classification. The alluvial deposits that overlie the Madhupur Clay 

has also been given new nomenclature by Monsur ( 1990) and called the Basabo 

Silty Clay Formation. Alam et al. (1990) of the Geological Survey of Bangladesh 

renamed the Madhupur Clay Formation as a Madhupur Clay Residuum (a residual 

soil horizon). 
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Monsur (1995) noted that the reddish brown colour of the Madhupur formations is 

clearly related to iron compounds. Monsur (1995) also mentioned that these are 

insitu developed soil and do not represent transported or re-deposited soil materials. 

He also mentioned that these soils have undergone intensive weathering processes 

that released Fe ions in a free state and appeared in the form of nodules or in 

association with clay. The well oxygenated upper members of these formations 

favoured the formation of haematite. The abundance of haematite and goethite 

minerals in Madhupur clay soils is also reported by Monsur. A generalized 

stratigraphical succession of the Madhupur area (after Monsur, 1990) is set out in 

Table 3.1. 
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Table: 3.1 Stratigraphic succession of the Mudhupur D~rea ( after Monsur, 
1990). 

·chrono- .g 6 Thlcknes str11t1 r11phy ~ Uthulu~lc d\'scrlptlun (m) .rJ 
Series Sub 

~ e ~ E ~ 
series/ L. ~ ~ 
Stawc ~ ~ 
Suh Matuail Silly l'ale uli ve ( 5 Y 614) very ~li~.:k y silly day wil.h 
1\llantil: day mttllcm suilon tup. 

t ht~o:onronnity 
Suh Clay ( 'lay~·y l.i~hl ydluwish hrown ( 10 YR 614) very ~li~.:ky 5 Don:.'ll ;o.., ~i lt dayey sill, ~:onlaining plenty or plant roots ant.l 

tU ('Q ironuml·rclions z -
w u .I Jnconfounily 
u 1\llautic .... (iul Silly Y cllowish retl silly day - day 0 - ~HUI I Inconformity ·-~ Dun:al CJ) Saltll Clayey l'alc yellow C'iY 7/J) clayey sill, ~:untaining woot.l 0 0 si 11 fragment.\ and iron Ulltuelions. ::c .l:l 

~ -Vl 

---~--' JnnmltKIIIIIy -------~ r-:1 

I 'le :Q S;u11l 
UtH\AII l.i~ht hluish I:"'Y ( ~B 711 l sand-silt-day to sanu. lt 

l'lllllains plant roots, WIKIU lra~mcnts a nu Iron 
t.:lllll:ft:tlllll~. 

______ l lHt.:tmlormily 

I Pale yellowish t>rown with light hrown SfKlllct.l 
K souM.ly day 

2 MilkJlc al 
si 

~ 
____ I lnconfunnily 

~ 
I-,.: Ycllowi~h hrown silly day, l'lllllaining iron 

c 11 t:oncrcl it IllS. 
4 n 

______ I Jnnmlunnity CJ) 

w ~ l{cu (2 'i Yl{ 4/6) with reduish yellow (7 5 YR 
c 616) spots. lt is highly wcathcrcu . conlaining iron z ('Q 5 LIJ ..... llhalul ulltcrctions, pit~ stems. Cah.:arcuu~ nttllules. plant u Lower ('Q ('lay muts and m:utg;mC$C .~puts. 

0 u Fo 
I lnconfunnity CJ) ... - ::1 

Mirpur l.ighl hruwn ( 'i Y I( 'i/6) sandy clay tu clayey sand LW Q, 

...J ::1 Silly with llllltlcratc retltlish hruwn ( 10 J{ 4/6) spots, 
4 Cl. .c 

('lay ~:ontainmg iron CIIIICrcliiiiiS, pipe SICIIIS, plant ~ 
~ 

mols ;utd mangrutcse spots. -~ ! ht\.·onfonnily 
l'ale yelluwi,_h hruwn ( 10 YR 6/2) silly sanu to 

Oha- somd with light hmwn ( 5 YR 'i/6) reuUl'tion SflllL~. lt 4 luka is highly micaceous and crus.., hcudct.l. lt contains 
S;u1t.l stllne intraronnatitlltal clayey hed~. 

lluwnfunnit Y. 

I w ·a 11 Qmu11. dtalt.l:dony gravel hct.l 
0 "' nllitlil.cll sanus with intrafurrnatiunal day hcus. lt - z ~ = 
~ w Q (:: ~·tmlains large ~ilkilictl WtKKI fragments. Q., u 
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--------------------------

3.3 Borehole Locations 

The area investigated is located between latitudes 23°42'N to 23°50'N and 

longitudes from 90°22'E to 90°26'E. Three boreholes were drilled in the area to 

collect undisturbed natural samples. The borehole locations are shown in figure 3.1 

and the borehole information is listed in Table 3.2. The detailed description of soils 

from the three boreholes is given in Tables 3.3, 3.4 and 3.5. 

Table 3.2 Borehole information 

Borehole Location Latitudes Longitudes 
number 

One Mirpur (site 1) 23°49.5'N to 23°49.8'N 90°22.5'E to 90°22.8'E 

Two Curzon Hall 23°43.6'N to 23°43.8'N 90°24.5'E to 90°24.8'E 

Three Mirpur (site 2) 23°48.3'N to 23°48.5'N 90°21.7'E to 90°21.9'E 
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Table: 3.3 Description of soils ofborehole one 

Depth (m) Soil description 

0-0.91 Firm to stiff, light grey to reddish mottled fine CLAY with SILT 

0.91-1.37 Firm to stiff, highly oxidized, reddish mottled, plastic fine CLAY 
with SILT. 

1.37-2.13 Stiff, reddish, containing some ferruginous concretions, highly 
oxidized, SILT with CLAY. 

2.13-5.08 Stiff, mostly reddish, occasionally reddish brown, mottled, some 
ferruginous concretions and iron nodules are present, highly 
oxidized, SILTS with CLAY. 

5.08-6.40 Stiff, reddish brown, mottled SILTS with CLAY. 

6.40-8.83 Stiff, contain some ferruginous concretions and some mica 
particles, mostly reddish brown to yellowish brown SILTS with 
CLAY. 

8.83-10.0 Stiff, grains are of different sizes, some mica and sand particles 
present, less oxidized, mainly reddish brown to yellowish brown 
deposits of SILT with CLAY. 
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Table: 3.4 Description of soils ofborehole two 

]lJ) f lPl ~ lhl ( llD1l) §cnll d~!§tll"nptRmn 

0-1.05 Firm to stiff, plastic, light grey to reddish mottled fine CLAY with 
SILT. Some carbonaceous matter present. 

1.05-1.98 Firm to stiff, plastic, highly oxidized, reddish grey to yellowish 
brown mottled CLAY with SILT. 

1.98-2.59 Firm to stiff, reddish, plastic and containing ferruginous 
concretions, highly oxidized deposits of SILTS and CLAY. 

2.59-3.20 Stiff, reddish, SILTS with CLAY. Some ferruginous concretions 
present. 

3.20-4.11 Stiff, mostly reddish, sometimes grey and reddish brown, mottled, 
some ferruginous concretions and iron nodules are present, highly 
oxidized deposits of SILTS with CLAY. 

4.11-4.50 Stiff, some ferruginous concretions are present, mainly reddish to 
reddish brown deposits of SILT with CLAY. 

4.50-5.33 Stiff, contain ferruginous concretions and iron nodules, mainly 
reddish to reddish brown SILTS with CLAY. 

5.33-5.94 Stiff, contain some mica & ferruginous concretions, reddish 
brown to yellowish brown SILTS with CLAY 

5.94-6.40 Stiff, reddish to yellowish brown deposits of SILT with CLAY. 
Some sand and mica. particles present, 

6.40-7.16 Yelowish brown to reddish brown, mainly medium dense to loose 
SANDS, SILTS and CLAY are also present. 
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Table: 3.5 Description of soils ofborehole three 

JD)<e JPl tt lln (mm) §ofill d\<e§ICil"DJPlftDOIID 

0-0.87 Firm to stiff, light grey to reddish mottled fine CLAY with SILT. 

0.87-1.50 Finn to stiff, light grey to reddish mottled fine CLAY with SILT. 

1.50-2.94 Firm to stiff, highly oxidized, reddish mottled CLAY with SILT. 

2.94-4.53 Stiff, mostly reddish, containing some ferruginous concretions and 
iron nodules, highly oxidized, SILTS with CLAY. 

4.53-5.55 Stiff, mainly reddish brown to yellowish brown SILTS with 
CLAY. 

5.55-6.19 Stiff, mostly reddish to reddish brown deposits, some iron nodules 
present, highly oxidized, SILTS with CLAY. 

6.19-7.95 Stiff, contain some ferruginous concretions and iron nodules, some 
mica are also present, reddish brown to yellowish brown SILTS 
with CLAY. 

7.95-9.38 Stiff, some mica and sand particles are present, less oxidized, 
reddish brown to yellowish brown deposits of SILT with CLAY. 

9.38-10.80 Stiff, brownish to reddish brown deposits of SILT with CLAY. 
Some sand and mica. particles present. 
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3.4 Sampling 

Undisturbed natural samples were collected in the field from three different 

boreholes within the same geologic formation at three different locations. The 

borehole information is given in Table 3.2. The samples were recovered using a 

standard lOOmm diameter (UlOO) open tube drive sampler (of length approximately 

450 mm) with the technical assistance of a local engineering firm. 

Boreholes were advanced by a cable tool percussion rig. Before a sample was taken, 

the bottom of the borehole was cleared of loose or disturbed material as far as 

possible. When borehole advancement proceeded, the hole was supported by using a 

steel liner. After reaching the desired sampling depth the boring tools were detached 

and replaced with rods equipped with a drop hammer. The open tube U l 00 sampler 

(with an area ratio of about 30%) was attached at the bottom of the drilling rod. It 

was equipped with a hard steel cutting shoe at the front end, and a driving shoe at the 

other. The sampler was then pushed into the ground with the drop hammer. When 

the sampler reached the required depth, it is then withdrawn from the ground to the 

surface where both shoes were removed. The whole process was repeated several 

times to collect samples at different depths. 

Approximately 50 mm thickness of soil material was removed from each end of the 

recovered samples. The sample recovered from the sampler were initially coated 

with a layer of 'cling film' and then sealed immediately with paraffin wax. The top 

and bottom end of each sample was marked. The samples were then tightly packed 

with two layers of aluminium foil. All samples, after sampling, were kept upright 

both during storage and transportation. 
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3.5 Preparatiolll of undli§truurbed natlUlraB §ampBe for tiriiaxiaB 
te§ting 

Before each test, undisturbed natural samples were trimmed carefully with the help 

of very sharp knife. Cylindrical test specimens of length 76 mm. and diameter 38 

mm. were prepared vertically from the central core part of the UlOO tube. A rotary 

soil trimmer apparatus was used during trimming. After removing the sample from 

the aluminium foil and cutting its ends parallel to each other, the sample was placed 

between the plattens of the rotary trimmer. The sample was then trimmed 

approximately to the required shape and dimension (38x76 mm) with a sharp knife. 

A brass mould, 38 mm in internal diameter and 76 mm long, split along its axis was 

used to hold the sample while its ends were being trimmed. It was also used for 

setting the height of the specimen. 

Immediately after trimming, the sample was then weighed accurately to an accuracy 

of 0.01 gm. The height and diameter of each sample was measured at a number of 

points with a slide caliper. The sample was then placed immediately in the triaxial 

apparatus. The trimmings were then placed in a airtight plastic bag to prepare 

destructured samples from the same material. 

3.6 Destructured sample preparation 

Vaughan (1988) mentioned that the behaviour of soils with bonded structure is best 

understood through comparing their properties with those of the same soils in a 

remoulded and destructured condition. In this study the destructured samples were 

prepared from the trimmed materials cut from around the natural samples. 
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The trimmed material of each sample was first mixed with sufficient distilled water 

in a bucket to loosen the sample and to separate all the particles of the sample 

without loosing or breaking any particles. For mixing with distilled water the bucket 

was placed in a mechanical shaker for half an hour. The trimmed material was than 

completely separated and a water slurry was produced. This slun·y was then air 

dried. The air dried material was then mixed with distilled water to produce a paste 

with the same water content as in the natural sample. The paste was then wrapped in 

'cling film' and sealed in a air tight plastic bag and kept in a sealed container for 3 to 

5 days to allow equlibration. After attaining the desired moisture content the 

material was then used to prepare a sample of dimension 38x 76 mm in a cylindrical 

mould in six layers with the same void ratio and dry density. The weight, length and 

diameter of the prepared sample were measured and the sample was then placed in 

the triaxial cell. 

3.7 Summary 

In this chapter a brief description of the geology of the study area is given. The 

undisturbed natural sample collection and sample preparation technique is discussed. 

A description of destructured sample preparation is also given. 
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CHAPTER4 

lExperiimental Methods 

4.1 ][ntroduction 

This chapter describes in brief, the experimental methods of different laboratory 

investigations carried out on the tropical clay soils of Dhaka, Bangladesh. The 

experimental programme is shown in figure 4.1. Basic classification test procedures 

are described and X-ray diffraction (X.R.D.) and Scanning electron microscope 

(S.E.M.) methods to evaluate mineralogy and fabric of the soils are discussed. 

Oedometer test procedures are then outlined before the procedures used in triaxial 

testsing are described in detail. 
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4.2 Basic Geotechn.ical parameters 

All the basic geotechnical parameters including moisture content tests, particle size 

distribution, specific gravity tests, Atterberg consistency limits were determined in 

accordance with the British Standards BS1377 (1990). 

The moisture content test is detailed in BS 1377 (1990): Part 2.3.2 to determine the 

moisture content, w of a sample. In this method all the samples were dried in an 

oven at a temperature of 105° C for 24 hours. 

Particle size distribution was evaluated by using both the dry and wet sieving 

method. Particles larger than 63~m retained on the 63~m sieve were air dried and 

sieved by using different BS test sieves as mentioned in BS 1377 (1990) part 2.9.3. 

After washing, pipette method was used for grain size analysis (size less than 63 

~m} by using their settling velocity according to Stoke's Law. This method is 

described in BS 1377: Part 2:9:4. Sodium hexametaphosphate dispersant solution 

was used for wet sieving. 

Specific gravity measurements of the samples were performed by the pyknometer 

method in accordance with the British Standard as mentioned in BS 1377 (1990): 

Part 2:8:3. 

The Atterberg Limit tests on the natural- and air- dried samples were carried out 

after first sieving the soil on a 425 ~m. sieve. The weight of the soil used for the 

natural- and air- dried states was determined by taking a second sample of similar 
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size each time and measuring water content. The natural samples were prepared in 

an undried state. The air-dry samples were prepared by spreading the material out in 

trays in the laboratory and leaving it open to the air for at least 6 days. The room 

temperature was 25° C. Before commencing testing each sample was mixed 

thoroughly with water and storing it in an airtight plastic bag overnight. Liquid 

Limits of the selected samples were determined by using the cone penetrometer 

method. Plastic Limits were also performed by the rolling thread method. The 

Liquid Limit, Plastic Limit and Plasticity Index methods are described in BS 1377 

(1990): Part 2.4.3, 2.5.3 and 2.5.4. 

4.3 X-Ray Diffraction (X.R.D.). 

X-ray Diffraction technique is the most satisfactory method for the identification of 

clay minerals (Grim, 1962). Mineralogy of the tropical clay soils of Dhaka was 

evaluated by using X-ray Diffraction technique. 

The samples were analysed by detecting a stream of X-rays projected onto the 

samples placed on a glass slide, whilst it was rotated at a set of speeds. The beam 

was directed onto the particle lattice of the various crystals, which gave 

characteristic peaks when diverted to a receiver. The analysis of the samples were 

carried out on randomly oriented powder specimens in circular aluminium backfilled 

cavity mounts, with each sample being scanned from 2.5-80° 28 at a speed of 

0.02°/s. In this study, the X-ray diffraction was performed by a x-ray radiation tube 

with a detecting recording system. Two types of random powder sample, one from 

whole soil and the other from clay size fraction, were mounted in the circular cavity 

mounts for identification of minerals. All the whole samples were first air dried at 

room temperature and then ground to fine powder. Clay size fine fractions obtained 
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from pipette analysis were also air dried at room temperature before mounting. 

Copper radiation (CuKa) was used for the analysis. The spacing between the phases 

of atoms in the crystals (d-spacings) based on the corresponding diffraction angle 

(28) were used to identify individual minerals. The angle 28 is available from the 

diffractogram. The interplanar spacings (d-spacings) for each peak corresponding to 

each value of 28 are read directly from the standard table for copper radiation. The 

results are discussed in chapter 5. 

4.4 §ca.lnurnnnug ERech'0111l. Mkro§cope (§.E.M.). 

Microfabric can be observed by using the Scanning Electron Microscope (SEM). 

The main aim of the SEM study was to evaluate the fabric of the soil. Some selected 

specimens from three boreholes were examined by using a Scanning Electron 

Microscope to study the fabric of the soil. The Scanning Electron Microscope was 

linked with an energy dispersive spectrometer system, which was used to identify 

the elemental composition of the soil by using energy dispersive x-ray spectrum 

(EDX). The SEM images were taken with an accelerating voltage of 20 kV. 

In this study very thin prismatic specimens approximately 0.2 cm cross section and 

lcm in length were first trimmed from the bulk sample with the help of a sharp 

knife. The samples were then air dried and secured to the lOmm holding stub using 

silver dag solution. The silver dag solution holds the samples securely on the stub. 

Before coating, the trimmed samples were cleaned by a jet of air to remove loose 

material from the top of the samples. The specimens were then sputter coated with a 

thin layer of gold to ensure good conduction across the stub. Applying a thin coat of 

gold on the specimen allows a clearer image to be obtained. After coating, the 

sample was then placed in the specimen holding chamber of the Scanning Electron 
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Microscope for viewing. The identified images were saved with a help of a 

computer. The elemental composition of soils of a particular area of the image was 

also observed by studying the EDX spectra. The SEM and EDX results are discussed 

in chapter 5. 

4.5 Oedometer consolidation tests 

One dimensional multi stage Oedometer consolidation tests were performed by 

using an Oedometer according to BS 1377 (1990): Part 5.3. Cylindrical undisturbed 

samples were used for the test. The undisturbed samples were trimmed with a 

cutting ring and placed in the consolidation pot. Two porous plates were placed at 

the top and bottom of the samples. Loads of 50, 100, 200, 400, 800 and 1600 kPa 

were applied to the beam. The amount of each load increment was carried out as 

mentioned in BS1377 (1990). 

4.6 Triaxial testing 

4.6.1 Testing details 

Consolidated undrained triaxial tests with pore water pressure measurements and 

drained triaxial tests were carried out on the undisturbed natural and destructured 

samples collected from three different boreholes. A computer controlled 

conventional Triaxial Cell with the usual electronic transducers (volume gauge, load 

cell, external displacement transducer and cell and pore pressure transducers) was 

used to carry out all the triaxial tests. The tests were monitored using the TRIAX 

program developed by Toll (1993). A pair of electrolevels (as described by Jardine 

et al.1984) for local measurement of axial strain (up to 2%) was used in all the tests. 

A pore water pressure probe (as described by Hight, 1982) was also used at the mid 
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height of the specimen for measuring the pore pressure within the samples in 

addition to the standard base measurement. All samples were initially saturated and 

were subjected to isotropic consolidation before shearing. 

The computer control system runs on an IBM compatible PC and provides data 

acquisition and calibration facilities. Stepper motor driven air valves were used for 

controlling the cell and back pressures. They are able to be controlled in increments 

of 0.1 kPa, in the range of I 0-800 kPa. A Measurement Systems Ltd. Datascan 7020 

was used for data logging, which provides a resolution of 0.61-1V. The unit can 

handle up to 16 transducers on different channels. The user specifies the control 

parameters in the form of equations. All commands from the user are given through 

the function keys and thus full flexibility of the system is given to the user. 

The software can display up to four units. These are: 

1. A clock window displays time, date and the stage of the test 

ii. A monitor window displays output from the selected transducers. 

m. A plot window displaying a continuous plot of user selected variables. 

IV. A calculation window provides continuously updated values of the user 

selected variables. 

The system can deal with a test which comprises up to 100 different stages. The test 

proceeds from stage to stage by a series of alarms. These alarms are specified by the 

user in the form of equations (Toll, 1993). An example of the stage editor (in which 

the control variables are defined) is shown in figure 4.2. 
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In figure 4.2, box number 1 controls the back pressure and it is maintained constant 

at a value of 300 kPa, box number 2 controls the effective cell pressure (cell') and 

which is held constant at a value of 5kPa. Boxes 3 and 4 which can be used to 

control the ram pressure or a constant rate of strain pump (CRSP) are not used in this 

saturation stage. No alarms are needed since user intervention is used to decide when 

to proceed to the next stage of the test. 

A tolerance band of 0.5 was used on each side of the hold value within which no 

control is necessary. Only if the calculated value falls outside the tolerance are 

pressures increased or decreased. The maximum number of pulses provides both a 

'safety net' to avoid large numbers of pulses being sent to one controller without 

adjusting others, and also a means of specifying the number of pulses required to 

bring variables back within tolerance. In figure 4.2, the maximum number of pulses 

selected for box 1 and 2 are 10 and 20 respectively. 

The computer controlled Triaxial Cell running with the TRIAX program is capable 

of taking readings for all aspects of the specimens from the different transducers 

through a data logger linked to the computer. Pressure transducers (of resolution 0.1 

kPa) were used to measure the cell and back pressures with a capacity of 1000 kPa. 

External vertical displacements were measured with an external displacement 

transducer (of resolution 0.005mm) which had a range of 25 mm. An Imperial 

College Load Cell (resolution 0.1N) of capacity 4413 N was used to measure the 

axial load. An Imperial College Bellofram type volume gauge (of resolution 0.01 

cm3
) having 100 cm3 capacity was used to measure the volume change and was 

connected into the back pressure line. A miniature pore water probe of resolution 0.1 

kPa (as described by Hight, 1982) was also used at the mid height of the specimen 

(as shown in figure 4.3) to measure the pore water pressure within the samples. For 
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this type of probe, a hole is cut in the membrane and a rubber holder for the 

transducer is inserted. As a result the pore water transducer has direct contact with 

the specimen. The pore water transducer sits in a holder installed within the 

membrane surrounding the sample. Liquid latex rubber is used to seal everything. 

Two internal strain gauges as described by Jardine et al. (1984) for local 

measurement of axial strain (up to 2%) was used to measure the internal strain and 

initial stiffness of the soil (figure 4.4). These gauges can resolve axial strains of± 

0.001%. 

All the transducers were calibrated before testing. A Budenberg Dead Weight Tester 

was used for the calibration of the cell and back pressure transducers. The external 

vertical displacement transducer and the two internal electrolevels were bench 

calibrated using a Vernier Micrometer. The volume gauge was calibrated using a 

25cm3 burette. 

Polynomial regression curves (up to 2nd order) were then fitted to the calibration 

data. The regression coefficients were then stored in the computer and used to 

convert from voltages to engineering units. 

4.6.2. Saturation of the samples 

The saturation stage of the samples involves the increase of pore water pressure 

(p.w.p.) so that air in the voids is eliminated. The prepared samples were placed on 

to the bottom pedestal of the triaxial apparatus. Two porous disks (kept under de

aired water until required) were used at the top and bottom of the sample. After 

setting up samples in the triaxial apparatus, the cell was filled with water and the 

samples were flushed through with the deaired water under a small pressure gradient 

(1 0 kPa) for 24 hours. In this study, after initially flushing out air by flowing water 
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through the sample, the pore water pressure was increased in a controlled manner by 

the application of back pressure, so that air in the voids is forced into solution. 

It was ensured that the back pressure does not by itself change the effective stress. 

To maintain this, the cell and the back pressures were raised simultaneously by 

maintaining a constant difference between them. The back pressure was always a 

little less than the cell pressure to ensure that the effective stress remains positive. 

The effective stress of the sample was always maintained constant at a value of 5 

kPa. A back pressure of 300 kPa was then applied to the samples for twenty four 

hours, before testing the pore pressure coefficient (B) value. The parameter B was 

calculated by increasing the cell pressure by 50 kPa with the back pressure line 

closed to measure the change in pore water pressure. The pore pressure coefficient B 

was calculated from the equation B = /1u/ !1cr3. In this equation, /1u is the change in 

pore pressure and !1cr3 is the change in cell pressure. If the B value was not as high 

as required then the cell pressure was reduced to its original value and the back 

pressure reapplied. The back pressure was maintained until a value of B of at least 

0.98 was achieved. Most of the samples attained a value of B = 0.98 within 2-3 days 

when a back pressure of 300 kPa was applied. However, due to stress limitations of 

the system, samples which were consolidated at a stresses higher than 400 kPa were 

saturated by applying a back pressure of 200 kPa. In that case, saturation time was 

extended. These samples required 4-5 days to achieve a B value of 0.98. 

4.6.3. Triaxial consolidation 

In the consolidation stage the sample was consolidated isotropically under a 

confining pressure by allowing water to drain out into the back pressure system, so 

that the pore water pressure gradually falls until it equals the back pressure. This was 

done by adjusting the cell pressure and back pressure so that their difference was 

equal to the required effective confining pressure of the test. The resulting pore 

pressure in the sample was allowed to dissipate by the process of consolidation. 
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Drainage of water results in a decrease in volume and an increase in the effective 

stress, which after consolidation was taken to be equal to the difference between the 

confining pressure and the mean pore pressure remaining in the sample (an average 

of the base and probe measurements). Consolidation was allowed to continue until a 

steady value of volume change was obtained. It was monitored continuously in the 

plot window of the computer controlled system. When the time versus volume 

change curve on the computer screen showed a steady value, it was assumed that 

consolidation was complete. At the same time the back pressure and pore water 

pressure readings were also checked from the monitor window. It was observed that 

when consolidation was finished the p.w.p. reading from the probe was almost equal 

(± 1 kPa) to the back pressure reading. Samples were consolidated up to 24 hours at 

a range of confining pressures from 50 kPa up to 800 kPa before shearing. 

4.6.4 Triaxial shearing 

All the samples under undrained and drained shearing were sheared up to 30% of 

strain under a constant rate of strain of 1.25%/hr. No significant differences between 

base and mid hight pore water probe were observed at this rate of shear showing that 

there was equalization of pore water pressure throughout the sample during 

undrained shearing. The mid hight pore water probe under drained shearing showed 

a low gradient of pore water pressure in the sample. Each test on an average took 5 

to 6 days to complete. The computer controlled system was used both to control the 

tests and to take data for different aspects of the test. Readings from the different 

transducers were taken initially for every second up to five minutes, and after that a 

scan interval of five seconds for an hour and finally every three minutes after 1% of 

strain up to twenty-four hours. 
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4.7. Summary 

In this chapter all experimental methods used to carry out the laboratory tests are 

briefly discussed. The basic principle of the computer control system for triaxial 

testing is given. A brief review of the TRIAX software is also discussed. 
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Stage description: SATURATION 

I No trigger for stage I 

Box I BACK 2 CELL 3 RAM 

Status ON ON OFF 

Control equation back cell' Undefined 

Hold value 300 5 0 
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Maximum pulses 10 20 0 
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Use Arrowed Cursor Keys to move, continue Key to leave (flO) 

Fig. 4.2 A stage for controlling saturation 
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CHAPTERS 

MINERALOGY, FABRIC AND BASIC 
GEOTECHNICAL PARAMETERS 

5.1 Introduction 

In this chapter results are presented for the tropical clay soils of Dhaka in terms of 

mineralogy, fabric and basic geotechnical parameters. Relationships between 

mineralogy and basic geotechnical parameters are also discussed. 

5.2 X-Ray Diffraction (X.R.D.) results 

X-ray Diffraction method is one of the most important and widely used techniques 

for clay mineral identification. Qualitative bulk mineralogy of seven whole soil 

samples and five clay size fraction (less than 2!l) samples collected from three 
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different boreholes were determined and the results are listed in table 5.1. The 

principle of X-ray Diffraction and the methods of sample preparation are discussed 

in Chapter 4. The X-ray diffractograms of the analyzed samples are illustrated in 

figures 5.1 to 5.6. From the XRD results it is evident that the analyzed samples do 

not differ greatly in their mineral types. 

Table 5.1. List of minerals identified from XRD analysis 

Location Sample Depth Identified minerals 
(borehole numbers (m) 
nos.) 
Mirpur 1S 1 (clay 1.5-1.8 Chlorite, Kaolinite, Illite, Quartz, 
(borehole fraction) Illite-Quartz, Feldspar 
one) 1S2 (whole 2.0-2.4 Illite, Feldspar, Kaolinite-Chlorite, 

sample) Quartz, Illite-Quartz 
1S3 (clay 5-5-5.9 Illite, Quartz, Orthoclase Feldspars, 
fraction) Chlorite, Kaolinite, Illite-Quartz 
1S4 (whole 6.5-6.8 Illite, Quartz, Feldspar, Chlorite, 
sample Kaolinite, Illite-Quartz 

Curzon Hall 2S 1 (clay 1.3-1.5 Chlorite, Illite, Quartz, Kaolinite, 
(borehole fraction) Feldspar, Illite-Quartz 
two) 2S2 (whole 1.8-2.0 Kaolinite-Chlorite, Illite, Quartz, 

sample) Feldspar, Illite-Quartz 
2S3 (clay 4.5-4.8 Kaolinite-Chlorite, Illite, Quartz, 
fraction) Illite-Quartz 
2S4 (whole 6.0-6.4 Illite, Orthoclase Feldspars, 
sample) Kaolinite, Quartz, Illite-Quartz 

Mirpur 3S1 (whole 2.0-2.4 Chlorite-Kaolinite, Illite, Kaolinite, 
(borehole sample) Quartz, Feldspar, lllite-Quartz 
three) 3S2 (whole 3.5-3.8 Illite, Kaolinite, Orthoclase 

sample) Feldspars, Chlorite, Illite-Quartz 
3S3 (whole 4.0-4.3 Illite, Muscovite, Kaolinite, 
sample) Feldspars, Quartz, Illite-Quartz 
3S4 (clay 5.5-5.8 Illite, Chlorite, Kaolinite, 
fraction) Orthoclase Feldspars, Quartz, , 

Illite-Quartz 

Gillott (1987) mentioned that the proper estimation of clay minerals and quantitative 

evaluation by the X.R.D. method depends on the type of X.R.D. techniques. For 
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identification and estimation of clay minerals the basal plane reflections of a soil 

sample can be best studied by treating samples with chemicals to get a better peak 

width and hight ratios for estimation. The only accessible technique, which is used 

for this study, is not suitable for proper estimation because of coincidence of some 

peaks. Therefore no estimates were made to determine the percentage of each 

mineral and only qualitative results are given. 

The diffractograms were studied for identifying minerals by comparing the observed 

2-theta value for a particular peak in the diffractograms with the corresponding 

values of interplanar spacings (d-spacings) (figures 5.1-5.6). A list of the identified 

peaks with the corresponding d-spacings and 2-theta angle is given in Tables 5.2, 5.3 

and 5.4. From the observed diffractograms, it was found that quartz is present in 

each sample and that it is quartz which is the source of most of the strong peaks 

visible including the largest peaks in most of the diffractograms at 3.34 A and 4.26A. 

The 3.34 A peak of quartz is more intense than the other peaks including the peak 

4.26 A. Such increased intensity at 3.34 A might be due to the presence of chlorite, 

illite and feldspar minerals. The coincidence with a strong reflection of illite or 

chlorite at 3.30 A, 3.31A would not permit it to be used as a scale of relative 

abundance in the samples. Therefore, the 4.26 A peak was used to understand any 

relative change in quartz abundance in samples. Orthoclase feldspar appeared in 

several of the specimens, giving rise to the (usually small) reflection at about 3.24 A, 

but is much less abundant than quartz. 

The clay minerals which were identified in the samples include illite, kaolinite and 

chlorite. Illite, which is characterized by peaks mainly at 10, 5, 4.48 A appeared in 

all samples. Kaolinite mineral was also identified which is characterized by 7.15 A. 
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Table 5.2. Identification of some major peaks of different minerals 
from X-ray diffraction (borehole one) 

Sample Peak number 2-Theta Angle d-space Identified mineral 
number (A) 

1 6.04 14.633 Chlorite 
2 8.88 9.958 Illite 
3 12.36 7.161 Kaolinite 
4 17.76 4.994 Illite 
5 19.96 4.448 Illite 
6 20.88 4.254 Quartz 

IS, 13 26.68 3.341 Illite-Quartz 
14 27.0 3.302 Illite 
15 27.48 3.246 Feldspar 
19 35.0 2.564 Quartz 
27 39.48 2.282 Quartz 
28 40.32 2.237 Quartz 
29 42.48 2.128 Quartz 
33 50.16 1.819 Quartz 
38 59.96 1.543 Quartz 

I 8.92 9.914 Illite 

2 12.08 7.327 Kaolinite-Chlorite 
3 17.8 4.983 Illite 
4 19.88 4.466 Kaolinite-Chlorite 

lSz 
14 26.68 3.341 Ill i te-Quartz 
15 26.88 3.317 Illite 
16 27.04 3.298 Feldspar 
17 27.48 3.246 Feldspar 
18 27.88 3.2 Feldspar 
36 60 1.542 Quartz 
I 5.96 14.829 Chlorite 
2 8.8 10.049 Illite 
3 12.16 7.279 Kaolinite 
5 17.76 4.994 Illite 
7 19.92 4.457 Illite 

IS3 13 23.84 3.732 Feldspar 
15 25.28 3.523 Chlorite 
17 26.68 3.341 Ill i te-Quartz 
19 27.04 3.298 Feldspar 
20 27.52 3.241 Feldspar 
21 27.88 3.2 Feldspar 

I 8.96 9.87 Illite 
2 12.4 7.138 Kaolinite 
3 19.96 4.448 Illite 

lS4 9 25.44 3.501 Chlorite 
10 26.68 3.341 Illite-Quartz 
11 26.92 3.312 Illite 
12 27.08 3.293 Feldspar 

83 



Table 5.3. Identification of some major peaks of different minerals 

from Xaray diffraction (borehole two) 

Sample Peak number 2-Theta Angle d-space Identified mineral 
number eA) 

I 8.88 9.958 Illite 
2 I2.16 7.279 Kaolinite 
3 17.8 4.983 Illite 
4 19.84 4.475 Illite 
5 20.88 4.254 Quartz 
9 25.36 3.5I2 Chlorite 

2SI 10 26.64 3.346 Illite-Quartz 
II 26.88 3.3I7 Illite 
I2 27.04 3.298 Feldspar 
I3 27.52 3.24I Orthoclase 
I9 34.96 2.567 Quartz 
20 36.56 2.458 Quartz 
2I 36.8 2.442 Quartz 
24 39.48 2.282 Quartz 
32 59.96 1.543 Quartz 

I 8.84 I0.003 Illite 

2 I2.I2 7.302 Kaolinite 
3 17.72 5.005 Illite 
6 20.88 4.254 Quartz 

2S2 
9 23.88 3.726 Feldspar 
10 25.32 3.5I8 Kaolinite-Chlorite 
II 26.64 3.346 Illite-Quartz 
I2 26.88 3.317 Illite 
13 27.04 3.298 Feldspar 
16 27.84 3.205 Feldspar 
I 9.02 9.804 Illite 
2 I2.3 7.I96 Kaolinite-Chlorite 
12 26.78 3.329 Illite-Quartz 
13 27.02 3.3 Illite 
23 35.I 2.557 Quartz 

2SJ 26 36.7 2.449 Quartz 
32 39.58 2.277 Quartz 
34 40.42 2.232 Quartz 
37 42.58 2.I23 Quartz 
40 50.26 1.815 Quartz 
46 60.I 1.54 Quartz 

I 8.84 I0.003 Illite 
2 I2.I2 7.302 Kaolinite 
6 I7.8 4.983 Illite 

2S4 7 I9.88 4.466 Illite 
I3 26.64 3.346 Ill i te-Quartz 

I5 27.04 3.298 Feldspar 
I6 27.52 3.24I Orthoclase 
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Table 5.4. Identification of some major peaks of different minerals 

from X-ray diffraction (borehole three) 

Sample Peak number 2-Theta Angle d-space Identified mineral 
number (A) 

1 8.92 9.914 Illite 
2 12.32 7.184 Kaolinite 
3 17.84 4.972 Illite 
4 19.92 4.457 Illite 
6 20.88 4.254 Quartz 
8 25.32 3.518 Kaolinite-Chlorite 

3S 1 9 26.68 3.341 Quartz-Illite 
10 27.04 3.298 Feldspar 
11 27.52 3.241 Orthoclase 
12 27.84 3.205 Feldspar 
14 34.96 2.567 Quartz 
16 36.56 2.458 Quartz 
26 42.44 2.13 Quartz 
29 50.16 1.819 Quartz 
39 59.96 1.543 Quartz 

1 5.72 15.451 Chlorite 

2 8.92 9.914 Illite 
3 12.36 7.161 Kaolinite 
5 17.84 4.972 Illite 

3S2 
6 19.84 4.475 Illite 
14 23.8 3.739 Feldspar 
15 25.24 3.528 Chlorite 
17 26.64 3.346 Illite-Quartz 
19 27.04 3.298 Feldspar 
20 27.52 3.241 Orthoclase 

I 8.92 9.914 Illite 
3 17.84 4.972 Illite 
4 19.92 4.457 Illite 
9 23.92 3.72 Feldspar 
10 25.44 3.501 Kao1inite 

3S3 11 26.68 3.341 Quartz-Illite 
12 26.88 3.317 Illite 
21 35.04 2.561 Muscovite 
27 40.32 2.237 Quartz 
31 50.16 1.819 Quartz 
35 59.96 1.543 Quartz 

1 8.92 9.914 Illite 
2 12.4 7.138 Kaolinite 
3 17.76 4.994 Illite 

3S4 4 19.92 4.457 Illite 
7 25.36 3.512 Chlorite 
8 26.68 3.341 Quartz-Illite 
10 27.04 3.298 Feldspar 

85 



In general, the clay quartz ratio appeared higher in samples from borehole one and 

three than in borehole two samples. A description of the identified minerals is given 

below. 

Non clay minerals 

Quartz: Quartz is one of the most abundant minerals in all samples. The strong 

peaks of quartz were identified by distinctive reflections at 3.34 A and 4.26 A. These 

higher intensities might be due to the presence of muscovite and feldspar minerals. 

The other quartz peaks are smaller than these two largest peaks which are 

characterized by distinctive reflections at 2.13 A, 1.819 A, 1.543 A, 2.458 A, 2.282 

A, 2.13 A, 2.449 A, 2.232 A, 2.459 A, 2.455 A and 2.46 A. 

Feldspars: Feldspar is present in minor amounts m all samples. K-feldspar 

(Orthoclase) was identified by weak reflections at 3.302 A, 3.241 A. Feldspar peaks 

were also identified at 3.72 A, 3.73 A and 3.26 A. 

Clay minerals 

The clay minerals identified in the samples include Illite, Kaolinite and Chlorite. 

Illite: Illite is the most common clay mineral present in all the samples. The 

identified sharp peak of Illite in all the samples indicate that they are well 

crystallized. Illite peaks were characterized by distinctive deflections at 10 A, 4.48 

A, 9.93 A, 4.98 A, 4 .. 994 A, 5.01 A, 3.30 A and 3.329 A. 

Kaolinite: Kaolinite was also identified in the soil samples. In the diffractograms, 

Kaolinites were found to be poorly crystallized which is reflected in the diffraction 

patterns by the broadening and weakening of the peaks and a tendency for adjacent 

reflections to fuse together. The peaks characterized by deflection at 7.15 A 
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establishes the presence of kaolinite mineral in the soil samples. Kaolinitic peaks 

were also identified by deflection at 3.501 A. The presence of chlorite in some 

samples made the identification of kaolinite more complex. This is due to the similar 

d-spacing of kaolinite and chlorite at 3.5 A. 

Chlorite : Chlorite minerals identified in some samples are characterized by 

deflections at 14.633 A, 14.829 A, 15.45 A and 3.50-3.53 A. The interference of the 

chlorite peak with kaolinite sometimes made it difficult to identify chlorite minerals. 

In borehole one samples, illite is the most dominant clay mineral (figures 5.1-5.2). 

Quartz peaks was found in all the samples of borehole one. A small amount of 

chlorite and kaolinite were also identified in some samples. Although there might be 

some variations in the relative percentages of clay minerals with respect to depth, a 

consistency was observed in the case of the minerals identified. A chlorite peak was 

clearly identified in sample 1S 1 (figure 5.1). Samples 1S2 and 1S4 did not show any 

prominent peak of chlorite, which might be due to coincidence of the chlorite peak 

with kaolinite. There is no significant variation in illite peak intensities in the 

analyzed samples at different depths. 

The common minerals found in the borehole two samples are illite, quartz, kaolinite 

and feldspar (figures 5.3-5.4). Although no individual chlorite peak was identified in 

borehole two samples, a peak of kaolinite-chlorite was observed for samples 2S2 and 

2S3. Chlorite minerals may be confused with the kaolinite minerals because of their 

similar reflections. 

Illite is the dominant mineral in all the samples of borehole three (figures 5.5-5.6) 

Next in predominance is quartz, feldspar etc. Kaolinite peaks are comparatively less. 

Chlorite is absent in most of the samples, which might be due to the destruction of 

chlorite due to weathering or the chlorite peaks may be confused with kaolinite 
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because of their similar reflections. Although no estimates were made regarding the 

percentages of clay minerals, there might have some variations in the relative 

percentages of clay minerals with respect to depth. 

From the diffractograms for the three boreholes it was found that the samples 

broadly showed a consistency of identified minerals. Illite and kaolinite peak 

intensities did not show any significant variation in their reflection intensities with 

respect to depth and also at different sites. Although the samples were collected from 

the same geological formation, there might be some differences in the relative 

percentages of each mineral with respect to depth. Proper estimation of relative 

percentages of each mineral can only be determined by using other X.R.D. 

techniques (Gillott, 1987). As the present investigation to evaluate mineralogy had 

some limitations because of the accessibility of the X.R.D. techniques, it needs 

further investigation. 

5.3. Scanning Electron Microscope (S.E.M.) results 

The fabric of the tropical clay soils of Dhaka was studied by using Scanning 

Electron Microscope photographs. Five samples were selected from three different 

boreholes of the same geological formation to study the microfabric of the soil. 

Several photomicrographs of each sample were studied to evaluate the 

microstructure of the soil. All the photomicrographs were taken to study rnicrofabric 

with a magnification of 'x 1000'. It was found difficult to get the surface contrast of 

the intergranular spaces of the analyzed samples with other magnifications. It was 

observed that the intergranular spaces were distinguishable with certainty with the 

magnification used (x 1 000). Therefore, this magnification was used throughout to 

study the microfabric of the soils. E.D.X. (Energy Dispersive X-ray spectrum) of 

some selected areas of each sample was also studied in combination with the S.E.M. 

micrographs to identify the nature of linkage between grains. Some E.D.X. spectra 

are presented to understand the elemental composition of the near surface of the 
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samples. Samples are named by using letters and numbers. For example 1SEM 1 

indicates a photomicrograph of borehole one sample. The initial number indicates 

borehole number and the subscript after the three letters indicates the number of 

photomicrographs of each sample. All other samples are named similarly. The 

Scanning Electron Micrographs of a sample from borehole one are shown in figures 

5.7 and 5.8. Two different images of the same sample 1SEM 1 are shown in these 

figures. Sample 1SEM1 was collected from a depth of 2.0 m from the surface. 

It can be seen from figure 5.7 that the micrographs showed a random mixture of silt 

and clay flakes. The fabric of the soil showed a generally open structure of silt and 

clay. Silt sized grains are coated with clay. The fabric is more random due to the 

presence of silt grains. A few larger silt grains are present on the right side of the 

micrograph. A large silt size grain marked by 'X' is shown in the right bottom 

corner of the micrograph (figure 5.7). EDX on this grain (figure 5.9) showed mainly 

peaks of silicon (Si) and aluminium (AI). Iron (Fe) peak was also identified on this 

grain. This suggests the silt grain is coated with iron and clay, which can be justified 

by the identified peaks of Fe, K, AI and Si in EDX analysis. Concentrations of Si, AI 

and K peaks are associated with clay. Si peaks might also appear due to the 

deposition of silica. Fe peaks appear due to the presence of iron coating in the 

samples, which might be associated with the deposition of hydroxides or other 

chemical alteration of minerals. Other silt grains observed throughout the specimen 

showed similar patterns of EDX. Clay flakes appeared as clusters was observed in 

many parts of the micrograph and some individual platelets of clay were also 

observed in figure 5.7. One of the clay-encrusted areas marked by 'Z' in figure 5.7 

was also analyzed. The EDX spectrum on area 'Z' of figure 5.7 showed the presence 

of Si, AI, K and Fe, which are the constituents of clay and iron bearing compounds 

(figure 5.11 ). As clays are aluminosilicates and silt grains generally contains silica, it 

was difficult to decide whether the clay flakes present between the grains are the 

clay alone or whether they might consist of fine silt and clay as described by Collins 

and McGown (1974). 
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Several intra and inter granular spaces which appeared as pores in figure 5.7 were 

also identified. In many areas of the micrograph (figure 5.7) the intra and inter 

granular spaces appeared as black colour. The firing of EDX in a black area marked 

by 'Y' (in figure 5.7) was analyzed. This EDX spectrum shown in figure 5.10 

showed strong peaks of Si. AI and Fe peaks were also identified. The identified K 

peak is relatively weak. These peaks might be derived either by EDX firing onto 

material behind or from the surrounding materials of the inter and intra granular 

spaces, which might be associated with clay, silica or iron compounds. Therefore 

these aluminosilicates, silica and iron compounds derived from clay might be acted 

as connectors between grains. Iron compounds derived from the deposition of 

hydroxides at particle contacts or other chemical alteration of minerals might be 

acted as cementing materials to form physical linkage between grains. Other intra 

and inter granular spaces also showed a similar EDX pattern. In some parts of the 

micrograph very thin intra granular micro fracture was observed. The inter particle 

bonding of these materials might have an influence on the engineering behaviour of 

the soils. 

The second image on sample 1SEM 1 is shown in figure 5.8. It can be seen from 

figure 5.8 that the micrograph showed a random open microfabric and the overall 

fabric is similar to figure 5.7. The randomly oriented clay platelets are intermixed 

with large silt size grains. Most of the silt grains are coated with clay and iron. Intra 

and inter granular spaces are common throughout the fabric. A large inter granular 

pore space was observed at the left bottom side of the micrograph. EDX firing on the 

intra and inter granular spaces showed peaks of Fe, Si and AI from the material 

behind or the surrounding material. The clay cluster also showed the presence of Si, 

AI, K and Fe between them. 

Scanning electron micrograph of two samples of borehole two is shown in figures 

5.12 and 5.13. Sample 2SEM 1 was collected from a depth of 2.5 m and the sample 
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2SEM2 was collected from a depth of 5 m. The microfabric of figure 5.12 is 

characterized by numerous silt size grains intennixed by a matrix of randomly 

oriented clay flakes. The silt grains showed strong Si and AI peaks in EDX. Because 

of iron coating a Fe peak is also detected on silt grains. Randomness of clay flakes 

was observed throughout the specimens. Clay platelets showed K, Si, AI and Fe 

peaks. The EDX of clay platelets of an area marked by 'Y' in figure 5.12 is shown in 

figure 5.15. The intra and inter granular spaces appeared as pores were also 

analyzed. EDX of such an area marked by 'X' in figure 5.12 is shown in figure 5.14. 

EDX of area 'X' showed strong peak of silicon with peaks of AI and Fe. The 

presence of Fe peaks is associated with iron coating of silt grains These materials 

were randomly oriented throughout the specimen in between clay flakes and 

between grains. They can act as binding materials within the soils. 

The micrograph of another sample 2SEM2 from the same borehole is shown in figure 

5.13. This sample revealed a random, open microfabric. Clay platelets are oriented at 

various angles in this random fabric. Silt grains are abundant and some of them are 

surrounded by a matrix of randomly oriented clay flakes. The silt grains showed Si, 

AI and Fe peaks in EDX. The intra and inter granular spaces were also analyzed. 

EDX of an area marked by 'X' in figure 5.13 is shown in figure 5.16. The EDX of 

area 'X' showed strong Si peak with AI, K and Fe peaks. Concentrations of AI, K 

and Fe with silicon are due to clay and iron coating appeared from the material 

behind or the surrounding material. 

The micrographs of borehole three samples are shown in figures 5.17 to 5.20. Some 

of the selected energy dispersive X-ray spectrum of these samples is shown in 

figures 5.21 to 5.23. Sample 3SEM1 was collected from a depth of 4-m and the 

sample 3SEM2 from a depth of 1.5 m. It can be seen from figure 5.17 that the sample 

3SEM 1 showed a random, open microfabric of silt and clay flakes. The silt grains 

and clay flakes formed inter granular spaces between them, which appeared as pores. 

Some intra granular pore spaces were also observed. Large silt grains are clothed by 
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a skin of clay flakes oriented parallel to the surface of the large particles. Clay flakes 

are randomly oriented in different directions in the different parts of the micrograph. 

One of the clay clusters marked by 'X' in figure 5.17 was analyzed by using EDX. 

The EDX spectrum of area 'X' in figure 5.21 showed major concentrations of Si, AI 

and K and Fe. Concentrations of Si, AI, and K are associated with clay and Fe 

concentration is due to iron coating. The iron and clay coated silt is randomly 

orientated throughout the fabric and formed a patchy network of bonds between 

grains. An area marked by 'Y' in figure 5.17 showed strong peak of Si (figure 5.22) 

AI, K and Fe. 

Two other microfabric views of the sample 3SEM 1 are shown in figures 5.18 and 

5.19. It can be seen from figure 5.18 that the random, open microfabric is a common 

feature of this sample. The randomly oriented clay flakes are intermixed with silt 

size grains. Most of the silt grains are coated with clay and iron. In the left bottom 

corner of the micrograph a small part of the display showed clay flakes in almost 

parallel alignment which was rarely observed in other parts of the fabric. This might 

be due to the lower abundance of silt grains in this particular area. The third 

micrograph from the same sample also showed a random fabric of silt and clay 

flakes (figure 5.19). The silt grains are coated with iron and clay. Silt grains in some 

areas are surrounded by a matrix of randomly oriented clay flakes. 

The micrograph of another sample (3SEM2 ) from the same borehole is shown in 

figure 5.20. The clay flakes and silt grains are randomly oriented in this figure. In 

some parts clay flakes are intermixed with large silt size grains. The silt grains are 

coated with clay and iron. The clay flakes showed the concentrations of Si, Al and K 

peaks as observed in other samples. Several intra and inter granular spaces appeared 

as pores were observed throughout the samples. An area marked by 'X' in figure 

5.20 showed strong peaks of Si in EDX (figure 5.23). Fe, Al and K peaks were also 

identified. These peaks on area 'X' mainly derived from the materials behind or the 

surrounding materials. 
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5.4 Basic geotechnical parameters 

In this section some basic geotechnical parameters for the tropical clay soils of 

Dhaka are discussed in terms of particle size distribution, specific gravity and 

Atterberg consistency limits. All the test procedures were discussed in chapter 4 and 

the results obtained from three boreholes are presented, compared and evaluated. 

5.4.1 Particle size distribution 

The particle size distribution of some samples from three different boreholes is listed 

in Table 5.5. The graphical presentations are shown in figures 5.24 to 5.26. The 

percentages obtained from sedimentation and sieving are plotted on a particle size 

distribution curve and the relative percentages of sand-silt-clay in the samples are 

tabulated in Table 5.5. 

Table 5.5. Particle size distribution of the tropical clay soils of 
Dhaka 

Location/ Sample Depth Sand(%) Silt ( %) Clay(%) 
borehole no. (m) (0.06~2.0 (0.002-0.06 (0-0.002mm) 
no. mm) mm) 
Borehole 1 3- 3.5 14 56 30 
one/ 2 5-5.5 17 56 27 
Mirpur 3 6.5-7 19 59 22 
Borehole 1 4-4.5 8 61 31 
two/Curzon 2 5-5.5 8 59 33 
Hall 3 6-6.5 9 63 28 
Borehole 1 3-3.5 12 56 32 
three/ 2 5-5.5 16 59 25 
Mirpur 3 6.5-7 15 63 22 
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From the particle size distribution results, it is observed that there is a range of 

variation of the particle sizes. Silts and clays constitute over 80% of particles. Silt 

size particles are dominant in each case. Each sample contains a higher percentage 

of clay than the sand fractions. It can be seen from Table 5.5 that the clay 

percentages are highest in borehole two samples than the other boreholes and sand 

percentages are higher in borehole one and three samples compared to borehole two 

samples. Mineralogical results suggested that these soils are composed of illite, 

kaolinite, quartz and feldspar minerals. 

In each borehole the proportion of clay generally decreased with increasing depth 

except one sample in borehole two. A small variation of silt and sand size fractions 

at different depths was also observed in each borehole due to the natural variability 

of the samples. The variations of sand, silt and clay percentage with respect to depth 

for samples of three different boreholes are listed in Table 5.5. It is to be noted here 

that the particle size distribution curves for different samples showed a variation in 

the silt range (at 0.02 mm). Newill (1961) suggested that oven drying can cause clay 

particles to aggregate into clusters that may only partially be broken down by the 

dispersion process. Therefore the variation in the silt size grain for different samples 

might be due to the differences in sample dispersion. 

5.4.2 Specific gravity 

The specific gravity of samples from the three boreho1es was determined in 

accordance with BS 1377 ( 1990). Test results are presented in Table 5.6. The specific 

gravity of all the samples lie between 2.59 to 2.65. The specific gravity values 

showed a variation within a limited range at different depths and at different 

locations. The specific gravity values obtained are near to that for quartz and clay 

minerals as mentioned by Lambe and Whitman (1969). The small variations may be 

due to the size range, the type of clay minerals and degree of dessication or drying 
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(Gidigasu, 1976). Taylor (1972) pointed out that the presence of the high organic 

content would lower the value, whereas the presence of heavy minerals may lead to 

higher values. Since iron minerals can have specific gravities in excess of 3.0, the 

results suggest that the quantity of iron minerals present in the samples is small, 

otherwise a higher specific gravity would have been expected. Dumbleton and 

Newill (1962) mentioned that the illitic tropical clays of Kenya and Uganda show 

specific gravity of 2.56 and 2.75 respectively. The specific gravity values obtained 

for the tropical clay soils of Dhaka are close to the values reported by Dumbleton 

and Newill ( 1962). 

Table 5.6. Specific gravity values of three borehole samples 

Location/ Sample no. Depth Specific gravity 
borehole no. (m) 

Borehole one/ ID1 1.5-2.0 2.61 
Mirpur 

lD2 4.0-4.5 2.65 

ID3 5.0-5.5 2.59 

lD4 7.0-7.5 2.60 

Borehole two/ 2Dl 1.0-1.5 2.60 
Curzon 

2D2 2.0-2.5 2.62 
Hall 

2D3 4.0-4.5 2.60 

2D4 6.0-6.5 2.61 

Borehole three/ 3D1 1.0-1.4 2.60 
Mirpur 

3D2 3.0-3.5 2.65 

3D3 4.0-4.5 2.64 

3D4 5.5-6.0 2.61 
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5.4.3 Atterberg Limits 

Atterberg consistency limits of samples from the three boreholes were determined in 

accordance with B.S. 1377 (1990). Liquid Limit tests were found by using cone 

penetrometer and the plastic limits were found by the rolling thread method as 

described in B.S. 1377 (1990). The results obtained are listed in Table 5.7 with the 

derived plasticity index values. 

5.4.3.1 Liquid Limit 

It can be seen from Table 5.7 that the Liquid Limit values for natural (un-dried) soils 

of borehole one lie between 46% to 55% and air-dried samples showed a value of 

41% to 49%. The Liquid Limit values for natural soils of borehole two were in the 

range of 46% to 56% and those for air-dried samples in the range of 42% to 51%. 

The natural soils of borehole three showed Liquid Limit values of 47% to 59% and 

air dried borehole three samples showed values ranging from 41% to 52%. The 

variations of Liquid Limit values with respect to depth for natural undried soils of 

three borehole samples are shown in figures 5.27, 5.28 and 5.29. 
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Table 5.7. Atterberg Limit values of three borehole samples 

Location/ §am Depth LL PL PI LL PL PI 
borehole 

pie (m) (natu- (natu- (natu- (air- (air- (air-
no. 

no. ral) ral) ral) dried) dried) dried) 

Borehole lS1 1.3-1.8 55 24 31 49 24 26 
one/ 

lS2 2.5-3.0 51 23 28 46 22 24 Mirpur 
lS3 4.0-4.5 54 21 32 48 22 26 

1S4 5.4-5.8 50 21 29 47 20 27 

1Ss 6.5-7.0 46 24 23 42 24 18 

1S6 8-8.4 46 24 22 41 23 20 

Borehole 2SI 2.0-2.5 56 24 31 51 19 31 
two/ 

2Sz 4.0-4.5 51 23 29 46 20 26 Curzon 
Hall 2S3 5.5-6.0 52 21 31 48 21 28 

2S4 7.5-8.0 46 19 27 42 18 24 

Borehole 3St 3.0-3.5 59 23 37 52 22 30 
three/ 

3Sz 5.5-6.0 56 21 35 50 20 30 Mirpur 
3S3 6.5-7.0 50 19 31 46 18 28 

3S4 8.0-8.4 47 17 30 41 16 25 

Broadly a consistency of Liquid Limit values with small variations was observed at 

different depths and also at different sites. The small range of variations of the 

Liquid Limit values at different depths and also at different sites might be due to the 

particle size variations and type of clay minerals present in each sample. The 

difference between the consistency limit values of natural and air-dried samples 

might be due to the alteration of minerals and mineral structure (permanent changes) 

on drying (Fookes, 1997). 
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BS 1377 (1990) mentioned that in low plasticity clays the Liquid Limit is less than 

30%, in intermediate plasticity clays the Liquid Limit ranges from 35% to 50% and 

in the high plasticity clays the Liquid Limit is greater than 50%. The results obtained 

suggest that the tropical clay soil of Dhaka is intermediate to high plasticity clay. 

The values for all the samples of three boreholes are plotted in the Standard 

Plasticity Chart in the form of Liquid Limit versus Plasticity Index and is shown in 

figure 5.30. From the Plasticity Chart (figure 5.30) it is observed that all the plotted 

values lie above the 'A-line'. Some values are very close to the 'A-line'. In the 

British soil classification system the tropical clay soils of Dhaka can be 

characterized as an intermediate to high plasticity inorganic clay. These soils are 

classified as Cl (Clay of intermediate plasticity) and CH (Clay of high plasticity) 

from their position on the Plasticity Chart. 

Newill (1961) reported the Liquid Limit values from 65% to 107% for Sasumua Red 

Clay and from 56% to 84% for Kabete Red Clay from Kenya. He also noted that the 

removal of iron oxide from these soils showed a considerable increase of the Liquid 

Limit values. Grim (1962) pointed out that montmorillonites and illites have higher 

Liquid Limits whereas kaolinites generally have lower values. Grim (1962) also 

mentioned that there is a wide range of variations in Liquid Limit values for illites 

generally ranging from 60% to 90%, for kaolinites from 30% to 75%. He also noted 

that the mixing of illite minerals with other elements and minerals might reduce the 

Liquid Limit values. He further suggested that there is no single Liquid Limit value 

that is characteristic of a particular clay mineral. Indeed the range of values for a 

particular clay mineral can be used for comparison. For some natural mixtures of 

illite, he quoted the Liquid Limit values range from 52% to 62%. 

The tropical clay soils of Dhaka consists of illite, kaolinite and contains quartz and 

feldspar as non-clay minerals. The obtained Liquid Limit values are lower than the 

values quoted by Grim (1962) for illitic minerals and closer to the values observed 
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by Newill (1961) for some tropical clays. The presence of kaolinite as well as iron 

oxide in the samples might reduce the Liquid Limit values below those expected for 

pure illite. 

5.4.3.2 JPllasik LRmit 

The observed Plastic Limit values for three borehole samples are listed in Table 5.7. 

It can be seen from Table 5.7 that the Plastic Limit values for natural soils of 

borehole one lie in between 21% to 24% and air-dried samples showed a value of 

20% to 24%. The Plastic Limit values for natural soils of borehole two found are in 

the range of 19% to 24% and those for air dried samples found are in the range of 

18% to 20%. The natural soils of borehole three showed Plastic Limit values of 17% 

to 23% and air dried borehole three samples showed values ranging from 16% to 

22%. The variations of Plastic Limit values with respect to depth for natural soils of 

three borehole samples are shown in figures 5.27, 5.28 and 5.29. From Table 5.7 it 

can be seen that the range of variations between the Plastic Limit values at different 

depths and also at different sites is very small. 

Grim (1962) pointed out that montmorillonites and illites have higher Plastic Limits, 

whereas kaolinites have generally lower values. The Plastic Limit values vary from 

about 48% to 97% for montmorillonite, from 21% to 26% for illites and from 30% 

to 37% for kaolinite (Grim, 1962). He also noted that for natural mixtures of illite, 

the Plastic Limit values ranged from 26% to 33%. Newill (1961) mentioned the 

Plastic Limit of 35% to 39% for some red tropical clays of Kenya. The observed 

Plastic Limit values are close to the values quoted by Grim (1962) for illitic minerals 

and also close to the values mentioned by Newill (1961). The X-ray diffraction 

results justified the presence of illite in these soils. 
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The Plasticity Index values of different samples from the three boreholes are shown 

in Table 5.7. It can be seen from this table that the Plasticity Index of borehole one 

samples lie between 22% to 32% for natural samples and between 18% to 27% for 

air-dried samples. The natural soil samples of borehole two showed Plasticity Index 

values ranging from 27% to 31% and air dried samples showed 24% to 31% 

plasticity values. Plasticity Index values of natural soils of borehole three lie 

between 30% to 37% and the air dried samples of the same borehole showed 

Plasticity Index values in between 25% to 30%. The observed values at different 

depths and also at different sites showed small variations. The variations with 

respect to depth for natural soils of three different boreholes are shown in figures 

5.27 to 5.29. It can be seen from these figures that the clear trend of reduction in 

Plasticity Index with depth. 

Newill (1961) reported that the Plasticity Index of Sasumua Clay ranges from 16% 

to 34% and of Kabete Clay ranges from 18% to 45%. The observed values are close 

to the values quoted by Newill (1961 ). Grim (1962) mentioned that the Plasticity 

Index values for kaolinites range from I% to 40% with usual values of about 25% 

and for illites range from 23% to 50%. Montmorillonites have higher Plasticity 

Index value. The observed Plasticity Index values are consistent with high illitic 

content and the values are close to the values quoted by Grim (1962). X-ray 

diffraction results strongly supports the presence of illite mineral in the analyzed 

samples. 
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5.5 Summary 

In this chapter mineralogy, fabric and some basic geotechnical parameters of the 

tropical clay soils of Dhaka were discussed. It was observed from the X-ray 

diffraction results that the tropical clay soils of Dhaka are composed of illite, 

kaolinite and some non clay minerals, mainly quartz and feldspar. The interference 

of the chlorite peak with kaolinite sometimes made it difficult to identify chlorite 

minerals. Although no quantification was possible from the X.R.D. technique used, 

in general it appeared that Illite is the dominant clay mineral in most of the samples. 

The absence of chlorite in some samples might be due to destruction of chlorite 

because of weathering. Chlorite is quite easily weathered under moderate condition. 

Fabric of the tropical clay soils of Dhaka was evaluated by using Scanning Electron 

Microscopy (S.E.M.). It was observed from the Scanning Electron Micrographs that 

the tropical clay soils of Dhaka showed a random open microfabric of silt and clay. 

The randomly oriented clay platelets or clusters were intermixed with large silt size 

grains. From the E.D.X. spectra results it was suggested that most of the silt grains 

were coated with clay and iron. Several intra and inter granular spaces were 

observed throughout the microfabric of all the samples. The clay clusters and silt 

grains showed the presence of Si, AI, Fe and some K in E.D.X. The strong silicon 

peak justified the presence of quartz. Other peaks of AI and Fe were detected mainly 

due to scattered clay and iron coating. It was also observed that these elements (Si, 

AI, Fe and K) were randomly oriented throughout the specimen in between clay 

flakes and grains. Silica and iron compounds might be acted as a cementing 

materials and formed bonds between and within the grains. This physical linkage 

between particles might have an influence on the engineering behaviour of the 

tropical clay soils of Dhaka. 
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Some basic geotechnical parameters were also discussed, compared and evaluated 

with mineralogy in this chapter. Silts and clays constitute over 80% of the particles. 

The analyzed clay is a silt dominated clay which consists of 56% to 63% silt, 22% to 

33% clay and 8% to 19% sand size particles. The borehole two samples showed 

highest amount of clay fractions and lowest amount of sand particles. The samples 

showed a small variation of silt and clay size fractions with respect to depth. The 

specific gravity of the analyzed samples lie between 2.59 to 2.65. 

The Liquid Limit values of the tropical clay soils of Dhaka lie between 41% to 56%. 

The Plastic Limit values obtained ranged between 16% to 24% and the Plasticity 

Index values lie in between 18% to 37%. A close agreement was found between the 

values at different depths and also at different sites. Variations in the Liquid Limit 

values were observed between natural and air-dried samples due to the effect of 

drying. The values obtained are consistent with values for other tropical soils and 

close to the values quoted by Grim (1962) for illitic minerals. This is consistent with 

the X-ray diffraction results. 

In the British soil classification system the tropical clay soils of Dhaka can be 

characterized as an intermediate to high plasticity inorganic clay (Cl to CH). 
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Fig. 5.7 Scanning electron micrograph of sample 1SEM1 (scale lOJ..Lm.) 

Fig. 5.8 Scanning electron micrograph (2"d image) of sample 1SEM 1 (scale 
I OJ..Lm.) 
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Fig. 5. 12 Scanning electron micrograph of sample 2SEM 1 (scale lOj..im.) 

Fig. 5.13 Scanning electron micrograph 2SEM 2 (scale I Oj..im.) 
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Fig. 5.17 Scanning electron micrograph of sample 3SEM1 (scale lO).l.m.) 

Fig. 5.18 Scanning electron micrograph (2"d image) of sample 3SEM1 (scale lO).l.m.) 
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Fig. 5.19 Scanning electron micrograph (3rd image) of sample 3SEM1 (scale l 0)-lm.) 

Fig. 5.20 Scanning electron micrograph of sample 3SEM2 (scale 10)-lm.) 
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Fig. 5.30 Liquid limits and plasticity indices for the three boreholes 
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CHAPTER& 

CONSOLIDATION CHARACTERISTICS 

6.1 Introduction 

In this chapter the triaxial consolidation test results carried out on samples from 

three different boreholes are discussed. A limited number of Oedometer 

consolidation test results from borehole one are also discussed. The samples were 

collected from the same geological formation but at different depths. 

In the case of triaxial consolidation, at the end of saturation stage, all the samples 

were isotropically consolidated in the Triaxial Cell with effective confining 

pressures ranging from 50 to 800 kPa. After the application of each effective 
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confining pressure the samples were allowed to drain for a minimum of 24 hours. 

Readings of pore water pressure at the mid-height of the specimen (as discussed in 

Chapter 4), drainage volume change and the time were recorded. The use of a mid

height pore water probe made it possible to relate volume change to p' for a single 

increment test. It is assumed that the mean effective stress at the mid hight 

represents an average for the sample as a whole and can therefore be related to the 

overall volume change. The consolidation stage was taken to be completed when the 

degree of consolidation was greater than 95%. 

Results are presented in terms of volume change versus time curves and void ratio 

versus p' curves. Consolidation parameters -the values of the coefficient of 

consolidation (cv), the values of the coefficient of volume compressibility (mv) and 

the compression index (Cc) of some of the selected samples of three boreholes were 

determined. The coefficient of permeability (k) was calculated from the mv and Cv 

values. The results are presented, compared and evaluated. 

Oedometer consolidation tests were carried out in accordance with the British 

Standard BS.1377 (1990). The results are discussed in terms of void ratio versus log 

p' curves. The apparent pre-consolidation pressures of some of the selected samples 

were observed and some mv. Cv and Cc values obtained from Oedometer tests are 

also presented. 

The triaxial samples are named by using letters and numbers. For example test 

1 cn50 means an isotropic triaxial consolidation test (c) carried out on natural 

samples (n) of borehole one (I), which was consolidated at a consolidation pressure 

of 50 kPa. Similarly 3cd400 means an isotropic triaxial consolidation test (c) carried 

out on destructured samples (d) of borehole three (3), which was consolidated at a 

consolidation pressure of 400 kPa. Oedometer samples are named in a similar way. 

For example test 1 ON 1 indicates an oedometer test (0) carried out on a natural 
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sample (N) of borehole one (1). The subscript at the end indicates the sample 

number. Sample details are listed in Table 6.1 and Table 6.2 (in section 6.3.1 ). 

In this section triaxial consolidation characteristics for natural and destructured 

samples are discussed in terms of the volume change versus time curves, coefficient 

of consolidation (cv), the coefficient of volume compressibility (mv), compression 

index (Cc) and the coefficient of permeability (k). Oedometer consolidation test 

results are also evaluted. 

6.2.1 Volume change versus time curves for triaxiai 

consolidation 

The volume change versus time graphs for natural samples from the three boreholes 

are shown in figures 6.1, 6.2 and 6.3 respectively and those of destructured samples 

from the three boreholes are shown in figures 6.4, 6.5 and 6.6 respectively. The 

volume change of all the samples during consolidation was recorded for at least 24 

hours. It can be seen from these graphs that the volume decrease was greatest during 

the early consolidation of each sample. After that all the samples reached almost a 

steady condition. 

It can be seen from figure 6.1 that the primary stage of consolidation for natural 

samples of borehole one ( 100-800 kPa) was completed within approximately 30 to 

240 minutes (i.e. approximately from half an hour to four hours). After that the 

volume decrease became almost constant. It was also found that sample 1 cn50 

showed a very small amount of volume change. The highest amount of volume 

change was observed for sample 1 cn600. Generally the decrease of volume of the 

samples increased with increasing confining pressures except for samples lcn400 
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and lcn800. These variations might be due to the natural variability of the samples, 

which were collected from different depths of the same borehole. 

The destructured samples of borehole one in each case showed a greater amount of 

volume change than the natural samples (figure 6.4). This would be expected due to 

the destruction of the original structure in the destructured soils. The primary 

consolidation of the destructured samples of borehole one was completed within 

approximately 20 to 380 minutes. After that all the destructured samples reached 

almost a steady condition. It was also observed that the decrease of volume of the 

destructured samples also increased with increasing consolidation pressures. 

The initial consolidation of the natural samples of borehole two was completed 

within approximately 25 minutes to 450 minutes (figure 6.2). At low confining 

pressures (50 to 300 kPa) the decrease of volume increased with increasing 

confining pressures and the primary consolidation for these samples was completed 

within less than 3 hours. Conversely the high confining pressure samples (400 to 

800 kPa) did not show any regularity in terms of the decrease of volume with 

increasing confining pressure. These samples completed initial consolidation 

between approximately 150 minutes to 450 minutes. The decrease of volume of the 

destructured samples of borehole two increased with increasing confining pressures 

and the primary consolidation of these samples was completed within approximately 

less than 5 hours (figure 6.5). After that most of the destructured samples reached 

almost a steady condition. 

From figure 6.3 it can be observed that the initial consolidation of the natural 

samples of borehole three was completed within approximately 20 minutes to 300 

minutes. These samples broadly showed an increase of volume change with 

increasing confining pressure except for samples 3cn400 and 3cn500. Most of the 

natural samples of borehole three reached a constant value of volume change after 

600 minutes. On the other hand, destructured samples of borehole three completed 
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initial consolidation in less than 8 hours and after that they reached almost a steady 

state condition (figure 6.6). It was also observed that destructured samples of 

borehole three in each case also showed a greater amount of volume change than the 

natural samples due to the destruction of original structure. The decrease of volume 

of the destructured samples of borehole three also increased with increasing 

confining pressures. 

Grim ( 1962) noted that for montmorillonite clay the amount of consolidation 

decreased with increasing load and for kaolinitic and illitic clay, the consolidation 

increased with increasing pressure. Broadly similar reflections are also observed in 

this study, since these soils are dominated by illite and kaolinite type of minerals (as 

discussed in chapter 5). It was also observed from figures 6.1 to 6.3 that the largest 

amount of volume change (approximately 6 cm3
) was observed for the natural 

samples of borehole two. The maximum amount of volume change for natural 

samples of borehole one and three was found to be 3.5 cm3 and 4.5 cm3 respectively. 

The variation of the volume change with respect to time for different samples from 

the three boreholes might be due to the degrees of weathering and natural variability 

of the samples at different sites. The samples of borehole one and three were highly 

oxidized, more weathered and contained ferruginous nodules and iron concretions. 

In contrast, borehole two samples were less oxidized, less weathered and contained 

smaller amounts of iron concretions than the other boreholes. The amount of iron 

content could well have an influence on the volume change of the samples. The 

presence of more iron oxide in the shallower depth samples might also have reduced 

the volume change during consolidation especially at low confining pressures. 

It should be noted here that the samples tested at low confining pressures came from 

shallower depths (see Table 6.1) and hence are likely to be more weathered than the 

samples tested at high confining pressures which came from lower depths. 
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6.3 Consolidation parameters 

The triaxial consolidation parameters were calculated as described by Head ( 1998) 

and the values obtained are listed in Table 6.1. The void ratio versus p' curves of the 

natural and destructured samples of three boreholes is also presented in figures 6.11-

6.14. The Oedometer test results are presented in Table 6.2. The observed values are 

compared and evaluated with the work of other researchers. 

6.3.1 Coefficient of consolidation (cv) 

The coefficient of consolidation for all the samples are shown in Table 6.1 and Table 

6.2. In triaxial consolidation, Cv values for borehole one natural samples lie between 

8 to 24 m2/year and those for destructured soils lie between 5 to 8 m2/year. The Cv 

values for natural samples of borehole two are in the range of 3 to 9 m2/year and 

those of destructured samples lie between 2 to 7 m2/year. The Cv values for natural 

samples of borehole three range from 3 to 6m2/year and those for destructured soils 

range from 2 to 3. The Cv values obtained from oedometer tests lie in between 1 to 4 

m2/year. 

Lambe and Whitman (1969) quoted some typical values of coefficient of 

consolidation for inorganic soils. He mentioned a value of 0.1 to 1 m2/year for high 

plasticity montmorillonite clay, 1-10 m2/year for medium plasticity clay and 10-100 

m2/year for low plasticity clay. The results are consistent with the values 1-10 

m2/year for medium plasticity clay. It is interesting to note that the natural samples 

of each borehole showed higher Cv values than the destructured samples, which 

might be due to the presence of bonded structure in natural soils. 

Grim (1962) pointed out that illite, chlorite and kaolinite would have somewhat 

similar consolidation characteristics, but consolidation properties of halloysite clays 

would be quite variable. The tropical clay soils of Dhaka (having illite and kaolinite) 
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showed a narrow range of coefficient of consolidation value and are consistent with 

the values for illite and kaolinite type of clay minerals. 

Table 6.1 Results of triaxian consolidation parameters 

Sample Depth Initial Coefficient Coefficient of Negative Coefficient 
nu m be (m) Void of volume slope of of 
r ratio consolidatio compressibilit NCL permeabilit 

n (cv) y (mv) m2/MN (A.) y (k) 
m2/year m/sec 

1cn50 1.22-1.37 0.616 24 0.04 0.58 3.27xl0·11 

1cn200 1.52-1.68 0.429 13 0.07 0.45 2.90x1o-~~ 

1cn400 5.33-5.79 0.526 9.92 0.06 0.40 1.84x 1o·!S 
1cn600 8.38-8.83 0.452 8.42 0.07 0.40 1.82x w·!S 
1cn800 9.6-10.0 0.481 8.85 0.06 0.42 1.67x w·!S 
2cn100 1.32-1.47 0.410 6.23 0.15 0.50 2.91x w·!S 
2cn200 1.50-1.65 0.402 8.05 0.11 0.44 2.64x1o·ll 
2cn400 4.13-4.33 0.440 9.52 0.08 0.45 2.42x 1o·IS 
2cn600 5.45-5.65 0.482 5.19 0.05 0.41 0.8x 1o·!S 
2cn800 6.09-6.40 0.493 3.49 0.07 0.38 0.7x1o-~~ 

3cn50 0.97-1.37 0.461 6.06 0.24 0.60 4.58xl0·11 

3cn200 1.52-1.98 0.443 4.96 0.14 0.48 2.15xl0·11 

3cn400 2.74-3.20 0.412 3.38 0.14 0.41 l.47xl0·11 

3cn600 4.26-4.72 0.445 5.03 0.07 0.40 I.09x 10-x 
3cn800 5.48-5.94 0.439 5.47 0.06 0.37 0.9xl0·11 

1cd50 1.22-1.37 0.616 8.57 0.33 0.52 8.79x w·!S 
1cd200 1.52-1.68 0.429 7.74 0.17 0.47 4.10x10·H 
1cd400 5.33-5.79 0.525 5.71 0.17 0.45 3.09X w·IS 
1cd600 8.38-8.83 0.453 5.58 0.13 0.43 2.17X lQ-X 

1cd800 9.6-10.0 0.481 5.45 0.11 0.40 1.86x to-~~ 
2cd100 1.32-1.47 0.411 4.21 0.36 0.60 4.67x10·H 
2cd200 1.50-1.65 0.403 6.23 0.24 0.48 4.59xl0·11 

2cd400 4.13-4.33 0.440 6.66 0.15 0.42 3.02x1o·!S 
2cd600 5.45-5.65 0.482 3.69 0.43 0.42 4.87x1o-~~ 

2cd800 6.09-6.40 0.494 2.44 0.15 0.38 1.1x 1 o·ll 
3cd50 0.97-1.37 0.461 3.58 0.66 0.60 7.3x1o-~~ 

3cd200 1.52-1.98 0.443 3.28 0.33 0.56 3.39 xw·ll 
3cd400 2.74-3.20 0.414 2.64 0.21 0.40 1.72 xl0·11 

3cd600 4.26-4.72 0.446 3.28 0.21 0.38 2.10 xl0·11 

3cd800 5.48-5.94 0.438 3.04 0.18 0.37 1.66 xl0·11 
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All the coefficients of consolidation values obtained are plotted against void ratio 

values in figure 6.7. It can be seen from figure 6.7 that the Cv value increased with 

increasing void ratio. A graph is also plotted to show the relationship of coefficient 

of consolidation with effective pressure in figure 6.8. It can be seen from this figure 

that the coefficient of consolidation showed a tendency to decrease with the increase 

of effective pressure. However, the trend is not very clear and it should be noted that 

the high value at low consolidation pressure was carried out on a sample with a 

larger void ratio (figure 6.8). 

Table 6.2 Results of oedometer consolidation parameters 

Sample Depth Pressure Coefficient of Coefficient Compre Apparent pre-
no. (m) (kPa) consolidation of volume -ssion consolidation 

(cv) m2/year compressi index pressure 
bility (Cc) (p'c) kPa 
(mv) 
m2/MN 

10N1 1.5-1.7 100 4.23 0.25 170 
200 1.86 0.18 
400 1.19 0.21 
800 1.42 0.13 0.2 
1600 1.99 0.08 

10N2 4.0-4.3 100 2.35 0.37 190 
200 2.33 0.23 
400 1.47 0.15 
800 1.02 0.09 0.2 
1600 1.20 0.06 

10N3 6.1-6.4 - - - 220 
10N4 9.0-9.3 - - - 250 

6.3.2 Coefficient of volume compressibility (mv) 

Coefficients of volume compressibility for all the triaxial consolidation samples 

were calculated for each pressure increment and the results obtained are listed in 

Table 6.1. The mv values obtained from Oedometer tests are listed in Table 6.2. The 
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coefficient of volume compressibility (mv) for triaxial consolidation of borehole one 

natural samples ranges from 0.04 to 0.07 m2/MN and for destructured samples mv 

values lie between 0.11 to 0.33 m2/MN. The mv values for natural samples of 

borehole two found are in the range of 0.05 to 0.15 m2/MN and for destructured 

samples of the same borehole range between 0.15 to 0.43 m2/MN. The mv values for 

borehole three natural samples range from 0.06 to 0.24 m2/MN and for destructured 

samples range from 0.18 to 0.66. In contrast, mv values obtained from oedometer 

tests on borehole one samples lie between 0.06 to 0.37 m2/MN. Lambe and Whitman 

(1969) mentioned some typical values of coefficient of volume compressibility (mv) 

to classify soils on the basis of compressibility. He mentioned a mv value of 0.10-

0.30 m2/MN for medium compressibility and 0.05-0.10 m2/MN for low 

compressibility clays. The samples show a small range of variation in the coefficient 

of volume compressibility (mv) values and the obtained results are compatible with 

the values quoted by Lambe and Whitman (1969) for the low to medium 

compressibility clays. One sample (test 1un50) at low confining pressure showed 

very low compressibility (<0.05 m2/MN). 

Hobbs et al. ( 1988) mentioned that values of the coefficient of volume 

compressibility (mv) for tropical clay soils of west Java, Indonesia lie in the range 

0.03 to 1.0 m2/MN and for the high pressure tests between 0.01 and 0.43 m2/MN. 

Carter and Bentley (1991) quoted a value of 0.05-0.1 m2/MN for low compressibility 

very stiff tropical clay and a value of 0.1-0.3 m2/MN for medium compressibility 

firm tropical red clays. Therefore the mv values identified for the Dhaka soils are 

consistent with the values quoted by Hobbs et al. ( 1988) and Carter and Bentley 

(1991). 

From Table 6.1 it is observed that the coefficient of volume compressibility (mv) 

varies slightly with depth and the variation is not regular. It can be seen from figure 

6.9 that mv tends to decrease with increasing consolidation pressure. However, from 
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the observed results it was found difficult to establish any general relationship for mv 

with void ratio (figure 6.1 0). 

6.3.3 Void ratio versus p' curves 

For isotropic triaxial consolidation tests, void ratio is plotted against effective 

pressure (p') (in log scale) from a single increment test for each sample. The e-log p' 

curves of boreholes one, two and three are shown in figures 6.11 to 6.13 

respectively. It can be seen from these figures that the void ratio values decreased in 

each case with increasing effective pressure. Although very small, the change of 

void ratio from start to the end of the test for a single increment is more in the 

destructured samples. 

The void ratio versus log p' curves for some selected samples of borehole one 

obtained from Oedometer tests are shown in figure 6.14. The apparent 

preconsolidation pressures were determined by using the Casagrande construction 

method. The measured apparent preconsolidation pressures are listed in Table 6.2. 

The value ranges from approximately 170 kPa to 250 kPa. This quasi

preconsolidation pressure developed in natural soils is due to the bonded structure of 

the soil. To interprete this behaviour a graph is plotted to see the variations of 

observed quasi-preconsolidation pressures for different samples of borehole one 

with respect to depth and to compare the results with the effective overburden 

pressures. It can be seen from figure 6.15 that the effective overburden pressure is 

much lower than the observed quasi-preconsolidation pressure. Stress history only 

does not explain such high values of quasi-preconsolidation pressure, as the 

overburden pressure is approximately half the value of quasi-preconsolidation 

pressure. The difference between the effective overburden pressure and the observed 

quasi-preconsolidation pressure increases with depth. The observed quasi

preconsolidation pressure also increases with depth. Therefore, it is unlikely that a 
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previous removal of soil, by erosion for instance, could be the cause of the quasi

preconsolidation pressures. It is more likely that the observed quasi-preconsolidation 

pressure is due to bonding. 

6.3.4 Compression index (Cc) 

In one dimensional cosolidation the compression index (Cc) is the slope of the linear 

portion of the e-log cr' plot and is dimensionless. In isotropic triaxial consolidation 

the gradient of the normal consolidation line (NCL) in v-log p' is expressed by A. In 

isotropic consolidation, Cc values were estimated based on observed A values. The A 

values of three borehole samples obtained from isotropic consolidation tests are 

listed in Table 6.1. The compression index values obtained from Oedometer tests are 

listed in Table 6.2. Based on A values obtained (Table 6.1) the compression index 

value estimated from isotropic consolidation ranges from 0.2 to 0.3 and those 

obtained from Oedometer test is 0.2 (Table 6.2). 

Head ( 1982) mentioned some typical values of Cc for different types of clays. He 

quoted a compression index value of 0.2 to 0.8 for medium to low plasticity clay and 

a Cc value of up to 2.6 for montmorillonite clay. Hobbs et al. (1988) mentioned a Cc 

value of 0.33 to 0.75 for tropical clay soils of west Java, Indonesia. The obtained 

results (0.2-0.3) are generally consistent with these values. 

6.3.5 Coefficient of permeability (k) 

The coefficient of permeability (k) values obtained are listed in Table 6.1. The 

coefficient of permeability of borehole one natural samples lies between 1.67x 10·8 

m/sec to 3.27xl0-8m/sec and those of destructured samples are in the range of 

1.86x 10·8m/sec to 8. 79x 1 o·8m/sec The k value for borehole two natural sample range 
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from 0.7 xl0.8m/sec to 2.91 xl0.8m/sec and that of destructured samples lie between 

1.1 x w·8m/sec to 4.87 x 10·8m/sec. The k value for borehole three natural sample 

ranges from 0.9 X 10"8m/sec to 4.58x 10"8m/sec and for destructured samples range 

from 1.66x I o·8m/sec to 7 .3x 1 o·8m/sec The results obtained suggest that the 

permeability of the analysed soils is very low, typical of weathered clays 

(Casagrande and Factum, 1940). 

Grim ( 1962) pointed out that permeability decreases with increasing mica (illite) and 

then the replacement of mica by kaolinite and also the replacement of kaolinite by 

montmorillonite makes it less permeable to almost impermeable. Grim (1962) also 

mentioned that in the case of quartz and mica (illite) permeability ranges from 

4.2x 10·6 m/sec to 5.8x 10·6 m/sec and in the case of quartz and kaolinite permeability 

ranges from 2.5x 10·8 to 9 .5x 1 o·8 m/sec. Hobbs et al. (1988) mentioned that the k 

value for the tropical red clay soils of west Java, Indonesia lie between 2.2x 10·8 

m/sec to 5.6x 10·9 m/sec. The permeability values obtained are close to the values 

mentioned by Hobbs et al. (1988) and Grim (1962) for illite and kaolinite type of 

clays and are in agreement with the mineralogy of the samples. 

The relationship between the coefficient of permeability and the consolidation 

pressure is shown in figure 6.16. It can be seen from this figure that permeability is 

dependent on the applied consolidation pressure and the value decreases with 

increasing consolidation pressure. Wu et al. (1993) also reported similar results for 

smectitic mudstone. The relationship between coefficient of permeability and void 

ratio is shown in figure 6.17. It is observed from figure 6.17 that the permeability 

value of the samples increases with increasing void ratios. Grim (1962) reported 

similar results for kaolinite and illite clay. Sridharan (1988) mentioned a linear 

relationship between void ratio and permeability for red tropical soils of Bangalore. 

A relationship was also plotted to see the variation of coefficient of permeability 

with the coefficient of consolidation and this relationship is shown in figure 6.18. It 
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can be seen from figure 6.18 that there may be a tendency for the permeability to 

increase with increasing value of coefficient of consolidation, but the relationship is 

not clearly defined. 

In this chapter the consolidation characteristics of the tropical clay soils of Dhaka 

were discussed in terms of the coefficient of consolidation, coefficient of volume 

compressibility, compression index and the coefficient of permeability. These 

consolidation parameters were compared and evaluated with the work of other 

researchers. The identified values were also evaluated with respect to mineralogy. 

Volume change versus time curves, void ratio versus effective pressure curves for 

isotropic triaxial consolidation for a single increament and void ratio versus log p' 

curves for Oedometer consolidation are also presented. Finally an attempt has been 

made to show the relationship of the consolidation parameters with the consolidation 

pressure and void ratio. 

The soils showed a major reduction in volume initially with time and after a few 

hours they showed almost a constant volume with time. There were small variations 

between the samples at different sites. However, the initial consolidation of the 

natural samples was completed between approximately 20 minutes to 600 minutes 

with increasing consolidation pressure. Conversely, the initial consolidation of the 

destructured samples was completed between 20minutes to 480 minutes with 

increasing consolidation pressure. Generally the consolidation of the samples 

increased with increasing confining pressures. The destructured samples from the 

three boreholes in each case showed greater amount of volume change than the 

natural samples, which would be expected due to the destruction of original structure 
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in destructured soils. A quasi-preconsolidation pressure was observed in Oedometer 

tests, which is likely to be due to the bonded structure of the soils. 

The coefficients of consolidation (Cv) values obtained are consistent with low to 

medium plasticity inorganic clay. The samples showed a narrow range of coefficient 

of consolidation value and they are consistent with that of a kaolinitic and illitic soil. 

It was observed that the Cv value increased with increasing void ratio. The samples 

also broadly showed a decrease of coefficient of consolidation with increasing 

effective pressure. The coefficient of volume compressibility (mv) of the natural 

samples range between 0.04 to 0.24 m2/MN and that of destructured samples lie 

between 0.11 to 0.66 m2/MN. The results suggest that the compressibility of the soil 

is very low to medium. It was found that the mv value decreased with increasing 

consolidation pressure. A compresssion index (Cc) value of 0.2 to 0.3 was observed 

for these soils. 

The permeability of the soil was very low with a k value ranging from 0.7x 1 o-8m/sec 

to 4.58x 1 o-8rnlsec for natural samples and a value of 1.1 X I o-8m/sec to 8. 79x 1 o-8 

m/sec for destructured samples. The obtained values of k are consistent with that of 

kaolinitic and illitic soil and are in agreement with the mineralogy of the samples. It 

was observed that the coefficient of permeability of the samples decreased with 

increasing consolidation pressure. It was also found that k value of the samples 

increased with increasing void ratio and with increasing coefficient of consolidation. 
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CHAPTER 7 

UNDRAINED TRJIAXIAJL TESTS 

7 el :U:ntroduction 

This chapter describes in detail the results of all the consolidated undrained triaxial 

tests made on the tropical clay soils of Dhaka, Bangladesh. The samples were 

collected from two different boreholes of the same geological formation and their 

location is shown in figure 3.1 of chapter 3. Both natural and destructured samples 

were used to carry out the tests. Results are presented for boreholes one and two in 

terms of stress-strain curves, stress ratios, pore water pressures and stress paths in 

the q - p' space. Critical state behaviour is also discussed. 
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Yield of the naturally bonded soil in the stress plane is evaluated and the failure 

surface is presented. Two yield points are identified from the loss of tangential 

stiffness curve during shearing as described by Malandraki and Toll (1996 & 2000). 

A final yield is also identified from the point of maximum curvature of the stress

strain curves. A comparison is made between the results of boreholes one and two. 

Comparisons are also made between undrained triaxial tests in both the natural state 

and in a destructured condition. Finally an attempt is made to define the important 

characteristics for developing a framework for the tropical clay soils of Dhaka. 

7 .2. Consolidated undrained triaxial tests on natural state 

tropical clay soils of Dhaka 

The undrained behaviour of samples in the natural state from borehole one and two 

is discussed in this section. Stress-strain behaviour of these samples is carefully 

evaluated and stress paths are presented. The q/p' ratio and the variation of excess 

pore water pressure (p.w.p.) with an increase in strain are also studied. 

The position of all the identified yield points are shown in the stress space. The first 

loss of tangential stiffness is associated with the 'initial yield', which is defined from 

the log-log plot of tangential stiffness versus small strain graph (Malandraki and 

Toll, 1996 and 2000). The 'bond yield' is identified from the same graph at which a 

marked drop of tangential stiffness occurred (Malandraki and Toll, 2000). Small 

strain behaviour up to 2% strain are also evaluated with the help of tangential 

stiffness versus mean effective stress curves and the deviator stress versus p' curves. 

All the results obtained are presented, compared and evaluated. 
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7.2.1 Testing details 

Consolidated undrained triaxial tests with pore water pressure measurement were 

carried out on sixteen natural and sixteen destructured samples collected from two 

different boreholes (boreholes one and two). All samples were initially saturated and 

were subjected to isotropic consolidation (at a range of confining pressures from 50 

kPa up to 800 ) before shearing. Testing details is discussed in section 4.6 of Chapter 

4. 

The detailed test information including test name, location, sample depth, void ratio, 

dry density, consolidation stress (i.e. effective confining pressure) for natural soils 

are listed in Tables.7.1 & 7.2 (in section 7.2 ) and that for destructured soils are 

listed in Tables 7.5 & 7.6 in section 7 .3. 

Table 7.1: Testing details of natural state soils of borehole 
one, Location: Mirpur 

Test Depth Initial Specifi Bulk Dry Initia Wet 
name (m) moisture c density density I void weight 

content gravity p Pd ratio of 
w% Gs (Mg/m3

) (Mglm3
) e sample 

(g) 
1un50 1.22- 18.8 2.61 1.918 1.614 0.616 165.39 

1.37 
1un100 1.37- 18.4 2.60 2.003 1.691 0.537 172.64 

1.52 
1un200 4.72- 14.4 2.64 2.113 1.847 0.429 182.19 

5.08 
1un300 5.68- 17.6 2.65 1.979 1.683 0.574 170.62 

5.85 
1un400 6.90- 17.2 2.59 1.989 1.697 0.526 171.45 

7.15 
1un500 7.16- 17.1 2.61 1.992 1.701 0.535 171.73 

7.62 
1un600 8.68- 17.3 2.60 2.101 1.791 0.452 181.11 

8.83 

1un800 9.6- 15.6 2.62 2.044 1.770 0.481 176.31 
10.0 
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Dry 
weight of 
sample 
(g) 

139.18 

145.78 

159.20 

145.09 

146.25 

146.61 

154.33 

152.55 



7 .2.2 Test name 

All samples are named by using letters and numbers. The initial number indicates 

the borehole number and the number after the two letters in each case indicates the 

value of effective confining pressure at which the samples were consolidated before 

shearing. Two letters are used to designate each test. The first letter in each test 

indicates the type of shearing (undrained) and the second letter indicates the nature 

of the sample (natural or destructured). For example test 1 un 100 (in Table 7.1) 

indicates a test on a sample from borehole one, tested undrained in a natural state, 

which was consolidated at a confining pressure of 100 kPa before shearing. 

Similarly 2ud400 (in Table 7 .6) means a test on a sample from borehole two, tested 

undrained in a destructured state, which was consolidated at a confining pressure of 

400 kPa before shearing. 

Table 7.2: Testing details of natural soils of borehole two 

Location: Curzon Hall 

Test Depth Initial Specifi Bulk Dry Initial 
name (m) moisture c density density void 

content gravity p Prl ratio 
w% Gs (Mglm3

) (Mglm3 e 
) 

2un50 1.10- 17.9 2.59 2.176 1.846 0.403 
1.30 

2un100 1.32- 17.1 2.62 2.171 1.859 0.410 
1.47 

2un200 3.50- 14.2 2.64 2.150 1.883 0.402 
3.65 

2un300 3.68- 15.3 2.62 2.016 1.749 0.498 
3.88 

2un400 4.13- 14.1 2.60 2.062 1.806 0.440 
4.33 

2un500 4.60- 14.9 2.59 1.972 1.720 0.505 
4.80 

2un600 5.45- 16.0 2.63 2.060 1.773 0.482 
5.65 

2un800 6.09- 17.2 2.61 2.049 1.748 0.493 
6.40 
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Wet 
weight of 
sample 
(g) 

187.62 

187.62 

185.35 

173.80 

177.77 

170.45 

177.59 

176.62 

Dry 
weight 
of 
sample 
(g) 
159.14 

160.21 

162.27 

150.74 

155.70 

148.24 

153.00 

150.65 



7 .2.3 Results 

7.2.3.1 Stress=strain curves (natural soils of borehole one 
and two) 

The deviator stress versus axial strain curves for natural soils of borehole one 

are shown in figure 7.1 and those of borehole two are shown in figure 7 .2. It can be 

seen from figures 7.1 and 7.2 that the stress strain curves show a maximum stress 

level in each case. After reaching the maximum stress level, a drop of deviator stress 

is observed in each case with increasing strain. It can be seen from figure 7.1 that at 

low effective confining pressures the maximum deviator stress points are not sharp 

except for the test 1 un200 and they do not show a prominent peak. At very high 

effective confining pressures the samples show a broader peak at large strain. The 

maximum q points of borehole two samples are not sharp up to a confining pressure 

of 500 kPa (figure 7.2) but at higher confining pressures the samples show a more 

prominent peak. It can also be seen from these figures that the maximum deviator 

stress increases with increasing confining pressure. In many tests, the deviator stress 

decreases after the maximum point at almost a constant rate at very large strain. 

The axial strains to attain maximum deviator stress for samples of borehole one are 

in the range 4% to 19% and those of borehole two samples lie in between 

approximately 8% to 26%. The lowest strain to attain the maximum deviator stress 

for borehole one samples is encountered for sample 1 un200 and for borehole two 

samples is for sample 2un600. On the other hand, the highest value of strain at the 

maximum point is observed in 1 un 100 and 2un300. The maximum deviator stress 

and the corresponding values of axial strain, mean effective stress and the value of 

excess pore water pressure in each case are summarized in Table.7.3. It should be 

noted here that all the samples of the two boreholes are collected from the same 

geological formation but at different depths. Shallow depth samples are more 

weathered than those from greater depth. 
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Table 7.3: §ll.llmmary of stress and straiin parameters at 
maxiimum deviator stress 

§ample Maximum !Excess A xi an Mean effective 
number deviator p.w.p. at strain at stress (p') at 

stress maximum q maximum maximumq 
( q) (u) q (Ea%) kPa 
kPa k.Pa 

1un50 181 -24 6.22 134 
1un100 308 -62 19.47 253 
1un200 361 -34 4.00 279 
1un300 365 113 12.47 306 
1un400 454 113 12.11 402 
1un500 596 153 14.86 596 
1un600 671 154 15.02 645 
1un800 946 184 10.93 918 
2un50 179 -63 20.52 167 
2un100 284 -128 25.45 308 
2un200 307 -19 10.13 314 
2un300 280 85 26.35 296 
2un400 366 171 9.26 345 
2un500 461 113 20.34 529 
2un600 553 143 7.67 636 
2un800 577 223 7.94 714 

7 .2.3.2 Excess pore water pressure versus strain curves for 
natural sons of borehole one and two 

The excess pore water pressures (p.w.p.) versus strain curves for natural state 

samples of borehole one and two are shown in figures 7.3 & 7.4 respectively. From 

these figures, it can be seen that the excess pore water pressure increased initially 

and reached a peak. After that it decreased with increasing strain. Tests at low 

confining pressures (50 to 200 kPa) initially showed low values of positive pore 

water pressures, followed by negative pore pressures at higher axial strains. No 

negative pore pressure was observed at higher confining pressures. The generation 

of negative excess p.w.p. values at low confining pressures (50-200 kPa) is due to a 

tendency to dilate during shearing. This dilation caused a decrease in pore water 

pressure and ultimately showed negative values (Atkinson and Bransby, 1978). 

152 



It can be seen from the excess pore water pressure versus axial strain graphs (figure 

7.3 & 7.4) that there is a general trend between excess p.w.p. and confining pressure. 

The maximum positive excess pore water pressure values for borehole one samples 

lie between approximately 20 kPa to 280 kPa and those of borehole two samples lie 

between approximately I5 kPa to 250 kPa. The highest value of positive excess 

p. w .p. is observed in sample 1 un500 and 2un800, whereas the lowest value was in 

sample 1 un50 and 2un50 for natural soils of borehole one and two respectively. The 

excess p.w.p. values at maximum deviator stress in each case are listed in Table 7.3. 

These values lie in the range of -24 kPa to 184 kPa for borehole one samples and 

-19 kPa to 223 kPa for borehole two samples. In all samples excess pore water 

pressures have reached their maximum values at lower axial strains than the point at 

which maximum deviator stress occurred (figures 7.I,7.2,7.3 & 7.4). 

By comparing the excess p.w.p. and strain (figure 7.3 & 7.4) curves, it is evident 

that at high confining pressures many samples tended towards a constant value of 

p.w.p. with increasing strain. It can be seen from figure 7.3 that the excess p.w.p. for 

tests I un50 and I un 100 seem to reach a steady value at the end of the tests. This 

suggests that these two samples are very close to the critical state at larger strains 

(in excess of 20% ). Other samples (I un300 to I un800) at strains greater than 20% 

almost reach constant excess p.w.p. values at the end of the tests. Therefore these 

samples (1 un300 to 1 un800) might also have reached the critical state at very large 

strains (Atkinson, 1993). Test 1 un200 showed a continuous change of excess p.w.p. 

values up to the end of the test and therefore this sample has not reached a critical 

state even at a very large strain. 

It can also be seen from figure 7.4 that the samples of borehole two at low confining 

pressures (50-200 kPa) showed a continuous change of p.w.p. up to the end of the 

test and therefore these samples have not reached a steady state at the end of 
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shearing. But at high confining pressures (300-800 kPa), samples of borehole two 

tended towards a constant value of excess p.w.p. at very large strains and therefore, 

these samples might be very close to the critical state. 

i .2.3.3 q/p' ratio versus strain curves for naturalt soils of 
borehole one and two 

Head (1998) pointed out that the maximum stress ratio (q/p') value does not 

necessarily occur at the same strain as the peak deviator stress. The maximum stress 

ratio criterion is preferable to the peak stress ratio criterion in some ways because it 

can provide a better correlation of shear strength with other parameters, or between 

different types of tests. It is particularly useful for clays in which the deviator stress 

continues to increase at larger strains. Atkinson (1993) mentioned that soils are 

frictional materials and their strength increases with normal stress and so the stress 

ratio is more important than the shear stress alone. 

The q/p' ratio versus strain graphs is shown in figure 7.5 and 7 .6. It is clear from 

figure 7.5 that the maximum q/p' ratios for all samples of borehole one are 

developed at low strains ranging from 1.96% to 6.75%. The maximum q/p' ratios for 

all samples of borehole two is observed at the strain range of 2.53% to 7.94% 

strains (figure 7.6). 

The maximum q/p' values for borehole one samples lie between 1.11 to 1.60 and 

those of borehole two samples lie in between 0.81 to 1.66. The highest and lowest 

maximum stress ratio values for borehole one samples are observed in samples 

1 un 100 and 1 un800 respectively and those of borehole two samples are observed in 

test 2un50 and 2un800 respectively. After reaching the maximum q/p' values at low 

strains all samples of borehole one showed a tendency to drop continuously with 
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respect to strain and at more than 20% strain some of the samples reached almost a 

constant stress ratio state (figure 7.5). On the other hand, some of the borehole two 

samples reached a constant stress ratio state at strains greater than 22% (figure 7.6). 

A variation in the maximum q/p' ratio value is observed with the increase of 

effective confining pressures for samples of both boreholes. In general, low 

confining pressure samples showed higher values of maximum q/p' ratio value than 

the high confining pressure samples. 

It is also observed that the maximum q/p' ratio for natural soils of both boreholes 

occurs before the maximum deviator stress is reached, which occurs at higher strain. 

7 .2.3.4 Stress paths in q-p' space for natural soils of 
borehole one and two 

The effective stress paths in q-p' space for a series of consolidated undrained triaxial 

compression tests on natural state samples of borehole one and two are shown in 

figures 7.7 and 7.8. The stress paths at low (50 to 200 kPa) confining pressures 

(figures 7.7 and 7.8) initially increase almost vertically and show a tendency to 

move towards the right. At higher confining pressures (300 to 800 kPa) each stress 

path at the beginning of each test, shows a tendency to move towards the left with an 

increase of deviator stress. The clear change of behaviour can also be observed in 

the excess p.w.p. versus strain curves as shown in figures 7.3 & 7.4. 

With the increase of mean effective stress and deviator stress, each stress path shows 

a tendency to move towards the right when they are approaching the failure zone. In 

the failure zone, the stress paths stabilize for a while and show a tendency to move 

along the failure envelope. However the stress paths then curve sharply down to 

approach an ultimate state (possibly the critical state line, CSL). The values of mean 

effective stress at maximum deviator stress and the corresponding maximum 
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deviator stress for these stress paths are mentioned in Table 7.3. It can be seen from 

figures 7.7 and 7.8 that the deviator stress at failure in each case increases with 

increasing mean effective stress except for test 2un300 of borehole two. The mean 

effective stress values at failure also increase with the increase of effective confining 

pressure (initial mean effective stress) (figures 7.7 & 7.8). 

7 .2.3.5 Failure surface for natural state samples of borehole 
one and two 

A failure envelope in terms of effective stress for a set of tests is plotted in the q-p' 

space for the natural soils of each borehole. The failure envelopes of borehole one 

and two are shown in figures 7.9 and 7.10 respectively. It is clear that both show 

curved failure envelopes. These will later be compared with the failure envelopes for 

the destructured soils. 

All natural samples of borehole one failed with the formation of shear planes. At low 

effective confining pressures the shear planes were indistinct but at high effective 

confining pressures the shear planes were prominent and distinct. 

All natural samples of borehole two also failed with shear planes. At low effective 

confining pressures (50-200 kPa) shear planes were not distinct. For test 2un I 00 & 

2un200 samples failed with a number of indistinct shear planes. However at high 

confining pressures (2un300-2un800) shear planes were more prominent and distinct 

and the samples failed with a definite single shear plane. Similar distinct polished 

shear planes were observed by Jardine et al. (1984) on London Clay. 

The failure surface for the whole range of tests for natural soils of borehole one 

showed some curvature up to approximately p'=450 kPa (figure 7.9.). At p'>450 kPa 

the slope of the failure envelope is slightly reduced. The failure surface for natural 
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soils of borehole two showed a curvature up to approximately p'=400 kPa (figure 

7.10.). The slope of the curve reduces steadily asp' increases (figure 7.10). It was 

observed earlier that the samples of both boreholes reached a maximum q/p' ratio 

before failure and continue shearing with a decrease of q/p' ratio up to the end of the 

test. 

The curved nature of the failure surface in terms of effective stress for different 

types of various bonded natural materials has been reported by Vaughan (1988). 

Vaughan et al. (1988) also reported similar results for lateritic residual soil from 

basalt from Mauritius. Malandraki and Toll (1994 and 1996) also mentioned a 

curved bounding surface for artificially bonded soils. 

7 o2o3o6o Yneld alllldl tall1lgelllltial stiffness «llll1l nat\Ulrall state §OiD§ 

of lboJrelhlolle one and tt:wo 

There are proposals in the literature for identifying yield in natural and artificial 

soils, which are discussed in chapter two. Based on the work of other researchers, an 

attempt is made to identify yield points for the tropical clay soils of Dhaka, 

Bangladesh. Two samples are selected initially to present the first and second yield 

points as described by Maccarini ( 1987) and Bressani ( 1990). A deviator stress 

versus strain curve is plotted for sample 1 un50 and 1 un400, both in natural and log

log scales. Fluctuations in the strain measurements make identification of yield 

points difficult at small strains, nevertheless it can be seen from figure 7.11 for 

sample 1 un50, the first yield can be identified at q = 9 kPa and second yield at q = 

40 kPa. Similar values are also observed in figure 7.12 to identify first and second 

yield points. At the low confining pressure for sample 1 un50, a consistency is 

observed between the values of first and second yield points (figure 7.11 & 7 .12) 

obtained from the two methods. 
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Figures 7.13 and 7.14 show the results for test 1un400. At the higher confining 

pressure for sample 1 un400, first yield appears to occur around at q = 45 kPa in 

natural scale (figure 7 .13), whereas the second yield is indicated at q = 150 kPa in 

natural scale. For this higher confining pressure, however it is clear that the 

fluctuations in the strain measurements make it difficult to come to any firm 

conclusions about the location of yield points in this case (figure 7 .14). However, 

even at the log-log scale (figure 7.14) it is clear there is a change in stiffness at 

around 45 kPa (first yield) and some evidence of a change around 150 kPa (second 

yield). 

Vaughan (1988) pointed out that tangential stiffness versus strain might gtve a 

clearer indication of yield. After that an improved method for identification of first 

and second yield was proposed by Toll and Malandraki ( 1993). They suggested that 

curves of E1an against strain on log scales give a better indication of the yield points. 

Malandraki and Toll ( 1996) defined the first and second yield points for a weakly 

bonded soil. The term 'second yield' was used by Vaughan (1988) and Malandraki 

and Toll (1994, 1996). To avoid confusion between the term 'second yield' (as used 

by Vaughan; 1985 & 1988) and Y2 (as used by Jardine et al. 1991, Jardine; 1992 and 

Smith et al. 1992), Malandraki and Toll (2000) introduced the term 'bond yield' to 

represent the point where a major change in tangential stiffness occurs between the 

first and final yield condition. This definition will be tested in this section to identify 

the 'first' and 'bond yield' points for the tropical clay soils of Dhaka, Bangladesh. 

Tangential stiffness in terms of shear modulus (G1an) versus axial strain graphs for 

samples 1 un50-l un400 are shown in figures 7.15 to 7.19. The G1an versus axial strain 

graphs for borehole two samples (2un50-2un400) are shown in figures 7.23 to 7.27. 

It can be seen from these figures that the tangential stiffness versus strain curves are 

non-linear and show a reduction of stiffness values with increasing strain in each 

case. The identified yield points are marked on these figures as described by 
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Malandraki and Toll (1996 and 2000). Shear modulus ( G1an) is used rather than 

Young's modulus (E~an) since shear modulus is independent of variations in volume 

strain and gives a 'purer' measure of yield under shear, whereas Young's modulus 

will implicitly be affected by volume strains. However, Malandraki and Toll (2001) 

have shown that the yield points identified using Gtan correspond closely to the 

equivalent points defined in terms of E1an· G1an versus strain curves for borehole one 

samples at higher confining pressures (>400 kPa) are shown in figures 7.20 -7.22 

and those of borehole two samples are shown in figures 7.28-7 .30. 

Malandraki and Toll ( 1996) mentioned that the loss of stiffness with increasing 

strain indicates the breaking down of bonds at smaller strain. Non-linear stiffness 

decay curve at smaller strain are also observed by Burland (1989), Hight et al. 

(1992), Clayton et al. (1992), Smith et al. ( 1992), Little and Hataf (1993), All man & 

Atkinson (1992) and Toll and Malandraki (1993). 

In figure 7 .15, for sample 1 un50 a first loss in tangential stiffness is found at 0.001% 

of strain (equivalent to q = 4 kPa) and a second loss at 0.10% strain (q =51 kPa). 

These are similar to the values identified from the stress-strain curves in figures 7.11 

and 7 .12. All the identified yield points for natural samples of both boreholes with 

their corresponding values of q and Ea are listed in Table 7.4. No values are listed for 

effective confining stresses above 500 kPa as no clear trend of yield points were 

observed at these higher pressures. Even at the lower pressure ranges, the 

identification of yield is sometimes tenuous. 
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Table~ 7.4 First and lbo:nd yield points for naturaR soUs of 
borehole one and two with corresponding values of deviator 
stress ( q) and axial strain (Ea) 

§ample no. Yield q (k!Pa) Ea(%) 

lun50 First yield 4 0.001 

Bond yield 51 0.10 

lun 100 First yield 8 0.002 
Bond yield 37 0.14 

1un200 First yield 4 0.02 
Bond yield 68 0.06 

1un300 First yield 10 0.019 
Bond yield 35 0.05 

1un400 First yield - -
Bond yield 37 0.015 

1un500 First yield - -

Bond yield 5 0.003 
2un50 First yield 2 0.0004 

Bond yield (?) 41 0.003 
2un100 First yield 15 0.0048 

Bond yield 34 0.019 
2un200 First yield 3 0.002 

Bond yield 53 0.05 
2un300 First yield 24 0.006 

Bond yield 110 0.15 
2un400 First yield 19 0.002 

Bond yield 86 0.041 

The identified first and bond yield points for these tests on natural samples of 

borehole one and two are plotted in the q versus p' space as shown in figures 7.31 

and 7.32. The failure surface is also shown in figures 7.31 & 7.32. It can be seen 

from figure 7.31 that the first yield surface of borehole one encloses a very small 

area in the stress space and for higher stresses it levels off parallel to the isotropic 

axis. The first yield surface of borehole two samples (figure 7 .32) increases up to 

approximately p' = 200 kPa and after that it levels off parallel to the p' axis. 
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The bond yield surface in figures 7.31 and 7.32 occurs at higher deviator stress 

levels than the first yield surface. The failure surface in figure 7.31 and 7.32 is 

shown at a higher deviator stress levels than the bond yield surface. The bond yield 

surface of borehole one encloses an area with a stress level of q = 5 kPa to 68 kPa in 

the q- p' space. On the other hand the bond yield surface for borehole two encloses 

an area with a stress level of q = 34-110 kPa. In can be seen from these figures that 

the bond yield surface occurs well below the failure surface and if there were a zone 

of coincidence (Zone 1 as defined by Malandraki and Toll, 1996) it would only be at 

very low stress levels ( <20 kPa). 

At p' > 300 kPa, the bond yield surface of borehole one moved towards the isotropic 

axis. The bond yield surface of borehole one coincides with the isotropic axis at 

about 500 kPa, confirming the suggestion earlier that bond breakdown would occur 

in isotropic compression for tests at higher confining pressures. This is consistent 

with the observation that no clear yield can be observed in samples with effective 

confining stress > 500 kPa. The bond yield surface of borehole two maintains a 

parallelism with the p' axis for p' values around 200-400 kPa (figure 7.32). 

However, it is possible that this also curves down to the p' axis between 400-500 

kPa, since no clear yield is seen in samples tested at 500 kPa and higher. By this 

stage a major change in stiffness values has taken place due to breakdown of bonds. 

The complete destruction of bonds will occur at higher stresses and at larger strains. 

An attempt is made to identify the final yield surface for the natural state soils of 

borehole one and two. The final yield is identified based on the point of maximum 

curvature on the deviator stress versus strain curves (as suggested by Malandraki and 

Toll, 1996). The identified final yield points are also plotted in the q-p' space in 

figures 7.31 and 7.32 to represent the final yield surfaces of both boreholes. It can be 

seen from these figures that the final yield surfaces occur at higher deviator stress 

levels than the first and bond yield surfaces. The final yield surface nearly coincides 
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with the failure surface at lower mean effective stress levels. After that the final 

yield surface diverts from the failure surface at higher stresses ( at p' greater than 

200 kPa). After bond yield, the soil involves the combined influences of both the 

remaining bonding and the plastic strains. When the soil reached the final yield 

surface, it loses almost all of its stiffness due to bonding. After final yield, a soil's 

behaviour is controlled only by friction and failure occurs at much larger strains due 

to slippage of individual grains. 

7 .2.3. 7. Smann §train behaviou~r 

Stiffness of a material largely determines the strains and displacements in structures, 

or in the ground, as they are loaded or unloaded. It governs displacements at 

working load (Atkinson, 1993). A reduction in stiffness is significant in soil 

dynamics, earthquake engineering, offshore engineering and in ground movement 

(Little & Hataf, 1993). Changes of stiffness due to dynamic loading are therefore 

important in design of structures. Small strain stiffness is required for analysis of the 

dynamic and small strain cyclic loading of soils (Viggiani and Atkinson, 1995). 

Scholey et al. (1995) mentioned that the importance of using the small strain 

stiffness of soils for foundation settlement studies has received widespread 

acceptance. They also noted that typically, foundation settlements cause axial strains 

within the deforming soil mass on the order of 10 -I to 10-2 %. Since the stress- strain 

behaviour of soils is non-linear, the modulus for use in settlement calculations 

should be derived from the small strain region of the stress strain curve at strains 

corresponding to those anticipated during foundation settlement. Yielding 

characteristics at smaller strain of a bonded soil can be explained by using stiffness 

data. Therefore an attempt was made to evaluate the tangential stiffness versus mean 

effective stress data at smaller strain (0.0 1 to 2%) to interpret the effects of bonding 

on soil behaviour. 

162 



7 .2.3. 7 .1. Tangential stiffness versus mean effective stress 
(up to 2 % strain) 

Tangential stiffness at smaller strain for the natural state samples of borehole one 

and two will be studied in this section. Individual contours for O.OI %, 0.1 %, 0.2%, 

0.3%, 0.5%, I% and 2% of strain of borehole one samples are plotted with tangential 

stiffness versus p' values in figure 7.33 and 7.34. Individual contours with increasing 

strain (0.01% to 2%) for borehole two samples are plotted in figure 7.35. It can be 

seen from these figures that the stiffness values for natural soils of both boreholes 

decrease with increasing strain. The G1an values are highest for O.OI% contour and 

lowest for 2% contour. The reduction of stiffness values with increasing strain is due 

to the breakdown of the bonded structure of the soil (Malandraki & Toll, 1996). The 

major changes of stiffness values are observed for strain contours 0.0 I% to 0.1% 

where bond destruction is abrupt. For contours 0.01% to 0.2% of borehole one 

samples, a rapid increase of G1an with p' is observed for tests I un50-I un200. The 

slope of the curve changes for the same contours for tests I un300-1 un500. It can be 

seen from figure 7.35 that the O.OI% strain contour of borehole two initially showed 

an increase up to p' = 200 kPa and after that it curved down towards the p' axis at 

higher stresses. The strain contours O.I% to 2% of borehole two initially showed an 

increase of stiffness value up to p' = 300 kPa. At p' > 300 kPa the slope of the curve 

changes (figure 7.35). The bond yield of borehole one and two samples was 

observed in between 0.003%-0. I4% strain and 0.003-0.I5% strain respectively. 

Strain contours for I% to 2% of both boreholes are very close to the p' axis where 

G1an values are very low. This low value of G1an indicates that the soil has already lost 

almost all of the stiffness due to breakdown of bonds (Malandraki and Toll, I996). 

In this study a drop of tangential stiffness value from approximately 700 MPa at 

0.01% strain to about approximately 10 MPa at 1% strain was observed for borehole 

one samples (figures 7.33 and 7.34). The borehole two samples showed a reduction 

of stiffness value from approximately 300 MPa at 0.01% strain to about 6 MPa at 

2% strain (figure 7.35). 

163 



Burland (1989) reported a drop of secant stiffness value from 1700 kPa at 0.003% 

strain to about 150 kPa at 1% strain on London Clay. Atkinson et al. (1992) also 

mentioned a drop of tangential stiffness values from 56 MPa at 0.005% strain to 30 

MPa at 0.05% strain. Similar types of results are also reported by Malandraki 

(1994), Malandraki & Toll (1996) and Smith et al. (1992). Smith et al. (1992) 

observed that the tangential stiffness curves are non-linear at small strain and 

stiffness values also decline with increasing strain. They also noted that stiffness 

values gradually diminish with increasing strain. Similar reflections are also 

observed in this study. 

7.2.3.7.2. Deviator stress versus mean effective stress (up to 
2% of strain) of the natural soils of borehole one and two 

Small strain behaviour is also studied by reference to q vs. p' space. Strain contours 

from 0.01% to 2% of borehole one and two are plotted in the q - p' plane in figures 

7.36 and 7.37 respectively. The failure surface is also plotted in the same figures. It 

can be seen from figure 7 .36, q value increases with increasing strain up to 

approximately p' = 250 kPa for borehole one samples. The slope of each contour 

curve decreases at higher stresses. For p' greater than 250 kPa strain contours of 

borehole one gradually change direction with increasing mean effective stress and 

showing a bending towards the p' axis. The lowest value of q occurs for 0.01% strain 

contour and the highest value for 2% strain contour. Strain contours 0.0 I% to 0.1% 

are close to the p' axis. The initial loss in tangential stiffness was found to occur in 

between 0.001% to 0.02% strain. Strain contours 0.3% to 2% are close to the failure 

surface (figure 7.36). At higher mean effective stress (greater than 425 kPa) these 

contours of borehole one showing a tendency to move towards the isotropic axis 

with a small drop of q value. Bond yield was found to occur in between 0.003% to 

0.14% strain. At low mean effective stresses, the 2% strain contour is very close to 

the failure surface and at higher mean effective stress levels the distance between the 

two increases with increasing p'. 
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The derived strain contours for borehole two samples are close to linear up to p' = 
120 kPa (figure 7 .37). After that the slope of each contour curve decreases at higher 

stresses. It can also be seen from figure 7.37 that the strain contours of borehole two 

gradually change direction with increasing strain. The lowest strain contours 

(0.01 %-0. 3%) are close to the p' axis and higher strain contours (0.5%-2%) are 

close to the failure surface. At p' greater than 350 kPa, 0.01% to 0.5% strain 

contours of borehole two showed a tendency to move towards the p' axis at higher 

mean effective stresses with a small drop of q value. The first yield points of 

borehole two was found to occur in between 0.0004% to 0.006% strain and the bond 

yield was observed at around 0.003-0.15% strain. 

Jardine et al. ( 1984) observed the small strain contours in s' vs. t plane and noted 

that with increasing strain, contours are close to failure line. They also reported a 

loss of stiffness values when the small strain contours approach the failure surface. 

Malandraki ( 1994) also reported similar results. The observed small strain behaviour 

is consistent with the results quoted by Jardine et al. (1984) and Malandraki (1994). 

7 .3. ConsoHdated mumdrainerll triaxiall tests on destrUictunred 
samples of lborellloDe one and two 

Destructured samples were prepared from the natural soils of the two boreholes and 

reformed with the same void ratio and dry density as the natural samples. The 

destructured sample preparation is described in chapter 3. Testing details of 

destructured samples of boreholes one and two are listed in tables 7.5 and 7.6 

respectively. Destructured samples of each borehole were also named by using 

letters and numbers. For example, test 2ud 100 means a test carried out on a sample 

of borehole two, undrained on a destructured sample which was consolidated at a 

confining pressure of 100 kPa. 
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Table 7.5: Testing details of destructured soils of borehole 
one, Location: Mirpur 

Test Depth Initial §pecifi Bulk Dry Initia Wet 
name (m) moisture c density density I void weight 

content gravity p Pd ratio of 
w% Gs (Mglm3

) (Mglm3
) e sample 

(g) 
1ud50 1.22- 18.8 2.61 1.919 1.616 0.616 165.42 

1.37 
1udl00 1.37- 18.4 2.60 2.003 1.691 0.537 172.63 

1.52 
1ud200 4.72- 14.4 2.64 2.113 1.847 0.429 182.16 

5.08 
1ud300 5.68- 17.6 2.65 1.979 1.683 0.574 170.55 

5.85 
1ud400 6.90- 17.2 2.59 1.991 1.698 0.525 171.63 

7.15 
1ud500 7.16- 17.2 2.61 1.989 1.697 0.537 171.44 

7.62 
1ud600 8.68- 17.4 2.60 2.100 1.789 0.453 181.05 

8.83 

1ud800 9.6- 15.6 2.62 2.045 1.769 0.481 176.22 
10.0 

Dry 
weight of 
sample 
(g) 

139.25 

145.76 

159.22 

145.05 

146.40 

146.33 

154.24 

152.47 

The behaviour of the destructured soils of both boreholes under undrained triaxial 

compression testing is presented in this section. Stress strain curves of destructured 

soils of borehole one and two are evaluated, stress paths are clarified, and the failure 

surface for destructured soils of each borehole is plotted on the q-p' stress space. 

Tangential stiffness is discussed with the help of Gtan versus p' curves. The strain 

contours up to 2% strain are presented in the q versus p' space. Comparisons are 

made between the natural and destructured soils of each borehole. 
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Table 7.6: Testing details of destructured soils of borehole two 

Location: Curzon Hall 

Test Depth Initial Specifi Bulk Dry Initial Wet 
name (m) moisture c density density void weight of 

content gravity p Pd ratio sample 
w% Gs (Mglm3

) (Mglm3 e (g) 
) 

2ud50 1.10- 17.9 2.59 2.179 1.840 0.404 186.80 
1.30 

2ud100 1.32- 17.1 2.62 2.168 1.854 0.411 187.40 
1.47 

2ud200 3.50- 14.2 2.64 2.150 1.878 0.403 185.07 
3.65 

2ud300 3.68- 15.3 2.62 2.056 1.739 0.498 173.70 
3.88 

2ud400 4.13- 14.2 2.60 2.057 1.802 0.440 177.22 
4.33 

2ud500 4.60- 14.9 2.59 1.976 1.720 0.504 170.29 
4.80 

2ud600 5.45- 16.1 2.63 2.060 1.774 0.482 177.58 
5.65 

2ud800 6.09- 17.3 2.61 2.048 1.747 0.494 176.50 
6.40 

7.3.1 Stress strain curves of destructured soils of borehole 
one and two 

The deviator stress versus strain curves for destructured soils of borehole one and 

two are shown in figures 7.38 and 7.39 respectively. The non-linear curve in each 

case reaches a maximum deviator stress at large strain. After that the value of q 

decreases with an increase of strain. It can be seen from figure 7.38, the maximum 

deviator stress of borehole one sample in each case increases with increasing 

confining pressures except for sample I ud300. The maximum deviator stress for 

sample I ud300 is slightly lower than the sample I ud200 with increasing confining 
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weight of 
sample 
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158.58 

160.03 

162.08 

150.73 

155.32 

148.23 

153.00 

150.60 



pressure. It can also be seen from figure 7.38, at low confining pressures that the 

maximum q points are not sharp. However, at high confining pressures the 

maximum q points show a prominent peak. 

The stress strain curves of borehole two samples showed a maximum point without 

any prominent peak (figure 7.39). The maximum deviator stress in each case of 

borehole two samples also increases with increasing confining pressure (figure 

7 .39). The strains to attain the maximum q value for samples of borehole one lie 

between 8% to 28%. The lowest strain to reach the maximum q value is encountered 

for sample 1 ud800 and the highest value is observed in sample 1 ud200. The 

variation of strains to reach the maximum q for destructured samples 1 ud50-1 ud500 

is very small, except for sample 1 ud300. These samples reached the maximum value 

at about 24% to 26% strain. However, the samples 1 ud600-1 ud800 reached a 

maximum q value at lower strains ranging from 8% to 12%. The strains to attain 

maximum q value for samples of borehole two lie between approximately 15% to 

28%. The maximum deviator stress and the corresponding values of axial strain, 

mean effective stress and the excess pore water pressure for both boreholes are listed 

in Table 7.7. 
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Table: 7.7 Summary of different stress strain parameters at 
maximum deviator stress for destructured soils of borehole one and 
two 

Sample Maximum Excess p.w.p. Axial strain at Mean effective 
number deviator stress atmaximumq maximumq stress (p') at 

( q) (u) (!;:a%) maximumq 
kPa kPa kPa 

lud50 96 -14 24.16 91 
ludlOO 290 -89 26.23 267 
lud200 396 -73 27.95 387 
lud300 256 122 14.31 262 
1ud400 455 105 26.21 440 
1ud500 476 89 26.96 504 
1ud600 599 173 12.25 615 
lud800 892 254 8.46 837 
2ud50 170 -60 27.78 160 
2udl00 205 -49 27.53 205 
2ud200 272 -50 23.64 306 
2ud300 273 48 24.93 317 
2ud400 343 163 18.23 338 
2ud500 418 216 15.89 420 
2ud600 476 139 19.78 612 
2ud800 489 321 15.90 639 

7 .3.2. Excess pore water pressure versus strain curves for 

destructured samples of borehole one and two 

The excess pore water pressures versus strain curves for destructured soils of 

borehole one and two are shown in figures 7.40 and 7.41 respectively. It can be seen 

from figure 7.40 that the excess pore water pressure (p.w.p.) increased first and 

reached a peak region where the excess p.w.p. is maximum. After that the excess 

p. w .p. value gradually decreased with increasing strain in each case. Test I ud50-

l ud200 of borehole one generated both positive and negative values of excess p.w.p. 

At low confining pressures for tests 1 ud50-l ud200, the values of excess p. w .p. are 

initially positive and negative values are observed at higher strains. At high 
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confining pressures for tests 1 ud300-1 ud800 of borehole one, the excess p.w.p. 

values increased first and then gradually decreased with further straining. 

The destructured samples of borehole two also developed both positive and negative 

excess p.w.p. at low confining pressures (tests 2ud50-2ud200) and only positive 

p.w.p. (tests 2ud300-2ud800) at high confining pressures (figure 7.41). No negative 

pore water pressure was generated at higher confining pressures for both boreholes 

(figures 7.40 & 7.41). The reasons for generation of negative excess p.w.p. values at 

low confining pressures (50-200 kPa) is due to the tendency for the samples to dilate 

during shearing. 

At low confining pressures (lud50-1ud200), the maximum positive excess p.w.p. 

values of borehole one lie in the range of approximately 20 kPa to 80 kPa and those 

of borehole two (2ud50-2ud200) lie in between 20 kPa to 50 kPa. At high confining 

pressures the excess p.w.p.values are in the range of approximately 150 kPa to 260 

kPa for destructured soils of borehole one and approximately 50 kPa to 320 kPa for 

destructured soils of borehole two. The excess p.w.p. values at maximum deviator 

stress in each case are listed in Table 7.7. In all destructured samples ofborehole one 

and two, excess pore water pressures reached their maximum value at much smaller 

strains than the point of maximum q. After that the excess p.w.p. values 

progressively decreased with an increase of strain. 

It can be seen from figure 7.40 that the excess p. w .p. for tests 1 ud300 and I ud800 

ultimately reached a constant value at strains in excess of 22%, which indicates that 

these two samples might have reached the critical state (Atkinson, 1993). Test 1 ud50 

also reaches a stable excess p.w.p. and therefore is probably very close to the critical 

state. It can also be seen from figure 7.40 that the excess p.w.p. for other 

destructured samples of borehole one seems to be decreasing continuously until the 
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end of the test. Therefore these samples have not reached the critical state at the end 

of shearing. 

The excess p.w.p.values for borehole two samples at high confining pressures (for 

tests 2ud400-2ud800) initially reached a peak value and after that they move towards 

an almost constant value at higher strains (figure 7.41 ). Therefore these samples of 

borehole two might have reached the critical state at strains in excess of 20%. Other 

destructured samples of borehole two (for tests 2ud50-2ud300) have not reached the 

critical state at the end of shearing. 

7.3.3 q/p' ratio vers1ll!s strain c1rnrves for destructured solms of 

two lborelhloJles 

The q/p' ratio versus axial strain curves for destructured soils of both boreholes are 

shown in figures 7.42 and 7.43. It can be seen from figure 7.42 that the maximum 

q/p' ratio for borehole one samples in each case is developed at strains ranging from 

0.85% to 10.66%. The maximum stress ratio value for borehole two samples 

developed at axial strains of approximately 1-10%. The maximum stress ratio values 

of destructured soils of borehole one slightly decrease with the increase of effective 

confining pressure. The maximum q/p' values of destructured soils of borehole one 

lie between 1.02 to 1.33 and those of borehole two lie between 0.78 to 1.35. It can be 

seen from figures 7.38 and 7.42 that the maximum q/p' ratios for destructured soils 

of borehole one in each case occurs at lower strain than the maximum deviator stress 

which occurs at higher strain. Similar reflections are also observed for borehole two 

samples (figures 7.39 and 7.43). 
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It can also be seen from figures 7.42 that all destructured samples of borehole one 

show a tendency of continuous dropping of q/p' values after reaching the maximum 

value. Some of the destructured samples of borehole one (tests 1 ud 100, 1 ud500 and 

1 ud800) do eventually exhibit an almost constant stress ratio state above 24% strain. 

The destructured samples of borehole two especially at high confining pressures (for 

tests 2ud300-2ud600) showed a constant stress ratio state in excess of 20% strain. 

Similar type of results is also observed by Allman and Atkinson (1992) on the 

reconstituted Bothkennar Clay soil. 

7 .3.4. Stress paths in the qsp' plane for destructured soils of 

borehole one and two 

Effective stress paths for destructured soils of borehole one and two are shown in 

figures 7.44 and 7.45 respectively. At the beginning of each test each stress path of 

borehole one increases almost vertically and at high confining pressures shows a 

tendency to move towards the left with the increase of q. A sharp bending towards 

the right side is observed in all curves when they approach the failure zone. In the 

failure zone, the stress path curves of borehole one stabilize for a while and they 

tend to move along the failure surface. 

It can be seen from figure 7.45 that the stress paths of borehole two samples for tests 

2ud50-2ud200 initially show near verticallity with increasing q up to a certain level. 

After that each curve showed a tendency to move towards the left at high confining 

pressures with the increase of q values. Two samples (2ud600 and 2ud800) at very 

high confining pressures initially shows a tendency to move towards the left. A 

sharp bending towards the right is observed in all curves of borehole two when they 

are approaching the failure zone. In the failure zone, these stress paths of borehole 

two (figure 7.45) also stabilize for a while. 
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All destructured samples of borehole one and two failed by bulging. For test 1 ud50 

of boreho1e one, the sample failed by bulging without developing any shear plane. 

For tests 1 ud 100-1 ud400 of borehole one, the samples failed by bulging and 

developed a number of small indistinct shear planes. For tests 1 ud500-1 ud800 of 

borehole one the shear planes were more prominent and distinct and they showed 

limited bulging. The destructured samples of borehole two up to confining pressures 

of 400 k.Pa failed by bulging and developed a number of indistinct shear planes. At 

very high confining pressures (500-800 kPa) the samples failed by bulging and 

produced distinctive shear planes. Hobbs et al. ( 1988) observed a barreling type of 

failure with multiple internal shear planes on remoulded red clay soils of Java, 

Indonesia. 

7 .4. Failure surface for destructured soils borehoie one a:nd 

two 

The failure surfaces for the destructured soils of borehole one and two are defined by 

using the maximum stress ratio values plotted in the q versus p' space. The plotted 

failure surface for a set of tests for destructured soils of borehole one and two is 

shown in figures 7.46 and 7.47 respectively. The failure surface is roughly linear. It 

is to be noted here that the samples reached the maximum stress ratio values before 

reaching the point of maximum q. 
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7.5. Small strain behaviour 

7 .5.1. Tangential stiffness for the destructured soils of 

borehole one and two (up to 2% strain) 

Tangential stiffness at smaller strain for the destructured soils of borehole one and 

two is carefully studied in this section. Individual contours for 0.01% to 0.1% strain 

of borehole one and two are plotted simultaneously with the tangential stiffness 

versus p' values in figures 7.48 and 7.50 respectively. Strain contours from 0.1% to 

2% strain ofborehole one and two are shown in figures 7.49 and 7.51 respectively. It 

can be seen from these figures that the Gtan values for destructured soils of both 

boreholes decrease with increasing strain. The highest values of Gtan are found at 

0.01% strain and the lowest values of G1an are found at 2% strain. The major changes 

of stiffness values are observed between strain contours for 0.01% to 0.1 %. 

The destructured soils of borehole one showed a drop of tangential stiffness value 

from approximately 180 MPa at 0.01% strain to about approximately 5 MPa at 1% 

strain (figures 7.48 & 7.49). The stiffness values of the destructured soils of borehole 

two dropped from a value of approximately 150 MPa at 0.01% to about 4 MPa at 

2% strain (figures 7.50 & 7.51). Similar results are reported by Malandraki (1994) 

on the destructured artificial soi Is. All man & Atkinson ( 1992) observed that the 

stiffness value of the reconstituted Bothkennar Clay gradually diminishes with p'. 
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7.5.2. Strain contours (up to 2% strain) for the 

destructured soils of borehole one and two 

Strain contours up to 2% strain for the destructured soils of borehole one and two are 

plotted in q versus p' space and shown in figures 7.52 and 7.53 respectively together 

with the appropriate failure surfaces. It can be seen from these figures that the q 

value increases with increasing strain. The lowest value of q occurs at 0.01% strain 

and highest value at 2% strain. The derived strain contours are straight lines, 

although these seems to be some curvature near the origin for borehole one. Lower 

strain contours (0.01% to 0.3%) are close to the p' axis and higher strain contours 

(0.5% to 2%) are close to the failure surface. It can be seen from the strain contours 

of borehole one (figure 7.52), for all tests q value gradually increases with the 

increase of p'. At higher p'(p' >200 kPa) the distance between the strain contours 

increases with increasing strain. The strain contours turn in direction from the p' axis 

to the failure surface with increasing strain (figure 7 .52). Similar reflections are also 

observed for borehole two samples as shown in figure 7.53. The strain contours of 

both boreholes showed a loss of stiffness values when the small strain contours 

approach the failure surface with increasing strain (figures 7.49 and 7.51). Similar 

results are also reported by Jardine et al. (1984) and Malandraki (1994). 

7 .6. Comparisons between the behaviour of the natural & 

destructured soils of borehole one and two under 

undrained compression 

In this section, consolidated undrained triaxial test results carried out both on natural 

and destructured soils of borehole one and two are compared and evaluated. 

Comparisons are made between the stress strain curves, stress path results, v versus 
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p' curves of the natural and destructured soils of both boreholes. The positions of the 

two failure surfaces for natural and destructured soils in the q-p' space are also 

compared. Comparisons between the small strain contours and loss in tangential 

stiffness with increasing strain for natural and destructured soils are also discussed. 

7 .6.1. Comparisons between stress strain behaviour of 

natural and destructured soils of borehole one and two 

The deviator stress versus strain curves for the natural and destructured soils of 

borehole one and two are shown in figures 7.54 and 7.55 respectively. It can be seen 

from these figures, natural state samples in all cases show higher values of 

maximum deviator stress than those of the destructured soils. At low confining 

pressures, both the natural and destructured samples of both boreholes did not show 

a prominent peak, but at high confining pressures both types of samples have shown 

a point where deviator stress is maximum. The destructured soils of both boreholes 

showed lower maximum deviator stress levels, lower stiffnesses and larger strains to 

reach maximum deviator stress than the natural samples due to the destruction of 

bonds. 

In natural state samples of borehole one, the strains to attain the maximum deviator 

stress range between 4% to 19%, whereas destructured soils of the same borehole 

reached a maximum value of q between 8% to 28 % strains (figure 7.54). The 

natural samples of borehole two attained a maximum q value at axial strains of 8-

26% and the destructured samples of the same borehole reached a maximum value 

in between 15%-28% strains. This variation in the stress strain curves of natural and 

destructured soils indicates that destructuring does reduce the strength, clearly 

indicating the presence of structure (bonding) in the natural material. Allman and 

Atkinson (1992), Hight et al. (1992) observed higher values of peak deviator stresses 
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of the intact samples of Bothkennar Clay soil than those of destructured and 

reconstituted samples at the same water content. Hight et al. (1992) also observed a 

variation of axial strain with depth to reach the maximum stress level as observed in 

this study. Leroueil and Vaughan (1990) pointed out that structuring increases 

strength and enlarges the stress domain and observed that destructured soils exhibit 

lower stress levels than the structured soils. Sridharan ( 1988) noted undisturbed 

tropical soil exhibits higher deviator stress level than that of the remoulded soils. 

The derived stress paths for both the natural and destructured soils of borehole one 

and two are compared and shown in figures 7.56 and 7.57. At low confining 

pressures (50-100 kPa), the stress paths of natural soils of borehole one are 

characteristically concave towards the right hand side. Other natural samples of the 

same borehole (200-600 kPa) showed a tendency to move linearly towards the left 

(figure 7.56). At very high confining pressure (800 kPa) the initial part of the 

derived stress path is almost linear and vertical. In contrast, the initial part of all the 

destructured samples (low and high confining pressure) of borehole one is linear and 

vertical. With increasing confining pressures (300-600 kPa) the destructured samples 

showed a tendency to move towards left. All the natural and destructured samples 

showed a characteristic bending towards the right hand side when they approach the 

failure zone. This type of variation in the stress paths was also observed for natural 

and destructured soils of borehole two (figure 7.57). The derived stress paths for 

natural soils showed higher stress levels in the q-p' space than those of the 

destructured soils (figure 7.56 and 7 .57). This variation in the stress paths indicates 

the destructuring of clay (Clayton et al. 1992). 

Differences in failure type were observed between the natural and destructured soils 

of two boreholes. The natural state soils of borehole one and two failed with a 

definite single shear plane, which indicates brittle failure of the samples. The 

destructured soils failed by bulging in a ductile manner. At low confining pressures 
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the destructured samples of both boreholes failed with prominent bulging and 

developed a number of small indistinct shear planes. At very high confining 

pressures they failed with small bulging and distinctive shear planes. Sridharan 

( 1988) observed peak strength in intact tropical soil samples with brittle failure. The 

destructured samples as described by Leroueil et al. (1979) showed ductile failure. 

7 .6.2. Comparisons between the natural and destructured 

failure surfaces of borehole one and two 

The failure surfaces for the natural and destructured soils of borehole one and two 

are shown in figures 7.58 and 7.59. The failure surface for natural soils exists at 

higher deviator stresses than the destructured failure surface in each case. It can be 

seen from figure 7.58 that the natural failure surface for borehole one samples is 

slightly curved. However, the destructured failure surface is roughly linear. The 

natural failure surface of borehole one (figure 7.58) showed a curvature up to 

approximately p' = 450 kPa. Above 450 kPa, the slope of the natural failure surface 

decreased slightly. The natural failure surface at p' greater than 450 kPa turned close 

to the destructured failure surface and showed a convergence of the two failure 

surfaces at approximately p' = 600 kPa (figure 7.58). That is, at higher stresses, the 

limiting stress ratios of the natural samples will be governed by that of the 

destructured soils. 

It can also be seen from figure 7.59 that the natural failure surface for borehole two 

samples initially showed a curvature up to approximately p' = 400 kPa and after that 

the slope of the curve is slightly reduced with increasing p'. At approximately p' 

greater than 550 kPa the natural failure surface almost coincided with the 

destructured failure surface. 

178 



The curvature of the natural failure surface is due to the bonded structure of the soil. 

The variations of the shape of the two failure surfaces justify the presence of 

bonding in natural samples. The convergence of the two failure surfaces also 

indicates that the bonded structure of the soil is destroyed at higher stresses. 

7 .6.3. Comparison between the tangential stiffness versus 

mean effective stress for natural and destructured soils of 

borehole one and two (up to 2% strain) 

Comparison between tangential stiffness with increasing strain for natural and 

destructured soils of borehole one and two are shown in figures 7.60 to 7.63. Strain 

contours for 0.01% to 0.1% for both boreholes are plotted in figures 7.60 and 7.62 

with tangential stiffness versus p' values for natural and destructured soils. G1an 

versus p' curves for natural and destructured soils of borehole one from 0.1% to 2 % 

strain are plotted in figure 7 .61. The loss of stiffness with increasing strain for 

natural and destructured soils of borehole two for 0.2% to 2% strain are plotted in 

figure 7.63. 

It can be seen from these figures that the natural soils always showed higher stiffness 

values than the destructured soils which is clear evidence for the existence of 

structure (bonding) in the natural soils. Clayton et al. ( 1992) also observed that 

undisturbed specimens show higher stiffness values than the reconstituted 

specimens. Jardine et al. (1984) mentioned that intact samples showed higher 

stiffness values than remoulded ones. Atkinson et al. (1993) also reported similar 

results. The highest G1an value calculated for natural soils of borehole one is 

approximately 700 MP a for strain contour of 0.01% and 180 MP a for destructured 
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soils of the same strain contour (figure 7.60). The lowest G1an value observed for 

natural soils is approximately I 0 MPa for 1% strain contour and approximately 5 

MPa for destructured soils of the same contour (figure 7.6I). On the other hand, the 

highest stiffness value calculated for natural soil of borehole two is approximately 

300 MPa at 0.0 I% strain and approximately !50 MPa for the destructured soils of 

the same strain contour (figure 7.62). The lowest value of G1an observed for natural 

soils of borehole two is approximately 6 MPa at 2% strain and approximately 4 MPa 

for the destructured soils of the same strain contour (figure 7.63). 

It can be seen from these figures that at 2% strain, G1an values of both natural and 

destructured soils are very close to each other and these contours run very close to 

the p' axis. The difference between the strain contours decreases with increasing 

strain. It is also observed that the major change of stiffness values is observed for 

strain contours 0.01% to 0.1% for the natural soils of both boreholes. Malandraki 

and Toll (1994) reported similar results and they also observed that bonded soils 

show higher stiffness values than the destructured material up to I% strain. Similar 

reflections are also observed in this study. 

7 .6.4. Comparisons between strain contours (up to 2% 

strain) for natural and destructured soils of borehole one 

and two in the q versus p' space 

Deviator stress versus mean effective stress curves for natural and destructured soils 

of borehole one and two are plotted in figures 7.64 and 7.65 respectively. A 

comparison of strain contours from 0.0 I% to 2% strain for both natural & 

destructured soils are shown in these figures in the q -p' space. The natural failure 

surface is also plotted in these figures. The strain contours marked by solid lines 
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represent the curves for natural soil and the contours marked by dotted lines 

represent the curves for destructured soils. 

It can be seen from figure 7.64 that the natural strain contours of borehole one are 

curved after showing near linearity approximately up to p' = 80 kPa. Conversely, 

destructured strain contours are straight (figure 7 .64). The natural strain contours of 

borehole two are curved after showing linearity up to approximately p' = 100 kPa 

(figure 7.65). At higher p' values strain contours for natural samples of the two 

boreholes showed a tendency to move towards the p' axis with a small drop of q 

value. The difference between the position of the natural and destructured strain 

contours increases with increasing strain. Therefore the bonded structure of the soil 

has a strong influence on the development of strain (Malandraki and Toll, 1994 ). 

7 o 7 o Critical state behaviour 

In this section critical state behaviour of the tropical clay soils of Dhaka are 

discussed. At first results are presented for natural soils of borehole one and two and 

then the critical state condition for the destructured samples of the two boreholes are 

discussed. Finally based on all the observed results on natural and destructured soils 

an estimation was made to obtain the critical state parameters for these soils. 

7.7.1 Critical state behaviour for natural soils of borehole one and 

two 

From the q/p' ratio versus strain graphs for natural soils of borehole one and two 

(figures 7.5 and 7 .6) it was found difficult to get a single common ultimate stress 

ratio value for these soils. The values of maximum q/p' ratio showed a range of 

181 



variations. The maximum q/p' values obtained for borehole one samples lie between 

1.11 to 1.60 and those of borehole two samples lie in between 0.81 to 1.66. It is 

interesting to see that (figure 7 .5) the two natural samples of borehole one at low 

confining pressures (50 kPa and 100 kPa) show a similar ultimate stress ratio around 

1.05, perhaps suggesting that this is the critical state stress ratio. Similarly three 

natural samples of borehole two (figure 7.6) at low confining pressures (50, 100 and 

300 kPa) also suggesting a similar common ultimate stress value around 0.96. 

However, the samples at high confining pressures of both boreholes showed lower 

values with a wide range of variations. It is important to note here that the samples at 

low confining pressures do not form distinct shear surfaces, therefore it is possible 

that the ultimate stress ratio for these tests might represent the critical state. On the 

other hand, samples at high confining pressures form distinct surfaces and once that 

occurs only a narrow band of soil is being affected by shearing and the 'overall' 

stress ratio and volume change is no longer representative of the sample as a whole. 

It is therefore difficult to justify that these samples at high confining pressures truly 

reached the critical state. This makes it difficult to construct a single unique CSL for 

the natural soils from the two boreholes. Allman and Atkinson ( 1992) mentioned a 

value of M = 1.38 for the Bothkennar Clay and noted that few intact samples of 

Bothkennar soil reached a reasonably well defined constant ratio states at very large 

strains. 

All the undrained results of natural soils of both boreholes are also presented in the v 

(specific volume) versus p' space to see the change of specific volume with 

increasing mean effective stress. These results are also carefully evaluated in terms 

of critical state. The v versus p' curves for natural soils of borehole one and two are 

shown in figures 7.66 and 7.67 respectively. Since the tests were undrained, the 

specific volume for each test remains constant with increasing mean effective stress 

throughout the test. By considering the starting and end points of each test it is 

difficult to construct a single critical state line for natural samples of both boreholes. 

However, if greatest consideration is given to the low stress tests (up to 300 kPa) 
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where it was observed that failure did not involve a single distinct shear plane, a 

trend in terms of changes in mean effective stress (p') can be seen. For tests at 50, 

100 and 200 kPa of both boreholes, p' increases suggesting these samples start from 

a state that is denser than the critical state. The test at 300 kPa for both boreholes 

shows p' decreasing, indicating a state looser than the critical state. This suggests the 

CSL would fall between the end points for these four tests. The tests at 400-800 kPa 

(figures 7.66 and 7 .67) show an overall movement of an increase in p', even though 

they are above the apparent CSL. This is probably due to the formation of distinct 

shear planes in these tests. Initially they do show a decrease in p' consistent with the 

sketched CSL. The change in direction may represent the initiation of a distinct 

shear surface when the pore water pressures measured no longer indicate what is 

happening within the failure surface itself. 

7.7.2 Critncan state belrnavnmnr lfor destrlllldll.lllred soils of borehone one 

and two 

The destructured samples of borehole one and two did not show any single common 

stress ratio value. It can be seen from the stress ratio versus strain graphs of two 

boreholes (figure 7.42 and 7.43) that the maximum stress ratio value for destructured 

samples of borehole one lie between 1.02 to I.33 and those of borehole two lie 

between 0.78 to 1.35. 

It can be seen from figure 7.42 that the tests I ud50, I ud I 00, 1 ud200, 1 ud400 of 

borehole one show a ultimate stress ratio around 1.02, perhaps suggesting that this is 

the critical state stress ratio. The stress ratio value for test 1 ud500 is also very close 

to the stress ratio value of 1.02 for other low confining pressure tests. However, the 

destructured samples of borehole two showed a wide range variations in the stress 
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ratio values. Therefore, it is clear that there is no single common value of ultimate 

stress ratio for destructured soils for either borehole. 

The samples of both boreholes do not form distinct shear surfaces at low confining 

pressures, therefore the common stress ratio value obtained at low confining 

pressures might represent the critical state. The stress ratio values for higher 

confining pressure samples might not represent the critical state (although tests 

1 ud600 and 1 ud800 showing a common stress ratio value) as they formed distinct 

shear surfaces. This wide range of variations of maximum stress ratio values 

suggesting that constructing a single critical state line is very difficult for these soils. 

However, based on the observed specific volume (v) and mean effective stress (p') 

values for different tests of both boreholes during shearing an attempt is made to 

evaluate the results in terms of critical state. The v versus p' curves for destructured 

soils of borehole one and two are shown in figures 7.68 and 7.69 respectively. It was 

also found difficult to construct a single critical state line for the destructured soils of 

both boreholes. If greatest consideration is given to tests 1 ud50, 1 ud 100, 1 ud200 and 

1 ud300 where distinct shear surfaces were not observed, then a line can be drawn 

(figure 7 .68) between 1 ud50, 1 ud 100 and 1 ud200 which show an increase in p' 

during shear (indicating a state 'denser' than the CSL) and 1 ud300 which showed a 

decrease in p'. Tests 1 ud400 to 1 ud800 initially show a decrease in p' consistent with 

a move towards the sketched CSL. However, the path directions are then reversed, 

possibly due to the formation of distinct shear surfaces when the measured pore 

pressures no longer represent the values within the failure surface itself. 

In borehole two, tests 2ud50-2ud200 show an increase in p' during shear (indicating 

a state 'denser' than the CSL) and test 2ud300 initially showed a decrease in p'. 

Therefore, a highly tentative CSL can be drawn for the destructured soils of borehole 
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two as shown in figure 7.69. Other tests of borehole two (2ud400 to 2ud800) initially 

show a decrease in p' and consistent with a move towards the CSL. The path 

directions are then reversed, which might be due to the formation of distinct shear 

surfaces when the measured pore pressures are not representative. Therefore, the 

critical state line defined as described above will not be representative. 

7.7.3 Comparison between critical state behaviour of 

natural and destructured soils 

The 'v' versus 'p'' curves for natural and destructured soils of borehole one and two 

are also compared and shown in figures 7.70 and 7.71. It can be seen from figure 

7.70 that the natural samples of borehole one at low confining pressures (for tests 

50-200 kPa) moved from left to right and high confining pressure samples moved 

initially from right to left and then moved again towards the right. It is also 

interesting to note that samples at low confining pressures (50-200 kPa) developed 

negative p.w.p. at large strain due to a tendency to dilate. These samples at low 

confining pressures do not form distinct shear surfaces and the common constant 

stress ratio value (as discussed earlier) of some of these soils (50-1 00 kPa) might 

represent the critical state. The destructured samples of borehole one at low 

confining pressures almost maintained the same trend. 

On the other hand, the high confining pressure samples (400-800 kPa) initially 

moved towards the assumed critical state line due to a tendency to contract that 

produces positive pore water pressures. However, these samples at high confining 

pressures formed distinct shear surfaces and it is questionable that the samples of 

borehole one at high confining pressures truly reached the critical state. The fact that 

they change direction and move away from the CSL suggests that the formation of a 
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distinct shear surface affected their behaviour and the pore water pressures being 

measured were no longer representative of what was happening within the failure 

surface. 

Again from figure 7. 71, it can also be seen that the natural and destructured soils of 

borehole two at low confining pressures (50-200 kPa) also moved from left to right 

side with almost a constant specific volume. It was found difficult to establish a 

single critical state line for these soils. The constant stress ratio value (which is 

discussed earlier) of tests 50 and 100 kPa might represent the critical state as they 

did not form distinct shear surfaces. However, at high confining pressures (400-800 

kPa) both the natural and destructured soils of borehole two showed a tendency to 

contract with increasing p'. That is they moved towards the assumed critical state 

line with a lower specific volume. However, as these soils at high confining 

pressures also formed distinct shear surfaces, it is difficult to establish with 

confidence that these samples reached the critical state at very large strains. 

Atkinson ( 1993) pointed out that the critical state parameters for a particular soil are 

generally considered to be constant. The variation seen in the stress ratio values and 

also difficulties in defining the CSL from v versus p' curves made it difficult to 

obtain typical critical state parameters for these soils. However, based on the all 

observed results on natural and destructured soils a rough estimation was made to 

obtain the critical state parameters for the tropical clay soils of Dhaka. The intrinsic 

critical state parameters M, A. and r for both boreholes are listed in Table 7.8 and 

compared with the other values as quoted by Atkinson (1993) and Allman and 

Atkinson (1992). 
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Table: 7.8 Comparison of obtained critical state parameters of 
borehole one and two samples with some typical soils 

Soil "A. [' M 

London clay 0.16 2.45 0.89 
Kaolin clay 0.19 3.14 1.00 
Glacial till 0.09 1.81 1.18 
Bothkennar cla/ 0.18 2.78 1.38 
Tropical clay, Dhaka 0.07 1.88 1.02-1.05 
(borehole one) 
Tropical clay, Dhaka 0.06 1.83 0.95-0.96 
(borehole two) 

* Atkinson (1993), + Allman and Atkinson (1992) 

Atkinson (1993) mentioned that the intrinsic critical state parameters (M, "A. and [') 

depend principally on the nature of the soil and might vary due to differences in 

grading and mineralogy from sample to sample. The critical state values ("A., [') 

obtained for the tropical clay soils of Dhaka are lower than the quoted values for 

some typical sedimentary clays. The tropical clay soils of Dhaka are of different 

nature from the other sedimentary and glacial clays. The tropical clay soils of Dhaka 

are oxidized, coated with ferruginous cement and contain calcareous and iron 

nodules, and therefore it might be expected that the value of "A., which is related to 

the compressibility of the soil, would be lower than the other soils listed in Table 

7.8. 

7 .8. Comparisons between the behaviour of the natural soils 
two boreholes 

In this section comparisons are made between the stress-strain and yielding 

characteristics of the natural soils of boreholes one and two. The deviator stress 

versus strain curves for natural soils of boreholes one and two are shown in figure 
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7 .72.The stress strain curves for natural soils of borehole one are marked by solid 

lines and those of borehole two are marked by dotted lines. It can be seen from this 

figure, that natural samples of borehole one in all cases show higher values of 

maximum deviator stress than those of borehole two. At low confining pressures 

natural samples of borehole one did not show a prominent peak except for sample 

1 un200,but at high confining pressures they showed a maximum deviator stress. The 

stress strain curves of natural samples of borehole two at low confining pressures 

occurred at a lower deviator stress level than for borehole one samples and did not 

show a prominent peak. At high confining pressures they also showed a lower 

maximum deviator stress level than the borehole one samples. Samples from both 

boreholes attained maximum deviator stress level at large strains. Borehole one 

samples reached the maximum deviator stress level at strains ranging from 

approximately 4% to 19%, whereas borehole two samples reached the maximum 

deviator stress level range between 8% to 26%. 

The derived stress paths for natural samples of boreholes one and two are compared 

and shown in figure 7.73. The derived stress paths for both borehole samples are 

broadly similar in shape. It can be seen from figure 7.73 that borehole one samples 

showed higher deviator stress level than the borehole two samples in the q-p' space. 

A comparison is made between the identified first and bond yield surfaces for 

natural soils of boreholes one and two in figure 7.74. The identified first and bond 

yield surfaces for boreholes one and two are broadly similar in shape, although a 

small variation between the position of the two yield surface is observed. It is to be 

noted here that the natural samples of borehole one initially showed a tangential 

stiffness of approximately 700 MPa at 0.01% strain and those of borehole two 

showed a value of approximately 300 MPa at the same strain contour. This variation 

between the initial stiffness values of two boreholes might indicate that there is a 

variation in bonding between the two boreholes. This variation reflects the variation 
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of the level of structure present in natural soils. Natural variability of the level of 

structure is reported by Hight et al. (1992). They mentioned that variations in the 

level of structure relate to facies type, being highest in the mottled facies and least in 

the laminated facies for Bothkennar Clay. 

It is to be noted here that all samples of boreholes one and two were collected from 

two different sites of the same geological formation. The natural variability of colour 

mottling, soil composition and degrees of weathering within the same geological 

formation in different areas of Dhaka is reported by Monsur (1995). The borehole 

one samples are mainly deep reddish to yellowish brown colour, highly oxidized, 

containing large amount of ferruginous and calcareous nodules with some iron 

concretions and are more weathered than the borehole two samples. In contrast, 

borehole two samples are mainly light yellowish brown to moderate reddish brown 

colour, occasionally bluish colour, less oxidized, containing very small amount of 

iron concretions and nodules and less weathered than the borehole one samples. It 

was discussed in Chapter 5 that the borehole two samples contain lower sand 

fraction and higher clay fraction than the borehole one samples. The lower strength 

of borehole two can be explained by the higher clay fraction and lower sand fraction 

compared to borehole one. Therefore, the site variability of the samples in terms of 

composition, degrees of weathering, variability of colour mottling and local facies 

variations might be responsible for the variations between the results of the two 

boreholes. 

189 



7.9. Compariso111s between Hne stress strann lbelhlaviollllJr off tlhle 
dlestrucbllred sons off borehoRe one andl two. 

The stress-strain behaviour of the destructured soils of boreholes one and two are 

discussed in this section. The deviator stress versus strain curves for destructured 

soils of borehole one and two are shown in figure 7.75. It can be seen from this 

figure, that destructured samples of borehole one in each case show higher values of 

maximum deviator stress than those of borehole two. The stress-strain curves of 

destructured soils of borehole one showed a maximum point without any prominent 

peak up to a confining pressure of 500 kPa. At very high confining pressures tests 

I ud600 and I ud800 showed a maximum stress level with an identifiable peak. 

Conversely, stress-strain curves of destructured soils of borehole two in each case 

are positioned at lower stress levels than those of borehole one and did not show a 

prominent peak up to a confining pressure of 500 kPa. At very high confining 

pressures for tests 2ud600 and 2ud800 they showed maximum points with 

identifiable peaks. Destructured samples of both boreholes attained maximum stress 

levels at large strains ranging from approximately 8% to 28%. 

The derived stress paths for destructured samples of borehole one and two are 

compared and shown in figure 7.76. It can be seen from figure 7.76 that the 

destructured samples of borehole one showed higher deviator stress levels than the 

borehole two samples in the q-p' space. Differences between the stress domain of the 

stress paths of the two boreholes can easily be seen in figure 7.76. The stress domain 

of borehole two in each case occurs at lower deviator stress level than that of 

borehole one. Destructured samples of both boreholes failed with bulging and 

produced number of indistinct shear planes at low confining pressures and distinct 

shear planes at high confining pressures. 
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The variations of the results of destructured soils of two boreholes might be due to 

the natural variability of the samples in terms of composition, degrees of weathering, 

colour mottling and local facies variations. 

7.10 Framework for the Tropical clay soils of Dhaka, 

Bangladesh 

An attempt is made to identify the important characteristics to develop a framework 

of behaviour for the tropical clay soils of Dhaka, Bangladesh. 

7.10.1 Undrained characteristics to identify zones of 

behaviour 

All the observed undrained characteristics based on bonding effects and stress 

history are combined to develop a framework for the tropical clay soils of Dhaka, 

Bangladesh. Data for borehole one is used to illustrate the concepts. Three main 

zones of behaviour can be identified from the relative positions of the failure 

surfaces and the yield surfaces (figure 7.77). The observed natural and destructured 

failure surfaces and the three yield surfaces are plotted in the q versus p' space. It 

was observed that the failure surface for the natural soils coincides with the 

destructured failure surface at approximately p' = 600 kPa. Below this stress level 

the natural soils showed higher deviator stress levels than the destructured soils due 

to their bonded structure. 

It can be seen from figure 7.77 that the trend of the natural failure surface and bond 

yield surface indicates that it might be possible that the bond yield surface coincides 
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with the natural failure surface at very low mean effective stress levels. The final 

yield surface at low confining pressure is very close to the natural failure surface. 

Malandraki and Toll ( 1996) defined a zone I where the bonds entirely control the 

soil's behaviour at failure i.e. the failure surface coincides with the bond yield 

surface. The observed results suggest that if there were a zone of coincidence (Zone 

I), it would only be at very low stress levels (approximately p' less than 20 kPa). It 

is not clearly observed in this study. However, an estimate for the zone boundary can 

be assumed between Zone 1 and Zone 2 (as shown in figure 7.77). 

The second zone (zone 2) of behaviour is identified between a value of p' at failure 

approximately less than 20 kPa to approximately 600 kPa (figure 7.77). Malandraki 

and Toll (1996) noted that in this second zone bonds only partially control the soil's 

behaviour at failure. In zone 2, the bond yield occurs at deviator stresses lower than 

at the natural failure surface. The bond yield surface in figure 7.77 meets the p' axis 

at 500 kPa. This is consistent with the observations that no clear trend of yield points 

was identified at effective confining pressure of greater than 500 kPa. Malandraki 

and Toll ( 1996) pointed out that the soil's behaviour in zone 2 is governed partially 

by bonding and also by the consolidation pressure. It can be seen from figures 7.33 

and 7.34 that the slope of the tangential stiffness decreased to a lower value with 

increasing p' in zone 2. 

It can be seen from figure 7.77 that the natural failure surface exists at higher 

deviator stresses than the destructured failure surface due to the effect of bonding. 

The slope of the natural failure surface decreased slightly with increasing p' in zone 

2 and drops towards the destructured failure surface. The coincidence of the two 

failure surfaces indicates that the bonds are destroyed at this stress level. In Zone 2, 

final yield surface is very close to the natural failure surface. 
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Malandraki and Toll (2000) discussed that the zone boundaries rotate with effective 

stress path. The rotation of the stress path also has a direct influence on the size of 

the three zones of behaviour for the bonded soil. This suggests that the shape of the 

zone boundary between Zone 2 and 3 coincides with the effective stress path 

direction. For undrained tests, it is likely that the boundary will follow the shape of 

the stress paths for tests in this region of stress space. The upper limit of Zone 2 will 

be the coincidence point of the two failure surfaces. It can be seen from figure 7.7 

that the stress paths at very high effective confining pressures showed very gentle 

inclinations due to bond destruction. By considering the gently changing inclinations 

of the last stress path (as shown in figure 7.7) and the slope of the stress paths 

1 un600 and 1 un800, a Zone boundary can be drawn between Zone 2 and Zone 3 as 

shown in figure 7.77. This indicates that natural samples consolidated to isotropic 

effective stresses below 600 kPa would still show some evidence of bonding at 

failure (e.g. l un600) whereas those above this threshold would not. 

In the third zone (zone 3), the natural failure surface coincides with the destructured 

failure surface (reaching failure above p' = 600 kPa). Malandraki and Toll (1996) 

pointed out that in this zone the soil's behaviour at failure is independent of bonding 

and its behaviour is governed by that of the destructured materials, which is reflected 

in this study. This can be justified by the undrained stress paths as shown in figure 

7.7. It can be seen from figures 7.7 and 7.77 that the undrained stress paths at 

consolidation stresses of p' 0 above 600 kPa do not exceed the destructured failure 

surface. However, figure 7.77 shows a difference in behaviour compared to 

Malandraki and Toll's (1996) model. It would be expected that a sample that had 

passed through the bond yield surface during isotropic consolidation would not 

demonstrate any bonded behaviour at failure. However the boundary between zones 

2 and 3 (i.e. the point of total breakdown of bonds at failure) appears to occur at a 

higher stress level than indicated by the point at which the bond yield surface meets 

with the isotropic axis. This point, which would define the transition between zones 
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3 and 4 in Malandraki and Toll's ( 1996) model, actually occurs at p' ~ 500 kPa, 

much lower than the zones 2 and 3 boundary at p' ~ 600 kPa. 

This indicates a flaw in Malandraki and Toll's (1996) model when applied to the 

tropical soils of Dhaka. The data for these soils suggest that even though they pass 

through yield in isotropic compression above 500 kPa, that the bonding is not totally 

destroyed. A higher isotropic stress level of p' ~ 600 kPa is needed before there is no 

evidence of bonding at failure. 

7.11. Summary 

In this chapter the undrained mechanical behaviour of the tropical clay soils of 

Dhaka from two different sites was discussed. A comparison has been made between 

the undrained triaxial test results of natural and destructured soils. Comparisons have 

also been made between the results of two boreholes. Finally a framework for the 

tropical clay soils of Dhaka, Bangladesh is discussed. 

It was observed that the destructured samples in each case showed lower maximum 

deviator stresses, lower stiffnesses and larger strains to reach maximum deviator 

stress than the natural samples due to the breakdown of bonds. This is clear evidence 

that the natural samples do demonstrate the existence of structure (bonding). 

At low confining pressures samples of both boreholes initially showed peak positive 

values of excess p.w.p. followed by negative values at higher strains due to the 

tendency to dilate of the samples. No negative pore pressures were observed at high 

confining pressures. For both boreholes, only some samples at low confining 
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pressures reached the critical state at very large strains approximately in excess of 

20%. High confining pressure samples may not have reached the critical state due to 

the formation of distinct shear surfaces. It was found difficult to construct a single 

critical state line for these soils. 

The samples showed a wide range of variations in ultimate stress ratio values. Few 

samples showed a common stress ratio value for different tests. Nevertheless values 

of the critical state stress ratio M were estimated to be 1.05 for borehole one and 

0.96 for borehole two. 

The derived stress paths for natural soils always showed higher stress level in the q

p' space than the destructured samples. This variation in the stress paths indicates the 

destructuring of clay. The failure surface for natural soils is positioned at higher 

stress level in the q-p' space than the destructured failure surface. The variations of 

the shape of the two failure surfaces justify the presence of bonding in natural 

samples. The natural failure surface initially showed a curvature with the increase of 

p' up to approximately p' = 400-450 kPa and after that the slope of the natural failure 

surface moved towards the destructured failure surface. The natural and destructured 

failure surfaces coincided at higher stresses due to complete destruction of bonds. At 

higher stresses both the natural and destructured soils showed similar stress ratios. 

Undrained tangential stiffnesses were measured and small strain contours were 

evaluated. A drop of stiffness values with increasing strain was observed. The 

natural soils showed higher stiffness values than the destructured soils due to the 

presence of bonding in the natural soils. The difference between the stiffness values 

of the natural and destructured soils decreased with increasing strain. The maximum 

difference of stiffness values between the natural and destructured soils was 

observed at 0.01% strain. At 2% strain stiffness values of the two soils were very 
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close to each other. A significant difference between the strain contours of natural 

and destructured soils was also observed in the q-p' space. The strain contours were 

seen to be curved for the natural soils but linear for the destructured soils. 

Two yield surfaces were found to occur for natural tropical clay soils of Dhaka 

below the final yield surface under undrained shearing. The first yield surface was 

found to occur at low deviator stress levels showing a small change in stiffness. A 

bond yield surface was identified between the first and final yield surfaces. It was 

found that the bond yield surface occurs well below the failure surface. The final 

yield surface at very low confining pressure runs very close to the failure surface and 

then diverges at higher stresses. When the soil reaches the final yield surface, it loses 

almost all of its stiffness due to bonding. 

Although the samples were collected from the same geological formation, a 

variation between the results of two boreholes was observed. These variations might 

be due to the natural variability of the samples at different sites in terms of 

composition, local facies variations and degrees of weathering. 

From the observed undrained characteristics, three zones of behaviour could be 

identified for the tropical clay soils of Dhaka. It was observed that strain and 

stiffness development is directly related to the zones of behaviour. The observed 

undrained results suggest that if there were a zone of coincidence between bond 

yield and failure (Zone 1), it would only be at very low stress levels (approximately 

p' less than 20 kPa). It is not clearly observed in this study. The Zone 2 is identified 

between a value of p' at failure from less than 20 kPa to 600 kPa. In this zone the 

bond yield surface meets with the p' axis at 500 kPa. This is consistent with the 

observation of no clear trend of yield points above 500 kPa. In Zone 3, the 

coincidence of the natural and destructured failure surfaces was observed at 
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approximately p' = 600 kPa. This means that at this stress level the soil's behaviour 

at failure is independent of bonding. 
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CHAPTER 8 

DRAINED TRIAXIAL TESTS 

8.1 Introduction 

This chapter describes in detail the results of all the consolidated drained triaxial 

tests made on the tropical clay soils of Dhaka, Bangladesh. The samples were 

collected from borehole three of the same geological formation from which samples 

of other boreholes were collected and the location is shown in figure 3.1 of Chapter 

3. Both natural and destructured samples were used to carry out the drained tests. 
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8.2 Consolidated (()hraiiiDledl triiaxnall tesi§ Oll1l IDl.atllllran tJropkall 
day soiills of I!J)Jhalka. 

The drained behaviour of natural state samples of borehole three is discussed in this 

section. Stress strain behaviour of these samples is carefully evaluated. The 

volumetric strain curves with an increase in axial strain are also studied. The drained 

stress paths are identified from the deviator stress versus mean effective stress 

curves. 

Tangential stiffness in terms of shear modulus (Gran) and yielding behaviour of the 

tropical clay are also evaluated. The first and bond yield points are identified as 

described by Malandraki and Toll ( 1996 & 2000). The positions of the identified 

yield points are shown in the q-p' space. Smaller strain behaviour up to 2% strain is 

also discussed. All the results are presented, compared and evaluated. 

Critical state behaviour is discussed. A comparison is made between the results of 

natural and destructured soils of borehole three. Finally an attempt is made to define 

the important characteristics for developing a framework for the tropical clay soils of 

Dhaka. 

8.2.]_ Testing details 

Consolidated drained triaxial tests were carried out on seven natural and seven 

destructured samples collected from borehole three. The detailed test information 

including test name, location, sample depth, void ratio, dry density, consolidation 

stress are listed in Table 8.1. All samples were initially saturated and were subjected 

to isotropic consolidation before shearing. Samples were consolidated at a range of 

confining pressures from 50 kPa up to 800 kPa before shearing. Each test on average 
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took 5-6 days to complete. The seven tests carried out on natural samples of 

borehole three were taken from different depths and had consolidation pressures 

ranging from 50 to 800 kPa. The same effective confining pressures were applied to 

the seven destructured samples prepared from the natural samples of the same 

borehole to get a clear picture of behaviour. Testing details are discussed in section 

4.6 of Chapter 4. 

The samples of borehole three were named by using numbers and letters. The initial 

number indicates the borehole number and the number after the two letters in each 

case indicates the value of effective confining pressures at which the samples were 

consolidated before shearing. Two letters are used to designate each test. The first 

letter in each test indicates the type of shearing (drained) and the second letter 

indicates the nature of the sample (natural or destructured). 

Table 8.1: Testing details of natural soils of borehole three 
Location: Mirpur 

Test Depth Initial Specifi Bulk Dry lnitia Wet 
name (m) moisture c density density I void weight 

content gravity p Pd ratio of 
w% Gs (Mg!m3

) (Mg!m3 e sampl 
) e 

(g) 
3dn50 0.97- 15.8 2.60 2.059 1.779 0.461 177.33 

1.37 
3dn200 1.52- 14.0 2.62 2.070 1.820 0.443 178.22 

1.98 
3dn300 3.13- 14.7 2.60 2.009 1.739 0.482 172.98 

3.59 
3dn400 3.74- 13.7 2.65 2.130 1.870 0.412 183.96 

4.20 
3dn500 5.65- 13.0 2.63 2.084 1.842 0.428 179.74 

6.11 
3dn600 6.26- 13.1 2.62 2.051 1.810 0.445 177.23 

6.72 
3dn800 7.48- 13.6 2.61 2.061 1.810 0.439 177.39 

7.94 
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Dry 
weight 
of 
sample 
(g) 

153.15 

156.29 

150.78 

171.20 

163.97 

160.03 

156.18 



For example test 3dn200 (in Table 8.1) indicates a sample from borehole three tested 

in a drained condition in a natural state, consolidated at a confining pressure of 200 

kPa before shearing. Similarly 3dd500 (in Table 8.4) indicates a test on a sample 

from borehole three, tested drained in a destructured state, which was consolidated at 

a confining pressure of 500 kPa before shearing. All other tests are named similarly. 

8.2.2 Interpretation of resudts 

8.2.2.1 Stress strain curves (natural soils of borehole three) 

The drained deviator stress versus axial strain curves for the natural soils of borehole 

three are shown in figure 8.1. It can be seen from figure 8.1 that the curves show a 

maximum stress level in each case. After reaching the maximum stress level, a 

decrease of deviator stress with increasing strain is observed in each case. At high 

effective confining pressures (400-800 kPa) the peak in deviator stress is more 

distinct and sharp. On the other hand (in figure 8.1) at low effective confining 

pressures (50-200 kPa) the maximum deviator stress points are not sharp and they do 

not show a prominent peak. It can also be seen from figure 8.1 that the maximum 

deviator stress increases with increasing confining pressure. 

The axial strains to attain maximum deviator stress for these samples lie between 

approximately 8% to 16%. The lowest strain to attain the maximum deviator stress is 

encountered for sample 3dn800 and the highest value is for 3dn200. The maximum 

deviator stress and the corresponding values of axial strain, mean effective stress and 

the value of volumetric strain in each case are summarized in Table 8.2. It is 

important to note here that two samples (tests 3dn400 and 3dn500) showed some 

bedding error at the beginning of the test. This initial bedding error for these two 

samples appeared due to membrane penetration. The membrane penetration caused 
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the position of the pivot of the internal strain gauge to move introducing an error at 

low strains. 

'falble: 8.2. Summary of stress and! strain parameters at maxnmum 
dlevnator stress 

Sample Maximum Volumetric Axial Mean 
number deviator strain strain at effective stress 

stress (Ev%) at maximum (p') at 
(q) maximumq q (Ea%) maximumq 
kPa kPa 

3dn50 117 -0.19 13.34 88 
3dn200 303 0.42 15.89 300 
3dn300 339 0.72 15.20 400 

3dn400 677 0.62 12.42 624 
3dn500 737 0.55 11.96 744 
3dn600 844 0.60 8.94 880 
3dn800 903 0.98 8.45 1100 

tt2.2.2 Volumetric strain versus strain curves for natural 
soils of borehole three 

The volumetric strain versus axial strain curves for the natural soils of borehole three 

are shown in figure 8.2. It is important to note here that a positive volumetric strain 

was taken as contraction and a decrease in value was taken as dilation of the sample. 

It can be seen from figure 8.2, that the samples initiaiiy showed a contraction 

because of reduction in volume during drained shearing. After attaining a maximum 

contraction, the volumetric strain of each sample stabilized for a while and then 

started to show dilation at larger strains. The amount of contraction and dilation 

varied from sample to sample. The highest amount of contraction and lowest dilation 

were observed in sample 3dn800. The lowest contraction and maximum dilation 

were seen in sample 3dn50. 
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It can be seen from figure 8.2 that the volumetric strain values for tests 3dn50 and 

3dn200 seem to be decreasing continuously because of dilation until the end of the 

test. Therefore, these samples did not reach a steady state condition at the end of 

shearing. However, volumetric strain data for tests 3dn400, 3dn500 and 3dn800 

show that at strain greater than 25%, volumetric strain values reach almost a steady 

value at the end of the tests. Therefore these samples (3dn400 to 3dn800) might be 

very close to the critical state at very large strain. Tests 3dn300 and 3dn600 initially 

showed a contraction and then tended towards an almost constant volumetric strain 

value at the end of the tests, perhaps suggesting that they might have approached a 

critical state condition. These curves are replotted with the deviator stress versus 

axial strain curves in figures 8.3 and 8.4 to compare the overall behaviour of the 

deviator stress versus axial strain with the volumetric strain versus axial strain 

curves. It can be seen from these two figures that the shape of the volumetric strain 

versus axial strain curves reflects approximately the same shape of deviator stress 

versus axial strain curves. 

8.2.2.3 Derivation of drained stress patlhts in q=p' space for 
natural soils of borehole three 

Effective stress paths in q-p' space for the series of consolidated drained triaxial 

compression tests on natural soils of borehole three are plotted in figure 8.5. The 

derived stress paths are straight lines at a slope of 3:1, since they are drained tests. 

With the increase of mean effective stress and deviator stress the stress paths for 

tests 3dn50, 3dn200 and 3dn400 in figure 8.5, moved up to the failure point and then 

moved back down again along the same stress path towards an ultimate state, 

possibly the critical state line. However, the stress paths for tests 3dn300 and 3dn600 

showed only a small drop post-failure, as could be seen in the stress-strain curves 
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(fig.8.1). The maximum deviator stress and the corresponding mean effective stress 

values for these stress paths are listed in Table 8.2. 

All natural samples of borehole three failed with the formation of shear surfaces. At 

low effective confining pressures (50-200 kPa) the samples showed brittle failure 

with a number of indistinct shear planes. At effective confining pressures of 300 to 

600 kPa the samples showed brittle failure with number of distinct shear planes. Test 

3dn800 showed a prominent and distinct single shear plane with some bulging. A 

possible critical state line is shown in figure 8.5. The problem of defining critical 

state line will be discussed in section 8.5.1. 

8.2.2.4eFailure surface for natural soils of borehole three 

The failure surface is identified by using maximum stress ratio criteria plotted in the 

q versus p' space as shown in figure 8.6. By considering the failure line for the 

whole range of tests it was found that the observed failure line is slightly curved. It 

can be seen from figure 8.6 that the failure surface initially showed a curvature up to 

approximately p' = 300 kPa. For p' greater than 300 kPa the slope of the curve 

reduces steadily as p' increases. Similar curved failure surfaces for bonded soils have 

also been reported by Vaughan (1988) and Malandraki and Toll (1994 ). 

It is important to note here that the failure envelope between tests 3dn300 and 

3dn400 showed a clear change of behaviour. This will be explained later in figure 

8.32 in section 8.5.1. 
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Tangential stiffness in terms of shear modulus (G1an) versus axial strain graphs for 

samples 3dn50 to 3dn300 are shown in figures 8.7 to 8.9. It can be seen from these 

figures that tangential stiffness versus strain curves are non-linear and showed a 

reduction of stiffness values with increasing strain in each case. The loss of stiffness 

with increasing strain is related to the breakdown of bonds (Malandraki and Toll, 

1996). The variation of small strain data probably reflects to some extent the 

variability at the level of structure (Hight et al., 1992) in natural soils. The identified 

first and bond yield points for tests 3dn50, 3dn200 and 3dn300 as marked in figures 

8.7 to 8.9 are described by Malandraki and Toll (1996 and 2000). It can be seen 

from these figures that two identifiable drops of stiffness values occurred in each 

case. The first identifiable drop of stiffness is considered as first yield and the 

second significant drop is considered as bond yield where the soil loses most of its 

stiffness values. A variation in the position of first and bond yield points is due to 

the degree of cementation as described by Hight and Higgins (1995). G1an versus 

strain curves for other samples of borehole three (3dn400-3dn800) at high confining 

pressures are shown in figures 8.10 to 8.13. No clear yield points are observed at 

these confining pressures. This suggests that bond destruction has occurred during 

application of the very high isotropic confining pressures (400 kPa or greater) on 

natural samples of borehole three. 

The identified first and bond yield points for tests 3dn50 to 3dn300 with their 

corresponding values of deviator stress and axial strain are listed in Table 8.3. 

272 



Table: 8.3 First and bond yield points for mduraR soHs of borehole 
three with corresponding values of q and Ea % 

§ample no. Yield! q (kPa) Ea(%) 

3dn50 First yield 6 0.0025 

Bond yield 12 0.010 

3dn200 First yield 26 0.015 
Bond yield 39 0.028 

3dn300 First yield 14 0.007 
Bond yield 29 0.025 

The identified first and bond yield points for these tests are plotted in figure 8.14 in 

the q-p' space. The failure surface is also shown in this figure. The first yield surface 

occurred at approximately 0.0025% to 0.015% strain and the bond yield at 

approximately 0.01 o/o to 0.028% strain. The first yield surface occurred at low 

deviator stress level and enclosed a small area with q = 6 to 26 kPa in the q- p' 

space. The first yield surface in figure 8.14 increased up to approximately p' = 200 

kPa. For p' greater than 200 kPa this surface curved down towards the p' axis. It is 

expected that the first yield surface will meet the p' axis at higher stresses. 

The identified bond yield surface shown in figure 8.14 is located at higher deviator 

stress levels than the first yield surface in the q- p' space and is consistent with the 

bond yield surface as described by Malandraki and Toll (2000). This bond yield 

surface enclosed an area approximately with q = 12 kPa to 39 kPa in the q- p' space 

where major loss of stiffness occurred. The bond yield surface appears to curve 

down towards the isotropic axis before p' = 400 kPa, confirming the suggestion 

earlier that bond breakdown would occur in isotropic compression for tests at higher 

confining pressures, as no yield would be seen during shear. 
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The final yield surface for natural soils of borehole three was identified by using the 

point of maximum curvature of the stress strain curve and is shown in figure 8.14. 

The final yield surface plotted in the q versus p' space occurred at higher deviator 

stress levels than the first and bond yield surfaces and is positioned below the failure 

surface. At low mean effective stress (approximately p' less than 100 kPa) the final 

yield surface is very close to the failure surface and the distance between the two 

surfaces increased with increasing mean effective stress. After bond yield, the soil 

behaviour involves the combined influences of both the remaining bonding and the 

plastic strains. When the soil reached the final yield surface, it loses almost all of its 

stiffness due to bonding and failure occurs at much larger strains due to slippage of 

individual grains. 

8.2.3 Small strain behaviour (up to 2% strain) 

8.2.3el Tangential stiffness versus mean effective stress for 
natural soils of borehole three 

G1an versus p' curves are plotted with increasing strain (from 0.01% to 1% strain) in 

figure 8.15 to show the loss of stiffness during drained shearing. The small strain 

contours showed a decrease of stiffness values with increasing strain. G1an values are 

highest for 0.01% strain contour and lowest for 1 % strain contour (figure 8.15). The 

reduction of stiffness values with increasing strain is due to the breakdown of the 

bonded structure of the soil (Malandraki and Toll, 1996). It can be seen from these 

figures that the major loss of stiffness values occurred for strain contours 0.01% to 

0.2% where bond destruction is greatest. First yield for natural soils of borehole 

three occurred between 0.0025% and 0.015% strain. The quick destruction of some 
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bonds at very low strain made it sometimes difficult to identify the first yield 

accurately. After 0.2% strain loss in stiffness is less pronounced. The bond yield for 

these samples occurred at approximately 0.01% to 0.028% strain where the major 

loss of stiffness occurred. The lower G1an values at I% strain indicates that the soil 

has already lost most of the stiffness due to breakdown of bonds as described by 

Malandraki and Toll (1996). The natural strain contours shown in figure 8.15 

showed a drop of tangential stiffness values from approximately 250 MPa at 0.01% 

strain to approximately 12 MPa at 1% strain. The drop of stiffness values with 

increasing strain is also reported by Burland (1989), Atkinson et al. (1993) and 

Malandraki and Toll (1996). 

8.2.3.2 Strahu contours (up to 2% strain) for natlllrall soHs of 
borehole three 

Small strain contours (up to 2% strain) for natural soils of borehole three are plotted 

in q versus p' space and shown in figures 8.16. The failure surface is also plotted in 

the same figure. It can be seen from this figure that deviator stress value for each 

strain contour increased with increasing strain up to approximately p' = 200 kPa. For 

p' greater than 200 kPa, strain contours gradually changed direction with increasing 

mean effective stress and showing a bending towards the p' axis. 

It is also observed that small strain contours with increasing strain move close to the 

failure line. Jardine et al. (1984) observed that strain contours with increasing strain 

approach the failure line. They also observed that soil losses its stiffness when 

approaching the failure surface as observed in this study. Malandraki (1994) also 

reported similar results. It can be seen from this figure that the 0.01% strain contour 

is very close to the p' axis and the 2% strain contour is very close to the failure 

surface at low p' values. The first and bond yield of these soils occurred 
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approximately between 0.0025% to 0.015% strain and 0.01% to 0.028% strain 

respectively. 

8.3 Consolidated drained triaxial tests on destructured soils 

of borehole three 

Destructured samples were prepared from the natural samples of the same borehole 

with the same void ratio and dry density. Testing details of destructured samples of 

borehole three are given in Table 8.4. 

The drained stress strain behaviour of the destructured soils of borehole three is 

carefully evaluated. The volumetric strain curves with an increase in strain are also 

analyzed. Drained stress paths are plotted in the q versus p' space. Small strain 

contours (up to 2% strain) are plotted in the q versus p' plane. Loss in tangential 

stiffness with increasing strain for destructured soils is also discussed. Finally 

comparisons are made between the results of natural and destructured soils of 

borehole three. 
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Table: 8.4 Testing details of destructured soils of borehole three 
]Location: Mirpur 

Test Depth Initial Specifi Bulk Dry Initial Wet 
name (m) moistur c density density void weight 

e gravity p Pd ratio of 
content Gs (Mg!m3

) (Mg!m3
) e sample 

w% (g) 
3dd50 0.97- 15.8 2.60 2.059 1.779 0.461 177.20 

1.37 
3dd200 1.52- 14.0 2.62 2.070 1.820 0.443 177.99 

1.98 
3dd300 3.13- 14.7 2.60 2.008 1.737 0.482 173.12 

3.59 
3dd400 3.74- 13.7 2.65 2.130 1.870 0.414 183.52 

4.20 
3dd500 5.65- 13.0 2.63 2.084 1.842 0.429 180.12 

6.11 
3dd600 6.26- 13.2 2.62 2.051 1.810 0.446 176.91 

6.72 
3dd800 7.48- 13.6 2.61 2.061 1.810 0.438 177.32 

7.94 

8.3.1 Stress strain curves for destructured soils 

Drained stress strain curves for destructured soils of borehole three are shown in 

figure 8.17. It can be seen from figure 8.17 that the curves show a maximum 

deviator stress level in each case. After reaching the maximum deviator stress level, 

a decrease of deviator stress with increasing strain is observed in each case. At low 

effective confining pressures (3dd50 to 3dd200 kPa) the maximum deviator stress 

points are not sharp and they do not show a prominent peak and reached almost a 

steady state at very large strain (approximately greater than 20% ). Stress strain 

curves for other tests (3dd300 to 3dd600 kPa) showed a peak at large strain. The 

stress strain curves for tests 3dd400, 3dd600 and 3dd800 showed a broad peak. 

These three samples initially exhibited a maximum deviator stress level and then the 
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of 
sample 
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153.02 

156.03 

150.89 

170.79 

163.73 

159.74 
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deviator stress decreased from its maximum value at strain greater than 

approximately 20%. It can also be seen from figure 8.17 that the maximum deviator 

stress increased with increasing confining pressure. 

The axial strains to attain maximum deviator stress for these samples lie between 

approximately 15% and 24%. The lowest strain to attain the maximum deviator 

stress was encountered for test 3dd400 and the highest strain for test 3dd50. The 

maximum deviator stress and the corresponding values of axial strain, mean 

effective stress and the value of volumetric strain in each case are summarized in 

Table 8.5. 

Tabne: 8.5 SliJmmary of stress and stranllll parameters at maximum 
deviator stress for destrliJctliJred soHs 

Sample Maximum Volumetric Axial Mean 
number deviator strain strain at effective stress 

stress ( Ev %) at maximum (JP') at 
( q) maximumq Q (Ea%) maximumq 
kPa kPa 

3dd50 93 0.97 24.33 79 

3dd200 288 1.02 22.66 294 
3dd300 342 1.82 18.04 412 

3dd400 452 1.57 15.46 550 
3dd500 541 1.31 23.18 679 
3dd600 661 1.93 20.30 819 
3dd800 764 2.28 17.93 1030 
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8.3.2.Volumetric strain versus axial strai:rn curves for 
destructuJred soils of borehole three 

The volumetric strain versus axial strain curves for destructured soils are shown in 

figure 8.18. It can be seen from figure 8.18 that the destructured samples showed 

contraction only (i.e. a reduction in volume) during drained shearing. This is in 

contrast to the natural samples where dilation was also observed. 

It can be seen from figure 8.18 that most of the destructured samples tended towards 

a steady value of volumetric strain at very large strain, perhaps suggesting that they 

might approach the critical state condition. Test 3dd800 showed a continuous change 

of volumetric strain up to the end of the test. Therefore, this sample did not approach 

the critical state condition. It can also be seen from figure 8.18 that the amount of 

contraction varied from sample to sample. The highest amount of contraction was 

observed for sample 3dd800 and the lowest amount of contraction for test 3dd50. 

These curves are replotted with the deviator stress versus axial strain curves in 

figures 8.19 and 8.20 to compare the overall shape of the deviator stress versus axial 

strain with the volumetric strain versus axial strain curves. The shape of the 

volumetric strain versus axial strain curves reflects approximately the same shape of 

deviator stress versus axial strain curves. 

8.3.3.Derivation of drained stress paths in q~p' space for 
destructured soils of borehole three 

Effective stress paths for a series of consolidated drained triaxial compression tests 

on destructured soils of borehole three are shown in figure 8.21. Since the tests were 

drained, the derived stress paths are straight lines at a slope 3:1. It can be seen from 

figure 8.21 that the stress path for tests 3dd50, 3dd200 and 3dd300 show only a 

small drop in stress post-failure. The failure surface for destructured soils of 
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borehole three is defined by using the maximum q/p' ratio values plotted in the q 

versus p' space and is shown in figure 8.22. The failure surface is roughly linear and 

appears to suggest a cohesion intercept at p' = 0 kPa. 

All destructured samples failed with the formation of shear surfaces and by bulging. 

At low effective confining pressures (50-300 kPa) the samples showed ductile 

failure and small amounts of bulging with a number of indistinct shear planes. The 

samples for tests 3dd400-3dd600 failed with a number of distinct shear planes and 

bulging. At high effective confining pressure of 800 kPa the sample failed with 

distinct shear planes and prominent bulging. A possible critical state line is shown in 

figure 8.21. The problem of defining critical state line will be discussed later in 

section 8.5 .2. 

8.3.4. Small strain behaviour 

8.3.4.1. Tangential stiffness with increasing strain (up to 2%) 
for destructured soils of borehole three 

The losses of tangential stiffness with increasing strains (from 0.01% to 1% strain) 

during drained shearing for destructured soils are shown in figure 8.23. Highest 

values of G1an are observed for 0.01% strain contour and lowest for 1% strain 

contour. The 1% strain contour runs very close to the p' axis where stiffness values 

are very low. The destructured soils showed a decrease of stiffness value from 

approximately l 00 MPa at 0.01% strain to about 8MPa at l% strain. 
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8.3.4.2. Strain contours up to 2% strain for destructured 
soils of borehole three 

Small strain contours (from 0.01% to 2% strain) for destructured soils of borehole 

three are plotted in the q versus p' space and shown in figure 8.24. The failure 

surface is also plotted in figure 8.24. It can be seen from figure 8.24 that these strain 

contours are linear and deviator stress for each strain contour increased with 

increasing mean effective stress. At higher p' ( p' > 200 kPa) the distance between 

the strain contours increases with increasing strain. It can also be seen from this 

figure that the 0.01% strain contour is very close to the p' axis and the 2% strain 

contour is close to the failure surface. The strain contours turn in direction from the 

p' axis to the failure surface with increasing strain. 

8.4. Comparisons between the behaviour of the natural 
and destructured soils of borehole three 

The behaviour of the natural and destructured soils under drained triaxial 

compression are compared and evaluated. Comparisons are made between the 

deviator stress versus axial strain, volumetric strain and versus axial strain and 

between the stress paths of the natural and destructured soils. Loss of tangential 

stiffness with increasing strain and small strain contours in the q-p' space is also 

compared. Comparisons between the positions of two failure surfaces in the q- p' 

space are discussed. 

281 



8.4.1.Comparisons between stress strain behaviour of 
natura» and destructu:red soils of bo:rehole three 

Deviator stress versus axial strain curves for natural and destructured soils under 

drained triaxial compression tests are shown in figure 8.25. It can be seen from 

figure 8.25 that the natural state curves exhibit higher maximum deviator stress than 

the destructured curves in each case. At low confining pressures (50 to 200 kPa), 

both the natural and destructured soils did not show a prominent peak, but at high 

confining pressures (400 to 800kPa) both types of samples show a maximum 

deviator stress level with an identifiable peak. Bishop et al. (1965) reported similar 

test results. The destructured soils in each case showed lower maximum deviator 

stress levels, lower stiffnesses and larger strains to reach maximum deviator stress 

than the natural samples. In natural samples, the axial strains to attain maximum 

deviator stress ranged from 8% to 16%. Conversely, the destructured soils attained a 

maximum deviator stress value at axial strains of 15% to 24%. These variations in 

the deviator stress versus axial strain curves indicate that there is bonding in the 

natural samples that gives higher strength and stiffness. Leroueil and Vaughan 

(1990), Clayton et al. (1992) and Allman and Atkinson ( 1992) reported similar 

results when comparing natural and destructured test data. 

The volumetric strain versus axial strain curves for natural and destructured soils of 

borehole three are also compared and shown in figure 8.26. It can be seen from this 

figure that most of the natural samples initially showed contraction and then small 

amounts of dilation at very large strain. The amount of contraction and dilation 

varied from sample to sample. Conversely, the destructured samples showed only 

contraction until the end of shearing. 
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Differences in failure type were observed between the natural and destructured 

samples. All natural samples at low confining pressures showed brittle failure with 

number of indistinct shear planes and at high confining pressures shear plane is 

prominent and distinct. The destructured samples failed with bulging in a ductile 

manner. At low confining pressures destructured samples showed small bulging with 

a number of indistinct shear planes and at high confining pressures they failed with 

distinct shear planes and prominent bulging. 

The two failure surfaces for natural and destructured soils are shown in figure 8.27. 

The failure surface for natural soils shown in figure 8.27 exists at higher deviator 

stresses than the destructured failure surface. Differences in the two failure surfaces 

are due to the presence of bonding in natural soils. The failure surface for natural 

soils progressively increased with the increase of p' up to a value of approximately 

>300 kPa (figure 8.27). After that the slope of the natural failure surface reduces 

steadily asp' increases. It is discussed in section 8.5.1 that the variations between the 

very loose and very dense samples (between tests 300 and 400 kPa) showed a clear 

change of behaviour in the failure envelope. 

8.4.2. Comparisons between the tangential stiffness versus 
mean effective stress for natural and destructured soils (up 
to 2% strain) 

Comparisons between stiffness values for natural and destructured soils are shown in 

figures 8.28 & 8.29. Natural and destructured strain contours with tangential 

stiffness versus p' curves for 0.01% to 1% strain are plotted in these figures. The 

natural strain contours in each case showed higher values of G1an than the 

destructured soils, which indicates that the natural soils are structured. The highest 

value of G1an calculated for natural soil is approximately 250 MPa at 0.0 I% strain 

and approximately 80 MPa for destructured soils of the same strain contour. The 
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lowest value of G1an observed for natural soil is approximately 12 MPa at 1% strain 

contour and approximately 8 MPa for destructured soil at the same strain contour. 

8.4.3 Comparisons between small strain contours (up to 
2%) for natural and destructured soils of borehole three 

Strain contours (up to 2% strain) for natural and destructured soils are compared in 

the q versus p' space and shown in figures 8.30 and 8.31. It can be seen from these 

figures that for natural soils the deviator stress increased with increasing strain 

approximately up top'= 200 kPa. At p' greater than 200 kPa natural strain contours 

turned down towards the p' axis with increasing mean effective stress. Conversely, 

the deviator stress for destructured strain contours increased with increasing mean 

effective stress and they are roughly linear. 

It is important to note here that although both the natural and destructured samples 

were tested at the same void ratios but they showed clear differences in their 

behaviour. The difference in position between the natural and destructured strain 

contours shown in figures 8.30 and 8.31 is due to the presence of bonds in the 

natural samples. Therefore, bonded structure of the soil has a strong influence on the 

development of strain. Similar results were also reported by Jardine et al. (1984) and 

Malandraki and Toll (1994). 
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8.5 Critical state behaviour 

In this section critical state behaviour of borehole three samples under drained 

shearing are discussed. At first results are presented for natural soils of borehole 

three and then the critical state condition for the destructured samples of the same 

borehole is discussed. Finally based on the all observed results on natural and 

destructured soils an estimation was made to obtain the critical state parameters for 

these soils. 

8.5.1 Critical state condition for natural soils under drained 
shearing 

An attempt is made to identify the critical state condition under drained shearing. 

From the derived stress paths as shown in figure 8.5 in q- p' space, an attempt is 

made to interpret the critical state stress ratios for the natural soils of borehole three. 

Based on the observed stress paths in q- p' space, it was found very difficult to 

establish with confidence the ultimate points for these tests. The stress strain curves 

(figure 8.1) for tests 3dn50, 3dn200 and 3dn300 show a reasonably stable deviator 

stress values at the end of the tests, perhaps suggesting they had reached a stable 

ultimate state. However, it can be seen from figure 8.5 that the end points for these 

three tests indicate a cohesion intercept. This would not be expected for a critical 

state condition. The validity of the data for tests 3dn400, 3dn500 and 3dn600 at very 

large strain is questionable (as they formed shear surfaces). Tests 3dn300 and 

3dn800 also formed distinct shear surfaces and they might not represent the true 

critical state condition at the end of shearing. Therefore, it is very hard to justify the 

true ultimate points for these tests to identify the critical state conditions. However, a 

possible CSL is sketched in figure 8.5 but it is very tenuous. 
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All the results of natural soils of borehole three are also plotted in the v-p' space to 

see the change of specific volume with increasing mean effective stress in figure 

8.32. It can be seen from this figure that the tests 3dn50 and 3dn200 of borehole 

three after an initial decrease in specific volume showed a dilation up to the end of 

the tests. It can also be seen from this figure that the specific volume for tests 

3dn400, 3dn500 and 3dn600 initially showed a reduction of specific volume due to 

contraction of the sample and then an increase in specific volume due to dilation of 

the sample with increasing mean effective stress. Two tests (3dn300 and 3dn800) 

showed contraction with increasing p'. These two samples showed almost zero rate 

of volume change at the end of the tests, perhaps suggesting that they reached the 

critical state. Other tests did not approach the true critical state condition. Similar 

reflections were observed in the volumetric strain versus axial strain curves as 

shown in figure 8.2. 

It is interesting to note here that the borehole three samples at low confining pressure 

(3dn50-3dn200 kPa) showed brittle failure with a number of indistinct shear planes. 

High confining pressure samples (3dn300-3dn800 kPa) formed distinct shear 

surfaces and once that occurs only a narrow band of soil is being affected by 

shearing and the overall stress ratio and volume change is no longer representative 

of the sample as a whole. Two tests 3dn300 and 3dn800 showed constant rate of 

volume change at the end of shearing but they form distinct shear surfaces at the 

time of failure. It is therefore difficult to justify that these two tests 3dn300 and 

3dn800 approached a true critical state condition. In this circumstance, it is possible 

to conclude that in drained shearing on natural samples of borehole three, no test 

approached a true critical state condition. Smith et al. ( 1992) observed that in 

drained shearing on a group of Bothkennar soils, no test approached a true critical 

state condition. They also proposed a tentative critical state line (CSL) based on the 

end points of different tests. 
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From the observed results as shown in figure 8.32, it is very difficult to construct a 

single critical state line for these soils. A tentative drained critical state line is drawn 

as shown in figure 8.32, which in general, separates those tests showing contraction 

(i.e. loose of critical state) from those demonstrating dilation (i.e. dense of critical 

state). However, as no tests on natural samples of borehole three approached a true 

critical state condition, the validity of the critical state line drawn is questionable. It 

can also be seen from this figure that test 3dn300 is very loose and contractive and 

the test 3dn400 is very dense and dilative. The variations between the very loose and 

very dense samples (tests 3dn300 and 3dn400) could explain the very clear change 

of behaviour in the failure envelope (figure 8.6). 

8.5.2. Critical state condition for destructured soils under 
drained shearing. 

From the derived stress paths as shown in figure 8.21 in q- p' space, an attempt is 

made to interpret the critical state condition for the destructured soils of borehole 

three. It can be seen from figure 8.21 that the failure points and end points for tests 

3dd50, 3dd200, 3dd300 and 3dd500 are very close. It was found very difficult to 

establish with confidence the ultimate points for these tests in q- p' space. The 

validity of the data for tests 3dd300-3dd600 at very large strain is questionable (as 

they formed distinct shear surfaces). It is therefore very hard to justify that these 

samples (3dd300-3dd600) truly reached the critical state at very large strain. Since 

tests 3dd50 and 3dd200 did not form distinct shear surfaces it might be possible that 

these two samples might approach the critical state at very large strains. Tests 

3dd800 also formed distinct shear surfaces and might not represent the true critical 

state condition at the end of shearing. However, a possible CSL is sketched in figure 

8.21 but this is tenuous, due to the difficulties involved in assessing a critical state 

condition in samples that form shear surfaces. 
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The critical state condition for destructured soils of borehole three under drained 

shearing is also investigated in the v-p' space. The test paths in v-p' space for 

different tests on destructured samples under drained shearing are shown in figure 

8.33. It can be seen from figure 8.33 that the tests 3dd50 and 3dd200 mainly showed 

decrease in specific volume due to contraction of the samples. Both tests showed an 

almost steady value of 'v' near the end of the tests, although 3dd50 showed a very 

small amount of dilation at the end of shearing. Towards the end of these tests, they 

show a tendency for an increase in p' suggesting they could fall below the critical 

state line. All other destructured samples showed contraction throughout. Tests 

3dd300 and 3dd400 showed almost zero rate of volume change at the end of 

shearing, perhaps suggesting that they also reached the critical state. Other tests 

(3dd500, 3dd600 and 3dd800) did not approach a true critical state condition. 

However, for tests 3dd300-3dd800 they all show a reduction in p' at the end of the 

tests suggesting that they might fall above the critical state line. 

It was discussed earlier that the destructured samples of borehole three at low 

confining pressures (3dd50-3dd200 kPa) showed ductile failure with indistinct shear 

planes and at high confining pressures (3dd300-3dd800 kPa) they failed with distinct 

shear planes and bulging. As the high confining pressure samples formed distinct 

shear surfaces, the volume change and the overall stress ratio of these samples is no 

longer representative. It is therefore difficult to rely on the data at very large strain 

and hard to justify that these samples at high confining pressures truly reached the 

critical state. On the other hand, as the tests 3dd50 and 3dd200 did not form distinct 

shear surfaces and they showed almost zero rate of volume change at the end of 

shearing, therefore it is likely that only these two samples approached a true critical 

state condition. 
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From the observed results as shown in figure 8.33, it is difficult to construct a single 

representative critical state line for these soils. However, a tentative critical state line 

is drawn as shown in figure 8.33 that separates those tests that show a movement to 

the right (3dd50 and 3dd200) from those that show a movement to the left (3dd300-

3dd800), although the denser sample 3dd400 still falls below the line as drawn even 

though it shows a movement to the left. Again questions must arise regarding the 

validity of the critical state line drawn. As only two samples at low confining 

pressures (3dd50 and 3dd200) approached a critical state condition and others did 

not truly reach the critical state then the validity of the drawn critical state line is 

questionable. Defining the critical state line in this way will not be representative. 

The critical state condition for the destructured soils will be compared now with the 

critical state condition of the natural soils. 

8.5.3 Comparison of critical state condition of natural and 

destructured soils 

The test paths in v-p' space for natural and destructured soils under drained shearing 

are also compared and shown in figure 8.34. A significant difference between the 

natural and destructured test paths in v-p' space can be clearly seen in this figure. 

Most of the natural samples initially showed contraction and then dilation and the 

destructured samples generally showed only contraction. Based on all the natural 

and destructured test paths in v-p' space, it is difficult to construct a single critical 

state line for these soils. However, based on the end points of maximum number of 

tests, a tentative critical state line (CSL) can be drawn as shown in figure 8.34. It is 

important to note here that most of the natural and destructured samples at high 

confining pressures formed distinct shear surfaces and once that occurs only a 

narrow band of soil is being affected by shearing and the overall stress ratio and 

volume change of the sample is no longer representative. Therefore, it is very 

difficult to rely on the data at very large strains. 
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The critical state line drawn does separate two types of behaviour. For tests at 50 and 

200 kPa, tests in the natural state show strong dilation and in the destructured state 

they show a tendency to move to the right (increase in p'). This suggests that the 

specific volume state for these samples falls below (denser than) the critical state. 

Conversely tests at 300 and 800 kPa show contraction in both the natural and 

destructured state suggesting they are above (looser than) the critical state. However, 

the test results for 400, 500 and 600 kPa do show anomalies compared with what 

might be expected. Although the tests at 400 kPa fall below the CSL, the 

destructured test still show contraction although it might be expected that it would 

dilate to achieve a critical state. Similarly, the natural state tests at 500 and 600 kPa 

show dilation, even though they fall above the sketched CSL and it might be 

expected that they would contract. Clearly the volumetric behaviour is more 

complex than would be predicted by the critical state model. This may be due to the 

formation of shear surfaces, as has been discussed, when shear takes place with a 

narrow band and the volume changes are no longer representative of the sample as a 

whole. 

Difficulties in defining the CSL from the v versus p' curves made it difficult to 

obtain typical critical state parameters for these soils under drained shearing. 

However, based on the all observed results on natural and destructured soils a rough 

estimation was made to obtain the critical state parameters for these soils. The M 

value was estimated from the slope of the critical state line drawn in figures 8.5 and 

8.21. The approximate critical state parameters obtained are listed in Table 8.6 and 

these values can be compared with the values quoted by Atkinson (1993) and 

All man and Atkinson ( 1992) as mentioned in section 7. 7.3 of Chapter 7. 
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Table: 8.6 Critical state parameters of borehole three samples 

Soil A. r M 

Tropical clay, 0.05 1.75 0.84 
Dhaka (borehole 
three) 

Atkinson ( 1993) mentioned that the critical state parameters for a particular soil are 

generally considered to be constant. As only a limited number of tests approached a 

true critical state condition, the quoted values might not be representative. 

8.6. Comparison between failure surfaces of three boreholes 

By taking the natural variability of the samples at different sites into account, a 

comparison is made between the natural failure surfaces obtained from three 

borehole samples under undrained and drained shearing in figure 8.35. A closer 

agreement was found between the undrained and drained failure surfaces at low 

confining pressures. A significant difference between the two undrained natural 

failure surfaces was observed at high confining pressures. The lower strength of 

borehole two was explained in Chapter 7 to be due to the higher clay fraction and 

lower sand fraction compared to borehole one. Although some natural variability in 

terms of composition, degrees of weathering, colour mottling and local facies 

variations is inevitable between the samples of different boreholes, the variation 

between the undrained (boreholes one and two) and drained (borehole three) failure 

surfaces at high confining pressures might be due to the changes in stress path 

direction and the type of shearing. The undrained stress paths follow very different 

stress paths than the drained tests due to generation of excess p.w.p. changes during 

shear. The generation of excess p.w.p. changes from low to high confining pressures 

also varies. As a result rotation of stress paths in undrained shearing was observed. 

The rotation of stress path gives different failure surfaces (Malandraki and Toll, 

2000). Malandraki and Toll (2000) also pointed out that the differences in failure 
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surface might well be due to differences in volumetric strain behaviour. Therefore, 

the failure surface of natural soils is affected at high confining pressures by stress 

path direction and the type of shearing. Malandraki and Toll (2000) observed a close 

agreement between the undrained and drained failure surfaces for the case where 

small excess p.w.p. changes were generated during shear. Coop and Atkinson (1993) 

also reported undrained and drained test results on cemented carbonate sands and 

noted that the soil's peak shear strength state is affected by the direction of the stress 

path, the drainage condition and the initial confining pressure. 

8. 7. Drained characteristics to identify zones of behaviour 

Based on all the observed drained characteristics a graph is plotted in figure 8.36 to 

show the zones of behaviour for the tropical clay soils of Dhaka, Bangladesh. The 

identified yield surfaces and the natural and destructured failure surfaces are plotted 

in the q versus p' space. Three zones of behaviour could be identified from the 

relative positions of the failure surfaces and the yield surfaces as shown in figure 

8.36. It was observed that the failure surface for the natural soils coincides with the 

destructured failure surface at approximately p' ~ 1100 kPa. Below this stress level 

the natural soils showed higher stress levels than the destructured soils due to their 

bonded structure. 

It can be seen from figure 8.36 that the trend of the bond yield surface and the 

natural failure surface indicates that they could only coincide at very low mean 

effective stress levels (near zero). The final yield surface at low confining pressure is 

also very close to the failure surface of natural soils. Therefore, it might be possible 

that if there were a zone of coincidence between bond yield and failure (Zone 1 ), it 

would only be at very low stress levels (p' less than 5 kPa). Zone 1 is not clearly 
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observed in this study. However, a zone boundary can be assumed between Zone 1 

and Zone 2 as shown in figure 8.36. 

The second zone (Zone 2) of behaviour can be identified between a value of p' at 

failure less than 5 kPa to approximately 1100 kPa (figure 8.36). It can be seen from 

figure 8.36 that the bond yield surface in Zone 2 occurred at lower deviator stresses 

than the final yield surface and the natural failure surface. The bond yield surface 

curved down and showed a tendency to meet with the p' axis below 400 kPa. This is 

consistent with the observations that no clear trend of yield points was identified at 

effective confining pressure of 400 kPa and greater. 

It can also be seen from figure 8.36 that the natural failure surface exists at higher 

deviator stresses than the destructured failure surface due to the presence of bonding 

in the natural soils. In Zone 2, the slope of the natural failure surface decreased 

slightly with increasing p' and then meets the destructured failure surface. The final 

yield surface in Zone 2 is also very close to the natural failure surface. 

Malandraki and Toll (2000) showed that the rotation of the stress path has a direct 

influence on the size of the three zones of behaviour for the bonded soil. The shape 

of the zone boundary between Zone 2 and 3 will be consistent with the effective 

stress path direction. It can be seen from figure 8.5 and 8.36 that the drained stress 

paths (3dn50 to 3dn600) for natural soils failed on the natural failure surface and the 

stress path 3dn800 failed on the destructured failure surface. As the stress paths at 

very high mean effective stress level is on the destructured failure surface, it means 

that the stress path is now entering in zone 3. The upper limit of the Zone 2 will be at 

the coincidence point of the two failure surfaces. A Zone boundary can be assumed 

between Zone 2 and Zone 3 as shown in figure 8.36, which rises at slope 3:1 from 

the initial stress state. 

293 



It is clear that the drained behaviour for samples from borehole three broadly shows 

the same features as the undrained tests on borehole one samples. The bond yield 

surface shown in figure 8.36 appears to meet the isotropic axis at p' ~ 400 kPa, at an 

isotropic stress level well below the zone 2 and 3 boundary (p' ~ 750 kPa). Again, 

this indicates that bonding is still present even after the bond yield surface showed a 

tendency to meet with the isotropic axis at approximately p' ~ 400 kPa. 

8.8 Summary 

In this chapter the drained stress-strain behaviour of the tropical clay soils of Dhaka 

was discussed in terms of stress-strain curves, stress paths and volumetric strains. 

Stiffness and yielding characteristics were discussed. A comparison has been made 

between the drained test results of natural and destructured soils. Finally drained 

characteristics to identify zones of behaviour for the tropical clay soils of Dhaka, 

Bangladesh are discussed. 

At low confining pressures both the natural and destructured soils of borehole three 

did not show a prominent peak, but at high confining pressures both types of 

samples showed a maximum deviator stress level with an identifiable peak. The 

destructured samples in each case showed lower maximum deviator stress levels, 

lower stiffness and larger strains to reach maximum deviator stress than the natural 

samples, which is due to breakdown of bonds. Leroueil and Vaughan (1990) pointed 

out that the change of properties, which results from destructuring, is an indication 

of the initial presence of structure. Therefore, there is clear evidence that the natural 

soils are bonded. 

294 



It was found that the natural samples initially showed a contraction and then dilation 

at very large strain. Conversely, the destructured samples only showed contraction 

until the end of shearing. It was observed that the specific volume for tests at 50 and 

200 kPa in both natural and destructured state, falls below (denser than) the critical 

state. Conversely the specific volume for two tests at 300 kPa and 800 kPa which 

show contraction in both the natural and destructured state, falls above (looser than) 

the critical state. Other tests (400, 500 and 600 kPa) do show anomalies in defining 

the critical state. 

A significant difference between the natural and destructured failure surfaces was 

observed due to the presence of bonds in natural soils. The natural failure surface 

initially showed a curvature with the increase of p' up to approximately p' > 300 kPa 

and after that the slope of the natural failure surface reduces steadily as p' increases. 

A clear difference between the very loose and very dense samples showed a clear 

change of behaviour in the failure envelope. 

Tangential stiffness and small strain contours were also evaluated. A loss of stiffness 

values was observed when the small strain contours approached the failure surface 

with increasing strain. It was observed that tangential stiffness values decreased with 

increasing strain. The natural strain contours in each case showed higher stiffness 

values than the destructured soils due to the presence of bonded structure of the 

natural soils. The highest value of G1an calculated for natural soil is approximately 

250 MPa at 0.01% strain and approximately 80 MPa for destructured soils of the 

same strain contour. At 1% strain stiffness values of the two soils were close to each 

other. 

Two yield surfaces were found to occur for natural tropical clay soils of Dhaka 

below the final yield surface and the failure surface under drained shearing. The 

295 



bond yield surface appears to curve down towards the isotropic axis before p' ;::: 

400kPa, confirming that bond breakdown would occur in isotropic compression for 

tests at higher confining pressures, as no yield would be seen during shear. 

A distinctive difference between the natural failure surfaces of three boreholes was 

observed under undrained and drained shearing. The failure surface might be 

affected by the rotation of the stress path and the type of shearing. 

From the observed drained characteristics, broadly three zones of behaviour could be 

identified for the tropical clay soils of Dhaka.The observed drained results suggest 

that if there were a zone of coincidence between bond yield and failure surface 

(Zone 1), it would only be at very low stress levels ( p' less than 5 kPa). It is not 

clearly observed in this study. The Zone 2 is identified between a value of p' at 

failure from less than 5 kPa to approximately 1100 kPa. In this zone the bond yield 

surface showed a tendency to meet with the p' axis below 400 kPa. This is consistent 

with the observation of no clear trend of yield points at 400kPa or greater. In zone 3, 

the coincidence of the natural and destructured failure surfaces was observed at 

approximately p';::: 1100 kPa. 
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CHAPTER 9 

CONCLUSIONS 

In this chapter, the major findings of this research work are discussed. Some 

suggestions for further research to study the behaviour of the red tropical clay soils 

of Dhaka are presented. 

9.1 Conclusions 

On the basis of all the experimental results, the following conclusions may be 
summarized: 

The tropical clay soils of Dhaka are composed of illite, kaolinite, chlorite and some 

non clay minerals mainly quartz and feldspar. In general, it appeared that illite is the 
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dominant clay mineral in most of the samples. The soils showed a random open 

microfabric of silt and clay. The randomly oriented clay platelets or clusters were 

intermixed with large silt sized grains. It was observed that most of the silt grains 

were coated with clay and iron. Several intra- and inter- granular spaces were 

observed throughout the microfabric in all the samples. It was also observed that 

aluminosilicates, iron compounds and silica may form bonds between and within the 

grains. E.D.X. spectra confirmed the presence of these elements (K, AI, Si and Fe) 

on the analysed soils. These elements were observed throughout the specimen in

between clay flakes and grains. 

The tropical clay soils of Dhaka are silt dominated clays which consists of 56% to 

63% silt, 22% to 33% clay and 8% to 19% sand size particles. The specific gravity 

of the samples lie between 2.59 to 2.65. A small variation of silt and clay size 

fractions was also observed with respect to depth. The tropical clay soils of Dhaka 

can be characterized as an intem1ediate to high plasticity inorganic clay. The Liquid 

Limit values lie between 41 o/o to 56%. The Plastic Limit values obtained ranged 

between 15% to 24% and the Plasticity Index values lie in between 17% to 37%. 

The values obtained are consistent with the values for other tropical soils and close 

to the values quoted by Grim (1962) for illitic minerals. Variations in the Liquid 

Limit values were observed between natural and airdried samples due to the effect of 

drying. 

From the isotropic consolidation characteristics, it was observed that generally the 

amount of consolidation of the samples increased with increasing confining 

pressures. Destructured samples (in which the original structure had been destroyed) 

in each case showed greater amount of volume change than the natural samples, 

which is a clear indication of structure (bonding) in the natural samples. 
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The coefficient of consolidation (cv) values for the tropical clay soils of Dhaka are 

consistent with values for low to medium plasticity inorganic clay and also 

consistent with those of kaolinitic and illitic soils. It was also observed that the Cv 

values increased with increasing void ratio. The samples also broadly showed a 

decrease of Cv value with increasing effective pressure. The measured coefficient of 

volume compressibility (mv) of the natural samples ranged between 0.04 to 0.24 

m2
/ MN and that of destructured samples lie between 0.11 to 0.66 m2/MN. The 

results suggest that the compressibility of the soil is very low to medium. The 

measured value of the slope of the isotropic normal consolidation line (A.) ranged 

between 0.37 to 0.6. A compression index (Cc) value of 0.2 to 0.3 was estimated for 

these soils. The permeability of the analysed soils is very low with k ranging from 

0.7x 10-8 m/sec to 8.79x 10-8 m/sec. The estimated values of k are consistent with 

that of kaolinitic and illitic soil and are in agreement with the mineralogy of the 

samples. 

From the limited number of Oedometer test results, an apparent preconsolidation 

pressure of 170 kPa to 250 kPa was estimated for the natural soils. It was also 

observed that the observed apparent or quasi-preconsolidation pressure increases 

with depth. The quasi-preconsolidation pressure observed in Oedometer tests is 

likely to be due to the bonded structure of the soils. 

All the observed undrained and drained characteristics on the natural and 

destructured samples suggest that the tropical clay soils of Dhaka are bonded. 

Bonding increases strength in these soils and bonding has an influence on the 

development of strain and stiffness. Natural samples always showed higher deviator 

stresses, higher stiffnesses and lower strains to reach maximum deviator stress than 

the destructured samples due to the initial presence of bonding in the natural soils. 
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Undrained triaxial tests were carried out on samples for borehole one (Mirpur) and 

borehole two (Curzon Hall). In undrained shearing at low confining pressures, 

samples of both boreholes initially showed peak positive values of excess p.w.p. 

followed by negative values at higher strains due to the tendency to dilate of the 

samples. No negative pore pressures were observed at high confining pressures. 

Only some samples of boreholes one and two at low confining pressures reach the 

critical state at very large strains (approximately in excess of 20% ). High confining 

pressure samples may not have reached the critical state due to the formation of 

distinct shear surfaces. The samples of boreholes one and two showed a wide range 

of variation in ultimate stress ratio values. Few samples showed a common stress 

ratio value for different tests. Nevertheless values of the critical state stress ratio M 

were estimated to be 1.05 for borehole one and 0.96 for borehole two. A critical state 

value of A = 0.06 were estimated for both borehole samples and a value of['= 1.90 

for borehole one and 1 = 1.84 for borehole two samples were estimated under 

undrained shearing. However, due to the difficulties in identifying when a critical 

state had been achieved, these values are tenuous. 

Drained triaxial tests were carried out on samples from borehole three (Mirpur). 

From the drained test results, it was observed that the natural samples of borehole 

three initially showed contraction and then dilation at very large strains. Conversely, 

the destructured samples only showed contraction, right through until the end of 

shearing. It was observed that under drained shearing, only two destructured samples 

approached a true critical state condition. However, it was observed that the specific 

volume for tests at 50 and 200 kPa in both natural and destructured state, falls below 

(denser than) the critical state. Conversely the specific volume for two tests at 300 

kPa and 800 kPa which show contraction in both the natural and destructured state, 

falls above (looser than) the critical state. Other tests of borehole three (400, 500 and 

600 kPa) do show anomalies in defining the critical state. Based on the drained test 

results, critical state values of M = 0.84, A = 0.05 and [' = 1.75 were estimated for 
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borehole three samples. As only a limited number of tests approached a true critical 

state condition, these values might not be representative and are questionable. 

It was observed that the failure surface for natural soils is positioned at higher stress 

levels in the q-p' space than the destructured failure surface. A significant difference 

between the natural and destructured failure surfaces was observed in all the three 

boreholes due to the presence of bonds in natural soils. The natural and destructured 

failure surfaces for boreholes one and two coincided approximately at p' = 550-600 

kPa due to the complete destruction of bonds. At p' > 550-600 kPa both the natural 

and destructured soils of boreholes one and two showed similar stress ratios. The 

failure surface of borehole three showed a convergence at p' = 1100 kPa. A 

distinctive difference between the natural failure surfaces of three boreholes was 

observed under undrained and drained shearing. The failure surface might be 

affected by the rotation of the stress path and the type of shearing. 

Differences in failure type were observed between the natural and destructured soils 

of the three boreholes. The natural soils failed with a definite single or multiple 

shear planes and showed brittle failure. Conversely, the destructured samples of 

these three boreholes failed by bulging in a ductile manner. 

Tangential stiffnesses were measured and small strain contours were evaluated from 

the undrained and drained shearing. The natural soils showed higher stiffness values 

than the destructured soils due to the presence of bonding in natural soils. It was also 

observed that the difference between the stiffness values of natural and destructured 

soils decreased with increasing strain. A significant difference between the strain 

contours of natural and destructured soils was also observed in the q-p' space. 

Tangential stiffness versus axial strain graphs are used to identify yield points at 

smaller strain. It was observed that due to bond breakdown stiffness values gradually 

331 



decreased with increasing strain and the soil undergoes yield. Although 

identification of yield points in some samples is tenuous, two yield points could be 

identified for these soils at low confining pressures. It was also observed that bond 

breakdown would occur in isotropic compression for tests at higher confining 

pressures, as no clear trend of yield points would be seen during shear. Two yield 

surfaces could be defined in the stress space below the final yield surface for these 

soils. The 'first yield' surface was found to occur at low deviator stress levels 

showing a small change in stiffness. A 'bond yield' surface was identified between 

the first and final yield surfaces. It was observed that the bond yield surface occurs 

well below the failure surface. The final yield surface at very low confining pressure 

runs very close to the failure surface and then diverges at higher stresses. When the 

soil reaches the final yield surface, it looses almost all of its stiffness due to bonding. 

After final yield, a soil's behaviour is controlled only by friction. 

Undrained and drained characteristics suggest that three zones of behaviour could be 

identified for the tropical clay soils of Dhaka. It was observed that strain and 

stiffness development is directly related to the zones of behaviour. A zone of 

coincidence (Zone I) between the bond yield and failure surfaces is not clearly 

observed in this study. If it does exist, it would only be at very low stress levels (less 

than 5-20 kPa). 

In the case of undrained shearing, zone 2 is identified for the range of values of p' at 

failure from less than 20 kPa to 600 kPa. In this second zone bond yield occurs 

before failure and the natural soils showed higher stress ratio values than those of the 

destructured soils. The final yield surface in zone 2 is very close to the natural 

failure surface. Zone 3 is identified when the two failure surfaces under undrained 

shearing coincides approximately at p' = 600 kPa due to complete destruction of 

bonds. The soil's behaviour in Zone 3 is independent of bonding and the final yield 

surface in Zone 3 diverges from the natural failure surface. Under drained shearing, 
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Zone 2 is identified between a value of p' at failure from less than 5 kPa to 

approximately 1100 kPa. The coincidence of the natural and destructured failure 

surfaces under drained shearing was observed at approximately p' = 1100 kPa. 

9.2 JFlilltll.llre recommell1ldatioll1l§ 

This research approach highlights the importance of mineralogy, fabric and the 

presence of bonding and their influence on the engineering behaviour of the tropical 

clay soils of Dhaka, Bangladesh. From this study it seems that several aspects of 

these soils need further investigation. 

The observed mineralogy is not conclusive. Halloysite is a common mineral present 

in many tropical soils. However, no halloysite is identified in this study. It is 

important to note here that kaolinite generally transformed to halloysite and vice 

versa. The problems of halloysite identification and its distinction from kaolinite 

have been discussed by Gillot ( 1987). As the present investigation to evaluate 

mineralogy had some limitations because of the accessibility of the X.R.D. 

techniques, it needs further investigation. In addition, Infrared spectroscopy analysis 

might be helpful to identify hydrated halloysite. 

In this study samples were sheared at an initial effective confining pressure starting 

from 50 kPa. Bond yield surface did not show any coincidence with the natural 

failure surface and the final yield surface at very low mean effective stress levels. 

Due to this reason for these soils, Zone 1 is not clearly identified in this study. This 

also needs further investigation. 
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The behaviour of these soils can also be studied with changes in stress path during 

shear to see the influence of stress paths on the yield of the bonded structure and 

failure surface. Initially the behaviour of these soils could be studied by following a 

constant p' path and then the stress path can be changed to a constant q path. The 

behaviour can also studied by following initially a constant cr' 1 path then the stress 

path can be changed to constant cr' 3 path or constant p' shearing paths at different 

stress levels. Stiffness, yield of the bonds and failure surfaces can then be examined 

for each individual stress path followed in the stress space during shear to clarify the 

influences of the different shearing paths on the soil's behaviour. 

Tropical red clay soils are also exposed in the Madhupur Tract, the Barind Tract and 

the Lalmai Hill areas of Bangladesh. In the present study samples were used only 

from the Dhaka Metropolitan area. There is scope to repeat the work and to apply 

this framework in other regions of the country where similar type of soils are 

exposed before any final conclusions could be drawn for the expected behaviour of 

the tropical soils of Bangladesh. 
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