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Abstract 

In this thesis the proposed exact results for low energy effective N = 2 supersymmet

ric SU(N) Yang-Mills gauge theory coupled to N1 fundamental matter multiplets in 

four dimensions are considered. The proposed exact results are based upon the work 

of Seiberg and Witten for low energy effective four dimensional N = 2 supersymmet

ric SU(2) Yang-Mills gauge theory coupled to Nf fundamental matter multiplets. The 

testing and matching of the proposed exact results via supersymmetric instanton cal

culus are the motivation for two studies. Firstly, we study the ADHM construction of 

instantons for gauge groups U(N) and SU(2) and for topological charge two and three. 

The ADHM constraints which implicitly specify instanton gauge field configurations are 

solved for the explicit exact general form of instantons with topological charge two and 

gauge group U(N). This is the first explicit and general multi-instanton configuration for 

the unitary gauge groups. The U(N) ADHM two-instanton configuration may be used 

in further tests and matching of the proposed exact results in low energy effective N = 2 

supersymmetric SU(N) Yang-Mills gauge theories by comparison with direct instanton 

calculations. 

Secondly, a one-instanton level test is performed for the reparameterization scheme pro

posed by Argyres and Pelland matching the conjectured exact low energy results and 

instanton predictions for the instanton contributions to the prepotential of low energy 

effective N = 2 supersymmetric SU(N) Yang-Mills gauge theory with N1 = 2N mass

less fundamental matter multiplets. The constants within the reparameterization scheme 

which ensure agreement between the exact results and the instanton predictions for gen

eral N > 1 are derived for the entire quantum moduli space. This constitutes a non-trivial 

test of the proposed reparameterization scheme, which eliminates the discrepancies aris

ing when the two sets of results are compared. 
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Chapter 1 

Introduction 

Quantum field theory is the central tool of theoretical high energy physics. Quantum 

gauge field theories in four dimensional spacetime provide the current models for the 

fundamental interactions between elementary particles. The most important gauge field 

theories are Yang-Mills gauge field theories, in which the gauge group is non-Abelian. 

The Standard Model of particle physics is based upon gauge theories, with quantum 

Yang-Mills gauge field theories assuming a vital role. 

Perturbation theory is a method by which the experimentally verifiable predictions can 

be derived from quantum gauge field theories. In perturbation theory, one expands an 

analytic function of the gauge coupling when the gauge coupling assumes small values; 

the theory is referred to as being in the weakly coupled regime for these values. Weak 

coupling enables one to make a valid expansion of functions dependent on the coupling in 

quantum field theory. At strong coupling, perturbations in the gauge coupling cannot be 

made, and no information regarding the strong coupling regime may be extracted using 

this method. 

Phenomenological applications of quantum gauge field theory almost exclusively use per

turbation theory to obtain quantitative predictions from these models. However, quan

tum field theories also contain functions which are non-analytic in the gauge coupling 

constant. Perturbation theory cannot be applied to such functions, with the result that 

perturbative techniques do not yield any results about the physical content of these func

tions. Hence functions \vhich are non-analytic in the gauge coupling must be treated 

non-perturbatively. Non-perturbative methods in quantum gauge field theory present 

1 
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many difficulties. Analytical non-perturbative methods use the semi-classical approxi

mation of the path integral formulation of quantum field theory. In the semi-classical 

approximation, quantum fluctuations about exact non-trivial classical solution of the 

equations of motion of the field theory are used to evaluate the non-perturbative con

tributions which the solution makes to the path integral. A functional expansion in the 

fields about these classical solutions can be used to derive non-perturbative information, 

in the form of functions which are non-analytic in the gauge coupling, about the theory 

under consideration. Such an expansion is only valid at weak coupling. Non-perturbative 

effects vanishing at strong coupling, and so weak coupling must be used. It is convenient 

to change from Minkowski spacetime to Euclidean spacetime when considering the non

perturbative effects in a quantum field theory. In Euclidean Yang-Mills gauge theories, 

at weak coupling, the dominant non-trivial classical solutions are known as instantons 

and anti-instantons. Instantons and anti-instantons are exact classical minima of the 

four dimensional Euclidean Yang-Mills action, and exist as exact solutions to the (anti

) self-dual Yang-Mills field equations. All solutions to the (anti-)self-dual Yang-Mills field 

equations can be classified using a particular mathematical method. Instantons (that is, 

both instantons and anti-instantons) can be interpreted as fluctuations of the gauge field 

vacuum and as tunnelling processes which connect inequivalent vacuum states. There 

are an infinite number of instanton solutions which will contribute non-perturbatively to 

the quantum Yang-Mills gauge field theory, known as multi-instantons. These classical 

gauge field configurations cannot readily be obtained in explicit and general form. In this 

thesis we investigate multi-instanton solutions for the gauge group SU(N). 

Instantons contribute to phenomenologically valuable quantum Yang-Mills gauge field 

theories, such as those in the Standard Model, in a complicated way. All combinations of 

instantons and anti-instantons contribute, and are thought to be involved in the lifting 

of any vacuum state degeneracy in these theories. Non-perturbative contributions from 

instantons are negligible compared to those from perturbation theory, and approximate 

models must be used to evaluate their effects even on microscopic scales. In supersym

metric gauge theories, instanton effects can often be calculated exactly. Supersymmetry 

is a theoretical symmetry of field theories which has many appealing properties. Not only 

does supersymmetry appear to provide the solution to problems in the phenomenology 
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of gauge field theories, such as the hierarchy problem, it also provides mathematically 

elegant theoretical models of elementary particles. Furthermore, supersymmetric gauge 

theories also exhibit important physical features in common with less symmetric gauge 

field theories, such as confinement and chiral symmetry breaking. Non-perturbative ef

fects, such as those arising from instantons, can be exactly calculated in a number of 

supersymmetric quantum field theories due to the constraints supersymmetry places on 

quantum corrections. Instanton contributions are prominent in many supersymmetric 

gauge theories, which in general possess an infinite number of degenerate vacuum states, 

which instantons cannot rectify. 

Many exact non-perturbative results have been obtained in quantum supersymmetric 

gauge theories using semi-classical methods. Less than ten years ago, Seiberg and Wit

ten were able to exactly determine the low energy Wilsonian effective. action of four 

dimensional N = 2 supersymmetric SU(2) Yang-Mills gauge field theory. Conventional 

methods used previously did not yield this effective action. The solution for the low 

energy vVilsonian effective action is valid at both weak and strong coupling, and reveals 

the strongly coupled gauge field dynamics of the theory. Known perturbative and non

perturbative methods cannot be used to analyse the strongly coupled regime of quantum 

gauge field theories, and so the Seiberg-Witten solution presents major progress to

wards understanding the strong coupling behaviour of quantum gauge field theories. The 

Seiberg-Witten is also the first known exact solution of the low energy dynamics of a 

four dimensional quantum field theory. 

The techniques used by Seiberg and Witten are not those of conventional field theory. 

Rather, they are a synthesis of physical intuition and various previously known results 

specific toN= 2 supersymmetric Yang-Mills gauge field theory. The low energy Wilso

nian effective action of N = 2 supersymmetric Yang-Mills gauge field theory is completely 

specified by a holomorphic function known as the prepotential. Seiberg and Witten pro

pose, via an elaborate sequence of arguments, an exact prepotential for the theory which 

meets all of the necessary criteria for this function. The prepotential is known to re

ceive an infinite series of quantum non-perturbative corrections from instantons. The 

Seiberg-Witten solution proposes an exact evaluation of this series. Motivated by these 

developments, direct calculation of this series using semi-classical non-perturbative meth-
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ods from first principles were performed. The presence of supersymmetry provides many 

simplifications in the analytic calculation of the instanton contributions to the prepo

tential. Comparisons made between the proposed exact non-perturbative contributions 

with semi-classical calculations made using known multi-instanton gauge field configura

tions are in agreement with some exceptions. The most serious discrepancies occur for 

N = 2 supersymmetric SU(N) Yang-Mills gauge theories coupled to 2N fundamental 

matter multiplets. These exceptions are significant, since the techniques used by Seiberg 

and Witten have found widespread application in other areas of theoretical high energy 

physics, notably string theory, and also mathematical physics and pure mathematics. But 

the exact results proposed by Seiberg and Witten, and their subsequent generalization to 

other N = 2 supersymmetric gauge field theories, are highly non-trivial solutions which 

contain information other than the exact N = 2 prepotential. However, in order to agree 

with the results of conventional non-perturbative calculations, the proposed exact results 

must be matched to the relevant instanton predictions. A recently proposed matching 

scheme purports to resolve all of the discrepancies between the two sets of results, through 

a non-perturbative reparameterization. This scheme generalizes other work for special 

cases of discrepancy. In this thesis we investigate the explicit matching within this scheme 

between the proposed exact results and instanton calculations for N = 2 supersymmetric 

SU(N) Yang-Mills gauge theory coupled to 2N fundamental matter multiplets. 

In Chapter 2 we review instantons in Yang-Mills field gauge theories. We begin with 

a general description of how instantons arise in Yang-Mills gauge field theories. In

stantons are exact solutions of the classical (anti- )self-dual Yang-Mills field equations 

which give a minimum finite action of Yang-Mills gauge field theory in four dimen

sional Euclidean spacetime. It is shown that instanton gauge field configurations can be 

classified by an integer referred to as the topological charge or instanton number. The 

instanton number is used to prefix the particular instanton configuration under consid

eration. Multi-instanton configurations are instanton solutions with topological charge 

greater than one. We then describe the first known instanton configuration, discovered 

by Belavin, Polyakov, Schvarts and Tyupkin (BPST), and named the BPST instanton. 

This is the most general one-instanton solution of pure SU(2) Yang-Mills gauge field the

ory. We then describe the concept of the instanton moduli space, which is important for 
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characterizing instanton solutions. This is followed by a detailed description of a general 

method for constructing instanton configurations formulated by Atiyah, Drinfeld, Hitchin 

and Manin (ADHM), known as the ADHM construction of instantons. This method im

plicitly defines all multi-instanton solutions for Yang-Mills gauge theories with arbitrary 

classical gauge groups. We describe the ADHM construction for gauge groups U(N) and 

Sp(N). In order to extract explicit multi-instanton solutions from the ADHM construc

tion, a set of non-trivial constraints, known as the ADHM constraints, are to be solved. 

The ADHM constraints are solved to give the general U(N) two-instanton solution. The 

ADHM constraints for the U(N) three-instanton and the Sp(N) three-instanton are also 

described. 

Supersymmetric gauge theories are reviewed in Chapter 3. The concept of global super

symmetry is described. The degree of supersymmetry in a supersymmetric gauge theory 

is specified by an integer N, which indicates the number of supersymmetry generators 

present. The notion of supersymmetry constraints is briefly outlined. This is followed 

by a description of the N = 1 superfield formalism, which can be used to efficiently 

construct supersymmetric gauge theories. We then describe N = 1 and N-extended 

supersymmetric Yang-Mills gauge theories, up to the maximally extended case of N = 4 

supersymmetric gauge theories. 

In Chapter 4 we review exact results inN= 1 and N = 4 supersymmetric Yang-Mills 

gauge theories. Methods which make use of instantons have previously been used to 

obtain exact results in supersymmetric field theories. vVe then describe the concept of 

duality inN= 1 and N = 4 supersymmetric Yang-Mills gauge theories. Duality between 

the electric and magnetic degrees of freedom and between the weak and strong coupling 

regimes is a property conjectured to be present in N = 4 supersymmetric Yang-Mills 

gauge theories. In particular, we describe the generalization of electric-magnetic duality 

known asS-duality inN= 4 supersymmetric Yang-Mills gauge field theory. Prior to this 

we briefly review magnetic monopoles in Yang-Mills gauge theories, which are central to 

the realization of electric-magnetic duality in field theories. We then describe a special 

form of duality inN = 1 supersymmetric Yang-Mills gauge theories, known as Seiberg 



CHAPTER 1. INTRODUCTION 6 

duality. Seiberg duality is not equivalent to electric-magnetic duality, and is restricted 

to N = 1 supersymmetric gauge theories, but it does involve correspondences between 

phenomenon at weak and strong coupling, and electric and magnetic degrees of freedom. 

Before this, we review the concepts of the moduli space of vacua and phases of N = 1 

supersymmetric gauge theories. 

Many of the concepts described in Chapter 4 appear again in the context of N = 2 

supersymmetric Yang-Mills gauge theories. These include electric-magnetic duality and 

the concept of a moduli space of vacua. In Chapter 5, we first describe exact results 

for N = 2 supersymmetric Yang-Mills gauge theories analogous to those obtained for 

N = 1 and N = 4 supersymmetric gauge theories. We then present a detailed review 

of Seiberg-Witten theory in Chapter 5. Seiberg-Witten theory proposes that the low 

energy dynamics of quantum N = 2 supersymmetric SU(2) Yang-Mills gauge theory 

and quantum N = 2 supersymmetric SU(2) QCD in the Coulomb phase can be deter

mined from reasoning involving electric-magnetic duality, N = 2 supersymmetry and 

the moduli space of vacua in these theories. The low energy dynamics of these theories 

are specified by the prepotential, a holomorphic function of the superfields. Seiberg and 

Witten propose that the prepotential can be reconstructed exactly from knowledge of the 

moduli space of vacua via complex analysis. The exact form of the low energy effective 

action of the theory, valid at both strong and weak coupling, can then be proposed. We 

follow this with a description of the generalizations of the methods of Seiberg-Witten 

theory to apply to N = 2 supersymmetric gauge theories with other gauge groups and 

matter contents. In particular we focus upon N = 2 supersymmetric SU(N) QCD, which 

is the theory of primary interest in this thesis. 

In Chapter 6 we describe the application of instanton calculus to test and match the 

proposed exact results in N = 2 supersymmetric QCD with gauge group SU(2) and 

SU(N). We first review instanton calculus in Yang-Mills gauge theory and supersym

metric Yang-Mills gauge theory. To calculate the quantum effects of instantons, the semi

classical approximation is employed. The collective coordinate method, which makes use 

of the ADHM construction of instantons, is also used in instanton calculus to enable 
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calculations to be performed. In the Coulomb phase of N = 2 supersymmetric gauge 

theories, the gauge symmetry is broken by the non-zero vanishing expectation values of 

scalar fields. In this way, the fermion fields present in supersymmetric gauge theories 

affect the bosonic pure Yang-Mills gauge theory, of which instantons are classical solu

tions. Due to this, instantons are no longer exact solutions of the classical field equations 

of supersymmetric gauge theories. Despite this, instanton effects can still be calculated 

using the constrained instanton formalism. We then state the results of the compari

son of instanton calculations with the results of Seiberg-VVitten theory for the instanton 

contributions to various quantities inN= 2 supersymmetric SU(2) QCD. These consist 

of a one-instanton and· a two-instanton test of the instanton contributions to the prepo

tential, and a special all-orders instanton test of a renormalization group relation. An 

extension of the' one-instanton test of Seiberg-Witten theory to the case of the prepo

tential of N = 2 supersymmetric SU(N) QCD is then described. We thi:m describe the 

discrepancies which have been found between the proposed exact results and instanton 

predictions as a result of instanton tests of Seiberg-Witten theory and its generaliza

tions. The most serious discrepancy occurs inN= 2 supersymmetric SU(N) QCD with 

Nf = 2N fundamental matter multiplets, of which the Seiberg-Witten result for N = 2 

supersymmetric SU(2) QCD is a special case. Following earlier suggestions, a unified 

reparameterization scheme, known as the Argyres-Pelland matching scheme, has been 

proposed to resolve these discrepancies. Through a non-perturbative reparameterization, 

quantities such as the gauge coupling used in the proposed exact results can be matched 

to the same quantities derived from instanton calculations. Working within this scheme, 

we consider the matching between the proposed exact result for the one-instanton con

tribution to the prepotential of N = 2 supersymmetric SU(N) QCD with N1 = 2N 

massless fundamental matter multiplets and the one-instanton calculation for the same 

quantity. Precise agreement between these two sets of results is obtained by matching 

the one-instanton predictions from both sources for all N > 1. We present the formulae 

for the constants in the Argyres-Pelland matching scheme in this case, which are valid 

for all N > 1. 

Upon first reading, the reader may omit Chapter 4, and in particular Sections 4.4 and 
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4.5 of Chapter 4, without any loss of essential material. 

Our conclusion is given in Chapter 7, which is followed by two appendices and a bibliog

raphy of works cited or consulted. 



Chapter 2 

Yang-Mills Instantons 

2.1 Introduction 

Instantons have proved to be an important phenomenon in Yang-Mills gauge field theory 

ever since their discovery [1]. They have been the subject of a wealth of mathematical 

and theoretical literature over the last three decades. At weak coupling, instantons con

stitute the dominant non-perturbative effect in Yang-Mills gauge theories. Yang-Mills 

gauge theories are the theories upon which much of the phenomenologically successful 

models of particle physics are founded. Furthermore, instantons assume an unusual status 

in theoretical high energy physics: their existence and nature was deduced purely from 

the properties of classical Yang-Mills gauge theory, and they are considered physical pro

cesses, but experimentally they have never, and likely will never, be directly observed. 

Thirty years ago, it was hoped that confinement in Yang-Mills gauge theory could be 

attributed to instantons, but the puzzle of confinement has not allowed itself to be re

solved so straightforwardly [15, 17]. However, instantons are still studied in the context 

of phenomenological theories such as QCD [70, 71, 72, 73] and observable physical effects 

can be attributed to them [74]. 

More recently, instantons have been revived as their effects can be exactly calculated in 

supersymmetric gauge theories. This follows the advances made in determining the exact 

low energy effective descriptions of such theories, which we shall return to later in this 

thesis. They have also been used in as a tool in pure mathematics for the description 

9 
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and study of the differential topology of four-manifolds. Recently instantons have also 

been generalized to noncommutative spacetimes and higher dimensions. 

Instantons are essentially non-trivial exact solutions of a special form of the classical 

Yang-Mills field equations which locally minimize the Yang-Mills action in four dimen

sional Euclidean spacetime. Yang-Mills gauge fields with this property necessarily satisfy 

a set of field equations known as the self-dual Yang-Mills equations. Accordingly, instan

tons are self-dual gauge fields, which are topological in nature. They represent non-trivial 

fluctuations in the gauge field vacuum in four dimensional spacetime, and are localised 

in both space and time, making their existence transient. Hence their description as pro

cesses rather than particles is more appropriate. As we shall describe below, instantons 

can be interpreted as processes connecting vacua in a Yang-Mills gauge field theory via 

quantum mechanical tunnelling. 

In Section 2.2, we describe instantons in pure Yang-Mills gauge field theory and their 

properties. We describe the first known instanton solution, found by Belavin, Polyakov, 

Schvarts and Tyupkin (BPST) [1] for Yang-Mills gauge field theory in Subsection 2.2.1. 

The properties of the BPST instanton and instantons in general are also described in 

Subsection 2.2.1. In Subsection 2.2.2 we describe the collective co-ordinates and the 

moduli space of instantons. 

Using instanton configurations in quantum gauge field theory requires the instanton cal

culus. The instanton calculus shall be described in Chapter 6, where applications of 

instanton calculations are also described. Mathematical descriptions of all general in

stanton configurations with minimum finite Yang-Mills actions in Euclidean spacetime 

are usually necessary for instanton calculations. To construct these descriptions of instan

tons, one can use the construction of Atiyah, Drinfeld, Hitchin and Manin (ADHM) for 

instantons [8]. The ADHM construction is a technique for describing all self-dual gauge 

fields, with arbitrary classical gauge group and instanton charge. In Section 2.3 we de

scribe the ADHM construction. In Subsection 2.3.1 we focus on the ADHM construction 

for instantons with gauge group U(N) and describe the first exact general multi-instanton 

solution found for U(N) Yang-Mills gauge theory. This is the exact general U(N) two

instanton solution found by solving the appropriate ADHM constraints. In Subsection 

2.3.3 we describe the ADHM construction for instantons with gauge group Sp(N). The 
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construction of Sp(N) ADHM instantons can be approached as a special case of the 

U(N) construction or through its own formalism. The ADHM construction of Sp(N) 

instantons is more simple than that for U(N) instantons. This fact, in conjunction with 

the isomorphism Sp(1) c:::: SU(2), enables one to describe SU(2) ADHM multi-instantons 

in a more efficient and economical manner than by using the SU ( N) formalism. 

2.2 Instantons in Yang-Mills Gauge Theory 

For definiteness and later reference, we describe instantons in four dimensional SU ( N) 

Yang-Mills gauge field theory in the first part of this section. Later, in Subsection 2.2.1 

we will specialise to SU(2) Yang-Mills gauge fields. In this section we make use of the 

reviews [49, 50, 63, 64, 75, 76, 90, 224, 280, 282, 283]. We also refer to the original papers 

concerning instantons in Yang-Mills gauge field theory [1, 2, 15, 16, 17, 18, 19]. 

'vVe denote the gauge field as the function vm(x), where m = 0, ... , 3 is the Lorentz 

spacetime index and x = xm is the spacetime co-ordinate. The gauge field Vm is a Yang

Mills gauge field if the gauge group under which it is invariant is a non-Abelian group. 

A Yang-Mills gauge field can be decomposed as a matrix product of the physical gauge 

field v~ and the generators of the gauge group ya, so that: 

(2.1) 

As is conventional in instanton literature, the gauge field Vm is taken to be an anti

Hermitian field. The covariant derivative in the field theory then acts as Dmf = 8mf + 
g[vm, j], with no factor of i = yCI multiplying vm, for some function f. The gauge field 

strength for a non-Abelian or Yang-Mills gauge field is then given by: 

(2.2) 

where g is the gauge coupling constant. 

Instantons are phenomena which occur in four dimensional Euclidean spacetime. Through

out this chapter we work in four dimensional Euclidean spacetime. In Appendix A we 

detail our conventions for Euclidean spacetime. The action of the SU(N) Yang-Mills 

gauge theory in Euclidean spacetime has the form: 

S[vm] = -~I d4xtrN (vmnVmn)- i?Jk, (2.3) 
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where{) is a real number referred to as the vacuum angle or {}-angle, trN denotes the trace 

over the SU(N) gauge group index and k is an integer termed the topological charge. 

The term i{)k is referred to as the 'theta term' or {}-term. The topological charge is an 

integer number, k E Z, given by the formula: 

(2.4) 

where *vmn is dual of the gauge field strength Vmn- The dual gauge field strength is 

defined by: 

*vmn (2.5) 

Equation (2.4) has the form of a total derivative. This is the origin of the {}-term in the 

action S[vm] in Eq. (2.3). Since i{)k is a total derivative, it can be added to the rest of 

the action in S[vm] with no effect on the equations of motion of the theory. A factor 

involving the {}-term will also be present in the partition function of the theory. 

Vve now describe the origin of the topological charge k given in Eq. (2.4), which is an 

important parameter of instanton configurations. If the action Eq. (2.3) is to be finite, a 

necessary condition on the gauge field strength is that it vanishes at infinitely long range: 

lim Vmn = 0. 
lxl-roo 

(2.6) 

It follows that a necessary and sufficient condition on the gauge field Vm which ensures 

that Vmn satisfies Eq. (2.6) is: 

I. :ua u-1 
1m Vm = m , 

lxl-roo g 
. (2.7) 

where U(x) E G is an element of the gauge group G = SU(N). The condition Eq.(2.7) 

appears to imply that at large distances, the gauge field Vm must tend to a gauge trans

formation of the classical, trivial vacuum V m = 0, or 'pure gauge', for the gauge field 

strength Vmn to satisfy Eq. (2.6). If this were so, then the group element U, which we 

take to be a matrix, is the same as the gauge group element n which appears in ordinary 

local gauge transformations, in which: 

Vm ---+ v:n = nvmn-1 + !_nomn-1
. 

g 
(2.8) 

The condition Eq. (2.7) does not demand that the matrix U is equivalent to the ma-

trix n. The matrix n represents a continuous mapping from the field space, which is 
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Euclidean spacetime IR.4 , to the gauge group G = 5U(N). This mapping can always be 

continuously deformed to the trivial mapping from IR.4 to a single element of G. Unlike n, 
the matrix U represents a continuous mapping from the 3-sphere 5 3 at infinity, denoted 

5!, to the gauge group G. This mapping cannot in general be continuously deformed 

to the trivial mapping between IR.4 and G. In its most simple form, the matrix U acts 

as a map between 5!, and, for example, the gauge group G = 5U(2) is isomorphic to 

53 , written as 5U(2) "' 53 , where ::::: denotes isomorphism. The set of all continuous 

mappings between two 3-spheres can be categorised into different equivalence classes, 

such that in each class the elements can be continuously deformed into each one another. 

These equivalence classes can be labelled by an integer number K, E Z, which indicates the 

number of times the 3-spheres 'wind' about each other in the mapping, giving a measure 

of the non-trivial topology of the map. (We denote this integer k as it shall be identified 

with the 'instanton number', which is an integer measuring the instanton action and the 

number of constituent one-instantons in a k-instanton configuration.) The equivalence 

classes so labelled form a group, known as a homotopy group. The integer K, is known 

as the 'winding number', and can be shown to be exactly equivalent to the topological 

charge k defined in Eq. (2.4). Thus we write K, = k hereafter and denote k as the winding 

number. In terms of differential topology, when the spacetime dimension is even, k is 

related to the Pontryagin index; when the spacetime dimension is odd, k > 2 is related 

to the second Chern class [66]. ·when k = 0, U can be deformed to the trivial mapping 

between IR4 and G = 5U(2), when there are no windings, and one has U::::: n. Otherwise, 

when k =/:- 0, different regions, or· sectors, of the configuration space of finite actions are 

specified. Instantons are the gauge field configurations which minimize the action S[vm] 

in each different sector labelled by the topological charge. 

For general gauge groups, G =/:- SU(2), Bott's theorem [11] states that for continuous 

mappings between S 3 and an arbitrary simple Lie group G, the mapping can be contin

uously deformed into a mapping between S3 and an 5U(2) subgroup of G. Then the 

configuration space of finite actions can be labelled by the winding number for U as a 

mapping between S~ and SU(2) c-G subgroups of G. Instanton configurations can then 

be distinguished by their topological charge k, or 'instanton charge' or 'instanton number' 

as it is known in theoretical physics literature. That the topological charge is identical to 
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the instanton charge can be established by substituting an instanton configuration into 

Eq. (2.4). 

We now describe gauge field configurations which minimize the Yang-Mills action S[vm] 

given by Eq. (2.3). To be physically valid, we require that the action is more than or 

equal to zero. The Euclidean action cannot be less than zero; it is bounded from below. 

One can write the real part of the action S[vm] in terms of the gauge field strength Vmn 

and its dual *vmn as follows: 

(2.9) 

where we have made use of the property *vmMVmn = vmnVmn in Euclidean spacetime. 

Using the formula for the topological charge kin Eq. (2.4), the following lower bound on 

the real part of S[vm] can be derived from Eq. (2.9): 

-~ J d4x trN (VmnVmn) ): 
8
;

2
/kl (2.10) 

This bound becomes an equality and the action is locally minimized when the gauge field 

strength is either self-dual or anti-self-dual; that is, when the first right hand side term 

in Eq. (2.9) vanishes and Vmn satisfies: 

(2.11) 

The equations contained in Eq. (2.11) are known as the (anti- )self-dual Yang-Mills field 

equations, and are a set of non-linear first order partial differential equations for the 

gauge field Vm· The gauge fields Vm whose gauge field strengths satisfy Eq. (2.11) are 

referred to as self-dual or anti-self-dual gauge fields. Whether a gauge field is self-dual or 

anti-self-dual determines the sign of the topological charge of the gauge field: 

(2.12) 

(2.13) 

where for self-dual gauge fields, k > 0, and for anti-self-dual gauge fields k < 0. Both 

self-dual and anti-self-dual gauge fields locally minimize the four dimensional Euclidean 

Yang-Mills action. Self-dual gauge field configurations are referred to as instantons; anti

self-dual gauge field configurations are referred to as anti-instantons. This division follows 
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from the positivity of the action S[vm]: self-dual gauge fields with negative topological 

charge k would lead to a negative lower bound on the action, which is unphysical. There

fore only self-dual gauge fields with positive k can satisfy the self-dual Yang-Mills field 

equations. In this thesis we shall work exclusively with instantons; all references, except 

where stated otherwise, to 'instantons', will mean self-dual gauge fields with topological 

charge k > 0. 

Gauge fields which obey Eq. (2.11) also automatically satisfy the Euler-Lagrange equa

tions of the action Eq. (2.3). These equations are referred to as the second order Yang

Mills field equations: 

(2.14) 

and they consist of non-linear second-order partial differential equations. Self-dual and 

anti-self-dual gauge fields satisfy the second order Yang-Mills field equations via the 

Bianchi identity: 

(2.15) 

Solutions of the second order Yang-Mills equations are however not necessarily self-dual 

or anti-self-dual. 

Instantons have an action given by: 

So - - 87r21kl - '{)k 
mst - 2 '/, 

g 
= { -211ikT 

- 211ikT* 

k>O 

k<O 

where T is the complexified gauge coupling constant, given by: 

(2.16) 

47ri {) 
T = - + - (2.17) 

g2 271' 

which involves the classical gauge coupling g, as we treat only classical Yang-Mills gauge 

field theory for the purposes of this chapter. 

In Subsection 2.2.1 below, we describe the first non-trivial solution discovered for the 

self-dual Yang-Mills field equations, and thus the first self-dual gauge field found, known 

as the BPST instanton. 

2.2.1 The BPST lnstanton 

The first instanton solution of Yang-Mills gauge field theory was discovered by Belavin, 

Polyakov, Schvarts and Tyupkin (BPST) [1]. The BPST instanton was derived for four 
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dimensional Yang-Mills gauge field theory '.Vith gauge group SU(2). Originally termed 

'pseudoparticles' by Belavin et. al [1], the instanton solution was given its modern name 

by 't Hooft [15], which describes the fact that the solution is localized in space and time. 

Viewed in five dimensional spacetime, the instanton would appear to be a localized par

ticle of finite extent, solitonic in nature. 

Anticipating the ADHM construction, which we shall describe in Section 2.3, we now in

troduce a quaternionic formalism for four dimensional Euclidean spacetime co-ordinates. 

This formalism will prove to be convenient when using the ADHM construction. 

The Lorentz group in four dimensional Euclidean spacetime is 50(4); this has a covering 

group SU(2)R x SU(2)L. Then a spacetime 4-vector Xn, n = 0, ... , 3, can be written 

in the (2, 2) representation of this product group, denoted in component form as the 

quaternions Xo:a or :r;ao:. In this notation, a, a = 1, 2 are Weyl spinor indices of the 

respective SU(2)L and SU(2)R groups. The explicit form of the quaternionic spacetime 

co-ordinates is given by: 

(2.18) 

where CJno:a and its Hermitian conjugate iJ~o: are four 2 x 2 matrices with components 

given by: 

CJn = (if', 1[2]x[2J), iln (J~ = (-if', 1[2]x[2J), (2.19) 

in which 1[2Jx[2] is the 2 x 2 identity matrix and re, c = 1, 2, 3 are the three standard 

Euclidean Pauli matrices given in Appendix A. 

The Weyl spinor indices a, a may be lowered and raised using the anti-symmetric tensors 

Eo:f3 and Ea:~ whose form and action are defined in Appendix A. 

One can write the quaternionic spacetime co-ordinates in a yet more explicit form, making 

use of the Euclidean Pauli matrices in Appendix A: 

(2.20) 

Derivatives with respect to Euclidean spacetime can also be expressed in this quaternionic 

formalism, as: 

(J a aao: 
no:a n, (2.21) 
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Note that the derivatives in Eq. (2.21) do not give differentiation with respect to the 

quaternionic form of the spacetime co-ordinates, that is, fJ / 8xaa.· 

Also required are the following Lorentz generators, which are combinations of the matrices 

in Eq. (2.19): 

(2.22) 

These combinations are self-dual and anti-self-dual, respectively: 

(Jmn = (2.23) 

We now turn to the BPST instanton. The BPST instanton is an instanton configuration 

of unit topological charge, referred to as a one-instanton, and is the unique one-instanton 

solution for Euclidean SU(2) Yang-Mills gauge field theory. In general, instantons of 

topological charge k will be referred to as k-instantons. The BPST instanton gauge field 

has the explicit form: 
2 (x- X)nDtCJmnD 
g (x- X)2 + p2 . 

(2.24) 

The BPST instanton gauge field configuration has many important properties, some of 

which are generic to instantons, which we describe in a list below. 

Properties of the BPST Instanton 

The BPST instanton solution given in Eq. (2.24) has the following properties: 

1. The instanton gauge field configuration is described by eight free, unconstrained 

parameters: one scale size (or dilatation) parameter p, which gives the size of the 

instanton; four spacetime co-ordinates contained in the 4-vector instanton position 

Xn, which represents the centre of the instanton; and three parameters contained 

in the global SU(2) gauge rotations, or SU(2) iso-orientations, D E SU(2), of 

the instanton, which orient the instanton in SU(2) group space. These are exam

ples of instanton collective co-ordinates. The 'physical' degrees of freedom of the 

instanton are p and Xn, so that the BPST instanton can be interpreted as a five di

mensional object [25]. More precisely, the SU(2) one-instanton moduli space can be 
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interpreted as a five dimensional manifold, when global SU(2) gauge rotations are 

excluded [10]. These parameters are associated with the classical global symmetries 

of the SU(2) Yang-Mills gauge field theory which are broken by the instanton so

lution. These global symmetries are spacetime translations, scale transformations, 

and global gauge transformations. 

2. The instanton solution possesses zero energy and hence has zero mass [62]. The 

gauge fields Vm described by the action S[vm] in Eq. (2.3) have no mass terms 

associated with them. More precisely, instanton gauge field configurations possess 

a vanishing energy-momentum tensor [15], which is a conserved quantity. For a 

Yang-Mills gauge theory, the energy-momentum tensor Tmn can be written as: 

For self-dual or anti-self-dual gauge fields, for which Vmn = ±*vmn, from Eq. (2.25) 

it can be seen that instantons and anti-instantons possess a vanishing energy

momentum tensor, Tmn = 0 [15]. It is also notable that a vanishing Yang-Mills 

energy-momentum tensor implies that the Yang-Mills gauge field is self-dual or 

anti-self-dual; thus Tmn = 0 is a necessary and sufficient conditions for self-dual 

and anti-self-dual Yang-Mills gauge fields. Instantons can be considered as local

ized fluctuations of the pure massless gauge field vacuum. The result that T mn = 0 

is connected with this fact and the in~erpretation of instantons as trajectories in 

gauge field space which connect vacuum states. Other conserved quantities are 

also zero for instanton configurations; these include the isospin current and the 

dilatation current. 

3. The instanton configuration breaks the product of the gauge group symmetry and 

the Lorentz group symmetry SU(2) x SU(2)L to a diagonal subgroup symmetry. 

The SU(2) group indices in Eq.(2.24) are identified with those of the SU(2)L sub

group. 

4. Since the self-dual Yang-Mills field equations are locally gauge invariant, the BPST 

instanton in Eq. (2.24) exists in a particular local gauge. The particular gauge used 

in Eq. (2.24) is known as regular gauge. Local gauge transformations of Eq. (2.24) 
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correspond to differing values of the SU(2) gauge group element D. Therefore 

the BPST instanton is equivalent to all other SU(2) one-instantons with eight 

parameters, up to local gauge transformations. 

5. The instanton gauge field has a gauge field strength given by: 

Vmn = 
4 p2DtO"mnD 
g [(x- X)2 + p2]2' 

(2.26) 

which is manifestly self-dual due to the self-duality of the generator O"mn· 

6. The BPST instanton is the most general one-instanton configuration for the gauge 

group SU(2). For gauge group SU(2), it has been shown that the most general 

k-instanton solution will have 8k free parameters [26, 54]. The BPST instanton has 

8 x 1 = 8 parameters and is thus the most general one-instanton solution for the 

self-dual Yang-Mills SU(2) field equations. 

The BPST anti-instanton, which has topological charge k = -1, and the gauge field 

strength of the BPST anti-instanton, may be obtained from Eqs. (2.24,2.26) by substi

tuting the self-dual tensor O" o:a with the anti-self-dual tensor aao: in these expressions. 

The particular local gauge in which the BPST instanton in Eq. (2.24) has been expressed 

is regular gauge. This is because in this gauge the BPST instanton is non-singular when 

Xn = Xn. At large distances, the BPST gauge field Vm has the asymptotic behaviour 

Vm rv 1/x. This is an inconvenient gauge for semi-classical calculations involving instan

tons, upon which we -vvill elaborate in Section 6.2 of Chapter 6. It is inconvenient as this 

behaviour leads to difficulties in constructing square-integrable quantities for the instan

ton gauge field. This technical difficulty can be resolved by using the BPST instanton, 

and instantons in general, in singular gauge. The BPST instanton in singular gauge can 

be obtained by a local gauge transformation of the regular gauge BPST instanton in 

Eq. (2.24), via: 

where U(x) is the singular matrix: 

U(x) 
nt am(X- X)m 

[x-X[ 

(2.27) 

(2.28) 
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The gauge transformation Eq. (2.27) using the singular matrix Eq. (2.28) is strictly only 

valid if the singular point Xn = Xn is excluded from Euclidean spacetime ~4 . This appar

ent singularity of the instanton solution was introduced by a local gauge transformation 

Eq. (2.27), and so can also be removed via a local gauge transformation. A rigorous 

method for treating singular gauge transformations uses a punctured Euclidean space

time with the point Xn = Xn excluded. On such a spacetime, the singular gauge BPST 

instanton is regular. The long distance behaviour of the matrix U(x) in Eq. (2.28) repre

sents a bijective mapping from S!:, to the gauge group SU(2). It follows that the BPST 

instanton has unit topological charge, k = 1. 

Furthermore, the topological charge of the BPST instanton in singular gauge is localized 

on the infinitesimal 3-sphere about the singular point Xn = Xn. This is unlike the topo

logical charge of the regular gauge BPST instanton, which is localized on the 3-sphere at 

infinity, S!:,. 

The result of the gauge transformation Eq. (2.27) is the BPST instanton in singular 

gauge, which reads: 
2 p2(x- X)nnta-mnn 
g (x- X) 2 [(x- X)+ p2]. 

(2.29) 

In singular gauge, the BPST instanton has its SU(2) gauge group indices identified with 

the indices of the SU(2)R subgroup, unlike the regular gauge BPST instanton. At large 

distances, the singular gauge BPST instanton Eq. (2.29) has behaviour Vm rv 1/x3, which 

is useful for ensuring the convergence of integrals in instanton calculus. We shall describe 

instanton calculus in Chapter 6. 

In Subsection 2.2.2 below, we describe the collective co-ordinates of generic instantons 

and their moduli space. 

2.2.2 The Moduli Space of lnstantons 

In this subsection we describe the moduli space and collective co-ordinates of instantons. 

The moduli space is a key concept in the modern treatment of instantons and solitons in 

general. In Subsection 2.2.1, we described instantons in SU(N) (or U(N)) Yang-Mills 

gauge field theory; here we continue with this choice of gauge group for the instanton 

moduli space. The moduli space of instantons is the space of gauge inequivalent solutions 
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of the self-dual Yang-Mills field equations Eq. (2.11). The gauge inequivalence in this 

case is inequivalence up to local gauge transformations. Solutions which are related by a 

global gauge transformation are taken to be equivalent, as was ~tated for the BPST in

stanton in Subsection 2.2.1. Global and local gauge transformations affect the instanton 

solution differently, primarily because ordinary covariant gauge fixing conditions do not 

fix global gauge transformations [63]. Hence global gauge orbits must still be integrated 

over in semi-classical path integrals involving instantons. 

The moduli space of U(N) instantons can be described implicitly by the ADHM con

struction of instantons, which we describe in Section 2.3. Throughout this thesis, we use 

the term 'moduli space of instantons' to refer to the so-called extended moduli space of 

instantons. This is the moduli space of instantons which includes global gauge trans

formations as physical parameters, which we denote 9Jlk. In mathematics literature, the 

usual moduli space of instantons, which has fewer parameters than 9Jlk as it excludes 

global gauge transformations, is often used. For use in the modern form of instanton 

calculus, however, the extended instanton moduli space is the appropriate space to inte

grate over. We shall return to this point again in Chapter 6. 

The Moduli Space of U(N) Instantons 

As was described in Subsection 2.2, classical finite action solutions which minimize the 

four dimensional Euclidean Yang-Mills action can be classified according to the topologi

cal charge k E Z, also known as the instanton number. This integer labels the equivalence 

classes, or sectors, of instanton solutions which possess differing values of k. It follows 

that the complete moduli space of instantons must also be divided up into sectors labelled 

by k in the same way. vVe denote the moduli space of SU ( N) instantons of topological 

charge k as 9Jlk. The moduli space of U(N) k-instantons is also given by 9Jlk. This is 

because the Abelian factor U(l) in the isomorphism U(N) ~ SU(N) x U(l) does not 

affect instanton solutions in commutative Euclidean spacetime. Hereon in this section 

we shall focus on U(N) instantons. 

The moduli space 9Jlk as a mathematical object is a manifold endowed with singularities, 

so that in the strictest sense, 9Jlk is actually a special kind of space. The singularities on 
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SJ.nk occur where instantons have zero scale size. The appearance of these singularities 

can be seen explicitly from the regular gauge BPST instanton Eq. (2.24), for which p = 0 

·allows the singular points Xn = Xn to occur. We now describe the co-ordinates on the 

moduli space SJ.nk. 

Collective Co-ordinates 

The instanton moduli space SJ.nk is a manifold with singularities, and can be assigned a 

local co-ordinate system to specify points in SJ.nk· Note that a global co-ordinate system 

would not hold due to the presence of the singularities in SJ.nk. The local co-ordinates on 

SJ.nk specify collective characteristics of self-dual gauge fields, and are termed collective 

co-ordinates. A general k-instanton gauge field, which we denote vm(x; XIL), will depend 

upon the Euclidean spacetime co-ordinates Xn E IR4 and the set of collective co-ordinates 

X ~L, fL = 1, ... , dim SJ.nk, where dim SJ.nk is the dimension of the moduli space SJ.nk. A 

generic instanton configuration is described by the set of collective co-ordinates {X~L} = 

{ (Xn)i, pk}, i = 1, ... , k, where { (Xn)i} are the co-ordinates which specify the centre 

·of the instanton and {pk} are the set of scale sizes which give the size of the instanton 

at various points on SJ.nk. The physical interpretation of these particular collective co

ordinates is not always apparent, however. 

For any given instanton solution, which will be localized on IR4 , there will exist a centre 

for the configuration. The instanton configuration can always be translated in IR4 , so that 

the collective co-ordinates { (Xn)i} can always be set to zero, centering the instanton at 

the spacetime origin. Since the co-ordinates { ( Xn)d are collective, the instanton gauge 

field cannot depend on { (Xn)i} in a way independent of the true physical spacetime co

ordinates Xn- Thus the instanton gauge field can only depend on the relative spacetime 

co-ordinates (xn - (Xn)J As aforementioned, this is because the instanton centre can 

always be translated to {(Xn)d = (0, 0, 0, O)i on SJ.nk, and this must not affect the physical 

properties of the gauge field. This leads one to define the useful notion of the centred 

-- --moduli space of instantons, which we write as SJ.nk. On SJ.nk, the centre of the instanton 

(given by { (Xn)i}) has been factored out as: 

(2.30) 
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The collective co-ordinates describing the instanton are associated with all of the gauge 

theory symmetries broken by the instanton solution. A generic instanton solution will 

break the translation invariance of the classical Euclidean Yang-:-Mills gauge theory and 

from this the collective co-ordinates (Xn)i originate. The internal space, or subspace, 

formed by the collective co-ordinates within the moduli space can be generated by the 

broken symmetries of the gauge theory acting on the instanton configuration. In the case 

of the translational collective co-ordinates (Xn)i, the symmetries are spacetime transla

tions, which can be generated by ox(X) = -Xn8/8xw Then one has: 

Vm(x; X, ... ) = eox(X)vm(x; 0, ... ) = Vm(X- X; 0, ... ). (2.31) 

Note that not all collective co-ordinates originate from broken gauge theory symme

tries, and that not all symmetries of the gauge theory lead to inequivalent collective 

co-ordinates. The symmetries of the Euler-Lagrange equations of the gauge theory exist 

also as symmetries on the moduli space 9J1k, but these symmetries act differently upon 

9J1k. Some symmetries may leave 9J1k invariant, others will be degenerate and map out 

the same subspace, whereas others will not be related to any symmetry. 

In general, all collective co-ordinates are associated with zero modes of the gauge field 

Vm- Zero modes are physical fluctuations of the gauge field about the instanton solution 

which do not alter the value of the action S[vm]; the term 'zero mode' derives from 'zero 

energy mode'. Hence such modes have zero action, and so do not contribute to the to

tal action. To be more precise, it can shown that zero modes are suitably gauge fixed 

derivatives of the gauge field with respect to the collective co-ordinates of the theory: 

(2.32) 

The derivatives in Eq. (2.32) are, upon satisfying a certain gauge condition, then the zero 

modes corresponding to the collective co-ordinates Xw Due to Eq. (2.32), one expects 

that the number of zero modes is equal to the dimension of the space of collective co

ordinates XI-L, which is the instanton moduli space 9J1k, and below we outline the proof 

that this is indeed the case. We shall describe zero modes further in the context of the 

semi-classical approximation in Chapter 6. 
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Symmetries of the U(N) Moduli Space 

The moduli space 9J1k has symmetries related to those of the classical Yang-Mills gauge 

theory. As in Yang-Mills gauge theory, the spacetime symmetries of 9J1k are enhanced. 

In addition to the usual Poincare spacetime symmetry of the four dimensional Euclidean 

spacetime, the gauge theory is also invariant under conformal transformation. Together, 

these symmetries, which comprise four translations, six rotations and four conformal 

translations, form· a larger symmetry group than the spaceti:tpe Poincare group. The 

conformal subgroup acts upon the quaternionic spacetime co-ordinate x = Xaa = XnCJnaa 

as: 

x ---1 x' = (Ax+B)(Cx+Dt 1
, AD-BC= 1, (2.33) 

where {A, B, C, D} E IHI are quaternions. There are fifteen parameters in the conformal 

transformation Eq. (2.33); there are also fifteen generators of the enlarged spacetime 

symmetry group, so that the dimension of the conformal group is also fifteen. Since 

the moduli space describes gauge fields, 9J1k is also invariant under global U(N) gauge 

transformations. 

Mathematical Structure of the Moduli Space 

To conclude this subsection, we briefly describe the nature of the instanton moduli space 

9J1k in mathematical terms. The mathematical structure of 9J1k is complicated, and we 

no not claim any rigour or completeness in what follows. 

The dimension of 9J1k can be deduced by applying the Atiyah-Singer index theorem [12] 

for elliptic operators [54]. This is done by considering the zero modes of the gauge fields 

described by the moduli space at a point on 9J1k. If Vm is an instanton solution of the self

dual Yang-Mills field equations in Eq. (2.11), let bvm be some infinitesimal (quantum) 

fluctuation about Vm· Then to first order in the fluctuations bvm, the self-dual Yang-Mills 

equations for the gauge field Vm + bvm is given by [40, 54]: 

(2.34) 

Equation (2.34) can be rewritten in terms ofthe quaternionic formalism, developed above 
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for the spacetime co-ordinate Xn, applied to the gauge field Vm, as: 

(2.35) 

which represents three independent equations. As previously, f are the three standard 

Euclidean Pauli matrices, given in Appendix A. Upon imposing the gauge condition 

necessary to remove local gauge transformations from Eq. (2.35), which requires that 

zero modes are orthogonal to gauge transformations, the zero mode condition Eq. (2.35) 

can be expressed as a single quaternionic equation: 

-naav s; O 
(J nUVat = ' (2.36) 

which is the covariant vVeyl equation for a Weyl spinor bvat· The free index f3 indicates 

that there are two independent solutions of this equation for each gauge field zero mode. 

Since 'Dn is an elliptic operator, the Atiyah-Singer index theorem can be applied to it. 

In a lengthy calculation involving algebraic geometry, the dimension of the instanton 

moduli space 9.J1k can be determined from this equation by counting the number of gauge 

field zero modes [12, 26]. For the gauge group U(N) or SU(N), the result is that the 

dimension of the instanton moduli space is: 

dim 9.J1k = 4Nk. (2.37) 

This general result gives the number of collective co-ordinates which the instantons de

scribed by the U(N) k-instanton moduli space 9.J1k possess. Hence the number of free, 

unconstrained parameters which completely describe the most general exact U(N) k

instanton gauge field configuration is 4Nk. One can verify this result for a special case: 

for the BPST instanton, Eq. (2.24), one has N = 2 and k = 1, which agrees with 

Eq. (2.37). 

In general terms, the instanton moduli space 9.J1k is a non-compact complex manifold 

with special properties. It is a hyper-Kahler space with singularities of conical type [67]. 

This is related to the fact that Euclidean spacetime is a hyper-Kahler space. A proof that 

9.J1k is a hyper-Kahler space has been given in [68]. Furthermore, 9.J1k possesses sets of 

inequivalent complex structures, which correspond to the sectors of different topological 

charge. The instanton moduli space can also be considered a Riemannian manifold with 
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a metric defined as an inner product of gauge field zero modes: 

(2.38) 

where the gauge field zero modes 6J.Lvn have had the appropriate gauge fixing condition 

imposed on them, as defined in Eq.(2.32). This metric shall appear again in Chapter 6, 

where the volume form for integration on 9J1k, using the collective co-ordinate method, 

will depend upon 9J.Lv(X). 

The instanton moduli space can be derived using a method known as the hyper-Kiihler 

quotient construction [67], which we shall mention briefly in the next section, Section 2.3. 

In Section 2.3 we describe the ADHM construction, a method by which all instantons, 

that is, all self-dual (and anti-self-dual) gauge fields with arbitrary classical gauge group 

and topological charge k, can be constructed. 

2.3 The ADHM Construction of Instantons 

In this section we describe the method for constructing instantons discovered by Atiyah, 

Drinfeld, Hitchin and Manin (ADHM) [8]. The ADHM construction a method which 

gives the general solution to the self-dual and anti-self-dual Yang-Mills field equations 

for all values of the topological charge k and for all classical gauge groups, namely the 

groups U(N), O(N) and their special forms SU(N) and SO(N), and also Sp(N). We 

note that the ADHM construction is not the only method which solves the self-dual Yang

Mills equations, but it is the most widely known and used; also, it is the most successful 

method for constructing general multi-instanton solutions. The ADHM construction 

is a remarkable mathematical achievement. Through sophisticated algebraic geometry, 

the construction reduces the self-dual Yang-Mills field equations, which are first order 

non-linear partial differential equations, to non-linear algebraic equations which can be 

written in terms of matrices. Essentially, the ADHM construction provides a way to 

describe and parameterize the moduli space of instantons. 

However, the construction does contain some shortcomings. The single most problematic 

aspect of the ADHM construction is that the self-dual gauge fields resulting from it are 

defined only implicitly, in terms of a set of non-trivial constraints known as the ADHM 
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constraints. Another problem, which presents less difficulty, is the amount of redundancy 

which it is necessary to remove from the solutions it generates. This redundancy must be 

removed if ADHM instanton configurations are to be used in semi-classical calculations. 

In Subsection 2.3.1 we will focus on the ADHM construction for U(N) instantons, which 

are described by the moduli space 9J1k introduced in Section 2.2, and in particular we 

describe the explicit construction of the exact general U(N) one-instanton solution. This 

is followed in Subsection 2.3.2 by a derivation of the exact general U(N) ADHM two

instanton, the first known multi-instanton for the gauge group U(N). The U(N) ADHM 

two-instanton was determined by solving the ADHM constraints for this case. We also 

describe the ADHM construction for the U(N) three-instanton. In Subsection 2.3.3 we 

consider ADHM multi-instantons with gauge group Sp(N). These instanton configura

tions are useful through the isomorphism Sp(1) c:::: SU(2), which provide a more simple 

and efficient parameterization of SU(2) multi-instantons than the U(N) formalism. In 

particular, we describe the existing solutions for the Sp(N) ADHM three-instanton and 

describe attempts to solve the general Sp(N) three-instanton constraints. 

In this section we make use of the reviews in [49, 50, 97] and the reviews on the modern 

treatment of the ADHM construction contained in [223, 224, 225]. We also refer to the 

original papers concerning the ADHM construction in [8, 22, 33, 34], and note the seminal 

works which the ADHM construction is based upon [3, 4, 5, 6, 7, 9, 10, 35]. Also of note 

are the mathematical works [52, 53, 89] concerning the ADHM construction, and the 

reviews of its mathematical origins [13, 14, 51, 91, 92, 93, 94]. We also refer to the works 

regarding the properties and symmetries of instantons in [18, 19, 25, 26, 27, 28, 29], the 

reviews [63, 64] and the related works [20, 21, 30, 31, 32, 77]. Other works concerning 

ADHM multi-instantons in [22, 23, 24, 36, 101] are also referred to in later subsections. 

2.3.1 U(N) ADHM Instantons 

We begin with a brief exposition of the ADHM construction for the gauge group U(N), 

closely following the formalism developed in [223, 224, 225]. Unlike the formalism of [223], 

we shall work in Euclidean spacetime as is conventional for instantons. The construction 

is described in terms of an ansatz involving the 'pure gauge' condition Eq. (2.7). The 

fundamental matrices which are used in the ADHM construction are rectangular matrices 
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whose elements are complex parameters, which in this treatment can also be combined 

into quaternions. We describe the properties of quaternions in Appendix B. We note that 

it is not necessary to use quaternions for the U(N) ADHM construction, but it provides 

a convenient unified treatment for the Sp(N) and O(N) ADHM constructions also. A 

version of the U(N) ADHM construction which does not use quaternions, but which uses 

complex variables instead, is given in [33]. 

The notation and conventions used for our treatment of the U(N) ADHM construction are 

as follows. The gauge field vm(x) is anN x N anti-Hermitian matrix of complex elements, 

and is a function of the spacetime co-ordinate x. Anti-Hermicity of Vm, which conven

tionally is a Hermitian matrix (since it is observable), is achieved by setting V m --+ ivm 

and also Vmn --+ ivmn- The anti-Hermicity of Vm is in fact already built into the ADHM 

construction. Factors of the gauge coupling g, are kept explicit, as is done in the other 

chapters. 

As in [223], in our notation an over-bar indicates Hermitian conjugation for matrix quan

tities, and complex conjugation for scalar quantities; thus A = At for a matrix A, and 

b = b* for a scalar b. However, we also employ the asterisk for the complex conjugation 

of matrices. Multiplication of quaternionic matrices follows the conventions of Appendix 

B. The modulus of quaternions and complex matrices also follows these conventions, and 

is such that for A E JHI, AA = AA = [A[ 2 . Matrix dimensions are given explicitly as en

cased subscripts; M[a]x[b] indicates that the matrix M has a rows and b columns. Matrix 

multiplication is written in terms of these indices as (AB)[a]x[c] = A[a]x[b]B~x[cj, where 

the underlining of the indices indicates the contraction of matrix indices. 

In the ADHM construction for U(N), one begins with an (N + 2k) x 2k complex matrix 

.6[N+2k] x [2k], which is defined to be linear in the quaternionic spacetime co-ordinate x, 

defined in Eq. (2.18): 

.6(x) .6[N+2k]x[2kj(X) = a[N+2k]x[2k] + b[N+2k]x[kJx8X8x[2]· (2.39) 

The index [2k] has been decomposed as the direct product of indices [k] x [2] in order 

to exhibit the contraction of indices in the matrix multiplication. We shall refer to this 

decomposition of matrix indices as the 'ADHM index convention.' The matrices a and 

b are complex-valued constant matrices which contain the ADHM data describing the 



CHAPTER 2. YANG-MILLS INSTANTONS 29 

instanton, and comprise an overcomplete set of k-instanton collective co-ordinates. 

The nullspace of the Hermitian conjugate matrix ~ ( x) is an N -dimensional space, which 

has basis vectors that form an (N + 2k) x N-dimensional complex matrix U(x), where: 

(2.40) 

The matrix U ( x) is orthonormalized to the N x N unit matrix: 

(2.41) 

The instanton gauge field V m ( x) can be constructed from the matrix U ( x). When the 

topological charge is zero, k = 0, the gauge field is given by a gauge transformation of 

the vacuum ('pure gauge'): 

(2.42) 

which automatically satisfies the self-dual Yang-Mills field equations (Eq. (2.11)). Equa

tion (2.42) is identical to Eq. (2.7), when written in matrix form with our convention of 

an anti-Hermitian gauge field, which means the factor of i in Eq. (2.7) does not appear 

in Eq. (2.42). In the ADHM construction, the condition Eq. (2.42) is taken to give a 

solution to the self-dual Yang-Mills field equations for all non-zero values of k. This is 

the central ansatz of the ADHM construction. The ADHM ansatz implies the following 

factorization condition for ~ ( x): 

- -1 
~[2Jx[k]x[N+2k]~[N+2k]x[k]x[2] = 1[2]x[2]f[k]x[k]' (2.43) 

where f(x) is an arbitrary x-dependent k x k-dimensional Hermitian matrix. 

When combined ·with the nullspace condition in Eq. (2.40), Eq. (2.43) then implies the 

completeness relation, which is required for consistency: 

The relation Eq. (2.44) also provides a test of the validity of the ADHM ansatz stated 

above. 

Using Eqs. (2.42,2.43,2.44) with integration by parts, and using the short-hand notation 
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X[mYn] = XmYn- XnYm, the gauge field strength can then be expressed as: 

9-18[m(U8nJU) + 9- 1(U8[mU)(U8nJU) = 9-18[mU(1- UU)8nJU 

9-10[m[J l::::,.f !S.on]U = 9-1[! · O[m!::::,.f8n]!S. · U 

9- 1Ub(J[mO'nJfbU = 49- 1Ub(JmnfbU, 

30 

(2.45) 

where (Jmn is the self-dual numerical tensor defined in Eq. (2.19). Since (Jmn is manifestly 

self-dual, it follows that the field strength Vmn is also self-dual. Hence the ansatz is 

correct, and it can be shown that this construction gives all self-dual U(N) gauge fields 

of arbitrary topological charge k, and thus gives the general solution of the self-dual 

U(N) Yang-Mills field equations. This construction can also be adapted for the general 

solution of the anti-self-dual Yang-Mills field equations, in which the gauge field strength 

is manifestly anti-self-dual due to a factor of the anti-self-dual tensor O'mn in the same 

position as (Jmn has in Eq. (2.45). 

The instanton gauge field so constructed has gauge group U(N). To specify the SU(N) 

instanton gauge field, one can perform a global gauge transformation on the matrix U, 

given by U---+ U 91, where 91 E U(1). As stated previously in Subsection 2.2.2, instantons 

with gauge group U(N) or SU(N) are described by the same moduli space, denoted 9J1k. 

The U(N) ADHM construction, which provides an implicit description of 9J1k, thus also 

describes S U ( N) instantons. 

Continuing with the formalism of [223], we assign the following indices to the objects 

constituting the 'ADHM data' (the matrices U, !::::,., a, band j, which involve the matrices 

(J and x): 

Instanton number indices [k] 

Gauge group indices [N] 

ADHM indices [N + 2k] 

Quaternionic (vVeyl) indices [2] 

Lorentz indices [4] 

1 ~ i,j, [ ... ~ k 

1<uv .. ·<N - ' -

1 ~ ).., J.L .. · ~ N + 2k (2.46) 

a,/3,&.,/3 .. · = 1,2 

m,n .. · = 0, 1,2,3. 

No extra notation is required for the 2k-dimensional column index attached to ~' a 

and b, since it can be factored as [2k] = [k] x [2] = j~ according to the ADHM index 
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convention. In these index conventions, the matrices comprising the ADHM data can 

be assigned explicit indices. The fundamental matrix ~(x) defined in Eq. (2.39) can be 

written as: 

i\6:>.( ) - (" )* -6:>. + -O:a-b>. ui x = U>.ia = ai x ai' (2.47) 

The columns of the matrix ~(x) must remain linearly independent for all values of x in 

order to avoid singularities in the integrand in the definition of the topological charge 

k, Eq. (2.4) [33]. This is a non-degeneracy condition which can also be expressed as 

demanding that the mappings represented by ~ and ~ satisfy certain conditions. These 

are that the mapping ~a:(x) : Ck --+ ![N+2k is injective and that the mapping ~a:(x) is 

surjective. Hence the matrix ~(x) is invertible. 

The factorization condition in Eq. (2.43) can now be written as: 

(2.48) 

and the non-degeneracy condition stated above ensures that the inverse matrix f- 1 ex

ists. The nullspace condition Eq. (2.40) and the orthonormalization of the matrix U in 

Eq. ( 2.41) can also be expressed in terms of the index conventions above. The matrix U is 

then a ( N + 2k) x N dimensional complex matrix U>.u ( x), where u = 1, ... , N. Equations 

(2.40,2.41) can then be written, respectively, as: 

(2.49) 

(2.50) 

The equation which defines the gauge field in terms of U, Eq. (2.42) can also be re-

expressed, as: 
1 - >. 

( Vm)uv = - Uu OmU>.v, (2.51) 
g 

which for k = 0 gives a gauge transformation of the gauge field vacuum Vm = 0 ('pure 

gauge'). The completeness relation Eq. (2.44) can also be used to define a projection 

operator, P: 

(2.52) 

where P satisfies the properties required of a projection operator due to the properties 

of U: 

P, p P. (2.53) 
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The definition of the projection operator P in Eq. (2.52) can also be written explicitly 

using matrix dimensions as: 

P[N+2k]x[N+2k] u[N +2kJ x [NJ u[NJ x [N +2kJ, (2.54) 

One can verify that the winding number K, is equal to the instanton charge k of the 

solutions generated by the ADHM construction. The instanton number k of an ADHM 

configuration can be calculated in terms of ADHM data by using an identity first derived 

by Osborn [47]. This identity expresses the gauge group trace trN VmnVmn in the ADHM 

instanton background as: 

g2 I d4 mn 1 I d4 02 l j -
16

7r2 xtr NVmn V = l61r2 x tr N og . (2.56) 

From the factorization condition in Eq. (2.48), the matrix f(x) has asymptotic behaviour 

at large lxl such that: 
1 

lim f(x) = 21[k]x[k]. (2.57) 
JxJ---+oo X 

Upon substituting Eq. (2.57) into Eq. (2.56), one deduces that the right hand side of 

Eq. (2.56) is equal to the winding number K, and it follows that the topological charge of 

an ADHM gauge field configuration is always equal to its instanton charge k. 

We now turn to the ADHM constraints. The definition of 6(x) in Eq. (2.39) and the 

factorization condition Eq. (2.48) imply a set of X- independent conditions on the matrices 

a and b, since fij(x) is arbitrary, upon expanding 6(x) as 6(x) = a+bx. These constraints 

have the form: 

(2.58) 

(2.59) 

(2.60) 

Together, the three conditions in Eqs. (2.58,2.59,2.60) constitute the U(N) ADHM con

straints in their original form. We refer to these constraints as the original ADHM 

constraints, since the constraints in Eqs.(2.58-2.60) contain an unfixed global U(k) gauge 

symmetry which we describe below. Equations (2.59,2.60) also imply the relation: 

(2.61) 
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which can prove useful in manipulating ADHM matrices, often referred to as 'ADHM 

algebra'. 

The matrices a and b contain the colleCtive co-ordinates of the U(N) k-instanton gauge 

field configuration. The number of instanton collective co-ordinates increases as k2
. How

ever, the number of physical collective co-ordinates required to describe the U(N) k

instanton moduli space is 4Nk, as given in Eq. (2.37). This counting of parameters 

includes global gauge rotations of the gauge field [26]. Hence, taken together, the matri

ces a and b form an overcomplete set of collective co-ordinates. Some of the redundancy 

contained in a and b can be removed via the following x-independent transformations 

under which the U(N) ADHM construction is invariant: 

.6[N+2k]x[k]x[2] --+ A[N+2k]x[N+2k].6[N+2k]x~x[2JB[kJ\[k], 

u[N+2k]x[N] --+ A[N+2k]x[N+2k]U[N+2k]x[N], 

f[k]x[k] --+ B[k]x[kJI[k]x[kJB/k]x[k]' 

where A E U(N + 2k) and BE GL(k,C). 

(2.62) 

One can use the symmetries in Eq. (2.62) to bring the representation of a and b to the 

canonical form given by Corrigan et. al [33]. The canonical form is obtained by removing 

the degrees of freedom contained in the matrix b, so that one has: 

( 

W[N]x[2k] ) 
a[N+2k]x[2k] = 

1 
, 

a[2k] x [2k] 
( 

0[N]x[2k] ) 
b[N+2k]x[2k] = , 

1[2k]x[2k] 

(2.63) 

which implies that all of the physical degrees of freedom describing the instanton, namely 

the collective co-ordinates, reside in the matrix a. 

We note that this use of the symmetries in Eq. (2.62) is not unique. It is possible 

that other ways of using the symmetries in Eq. (2.62) exist which simplify the U(N) 

ADHM construction yet further. The canonical form in which we have written a and b 

in Eq. (2.63) can also be expressed making the matrix indices explicit. Using the ADHM 

index decomposition ,\ = ( u + ia), one has, in the canonical form, for b: 

f3 f3 ( 0 ) -A b,. = b( . ) . = b/3. = 
A) u+w ) . 013 0

. . l ) 

Cl' 2] 

b
-(u+ia) 

f3j (2.64) 
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and for a, written in a similar form as b: 

{,-&. (-t&.a) ) 
\wju a ji . (2.65) 

The submatrix a' has elements a' = ( a~a_)ij which can also be represented in a quaternionic 

basis: 

(-taa) ( t) -a&. 
a ij = an ij (J n ' (2.66) 

which follows the quaternionic formalism used for the spacetime co-ordinate x and other 

quantities so far introduced. The canonical form of b also obeys the identity: 

(2.67) 

The inverse of the AD HM matrix f = fij ( x) can also be expressed in terms of the 

submatrices of a, as: 

(2.68) 

The submatrix w is a complex valued matrix which can also be represented as a quaternion 

using this formalism. 

In addition to invariance under the transformations in Eq. (2.62) there exists an auxiliary, 

or residual, symmetry arising from the symmetry of the ADHM construction in Eq. (2.62). 

The canonical form of b given in Eq. (2.63) is invariant under global U(k) rotations. These 

appear since U(k) is a subgroup of the U(N + 2k) x GL(k, C) symmetry which acts as in 

Eq. (2.62). The U(k) symmetry group acts upon the matrix 6(x) = 6[N+2k]x[2kJ(x) as: 

( 

l[N]x[N] 0[2k]x[N] ) 
6[N+2k]x[2k] --+ _ 6[N+2k]x[2k]A[2k]x[2k], 

o[N]x[2k] A[2k]x[2k] 

(2.69) 

where A[2kJx[2kJ = D[kJx[kJ1[2Jx[2J and D[kJx[kJ E U(k). This auxiliary U(k) symmetry can be 

employed to simplify the final form of solutions of the ADHM constraints, or equivalently, 

the ADHM constraints themselves. The U(k) residual symmetry acts as the matrix A in 

Eq. (2.62), and has the form: 

O ) DE U(k), 
D1[2]x[2] ' 

(2.70) 
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where D = B in Eq. (2.62) when A has the form given. The U(k) symmetry acts as a 

non-trivial transformation on the submatrices of a, as: 

(2.71) 

With a and b in the canonical form, the third original ADHM constraint Eq. (2.60) is 

automatically satisfied. The remaining original ADHM constraints then give the following 

k x k matrix equations: 

tr2(Tt'at3aa) 

( a~)Jj 

~ (uiw · + a't3a.a' . ) {3 (Y. (Y.(Y. 
0, (2.72) 

(2.73) 

where the trace tr2 in Eq. (2. 72) is over the Weyl indices of the Pauli matrices Tc, 

c = 1, 2, 3; the three Pauli matrices Ta have been used to contract the product (aa). Hence 

there are three distinct equations in Eq. (2.72). The constraints in Eqs. (2.72,2.73) con

stitute the 'ADHM constraints' referred to previously and henceforth. The unknown vari

ables in the construction are then the submatrices contained in the matrix aa = { wa, a~}, 

in which a~ are assumed to be Hermitian matrices, as in Eq. (2.73). Note that Eq. (2.73) 

is actually a remnant of the formalism employed here, and can be discarded in alternative 

formalisms, such as that of Corrigan et. al [33]. It states simply that the respective real 

and imaginary parts of the complex matrices a~ are Hermitian quantities, which must be 

the case when forming a complex matrix. Thus the non-trivial ADHM constraints are 

given by Eq. (2.72). Once the U(k) residual symmetry has been fixed, from these con

straints one can derive U ( N) instantons which possess no additional symmetries peculiar 

to the ADHM construction. 

The ADHM constraints Eqs. (2.72,2.73) present both remarkable progress and consider

able difficulty in the study of instantons. The dimensions of the matrices involved in the 

construction change with k, and so far the only ADHM instantons found have been ob

tained for particular values of k. Whilst the constraints implicitly define all k-instantons 

for the U(N) Yang-Mills gauge field theory, extracting explicit instanton configurations 

from them has met with only limited success. In general, the ADHM constraints are a 

set of non-linear, non-trivial coupled simultaneous matrix equations. In terms of their 

components, they are a set of non-linear coupled simultaneous algebraic equations, at 
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most quadratic and bilinear in the elements of the matrix a. Explicit general solutions 

of the ADHM constraints have so far only been found for k = 1 and k = 2. We describe 

both of these cases in detail below, and in Subsection 2.3.2, respectively. As k increases, 

the number of constraints to be solved increases approximately as 2k, and the construc

tion quickly becomes exceptionally difficult to extract solutions from. There is an order 

of magnitude increase in the complexity of the constraints as k increases by one unit. In 

Subsection 2.3.2 we shall describe the U(N) k = 2 and k = 3 ADHM constraints, which 

clearly illustrates this increase. The consensus is that the ADHM constraints for any 

gauge group are in fact not possible to explicitly solve for k 2:: 4. 

When N = 2, one can adopt the Sp(l) ~ SU(2) ADHM constraints, which we also 

describe below. More progress has been made in solving the Sp(N) constraints, since 

explicit solutions are known for k ~ 3. However, this is still very limited, and an explicit 

k-instanton solution does not appear possible for the ADHM constraints. It would also 

appear that there is insufficient information regarding the underlying principles involved 

in solving the ADHM constraints. If such principles do exist, an algorithm or iterative 

process for obtaining explicit instanton solutions could possibly be developed. 

The explicit form of the ADHM matrix a can be written out using the quaternionic 

formalism which has been employed so far, and in our notation is given by: 

( 

W[N]x[2k]) 
a[N+2k]x[2k] = 

1 
= 

a[2k]x[2k] 

Wl[N]x[k] 

(a~+ ia~)[k]x[k] 

W2[N]x[k] 

( 
I · I ) a 2 + w 1 [k]x[k] 

(-a~+ ia~)[k]x[k] (a~- ia~)[k]x[k] 

(2.74) 

We note that the ADHM matrix a in Eq. (2.74) is a matrix of complex submatrices which 

may be expressed in terms of quaternions (written as 2 x 2 complex matrices); however, 

we shall treat a as having complex submatrices. Hence the U(N) k-instanton ADHM 

constraints in Eqs. (2.72,2.73) can be expressed in terms of the complex valued component 

matrices (a~+ ia~)[k]x[kj, (a~+ ia~)[k]x[k], w1[N]x[k] and w2[N]x[k] appearing in Eq. (2.74). 

The ADHM constraints Eq. (2.73) are automatically satisfied since the submatrices a~ 

are Hermitian. The remaining constraints, in Eq. (2.72), then form the non-trivial U(N) 

k-instanton ADHM constraints. The constraints Eq. (2.73) can now be written in a yet 

more explicit form using the elements of a given in Eq. (2.74). In terms of commutators 

1-WWJW,l 
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[A, B] =AB- BA, the ADHM constraints assume their penultimate form: 

37 

(2.75) 

(2.76) 

The first constraint, Eq. (2.75), and second constraint, Eq. (2.76), respectively, are often 

referred to as the 'complex ADHM constraint,' and the 'real ADHM constraint.' For 

topological charge k 2 2, however, both of these matrix equations will contain real and 

complex elements. 

The most explicit form of the U(N) k-instanton ADHM constraints is obtained by sub

stituting the explicit forms of the matrices a~ and Wa in Eqs. (2. 75,2. 76). The number of 

elements contained within these matrices depends on the instanton charge k and there

fore the ADHM constraints differ for different values of k. The number of explicit ADHM 

constraints obtained from Eqs. (2.75,2.76) increases with increasing k. 

We can now count the number of real independent parameters which solutions of the 

ADHM constraints Eqs. (2.75,2.76) shall possess. The ADHM matrix a, in the form 

given in Eq. (2.74) contains 4Nk + 4k2 real parameters. The ADHM constraints in 

Eq. (2.76) then place 3k2 real conditions on the elements of a. The auxiliary U(k) sym

metry, acting as global U ( k) gauge rotations, removes a further k2 real parameters. The 

total number of real collective co-ordinates for the U(N) ADHM k-instanton is then: 

4Nk + 4k2
- 3k2

- k2 = 4Nk, (2.77) 

This counting agrees with the result for the dimensions of the U(N) k-instanton mod

uli space, 9J1k, given in Eq. (2.37). This confirms that the required number of local 

co-ordinates for 9Jlk are correctly given by the collective co-ordinates of the instanton 

solutions provided by the ADHM construction. 

The number of collective co-ordinates can now be made explicit. In the U(N) ADHM 

k-instanton construction, there are k 4-vector centre of mass co-ordinates, giving 4k po

sition co-ordinates. In addition there are k real scale sizes, which shall be identified in 

Subsection 2.3.2. Finally there are ( 4N- 5)k gauge iso-orientations, which specify orien

tation of the U(2) k-instanton in U(N) group space. The total number of real physical 

collective co-ordinates is then: 

(4N-5)k+4k+k 4Nk- 5k + 4k + k 4Nk, (2.78) 
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which agrees with the total number of real collective co-ordinates given in Eq. (2.77) 

derived from the ADHM construction and verified by a variety of other checks. 

To obtain a solution with purely physical degrees of freedom, that is, only the true col

lective co-ordinates required to specify the position, size and iso-orientation (in group 

space) of the k-instanton, the global gauge rotations are removed, leaving the number of 

independent physical parameters as 4N k - N 2 + 1 for k ~ ~ N, and 4k2 + 1 for k ::; ~ N 

[26, 33]. For the purposes of using ADHM instanton configurations in instanton cal

culus, ho-wever, the global gauge rotations must be included, since they appear in the 

k-instanton measure and are to be integrated over [47, 213]. We defer description of the 

instanton calculus and its applications to Chapter 6. 

Symmetries of the ADHM Construction 

Instanton solutions break symmetries of the classical gauge theory, and here we describe 

these symmetries in terms of the moduli space 9J1k as derived from the ADHM construc

tion. Firstly, the action of the conformal group of Yang-Mills gauge field theory on the 

instanton configuration can be expressed in terms of the ADHM matrices a and b. The 

action of the conformal transformation upon the spacetime co-ordinate x was given in 

Eq. (2.33). In the same quaternionic notation of Eq. (2.33), the conformal group acts 

upon the ADHM matrix ll(x;a,b) as: 

ll(x'; a, b) = ll(x; aD+ bE, aC + bA)(Cx + Dt1
, (2.79) 

where, as before, {A, B, C, D} E lHI and AD- BC = 1. The factor of (Cx + D)-1 is 

redundant because the gauge field depends only on the matrices U and U; the action of 

the conformal group upon a and b is then: 

a --t aD+ bE, b --t aC + bA. (2.80) 

This action can also be given for the canonical forms of a and b by implementing the 

transformations which take a and b to its canonical form in Eq. (2.80). 

Spacetime translations are contained within the conformal group and the effect of such 

translations upon the canonical ADHM matrices a and b can be made explicit. The 

• -- &,J 
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ADHM matrix ~(x; a, b) transforms under a translation x-+ x + E as: 

~(x + c; a, b) = ~(x; a+ be, b). (2.81) 

The translation in Eq. (2.81) then implies that the submatrices a~ of a transform accord

ing to: 

(2.82) 

The transformations in Eq. (2.82) enable one to identify the co-ordinates at which the 

centre of the instanton, or more precisely, the centre of mass of the instanton, is posi

tioned. These degrees of freedom are termed the translational collective co-ordinates, 

by which one ca·n translate the position of the instanton in spacetime. In terms of the 

quaternionic notation, these degrees of freedom are the four real co-ordinates contained 

(2.83) 

The relation in Eq. · (2.83) can also be expressed without quaternionic notation. In this 

case, the instanton centre of mass co-ordinates Xn are the components of the submatrix 

a' proportional to the unit matrix 1[k]x[k], which are given by: 

(2.84) 

in which there is no sum over the instanton number index i (i = 1, ... , k), as this index 

labels separate one-instanton configurations. The co-ordinates Xn do not enter into the 

ADHM constraints in Eq. (2.73) and this is directly related to the product which the 

moduli space wtk can be decomposed into in Eq. (2.30). 

The other gauge theory symmetries on the instanton moduli space which we shall de

scribe are global gauge transformations. These transformations affect only objects which 

have the gauge group indices u, v, .. . , in the ADHM construction. Hence we expect only 

the submatrices w = Wui6: to transform under the action of the gauge group U ( N). The 

submatrices w are, in terms of the AD HM index decomposition, a set of 2k N-vectors (or 

2k N x 1 matrices), with complex elements. If N ~ 2k, the global gauge transformations 

act non-trivially upon the ADHM matrices. If N > 2k there exists a subgroup whose 

action leaves the instanton configuration fixed. This subgroup is non-trivial and is known 

as the stability group of the instanton. 
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One can identify the stability group of the instanton by embedding the generic k-instanton 

configuration into a suitable subgroup of the gauge group [26] .. For gauge group SU(N), 

this subgroup is SU(2k) c SU(N), if N > 2k. The embedding uses a gauge transforma

tion ll which puts the 2k x N submatrix w, with elements Wuicn into upper triangular 

form, denoted Wtri, via w = ll · Wtri. 

Using this embedding, an SU(N) k-instanton solution v~-inst which has the stability 

group taken into account will then have the generic form given by: 

ut Vm[2k]x[2k] [2k]x[N-2k] it 
( 

k-inst 0 ) 

O[N-2k]x[2k] O[N-2k]x[N-2k] ' 

(2.85) 

where, for N > 2k, the element ll belongs to the stability group: 

SU(N) 
ll E S (U(N- 2k) x U(l))' 

(2.86) 

Thus ll implements non-trivial global gauge transformations on the instanton config

uration. vVhen N ~ 2k, one has the usual global gauge transformations which act 

non-trivially on the instanton, for which the stability group would bellE SU(N). The 

element ll can be considered a 'gauge orientation' for the instanton solution, although 

for N > 2k, the group to which ll belongs must be quotiented as in Eq. (2.86). Also, 

the U(l) group involved in the quotient Eq. (2.86) can also be identified with the U(l) 

subgroup of the residual symmetry group U(k) in the ADHM construction. 

The U ( N) One-Instanton 

vVe now use the ADHM construction to explicitly derive the most general self-dual SU(N) 

or U ( N) gauge field with topological charge k = 1. This gauge field will be the general 

U(N) ADHM one-instanton gauge field. To do this requires one to determine the ADHM 

matrix U(x) in Eq. (2.42) from the ADHM construction. Following [223], we can use the 

ADHM index decomposition to write the ADHM matrices U and .6. as: 

(2.87) 
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The dimensions of the various submatrices in Eq. (2.87) can be made explicit as follows: 

( 

V[N]x[NJ ) ( W[JV]x[2k] ) 
U[N+2k]x[N] = 

1 
, .6.[N+2k]x[2k] = 

1 
• 

U[2k]x[N] .6.[2k]x[2k] 

(2.88) 

The matrix U can be determined in terms of the fundamental ADHM matrix .6., which 

depends on the matrices a and b. If a and bare in canonical form, then knowledge of the 

matrix a derived from solving the ADHM constraints will then enable one to explicitly 

find .6.. From .6., as will be shown, U, and thus the gauge field Vm, can be explicitly 

determined. 

Substituting Eq. (2.88) into the completeness relation in Eq. (2.44), one has: 

or more succinctly, using Eq. (2.87), this can be written as: 

- 2 -a 
VV = V.= 1[N]x[N]- Wafw , (2.90) 

where we have used the Hermicity of V, which follows from the Hermicity of f. Any ma

trices V which solve Eq. (2.90) are related to each other by the local gauge transformation 

V -+ V 9N(x), where 9N(x) E U(N) is an x dependent matrix. Selecting a particular V 

is therefore associated with fixing the local spacetime gauge of the instanton. Following 

[223], we choose to work in 'singular gauge,' in which V is given by one of the matrix 

square roots of Eq. (2.90): 

(2.91) 

of which there are 2N choices in number. In general V will be a matrix. To take the 

matrix square root in Eq. ( 2. 91), one can diagonalise V2 and take the square roots of 

the diagonal elements. The result will then give V in a convenient diagonal matrix form. 

Again using Eq. (2.44) the submatrix U1 of U can then be expressed in terms of V as 

follows: 

(2.92) 

To construct the general U(N) one-instanton solution, the topological charge is set to 

k = 1 and the instanton number indices i, j in the above procedure can be dropped. 
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The ADHM constraints Eq. (2.72) then imply that a~ is a real 4-vector, which can be 

identified with the (negative) centre of the instanton -Xn, via Eq. (2.84) with k = 1: 

(2.93) 

With this identification of a~, the ADHM constraints in Eq. (2.72) can then be written 

as: 

(2.94) 

The real parameter p can be identified with the scale size for the one-instanton, as shall 

be described below. The ADHM constraint in Eq. (2.94) can be readily solved for w: 

Wua = pll[N]x[N] ( l[
2
]x[

2
] ) 

O[N-2]x[2] 
(2.95) 

From the embedding described above, the stability group for the U(N) one-instanton is 

found to bellE SU(N). Using Eq. (2.47), the explicit form for the ADHM matrix ~(x) 

can now be established. In this case, it reads as: 

~(x)[N+2]x[2] 

p ·ll[N]x[N] 

0[N-2]x[2] 

(x- X)[2]x[2] 

(2.96) 

To proceed further, the explicit form of the arbitrary x dependent function f can be 

obtained from Eq. (2.68), using~ in Eq. (2.96) above, and is the following scalar quantity: 

1 
f = (X - X)2 + p2 ' 

(2.97) 

Substituting Eq. (2.97) for f into Eqs. (2.91,2.92) for V and U' then gives: 

V l[N[,[N[ + ;, [ (x ~ ~)~~ p' - 1] W.;W
0

, (2.98) 

(x- X)aa'lli 

lx- Xjyl(x- X)2 + p2 
U' (2.99) 

Substituting Eqs. (2.98,2.99) into Eq. (2.87) gives the matrix U(x). Then, using the 

explicit form of U obtained in Eq. (2.87), one arrives at the explicit form of the U(N) 

one-instanton gauge field in singular gauge: 

2 llw · (x- X) a-a .w~ut 
a n mn/3 

Vm = -~--~~--~--~ 
g (x- X)2[(x- X) 2 + p2]' 

(2.100) 
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in which the submatrices wa: and w~ give p2 as in Eq. (2.94). The U(N) one-instanton in 

Eq. (2.100) is the generalization of the singular gauge BPST one-instanton in Eq. (2.24), 

from gauge group SU(2) to SU(N) (we recall that the ADHM construction does not 

distinguish between the U(N) and SU(N) gauge groups). As can be seen in Eq. (2.100), 

the SU(N) one-instanton solution is given by the SU(2) BPST one-instanton solution 

embedded in the larger gauge group SU(2) c SU(N). The SU(N) one-instanton solution 

can then be written as: 

( 

VBPST 0 ) 
Vm = ti m ut, 

0 0 
(2.101) 

where ll is now interpreted as the ·gauge orientation (or 'iso-orientation') of the SU(2) 

BPST one-instanton in SU(N) group space. For k = 1 and N > 2, we note that 

element ll will be a member of the coset group SU(N)/S (U(N- 2) x U(1)). This is 

because for k = 1 and N > 2, the gauge orientation cannot be the element ll E SU(N). 

Furthermore, fork= 1, if N < 2, the gauge group is U(1), giving an Abelian gauge theory 

in which Yang-Mills instantons do not exist. The SU(2) generators for this embedding 

SU(2) C SU(N) are given by: 

T c _ -2 ea-~ 
uv - p WuaT~ Wv, (2.102) 

where the index c = 1, 2, 3 labels the three standard Pauli matrices. The generators T~v 

satisfy the SU(2) Lie algebra by virtue of the ADHM constraints Eq. (2.72). 

The ADHM Hyper-Kiihler Quotient 

The ADHM construction of instantons has a modern mathematical interpretation as be

ing a particular instance of a construction known as the hyper-Kiihler quotient [67]. In 

the U(N) ADHM construction, the moduli space 9J1k is described in terms of the ma

trices aa upon which the ADHM constraints Eqs. (2.72,2.73) are imposed, followed by 

a quotient of the space of solutions of these constraints by the residual U(k) symme

try group. This is an example of a hyper-Kahler quotient, which was first noticed for 

the ADHM construction in [67]. In the following we do not describe the hyper-Kiihler 

quotient construction in detail, but refer the reader to the review [224], which includes 
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discussions of this mathematical topic in relation to the instanton moduli space. 

In the hyper-Kahler quotient construction, one derives a hyper-Kahler space 9J1 from the 

quotient of another hyper-Kahler space, 931. The space 931 is referred to as the 'mother 

space' and must possess appropriate isometries. For the ADHM construction, one has 

931 = JR4k(N+k), and by quotienting this space with the isometry group U(k), the ADHM 

constraints can be derived. Specifically, the ADHM constraints Eqs. (2. 72,2. 73) appear 

as the condition for the vanishing of moment maps arising from the isometry group U ( k). 

Hence the instanton moduli space 9J1k appears naturally as a type of hyper-Kahler quo

tient. 

The hyper-Kahler quotient construction is useful for obtaining the geometric character

istics of 9J1k· For example, the metric on the moduli space can be directly derived from 

the mother space 931 using the hyper-Kahler quotient construction [ 67]. 

2.3.2 U(N) ADHM Multi-Instantons 

In this subsection we present the first U(N) ADHM multi-instanton solution. The ADHM 

constraints have been explicitly solved and the general form of the U(N) ADHM two

instanton determined [36]. In this subsection we also consider the ADHM constraints for 

the U(N) three-instanton. 

We first describe the completely clustered, or dilute instanton gas, limit of U ( N) multi

instantons. This is an asymptotic limit which is an important physical property of the 

multi-instanton moduli space. Next the explicit general U(N) ADHM two-instanton so

lution, first reported by the author in [36], is presented. An outline of the method used 

to solve the ADHM constraints for this case is given. Previously, the only known explicit 

general two-instanton solution of the (anti)-self-dual Yang-Mills equations was the Sp(l) 

ADHM two-instanton [22]. This solution has seen widespread use in instanton calcula

tions which make use of the isomorphism Sp(l) c:::: SU(2). The explicit parameterization 

of the general U(N) ADHM two-instanton given here is the first general multi-instanton 

configuration with unitary gauge group. In this subsection we also briefly describe the 

use of the ADHM construction to construct the explicit U(N) two-instanton gauge field. 

An explicit manifestation of the dilute instanton gas limit is given for the U(2) two-

am 
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instanton solution. Details of the U(2) residual symmetry transformations utilized in the 

construction of the U ( N) two-instanton configuration are also given. 

Finally, a discussion of the U(N) ADHM constraints for the case k = 3 is included. The 

ADHM constraints for U(N) three-instantons possess a much greater complexity than 

the constraints for topological charge k = 2, and there are also a greater number of con

straints which must be solved simultaneously. vVe also make some observations regarding 

the U(N) ADHM constraints for k > 3. 

The Dilute Instanton Gas Limit 

Multi-instanton solutions are instantons which exist independently of one-instantons; in 

general, they do not exist as a simple sum of one-instantons. However, on the instanton 

moduli space 9J1k there exist regions where such an interpretation of a U(N) multi

instanton is valid. In these regions, a multi-instanton can be decomposed into a set of 

widely separated one-instantons. This is the completely clustered limit, or clustering 

limit, of the multi-instanton [224]. This limit is also known as the dilute instanton gas 

limit, in which a k-instanton configuration can be approximately described as a sum 

of k widely separated one-instantons. Other clustering limits exist for particular multi

instantons: a three-instanton would possess regions of the moduli space in which it can be 

described as a two-instanton plus a one-instanton as well as three one-instantons. These 

limits are special and depend on the multi-instanton solution being considered. However, 

the completely clustered limit is common to all multi-instantons. 

In the ADHM construction, the completely clustered limit is the region of the instanton 

moduli space where the diagonal elements of the submatrices a~ ·are much larger than 

their off-diagonal elements, at least in the conventional physical interpretation of known 

ADHM instanton configurations .. In this limit, the centres of the k one-instantons can 

be identified as the co-ordinates ( Xn)i _ - ( a~)ii, i = 1, ... , k. This limit is defined up 

to the action of the residual U(k) symmetry. One can use the U(k) symmetry to set 

off-diagonal corn ponents of a~ which arise due to the action of the U ( k) group on the 

diagonal matrix diag( -(Xnh, ... , (Xn)k) to zero. With this use of the U(k) symmetry, 
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the result is that the submatrices a~ are constrained as: 

(2.103) 

The dilute instanton gas limit can also be expressed as a condition involving only the 

submatrices a~ [225]: 

[a~ , a~] ---7 0, V m, n. (2.104) 

The condition Eq. (2.104) implies that there exists a U(k) residual symmetry transfor

mation which diagonalizes each of the submatrices a~, so that they can be written as 

a~= diag[(a~)n, ... , (a~)kk], for instanton number k. This assists in the identification of 

the instanton centre of mass co-ordinates (Xn)i stated above. 

We denote the submatrices a~ constrained as in Eqs. (2.103,2.104) as a~. The constraint 

Eq. (2.103) gives rise to a diagonal symmetry U(1)k. Each U(1) factor in the U(1)k sym

metry can be identified with the residual U(k) = U(1) symmetry of the widely separated 

one-instantons in the clustering limit. In this limit the quadratic term (a'a:a)ik(a~.B)k1 , 

k -::J i,j of the ADHM constraint Eq. (2.73) can be ignored. The ADHM constraints 

Eq. (2.73) then have off-diagonal components linear in (a~a:)i1 , i -::J j, given by: 

(2.105) 

which can be explicitly solved for the constrained diagonal elements (a~a:)ij. The diagonal 

components of the ADHM constraints Eq. (2.73) are given by: 

(2.106) 

in which there is no summation on the instanton number index i. The parameters {pi} 

are arbitrary and real. Equation (2.106) is the generalization of Eq. (2.94) for arbitrary 

instanton number k, and can be identified as a set of k one-instanton constraints. This 

implies that the k parameters {pi} can also be identified as the scale sizes of the one

instantons, with Pi being the scale size of the ith one-instanton. The parameters {pi} can 

be expressed explicitly in terms of the submatrices Wuia as [225]: 

(2.107) 

Each of the one-instantons also has an interpretation as a gauge oriented SU(2) one

instanton embedded in the completely clustered SU(N) multi-instanton. The generators 
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which give these embeddings are given by: 

(2.108) 

with no sum over the instanton number index i. Equation (2.108) generalizes the set 

of one-instanton SU(2) generators in Eq. (2.102) to the case of k-instantons. In terms 

of the generators (Tnuv, the completely clustered limit applies when, for each instanton 

number index i =/= j, one has: 

(2.109) 

with no sum over the instanton number index i. This condition implies that in the com

pletely clustered limit for U(N) multi-instantons, any two of the one-instantons contained 

within the multi-instanton configuration must be separated at a distance much greater 

than the product of the scale sizes multipled by the trace over the product of generators 

(TicTJ). This product of the generators quantifies the extent to which the individual 

SU(2) C SU(N) embeddings of the given pair of one-instantons labelled i and j overlap 

one another. 

The U(N) ADHM Two-Instanton 

With the aim of determining the most general solution of the U(N) ADHM constraints 

for k = 2, which will have 4Nk = 8N real independent parameters, we firstly need ' 

to find a solution with (8N + 4) real parameters. This then allows one to rotate out 

the U(k) = U(2) residual symmetry, effectively eliminating four real parameters in the 

(8N + 4)-parameter solution. We adopt the notation and conventions of the previous 

paragraph and Subsection 2.3.1. For later convenience, we define the following quantities 

in terms of the ADHM data present in the matrix a, for k = 2: 

(2.110) 

_ _ ~ ( lwl,nll
2 

-lw2,nll
2 

w1w1- w2w2 = ~ 
n=l Wnl,l Wn2,1 - Wn1,2Wn2,2 

wl nl wl n2 - w2 nl w2 n2 ) ' , ' ' 

lw1,n2l
2 

-1w2,n2l
2 
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Note that the sums in Eqs. (2.110,2.111) run from 1 toN; although the number N in these 

sums is related to the rank of the gauge group U ( N), the construction of AD HM instanton 

configurations breaks down for N = 1, as is to be expected given that (commutative) 

ADHM instantons are a phenomenon of non-Abelian gauge theories. We now make a 

change of variables which affects only the diagonal elements of the complex matrices 

(a~+ ia~) and (a~+ ia~), such that: 

(
a+ ~X1 b

1 
) , 

c a- 2xl 
(2.112) 

(
a+ ~X2 /3

1 

) , 

1 a- 2X2 
(2.113) 

where { X 1 , X 2 , a, b, c, a, {3, 1} E C. This is to make the physical interpretation of the 

U(N) k = 2 ADHM instanton configurations more transparent, and to simplify calcula

tions involving the elements of (a~ + ia;) and (a~ + ia~). 
·with the explicit form of the submatrices a~ given above in Eq. (2.113), and the combi

nations involving the other submatrices wa:, we can now write out the algebraic ADHM 

constraints Eq. (2.75,2.76) fork= 2. These constraints are explicitly given by: 

Ux + c1- {3b 0, (2.114) 

Uy + f3X1- cX2 0, (2.115) 

uz + bX2 -1x1 0, (2.116) 

Ux +Ut 0, (2.117) 

U2 + bX1 - cX1 + ;yX2 - f3X2 0, (2.118) 

U1 + icl2 
- lbl2 + l/31 2 - 1!12 0, (2.119) 

u1 + u4 0. (2.120) 

Equations (2.114-2.117) are the four distinct equations which originate from the first part 

of the ADHM constraints, Eq. (2.75). The remaining constraints, Eqs. (2.117-2.120) are 

the three distinct equations which originate from the second part of the ADHM con

straints, Eq. (2.76). We note that Eq. (2.117) and Eq. (2.120) may be obtained by taking 

the trace over the instanton number indices i,j of the ADHM constraints Eq. (2.75) and 

Eq. (2. 76), respectively. Our aim for the solution of the constraints is to eliminate the 
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off-diagonal elements { b, c} and {,8, 1} from the submatrices (a~ + ia;) and (a; + iaU, 

respectively. Then the remaining diagonal elements, which will be proportional to b, and 

hence x, in quaternionic form, will contain the translational co-ordinates {a, d, a, 6} and 

the instanton centre of mass co-ordinates X 1 , X2 . The remaining collective co-ordinates 

will then be functions of the elements of the submatrices w1 and w2. 

The constraints in Eqs. (2.114-2.120) can be considered as follows. Two of the con

straints are independent of the variables of the submatrices a~, Eqs. (2.117,2.120). There

fore none of the. off-diagonal elements { b, c, ,B, 1} can be eliminated from these equa

tions. Furthermore, Eqs. (2.118) and Eq. (2.120) are real equations. Since the variables 

{ b, c, (3, 1} are complex, we shall not be able to completely eliminate these variables using 

Eqs. (2.118,2.120). This leaves the four complex equations Eqs. (2.114,2.115,2.116) and 

Eq. (2.118) with which to completely eliminate the set of variables {b, c, (3, 1 }. 

'Ne now set about solving the system of simultaneous equations Eqs. (2.114-2.120). After 

some trial and error involving the sequence of variables to be eliminated, the k = 2 U(N) 

ADHM constraints were solved by exploiting the linearity present in them. Thus the 

k = 2 constraints were solved using only linear algebra. This is precisely the primary 

utility of using the ADHM construction to obtain solutions of the self-dual Yang-Mills 

field equations. However, the actual method of solution is not obvious from the form of 

the constraints. Firstly, we write the variables b and c, of the submatrix (a~+ ia;), in 

terms of the variables ,Band 1, of (a;+ iaD, using Eqs. (2.115,2.116): 

b (2.121) 

(2.122) 

This choice does not involve the bilinear constraint Eq. (2.114) nor the real quadratic 

constraint Eq. (2.119). vVe then substitute for band c in Eq. (2.114) and Eq. (2.118) using 

Eqs. (2.121,2.122). A highly fortuitous cancellation in Eq. (2.114) leads to no bilinear 

terms involving (3 and I· The result is two complex equations linear in (3 and T 

0, 

0, 

(2.123) 

(2.124) 
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where we have defined the quantity IXI 2 : 

(2.125) 

We now use Eqs. (2.123,2.124) to eliminate f3 and 1 in terms of X1 , X2 and the other 

variables dependent upon wc.,iu· By writing f3 in Eq. (2.123) in terms of 1, one can 

eliminate f3 from Eq. (2.124). One then obtains a single equation in terms of 1 and its 

complex conjugate, "r 

Since Eq. (2.126) is linear in both 1 and ;y, one can decompose Eq. (2.126) into real and 

imaginary parts. After this is done, we obtain two real simultaneous equations linear 

in Re(r) and Im( 1). Solving these simultaneously then enables one to explicitly solve 

for 1 in terms of the quantities X 1, X 2 and Wa,iu only. Using the previous relations 

Eqs. (2.115,2.116,2.123), which express the other variables { b, c, /3} in terms of 1, one can 

then write all of the off-diagonal elements {b, c, /3,1} of a~ in terms of X1 , X2 and Wa,iu 

only. 

Combining all of these results leads to the solution of the U(N) k = 2 ADHM constraints 

with (8N + 4) real parameters, which is given by: 

Xi[Pu- P] [Jz ) 
IXI2IX21 2(1ul 2 - 1) - X1 , 

a- ~xl 

(2.127) 

(2.128) 

in which we have defined the following quantities: 

p (2.129) 

u (2.130) 

The solution also includes two conditions which also arise from the ADHM constraints 

(Eqs. (2.75,2.76)), which when taken together with Eqs. (2.127,2.128) constitute the 



CHAPTER 2. YANG-MILLS INSTANTONS 

general solution of the U(N) k = 2 ADHM constraints: 
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(2.131) 

(2.132) 

Equations (2.131,2.132) solve the a~-independent constraints in Eqs. (2.117,2.120), and 

we have combined Eq. (2.119) with Eq. (2.120) in Eq. (2.132) for simplicity. We are 

careful to note that Eq. (2.132) may appear to contain dependence on the same variables 

in Wa: which the quantities Ux, Uy, uz and u2 also depend upon. This may be the case 

for the (8N + 4)-parameter solution, but once the U(k) = U(2) residual symmetry of 

the solution has been fixed, and the number of parameters reduced to 8N, any such 

interdependence, which is potentially an obstacle to the general solution of the k = 2 

constraints and shall be exceedingly complicated, will be removed. We now address the 

residual U(2) symmetry of the (8N + 4)-parameter solution Eqs. (2.127- 2.132). 

The U(k) symmetry of Eq. (2.69) acts as follows on the submatrices of a: 

( w1 w2) --r ( wln w2n)' (2.133) 

( (a~+ ia;) (a\+ ia;)) nt ( (a~+ ia;) (a\+ ia;)) n, (2.134) --r 
-(a~- ia~) (a~- ia~) -(a~- ia~) (a~+ ia~) 

where D E U(2) for topological charge k = 2. In a separate paragraph below we pro

vide the details of a particular transformation D which can be used to set Ux = 0 and 

w1,11 = 0. Indeed any other element of w1 or w2 could be set to zero instead of w1,11 . We 

adopt this usage of the U(2) auxiliary symmetry hereon. 

Vve note that any other solutions of the ADHM constraints for gauge group U(N) and 

k = 2 possessing (8N + 4) real parameters will be equivalent to the above solution in 

Eqs. (2.127-2.132) upon acting on it with the auxiliary U(2) symmetry, since the in

stanton moduli space for k = 2 is connected [10]. Indeed, one can choose to eliminate 

the same variables (3 and 1 in a different order, or eliminate the variables { b, c} in two 

different orders, and obtain apparently different solutions of the k = 2 U(N) ADHM 

constraints. However, the four solutions so obtained are all equivalent, as has been ver

ified using a standard symbolic manipulation program, upon substituting each solution 

in turn into the k = 2 U(N) ADHNI constraints. This is to be expected as each solution 
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is related to the other solutions via U(2) transformations in Eqs. (2.133,2.134) [10]. 

Using the U(2) transformation D, given below, permits one to construct the U(N) k = 2 

ADHM instanton which has a definite physical interpretation. The form of the SN

parameter solution, using the (8N + 4)-parameter solution Eqs. (2.127-2.132) is then: 

(2.136) 

The function R is defined as: 

(2.137) 

and the conditions Eq. (2.131,2.132), with the modifications Ux 0 and w1,11 = 0, 

complete the specification of the SN-parameter U(N) k = 2 ADHM instanton solution. 

For the case N = 2, the explicit two-instanton configuration can assume a particularly 

simple form. Continuing with our choice of residual U(2) symmetry used as Ux = 0 and 

w1,11 = 0, for the U(2) two-instanton one has: 

(2.138) 

(2.139) 

(2.140) 

(2.141) 

One of the possible solutions of Eq. (2.139) is w 1,21 = 0, and we adopt this value of w 1,21 

for the U(2) two-instanton. Using w 1,21 = 0, one then has Uy = 0, and Uz and Ut remain 

unmodified, leaving: 

(2.142) 

(2.143) 
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With these choices, any off-diagonal elements proportional to Uy then vanish, and the 

matrices (a~+ ia~) and (a;+ ia~) in Eqs. (2.135,2.136) for N = 2 simplify to: 

(2.144) 

(2.145) 

Using Eqs. (2.139-2.143) and the choice w 1,21 = 0, one can choose to eliminate w1,12 via 

the relation Ux = -Ut= 0 in (Eq. (2.131)). This then implies that Uz is proportional to 

w22 ,1 . The modulus of w1,22 can thus be eliminated via U1 = -U4 in Eq. (2.132). The 

remaining constraint, the second equality in Eq. (2.132), then enables one to eliminate the 

imaginary part of w1,22 through a quadratic relation in this quantity. A similar procedure 

has been performed for N = 3, in which the constraint Eq. (2.132) becomes more involved, 

but other choices of elements within w1 and w2 to eliminate can be made in order to 

simplify this. The number of independent real free parameters remaining in the solution 

is then sixteen: eight from { w 2,11 , w2,12, w 2,21 , w2,22 } and eight from {a, a, X1 , X2}), which 

agrees with the general result of 8N = 16 real parameters from the parameter counting 

in Eq. (2.77). Hence, upon fixing the residual U(2) symmetry, the above ADHM data for 

the U(2) two-instanton configuration represents the uniqu~ sixteen parameter solution of 

the ADHM constraints for the gauge group U(2) and topological charge k = 2. 

We note that physical quantities constructed from the SU(2) two-instanton configuration, 

which can be obtained from the U(2) two-instanton configuration given above, will be 

equivalent to those constructed from the Sp(l) two-instanton [22] due to the isomorphism 

SU(2) '::: Sp(l). 

In the case of gauge group U(N), with N > 1, the following identification of physical 

parameters in the solution can be made. The instanton centre of mass co-ordinates 

(translational co-ordinates) are given by a and a, which are proportional to Xn and can 

thus be set to zero. The relative instanton positions can then be taken to be X 1 and X 2 . 

The scale sizes can be expressed using the definition given for the U(N) k-instanton scale 
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sizes in Eq. (2.107), first given in [225], as: 

N N 

~U4- ~ L lw2,n2l
2 

= ~ 2:)1wl,nll
2

- lw2,nll
2
), (2.146) 

n=l n=l 
N N 

P~ = ~U1- ~ L lw2,n1l
2 

= ~ 2:)1wl,n21
2 

-lw2,n21
2
). (2.147) 

n=l n=l 

The global gauge orientations ll, which will include iso-orientations for any chosen N, 

are given by the remaining parameters contained within the submatrices w1 and w2. 

These parameters serve to rotate the two-instanton solution in the group space of U(N); 

through these submatrices any U(N) two-instanton can be specified, and no embedding 

is necessary at this stage. 

Thus, for the U(2) solution given above, the relative instanton separations are {X1,X2}, 

the instant on centre of mass positions are {a, a}, and the two scale sizes are P1 and 

p2 , as defined in Eqs. (2.146,2.147). The six U(2) iso-orientations are contained in the 

remaining elements { w2,11 , w2,12 , w2,21 , w2,22 } taken together with the conditions which 

relate them. 

We can now make a count of the parameters appearing in the U(N) two-instanton so

lution. The instanton translational co-ordinates and relative separations, {a, a, X1 , X2}, 

give eight real parameters. There are two scale sizes, {p1 , p2}, given by Eqs. (2.146,2.147), 

which are two real parameters. Also there are ( 4N- 5)k = (8N -10) real iso-orientations. 

Summing these gives (8N- 10 + 8 + 2) = 8N real parameters, as required by the param

eter counting in Eq. (2.77). 

This solution must also exhibit the correct decomposition into two constituent one

instanton configurations in the completely clustered limit, which is a physically required 

property. This asymptotic limit can most simply be achieved by taking the relative 

instanton positions to infinity, IXil ---t oo, i = 1, 2; that is, the separation of the two 

coupled one-instantons approximately comprising the two-instanton is taken to be infi

nite in extent. In this way, the description of the two-instanton is approximated as a 

non-interacting dilute gas of two one-instantons ('single instantons'). The result is that 
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the matrix a can be explicitly decomposed for N = 2 as: 

w1,11 0 w2,11 0 0 w1,12 0 w2,12 

w1,21 0 w2,21 0 0 w1,22 0 w2,22 

a+ ~X1 0 a+ ~x2 0 0 0 0 0 
lim a[6J x [4] --+ + X1,X2-too 0 0 0 0 0 a- ~x1 0 1 a- 2x2 

1 --a- 2 x2 0 
1 -

a+ 2 x1 0 0 0 0 0 

0 0 0 0 0 
1 -

-a+ 2x2 0 
1 -

a- 2 x1 

(2.148) 

where we have restored w1 11 and w1 21 
' ' 

for clarity. Other alternative choices of U(2) 

transformation can also be used. 

The one-instantons are centered at (X1,X2 ) and at (-X1 , -X2), respectively, and have 

scale sizes p1 and p2. This decomposition in the dilute instanton gas limit can be ex

tended to U(N), in which case the submatrices a~ will decompose in the same manner as 

in Eq. (2.148) and the submatrices w1 and w2 will decompose in a similar way. The U(2) 

two-instanton may perhaps assist in uncovering a 'dictionary' relating it to the Sp(1) 

ADHM formalism [223L thus connecting the collective co-ordinates which describe these 

instantons. 

Construction of the U(N) ADHM Two-Instanton Gauge Field 

To construct the U(N) ADHM two-instanton gauge field, one first determines the x

dependent Hermitian matrix ][k]x[k]· For k = 2, we use Eqs. (2.39,2.18) for constructing 

the matrix ll = a+bx. Then the factorization condition Eq. (2.48), expressed in terms of 

the elements belonging to the matrices (a~ +ia~), (a~+iaD, given by Eqs. (2.135,2.136)), 

( 
f -1 

- -1 1 
LlLl = J 1[2]x[2] = 

0[2]x[2] 
(2.149) 
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where the inverse matrices 111 and f2 1 are given by: 

111 = t ( lw1,n1l
2 

+ IA1I
2
_+ l~1l 2 

+ ~cl 2 + 1,81
2
_ 

n=l w1,nl'Wn2,1 + A1b + A2c +En+ B2,8 

121 = t ( lw2,n1l
2 
+ IA~I 2 + /B2~2 + lbl~ + /~1 2 

n=1 W2,n1Wn2,2 + A1c + A2b + B1,8 + Bn 

in which we have defined the quantities: 

Wn1,1W1,n2 + A1b + A2c + B1i + B2,8) ' 

lw1,n2l2 + IA2I2 + IB2I2 + lb/2 + bl2 

Wn1,2W2,n2 +Ale+ A2b + B1,8 + B2ry) , 

lw2,n2l2 + IA2I2 + IB2I2 + lcl2 + 1,812 

We note that the product 1-11r2Jx[2J in Eq. (2.149) is a possible source of some ambigu

ity. The correct form of this product becomes clear when compared with the result of 

calculating 6.6. 

One can choose to invert either 11-
1 or 12-

1
, with either choice being valid. This is because 

the matrices f1 1 and 121 arising from Eq. (2.149) are related by the ADHM constraints. 

This can be seen explicitly since the equality f1 1 = 121 implied by Eq. (2.149) repro

duces two of the original U(N) k = 2 ADHM constraints. Upon inverting either 11-
1 

or 12-I, it remains to determine V and U' using the selected form of f. The matrix V 

in Eq. (2.91) is manifestly Hermitian due to the Hermiticity of f. From Eq. (2.90) the 

matrix V2 can be calculated, yielding an N x N matrix with entries dependent on the 

elements of 1 and { w1 , w2}. In order to determine V, one can take the square root of the 

matrix V2 by first diagonalising V2 and then taking the square root of each element in 

the resulting diagonal matrix. We denote the generic diagonalised matrix V as: 

0 
V= (2.151) 

where the elements { Av} are the square roots of the N characteristic values of the matrix 

V2
. In this method for performing the matrix square root in Eq. (2.91), the characteristic 

equation for V2 will in general be a polynomial of degree N. Thus this method is restricted 

to N ~ 5 if the characteristic equation is to be solved by radicals. An explicit similarity 

transformation for diagonalising V2 would enable this difficulty to be circumvented, but 
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this is not a systematic solution. Alternatively, for N 2: 5 one could embed the above 

U(N) k = 2 solution with N = 4 and use appropriate gauge orientations, given by the 

coset element ll for N > 2k in Eq. (2.86). This embedding can then be used to specify 

the explicit U(N) two-instanton solution with N 2: 5, from which one can determine V. 

This is perhaps the only feasible way in which to construct U(N) two-instanton gauge 

field configurations with N 2: 5. 

Given V as in Eq. (2.151), the matrix U' can be determined using Eq. (2.92). Equation 

(2.92) has the following explicit form in terms of matrix muliplication for general k: 

(2.152) 

Fork= 2, given the form of V in Eq. (2.151), for generic N, the matrix U' derived from 

Eq. (2.152) reads as: 

U{l U{2 U{N 

U(4Jx[N] =-
u~l u~2 u~N 

(2.153) 
u~l u~2 u~N 

u~l u~2 u~N 

where we have utilized the definitions in Eq. (2.150). The elements of U' in Eq. (2.153) 

can be now be written in terms of the elements of f, denoted by fij: 

1 
:\[AI(wvi,rfn + Wv2,rf12) + b(wv1,rf21 + iDv2,rf22) + W~1,2B1 + Wv2,2,8], 

V 

1 
:\[c(iDvl,rJn + Wv2,rJ12) + A2(1Dv1,rJ21 + Wv2,rJ22) + Wvl,2/ + Wv2,2B2J, 

V 

1 - -
:\[-BI(Wvi,rfu + Wv2,rJ12) -"((iDv1,rJ21 + Wv2,dn) + Wv1,2A1 + Wv2,2c], 

V 

1 - - - -
:\[-,B(wvl,rJll + Wv2,rf12)- B2(1Dv1,rJ21 + Wv2,rJ22) + Wv1,2b + Wv2,2A2]. 

V 

The ADHM matrix U for U(N) and k = 2 is then given by: 

( 
V[N]x[N]) 

U[N+4]x[N] = 
1 

, 

U[4]x[NJ 

(2.154) 

and the corresponding instanton gauge field configuration Vm follows from substituting 

U into Eq. (2.51). 
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The U(N) ADHM two-instanton configuration presented here could conceivably be used 

in instanton calculus in a number of applications. In particular, testing the proposed 

exact solutions of N = 2 supersymmetric SU(N) Yang-Mills gauge field theories at the 

two-instanton level via the supersymmetric multi-instanton calculus comprehensively de

veloped in [213, 214, 217]. These proposed exact results, the instanton calculus and the 

instanton tests of the exact results will be described in Chapter 6. Matching between the 

proposed exact results and instanton calculations, obtained at the one-instanton level, 

will also be described in Chapter 6. The explicit form of the general U(N) two-instanton 

is conceivably the first step towards extending the precise matching between the exact 

results and instanton predictions in N = 2 supersymmetric SU ( N) gauge theories to the 

two-instanton level. We shall describe this possible extension in more detail in Chapter 6. 

Use of the U(2) Residual Symmetry for the U(N) ADHM Two-Instanton 

Here we give the details of the U(2) transformation which can be used to set Ux = 0 and 

w1, 11 = 0 within the ADHM data for the U(N) k = 2 ADHM instanton. 

Using the isomorphism U(N) ~ U(N- 1) x SU(N), we can take 0 E U(2) to be the 

product of a U(1) transformation and an SU(2) transformation. Then the U(1) factor of 

n acts trivially on the submatrices a~, as is evident from Eq. (2.134). 

However, the U(l) factor of n acts non-trivally upon the submatrices Wo:· Writing n as 

n ~ Y x 2, the following U(l) and SU(2) elements, Y and 2, respectively, can be chosen 

in order to set Ux = 0 and w1 u = 0: , 

y 
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where we have used the quantities: 

VQ+iVl=Q, 

Q Im(Uz) + 1 p lw1,11l + 2 Im(Uy 2 2 )l-1 
[lm(Uy) ]· [(Re(w1,12))

2(1- p') lm(U,) 

Im(Uz) 2i1J = - e 
Im(Uy) ' 
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(2.155) 

(2.156) 

(2.157) 

(2.158) 

We note that the SU(2) part of the U(2) symmetry would also enable one to set Uy = Uz, 

but this choice would have rendered the general exact solution (Eqs. (2.127-2.132)) of 

the k = 2 U(N) ADHM constraints singular, since if Uy = Uz then (lwl 2 - 1)-1 -t oo. 

To obtain a physically meaningful solution we are thus induced to choose Ux = 0. Other 

U(2) transformations can be implemented to act upon the (8N + 4)-parameter U(N) 

two-instanton solution given in Eqs. (2.127-2.132). 

The considerations which led to the choice of U(2) transformation specified by Eq. (2.155) 

and Eq. (2.156) involve the matrix w1w2 given in Eq. (2.110). We first write this matrix 

as: 

_ ( Ux Uy ) U = w1w2 - , 
Uz -Ux 

(2.160) 

where we have used Eq. (2.117) to write Ut = -Ux. vVe now consider the Hermitian 

matfix UU. Under a U(2) residual symmetry transformation, which acts upon the sub

matrices wa: as in Eq. (2.71), UU transforms as: 

(2.161) 

where UU is explicitly given by the matrix: 

(2.162) 
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Since UU is a Hermitian matrix, we can use the U(2) transformation, which has the form 

of a similarity transformtion on UU in Eq. (2.161), to diagonalise it. Then one can set the 

off-diagonal elements of UU to zero. When this is done, we obtain one condition for the 

action of the U(2) transformation upon the quantities {Ux, Uy, Uz}, since the off-diagonal 

elements of UU are related by complex conjugation. This condition is given by: 

(2.163) 

The only consistent solution to the condition Eq. (2.163) is Ux = 0. If Uy = 0 or 

Uz = 0, one necessarily generates additional conditions on Uy and Uz, which is incon

sistent with their status as free parameters in the U(N) two-instanton solution given 

by Eqs. (2.131,2.132,2.135,2.136). This procedure is not a standard one, we note. The 

ADHM construction does not fix the residual U(k) symmetry by itself, and deducing 

which parameters are to be removed with these auxiliary transformations is a matter of 

choice. Hence our choice of U(2) transformation for this instanton solution is not unique. 

The U(N) ADHM Three-Instanton Constraints 

The U(N) ADHM constraints for k = 3 present new difficulties not present in the k = 2 

constraints. Attempts at straightforwardly generalizing the above method used to solve 

the k = 2 constraints to the k = 3 case fail because of the larger number of constraints 

and the appearance of many more bilinear terms. The coupled nature of the k = 3 

constraints makes it extremely difficult to locate and exploit any linearity which may 

assist in solving the system of equations. As in the k = 2 case, there does not seem to 

be any underlying principle which could be applied to the constraints in order to solve 

them. 

Here we state the U(N) k = 3 constraints as derived from the ADHM construction. 

These were obtained by setting k = 3 in the ADHM constraints given in Eqs. (2. 75,2. 76). 

In this case we define the following quantities for convenience: 

U1 U2 u3 
WIW2 = u4 Us u6 

U7 U8 U9 

(2.164) 
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?li1 w1 - w2w2 - Un Uy Ut3 

Ut2 Ut3 Uz 
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(2.165) 

and write out the explicit form of the complex submatrices (a;+ ia~) and (a~+ ia~) as: 

a1 bl cl 
( I · I ) a2 +w1 a2 b2 c2 (2.166) 

a3 b3 c3 

a1 !31 /1 
( I · I ) a2 +w1 a2 /32 /2 (2.167) 

a3 !33 /3 

The instanton centre of mass co-ordinates for k = 3 are denoted Xi, i = 1, 2, 3. 

The explicit U(N) ADHM constraints for k = 3 then consist of the following fifteen 

conditions: 

U2 + fJ1X3 - a2X1 + a3f33 - c211 

U3 + 11(X3 + X4)- a3(X1 + X2) + a212- b3f31 

U4 + b1X1 - c1 (XI+ X2) + b3a3- Cl/2 

Us + blf3I + b3f33 - a2a2 - C2/2 

u6 + 12X4- b3X2 + an2- b3f31 

U7 + c1 (X1 + X2) - a3(X3 + X4) + c2a2- b1f33 

Ux + la2l
2 + la31

2 
-1b1l2 -1c1l2 + lfJ1I 2 + ir1l 2 -1a2l2 -la312 

Uy + lb1l
2 + lb3l

2 
-la2l

2 
-1c2l2 + la2l 2 + l12l 2 -lf3II2 -1/331 2 

0, 

0, 

0, 

0, 

0, 

0, 

0, 

0, (2.168) 

0, 

0, 

0, 

0, 

0, 
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Ut2 + c1 (X3 + X4) - a3(X3 + X4) + a2c2- b3b1 

+ a3(X1 + X2)- 11(X1 + X2) + fhf31- a212 0, 

The U(N) k = 3 ADHM constraints in Eqs. (2.168) are clearly of a much greater com

plexity than the k = 2 constraints. Any linearity present in these conditions is difficult 

to exploit due to the presence of the bilinear terms in all but the first two constraints 

given in Eqs. (2.168). Also, the greater number of constraints makes any manipulations 

and substitutions very lengthy and laborious to complete. These conditions are opaque 

and there does not appear to be any apparent method of solution which bears any re

semblance to the method of solution for the k = 2 case. However, the constraints in 

Eqs. (2.168) do exhibit a pattern of terms similar to the k = 2 case. 

The U(N) ADHM Constraints fork~ 4 

VIe now describe an observation concerning the present scheme of identification of physical 

instanton parameters (instanton collective co-ordinates) and the U(N) ADHM constraints 

for topological charge k ~ 4. The general U(N) ADHM two-instanton solution was ob

tained above by adopting the identification of the instanton centre of mass co-ordinates 

with the diagonal elements of the submatrices (a~ + ia~) and (a~ + ia~) of the ADHM 

matrix a. The off-diagonal elements of the submatrices (a; + ia~) and (a~ + ia~) were 

then eliminated using the ADHM constraints, resulting in a reasonable, but not unique, 

interpretation of the collective co-ordinates present in the matrix a which physically de

scribe the instanton solution. The remaining collective co-ordinates of the instanton were 

formed from the elements of the other submatrices Wa: present in a. A number of elements 

of the submatrices Wa: are also eliminated by the ADHM constraints. Since some of the 

ADHM constraints are independent of the elements of the submatrices a~, and thus of 

the submatrices (a;+ iaD and (a~+ ia~) within a~, these conditions could be used to 

eliminate variables in the submatrices Wa:. This has consequences for the identification 

of instanton collective co-ordinates for topological charge k ~ 4. 

We argue that the scheme for identifying the instanton collective co-ordinates above, 
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which was applied to the k = 1 and k = 2 cases does not apply in the cases with k 2: 4. 

More precisely, there are an insufficient number of constraints to eliminate all of the 

off-diagonal elements of the submatrices a~ for k 2: 4 provided that all of the gauge 

orientations are taken to be within the submatrices wa:. This leaves physical instanton 

parameters amongst the off-diagonal elements of a~, which does not occur in the k = 2 

case. Hence a new identification of the physical parameters of the instanton contained 

within the ADHM matrix a is required. If such an identification is not possible, this 

raises questions about the physical validity of the ADHM construction, at least for the 

gauge group U(N). 

Our argument is as follows. The ADHM construction for a U(N) k-instanton config

uration requires the explicit and general solution of 3k2 real constraints. These 3k2 

constraints place conditions on the total number of real parameters 4N k + 4k2 present 

within the ADHM matrix a. There remains the U(k) residual symmetry, which removes 

a further k2 real parameters, leaving 4N k real independent parameters for the descrip

tion of the instanton. In the scheme above for the identification of the physical instanton 

collective co-ordinates, there are 4k(k-1) real parameters to be eliminated from the sub

matrices a~. These are the off-diagonal elements of a~, and once these are eliminated, the 

diagonal elements of a~ can be interpreted as the centre of mass spacetime co-ordinates 

of the instanton. Of the 3k2 ADHM constraints, two constraints always remain inde

pendent of the elements of a~. These are given by the trace over the instant on number 

indices of each of the ADHM constraints in Eq. (2.75) and Eq. (2.76). Hence there are 

3k2 - 2 ADHM constraints which can be used to eliminate the off-diagonal elements of a~ 

or other elements in the submatrices wa:. However, if there are more ADHM constraints 

than there are off-diagonal elements within a~, then the aforementioned interpretation of 

the parameters contained in a cannot be made. This statement can be expressed quanti

tatively as the following inequality condition on the topological charge k of the instanton 

configuration: 

3k2
- 2 2: 4k(k- 1), (2.170) 

which implies that: 

(4-k)k2:2. (2.171) 

The inequality in Eq. (2.171) implies that for k 2: 4 the conventional interpretation of 
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the parameters in the ADHM matrix a cannot be made. The U(k) residual symmetry 

cannot be used to rectify this inequality, since if the k2 real parameters are not removed 

from the submatrices wa, as is conventional (and used for the k = 2 case), then there 

must be k2 parameters removed from the submatrices a~, or the removal of k2 parameters 

must be split across both the submatrices Wa and a~. Thus the global U(k) symmetry 

transformations cannot be used to enable one to make the conventional interpretation 

the parameters of a. 

vVe speculate that this statement has two possible implications. Firstly, U(N) ADHM 

k-instanton configurations with k 2 4 perhaps do require that some of the off-diagonal 

parameters of the submatrices a~ are indeed to be identified as physical instanton param

eters. However, in this case the completely clustered limit would leave more than 4k real 

parameters within the submatrices a~, making an identification of the centre of mass co

ordinates of the each of the individual constituent one-instanton solutions problematic. 

Secondly, there is the heretical possibility that the U(N) ADHM construction breaks 

down for topological charge k 2 4. Since no reasonable physical interpretation of the 

remaining free parameters can be made, the construction for k 2 4 may not yield physical 

configurations. We have not yet investigated this apparent difficulty in identifying the 

physical parameters for the Sp(N) ADHM construction when k ~ 4. In Subsection 2.3.3 

we describe and consider the Sp(N) ADHM construction, with emphasis upon the k = 2 

and k = 3 cases. 

2.3.3 Sp(N) ADHM Multi-Instantons 

The ADHM construction for instantons with symplectic gauge group Sp(N) is useful as 

it gives a parameterization for instanton configurations with gauge group SU(2) which is 

more economical and simple to use than the SU(N) formalism. This is made possible by 

the existence of the isomorphism Sp(l) ~ SU(2). The gauge group SU(2) is commonly 

chosen as it is the most simple choice of gauge group for Yang-Mills gauge theories. 

Here we describe two approaches to the construction of Sp(N) ADHM k-instantons. The 

first uses embedding the gauge group Sp(N) into a larger SU(2N) gauge group1 and 

adapting the previous SU(N) ADHM formalism to describe the Sp(N) instantons. This 

is the approach taken in [224]. Other approaches to the construction of the SU(N) and 
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Sp(N) formalisms begin with larger O(N) or Sp(N) groups and embed the required 

gauge groups into these [22, 33]. 

The second approach uses a formalism which is intrinsically suited to the Sp( N) gauge 

group. For this we follow the construction developed in [33]. In this approach one begins 

with a quaternionic formalism which requires no embedding into larger gauge groups. 

This construction requires a smaller number of variables and constraints than the modi

fied SU ( N) formalism in the first approach. Hence, for simplicity and clarity, we adopt 

this second approach in our descriptions of the ADHM constraints for Sp( N) instantons. 

The original Sp(N) formalism is also the formalism employed in the majority of literature 

on Sp(N) ADHM instantons [22, 23, 33]. 

In this subsection the known Sp(N) three-instanton solutions are described [22, 23]. 

These solutions are special solutions of the Sp(N) ADHM three-instanton constraints, 

and are the amongst the only known explicit instanton configurations of topological 

charge greater than k = 2 (see also [95], and in particular [96] for special (ADHM) in

stanton solutions of higher topological charge). We compare the three-instanton solutions 

given in [22, 23] and speculate on their relevance to the general solution of the Sp(N) 

ADHM three-instanton constraints. In this subsection we also describe some conjectures 

regarding the form and properties of the general solution of the Sp(N) ADHM three-

instanton constraints. 

The Sp(N) c SU(2N) ADHM Construction 

To derive the Sp(N) ADHM construction from the U(N) or SU(N), the embedding 

Sp(N) C SU(2N) can be used. (For the SO(N) construction, one can use the em

bedding SO(N) C SU(N).) By imposing appropriate reality conditions on the ADHM 

construction for SU(2N) instantons of topological charge k, the gauge field Vm can be 

ensured to be valued in the sp(N) subalgebra of the su(2N) Lie algebra. To state the 

reality conditions we define the symplectic transpose t, which acts upon Sp(N) group 

indices. For a column vector v, this transpose acts as vt = vT JT, where T denotes the 
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conventional matrix transpose. The matrix J is a 2N x 2N sympletic matrix, given by: 

(2.172) 

In the adjoint representation of Sp(N), symplectic matrices are Hermitian matrices which 

are anti-symmetric under the transpose t, with dimension (2N + 1 )N. Hermitian matrices 

which are symmetric under t belong to the anti-symmetric representation of Sp(N), and 

have dimension (2N- 1)N. 

The reality conditions on the SU(2N) ADHM construction which give the Sp(N) ADHM 

construction are then: 

(2.173) 

(2.174) 

where E&./3 is the totally anti-symmetric rank two tensor defined in Appendix A, and J is 

the symplectic matrix defined in Eq. (2.172). 

The reality conditions Eqs. (2.173,2.174) are invariant under the residual symmetry group 

attached to the Sp(N) construction. For Sp(N), this is the subgroup O(k) of the SU(2N) 

residual symmetry group U(k). The Hermitian matrices a~ are now also symmetric under 

the sym plectic transpose t, and hence real and symmetric under the action of the 0 ( k) 

auxiliary group. 

The SU(N) ADHM constraints Eqs. (2.72,2.73) are adjoint-valued under O(k). In con

junction with the reality conditions Eqs. (2.173,2.174), the SU(2N) gauge field Vm gen

erated by the ADHM construction will then be anti-symmetric under t. Since Vm is 

Hermitian, this gauge field also exists in the adjoint representation of Sp( N). Hence the 

modified SU(2N) ADHM construction can also be used to describe Sp(N) k-instantons, 

and all of the previously given formulae and identities of the U(N) ADHM construction 

hold for this instanton configuration. To be more precise, the gauge field Vm now takes 

values in the sp(N) subalgebra of the su(2N) algebra. This modification of the SU(N) 

ADHM construction can also be applied to describe Sp(N) fermion fields in the back

ground of ADHM instantons. 

The dimension of the modified SU(2N) moduli space is equivalent to the dimension of 

the Sp(N) moduli space. Including the action of the reality conditions Eqs. (2.173,2.174), 
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one has 4Nk real parameters present in the submatrix w, arid 2k(k + 1) real parameters 

in the submatrices a~. The SU(2N) ADHM constraints remove 3k2 real parameters, and 

the O(k) residual symmetry group removes a further ~k(k + 1) real parameters. This 

leaves a total of 4(N + 1)k real parameters for the description of the Sp(N) k-instanton. 

This is in agreement with the parameter counting for the Sp(N) formalism below, which 

also gives the dimension of the Sp(N) k-instanton moduli space as4(N + 1)k, which is 

the same result the Atiyah-Singer index theorem gives upon applying it as in Subsection 

2.2.2. 

We now describe the Sp(1) ADHM construction in this formalism, which is used in 

applications involving instantons in the theories with gauge group SU(2) through the 

isomorphism SU(2) ::: Sp(1). The reality conditions Eqs. (2.173,2.174) for Sp(1) are 

given explicitly by: 

(2.175) 

(2.176) 

These conditions imply that a~ are real symmetric k x k matrices, and that the submatri-

ces wi can be expressed as quaternions, Wicai = WinCJno:a and wfo: = WinO'~o:. Consequently, 

the ADHM matrix aa can be written as a quaternion: 

(2.177) 

where the gauge group indices u = 1, 2 have now been written as Weyl indices o: = 1, 2. 

The submatrix Wo:a is now a quaternion which satisfies the following relation in this 

specific N = 2 scheme: 

Ea~Eo:f3w. · 
t{3 {3. (2.178) 

The Sp(1) and SU(2) formalisms are isomorphic, but the formalism for the sympletic 

gauge groups has an advantage over the intrinsic SU(2) formalism in that there are fewer 

variables and constraints in the Sp(1) formalism than there are for that of SU(2). \iVhen 

N = 2, the SU(2) ADHM k-instanton construction has 4k(2 + k) real parameters in aa 

on which 3k2 constraints and k2 residual symmetries are imposed. For the Sp(1) formal

ism, there are 2k(3 + k) real parameters in aao: on which 3k(k- 1)/2 constraints and 
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k(k- 1)/2 residual symmetries are imposed. In both cases the number of real physical 

parameters is 8k, as is required, but it is apparent that the Sp(1) formalism presents a 

number of constraints almost a factor of two fewer than that for the SU(2) formalism. 

For example, when k = 1, there are no constraints present in the Sp(1) construction, 

whereas in the SU(2) construction there are three. The Sp(1) formalism also involves 

fixing fewer residual symmetries, which is a non-trivial task for k > 1, as can be seen 

from the U(2) transformation for the U(N) two-instanton solution above. 

The Sp(N) ADHM Construction 

The explicit canonical form of the Sp(N) and U(N) ADHM constructions were first given 

in [33]. Here we follow the treatment of [33] for the Sp(N) ADHM construction. We 

now denote the rank of the symplectic group by N, as there is now no embedding in a 

special unitary group. The symplectic group Sp(N), in its compact and real (i.e. gauge 

group) form, can be described as the group of N x N matrices with quaternionic elements. 

Therefore, the ADHM construction for the symplectic groups may be given in terms of 

matrices of quaternions. A brief description of the properties of quaternions and the 

conventions we employ for quaternions are given in Appendix B. In particular, we note 

that quaternions are not commutative objects, and therefore the ordering of quaternionic 

variables in the following paragraphs is important. 

The canonical form of the ADHM matrices a and bin the intrinsic Sp(N) formalism can 

be written as: 

aAi = ( ::} bAi = ( O[~+l~:;:~k~kJ) ' (2.179) 

where r = r[k]x[k] and w = W[N]x[k] are matrices of quaternions. The matrix indices in 

Eq. (2.179) have the same definitions and ranges as the indices in Eq. (2.46) for the U(N) 

formalism. The Sp(N) ADHM k-instanton constraints then assume the simple form: 

r·· 
~J 

0, i "' j. 

(2.180) 

(2.181) 

The canonical form Eq. (2.179) are invariant under the transformation by the residual 
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symmetry group O(k), which acts in the same way upon a and basin Eq. (2.133). 

The Sp(N) ADHM Two-Instanton 

As there are no constraints for k = 1 in the $p(N) construction, the first ADHM con

straints for symplectic gauge groups appear for k = 2. These constraints were first 

explicitly and generally solved in [22]. The ADHM matrix aaa in this case has the form: 

(2.182) 

In terms of the quaternion variables contained in acw, the Sp(N) k = 2 ADHM constraints 

can be derived in terms of the canonical forms Eq. (2.179) from: 

_ ( 'lii1 w1 + fn rn + f12r12 'lii1 w2 + fn r12 + f12r22 ) 
aa = , 

W2W1 + f12r11 + f22r12 W2W2 + f12r12 + f22r22 

(2.183) 

from which the i i- j, or off-diagonal, elements give the two k = 2 ADHM constraints: 

0, 

0. 

(2.184) 

(2.185) 

Note that the conditions in Eqs. (2.184,2.185) are the Hermitian conjugates of one an

other, so that there is actually only one constraint for the Sp(N) ADHM two-instanton: 

(2.186) 

An approach to solving these constraints is to eliminate the off-diagonal elements, leaving 

a clear physical interpretation for the on-diagonal elements r 11 and r 22 as forming the 

instanton centre of mass co-ordinates. The constraint Eq. ( 2.186) is linear in the off

diagonal quaternion element r 12 ; however, it is also linear in its Hermitian conjugate f 12. 

Therefore, to solve the constraint Eq. (2.186) we must also use its Hermitian conjugate 

Eq. (2.185). Subtracting Eq. (2.185) from Eq. (2.186) gives: 

(2.187) 
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where we have defined the quantity X 1: 

(2.188) 

The constraint Eq. (2.187) has a unique general solution in which r 12 is eliminated, but 

this solution cannot be formally derived by a series of algebraic operations. Instead, 

the general solution to Eq. (2.187), as given in [22], is essentially as an ansatz, which 

by observation solves Eq. (2.187) for the dependent variable r 12 . The general explicit 

solution of the Sp(N) two-instanton ADHM constraint in Eq. (2.186) is then: 

1 
r12 = IX

1
I2XI[U1 + ~], (2.189) 

where ~ is an arbitrary real number, and U1 is the anti-Hermitian quaternion defined by: 

(2.190) 

The appearance of the term ~ in the solution Eq. (2.189) arises since the constraint 

Eq. (2.187) permits it. This is because an arbitrary real number may be added to the 

term U1 , which is a manifestly anti-Hermitian quaternion, in the solution for r 12 , without 

affecting the constraint Eq. (2.187). At this point it becomes clear that the solution 

Eq. (2.189) has has not been derived formally, but rather has been derived by observa

tion. However, this observation was completely sufficient to arrive at the correct exact 

solution of the constraints for this case. 

An identification of the physical collective co-ordinates of the Sp(N) two-instanton so

lution can be made as follows. The variable X 1 represents the relative separation of the 

two constituent one-instanton centre of mass positions, rn and r 22 . In the limit of large 

separation, which is the completely clustered limit, one has: 

lim r12 -+ 0, 
JX1J-+oo 

(2.191) 

so that the off-diagonal element r 12 vanishes and the ADHM submatrix r becomes diago

nal, and the matrix a for the Sp(N) two-instanton can be explicitly written as the direct 

sum of two distinct Sp(N) one-instanton configurations: 

rn 0 rn 0 + 0 0 (2.192) 

0 0 
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The submatrix r is then proportional to the quaternionic spacetime co-ordinate multi

pled by b, which appears in the formula for 6(x) = a+ bx. The scale sizes p1 , p2 of the 

constituent Sp(N) one-instantons will be related to the diagonal elements in the matrix 

(aa) given in Eq. (2.183). The gauge iso-orientations, which specify the orientation of 

the Sp(1) solution in Sp(N) group space will be contained in the anti-Hermitian quater

nion U1 . We also note that the only clustering limit for the k = 2 solution above is the 

completely clustered limit in Eq. (2.192). 

The explicit Sp(N) two-instanton gauge field can be constructed using formulae similar to 

those for the U(N) ADHM construction given in Subsection 2.3.1. However, we shall not 

give this here but note that for Sp( 1), any physical (gauge invariant) quantities derived 

using the Sp(1) two-instanton gauge field shall be equivalent to those derived from the 

SU(2) two-instanton gauge field which can be constructed from the U(N) two-instanton 

solution given in Eqs. (2.127-2.132). 

The Sp(N) ADHM Three-Instanton 

We now turn to the case of the Sp(N) ADHM constraints with topological charge k = 3. 

As stated above, the Sp(N) two-instanton constraints in Eqs. (2.184,2.185) are linear 

in the dependent variable. Although the method of solution is not a formal one, and 

indeed there is no discernible method for solution in that case other than an observation 

leading to an ansatz, the k = 2 constraints are readily solved. For the k = 3 constraints, 

formulating a suitable ansatz, from observation or otherwise, is greatly impeded by the 

form of the constraints, which are somewhat opaque. The Sp(N) ADHM matrix a for 

k = 3 has the form: 

a (2.193) 

As for the two-instanton case, the Sp(N) ADHM three-instanton constraints can be 

derived from the matrix aa, following Eqs. (2.180,2.181). The elements of aa which have 
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i =1- j, that is, the off-diagonal elements, give the k = 3 ADHM constraints as the following 

set of six conditions: 

iD1 w2 + fur12 + f12r22 + f13r23 

iD1 W3 + fn r13 + f12r23 + f13f33 

w2wl + f12r11 + f22rl2 + f23f13 

w2w3 + fl2r13 + f22r23 + f23f33 

W3W1 + f13r11 + f23r12 + f33r13 

w3w2 + f13r12 + f23r22 + f33f23 

0, 

0, 

0, 

0, 

0, 

0. 

(2.194) 

(2.195) 

(2.196) 

(2.197) 

(2.198) 

(2.199) 

Three of the six conditions in Eqs. (2.194-2.199) are related to one another by Hermitian 

conjugation, in a precisely similar way in which the k = 2 constraints Eqs. (2.184,2.185) 

are related to each other. Hence there are only three distinct Sp(N) three-instanton 

constraints, which we choose to write as: 

'iD1 w2 + fn r12 + f12r22 + f13r23 

W1W3 + fnr13 + f12r23 + f13r33 

W2W3 + f12r13 + f22r23 + f23r33 

0, 

0, 

0. 

(2.200) 

(2.201) 

(2.202) 

The k = 3 ADHM constraints in Eqs. (2.200-2.202) differ markedly from the k = 2 

ADHM constraints in Eqs. (2.184,2.185). Firstly, there are three constraints for k = 3 

and one fork = 2. The k = 3 constraints relate nine quaternions compared to the four in 

the k = 2 constraints. Each of the three k = 3 constraints contain a bilinear term involv

ing the quaternions rij, i =1- j, which are absent for k = 2. Hence the k = 3 constraints 

are non-linear and consist of a set of coupled, simultaneous bilinear quaternionic condi

tions. In constrast, the k = 2 constraints are a set of simultaneous linear quaternionic 

conditions. 

The three k = 3 constraints in Eqs. (2.200-2.202) have been solved in [22, 23] in special 

circumstances for Sp(1). By fixing the O(k) = 0(3) symmetry and eliminating the com

plex part of one of the quaternion variables in a, the k = 3 Sp(1) ADHM constraints are 

simplified and are amenable to solution. However, the number of collective co-ordinates 

which these solutions possess is then too few to constitute a general solution of the k = 3 
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Sp(l) ADHM constraints. These solutions are therefore not described by the Sp(N) 

extended instanton moduli space. We now state these solutions of the Sp(l) ADHM 

three-instanton constraints in Eqs. (2.200-2.200). 

The k = 3 solution given by Christ et. al [22] uses the residual 0(3) symmetry to set the 

complex part of the quaternion w1 to zero. Thus the quaternion w1 = (w10, wn, w12, w13) 

is set to the real parameter w1 = ( w 10 , 0, 0, 0) E R This removes three real parameters. 

Then the Sp(l) -:::: SU(2) gauge symmetry of the solution is used to set the real parts 

of the three quaternions rij, i -::f. j to zero. This removes nine real parameters. After 

imposing the k = 3 constraints, which also remove nine real parameters, there remain 

twenty-one real parameters. The k = 3 Sp(l) constraints are solved in [22] by eliminating 

the quaternions wi as follows: 

(2.203) 

(2.204) 

(2.205) 

where the complex vectors wi are defined by: 

W - i._Ektr2 [f(r ·- f·)r· + ~ fzrz·] t - 4 t} n JJ t} ~ t J , 

l=l 

(2.206) 

where i are the standard Pauli matrices given in Appendix A. 

The k = 3 solution in Eqs. (2.203-2.205) is elaborate and contains a square root of a 

complex quantity in the denominator of the real parameter w10 . This solution is claimed 

to be generalized to the gauge group Sp(N) by using the global Sp(N) gauge transfor

mations and O(k) residual symmetry to set the complex parts of the Nk quaternions 

wiu to zero. This solution is expressed in complicated terms and to our knowledge has 

not been used to explicitly derive the SU(2) three-instanton gauge field. Furthermore, a 

physical interpretation of the solution, and indentification of the three-instanton collec

tive co-ordinates, is not forthcoming and may not be possible. 

An alternative solution to the Sp(N) ADHM three-instanton constraints was proposed 

by Korepin and Shatashvili [23]. These authors use the residual 0(3) symmetry to set 
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the complex part of the quaternion parameter r 13 to zero. Then r 13 is set to the real 

number r 13 = R13 E R The solution to the k = 3 Sp(N) ADHM constraints is obtained 

by exploiting the form of the constraints in a non-trivial manner. This ensures that the 

solution is given in terms of rational functions of a subset of parameters within the matrix 

a. The k = 3 Sp(N) solution in [23] is given by: 

1 
-[rur12 + f12r22 + f13r23]-, 

ru 

[~(f22ru + f12'lli1)r23 - f22r12 - f12ru]---,---
1
--,-) 

r13 ( r12r23 ' · 
r22- -_-

r13 

1 
r33 = -- [r22ru + f23r12 + f12w1]. 

r13 

(2.207) 

(2.208) 

(2.209) 

The solution in Eqs. (2.207-2.209) of the k = 3 Sp(N) ADHM constraints has twenty-

one instanton collective co-ordinates, a feature which it has in common with the solution 

previously described in Eqs. (2.203-2.205). Since the two solutions given in Eqs. (2.203-

2.205) [22] and Eqs. (2.207-2.209) [23] have the same number of instanton parameters, 

they should only differ from one another by no more than the permitted local 0(3) gauge 

transformations. However, they actually differ by more than this transformation. This 

is because the k = 3 solution in Eqs. (2.203-2.205) [22] is given in terms of irrational 

functions of the elements of a, whereas the k = 3 solution determined in Eqs. (2.207-

2.209) [23] has a rational parameterization. A rational parameterization for the solution 

of the Sp(N) k = 3 constraints precludes roots of quaternionic quantities being taken. 

If roots of quaternions, which can be realized as complex matrices, are taken, then this 

introduces the possibility that there are complex phases attached to the results of the 

roots. Since the instanton gauge field Vm is Hermitian (but anti-Hermitian in our con

ventions), one would not expect Vm to depend on variables which have complex phases, 

as this implies that the gauge field strength Vmn can be complex. This is unphysical 

and contradictory, as Vmn is defined to be Hermitian and thus real, as it is observable. 

Therefore, if the k = 3 constraints possess an irrational solution, any roots in the param

eterization must have real arguments. 

In [23], the Sp(N) three-instanton instanton gauge field is constructed, albeit in an in

direct way, and the result is a rational function of the independent parameters in the 

solution Eqs. (2.207-2.209). Hence the Sp( N) three-instanton gauge field so constructed 
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cannot be complex, and, as is physically required, will be a real, Hermitian N x N matrix. 

For the purposes of instanton calculus, and progress in solving the ADHM constraints, 

one requires the general solution of the Sp(N) three-instanton constraints in Eqs. (2.200-

2.202). The general Sp(N) three-instanton solution shall have twenty-four independent 

parameters. A possible approach to the construction of the general solution is to 'un-fix' 

the 0(3) residual symmetry transformations which were used to obtain special solu

tions [22, 23] of the Sp(N) three-instanton constraints. Seeking a rational parameter

ization, we attempted this procedure for the solution given in Eqs. (2.207-2.209) [23]. 

However, difficulty was encountered in this attempt. Specifically, the twenty-one param

eter solution given in Eqs. (2.207-2.209) appears to have eliminated variables which have 

a preferred physical interpretation. This observation also applies to the alternative ir

rational solution in Eqs. (2.203-2.205). The elimination of parameters usually identified 

as physical is possible because the 0(3) residual symmetry used in the solution method 

has already removed parameters usually taken to be physical, namely the complex part 

of the quaternion w1. The set of quaternions { wui} will contain some parameters which 

are gauge group orientations included in the physical parameter count for the extended 

Sp(N) k-instanton moduli space. Therefore, implementing the residual symmetry trans

formation before variables are eliminated through the constraints implies that some of the 

gauge group orientations may have already been removed. For this reason, there exists 

no clear physical interpretation of either of the three-instanton solutions given in [22, 23]. 

This is at least the case in terms of the conventional identifications made for unitary 

group ADHM multi-instantons, already described in Subsection 2.3.2 . The proposed 

twenty-one parameter three-instanton solutions can be considered SU(2) ADHM three

instanton solutions when N = 1. Therefore the identification of physical parameters 

made for unitary multi-instantons should apply to these solutions in that case. It is not 

clear that this can be done for the above three-instanton solutions. 

Alternatively, one may begin with the k = 3 Sp(N) ADHM constraints and determine 

the general solution. We discuss this possibility in the next paragraph. 

Properties of Sp(N) ADHM Three-Instantons 
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The k = 3 Sp(N) ADHM constraints in Eqs. (2.200-2.202) present the problem of a set 

of coupled non-linear quaternion equations which are bilinear in the dependent variables 

to be eliminated. In this case, for a straightforward physical interpretation similar to 

that of the k = 2 case, the dependent variables are the off-diagonal quaternion elements 

r 12 , r 13 and r 23 of the matrix a. It may be possible to exploit similarities or an analogy 

between the k = 2 and k = 3 ADHM constraints in seeking a k = 3 solution. 

The k = 2 constraints are contained in the k = 3 constraints in the following sense. If 

the quaternions r 13 and r 23 are set to zero, then the k = 3 Sp(N) ADHM constraints in 

Eqs. (2.200-2.202) reduce to: 

0, 

0, 

0. 

(2.210) 

(2.211) 

(2.212) 

If one takes w1 and w2 to be non-zero, then the solution to Eqs. (2.211,2.212) is w3 = 0. 

The matrix a of Eq. (2.179) then assumes the form: 

w1 w2 0 

r 11 r 12 0 
(2.213) a 

r12 r22 0 

0 0 r33 

which is the k = 2 Sp(N) ADHM matrix a directly summed with a 3 x 3 matrix with 

a single entry r33 in the lowest right hand column component. This property does not 

appear to be useful in determining the general k = 3 Sp(N) solution, however. 

The k = 3 matrix a also has a number of clustering limits. In the first clustering 

limit, which is a partially clustered limit, one expects that Sp(N) three-instanton will 

decompose into an Sp(N) one-instanton and an Sp(N) two-instanton. In seeking a 

general solution to the Sp( N) three-instanton constraints which has a valid physical 

interpretation, we anticipate that the off-diagonal elements of the submatrix r should be 

eliminated. This then leaves the on-diagonal elements of r to be identified as the instanton 

centre of mass co-ordinates, and their differences as the relative instanton separations. 

In this approach, for the partially clustered limit in which k = 3 decomposes to a direct 
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sum of single k = 1 and k = 2 instantons, there are three possible ways in which this 

can occur. These limits are obtained by simultaneously taking a pair of the off-diagonal 

elements of r to be zero: 

W1 w2 w3 W1 w2 w3 W1 w2 w3 

ru 0 T'13 ru T'12 0 ru 0 0 
a~ (2.214) 

0 T'22 0 T'12 T'22 0 0 T'22 r23 

r13 0 r33 0 0 r33 0 T'23 r33 

A further complication of the partially clustered limit for the k = 3 instanton is the 

existence of overlapping configurations in the partially clustered limit, where two Sp(N) 

two-instantons may arise which are coupled in such a way as to produce an Sp(N) one

instanton and an Sp(N) two-instanton. There are three of these overlapping partially 

clustered limits possible for the Sp(N) three-instanton. These are given by: 

WI w2 w3 WI w2 w3 WI w2 w3 

ru r12 0 rn 0 T'13 ru T'12 r13 
a~ (2.215) 

T'12 r22 r23 0 T'22 T'23 T'12 T'22 0 

0 T'23 r33 T'13 r23 r33 T'13 0 r33 

In the limits given in Eq. (2.215), the Sp(N) three-instanton constraints in Eqs. (2.200-

2.202) assume the form of two Sp(N) k = 2 constraints, as in Eq. (2.186), for the two non

zero off-diagonal quaternions remaining in a, plus a constraint which couples the same two 

off-diagonal quaternions. The second clustering limit is the completely clustered limit, in 

which the Sp(N) three-instanton will decompose into three Sp(N) one-instantons. Again, 

we consider this limit in the scheme stated above, in which the instanton collective co

ordinates within the submatrix r are given by its diagonal elements. In this limit, which 

is obtained by simultaneously sending all of the off-diagonal elements of r to zero, the 

ADHM three-instanton matrix a then becomes: 

wl w2 w3 

rn 0 0 
a~ (2.216) 

0 T'22 0 

0 0 T'33 

These limits might be used as physical, rather than mathematical, constraints, on the 

form of the general solution to the k = 3 Sp(N) ADHM constraints. However, it is 
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difficult to see how they could be used to further constrain the existing constraints. 

Using the same physical interpretation of the elements of the Sp(N) ADHM matrix 

a, one can count the number of possible clustering limits which an Sp(N) ADHM k

instanton configuration can possess. For example, there shall always be one and only 

one completely clustered limit, which for k = 3 is given by Eq. (2.2I6). Furthermore, 

there will be ~k(k- I) partially clustered limits; for k = 3 these are given by the three 

limits in Eq. (2.2I4). The number of overlapping clustering limits, which for k = 3 are 

the three limits in Eq. (2.2I5), varies according to k. The total number of clustering 

limits for each Sp(N) ADHM k-instanton configuration (within this scheme of physical 

interpretation of the instanton parameters) can be calculated combinatorically. Since the 

ADHM quaternionic submatrix rij is symmetric, there are a set of n = ~k(k -I) objects 

which can become zero. Of these, the number r = 1, 2, ... , k can be simultaneously zero. 

The clustering limits can be classified according to this number. For r = 1, the limit is 

that of partial clustering; for 2 ::; r ::; ( k- 1), the limit is either that of partial clustering 

or overlapping clustering, depending on k, and for r = k, one has the unique completely 

clustered limit. Using the standard formula for the number of combinations neT of r 

objects selected from a set of n (without replacement), the total number of clustering 

limits is then given by the sum: 

n I 
~ n. 

- 6 (n- r)!r! · 
T=l 

(2.217) 

where n = ~k(k- I) and we have used the standard definition of neT: 

ne = - . ( n) nl 
T - r - (n-r)!r!· (2.218) 

The formula for the total number of possible clustering limits of the Sp(N) ADHM k

instanton configuration given by Q: in Eq. (2.217) yields Q: = 1 for k = 2 and Q: = 7 

for k = 3. The total number of clustering limits for these values of k agree with the 

possible k = 2 and k = 3 clustering limits given above respectively in Eq. (2.192) and 

Eqs. (2.2I4,2.215,2.2I6). 

We now present a list of some properties which we conjecture the general Sp(N) three

instanton solution should possess. In making these conjectures, we assume that the 

-
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physical identification of collective co-ordinates within the ADHM matrix a follow the 

interpretation used for the general Sp(N) two-instanton solution. We conjecture that: 

1. As the solution is expected to have a rational parameterization, we can write the 

off-diagonal elements of the submatrix r as an irreducible fraction. That is, we 

conjecture that the general solution has the form: 

= J·(X) = Pi(X) _j_ 
t qi(X), i 1 j, (2.219) 

where Pi and qi are polynomials in X = {Xi} with no common factors, and where 

the variables {Xi} are the relative instanton separations given by the differences 

between the on-diagonal elements of r: 

(2.220) 

(2.221) 

(2.222) 

It follows that the ADHM matrix U(X) ·in the Sp(N) construction is a rational 

function of X and the spacetime co-ordinate x, since only the combination ( x - X) 

can appear in the solution. We also conjecture that a rational parameterization of 

the ADHM matrix .6..(X) must exist for each value of kin the ADHM construction if 

the general k-instanton gauge field Vm is to be real and Hermitian. This conjecture 

is supported by the explicit form of the general.Sp( N) two-instanton and the general 

U(N) two-instanton solutions given in this chapter. 

2. Given the form of the dependent variables rij in conjecture (1.), using the physical 

interpretation of the elements of r implies that the one must have: 

(2.223) 

where Deg( h) is the degree of the polynomial quaternion h( X) in X. We conjecture 

this property in order that the correct clustering limits are satisfied in the limit 

X ---+ oo, and that the cluster decompositions Eqs. (2.214,2.216) exist. Heuristically, 

we note that the inequality Eq. (2.223) assumes the form of an equality for both 

the Sp(N) and U(N) two-instanton solutions, namely: 

(2.224) 
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Whether Eq. (2.224) holds for the Sp(N) or U(N) three-instantons or other multi

instanton configurations remains unknown. This conjecture is in analogy with the 

work of Donaldson on the monopole moduli space [287], in which it was shown 

that the monopole moduli space is diffeomorphic to the space of rational functions 

which vanish at infinity. The requirement that instanton configurations possess 

rational parameterizations and obey the dilute instanton gas limit will constrain 

the instanton moduli space in a similar way, although general exact solutions of the 

ADHM constraints are expected to automatically satisfy these requirements. Our 

conjectures in Eqs. (2.223,2.224) regarding the degrees of the polynomials Pi and 

qi in Eq. (2.219) are in accord with the dilute instanton gas limit, and ensure that 

the off-diagonal elements of the submatrix rij vanish at infinity. 

3. The functions fi(X) given in Eq. (2.219) are globally odd functions of the relative 

instanton separations X = {Xi}. This conjecture is based upon an heuristic ob

servation concerning the Sp(N) ADHM constraints for k 2:: 2. If one reflects all of 

the relative instanton separations {Xi} appearing in the Sp(N) ADHM constraints 

about the origin, then the ADHM constraints must not generate new constraints 

which further constrain the existing implicitly defined instanton configuration. If 

such a transformation does generate new conditions, then the ADHM constraints 

will become trivial and readily solved, leading to a trivial instanton solution. There

fore, the reflection {xi} --t {-xi} should not produce new constraints for the in

stanton configuration. Given the form of the Sp(N) ADHM constraints, the only 

way to avoid generating new constraints is to assume that the quaternions rij are 

also reflected under the transformation {Xi} --t {-Xi}. This is because the quater

nion elements Waiu are independent of the relative instant on separations {Xi}. That 

is, when {Xi} --t {-Xi}, then one must simultaneously have rij(X) --t -rij(X). 

If this holds, then the ADHM constraints are invariant under the transformation 

{Xi} --t {-Xi}, and no new constraints are generated by acting upon the ADHM 

constraints with this reflection. It follows that fi(X) must be a globally odd func

tion in {Xi} since we have defined rij = rji = fi(X) in Eq. (2.219). Explicitly, 

the functions fi(X) then have the property of being odd functions of the relative 
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instanton separations {Xi}: 

(2.225) 

This property is exhibited in the explicit form of the general Sp(N) two-instanton 

and the general U(N) two-instanton solutions given in this chapter. 

4. Conjecture (3.) in conjunction with conjecture (1.) then implies the following 

three corollaries. Firstly, if the polynomial Pi(X) is a globally even function of 

{Xi}, then qi(X) is a globally odd function of {Xi}· Conversely, if Pi(X) is a 

globally odd function of {Xi}, then qi(X) is a globally even function of {Xi}· The 

explicit form of the general Sp(N) and U(N) two-instanton solutions include the 

polynomial qi(X) as an even function of {Xi}. Secondly, since the quaternions 

{Ui} (formed from the quaternions Waiu) appearing in the Sp(N) k = 2 and k = 3 

constraints are independent of the parameters {Xi}, then they are globally even 

functions of {Xi}. Therefore, additive terms of the form: 

i,j,k 

are forbidden to appear in the polynomials Pi(X) and qi(X), since such terms are 

neither odd nor even functions of {Xi}. The factor of 1/2 multiplying the {Ui} 

terms is a normalization factor, and the dots indicate terms of higher degree in 

{Xi}. However, these terms are permitted in Pi(X) and qi(X) when multiplied by 

an odd factor of {xi}' such as: 

2.:: xi oui ± ai) , 2.:: xixjxk oui ± ai) , 
i,j,k 

where { ai} are a set of real constants independent of both { Ui} and {Xi}. These 

permitted terms are manifestly odd functions in {Xi}, and may therefore appear in 

the polynomials Pi(X), if the Pi(X) are taken to be odd functions of {Xi}· Although 

these terms are permitted, they are neither obligatory nor necessary, and may not 

appear in, for example, the general Sp(N) three-instanton solution. Note, though, 

that terms of the permitted form do appear in the general Sp(N) two-instanton 

solution. Thirdly, we remark that conjecture (2.) and (3.) may be equivalent to 

one another, or imply one another. 
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5. Lastly, we conjecture that the Sp(N) ADHM constraints can only be solved at the 

level of quaternions. Unlike the U(N) ADHM construction, for which the method 

of solution for the k = 2 case involved splitting a complex constraint into real 

and imaginary parts, a similar procedure was not found to be useful for the Sp( N) 

three-instanton constraints. ·when the constraints in Eqs. (2.200-2.202) are written 

out in their component forms, any method of solution for individual components of 

quaternions becomes unviable. Associated with this there is also the difficulty in 

reconstructing quaternions from their separate components, as detailed in Appendix 

B. Therefore, we conjecture that the Sp(N) ADHM constraints only admit solutions 

in terms of quaternions, and not their components. This is the case for the Sp(N) 

two-instanton constraints, and given the same scheme of identification of physical 

parameters, we conjecture that this shall also be the case for the Sp(N) three

instanton constraints. This difficulty in using the Sp( N) ADHM constraints in their 

component form may also be related to the lack of a formal method of solution for 

the Sp(N) two-instanton constraints given in Eq. (2.186). There may not exist any 

formal method of solution for the Sp(N) ADHM constraints with any topological 

charge k, leaving one to determine an ansatz for the Sp(N) three-instanton solution 

which will solve the constraints in Eqs. (2.200-2.202). 

vVe also note that some work towards Sp(N) four-instanton solutions has been performed. 

These include an attempt to construct an Sp(N) four-instanton following the method 

used to obtain the special Sp( N) three instanton [23] reproduced above in Eqs. (2.207-

2.209). Unfortunately, Korepin and Shatashvili [23] found that the method used for the 

three-instanton case did not generalize to the four-instanton case, which appears to be a 

generic feature of the ADHM constraints. That is, methods of solution for the ADHM 

constraints of a given topological charge k do not extend to those with topological charge 

greater than or equal to k + 1. This indicates that there are no underlying principles 

which might be used to solve the k-instanton ADHM constraints through some iterative 

or algorithmic procedure. This perspective on the ADHM constraints is reinforced by the 

work of Inozemtsev [24], in which an attempt to determine a special Sp(N) four-instanton 

solution using the special Sp(N) three-instanton solution of Christ et. al [22], reproduced 

in Eqs. (2.203-2.205) [22] above, is made. This work is intriguing, but is not successful, 
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which again implies that the ADHM constraints do not admit an iterative procedure for 

explicitly determining multi-instantons of higher topological charge from those of lower 

topological charge. 

It is hoped that the ADHM construction of instantons can be of future use in the study 

of non-perturbative quantum field theory, perhaps in a modified form. Otherwise, due 

to its inherent difficulties, the ADHM construction has returned diminishing amounts of 

information regarding instantons over time. Since its inception, the ADHM construction 

has proven itself the most simple and effective method for the explicit construction of 

instanton configurations, both special and general. Other methods which can be used to 

solve the self-dual Yang-Mills field equations, which include [86, 85, 84, 88, 87], (we note 

Refs. [86, 88] actually pre-date the ADHM construction), have not been as productive as 

the ADHM construction. We note that following the success of the ADHM construction 

for self-dual and anti-self-dual gauge fields, studies of non-self-dual gauge fields were ini

tiated [89, 100, 101, 102, 103], including attempts at treating these gauge fields in terms 

of algebraic geometry [lOO], as in the ADHM construction. The most simple example of 

a non-self-dual gauge field is the combination of a self-dual and an anti-self-dual gauge 

field [91]. The resulting instanton configuration has zero topological charge but remains 

a non-trivial gauge field configuration. 

The ADHM construction has also been adapted to describe all monopole gauge field solu

tions of classical Yang-Mills gauge theory. Monopole configurations can be described by 

an infinite dimensional version of the ADHM construction, proposed by Nahm [104], and 

consequently known as the Nahm construction. The Nahm construction [104] has been 

used to generate general monopole solutions with arbitrary classical gauge group, which 

have subsequently been used in semi-classical calculations (for example, in [144]), and 

also investigated for generalization to the non-self-dual case [106]. Monopoles also pos

sess topological charge, and the most general explicit solution of the Nahm monopole 

constraints is known only for the two-monopole, analogous to the ADHM instanton 

case [105]. For a review of Yang-Mills monopoles (and other classical Yang-Mills field . 

configurations), see for example [75]. For a review of current research on monopoles in 

similar directions, one may consult [107]. 

At present the ADHM construction has been used most successfully in instanton cal-

IUiiiWAiWiMILA&EWHIWWa 
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culations in quantum supersymmetric gauge theories. (The ADHM construction has a 

formalism which is also manifestly supersymmetry invariant [108].) Due to the proper

ties of supersymmetric gauge theories, instanton effects can be calculated exactly, and 

interest in the ADHM construction has been renewed. In Chapter 3 below we describe 

global supersymmetry and supersymmetric gauge theories. 



Chapter 3 

Supersymmetric Gauge Theories 

3.1 Introduction 

Symmetry is an important guiding principle in theoretical physics. In particle physics, 

symmetries assume a particularly prominent role: gauge symmetry, for instance, is at 

the foundation of particle physics. Supersymmetry is a special symmetry which connects 

fermions and bosons via the unification of internal and external symmetries. It is at time 

of writing a purely theoretical construction, with no complete experimental evidence for 

its existence. Despite this, supersymmetry provides a fascinating theoretical laboratory 

for quantum field theory. Through supersymmetry, many simplifications regarding quan

tum field theory can be made, which for instance permits one to calculate quantities 

exactly in some supersymmetric field theories. It is noteworthy that supersymmetry is 

the only known extension of present quantum field theory consistent with the known 

properties of quantum fields [121]. This fact immediately suggests that any physics not 

included within the Standard Model of particle physics is likely to be supersymmetric. 

This includes gravitation, and attempts at formulating field theories which unify the 

known fundamental forces often include supersymmetry. 

Supersymmetry is present either locally or globally. The case of local supersymmetry, 

which gives rise to supersymmetric gravity or supergravity theories, will not be considered 

here. Globally supersymmetric classical field theories will be our focus in this chapter, 

and all supersymmetry described in this thesis shall be global supersymmetry. 

85 
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A classical supersymmetric field theory is essentially a classical field theory with a partic

ular matter content. Symmetries not existing in the matter content of ordinary classical 

field theories arise due to the supersymmetry in these theories, and these can be exploited. 

In Section 3.2 we outline the basic formalism of supersymmetry using superfields. We 

follow this with the construction of specific classical supersymmetric gauge theories and 

their properties. In Section 3.3, we described the simplest classical supersymmetric gauge 

theory, which possesses N = 1 supersymmetry; exact results in these theories, and a form 

of duality connecting N = 1 supersymmetric gauge theories with different gauge groups, 

known as Seiberg duality, will be described in Chapter 4. In Section 3.4, N = 2 classical 

supersymmetric gauge theory is reviewed. Exact results in classical and quantum field 

theories with N = 2 will be described in Chapter 5. In Section 3.5 the simple case 

of N = 3 classical supersymmetric gauge theory is briefly described. We conclude this 

chapter with a brief review of N = 4 classical supersymmetric gauge theory in Section 3.6; 

these theories shall be described further in Chapter 4. 

3.2 Supersymmetry 

In this section a brief overview of supersymmetric field theory is given. We make use 

is made of the extensive reviews [120, 121], the standard texts [122, 126, 127] and the 

reviews [190, 191]. Other useful reviews, particularly for supersymmetry phenomenology, 

include [123, 124, 125]. vVe employ the notation and conventions of [122, 190, 191] and 

also use [123]. 

Supersymmetry originated for many reasons [121]. The primary reason was the search for 

extending known particle physics and the unification of the known fundamental forces. 

The S-matrix in quantum field theory describes particle interactions and is used in cal

culating the outcome of particle collisions and scattering events. A symmetry of the 

S-matrix corresponds to a symmetry transformation of the theory in which (asymptotic) 

single and multi-particle states are interchanged. The known symmetries of the four

dimensional S-matrix have been classified and are Poincare invariance, internal global 
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symmetries and discrete symmetries. Poincare invariance combines rotational invariance 

and Lorentz invariance. Internal global symmetries are symmetries such as conservation 

of quantum numbers (e.g. charges, isospin, baryon number), and the generators form a Lie 

algebra. Discrete symmetries are C, P, T, denoting charge conjugation, parity reversal 

and time reversal symmerty, respectively. The Coleman-Mandula theorem [109] states 

that, under certain assumptions, these three sets of symmetries are the only possible 

symmetries of the S-matrix. The Coleman-Mandula theorem places restrictions on the 

possible form of new models of particle physics, ruling out, for instance, the SU(6) grand 

unified theory [109]. One of the assumptions made in formulating the Coleman-Mandula 

theorem is that the symmetry algebra of the S-matrix involves commutators only. If this 

assumption is weakened to include anti-commutators also, then the Coleman-Mandula 

theorem is circumvented, and other symmetries of the S-matrix, corresponding to new 

physics, are possible. 

Supersymmetry utilizes both commuting and anti-commuting symmetry generators, and 

so the Coleman-Mandula theorem does not apply. The anti-commuting symmetry gen

erators exist in spinor representations of the Lorentz group. This makes supersymmetry 

a symmetry in which internal symmetries (possessing scalar generators) and external 

symmetries (Poincare spacetime symmetries) are mixed together via the anti-commuting 

spinor generators. In this sense, supersymmetry unifies internal and external symme

tries. Furthermore, supersymmetry can be viewed as extending the Poincare spacetime 

symmetry group by the inclusion of spinor generators, and can exist in spacetime dimen

sions greater than four. The Coleman-Mandula theorem, however, is restricted to four 

dimensional spacetime. 

A powerful result pertaining to supersymmetry was obtained by Haag, Lopusza{J.ski and 

Sohnius [116]. They showed that supersymmetry is in general the only additional sym

metry of the S-matrix permitted by weakening the assumptions of the Coleman-Mandula 

theorem described above. (However, we note that conformally invariant theories will 

also possess conformal symmetry of the S-matrix.) This implies that supersymmetry is 

the only possible extension of the known spacetime symmetries consistent with existing 
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particle physics. If the assumptions of the Coleman-Mandula theorem are weakened fur

ther, other physically relevant symmetries could be possible, but none have been found 

at present [123]. These facts motivate supersymmetry as the most likely extension of 

known particle physics, from a theoretical perspective. 

In a supersymmetric theory, there exist the same number of bosonic and fermionic degrees 

of freedom. The bosonic and fermionic states will have the same mass and the same 

external quantum numbers. The fermionic states are paired up with an equal number of 

new bosonic states, and the original bosonic states of the theory are paired up with an 

equal number of fermionic states. The newly introduced particle states which are paired 

with the original field content of the theory are known as superpartner particles. 

We note the original papers on supersymmetry in [110, 111, 112], and also the original 

papers on supersymmetric fields and gauge theories in [113, 114, 115, 117, 118, 119]. The 

mathematical work in [128] is also noted. General gauge theory references include those 

in [278, 279, 280, 281, 282]. The local version of supersymmetry, known as supergravity, 

is reviewed in [129]. Other related works on supersymmetry and its phenomenological 

implications (such as dynamical supersymmetry breaking) which we note can be found 

in [130, 131, 132]. 

In this chapter we work in four-dimensional Minkowski spacetime with metric 1Jab 

diag ( -1, 1, 1, 1), unless stated otherwise, as detailed in Appendix A. Our conventions for 

supersymmetry follow those given in [122]. 

3.2.1 Global Supersymmetry 

A supersymmetric theory is one in which the component fields of the theory form a 

representation of the supersymmetry algebra. The most general supersymmetry algebra 

is that ·which includes central charges, one statement of which is: 

{Q~, Q~B} 20":~p mc5~, (3.1) 

{Q~, Q%} 2 !2Eaf3 Z AB, {QaA, Q~B} 2/2Ea~Z~8 , (3.2) 

[Pm, Q~] [Pm, QaA] = 0, (3.3) 

[Pm,Pn] 0. (3.4) 
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The Greek indices CY.,/3,a,~ specify two-component vVeyl spinors and assume the val

ues 1,2; the lower case Latin indices m,n are indices for the components of Lorentz 

four-vectors and run from 0 to 3; lastly, the upper case Latin indices A and B are the 

supersymmetry indices: these specify elements in the internal space and run from 1 to 

some integer N 2 1. Here Q~ and Q /JB are anti-commuting operators which act on a 

Hilbert space and Pm is the energy-momentum operator. The structure of the super

symmetry algebra in Eqs. (3.1-3.4) is that of a Z2 graded Lie algebra. The most general 

four-dimensional supersymmetry algebra will, in addition to the above algebra, include 

commutators relating the supersymmetry generators to the Lorentz symmetry generator 

1\!fmn· 

Theories with N = 1 supersymmetry are often referred to as having simple, or non-

. extended, supersymmetry. Theories which have more than one supersymmetry, N > 1, 

are described as possessing extended supersymmetry. 

In order to treat the fermionic and bosonic states in a unified manner, the supersymmetry 

algebra must be represented without mass-shell conditions. This can be done by defining 

multiplets of component fields which transform under supersymmetric operations. The 

component fields belonging to a given multiplet will each have the same mass. 

The supersymmetry algebra can be written in terms of commutators only by using 

the constant Grassmann-valued anti-commuting parameters, or constant spinors, ea. JJa:, 

which obey: 

{ea:, e~} 

[Pm, ea.] 

The supersymmetry algebra then becomes: 

[eQ, BQ] 

[eQ,eQJ 

[Pm,eQ] 

[BQ,BQ] o, 

[Pm, BQ] = o, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

in which the spinor summation conventions as given in [122] have been used. If the 

Grassmann-valued parameters ea. ,ea: were not constant and depended on spacetime, then 
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the supersymmetry would be local supersymmetry, which we do not consider in this 

thesis. 

3.2.2 Supersymmetry Constraints 

In this subsection we describe a different formalism for the expression of supersymmetric 

field theories. In doing so, we retrace some of the original steps taken in formulating the 

Lagrangians for supersymmetric gauge theories [118, 119, 121], which will be described 

in Section 3.3. In Subsection 3.2.3, the Lie group elements of theN = 1 supersymme

try algebra in Eq. (3.19) are not gauge invariant. This motivates the introduction of 

a fermionic counterpart for the non-Abelian vector potential (or Yang-Mills potential) 

Vm, which is effectively the superpartner of vm, and is known as the Yang-Mills spinor 

potential or superconnection, which we denote by A~, where i, j = 1, ... , N. The su

persymmetry covariant derivatives Da. and Da: defined in Eq. (3.19) can be made gauge 

invariant by the addition of the Yang-Mills spinor potential. In the general case of 

N-extended supersymmetry, this invokes the following gauge invariant supersymmetry 

covariant derivatives [119]: 

a . m a e-a: Ai 
aea. + ~(Ja.O: m + Ql 

t 

(3.10) 

D· cY. D·+A-··= cY. cY.t 
a ·ea. m a A-- aeai - ~ i (J a.O: m + O:i. (3.11) 

To simplify notation, we now adopt the following shorthand notation Df = D A and D ~i = 

DB. The commutator or anti-commutator of any two covariant derivatives, as defined in 

Eq. (3.10,3.11), yields an N-supersymmetric field strength or curvature, referred to as 

the Yang-Mills field strengths or supercurvatures [119]: 

VAB, {D Al DB} 

VmA, [Dm, D ;t] (3.13) 

where Vmn is the standard (non-supersymmetric) Yang-Mills gauge field strength, and 

the other field strengths are Lie-algebra valued supersymmetric fields. Henceforth, we 

refer to 'supersymmetric fields', meaning (classical) fields invariant under some number of 

supersymmetries, as 'superfields', as is conventional. This anticipates the superfield for

malism which we described in Subsection 3.2.3. The six Yang-Mills superfield strengths 
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in Eqs. (3.12,3.13) obey Bianchi identities [119], are gauge covariant and reside in the 

adjoint representation of the gauge group. Specific supersymmetric gauge theories can 

be expressed as a set of supersymmetry constraints which take the form of conditions on 

the Yang-Mills superfield strengths. The supersymmetry constraints should not give a 

flat theory, in which Vmn = 0, and should not reduce to equations of motion, otherwise 

the theory shall be trivial. These requirements on the constraints can be ensured by use 

of the Bianchi identities for the Yang-Mills superfield strengths. 

The supersymmetry constraints for N = 1 supersymmetric Yang-Mills gauge theory, in 

which VAB = Vaf3 are: 

(3.14) 

TheN = 1 supersymmetry constraints do not produce a flat theory because the superfield 

strength Vma may contain an unconstrained spin ~ field, which the constraints neither 

preclude nor determine [119]. The supersymmetry constraints in Eq. (3.14) lead to the 

the conditions Eq. (3.53,3.54) on N = 1 vector superfields in Subsection 3.2.3, which 

constrain the form which the Lagrangian for N = 1 supersymmetric Yang-Mills theory 

can assume. The supersymmetry constraints for N = 2 Yang-Mills theory are the weaker 

conditions [118]: 

Vaif3j + fJ /3iaj 0, (3.15) 

0. 

Use of the Bianchi identities for the N = 1 Yang-Mills superfields yield conditions on 

theN= 2 supersymmetric Yang-Mill field strengths. These conditions indicate the suit

ability of the vector superfield W as the superfield with which to construct the N = 2 

supersymmetric Yang-Mills Lagrangian. The Lagrangian given in Eq. (3.81) of Sec

tion 3.4 emerges as a suitable Lagrangian for N = 2 supersymmetric Yang-Mills theory. 

Supersymmetry constraints provide a concise formulation of supersymmetric field theories 

and were originally used in the derivation of some supersymmetric gauge theories. The 

supersymmetry constraints can be solved in the cases of N = 1 and N = 2, and the 
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solutions give the superfields of the theory in terms of component fields. Methods of 

solution for the constraints of N = 3 supersymmetry have also been studied. 

3.2.3 N = 1 Supersymmetry and Superfields 

The most simple supersymmetry is N = 1 supersymmetry, when the supersymmetry 

algebra Eqs. (3.9) has only one supersymmetry generator (A = B = 1 in the supersym

metry algebra). Furthermore, the central charges ZAB in the supersymmetry algebra 

Eqs. (3.1-3.4) vanish by antisymmetry. 

To facilitate the construction of an N = 1 supersymmetric field theory, the fields which 

appear in the theory are constrained to exist in sets, or multiplets [112]. The fields within 

multiplets are the component fields from which manifestly supersymmetric field theories 

can be constructed. 

The multiplet of component fields is a set of fields {A, 1/J, ... } which transform under the 

infinitesimal transformation <58 as follows: 

(EQ + BQ)A, 

(EQ + BQ)'I/J, 

(3.16) 

(3.17) 

These supersymmetry transformations map tensor fields into spinor fields and vice versa. 

Via these transformations, one can define the multiplets with specific properties. By 

constructing the appropriate multiplet of component fields and using the constraint of 

supersymmetry invariance, supersymmetric field theories can be formulated [113, 114]. 

Every representation of the supersymmetry algebra must contain an equal number of 

bosonic and fermionic states. Representations of the supersymmetry algebra can be 

explicitly constructed via the isomorphism between the algebra of the supersymmetry 

generators Q and algebras of fermionic and bosonic creation and annihilation operators, 

which act on a Clifford (algebra) vacuum. In this way all of the possible particle states 

of a representation can be determined. However, in this approach on-mass-shell and off

mass-shell cases must be treated separately: when P 2 = - M2 or P 2 = 0, where M is 

the mass of the supersymmetry multiplet, one must define a separate set of operators to 
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construct the particle states (these cases correspond, respectively, to the fermionic and 

bosonic operator cases). 

An alternative and more intuitive method for constructing supersymmetric Lagrangians 

is the superfield formalism [115], which we shall adopt henceforth. Superfields are super

symmetric fields which are functions of the component fields, and the component fields 

contained within the superfield can be recovered by expanding the superfield in the anti

commuting parameters () and e. Superfields reside in superspace, the supersymmetric 

generalization of four dimensional spacetime. 

The simplified supersymmetry algebra in Eq. (3.9) can be interpreted as an ordinary Lie 

algebra with anti-commuting elements. A Lie group can be associated with this algebra, 

and differential operators which generate translation in the parameters of group elements, 

and so relate group elements, are found to be: 

8 -· . m ea~ 
[)()a - UJ' wi Um' (3.18) 

8 -· . m ea~ 
[)()a + UJ wi Um, (3.19) 

These linear differential operators satisfy the following anti-commutation relations: 

{ Qa, Qa} 

{Qa,Q/3} 

{ Da, Da} 

{Da,D/3} 

{Da,Q/3} 

2iO":aam, 

{Qa,Q~} 

- 2iO":aam, 

{Da,D~} 

{Da,Q~} 

0, 

0, 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The group space spanned by the parameters {x, e, e} is referred to as N = 1 super

space, the most simple supersymmetric generalization of four dimensional spacetime. 

The Grassmann-valued parameters { (), e} exist at each point in spacetime and effectively 

make the spacetime anticommuting. In general, N-supersymmetric superspace shall have 

4N supersymmetry co-ordinates in addition to the four contained in xm. Thus theN= 1 

superspace is eight dimensional. Furthermore, the supersymmetry generators Da and Da 

satisfy the supersymmetry algebra Eqs. (3.1-3.4) of Subsection 3.2.1 ·with the sign change 

Pm -t -Pm. In this operator representation of the supersymmetry generators, the mo

mentum tensor Pm can also be written as a linear differential operator, Pm= iam, familiar 
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from quantum mechanics. 

TheN = 1 supersymmetry algebra possesses an internal Abelian symmetry algebra which 

gives rise to an additional internal global U(1) symmetry. This symmetry is known as 

R-symmetry, and the generator R which generates this symmetry acts as follows on the 

N = 1 supersymmetry generators: 

(3.25) 

(3.26) 

TheN= 1 supersymmetry generators {Qa, Qa:} are said to haveR-charge +1 and -1, 

respectively. The R-symmetry acts on the superfields of the N = 1 supersymmetric 

gauge theory, and will resurface in Section 3.3. 

The most general superfield on N = 1 superspace, denoted F(x, e, B), is given by a 

power series expansion in the G rassmann co-ordinates { e, B}, whose coefficients are the 

component fields previously introduced. Following this, F(x, e, B) has the form: 

F(x, e, B) = j(x) + Bcp(x) + Bx(x) 

+ 82m(x) + B2n(x) + e(Jmevm(x) 

+ B2BO"(x) + B2Bcp(x) + B2B2d(x), 

(3.27) 

in which higher order terms vanish due to the properties of e and e. Our conventions 

for products of supersymmetric co-ordinates are ea ea = 82 and e(Jme = ea(Jr;:aea' follow

ing [122]. The field content of the superfield F(x, e, B) consists of Weyl spinor, scalar and 

vector fields, a mixture of fermions and bosons. These fields form a representation of the 

supersymmetry algebra Eq. (3.1-3.4) of Subsection 3.2.1. 

A general superfield F(x, e, B) is defined to transform under a general supersymmetry 

transformation as: 

o~F(x, e, e) (~Q + ~Q)F(x, e, B), (3.28) 

where ~a and ~a are arbitrary Grassmann-valued parameters. The supersymmetry trans

formation laws for each component field appearing in F(x, e, B) can be deduced by com

parison of powers of e ,e. Linear combinations of superfields are again superfields due 

to these transformation properties, and products of superfields are also superfields, since 
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Q and Q are linear differential operators. Superfields provide a linear representation of 

the supersymmetry algebra, and specific constraints on the general superfield F(x, e, iJ) 

will yield specific supersymmetry representations. Given a multiplet of component fields, 

a superfield can always be constructed. A superfield may be constructed from a mul

tiplet of component fields by acting on each of the component fields with the operator 

exp( BQ + iJQ). For example, given a field A, of general type, the corresponding superfield 
is given by: 

F(x, e, iJ) 
(3.29) 

Supersymmetric generalizations of any kind of field may be constructed via this method. 

Chiral Superfields 

The chiral superfield <I> is given by the most general solution to the constraint: 

Da<I> = 0, (3.30) 

which has the form: 

(3.31) 

where a new variable ym = xm + iBCJmiJ has been used. The chiral superfield <I> contains 

all of the component fields of the scalar multiplet: namely, the spinor A, the scalar '1/J 

and the additional field F, and it can be seen that the superfield formalism is much 

more concise than the formalism which uses component fields alone. The field F within 

<I> is also known as the 'F -component' of <I> and transforms by a total derivative under 

N = 1 supersymmetry transformations. Furthermore, the component field F is described 

as an 'auxiliary field' on account of it being determined (on-shell) algebraically by the 

remaining physical field content of <I> in the Lagrangian for the scalar multiplet. In 

general, auxiliary fields can be eliminated from a Lagrangian by using the Euler-Lagrange 

equations (equations of motion) of the theory. Thus auxiliary fields are described as 

being 'non-dynamical fields'; however, strictly they are fields which possess dynamics 

independent of the other fields in the Lagrangian. In this sense, with respect to the other 

(non-auxiliary) fields in the Lagrangian, they are not dynamical fields. 
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Expanding y in Eq. (3.31) yields: 

Any function of the variables (y, e, iJ) is a chiral superfield, due to the following necessary 

and sufficient condition: 

. (3.33) 

The operators Da and Da: can be realized in terms of the variables (y, e, B) as: 

Da 8 2' m 8 
8ea + UJ a6: 8ym ' (3.34) 

D· 
8 

(3.35) Q - 8iJ6:. 

In a similar way, the anti-chiral superfield <I>t is the most general solution to the constraint: 

(3.36) 

and has the form: 

(3.37) 

where ymt = xm- ieCJmiJ is the Hermitian conjugate of ym; from this fact, the expansion 

of <I>t in terms of X and e will be the conjugate of Eq. (3.32). We note that the super

symmetry transformation law for <I> will give the individual transformation laws for each 

of the component fields {A, 1/J, F} of the scalar multiplet. As previously, any function 

of the variables (yt, B) will also be an anti-chiral superfield. The general properties of 

superfields hold for <I> and <I> t, with the exception that the product <I> <I> t is not a scalar 

superfield. An arbitrary function of chiral superfields is also a chiral superfield: 

(3.38) 

Such functions W are known as superpotentials and are holomorphic. The chiral super

fields <I> and <I> t can be expressed in terms of the initial variables ( x, e, iJ) as follows: 

<I> A(x) -f- ieCJmB8mA- ~B2 iJ2DA + V2B1/J(x)- ~B28m1/JCJmiJ + B2 F(x), (3.39) 
4 v2 

<I>t At(x)- iBCJmiJ8mAt- ~B2B20At + V2e1f;(x)- ~B2CJm8m1f; + B2 pt(x)(3.40) 
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Chiral superfields obey the following transformation laws under the action of a local 

Abelian group: 

e-itk>.(x)<P, Da_>.(x) = 0, 

eitk~(x)<f>, Da~(x) = 0, 

in which tk are the Abelian charges associated with each chiral superfield <Pk. 

(3.41) 

(3.42) 

The non-Abelian generalization of this transformation law for non-Abelian chiral super

fields in the adjoint representation is: 

where g is the gauge coupling and A is the matrix defined by: 

(3.44) 

where the matrices ra are the generators of the gauge group in the representation in 

which <P resides: 

(3.45) 

When <P is in a given representation of the gauge group, one can also specify Tr TaTb = 

koab for k > 0 and the algebra [Ta, Tb] = irbcrc, where rbc are the structure constants 

of the gauge group. 

Vector Superfields 

Vector superfields V are defined as superfields which obey the reality constraint: 

v = vt. (3.46) 

This condition is solved in general by the following expression for V in terms of component 

fields: 
. . 

V(x, (),B) = C(x) + i()x(x)- iBx(x) + ~()2 [M(x) + iN(x)]- ~B2 [M(x)- iN(x)] 

~ e"mijvm(x) + iO'ij [ ~(x) + ~iimDmx(x) l 
~ iO'e [.x(x) + ~"mDmX(x)] + ~e'O' [n(x) + ~DC(x)]. 

(3.47) 
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In this specific component field expansion for V(x,B,B), the fields {C,D,ll1,N,vm} must 

be Hermitian so that V qualifies as a vector superfield according to the constraint 

Eq. (3.46). The vector field Vm is the usual vector field of field theory, but the vec

tor field Vm is not a gauge field until it has been gauged. From the form of the Hermitian 

combination of chiral and anti-chiral superfields <!> + <!> t, one can define supersymmetric 

gauge (or 'supergauge') transformations, the set of which forms an Abelian group: 

(3.48) 

Under this Abelian gauge transformation, the component fields -X(x) and D(x) are gauge 

invariant, and the gauge can be fixed so that C = x = M = N = 0. This specific gauge 

is the Wess-Zumino or WZ gauge [113]. This choice of gauge breaks supersymmetry and 

is thus 'non-supersymmetric'. The Abelian gauge symmetry of Vm remains unfixed. We 

adopt the Wess-Zumino gauge hereon in this thesis. 

In the Wess-Zumino gauge, the vector superfield V becomes: 

It is notable that this form of V has the following properties: 

-~B2 B2 v vm 2 m ' 

0. 

(3.50) 

(3.51) 

The vector multiplet comprises a massless vector field Vm, the spinor field Aa and the 

additional auxiliary field D. The component field D appearing in V, also known as the 

'D-component' of the vector superfield V transforms by a total derivative under N = 1 

supersymmetry transformations. 

Since the square of V is quadratic in the gauge field Vm, V may be considered as the 

supersymmetric generalization of the Yang-Mills gauge field strength (or vector potential) 

Vm· Continuing with this analogy leads to the definition of the sup~rsymmetric field 

strength for the vector superfield V. The fields Aa and ,.\a possess the lowest dimension 

of the component fields in V, and they are also gauge invariant. The superfields l1Va and 
- -

Wa also possess Aa and Aa as their lowest dimensional component fields, where: 

1-- - 1 -
liVa = --DDD V W· = --DDD""V. 4 a ' a 4 ~ 

(3.52) 
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The superfields W and vV are defined to be the Abelian field strengths for the vector 

superfield V. The superfields W and W are both chiral superfields: 

- -

D,3Wo: = 0, D.aWa = 0, (3.53) 

and are also gauge invariant on account of the constraints Dif> = Dif>t = 0. They also 

obey the constraint: 

(3.54) 

As vVo: is gauge invariant, it can be expanded in component fields in the Wess-Zumino 

gauge, and reads as: 

where Vmn = OmVn- OnVm is the Abelian gauge fields strength tensor. That the superfield 

W can be considered as the supersymmetric field strength of the vector superfield V is 

apparent from the ee component of the product vvo:wo:: 

W o:w I 1D_D_wo:n VI 2"' m~ \ 1 mn D2 1. mn* o: ()() = -- o: ()() = - 't/\CJ Um/\- -V Vmn + +-'/,V Vmn, 
. 4 2 2 

(3.56) 

in which *vmn is the dual gauge field strength as defined in Eq. (2.5) in Section 2.2 of 

Chapter 2. 

The Abelian gauge superfield can be generalized to the non-Abelian case. The vector 

superfield V then belongs to the adjoint representation of the gauge group, and is invariant 

under the supersymmetric generalized non-Abelian gauge transformation given by: 

-2gV' 2igAt -2gV -2igA e = e e e , (3.57) 

where A is defined in Eq. (3.44), g is the gauge coupling, and the vector superfield V is 

now represented as a matrix: 

(3.58) 

where Ta are the Hermitian generators of the gauge group. Selecting the Wess-Zumino 

gauge here preserves only the ordinary non-Abelian gauge symmetry contained within the 

generalized supersymmetry gauge transformation Eq. (3.57). The Wess-Zumino gauge 

does not fix the non-Abelian gauge symmetry. The supersymmetric field strength for V 
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can also be generalized to non-Abelian transformations, with the result that Wm now 

the non-Abelian gauge superfield strength, obeys: 

_]_[pe2gV D e-2gV 
8g a ' 

W _c W' a --, a 

W· --+ W' a a 
2igAtW- -2igAt e c,e . 

The component form of W is: 

W = Ta (-i>..a + e Da- !:_(am?Jne) va + B2am D )_a) a a a 2 a mn m ' 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

where v~n is the non-Abelian gauge field strength, and Dm is the non-Abelian covariant 

derivative, respectively given by and acting as: 

a a A a ~ A a + · fabcAb Ac Vmn = m n-Un m 29 m n' (3.63) 

Given chiral and vector superfields <I> and V and the vector superfield strength Wa, the 

Lagrangians defining classical renormalizable supersymmetric gauge theories can be con

structed in their entirety. In Section 3.3 we will utilize chiral and vector superfields to 

construct supersymmetric gauge theories. 

3.3 N = 1 Supersymmetric Gauge Theories 

In Subsection 3.2.3 of Section 3.2, the superfield formalism was used to construct N = 1 

supersymmetry covariant fields with specific properties. From these fields, the most 

general supersymmetric renormalizable Lagrangians for these separate fields can be con

structed [113, 114, 117]. Supersymmetric Lagrangians which specify supersymmetric 

field theories can be obtained as the highest order component in the variables ( e, iJ) of a 

superfield. The B2 and iJ2 components of a chiral superfield (or product of chiral super

fields, also a chiral superfield) transform via a supersymmetry transformation into a total 

derivative. The result of such integrations gives zero by the total derivative vanishing 

at the boundaries of integration. An integrand which exhibits this behaviour is then 

invariant under supersymmetry. 
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We shall now describe the general Lagrangians for chiral and vector multiplets sepa

rately. When these are coupled together in a gauge invariant ~ay, the result will be the 

Lagrangian for N = 1 supersymmetric Yang-Mills gauge theory. Like other supersym

metric gauge theories, N = 1 supersymmetric gauge theories has a vanishing vacuum 

energy, which is brought about by supersymmetry. 

Given anN = 1 supersymmetric scalar multiplet, the most general Lagrangian including 

interactions is given by: 

/ 4 t /2 ) Jr- t £scalar = d B K ( 1>, 1> ) + d BW ( 1> + d BW ( 1> ) , (3.64) 

where the non-holomorphic function K(<I>, <PI) is known as the Kahler potential, and W is 

the superpotential, as introduced in Eq. (3.38) of Subsection 3.2.3. The Kahler potential 

determines the metric on the field space, gij, defined by gij = 82 K / fJAifJAj. As noted 

previously, the auxiliary fields Fi which appear in Lscalar can be eliminated algebraically 

through the Euler-Lagrange equations. 

To ensure that Lscalar is a renormalizable Lagrangian, the functions K and W are con

strained by R-symmetry, as defined in Eqs. (3.25,3.26) of Subsection 3.2.3. However, 

we note that R-symmetry is not a necessary condition for renormalizability, but it is a 

sufficient one. The R-symmetry acts on chiral superfields as follows: 

R<I>(x, B) 

R<I>t(x, iJ) 

<I>'(x, B) = e2ina1>(x, e-iaB), 

cp't(x, iJ) = e-2inacpt(x, eiaiJ). 

(3.65) 

(3.66) 

The component fields of the chiral superfields transform under the R-symmetry according 

to: 

cP ~ 

?jJ ~ 

F ~ 

e2inac/J, 

e2i( n-l/2)a?/;' 

e2i(n-l)a F 
' 

(3.67) 

(3.68). 

(3.69) 

where the number n is the R-character of the R-symmetry. As the R-symmetry acts as 

() ~ eia() and d
2

() ~ e-
2
iad

2
(), the R-character of superfields in W must sum to unity, 

and in K the R-characters must sum to zero (K is said to be 'R-neutral'). 
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For the vector multiplet, the product of the Abelian vector superfield strengths Wawa 

has a highest order term which can be expressed in component fields as: 

(3.70) 

where *vkl is the dual gauge field strength as defined in Section 2.2 of Chapter 2. Using 

this product of superfields, the Abelian supersymmetric vector field Lagrangian is given 

by: 

!vector = 4~2 (/ d2BWaWa + j d2BWa wa) , (3.71) 

This Lagrangian can be generalized to the non-Abelian case by generalizing the product 

of Abelian field strengths Wawa to: 

The non-Abelian supersymmetric vector field Lagrangian is then given by: 

1 (/2 a I 2 -- -a) Lvector = 
492 

Tr d BW Wa + d '!9vVa W . (3.73) 

The most general vector multiplet Lagrangian will contain a '!9-term, defined in Chapter 

2, given by i'!9k, where '!9 is the vacuum angle. The '!9-term appears in the complexified 

gauge coupling T, which has the same definition given previously in Eq. (2.17) of Section 

2.2 in Chapter 2, where: 
47ri '!9 

T = - +- (3.74) g2 27!". 

The addition of a '!9-term to the Lagrangian Eq. (3.73) means that the non-Abelian vector 

multiplet Lagrangian can be written in the following compact form: 

in which T, the complexified coupling, can be regarded as a chiral superfield. 

In addition to the chiral and vector superfields describing pure Yang-Mills supersymmet

ric gauge theory (that is, pure non-Abelian supersymmetric gauge theory), one can add 

matter to the supersymmetric Yang-Mills gauge theories under consideration. Matter 
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in these theories can be added in the form of chiral multiplets. Matter fields generally 

transform in the fundamental and anti-fundamental (or conjugate-fundamental) repre

sentation. Thus chiral superfields in the fundamental representation must be introduced 

if they are to form the matter content of the supersymmetric gauge theories under con

sideration. The chiral superfield <I> transforms in the adjoint representation, as given in 

Eq. (3.43) of Subsection 3.2.3. 

We denote chiral superfields residing in the fundamental representation and anti-fundamental 

representation as Q and Q, respectively. The component field content of Q and Q are 

denoted (q, x, G) and (ij, x, G), respectively. The component field content for the ad

joint chiral superfields <I> and <I>t are respectively (cp, 'lj;, F) and (cpt, if;, Ft), as given in 

Eqs. (3.39,3.40) of Subsection 3.2.3. The chiral matter superfield Q is a column vector of 

dimension N when the fundamental representation is N-dimensional. The superfield Q 

is an N-dimensional row vector in the dimension N fundamental representation. These 

chiral superfields obey the generalized supersymmetry gauge transformations: 

where g is the gauge coupling. 

e2igAQ, Qt --t Qt' = Qte-2igAt, 

Qe-2igA, ijt --t ijt' = e2i9At ijt, 

(3.76) 

(3.77) 

In the Lagrangians which follow, we suppress the gauge group ('colour') indices for clarity. 

N = 1 Supersymmetric Yang-Mills theory 

vVe now give the Lagrangian which specifies N = 1 supersymmetric Yang-Mills theory, 

which is based upon theN = 1 vector multiplet [113, 117] described in Subsection 3.2.3. 

The complete N = 1 supersymmetric Yang-Mills theory Lagrangian is given by: 

LN~I svM = 8~ Im (7Th I dOW"Wa) +I d20d'if il>1e-'9v iJ> +I d'ew +I d'iJW. 

(3.78) 

The term <I>t e-2
gV <I> in the Lagrangian LN=oo SYM is the gauge invariant kinetic terms 

for the chiral superfields. The relative normalization between these terms and the other 

terms in the LN=l SYM is not fixed by N = 1 supersymmetry since each term is by itself 

N = 1 covariant. The proper relative normalization is obtained when all fermionic kinetic 
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terms in the Lagrangian have the same coefficients. In the case above, the normalization 

of the scalar kinetic term has been set to unity. We note that the complexified gauge 

coupling T can be interpreted as a chiral superfield in the Lagrangian in Eq. (3.78). 

The Lagrangian LN=l SYM defined by Eq. (3.78) is invariant under the generalized su

persymmetric gauge transformation Eq. (3.57) of Subsection 3.2.3. 

N = 1 Supersymmetric QCD 

One can generalize the Lagrangian of N = 1 supersymmetric Yang-Mills theory by 

including chiral matter multiplets. The chiral multiplet and the vector multiplet must 

couple to each other and remain invariant under the generalized supersymmetry gauge 

transformation. The resulting quantum version of the theory is referred to as N = 1 

supersymmetric quantum chromodynamics, or N = 1 supersymmetric QCD (SQCD) 

since it is theN= 1 supersymmetric generalization of quantum chromodynamics (QCD). 

The Lagrangian of N = 1 SQCD is given by: 

LN=l SQCD = LN=l SYM + Lmatten (3.79) 

where LN=l SYM is given by Eq. (3.78) and Lmatter is the matter Lagrangian composed of 

the fundamental chiral superfields Q and Q which transform according to Eqs. (3. 76,3. 77). 

A sufficiently general structure for Lmatter is one which couples N1 sets or 'flavours' of 

fundamental chiral multiplets Q f and Nf flavours of anti-fundamental chiral multiplets 

Q1 via a mass term, which imparts mass to both Qf and Qr 

(3.80) 

where f runs from 1 to Nf and m1 is the mass of the rh chiral matter multiplet. 

In the action for the matter Lagrangian Lmatten the component fields (G, G, F) do not 

contribute to the dynamics of the theory and can be integrated out of the Lagrangian 

LN=I sQcD; they are thus auxiliary fields. 
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3.4 N = 2 Supersymmetric Gauge Th~ories 

In past theoretical developments, the motivation for considering supersymmetry with 

N > 1 generators was the need to look at non-Abelian gauged supergravity models in 

the pursuit of unifying the known physical forces, including gravity, through supersymme

try. However, that N = 2 supersymmetry is the first example of extended supersymmetry 

is also important. In Chapter 5 we shall describe exact results inN= 2 supersymmetric 

gauge theories. In this section we outline the construction of N = 2 supersymmetric 

gauge theories in the same way in which N = 1 supersymmetry was described in Sec

tion 3.3. 

Classical Yang-Mills gauge theory with N = 2 extended supersymmetry can be con

structed within the N = 1 supersymmetry formalism or by starting from the N = 2 

supersymmetry formalism. We begin with the former as it is closer to the theory de

scribed in Section 3.3, and then proceed to formulate N = 2 supersymmetric Yang-Mills 

theory in terms of N = 2 supersymmetry. 

The field multiplets described in Section 3.3, namely the on-shell N = 1 scalar multiplet 

and the N = 1 vector multiplet, have the same field content as the on-shell N = 2 

vector multiplet. Excluding auxiliary fields, the N = 2 supersymmetric field strength 

\If contains all of the fields present together in the N = 1 gauge invariant superfields 

1> and Wen that is, the field multiplet (A, '1/J, A, vm)· The most general N = 1 super

symmetric Yang-Mills Lagrangian does contain all of these component fields, but it is 

not N = 2 supersymmetric. Further restrictions arise when we demand that LN=l SYM 

possesses N = 2 supersymmetry. The conditions on the Lagrangian LN=l SYM which 

ensure that it now has N = 2 supersymmetry are: (i) that the fields A and '1/Ji belong 

to the same gauge group representation as v~ and ;.a, (that is, 1> must transform in the 

adjoint representation of the gauge group) and (ii) that, for the case when there are no 

matter multiplets present, theN= 1 superpotential W is set to zero. The second con

dition sets the previously arbitrary relative normalization between the Yang-Mills term 

and the scalar term in the Lagrangian to be equal: this can be done by rescaling the 
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chiral superfield by the coupling as <I> --+ <I>/ g. Matter in the form of fundamental or 

anti-fundamental chiral multiplets Q f and Q f can be included in the theory by coupling 

the pure N = 2 supersymmetric Yang-Mills gauge theory in an identical fashion to that 

done for theN= 1 supersymmetric Yang-Mills gauge theory in Section 3.3. Historically, 

N = 2 matter multiplets were known as matter hypermultiplets, to distinguish them from 

N = 1 multiplets. We shall refer to the hypermultiplets as N = 2 matter multiplets in 

keeping with Section 3.3. In this section we refer to the original papers [112, 118] and 

also the reviews [121, 122, 123]. 

N = 2 Supersymmetric Yang-Mills theory 

TheN= 2 supersymmetric Yang-Mills Lagrangian in terms of N = 1 superspace is: 

eN c2 SYM = L !m ( TT'r [/ d2B W"Wa + 2 I d2Bd2iJ <!> t e29v <!>e _,,v l ) . (3.81) 

Those terms in LN=2 SYM involving auxiliary fields can be collected to give the expression: 

wherein each field exists in the adjoint representation of the gauge group. The auxiliary 

fields D and F can be eliminated to give the scalar potential dependent upon the scalar 

field cp identified with a Higgs field: 

(3.83) 

The Lagrangian LN=2 SYM can be expanded in terms of component fields as: 

(3.84) 

in which the auxiliary fields D and F do not appear, having been eliminated. 

To formulate N = 2 supersymmetric Yang-Mills gauge theory inN= 2 superspace, one 

extends the previous N = 1 superspace toN= 2 superspace by introducing four more 

Grassmannian degrees of freedom to the set of N = 1 supersymmetry internal degrees 
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of freedom. Let theN= 2 superspace be the set of co-ordinates {x, e, e, e, B}. Then a 

general N = 2 superfield is the function F(x, e, e, e, B). To obtain the same component 

field content as the N = 2 vector multiplet, the constraints of chirality and rea.lity can 

be imposed on a general N = 2 superfield. Let the resulting N = 2 vector superfield be 

W. This then permits one to express the Lagrangian LN=2 SYM as: 

(3.85) 

where w is the N = 2 vector superfield. The most general Lagrangian for N = 2 

supersymmetric Yang-Mills theory can be written in terms of a function .F(w), known 

as theN= 2 prepotential. The Lagrangian LN=2 SYM then reads: 

The Kahler potential for N = 2 supersymmetric Yang-Mills theory can be read off 

from Eq. (3.86) as Im(<I>ta Fa( <I>)). Then the metric on the space of fields is given by 

9ab = Im( 8ach.F); metrics of this form are known as special Kahler metrics. Renormaliz

ablity of the theory is ensured by demanding that the prepotential .F is quadratic in the 
' . 

N = 2 vector superfield <I>. However, for an effective N = 2 supersymmetric Yang-Mills 

theory, this condition need not hold in order that the theory be renormalizable. 

N = 2 Supersymmetric QCD 

Pure N = 2 supersymmetric Yang-Mills gauge theory coupled to chiral N = 2 mat

ter multiplets results in N = 2 supersymmetric quantum chromodynamics, or N = 2 

supersymmetric QCD (SQCD). In terms of N = 1 superspace, the general N = 2 super

symmetric QCD Lagrangian is given by: 

where the Lagrangian LN=2 SYM is given by Eq. (3.81), and Lmatter is given by Eq. (3.80) 

of Section 3.3. The term additional to the Lagrangians LN=2 SYM and Lmatter within 
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LN=2 SQCD can be intepreted as the supersymmetric generalization of a Yukawa coupling 

term. 

Exact results proposed for N = 2 supersymmetric Yang-Mills theory and N = 2 super

symmetric QCD shall be described in Chapter 5. 

3.5 N = 3 Supersymmetric Gauge Theories 

In this section we briefly describe N = 3 supersymmetric gauge theory (133]. The defin

ing characteristic of these theories is that the supersymmetry constraints described in 

Subsection 3.2.2 for N = 3 supersymmetry reduce to the supersymmetric equations of 

motion and are entirely equivalent to them [133, 134J. 

Gauge theories with N = 3 supersymmetry are ultra-violet finite and scale invariant 

theories with vanishing beta function. The supersymmetry constraints for N = 3 super

symmetric gauge theories have the same form as the N = 2 supersymmetry as given in 

Eqs. (3.15) of Subsection 3.2.2, namely [119]: 

V~~ +V~~ 0, 

0, (3.88) 

V~ I<. 0, 
CY.JJ) 

where vi1, Vai~j and vi~< are Yang-Mills superfield strengths, with i, j = 1, 2, 3. 
CY.JJ) 

An off-shell formulation of N = 3 supersymmetric Yang-Mills gauge theory is possible 

and requires an infinite set of auxiliary fields. The corresponding on-shell formulation of 

the theory is not known. To express the Lagrangian for off-shell N = 3 supersymmetric 

Yang-Mills gauge theory requires the use of harmonic N = 3 superspace [133], the details 

and construction of which we do not include here (for reviews see [134]). 

There exist three harmonic N = 3 supersymmetric Yang-Mills spinor potentials or su~ 

perconnections for N = 3 supersymmetric Yang-Mills gauge theory, which following 

Subsection 3.2.2 we denote as A~, where i = 1, 2, 3 and a is a Weyl index. These har

monic superconnections obey the conditions: 

(3.89) 
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and can be expanded in terms of component fields, of which there are an infinite number. 

After the Wess-Zumino gauge has been selected in this theory, there remain an infinite 

number of auxiliary fields contained within the N = 3 harmonic superconnections. This 

excess of auxiliary degrees of freedom makes the theory unphysical and unsuitable as a 

candidate for extending known theories. There also exist three harmonic N = 3 super

symmetry covariant derivatives associated with each of the N = 3 superconnections. In 

the notation of Subsection 3.2.2, theN= 3 supersymmetry covariant derivatives will be 

the harmonic versions of the covariant derivatives D~ and V~ defined in Eqs. (3.10,3.11). 

Here we use this notation to denote the three harmonic N = 3 supersymmetry covariant 

derivatives, with the same index range for i. 

The Lagrangian for off-shell N = 3 supersymmetric Yang-Mills gauge theory can then 

be expressed as: 

LN=3 SYM = Tr (A3(D1A2
- D2A1

)- A2 (D1A3
- D3A1

) 

+A1(D2A3
- D3A2

)- (A1
)

2 + 2iA1 [A2 ,A3
]), 

(3.90) 

in which all indices except the supersymmetry ones have been suppressed. It can be 

shown that the Lagrangian LN=3 SYM contains the same on-shell dynamics which follow 

from the constraint formulation of the theory in Eq. (3.88). 

Theories with N = 3 supersymmetry are not useful theories due to the infinite number 

of auxiliary fields which they contain. Theories with N = 1, 2, 4 supersymmetry are 

theories with phenomenological potential and are the main focus for the construction of 

supersymmetric models of elementary particles. We do not consider N = 3 supersym

metric Yang-Mills gauge theory in later· chapters of this thesis, but include it here for 

comparison and completeness. 

3.6 N = 4 Supersymmetric Gauge Theories 

Theories with N = 4 supersymmetry are referred to as having maximal supersymmetry. 

This is because supersymmetric field theories with N > 4 supersymmetry do not possess 

asymptotic freedom and are not renormalizable. Furthermore, N > 4 supersymmetry 
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requires multiplets in which fields with spin ~ or greater exist, whereas N = 4 super

symmetry contains fields with at most spin 1. Since particles with spin greater than one 

have not yet been observed, this makes N = 4 supersymmetric field theories the limiting 

case for most phenomenological applications of supersymmetry. Locally supersymmetric 

field theories with greater degrees of supersymmetry, and which thus contain higher spin 

particles, have also been used to model gravitation, such as N = 8 supergravity theories. 

The sign of the beta function in supersymmetric field theories changes once the theory 

has more than N = 4 degrees of supersymmetry. Theories with N = 4 supersymme

try are ultra-violet finite: they are exactly scale-invariant theories with vanishing beta 

function. This makes N = 4 supersymmetric gauge theories valuable from a theoretical 

perspective since they possess special properties. 

Supersymmetric gauge theories have the property that differing degrees of supersymme

try can be studied within the same supersymmetric field theory by modifying the matter 

content or reducing the spacetime dimension of the theory. An example of the former was 

provided in Section 3.4, in which N = 2 supersymmetric Yang-Mills gauge theory was 

obtained from N = 1 supersymmetric Yang-Mills gauge theory with a particular matter 

content. In this subsection an example of the dimensional reduction method is provided as 

a method for obtaining N = 4 supersymmetric Yang-Mills gauge theory [123, 159, 191]. 

These methods for obtaining supersymmetric gauge theories from less supersymmetric 

ones permits one to circumvent the notational complexity which one could encounter in 

field theories with higher degrees of supersymmetry. In this section we follow the reviews 

of N = 4 supersymmetric gauge theories in [123] and in [159, 191]. 

TheN= 4 superspace requires the introduction of four more Grassmann-valued param

eters to be added to the four N = 2 superspace co-ordinates already introduced. Given 

this requirement of N = 4 supersymmetry, the method of dimensional reduction is useful 

as it simplifies the construction of N = 4 supersymmetric gauge theories. 

One can obtain four dimensional classical N = 4 supersymmetric Yang-Mills gauge the

ory by reducing the dimension of ten dimensional N = 1 supersymmetric Yang-Mills 

gauge theory from ten to four. (In a similar -vvay, one can obtain four dimensional N = 2 

supersymmetric Yang-Mills gauge theory by reducing the dimension of six dimensional 



............ --------------
CHAPTER 3. SUPERSYJviMETRIC GAUGE THEORIES 111 

N = 1 supersymmetric Yang-Mills gauge theory.) Ten dimensional classical N = 1 

supersymmetric Yang-Mills theory has the following Lagrangian: 

(3.91) 

where the gauge field AM- and spinor A a reside in the adjoint representation of the gauge 

group, and the ten dimensional Lorentz indices indices M, N run from 0 to 9. The 

following constraints on Aa are also present: 

- T 
(1- An)>- = 0, A = A Cw, (3.92) 

where An = A0A1A2 · · · A9 and C10 is the charge conjugation operator in ten spacetime 

dimensions, such that C10AMC1r} = -A'ft. The non-Abelian gauge field strength and 

covariant derivative are defined in the usual sense (but in ten spacetime dimensions) as: 

(3.93) 

To reduce the dimensions of theN= 1 theory specified in Eq. (3.91), one demands that 

all of the fields present in the theory depend only on four dimensional spacetime. The 

ten dimensional spacetime co-ordinate xM can be decomposed into the four dimensional 

spacetime co-ordinate xm and a six-dimensional one, xi, as xM = (xm, xi). This reduces 

the ten dimensional Lorentz group S0(1, 9) of the theory to the product 50(1, 3) x 

50(6). Consequently, the ten dimensional fields Aa and v! decompose into the set of 

four dimensional fields { <Pij, >-i}. The result is that the Lagrangian of four dimensional 

classical N = 4 supersymmetric Yang-Mills theory can be obtained from the dimensional 

reduction of the Lagrangian in Eq. (3.91), and can be written as: 

LN ~· SYM = Tr (-~Vmn vmn + iA;crm DmAi + ~ Dm </>;; nm <P'' 

+i\ I.\;, q,'iJ + ;>.'[A;, q,,, J + ~I</>;;, <P"H q,';, q,"J) . 
(3.94) 

The second method by which N = 4 supersymmetric Yang-Mills gauge theory can be 

constructed involves coupling pure N = 2 supersymmetric Yang-Mills gauge theory to 

anN = 2 matter multiplet which transforms in the adjoint representation. The resulting 

theory will have two sets of adjoint .N = 2 chiral multiplets and an N = 2 vector 

multiplet. The field content of the modified N = 2 theory will be identical to that of 
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N = 4 supersymmetric Yang-Mills gauge theory, and thereby the Lagrangian LN=4 SYM 

is obtained. 

In Chapter 4, exact results inN= 4 supersymmetric Yang-Mills theory will be described, 

including the conjectural Olive-Montonen electric-magnetic duality of the theory. 



-

Chapter 4 

Exact Results in Supersymmetric 

Gauge Theories 1: 

N == 1 and N == 4 Supersymmetry 

4.1 Introduction 

In Chapter 3 the concept of global supersymmetry and the construction of supersym

metric gauge theories were described. The minimally and maximally supersymmetric 

generalizations of Yang-Mills gauge theory, respectively N = 1 and N = 4 supersym

metric Yang-Mills gauge theory, were constructed. In this chapter we endeavour to briefly 

review some of the exact results obtained in these gauge theories, which the presence of 

supersymmetry makes possible. In doing so, we introduce some of the concepts which 

will be further described in Chapter 5 for the case of N = 2 supersymmetric gauge theo

ries. However, there is a greater variety of phenomenon inN= 1 supersymmetric gauge 

theories than in N = 2 theories. Consequently, our review of exact results in N = 1 

theories is brief and incomplete. In contrast, N = 4 supersymmetric gauge theories are 

simpler than N = 2 theories. Thus N = 2 theories are, in terms of relative complexity, 

intermediate theories. We describe exact ,results in N = 2 theories in Chapter 5. 

In this chapter we describe some of the exact results and proposed exact results obtained 

in N = 1 and N = 4 non-Abelian gauge theories. In Section 4.2 the significant early 

113 
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and recent exact results inN= 1 supersymmetric Yang-Mills gauge theory are outlined. 

These include non-renormalization theorems and the exact calculation of the beta func

tion and various condensates. Section 4.3 briefly describes the exact results obtained 

inN = 4 supersymmetric Yang-Mills gauge theory. In Section 4.4 the phenomenon of 

electric-magnetic duality inN= 4 supersymmetric Yang-Mills gauge theory is described. 

This duality is conjectural, but there exists noteworthy evidence for its existence. In Sec

tion 4.5 we describe a special form of duality which occurs in N = 1 supersymmetric 

gauge theories. This duality is known as Seiberg duality, after the author who uncovered 

this phenomenon. Although Seiberg duality is not associated with electric-magnetic du

ality, which shall reappear again in Chapter 5 in the context of N = 2 supersymmetric 

theories, we include it here as part of our review concerning duality in supersymmetric 

gauge theories. 

We continue to use the conventions and notation of Chapter 3. Useful reviews of the exact 

results inN= 1 supersymmetric gauge theories include [123, 138, 139, 140]. Works which 

include reviews of results inN= 4 supersymmetric gauge theories include [191, 159]. 

Upon a first reading, the reader may omit this chapter, and in particular, Section 4.4 and 

Section 4.5, without loss of essential material. 

4.2 Exact Results in N 

Theories 

1 Supersymmetric Gauge 

The single supersymmetry of N = 1 supersymmetric Yang-Mills gauge theory permits 

one to exactly calculate various physically relevant quantities in the theory. In quan

tum N = 1 supersymmetric gauge theory, this fact is important since very few results 

in any four dimensional quantum field theory have been determined exactly. In general, 

only with the simplifying constraint of supersymmetry have quantum field theories which 

bear some resemblance to phenomenologically relevant quantum field theories, such as 

quantum chromodynamics, yielded any exactly calculable quantities. These exact results 

are the first such results ever found in dynamically non-trivial four dimensional quantum 

field theories. 
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In this section we begin by briefly describing the earliest exact results in N = 1 super

symmetric gauge theories. These are particular dynamical quantities and observables of 

these theories which were obtained exactly by a variety of methods. The gluino conden

sate and the beta function in the theory are historically the first examples of non-trivial 

quantities exactly calculated in the strong coupling regime of a four dimensional quantum 

field theory (although in the case of the gluino condensate the calculation was actually 

erroneous). In this section we refer to the original papers in [135, 136, 137, 143, 142], the 

later works in [141, 144], and the reviews in [138, 139, 140]. 

We now describe various exact results and properties of N = 1 supersymmetric Yang

Mills gauge theory, some of which are valid or extendable toN= 1 theories with matter, 

such as N = 1 SQCD. In some cases, the exact results hold only for the low energy 

effective theory. The effective action for these theories is the Wilsonian effective action 

rather than other effective actions such as the one-particle irreducible (1PI) effective ac

tion. The Wilsonian effective action at an energy scale p, is obtained by integrating out 

all of the fields appearing in the action which have mass greater than p, and the high 

momentum (P > p,) modes of the 'light fields' (whose masses are less than p,). Unlike 

the 1PI effective action, the Wilsonian effective action has no infra-red ambiguities and 

no holomorphic anomalies [141]. The Wilsonian effective action must also possess the 

same global symmetries of the the microscopic action of the theory. In this thesis the 

only effective actions which we shall describe will be Wilsonian effective actions. One 

example of an exact result obtained in the low energy effective N = 1 supersymmetric 

Yang-Mills theory is the form of the effective N = 1 superpotential, denoted by Weff· 

Vacuum Energy 

The first exact result in any globally supersymmetric field theory, of which supersym

metric gauge theories are a subset, is the vanishing of the ground state energy or vacuum 

energy, Evac· The vacuum energy is precisely zero order by order in the gauge coupling 

constant g, and receives no perturbative or non-perturbative quantum corrections: 

Evac = 0. ( 4.1) 
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In this sense, the vanishing of the vacuum energy is an exact results, common to all 

supersymmetric gauge theories, and one which is required by the presence of supersym

metry [123]. 

The result in Eq. (4.1) arises due to the general expression for vacuum energy in super

symmetric field theories [136]: 

(4.2) 

which is fixed by the uniformity of superspace. The vanishing of Evac in Eq. ( 4.1) is 

ensured by the integration over d4B in the general expression above. 

N on-renormalization Theorem 

Another property of N = 1 supersymmetric Yang-Mills gauge theory which can be 

interpreted as an exact result is the N = 1 supersymmetric non-renormalization theo

rem [135, 123, 140], which was also proven in [141]. Here we decribe the derivation first 

given in [135] and reviewed in [123, 140]. This particular derivation, first given in [135], 

uses perturbative techniques. In the latter derivation, the holomorphy of the N = 1 

superpotential is used, and the theorem is proven non-perturbatively [141]. 

For calculational and phenomenological purposes, one can derive the N = 1 superfield 

Feynman rules from the action of N = 1 supersymmetric Yang-Mills gauge theory. The 

action of the theory will be the spacetime integral of the Lagrangian defining N = 1 

supersymmetric Yang-Mills gauge theory, given in Eq. (3.78) of Section 3.3 in Chapter 

3. TheN = 1 superfield Feynman rules can be obtained by a superspace perturbation 

expansion of the action. This perturbation expansion will include terms of the form: 

(4.3) 

and their conjugates. A problem arises for these terms because the adjoint chiral su

perfields <I> and <I> t are constrained scalar superfields, obeying the chirality conditions in 

Eqs. (3.30 ,3.36) in Subsection 3.2.3 of Chapter 3. Thus they do not exist across the 

entire N ::::;: 1 superspace. Then the integrals in Eq. ( 4.3) can only be performed over 

part of theN = 1 superspace, leaving the integration over the Grassmann parameters 

( e, e) ill-defined. 
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For the case of the first integrals in Eq. ( 4.3), this problem can be overcome by introduc

ing projection operators for the chiral superfields. These operators will project a chiral 

superfield out of a general scalar superfield, and so maps general scalar superfields to 

chiral superfields. The first form of integral in Eq. ( 4.3) can then be performed by con

verting the integration over part of the N = 1 superspace to one over the entire N = 1 

superspace. 

In the case of integrals of the second form in Eq. ( 4.3), the interation term g<I> 3 will 

produce a superspace delta function which exists on half cif theN = 1 superspace. An 

identity can be used to write such delta functions over the full superspace, and integrals 

of the second form in Eq. ( 4.3) can be performed over the whole of theN= 1 superspace. 

The superfield Feynman rules resulting from the perturbation expansion will haveN= 1 

superspace dependence. From this, the form of arbitrary terms in the effective action for 

theN= 1 theory can be deduced. These can be expressed as: 

( 4.4) 

where n is the number of external lines of an arbitrary one-particle irreducible Feynman 

supergraph, and Fn denote superfields and covariant derivatives of superfields. The func

tion G ( x1 , ... , Xn) is a translationally invariant Green's function which contains all of the 

relevant spacetime structure. 

The result in Eq. ( 4.4) is known as theN= 1 non-renormalization theorem. This result 

holds for N = 1 supersymmetric actions involving arbitrary numbers of vector and chiral 

superfields. An immediate consequence of Eq. ( 4.4) is that if external lines of a Feynman 

supergraph are chiral or anti-chiral, then the integral of Eq. ( 4.4) vanishes. Essentially, 

the N = 1 non-renormalization theorem is an extension of the result of vanishing vac

uum energy (Eq. (4.1)) to supersymmetric F-terms, which are the last components of 

chiral superfields. Since theN= 1 superpotential W is composed only ofF-terms, the 

superpotential of the theory is not renorinalized at any order in the perturbation expan

sion. This is the statement which the name of the N = 1 non-renormalization theorem 

refers to. However, the superpotential in general shall receive quantum non-perturbative 

corrections from instanton configurations. 

A further consequence of the theorem is that all vacuum and tadpole Feynmann diagrams 
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in the theory vanish. This is consistent with the exact vanishing of the vacuum energy 

Evac in Eq. (4.1). In deriving theN= 1 non-renormalization theorem, one must regular

ize the spacetime loop integrals in a way consistent with supersymmetry, with an equal 

number of bosons and fermions in each case. This can be acheived with a regularization 

scheme known as dimensional reduction [127], which is particularly suitable for use in 

supersymmetric field theories. 

NSVZ Beta Function and Wilsonian Beta Function 

The beta function f3N= 1 (g) of quantum N = 1 supersymmetric Yang-Mills gauge theory 

can also be calculated exactly. The general beta function f3(g), as defined in Eq. (4.11) 

below, is the Gell-Mann-Low function of the theory and governs the running of the gauge 

coupling constant g. The Gell-Mann-Low function can be calculated to all orders in the 

coupling constant via a purely classical calculation (no quantum loop corrections are 

calculated). In the case of the low energy Wilsonian effective N = 1 supersymmetric 

Yang-Mills gauge theory, the beta function can be calculated exactly and is exact to 

one-loop quantum perturbative corrections. 

One notable derivation of the exact Gell-Mann-Low function in quantum N = 1 super

symmetric Yang-Mills gauge theory is based on instanton calculus, and was first calcu

lated by Novikov, Shifman, Vainshtein and Zakharov (NSVZ) for the gauge group SU(N) 

[136]. These authors considered the one-instanton vacuum to vacuum transition in the 

N = 1 supersymmetric Yang-Mills gauge theory. At one-loop level in perturbation the

ory, the amplitude for the one-instanton transition is intrinsically supersymmetric. The 

supersymmetry of the classical N = 1 action is a symmetry of the theory which extends 

to the quantum N = 1 action and is present at all orders in the gauge coupling g. In 

addition there exists a non-renormalization theorem for instanton induced interactions 

in the theory which is directly analogous to the N = 1 non-renormalization theorem 

described above. This additional theorem asserts that the vacuum energy still vanishes 

in the presence of an external instanton field. These properties permit N ovikov et al. to 

calculate the beta function exactly in quantum gauge theories with differing supersym

metry. Their result is known as the NSVZ beta function [136, 139]. 
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The NSVZ beta function was derived for N = 1 supersymmetric Yang-Mills gauge the

ory with arbitrary classical gauge group and matter content. To extend the result to 

theories with extended supersymmetry, one can add additional N = 1 matter fields to 

form superfield multiplets with the same matter content as theories with extended su

persymmetry [139]. Working within the Pauli-Villars regularization scheme [58], with 

arbitrary gauge group G and matter fields in an arbitrary gauge group representation 

R = l:.':i Ri which is reducible, the most general NSVZ beta function has the form [139]: 

g2 [ l ( gT c ) -
1 

{J(g)Nszv = -
2

1!" 3Tc-~T(R)(1-f'i) 1-
2

1r , ( 4.5) 

where Tc and T(Ri) are group factors and /'i is the anomalous mass dimension of the 

matter fields. The objects Tc and T(Ri) are defined as follows. Let ya be the generators 

of the gauge group G in the representation R. Then one can define the factor T(R) via 

Tr(TaTb) = T(R)oab. The object T(R) is known as the dual Coxeter number or one half 

of the Dynkin index for R. When R is the adjoint representation, we denote T(R) = Tc. 

When R is a reducible representation, one has T(R) = T(Ri). 

For gauge group G = SU(N), we have that Tc = N. For matter fields transforming in 

the fundamental representation Rp of SU ( N), one has T( Rp) = ~. Thus, for N = 1 

supersymmetric SU(N) Yang-Mills gauge theory with no matter multiplets, one has: 

3Ng
2 

( gN)-
1 

f3N=1(g) = -- 1--
211" 21!" 

(4.6) 

The beta function f3N= 1 (g) receives no perturbative or non-perturbative quantum correc

tions in the quantum N = 1 supersymmetric Yang-Mills gauge theory. Thus the beta 

function Eq. ( 4.6) is exact for quantum N = 1 supersymmetric Yang-Mills gauge theory. 

For the case of N = 1 supersymmetric QCD, the presence of matter multiplets modifies 

the NSVZ beta function as the effects of the the anomalous dimensions /'i enter. The 

method used to derive the NSVZ beta function has been extended to the case of N = 1 

supersymmetric QED in [137], which is an Abelian gauge theory. Instantons do not occur 

in Abelian (commutative) gauge theories, but the non-renormalization theorems derived 

by Novikov et al. [203, 202] can be extended to these theories. 

The beta function for the low energy \iVilsonian effective action of N = 1 supersymmet

ric Yang-Mills gauge theory can be obtained from the bare gauge coupling constant gas 
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in Eq. (4.11) below. The Wilsonian beta function receives no quantum perturbative or 

non-perturbative corrections beyond the one loop level. In this sense, the Wilsonian beta 

function is one loop exact. 

Gluino Condensate 

The setting for these results is also pure N = 1 supersymmetric SU(N) quantum Yang

Mills theory. If the gauge field is identified with the gluon field in the theory, it is 

known as N = 1 SU(N) supersymmetric gluodynamics [138]. This is because the theory, 

although supersymmetric, resembles QCD with no quarks, and so is an isolated theory 

of gluons and their superpartners only. The Lagrangian for this theory has the same 

form as Eq. (3.79) in Section 3.3 with gauge group SU(N). We now write the gauge 

field strength as v~n = er::nn, where er::nn is the gluon field strength. The Lagrangian for 

N = 1 supersymmetric gluodynamics is then: 

£ 1 ea eamn 13 *ea eamn i )_aD m ;..a 
N=l SYM - -

49
2 mn + 321!"2 mn + 2g2 m/ · (4.7) 

The superpartner of the gluon (vector) field in Eq. (4.7) is ;..a, known as the gluino field. 

Generically, the fermionic superpartner field of a gauge field is termed a gaugino field. 

Like QCD, N = 1 supersymmetric gluodynamics is a strong coupling theory with asymp

totic freedom and a confining phase. There exist \iVard identities which constrain the 

theory. Some correlation functions can be deduced up to a constant factor. Examples 

of this include gauge invariant multi-point functions of the gluino operator in quantum 

N = 1 supersymmetric gauge theory. The gluino field ;..a has a two-point correlator 

(a composite operator) which assumes a non-zero vacuum expectation value; this is the 

N = 1 gluino condensate and was an early exact result. 

The calculation of theN= 1 gluino condensate has been the subject of some controversy 

[144]. This is because there once existed two apparently valid derivations of the conden

sate which were in disagreement. The first calculation of the condensate was performed 

using the semi-c~assical method; this is known as the strongly coupled instanton (SCI) 

approach. The second calculation uses the holomorphicity of the N = 1 prepotential in 

the theory and is known as the weakly coupled instanton (WCI) approach. 
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The respective results from these approaches give theN= 1 SU(N) gluino condensate 

as: 

[(N- 1)!(3N- 1)]1/N' 
(4.8) 

(4.9) 

These two purportedly exact expressions for the gluino condensate are valid at both weak 

and strong coupling, and receive no perturbative or non-perturbative quantum correc

tions. However, they cannot both be correct because of this exactness. 

In the strongly coupled instanton approach, the semi-classical method is employed. This 

method, which is strictly only valid at weak coupling, is used in the strong coupling regime 

of the N = 1 theory, which is a strongly coupled theory. The use of the semi-classical 

method in this regime is suspect since weak coupling is implicitly assumed within this 

method and although instanton effects become significant at strong coupling, their effects 

can only be calculated at weak coupling (without appeal to duality). 

In comparison, the weakly coupled instanton approach extends the weakly coupled phase 

of the N = 1 theory to the strongly coupled phase by using the holomorphic property of 

the N = 1 prepotential :F. A weakly coupled method is not used and a valid calculation 

at strong coupling can be directly performed using the properties of the theory which 

arise from supersymmetry. 

It has been shown that the result derived using the strongly coupled instanton method is 

erroneous. TheN= 1 gluino condensate has now been calculated exactly for all simple 

gauge groups by Davies et al. [144]. This was achieved via one-monopole calculations in 

special settings, wherein monopoles assume the role of instantons. 

Exact Superpotentials 

That theN = 1 superpotential W is not renormalized perturbatively does not rule out the 

appearance of non-perturbative contributions to W. From a phenomenological perspec

tive, it is desirable that low energy supersymmetry has been broken non-perturbatively. 

The N = 1 non-renormalization theorem can be obtained via general arguments put 

forward by Seiberg [141, 146] and inspired by developments in string theory. These 
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arguments can be used to extend perturbative non-renormalization theorems to non

perturbative cases, thereby providing information about the complete theory, which will 

include both perturbative and non-perturbative effects in general. 

As described in Section 3.3 of Chapter 3, the complexified coupling constant T can be 

interpreted as a chiral superfield in theN= 1 supersymmetric Yang-Mills Lagrangian. 

The coupling constants {gi} which appear in the superpotential W can also be consid

ered as (background) chiral superfields. In the low energy effective theory, the effective 

superpotential Weff is constrained by [141]: 

1. The global symmetry group present when all the coupling constants are zero, gi = 0. 

2. Local holomorphicity of the superpotential: Weff depends only on {gi} and not 

{gl}, treating the set of coupling constants {gi} as chiral superfields. 

3. Asymptotic freedom of the couplings constants {gi} and the presence of a strongly 

coupled regime. 

4. The weak coupling limit, in which {gi} -+ 0 for all i. Care must be taken in 

integrating out the chiral superfields {gi} when deriving the effective action, as 

Weff may be non-analytic at the values {gi} = 0. 

These constraints are sufficient in many cases to derive non-renormalization theorems 

and some exact results, including the perturbative N = 1 non-renormalization theorem. 

Unusually, these lead to the conclusion that Weff is in general a function not consistent 

with the global symmetries of the action from which the Wilsonian effective action is 

obtained. 

An example of the use of the criteria given by Seiberg [141] is its application to the 

effective superpotential in the renormalized Wess-Zumino model, described briefly in 

Chapter 3. The effective superpotential Weff can be shown, using the above constraints, 

to be equal to the tree-level superpotential of the theory. The superpotential receives no 

perturbative or non-perturbative quantum corrections to any order in the gauge coupling 

constant. Hence, in the Wess-Zumino model, the result Weff = W, where W is the tree

level superpotential, is exact. Previously, the non-renormalization of the Wess-Zumino 

superpotential was known only perturbatively, which indicates that the above constraints 
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can be used to obtain powerful results. 

Given theN= 1 supersymmetric non-renormalization theorem, the objects in the theory 

which require renormalization are the chiral superfield <I>, the vector superfield V and the 

gauge coupling, which are renormalized respectively as foJlows: 

( 4.10) 

with the condition Z9 ZY 2 = 1, where Z,Zv and Z9 are the renormalization factors for 

the respective fields. The renormalized N = 1 supersymmetric Yang-Mills gauge theory 

can be characterised by the beta function (3 (g) and the anomalous dimensions matrix lij 

of the chiral superfield <Pi, which are defined as: 

(3(g) 
og 

f.L {) f.L ' 

a(z1/2)kj 
( z -1 /2) ik --'-------'--

f.L {) f.L ' 

(4.11) 

( 4.12) 

where J.L is the renormalization scale of the theory. Exact results for the superpotential 

in supersymmetric field theories are important for understanding the dynamics of these 

theories, and also for investigating dynamical breaking of supersymmetry. 

We also note that the instanton induced superpotential which arises inN = 1 supersym

metric SU(N) QCD with N1 massless fundamental matter multiplets has been deter

mined exactly [142]. Non-perturbative effects, namely instantons, generate a superpoten

tial in N = 1 supersymmetric QCD coupled to massless matter fields, as demonstrated 

in [130]. The form of this superpotential is fixed up to a numerical coefficient by the 

requirements of supersymmetry, gauge invariance and global symmetries. The superpo

tential breaks supersymmetry, and so instantons break supersymmetry in this case [130]. 

The numerical coefficient of the superpotential, which is non-zero, has been calculated by 

explicitly determining the superpotential directly from instanton calculations [142], and 

constitutes an exact non-perturbative result. 

The derivations of these exact results are lengthy and would lead us to digress from the 

theories of primary interest in this thesis, namely N = 2 supersymmetric SU(N) gauge 

theories, and so we do not describe further exact results inN= 1 supersymmetric gauge 

theories here. 

Results in supersymmetric gauge theories can sometimes only be found when the theory 
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is in a particular phase. This will be the case in Subsection 4.5.2, where results relating 

to the vacuum structure of N = 1 supersymmetric quantum Yang-Mills gauge theory 

in certain phases, made possible by a form of duality, known as Seiberg duality, shall be 

briefly described. 

In this chapter we have not endeavoured to describe the many exact results inN = 1 

supersymmetric Abelian gauge theories, such as N = 1 supersymmetric quantum elec

trodynamics, abbreviated toN = 1 SQED. It is notable that inN = 1 SQED the low 

energy effective action of the theory is exactly calculable in some cases [143], which an

ticipates the results for N = 2 supersymmetric Yang-Mills gauge theory described in 

Chapter 5. Also in Chapter 5 we will describe the prepotential of N = 2 supersymmetric 

QCD (in the context of Seiberg-Witten theory), which is significant because it is pertur

batively exact but receives non-perturbative corrections, which can be exactly calculated. 

4.3 Exact Results in N 4 Supersymmetric Gauge 

Theories 

For N = 4 supersymmetric Yang-Mills gauge theory, the exact results often assume the 

form of a null result. As in any supersymmetric gauge theory, the vacuum energy is 

precisely zero, as expressed in Eq. ( 4.1). 

Using the NSVZ beta function [136, 139], one can deduce the exact beta function of 

quantum N = 4 supersymmetric Yang-Mills gauge theory. The formula for f3(g)Nszv 

given in Eq. (4.5), can be used to derive the beta function of N = 4 supersymmetric 

Yang-Mills theory by the addition of appropriate matter fields. In practice, this can be 

done by imposing condition on the N = 2 supersymmetric beta function. For N = 4 

theories, one has .Ei T(Ri) = 2Ta, with the following result for theN= 4 beta function: 

f3N=4(g) = 0. ( 4.13) 

This result for f3N=4(g) means that the quantum N = 4 theory is scale invariant and 

ultra-violet finite. The coupling constant g is fixed to be a constant at all energy scales 

and the physical content of the theory does not change with variations in g. The \iVilso-
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nian beta function for this theory also vanishes and receives no quantum perturbative or 

non-perturbative corrections. This makes theN= 4 an intriguing model of elementary 

particles due to its finiteness. Theories with N = 4 supersymmetry also exhibit a wealth 

of correspondences with various string theories; the first such and most significant cor

respondence of this kind was the 'AdS/CFT' correspondence, a detailed review of which 

can be found in [277]. 

Further exact results exist for N = 4 supersymmetric gauge theories, but some of these 

rely upon the concept of electric-magnetic duality, a property of potentially great physical 

importance which the theory is conjectured to exhibit. In Section 4.4 below we describe 

this property and some of the evidence which supports its existence inN= 4 theories. 

4.4 Duality in N = 4 Supersymmetric Gauge 

Theories 

In this section we review Montonen-Olive electric-magnetic duality inN= 4 supersym

metric gauge theories. This is a conjectural duality relating electric and magnetic states 

in gauge theories. TheN = 4 supersymmetric Yang-Mills gauge theory is a candidate 

theory in which the Montonen-Olive electric-magnetic duality may be realized exactly. 

It is also the simplest theory which may support the conjecture. In Chapter 5 we shall 

describe N = 2 supersymmetric gauge theories, in which an effective form of Montonen

Olive electric-magnetic duality may be present. 

Duality in field theory concerns the relation between two different types of behaviour 

in a theory or the relation between two different theories. An example of the latter is 

the equivalence, at the quantum level, of the sine-Gordon and Thirring models in two 

spacetime dimensions [ 19 1]. In this section we will des cri be the former kind of duality, 

in which different regimes of behaviour within the same theory are related, for N = 4 

supersymmetric Yang-Mills gauge theory. From such examples, the following general 

properties regarding duality can be given: 

1. Duality relates the strong coupling regime and the weak coupling regime. 
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2. Duality interchanges the fundamental (point-like) particle states with solitonic (ex

tended object) states, by which the same theory may be described by different 

forms of particles. The complete particle spectrum then contains the fields in the 

classical theory and the soliton states. 

3. Duality interchanges Noether currents with topological currents. 

In the following subsections we make use of the reviews on duality in field theory [159, 198, 

199] and also the reviews [153, 191, 190]. We note the original papers in [155, 156, 157] 

regarding S-duality inN= 4 supersymmetric gauge theories. We begin first by describ

ing the presence of magnetic monopoles in gauge theories in Subsection 4.4.1 below. 

4.4.1 Magnetic Monopoles in Gauge Theories 

In this subsection we describe magnetic monopoles in gauge theories. We describe the 

Dirac monopole [148], the first known magnetic monopole in field theory. The Dirac 

monopole occurs in quantum electrodynamics if the existence of a magnetic counterpart 

to the electric current is postulated. Such a postulate requires electric-magnetic duality 

in the theory, and the Dirac quantization condition relates the electric and magnetic 

coupling constants in the theory. 

We then describe magnetic monopoles in non-Abelian gauge theories, and the first such 

monopole discovered in these theories, the 't Hoof-Polyakov monopole [149]. The Bo

gomol'nyi bound [150], a fundamental property of magnetic monopoles and dyons in 

non-Abelian gauge theories, is then described. Associated with this bound are a new 

form of particle state, named BPS states [150], which are important states in quantum 

field theories. We follow the treatment of these topics given in the reviews [153, 191, 190]. 

Magnetic Monopoles in Abelian Gauge Theories: The Dirac Monopole 

The Maxwell equations for classical electromagnetism in four spacetime dimensions can 

be written as 

-J·m a *vmn 
' n 0, ( 4.14) 
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where jm is the four-vector electric current, Vmn is the Abelian electromagnetic gauge 

field strength, defined as Vmn = OmVn- OnVm and *vmn is dual of Vmn as defined Eq. (2.5) 

in Section 2.2 of Chapter 2. In vacuo, for which jm = 0, there exists the following duality 

rotations under which Maxwell's equations for the vector components of Vmn, namely the 

electric and magnetic field strengths, respectively, E and B are invariant: 

(E + iB) -+ (E' + iB') = (E + iB) -+ e-iv(E + iB), (4.15) 

where vis an arbitrary angle. ·when v = 1r /2, this duality becomes a discrete symmetry, 

which we label as D, given by: 

D : E -+ E' = B B -+ B' = -E. ) (4.16) 

The square of the mapping D gives charge conjugation, which we label as C: 

C = D2
: (E, B)-+ (E', B') = ( -E, -B). ( 4.17) 

The mapping D is equivalent to a mapping relating the electromagnetic gauge field 

strength and its dual: 

(4.18) 

This equivalence can only hold in four spacetime dimensions since only in this dimension 

of spacetime do the electric and magnetic component fields transform as vectors. The 

duality symmetry of Eq. (4.15) is broken if there is a non-zero current jm, that is, when 

matter is present. However, it can be restored by introducing a non-zero purely magnetic 

current km, such that 

( 4.19) 

When this is done, the discrete symmetry Din Eq. (4.18) acts on the currents as: 

( 4.20) 

So far this electric-magnetic symmetry is a classical phenomenon. The appearance of 

a purely magnetic counterpart to the electric current to preserve the discrete electric

magnetic symmetry (electric-magnetic duality) above prompts the introduction of corre

sponding quanta for the magnetic current, which possess only magnetic charge. Particles 
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which possess free magnetic charge and no other charge are known as magnetic monopoles. 

In quantum electrodynamics, electric-magnetic duality is present if the electromagnetic 

vector potential Vm, which now also describes the magnetic monopole, is singular inside 

the monopole. A consistent solution for the vector potential Vm can be found on the 

sphere 5 2
. This solution consists of two vector potentials, one for each hemisphere of 

5 2
, related by a gauge transformation, and both potentials reproduce the same global 

magnetic field strength. This e;nsures that the field strength Vmn remains continuous and 

unambiguous. 

To be consistent vvith quantum mechanics, one requires that the phase of the wavefunc

tion describing the magnetic monopole is continous. This imposes the following condition 

on the unit of magnetic charge g and the unit of electric charge e: 

eg = 21rnnc, n E Z, ( 4.21) 

which is known as the Dirac quantization condition, and was first derived by Dirac [148]. 

Thus by assuming the existence of free magnetic charges, the quantization of electric 

charge is explained and the experimental fact that absolute values of the electron and 

proton charge are equal is also explained. The quantization condition asserts an inverse 

relation between the bare electric and bare magnetic running coupling constants of the 

theory, namely: 

g = ( 4.22) e 

Thus the strong coupling regime in the theory described by electrons is related to the 

weak coupling theory described by magnetic monopoles. Through this relation, there 

appears to be two equivalent descriptions of the theory: one in terms of electric quanta, 

and one in terms of magnetic quanta, which can be transferred between by means (and 

the consequences of) of the Dirac quantization condition Eq. ( 4.21). 

The Dirac quantization condition in Eq. ( 4.21) can be generalized to the case of dyons, 

which are particles possessing both electric and magnetic charges (and no other charge). 

The result is the Dirac-Zwanziger-Schwinger quantization condition [191], which relates 

a dyon with electric and magnetic charges ( q1, gi), respectively, to a dyon with charges 

( q2, g2): 

21rnnc, n E Z, ( 4.23) 
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restricts the allowed quantized charges of dyons to a two-dimensional lattice. When a 

magnetic monopole also carries electric charge, and is thus a dyon, the expression of the 

electric-magnetic duality of Maxwell's equations becomes: 

e + ig--+ e' + ig' = e-iv(e + ig), ( 4.24) 

which the Dirac quantization Eq. (4.21) condition does not obey. The Dirac monopole 

and dyons do not exist in the particle spectrum of quantum electrodynamics. A local 

theory which describes both electrons and monopoles does not exist. 

If electric-magnetic duality is to exist in a Abelian gauge theory, it requires the existence 

of magnetic monopoles and invariance for all electric and magnetic charges under charge 

conjugation (the mapping C in Eq. (4.17)). Furthermore, any gauge theory containing a 

U(1) compact subgroup (which will generate electric charge) of the gauge group will give 

rise to the possibility of magnetic monopoles in the theory. 

Magnetic Monopoles in non-Abelian Gauge Theories: The 't Hoojt-Polyakov Monopole 

The simplest example of electric-magnetic duality in a non-Abelian (i.e. Yang-Mills) 

gauge theory is that conjectured for 80(3) or 8U(2) Yang-Mills-Higgs gauge theory. The 

case of 80(3) Yang-Mills-Higgs gauge theory is known as Georgi-Glashow theory [154], 

and consists of 80(3) Yang-Mills theory coupled to a Higgs triplet field <Pa. This theory 

has the following Lagrangian: 

(4.25) 

where v~n is the non-Abelian gauge field strength, Dm is the covariant derivative, and 

V ( <P) is the Higgs potential given by: 

( 4.26) 

in which v is the constant vacuum expectation value of the Higgs field <Pa, and ). is a 

parameter of the theory. 

Static finite-energy solutions to the equations of motion for the Lagrangian £00 exist 

and the theory admits gauge fields with non-zero magnetic charge, that is, magnetic 
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monopoles. These are referred to as 't Hooft-Polyakov monopoles [149], after the authors 

who jointly discovered them. 

In the Georgi-Glashow model, it is the Higgs field which is responsible for the non-zero 

magnetic charge of the gauge field. This can be seen in the general solution to the 

equations of motion for the static finite-energy action: 

~<I>avmn 
) 

V 

-~Eabc<l>a8m<I>b8n<I>c + 8mVn- 8nVm. 
ev 

( 4.27) 

The magnetic charge g in this model obeys the Dirac quantization condition except for 

a factor of two: eg = 47rnnc. The factor of two arises from the scaling of electric charge 

in fundamental representations of SU(2). 

The appearance of magnetic monopoles in the Georgi-Glashow model [154] is an instance 

of a more general phenomenon, elucidated by Goddard et. al [151]. Given a gauge theory, 

be it Abelian or non-Abelian, with a gauge group G which is broken to a subgroup H 

by the presence of non-zero vacuum expectation values of a Higgs field, the theory will 

include magnetic monopoles as solutions to the equations of motion [151]. The topology 

of the Higgs vacuum can be classified by the homotopy group 1r2 ( G /H). General Dirac 

monopole configurations can be constructed from Abelian gauge fields with gauge group 

H in a suitable way, and the topology of these configurations can be classified via the 

homotopy group 1r 1 (H). Via the isomorphism: 

( 4.28) 

it is evident that the Higgs mechanism, by breaking non-Abelian gauge invariance to a 

smaller gauge invariance, produces magnetic monopoles in the process of doing so. Thus 

any non-Abelian gauge theories which includes Higgs fields that break non-Abelian gauge 

invariance shall possess magnetic monopoles in its particle spectrum [149]. 

The Bogomol'nyi Bound and BPS States 

The Georgi-Glashow model [154], defined by the Lagrangian in Eq. (4.25), admits static 

magnetic monopole solutions with finite mass. When the electric charge of the gauge 
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field in the Georgi-Glashow model is set to zero, E = 0, an expression for the mass of 

the purely magnetic gauge field, which is the magnetic monopole field, can be obtained. 

The monopole· mass .MM is given by: 

MM f d3r [~(Ba. Ba + D<Pa. D<Pa) + V(<P)l' 

> J d3r~(Ba · Ba + D<Pa · D<Pa), 

~I d3r(Ba- D<Pa)(Ba- D<Pa) + vg. 

( 4.29) 

( 4.30) 

The form of the gauge field strength in Eq. ( 4.27) and the Bianchi identity D · Ba = 0 

together with Eqs. ( 4.30,4.30) imply the following bound on the monopole mass; this is 

the Bogomol'nyi bound [150]: 

( 4.31) 

The bound in Eq. (4.31) is saturated if and only if the Higgs potential vanishes, V(<P) = 0, 

and if the Bogomol'nyi equation holds, which solves the Bianchi identity D · B~ = 0: 

( 4.32) 

The Bogomol'nyi equation is a first order equation which implies the second order equa

tions of motion. The limit on monopole mass provided by the Bogomol'nyi bound can 

be re-expressed in terms of the equations of motion. The resulting equations are known 

as the Bogomol'nyi-Prasad-Sommerfield (BPS) equations [150], which assume the form: 

(4.33) 

The BPS limit is the limit A---+ 0, which gives a vanishing Higgs potential (V(<P) ---+ 0) 

in Eq. ( 4.26). 

In the quantum Georgi-Glashow theory, the quantum version of the classical BPS solu

tion is a new type of particle state, termed a BPS state. The BPS state is not present in 

the perturbative particle spectrum of the Georgi-Glashow model and is therefore a non

perturbative state. The mass of the BPS state is proportional to the magnetic coupling 

constant g, and via electric-magnetic duality inversely proportional to the gauge coupling 

constant e. Hence the BPS state cannot be observed in the weak coupling limit e ---+ 0, 

since the BPS mass tends to infinity in this limit. 
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The Bogomol'nyi equation Eq. (4.32) in IR3 (three spacetime dimensions) can be rewrit

ten as the self-dual Yang-Mills equations on IR4 if the Higgs field is identified with the 

fourth component of the vector potential, v4 = <I>. 

The electric-magnetic duality transformation expressed in Eq. ( 4.24) implies a general

ization of the Bogomol'nyi bound Eq. (4.31) to include dyons. The general mass bound 

on dyons of charge (q, g) is given by the BPS mass bound: 

( 4.34) 

which is invariant under the electric-magnetic duality transformation Eq. (4.24). The 

BPS mass bound is a universal formula in the theory: it applies equally to fundamental 

quanta and to solitons such as monopoles and dyons. Semi-classical quantization of 

solutions of the BPS equations Eq. ( 4.33) leads to a charge quantization analogous to the 

Dirac quantization condition Eq. (4.21): 

( 4.35) 

In Chapter 5 we will describe the role of magnetic monopoles and dyons, and exact re

sults concerning them, inN= 2 supersymmetric Yang-Mills gauge theory. We shall also 

describe how the BPS mass bound arises naturally inN= 2 supersymmetric Yang-Mills 

gauge theory. 

4.4.2 S-Duality in N 

Theory 

4 Supersymmetric Yang-Mills Gauge 

In this subsection we describe a precise conjecture concerning electric-magnetic duality 

in quantum field theory made by Montonen and Olive [152]. This conjecture explores the 

consequences of magnetic degrees of freedom in a quantum field theory. This conjecture 

is useful in understanding the strongly coupled regime of quantum field theories, and 

thus, the behaviours of quantum field theories in general. We also describe the Wit

ten effect, which is the consequence of the inclusion of f) terms for magnetic charges in 

non-Abelian gauge theories. By incorporating a fJ term in the Lagrangians describing 

these non-Abelian gauge theories, the conjectured electric-magnetic duality of Montonen 
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and Olive can be extended to a duality known as S-duality. An exact S-duality may be 

present inN = 4 supersymmetric Yang-Mills gauge theory, and we briefly describe the 

evidence for this in the last part of this subsection. 

M ontonen-Olive Electric- Magnetic Duality 

We now describe the conjecture made by Montonen and Olive [152] on electric-magnetic 

duality in quantum field theory. Given a gauge field theory with gauge group G broken to 

a subgroup H by the presence of a non-vanishing vacuum expectation value of the Higgs 

field, Goddard et. al [151] attempted to classify the monopole configurations invariant 

under the subgroup H. Via group theory arguments, they derived a general charge 

quantization condition for the above scenario of the gauge symmetry group G breaking 

to a subgroup H. The unbroken subgroup H must be compact and connected, which are 

also the criteria applied to gauge groups. If H is the electric group (for example, with 

G = S0(3) in the Georgi-Glashow model, H = U(1)), and Hv is the magnetic group of 

the theory, under which the monopole is invariant, then these groups are related by their 

group weight lattices. The dual relation between them is: 

( 4.36) 

For Hv = SU(N), the dual relation Eq. (4.36) gives (SU(N))v = SU(N)/ZN. 

The Montonen-Olive [152] conjecture is based on this result [151]. The Montonen-Olive 

conjecture states that [152]: 

1. Any gauge theory is characterised by the product H x Hv. 

2. There exist two equivalent descriptions of the theory described by the same La

grangian: (i) one in terms of H-gauge fields with fundamental charged particles in 

the perturbative spectrum, and (ii) one in terms of Hv-gauge fields with solitons, 

such as monopoles, in the perturbative spectrum. 

A consequence of this is that Noether currents, arising from electric charges, are m

terchanged with topological currents under the duality relating H and Hv. Then the 

coupling constant q of the (electric) theory described by H is replaced with the coupling 
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constant g of the (magnetic) theory described by Hv. Via the Dirac quantization con

dition, one has g ex 1/ q, and thus the strongly coupled regime of one theory is related 

to the weakly coupled regime in the other. By this fact the Montonen-Olive conjecture 

resists straightforward proof or disproof. The Montonen-Olive electric-magnetic duality 

conjecture is non-perturbative in nature. Thus the conjecture cannot be proven using 

perturbation theory alone. Theories in which there are restrictions on the perturbative 

and non-perturbative behaviour of the theory, so that they can be controlled, provide 

the most suitable testing ground for the conjecture. Supersymmetric gauge theories are 

an example of such theories and in particular N = 4 supersymmetric Yang-Mills gauge 

theory is a candidate theory in which the Montonen-Olive conjecture may be exactly 

realized. 

The Witten Effect 

The BPS states present in the quantum Georgi-Glashow model are not indicative of the 

quantum Georgi-Glashow model being fully invariant under electric-magnetic duality. 

This is because in the Georgi-Glashow model, all particle state masses receive quantum 

corrections. Also, there exist massive gauge bosons with spin in the Georgi-Glashow 

model, and this implies that the monopole states should also have spin; the origin of this 

in the Georgi-G lashow model is not clear. 

Restrictions must be placed on the Georgi-Glashow model and similar theories if they are 

to describe dyons and also be invariant under electric-magnetic duality. These additional 

constraints are provided by supersymmetry, and the inclusion of a '19-term, which were 

described in Chapter 2 and Chapter 3, respectively. When a '19 term is added to the 

Lagrangian of a Yang-Mills gauge theory, the allowed values of the electric charge in the 

monopole sector become shifted, and the monopole acquires an electric charge, becoming 

a dyon. In the Georgi-Glashow model, this electric shift of the magnetic charge can be 

expressed as: 
e'/9 

q = ene- -nm, ne,nm E Z, 
21f 

( 4.37) 

where the Dirac quantization condition Eq. ( 4.21) has been used. The phenomenon of 

magnetic monopoles acquiring one unit of electric charge through a shift of the '19 angle 
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by f) --+ f)+ 27T is known as the Witten effect [168]. Thus for any Yang-Mills gauge theory 

Lagrangian with a f) term, the magnetic charge of a dyon will always contribute to its 

electric charge, provided f) is non-zero. 

S-Duality 

The Montonen-Olive electric-magnetic duality described above can be extended to those 

gauge theories which include a f) term in their Lagrangian. The result is a general

ized Montonen-Olive duality known as S-duality. In supersymmetric gauge theories, the 

inclusion of a f) term in the Lagrangian will give .the most general supersymmetric Yang

Mills term in the theory and the coupling constants g and f) can be combined into the 

complexified coupling constant T, defined as in Eq. (2.17) of Section 2.2 of Chapter 2: 

f) 41Ti 
T = -+-. 

27T g2 
( 4.38) 

The physical content of the theory will be invariant under the duality transformation: 

T: T --+ 7' = T + 1, ( 4.39) 

which is the effect of shifting {) by 27T on the complex coupling T. The mapping T in 

Eq. ( 4.39) shifts the electric charge q by one unit if there is a magnetic charge of one 

unit (nm = 1) already present. Hence this is the Witten effect expressed in terms of the 

complex coupling T. 

Furthermore, the Montonen-Olive electric-magnetic duality can be expressed as the fol

lowing duality transformation on T: 

S: T --+ T
1 1 

T 
( 4.40) 

Together, the duality transformation TS acting on T can be written as: 

aT+ b 
TS: T --+ T

1 
= d' {a, b, e, d} E Z, 

eT+ 
( 4.41) 

where ad-be= 1. The full duality transformation TS is known asS-duality and generates 

the special linear group of 2 x 2 matrices, SL(2, Z). The S-duality group SL(2, Z), is 
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also known as the modular group or infinite duality group. This acts on the quantum 

numbers for electric and magnetic charge, ne and nm, respectively, as follows: 

TS (:) -+ ( :J (: =:) ( ::) ( 4.42) 

S-duality can be realized using the representation of ne and nm states as points in the 

complex plane. In terms of the new variables a and an, defined by: 

a = ve, an = Ta, ( 4.43) 

so that: 

( 4.44) 

the mappings T and S, defined in Eq. (4.39), and Eq. (4.40), respectively, can be expressed 

as: 

T ( 4.45) 

s ( 4.46) 

and the BPS mass bound becomes 

( 4.47) 

The BPS mass bound for a state on the two-dimensional lattice on which the electric and 

magnetic charges reside, given by Eq. ( 4.44), is then proportional to the distance from 

the origin of the state on the electric-magnetic lattice. 

S-Duality inN= 4 supersymmetric Yang-Mills theory 

We now describe the appearance of S-duality inN= 4 supersymmetric Yang-Mills gauge 

theory. The connection between Montonen-Olive electric-magnetic duality and N = 4 

supersymmetric Yang-Mills gauge theory is apparent from the fact that the equations 

of motion of the theory admit BPS monopole solutions. Furthermore, the equations of 

motion are such that any BPS monopole solution can be embedded in them. TheN= 4 



............ -------------------
CHAPTER 4. EXACT RESULTS IN SUSY GAUGE THEORIES I 137 

BPS monopoles belong to anN= 4 (short) multiplet in the theory and can be obtained 

from the theory perturbatively. Remarkably, the multiplet of N = 4 BPS monopoles 

is isomorphic to the N = 4 (short) multiplet of vector bosons in the theory. Thus a 

multiplet of solitonic states is isomorphic to a multiplet of massive fundamental particle 

states inN= 4 supersymmetric Yang-Mills gauge theory [159]. 

The particle states contained in these multiplets all saturate a supersymmetry mass bound 

which coincides with the BPS mass bound for dyons (itself the generalized Bogomol'nyi 

mass bound) given by Eq. (4.34). 

A further indication that the N = 4 theory is S-dual is that it has modular invariant 

partition functions; that is, it has partition functions which are modular forms, invariant 

under the modular group SL(2, Z). This property is required by S-duality, and is satisfied 

by N = 4 theories [158]. 

String theory has provided the context for more recent evidence of S-duality in N = 4 

theories. Compactified heterotic superstring theory has a low energy effective action 

which is equivalent toN= 4 supersymmetric Yang-Mills gauge theory. Using this equiv

alence, it was shown by Sen [156] that S-duality implies bound states of dyons and BPS 

monopoles in the theory. An existence proof for these bound states in special cases has 

been given in [156], which further lends support to N = 4 supersymmetric Yang-Mills 

gauge theory beingS-dual (see also the work in [157]). 

These properties are perhaps the strongest indication that the N = 4 theory is ex

actly Montonen-Olive dual. Since the multiplets containing the states dual to each 

other are isomorphic, the N = 4 theory is, conjecturally, exactly Montonen-Olive self

dual. ·without the restrictions on the perturbative and non-perturbative behaviour of 

the quantum N = 4 theory provided by supersymmetry, which include results such as 

non-renormalization theorems, deriving these properties may not have been possible. 

Observing that the N = 4 theory behaves as an exactly Montonen-Olive self-dual the

ory does not constitute proof that the theory is self-dual. This is one of the drawbacks 

of the Montonen-Olive conjecture. Testing and proving the Montonen-Olive conjecture 

requires knowledge and control of the strongly coupled regime in non-Abelian gauge 

theories, which is difficult to obtain. This drawback of the conjecture is common to su

persymmetric and non-supersymmetric gauge theories. 
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Supersymmetry is however able to resolve the other two main drawbacks of the Montenon

Olive conjecture. In gauge theories other than supersymmetric Yang-Mills gauge theo

ries, the invariance of the particle spectrum under duality transformations may be broken 

due to radiative corrections to the Bogomol'nyi bound through renormalization. In the 

case of N = 4 supersymmetric Yang-Mills theory, the classical Bogomol'nyi bound re

ceives no quantum corrections, and so this cannot occur. Furthermore, in general, if BPS 

monopoles are to be interpreted as gauge particles, one would expect them to be spin one 

particles. However, due to their rotational symmetry they appear to be spin zero parti

cles. We will return to the concept of S-duality in the context of N = 2 supersymmetric 

gauge theories in Chapter 5. 

4.5 Duality in N = 1 Supersymmetric Gauge 

Theories· 

In Subsection 4.4.2 of Section 4.4 the concept of Montonen-Olive electric-magnetic dual

ity was introduced and evidence for this conjecture inN= 4 supersymmetric Yang-Mills 

gauge theory was described. In this section we shall briefly outline the work which has 

uncovered duality inN = 1 supersymmetric gauge theories. This duality in known as 

Seiberg duality. 

The basic statement of Seiberg duality in N = 1 supersyminetric gauge theories is that 

the low energy effective (or long distance) physics described by these theories for different 

gauge groups is the same. That is, the choice of gauge group is independent to some ex

tent of the low energy effective dynamics which the theory describes. This is essentially 

a differently phrased version of the Montonen-Olive conjecture for the case of effective 

N = 1 gauge theories. 

To prepare for our description of Seiberg duality in N = 1 theories, we first briefly 

describe the exact results pertaining to the quantum and classical moduli spaces of 

N = 1 theories with gauge group SU(N), in Subsection 4.5.1. Knowledge of the classical 

and quantum moduli spaces of these theories is useful for understanding the phases, or 
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regimes, of these theories. We briefly describe the phases of non-Abelian (i.e. Yang-Mills) 

gauge theories and the phases of N = 1 Yang-Mills theories in Subsection 4.5.2. Then 

in Subsection 4.5.3 we briefly describe Seiberg duality inN= 1 theories. 

In analogy to the reviews of Section 4.4 and Section 4.5, we shall describe exact results and 

their consequences inN= 2 supersymmetric gauge theories in Chapter 5. The results and 

concepts in N = 2 theories will overlap with the descriptions of N = 1 and N = 4 theo

ries in this chapter. In this section we make use of the reviews [138, 254, 255, 256, 257], 

and refer to the original papers in [145, 146, 147, 251, 252, 253]. 

4.5.1 The Moduli Space of N = 1 Supersymmetric Gauge The-
. 

ones 

Following the derivation of exact results for the superpotential in N = 1 supersymmetric 

gauge theories, the techniques used were applied to more general considerations regard

ing the space of vacua of these theories. Classically, the N = 1 supersymmetric theories 

have vacuum valleys, also known as fiat directions. These are points or lines in the field 

space where the potential of the theory is zero (hence the term 'fiat' directions) along 

which exist physically (i.e. gauge) inequivalent vacuum states (ground states). The set 

of all fiat directions in a classical supersymmetric theory can form a continuous manifold, 

and this is known as the classical moduli space, or classical moduli space of vacua. The 

moduli space is singular at the point where the number of massless fields increases and 

the degeneracy of these states cannot be removed by perturbative quantum corrections. 

That is, the vacuum degeneracy can persist in the quantum theory. Importantly, though, 

this vacuum degeneracy is sometimes removed, or 'lifted,' by non-perturbative quantum 

corrections, which can give rise to a superpotential which connects the vacuum states. 

In some theories, this does not occur, and the quantum moduli space is as degenerate as 

the classical moduli space. Singularities of the classical moduli space can be smoothed 

out in the quantum theory. 

In this subsection we describe some of the exact results obtained regarding the moduli 

spaces of N = 1 supersymmetric SU(N) Yang-Mills gauge theory with N1 matter multi-
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plets, also known as N = 1 SQCD, following Seiberg [145]. We denote the fundamental 

and anti-fundamental chiral matter superfields as Qi and Qi, respectively, with index 

i = 1, ... ,N. 

N = 1 Classical Moduli Space 

The classical moduli space Me of theN= 1 theory can be characterized by a constraint 

on the chiral matter superfields. Classical flat directions in the theory are given by specific 

matrix values of the superfields Qi and Qi. The constraints defining the moduli space 

take the form of conditions on gauge invariant combinations of the matter superfields. 

For the SU(2) theory with N1 matter multiplets, the constraints for Nf 2 2 are: 

0, 

( 4.48) 

( 4.49) 

where Vi] is a gauge invariant combination of the matter superfields and E is the totally 

antisymmetric tensor formed from the indices i1 , ... , i2N
1

, where i, j, k = 1, ... , N are 

gauge group indices. When V in Eq. (4.48) assumes a non-zero value, the global gauge 

symmetry of the theory is completely broken. 

For SU(N) theories with N > 2, the classical moduli space can be specifed in a similar 

way, as the constraints: 

( 4.50) 

(4.51) 

( 4.52) 

These gauge invariant combinations can be considered as particular matter superfields. 

For differing values of N1 the form of the classical moduli space differs. Furthermore, 

different points on the moduli space Me possess different global and gauge symmetries. 

A generic point on the moduli space will have an unbroken SU(N1 - N) gauge symmetry, 

and there exist singular points when B = B = 0. From such information one can deduce 

the structure of the classical moduli space for given values of N and N1. 
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N = 1 Quantum Moduli Space 

Information concerning the quantum moduli space for N = 1 theories is less readily 

obtained. One expects the classical moduli space Me to receive quantum corrections 

and using the Wilsonian effective action of the theory is one way in which the quantum 

moduli space Mq can be explored. Mass terms of the form mkQiQk can be added to the 

N = 1 superpotential W to control the theory along the fiat directions of the potential. 

The resulting theory then has massive matter multiplets provided mi -:f. 0. 

When det mi -:f. 0 all of the fiat directions of the theory are lifted by quantum corrections 

and thus are no longer fiat. Classically this would imply l\1 = B = B = 0. These values 

are modified by quantum corrections in the full quantum theory. 

When det mi = 0, the classical quantities become expectation values and the quantity 

M in Eq. ( 4.50) is modified to: 

M! = ( Q'Q•) = A3N-N,fN(detm%)'fN (~)> ( 4.53) 

where A is the low energy scale and the expectation value for M is exact. 

For Nf < N, an exact superpotential can be found using the criteria given by Seiberg in 

Section 4.2. For Nf 2: N, the classical vacuum degeneracy of the theory is not lifted and 

the quantum moduli space consists of these ground states. These results for the massive 

theory, however, do not extend to the case of zero mass, when mi = 0. This is because 

a non-trivial quantum moduli space, denoted Mq,m--+O exists in the limit mi ---+ 0. The 

Wilsonian effective action of the theory will include all of the massless fields in the theory 

and can be expected correctly give the low energy dynamics of the 'light' fields which are 

not integrated out of the Lagrangian. It may not give the correct dynamics for massive 

fields since some of these will have been integrated out of the Lagrangian (as they will 

be 'heavy' fields which possess mass greater than the energy scale A above which fields 

and modes are integrated out). Thus it is important to consider theN= 1 theory with 

massless chiral matter multiplets. 

In the work of Seiberg, N = 1 SQCD with massless matter multiplets is considered for 

various values of N1. For N1 = N, the quantum theory is modified such that the quantum 

space Mq,m--+O resembles the classical space Me except at the classical singularities. The 
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quantum space has a singularity associated with the appearance of massless, or 'light,' 

fields which may be present on Mq,m-+O· These new massless fields arise when the super

field combinations V, M, B, B become massless. Collectively, these massless superfields 

are the moduli of the theory, which parameterize the moduli space. 

At the points where massless fields emerge, the global symmetry of the theory remains 

unbroken, and may be enhanced. Since the quantum moduli space Mq,m-+O is different 

to the classical moduli space Me, the low energy effective theory may have soliton states, 

which are not present on the classical moduli space. 

For Nf = N + 1, the quantum moduli space is the same as the classical moduli space: 

Mq,m-+O ~ Me, except at singularities, where other 'light' fields may also be present on 

Mq,m-+0· 

In both the cases of Nf = N and Nf = N + 1, the quantum N = 1 superpotential has 

equations of motion which serve to define the moduli space. 

For Nf 2': N + 2, again the quantum moduli space is equivalent to the classical moduli 

space, except at singularities. Massless matter superfields only become possible if the 

theory is scale invariant, which it is for certain ranges of Nf and N. The exact nature of 

the quantum moduli space in this case is uncertain due to the interpretation of singular 

points on Mq,m-+0· 

Perturbations on the quantum moduli space can also reveal more about the structure of 

the massless quantum theory. Such perturbations can be acheived by adding mass terms 

and additional superfield terms to theN = 1 superpotential. Then vacua and singular 

points on the moduli space can be identified. There can exist a set of inequivalent discrete 

vacua in addition to the set of continuous inequivalent ground states in the theory. 

In summary, the quantum moduli space for N = 1 SQCD can be elucidated almost 

completely for the low energy vVilsonian effective theory. The interpretation of singular 

points on the quantum moduli space, and how classical singular points become modified 

in the quantum space, are important problems in attempts to comprehend the structure 

of the moduli space of the quantum theory. In Chapter 5 we will describe a similar 

analysis for N = 2 supersymmetic Yang-Mills gauge theory and N = 2 SQCD, and the 

exact results which follow from this. 
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4.5.2 Phases of N = 1 Supersymmetric Gauge Theories 

In general, gauge theories (both Abelian and non-Abelian) exist in a number of dynamical 

regimes referred to as phases. A phase is essentially a space spe'cified by the parameters 

in a theory when they assume certain values or behaviour. Variations in the parameters 

of the theory will induce transitions between these phases. The choice of the vacuum 

state also dictates in which phase the theory is in. 

In this subsection we describe the phases of non-Abelian gauge theories in general and 

then specialise to the case of the phases of N = 1 supersymmetric gauge theories. In 

supersymmetric field theories, there can exist many inequivalent vacua for the same set 

of parameter values. Each of the vacua may be in a different phase, and so each may 

form the ground state for the theory in a different phase. This indicates the significance 

of phases in supersymmetric gauge theories. 

Phases of non-Abelian Gauge Theories 

Yang-Mills or non-Abelian gauge theories exist in four phases. These phases, except for 

the confining phase, are also present in Abelian gauge theories. These phases are the free 

or Landau phase, the Higgs phase, the Coulomb phase and the confining phase. The four 

phases of non-Abelian gauge theories are characterized in general terms by the following 

properties [138]. 

Free phase: occurs when the mass parameter vanishes and the scalar fields of the the

ory have vanishing vacuum expectation values. Any long-range potentials are screened 

by quantum effects. Massless gauge bosons become 'dressed' by virtual particles. The 

asymptotic limit of the massless theory results in a free gauge boson and massless matter 

fields. The matter fields have their electric (i.e. Abelian) charges completely screened by 

vacuum condensates of scalar fields. No conventially defined S-matrix exists and there 

are no localized asymptotic states. The theory is ill-defined at short distances. Also 

known as the Landau zero-charge phase. 
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Higgs phase: occurs when the mass parameter vanishes and the scalar fields of the theory 

assume non-vanishing vacuum expectation values. The gauge symmetry is spontaneously 

broken. Vector (boson) particles acquire mass via the Higgs mechanism. The electric 

charge of fields is screened by vacuum condensates. The free phase is a special point (of

ten the origin in field space) in the Higgs phase where the gauge symmetry is unbroken. 

Coulomb phase: occurs when the mass parameter is non-zero and the scalar fields of 

the theory have vanishing expectation values. The vacuum state is non-degenerate and 

thus unique. The potential for interaction between static electric charges tends towards 

a Coulombic potential. 

Confining phase: occurs only in Yang-Mills gauge field theories. This is a more com

plicated phase. The potential for interaction between static non-Abelian (i.e. colour) 

charges tends towards a linear function of the charge separation. Thus the long-range 

force between the colour charges increases with increasing distance and the charges cannot 

be separated at asymptotically large separations (as this would require infinite energy). 

Thus the colour charges are confined. Only at asymptotically short distances can they 

be separated; this is the phenomenon of asymptotic freedom. The Coulombic field of the 

Coulomb phase is replaced by a flux tube formed by the colour charge field. 

The Meissner effect in the Ginzburg-Landau theory of superconductivity exhibits (non

relativisticaJly) analogous behaviour. In the Meissner effect, magnetic charges are repelled 

from the vacuum by the formation of magnetic flux tubes which connect them. Thereby 

the magnetic charges form a condensate in the vacuum. In the confining phase of a 

Yang-Mills gauge theory, colour charges are repelled by the vacuum and are connected 

by flux tubes. Magnetic monopoles are theorized to condense in these theories and to 

induce the formation of colour flux tubes and prevent electric charges condensing. 

Thus there apparently exists a colour analogue of the Meissner effect in the theory; this 

is known as the dual Meissner effect. However, Yang-Mills gauge theories are strongly 

coupled theories and whether a dual Meissner effect takes place in these theories, and par

ticularly in QCD, remains inconclusive. In Chapter 5 we shall describe the dual Meissner 

effect and monopole condensation in N = 2 supersymmetric gauge theories. 
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In addition to these phases, there also exist variants of the Higgs phase and the confining 

phase. These are the unified Higgsjconfining phase and the oblique confining phase. The 

oblique confining phase is of some relevance to supersymmetric Yang-Mills gauge theo

nes. 

Oblique confinement occurs when dyons, generically particles possessing both non-zero 

magnetic and non-zero electric charge, condense. Dyons necessarily exist in a theory 

which has magnetic monopoles, since a non-zero vacuum angle 73 universally connects 

magnetic and electric charge. Unfortunately, some fractional charges (as dyon-quark 

bound states) appear in the particle spectrum in this phase. This phase remains a pos

sible first step in attempts to decide if a dual Meissner effect occurs in QCD and other 

Yang-Mills gauge theories. 

Phases of N = 1 Supersymmetric Gauge Theories 

InN= 1 supersymmetric Yang-Mills theory, the phases present include all of those which 

occur for non-Abelian gauge theories in general [145, 147]. However, supersymmetry 

constrains the form of the moduli spaces in each phase. The N = 1 superpotential W 

is holomorphic in the moduli (massless matter superfields) and the coupling constants. 

This holomorphy forbids any first order phase transitions. In N = 1 theories there are 

two classes of phases: 

1. The moduli space of a phase possesses a moduli subspace which is smaller than the 

moduli space and is of a size greater than or equal to the moduli space of another 

phase. 

2. Different phases of the theory overlap in the moduli space of theory. at transition 

points. 

The confining phase and Higgs phase of N = 1 theories are not distinguishable when 

the matter multiplets are in the fundamental representation. Such theories do not have 

ground states in the Coulomb phase. Using the techniques pioneered by Seiberg and 

Witten for N = 2 supersymmetric gauge theories, precise statements ·about the nature 
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of singularities on the quantum moduli space of some N = 1 theories can be made. 

A conjectured generic feature of singular points on N = 1 quantum moduli spaces is 

that these points are due to the appearance of massless magnetic monopoles. When the 

quantum moduli space is perturbed, these magnetic monopoles condense and the theory 

enters a confining phase. We will describe the results for the quantum moduli space of 

N = 2 supersymmetric gauge theories in Chapter 5. These results can also be extended 

toN = 1 theories and enable one to determine the form of the complex coupling constant 

T for low energy Wilsonian effective N = 1 supersymmetric gauge theories. 

In the Coulomb phase, N = 1 theories possess massless photons and may possess Seiberg 

duality. In Subsection 4.5.3 below we describe Seiberg duality in N = 1 SQCD in terms 

of N = 1 phases and moduli spaces. 

4.5.3 Seiberg Duality inN= 1 Supersymmetric Gauge Theories 

In Section 4.2 one of the exact results which can be obtained in some quantum N = 1 

supersymmetric gauge theories is the exact effective N = 1 superpotential, which we 

denote Weff· We described how a small number of constraints was sufficient in many 

cases to exactly determine the form of Weff [141]. In Section 3.3 of Chapter 3 it was 

explained that the superpotential in N = 1 theories assumes a highly important role in 

determining the dynamics of the theory. Given knowledge of the effective superpotential, 

the dynamics and behaviour of light particles can be elucidated. Furthermore, informa

tion regarding the phase structure and phase transitions of the theory can be then be 

extracted. 

In this subsection we describe the results on Seiberg duality in quantum N = 1 super

symmetric QCD (SQCD): that is, N = 1 supersymmetric SU(N) gauge theories with 

N1 matter multiplets as described Section 3.3 in Chapter 3. These results have been 

obtained by Seiberg and eo-workers [145, 146, 147, 251, 252] through the process of de

termining the effective superpotential exactly and following the implications of the form 

of Weff for the theory. In this subsection we follow the reviews in [254, 255, 256, 257] and 

the original papers [145, 146, 147, 251, 252]. 

InN= 1 SQCD with gauge group SU(N), the phase of the theory and the phenomenon 
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it exhibits is dependent on the number of massless quarks, N1, which appear in the Nf 

chiral matter multiplets in the fundamental representation of the theory. The Lagrangian 

for N = 1 SQCD was given in Eq.(3.79) of Section 3.3 of Chapter 3. We now describe 

the ranges for N1 and the phenomenon which arise for these values of Nt. 

The theory is in the free phase. To be precise, it is the free phase for the electrically 

charged particles in the theory, corresponding to the ordinary free (Landau) phase. The 

particle spectrum at large distance consists of quarks and gluons. For a separation R, 

the long distance behaviour of the electric potential has the form: 

V rv 
1 

RlogR' 
( 4.54) 

which decreases faster with R than a Coulombic potential. Although in this phase the 

theory is not a well defined quantum field theory, as described in Subsection 4.5.2, this 

theory can be a consistent low energy description of another theory. 

The theory is in the Coulomb phase and is asymptotically free. The coupling constant 

does not increase indefinitely, but reaches a fixed finite value at large distances: this is a 

fixed point of the renormalization group. The theory is now therefore a non-trivial four 

dimensional conformal quantum field theory. The long distance electric potential behaves 

as: 
1 

Vrv-
R' 

which is a Coulombic potential. At the fixed value of the coupling constant the quarks 

and gluons in the theory appear as massless interacting particles and are not confined. 

It has been shown by Seiberg that there exists a magnetic description of N = 1 SCQD 

with gauge group SU(N1 - N) and N1 matter multiplets at this value of the coupling 

constant. vVe .can express this Seiberg duality schematically as: 

N = 1 SCQD : SU(N) (electric) +----+ SU(N1 - N) (magnetic). 
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The dual theory is also in the Coulomb phase. The particle states in the dual theory will 

possess magnetic charge and the dual gauge group SU(N1 - N) can be interpreted as 

the 'magnetic' gauge group. The original gauge group SU(N) is then the 'electric' gauge 

group. The low energy (or equivalently, long distance) physics of the electric SU ( N) 

theory is identical to the low energy physics of the magnetic SU(N1 - N) theory. This is 

a remarkable fact given that the theory and its dual are invariant under different gauge 

groups and describe different numbers of interacting particles. 

The fixed point in the original theory appears in the dual theory and is described by 

variables of both interacting electric and magnetic states. Experimentally there would 

be no way to determine whether the Coulombic potential in this phase is mediated by 

the electric or magnetic states. As N1 is decreased, the magnetic gauge group becomes 

smaller and so the magnetic theory becomes weaker via the Higgs mechanism. In com

parison, the electric theory becomes stronger as N1 decreases. Physically, a reduction in 

Nf can be achieved by assigning masses to quarks and then decoupling the quarks. 

At low energies in the theory, the strong coupling regime involving electric particles 

can be described using the weak coupling regime involving magnetic particles. In this 

range of Nf, therefore, there is evidence which indicates the existence of Seiberg dual

ity inN= 1 supersymmetric SU(N) Yang-Mills gauge theory with N1 matter multiplets. 

In this range of Nf, the theory is in the free phase for magnetically charged particles. 

This is because the electric theory is very strongly coupled and so the dual description of 

the theory in terms of magnetic particles becomes very weakly coupled to the extent that 

it is a free theory. This phase occurs as the magnetic SU(N1 - N) theory is not asymp

totically free and is weakly coupled at low energies. The magnetic massless particles 

are composites of the electric fundamental states and exhibit a gauge invariance (under 

SU ( Nf - N)) which is not manifest in the electric description of the theory. Hence, 

through duality, a new gauge invariance of the theory (in its dual form) is revealed. The 

form of the potential between magnetic particles is the same as that for the free electric 

phase (N1 2 3N) in Eq, ( 4.54). 
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Nf = N + 1 and Nt = N 

In this range the process of reducing N1 by decoupl!ng quarks via assigning them masses 

results in the eventual complete breaking of the magnetic gauge group SU ( N1 - N). Dur

ing this reduction, the Higgs mechanism continues to provide mass for the gauge boson 

of the theory, until there are no massless gauge particles present. This serves to confine 

the electric particles completely, and so this phase can be interpreted as the confining 

phase. Then baryons in the theory, inside which electric states such as quarks and gluons 

are confined, become magnetic monopoles. 

This is a range of Nf for which the theory has no ground state. The massless quarks of 

the theory possess no lowest energy state, making the theory unphysical. 

We note that a similar form of Seiberg duality is exhibited by N = 1 supersymmetric 

SO(N) Yang-Mills gauge theory with N1 matter multiplets in the fundamental repre

sentation of the gauge group SO(N). The duality map in this case between electric and 

magnetic states is: 

SO(N) (electric) ~ SO(N1 - N + 4) (magnetic), 

where the magnetic SO(NJ- N + 4) theory has N1 matter multiplets in the fundamental 

representation of the dual gauge group SO(N1 - N + 4). This theory also has an oblique 

confining phase which can be equivalently described by dyons, and so there exists an 

electric-magnetic-dyonic triality in this theory. 

In N = 1 supersymmetric gauge theories, as with other gauge theories which realize 

electric-magnetic duality, the electric degrees of freedom are related non-locally to the 

magnetic degrees of freedom of the theory. The magnetic theory can be considered as 

an effective theory which describes the low energy (i.e. long distance) electric theory. 
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Furthermore, through Montonen-Olive duality, the magnetic theory provides a weakly 

coupled description of the strongly coupled electric theory, which is useful in exploring 

strongly coupled phases such as the confining phase. In this way, hitherto unknown 

phases of N = 1 supersymmetric gauge theories are found, such as the free magnetic 

phase and the non-Abelian Coulomb phase inN= 1 SQCD. 

In Chapter 5 we shall describe exact results obtained in four dimensional N = 2 su

persymmetric gauge theories. In analogy to the results given here for N = 1 theories, 

exact results for the N = 2 superpotential and beta function shall be described. The 

exact results for the low energy effective N = 2 supersymmetric SU(2) Yang-Mills gauge 

theory, recently proposed by Seiberg and Witten, known as Seiberg-Witten theory, and 

its generalizations, will also be described. 



Chapter 5 

Exact Results in Supersymmetric 

Gauge Theories 11: 

N == 2 Supersymmetry 

5.1 Introduction 

In this chapter we describe exact results inN= 2 supersymmetric gauge theories. The 

most recent of these are the proposed exact solutions for the low energy Wilsonian effec

tive actions of N = 2 supersymmetric Yang-Mills gauge theory with various gauge groups 

and matter content. The techniques used in these models to determine their low energy 

effective actions are based upon the pioneering work of Seiberg and Witten [170, 171]. 

These authors were able to propose, through an elaborate chain of reasoning, the exact 

low energy effective action for both N = 2 supersymmetric SU(2) Yang-Mills gauge 

theory [170] and N = 2 SU(2) SQCD [171], in 1994. The proposed exact results for 

the low energy effective actions of these two particular models are known as Seiberg

Witten theory [170, 171]. The status of these purportedly exact results is essentially that 

of conjecture, but there exists compelling evidence in favour of their results from many 

calculations and checks. One such set of checks are those involving instanton methods, 

which we describe in Chapter 6. 

The amount of scientific literature regarding Seiberg-Witten theory is vast, and our de-

151 
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scription will inevitably be incomplete. Seiberg-Witten theory is a major development 

in quantum field theory and many new lines of enquiry and results stem from their work, 

extending beyond supersymmetric field theories to string theory and pure mathematics. 

The formalism for supersymmetric gauge theories in Chapter 3 will be used, and we also 

utilize many of the notions which were introduced in Chapter 4 in the context of N = 1 

supersymmetric gauge theories. We continue to work in four dimensional Minkowski 

spacetime, whose metric is given in Appendix A. 

We first describe some of the exact results determined for N = 2 supersymmetric gauge 

theories in Section 5.2. These results were found before the advent of Seiberg-Witten 

theory. In Section 5.3 we describe Seiberg-Witten theory. We devote one subsection each 

to the results derived by Seiberg and Witten, for N = 2 supersymmetric SU(2) Yang

Mills gauge theory, and N = 2 SU(2) SQCD. In the latter subsection, we also briefly 

note other results in Seiberg-vVitten theory. Generalizations of Seiberg-Witten theory 

to models with different gauge groups, including SU ( N), are described in Section 5.4. 

We also describe some of the generalizations of Seiberg-vVitten theory to models with 

exceptional gauge groups and other matter content, and describe other results relating 

to Seiberg-Witten theory, in Section 5.4. 

5.2 Exact Results in N 

Theories 

2 Supersymmetric Gauge 

In this section we briefly describe some of the exact results and related results obtained 

in N = 2 supersymmetric Yang-Mills gauge theory and N = 2 SQCD. This will be 

analogous to Section 4.2 of Chapter 4, in which exact results inN= 1 supersymmetric 

gauge theories were described. 

As in any supersymmetric field theory, the first exact result which can be readily obtained 

from N = 2 theories is the vanishing of the vacuum energy Evac = 0. This vacuum energy 

Evac receives no perturbative or non-perturbative quantum corrections, and is thus exact 

to all orders in the gauge coupling constant. The reason for this result and an indication 
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of the derivation of this result are given in Section 4.2 of Chaper 3. 

In the following paragraphs we shall briefly outline some of the other exact results ob

tained in N = 2 theories. VIe make use of the reviews in [190, 191] and refer to the 

original papers in [160, 161, 162, 163, 164, 165, 166, 169]. 

Masses and Electric Dipole Moments of Supersymmetric Monopoles 

The occurrence of magnetic monopole and dyon solutions to the field equations of su

persymmetric Yang-Mills gauge theories coupled to a scalar field has been demonstrated 

in [160]. The non-zero vanishing expectation of the scalar field in these theories spon

taneously breaks the gauge group and permits soliton solutions of the classical field 

equations to exist. An example of a supersymmetric field theory containing magnetic 

monopoles and dyons is theN= 1 supersymmetric version of the Georgi-Glashow model 

introduced in Chapter 4. As has been described in Chapter 4, the presence of supersym

metry ensures the cancellation of certain quantities associated with bosonic and fermionic 

states in a quantum field theory. As will be described in Chapter 6, such cancellations oc

cur in semi-classical calculations about instanton configurations in supersymmetric gauge 

theories, and consequently simplify such calculations. 

The cancellation of bosonic and fermionic contributions to quantities relating soliton so

lutions inN= 2 supersymmetric Yang-Mills gauge theories coupled to a scalar field has 

consequences for the masses of the soliton or BPS states. The mass of any classical solu

tion of the field equations of these supersymmetric field theories do not receive quantum 

perturbative one loop corrections [160]. However, they may still receive quantum non

perturbative corrections. Let the classical mass of a magnetic monopole or dyon solution 

in anN= 2 Yang-Mills gauge theory coupled to a massive scalar field cp be MBPS· Then 

in the full quantum theory the one loop quantum corrected soliton mass M~PS is given 

by: 

(5.1) 

This perturbatively and non-perturbatively exact result is significant in N = 4 and 

N = 2 supersymmetric field theories as it can be interpreted as evidence supporting the 

conjectured Montonen-Olive electric-magnetic duality or S-duality in these theories. 

WiEI __ _ 
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A further exact result regarding magnetic monopoles in supersymmetric gauge theories 

is the calculation of the electric dipole moment for the monopole [161]. The electric 

dipole moment for magnetic monopoles in a quantum field theory arises from the spin of 

the fermion zero modes of the monopole. It is analogous to the electric dipole moment 

for electrically charged particles. The magnitude of the electric dipole moment v has a 

magnitude defined by: 

(5.2) 

where S is the spin and g is the magnetic charge of the monopole, which has mass M. 

The quantity 9M is referred to as the magnetic 'g-factor', which is defined by Eq. (5.2). 

The spin S is a quantum effect and the electric dipole moment for the monopole may be 

calculated semi-classically. By considering the response of the monopole to a weak con

stant external electric field, the factor 9M for the monopole can be explicitly determined 

[161]. The exact result for 9M is: 

9M = 2, (5.3) 

which agrees with the 'g-factor' in the electric dipole moment for elementary electrical 

states, 9E = 2. This result is in accordance with the Dirac equation and also for massive 

spin 1 particles created via the Higgs mechanism in spontaneously broken gauge theories. 

For N = 4 supersymmetric gauge theories, this result can also be interpreted as evidence 

supporting Montonen-Olive electric-magnetic duality. 

Renormalization of Multiplet Masses 

The divergent renormalization constants in general supersymmetric Yang-Mills gauge 

theories have been evaluated to one loop order in [162]. With particular application to 

N = 2 supersymmetric gauge theories, a new renormalization theorem for the masses of 

matter multiplets was uncovered through the work in [162]. 

For N = 2 supersymmetric Yang-Mills gauge theory with simple gauge group G coupled 

to matter multiplets of arbitrary mass and transforming in general representations of G, 

the mass of the matter multiplets is unrenormalized. Quantitatively, if the renormalized 

mass of aN = 2 matter multiplet is mren, and mbare is the bare, unrenormalized mass 
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of the same matter multiplet, then one has: 

(5.4) 

which holds to all orders in the gauge coupling constant g. Thus the bare matter multi

plet mass receives no quantum perturbative or non-perturbative corrections. This exact 

result is valid due to the presence of N ~ 2 supersymmetry, and follows from the non

renormalization of the BPS mass (Jvi BP s) related to the N = 2 central charge. 

Wilsonian Beta Function 

The beta function of the Wilsonian effective N = 2 supersymmetric Yang-Mills gauge 

theory, with or without matter fields, denoted by (3)TJ = 2 (g), can be exactly determined. 

The result for the \iVilsonian beta function inN= 2 supersymmetric SU(N) Yang-Mills 

theory is one loop exact and can be obtained via perturbative calculations. The result 

IS: 

(5.5) 

This expression for the Wilsonian beta function f3r/= 2 (g) is exact: it receives no pertur

bative or non-perturbative quantum corrections. 

It has also been shown that under certain conditions the full N = 2 beta function (3 N = 2 (g) 

vanishes inN= 2 supersymmetric Yang-Mills gauge theories coupled toN= 2 matter 

multiplets [163]. The resulting N = 2 supersymmetric Yang-Mills gauge theory is finite 

and scale invariant. This is an exact result pertaining to theN= 2 supersymmetric beta 

function which can be derived from the NSVZ beta function when N = 2. TheN= 2 

beta function vanishes when there are a specific number of N = 2 matter multiplets 

to which the N = 2 Yang-Mills gauge theory is coupled, transforming in a particular 

representation of the gauge group G of the theory. 

To state the conditions for which theN= 2 beta function vanishes, we take the gauge 

group G to beG= SU(N). Then let the masses of theN= 2 matter multiplets be mi, 

where i = 1, ... , N. Furthermore, let the matter multiplets transform in representations 

of G denoted by Ri. By considering the general group theoretic expression for the N = 2 

beta function when there are Nf massive matter multiplets present, a solution for which 
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f3N=2(g) = 0 is given by: 

2N, 
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(5.6) 

(5.7) 

where C2 is the second Casimir of the gauge group G, and T(Ri) are group factors of the 

representations Ri the group G. Hence if there are an even number of matter multiplets 

in representations Ri of G which obey Eq. ( 5. 7), the N = 2 beta function is exactly zero 

to all orders in the gauge coupling constant g, and the theory is also finite to all orders in g. 

5.3 Seiberg-Witten Theory 

In this section we make use of the original papers by Seiberg and Wit ten [170, 171], the 

lectures by Witten [172] and some of the many reviews on Seiberg-Witten theory, which 

include [190, 191, 193, 194, 192, 195, 196, 197, 248], and those reviews which include 

material on Seiberg-\iVitten theory, for example [198, 199, 200, 201]. In particular, we 

follow the reviews [190, 191, 193]. 

The exact result for the low energy Wilsonian effective action of N = 2 supersymmetric 

Yang-Mills theory proposed by Seiberg and Witten is the first exact solution for the low 

energy dynamics of a four dimensional quantum field theory. This is a significant result 

in the study of four dimensional quantum field theory, the class of which phenomenologi

cally important theories such as quantum electrodynamics (QED) and quantum chromo

dynamics (QCD) belong. Seiberg and Witten were able to give a complete description of 

the vacuum structure, that is, the moduli space, of N = 2 supersymmetric Yang-Mills 

gauge theory in their work, which enables the reconstruction of the low energy Wilsonian 

effective action of this theory. 

The presence of supersymmetry permits control over the quantum corrections and the 

calculation of exact results in the theory. The property of holomorphy is also vital for 

their analysis, as is a form of electric-magnetic duality. Combined with physical intuition 

and reasoning, these concepts lead to Seiberg-Witten theory. 

In Subsection 5.3.1 we describe the work in the first paper of Seiberg and Witten on the 
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low energy Wilsonian effective action of N = 2 supersymmetric SU(2) Yang-Mills theory 

[170]. The techniques used in this paper were then extended toN= 2 SU(2) SQCD in 

[171], which we describe in Subsection 5.3.2. 

5.3.1 N = 2 Supersymmetric SU(2) Yang-Mills Gauge Theory 

The Lagrangian for this theory in terms of N = 2 superfields with gauge group SU(2) is 

given by Eq. (3.86) of Section 3.4 of Chapter 3. However, we shall be interested in the 

low energy Wilsonian effective action of this theory. When the scalar field cP in theN= 2 

field multiplet acquires a non-zero vacuum expectation value (c/Y), the gauge group (rank 

r) of the theory is spontaneously broken to an (unbroken) subgroup U ( 1 Y of the gauge 

group. The theory is then in the Coulomb phase. At low energies, the effective theory 

will contain fewer massive states than massless states, and at sufficiently low energies the 

physical states of the theory will only be massless states. Thus the effective theory will 

only describe massless fields (and modes). If the vacuum expectation values (c/Y) are not 

degenerate, then the only massless fields present will be those invariant under the unbro

ken U(lY subgroups. Since the U(1) gauge group is associated with electric phenomena, 

these massless fields will possess electric charge. 

As described in Section 4.2 of Chapter 4, there exists a procedure to obtain the low energy 

Wilsonian effective action of a given field theory. This involves integrating out all massive 

and massless fields and modes above a given dynamically generated scale A, which acts 

as a low energy cut off scale. InN= 2 supersymmetric Yang-Mills gauge theory, some 

results have been obtained for the effective theory [164]. A complete determination of 

the form of the low energy effective theory was not possible until the work of Seiberg 

and vVitten [170]. Their technique is indirect, and uses pioneering but unconventional 

methods. 

Central Charges inN = 2 Supersymmetric Yang-Mills Gauge Theory 

The N = 2 supersymmetry algebra with central charges (and no mass terms) present 

can be simplified by skew-diagonalising the central charge matrices ZIJ. The N = 2 
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supersymmetry algebra with central charges than takes the form: 

{Q~, Q~b} 

{Q~,Q~} 

{Q&a, Q~b} 

20":~Pmbg, 

2V2Eaf3Eab Z, 

2V2Ea~EabZ, 
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(5.8) 

(5.9) 

(5.10) 

vvhere Z is theN = 2 central charge, which commutes with the supersymmetry generators 

(supercharges) Q~ and Qaa· Due to this property of commutation with the supersymme

try generators, the central charge Z can be fixed to be the eigenvalue of the representation 

of the algebra. 

The composite operators aa and ba are given by: 

- 1 [Q1 Qt2] b - 1 [Q1 Qt2] aa - 2 a + Eaf3 f3 ' a - 2 a - Eaf3 f3 ' (5.11) 

which permits the re-expression of theN= 2 supersymmetry algebra as: 

where M is the mass of the N = 2 particle states in the representation, and all other 

anticomniutators are equal to zero. All physical states arising from the action of the 

operators aa and ba in theN= 2 supersymmetry algebra in Eq. (5.12) on the vacuum 

state must have positive definite norm. Hence the mass M cannot be less than J21ZI. 
For M -=f 0 this implies theN= 2 mass bound M ~ J21ZI. When M = 0, to satisfy 

positivity of the norm one must have a trivial central charge, Z = 0. When theN= 2 

mass bound is saturated, 111 = J21ZI, the anticommutator {ba, bh} vanishes and the 

.dimension of the representation is decreased. Then N = 2 supersymmetry multiplets 

belonging to the dimensionally reduced representation are referred to as 'short multiplets' 

(when M = V21ZI). vVhen the mass bound is satisfied by the inequality M > J21ZI, 
the set of multiplets have representations with unreduced dimensions, they are referred 

to as a 'long multiplet.' 

The N = 2 mass bound is identical to the Bogomol'nyi bound, and this coincidence 

is brought about by the presence of solitonic solutions in the model, namely magnetic 

monopoles and dyons. The N = 2 central charge has a physical origin due to the 

properties of theN = 2 supercharges Q~ and CJaa [167]. In general the supercharges 
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can be calculated as space integrals of the time component of the supercurrent, which 

give an expression involving superfields. The anticommutators of the supercharges give 

rise to non-zero surface terms which cannot be neglected in the presence of electric and 

magnetic charges. These surface terms then produce the central charge Z. In the absence 

of matter multiplets, one has: 

(5.13) 

where a is the vacuum expectation value of the Higgs scalar field, q and g are respectively 

the electric and magnetic charges, e is the unit electric charge, ne and nm specify the size 

of the charges, and Tc1 is the complexified gauge coupling constant of the classical theory. 

The value of Z in Eq. (5.13) then implies that M 2 fiiZI coincides with the BPS mass 

bound given in Eq. ( 4.34) in Subsection 4.4.1 of Chapter 4, and can be written explicitly 

as: 

(5.14) 

Consequently, BPS states, for which M= fiiZI, belong to short multiplets (that is, to 

reduced representations of the supersymmetry algebra). Furthermore, the mass-charge 

relation for BPS states is not modified by perturbative or non-perturbative quantum cor

rections, since it is protected by supersymmetry to all orders. If the mass-charge relation 

were modified, then the BPS states would no longer satisfy theN= 2 mass bound, and 

then not belong to a short multiplet, violating supersyinmetry. Quantum corrections are 

also not expected to produce additional degrees of freedom to modify a short multiplet 

into a long multiplet. 

In the low energy effective theory, the mass bound given by Eq. (5.14) is modified and 

assumes an effective form. The low energy Wilsonian effective action for N = 2 super

symmetric Yang-Mills gauge theory will be specified by theN= 2 prepotential :F, and 

will be the effective form of the Lagrangian for theN = 2 supersymmetric Yang-Mills 

theory Eq. (3.86) given in Section 3.4 of Chapter 4. The central charge Z for the effective 

theory has the form: 

(5.15) 

where :F( a) is the prepotential in the low energy effective theory given as a function of 

the classical vacuum expectation value a. We describe the effective action of theN= 2 
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theory below. In Subsection 5.3.2 below, the central charge in the case when fundamental 

matter multiplets are present will be described. 

R-Symmetry inN= 2 Supersymmetric Yang-Mills Gauge Theory 

As was described in Subsection 3.2.3 of Chapter 3, supersymmetric field theories possess 

an additional symmetry, known as R-symmetry, arising from the supersymmetry algebra, 

which acts on the supercharges and superfields of the theory. The Lagrangians of N = 1 

supersymmetric gauge theories are usually required, for the purposes of renormalizability, 

to be invariant under a U(1) R-symmetry, as stated in Chapter 3. In the case of N = 2 

supersymmetric Yang-Mills gauge theory, there exists a U(1) R-symmetry and an SU(2) 

R-symmetry, and these symmetries may be exploited. The former acts upon the N = 2 

superspace co-ordinates, and the latter acts upon the indices of theN= 2 supercharges. 

The N = 2 vector multiplet is comprised of the component fields { Vm, A,'!{!, <P}. These 

component fields can be arranged into theN = 1 vector superfield V(vm, .>.) and the 

N = 1 chiral superfield iJJ('!{!, <,D). We denote the SU(2) and U(1) R-symmetries as SU(2)R 

and U(1)r, respectively, to distiniguish them from gauge groups and other symmetries. 

These symmetries act as follows on the component fields of the N = 2 vector multiplet: 

SU(2)R 

U(1)r 

). -+ ).' 

.>. -+ X 

<,D, <P -+ <P' = A, 

e2ia <,D, '!{! -+ '!{!' eia'l/J' 

(5.16) 

(5.17) 

(5.18) 

The action of these R-symmetries can be expressed in terms of the N = 1 superfields V 

and iJJ as: 

U(1)r 

U(1)i 

iJJ(B) -+ <JJ'(B) 

iJJ(B) -+ <JJ'(B) 

e2iai!J(e-iae), V(B) -+ V'(B) = V(e-iae), (5.19) 

i!J(e-iae), V(B) -+ V'(B) = V(e-iae), (5.20) 

where the U(1)j is a residual symmetry from the action of the SU(2)R symmetry on the 

N = 2 component fields. The U(1)j symmetry is a subgroup of the SU(2)R symmetry, 

and is not manifest in theN= 1 superfield decomposition. Hence the U(1)j symmetry 

does not rotate the fields ). and <P into each other. However, this U(1)j E SU(2)R 
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symmetry can be explicitly expressed as the following transformations on the component 

fields >., cp and '1/J: 

TheN = 2 scalar multiplet, also known as theN= 2 hypermultiplet, and from which 

the matter multiplets of the theory can be constructed, has component fields { q, ij, x, x} 

which were introduced in Subsection 3.2.3 of Chapter 3. These fields can be interpreted 

as being comprised of the two complex scalar fields { q, qt} and the two Weyl spinors 

{X, xt}, which reside in the fundamental representation of the gauge group. The SU(2)R 

and U(1)r symmetries act as follows on the component fields: 

SU(2)R q -+ q' -t q, -t -tt q -+ q = q, (5.22) 

U(1)r q -+ q' q, ij -+ ij' = ij, (5.23) 

X -+ x' = e-iaX, 
- _, 

-~Q- (5.24) X -+ X - e X· 

The component fields of the·N = 2 scalar multiplet can be arranged into the N = 1 

chiral multiplets Q(q, x) and Q(ij, x), which are the fundamental chiral matter multiplets 

familiar from Section 3.3 of Chapter 3. In theN= 1 formulation, the SU(2)R symmetry 

is again only manifest as the U(1)1 symmetry. Due to the generic form of the f! = 1 

superpotential describing the interaction of the vector and scalar multiplets, the N = 

1 superfields Q and Q must have zero R-charge, i.e. they possess neutral R-charge. 

Therefore the U(1)r and U(1)1 symmetries act on the scalar multiplets Q and Q as: 

U(1)r 

U(1)1 

Q(B) -+ Q'(B) 

Q(B) -+ Q'(B) 

Q(e-iae), Q(B) -+ Q'(B) = Q(e-iae), (5.25) 

eiaQ(e-iae), Q(B) -+ Q'(B) = Q(e-iae). (5.26) 

As before, the action of the U(1)1 symmetry on the component fields of theN= 2 scalar 

multiplet can also be expressed explicitly: 

q -+ q' 

x -+ x' 

(5.27) 

(5.28) 

The U(l)r symmetry is also a chiral symmetry. The classical N = 2 theory is invariant 

under global SU(2)R x U(l)r transformations. In the quantum N = 2 theory, the U(l)r 
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symmetry is broken to a discrete subgroup by chiral anomalies. For the pure N = 2 

supersymmetric Yang-Mills theory with gauge group SU(N), this discrete subgroup can 

be determined via instanton methods. In this case the U(1)r symmetry is broken to a 

z4N discrete symmetry. The discrete symmetry z4N can be represented by the genera

tor e2
"ia, where a = n/4N, and n = 1, ... , 4N. The centre of the SU(2)R symmetry, 

which acts as ()., qy) --7 ei" ()., qy), is also contained in the Z4N group, and corresponds to 

n = 2N. Accounting for this leads to the true global R-symmetry group for the quantum 

N = 2 s u ( N) gauge theory, which is given by s u ( 2) R X z4N I~. When the Higgs field 

in the theory acquires a non-zero classical vacuum expectation value, this R-symmetry 

is broken further. When N = 2, which is the case for Seiberg-Witten theory, where the 

gauge group is SU(2), the R-charge of the Higgs field requires the breaking of the Z4N 

symmetry down to a Z4 symmetry. Hence for theN = 2 SU(2) theory, the complete 

R-symmetry group is given by SU(2)R x Z4 /Z2 . 

Low Energy Effective Action and the N = 2 Prepotential 

The form of the low energy Wilsonian effective action for N = 2 supersymmetric SU(2) 

Yang-Mills gauge theory can be deduced implicitly. All of the unknown features of the 

low energy Wilsonian effective action can be subsumed into the prepotential F, which is 

a function of massless vector multiplets only, and into higher potential terms which we 

do not describe here, as they are beyond the scope of this thesis. The N = 2 effective 

action contains at most two derivatives with respect to the fields of the theory, and is 

completely specified by theN= 2 prepotential F, whose classical form is known. 

In terms of N = 1 superfields, the N = 2 low energy effective action has the form: 

(5.29) 

where A is the chiral superfield (formerly written as <I>, which was defined in Eq. (3.31) 

of Subsection 3.2.3 in Chapter 3) and F(A) is the prepotential written in terms of A. 

\t\Then the Higgs field, which is the scalar component of A, acquires a non-zero classical 

vacuum expectation value, which we denote as a, the SU(2) gauge group of the theory is 

spontaneously broken to the subgroup U(1), and the theory enters the Coulomb phase. 
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The metric on the space of fields in this case is then given by: 

(5.30) 

where the effective prepotential :F( a) enters as: 

( ) 
_ fP:F(a) 

T a - 8a2 ' (5.31) 

in which T is the effective complexified coupling constant, given by: 

47Ti 1} 
T(a) = Tetr(a) = ~( ) + -. 

g a 27T 
(5.32) 

The classical prepotential in the low energy effective theory is known and can be obtained 

by using the procedure to obtain the Wilsonian effective action. The classical prepotential 

F(A) is given by: 

(5.33) 

where Tci is the classical complexified gauge coupling constant: 

47Ti 1} 
Tc! = -2 + -. 

g 27f 
(5.34) 

in which g is the classical coupling constant, which does not run (i.e. it does not de-

pend upon a). This uses the definition of the complexified gauge coupling constant in 

Eq. (2.17) in Section 2.2 of Chapter 2, but the classical and quantum forms ofT must be 

distinguished between in this chapter. 

The perturbative form of :F(A) can be determined following the methods introduced by 

Seiberg for the exact construction of superpotentials as described in Section 4.2 of Chap

ter 4 [169]. The microscopic N = 2 supersymmetric SU(2) theory is specified by the 

Lagrangian in Eq. (3.86) with gauge group SU(2) in Section 3.4 of Chapter 3. This is 

an asymptotically free theory, and so valid perturbative calculations can be performed 

at high energies within it. The U(1)r symmetry of the classical theory is broken by the 

standard chiral anomaly in the quantum theory. }'his anomaly is manifest as the chiral 

current 15 given by: 

(5.35) 

This result implies that to one loop order in perturbation theory the low energy effective 

Lagrangian changes under a U(l)r transformation by an amount: 

OLeff N=2 SYM = aN * mn 
---2Vmn V ' 

167f (5.36) 
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where a is the phase of the U(l)r transformation. 

This shift in the effective Lagrangian translates the '!9-angle. This translation can be used 

to set '!9 = 0 by a chiral rotation of the fermion fields in the Lagrangian. Hereon we adopt 

the value '!9 = 0 for the vacuum angle. 

By requiring that Leff N=2 SYM changes by the amount in Eq. (5.36) under a U(l)r trans

formation, the one loop perturbative contribution to :F can be determined. Given the 

form of the variation in Eq. (5.36), only terms quadratic in the gauge field strength Vmn 

are relevant as it is from these terms which the variation must originate. Therefore the 

terms which contribute to the variation are: 

1 ~7r Im [:F"(e2ia A)( -VmnVmn + iVmn *vmn)] 

1 I ['T'"(A)( mn · * mn)J aN * mn = 167r m .r -VmnV + ZVmn V - 87r2 Vmn V ' (5.37) 

in which we have cancelled a factor of two. The prepotential is then required to satisfy: 

:F"(e2iaA) = :F"(A)- 2aN. 
7r 

(5.38) 

This condition can be re-expressed as a differential equation for :F(A) when a is infinites

imal: 
Ni 
7i A. 

Integrating this condition yields the one loop perturbative correction to :F(A): 

i 2 A2 
:Fl-loop(A) = -A ln A2' 

27r 

(5.39) 

(5.40) 

where A is a fixed dynamically generated scale which acts as an energy cutoff. The one 

loop contribution to the prepotential is the only perturbative quantum corrections which 

:F(A) receives. This is due to N = 2 supersymmetry and is related to the one loop 

perturbative exactness of the N = 2 beta function. This is also consistent with the one 

loop nature of the chiral anomaly in Eq. (5.35) and the absence of infra-red divergences 

in the theory. 

Although theN= 2 prepotential is perturbatively exact to one loop, it still receives non

perturbative quantum corrections, as Seiberg has argued [169]. These non-perturbative 

quantum corrections arise from instanton effects in the theory. The prepotential receives 
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only instanton effects and not anti-instanton effects because the prepotential F(A) is a 

holomorphic function [169]. A k-instanton correction to F(A) arising from a k-instanton 

configuration will be proportional to the k-instanton action exp( -81r2 k/ g2
). The one 

loop exact vVilsonian beta function of the theory, given by Eq. (5.5), then implies that 

such a k-instanton factor can be written as: 

-s7T2k/g2 = (A) 4k 
e A ' (5.41) 

which arises from a relation between the classical instanton action and the one loop 

exact Wilsonian beta function in Eq. (5.5) [169]. Seiberg noted that the broken U(l)r 

symmetry of the theory is restored if the scale A is assigned an R-charge of 2. If this is 

done, the prepotential F(A) must possess an R-charge of 4. Since the chiral superfield 

A has an R-charge of 2, one then expects the k-instanton correction to be proportional 

to A2
. Combining the classical prepotential Fc~(A), Eq. (5.33), with the perturbative 

prepotential F 1_Joop(A), Eq (5.40), and the generic non-perturbative contribution, the 

form of the low energy effective prepotential F(A) is then: 

F(A) = Fc~(A) + Fl-loop(A) + Fk-instanton(A) 

. A2 oo (A) 4k 

=~Tc~A2 + 2
2

7rA2 lnA2 +LFk A A
2

, 

k=l 

(5.42) 

where the coefficients Fk are independent of the fields in the theory and are numerical 

constants. These coefficients are independent of the fields because instantons contribute 

to the path integral only via zero modes in supersymmetric gauge field theories. We will 

return to this aspect of the prepotential in Chapter 6. Seiberg and Witten were able to 

propose an exact form for F(A) which includes a determination of all of the coefficients 

Fk, thus completely specifying the form of the prepotential. 

We note that, in the limit of a large vacuum expectation value a in the quantum theory, 

the theory becomes weakly coupled via asymptotic freedom. In. this limit the quan

tum theory can be approximated by replacing the classical coupling g with the running 

coupling g(a) and so g(a) and F(a) can be determined from perturbation theory by in

tegrating the one loop beta function. 

Parameterization of theN= 2 Moduli Space 
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We first describe the moduli space of classical N = 2 supersymmetric SU(2) Yang

Mills gauge theory in the Coulomb phase. In the classical theory, which is given by the 

microscopic Lagrangian Eq. (3.86) of Section 3.4 of Chapter 3 with gauge group SU(2), 

there exists the scalar potential V, where: 

(5.43) 

which was given in Eq. (3.83) of Section 3.4 in Chapter 3. The field cp is the scalar field 

component of the chiral superfield A, which is identified with the Higgs field. The Higgs 

vacuum is defined by [q)t, cp] = 0. This definition implies that cp assumes values in the 

Cartan subalgebra of the gauge group G of the theory, so that q) = c/JiHi, where H is the 

subgroup of G generated by the elements of the Cartan subalgebra. The Higgs field may 

also be in the trivial Higgs vacuum, for which q) = 0. The gauge group G is generically 

broken to the subgroup H in the Higgs vacuum. Elements of the coset G I H are gauge 

transformations which connect physically equivalent vacua, and the Higgs vacuum is 

thus not invariant under these transformations. However, physically inequivalent vacua 

are specified by the different vacuum expectation values which cp can assume, which are 

denoted by cpi. Hence the degrees of freedom represented by c/Ji parameterize the space 

of physically inequivalent vacua, or the moduli space, of the theory. The dimension of 

the moduli space is equal to the rank r of the gauge group G. There remains a residual 

gauge invariance within this parameterization arising from the elements of the coset G I H. 

Transformations under these coset elements do not leave the Higgs vacuum invariant but 

do leave cp as an element of the Cartan subalgebra. Such transformations correspond to 

Weyl reflections of the subgroup H. The gauge invariant parameterization of the moduli 

space will thus be Weyl invariant functions of cp. General formulae for the Weyl invariants 

of a group can be used to explicitly construct such functions. 

For the gauge group SU(2), the classical Higgs field is given by 

(5.44) 

where cr3 is the third standard Pauli spin matrix. The vVeyl invariant for this classical 

field is given by uc1, where 

la2 2 . (5.45) 
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The Weyl invariant quantity uc1 may be referred to as the classical modulus for the SU(2) 

theory. In the case of the quantum N = 2 supersymmetric SU(2) Yang-Mills gauge 

theory, the quan~um moduli space will be parameterized by the vacuum expectation 

values of the classical Weyl invariant. We refer to this Weyl invariant quantity as the 

quantum modulus Uqu, which is given by the quantum vacuum expectation value: 

In the classical limit, Uqu shall tend to its classical value, uc1: 

1. 1 2 
lm Uqu ----+ Uci = 2 a . 

!i---.:;0 

(5.46) 

Seiberg and Witten were able to determine Uqu for the low energy effective SU(2) theory 

in terms of the classical vacuum expectation value a. 

Electric-Magnetic Duality inN= 2 Supersymmetric Yang-Mills Gauge Theory 

Given the one loop contribution to the N = 2 prepotential F( A), the requirement of a 

positive definite kinetic energy for the theory reveals that the theory does not possess a 

single global description. Using the one loop contribution in Eq. (5.40) and the definition 

of T(a) given in Eq. (5.31), one can deduce that for large ial, the complexified gauge 

coupling constant becomes: 

(5.48) 

The form of T(a) in Eq. (5.48) is not a single valued function, whereas the the field space 

metric given by Im T in Eq. (5.30) is single valued. The imaginary part of T(a), Im T, 

is a harmonic function and so does not possess a global minimum. It can possess local 

minima, but if it is a globally defined function, local minima can only occur if T(a) is 

negative in some regions. If T( a) were positive everywhere, then a global minimum could 

be defined, which would contradict the harmonicity of Im T. To maintain positive kinetic 

energy, T(a) can only be defined locally, and so admits no global description. Thus the 

moduli space of the theory has no global description. In the regions where T( a) becomes 

negative, a different description of the theory must be employed which is appropriate 
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locally, as a theory in which a global T( a) can assume both positive and negative values 

is unphysical. A candidate alternative description of any gauge theory is its electric

magnetic dual, or more generally, its S-dual. The concepts of electric-magnetic duality 

and S-duality were introduced in Chapter 4 in the context of N = 4 supersymmetric 

Yang-Mills gauge theory. In Chapter 4 we also described the notions of phases and the 

moduli space of vacua for N = 1 supersymmetric Yang-Mills gauge theories. 

The dual description of the theory can be reached by appropriate duality transforma

tions. These transformation can be deduced from the gauge field terms of the action, 

which appear in the bosonic part of the action. In the Abelian low energy theory, in 

four dimensional Euclidean spacetime, one has ( Vmn)
2 = (*vmn) 2 and * (*vmn) = Vmn for 

the Abelian gauge field strength Vmn, and so the gauge field terms have the following 

schematic form: 

(5.49) 

A Lagrange multiplier VD, which is also a vector superfield, may be used to implement 

the Bianchi identity Emnklamvmn = 0. 'vVe use a normalization for VD such that all 

fundamental SU(2) matter fields have half integer charges. This convention implies that 

a magnetic monopole of the theory obeys EOnklfjn vkl = 87i03 ( x). By coupling the multiplier 

VD to such a monopole, the Lagrange multipler term is schematically given by: 

1 Jv mnkl~ 1 /* mn 1 R !(* · )( mn + '* mn) - DmE UnVkl = - VDmnV = - e VDmn- 2VDmn V 2 V , 
87i 87i 161i 

(5.50) 

in which implements the Bianchi identity for Vmn aforementioned, and where VDmn = 

Om VDn -On VDm is the dual gauge field strength in the sense of duality ( VDmn -/:* Vmn)· The 

Lagrange multipler term Eq. (5.50) can be added to the gauge field terms in Eq. (5.49). 

Integrating the resulting terms with respect to Vmn yields the dual gauge field terms: 

1 I J ( 1 ) ( '* )2 1 J ( 1 ) ( Dmn '* Dmn) 
321i m - T(a) VDmn +2 VDmn = 161i Im - T(a) VDmnV +z VDmnV . 

. (5.51) 

Hence the duality transformations in theN= 2 theory induce the gauge field Vm which 

couples to electric charges to be replaced with the dual gauge field VDm which couples to 
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magnetic charges. It also transforms the complexified gauge coupling to: 

(5.52) 

which is of the same form as the electric-magnetic duality described in Chapter 4. Hence 

the candidate duality of the theory is indeed realized as a form of electric-magnetic 

duality. Furthermore, the gauge field term Eq. (5.49) is invariant under the translation: 

T -t T
1 

= T + 1. (5.53) 

The transformations given in Eqs. (5.52,5.53) result from the action of the following 

matrices on the space of scalar fields: 

s (5.54) 

Together, the matrices in Eq. (5.54) generate the duality, or modular, group SL(2, Z). 

Thus the theory exhibits a form of S-duality, which was described in Chapter 4. The full 

SL(2, Z) duality transformation acts upon T(a) as: 

, aT( a)+ f3 
T(a) --+ T (a) = ( ) 

0
, 

'"'fT a + (5.55) 

where ao - /3'"'( = 1 and {a, /3, '"'(, 5} E Z. The dual gauge field description of the theory 

is related to a dual scalar field description of the theory by N = 2 supersymmetry. The 

function of scalar fields {A} defined by h(A) = fJ:FjfJA is related to a function of the 

dual scalar fields {An} denoted by hn(An), and the exact relation between them can 

be found by applying a method similar to that for the gauge field terms above to the 

analagous scalar field terms. Then the duality transformations imply that h = An and 

hn = -A, and again the duality group generated by the transformations is the S-duality 

group SL(2,Z). 

Mathematically, the S-duality of the gauge and scalar fields in the theory can be made 

manifest in the metric on the space of fields as given in Eq. (5.30). The field space metric 

is invariant under the S-duality group SL(2, Z) when expressed in terms of the dual scalar 

field component (classical vacuum expectation value) an, which is the (electric-magnetic) 

dual of a: 
'l 

--(danda- dadan), 
2 

(5.56) 
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where ds 2 is the metric on the moduli space. 

The classical moduli space of the SU(2) theory is a manifold of one complex dimen

sion, which we denote Msu( 2). If u is a holomorphic co-ordinate on Msu(2), the metric 

Eq. (5.56) can be written in terms of u. This will be of use later as the co-ordinate u 

can be identified with the moduli space parameter (Trq)2
). The functions {a( u), aD ( u)} 

can be interpreted as parameters on a complex space isomorphic to C2 which define an 

SL(2, Z) bundle over Msu( 2)· The metric of the moduli space can be written in terms 

of u as: 

ds2 = Im daD da dudu = _!._ (daD da _ daD da) dudu. (5.57) 
du du 2 du du du du 

This expression of the metric is manifestly SL(2, Z) invariant, and the previous form of the 

metric, Eq. (5.56), is recovered when u =a is set. For arbitary functions {a(u),aD(u)}, 

the metric Eq. (5.57) can be negative. However, positivity of the kinetic term in the 

low energy effective action requires that the metric ds 2 also be positive. Thus in the low 

energy effective theory, the functions { a(u), aD(u)} cannot be arbitary, and must be such 

that the inoduli space metric is positive. 

Dyons, Coupling and M onodromy of the N = ·2 Moduli Space 

We first describe the dyon spectrum of theN= 2 SU(2) theory, which will be used later 

in the determination of theN= 2 moduli space. In the microscopic SU(2) theory, the 

BPS mass bound is given by M 2:: J2JZ/, where Z is the central charge given by: 

(5.58) 

in which TcL is the classical complexified gauge coupling defined in Eq. (5.34). In the low 

energy effective theory, Z becomes modified. When there is a non-zero vacuum expec

tation value, a f. 0, any matter field multiplets in the theory will become massive. The 

form of the central charge for matter states of the theory is fixed by N = 2 supersym

metry. If a matter multiplet possesses an electric charge ne, then its contribution to the 

central charge will be Ze = ane. Matter fields which possess magnetic charge nm, such 

as magnetic monopoles, contribute an amount Zm = aDnm to the central charge. Hence 

the general central charge in theN = 2 supersymmetric SU(2) Yang-Mills theory will 
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be: 

(5.59) 

which determines the mass spectrum for dyons of charges (ne, nm) via the BPS mass 

bound. 

If the moduli space of the theory, Msu(2), is taken to possess non-trivial structure, which 

may include, for instance, singularities, then the vector vT = (aD, a), taken about a closed 

loop, will be transformed under the action of the monodromy group of the moduli space. 

That is, the vector taken about the loop will be transformed to a different vector due to 

properties of the moduli space present in the vicinity of the vector. 

The mass formula for dyons given by: 

(5.60) 

must be invariant under monodromy transformations of the moduli space because the 

mass is a physically observable quantity. If the vector v = (a, aD) is transformed to Mv, 

where M E Sp( 4, Z) is the monodromy matrix, then the vector w = (nm, ne) will be 

transformed under the action of the monodromy group as wM-1
. In a similar way, the 

monodromy acts on the complexified gauge coupling as: 

T ----+ T' = AT + B M = ( A B ) 
. CT+D' c D 

(5.61) 

where M is the monodromy matrix. This transformation is isomorphic to that for the 

transformation of the period matrix of a genus r Riemann surface under the monodromy 

group of the moduli space of genus r Riemann surfaces. Then the quantum moduli space 

of vacua, Msu( 2), could be identified with the moduli space of a genus one Riemann 

surface, Mg=l· More precisely, these moduli spaces could be conjectured to be isomor

phic: Msu(2) ::::: M 9= 2 . A Riemann surface is a connected complex analytic manifold 

of one complex dimension. The most simple Riemann surface is the complex plane, C, 

which is a non-compact Riemann surface. We refer the reader to the standard text on 

Riemann surfaces for a detailed exposition of the mathematics of Riemann surfaces [249]. 

Assuming this conjecture to be true, the variables a and aD can be calculated from the 

periods of the Riemann surface. From the variables a and aD, the prepotential of the low 
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energy effective action can ·be calculated. It is this hypothesis which forms part of the 

core of Seiberg-Witten theory, and from which the proposed low energy effective action 

is derived. Later in this subsection the evidence put forward by Seiberg and Witten in 

support of this identification will be described. This will involve determining the mon

odromies of the moduli space using physical and mathematical intuition. 

The Beta Function of U(1) Theories 

To assist with the determination of the monodromies on the moduli space, we now de

scribe the beta function for a fundamental matter multiplet interacting with a U ( 1) 

gauge theory. From theN = 2 supersymmetric matter multiplet, there exist, in terms 

of N = 1 superfields, Weyl spinors, complex scalars and chiral superfields, assuming the 

matter multiplet is a reduced (short) N = 2 multiplet of spin less than or equal to ~· 

Then \Veyl spinors and complex scalars, of equal electric charge Q, contribute to the beta 

function of the U ( 1) gauge theory by an amount given by: 

- d9 93 2 
f3matter (9) = f.L df.L = 81!'2 Q · (5.62) 

The equation defining the beta function, Eq. (5.62), can be re-written in terms of the 

normalized gauge coupling constant a 9 = 92/ 41!' and the coefficient of the factor 93 , which 

we denote b0 . Then the beta function is defined by: 

d ( 1 ) b __ 1 Q2. p,- - = -81!' 0 = 
dp, CYg 1l' 

(5.63) 

With the 19-angle set to zero via a chiral rotation of the fermion states of the theory, as 

described earlier in this subsection, the complexified gauge coupling constant r( a) then 

becomes r(a) = i/a9 . Using this, the re-expressed beta function Eq. (5.63) can be written 

in terms of r(a) as: 

(5.64) 

The scale p, of the theory can be naturally identified with the vacuum expectation value 

a. Choosing the matter multiplet charge to be Q = 1, Eq. (5.64) then yields r(a) as: 

(5.65) 

.· ........ -· 
m 
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where A is the dynamically generated scale of the theory. This will assist in the determi

nation of the monodromies of the moduli space at finite u, where u is the holomorphic 

co-ordinate on the quantum moduli space, Msu( 2), of the theory. 

This calculation can be performed for the case of a magnetic multiplet, that is, a multiplet 

of magnetic monopoles. The contribution of this multiplet to the beta function of a U(l) 

gauge theory can be calculated in a similar way using the dual variables of the theory, 

giving an expression for the dual complexified gauge coupling Tn (an). If the magnetic 

charge of the multiplet is also set equal to unity, then the dual of Eq. (5.65) is given by: 

z (an) Tn(an) ~ -;In A . (5.66) 

The dual formula Eq. (5.66) will not be used in the remainder of this subsection, but we 

include it here for completeness. 

The Structure of the N = 2 Moduli Space 

We now turn to the determination of the monodromies of the N = 2 moduli space. 

Knowledge of the moduli space, and particularly the monodromy structure of the moduli 

space, will be useful in deriving the form of the prepotential for the low energy effective 

N = 2 theory. 

The ·variable used to specify regions of theN= 2 moduli space will be the holomorphic 

co-ordinate u of the moduli space. We denote this holomorphic co-ordinate generically as 

u, which shall be equal to either ucl or Uqu depending on whether the classical or quantum 

moduli space of vacua is under consideration. For the case of N = 2 supersymmetric 

SU(2) Yang-Mills gauge theory, the moduli space of vacua has the form of a complex 

plane, and so we refer to the generic state of the moduli space of vacua as the u-plane. 

When /a/ is large, u is also large, the theory is asymptotically free and u -t uc1 = ~a2 . 
The prepotential can be approximated in this regime by: 

J'(a) = 2>2
ln (~:) . (5.67) 

Using this limit of the prepotential, the dual vacuum expectation value for large /a/ is 

then: 

an = B:F = 2ia ln (~) + ia. 
Ba 1r A 1r (5.68) 
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A closed loop (isomorphic to a circle) on the u-plane about the point u = 0, that is, a 

monodromy transformation about the singularity u = 0, induces the following transfor

mations on ln u and ln a: 

ln u -t ln u + 2ni, 

ln a -t ln a+ in, 

(5.69) 

(5. 70) 

which corresponds to changes in the variables an and a by amounts, respectively, of: 

an -t -an + 2a, 

a -t -a. 

(5.71) 

(5.72) 

Hence the action of the monodromy group at large u is produced by the monodromy 

matrix Mcx)) given by: 

(

-1 
Moo = PT-4 = 

0 
(5.73) 

where P is the negative of the identity element of the SL(2, Z) group, given by: 

p (5.74) 

and T is a matrix defined in Eq. (5.54) which acts upon the vector (an, a)T. The mon

odromy Moo acts upon the magnetic and electric quantum numbers of the BPS states 

as (nm, ne) -t ( -nm, -ne- 2nm), a transformation which leaves the BPS mass bound 

invariant, in accordance with the physical observability of mass. 

The monodromy at large u implies that there exist other monodromies elsewhere on the 

u-plane. The reason for this is as follows. The monodromy group will be Abelian if there 

exist other monodromy matrices which commute with Moo, or if there exist no other 

monodromies. An Abelian monodromy group would imply that the variable a is a valid 

global co-ordinate, which contradicts the need for local descriptions of the theory, and 

thus violates positivity of the kinetic energy. Therefore the monodromy group must be 

non-Abelian, and there exist other monodromies on the u-plane which are different from 

the 2 x 2 unit matrix. To obtain a non-Abelian monodromy group, there must exist 

at least two singularities in the u-plane at finite u with non-trivial monodromy. The 

-w••a:wa 
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moduli space at finite u corresponds to the non-perturbative regime of the theory. The 

singularities on the u-plane will be related via the discrete (Z2) symmetry u --t -u. A 

closed loop containing both of these singularities should yield a monodromy matrix equal 

to M00 . 

The singularities on the moduli space must have a physical origin. Seiberg and Wit

ten intuit that these singularities arise from the low energy Wilsonian effective action. 

The Wilsonian effective action is obtained by integrating out all of the massive states and 

modes above a chosen energy scale. The massive particle states will produce a non-trivial 

metric on the moduli space through their monodromy loops. The masses of such states 

will depend on the co-ordinate u. However, the masses of some of these states may vanish 

for specific values of u. All of the massive states and modes have been integrated out of 

the action, and only mass less (or 'light') states (and modes) remain in it. When these 

massive states dependent on u become massless, singularities appear at these points on 

the moduli space. This is because they have been integrated out of the action, when 

massless states (and modes) are to be retained in the procedure to obtain the Wilsonian 

effective action, without divergences occurring due to massless states becoming massive. 

The form of these singularities on the moduli space, and hence the monodromies asso

ciated with them, are dependent on the properties of the massive particle states which 

exhibit this behaviour. At finite u, the mass spectrum is not known in terms of u, and 

so the determination of these additional singularities must be acheived indirectly. Some 

assumptions are necessary to obtain further information about the theory at this stage. 

Given the reflection symmetry which is known to relate the other singularities on the mod

uli space, Seiberg and vVitten assume that some generic particle states become massless 

at the points u = 1 and u = -1, which is the simplest choice for these singular points. 

Let the monodromies associated with these singularities be M1 and M _1 , respectively. As 

aforementioned, it is anticipated that these matrices satisfy the condition M1M_1 = Moo 

from which the massless states may be extracted. 

The massive states in the theory with spin less than or equal to 1 consists of the gauge bo

son multiplet, comprised of gauge fields, and the dual gauge boson multiplet, comprised 

of monopoles and dyons. The gauge boson multiplet becomes massless in the classical 

theory at u = 0. This value of u may become non-zero in the quantum theory. Seiberg 

l_•.._.wa:tw= ·-



CHAPTER 5. EXACT RESULTS IN SUSY GAUGE THEORIES !I 176 

and \i\Titten argue that a massive spin 1 multiplet becoming massless in the theory is 

inconsistent. Therefore the singularities must arise when the dual gauge boson multiplet 

becomes massless. This multiplet has a spin of no greater than ~ and therefore resides 

in a short representation of the N = 2 supersymmetry algebra. This implies that the 

particle states in this multiplet are BPS states, and hence are non-perturbative states. To 

calculate the monodromies of the massless states in this multiplet is the next step towards 

finding the structure of the moduli space. However, the monopole and dyon multiplet 

cannot be locally coupled to the fundamental matter fields of the theory. Instead, dual 

gauge fields can be coupled to monopoles and dyons in a local manner exactly analogous 

to the local coupling between gauge fields and electrically charged states. Therefore the 

electric-magnetic dual description of the theory, as described above, may be used. 

Then, to determine the monodromy for a generic massless monopole or dyon state in the 

theory, only the monodromy of the singularity arising when a massive electrically charged 

multiplet becomes massless is required. An electric-magnetic duality transformation of 

the resulting monodromy will give the monodromy for the dual (that is, magnetic) singu

larity. Using the description of the theory dual to the magnetic theory, the monodromies 

of the massless dual gauge fields may then be calculated, hence giving information about 

the singularities on Msu(2) 

In the dual description of the electric theory, the monopoles and dyons will appear as 

elementary states. Let the magnetic theory be described by the dual variables ad and 

a~, where the superscript d denotes 'dual.' In the vicinity of a generic massive monopole 

or dyon state becoming massless, all massive states of the theory can still be integrated 

out of the action and the remaining theory is a U(l) gauge theory coupled to a funda

mental matter multiplet. The vacuum expectation value of the scalar field in the dual 

description is ad. A massive BPS state of unit electric charge becomes massless at the 

point ad = 0, which occurs on the moduli space at the point which we label u = ud. In 

the vicinity of the point u = ud, the variable ad is a valid local co-ordinate, which may 

be expanded as ad~ cd(u- ud). The one loop beta function for the U(l) theory coupled 

to a fundamental matter multiplet was described previously in this subsection, and may 

be employed here. Near the point u = ud, the one loop beta function for this theory will 
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have the following form in the dual description: 

(5.75) 

From this form ofT( ad), the dual variable ai is found to be: 

. ( d) . d z d a z 
a = --a ln - + -. 

D 7f A 7f 
(5.76) 

A closed loop on the u-plane about ud (for which (u- ud) -+ e2"i(u- ud)) will induce 

the following monodromy: 

(5. 77) 

(5.78) 

To find the monodromy of the singularity appearing when a dyon of charge (nm, ne) 

becomes massless, Seiberg and Vlitten begin by assuming that a dyon of charge (0, 1) 

will be an elementary state in the dual (magnetic) description of the theory. A generic 

SL(2,Z) duality transformation acting on the dual description vectors (ai,adf and 

(n~, n~f transforms these to: 

(5.79) 

(5.80) 

where ao-(31 = 1, and under which the central charge Z defined in Eq. (5.59) is invariant. 

We now set n~ = 0 and n~ = 1. Then the variables ai and ad describe the dyon coupling 

to the dual gauge field in precisely the same way in which the variables aD and a describe 

unit electric charges coupled to gauge fields. The monodromy of the singularity produced 

when the (0, 1) charge dyon becomes massless is given by Eqs. (5.77,5.78). To deduce 

the action of the monodromy Eqs. (5.77,5.78) on the original variables aD and a, one can 

invert Eq. (5.79) to obtain these variables in terms of the dual description variables ai 

and ad as: 

a 

··-· 

(5.81) 

(5.82) 
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Using Eq. (5.80), we can deduce the remaining unknowns a and j3 in terms of the quantum 

numbers (nm, ne)· Then the action of the monodromy given in Eqs. (5.77,5.78) on the 

vector (aD,af is: 

where we have denoted the generic dyon monodromy matrix as M(nm, ne)· 

The monodromies at the points u = ±1 can now be calculated. Seiberg and Witten 

assume that a charge (m, n) dyon becomes massless at u = 1 and that a charge (m', n') 

dyon becomes massless at u = -1. The monodromies of these states must then obey the 

following condition: 

(5.84) 

Given Moo in Eq. (5.73), this can be expressed using the generic dyon monodromy 

!v!(m, n) of Eq. (5.83) as: 

( 

1 + 2mn 2n
2 

) 

-2m2 1- 2mn 

-2n'
2 

) 

1 + 2m'n' 
(5.85) 

( 
-1 2 ) ( 1- 2m'n' 

-0 -1 2m'2 

The component equations of the matrix equation Eq. (5.85) are solved by the values 

m= ±1 and m' = ±1. These values of m and m' can be used to determine n' in terms 

of n, for which the following possible solution sets exist: 

(m,n) (1,n), (-1,n), (-1,n), (1,n), (5.86) 

(m',n') (1,n-1), (1,-n-1), (-1,n+1), (-1,-n+1). (5.87) 

These solutions indicate that only dyons of unit magnetic charge may contribute to the 

monodromy. The semiclassical result that only such dyons are stable is consistent with 

this result. 

The most simple solution of Eq. (5.85) is that for which m= m'= 1, n = 0 and n' = -1. 

These values give the monodromy matrices of the dyon singularities as: 

M1 = ( 
1 O) , M_ 1 = ( -

1 2) , 
-2 1 -2 3 

(5.88) 

which satisfy the requirement that M1M_ 1 = M00 • 

To interpret these singularities physically, one can consider the action of the monodromy. 

, ...... IQ W!JZ 
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Under a monodromy transformation, in general, the quantum numbers of the dyon will 

change. The dyons which become massless and which result in a singularity will remain 

invariant under the action of the monodromy. This is because these particular dyons give 

rise to the monodromy matrices. For a generic dyon of charge ( qm, qe), the eigenvalue 

equation for the action of the monodromy matrix M( m, n) is: 

(5.89) 

This eigenvalue equation implies that nqm - mqe = 0, assuming that m and n are both 

non-zero. This condition is satisfied by qm = m and qe = n. If the dyon is to be stable, 

then this is the unique solution of the eigenvalue equation Eq. (5.89). Therefore, if the 

monodromy matrix for a singularity is known, the dyon which produces the singularity 

can be deduced. 

For the monodromy matrices M1 and M_1, the eigenvalue equation Eq. (5.89) implies 

that: the monodromy matrix M1 results from a dyon of charge (nm, ne)= (1, 0), that is, 

a magnetic monopole, becoming massless at u = 1; the monodromy matrix M_1 results 

from a dyon of charge (nm, ne) = (1, -1) becoming massless at u = -1. Then at the 

point where the monopole becomes massless, one has an = 0, and at the point where 

the dyon becomes massless, one has a = an, due to the vanishing of the mass bound 

(and thus \Z\) at the values of (nm, ne) given. The monodromy at Moo is interpreted as 

arising from an electric photon, for which (nm, ne)= (0, 0) and the mass bound vanishes 

automatically. Furthermore, at the singularity at infinity, Moo shifts the electric charge 

by two units (by 2ne). Therefore, at the singularities of the u-plane, the electric charge 

is only defined modulo 2, and so the absolute value of the electric charge is not known. 

-·· 

The Seiberg- Witten Elliptic Curve 

Now that the monodromies of the moduli space of vacua Msu( 2) have been determined, 

the conjectured identification of Msu(2) with the moduli space of a genus one Riemann 

surface Mg=l will enable the calculation of the variables a and an in terms of the holo

morphic co-ordinate u. 

This is essentially the Riemann-Hilbert problem of reconstructing a holomorphic func-

-·-· 
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tion from knowledge of its singularities, that is, from its monodromies [249]. 

The moduli space Msu(2) is the u-plane with singularities at the points u = 1, u = -1 

and the asymptote u---t oo. The monodromies for these singular points are, respectively, 

M1 , M_ 1 and M00 , which obey M1M_1 = l\100 • At finite u, points on the u-plane are 

related by the ~ symmetry u ---t -u. There exists a fiat S L(2, 7l) bundle on Msu(2) 

which has the vector (aD, a)T as a holomorphic section. The variables to be determined 

exhibit the following asymptotic behaviour: 

{ a ;::::; ffu 
u ---t 00 

aD ~ i ( ffu I 1r) ln u 
(5.90) 

u=1 { a~ ca(u-1) 

aD ~ ao + ( il1r)aD ln aD 
(5.91) 

u = -1 { a~ ca(u-1) 

(a - aD) ~ ao + ( i I 1r) (a - aD) ln (a - an) 
(5.92) 

where c0 and a0 are constants. The metric on the moduli space is given by ds 2 

Im( T) ldal 2 , where the complexified gauge coupling constant can be expressed in terms of 

a and an as: 

T(u) = dan(u)ldu. 
da(u)ldu 

(5.93) 

For the kinetic energy of the theory to remain positive, the quantity Im( T) must be posi-

tive definite. The three monodromies of Msu( 2) generate the subgroup r(2) of S L(2, 7l). 

The moduli space Msu(2) can be described as the quotient of the upper half complex 

plane H by r(2),·which corresponds to a Riemann surface of genus one. Then the three 

singularities of the u-plane (i.e. the modul.i space) are the three cusp points of this quo

tient. 

The u-plane Hlr(2), which is a compact Riemann surface, can be described by a family 

of elliptic curves Eu. This is due to the Torelli theorem in the study of Riemann surfaces 

and algebraic curves [250]. The Torelli theorem implies that all of the information 0-bout 

a compact Riemann surface is contained in its (normalized) period matrix [250]. More 

precisely, the Torelli theorem states the necessary and sufficient condition under which 

two compact Riemann surfaces are isomorphic; this occurs when their normalized period 

matrices are equivalent, under a suitable canonical homology basis. The period matrix 
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shall depend upon differential forms which can be written in terms of an algebraic curve. 

The theorem that any compact Riemann surface of genus g can be represented as the 

normalization of a plane algebraic hyperelliptic curve of degree (2g + 2) then enables one 

to always specify a Riemann surface via an algebraic (hyper- )elliptic curve [250]. 

In this case, the set of elliptic curves Eu which represent the u-plane H jr(2) already 

exist in the relevant mathematics literature, and are specified by: 

y2 = (x- 1)(x + 1)(x- u), (5.94) 

where y and x are complex dummy variables. The elliptic curve in Eq. (5.94) is referred 

to as the 'Seiberg-Witten elliptic curve,' as it is the elliptic curve proposed to describe 

the moduli space of vacua in Seiberg-Witten theory. This elliptic curve is invariant 

under the discrete transformations u-+ -u, x -+ -x, y -+ ±iy, which together generate 

a Z4 symmetry, of which the subgroup ~ acts on the co-ordinate u. These symmetries 

are also present on Msu(2). The x-plane (given by the real and complex parts of x) 

has a topology constrained by the requirement that y2 is a single valued function. This 

requires that the x-plane be a double cover of the complex plane C with the point at 

infinity added to it. The x-plane also possesses four branch points, at { -1, 1, u, oo}, 

two pairs of which are joined by cuts. This space is topologically indistinguishable from 

a genus one Riemann surface, which is a complex torus, in which the cuts correspond 

to cycles on the Riemann surface [249]. A loop which intersects both cuts on the x

plane corresponds to the other cycle on the Riemann surface. To calculate a and an on 

the Riemann surface, a homology basis is required. Let 11 and 12 be two independent 

homology cycles normalized such that they have unit intersection number: 

/1 0/2 = 1. (5.95) 

The cycles 11 and 12 are homology one-cycles because they form a local basis for the first 

homology group H 1 
( Eu, C) for the set of curves Eu. The one-cycles 11 and 12 also vary 

continuously with u. Each homology one-cycle /i can be associated (or paired) with an 

element Ai of the first cohomology group H 1 ( Eu, C) for Eu: 

(5.96) 

--·· li 
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where i,j = 1, 2 and the elements Ai can be interpreted as meromorphic one-forms 

on Eu. These meromorphic one-forms have vanishing residue modulo exact differential 

forms [249]. The pairing between Ai and 'Yi is invariant under continuous deformations of 

'Yi at all points of Ai, including poles, due to the vanishing residues of Ai· Through this 

association with the cycles 'Yi, the Ai are also elements of HI ( Eu, C). 

Seiberg and vVitten choose the following basis for the one-forms on Eu: 

(5.97) 

where, up to a multiplicative (scalar) constant, AI is the unique holomorphic differen

tial form on Eu. Using the definition for bij in Eq. (5.96), the complex torus can be 

characterised by the parameter Tu, given by: 

{5.98) 

such that Im(ru) > 0. Let A be an arbitrary section of HI(Eu,C); that is, let: 

(5.99) 

Then, to relate the variables a and aD to the formalism describing the genus one Riemann 

surface, Seiberg and Witten assume that a and aD are given by: 

aD = J A, a = J >.. 
Yrl !,2 

(5.100) 

The system of integral equations in Eq. (5.100) can be solved using the Picard-Fuchs 

equations [193], but here we follow the method of evaluation of Seiberg and Witten. To 

be consistent with the symmetries of the BPS mass bound with no matter terms, the 

differential form ). must have only vanishing residues at its poles. This then implies 

that on circling a singularity, a and aD transform in accordance with the transformation 

properties of 'YI and "(2 under a subgroup of S L(2, 7L). Both a and aD then transform 

purely under SL(2, 7L). 

The arbitrariness in A can be fixed via the positivity condition I m( r) > 0 for Msu(2). 

Seiberg and \Vitten propose that A is related to AI via the relation: 

d). dx 
du = f(u)>.l = f(u)y. (5.101) 

- .a .... : 
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Differentiating Eq. (5.100) with respect to u and using Eq. (5.101) then gives: 

dab da 
du = J(u)bu, du = f(u)b21· 

Comparing these expressions to Eq. (5.98) for Tu yields: 

_ bu _ dan/du _ 
T - - - - Tu. 

b21 dajdu 
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(5.102) 

(5.103) 

Since T = Tu, and Im( Tu) > 0, therefore Im( T) > 0, and positivity of the kinetic energy 

is ensured. Seiberg and \iVitten argue that the converse of this argument is true;, that is, 

starting from T, one would conclude that Tu = T is true. Thus dA/ du is independent of 

A2 . The asymptotic behaviour of the theory near the singularities of the u-plane imply 

that the function f ( u) has the form f ( u) = -/2/ 47r. The differential form A is then 

given by: 

A = /2 dx.,;x=-u = /2 JYdx = J2 dx (x _ u). 
27f J x2 - 1 27r x2 - 1 27r jY 

(5.104) 

To explicitly calculate a and an it is necessary to select a particular basis of homology 

cycles on Eu. Let "(2 be the a-cycle of the complex torus, which is the loop about the 

points ( -1, 1) on the x-plane. This loop can be deformed so that it becomes as close as 

possible to a line between the points x = -1 and x = 1. Then using Eq. (5.100), a(u) is 

given by: 

a(u) = /2/1 dx.,;x=-u. 
7f -1 Jx2 - 1 

(5.105) 

\iVith this choice for the one-cycle "(2 , accordingly "(1 can be chosen to be the b-cycle of 

the complex torus, which is the loop about the points (1, u) on the x-plane. Again using 

Eq. (5.100), this gives an(u) as: 

an(u) = /2 tdx..;x=-u. 
7f J1 Jx 2 - 1 

(5.106) 

The expressions Eq. (5.105) and Eq. (5.106), for a(u) and an(u), respectively, can be 

expanded in x and their asymptotic behaviour at the singularities of the u-plane checked. 

These expressions exhibit the required behaviour near the singularities, which validates 

the choice of one-cycles made by Seiberg and Witten. 

Determination of theN= 2 Prepotential 
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The integrals Eq. (5.105) and Eq. (5.106) defining a(u) and an(u) can be identified 

with particular hypergeometric functions in their integral representation. In turn, these 

hypergeometric functions can be expressed as complete elliptic integrals. The integral 

representation of a general hypergeometric function F (a, ,8, {; z) is given by: 

f(/) tdxxf3-1(1- xp-13- 1(1- zxta 
r(jJ)r( 1- JJ) lo 

r(l) "'r(a + n)f(JJ + n) zn 
r(a)f(jJ) ~ r(l + n) n!. 

n2:0 

F(a,J),{;z) = 

(5.107) 

Using this representation of the hypergeometric function F( a, J), {; z ), Eq. (5.105) implies 

that a(u) may be written as: 

a(u) = )2(1 + u)F ( -~, ~' 1; 1~J. (5.108) 

To assist in identifying Eq. (5.106) and hence an(u) with a hypergeometric function, the 

substitution x = (u- 1)t + 1 in Eq. (5.106) gives: 

. . /.1 1 ~ 1 1 ( ) --an(u) = ;(u- 1) 
0 

dtC2(1- t)2 1- ( 1 ~u)t 2
. (5.109) 

Comparing Eq. (5.109) with Eq. (5.107), an(u) can be expressed in terms of hypergeo-

metric functions as: 

() _ ~( 1)F(1 1 2.(1-u)) an u - 2 u- 2' 2' '-2- . (5.110) 

Furthermore, making use of the complete elliptic integrals defined by: 

K( /2 ) -
J(1 + u) 

(5.111) 

E ( /2 ) 
J(1 + u) 

(5.112) 

enables the variables a( u) and an ( u) to be expressed as in terms of these as: 

a(u) 4y'l+U E ( /2 ) 
/2n )(1 + u) ' 

(5.113) 

4~ ( E ( Jl- (l!u))- K ( Jl- (l!u))). (5.114) 

The complexified gauge coupling can now be calculated in terms of u. The result is: 

r(u) = dan/du _ 
dajdu 

iK(j1-~) 

x(~) 
(5.115) 
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The explicit solution for the prepotential of the low energy Wilsonian effective action of 

four dimensional N = 2 supersymmetric SU(2) Yang-Mills gauge theory follows from 

substituting Eq. (5.115) into Eq. (5.31) above and integrating over the scalar vacuum 

expectation values a(u). The problem of determining the prepotential from the system 

of equations above can also be formulated as a set of Picard-Fuchs equations [193], which 

provide an alternative method of obtaining the same solution. The expressions for a( u) 

and an(u) can be expanded in terms of u to check their behaviour under monodromy 

and also their asymptotic limits. 

Monopole Condensation and Confinement inN = 2 Supersymmetric Yang-Mills Gauge 

Theory 

Vve now describe confinement in the Seiberg-Witten solution for the low energy vVilso

nian effective action of N = 2 supersymmetric SU(2) Yang-Mills gauge theory. The 

phenomenon of confinement is described in terms of the N = 2 theory broken to an 

N = 1 theory by the addition of a mass term for the chiral superfield multiplet <I>. 

The microscopic Lagrangian also has a mass gap, the existence of which is required for 

confining behaviour. This assumes the form of an N = 1 superpotential W, given by: 

W = mTr( 1>2
), (5.116) 

where m is the mass of the chiral superfield <I>. The mass m is a bare mass. The low 

energy N = 1 theory resulting from the modified N = 2 theory is an Abelian U(1) gauge 

theory which possesses a Z4 chiral symmetry. Let the term Tr( 1> 2) be represented by 

a chiral superfield U in the low energy theory. Then the scalar component of U is the 

holomorphic function Uqu = (Tr( q})), which parameterizes the quantum moduli space, as 

has already been described. When m is small, the form of the effective superpotential is 

mU, which is added to the low energy effective Lagrangian. This modification is expected 

to remove the vacuum degeneracy of the theory and give mass to the scalar multiplet of 

component fields U. If the theory is to have a mass gap, then the U(1) gauge fields are 

required to be massive also. This can be done by adding low mass (or 'light') gauge fields 

to the theory, or by a Higgs mechanism involving the existing charged low mass gauge 
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fields. If additional low mass gauge fields were added, this would result in a strongly 

coupled non-Abelian gauge theory. 

However, additional low mass fields cannot occur in the theory because this would give 

rise to extra singularities on the moduli space Msu(2). As reasoned by Seiberg and 

vVitten, and described above, there should exist only three singularities on Msu( 2), all 

of which are accounted for in their analysis. 

Thus, in order to obtain a mass gap in the theory, the existing charged low mass gauge 

fields should give rise to a Higgs mechanism. Via electric-magnetic duality, this can be 

described in terms of dual (charged) gauge fields, that is, magnetic monopole and dyons. 

The complete N = 1 superpotential can be written in the dual description as: 

(5.117) 

where M, M are N = 1 chiral superfields which comprise theN= 1 magnetic monopole 

and dyon multiplet, and AD is the dual of the scalar field A. The low energy vacua 

of the theory then occur when the variation of the superpotential is zero, dW = 0, 

and IMI = IMI. When m = 0, then M = M = 0 in the vacua of the theory. Then 

aD is arbitrary and the N = 2 moduli space Msu(2) is recovered, since the vacuum is 

unmodified. When m =f. 0, the variation of W results in: 

/(\ - du 
VLMM+m-A 

d D 

aDM = aDM 

0, 

0. 

(5.118) 

(5.119) 

If dujdAD =f. 0, then both M and M are non-zero. Then aD= 0 and one obtains: 

(5.120) 

The superfields M and M are charged, and according to Eq. (5.120), their vacuum expec

tion values are non-zero. Via the Higgs mechanism, these superfields then generate a mass 

for the low mass gauge fields. In this way, the mass gap of the microscopic theory is re

produced. As the multiplet M M is magnetically charged, the dual theory has a magnetic 

Higgs mechanism. This occurs when M = M =f. 0, and through the Higgs mechanism, 

massless magnetic monopoles condense in the vacuum. Electric charges are then confined 

in the electric theory by the dual (magnetic) Meissner effect through electric-magnetic 
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duality. The role of magnetic monopoles in the confinment mechanism of Yang-Mills 

gauge theories has thus been given an exact, if conjectural, realization. 

In this subsection we have briefly outlined how Seiberg and Witten were able to deduce 

the low energy Wilsonian effective action of N = 2 supersymmetric SU(2) Yang-Mills 

gauge theory by indirect methods. The concepts of etectric-magnetic duality, N = 2 

supersymmetry, moduli space and holomorphy have been employed alongside powerful 

techniques of complex analysis to propose the exact form of this low energy effective 

theory. The physical consequences of this include a proposed explanation and derivation 

of the mass gap and the confinement of electric charges in the microscopic theory. 

In the Subsection 5.3.2 below we briefly outline the methods Seiberg and vVitten used to 

extend their work on pure N = 2 supersymmetric SU(2) Yang-Mills theory toN= 2 

supersymmetric SU(2) QCD, which is the pure Yang-Mills theory coupled to fundamen

tal matter multiplets. 

5.3.2 N = 2 Supersymmetric SU(2) QCD 

We now describe the exact determination of the low energy Wilsonian effective action 

for N = 2 supersymmetric SU(2) QCD with N1 fundamental matter multiplets. The 

analysis of Seiberg and vVitten [171] for this case is lengthy and varies for differing values 

of Nf. Many elements of the analysis for the pure N = 2 supersymmetric SU(2) Yang

Mills theory described in the Subsection 5.3.1 are used. 

The theory under consideration is given by the (N = 1 superfield) Lagrangian in Eq. (3.87) 

with gauge group SU(2) of Section 3.4 in Chapter 3. The Wilsonian beta function for 

N = 2 supersymmetric SU(2) QCD with N1 matter multiplets is given by: 

(5.121) 

using the result for the N = 2 Wilsonian beta function in Eq. (5.5) of Section 5.2. In 

order for the theory to remain asymptotically free, one must have N1 :::; 4 (for N1 2 0). 

Theories with this range of N1 shall only be described in this subsection. 

Following Seiberg and Witten, a different charge normalization is chosen for the analysis 
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of this theory. This is to maintain integral electric charges for the particle states in the 

theory when fundamental matter multiplets are present. In the pure N = 2 supersym

metric Yang-Mills theory, all fields transform in the adjoint representation and all particle 

states possess integer charges, given by the quantum numbers ne and nm appearing in 

the central charge Z. ·when fundamental matter is added to this theory, ne may assume 

half integer values. To maintain integer values of ne in N = 2 supersymmetric QCD, 

one can multiply ne by 2 and divide a by 2, so that the mass bound is unchanged. We 

summarize these changes in conventions as: 

(5.122) 

The dual vacuum expectation value aD is left unchanged, but is now defined according 

to an equation different to Eq. (5.68) of Subsection 5.3.1. The dual variable aD is now 

given by: 
1fJF 
2 aa. (5.123) 

The asymptotic behaviour of both a and aD is also modified due to the different charge 

normalization. When the holomorphic co-ordinate u becomes large, iul -+ oo, the vari

ables a and aD tend to: 
4i 

a ~ ~ffu, aD = -a log a. 
7r 

(5.124) 

Given these rescalings of a and aD, the complexified gauge coupling constant is modified 

accordingly, and assumes the form: 

T = 
{) -81ri 
-+-1!" g2 . (5.125) 

The form of the elliptic curves which are proposed to provide the low energy effective 

action of the theory are also modified by this change in the charge normalization, as will 

be described below. The physical content of the theory will remain unchanged by this 

alteration in convention. 

Seiberg and vVitten consider the case of N = 2 supersymmetric QED as preparation 

for applying the same techniques used for theN= 2 supersymmetric Yang-Mills gauge 

theory to the N = 2 supersymmetric QCD. This is because in the Coulomb phase of 

these theories, the SU(2) gauge symmetry is broken to a U(1) symmetry. Furthermore, 

in the Higgs phase of N = 2 supersymmetric QED, the metric on the moduli space of 
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the theory can be determined uniquely by the symmetries of the theory and receives 

no quantum perturbative or non-perturbative corrections. However, we will proceed to 

describe the full N = 2 supersymmetric QCD theory, beginning with the central charge 

and special symmetries of the theory. 

Central Charge, Special Symmetries and Phases of N = 2 Supersymmetric SU(2) QCD 

The central charge for the N = 2 supersymmetric SU(2) Yang-Mills gauge theory is 

changed when fundamental matter multiplets are added to the Lagrangian. The masses 

of the matter fields will also contribute to the central charge Z. InN= 1 notation, the 

matter multiplets are composed of the chiral superfields Q and Q. These haveN = 1 

component fields (q, x) and (ij, x), respectively. These transform in the 2 and 2 represen

tations of SU(2). The component fields belong to a multiplet with spin less than or equal 

to ~, and so reside in a reduced representation of the N = 2 supersymmetry algebra. 

The saturated mass bound M = J21ZI is expected to hold, but it does so only if the 

contributions of the bare masses of the multiplet are included. 

The fundamental matter multiplet gives rise to an N = 1 superpotential in the La

grangian for N = 2 supersymmetric SU(2) QCD. This is in addition to the kinetic and 

gauge coupling terms which will involve Q and Q. For Nf fundamental matter multiplets 

in the theory, the N = 1 superpotential W has the form: 

(5.126) 

where <I> is the chiral superfield of the ( adjoint) vector multiplet, and mi are the masses of 

the i matter multiplets, where i = 1, ... , Nf. The first term and third term are associated 

with coupling the matter fields to the N = 2 fields, and the second and fourth terms 

are N = 2 supersymmetry invariant mass terms for the matter fields. If all masses mi 

are equal, then the theory also possesses an SU(NJ) 'flavour' symmetry, in analogy to 

ordinary QCD. If some of the masses mi are unequal, the SU(NJ) symmetry is broken to 

smaller subgroups. \iVhen all masses mi are unequal, the SU(NJ) symmetry is completely 

broken to U(1)N'. 

A calculation of the contribution of the superfields Q and Q to the supercurrents of the 
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theory results in an extra term which corresponds to the U(1) subgroup factors of the 

broken SU(N1) symmetry. This extra term modifies the central charge Z of the theory 

accordingly, with the result that Z has the form: 

(5.127) 

where the si are the space integrals given by: 

(5.128) 

which occur in the anti-commutators of the supercharges when matter multiplets are 

taken into account. 

A further special case occurs when all masses are zero, mi = 0. The theory then possesses 

a global SU(NJ) x SU(2)R x U(1)r symmetry. For the particular gauge group SU(2), this 

'flavour' symmetry is enhanced to the larger symmetry of 0(2N1). This originates from 

the property that for the gauge group SU(2), the fundamental and anti-fundamental 

representations are isomorphic, so that the Qi and Qi matter multiplets can be arranged 

into vectors of dimension 2N1 invariant under 0(2N1 ). Additionally, when the gauge 

group is SU(2), there is a parity symmetry associated with this. This parity symmetry, 

denoted p, is a Z2 c 0(2N1) symmetry which acts as: 

(5.129) 

leaving all other fields invariant. This parity transformation is used later in the analysis 

of the theory. Due to the presence of a Z2 symmetry in the R-symmetry Z2 c U ( 1), the 

global symmetry group of the theory is 0(2N1) x SU(2)R x U(1)r/~. 

We now outline the phases of the theory. The phase the theory is in depends on the num

ber of fundamental matter multiplets N1. ·when N1 = 0 and Nf = 1, the theory exists 

only in the Coulomb phase. In this phase the vacuum expectation values are non-zero, 

(cp) ::j=. 0, and the SU(2) gauge symmetry is broken to a U(1) subgroup. For N1 = 1, the 

matter multiplets acquire masses through the Higgs mechanism. The U(1)r symmetry is 

spontaneously broken clue to the R-charge of the superfield <T?. 

When Nf 2 2, the theory can exist in either a Coulomb or Higgs phase. In the Higgs 
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phase, the gauge symmetry is completely broken and there are no electric or magnetic 

charges present. In this thesis we do not describe this phase further, and describe only 

work concerning the Coulomb phase. 

R-Symmetry inN= 2 Supersymmetric SU(2) QCD 

As described in Subsection 5.3.1, there exist R-symmetries in supersymmetric gauge theo

ries. For N = 2 supersymmetric SU(2) QCD, the theory possesses an SU(2)R symmetry, 

from which U(1)r and U(1)1 symmetries arise. The U(1)r symmetry is generically broken 

to the discrete symmetry 7J.4N-2NJ due to instanton effects in COrrelation functions. ·when 

the gauge group is SU(2) (that is, N = 2) there exists an additional 0(2Nf) symmetry, 

which is realized as the parity transformation p given in Eq. (5.129). This symmetry 

group is anomalous because it changes the sign of correlation functions in the theory. 

Since the theory is invariant under this parity transformation, U ( 1 )r transformations 

are permitted which also change the sign of correlation functions, but must transform 

only this. To correct the sign of these functions, and eliminate the freedom to perform 

such transformations, an anomalous Z2 transformation can be introduced. Therefore, for 

N = 2, the U(1)r symmetry is broken to the discrete subgroup Z4(4-N
1

). ·when com

bined with the newly introduced anomalous~ symmetry, the Z4(4-N1 ) symmetry is then 

anomaly free and acts as follows on the superfields of the theory: 

Wa --+ W~ = wWa(w-10), 

<I> --+ <I>' = w2<I>(w-10), 

Q1 --+ Q11 = Q1(w-10), (5.130) 

Q1 --+ Q~ Q1(w-1B), 

Qi --+ Qi' Qi(w-10), i i- 1 

Qi --+ Qi, Qi(w-10), i #- 1, 

where w = exp(2ni/4(4- N1)). When N1 = 0, there are no matter fields to cancel 

the anomaly, with the consequence that only the square of the above transformations 

are anomaly free, thus reproducing Eqs. (5.19,5.19,5.25,5.26) in Subsection 5.3.1. The 

transformations in Eq. (5.130) can be combined with the transformations of the U(1)j 
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symmetry subgroup (recall that U(1)1 C SU(2)R)· The result is a Z4(4-N1) symmetry 

which commutes with the N = 1 supersymmetry algebra. This symmetry acts on the 

superfields of the theory as: 

<I> --7 <I>' = w2<I>(e), 

Ql --7 Q11 = w-1Ql(e), 

Ql --7 Q~ w-lQl(e), (5.131) 

Qi --7 Qi' w-lQi(e), i 'I 1 

Qi --7 Qi, w-1Qi(e), i 'I 1. 

The z4(4-Nf) symmetry is broken to a z4 symmetry due to the transformation properties 

of the holomorphic co-ordinate (also known as the order parameter) u on the quantum 

moduli space. Under the z4(4-Nf) transformations, u transforms as: 

, [ 2rri l u --7 u = exp ( 
4 

_ N 
1

) u. (5.132) 

The resulting Z4 symmetry acts non-trivially on the u-plane. 

The R-symmetry can be used to fix the generic form of the variables a and an in the 

theory. The arguments which lead to these were originally made by Seiberg. At large JuJ, 

the perturbative behaviour of a( u) and an ( u) is determined by the one loop exact beta 

function Eq. (5.121), and is given by: 

a(u) ~ ~V2u + .. · , (5.133) 

an(u) "' (
4 

-iN1)21ra(u)ln (AiJ + · · ·. (5.134) 

where the dots represent non-perturbative corrections due to instantons, and A~N1 is the 

dynamically generated scale associated with the theory. This is analogous to the case 

when Nf = 0, which was described in Subsection 5.3.1. A generic k-instanton correction 

will be proportional to the k-instanton factor given by: 

(5.135) 

The broken U(1)rxZ2 symmetry can be restored by assigning u and AN
1 

charges under the 

U ( 1 )r and ~ transformations. For the theory to be invariant under these transformations, 

-11!1111111' -·-
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a factor of fo is required before the k-instanton corrections. Furthermore, the metric on 

the moduli space (that is, the u-plane), is invariant under the ~ parity transformations 

p. This implies that only k-instanton configurations with k equal to an odd integer do 

not contribute to a and aD. The generic forms of a and aD are then: 

a(u) = (5.136) 

(5.137) 

where {an} and { aDn} are numerical coefficients. The theory has massive charged states 

in its Coulomb phase and the remaining unbroken global symmetry acts on these states. 

BPS States inN= 2 Supersymmetric SU(2) QCD 

In the Coulomb phase of the theory BPS states can occur. There are two types of BPS 

states present. Firstly there are saturated BPS states arising from the matter multiplets. 

Component fermion fields of the multiplet with zero bare mass acquire masses given by 

M= hial when the SU(2) gauge symmetry is spontaneously broken. These BPS states 

can be arranged into a vector invariant under S0(2N1) transformations. Secondly there 

are fermionic zero modes of the magnetic monopole states in the theory which create 

BPS states. When the gauge symmetry of the theory is broken, magnetic monopoles 

appear. For each SU(2) doublet of fermions, these monopoles induce one zero mode . 

. For Nf matter multiplets present, there are 2N1 fermion doublets present and thus 2N1 

fermion zero modes. In the quantum theory these fermionic zero modes form a spinor 

representation of S0(2Nt ). These BPS states therefore transform as a spinor invariant 

under S0(2Nf) transformations, and the monopoles in the theory can be described using 

spinors. With spinors in the quantum theory, the symmetry group is then expected to 

be a uniyersal cover of S0(2N1 ). The groups which cover S0(2N1) universally are the 

Spin(2Nf) groups. 

We now describe the particle spectrum of the quantum theory. When the classical theory 

is quantized, the magnetic monopoles of the theory acquire electric charges. Via the 

Witten effect, a 27r rotation of the electric charge operator for these states produces a 
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(gauge) transformation different to identity which has non-trivial topology [168]. For a 

monopole with magnetic quantum number nm = 1, this transformation has an eigenvalue 

ei19 (-1)H. The factor (-1)H can be identitied with the centre of the SU(2) group and 

also with the chirality operator of the S0(2N1) spinor. This factor is odd for states in 

the matter multiplet and even for states in the vector multiplet. Electrically charged 

states with electric quantum number ne E .Z are such that ( -1 )H = 1 for ne even and 

(-1)H = -1 for ne odd. In addition, when N1 = 1,3, the S0(2Nt) p~rity ensures that 

there is a degeneracy between dyons of opposite S0(2N1) spinor chirality and opposite 

electric and magnetic charges. This simplifies the particle spectrum in the theories with 

one or three fundamental matter multiplets. This degeneracy in the spectrum does not 

occur for Nf = 2, 4. 

For N1 2: 2, the universal cover of the S0(2N1) BPS symmetry can be used to label the 

states in the particle spectrum. Following [171, 190], we label the states in terms of the 

centres of the Spin(2N1) symmetry groups. 

Nf = 2: The symmetry group is Spin(4) ~ SU(2) xSU(2). This group has centre Z2 x~. 

Let representations of the centre be labelled by ( 7J, 7J1
). Then an elementary fermi on state 

is given by (TJ, r/) = (1, 1). A generically charged fermion state then transforms under 

the centre ~ x ~ as: 

(5.138) 

Nf = 3: The symmetry group is Spin(6) ~ SU(4). The centre of this group is Z4 . In 

this case a generically charged fermion state transforms under the centre Z4 as: 

'/,7i 

exp 4(nm + 2ne)· (5.139) 

Nf = 4: The symmetry group is Spin(8). This group has centre~ x ~. In a similar way 

to the transformations of fermion states in the case when N1 = 2, generically charged 

fermion states transform under the centre Z2 X Z2 as: 

(5.140) 

If non-zero N = 2 mass terms are added to the theory, in the form of an N = 1 

superpotential as described above, then the S0(2N1) symmetry is broken. We denote 
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such non-zero masses as mN
1

. When mN
1 

-f. 0, the S0(2NJ) symmetry group is broken 

to S0(2N1- 2) x 50(2). The central charge of the theory is then modified and becomes: 

. 1 
Z = ane + aDnm + j2SN1 mN1, (5.141) 

where SN
1 

is given by Eq. (5.128) with i = N 1. This implies that when a assumes the 

values a = ±mN
1 
/-/2, an elementary fermion state becomes massless. Since the the

ory to be determined is a low energy Wilsonian effective theory, this behaviour will be 

important for the determination of the singularity structure of the quantum moduli space. 

Electric-Magnetic Duality inN= 2 Supersymmetric SU(2) QCD 

\tVhen there are no matter multiplets, N1 = 0, in the theory, there is an effective electric

magnetic SL(2, Z) duality present in the theory. The SL(2, Z) duality group acts upon 

the fields and couplings of the theory. When fundamental matter multiplets are present, 

the monodromy transformations differ from the N1 = 0 case and depend on the masses 

of the matter multiplets. 

The monodromy matrices transform the vector (a, aD) around singularities of the moduli 

space. The most simple possibility is when one fermion field has a non-zero bare mass 

mN1 . Near the point a ::::::; a0 , where a0 = ~/2mN1 , we expect a singularity to occur in 

the limit mN1 ---+ 0, in which the fermion state becomes massless. From similar behaviour 

inN= 2 supersymmetric QED, a logarithmic singularity is expected to result. This is 

indeed the case, for near the singularity, one has: 

_ mN1 
ao = /2' 
~ 

2
11" (a- a0) ln(a- a0) + c, 

(5.142) 

(5.143) 

where c is an arbitrary constant. The monodromy transformations resulting from a 2n 

loop about this point on the moduli space is: 

a ---+ a' = a, 

I mN! 
aD ---+ aD = aD+ a- /2 . 

(5.144) 

(5.145) 

The monodromy transformations in Eqs. (5.144,5.145) are inhomogeneous transforma-

tions. This is because the vector (a, aD) is translated under the monodromy (by the 
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amount ~J2mN1 ) as well as being transformed by SL(2, Z) duality transformations. 

This is unlike action of the monodromies for the N1 = 0 case, given in Eqs. (5.71,5.72) of 

Subsection 5.3.1. The BPS mass bound is consistent with this additional shift since it is 

also modified by the presence of massive matter multiplets. For N1 = 0, such additional 

translations cannot be part of the monodromy group. To include the translation term in 

Eq. (5.145) in the monodromy matrix M 8 , where the subscript s denotes the singularity 

it applies to, we describe the action of MmN
1 

on the column vector (mN1/J2, aD, af. 

Then the monodromy matrix AifmN acts as: 
f 

mN1/J2 m'tv)J2 mN)J2 

aD -+ a' MmN aD D f 
(5.146) 

a a' a 

where: 

1 0 0 1 0 0 

MmN 
f 

-1 1 1 M-1 
mN1 1 1 -1 (5.147) 

0 0 1 0 1 1 

Furthermore, the action of the monodromy on the central charge Z (and thus the mass 

M) can be considered. The quantum numbers appearing in Z can be arranged into the 

row vector W = (S, nm, ne)· For Z to be invariant under the Aif8 , the charges contained 

in W will transform to W M
8
-

1
. The general form of the monodromy matrix Ms will then 

be of the form: 

1 0 0 

r k 

q n p 

1 0 0 

lq- pr p -l , det(Ms) 

nr- kq -n k 

1. (5.148) 

The monodromy transformations given by Ms permit the mixing of electric and magnetic 

charges. Under these transformations, the electric and magnetic quantum numbers ne and 

nm can receive translations proportional to ne and nm, but not translations proportional 

to S. This is because S is a global symmetry charge. Conversely, however, S can be 

translated by amounts proportional to ne and nm, which arise from local gauge symmetry. 

For the specific monodromy transformation AifmN , the row vector of charges W is shifted 
f 

as follows: 

(5.149) 
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The formalism of the theory is S L(2, Z) covariant, but the spectrum of particle states 

is not. There exists further evidence for S L(2, Z) duality in the N1 = 4 theory, but we 

do not describe this further, and refer the reader to the second paper of Seiberg and 

Witten [171]. 

Moduli Spaces of N = 2 Supersymmetric SU(2) QCD with Nf :S 3 

In analogy to the case when Nf = 0, the singularities on the moduli space are to be 

determined before their monodromies are calculated. This assists in elucidating the 

structure of the moduli space of the theory. The renormalization group behaviour of 

N = 2 supersymmetric SU(2) QCD with different values of N1 ~ 4 is important in the 

analysis of Seiberg and Witten of the moduli spaces of these theories. The beta function 

of these theories in Eq. (5.121) can be integrated (using a standard normalization of g) 

to give: 

1 . = (4- Nt) ln (J!:.__) 
aN! (J.t) 211" AN! ' 

(5.150) 

where aN1 = 4n / g~1 is the inverse squared gauge coupling and AN
1 

is the dynamically 

generated (energy cutoff) scale at a given value of N1 ~ 4, and f.t is the energy scale. 

If the theory is considered at a scale f.t < m and N1 - Nj of the fermion states have a 

mass mi =m (i = 1, ... , N1 ), the low energy Wilsonian effective theory will possess only 

Nj matter multiplets as effective degrees of freedom. In this case the effective coupling 

aN! (J.t) of theory is given by Eq. (5.150) with N1 and AN
1 

replaced by Nj and AN!. 

The effective scales of the two theories ar_e related by the requirement that the matching 

aN1 (m) = aN! (m) holds. This matching then implies that the scales of the theories are 

related via: 

A4-N/ - N!-N' A4-Nj 
N' - m f N 

f f 
(5.151) 

Using the matching given in Eq. (5.151), the scale of theories in the class of N = 2 

supersymmetric SU(2) QCD with N1 ~ 3 fundamental matter multiplets can be related. 

The case of Nf = 4 is special as it gives a scale invariant theory which must be treated 

separately, as will be described below. 

Via renormalization group flow, the theory with N1 = 3 is equivalent to the theory with 
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N1 = 2 in the limit of one of the matter multiplet bare masses tending to zero. In this 

way, information about the moduli spaces of theories with N1 - 1 multiplets can be ob

tained from the theory with N 1 multiplets. To do this, one can begin with theories in 

which the bare matter multiplet masses are much greater than the scale A. When the 

masses of the matter multiplets tend to zero, and singularities form, they do so in the 

large Ju/ region of the moduli space, which is also the semi-classical region. This makes 

these singularities readily identifiable. When Ju/ is small, the theory is effectively the 

N1 = 0 theory, with two singularities corresponding to massless magnetic monopoles and 

dyons. We now examine the cases individually, and defer the special case of Nf = 4 to 

below. 

Nf = 3: Let the three matter multiplets have equal masses mi =m > A. Then the global 

Spin(6) ~ SU(4) symmetry of the theory is broken to SU(3) x U(1). Classically there 

exists a singularity at a= m/J'i, where all masses vanish, mi = 0. The resulting massless 

states form a triplet of SU(3). When Ju/ is small, the moduli space is the same as that 

of the N1 = 0 theory. It has a dynamically generated scale A0 and two singularities at 

(nm, ne) = (1, 0) and (nm, ne) = (1, 1), at which monopoles and dyons become massless. 

These singular points are SU(3) invariant. As one of the multiplet masses is decreased 

towards zero, m--+ 0, the previous global symmetry group of the theory is restored and 

the massless states form representations of SU ( 4). This constrains the singularities of the 

moduli space, since they must combine to allow this. Due to the transformation proper

ties of the massless states under SU (3), these representations can only be a singlet and 

a quadruplet of SU(4). Given the transformation properties of generic charged particle 

states under the centre of the symmetry group Spin(6), as described above, these states 

correspond to massless states whose smallest charges are (nm, ne) = (1, 0) for the singlet 

state and (nm, ne) = (2, 1) for the quadruplet state. Hence there are three singularities 

on the moduli space for the Nf = 3 theory. 

N1 = 2: When the two matter multiplets present have equal masses mi = m > A, the 

global symmetry group Spin( 4) ~ SU(2) x SU(2) is broken to the product S0(2) x S0(2). 

Again there is a classical singularity at a = m/ J2, at which all the masses vanish, mi = 0. 

a---= 
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These massless states form representations of one of the S0(2) groups. At small/u/, the 

moduli space again has the same form as the N1 = 0 case, and has two singular points 

at (nm, ne) = (1, 0) and at (nm, ne) = (1, 1). These singular points transform as singlets 

under S0(2) x S0(2). ·when the limit m --+ 0 is taken, the previous global symmetry 

group is restored, and again the massless states of the theory form representations of 

Spin( 4). This constraint on the massless states (that is, the singularities of the moduli 

space) implies that there are two singularities, which form two different representations 

of SU(2) x SU(2). Using the formula for the behaviour of generic charged states un

der the centre of Spin( 4), these singularities occur for the smallest charges satisfying 

(nm,ne) = (1,0) and at (nm,ne) = (1,1), which transform as spinors in S0(4). Thus 

there exist four massless states associated with three singularities on the moduli space 

for the N1 = 2 theory. 

N1 = 1: In this case, the massless theory and the massive theory possess the same S0(2) 

global symmetry. Arguments analogous to those for the N1 = 3 and N1 = 2 cases imply 

that there are three singularities on the moduli space for mi = m > A. When the limit 

m --+ 0 is taken, no additional singularities appear due to the z3 symmetry of the u-plane 
' 

in this case. The transformation properties of a and an under the R-symmetry described 

above indicate that one of the singularities in the zero mass limit is a massless state with 

charges (nm, ne) = (1, 0). The Z3 symmetry of the moduli space implies that two other 

singularities exist, with charges (nm, ne) = (1, 1) and (nm, ne) = (1, 2). When all matter 

multiplets become massless, the N1 = 1 theory still possesses the three singularities above. 

Using the same identification as for the N1 = 0 theory, in which the moduli space of vacua 

is considered to be isomorphic to the moduli space for a genus one Riemann surface, the 

vacuum moduli space can also be specified by a family Eu of elliptic curves [250] in which 

the holomorphic co-ordinate u appears as a parameter. The variables a(u) and an(u) 

can then be calculated as the periods of these curves along appropriate homology cycles. 

Knowledge of the singularities and corresponding monodromies on the moduli space then 

allows the reconstruction of the elliptic curves which describe the moduli space of a 

Riemann surface with which the moduli space of vacua has been identified. 
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Firstly, the Seiberg-Witten elliptic curve and the monodromies for the Nt = 0 theory has 

to be described in terms of the new charge normalization conventions, following Seiberg 

and Witten and introduced at the beginning of this subsection. This will then allow the 

general characteristics of the N1 = 0 curve to act as a guide to the form of the elliptic 

curves for N1 :::; 3. In the new charge normalization convention, the Nf = 0 elliptic curve, 

which is the original Seiberg-vVitten elliptic curve, assumes the form: 

(5.152) 

The monodromy matrices which describe the singularities of the Seiberg-vVitten curve, 

which originally formed the subgroup r(2) c SL(2, Z), now form the subgroup ro(4) c 

SL(2, Z) using the new charge normalization, and read: 

Moo = ( 1 0) ( -1 4) , M-1 - . 
-1 1 -1 3 

(5.153) 
4

) M1 = 
-1 ' 

Following Seiberg and vVitten [171], we now analyse the properties and singularities of 

genus one elliptic curves. Any elliptic curve of genus one can be expressed as a cubic in 

x: 

(5.154) 

which describes the space x which is a double cover of the complex plane with branch 

points at ej, j = 1, 2, 3, and x ---+ oo. For the family of elliptic curves Eu, these branch 

points will in general depend on u. When two branch points of the curve coincide, the 

curve becomes singular. This type of singularity is referred to as a stable singularity. If 

more than two branch points of the curve coincide, the curve also becomes singular, but 

the singularity is not stable. However, a reparameterization of x and y which depends 

on the holomorphic co-ordinate u can be always be performed in which an unstable 

singularity becomes stable. The Seiberg-vVitten elliptic curve Eq. (5.152) has branch 

points at x = 0, Hu ± Ju~- A4), and at x ---+ oo. \~Then u = ±A2
, the two resulting 

singularities are stable. The singularity at u ---+ oo is not stable. 

To understand the -physical consequences of stable and unstable singularities, let a generic 

elliptic curve have a stable singularity at u = 0. Then the family of elliptic curves with 

such a singularity, near u = 0, can be written as: 

(5.155) 
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where nE Z. The monodromy about u will be conjugate to the matrix Tn, where T, as 

defined in Eq. (5.54) of Subsection 5.3.1, is a generator of the SL(2, Z) duality group. 

A quantity which can be used to classify the singularities of a polynomial in terms of 

stable and unstable singularities is the discriminant .6.. This is defined as: 

.6. = IT(ei- ej) 2
, 

i<j 

(5.156) 

where the ·ei are the roots of the polynomial. In general, .6. can be written in terms of 

the coefficients of the polynomial. When two branch points coincide, one obtains .6. = 0, 

excluding singularities at infinity. For the elliptic curve in Eq. (5.155), near the singularity 

u = 0, .6. rv un. The monodromy at this singularity is conjugate to Tn. At the branch 

points u = ±A 2 , .6. will be of order unity. The monodromies at these singularities are 

conjugate to T. In general, the exponent of the monodromy at a stable singularity will 

be of the same order of the zero of .6. at the singularity. 

For unstable singularities, a similar result holds. At large values of u, the branch points 

of the Seiberg-Witten curve in Eq. (5.152) approximately occur at x = O,A4/4u,u and 

x --+ oo. The singularity at u --+ oo is unstable as more than two branch points coincide in 

this limit of u. The change of variables x = x'u and y = y'u312 shifts the branch points at 

large u to approximately x = 0, A/ 4u2, 1 and x --+ oo. The singularity in the limit u --+ oo 

is now stable, and the discriminant in this limit is .6. rv u-4 , which has a monodromy 

conjugate to r-4
. This monodromy corresponds to the monodromy Moo = PT-4 given 

in Eq. (5.73) of Subsection 5.3.1, in terms of the original variables (x, y), hence correctly 

reproducing the behaviour of the Seiberg-Witten elliptic curve at this singular point. 

We now turn to the actual construction of the monodromies. Since the charge quantum 

numbers of the particle spectrum which becomes massless and comprises the singularities 

of the moduli space is known, the procedure of determining the explicit form of the 

monodromies is directly analogous to that for the N1 = 0 theory. 

The monodromy at u --+ oo for the theory with 0 < N1 :::; 4 matter multiplets can be 

determined directly from the perturbative beta function given by Eq. (5.121), in the same 

way as for the Nf = 0 theory. The generic result is: 

(5.157) 
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Singularities at finite Jul are in general associated with massless magnetic monopoles of 

charge (nm, ne) = (1, ne)· The monodromies at these points can be obtained by using 

a dual description of the theory in which magnetic monopoles and the dual gauge field 

couple in the same way as electric charges couple to the gauge field. Using the one loop 

beta function of N = 2 supersymmetric QED, the monodromy for k massless magnetic 

monopoles is given by Tk. To express this result in the dual description of the theory, 

one can apply the duality transformation ynes, which transforms a matter multiplet of 

purely electric charge (0, 1) into a magnetic multiplet of charge (1, ne), to the monodromy 

Tk. Hence the monodromy for a point at which k magnetic monopoles of charge (1, ne) 

becomes massless is given by (TneS)Tk(TneSt 1 . An analogous argument exists which 

determines the monodromy of a massless state of charge (2, 1) for the Nf = 3 theory. 

The monodromies for the singularities of the moduli space of N = 2 supersymmetric 

SU(2) QCD with Nf ~ 3 matter multiplets can now be calculated explicitly. In each 

case, the product of the monodromy matrices at finite Jul gives the monodromy matrix 

at u ---t oo, M00 • The results can be summarized as follows, in which the values of u 

where singularities for N1 < 0 occur cannot yet be specified, since these values are not 

known explicitly: 

0 

1 

2 

3 

M = STS- 1 M = (T2S)T(T2S)- 1 M = PT-4 
1 ) -1 ) 00 ) 

STS-1, (TS)T(TSt 1
, (T2S)T(T2St\ Moo = PT-3

, 

ST2S-I, (TS)T(TSt\ Moo = PT-2
, 

(ST2S)T(ST2St\ ST4S- 1,Moo = PT-\ 

where the form of Moo for each value of N1 satisfies Eq. (5.157). 

The Elliptic Curve for N = 2 Supersymmetric SU(2) QCD with N1 = 0 

(5.158) 

(5.159) 

(5.160) 

(5.161) 

The Nf = 0 elliptic curve is the Seiberg-Witten elliptic curve given in Eq. (5.152) in the 

new charge normalization conventions. There is no distinction between the massless and 

massive cases of the theory as there are no matter multiplets present. Some properties of 

the Seiberg-Witten curve are also present for the curves with non-zero N1. These include 

the following: 
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1. The elliptic curves for Nf > 0 are anticipated to be of the form y2 = F(x, u, A), 

where F is a polynomial of degree no higher than three in x and u. This property 

will ensure the correct monodromy matrices for the singularities in the theories 

with Nf > 0. 

11. The term which is cubic in x in the polynomial F has the form Fa = x2(x- u). 

The singularity in the limit lul --+ oo must be present for all values of Nf, and the 

monodromy at infinity will be that derived from the one loop beta function, namely 

Moo = PTNr4 . For this to occur, one of the branch points of the polynomial F 

must tend to infinity as lul --+ oo. If this singularity is to remain stable, then 

the other two branch points must coincide. This constrains the form of the curve, 

and through a reparameterization of x, the term Fa can be put into the form 

Fa = x2 
( x - u). This can also be expressed as the requirement that in the limit 

T--+ ioo, which is the weak coupling limit, one should recover the curve y2 =Fa. 

m. One can assign U(1)r charges to the variables x and u such that y2 = F is invariant 

under U(1)r transformations. If x and u are each assigned a U(1)r charge of 2, and 

the scale A has U(1)r charge 2, property (i) dictates that F has a U(1)r charge of 

12. If y is further assigned a U(1)r charge of 6, then the curve y2 = F is U(1)r 

invariant. 

IV. The polynomial F can always be written in the form F =Fa+ ~A4 x, where Fa is 

defined in property (ii). This is due to the U(1)r charge assignments in the Nf = 0 

theory. 

The Elliptic Curve for N = 2 Supersymmetric SU(2) QCD with N1 = 1 

'vVe first describe the Nf = 1 theory with massless multiplets. In this case, the instanton 

amplitude given by Eq. (5.135) is proportional to Ar, where A1 = AN
1 

is the dynamically 

generated scale of the Nf = 1 theory. When Nf ~ 1, the instanton amplitude factor 

is odd under the p parity transformation defined in Eq. (5.129). Since p parity is a 

symmetry of the theory, only odd powers of the factor Ai should appear in the Nf = 1 

" 
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elliptic curve. If A1 is assigned the U(1)r charge according to property (iii) of the Nt = 0 

curve, and F has a U(1)r charge of 12, then only a factor of A~ may appear in F. Hence 

the unique elliptic curve for the massless theory which obeys the properties listed for the 

Seiberg-Witten elliptic curve is: 

(5.162) 

where t is a constant which may be absorbed by a rescaling of A1 as A~ = tA~. The 

discriminant of the set of massless N1 = 1 curves Eq. (5.162) is given by: 

(5.163) 

which has three zeros. The zeros of .6.. are related to one another by the Z3 symmetry of 

the u-plane. The monodromies associated with these singularities are matrices conjugate 

toT. These matrices, and the monodromy matrix for the singularity at large iul derived 

from the elliptic curve are consistent with the monodromies on the moduli space given 

in Eq. (5.159). 

For the theory with N1 = 1 massive multiplets, the curve of the massless theory given in 

Eq. (5.162) with the aforementioned rescaling of A1 can be generalized to give: 

(5 .164) 

where m is the mass of the fundamental matter multiplet. 

The Elliptic Curve for N = 2 Supersymmetric SU(2) QCD with N1 = 2 

For the massless Nf = 2 theory, the instanton factor given in Eq. (5.135) is proportional 

to A~. When the two matter multiplets present are massless, only even powers of the 

factor A~ may appear in the polynomial F for the N1 = 2 elliptic curve. As in the Nf = 1 

case, the dynamically generated scale A2 has a U(l)r charge of 2. The properties of the 

Seiberg-Witten elliptic curve then constrain the curve of the massless N1 = 2 theory to 

be: 

(5.165) 

where a and bare constants. The singularity structure of the moduli space for this theory 

is such that two singularities arise from magnetic monopoles and become massless at finite 
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lul. From Eq. (5.160), the monodromy matrices at these singular points are conjugate 

to T 2 . Hence the discriminant of the elliptic curve Eq. ( 5.162) should have second order 

zeros at these singularities. This restricts the form of the discriminant ~' from which the 

constants a and b can be determined. In analogy with the N1 = 1 case, these constants 

can be absorbed into A2 via a rescaling, which gives the scale A2 . After this has been 

done, the family of elliptic curves which describe the moduli space of the massless Nf = 2 

theory can be written as: 

(5.166) 

The elliptic curve exhibits ~ symmetry in the .u-plane, which is consistent with the ~ 

symmetry which relates the finite lul singularities on the mod~li space of this theory 

described previously. 

When the two matter multiplets of the theory are massive, the elliptic curve in Eq. ( 5.166) 

can be generalized to the massive case and then assumes the form: 

(5.167) 

where m 1 and m 2 are the bare masses of the two fundamental matter multiplets in the 

theory. 

The Elliptic Curve for N = 2 Supersymmetric SU(2) QCD with N1 = 3 

When there are Nf = 3 massless matter multiplets coupled to N = 2 supersymmetric 

SU(2) QCD, there are two singularities on the u-plane at finite lul. As expressed in 

Eq. (5.161), these singularities have monodromies which are conjugate to T 4 and T, 

respectively. These monodromy matrices are not related via any symmetry which acts 

on the u-plane. If it is supposed that the singularity with monodromy matrix conjugate 

to T 4 is at u = 0, then the discriminant should have an order four zero at the singular 

point u = 0. The assignments of U ( 1 )r and p parity charges in the theory, involving the 

instanton factor Eq. (5.135) for N1 = 3, then serve to restrict the form of the possible 

elliptic curves. Together with the properties of the Seiberg-Witten elliptic curve, these 

constraints imply that the massless N1 = 3 theory has a moduli space described by an 
/ 
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elliptic curve given by: 

(5.168) 

where a, b and c are constants. The constant b must be non-zero, b -=/:- 0, otherwise the 

elliptic curve is singular for all values of u. As in the previous cases, these constants can 

be absorbed into the definition of A3 via a rescaling, resulting in the scale A3 . Further 

rescaling of y in Eq. (5.168) and property (ii) of the N1 = 0 curve permits the elliptic 

curve for the massless N1 theory to be expressed as: 

(5.169) 

The massless N1 = 3 elliptic curve Eq. (5.169) can be generalized to the case of massive 

matter multiplets. The result for the elliptic curve which describes the moduli space of 

the massive Nf = 3 theory is then: 

y
2 

= x2(x- u)- ~A2 (x- u) 2 - ~(m2 + m2 + m2)A2(x- u)+ 64 3 64 1 2 3 3 

1 122 22 212 4m1m2m3A3x-
64 

(m1m2 + m2m3 + m1m3)A3, 
(5.170) 

where m1, m2 and m 3 are the bare masses of the fundamental matter multiplets. 

Determination of the Low Energy Effective Action for N = 2 Supersymmetric SU(2) 

QCD with Nf :S 3 

vVe have described how the elliptic curves. whose moduli spaces specify the physical 

moduli space of vacua for theN= 2 SQCD theories with N1 ::::; 3 massive and massless 

fundamental matter multiplets have been deduced in Seiberg-Witten theory [171]. The 

methods employed to extract these elliptic curves have used symmetries of the theory 

and properties of the moduli spaces involved. 

A procedure directly analogous to that for Seiberg-\iVitten theory (that is, the elliptic 

curve for the massless N1 = 0 theory) [171] can be implemented to explicitly determine 

the variables a and aD for each case when 0 < Nf ::::; 3 and Nf E Z. Through the 

identification of the moduli spaces of vacua with the corresponding moduli spaces of 

specific genus one Riemann surfaces, described by the aforementioned elliptic curves, the 

variables a and aD are proposed to be periods of the elliptic curves, given by the contour 
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integrals: 

a = 1 >., an = 1 A, (5.171) 
~1 ~2 

where --y1 and --y2 are appropriate homology one-cycles with unit intersection number. The 

integrand A is a holomorphic differential one-form which satisfies the differential equation: 

dA 
du 8n y 

(5.172) 

The metric on the moduli space in each case is then given by Im( T), where T is the 

period matrix of the Riemann surface described by the elliptic curve y2 = F(x,u,A). 

The period matrix T is identified with the complexified coupling constant T( u) via the 

important hypothesis that the moduli space of vacua is isomorphic to the moduli space 

of the Riemann surface, which makes possible the analysis leading to the determination 

of the low energy effective prepotential :F. In terms of the variables a and an, the matrix 

T is given by: 

T = dan/du 
dajdu · 

(5.173) 

For the case of gauge group SU(2) and a four dimensional gauge theory, the matrix T is 

given by a complex scalar function. The prepotential :F and the low energy vVilsonian 

effective action of N = 2 SU(2) SQCD follow using the methods already described in 

Subsection 5.3.1. 

Moduli Space of N = 2 Supersymmetric SU(2) QCD with Nf = 4 

The case when there are Nf = 4 fundamental matter multiplets in the theory has a 

vanishing one loop beta function. This can be seen from the beta function Eq. (5.5) of 

Section 5.2 in Chapter 4 with Nf = 4 substituted. The resulting classical theory is scale 

invariant. The exact Nf = 4 quantum perturbative beta function is zero to all orders in g. 

Seiberg and Witten propose an argument involving the consequences of the appearance 

of the instanton factor Eq. (5.135) in the beta function and conclude that the quantum 

non-perturbative Nf = 4 beta function is also zero to all orders in g. If this were not the 

case, the metric on the moduli space would also not be positive definite. The quantum 

theory is exactly scale invariant. This scale invariance also implies that the classical and 

quantum moduli spaces are identical. 

-= N 
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For this theory, the complexified coupling constant T is a dimensionless coupling, due to 

the absence of dimensional transmutation. In physical terms this means that T is not a 

running coupling, and has the same value at all energy scales. There are no quantum 

perturbative or non-perturbative corrections to T and so the variables a and an also 

receive no quantum corrections. Therefore, according to this reasoning, these variables 

maintain their classical form in the quantum theory, namely: 

1 
a = -ffu, an = Ta. 

2 
(5.174) 

This implies that the co-ordinate used to parameterize the quantum moduli space, namely 

the quantum modulus u = Uqu, is taken to be equal. to the co-ordinate on the classi

cal moduli space in this case, u = uc1 = Uqu·· We shall return to the identification in 

Eq. (5.174) of the quantum variables with their classical counterparts in Section 6.5 of 

Chapter 6. When all four matter multiplets in the theory are massless, there is only one 

monodromy on the moduli space. This is associated with the origin of the u-plane. When 

some or all of the matter multiplets are massive, the theory exhibits different behaviour. 

If some of the masses mi, i = 1, ... , 4 are taken to be infinitely large, the quantum 

Nf = 4 moduli space should reproduce the quantum moduli spaces of the asymptotically 

free theories with Nf :::; 3 matter multiplets. If there are masses mi, i = n + 1, ... , 4, as 

mi tends to infinity, the correct scaling limit to be taken to reach these other theories is 

T -+ ioo, with u and the quantity A~-n held fixed. The 'scale' A~-n is given by: 

A 4-n rv lnq IT m. q = ei'lrT 
n VLJ 2l - ' 

(5.175) 

where T is the dimensionless complexified coupling constant in the conventions of [171]: 

f) 87ri 
T = -+-7r g2 ' 

(5.176) 

where the new charge renormalization conventions have been used. The low energy 

effective theory then has Nf = n matter multiplets and a dynamically generated scale 

An. Hence, by treating the scale invariant Nf = 4 theory as having more than four matter 

multiplets, an effective definition of an energy scale in the theory can be found. 

Seiberg and vVitten consider the cases where differing numbers of matter multiplets are 

massless in the Nf = 4 theory. They also. consider those cases where massive matter 
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multiplets have degenerate masses. Each singular point of the u-plane can be weighted 

by the number of massive matter multiplets becoming massless at that point. The elliptic 

curve y2 = F(x, u) which describes the low energy effective theory is such that the 

discriminant of F(x, u) (with respect to x) is of degree six in u. The singularities of the 

u-plane are the zeros of this discriminant and so the total weighted number of singularities 

on the u-plane is six. Thus if all matter multiplets of the theory have unequal masses, 

there are six singularities each of weight one. When there are matter multiplets with 

degenerate masses, the singularities associated with them can be combined into one 

singularity of higher weight. The number of singularities on the N1 = 4 moduli space 

and the global symmetry of the theory depends critically on the number of massless 

matter multiplets present. Below we summarize the results of the analysis of the various 

cases of massless, degenerately massive and massive N1 = 4 matter multiplets, as given 

in [171]: 

1. mi = (m, 0, 0, 0) : The global symmetry is SU(4) x U(1). Two singularities of 

weight one and one singularity of weight four, for which the four massless particles 

transform in the fundamental representation of SU ( 4). 

11. mi = (m,m,m,m): TheglobalsymmetryisalsoSU(4)xU(1). Twosingularitiesof 

weight one and one singularity of weight four, for which the four massless particles 

also transform in the fundamental representation of SU(4). 

111. mi = (m, m, 0, 0) : The global symmetry is SU(2) x SU(2) x SU(2) x U(1). Three 

singularities each of weight two. The massless particles transform in a doublet of 

one of the SU(2) factors. 

IV. mi = (m1 , m2 , 0, 0) : The global symmetry is SU(2) x SU(2) x U(1) x U(1). Two 

singularities of weight oneand two singularities of weight two. Massless particles 

associated with weight one singularities exist in fundamental SU ( 4) representations, 

and those for the weight two singularities exist in doublets of one of the SU(2) 

factors. 

v. mi = (m1, m1, m2, m2): The global symmetry is also SU(2) x SU(2) x U(l) x U(l). 

Again two singularities of weight one and two of weight two. The massless particles 
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for the weight two singularities again exist in doublets of one of the SU(2) factors. 

v1. mi = (m, m, m, 0) : The global symmetry is SU(3) x U(1) x U(1). Three singu

larities of weight one and one singularity of weight three. The massless particles 

associated with the weight three singularity exist in fundamental SU(3) represen

tations. 

Seiberg and vVitten argue that the cases (iv) and (v), and also (i) and (ii), point to evi

dence of triality in the theory. The moduli spaces for the theories with multiplet masses 

(iv) and (v) are proposed to be related via this triality. In addition to electric-magnetic 

duality, there exists a map which transforms T to itself. Strictly, this is the §3 automor

phism of the full Spin(8) global symmetry group, which acts upon the four masses of the 

N1 matter multiplets. We note further that the theory with Nf matter multiplets with 

zero bare masses is conformally invariant. 

The singularity structure for the N1 = 4 moduli space is dependent on the masses of the 

matter multiplets pre~ent. Similarities between some of the cases (i)-(vi) above and the 

moduli spaces of N = 2 SU(2) SQCD with N1 :S 3 will be important for determining 

the elliptic curve description of the N1 = 4 moduli space. 

Moduli Space of Mass DeformedN = 4 Supersymmetric SU(2) Yang-Mills Gauge Theory 

To assist in the determination of the low energy effective action for N = 2 supersymmetric 

QCD with Nf = 4 fundamental matter multiplets, Seiberg and Witten also consider N = 

4 supersymmetric SU(2) Yang-Mills gauge theory in [171]. These theories are related 

since N = 2 supersymmetric SU(2) Yang-Mills gauge theory coupled to a massless 

matter multiplet in the adjoint representation gives N = 4 supersymmetric SU(2) Yang

Mills gauge theory. When the adjoint matter multiplet has a non-zero bare mass, this 

theory is referred to as mass deformed N = 4 supersymmetric SU(2) Yang-Mills gauge 

theory. The mass deformed N = 4 theory is equivalent toN= 2 supersymmetric QCD 

with N1 = 4 fundamental matter multiplets. Furthermore, both N = 4 supersymmetric 

Yang-Mills gauge theory and N = 2 supersymmetric QCD with Nf = 4 fundamental 

matter multiplets have dimensionless coupling constants and are candidates for S-dual 
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or SL(2, Z) invariant theories. Hence it is relevant to describe mass deformed N = 4 

supersymmetric SU(2) Yang-Mills gauge theory. 

The moduli space of theN= 4 supersymmetric SU(2) Yang-Mills gauge theory is very 

similar to that of N = 2 supersymmetric QCD with massless N1 = 4 fundamental matter 

multiplets. There is a dimensionless coupling constant, TN=4 , given by: 

{) 41ii 
TN=4 = -

2 
+ - 2 , 

1i g 
(5.177) 

which is identical to the classical complexified gauge coupling given in Eq. (2.17) in 

Section 2.2 of Chapter 2. Since the theory is scale invariant, the classical and quantum 

N = 4 moduli spaces are assumed to be identical. The metric on the moduli space, 

given by Im( TN=4)dada, is taken to receive no quantum perturbative or non-perturbative 

corrections. As described in Section 4.3 of Chapter 4, the vanishing N = 4 beta function is 

also perturbatively and non-perturbatively exact. The classical and the quantum versions 

of the theory are taken to have vacuum moduli spaces which can be described in terms 

of the classical variables a and an, given by: 

a = ~' an = ra. (5.178) 

As shall be described in Section 6.5 of Chapter 6, the assumptions leading to this iden

tification produces some discrepancies when compared with conventional field theoretic 

calculations. 

No assumption is made in the analysis of Seiberg and Witten regarding S-duality of the 

N = 4 theory. Instead, they put forward evidence of SL(2, Z) invariance in the theory. 

Below we briefly outline the somewhat lengthy methods which were used to determine 

the elliptic curves for the mass deformed N = 4 supersymmetric SU(2) Yang-Mills gauge 

theory and theN = 2 supersymmetric SU(2) QCD with N1 = 4 fundamental matter 

multiplets. 

Elliptic Curves for the M assless N = 4 Supersymmetric and N = 2 Supersymmetric 

Scale Invariant Theories 

Following Seiberg and vVitten, we now describe some generalities regarding N = 4 super

symmetric SU(2) Yang-Mills gauge theory deformed by a massless fundamental matter 
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multiplet, and N = 2 supersymmetric SU(2) QCD with N1 = 4 massless fundamental 

matter multiplets. Given the classical form of the variables a and an for these theories 

in Eqs. (5.174,5.178), these formulae also apply in the quantized theories, and are exact. 

Seiberg and Witten make use of the properties of the \iVeierstrass function, denoted qJ, 

to deduce the form of the elliptic curves which will specify the particular differential 

forms required. These differential forms are chosen such that they have periods given by 

(8an/8u, 8aj8u), with a and an given by the exact formulae Eqs. (5.174,5.178), and are 

given by: 

/2dx 
87r y ' 

/2dx 
47r y ' 

(5.179) 

(5.180) 

where WN=4 and wN1=4 are associated with theN= 4 theory and theN= 2 theory with 

Nf = 4 flavours, respectively. 

A genus one curve E and an associated differential form with periods given by multiples 

of ( 7, 1), where 7 is the periods matrix for E, can be readily specified. If E is taken to 

be the quotient of the complex plane z E C by the lattice generated by n and 7r7, then 

the differential form w0 = dz will have periods 1r and 7r7. The algebraic form of the curve 

E can be found using the aforementioned Weierstrass function qJ. This special function 

has the following properties, as a function of the z-plane: 

qJ(z) = qJ(z + 1) = qJ(z + 7) = ~( -z). (5.181) 

The function ~ has one singularity on E, which is a double pole at the origin. Now let 

Xo = qJ(z) and y0 = ~'(z). Then one has: 

(5.182) 

where the functions 92 and 93 are related to Eisenstein series G4 and G6 , which define 

modular forms of weight four and six, respectively: 

(5.183) 

(5.184) 
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where the integers m,n are non-zero. Given that ·Xo and y0 are related via the equation 

y0 = dx0 jdz, then w0 = dz can be expressed as w0 = dx0 jy0 . If, further, one changes 

variables to x = x0u and y = ~y0u312 , then the two differential forms WN=4 and wN1=4 in 

Eqs. (5.180,5.179) can be written as: 

Nu /2dx 
--wo --

' 41!' 81!' y 
(5.185) 

Nu. /2dx 
--wo --

' 21!' 41!' y 
(5.186) 

and the elliptic curve Eq. (5.182) becomes: 

2 31 2 1( 3 y = X - -92 ( T) XU - -93 T) U . 
4 4 

(5.187) 

The form of this change of variables was chosen for consistency with the properties of 

the Seiberg-Witten elliptic curve which are postulated to extend to the other theories 

with 0 < Nf ~ 4 matter multiplets and the required asymptotic behaviour of the curve 

(in particular, in the weak coupling limit T ---t ioo). In this construction of the mass

less elliptic curves, the differential forms WN=4 and wN
1

= 4 now have periods given by 

VU/8(1, T) and jU/2(1, T), and the correct exact formulae for the variables a and an in 

Eqs. (5.174,5.178) are recovered. 

We note that the coefficients of the elliptic curves Eqs. (5.182,5.187) are modular forms. 

This is because the metric on the classical moduli space for these theories is invariant 

under the modular group SL(2,7L), and is thus S-dual. This fact can be regarded as 

evidence for S-duality in these theories. 

The elliptic curve Eq. (5.187) may also be factorized in terms of 8 functions expressed as 

functions of the exponentiated complexified ( dimensionless) coupling constant q = e21rir. 

The 8 functions are modular forms of weight ~, and relate the three roots of the cubic 

polynomial in Eq. (5.187) when y2 = 0 is set; we denote the three resulting roots as ei, 

i = 1, 2, 3. The elliptic curve E given by Eq. (5.187) possesses spin structures which 

are given by the roots ei. For the N = 4 theory, the spin structures are not significant. 

For theN= 2 theory with N1 = 4 matter multiplets, the S-duality group SL(2, 7L) acts 

upon the spin structure and the conjectured Spin(8) triality group of the theory. The 

modular group acts upon both of these objects via permutation, and therefore Spin(8) 
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triality permutes the roots ei of the massless elliptic curve Eq. (5.187). 

The Elliptic Curve for N = 4 Supersymmetric SU(2) Yang-Mills Gauge Theory 

TheN= 4 supersymmetric SU(2) Yang-Mills gauge theory can be regarded as N = 2 

supersymmetric SU(2) QCD coupled to one massless adjoint matter multiplet. If the 

adjoint multiplet acquires a non-zero bare mass m, that is, if the N = 4 theory is mass 

deformed, then theN= 4 supersymmetry is explicitly broken toN= 2 supersymmetry. 

We now describe the singularity structure of the moduli space of the mass deformed 

N = 4 theory, as proposed by Seiberg and Witten. This will assist in the determination 

of the elliptic curve proposed to describe the moduli space. There exists one singularity at 

weak coupling, for which lql « 1, and m# 0. This singularity arises from a component 

field of the massive adjoint multiplet becoming massless, and at this point u = ~m2 . 

Since the presence of a non-zero bare mass breaks theN= 4 supersymmetry, the theory 

develops into a strongly coupled N = 2 supersymmetric SU(2) Yang-Mills gauge theory 

at energy scales of order A0 ~ q114m. This theory is amenable to the analysis of Seiberg 

and Witten in [170] and is known to have two singularities at finite u arising from massless 

monopoles and dyons. All of the three singularities so far uncovered have monodromy 

matrices conjugate to T 2
. At strong coupling, and in the absence of S-duality (which 

Seiberg and Wit ten do not assume), the three singularities each arise from a multiplet 

becoming massless. 

Using this fact and the conditions on the elliptic curve in the massless limit m --+ 0, a first 

approximate form of the curve can be deduced. Applying the restrictions on the curve in 

the weak coupling limit, which should be smooth, this first approximation can be refined. 

This further constrains the mass dependence of the coefficients in the curve. Finally, 

Seiberg and Witten consider the residues of the differential form ). at the singularities of 

the elliptic curve. This completely fixes the mass dependence of coefficients in the curve, 

and leads to the following elliptic curve proposed to describe the moduli space of N = 4 

supersymmetric SU(2) Yang-Mills gauge theory mass deformed by an adjoint matter 

multiplet of bare mass m: 

Y
2 -_ (x e u-

1
e2m2)(x e u-

1 2m2)(x u-
1e2 2) - 1 - 4 1 - 2 - 4e2 - e3 - 4 3m '' (5.188) 
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where u is given by: 

u (5.189) 

In the elliptic curve Eq. (5.188), the quantities ei, i = 1, 2, 3 are the roots of the cubic 

polynomial obtained by setting y2 = 0 in Eq. (5.187), which describes the massless N = 4 

theory, as previously stated. The elliptic curve Eq. (5.188) for the mass deformed N = 4 

theory has modular forms as coefficients, and so it is also invariant under the modular 

group SL(2, Z). Since this elliptic curve is proposed to describe the quantum moduli 

space of the theory, this modular invariance or S-duality is valid in the strong coupling 

regime. This is a hitherto unknown property of theN = 4 theory, which can be regarded 

as a new test of the conjectured exact extended electric-magnetic duality (S-duality) of 

this theory. However, this SL(2, Z) invariance does not appear in the weak coupling 

limit T ---+ ioo of the theory. In this limit, u is the appropriate co-ordinate of the moduli 

space, which is not a modular form, whereas the renormalized co-ordinate u is, and is 

thus SL(2, Z) invariant. Furthermore, in the limit T ---+ pj q, p, q E Z and m ---+ oo, the 

N = 4 theory is broken to anN= 2 Yang-Mills theory, which does not possess SL(2, Z) 

invariance. In this case, the S L(2, Z) modular group permutes the possible scaling limits 

which lead to theN= 2 theory. 

The Elliptic Curve for N = 2 Supersymmetric SU(2) QCD with Nf = 4 

Using and extending the techniques previously applied toN= 2 theories with 0 < N1 :::; 3 

matter multiplets, Seiberg and Witten proposed an elliptic curve which describes the 

quantum moduli space of mass deformed N = 4 supersymmetric SU(2) Yang-Mills 

gauge theory. As N = 2 supersymmetric SU(2) QCD with N1 = 4 matter multiplets is 

a similar theory when there are non-zero bare masses present, the determination of the 

elliptic curve for this theory proceeds in an analogous way. 

Seiberg and Witten initially consider the special case when the four matter multiplets 

have masses mi = (m, m, 0, 0), which includes two degenerate masses. This scenario 

was described as case (iii) of the moduli space of the N1 = 4 theory above. There. are 

three singularities on the moduli space when mi = (m, m, 0, 0). This implies that each 

of the singularities has a monodromy matrix conjugate to T 2 . One can recognize this 

·= J* 
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situation as being precisely that of the N = 4 theory described above, and this therefore 

immediately leads to a first approximation for the required elliptic curve. For the case 

when the masses are mi = (m, m, 0, 0), using information from the weak coupling limit, 

the mass dependence of the special N1 = 4 elliptic curve readily follows. 

The general N1 = 4 elliptic curve will be one in which the masses of the four matter 

multiplets are arbitrary. By imposing the global S0(8) symmetry of the theory, using 

the limit to the special case mi = (m, m, 0, 0), smoothness of the limit mi -+ oo for any 

i, and U ( 1 )r charge assignations, the form of the general N1 = 4 elliptic curve can be 

obtained. The constant coefficients of the curve, which are functions of the cubic roots ei, 

are further fixed by considering the other special cases for the matter multiplet masses 

and the resulting zeros of the discriminant of the curve. Specifically, the cases when 

These indirect arguments lead to the final result for the N1 

arbitrary matter multiplet masses, which has the form: 

where (i = 1, 2, 3): 

W· ~ 

u 

R 

N 

- 2R x- e·u- e. 
~ ~ ' 

1 
u- -e1R 

2 ' 

1"' 2 2L.Jmi, 
~ 

4 elliptic curve with 

(5.191) 

(5.192) 

(5.193) 

(5.194) 

(5.195) 

(5.196) 

(5.197) 

The elliptic curve Eq. (5.190) is fully SL(2, Z) modular invariant, a symmetry which 

permutes the roots ei, if it is combined with the Spin(8) triality symmetry, which per

mutes the S0(8) invariants Ti. Since both of these symmetries are only conjectured to 
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exist in the theory, the form of the massive N1 = 4 elliptic curve does not provide proof 

of S-duality in the theory. This theory cannot be exactly SL(2, Z) invariant since the 

modular invariance of the elliptic curve is only an effective one, which exists only when 

Spin(8) triality is also present. The form of the elliptic curve does however support the 

presence of these symmetries. 

A consistency check for the elliptic curve Eq. (5.190) is provided by renormalization group 

flow from N1 = 4 to N1 < 4. The elliptic curves for the Nt ::::; 3 theories are checked by 

Seiberg and Witten in [171] by taking the weak coupling limit T --+ ioo in combination 

with the mass limit mN
1 

--+ oo with all other masses fixed. In this limit, the Nt = 4 

elliptic curve reproduces the elliptic curve for the case of N1 = 3 arbitrarily massive 

matter multiplets. Then further renormalization group flow permits one to recover the 

original Seiberg-\rVitten elliptic curve for the N1 = 0 theory using this limit. 

In [171], Seiberg and \rVitten also derive the mass deformed N = 4 and Nt = 4 SQCD 

elliptic curves using a condition on the differential form A. This is the residue condition, 

which originates from the fact that the variables a and aD are translated by amounts 

dependent on the bare masses mi under the monodromy transformations about the sin

gularities on the moduli spaces of these theories. These translations are given by integral 

linear combinations of md J2. These constants impose the following condition on the 

residues of A: 

"""' n m· Res A = ~ 
2 

~, ni E Z. 
. 21fi 2 
2 

(5.198) 

By utilizing this condition and lengthy complex and cohomological analysis, the correct 

elliptic curves Eqs. (5.188,5.190) for the scale invariant theories can be derived. This 

verifies that the residues of the elliptic curves do indeed obey the residue condition 

Eq. (5.198), thus providing an internal consistency check of the elliptic curves. 

Given the elliptic curves for the mass deformed N = 4 theory and N = 2 SQCD with 

Nt = 4 matter multiplets, the procedure for calculating the variables a(u) and aD(u) is 

the same as that used for the theories with N1 ::::; 3 matter multiplets. The periods of 

the differential forms WN= 4 and wN1=4 about appropriate homology one-cycles will enable 

one to calculate the period matrices for these theories, which is again identified with the 
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complexified coupling constant of these theories: 

da(u) _ 1 w daD(u) = 1 w, 
du - ]',

1 
' du 1',

2 

(5.199) 

where w represents either WN=4 or wN
1
=4 , as defined in Eqs. (5.179,5.180), respectively, 

depending on the theory under consideration, and T is given by: 

daD(u)jdu 
T = 

da(u)jdu · 
(5.200) 

The metrics on the respective moduli spaces of these theories then follow from this de

termination ofT, via ds2 = Im(T) dada. 

We have given a brief review of Seiberg-Witten theory and its extension to include mas

sive fundamental matter multiplets in this section. Using electric-magnetic duality, global 

symmetries and physical reasoning, and also properties of N = 2 supersymmetry and 

holomorphy, the exact form of the low energy Wilsonian effective actions of N = 2 super

symmetric SU(2) Yang-Mills gauge theory and SU(2) SQCD with N1 ::; 4 fundamental 

matter multiplets have been proposed by Seiberg and Witten. In Section 5.4 we will 

describe some of the work which followed the breakthrough results of Seiberg and Wit

ten [170, 171]. These include the generalization of their analysis to larger and different 

gauge groups, and also to include different forms of matter. In Chapter 6 we will describe 

the tests of the proposed exact results using field theoretic methods, and the matching 

of the proposed exact results in N = 2 supersymmetric gauge theories with instanton 

calculations. 

Other Results in Seiberg- Witten Theory 

We now briefly describe other work pertaining to the Seiberg-vVitten solution for low 

energy N = 2 SU(2) SQCD and generalizations of it. There have been numerous com

ments made regarding Seiberg-Witten theory, and other results derived using it. In this 

subsection -vve also note other work which has been supplementary to Seiberg-\iVitten 

theory, and which explore issues involving the theory described in Section 5.3. A partic

ularly remarkable development originating from Seiberg-vVitten theory is its connection 

with the topology of four-manifolds. vVe remark briefly on this work below. 



CHAPTER 5. EXACT RESULTS IN SUSY GAUGE THEORIES I! 219 

Of more immediate physical significance are the non-perturbative relations derived for 

Seiberg-Witten theory by M atone in [229], known as the M atone relation, and general

ized toN = 2 supersymmetric SU(N) gauge theories in [232, 233, 234]. In the latter 

case, these have been used to derive recursion relations which enable one to calculate all 

of the coefficients :Fk of the instanton contributions to the prepotential [234], in SU(N) 

theories with and without matter multiplets. 

The Matone relation is a renormalization group relation for the prepotential in N = 2 

SU(2) Yang-Mills gauge theory [229]. The generalized Matone relation, derived in [232, 

233, 234], relates the expansion coefficient of the k-instanton contribution to the SU(N) 

prepotential, :Fk IN,N,, ·when there are N1 fundamental matter multiplets present, to the 

kth power of the quantum modulus u2 of the theory, as follows: 

(5.201) 

The Matone relation for SU(2) has been tested by a two-instanton calculation in [230] 

and verified to all orders in k in [231]. The SU ( N) generalization of the M atone relation 

in [234] has also been verified to all orders in k in [224]. These all-orders tests represent 

the derivation of these non-perturbative relations from first principles using instanton 

calculus. 

Another important result is the demonstration that the Seiberg-Witten solution of N = 2 

supersymmetric SU(2) Yang-Mills gauge theory with and without fundamental matter 

contains more information than the exact series of instanton contribution expansion co

efficients to the prepotential :F [219]. The Seiberg-vVitten solution provides non-trivial 

renormalization group information about N = 2 supersymmetric SU(2) Yang-Mills 

gauge theory with N1 fundamental matter multiplets [219]. This is related to the renbr

malization group flow between the elliptic curves proposed for particular values of Nf ::; 4 

described in Section 5.3. 

Remarks have been made concerning the assumptions, both explicit and implicit, used 

by Seiberg and vVitten [235, 237]. The uniqueness of the low energy Wilsonian effective 

Lagrangian in the Seiberg-Witten solution has also been demonstrated for both N = 2 

supersymmetric SU(2) Yang-Mills and SQCD [238]. The electric-magnetic duality used 

in Seiberg-Witten theory has also been derived independently of the assumptions of 
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Seiberg-Witten theory [239]. 

We now briefly describe some of the mathematical work which has originated from 

Seiberg-Witten theory. The interest in Seiberg-Witten theory for pure mathematics orig

inates with the work of vVitten in [291]. In this work, Witten shows that a 'twisted' version 

(which has a precise mathematical definition) of N = 2 supersymmetric SU(2) Yang

Mills gauge theory, to which the techniques of Seiberg-\iVitten theory can be applied, 

can be related to the topology of four-manifolds. The topology of four-manifolds [285], 

and in particular compact four-manifolds with boundary, was revolutionized one decade 

before Seiberg-Witten theory by Donaldson [286]. Donaldson used the study of SU(2) 

Yang-Mills instantons on compact four-manifolds to define new topological invariants, 

known as Donaldson invariants. Donaldson invariants can be used to distinguish dif

feomorphic four-manifolds, under certain conditions. These invariants complement the 

earlier work of Freedman [285], which can be used to distinguish homeomorphic four

manifolds. Unlike previous studies of four-manifolds, however, the use of gauge field 

theory, and in particular Yang-Mills instantons, now described in purely mathematical 

terms and divorced from their physical meaning, to study the topology of four-manifolds, 

was a completely new concept. The input of theoretical physics to the study of four

manifolds is an example of physics finding unexpected application to problems in pure 

mathematics. Unfortunately, the calculation of Donaldson invariants is especially diffi

cult, and using the original Donaldson theory, the invariants have only been determined 

explicitly for special classes of four-manifolds. For further details on the Donaldson in

variants and the application of instantons to four-manifold topology, we refer the reader 

to the reviews [288, 290]. Further mathematical background can be found in [289]. 

Witten's work in [291] enables one to define Donaldson invariants in terms of correlations 

functions of the twisted N = 2 supersymmetric SU(2) Yang-Mills gauge theory. This 

greatly simplifies the calculation of Donaldson invariants for a wide class of four-manifolds 

(under certain conditions). This is a remarkable instance of theoretical physics finding use 

in the simplification of a mathematical problem. Using the duality of Seiberg-Witten 

theory, vVitten was also able to define a dual twisted N = 2 supersymmetric SU(2) 

Yang-Mills gauge theory, which leads to new topological invariants in analogy with the 

Donaldson invariants. These new invariants were found by considering the analogue of 
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the self-dual Yang-Mills field equations in the dual twisted N = 2 supersymmetric SU(2) 

Yang-Mills gauge theory, which are known as the monopole equations. The new topo

logical invariants are known as the Seiberg-Witten invariants and can also be used to 

distinguish classes of four-manifolds under specific conditions. These new invariants es

sentially derive from theoretical physics and were not known previously. It is to be noted, 

however, that the Seiberg-Witten method for calculating Donaldson invariants, and the 

Seiberg-Witten invariants themselves, have yet to be put on a rigorous mathematical 

basis [297]. 

Detailed descriptions of the geometry of twisted N = 2 supersymmetric gauge theo

ries and its connections with the original physics of Seiberg-Witten theory are given 

in [292, 293]. Mathematical works which describe gauge field theory, Seiberg-Witten 

theory, the monopole equations and the relation of these to four-manifolds can be found 

in [294, 295, 296, 298, 299]. We note that the review [299] is particularly detailed and 

contains a comprehensive list of mathematics references. 

5.4 Generalizations of Seiberg-Witten Theory 

In this section we will describe some of the subsequent work in N = 2 supersymmetric 

gauge theories which make use of, or further generalize, the exact results proposed for 

the particular case of N = 2 supersymmetric SU(2) Yang-Mills gauge theory. Much of 

this section is devoted to the generalization of the proposed results of Seiberg-Witten 

theory [170, 171] to different gauge groups of general rank. We will focus on N = 2 

supersymmetric SU(N) gauge theories, which are the primary motivation and subject of 

this thesis. In this section we follow the reviews [190, 191] and the original papers [173, 

174, 175, 176, 177, 178, 179, 180, 181, 183, 184] regarding the generalization of Seiberg

Witten theory to gauge group SU(N). Other work related to generalizing Seiberg-Witten 

theory include [185, 186, 187] and those works cited in Subsection 5.4.2 below. 

One initial generalization of Seiberg-Witten theory appears in the first paper of Seiberg 

and Witten [170]. This is the generalization of the formalism for the metric on the 

moduli space to spacetime dimensions greater than four. Lower dimensional analogues of 
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Seiberg-Wit ten theory are suggested to already exist in the field of integrable systems. 

A starting point for the extension of the analysis of Seiberg and Witten to gauge groups 

other than SU(2) is the parameterization of the classical moduli space. In Section 5.3, 

it was described how the correct parameterization of the SU(2) moduli space is given in 

terms of functions of the scalar field vacuum expectation value a which are invariant under 

Weyl group reflections. Such Weyl invariants are given by the characteristic equation: 

det(A-<P) = 0, (5.202) 

where <P is the scalar field component of the chiral superfield multiplet <I> in the theory. 

For SU(2), classically one has cjJ = ~a0"3 . To obtain Weyl invariant functions of c/J, one 

can expand Eq. (5.202) in powers of A, and the coefficients of the resulting polynomial in 

A will be Weyl invariant functions of c/J. The generic roots of this polynomial are labelled 

ai, i = 1, ... , N, where N is the rank of the gauge group. The roots ai are the eigenvalues 

of c/J. The polynomial in A given by expanding the characteristic equation Eq. (5.202) has 

the form: 

N 

AN+ AN-2 L aiaj- AN-3 L aiajak + · · · + ( -l)N IT ai 

i<j i<j <k i=l 

0. (5.203) 

We shall first describe the proposed generalizations of Seiberg-Witten theory toN= 2 

supersymmetric SU(N) gauge theories, with and without fundamental matter multiplets, 

in Subsection 5 .4.1. Then we briefly describe the generalizations to other gauge groups 

and products of gauge groups in Subsection 5.4.2. In Subsection 5.4.2, we also mention 

the generalizations of Seiberg-Witten theory coupled to types of matter other than mat

ter transforming under the fundamental representation of the gauge group. 

We note that the Seiberg-Witten elliptic curve is not unique. Other elliptic curves may 

describe the moduli space of N = 2 supersymmetric SU(2) Yang-Mills gauge theory in an 

equally accurate way. ·when Seiberg-Witten theory is generalized to other gauge groups 

there is the possibility that several curves exist which appear to accurately describe the 

relevant moduli space of vacua. This is the scenario in the case of the generalization to 

SU(N), which we shall describe in Subsection 5.4.1. 

MMI AWL&& -· HUUW 
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5.4.1 N = 2 Supersymmetric SU(N) Gauge Theories 

After the defining papers of Seiberg-Witten theory [170, 171], theorists applied the tech

niques in these papers to other supersymmetric gauge theories, to propose analogous 

exact results. One such important application was the generalization of the work of 

Seiberg and Witten to N = 2 supersymmetric SU(N) gauge theories, for any N > 1. 

Given that many phenomenological non-Abelian field theories involve special unitary 

gauge groups, for example SU(3) gauge symmetry in QCD, to propose exact results in 

these theories may prove useful for the study of non-supersymmetric non-Abelian gauge 

theores. Indeed, the gauge symmetries which appear to be realized exactly in nature are 

those which belong to the SU(N) group, or Abelian subgroups of it, such as U(l). 

The moduli space of N = 2 supersymmetric SU(N) gauge theories can be parameter

ized using Weyl invariant functions of the scalar field vacuum expectation values in the 

theory. To obtain these functions, the expansion of the characteristic equation given in 

Eq. (5.203) can be used. When the gauge group is SU(N), there are N vacuum expec

tation values ai. The scalar field rp in the theory will be an N x N dimensional complex 

matrix with diagonal entries given by a( 

(5.204) 

In addition to unitarity, rp must obey the following condition in order to transform as an 

element of SU(N): 

(5.205) 

which ensures that the matrix rp has a unit determinant. The Weyl invariant functions 

obtained from the expansion of the characteristic equation have the form of symmetric 

polynomials Cj ( rp) in terms of the variables ai [ 190]: 

N 

2: (5.206) 
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The formula Eq. (5.206) can be illustrated for N = 3, for which the \iVeyl invariant 

functions which parameterize the SU(3) moduli space are as follows: 

0 (5.207) 

(5.208) 

(5.209) 

In general, there will be N- 1 such parameters for the SU(N) moduli space, which we 

denote by ui. These are the moduli of the classical moduli space. The variables Ui are 

not equal to the eigenvalues ai of the adjoint scalar field cp, since these do not provide 

a correct parameterization of the moduli space, but are Wey 1 (and gauge) invariant 

functions constructed from the set { ai}· For N = 2, there is only one parameter, u, 

which parameterizes the classical SU(2) moduli space. 

In this theory, the variables which correspond to the vacuum expectation value a of the 

scalar field component of the vector multiplet and its dual an are aik and anjk, where 

i, j, k = 1, ... , N. The variables aij and anij are matrices. The complexified coupling 

constant Tij in these theories is also a matrix, and is given by: 

(5.210) 

The hyperelliptic curves proposed to describe the moduli space will correspond to some 

form of complex manifold. Such a surface is required to possess 2N periods, there being 

N each for each of the variables ani and ai. The period matrix rf1 of the surface must also 

have a complex part which is positive definite, Im( rf1) > 0, and which is Sp(2N- 2, Z) 

invariant. A candidate surface with these properties is a genus N- 1 Riemann surface, 

which is described by hyperelliptic curves of degree 2N. In general, these complex curves 

have the form: 
2N 

y2 = IT(x-ej), (5.211) 
j=l 

where { e1} is the set of roots of the curve. At each of the 2N points x = e1, the 

double cover of the Riemann surface has a branch point. Therefore, the double cover is 

a Riemann sphere. 

Through the proposed identification of the moduli space of vacua of the theory with the 
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moduli space of a genus N - 1 Riemann surface, the complexified coupling matrix Tij is 

identified with the period matrix Tfj, so that Tij = Tfj· Then the variables aik and anjk 

can be calculated as the contour integrals of appropriate differential one-forms wk about 

a canonical homology basis of one-cycles /i on the Riemann surface, as in Seiberg-vVitten 

theory: 

(5.212) 

An inductive argument permits one to check the monodromies of the singularities for one 

value of N > 2 (since the Seiberg-Witten result is already assumed to be correct, N =f. 2 

must be chosen) and then extend this result to SU(N) for general N > 2. The most 

simple choice for these tests is theN= 3 curve [173, 174]. 

Hyperelliptic curves which purportedly describe the quantum moduli space of N = 2 

supersymmetric SU(N) Yang-Mills gauge theory have been proposed and studied in 

[173, 17 4, 178]. Hyperelliptic curves for the moduli spaces of N = 2 supersymmetric 

SU(N) QCD with Nf fundamental matter multiplets have also been proposed. These 

include the cases: Nf ::; N, [181]; Nf ::; 2N, [182, 184, 186]; N = 3 and Nf = 6, [183], 

and Nf = 2N, [185]. 

In this section we shall not describe the individual derivations of the elliptic curves pro

posed to describe the moduli space of N = 2 supersymmetric SU(N) Yang-Mills gauge 

theory with and without fundamental matter multiplets, but rather we shall outline the 

general techniques used to obtain them. We exhibit a particular elliptic curve for the 

N = 2 SU ( N) theory as generic of the other curves proposed. 

N = 2 Supersymmetric SU(N) Yang-Mills Gauge Theory 

The pure N = 2 supersymmetric SU(N) Yang-Mills gauge theory is given by the La

grangian Eq. (3.86) of Section 3.4 in Chapter 3 with gauge group SU(N). There have 

been many proposals for the exact low energy Wilsonian effective action of this theory, 

making use of the techniques introduced by Seiberg and vVitten [170, 171]. In Seiberg

vVitten theory, where the gauge group is SU(2), the family of curves which are proposed 

to describe the quantum moduli space of the theory are elliptic curves which correspond 

to Riemann surfaces of genus one. The elliptic curves proposed for larger gauge groups 
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correspond to Riemann surfaces of genus greater than one. Such elliptic curves are gener

ically known as hyperelliptic curves due to this property. 

Here we describe those hyperelliptic curves proposed to reproduce the moduli space of 

vacua of the pure N = 2 supersymmetric SU(N) Yang-Mills gauge theory, by describing 

their generic properties with reference to a particular proposed hyperelliptic curve. The 

same hyperelliptic curve can be generalized to describe the same theory coupled to Nf 

fundamental matter multiplets, that is, N = 2 supersymmetric SU(N) QCD. There is 

overlap between the two cases since when there are Nf = 0 matter multiplets present, 

the hyperelliptic curve is expected to reproduce the moduli space of the pure N = 2 

SU(N) Yang-Mills theory. Since the proposed hyperelliptic curves for N = 2 SU(N) 

SQCD include theN = 2 SU(N) Yang-Mills hyperelliptic curves as a special case, we 

shall not describe them here. 

The hyperelliptic curves for these theories cannot be derived from first principles, just as 

the Seiberg-Witten elliptic curve was not derived from established physical techniques. 

Many attempts to obtain the hyperelliptic curves for the N = 2 SU(N) Yang-Mills 

gauge theory involve consistency requirements. One such requirement is the behaviour 

at large values of the moduli of the moduli space, that is, in the limit JuiJ --+ oo ('infinity' 

on the moduli space), at which the gauge coupling becomes weak. The monodromies 

at these limits on the moduli space provide a non-trivial consistency condition on the 

hyperelliptic curve. Other monodromies on the moduli space, at singularities interpreted 

as points where monopoles and dyons become massless, which can be calculated from the 

hyperelliptic curve, will further permit checks that the choice of curve is correct or not. 

Other requirements are the correct asymptotic behaviour in the classical limit and scaling 

limits, R-symmetry, and compatibility with the BPS mass formula (given in Eq. (5.14)). 

The hyperelliptic curves proposed to describe the moduli space of N = 2 supersymmet

ric SU(N) Yang-Mills gauge theory include those given in [173, 174, 178]. Many of the 

proposed hyperelliptic curves for the SU(N) theory are variations on the curve presented 

by Klemm et. al [173]: 

(5.213) 

in which { ui} are the quantum moduli associated with the curve and A is the dynamical 
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scale of the theory. 

Once a hyperelliptic curve has been proposed for theN= 2 SU(N) theory, the procedure 

for calculating the period matrix Tij and the variables aik, aDjk, as described above, can 

be applied. Given the matrices of variables aik(ui) and aDjk(ui) in terms of the mod

uli ui, the prepotential :F of the low energy effective action of the theory can be calculated. 

N = 2 Supersymmetric SU(N) QCD with N1 Matter Multiplets 

When there are N1 fundamental matter multiplets, a similar set of requirements can be 

imposed in order to propose a suitable hyperelliptic curve for these theories. Hyperelliptic 

curves corresponding to Riemann surfaces of genus N -1 proposed for theN= 2 SU(N) 

Yang-Mills gauge theories can be used as starting points for the curves for SU(N) SQCD 

with N1 matter multiplets. 

The arguments used to deduce these curves are similar to those employed by Seiberg and 

Witten in their analysis of N = 2 SU(2) SQCD with N1 fundamental matter multiplets 

[171]. These include renormalization group flow, symmetries of the theory for special 

values of the multiplet masses, classical limits, and R-symmetry arguments. Hyperel

liptic curves have been proposed for the following ranges of Nt N1 ::::; 2N [181, 182]; 

Nf = 2N [181, 183]. There has also been a hyperelliptic curve proposed for the SU(N) 

theory when N < 6 with N1 matter multiplets [271]. All of these proposed hyperelliptic 

curves involve modular forms in the coefficients of the curve. Unfortunately, all of the 

hyperelliptic curves proposed for the SU(N) with N1 = 2N matter multiplets are not 

explicitly equivalent to each other [219]. This is related to the fact that the moduli spaces 

of these theories are not described by unique elliptic curves. 

A unified treatment ·of the scale invariant SU(N) theories, in which N1 = 2N, has 

been proposed by Argyres and Pelland [188]. Using the most general non-perturbative 

reparameterizations (or redefinitions) of the parameters within the hyperelliptic curves 

permitted, they show that the proposed hyperelliptic curves are special cases of a more 

general curve. The curve they propose for the SU(N) theory with N1 = 2N massive 
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(5.214) 

where the quantities { ui, q, mr} are, respectively, the moduli, exponentiated ( dimen

sionless) complexified coupling constant, and multiplet masses, each subject to non

perturbative reparameterization. We shall describe the matching of this proposed general 

hyperelliptic curve for the SU(N) theory with N1 = 2N massless matter multiplets to 

the results of first principles instanton calculations in Section 6.5 of Chapter 6. 

5.4.2 Other Gauge Groups and Matter Content 

We now briefly describe other exact results proposed for supersymmetric gauge theories 

with gauge groups other than SU(N). These include the other classical gauge groups 

SO(N) and Sp(N). The exceptional groups G, F and A are also gauge groups, and we 

include a brief report of works which propose elliptic curves for N = 2 supersymmetric 

Yang-Mills theory (with and without matter) with these gauge groups. 

The hyperelliptic curves proposed for these theories have been derived using similar 

methods for the SU(N) gauge group. The curves for both the SO(N) and Sp(N) gauge 

theories can also be derived by imposing conditions on the SU(N) curves. Accordingly, 

all of these hyperelliptic curves involve coefficients which are modular forms. 

N = 2 Supersymmetric SO(N) Gauge Theories 

The hyperelliptic curves proposed for N = 2 supersymmetric SO(N) gauge theories cou

pled to differing numbers of N1 fundamental matter multiplets include those given for: 

S0(2r + 1) (or S0(2N)) with N1 = 0 [258, 265]; S0(2r + 1) with Nf = 2r- 1 [259]; 

S0(2r) with Nf = 2r- 2 [260]; SO(N) with N1 = N- 2 [261], and S0(2N), N < 5, 

with N1 2:: 0 [271]. 

N = 2 Supersymmetric Sp( N) Gauge Theories 
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The hyperelliptic curves proposed for N = 2 supersymmetric Sp(N) gauge theories in

clude those given for: Sp(2r) with N1 = 2r + 2 fundamental matter multiplets [260] and 

USp(N) (the unitary symplectic groups) [260]. 

N = 2 Supersymmetric Gauge Theories with Exceptional Gauge Groups 

The hyperelliptic curves proposed for the case of N = 2 supersymmetric gauge theories 

with exceptional gauge groups include those given for: G2 and F4 pure gauge theo

ries [262]; E6 pure gauge theory on a submanifold of the moduli space [262]; E6 gauge 

theory with N1 matter multiplets [271]; E7 gauge theory with Nf matter multiplets [271], 

and G2 pure gauge theory [268, 266]. 

General hyperelliptic curves have also been claimed to be determined for all Lie gauge 

groups [267] and arbitrary classical gauge groups [269]. 

N = 2 Supersymmetric Gauge Theories with Product Gauge Groups 

In the case of N = 2 supersymmetric gauge theories with gauge groups which are products 

of classical gauge groups, hyperelliptic curves include those proposed for scale invariant 

SU(2) x SU(2) pure gauge theory and scale invariant gauge theories with other product 

groups [270]. There have also been M-theoretic and brane theoretic derivations of hyper

elliptic curves for N = 2 supersymmetric gauge theories with product groups [272]. 

Other Matter Content 

Upon generalizing Seiberg-Witten theory to include the cases of other gauge groups, 

both classical and exceptional, and also product gauge groups, one direction in which to 

generalize further is that of coupling N = 2 supersymmetric Yang-Mills gauge theories or 

N = 2 SQCD theories to other types of matter multiplets. These include antisymmetric 

and symmetric tensor matter multiplets, which have been studied in [271, 273] in the 

context of M-theory and brane theory. 
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Chapter 6 

Instanton Tests of the Exact Results 

in N == 2 Supersymmetric Gauge 

Theories 

6.1 Introduction 

The exact results proposed for the low energy Wilsonian effective actions of N = 2 super

symmetric gauge theories with various gauge groups were described in Chapter 5. These 

results use the indirect techniques introduced by Seiberg and Witten for the N = 2 

supersymmetric SU(2) Yang-Mills gauge theory with and without fundamental matter 

multiplets. These techniques are unconventional and make use of many assumptions and 

a hypothesis connecting the moduli space of vacua of these theories with the moduli space 

of specific Riemann surfaces. The use of elliptic and hyperelliptic curves in the method to 

exactly derive the N = 2 prepotentials which describe the low energy effective dynamics 

of these theories appears ad hoc. However, the non-perturbative contributions to the 

N = 2 prepotential are purportedly calculated exactly in the Seiberg-Witten solution of 

the low energy dynamics of N = 2 supersymmetric SU(2) Yang-Mills gauge theory. Due 

to supersymmetry, these contributions arise only from instantons. One can calculate the 

instanton contributions from first principles using conventional field theoretic methods, 

namely semi-classical, or saddle-point, calculations about instanton configurations. In 
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this chapter we briefly describe instanton calculus and its use in testing the proposed ex

act solutions of N = 2 supersymmetric SU(2) and SU(N) gauge theories. A quantitative 

comparison of the results of instanton calculations with predictions from the proposed 

exact results will then validate, to some extent, the assumptions and hypotheses used in 

the construction of the low energy effective supersymmetric gauge theories. This com

parison can also be used to fix the arbitrariness present in the proposed exact results, 

and thus ensure that the proposed exact results will be equivalent to those determined 

from field theory. 

In Section 6.2 we describe the fundamental aspects of instanton calculus, and in par

ticular focus on instanton calculus using instanton collective co-ordinates and ADHM 

instanton configurations, as described in Chapter 2. In Subsection 6.2.1 we describe the 

N = 2 supersymmetric generalization of instanton calculus. We then describe the instan

ton tests of Seiberg-Witten theory so far performed in Section 6.3. These include various 

one-instanton tests and a two-instanton test. In Section 6.4 we describe the instanton 

tests which have been performed for the exact results proposed for N = 2 supersymmet

ric SU ( N) gauge theories. Following these we describe the matching of proposed exact 

results to instanton predictions for Seiberg-Witten theory in Section 6.5. This involves 

fixing the non-perturbative parts of the proposed exact results to agree with instanton 

predictions through matching schemes. We describe in detail the matching of the pro

posed exact results inN= 2 SU(N) SQCD with one-instanton calculations in Subsection 

6.5.1. 

The examples of instanton calculus we give are illustrative rather than demonstrative. 

This is because the new results reported in Subsection 6.5.1 of this chapter regarding the 

matching of instanton calculations and proposed exact results make use of previous work 

derived from instanton calculus, but do not require explicit instanton calculations in the 

actual matching of results. 
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6.2 Instanton Calculus 

232 

The exact solutions of the self-dual field equations which minimize the classical Euclidean 

Yang-Mills gauge field action known as instanton configurations were described in detail 

in Chapter 2. In this section we briefly outline the use of instanton configurations in 

quantum field theory and inN= 2 supersymmetric gauge theories in particular. 

The following brief review of instanton calculus is based on results which have been re

viewed in [63, 64, 224], which are based upon the pioneering work i:p. [37, 40, 39], the 

canonical work in Osborn:1978rn,cftg,cgt, and the work on multi-instantons in [42, 43], 

and also [44, 45, 46, 45, 47, 48], and other results in [38]. 

In this section we will describe the calculational methods in quantum field theory which 

involve instantons, generically known as the instanton calculus. The fundamental tech

niques in field theory which use instantons, or other solutions of the classical field equa

tions, are the semi-classical method and the collective co-ordinate method. Below we 

describe these methods in preparation for the instanton tests presented in Sections 6.3 

and 6.4, which make use of the supersymmetric multi-instanton calculus described in 

Subsection 6.2.1. 

The Semi- Classical Approximation 

The semi-classical approximation is an approximation method which interpolates between 

the classical and quantum versions of a physical theory. Use is made of a known classical 

field configuration, the behaviour of which with respect to the theory's action is also 

known. The classical configuration is then perturbed by quantum fluctuations and the 

path integral is expanded in terms of these fluctuations. The dominant non-perturbative 

effects in field theory at weak coupling are instantons. 

In the path integral formalism, the semi-classical method can be illustrated by consid

ering the instanton contribution to the partition function Z[J] of the theory. We now 

describe the particular case of the instanton contribution to the partition function of a 

real (bosonic, quantum) scalar field cp. A scalar field theory could only receive instanton 

contributions if it is coupled to a Yang-Mills (or non-Abelian) gauge field theory; we take 
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this to be implicit in what follows. IN a later paragraph, we turn to the case of gauge 

fieldsonly. In general, the partition function Z [ J] for a four dimensional field theory will 

be of the form: 

(6.1) 

where J are external sources, S[<,b] is the Euclidean action which is real and bounded 

from below, and N is an infinite normalization factor. At weak coupling, that is, for 

small values of g2 , the path integral will be dominated by field configurations which lo

cally minimize the Euclidean !lction. The most simple configurations which do this are 

the minima of the classical potential of the theory; expanding about these configura

tions gives standard perturbation theory, or the loop expansion. Other such minimizing 

configurations cannot be dealt with perturbation theory, however. There exist inherently 

non-perturbative effects which will give a finite action of the theory, and these are instan

tons. The term 'semi-classical' refers to the factor of 1/g2 multiplying S[<,D] in Eq. (6.1): 

if powers of hare restored, then~there is a factor of 1/h2 also multiplying S[<,b], and thus 

the classical limit h -t 0 can be identified with the weak coupling limit g -t 0. 

If a generic quantum field theory with generating functional as in Eq. ( 6.1) exists with 

no external sources present, then J = 0, and the path integral in Eq. (6.1) becomes: 

Z[O] = J [drf>] exp (- ;,s[q,]) . (6.2) 

Let the configuration of fields which specify an instanton solution be <,bel· Then the 

instanton configuration is a local minimum of the Euclidean action S[<,b] which obeys the 

Euler-Lagrange equation: 

(6.3) 

To approximate the quantum field <,b semi-classically, let the quantum fluctuations about 

the instanton configuration <,bel be <Pqu, so that <,b may be written as: 

(6.4) 

A Taylor expansion of the action S[<,b] about the field <,b may then be performed in the 

background of the instanton configuration c/Jc1: 

(6.5) 
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The expansion has only been continued to second order in the field cpqu as this corresponds 

to a one-loop approximation, \vhich throughout our description of the instanton calculus is 

the required approximation. Furthermore, the linear term (oSjocp) is absent in Eq. (6.5) 

due to Eq. (6.3). The factor M inside the integral in Eq. (6.5) is an operator valued 

quantity given by: 

-- o2s I 
M = ocp2 

cf; = rPcl 

(6.6) 

In general the operator M will have a complete orthonormal set of eigenfunctions { cpi} 

and associated eigenval ues { Ei}. The eigenfunctions { cpi} can be used as a basis for the 

quantum fluctuations in cp: 

(6.7) 

This permits one to write the second order term in Eq. (6.5) as: 

1/ 4 --2 d X cpqu (x)M cpqu(x) (6.8) 

where we have defined: 

(6.9) 

which is the £ 2 norm for cpi. 

If the integration in this approximation is to be performed, then the functional integration 

measure [defy] in Eq. (6.5) must be expressed in terms of the basis coefficients { ci}. The 

appropriate integration measure is defined to be: 

(6.10) 

When the expressions in Eqs. (6.8,6.9,6.10) are substituted into the semi-classical form of 

the action in Eq. (6.5), the functional integration for Z[O] in Eq. (6.2) can be performed 

since the exponential in the integrand in Eq. ( 6.2) is only quadratic in { ci}. The func

tional integration therefore reduces to a Gaussian integral in { ci} and gives the one loop 

instanton contribution to the partition function Z[O] as: 

-- 1 
Z1 [0] = N(detA1t2 exp ( -S [cpc!]), (6.11) 

in which: 

IT Ei· (6.12) 
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This is a simplified calculation because an implicit assumption has been made regarding 

the eigenvalues { ci} of M. A generic operator M will possess zero-valued eigenvalues. If 

at least one single eigenvalue Ei is zero, then the determinant of M in Eq. (6.12) vanishes. 

Then it follows that the expression for Z 1 [0] in Eq. (6.11) is divergent and thus ill-defined. 

This indicates that a more general method of calculating the instanton contribution to 

the partition function Z[O] is required if the calculations using the semi-classical approxi

mation in a generic instanton background are to be made. Fortunately, a method known 

as the collective co-ordinate method exists which permits this. 

The Collective Co-ordinate Method 

The collective co-ordinates of the instanton configuration are directly related to the sym

metries of the classical theory which the instanton solution breaks. Collective co-ordinates 

for the BPST instanton and ADHM multi-instantons were described in Chapter 2. The 

broken classical symmetries of the theory are directly related to the presence of zero-

----eigenvalues of the operator M. If the instanton configuration c/Yc1 breaks n classical 

symmetry generators, then it will be parameterized by n collective co-ordinates {:ti}, 

i = 1, ... , n. The set of instanton configurations c/Yc1 then consists of an n-dimensional 

region of field configuration space in which the action S[cp] has a constant minimum value. 

Since the space has an n-dimensional basis, there exist n independent directions along 

which the action S[cp] is constant. Along these directions the action must not vary with cp 
----and therefore in these directions the eigenvalues of the operator A1 must be zero. The set 

of zero-eigenvalues of M are associated with a set of zero eigenfunctions of M which are 

known as 'zero modes.' In a gauge field theory, these zero modes are subject to a gauge 

fixing condition and therefore the definition of these eigenfunctions as tangent vectors 

along the n directions of constant action is incomplete. 

To illustrate how the collective co-ordinate method includes zero modes, let the zero 

----modes of the operator M be the first n eigenfunctions given by cpi, where i = 1, ... , n. 

The eigenvalues of the zero modes vanish, and therefore the associated basis coefficients 

ci, i = 1, ... , n do not appear in the sum in Eq. (6.8) for the quadratic cpi term. The 

consequence of this is that the integration over the basis coefficients Ci is divergent, as 
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there are basis coefficients in the integration in which only zero eigenvalues are included. 

To circumvent this divergence, one can effect a change of integration variables. If one 

changes the n integration variables from the basis coefficients ci to that of the instanton 

collective co-ordinates Xi, this is the collective co-ordinate method for performing the 

integration. The result is a convergent integration. 

One can make the required change of variables by inserting a factor of unity into the 

path integral for Z 1 [0]' via: 

1 = J dX1dX2 · · · dXn(det.6.) IT b(cp- cpcl, cpi), 
i=l 

(6.13) 

where .6. is an n x n matrix given by: 

(6.14) 

in which the 0( cp- cpci) are neglected in the one loop approximation, consistent with the 

expansion in Eq. (6.5). The semi-classical approximation can now be made for the field cp, 

and upon substituting Eq. (6.13) into Eq. (6.5) and integrating out the basis coefficients 

ci, i > n which are associated with zero modes, the one loop instanton contribution to 

the partition function Z[O] can be written as: 

Z'[O] = N J (fi dl:;) (g de,) (det!l) (g II~IO(e;]]q\,]]')) (det'Mr~ cxp(-S[q\d]), 

(6.15) 

--where the adjusted determinant of M is given by: 

det'M = IT Ei, (6.16) 
i>n 

which now excludes all of the zero eigenvalues { Ei}, i = 1, ... , n. The delta functions 

in the collective co-ordinate integral Eq. (6.15) saturate the integrations over the basis 

coefficients ci, i = 1, ... , n, so that these integrations vanish from the integral. The result 

is that the integral expression for Z 1 [0] simplifies to: 

The integration over the collective co-ordinates in Eq. (6.17) is convergent, and the result 

for Z 1 [0] is now formally equivalent to the divergent quantity in Eq. ( 6.11). The instanton 
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contribution to Z[O] must also be correctly normalized. This can be acheived by setting 

the infinite normalization constant N to the value: 

~ 1 
N = (detM0 ) 2, (6.18) 

where Mo is the operator M in the particular background c/Yc1 = 0, which corresponds to 

the trivial vacuum solution of the classical field equations. 

The one loop instant on contribution to the partition function in Eq. ( 6.17) must also 

be renormalized, assuming that the quantum field theory under consideration is a renor-
~ 1 

malizable one. This is because the factor ( det' Mf2 will generically have one loop ultra 
~ 

violet divergences, arising from large eigenvalues of the operator M, of which there are 

an infinite number. Therefore, renormalization of this non-perturbative calculation must 

be performed. 

A similar treatment holds for the (one loop) instanton contribution to the partition func

tion for theories involving fields other than real scalar field cp and combinations of fields. 

For fermionic zero modes, the collective co-ordinates are Grassmann valued, and the cal

culation becomes more complicated. 

Quantities other than the partition function Z[O] in a Yang-Mills gauge field theory also 

receive instanton contributions. In general, Green's functions in the theory will receive 
' 

instanton contributions. The collective co-ordinate method can be used in the one loop 

semi-classical approximation, and the insertion of unity into the path integral will have 

the basis coefficient integrations saturated by the classical instanton background. 

The Collective Co-ordinate Integral in Gauge Theories 

We now turn to the semi-classical approximation and the collective co-ordinate method in 

gauge field theories. Our description is necessarily schematic. We describe the collective 

co-ordinate integral in pure SU(N) Yang-Mills gauge theory for definiteness. This is 

also an appropriate choice since the N = 2 supersymmetric generalization of SU(N) 

Yang-Mills gauge theory is the field theory of primary focus in this thesis. 

Let A~ be the SU(N) gauge field. If we suppress the gauge group indices, then this 
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gauge field has the semi-classical expansion: 

A = Ac! + Aqu m m ml (6.19) 

where A~ is the instanton configuration and A~ are the quantum fluctuations about 

it. The gauge of the instanton gauge field A~ must be fixed otherwise local gauge 

transformations may be included in the fluctuations of this field, and the value of the 

invariant action altered. A convenient gauge is the covariant background gauge, in which: 

Del Aqu = 0 
m m ' 

(6.20) 

where D~ is the covariant derivative in the instanton background, which acts as D~(A~u)a = 

8m(A~)a + igrbc(A~)b(A~u)c This gauge imposes the condition that the quantum fluc

tuations A~ are orthogonal to infinitesimal gauge transformations of the classical field 

A~ in field space. An infinitesimal gauge transformation of A~ is given by: 

(6.21) 

for some arbitrary function A. The orthogonality condition can then be expressed as: 

(6.22) 

Integration by parts and the arbitrariness of A can be used to show that the condition 

in Eq. (6.22) is equivalent to the covariant background gauge in Eq. (6.20). It can be 

further shown that the gauge field zero modes satisfy the covariant Weyl equation, and 

that each gauge zero mode can be interpreted as two independent solutions of the Weyl 

equation. 

The classical Yang-Mills action for the SU(N) gauge theory including Faddeev-Popov 

gauge-fixing and ghost terms is given by: 

S[A, 1}, 17] = ~ / d4x [Tr( VmnVmn) 

+C2(Am) + 2£9h(1J, 17)) , 

where, as previously, the non-Abelian gauge field strength Vmn is given by: 

a ~ Aa ~ Aa + · jabcAb Ac Vmn = Um n-Un m 'l9 m n' 

(6.23) 

(6.24) 
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and C(Am) is the gauge-fixing term to which the Lagrangian £9h(fJ, 17) for the ghost fields 

{ fj, 17} is associated. The generic form of a functional path integral in a quantum gauge 

field theory is given by: 

w (6.25) 

which is analogous to the path integral given for a quantum scalar field theory in Eq. (6.1). 

The semi-classical approximation in Eq. (6.19) for the gauge field Am can be substituted 

into S[A], yielding, after some rearrangement: 

S[AJ = s;:k + ~ J d4xTr [2(D~A~u) 2 - 2(D~A~) 2 
(6.26) 

- 4igv~n[A~, A~u] + C2 (Am) + 2.Cgh(fJ, 77)) + 0 ((A~u)3 ). 

When the covariant background gauge is fixed according to Eq. (6.20), the gauge fixing 

term andthe ghost Lagrangian in the Faddeev-Popov gauge fixing procedure then have 

the form: 

J d
4
xC

2(Am) 

I d4
x Lgh ( fj, 17) 

2 J d4x Tr [ (D~A~) 2 ) , 

-2 I d4x Tr [fJ(Dcl)277] . 

(6.27) 

(6.28) 

Upon substituting these terms into the action in Eq. (6.23), one obtains the following for 

the gauge-fixed one loop semi-classical expansion of S[A]: 

in which we have defined the operators: 

(6.30) 

(6.31) 

The operator .6 ( +) is a gauge field fluctuation operator which, along with its companion 

.6 (-), are important in describing the fluctuations about the instanton configuration. The 

companion fluctuation operator .6 (-) is defined by: 

(6.32) 
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where *vmn is the dual of the gauge field strength Vmn, defined in Chapter 2. In a pure 

instanton background, with no anti-instantons present, the operator ,0.(-) becomes: 

(6.33) 

We note that in a pure instanton background, the operator 6 ( +) possesses 4N k zero 

modes, corresponding to the 4Nk physical collective co-ordinates of an SU(N) k-instanton. 

We denote these zero modes as A~, i = 1, ... , 4Nk. The operator ,0.(-) becomes a pos

itive definite operator in an pure instanton background and has no normalizable zero 

----modes. The ghost field operator Mgh also has no zero modes. 

In analogy with Eq. (6.4), the quantum fluctuations A~ can be written in terms of the 

basis formed by the eigenfunctions of the fluctuations operator 6 ( +). Strictly, one can 

also include the non-zero modes in this expansion, and we denote the non-zero modes by 

A~, i = 1, ... , 4Nk. The expansion of A~ is then: 

(6.34) 
n 

where { ~n} is the set of expansion coefficients, in direct analogy to the scalar field collec

tive co-ordinate method. The non-zero mode fluctuations A~ are orthogonal to the zero 

modes in a functional sense. Expanding A~ as in Eq. ( 6.34), the functional integration 

over the measure [dAm] in Eq. (6.25) can be written as: 

(6.35) 

Here, g(X) is the metric on the zero modes. The term in braces is the integral over the 

zero mode subspace. The factors of g multiplying the measure arise from the fact that 

we included a factor of g2 in the definition of the metric, as: 

9mn(X) = -2g2 I d4xtrNA~(x)A~u(x). (6.36) 

The non-zero mode fluctuations Am and the ghost fields { fj, 71} can now be integrated 

out, which produces the following determinant factors: 

(6.37) 

As is conventional, the prime on the determinant indicates that the operator 6 ( +) has 

zero modes; hence detL~ (+) is modified to det' ~ (+) as zero modes must be excluded in the 
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product over eigenvalues that defines the (convergent) determinant. The leading order 

expression for the functional integral in the charge-k sector is then: 

~::: j { y'detg(:t) 1J ~} detHDdl'l (det' [t.l+lJr
1

. (6.38) 

The theory must be regularized in order to remove the divergences present in the deter

minants of the fluctuations operators arising from zero modes. A suitable regularization 

scheme which simplifies instanton calculations is the Pauli-Villars scheme [58], described 

in connection with these determinants below. The advantages of using the Pauli-Villars 

scheme in supersymmetric gauge theories will be apparent in Subsection 6.2.1. 

Using the collective co-ordinate method, an appropriate insertion of unity can be used 

to express the collective co-ordinate integral in Eq. (6.25) for a gauge field theory. This 

insertion of unity has the following form: 

~ 8 (;;: '"g",(:t)) . 
(6.39) 

This can be substituted into Eq. (6.25) in order to saturate the integrations over the 

expansion coefficients ~n, which is achieved via the delta functions in Eq. (6.39). The 

result is that the leading order k-instanton contribution to the path integral in the weak 

coupling limit has the following form, which is referred to as the collective co-ordinate 

integral: 

I -S[A b c] g---+0 e2nikT 1 det(-1J2
) 

[dAn] [db] [de] e , , lcharge-k =---+ 4Nk w. d I~(+) ) 
g ank et 

(6.40) 

where V 2 is the covariant Laplacian operator. In the collective co-ordinate integral the 

factor w is the canonical volume form on the moduli space 9J1k, associated to the metric 

(6.41) 

In the integrand of Eq.(6.40), the volume form w is multiplied by a non-trivial function 

on 9J1k equal to the product of the ratios of the determinants of the operators governing 

the Gaussian fluctuations of the gauge field and ghosts in the instanton background. 

We note that when calculating a correlation function ( 0 1 ( x1
) · · · On ( xn)) in the semi

classical approximation, the field insertions Oi(xi) are to be replaced by their values in 
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the instanton background. To leading order in the semi-classical limit, then, these inser

tions are functions of the collective co-ordinates. 

To proceed with instanton calculations, an explicit expression for the volume form is 

required. Using the description of the instanton moduli space wtk as a hyper-Kiihler quo

tient of fiat space, i.e. IR4
, which was briefly outlined in Chapter 2, the authors of [224] 

are able to construct the volume form for the U(N) instanton moduli space. We do not 

describe this construction in detail, which is mathematically non-trivial. The ADHM 

constraints, which in this construction are termed moment maps, can be implemented 

in the volume form as Dirac delta functions. The vanishing of the moment maps, which 

define the instanton configurations, are written implicitly as part of this construction. 

Originally, this concept \Vas part of an ansiitz made for the supersymmetric instanton 

measure in [213, 214, 217, 222], which has proven highly successful in its application. 

This procedure is apparently the only plausible way in which to implement the ADHM 

constraints in the collective co-ordinate integrals of instanton calculus. Furthermore, in

tegrations over the instanton moduli space must involve exact instanton configurations, 

otherwise the integration may be divergent. If the integrand of the integral over the in

stanton moduli space contains a special exact instanton solution, rather than the general 

exact instanton solution, for a specific value of k, there may exist fiat directions in the 

integrand. ·when the integration over the instanton moduli space is performed, these fiat 

directions may lead to divergences, so that the result is not convergent. Thus the most 

general exact k-instanton solutions must be used when calculating the contributions of 

these configurations to the path integral. Exact general instanton configurations may be 

obtained for small values of k using the ADHM construction as described in Chapter 2. 

However, this entails solving the k-instanton ADHM constraints in complete generality 

for a given value of k. The method of including the ADHM constraints as the argu

ments of Dirac delta functions gives rise to the possibility of performing integrations over 

general exact ADHM k-instanton configurations without explicitly solving the ADHM 

constraints. In general, this procedure is prohibitively difficult in comparison to solving 

the ADHM constraints, which at least can be explicitly and generally solved for k :S 2. 

The volume form which we state here is that which has the residual U(k) symmetry of 

the U(N) ADHM construction unfixed. The volume form w on the U(N) k-instanton 
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moduli space is then [224]: 

where L is a k x k Hermitian operator matrix dependent on the U ( N) ADHM submatrices, 

defined as: 

L·D 

where D is a generic k x k anti-Hermitian matrix of scalars upon which L acts. 

The following objects in the volume form Eq. (6.42) have also been defined: 

4 k 2 k N 2 I d4
k(N+k)a = I IT IT d(a~r IT IT IT.dw~dwaui, 

n=l r=l i=l u=l £i=l 

Vol U(k) 
2k1ik(k+l)/2 

Ti
k-1 ., ) 
i=l z. 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.4 7) 

The integrations over the ADHM submatrices a~ in Eq. (6.45) and the ADHM constraints 

in the delta function in Eq. (6.42) are defined with respect to the generators of the residual 

symmetry group U ( k) in its fundamental representation. These generators are normalized 

such that trkT7'T 5 = ors. In Eq. (6.46), the volume of the U(k) group is given, which is 

a constant. In Eq. (6.47), the normalization factor in the volume form Eq. (6.42), which 

can be found from the normalization of the metric on 9J1k, is given. Note that there is a 

different normalization constant Ck for each k. This expression for the volume form on 

the U(N) instanton moduli space reproduces known results, such as the one-instanton 

U(N) volume form [40]. 

With the general form of the volume form on the U(N) k-instanton instanton moduli 

space established, the leading order k-instanton contribution to the path integral can 

be written explicitly. The result is the collective co-ordinate integral on the general 

instanton moduli space 9J1k, which follows from the weak coupling limit of the path 

integral given in Eq. (6.40). The instanton measure, which comprises the integrations 
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over the volume form w and the fluctuation determinant factors in Eq. (6.40) on 9Ilk, 

exhibits an important property known as clustering or the cluster decomposition. This is a 

physical property of the instanton measure, which corresponds to the dilute instanton gas 

limit described in Chapter 2. All correct instanton measures should possess this property. 

In the most simple clustering limit, the volume form w for a k-instanton configuration can 

be interpreted as well separated k1- instanton and k2- instanton configurations in specific 

regions of the instanton moduli space, as described in Chapter 2. In these regions, one 

expects that the instanton moduli space 9Jlk is approximately equal to 9Jlk1 x 9Jlk2 . In 

this case the k-instanton volume form w factorizes as follows: 

(6.48) 

In the completely clustered limit, in which the k-instanton configuration decomposes into 

a sum of k 1-instantons, the volume form decomposes as follows, using the normalization 

in Eq. (6.47): 

r w --+ A r w x ... x r w, (6.49) 
J'JJ(k k. J'JJ(l J'JJ(l 

where the number of 1-instanton integrations in the decomposition on the right hand side 

is equal to k. The primary use of the cluster decomposition in instanton calculus is to 

check the validity of the proposed instanton measure. It also provides a check on the set 

of normalization constants Ck which appear in the volume form w in Eq. (6.42). 

We now turn to the fluctuation determinants which remain in the instanton measure in 

Eq. (6.40). In general, their evaluation is a highly non-trivial task. The determinants 

of the fluctuation operators were first evaluated in [18] in the one-instanton background. 

Further pioneering work was also carried out in [47]. However, these factors have not yet 

been expressed as functions of the instanton moduli space. Instead, they remain as im

plicit results dependent on spacetime integrals. Despite this, the form of the fluctuations 

operators determinant factors can be calculated in the ADHM k-instanton background. 

We do not state this result or the details of its derivation, but shall briefly describe it for 

corn pleteness. 

In the Pauli-Villars regularization scheme [58], one can express the fluctuation determi

nant factors in terms of the Pauli-Villars scale f-L, which is the mass of the Pauli-Villars 

regulator fields, taken to be large [58]. Using this regularization scheme enables one to 
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make definitions of the determinants which are properly regularized in the UV (high 
' 

energy) region. The determinant factor in Eq. (6.40) can then be written as: 

det(-V2
) 4Nk 1 

det'6(+) = J1. det(-V2)' 
(6.50) 

so that the problem is now one involving the determinant of the covariant Laplacian 

operator V2 . The formula Eq. (6.50) is derived using expressions for the Pauli-Villars 

regularized determinants det' 6 ( +) and det6 (-), for which det6 (-) = [det(-V 2) j2. The 

problem of evaluating the fluctuations operators determinant factor is now reduced to one 

requiring the fluctuation determinant of a scalar field, upon which - V 2 operates, existing 

in the adjoint representation of the gauge group. A series of results from previous work 

on ins tan tons can be used to calculate this quantity. Following [224], one can use the 

fluctuation determinant of a scalar field transforming in the fundamental representation. 

Then, using a formula derived in [43] which relates this to the determinant for a scalar 

field transforming in the adjoint representation, the factors of fluctuations operator de

terminants can be calculated. 

In supersymmetric gauge theories, this lengthy calculation is unnecessary. The pres

ence of supersymmetry, with its symmetry between bosons and fermions, has the useful 

consequence that the fluctuations operator determinants in Eq. (6.50) in the instanton 

measure cancel exactly. This greatly simplifies instanton calculations in supersymmetric 

gauge theories, enabling exact results to be obtained in these theories purely from first 

principles. In Subsection 6.2.1 we shall describe the modifications which supersymmetry. 

requires of the instanton calculus in ordinary gauge theories. Following this, in Section 

6.3, we shall describe the application of the supersymmetric instanton calculus in the 

context of N = 2 supersymmetric gauge theories as a means to test and fix the exact 

results proposed for these theories, proposed by Seiberg and Witten and subsequently 

generalized by others. 
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6.2.1 Instanton Calculus inN= 2 Supersymmetric Gauge The-
. ones 

Instantons are classical field configurations and within the semi-classical method, valid 

calculations using them are restricted to weakly coupled phases. In supersymmetric 

gauge theories, fermions couple to bosons and the zero modes of the fermions in the 

instanton background must be taken into account. Furthermore, when there are scalar 

fields present, the situation is complicated by the possibility that these fields may possess 

non-zero vacuum expectation values. 

Due to the presence of coupling between the gauge and matter fields and their super

partners in four dimensional supersymmetric gauge theories, the Yang-Mills instanton 

is no longer an exact solution of the Euler-Lagrange equations derived from the classi

cal action of the theory. However, an approximate classical solution can be determined 

and then used in the semi-classical approximation. The approximate solution of the 

classical supersymmetric field equations is referred to as a supersymmetric instanton or 

super-instanton. Below we describe theN= 2 supersymmetric ADHM instanton. Using 

·wick rotation, the Minkowski spacetime path integral can be analytically continued to 

Minkowski spacetime, enabling the semi-classical approximation and standard instanton 

methods to be used. 

However, supersymmetric theories in four dimensional Euclidean spacetime do not ad

mit Major ana spinors [224], and for N = 1 supersymmetry, one must use Minkowski 

spacetime for semi-classical calculations (we refer also to [202, 203]). For extended su

persymmetry, combinations of \iVeyl spinors can be formed to give Dirac spinors, which 

can exist in four dimensional Euclidean spacetime. Following the formalism of Chapter 

3 and the review [224], we briefly describe instanton calculus for supersymmetric gauge 

theories in Minkowski spacetime, outlining results calculated in Euclidean spacetime and 

then analytically continued to Minkowski spacetime. 

The presence of extended supersymmetry, or N = 1 supersymmetry coupled to matter 

fields, introduces scalar fields into the field content of the theory. For scalar field theories, 

Derrick's theorem [78] states there can exist no non-trivial exact solutions of the clas

sical equations of motion for theories in which the scalar field assumes a non-vanishing 



CHAPTER 6. INSTANTON TESTS OF THE EXACT RESULTS 247 

expectation vacuum value. This is because such solutions can always be made to vanish 

via a scaling argument. A scalar field possessing a non-vanishing vacuum expectation 

value spontaneously breaks the Sf!(2) gauge symmetry in Seiberg-Witten theory, as 

described in Chapter 5. In supersymmetric gauge theories coupled to scalar fields, the 

super-instanton solutions of the classical equations of motion strictly do not exist, and the 

semi-classical approximation cannot be made. This is because the classical equations of 

motion involve coupled gauge fields and scalar fields. (Note that Derrick's theorem does 

not apply in pure gauge theories.) In such cases, Derrick's theorem can be circumvented 

by the 'constrained instanton' formalism formulated by Affieck [79], which was developed 

following a suggestion of 't Hooft. vVe do not describe this formalism in detail, but refer 

the reader to [79] and the review [224]. (Constrained instantons have been explicitly 

constructed in [79, 80, 213] and other references in [224]). 

To leading order in the gauge coupling constant g, which is the lowest order in the semi

classical expansion, the constrained instanton is identical to the ordinary Yang-Mills 

instanton. When scalar vacuum expectation values are present, the boundary conditions 

on the scalar field are changed in the functional integral. This enables the calculation of 

the leading order contribution to the path integral and thus permits instanton effects in 

supersymmetric gauge theories to be determined. 

In this chapter we have mainly followed the review [224]. We also note the fundamental 

work on instantons in supersymmetric theories [202, 203], the reviews [204, 205], the 

subsequent development of instanton calculus for supersymmetric SU(N) Yang-Mills 

gauge field theories in [206, 207, 208], and the reviews of this in [209, 210, 211]. The 

modern formulation of supersymmetric instanton calculus was systematically developed 

in [213, 214, 217], with the general supersymmetric instanton measure first given in [222]. 

TheN= 2 Supersymmetric ADHM Instanton 

In supersymmetric gauge theories, there exist superpartner particles, so that there are 

fermion fields which have consequences for instanton calculus in these theories. In SU(N) 

gauge theories with N = 2 supersymmetry, there are bosonic fields {vm, A} and fermion 

fields P·a, 1/Ja}, as has already been described in Section 3.4 of Chapter 3. The fermionic 
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superpartner of the gauge field Vm is the gaugino ,\~:, which is anN = 1 superpartner field. 

The index theorem indicates that there are 2N k zero mode solutions of the massless Dirac 

equation 15>-. = 0 in the k-instanton background. The exact form of these zero modes was 

derived in [41, 33], and these can be expressed in terms of the bosonic ADHM matrices 

{b, j, U}: 

(6.51) 

where M.\i and Mj are matrices of dimensions ( N + 2k) x k and k x ( N + 2k), respectively, 

with entries being constant Grassmann collective co-ordinates which describe the gaugino 

Aa· These two matrices can be interpreted as two real Grassmann-valued matrices or 

as two complex Grassmann-valued matrices which are the Hermitian conjugate of each 

other. 

Constraints can now be derived on the matrices M>,i and Mj by applying the Dirac 

operator D to the gaugino in Eq. (6.51): 

(6.52) 

Expanding the AD HM matrix ~ ( x) as ~ ( x) = a+ bx, the following fermionic constraints 

result from Eq. (6.52): 

-), M.bc;. 
t /\) 

(6.53) 

(6.54) 

These constraints provide 'fermionic superpartners' to the bosonic ADHM constraints. 

The latter constraint Eq. (6.54) is straightforwardly solved by taking b to be the canonical 

form given in Eq. (2.63) of Subsection 2.3.1 in Chapter 2. Furthermore, the ADHM index 

decomposition can be applied to the fermionic matrices M>,i and Mj. One can verify 

that there are 2Nk zero modes in these matrices. There are a total of 2k(N + 2k) 

real Grassmann parameters in M>,i and Mj; the constraints Eq. (6.53,6.53) remove 2k2 

parameters, leaving 2Nk free parameters, as required. 

The other superpartner fields in the theory can be treated in an analogous manner. The 

superpartner of the Higgs boson A, denoted '1/Jo:, which is also referred to as the Higgsino, 

can also be constructed from the bosonic and fermionic ADHM matrices, and has the 

form: 

(6.55) 
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where the matrices N>..i and 5..j are Grassmann-valued matrices of dimensions (N +2k) x k 

and k x ( N + 2k), respectively. These matrices obey fermionic constraints analogous to 

Eqs. (6.53,6.53): 

and the ADHM index decomposition can also be applied to these matrices. 

(6.56) 

(6.57) 

To determine the form of the Higgs boson field A in the k-instanton background requires 

the solution of the Euler-Lagrange equation for this field. The field A is a complex 

scalar field which depends on the other superpartner fields ). and 'lj;, in the instanton 

background: 

(6.58) 

where D2 is the covariant Klein-Gordon operator in the ADHM instanton background. 

The gaugino ). and Higgsino 'ljJ are given by Eqs. (6.51,6.55) above. In the Coulomb 

phase, which is the phase of interest for gauge theories in this thesis, there is also the 

following long distance boundary condition on A: 

N 

lim A(x) = diag(v1, ... ,vN), LVu = 0, 
lxl-+oo 

(6.59) 
u=l 

where Vu are the complex scalar vacuum expectation values. In the U(N) gauge theory, 

the sum of the vacuum expectation values Vu need not be zero; this is a requirement in 

the SU(N) theory. The general solution to the equations of motion in Eq. (6.58,6.59) 

was first derived in [213] . The solution is complicated and is expressed in terms of the 

bosonic and fermionic ADHM matrices described above; A has the form: 

iA = 
1
/()U(NJM-MJN)+UAU, 

2v2 

where A is a constant block diagonal matrix of dimension (N + 2k) x (N + 2k): 

Al-L _ Av+mf3 _ ( (A)uv 0 ) 
>.. - u+lo: - j3 

0 (Atot)zmOo:, 

(6.60) 

(6.61) 

in which (A)uv is an N x N matrix related to the diagonal matrix of scalar vacuum 

expectation values: 

(A) (6.62) 
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and Atot is an anti-Hermitian k x k matrix implicitly defined as the solution to the 

inhomogeneous linear equation: 

. 1 - -
(L · Atot) = w~(A)uvWvja + j()(MN- N M)ij· 

2v2 
(6.63) 

In Eq. (6.63), Lis a linear operator composed of ADHM submatrices which is an auto

morphic map on the space of k x k scalar anti-Hermitian matrices, and whose operation 

is given in Eq. (6.44) of Section 6.2. 

Together, the constraints in Eqs. (6.53-6.63), and the ADHM constraints in Eq. (2.72,2.73) 

in Subsection 2.3.1 of Chapter 2, can be regarded as anN = 2 supersymmetric multi

plet of constraints which act as the fermionic superpartners of the bosonic ADHM con

straints [214, 217]. For this reason these constraints are often referred to as the 'fermionic 

ADHM constraints.' 

The field configurations defined by the bosonic and fermionic ADHM constraints serve to 

define the supersymmetric instanton background in theN = 2 supersymmetric SU(N) 

Yang-Mills gauge theory. This set of configurations is referred to as theN= 2 supersym

metric instanton, or super-instanton. The field configuration used in the semi-classical 

approximation in this case will consist of the leading order solutions to the equations 

of motion arising from the action of N = 2 supersymmetric SU(N) Yang-Mills gauge 

theory given in Eq. (3.86) in Section 3.4 of Chapter 3. 

When there are N1 fundamental matter multiplets coupled to the SU(N) Yang-Mills 

gauge theory, the effects of the masses of these multiplets can be incorporated into the 

instanton effective action. The equations defining the N -dimensional fundamental mat

ter chiral and anti-fundamental chiral superfields Qu and Qu are similar to those for the 

other fermion fields present in the instanton background. The component fields for the 

chiral matter superfield Qu are the 'Higgs' field qu and its superpartner, the 'Higgsino,' 

Xu· The fundamental fermion zero modes in the ADHM instanton background obey the 

following constraints: 

0, 

lim qu(x) -+ (q)u, 
lxl--+oo 

(6.64) 

(6.65) 

(6.66) 
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where (q)u is the fundamental fermion vacuum expectation value. These constraints have 

solutions given by: 

(6.67) 

(6.68) 

where Kj is a Grassmann number and V is theN x N submatrix of the ADHM matrix 

U, given in Eq. (2.90) of Subection 2.3.1 in Chapter 2. 

In general , for 2N1 fundamental and anti-fundamental chiral matter multiplets Q f and 

Q1, one has f copies of the fields in Eq. (6.67,6.68) in the ADHM background , neces

sitating a further index f in these solutions. In the Coulomb phase of the theory, the 

fundamental fermion vacuum expectation values (q)uJ vanish and so Eq. (6.68) simplifies. 

A further modification occurs in the presence of N1 > 0 fundamental matter multiplets: 

the Euler-Lagrange equation for the conjugate Higgs field At becomes inhomogeneous, 

and has the form: 
NI 

(v2 At) - 1 ~ -uv - J2 L.....t XuJXJv· 
!=1 

(6.69) 

This equation of motion can be solved in a similar way to that for the Higgs field A, 

for which the Euler-Lagrange equation is unmodified . The solut ion, and the presence of 

non-zero matter multiplet masses m1, modifies the k-instanton effective action for the 

SU(N ) Yang-Mills gauge theory, resulting in the k-instanton effective action for N = 2 

SU(N ) SQCD with N1 fundamental matter multiplets. 

The fermion fields above which are present in the instanton background possess fermionic 

zero modes and also components orthogonal to these zero modes. This is directly anal

ogous to the expansion of the fluctuations of the gauge field. The functional integral 

over the fermion fields can be factorized into integrations over Grassmann collect ive co

ordinates and non-zero mode components. The effective instanton action S of the theory 

can then be written as a sum over the instanton action e2nih , kinetic terms for the non

zero mode components Skin, a term describing the interaction of the zero and non-zero 

modes Sint , and a ghost term Sgh· Together with the measure for the non-zero modes 

(which includes the non-zero mode components of the gauge field and the fermion fields) 

and that for the ghost fields { 77 , i]} , an effective action for instantons in the theory can 
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be defined as: 

(6.70) 

In this case, the instanton effective action is a supersymmetric potential on the instanton 

moduli space of collective co-ordinates. 

The Collective Co-ordinate Integral inN = 2 Supersymmetric Gauge Theories 

The collective co-ordinate integral requires renormalization if it is to be physically valid. 

A suitable renormalization scheme is the Pauli-Villars scheme [58], which is characterized 

by a mass scale f-L· In this scheme, the cancellation between the bosonic and fermionic 

determinants in supersymmetric gauge theories is directly related to the scale f-L: 

det' .6. ( +) -4Nk 

det.6. (-) = f-L (6.71) 

The leading-order semi-classical approximation of the functional integral in the k-instanton 

sector is given by the supersymmetrized volume form on the instanton moduli space mul

tiplied by an integrand involving the instanton effective action S: 

(6.72) 

Here w(N) is the supersymmetric volume form on the instanton moduli space, which is 

integrated over the U(N) k-instanton moduli space, denoted, as in Chapter 2, by SJJ1k. 

This quantity has the explicit general form: 

where CkN) is a normalization factor given by: 

C(N) _ 2-k(k-1)/2+kN(2-N) 2kN(l-N) 
k - 1r . (6.74) 

As in the case of non-supersymmetric gauge theories, the supersymmetric instanton mea

sure will exhibit the property of clustering. The supersymmetric volume form on the 
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U(N) k-instanton moduli space 9J1k will decompose in a directly analogous way to the 

non-supersymmetric volume form given in Eqs. (6.48,6.49) of Section 6.2. 

Supersymmetry invariance of this volume form can be ascertained by varying the quan

tities within in it according to the supersymmetry transformations for the bosonic and 

fermionic collective co-ordinates. For extended supersymmetry, when N > 1, the varia

tion of the Grassmann collective co-ordinates of the fermion fields depends on the bosonic 

collective co-ordinates in a complicated way. The supersymmetry invariance can be es

tablished by considering the Jacobians of the supersymmetry transformations on the 

collective co-ordinates [222]. It has also been shown that the N = 4 supersymmetric col

lective co-ordinate measure decouples to theN = 0 supersymmetric collective co-ordinate 

measures via renormalization group flow [222]. 

The N = 2 Supersymmetric Instanton Partition Function 

We now describe the instanton partition function in N = 2 supersymmetric gauge the

ories. This quantity, which for general N-extended supersymmetry is denoted by zt(l, 
is essentially a linearized reformulation of the collective co-ordinate integral. It is useful 

for the application of instanton calculus in these theories, and particularly for quantities 

which are used for comparison with proposed exact results. 

One can introduce Lagrange multipliers through which both the bosonic and fermionic 

ADHM can be implemented as 5-function constraints; other additional variables in the

ories with extended supersymmetry (N > 1) can also be included using this proce

dure [213, 214, 217, 222]. For the supersymmetric instanton partition function, one must 

introduce the auxiliary variables {xa, D, ~~}. These variables consist of: a 2(N -1)-row 

vector of Hermitian k x k matrices, Xa; a 3-vector of k x k Hermitian matrices, D; and a 

k x k matrix of G rassmann-valued superpartners, ~~, A = 1, ... , N. The supersymmetric 

instanton partition function can be written in the form: 

(6.75) 
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in which the N-supersymmetric instanton effective action is given by: 

(6.76) 

and where we have defined: 

- _ · 2 { -6: ( - A - A) __, ea -/3 } 
SL.m. - -4~7r trk 1/J A M aa: + aa:M + D · T/3 a aa: . (6.77) 

The original form of the collective co-ordinate integral can be recovered by integrating 

out the auxiliary variables {xa, .z5, -0~} above: the auxiliary variables .z5 and 7,b A act as 

Lagrange multipliers (hence the subscript "L.m."), which when integrated out give the 

a-functions which implement the bosonic and fermionic ADHM constraints in Eq. (6.73). 

The supersymmetric instanton partition function enables one to include the effects of the 

vacuum expectation values of the scalar fields in the Coulomb branches of N = 2 and 

N = 4 supersymmetric gauge theories. 

A particularly useful form of the supersymmetric instanton partition function is the "cen

tred instanton partition function". This is defined in terms of an integral over the centred 

instanton moduli space IJJtk, defined in Eq. (2.30) of Subsection 2.2.2 in Chapter 2, in 

which the overall position co-ordinates and their fermionic counterparts (the superpart

ners) are factored off. The superpartners of the instanton are the Grassmann collective 

co-ordinates for the supersymmetries broken by the bosonic U(N) ADHM k-instanton 

solution: 

(6.78) 

The supersymmetric instanton effective action is always independent of Xn and ~A. The 

centered N-supersymmetric instanton partition function Zt''N1), generalized to include 

Nf matter multiplets, is given by: 

(6.79) 

The N-supersymmetric instanton partition function has the form of a partition function 

of a zero dimensional field theory. For N > 1 it can be viewed as the dimensional reduc

tion of the partition function of a higher-dimensional field theory. 
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6.3 Instanton Tests of Seiberg-Witten Theory 

In this section we state the results of the tests of Seiberg-Witten theory by comparison 

with instanton predictions derived from first principles. vVe will briefly describe the re

sults of the one-instanton and two-instanton level tests which have been performed for 

the exact results proposed by Seiberg and Witten. These tests make extensive use of the 

supersymmetric instanton calculus described in Section 6.2. We do not describe the tech

niques employed to determine the instanton contributions to the prepotential or Green's 

functions in Seiberg-Witten theory and its generalizations in detail but shall state re

sults. The procedure conventionally employed in testing the proposed exact results by 

comparing them with instanton predictions is to calculate the instanton corrections to 

Green's functions using the semi-classical approximation. One of these results shall then 

be used, in Section 6.4, for the purposes of matching the one-instanton prediction and the 

proposed exact result for the prepotential in low energy effective N = 2 SU(N) SQCD 

with Nf = 2N massless fundamental matter multiplets. 

Instanton tests of the proposed generalization of Seiberg-Witten theoretic methods to 

determine the exact low energy effective action of N = 2 supersymmetric SU(N) Yang

Mills gauge theory with N1 fundamental matter multiplets shall be described in Section 

6.4. 

In the following titled paragraphs -vve will describe the general procedure for the calcula

tions whose results we state for Seiberg-Witten theory and for N = 2 supersymmetric 

SU(N) gauge theories in Section 6.4 below. We describe the results of the one-instanton 

and two-instanton tests of the original Seiberg-Witten theory, namely N = 2 supersym

metric SU(2) Yang-Mills gauge theory, and N = 2 SU(2) SQCD with N1 S 4 fundamen

tal matter multiplets. In Section 6.4 we describe the results of the one-instanton tests of 

the exact results proposed for the theory of primary focus in this thesis, N = 2 SU(N) 

SQCD with Nf S 2N fundamental matter multiplets. 

We begin by first describing the methods used to calculate the instanton contributions 

to the prepotential :F in N = 2 supersymmetric SU(2) Yang-Mills gauge theory with 

N1 S 4 fundamental matter multiplets, the object for which Seiberg and Witten have 

proposed an exact low energy effective form. In this section we refer to the original papers 
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in [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 223, 225, 226, 227, 228], and note the 

related work in [241, 242, 243, 244, 247] on instanton tests of Seiberg-Witten theory and 

its generalizations. 

The initial instanton tests of Seiberg-Witten theory were performed for the one-instanton 

contributions to the prepotential inN= 2 supersymmetric SU(2) Yang-Mills gauge the

ory, the first one being that in [212]. This was followed by one-instanton tests for the 

exact solution of N = 2 SU(2) SQCD with N1 fundamental matter multiplets proposed 

by Seiberg and Witten [221, 218]. 

The first test of Seiberg-VVitten theory at the two-instanton level was completed by 

Dorey et al. [213]. This calculation was generalized to the case of N = 2 SU(2) SQCD 

coupled to Nf fundamental matter multiplets in [214, 217, 215]. We state the results of 

the calculations completed for the one-instanton and two-instanton contributions to the 

prepotential following [224]. The one-instanton results are in agreement with the predic

tions from Seiberg-Witten theory, for N1 ~ 2N- 1, except for the finite scale invariant 

case when Nf = 2N. This discrepancy and its proposed resolution shall be described in 

Section 6.5. At the two-instanton level, the tests performed so far have also agreed with 

Seiberg-Witten theory [214, 217]. 

The general expression for the k-instanton contribution to the prepotential in N = 2 

SU(2) SQCD as an integral over the instanton moduli space was also derived in [214, 217]. 

This constitutes a complete field theoretic solution for the low energy Wilsonian effective 

of N = 2 SU(2) SQCD with N1 matter multiplets given in terms of quadratures. 

The Matone relation [229], described in Chapter 5, which relates the k-instanton contribu

tions to the prepotential to the quantum modulus, or condensate, u2 , in Seiberg-Witten 

theory, has also been subject to tests by independent instanton calculations. These tests 

also provide checks of the Seiberg-Witten proposed solution via instanton calculus. The 

M atone relation was tested at the two-instanton level in [230]. This was later extended 

to an all orders k-instanton test in [231]. 

Instanton Contributions to the Prepotential 

In the Coulomb phase of N = 2 supersymmetric gauge theories, there exists a scalar field 
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cjJ transforming in the adjoint representation of the gauge group whose non-zero vacuum 

expectation values break the full gauge symmetry of the theory. Generically, the gauge 

group is broken to its maximal Abelian subgroup. When the scalar vacuum expectation 

value, which is the only vacuum expectation value on the Couloumb branch, is large, 

the gauge theory becomes weakly coupled. At weak coupling, instanton calculations are 

expected to be applicable and reliable. The instanton calculus in supersymmetric gauge 

theories, described in Subsection 6.2.1, making use of constrained instantons, can then 

be applied to these theories in the Coulomb phase. 

The presence of N = 2 supersymmetry protects holomorphic quantities in these theo

ries from quantum perturbative corrections beyond one loop corrections. As has been 

described in Chapter 5, the prepotential of the low energy effective N = 2 theory is one 

such holomorphic quantity. This protection from all higher orders of perturbative con

tributions then enables the exact identification of non-perturbative contributions, which 

are otherwise often negligible in comparison to the infinite number of perturbative con

tributions. Hence N = 2 supersymmetric gauge theories are particularly suitable for the 

use of the semi-classical methods, which are expected to be exact in these theories. 

The instanton contributions to the prepotential of the theory are conventionally calcu

lated using the semi-classical approximation for certain Green's functions. The leading 

order contributions to these Green's functions are calculated and then related to the 

low energy effective action. The Green's functions are such that in the long distance 

(infra-red) limit they can be compared with the appropriate expansion of the low energy 

effective action proposed by Seiberg and Witten or a generalization of it. This enables 

one to test the prepotential proposed for the low energy effective action. Various Green's 

functions can be used for such tests, such as the four-point anti-chiral fermion correlator 

which depends on the fourth derivative of the prepotential with respect to the scalar 

vacuum expectation value. Other correlators exist which can be used to determine the 

second derivative of the prepotential. 

When calculating the instanton contributions to the N = 2 prepotential and quantum 

moduli for the purposes of testing the proposed exact results in Seiberg-Witten theory 

and its generalizations, the semi-classical approximation is used to calculate quantities 

in N = 2 SQCD with Nf fundamental matter mutliplets. With results for this theory, 

WW ~===-=--
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for various gauge groups, testing theN= 2 supersymmetric Yang-Mills gauge theory is 

achieved by setting the number of matter multiplets to zero, N1 = 0. This is the theory 

considered in the majority of literature on this topic, and we follow this approach here. 

We now outline the form of the N = 2 supersymmetric instanton effective action S 

for N = 2 supersymmetric Yang-Mills gauge theory, with general gauge group, in the 

Coulomb phase. The scalar field cp obeys the same equation of motion as in the pure 

Yang-Mills theory, and these can be used to simplify the kinetic terms for the scalar fields 

which appear in the instanton effective action. The kinetic terms of the scalar fields and 

the Yukawa interactions for the chiral fermions contribute to leading order in S. On the 

Coulomb branch of the theory the matter multiplet fermion fields do not acquire vacuum 

expectation values, that is, they have vanishing vacuum expectation values. The only 

field which possesses a vacuum expecation value is the scalar field cp. This also simplifies 

the form of S, leaving the terms involving the scalar field cp as the only non-vanishing 

terms in the integrand. This permits the contribution of cp to S to be calculated. 

The Yukawa interaction terms can also be evaluated by similar techniques. Summing 

the contributions of the scalar fields and the Yukawa interaction terms, the leading order 

expression for the instanton effective action S in N = 2 Yang-Mills gauge theory on 

the Coulomb branch (with non-zero scalar field vacuum expectation values) results. The 

effective action S is a supersymmetric invariant, as required. 

The addition of N = 2 fundamental matter multiplets to the pure N = 2 gauge theory 

affects the instanton effective action of the theory. To leading order in the semi-classical 

approximation, this can be achieved relatively straightforwardly. 

The quantities of interest in these theories, which includes the N = 2 prepotential :F, 

are holomorphic in the matter multiplet masses. That is, they depend on a mass m 

but not its conjugate m*, where m is a complex mass. The variables m and m* can 

as independent variables so that m* = 0 can be set. When calculating these quantities 

using the semi-classical approximation, the holomorphic mass dependence is manifest 

in the approximation. Due to the holomorphic mass dependence, only the equations of 

motion for anti-chiral fermions in the theory are affected. Hence the equations defining 

the supersymmetric instanton are not affected at leading order. 

The effect of including fundamental matter multiplets in the theory is accounted for as fol-
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lows. The mass term in the action involving a fundamental hypermultiplet transforming 

in the (N, N) representation can be evaluated in the background of the supersymmetric 

instanton configuration. This is then added to the effective instanton action S, and in 

this way the mass terms for the matter multiplets has been accounted for. A similar 

procedure permits one to account for the effect of coupling theN= 2 Yang-Mills gauge 

to an adjoint matter multiplet. This is useful for calculating instanton contributions to 

the mass-deformed N = 4 supersymmetric SU(2) Yang-Mills gauge theory described in 

Chapter 5 and in Section 6.5. 

Using the N = 2 supersymmetric effective instanton action S, one can semi-classically 

calculate the four-point anti-chiral fermion correlator at long range. ·when this result is 

compared with the same quantity predicted by the proposed exact results, the k-instanton 

expansion coefficient of the prepotential assumes the form: 

(6.80) 

where z;:=2
,N1 ) is the N = 2 supersymmetric centered instanton partition function. 

This relation is valid up to an undetermined additive constant, which does not affect the 

physics described by the prepotential :F. This is because only derivatives of the prepo

tential appear in the low energy effective action of the theory. Furthermore,' since only 

fourth derivatives of :F enter into the correlator from which this relation is derived, other 

functions whose fourth derivative with respect to the scalar vacuum expectation values 

is a constant which can be added to it. However, relations derived from other correlators 

permit only functions whose second derivative with respect to the scalar vacuum expec

tation values vanishes to be added. 

Instanton Contributions to u2 

An alternative approach for testing Seiberg-Witten theory against instanton predictions 

does not use Green's functions. Instead, the instanton contributions to the quantum 

modulus, or condensate, u2 , can be calculated and related to the prepotential by using a 

renormalization group equation involving the derivative of the prepotential. This calcu

lation also serves to verify this renormalization group relation. 



CHAPTER 6. INSTANTON TESTS OF THE EXACT RESULTS 260 

In the alternative approach which uses the renormalization group equation known as the 

Matone relation in Seiberg-Witten theory, the k-instanton contributions to the quantum 

modulus u2 can be calculated using the semi-classical approximation as in the previ

ous method. The authors of [224] evaluate the instanton contributions to u2 in N = 2 

SU(N) SQCD with N1 fundamental matter multiplets. The k-instanton contribution to 

the quantum modulus u2 in this case is given by: 

I 
_ 2 kAk(2N-NJ) -k(2N-N1)+2 ~z(N=2,N1 ) 

u2 k - 7f (N1) 9 k · (6.81) 

The k-instanton contribution to the quantum modulus u2 is proportional to the centred 

instanton partition function, as is the k-instanton contribution to the prepotential :F in 

Eq. (6.80). This suggests a version of the renormalization group equation analogous to 

the Matone relation, but for the gauge group SU(N). By comparing Eq. (6.81) with 

Eq. (6.80), one can relate the quantum modulus u2 to the prepotential :F as follows: 

(6.82) 

which generalizes the original Matone relation given previously in Eq. (5.201) of Sub

section 5.3.2 in Chapter 5. This formula relates only the non-perturbative contributions 

to both u2 and :F, so that there remain perturbative contributions to be determined. 

The prepotential :F receives one loop perturbative corrections, which can be calculated 

using standard perturbative methods, and which are given in Eq. (5.40) in Section 5.3 of 

Chapter 5. By itself, the quantum modulus u2 receives no perturbative corrections and 

is equal to its classical form. 

This alternative approach has the considerable advantage that the relation Eq. (6.82) can 

be derived without integrating over the instanton moduli space, thus avoiding the ADHM 

constraints, via instanton calculus. This relation is also valid for the finite scale invariant 

case N1 = 2N if one replaces the dynamical scale factor A 2N-N1 with the exponentiated 

factor e2
"ir. Equation (6.82) also holds for arbitrary matter multiplet masses. 

We note that the instanton sectors which contribute to the prepotential are dependent 

on the theory being considered. Due to a Z2 parity symmetry in the theory with N1 > 0 

massless fundamental matter multiplets, described in Chapter 5, it is found that only 

instantons of even charge contribute to the prepotential in these theories. In the case of 
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theN= 2 supersymmetric Yang-Mills gauge theory, with Nf = 0, all instantons, of both 

odd and even charge, contribute to the prepotential. This is a selection rule which was 

discovered by Seiberg and \rVitten [171], and which can also be derived from instanton 

calculus. \rVhen some of the Nf > 0 fundamental matter multiplets have non-zero mass, 

this symmetry is absent. 

One-Instanton Test 

We now describe the actual instanton tests which have been performed using the ap

proach utilizing Green's functions. Using precisely this approach for the gauge group 

SU(2), the authors [212] were able to calculate the one-instanton contribution to the 

prepotential F. These one-instanton tests constitute the first tests of Seiberg-vVitten 

theory by conventional field theoretic methods. Other one-instanton tests have been 

performed for Seiberg-\iVitten theory, including [221, 218]. Further one-instanton tests 

of cases involving N = 2 supersymmetric SU(2) Yang-Mills gauge theory coupled to 

assorted matter multiplets have also been completed [227]. 

The formalism used for instanton calculus so far has been that for the gauge group U(N), 

which is also applicable for gauge group SU(N). For the gauge group SU(2), it is more 

convenient and economical to make use of the isomorphism SU(2) ~ Sp(1) and use the 

ADHM construction for the sympletic groups described in Subsection 2.3.3 of Chapter 

2. The differences between the formalism of the ADHM construction for the unitary and 

sympletic gauge groups has already been described in Subsection 2.3.3 of Chapter 2; here 

we recall that the ADHM construction for gauge group Sp(1) requires a smaller number 

. of variables and constraints than the ADHM construction for gauge group SU(2). The 

most simple choice of formalism with which to proceed for the direct calculation of the 

SU(2) prepotential is that for Sp(1). However, using the SU(N) instanton calculus with 

N = 2 should reproduce the same physical results and would be equally valid. 

Calculation of the k-instanton contribution to the prepotential, denoted Fk, reqmres 

the explicit centred instanton partition function. For the one-instanton contribution to 

the prepotential of N = 2 supersymmetric SU(2) Yang-Mills gauge theory, denoted 

Fl/N=2,N1=o, which is the simplest case, the bosonic and fermionic parameters of a k = 1 -

•-u 
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N = 2 supersymmetric ADHM instanton are specified in three 2 x 1 matrices of inde-

pendent , unconstrained quaternionic parameters: 

a (6.83) 

For the Sp(1) ADHM one-instanton, as noted in Subsection 2.3.3 of Chapter 2, there are 

no ADHM constraints , so that the ADHM matrix a in Eq. (6.83) completely specifies the 

Sp(1) one-instanton. There are also 2N1 Grassmann variables {JCJ , JC!} which parame

terize the zero modes of the fundamental matter multiplets . 

The volume form on the centered instanton moduli space, for use in the centered instanton 

partition function , is given by: 

3 2 NI 

r_ w(N=2,NI) 2 I d4 IT d2 A IT dJC dJC-1 x- = 7rH2N1 u J.L 1 1' 
M1 A=1 / =1 

(6.84) 

The k = 1 instanton effective action can be determined from this and used in the calcu

lation of the supersymmetric one-instanton partition function, ziN=
2
,N1) . The result for 

this quant ity is: 
NI 

-ry (N =2,NI)I - 2 IT 
.~v1 N=2 - 2 mf, 

a 
/=1 

(6.85) 

where a is the non-zero scalar vacuum expectation value of the theory, thus implying 

that the theory is in the Coulomb phase. The form of t he one-instanton contribution to 

the prepotential in N = 2 supersymmetric SU(2 ) SQCD with N1 fundamental matter 

multiplets can then be found using Eq. (6.80) . For the case of N1 = 0, which is the arena 

of the original low energy solut ion proposed by Seiberg and Witten, it follows that the 

one-instanton contribut ion to the prepotential, F 1IN=2,N1= 0 , as given in [224], has the 

form: 
2 2 NI 

F 11N=2,N1=o = 2 ' F1 1N=2,N1 = 2 IT m! (6.86) 
a a 

/=1 

The expressions for F1 1N=2 ,N1=o and F 1IN=2,N1 in Eq. (6.86) are in exact agreement with 

the form of F 1IN=2,N1 derived from Eq. (5 .115) of Chapter 6 for 0 :S N1 < 4, up to 

constants independent of the vacuum expectation value a for the cases N1 = 2, 3. When 

Nf = 4, a discrepancy arises between the results of the instanton calculation and the 
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Seiberg-Witten result for :F1 IN=2,N
1
=o· We shall describe the resolution of this discrep

ancy, which is achieved by a non-perturbative reparameterization, in Section 6.5. 

Two-Instanton Test 

The calculation of the two-instanton contribution to the prepotential, which for N = 2 

supersymmetric SU(2) Yang-Mills gauge theory we denote by :F2 IN=2,N1= 0 , presents more 

difficulties than the one-instanton contribution. The bosonic and fermionic parameters 

of the k = 2 supersymmetric ADHM instanton are contained in the following 3 x 2 

quaternionic matrices: 

wl w2 JLt p,~ 

a ru r12 ' 
MA -4i~A + M~A M~A (6.87) 

r12 r12 M~A -4i~A- M~A 

the bosonic components of which, contained in the ADHM matrix a, have been described 

in Subsection 2.3.3 of Chapter 2. Note that for the Sp(1) ADHM matrix a in Eq. (6.87), 

a redefinition of the diagonal parameters, as originally defined in Subsection 2.3.3 of 

Chapter 2, has been made. The elements of the matrix MA are \iVeyl spinors. There 

are also 4Nf fundamental zero modes parameterized by the Grassmann numbers !Cif and 

JCfi, which is twice the number of such modes in the one-instanton calculation. 

Again the the centred instanton partition function is to be evaluated in order to determine 

the instanton contributions. The first step in this calculation is the explicit solution of the 

bosonic and fermionic ADHM constraints. This is achieved by using the Sp(1) ADHM 

two-instanton solution given in Subsection 2.3.3 of Chapter 2, and using an analogous 

technique for the fermionic ADHM constraints, in which the off-diagonal element M~A is 

eliminated. The constraints for the bosonic and fermionic ADHM supersymmetric Sp(1) 

two-instanton are then explicitly and generally solved by: 

1 1 
X ( - - ) M'A X (2- M'A + - A - A) (6 88) r12 = 2IXI 2 w2w1- W1W2 , 1 = 2IXI2 r12 3 W2P,1 - W1P,2 , . 

where the real constant (denoted E in Chapter 2) which can be added to the the term 

(w2w1- w1w 2) in r 12 has been set to zero via the 0(2) residual symmetry, and we have 

defined X r 11 - r 22 . This configuration can now be used to explicitly integrate the 
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6-functions which implement the supersymmetric ADHM constraints, in the formula for 

the supersymmetric centred k = 2-instanton volume form: 

h w(N=2) ·= C~N=2) J d4r' d4w d4w {rr2 d2M'Ad2f-LAd2f-LA} 
- 210 12 1 2 3 1 2 
M2 A=1 (6.89) 

IIXI2 -lrd2
1 

X . 
lw1l2 + lw2l2 + 2lrd2 + 2IXI 2 

The bosonic components of the general Sp(1) two-instanton collective co-ordinate integral 

were first derived in [47, 44, 46] by an explicit change of variables in the path integral. 

The resulting instanton measure is known as the Osborn measure [47]. The explicit form 

of the collective co-ordinate measure for higher instanton numbers is not known. 

After a lengthy calculation using the instanton calculus which involves many subtleties, 

the two-instanton contribution to the prepotential in N = 2 SU(2) SQCD with N1 

fundamental matter multiplets is given by [213, 214, 217, 224]: 

F I = ~M(NJ)- ]__M(NJ) . _1_M(NJ) _·_5_Jvf(NJ) 7a2 M(NJ) 
2 N=2,NJ a6 NJ 4a4 NJ-1 16a2 Nr2 2633 NJ-3 + 2835 NJ-4' 

where the coefficients M/N1) are defined 

M (NJ) = 
l -

h <h<··-<fl=l 

2 2 2 
mhmh .. ·m!t, 

(6.90) 

(6.91) 

in which the factors m 11 are the masses of the lth fundamental matter multiplet, l = 

1, ... , Nf. The sum in Eq. (6.91) is defined such that MJNJ) = 1, and J\1/N1 ) = 0 for 

l < 0. For Nf < 4, the two-instanton contribution to the SU(2) prepotential .F2 IN=2,N
1 

given in Eq. (6.90) is in exact agreement with the Seiberg-Witten prediction given explic

itly in Eq. (5.115) in terms of the complexified coupling T, up to a physically unimportant 

additive constant in the case N1 = 3. 

6.4 Instanton Tests of the Exact Results in N 2 

Supersymmetric SU(N) Gauge Theory 

The analysis which led to the results stated above for the SU(2) theory can be generalized 

to the general case in which the theory has gauge group SU(N). The SU(N) instanton 
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partition function previously defined in Eq. (6.75) of Subsection 6.2.1 can be used to 

calculate the instanton contributions to the prepotential via the Gre~n's function method 

making use of the formula Eq. (6.80). The calculations proceed similarly but prove more 

lengthy and complicated. The ADHM construction used for the bosonic and fermionic 

components of theN= 2 supersymmetric one-instanton must now be that for the unitary 

groups U(N) with the necessary modifications made to account for the presence of matter 

multiplets. The formalism for the U(N) ADHM construction was described in Subsection 

2.3.1 of Chapter 2, and is more complicated than the formalism for the Sp(1) -::::: SU(2) 

ADHM construction. 

We first state the result of the calculation completed for the one-instanton contribution 

to the prepotential in N = 2 SU(N) SQCD with N1 fundamental matter multiplets. 

The details of this difficult calculation can be found in [223]. The underlying method 

used to complete the calculation is precisely the same as that employed for the gauge 

group Sp(1)-::::: SU(2) described above. We note that other authors have investigated the 

instanton contributions in the SU(N) theory [218]. 

In the Coulomb phase, N = 2 supersymmetric SU(N) Yang-Mills gauge field theories 

possess an N - 1 complex dimensional classical moduli space which is parameterized 

by the N scalar vacuum expectation values { ai}, i = 1, ... , N of the N scalar fields ch 

Generically, on the Coulomb branch, at each point of the classical moduli space the gauge 

group SU(N) is broken to its maximal Abelian subgroup U(1)N-l. In this phase, the 

long distance low energy effective SU(N) action Seff can be expressed interms of Abelian 

N = 1 superfields vVai = ((vm)i, \), <I>i = (c/Ji, 'l/Ji) and the dual superfield <I>Di(<I>). The 

form of Seff is then given by: 

In terms of these N = 1 superfields, the scalar components of <I>i are given by gc/Jd .;2. 

The low energy effective action Seff is determined uniquely by the prepotential :F( <I>) [170]. 

The dual scalar superfield <I>Di and matrix of complexified gauge couplings Tij are related 

to the prepotential in a way which generalizes that for the SU(2) theory: 

(6.93) 

_·f :tr-• -" •! I 1 *Ill -iiMtliil 
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The matrix Tij of the low energy effective U(l)N-l theory then depends upon the scalar 

vacuum expectation values { ai}. The scalar vacuum expectation values and their dual val

ues serve as local co-ordinates in different regions of the quantum moduli space. ·where 

{ ai} are the local co-ordinates, these values are functions of the quantum moduli Un, 

ai = ai(un)· Similarly, where the dual scalar fields { cPDi}, which are the scalar compo

nents of the dual superfield q,Di, parameterize the quantum moduli space, the dual values 

are also functions of the quantum moduli: a0 i = a0 i ( un). The long distance behaviour of 

correlation functions can be extracted from the low energy effective SU(N) action given 

in Eq. (6.92). The correlation function which was used to determine the one-instanton 

contribution to the SU(N) prepotential, given below, is again the Euclidean four-point 

anti-chiral fermion correlator. This particular Green's function was used for the deriva

tion of the one- and two-instanton contributions to the prepotential in the SU(2) theory, 

as described in Section 6.3. The coefficients of the instanton contributions in the SU(N) 

theory will also depend upon the scalar vacuum expectation values, and, when there are 

Nf fundamental matter multiplets present, upon the multiplet masses. 

One-Instanton Test 

Extensive studies of the one-instanton contributions to the prepotential of N = 2 su

persymmetric SU(N) Yang-Mills gauge theory coupled to N1 fundamental matter mul

tiplets, which we denote as F1IN,N
1

, have been made in [218, 223]. We state the result 

derived in [223], which is valid for N = 2 SU(N) SQCD with Nf massive or massless 

fundamental matter multiplets. 

The Green's function used to evaluate the one-instanton contribution to the SU(N) pre

potential makes use of the instanton partition function given in Eq. ( 6. 75) in Subsection 

6.2.1. The integrations to be performed are not elementary, contain many subtleties, and 

those over the SU(N) one-instanton moduli space are found to be highly complex and 

non-trivial. Complete details of this lengthy calculation can be found in [223, 224]. 

The k = 1 contribution to the centred partition function in N = 2 supersymmetric 

SU(N) Yang-Mills gauge theory coupled to N1 fundmental matter multiplets, each of 
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mass m 1, f = 1, ... , N1, is given by: 

where we have defined the factors: 

/i = IT (ai- ak)· 
k-/-i,k-/-j 

267 

(6.94) 

(6.95) 

This result agrees exactly with the results of the generalizations of Seiberg-Witten the

ory to the SU(N) case in [173, 174, 181, 182, 183, 233], for N1 < 2N. An example of 

the hyperelliptic curves proposed for the SU(N) theory was given in Eq. (5.214). For 

the scale invariant theories with N1 = 2N fundamental matter multiplets, there exist 

discrepancies which we shall describe in Subsection 6.5.1 of Section 6.5. 

Two-Instanton Test 

The possibility of a two-instanton test in the SU(N) theory using the previously de

scribed methods has recently been enhanced by the determination of the explicit exact 

general form of the U(N) ADHM two-instanton configuration [36]. This work has been 

described in detail in Subsection 2.3.2 of Chapter 2. The complexity of the U(N) ADHM 

two-instanton configuration implies that the calculation of the two-instanton contribu

tions to the prepotential in N = 2 supersymmetric SU(N) Yang-Mills gauge theory 

coupled to Nf fundamental matter multiplets, denoted by F 2 IN,NJ, would be technically 

demanding. However, aside from this a two-instanton calculation in the SU(N) theory 

presents additional difficulties [223]. This is because in general there exist 2N ( k - 1) 

relative fermionic zero modes for a k-instanton calculation in the SU(N) theory. These 

additional zero modes do not correspond to Lagrangian symmetries and therefore are 

less readily identified [223]. In the one-instanton calculation, which yields F1IN,N
1 

m 

Eq. (6.94), these additional zero modes vanish and do not contribute. 
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6.5 Matching Exact Results and Instanton Predic-

tions 

In this section we describe the matching of exact field theoretic predictions from instan

ton calculations for supersymmetric gauge theories and their proposed exact counterparts 

derived using Seiberg-Wit ten theory or its generalizations. 

As has been described in Section 6.3, in~tanton calculus provides a means for the calcula

tion of the instanton contributions to the low energy effective prepotential :F in Seiberg

vVitten theory and other N = 2 supersymmetric gauge theories for which exact results 

have been proposed. Specifically, instanton calculus can be used to evaluate the numeri

cal coefficients :Fk, where k is the instanton charge, which occur in the non-perturbative 

contributions to :F. Other tests of the Seiberg-Witten solution via instanton calculations 

were also described, such as that for the instanton contributions to the quantum modulus 

u2. 

For certain gauge groups and numbers of matter multiplets, the distinct methods for 

calculating the coefficients Fk do not agree. Furthermore, some of the assumptions made 

by Seiberg and Witten in deriving their solution would appear to be invalid as non

perturbative contributions have been assumed not to exist. This is true in the when one 

equates the classical complexified gauge coupling constant 1c1 to its quantum counterpart, 

Tqu· vVhen matter multiplets are present, the equality Tc1 = Tqu does not hold, as this 

relation receives non-perturbative quantum corrections from instantons. 

Such instances of disagreement between instanton predictions and the proposed exact re

sults show that the exact non-perturbative quantities proposed in Seiberg-Witten theory 

and its generalizations must be matched to field theoretic calculations at low instanton 

charge if they are to describe the correct non-perturbative physics at higher instanton 

charge. Instanton contributions to quantities such as the complexified gauge coupling 1 

must also be taken into account if the proposed exact results are to describe the non

perturbative regime in the same way as field theoretic calculations do. 

Below we briefly describe previous work which reports discrepancies between the pro

posed exact results and instanton calculations. The most serious discrepancies occur for 

scale invariant theories. In the theories considered by Seiberg and vVitten, these theories 
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include N = 2 SU(2) SQCD with N1 = 4 fundamental matter multiplets, N = 2 SU(2) 

Yang-Mills gauge theory with an adjoint N = 2 matter multiplets (previously referred 

to mass deformed N = 4 Yang-Mills gauge theory), and more generally, N = 2 SU(N) 

SQCD with N1 = 2N fundamental matter multiplets. The original analysis of Seiberg 

and Witten for these theories with N1 S 3 cannot be applied in these cases because there 

is no running of the gauge coupling or the energy scale, making the determination of the 

elliptic curves for the quantum moduli space more difficult. Analogous difficulties occur 

in the generalizations of the analysis for larger gauge groups, and in particular we will 

shall describe the case with gauge group SU(N). 

The results for the low energy effective actions derived from the proposed exact solu

tions were found not to agree with instanton predictions in these theories for Nf = 

2N [217, 218, 219, 223]. There are also discrepancies in the expressions for the quantum 

moduli for N < Nf < 2N, as reported in [215, 218, 221, 223]. 

In Subsection 6.5.1, a one-instanton level test is performed for the proposed reparameter

ization scheme matching the conjectured exact low energy results and instanton predic- · 

tions for N = 2 supersymmetric SU(N) gauge theories with 2N massless fundamental 

matter hypermultiplets across the entire quantum moduli space. The constants within 

the scheme which ensure agreement between the exact results and the instanton predic

tions for general N are derived. This constitutes a non-trivial test of the scheme, which 

eliminates the discrepancies arising when the two sets of results are compared. 

Using the results derived via instanton calculations stated in Section 6.3, precise agree

ment between the predictions of Seiberg-Witten theory have been obtained for N = 2 

SU(2) SQCD with N1 ::; 3 fundamental matter multiplets. Disagreement has been 

claimed for the case Nf = 3, but this has been resolved [216]. 

N = 2 SU(2) SQCD with N1 = 4 Matter Multiplets 

There are three distinct instances of disagreement between the exact results proposed by 

Seiberg and Witten for N = 2 SU(2) SQCD with N1 = 4 fundamental matter multiplets 

and instanton calculations. We shall describe each of these in turn. No modification of 

the elliptic curve proposed to describe the quantum moduli space of vacua of the theory, 
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given in Eq. (5.188) of Chapter 5, is required. However, a finite non-perturbative renor

malization of the parameters T and u in the theory is necessary. This alters the relation 

between the effective values of these parameters and their values in the microscopic (high 

energy) theory. In short, the quantities which Seiberg and Witten take in their solution 

to be equal to their classical values for this finite theory are actually subject to quantum 

non-perturbative corrections. 

In the case when there are N1 fundamental matter multiplets in theN= 2 SU(2) SQCD 

theory, those models with N1 :S 4, one multiplet of which is massless, are enhanced by 

an Z2 parity symmetry. This symmetry forbids the contribution of odd instanton charge 

configurations to the prepotential of these theories, as noted in the Section 6.3. 

Firstly, Seiberg and Witten assume that ih the scale invariant theory with N1 = 4, in 

which there is no running of the gauge coupling constant, the effective coupling Teff is 

equal to the classical gauge coupling T of the full SU(2) gauge theory: 

Teff = T. (6.96) 

However, Dorey et. al [219] determine the correct form of the effective corriplexified gauge 

coupling constant Teff of the U(1) gauge theory in Seiberg-Witten theory from first prin-
~ 

ciples using instanton calculus. In fact, as is shown in [219], the Seiberg-Witten elliptic 

curve for this theory, given in Eq. (5.188), is parameterized by an effective complexified 

gauge coupling Teff instead of the microscopic coupling T. The result is that the effective 

gauge coupling Teff receives an infinite series of non-perturbative corrections from instan

tons of even charge, by which it differs from the microscopic coupling T. The corrected 

effective gauge coupling T~~) is given by: 

00 

7 (0) = !.:;:(O)II(a) 
eff 2 r+~ L 

7r 
n=0,2,4, ... 

(6.97) 

where q is the exponentiated complexified gauge coupling constant which is the invariant 

scale of the theory: 

q = exp ( i 7r7). (6.98) 

Secondly, when one of the four matter multiplets has a non-zero mass, which we denote 

m4, a discrepancy occurs. In the simultaneous scaling limit m4 --+ 0 and g4 --+ 0, the 

Nf = 4 theory should flow (via renormalization group flow) to the N1 = 3 theory. There 
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then exists a relation between the dynamical scale A~w of the N1 = 3 theory and the 

parameters of the N1 = 4 theory. Seiberg and Witten give this relation to be: 

(6.99) 

where g~w is the classical gauge coupling constant in the N1 = 4 theory used in Seiberg

Witten theory. In the Pauli-Villars regularization scheme, this formula becomes [219]: 

(6.100) 

where grv is the Pauli-Villars gauge coupling of the N1 = 4 theory. There is a mis

match between the two formulae for A~w as the numerical constant of proportionality 

is 64 in Eq. (6.99) and 4 in Eq. (6.100). This discrepancy is resolved by using the non

perturbatively corrected effective complexfied gauge coupling constant T~~) in Eq. (6.97), 

for which the appropriate expansion coefficient is c0 = 4log 2. This then rectifies the 

discrepancy between the dynamical scale used by Seiberg and Witten and the dynamical 

scale derived using the Pauli-Villars scale [58] for the N 1 = 3 theory. If there were no 

quantum non-perturbative corrections to the effective complexified coupling T, as given 

in Eq. (6.97), this discrepancy has no apparent resolution. 

The third discrepancy involves the elliptic curve proposed by Seiberg and Wit ten (Eq. (5.188)) 

to describe the N1 = 4 theory. Due to the discrepancy described above for the Nt = 3 

theory, the N1 = 4 elliptic curve must be corrected if it is to flow (via renormalization 

group flow) to the corrected Nt = 3 theory. 

Dorey et. al [219] propose a reparameterized elliptic curve for the N1 = 4 theory which 

agrees with all known perturbative and non-perturbative calculations for this theory. 

Furthermore, they anticipate the necessity of reparameterizations for the discrepancies 

between the proposed exact results and instanton calculations in N = 2 SU ( N) SQCD 

with Nt = 2N matter multiplets. Finally, we note that the two-instanton prediction 

from Seiberg-Witten theory coupled to N1 = 4 matter multiplets with arbitrary masses 

has not yet been determined; the prediction for massless matter multiplets is obtained 

in [224], which shows that the prepotential in this theory is not equal to its classical value. 

However, the relation in Eq. (6.97), between the Seiberg-Witten effective coupling T~~) 

and the microscopic coupling T, has been fixed by matching the two-instanton calculation 
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peformed in [217] with the proposed exact results, in [240]. 

Mass Deformed N = 4 Supersymmetric SU(2) Yang-Mills Gauge Theory 

We now briefly describe a discrepancy arising in N = 2 supersymmetric SU(2) Yang

Mills gauge theory coupled to one matter multiplet transforming in the adjoint represen

tation of SU(2). If the adjoint matter multiplet is massless in this theory, then theN= 2 

supersymmetry is extended to an N = 4 supersymmetry. For this reason, the N = 2 

theory coupled to a massless adjoint matter multiplet is referred to as 'mass deformed' 

N = 4 supersymmetric SU(2) Yang-Mills gauge theory. When there are more than one 

adjoint matter multiplets coupled to the pure Yang-Mills gauge theory, the theory pos

sesses a positive beta function, and the theory is physically ill defined. 

Although this particular model and the associated discrepancy are indirectly related to 

our description of the matching between proposed exact. results and instanton calcula

tions in scale invariant N = 2 SU(2) SQCD, it is instructive to include it since it bears 
·. 

directly on the elliptic curve given in Eq. (5.188) in Section 5.3 of Chapter 5 from which 

the proposed exact solution for the low energy effective action of this theory derives. In 

view of our detailed description of Seiberg-Witten theory is Chapter 5, we consider the 

inclusion of a brief note on this discrepancy relevant. 

Dorey et. al [220] report a one-instanton discrepancy in this theory for the instanton 

contributions to the physical quantum modulus u2. The proposed resolution for this dis

crepancy is that the quantum modulus itself receives instanton contributions. However, 

this proves to be insufficient to rectify the discrepancy. The prediction for the quantum 

modulus u2 given by Seiberg and Witten, which we denote by u2, can be extracted from 

their proposed exact solution of the low energy dynamics of this theory. The general 

form for the corrected quantum modulus is: 

(6.101) 

where the set {an} are expansion coefficients, and q is again the exponentiated com

plexified gauge coupling constant given in Eq. (6.98). The expansion coefficients an for 

the instanton contributions are not predicted by Seiberg-Witten theory, and can only be 
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determined by precise matching with first principles instanton calculations. Note that in 

the massless limit, m ---t 0, theN= 2 theory becomes the mass deformed N = 4 theory, 

and there are no non-perturbative contributions to u2, as then u2 = u2. 

The one-instanton contribution to u2 has been calculated in this theory and can be re

lated to the prepotential via the generalized M atone relation [229], given in Eq. ( 6.81) of 

Subsection 5.3.2 of Chapter 5, as follows: 

(6.102) 

The prediction of Seiberg and \V"itten for this quantity in the mass-deformed N = 4 

theory is given by Eq. (5.189) in Subsection 5.3.2 of Chapter 5, which we reiterate here: 

(6.103) 

where e1 is a root of the elliptic curve for this theory given in Eq. (5.188) of Chapter 5. 

This prediction corresponds to Eq. (6:101) with exact predictions for all of the expansion 

coefficients an. In particular, one has a 1 = a 2 = 2. 

However, using the corrected form of the exact quantum modulus u2 derived usmg 

Seiberg-\V"itten theory, in Eq. (6.101), one can derive the one-instanton contribution 

to u2 as it should appear in the prediction of Seiberg-Witten theory. This has the form: 

(6.104) 

Comparing Eq. (6.102) and Eq. (6.104) gives the result that a 1 = -5/2 if the proposed 

exact result for u~-inst is to match the instanton prediction for the one-instanton contri

bution. This is in disagreement with the value predicted by Seiberg-vVitten theory given 

in Eq. (6.103), for which one has a 1 = 2. 

6.5.1 Matching inN= 2 Supersymmetric SU(N) Gauge Theory 

The forms of the exact solutions proposed for theories with gauge group SU ( N) differ 

from each other, and there exists the serious disagreement between proposed exact results 

and instanton predictions for N1 = 2N fundamental matter multiplets. 

The discrepancies between the instanton predictions and the proposed exact results for 

N = 2 SU(N) SQCD with Nf = 2N matter multiplets have been considered in detail 
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in [219, 223]. In particular, the analysis given in [219] can be extended to the SU(N) 

theory with N 1 = 2N. Again, the cause of the mismatch between the results is shown to 

be a finite perturbative and non-perturbative renormalization of the complexified gauge 

coupling constants in the low energy effective theory. In order to match the two sets 

of results exactly, this renormalization of the coupling constants must be taken into ac

count. This shows that explicit instanton corrections are required to fix the proposed 

exact results in this case. The parameterization of the quantum moduli space used in the 

generalized Seiberg-Witten theory is not equivalent to the parameterization given by the 

gauge invariant quantum moduli un. Fixing the two sets of results has been achieved in 

special cases at the one-instanton level in [188, 215, 218, 219, 223, 221]. A general match

ing prescription to resolve these discrepancies was proposed in [188]. This over-arching 

scheme, referred to as the Argyres-Pelland matching scheme, claims to generalize the 

proposals for matching the two sets of results above following from one-instanton and 

two-instanton checks. It is designed for the matching of proposed exact results and in

stanton calculations inN= 2 SU(N) SQCD with N1 massive or massless fundamental 

matter multiplets. The Argyres-Pelland scheme also purports to resolve the differences 

between the hyperelliptic curves proposed to describe the quantum moduli space in this 

theory. This is done by introducing a general form of hyperelliptic curve which is claimed 

to correctly describe the quantum SU(N) SQCD moduli space, and from which all of the 

previously proposed hyperelliptic curves for this theory can be recovered. 

By considering the permissible non-perturbative redefinitions of the physical quantities 

involved, Argyres and Pelland are able to eliminate the reported ambiguities between 

the proposed exact solutions themselves and between the results from these and their 

instanton counterparts. Hence the exact results and instanton predictions are in agree

ment modulo the permitted reparameterizations. The constants in the matching scheme 

can only be fixed by comparison with instanton calculations, however, and cannot be 

derived from the exact results themselves. This necessitates use of the predictions for the 

instanton contributions to the prepotential stated in Section 6.3. 

In this subsection we perform a non-trivial test of the matching scheme in (188) for the 

entire quantum moduli space in SU(N) theories with N1 = 2N massless fundamental 

hypermultiplets. This is done by determining the constants which give agreement be-
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tween the proposed exact results and the one-instanton predictions for general N > 1. 

Previously, this one-instanton check had been performed for a single special point of the 

moduli space in these theories [188], where agreement was found within the scheme. 

The Argryes-Pelland Matching Scheme 

vVe begin by briefly reviewing the Argyres-Pelland matching scheme [188] and also the 

conjectured method of exact solution for N = 2 supersymmetric SU(N) gauge theories. 

The gauge coupling parameter used, valid near weak coupling, is the exponentiated corn-

plexified gauge coupling constant q 

invariant theory, where: 

T = 

exp (21TiT) E C, which characterizes the scale 

{) 41Ti 
-+-21T g2 

(6.105) 

is the complexified gauge coupling constant, for gauge coupling g. In the weak coupling 

regime, q ~ 0. 

The matching scheme is derived by considering the most general mapping between the 

parameters and scalar vacuum expectation values of each set of results. These must be 

consistent at weak coupling and obey the constraints imposed by supersymmetry [188]. 

Furthermore, the matching scheme agrees with dimensional analysis and also ensures 

that the notion of the moduli space is preserved. 

For N = 2 supersymmetric SU(N) theories, the low energy effective action is a function 

of the bare masses { mn}, n = 1 ... 2N, the coupling parameter q, and the set of scalar 

vacuum expectation values, or moduli, is { ui}, i = 1 ... N, all of which assume complex 

values. vVe denote the parameters and scalar vacuum expectation values appearing in 

the proposed exact solutions of these theories as the set { q, mn, ui}· The counterparts of 

these parameters appearing in the instanton predictions are denoted by { q, mn, ui}. The 

constants in the matching scheme are denoted by {Cs, Bs,A~i;{im})}. Holomorphy and 

the asymptotic behaviour at weak coupling imply that the general map between q and q 
is given by: 

00 

q (6.106) 

Dimensionless ratios of the masses cannot enter into Eq. (6.106) due to the matching 
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that must hold at very weak coupling. The masses { mn} and { mn} are related via: 

(6.107) 

Finally, the matching relation between the scalar vacuum expectation values { ui} and 

{ ui} is given by: 
oo N 

u ~ ~ A(i;{im})qs IT u· 
~ S ~ml (6.108) 
s=O m=O 

in which we define u0 m following Argyres and Pelland [188]. 

One-Instanton Level Matching of Instanton Predictions and Exact Results 

We shall employ the relations in Eqs. (6.106, 6.108) to one-instanton level, or, equiv

alently, to O(q), in a test of the Argyres-Pelland matching scheme. The matching in 

Eq. ( 6.1 07) between the masses is not required here since we consider all fundamental 

matter multiplets in the theory to possess zero mass. 

The defining quantity inN= 2 supersymmetric SU(N) theories is the prepotential, F, a 

function of the superfields, which determines the low-energy effective (Wilsonian) action 

of the theory, 

The prepotential can be decomposed into a classical part (Fe~) and its perturbative cor

rections ( F1_ 1oop), which are one-loop exact in this case (due to nonrenormalization theo

rems), and non-perturbative corrections, (Finst), containing instanton effects of all orders, 

as given in Eq. (5.42) in Section 5.3 of Chapter 5. 

The instanton contributions in this particular theory have the form of an infinite sum 

involving powers of the gauge coupling parameter q: 

00 

.Jlnst = L qk Fk, 
k=O 

( 6.109) 

where Fk = Fk(ai) are functions of the classical vacuum expectation values, {ai} E C, 

of the scalar superfield cjJ in the adjoint representation (i.e., the Higgs field), and k is the 

instanton number or charge. All charges of instantons contribute in this case as the ~ 

parity symmetry of the case when only one multiplet is massless is absent. 

The superfield c/J is a member of the vector multiplet of the theory. In general, the 

w MW ... 
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prepotential F is a holomorphic function of the scalar vacuum expectation values { ai}. 

In the scalar invariant theories considered here, the perturbative beta function vanishes, 

and so the perturbative corrections vanish: Fl-loop = 0. The scalar vacuum expectation 

values of the electric-magnetic dual of cjJ are { aDi} E C, and are related to the prepotential 

F via: 
8F 
8ai · 

The gauge coupli~g matrix of the theory is given by: 

(6.110) 

(6.111) 

The scalar potential of the N = 2 supersymmetric Lagrangian describing the vector 

multiplet is a function of c/J. At weak coupling, the vacuum expectation value of the 

scalar field cjJ is given by the matrix: 

(6.112) 

The region of the quantum moduli space corresponding to non-zero vacuum expectation 

values of the scalar fields in the vector multiplet of the theory is referred to as the Coulomb 

branch. In this phase of the theory only the scalar field cjJ acquires a vacuum expectation 

value. The holomorphic co-ordinate on the classical moduli space is a function of the 

classical vacuum expectation values and the field c/J, which we denote by { ui} E C, 

i = 1, ... , N, and refer to as the classical moduli. These moduli can be written in terms 

of the classical scalar vacuum expectation values { ai} of cjJ as follows: 

N 

u~1 
= (tr(cjyn)) = (-lt L ai1 •• ·aiw (6.113) 

i1 < ... <iN 

For SU(N) theories, classically one has tr(cjy) = "2:~1 ai = 0, and u1 = 0, by definition. 

In particular, the first non-zero classical moduli is given by: 

N 

u~1 = (tr(cjy
2

)) = ~ L a7. (6.114) 
i=l 

The quantum corrections to the classical modulus, or condensate, u~1 , will be the focus 

of the one-instanton matching we determine in this theory. 

The classical moduli space of these theories does not receive quantum corrections, as it is 
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protected by N = 2 supersymmetry, but the metric ( ds2 = Im Tij daidaj) on it does. Thus 

the classical scalar vacuum expectation values { ai} receive quantum corrections, which 

then in turn determine the quantum corrections to the classical moduli { ui}. Following 

the methods introduced by Seiberg and Witten in [170, 171], which were described in 

detail in Section 5.3 of Chapter 5, one identifies the (N -I)-dimensional quantum moduli 

space with the moduli space of a genus (N- 1) compact Riemann surface. Then the 

functions { ai, aDi} can be calculated as the periods, about certain cycles, of the Riemann 

surface, and the gauge coupling matrix Tij (Eq. (6.111)) is the period matrix of such a 

surface. 

A standard result of the theory of algebraic curves [249, 250] is that any compact Riemann 

surface can be specified completely by a class of elliptic (N - 1 :::; 2) or hyperelliptic 

(N- 1 > 2) curves. For the moduli spaces considered here, these curves have the form: 

(6.115) 

where F(x) is a polynomial of degree (N- 1) in the dummy variable x E C, whose 

coefficients are functions of the set of moduli {ui}· The roots of F(x) = 0 are the exact 

vacuum expectation values { ei}, which parameterize the quantum moduli space, and 

which are related to the classical scalar vacuum expectation values { ai} by: 

an = ( -1 t L eil ... eiw 

i1 < ... <iN 

These parameters obey "2:~1 ei = 0. 

(6.116) 

The first non-zero quantum moduli (i.e. moduli of the quantum moduli space) in the 

exact results proposed for this theory is then: 

(6.117) 

In our conventions the hyperelliptic curve associated with the matching prescription for 

SU ( N) theories with Nf = 2N massless fundamental matter hypermultiplets is given by 

Argyres and Pelland [188] to be: 

(6.118) 
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The functions { ai} and {ani} can be determined by evaluating the meromorphic one-form 

A, where: 

A = xdx [F(x)G'(x) _ F'(x)] 
2niy 2G(x) ' 

(6.119) 

in which the prime denotes differentiation with respect to x, over the canonical basis of 

homology one-cycles { ai, t)i} of the Riemann surface: 

ai tiA, (6.120) 

ani = i A, (6.121) 
f3i 

which is a special case of Eq. (5.212) of Subsection 5.4.1 of Chapter 5. 

Given the curve defining the moduli space of the theory, one can then exactly determine 

the quantum moduli {u;u}, and hence the prepotential :F, via Eqs. (6.110, 6.119, 6.120, 

6.121), following the method of Seiberg and Witten described in Section 5.3 of Chapter 

5. 

One can perform the integration of the meromorphic one-form in Eq. (6.119) exactly 

for SU(N) theories. This has been done previously in Ref. [218]. Using the curve in 

Eq. ( 6.118), to order 0 ( ij) (where we use 0 ( x) to denote the order of the variable x) one 

has: 
_j !!!__ ( _ xF'(x) _x2N(NF- xF') _2 ) 

at- fai 2ni N F(x) + q 2F(x)3 + O(q) · (6.122) 

At weak coupling, the homology one-cycles { ai} coincide with the exact quantum vacuum 

expectation values { ei}. We note that the electric-magnetic duality ambiguity [188] in 

the case considered here is trivial. Discarding a total derivative and performing the 

integration in Eq. (6.122) yields the following (N- 1) equations: 

(6.123) 

where 6(ei) = fLr'1(ei - ez), l = 1 ... N - 1. In obtaining this result, the reverse 

direction was taken in performing the period integral Eq. (6.120), so that the classical 

scalar vacuum expectation values {ai} remain positive. Solving Eq. (6.123) at leading 

order in ij « 1 yields the exact vacuum expectation values { ei}: 

a2N-l ( a· ) - t N t e = a·- q -
t t 26·(a·) L (a·- a·) · 

t t i:fj t J 

(6.124) 
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Equations (6.113, 6.116, 6.124) show that at the classical level the expected results are 

reproduced. 

We now write 6i = 6(ai) for simplicity. Using the definition in Eq. (6.117), the exact 

result uiu is given by: 

(6.125) 

Equation ( 6.125) gives the explicit form of u2 , which is the value of the quantum modulus 

u2 predicted by the exact results based on the methods of Seiberg-Witten theory. This 

expression for the exact quantum modulus u2 holds for general values of N > 1 and 

agrees up to regular terms with the previous results given in [218]. These regular terms 

are non-singular terms dependent upon the exact quantum vacuum expectation values 

{ ei}. The generalized Matone relation [229], given by Eq. (6.82) of Section 6.3, enables 

one to relate the exact quantum modulus uiu to the one-instanton prepotential F1IN,N1 

derived from the exact results, and we shall employ this in a test of the Argyres-Pelland 

matching scheme. 

The Argyres-Pelland matching scheme [188] purports to account for the most general 

mapping which can connect the parameters and the moduli for both sets of results. The 

generic parameters and moduli are {q, u~u} for the proposed exact results, and {q, u{u} 

for the instanton results, since the matter multiplet masses are set to zero here and do 

not enter into the calculation here. The Argyres-Pelland matching prescription to O(q) 

for the coupling parameter q and the quantum moduli uiu is given by the following set 

of relations: 

q Coq, 

(1 + Ail;l)q)uiu· 

(6.126) 

(6.127) 

In the Argyres-Pelland matching scheme, no modular invariance (S-duality) is assumed 

for the space of couplings in the reparameterization in Eqs. (6.106, 6.126), as it is not 

necessarily a physical attribute of the N1 = 2N theory. We now need to isolate the 

non-perturbative contribution to the classical vacuum expectation value u~1 , as it is this 

component which contains the instanton corrections. Writing Eqs. (6.126, 6.127) in terms 



CHAPTER 6. INSTANTON TESTS OF THE EXACT RESULTS 

of perturbative and non-perturbative parts gives: 

C U
-inst _ uinst +A (l;l)uc! 

0 2 - 2 1 2• 

281 

(6.128) 

The classical modulus u~1 in the matching relation above (Eq. (6.128)) constitutes a 

regular term; the other terms will then have the same singularity structure, according 

to [218]. 

The generalized Matone relation [229] for the quantities found using instanton calcu

lus has the form given in Eq. (6.82) of Section 6.3 in Chapter 5. The result for the 

one-instanton prepotential F1 IN,N
1 

for N = 2 supersymmetric SU(N) Yang-Mills gauge 

field theories with Nf = 2N massless fundamental matter multiplets [223] is given by 

Eq. (6.94) of Section 6.3. For the case of N1 = 2N massless fundamental matter multi

plets, one has {mi} = 0, and Eq. (6.94) gives [188]: 

_1_Uinst T I 
27fi 2 = ~1 N,Nf = (6.129) 

where ~i = (ai- aj)ri and "ti = ITi#,k~j(ai- ak), k = 1 ... N- 2. The constant c~ is 

the renormalization scheme-dependent one-instanton factor, also known as the 't Ho oft 

one-instanton factor [18]. Following Argyres and Pelland [188] we use the standard value 

of c~ given by: 

(6.130) 

Inserting Eqs. (6.125, 6.129) and the exact result for uiu, from Eq. (6.125), into Eq. (6.128), 

we derive the following relation which matches the instanton contributions to the prepo

tential and the proposed exact results within the Argyres-Pelland scheme: 

-Go"""" ai 2 1-"""" aj = 17f """""""" ai + aj2 + ~A~l;l) """"a;_ 
N 2N ( ) C' 2N N ( ) 2N N 

L 2~- La· _a. 22N+1 L L (a· _a) ,...,.,...,. 2 L 
i=l ~ i::/:j ~ J i=l i~j ~ J I~ f) i=l 

(6.131) 

To extract the one-instanton matching coefficient C0, one observes that manipulating 

Eq. (6.131) so that both sides of the equality have the same denominator enables one 

to take the previously singular limit ai ---+ aj. This manipulation involves the following 

equality [188]: 

(6.132) 
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which can be used to write both sides ofEq. (6.131) in terms offractions with denominator 

67. After some cancellations, the singular limit ai ----+ aj can then be taken, and the 

coefficients of the non-vanishing terms in the expression can be compared. Via this, one 

then obtains G0 as: 

(6.133) 

The form of G0 found in Eq. (6.133) is in exact agreement with the form of Go determined 

in [188] for a single point of the moduli space inN = 2 supersymmetric SU(N) Yang

Mills gauge field theories. 

Using the expression for G0 given above, one can explicitly determine the constant A (1;
1

) 

by expanding Eq. (6.131) and comparing the coefficients of the leading order terms. To 

do this, we expand the principal objects in Eq. (6.129) as: 

6· '"'-' N-1 (6.134) ~ 
CV ai + ... ' 

fi '"'-' N-2 + (6.135) '"'-' ai ... ' 

2N eN) (ai + aj)2N L a;N-raj, (6.136) 
r=O r 

and compare the coefficients of the terms of highest order in ai in Eq. (6.131). This then 

implies the following value for the remaining one-instanton matching coefficient, A~1 ; 1 ): 

A(1;1) 
1 

-2N+2 + 22-N ( 2JV ) . 
N -1 

(6.137) 

The formulae Eqs. ( 6.133, 6.137) are valid for general values of N > 1. This can be 

checked by an inductive argument using Eq. (6.131) and Eq. (6.132). 

It has been shown that the form of the Argyres-Pelland matching relations between the 

exact results and the instanton predictions is correct at the one-instanton level, since 

we have obtained agreement between the instanton predictions and the proposed exact 

results, for the quantum modulus uiu, for all N > 1. 

We now comment on its relevance to the string theoretic derivation of the class of hy

perelliptic ·curves corresponding to those found in the exact solutions [27 4]. The classical 

brane configuration of N D4-branes suspended between two parallel NS5-branes in Type

HA string theory corresponds to the vacua of classical N = 2 supersymmetric Yang-Mills 
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theory, and the vacua of the quantum theory corresponds to the supersymmetric config

urations of an M-theory M5-brane with a particular world volume [274]. To incorporate 

N1 matter hypermultiplets into the system, one attaches N1 semi-infinite 4-branes to the 

NS5-branes. The class of curves corresponding to those appearing in the proposed exact 

results follows from this brane configuration. For detailed reviews of this construction, 

see, for example, References [275, 276]. 

The dictionary [27 4] set up between the parameters of the brane configuration and the 

parameters of the field theory is only valid at extremely weak coupling. Beyond extremely 

weak coupling, quantum corrections will in general modify this dictionary, and it will con

tain ambiguities manifest as the freedom to make non-perturbative redefinitions of the 

parameters. Hence, the brane-field theory correspondence is valid, but the quantitative 

dictionary connecting them is ambiguous. 

The Argyres-Pelland matching scheme [188] uses the most general permissible redefini

tions of the parameters and the vacuum expectation values of these field theories. It 

is natural to propose that the ambiguities in the M-theoretic derivation of the curves 

which exactly solve the low-energy effective actions of the same field theories are resolved 

by the same matching scheme. That is, the equivalence class of curves derived from 

M-theory should coincide precisely with the equivalence class of curves derived from the 

exact solutions. Then the mappings between the elements of the equivalence class of 

M-theoretic curves will be the same mappings between elements of the equivalence class 

of exact solution curves. Hence the same matching scheme, namely the Argyres-Pelland 

matching scheme, for comparing the exact results to instanton results should also hold for 

comparing the M-theoretic results to instanton results. A precise test of this conjecture 

in the context of string theory would validate the Argyres-Pelland matching scheme for 

future M- theory predictions. 

To conclude this subsection, we have found that the proposed exact results and the in

stanton predictions can be matched to one-instanton level for N = 2 supersymmetric 

gauge theories with gauge group SU ( N) and N1 = 2N massless fundamental matter 

multiplets, for general N > 1 within the Argyres-Pelland matching scheme. In particu

lar, this matching was explicitly performed for the proposed exact results pertaining to 
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the first non-zero quantum modulus u;t. The coefficients which implement this matching 

are the constants C0 and A~l;l), given by Eqs. (6.133, 6.137). It has been shown that 

this matching can be achieved for the complete quantum moduli space of these theories 

at the one-instanton level, extending the previous result of Argyres and Pelland [188], 

whose results held for a moduli subspace. 

The case where the N1 = 2N hypermultiplets have non-zero arbitrary masses could also 

be investigated; one expects that the constants C0 and A~l;l) in the massive case should 

agree with the those above when all N1 multiplet masses are set to zero. This is in 

accord with renormalization group flow arguments. This task is more complicated than 

the above matching in the theory with massless multiplets as the matching relation for 

the masses Eq. (6.107) is then required. It was found in a preliminary investigation that 

the introduction of non-zero multiplet masses poses hitherto unexpected difficulties in 

attempting to use the Argyres-Pelland matching relations. However, we believe that 

these are technical problems which can be overcome and that the general principles on 

which the Argyres-Pelland matching scheme are based are valid and correct. 

Tests of the Argyres-Pelland scheme at the two-instanton level inN= 2 SU(N) SQCD 

with Nt ::; 2N fundamental matter multiplets would be desirable since these would pro

vide a physical check of the Argyres-Pelland matching beyond the above constraints on 

the values of the constants involved. 



Chapter 7 

Conclusion 

In this thesis we have we have presented results concerning exact non-perturbative physics 

in globally supersymmetric quantum field theory and exact classical solutions of self-dual 

Yang-Mills equations. The former concerns the matching of instanton predictions and 

proposed exact results in scale invariant N = 2 supersymmetric SU(N) QCD. The latter 

concerns the general U(N) two-instanton solution determined using the ADHM construc

tion of instantons. Our results were detailed in Chapter 2 and Chapter 6. 

In Chapter 2 we described the phenomenon of instantons in Yang-Mills gauge field theo

ries. The first instanton configuration found, the BPST instanton, was described. Generic 

properties of instantons were then described, and the important concept of the instanton 

moduli space was outlined. The ADHM construction of instanton solutions, which im

plicitly defines all exact instanton gauge field configurations with classical gauge group 

and arbitrary topological charge k, was described in detail for the gauge group U(N). 

Using the ADHM construction, the exact general U(N) ADHM two-instanton solution 

was explicitly given. This was the result of studying the ADHM instanton constraints for 

gauge group U(N) and topological charge k = 2. An explicit and general solution, valid 

for all N > 1, was determined using linear algebra. This was done by exploiting the lin

earity present within the constraints. The construction of the U(N) two-instanton gauge 

field following from this explicit configuration was also outlined. The instanton gauge 

field configuration found constitutes an exact general solution of the self-dual Yang-Mills 

field equations with gauge group U ( N) or SU ( N) and topological charge (or instanton 
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number) k = 2. Hence it is an exact solution of the classical equations of motion of the 

U(N) Yang-Mills action in four dimensional Euclidean spacetime which gives the min

imum finite value of the Yang-Mills action (in the k = 2 sector of topological charge). 

This result gives the first exact general U(N) ADHM multi-instanton configuration. The 

solution may be used in semi-classical calculations of non-perturbative effects in U(N) 

and SU(N) Yang-Mills gauge field theories, via the collective co-ordinate method. 

The ADHM constraints for gauge group U(N) and topological charge k = 3 were de

scribed in detail. The method of solution for the U(N) k = 2 constraints did not apply 

in this case as the k = 3 constraints possess a greater degree of non-linearity, are more 

highly coupled (with bilinear terms), and there are a greater number of constraints. 

There appears to be no underlying principles which could assist in the solution of these 

constraints for k = 3 and k 2 4. We also note that the U(N) ADHM constraints for 

topological charge k 2 4 are ambigious in the allocation of physically identifiable param

eters. 

The ADHM construction for Yang-Mills instanton gauge fields with gauge group Sp(N) 

was also described in Chapter 2. The ADHM construction for the symplectic groups 

requires fewer variables and generates a smaller number of constraints than the U ( N) 

ADHM formalism. The Sp(N) ADHM construction is useful for constructing instantons 

with the simplest non-trivial non-Abelian gauge group, SU(2), through the isomorphism 

Sp(l) c:: SU(2). The exact general Sp(N) two-instanton is the only exact and general 

Sp(N) multi-instanton configuration known. The Sp(N) ADHM three-instanton con

straints were then described. These constraints form a set of simultaneous non-linear 

quaternionic equations. We were not able to determine the general solution of these con

straints, but described the two existing special exact solutions and also made conjectures 

regarding the properties of the exact general Sp(N) three-instanton configuration. 

The motivation for the determination of the instanton result in Chapter 2 was testing the 

proposed exact results in four dimensional N = 2 supersymmetric quantum Yang-Mills 

gauge field theories. Supersymmetric gauge theories are field theories which possess a 

special symmetry which rotates fermionic and bosonic states into one another, known as 

global supersymmetry, under which the theory is invariant. In Chapter 3 we described 
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supersymmetric gauge theories, beginning with the supersymmetry algebra and funda

mental aspects of global supersymmetry. We followed this with a brief description of 

supersymmetry constraints. The superfield formalism for supersymmetric field theories 

was then described. Through this formalism, one can construct N-extended supersym

metric field theories from N = 1 supersymmetric fields. vVe then briefly described each 

of the N-extended supersymmetric gauge theories in turn, up to the case of maximally 

extended supersymmetric gauge theories, for which N = 4. The most interesting su

persymmetric gauge theories from a physical and phenomenological perspective are the 

N ~ 1, N = 2 and N = 4 supersymmetric gauge theories. In this review, preliminaries 

for the next two chapters were given. For completeness, we noted that field theories with 

N = 3 supersymmetry are intrinsically unphysical and are difficult to describe. 

In Chapter 4 we described some of the exact results which have been obtained for field 

theories with N = 1 and N = 4 supersymmetry. These include results which are generic 

properties of supersymmetric gauge theories, and other results which have only been 

found for these particular theories. Instanton calculations have proven useful in extract

ing the exact form of the beta function for these theories. Later in Chapter 4 we outlined 

the Montonen-Olive conjecture, and the more general form of electric-magnetic dual

ity, known as S-duality, conjectured to exist in N = 4 supersymmetric gauge theories. 

This required a general but brief description of magnetic monopoles in gauge theories. 

We then described the modular invariance, or S-duality, which N = 4 supersymmetric 

Yang-Mills gauge theory is conjectured to possess, and some of the evidence supporting 

this conjecture. The concept of electric-magnetic duality in gauge theories is central to 

the proposed exact results in N = 2 supersymmetric gauge theories later described in 

Chapter 5. Further to this review, we also described Seiberg duality and other forms of 

duality inN= 1 supersymmetric gauge theories. The notion of a moduli space of vacua 

and phases of field theories were also described in this chapter, which are important fea

tures of N = 1 and N = 2 supersymmetric gauge theories. 

The exact results described in Chapter 4 are both complementary and in some cases 

analogous to the description of the exact results proposed for N = 2 supersymmet-
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ric gauge theories in Chapter 5. There exist exact results in N = 2 supersymmetric 

gauge theories which also use instanton calculations and other methods; some of these 

are briefly described in Chapter 4. The exact results in N = 2 supersymmetric gauge 

theories which are the focus of this thesis are those proposed by Seiberg and Witten. In 

Chapter 5 we described the proposed determination of the low energy Wilsonian effective 

action of four dimensional N = 2 supersymmetric SU(2) quantum Yang-Mills gauge 

field theory, known as Seiberg-Witten theory. This is the first known exact solution for 

the strongly coupled dynamics of a four dimensional quantum field theory. The quantum 

moduli space of vacua of this theory is claimed to be exactly described by a particular 

Riemann surface, which is parameterized by a family of elliptic curves. We described the 

pioneering techniques used to determine these auxiliary elliptic curves, some of which 

are similar to the results for N = 1 supersymmetric gauge theories described in Chapter 

4. The exact low energy effective Wilsonian action for N = 2 supersymmetric SU(2) 

Yang-Mills gauge theory coupled to N1 fundamental matter multiplets, also known as 

N = 2 supersymmetric SU(2) QCD, which has an exact form also proposed by Seiberg 

and Witten, was also described. We then described the generalizations of Seiberg-Witten 

theory to other gauge groups and matter multiplets, with special emphasis upon N = 2 

supersymmetric SU(N) QCD, which is the field theory of primary interest in this the

sis. Using Seiberg-Witten methods, the moduli spaces of these theories are generically 

described by families of auxiliary hyperelliptic curves. 

In Chapter 6 we described the tests of the proposed exact results inN = 2 supersym

metric Yang-Mills gauge field theories, and primarily those which use instanton calcula

tions. The non-perturbative predictions of the Seiberg-Witten solution can be compared 

with appropriate instanton calculations, enabling one to test, check and match the exact 

results proposed by Seiberg and \iVitten and generalized by others. To perform such 

instanton calculations requires an instanton calculus, which is a body of methods and 

results with which quantitative predictions for the non-perturbative quantum corrections 

arising from instantons can be determined. The semi-classical approximation is made 

in order to extract such results, and the collective co-ordinate method is employed to 

permit calculations to be performed. A comprehensive instanton calculus for supersym-
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metric gauge theories has been developed, and with it sophisticated calculations can 

be performed which yield exact field theoretic results for the instanton contributions to 

potentials and Green's functions within N = 2 supersymmetric Yang-Mills gauge field 

theories. The supersymmetric instanton calculus can be used in conjunction with the 

ADHM construction of instantons to obtain these results. In Chapter 6 we described 

the instanton calculations which have been used to test Seiberg-Witten theory and the 

proposed exact results inN= 2 supersymmetric SU(N) Yang-Mills gauge field theories. 

For N = 2 supersymmetric SU(N) Yang-Mills gauge theory with N1 ::; 2N- 1 funda

mental matter multiplets, which includes the arena of Seiberg-Witten theory as the case 

N = 2, precise quantitative agreement between the proposed exact results and instanton 

calculations exists. 

For the finite scale invariant theories N = 2 supersymmetric SU(2) Yang-Mills gauge 

theory with Nf = 4 fundamental matter multiplets, and N = 2 supersymmetric SU(N) 

Yang-Mills gauge theories with N1 = 2N fundamental matter multiplets in general, there 

exist discrepancies between the non-perturbative predictions made using Seiberg-Witten 

methods and the results of instanton calculations. We reported on these discrepancies and 

described the first suggested resolution of these discrepancies, made for the case of N = 2 

supersymmetric SU(2) Yang-Mills gauge theory with N1 = 4 fundamental matter mul

tiplets. A non-perturbative renormalization of the quantum modulus uiu, a holomorphic 

co-ordinate used to parameterize the quantum moduli space of vacua, and the complexi

fied gauge coupling constant T has been proposed to eliminate the discrepancies. Using a 

generalization of this work, a scheme known as the Argyres-Pelland reparameterization 

scheme, which purports to match the two sets of independently derived exact results for 

N = 2 supersymmetric SU(N) Yang-Mills gauge theory with N1 = 2N fundamental 

matter multiplets is then examined. Working within the Argyres-Pelland scheme, we 

were able to precisely match the one-instanton contribution to the prepotential F of low 

energy effective N = 2 supersymmetric SU(N) Yang-Mills gauge theory with N1 = 2N 

massless fundamental matter multiplets with the prediction derived from the proposed 

exact low energy solution of this theory, which is given by a particular hyperelliptic curve. 

This matching is valid for all values of N > 1. In the case of N1 = 2N massive funda

mental matter multiplets, unanticipated difficulties were encountered for this matching, 
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and we were not able to generalize our result to the massive case. In Chapter 2 we 

also commented on the feasibility of using the exact general U(N) ADHM two-instanton 

configuration, presented in Chapter 2, in extending this matching to the two-instanton 

level. This would require using the exact general U(N) ADHM two-instanton configura

tion within the N = 2 supersymmetric instanton calculus to extract the two-instanton 

contribution to the SU ( N) prepotential F. In commutative spacetime, this calculation 

is expected to be a technically challenging one which would involve further development 

of analytical methods for semi-classical instanton calculations. 

In conclusion, we have undertaken work which aims to quantitatively resolve the discrep

ancies between the exact non-perturbative results proposed for N = 2 supersymmetric 

SU(N) Yang-Mills gauge theory with N1 = 2N fundamental matter multiplets and pre

dictions for the same theory made using instanton calculus. As part of this programme of 

testing and matching the results of Seiberg-Witten theory and its generalization through 

instanton calculations, we have explicitly obtained the first known exact general multi

instanton gauge field configuration for the gauge group U ( N). This is the exact general 

U(N) two-instanton field configuration, which was determined using the ADHM con

struction of instantons. This instanton configuration can potentially be used to calculate 

the two-instanton contribution to the prepotential of N = 2 supersymmetric SU(N) 

Yang-Mills gauge theory with N1 fundamental matter multiplets. However, this calcula

tion will involve overcoming the technical difficulties associated with the supersymmetric 

instanton calculus for this case. The exact general U(N) ADHM two-instanton pre

sented here can also be used in other field theoretic applications. We also considered 

the U(N) ADHM three-instanton constraints, but were not able to extend the method 

used to solve the U(N) ADHM two-instanton constraints to this case. The method for 

solving the U(N) ADHM two-instanton constraints may assist in uncovering other multi

instanton configurations in future work. 

The exact general SU(2) three-instanton solution was also implicitly investigated using 

the ADHM construction. If the exact general SU(2) ADHM three-instanton can be deter

mined, it also can potentially be used in a further multi-instanton test of Seiberg-Witten 

theory. The observations made here towards a determination of the exact general SU(2) 



CHAPTER 7. CONCLUSION 291 

three-instanton may also assist in future work in this direction. 

We remain optimistic about future investigations involving instantons and their physi

cal effects in quantum field theory. Supersymmetric field theory has provided a wealth 

of results which not only may illuminate methods and approaches for exact results in 

phenomenological quantum field theories, but which also may prove important in the 

mathematical description of Nature itself. Instantons are physical phenomenon which 

are likely to play an important role in future non-perturbative quantum physics, and 

whose complete description requires further elucidation. 



Appendix A 

Conventions 

Where stated, and for most of this thesis, we work in four dimensional Minkowski space

time, using the conventional Minkowski spacetime metric, as in [122], given by: 

'Tlmn = diag(-1, 1, 1, 1). (A.1) 

Euclidean Spacetime 

When not using Minkowski spacetime, we work in Euclidean spacetime. The metric of 

four dimensional Euclidean spacetime is taken to be: 

'Tlmn = diag(1, 1, 1, 1), (A.2) 

which results from the continuation of four dimenstional Minkowski spacetime to four 

dimensional Euclidean spacetime. This essentially replaces the non-compact Minkowski 

spacetime IR4 with the compact Euclidean spacetime § 4 . In our notation the Latin space

time indices m, n, . .. are used regardless of the type of spacetime, which is specified 

elsewhere. To continue from Minkowski spacetime to Euclidean spacetime, the temporal 

co-ordinate x0 is Wick rotated to the imaginary axis, with the result that: 

(A.3) 

leaving the spatial co-ordinates xi, i = 1, 2, 3 unaffected. The gauge field potential Vm in 

Minkowski spacetime requires the component transformations: 

(A.4) 
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for continuation to Euclidean spacetime. Similar transformation can be used so that 

the definitions of the gauge covariant derivative and gauge field strength in Minkowski 

spacetime remain intact in Euclidean spacetime. The standard Minkowski spacetime 

gamma matrices can also be continued to Euclidean spacetime, enabling one to continue 

fermionic terms which appear in Minkowski spacetime actions to Euclidean spacetime 

actions, through the following transformations: 

/o --+ /o, /i --+ 'l/i· (A.5) 

The reality of the Minkowski spacetime is also altered by analytic continuation to Eu

clidean spacetime. Given a Minkowski spacetime Yang-Mills action SM, and the same 

action in Euclidean spacetime SE, one has: 

(A.6) 

This modification of the reality of SE does not affect the physical results of the path 

integration, which remains convergent. 

Weyl Spinors 

The conventions for generic Weyl spinors in this thesis are as follows. A left-handed 

Weyl spinor transforms in the (~,0) representation ofthe Lorentz group, S0(3, 1), and is 

denoted '1/Ja. A right-handed Weyl spinor is the spinor conjugate of '1/Ja, which transforms 

in the (0, ~) representation of S0(3, 1) and is denoted by {Jix. Weyl spinor indices can be 

raised or lowered using the antisymmetric tensors Eaf3 and Eaf3, explicitly given by: 

. . ( 0 -1) ( 0 1) 
Ea(3 = Ea(3 = 1 0 ' Eaf3 = Ea~ = -1 0 (A.7) 

which also obey Eaf3Ef31 = 0~. Two Weyl spinors are contracted using the rules: 

(A.8) 

The sigma matrices in Euclidean spacetime are defined in quaternionic notation as: 

n ( 1 c) -nixa ( 1 c) (Jaix = - [2]x[2], T , (J = - [2]x[2], -T , (A.9) 
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where Tc, c = 1, 2, 3 are the three standard Pauli matrices in four dimensional Euclidean 

spacetime, given by: 

Tl = ( 
1 

O ) ' T2 

0 -1 (
i 0) 3 (0 1) 
0 -i ' T -1 0 . 

(A.10) 

The antisymmetric tensors in Eqs. (A. 7) can be used to relate the sigma matrices, via: 

(A.ll) 

Dirac Spinors 

A Dirac, or two-component, spinor, can be composed of two Weyl spinors. We denote a 

generic Dirac spinor by W, and its two Weyl spinor components as '1/Ja and xa, where: 

w = (~:) (A.12) 

The gamma matrices"'( associated with the covariant derivatives of spinors can be written 

in terms of sigma matrices as: 

( 
0 (Jn ) . 

(jn 0 
(A.13) 

Grassmann Spinors 

In the study of N = 1 supersymmetry, it is convenient to use constant Grassmann spinors 

ea and ea, where a, /3, a,~ = 1, 2 are Weyl indices, to write theN = 1 supersymmetry 

algebra as a Lie algebra. These spinors are said to be Grassmann-valued if they obey the 

following Grassmann algebra: 

(A.14) 

in which {A, B} = AB + BA is the standard anticommutator bracket. The spinors ea 
and ea obey the following algebra, which involve contraction over the Weyl indices: 

eaef3 = -~Eaf3ee, eae/3 = ~Eaf3ee, 

e-ae-~ - 1 a~e_e_ e- e-. - 1 . e-e-
-. 2E ' a f3 - - 2Eaf3 ' 

(A.15) 

(A.16) 
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and in which the antisymmetric tensors given in Eq. (A.7) have been used. There are 

many other formulae which the constant Grassmann spinors fP, ea obey. These include 

the rules for the differentiation and integration of Grassmann-valued variables; for details 

of these we refer the reader to the reviews [123, 128] and the book [122]. 



Appendix B 

Properties of Quaternions 

A quaternion can be defined in a number of ways. A quaternion can be realized as a set 

of 2 x 2 complex matrices with real entries or as an ordered quadruple of real numbers. 

Quaternions form one of the real division algebras, often denoted by Q [284]; the set of all 

quaternions is usually denoted by IHI. Quaternions are also referred to as hyper-complex 

numbers, but complex numbers do not generalize to quaternions in all respects. In the 

follmving we denote generic quaternions asp, q and r. A quaternion q can be written in 

component form as: 

(B.l) 

where { i, j, k} are basis quaternions and { q0 , q1 , q2, qJ} E lR are real numbers. The actual 

basis of the quaternion is {1, i, j, k }, which leads to the representation of the set of quater

nions as a vector space of dimension four over the real field JR. The basis quaternions 

{ i, j, k} are numbers which satisfy the following properties: 

i2 ·2 k2 ijk J - -

2] -]2 - k, 

jk -kj 2, 

ki -ik - J. 

The real part of the quaternion q is given by: 

Re(q) = qo, 
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- -1, (B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 



APPENDIX B. PROPERTIES OF QUATERNIONS 297 

whilst q has three 'imaginary' parts, given by: 

(B.7) 

however, the use of the term 'imaginary' is used in analogy with complex numbers and 

clearly is not congruent to the imaginary part of a complex number. 

Two different quaternions q and p are equal if and only if their real and imaginary parts 

are equal; thus: 

(B.8) 

The negative of a quaternion is implemented by negating all of its components: 

(B.9) 

The conjugate of a quaternion is not the same as its negative. The quaternionic conjugate 

of a quaternion is given by the quaternion with all of its 'imaginary' parts negated. We 

denote the quaternionic conjugate of q by ij, where: 

(B.lO) 

This is essentially equivalent to the complex conjugation of each of the basis quaternions 

{ i, j, k}. Quaternions obey the ordinary laws of linear algebra except for multiplication. 

The multiplication of quaternions makes use of the distributive law in Eq. (B.2). Vve 

consider quaternion multiplication after describing quaternion addition and subtraction. 

Addition of quaternions is effected by the addition of the separate components of the 

quaternions, retaining the ordering of the components. The addition of the quaternions 

q and pis given by: 

Quaternion addition is associative: 

p+(q+r) 

p+q 

Subtraction of quaternions is defined by: 

(p+q)+r, 

q+p. 

p-q = p+(-q). 

(B.ll) 

(B.l2) 

(B.l3) 

(B.l4) 
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The magnitude or absolute value of a quaternion p is a real number defined as the non

negative square root of the sum of the squares of the components of p. The magnitude 

of a quaternion p is denoted by lP I, where: 

(B.15) 

A quaternion p can only have zero magnitude, jpj2 = 0, if and only if it is identical to 

the quaternion with all zero components; that is, jpj 2 = 0 =? p = 0 + Oi + Oj + Ok. The 

quaternion pis a unit quaternion if each of its components are divided by its magnitude. 

The direction of the unit quaternion is given by the orientation of the quaternion whose 

components are divided by another quaternion. The unit quaternion in the direction of 

p is defined by: 

(B.l6) 

Quaternion multiplication is a non-trivial operation. Given two generic quaternions p 

and q, p and q multiply according to: 

pq =(poqo- P1q1 - P2q2 - p3q3) + (poql + P1qo + P2q3- p3q2)i+ 

(poq2 + P2qo + p3q1 - P1q3)j + (poq3 + p3qo- P2q1 + P1q2)k. 
(B.l7) 

Significantly, quaternion multiplication is noncommutative: in general, pq =/= qp. This is 

due to the distributive law in Eq. (B.2). Quaternions obey the following multiplication 

laws: 

p(qr) (pq)r, (B.18) 

p(q + r) pq + pr, (B.l9) 

(p+ q)r pr + qr, (B.20) 

pq q·p (B.21) 

jpqj IPIIqj. (B.22) 

Furthermore, if pq = 0, then p = 0 or q = 0 or p = q = 0. We also note that the square 

of the magnitude of p may be obtained by the product of a quaternion and its conjugate: 

(B.23) 
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Two quaternions p and q are said to be proportional in their imaginaries if there exist 

five real numbers {a, b, c, d, e} such that: 

p 

q 

Po + adi + bdj + cdk, 

q0 + aei + bej + cek, 

(B.24) 

(B.25) 

in which the values of the real parts of p and q are irrelevant. Quaternions p and q com

mute when multiplied together if and only if they are proportional in their imaginaries, 

as in Eqs. (B.24,B.25). Further results regarding quaternion multiplication include the 

following. If pq is equal to a real number, then p and q commute. If p commutes with q, 

then p also commutes with pq. If pq = qp and pr = rp, then p( q + r) = ( q + r )p. If F (p) 

is a polynomial in the quaternion p, then F(p)p = pF(p). If pq = qp for all quaternions 

q, then pis real. Given a quaternion p, one may specify the components of p separately 

by applying the tetranomial formulae: 

Po 

P1 

Po 

Po 

~[p- ipi- jpj- kpk], 

-~[p- ipi + jpj + kpk]i, 

-~[p + ipi- jpj + kpk]j, 

-~[p + ipi + jpj- kpk]k. 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

The result is the tetrasection of p, which gives the co~nponents of p as functions of p. The 

complex numbers have no analogue for these formulae. Multiplication of positive powers 

of quaternions are associative: 

(B.30) 

(B.31) 

Division of one quaternion by another quaternion is not defined in general. Division of 

a quaternion p by a real number follows the same rule as multiplication of p by a real 

number. For a real number W E IR, one has: 

It follows that the unit quaternion for non-zero p can be written asp I lP I· The quaternions 

have a reciprocal or multiplicative inverse, which is defined for a non-zero quaternion p 
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as p-1 = 1/p, where: 

1 
-·p 
p 

1 1 
p·- = 1, 

p p 
j5 1 

IPI 2
' pq 

1 1 

p q 
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(B.33) 

Polynomials of quaternions behave in a markedly different way to complex polynomials. 

For example, given a constant quaternion a and a variable quaternion q, a first degree 

monomial of the form: 

aq = qb, (B.34) 

cannot be satisfied by a constant quaternion b. Hence, although a is a constant, b must 

vary. This is because b cannot assume two values simultaneously. A generic monomial 

term for quaternions may be taken as aqb, with {a, b, q} all quaternions. The study of 

polynomials of quaternions is not well established. For instance, given a polynomial of 

quaternions aqb + cqd, there are in general no constant quaternions r and s such that 

aqb + cqd = rqs. (B.35) 

Although there are no quaternions rand s which solve Eq. (B.35), one can write Eq. (B.35) 

in terms of quaternion components, with the result that Eq. (B.35) becomes four real 

linear equations. The theory of linear algebra can then be applied to these equations, and 

r and s can be solved for. However, the quaternions r and s cannot then be reconstructed 

from the resulting component form solution, as constant quaternions r and s do not exist 

which solve Eq. (B.35). 

Problems associated with quaternion polynomials also extend to quaternion polynomials 

of higher degree. Given a variable quaternion q and a constant quaternion a, the second 

degree equation q2 = a can only be solved in general by considering the separate cases 

in which a is either zero, a positive real number, a negative real number, or a complex 

number, and using real analysis to solve each case in turn. 
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