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Abstract 

In this study reliable fihn type NTCR thermistors based on NiMn20 4+8 were 

produced and their electrical properties were studied in detail. 

Electron-beam evaporation procedures have been applied to produce thin fihn NTCR 

thermistors. Phase pure NiMn20 4+B target material was produced via a traditional 

ceramic precursor oxide route and thin fihns were deposited in an optimised 

procedure. The thickness distribution of evaporated fihns showed good agreement 

with a theoretical model, derived from evaporation theory and the sticking 

coefficient of the vapour on the substrates was approximately 80% ± 1.5%. 

The composition of electron-beam evaporated fihns was found to be not controllable 

in terms of the phase purity and the Ni : Mn ratio. In order to avoid these problems 

thick fihn NiMn204+8 NTCR thermistors were developed using direct screen-printing 

techniques. Detailed Rietveld refinement analysis was carried out for the source 

powder used for screen-printing. 

The main focus of the work was the measurement of resistance-temperature (R-T) 

characteristics of thin and thick fihns and pellets. In the temperature range of concern 

(77 K -550 K) conduction was found to be by variable-range hopping (VRH) and 

nearest-neighbour hopping (NNH); R - exp (T ofT) P , where the index p depends on 

the mode of hopping. Detailed analysis of R-T data showed that screen-printed films 

and pellets exhibited a p-value of 0.5, which was identified with VRH with a 

parabolic density of states (DOS) with an exponential dependence of resistance: R -

exp (T ofT)05 
• For electron-beam evaporated fihns the mechanisms detected were 

NNH: R - exp (T ofT); and VRH with a constant DOS (p = 0.25) following: R - exp 

(T ofT)o.2s . 

For screen-printed fihns with incorporated glass phase the electrical conduction 

mechanism was analysed using a.c. impedance spectroscopy and at low frequencies 

the hopping conduction was in agreement with the d.c. behaviour. The time constant 

of this mechanism could be described by an equivalent circuit containing a RC 

element. For higher frequencies a second mechanism was found, best described by a 

CRL element. 



Acllmowledgement§ 

In the first place I wish to thank my supervisor Dr. A.W. Brinkrnan for his commitment, 

patience, help and guidance provided throughout my PhD course and especially for the help 

in the preparation of this thesis. 

I wish to thank Dr. T.P.A. Hase, Dr. K. Durose and Dr. I. Terry for valueable discussions 

and the help provided. 

Thanks to Mr. P. Armstrong, Mr. J.F. Scott, Mr. N. Thompson and Mr. D. Pattinson for 

technical support. 

The work of Gwyn Ashcroft and the good co-operation is acknowledged here explicitly. 

I would like to thank the members of the Department of Material Science Ill, Glass and 

Ceramics, at the University of Erlangen-Nuremberg, in particular Prof.Dr. A. Roosen and 

Mr. A. Stiegelschmitt for their guidance and help provided with screen-printing films. 

Thanks also to Dr. A. Goeta and Dr. J. Evans for allowing use of XRD facilities and all other 

members of the Crystallographic group in the Department of Chemistry, University of 

Durham, who provided help with the data analysis, especially Neil Withers. 

A big thanks goes to Dr. A. Basu for the great cooperation, the very helpful discussions and 

the mutual exchange of knowledge. Thanks to Andrew Yates for conducting SEM and 

EDAX measurements and thanks for the great atmosphere in the research group to Ben 

Cantwell, Guillaume Zoppi, Keriya Mam, Nick Boyall, Dr. H. Sanghera, David Beet, 

Michael Beckham, Matt Hogan, Debbie Hales, Paul Edwards, Mike Cousins, Thomas 

Schmidt and everybody else I have forgotten. 

Thanks also to all my friends I met in Durham, particularly in Graduate Society, making it 

the most special place in the world I know, Angel Galmiche-Tejeda, Maria-Jose Duaso, Ali 

Hajighasemi, Thomas Winiecki, Jane Arkell, Thomas Franchoo, Richard O'Brien, Maria 

Arantzamendi, Marco Palumbo, Fiona Tolan, Doug Lionais, Eva Cervera, Marco Cvitas, 

Jelena Trmcic, Hugo Horta, Kha-young Kim, Leandro Sepulveda-Ramirez, Matthias 

Hoffmann, Christine Lorenz, Martin Bickl, Oliver Vogt, Jens Lamping, Michael Meznar, 

Veronique Margerit, Alex Metcalfe, Alain Wolf, Ilona Bausch, Philipp Zuber, Rafael 

Meseguer, Alberta Fernandez, Amerigo Pagano and everybody else l have forgotten. A 

special thanks goes to Maria Sakkelli for her support. 

Thanks also to all my friends in Germany who kept in touch with me, making me the 

distance to home feeling much more bearable, Veit Rossner, Matthias Kettl, Thomas Beyer, 

Stefan Petri, Martin Blaschke, Bernhard Klein and Kirsten Rosenbauer. 

On a more personal note I wish to thank my parents for their great support and their financial 

effort enabling me to follow a PhD course. 

ll 



DECLARATION 

I declare that all the work in this thesis was carried out by the candidate unless stated 

otherwise. Parts of the work presented in chapter 4 were submitted for the degree of 

"Physik-Diplom" at the University of Erlangen-Nuremberg. This material is declared 

accordingly in chapter 4. The remaining parts of this work have not previously been 

submitted for any degree and are not being submitted for any other degree . 

. i .. k.:.~.~.c. .... 
Dr A W Brinkman 

Supervisor 

... ~5!:1 ...... . 
Rainer Schmidt 

Candidate 

The copyright of this thesis rests with the author. No quotation from it should be 

published without prior written consent and information derived from it should be 

acknowledged. 

Ill 



Chapter 1 Introduction 

1 . 1. Introduction 

1.2. Historical development 

1.3. Scope ofthe work presented 

1.4. Other work 

1. 5. References 

Chapter 2 Theoretical background and literature review 

2.1. Introduction 

2.2. Crystal structure and cation distribution 

2.3. Phase stability 

2.4. Synthesis ofNiMnz04+o 

2.5. Electrical conduction 

2.5.1. Hopping transport in NiMnz04+.s 

2.5.2. Electron hopping between localised electron states 

2.5.3. Miller- Abrahams resistor network 

2.5.4. Percolation theory 

2.5.5. Nearest-Neighbour-Hopping (NNH) 

2.5.6. Variable-Range-Hopping (VRH) with 

constant density of states (DOS) 

2.5.7. VRH with a parameterised density of states 

2.5.8. Small polaron hopping 

2.5.9. Review of other hopping models 

2.6. Doping in the system Nit-aMnz-bMaNb04 

(M, N = In, Zn, Co, Cu, Li, Fe, Mg) 

2.7. Conclusions 

2.8. References 

IV 

1 

1 

4 

5 

6 

7 

8 

9 

10 

14 

16 

18 

18 

20 

21 

23 

25 

26 

29 

32 

34 

36 

38 

39 



Chapter 3 Thin film production by Electron-beam evaporation 44 

3.1. Introduction 45 

3.2. Electron-beam evaporation processes 46 

3.2.1. Basic principle ofthe growth process of films 46 

3.2.2. Target powder production 47 

3.2.3. Substrate preparation 49 

3.2.4. TheE-beam evaporation system 50 

3.2.5. E-beam evaporation process parameters 53 

3.3. Thickness distribution ofE-beam films 55 

3.3.1. Evaporation theory 55 

3.3.2. Film profiles 59 

3.3.3. Thickness distribution of films 60 

3.4. Phase purity, Ni: Mn ratio and morphology ofE-beam films 62 

3.4.1. XRD patterns of the target material 63 

3.4.2. XRD patterns ofE-beam films 64 

3.4.3. Energy Dispersive Analysis ofX-rays (EDAX) 67 

3.4.4. Scanning Electron Microscopy (SEM) 69 

3.5. Conclusions 76 

3.6. References 78 

Chapter 4 Thick film production via screen-printing techniques 79 

4.1. Introduction 80 

4.2. eo-precipitated NiMnz04+0 source powder 81 

4.2.1. Powder production 81 

4.2.2. XRD analysis of decomposed nickel manganese oxalates 84 

4.2.3. The Rietveld refinement method 86 

4.2.4. Rietveld refinement analysis 91 

4.2.4.1. Refinement of atom positions 92 

4.2.4.2. Goodness of fitS, Rsrag;s, 95 

correction term Zcorr and thermal factors Bth 

4.2.4.3. Phase composition, unit cell parameter and 97 

average grain size 

V 



4.3. Screen-printing ofthick film NiMn20 4+o films 104 

4.3.1. Principles of screen-printing I 04 

4.3.2. The screen-printing screen 106 

4.3.3. The screen-printing process 107 

4.3.4. XRD analysis ofscreen-printed films 109 

4.3.5. Scanning Electron Microscopy (SEM) and surface profileometry 110 

4.4. Conclusions 112 

4.5. References 114 

Chapter 5 D.c. measurements ofNiMn20 4+0 materials 116 

5 .1. Introduction 11 7 

5.2. Theory 118 

5.2.1. NNH model 118 

5.2.2. VRH models 119 

5.2.3. Analysis ofResistance vs. Temperature data 122 

5.3. Experimental 125 

5. 3 .1. Contacts 125 

5.3.2. Low temperature regime measurements 126 

5.3.3. Control software 128 

5.3.4. High temperature regime measurements 132 

5.4. Results 13 3 

5.4.1. Electron-beam evaporated films 133 

5 .4.1.1. Thin films on Ah03 substrates 134 

5.4.1.2. Thin films on glass substrates 142 

5.4.2. Screen-printed films 145 

5.4.3. Pellets 148 

5.4.4. Summary 150 

5.5. Conclusions 152 

5.6. References 155 

Chapter 6 A. c. impedance spectroscopy of screen-printed films 157 

with glass phase 

6.1. Introduction 158 

VI 



6.2. Theoretical Review 

6.2.1. Basic principle of impedance spectroscopy 

6.2.2. Data analysis and equivalent circuit modelling 

6.2.3. A.c. impedance ofhopping processes 

6.3. Experimental techniques 

6.4. Results/ Discussion 

6.4.1. Impedance spectroscopy data presented as 

Z' '-Z' complex plane loci 

159 

159 

161 

165 

169 

171 

171 

6.4.2. Interpretation of Z''-Z' complex plane loci 174 

6.4.3. Data analysis by modulus M' vs. frequency plots 177 

6.4.4. Data analysis by Z' vs.fand Z'' vs.fplots 181 

6.4.5. A.c. conductivity ofthe hopping mechanism 184 

6.4.5.1. Extended Pair Approximation (EPA) 184 

6.4.5.2. Impedance vs. temperature plots 186 

6.4.6. Equivalent circuit modelling 191 

6.4.6.1. Z' behaviour in respect to the equivalent circuit model 192 

6.4.6.2. Z" behaviour in respect to the equivalent circuit model 194 

6.5. Conclusions 196 

6.6. References 198 

Chapter 7 Conclusions 199 

7. 1. Conclusions 199 

7.2. Scope for future work 206 

7.3. References 209 

Appendix A List of Publications 

Appendix B XRD reference patterns from JCPDS data base 

Appendix C X-ray spectra of decomposed oxalates 

Appendix D I- V behaviour of AI contacts 

Appendix E Control Software for automated R-T data acquisition 

VII 



a.c. 

CRLelement 

d.c. 

DOS 

E-beam 

EDAX 

e.s.d. 

EPA 

HFR 

HTR 

IFR 

LFR 

LTR 

NNH 

NTCR 

PTCR 

PVD 

RC element 

rf 

R-T 

RTD 

SEM 

STM 

List of Abbreviations 

Alternating current 

Capacitance - Resistance - Inductance element 

Direct current 

Density Of States 

Electron-beam 

Energy Dispersive Analysis ofX-Rays 

Estimated standard deviation 

Extended Pair Approximation 

High Frequency Regime 

High Temperature Regime 

Intermediate Frequency Regime 

Low Frequency Regime 

Low Temperature Regime 

Nearest-Neighbour Hopping 

Negative Temperature Coefficient ofResistance 

Positive Temperature Coefficient of Resistance 

Physical Vapour Deposition 

Resistance - Capacitance element 

Radio frequency 

Resistance- Temperature 

Resistance Temperature Detectors 

Scanning Electron Microscopy 

Scanning Tunnelling Microscopy 

viii 



STS 

UHFR 

VRH 

XPS 

XRD 

Scanning Tunnelling Spectroscopy 

Ultra High Frequency Regime 

Variable-Range Hopping 

X-Ray Photoelectron Spectroscopy 

X-Ray Diffractornetry 

IX 



Chapter 1 

Introduction 

1.1. Introduction 

This work is about the production and performance of temperature sensing devices 

based on NiMn204+o· Temperature sensors in general have a wide range of 

applications in every part of our daily life. Besides the common domestic usage, for 

example in form of a thermometer, a huge variety of different types of temperature 

sensors are used for applications in technical, natural or medical sciences. 

In these devices the temperature sensing mechanism is always based on a specific 

physical property of the sensor material, where the corresponding parameter depends 

on the temperature. Different mechanisms may be appropriate for different 

applications and the sensors may be classified accordingly: 

1.) The most common temperature sensing mechanism is based on the thermal 

expansion of liquids or gases, such as the well known mercury thermometer used for 

common domestic applications or in medical environments for measuring body 

temperature. 

2.) Thermocouples are based on the thermoelectric effect, where a voltage occurs as 

a result of a temperature gradient across a junction of two different materials [ 1] . 

Thermocouples consist oftwo dissimilar metal wires welded together and the 
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difference in the heat capacitance leads to a temperature gradient across the junction, 

resulting in a voltage output. The most versatile thermocouples capable ofmeasuring 

at higher temperature ranges (90°C - 1200°C) are chromel-alumel, chromel­

constantan and constantan-iron and at lower temperature ranges ( -200°C - 350°C) 

copper-constantan junctions [2]. Thermocouples are fast in response, relatively cheap 

to manufacture and may be used for a wide range of temperature, but are highly 

susceptible to noise due to a very small voltage output. 

3.) Resistance thermometers or Resistance Temperature Detectors (RTD) are made 

of wires or thin films of one single metal such as copper, nickel or most commonly 

platinium. Sensors of this class exhibit a fairly linear resistance-temperature (R-1) 

characteristic, where the resistance increases due to increasing electron scattering 

with increasing temperature. RTDs are very accurate, but slow responding and costly 

to produce, thus unsuitable for high volume commercial applications. 

4.) Nowadays most temperature sensmg materials used in technical applications 

exhibit a temperature dependent electrical resistance and are called Thermistors 

(thermally sensitive resistors). Two main classes may be distinguished with either a 

Positive Temperature Coefficient of Resistance (PTCR) or a Negative Temperature 

Coefficient ofResistance (NTCR). 

a) PTCR thermistors are ideal for use as a circuit element on its own as a self­

regulating heater, current overload protection or over-heat regulator in a 

whole spectrum of professional and domestic systems and applications 

ranging from simple ovens to telemetry [3]. 

2 
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Semiconducting PTCRs are made of semiconducting films, slabs or 

pellets most commonly based on silicon [ 4]. These devices exhibit a 

better linearity of the R-T characteristic than RTDs or thermocouples 

ranging from -1 00°C - 200°C, the output voltage is comparatively high, 

they are cheap to manufacture, and thus quite widely used. 

Switching PTCR thermistors exhibit a very strong positive 

temperature dependence of the resistance over a restricted temperature 

region and show NTCR behaviour at all other temperatures. The materials 

for these devices are commonly based on semiconducting barium titanate. 

Lead or strontium titanate may be added to vary the temperature at which 

the PTCR effect occurs [3]. 

b) NTCR thermistors are probably the most widely used temperature sensors 

due to their low cost and high sensitivity. They exhibit an exponential 

dependence of resistance upon temperature, i.e. small changes in temperature 

result in large changes of resistance. NTCR thermistors are traditionally 

fabricated as pellets or slabs from sintered semiconducting oxide materials. 

The R-T characteristic is uniform over a wide range of temperature (-200°C-

350°C) enabling many different applications of temperature measurements 

[3]. 

NTCR thermistors are used where high accuracy is important, for example in 

the medical field for localised or general body temperature measurements, in 

meteorology for weather forecasting, in the chemical industry as process 

temperature controller and in the car industry as engine temperature 

controller [5]. NTCR thermistors are cheap to produce and suitable for mass 

3 
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production in the industry. NiMn20 4+o is one example of these materials and 

was investigated in this study. 

The history ofNTCR thermistors commenced in 1833 with Faraday's discovery that 

the resistance of Ag2S had a negative temperature coefficient, but little use could be 

made of this discovery, in part because the behaviour of semiconducting materials 

was not well understood before the development of quantum mechanics during the 

1920/30s. 

One of the main steps forward was the work carried out in the Philips laboratories in 

Holland and in the Bell telephone laboratories in the USA [6] during the World War 

II, which lead to an explanation for the mechanism dominating the resistivity in 

semiconducting oxide materials. During this time NiMn20 4+0 was first considered for 

use as a NTCR thermistor, along with other materials such as NiO, CoO and other 

compounds of the Ni0-Co20 3-Mn20 3 system, and has been used since in industrial 

applications in bulk material form. 

During the 1950/60s several studies were conducted on basic structural, electrical 

and magnetic properties of NTCR thermistors based on the NiO-Co203-Mn203 

system to understand the interplay of structural properties such as cation distribution 

and type of spine! structure with the electrical or magnetic behaviour. 

With the rapid development of film deposition techniques in recent decades the 

production of NTCR thermistor films became interesting, as reflected in a substantial 

increase in the number of publications in the late 1980s reporting different film 

production techniques and a variety of approaches to improve the sensor 

4 
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performance by including different dopants into the system. This strong interest in 

NTCR thermistors based on the Ni0-Mn20 3 system has continued up to now with 

the main focus being on the sensor performance of doped systems. 

L3. Scope of the work presented! 

As mentioned above, NiMn20 4+a has been widely used in the industry as a 

temperature sensor in bulk material applications. Commercial bulk NTCR 

thermistors usually exhibit a temperature tolerance in the range of± 0.2 °C, the 

resistance tolerance varies for different devices between ± 5% and ± 10% and the 

thermistor constants are normally in a range of2750- 4100 Kelvin. 

However, despite optimisation of the production process of this type of devices 

severe problems of poor stability and reproducibility remain due to high porosity and 

incomplete inter-granular contact in the material. In addition, pores make the device 

sensitive to effects of the surrounding ambient such as changes in humidity which 

affect the resistivity or variations in oxygen partial pressure that can change the 

oxygen content of the sensor material [7]. 

In principle, these problems can be minimised in dense films and two different film 

production techniques were considered in this work, electron-beam (E-beam) 

evaporation and screen-printing. The films produced have been characterised and it 

was intended to clarify the electrical conduction mechanism(s), as several 

contradictory statements about electron hopping in NiMn204+<'> can be found in the 

literature. 

5 
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In chapter 2 the basic properties of NiMn204+5 in terms of the crystal structure, 

cation distribution and phase stability, and theoretical approaches to electron hopping 

are reviewed. In chapter 3 the deposition of thin films by electron-beam evaporation 

is discussed in detail, which is a Physical Vapour Deposition (PVD) method. The 

feasibility of screen-printing as an alternative deposition process is assessed in 

chapter 4. The target preparation for each process and the comprehensive structural 

characterisation of both types of film are presented in chapter 3 and 4. Chapter 5 

presents the results of direct current (d.c.) R-T measurements of bulk, E-beam and 

screen-printed films. Chapter 6 reports on the temperature dependent impedance 

spectroscopy ofthe screen-printed films. 

Chapter 7 provides a summary of all results and compares the performance of both 

types of films. The scope for future work is discussed in this chapter as well. 

1.4. Ottiuer work 

During the course of this study several papers describing the preparation and 

characterisation of NiMnz04+o films have been submitted and published ([7], [8], [9], 

[10]). 

In an earlier study [11] the production of screen-printed thick NiMn20 4+o films and 

their structural characterisation has been described, and this work was submitted for 

the degree of "Physik-Diplom" at the University of Erlangen-Nuremberg. Chapter 4 

contains a review of this work. 

6 
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Chapter 2 - Theoretical backgrmmd and literature review 

2.1. Introduction 

In this chapter the basic properties ofNiMn20 4+8 are presented and the close relation 

between crystal structure, cation distribution and the electrical conduction 

mechanism is highlighted. The analysis of the electrical conduction mechanism is the 

main focus of this work, so a detailed consideration of different models is presented. 

Electron transport in NiMn20 4+1i occurs by a thermal activated hopping process [1] 

and the fundamentals of hopping conduction are described, following the celebrated 

approaches from Miller and Abrahams [2], Ambegaokar [3] and Mott [4]. A general 

expression for hopping in NiMn20 4+1i will be derived and compared to models 

previously suggested in the literature. 

Furthermore, the phase stability of NiMn20 4+1i is discussed and a review of several 

approaches to include dopants into the NiMnz04+1i spinel system is given. 

9 



Chapter 2 - Theoretical background and literature review 

2.2. Crystal structure and cation distribution 

N iMnz04 crystallises in a typical cubic spine] structure. In general, spinets can be 

represented by the expression A(B2)0 4 where usually A is a divalent and B a 

trivalent cation. The most well-known spinet is MgA]z04. 

In a spinet structure the oxygen anions fonn a f.c.c. sub-lattice with the metal cations 

situated at two different types of interstices, tetrahedral and octahedral sites as can be 

seen from Fig. 2.1. 

J 
... _ •-' t 

I 
- 1- -· 

--/·' 
/ 

- · -r---
1 

I -

_____ __...-

0 Oxygen Anion ~ Tetrahedral Cation 
Octahedral Cation 

Tetrahedral Interstice 

Fig. 2.1 Spine] structure showing the octahedral and tetrahedral interstices, [5] 

A complete cubic unit cell of NiMnz04 contains 64 tetrahedral and 32 octahedral 

interstices of which 8 tetrahedral and 16 octahedral sites are occupied, thus the 

10 
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occupancy is 12.5% for tetrahedral and 50% for octahedral interstices. Including 32 

oxygen anions, 16 manganese and 8 nickel cations, the unit cell comprises 56 ions. 

As can be seen from Fig. 2.2, the unit cell can be represented by 8 different layers 

perpendicular to the (111) plane ofthe oxygen sub-lattice [5]. 

0 
0 

0 
0 

lot Layer 21111 Layer 3n1 Layer 4111 Layer 

0 
0 

0 
0 

sU' Layer 6111 Layer 7111 Layer 8111 Layer 

0 Tetrahedral cation 0 Octahedral cation 0 Oxygen 

Fig. 2.2 Eight layers of the unit cell, [5] 

In a regular spinel, divalent and trivalent cations are situated on tetrahedral and 

octahedral sites respectively. In contrast, in a complete inverse spinel structure all 

divalent cations move to octahedral sites and half the trivalent cations move from 

octa- to tetra-hedral sites. NiMn20 4 is an intermediate type of spinel where only a 

fraction of the Nft- cations transfer to octahedral sites, the Mn3
+ cations on 

octahedral sites disproportionate to Mn2
+ and Mn 4+, and Mn2

+ cations move to 

tetrahedral sites to compensate all Ni2
+ vacancies. 

11 



Chapter 2 - Theoretical backgrmmd and literature review 

Depending on the ambient conditions and the temperature during the production 

process of NiMnz04+o materials, the oxygen content varies and is compensated by a 

corresponding change in the Mn3+/Mn4+ ratio. The cation distribution can then be 

described by [ 6]: 

N
·2+ )1,£, 2+ [ N·2+ 114 3+ 11,£, 4+ ] 0 2-
~~-x JvJnx lx 1Vln2-2x-2o 1Vlnx+2o 4+o 2.1 

The brackets [ ] indicate the cation concentration on octahedral sites. x is the fraction 

of nickel cations on octahedral sites and is referred to as the inversion parameter. 8 is 

the stoichiometric excess (8 > 0) or loss (8 < 0) of oxygen. Larson et al. [7] suggested 

that x = 1 and both, Mn2
+ and Mn3

+ are present on tetrahedral sites, which would be 

inconsistent with 2.1. However, Boucher et al. [8] have shown conclusively by 

neutron diffraction studies that x decreased from 0.76 to 0.74 as the temperature was 

increased from 750°C to 950°C. 

Several other suggestions for cation distributions have been made by Sinha et al. [9], 

Baltzer and White [10] or Bhandage and Keer [11], but their models are all in 

contradiction with the findings from Brabers et al. [12], Hashemi and Brinkman [13], 

and Topfer et al. [14], who all identified 3 different valencies of manganese (i.e. 

Mn2
+ I Mn3

+ /Mn 4l using XPS, consistent with the distribution given in 2.1. 

The x- values obtained by Boucher et al. [8] at particular temperatures differ from the 

results obtained by Macklen [15], who gave the following relation: 

X = 1 - 0.0005 (T- 200°C) ; 2.2 
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According to this relation x drops from 0. 73 to 0.63 with increasing temperatures 

between 750°C - 950°C. Macklen obtained his results by relating conductivity data 

to the inversion parameter, which was supposed to vary by sintering at different 

temperatures. The samples were quench cooled to retain the high temperature 

configuration. The discrepancy with the findings of Boucher et al. may indicate that 

Macklen's assumptions made about the dependency of conductivity upon the 

inversion parameter and the cation distribution may have been incomplete, as 

discussed later. 

However, a change of x with temperature would involve a migration of cations, 

which was described by Brabers and Terhell [6], who proposed the following 

equation: 

2.3 

The subscripts A and B indicate the occupancy of either tetrahedral (A) or octahedral 

(B) sites and ETr is the energy which is released when the spinet transfers to an 

energetically favourable configuration by disproportion of Mn3
+ cations. The 

equilibrium constant K for this reaction was found by applying the law of mass 

action to eq. 2.3 with the concentrations of the cations being denoted by the 

subscripts in 2.1. 8 was set to 0 here. 

K - x3 -ex ( Err J 
- 4(1-x)3 - p kB T 2.4 
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The energy Err was found to be about 0.66 eV [6]. 

Using neutron-diffraction data, Boucher et al. [8] reported the following relationship 

between the lattice parameter a and the inversion parameter x: 

a= 8.441-0.057 x; 2.5 

As x is temperature dependent, this relation would moduy the regular thermal 

expansion behaviour. According to Brabers, the thermal expansion is regular below 

450°C and deviates from linearity above. This would suggest that cation migration 

starts to take place only above 450°C. However, it is believed that in fact eq. 2.5 can 

only be applied for temperatures between- 750°C- 900°C as the regular NiMnz04+1i 

spinet is only stable within this small temperature window. This is described in more 

detail in the next section. 

2.3. Phase stability 

For the analysis of electrical conduction in NiMn20 4+o it is of vital importance to 

ensure phase purity. A change in electrical conduction behaviour at temperatures 

between 200°C and 750°C has been related to a change in cation distribution or other 

physical parameters by many authors, although the NiMn20 4+1i spinel is not stable in 

this temperature region and conductivity may well be affected by a second phase. 

A comprehens.ive phase diagram for the Ni-Mn-0 system for temperatures between 

500°C and 1200°C and for different ratios of manganese and nickel was given by 

Wickham (see Fig. 2.3) [16]. In this study a variation of the oxygen content in 
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NiMn204+o or in other compounds occurring was not taken into account, therefore 8 

=0. 

According to this phase diagram the cubic NiMn204 spinet is stable in air between ~ 

750°C and 900°C and dissociates at intermediate temperatures (T < 750°C) to 

NiMn03 and Mn20 3. At higher temperatures (T > 900 °C) a release of NiO and 0 2 

was reported to occur. 

' / 
le 0 

i 
J 

I 
l 

I<' Mn I ( ~~ .. Mn) 

Fig. 2.3 Phase diagram for the system NiO-Mn203-02 [16], solid lines are for an 

oxygen partial pressure of0.21 atm (air), dashed lines for 1 atm. R is the Ni!Mn ratio 

defined as: R = [Mn] I { [Ni] + [Mn]} 

Recently, the phase diagram has been extended for lower temperatures by Tang et al. 

[17]. They found that for about 0.6 < R < 0.7 a cubic spinet phase exists at 

temperatures below 400°C. In the same temperature range for R > 0.7 a cubic spinet 

phase and Mn50 8 were reported to be present while for R < 0.6 a cubic spinet and a 
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rock salt phase forms. For stoichiometric NiMn204+o (R = 0.67), the cubic spinel 

phase present at low temperatures was reported to exhibit cation vacancies or in other 

terms an excess of oxygen [18]. 

In the stability region of NiMn204+0 between 750°C - 900°C slightly different 

oxygen contents may occur as well. Jung [19] claimed that both, an excess and loss 

of oxygen is possible, depending on the sintering-ambient, -time and -temperature, 

but no equation could be formulated to describe this effect. Therefore, throughout 

this work the notation NiMn20 4+o is used. 

For any technological approach to produce NTCR thermistor materials, a source 

powder is the basis for any further processing. In this study NiMn204+0 powder was 

synthesised in a laboratory process, as it is not available on the free market, 

following two different production routes: 

1.) NiO and Mn20 3 are mixed thoroughly (1 :1 molar ratio) and sintered at 1150°C. 

NiO is released at temperatures over - 900°C (see Fig. 2.3) and an extended 

annealing process at 800°C for up to 60 hours is necessary to re-incorporate NiO [9], 

[20], [21]. This is a traditional ceramic powder processing route. 

2.) Wet chemical processes based on pre-cursor oxalates were first introduced by 

Wickham [16]. More recently this technique of precipitation and thermal 

decomposition of oxalates has been further developed and small average grain size 

powders on micro- or even nanometer scales can be achieved [18], [19], [22]. 

16 
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Nickel manganese oxalate (NiMn2(C20 4)3 • 6 H20 ) may be precipitated by adding 

C 0 2- . N'2+ d Mn2+ . . 1 . I h N'2+ Mn2+ d 2 4 aruons to a 1 an contatrung aqueous so utton. n t e 1 , an 

C20/- stock solutions the concentrations have to be determined precisely to control 

the stoichiometry. Thermal decomposition of the precipitate at temperatures up to 

400°C results in the defect spinel phase, or in the regular NiMn20 4+o spinel phase by 

sintering at 850°C for 30 minutes [23]. 

The first route has been used for producing target material for electron-beam 

evaporation processes, the second for screen-printing. The experimental procedures 

are described more explicitly in the respective chapters later. 

Other common synthesis routes for NiMn20 4+o can be found in the literature: 

3.) By adding NaOH or N~Cl to an aqueous solution of Ni 2
+ (aq) and Mn 2

+ (aq), 

both, Ni(OH) 2 and Mn(OH) 2 can be eo-precipitated at a pH value of 10. The 

hydroxides are then thermally decomposed at 950°C and annealed at 800°C yielding 

phase pure NiMn204+o [24], [25]. 

A problem with this method is that Na or Cl both cause serious impurities in the 

hydroxides, which have to be removed in a tedious washing process. 

4.) Kamiyama and Nara [26] reported that a reduced sintering time of3 hours can be 

achieved by firing a mixture of NiO and Mn02 in the appropriate molar ratio at 

1300°C. The material is annealed at 800°C for 24 hours. 

5.) According to Gorgeu [27], NiMn20 4+.s can also be obtained by sintering the 

sulphates NiS04 and MnS04, mixed in the appropriate ratio. 

17 
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In NiMn20 4+o the electrical conduction is based on a thermally activated hopping 

mechanism where electrons transfer between manganese cations of different valence 

states according to the mechanism [1]: 

Donor Acceptor 

2.6 

In this type of thermally activated hopping the transfer rate and thus the conductivity 

show an exponential dependence on temperature and the resistance decreases with 

increasing temperature (NTCR). Although often referred to as serniconducting 

behaviour, the contributing manganese cations should be regarded as localised 

electron states and conduction is quite different to conventional band 

semiconductors. 

As mentioned in section 2.2., Macklen [15] investigated the hopping conductivity in 

NiMn204+o, in relation to the cation distribution. Previously, Macklen [1] had stated 

that in principal electron hopping only takes place between atoms of the same sort, 

differing in their valencies by not more than one unit. In the case of NiMn20 4+o only 

Mn3+ and Mn4
+ cations on octahedral sites would contribute. Manganese cations of 
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different valencies on tetrahedral sites would exhibit a large distance to each other 

due to the low occupancy (12.5%), compared to octahedral sites (50%). 

Electrical conductivity would thus be dependent on the Mn3+/Mn4+ ratio on 

octahedral sites and maximum conductivity would occur if the ratio is 1:1 [15], [28], 

[29], which corresponds to an inversion parameter of x = 2/3 in the case of 

stoichiometric NiMn204. 

However, none of the authors took into account that jumps between Mn2
+ and Mn3

+ 

on tetrahedral and octahedral interstices respectively could possibly take place. As 

can be seen from Fig. 2.2, Mn2
+ and Mn3

+ cations on tetrahedral and octahedral sites 

are only slightly further distanced from each other than octahedral cations, which 

could result in a perceptible hopping probability, especially as electrons in Mn2
+ 

might show a weaker bonding than in Mn3
+. On the other hand, the occupancy of 

tetrahedral sites is low and the number of transitions occurring would be 

correspondingly low compared to hopping between octahedral sites. 

Macklen [15] related the conductivity data to the inversion parameter x to obtain eq. 

2.2, which assumes only pure Mn3+/Mn4
+ hopping. It was shown that with decreasing 

oxygen content and thus with decreasing Mn4
+ concentration the conductivity 

decreases. However, a maximum in conductivity for an even ratio of Mn3
+ and Mn4

+ 

did not occur, suggesting that conduction may not rely just on simple hopping 

between Mn3
+ and Mn4

+ cations and might explain the fact that eq. 2.2 did not 

correspond to the neutron diffraction data from Boucher et al. [8]. 

It is clear that the cation distribution, and thus conductivity, varies with oxygen 

content, but it may be the case that it is not only the resulting change in cation 

distribution which is important. A loss of oxygen would also increase the occupancy 
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of possibly both tetrahedral and octahedral sites, leading in turn to a higher 

conductivity, in contrast to Madden. 

Given these uncertainties it will be extremely difficult to directly relate conductivity 

quantitatively to the oxygen content and cation distribution. No conclusive relation 

between sintering temperature and oxygen content is given in the literature. 

Furthermore, in NiMn204+0 the electron transport might be directly supported by 

oxygen anions, which was reported to be the case between Mn3
+ and Mn4

+ cations in 

layered manganate perovskite structures [30], [31 ]. In these types of compound 

electron hopping takes place from a Mn4
+ cation to a 0 2- anion and coincidently from 

the same 0 2- anion to Mn3
+. This double exchange effect has not been considered yet 

for NiMn204+o in any study so far, and possible effects on the conductivity are not 

known. 

However, a qualitative analysis of most parameters affecting the conductivity may 

well be possible and a model can be deduced as presented in the next section. 

2.5.2. Electron hopping !between localised electron states 

Electron hopping conduction theories were first developed in order to describe 

electron transport in crystalline semiconductors at very low temperature regimes ( T < 

SK). At these temperatures electron hopping between localised impurity states can 

occur and can dominate any other electrical transport, for example by ionisation of 

donor and acceptor levels or by excitation of electrons from valence to conduction 

band. Impurity states can be described by a so-called Hubbard impurity band [32]. If 

electron bands of delocalised states exist, impurity states are always located in the 
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gap between the regular bands of delocalised states, because localised and 

de localised states cannot coexist at the same energy [3 3]. 

Electron hopping also occurs in amorphous and highly disordered materials such as 

amorphous semiconductors, which normally exhibit quite a large energy range of 

localised electron states. Despite their localisation, these electron states can be 

described by the same concept of a density of states g( ~>) in energy and space. 

It is believed that this is a valid concept in NiMn20 4+o materials as well, where the 

manganese cations participating in the electron hopping can be regarded as localised 

electron states. 

The most basic work describing hopping conduction was carried out by Miller and 

Abrahams [2]. All subsequent research has been based on their fundamental 

considerations ofhopping conductivity. 

2.5.3. Miller - Abrahams resistor network 

Miller and Abrahams proposed a random resistor network to describe electron 

transfer between localised states. Randomly distributed vertices, for example i and j, 

represent two electron states, which are connected by a resistor Rij. Fig. 2.4 shows 

such a network. For small applied electric fields, the resistance Rij connecting site i 

and j is of the form: 

2.7 
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R~ is the limiting value at T ~ infinity , and ~ij is called the percolation value given 

by the fundamental expression : 

2r. s .. 
~ii = aiJ + ks~ 2.8 

where rij and Sij are the separation of electron states in real and energy space 

respectively. 

Fig. 2.4 Random resistor network proposed by Miller and Abraharns, [34] 

In equation 2.8 the first term on the right hand side describes the exponential 

dependence of the resistance upon the overlap of the wave functions, which for 

hydrogen like wave functions decrease with distance r according to - exp(-r/a), 
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where 1/a is an atom specific parameter in m-1
• The second term describes the 

dependency of Rij on the separation of states in energy space. Strictly speaking, the 

transfer of an electron is achieved by the absorption or emission of a phonon and the 

second term in 2.8 is proportional to the number of phonons available at the required 

energy. Multi-phonon processes may be neglected as mentioned in more detail later. 

In the following discussion it will be assumed that the hopping sites are randomly 

distributed, that the number of random sites is large and the distance between sites is 

small compared to the size of the system. 

The more fundamental parameter r ij may be defined as the hopping rate or the 

number of electrons transferring per unit time. 

0 ( -2r J ( -£ -J r ij = Y ij exp -----:-- exp kB~ ; 2.9 

where yij0 describes all parameters which depend on rij in a non-exponential way. Rij 

would be inversely proportional to r ij· 

2.5.4. Percolation theory 

In hopping conduction electrons propagate through a sample preferentially along the 

most conducting paths. These would be randomly distributed sequences of sites with 

a low average distance between them and hence a low mean value of Rij. The 

problem of describing electrons "finding" the most conducting path through a sample 

is a percolation problem, which is illustrated in Fig. 2.5: 
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Fig. 2.5 Percolation through an array of randomly distributed electron states, [34] 

From Fig. 2.5 it can be readily understood that on each of the more conducting paths 

there will be a certain critical radius re, which is the largest distance between 2 sites. 

Miller and Abrahams argued that any hopping conduction in a sample would be 

dominated by electrons propagating via several of these most conductive paths, and 

hopping along those paths again would be dominated by the critical radius re, which 

can be determined as an average by simulation methods dependent on the site 

concentration N. Instead of calculating re it is more convenient to introduce the 

dimensionless percolation constant Be. 

4 
Be= -n N r~; 

3 
2.10 

Several methods have been used by different researchers to calculate Be. The most 

established method is Monte Carlo simulation and there is agreement that Be = 2. 7 

[34], [35] and therefore re= (0.865) N-113
• 
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However, the connectivity between sites does not only depend on their spatial 

distribution, but also on their separation in energy space. Therefore, strictly speaking 

the following percolation threshold ~c applies : 

or 2.11 

The resistivity is dominated by hopping processes exhibiting a ~ij value close to the 

threshold value and for the macroscopic resistivity it follows that [34]: 

P = Po exp(~c) ; 2.12 

Equation 2.12 is a fundamental expression and is the starting point of all theoretical 

considerations of hopping conduction. The form and temperature dependence of p o 

depends on Yijo (eq. 2.9), which in turn depends on the physical assumptions made 

concerning the hopping mechanism. 

2.5.5. Nearest-Neighbour-Hopping (NNH) 

Nearest-Neighbour-Hopping (NNH) occurs if the first term on the right hand side in 

eq. 2.8 is large compared to the second term. This is the case at higher temperatures, 

at low values of a, i.e. a small overlap of the wave functions, or at high values of r~b 

i.e. a low concentration of localised electron states. If the second term is significantly 

smaller it will contribute to the overall resistance only marginally, even for a high 
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energy separation between the two states e ij· Conversely, the overall resistance is 

reduced significantly if electrons only transfer to the nearest neighbour, resulting in a 

small value for rij, because generally hopping processes having a low value of ~ij are 

favourable. For NNH the first term in eq. 2.8 is independent oftemperature, as rij is 

the dominating distance re to the nearest neighbour, and the resistivity becomes: 

2.13 

e 3 is the average activation energy between nearest-neighbour donors and acceptors 

and is constant for all temperatures. 

The form and possible temperature dependence of p 0 1s again determined by 

physical assumptions. 

2.5.6. Variable-rnnge-hopping (VRH) witlll constant density of states (DOS) 

Electrons may also hop to a more remote site if the separation in energy is favourable 

and a lower value of ~ij can be obtained than for a relevant nearest-neighbour hop. In 

this situation, the two terms in eq. 2.8 are competing with each other, although the 

percolation threshold of eq. 2.11 remains valid. 

The highest spatial separation rmax for a hop permitted by the threshold value ~c is 

achieved if the separation in energy tends to zero and the opposite holds for the 

highest energy separation emax permitted . From eq. 2.11 it follows: 
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and 2.14 

Obviously, the maximum separation in energy varies with temperature, and so does 

rmax as shown below. This conduction mechanism is referred to as variable-range 

hopping (VRH), because the maximum hopping distance r max between electron states 

participating in the hopping process is changing with temperature. 

On a macroscopic scale, the resistivity is dominated by hops with high percolation 

values ~ij and the activation energy 6 ij may be replaced by Smax, and fij by rmax [36], 

[37]. 

In the first instance, the DOS will be assumed to be uniform, i.e. g( 6) = g( 6 F) at all 

energies. In Fig. 2.6 6max is illustrated at T = 0 as a band of contributing localised 

states distributed symmetrically around the Fermi level with the temperature 

dependent width of26 0 • 

........................................................................................................................................... t ................. t 6 F + 261\ 

2 

-
--+--- --+---------------.-------------------------- -- --

- --+-

Fig. 2.6 Contributing states around the Fermi level forming a conductive band 
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It is clear that the position of the Smax band is variable between E F + 2E o and E F -

2E o as hops from Fermi level s F to s F + 2s o are also possible and strictly speaking 

the conduction band of contributing states has the width of 4s o or 2Smax as indicated 

in Fig. 2.6. 

By analogy with the dimensionless percolation constant in eq. 2.1 0, n( ~c) can be 

defined as a dimensionless critical concentration of states in 4-dimensional s-r space. 

n( ~c) is determined by the DOS g( s F) in energy and real space of the material, the 

width of the conduction band 2~>tnax of contributing states and the limiting distance of 

states r max : 

n(~c) 2.15 

From 2.14 follows : 

and 2.16 

Again, Monte Carlo simulation was carried out to determine n( ~c). Skal and 

Shklovskii [38] found n(~c) = 5.7, whereas Shklovskii and Efros [34] gave n(~c) = 

5.3 in a later study, and for further consideration the latter value will be taken. 

Substituting ~c (eq. 2.16) into eq. 2.12 one arrives at the well-known equation for 

variable-range hopping, first introduced by Mott [ 4]: 
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l 

p= Po exr(;)' with 2.17 

Substituting ~c into eq. 2.14, Smax and rmax are given by 

2.18 

2.19 

2.5. 7. Variable-range hopping with a parameterised density of states 

So far, the DOS g(s F) was assumed to be constant with energy. A more general 

expression can be derived if the following parameterisation of g(s) is taken instead : 

2.20 

g', s' and z are scaling factors to parameterise the DOS under examination. In this 

formulation it is implicitly assumed that g(s) is symmetrical about s F· 

The critical concentration n( ~c) is then given by : 
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2.21 

Integration is carried out from the Fermi level c F to c F + c max and assumes a 

symmetric distribution of the DOS around the Fermi level. Integrating and 

substituting for g(c) by eq. 2.20 and for E>max and rmax by the expressions in eq. 2.14 

leads to : 

I (k T)z+l ): z+4 
B ":>C ; and 

z+I 

2.22 

As for eq. 2.18, the following expression for p can be found: 

z+l 

(
T Jz+4 p = Po exp ; with 2.23 

E>max and r max are given by : 

1 

Smax = [ 
2

31.
2 

( S 'f ( Z +I) ( kBTf]z+
4 

a g' 
2.24 
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2.25 

Eq. 2.24 and 2.25 are general expressions and by choosing the correct set of 

parameters z, g', s' and a, an expression describing hopping conduction in 

NiMn20 4+o, may be obtained. From eq. 2.23 and 2.24 it can be seen that the 

following relation between To and Smax holds: 

z+l 3 

£max = { kBTa )z+4 { kBT)z+4 2.26 

It is interesting to note that the exponents of both terms on the right hand side of eq. 

2.26 are equal for z = 2. In this case the band width Smax may be significantly broader 

than k8 T, as To is typically several orders of magnitude higher than T. In 

semiconductors at temperatures above 0 K, electrons occupy electron states above 

the Fermi level for an energy range in the order of2k8 T [39]. It is believed that this is 

the case in NiMn20 4+o as well and for z = 2, the energy range of occupied states 

above the Fermi level would be low compared to the full band width Smax. On the 

other hand, as z approaches 0, as for a uniform DOS, the To dependent term in eq. 

2.26 becomes much less pronounced and the energy band Smax may contain a 

considerable fraction of occupied states over the full range. 

The pre-exponential factor p 0 in eq. 2.23 has to be described for the specific 

mechanism present in the material and may be dependent on Smax and r max, depending 

on the physical assumptions made. This is attempted in the next section in order to 

obtain a general expression for the pre-exponential factor p o. 
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2.5.8. §mall polaron hopping 

It is generally accepted that in NiMn20 4+o a small polaron is associated with the 

electron hop [29]. A polaron is a lattice distortion, which occurs as a result of the 

recon:figuration of the electron distributions that takes place when an electron is 

transferred from a donor ion (e.g. Mn3
+ ) to an acceptor (e.g. Mn4

+ ). The 

rearrangement in the local charge distributions leads to a slight displacement of the 

participating ions, i.e. a local distortion of the lattice. If the orbital of the electron 

causing the distortion is small, then the polaron transfer is referred to as "small 

polaron hopping", [40]. 

It is assumed that the hopping distance rij is large compared to the displacement of 

the donor cation and that the polaron transfer takes place via the absorption or 

emission of a single phonon. Multi-phonon processes are neglected according to 

common practice [36], [29], [37]. The resistivity is given in the usual way by : 

1 1 
p=-=­

(J ne)l 
2.27 

where n is the concentration of donor electron states in real space, i.e. the charge 

carrier density. e is the elementary charge and p. the mobility, which is connected to 

the hopping rate r via the Einstein equation [ 41] : 

eD 
Jl=kT; 

B 
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D is the diffusion constant given by 

2.29 

where r is the macroscopic hopping rate: 

2.30 

Et is the deformation energy of the donor, p v the density of the material, s the 

velocity of sound, Sr • s 0 the permittivity of the material and h the reduced Planck's 

constant. Corresponding to the resistivity, the macroscopic hopping rate is 

determined by hops exhibiting percolation values close to ~c, and £ij and ru may be 

regarded as the dominating separation in energy and real space, exhibiting values 

close to the maximum values permitted. 

Eq. 2.30 is essentially in agreement with the approaches of Shklovskii and Efros and 

Allen and Adkins. The expressions proposed in these two studies differ by a small 

correction term, but following common practice in the application of small polaron 

theory to real systems [41], [29], [37], the correction term has been neglected. 

Furthermore, it was assumed that the electron and polaron transfers are accomplished 

simultaneously. Strictly speaking, the hopping rate r has to be multiplied by the 

probability P, that the electron transfer follows the polaron instantly; only in the 

adiabatic case is P approximately 1. Arguably it is only at very low temperatures that 
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electron transfer might be prevented, as there would be few phonons available in the 

required energy state to be absorbed and enable the electron transfer. 

Using the equations 2.27 -2.30 a general expression for p can be obtained, which is 

valid for all types of polaron hopping conduction. 

2.31 

Eq. 2.31 contains several material specific constants, which have to be determined to 

describe hopping conduction quantitatively. For NiMnz04+1i these constants are not 

all known, and consequently quantitative analysis of the resistivity is not possible. 

2.5.9. Review of other hopping models 

In order to describe experimental data for the resistance vs. temperature 

characteristics of NiMn20 4+1i several attempts have been made by different authors to 

find the appropriate expressions. Fritsch et al. [29] suggested that the resistivity can 

be described by small polaron hopping theory assuming NNH. 

2.32 

where Noct is the concentration of octahedral sites, NC the total number of 

participating charge carriers, re the critical jump distance and Vo the lattice 

34 



Chapter 2 - Theoretical backgrmmd and literature review 

vibrational frequency. Expression 2.32 is in agreement with eq. 2.31 in respect of the 

temperature dependence of the exponential and the pre-exponential factor, but the 

constant parameters in the pre-exponential factor in eq. 2.31 differ significantly. 

In earlier studies, several other empirical relations assuming NNH have been 

developed by fitting experimental data to arbitrary functions or by introducing 

empirical correction parameters : 

Becker et al. [ 42] : C T--4.83 ( &3 ) p= exp --. ·s 3 =0 178eV· k T ' . ' 
B 

2.33 

Bossom et al. [43]: P = Po exp( k
8 
(i +ll) J ;c, = 0.193 eV; B = 47.79 K; 

2.34 

Feltz et al.: [44] ( T J
2

·

91 

[ ( 1 1 JJ p = C ~ exp :: T - r; ; 2.35 

T1 is a fixed temperature dependent on the measurement 

However, these empirical models are lacking fundamental theoretical justification 

and are not considered in this work. 

Baliga and Jain [ 45] were the first authors who suggested that the conduction 

mechanism relies on variable-range hopping for all ranges of temperature. They 

claim that the DOS is constant and that eq. 2.17 is valid with an exponential factor of 

V-t. This is in contrast to the findings ofBasu et al. (46], [47] who found that the DOS 

is parabolic in which case the exponential factor in eq. 2.23 would be Yz with z being 

2. This is discussed in more detail in chapter 6. 
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2.6. Doping in the system Ni1_3Mn2_b MaNb 0 4 (M~ N=In, Zn~ Co9 C1111~ 

Li, Fe, Mg) 

Much research has been conducted on the improvement of the temperature sensing 

performance of NiMn20 4+o materials by substitution of Ne+ or Mn3+ with various 

dopants. Different authors have focused on different aspects, such as improvement of 

the phase stability, adjustment of conductivity or minimisation of ageing effects. 

Feltz and Neidnicht [48] have shown that the MgNiMn04 spinel is more stable and, 

unlike NiMn204+0, does not decompose between 400°C and 750°C, which enables 

thermistor application at these temperatures. The same effect was observed by Feltz 

and Seidel [ 49] for ZllbNiMn2_b04 compounds. 

For low temperature sensing applications the low conductivity at low temperatures 

gives rise to problems with the feasibility of thermistor devices. This is especially the 

case for thin and also thick films. It has been reported by many authors [50],[51], 

[11], [52],[53] that doping with Cu can increase the conductivity significantly. 

The replacement of both, Ni2+ in Nh-aMn2Cua04 and Mn3+ in NiMn2-bCub04 would 

increase the amount of charge carriers. In these compounds Cu is present at 

tetrahedral (CuI+ and Cu2l and octahedral ( Cu2l sites. 

Alternatively, Metzmacher et al. [54] have shown that the resistance and activation 

energy can be increased by doping with In: NiMn2~nb04. Carnet [55] has achieved 

the same effect by doping with Ti instead. An increase of resistance and particularly 

activation energy is advantageous if the sensitivity of the sensor is to be improved by 

increasing the temperature dependence of the material. 
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By In doping the ageing effects could be minimised as well and it is believed that In 

on octahedral sites can prevent or minimise the migration of Ni cations from 

tetrahedral to octahedral sites. 

In NiMnz04+8 this migration takes place over a comparatively long period of time 

accompanied by a slow change of resistance, until the resistance finally levels off 

after up to 500 hours [56]. This ageing behaviour could also be minimised by Co 

doping [57], [58], [59]. Again Ni2
+ and Mn3

+ replacement is possible, where Co 

occurs as Co2
+ on tetrahedral and as Co3

+ on octahedral sites. Vakiv et al. [60] 

suggested eo-doping with Co and Cu to exploit the advantages of both dopants for 

NTCR thermistor applications. CUo.<tNio.4Coo.4Mn1.s04 and Cuo.tNio.sCoo.2Mn1.904 

compounds were proposed to be most favourable [ 61]. 

Doping with Fe [62] and Li [63] has been mentioned in the literature, but may be of 

less technological significance for NTCR thermistor applications. The "main stream" 

research nowadays focuses on Co and Cu doping. 
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The general properties of NiMn204+o materials presented in this chapter reflect the 

current state of knowledge. A detailed description of the phase stability of the system 

was given, which is essential for the next chapter where the production process of 

NiMn20 4+15 powder will be described and is based on the phase diagram given in 2.3. 

The importance of the cation distribution for the conduction mechanism has been 

noted and a general expression for a hopping resistivity was derived from basic 

theoretical considerations. 

An explicit expression is deduced in chapter 6, where the parameterisation of the 

DOS g( e) is specified for different hopping models considered for describing 

electrical conduction in NiMnz04+1i· 

Finally, it was observed that the doping of NiMn204+o materials can improve the 

sensor performance and Co and Co are presently the most widely used dopants. 
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Chapter 3 -Thin film production by Electron-beam evaporation 

The rapid developments that have taken place in film deposition techniques over 

recent decades have made possible the production of thin and thick films of NTCR 

NiMn20 4+8 thermistors. In principle, the problems experienced with bulk material 

applications can be minimised in dense polycrystalline films and several attempts 

have been made by different authors to produce thin films of NTCR thermistor 

material based on the Ni-Mn spinel system. Rf magnetron sputtering has been 

successfully carried out by Basu [1], Baliga [2] and Fau et al. [3]. Lindner and Feltz 

[ 4] have described film production by electrophoretic deposition. 

In this chapter the novel production of thin NiMn20 4+8 films by electron-beam 

evaporation is presented. The experimental steps are discussed in detail, such as the 

production of phase pure NiMn204+8 powder target material, the E-beam evaporation 

process itself and post-deposition annealing treatments. The cleaning procedures 

employed for the glass and alurnina substrates are described as is the careful 

adjustment of the parameters involved in setting up an E-beam evaporation 

experiment for the production of dense polycrystalline films. 

The target powder and the deposited films were both examined in terms of phase 

purity and stoichiometry (i.e. Ni : Mn ratio), and the films were studied in terms of 

the morphology and the film profile. The thickness distribution of evaporated films 

was analysed and compared to a theoretical model, derived from evaporation theory. 
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3.2. Electron-beam evaporation processes 

3.2.1. Basic principle of the growth process of films 

In E-beam evaporation experiments an electron beam is emitted from a filament and 

focused on the target material by means of a high potential, heating the target 

sufficiently to cause sublimation. 

In basic evaporation processes a small region with a high density of evaporated 

particles occurs directly above the target surface and diffusion processes contribute 

to the normal advective or molecular flow [5], [6]. Away from the target surface the 

beam density is much lower and the mean free path of the particles is significantly 

increased such that diffusion no longer occurs. The evaporation rates of the system 

used for this study were low(~ 0.8 nm sec-1
) and therefore the region ofhigh particle 

density was presumed to be small and diffusion effects were neglected for theoretical 

considerations [7]. 

Accounting for molecular flow only, the number of particles dNe which evaporate 

from the source surface area Ae per time dt are given by the well known Hertz-

Knudsen equation [8]: 

dN _ _!_ 

_e = (27r m k8 T) 2 (p*- p) · 
Adt ' e 

3.1 

where m is the mass of the evaporated particles, p* the vapour pressure of the target 

material, p the hydrostatic pressure and T the target temperature. E-beam evaporation 

is usually carried out in high vacuum and assuming a comparatively high vapour 
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pressure of the target the hydrostatic pressure p can be neglected to a good 

approximation [8]. 

Evaporated particles incident on the substrate will either be adsorbed or reflected 

with a certain probability, described by the sticking coefficient K (0 < K < 1 ). 

Nucleation takes place if adsorbed particles are forming pairs acting as nucleation 

centres for further incident particles. Nucleation initiates if the incident beam 

exceeds a critical density De which was given by Langmuir and Frenkel [9]: 

V ( EAd) 
De = 4A exp -kaT ; 3.2 

A is the cross section for capture of a particle, EAd the sum of adsorption energy of a 

single particle and dissociation energy of a pair, and v is a vibrational frequency 

characteristic for the adsorbed particle. With all types of E-beam evaporation 

systems currently used, the critical beam density can be reached easily, such that 

continuation of the nucleation process leads to the film formation. 

3.2.2. Target powder production 

For the evaporation of the target material the average grain size and the grain size 

distribution of the target powder are believed to have no significant influence on the 

process. Therefore, NiMn20 4+a target powder was synthesized by a production route 

based on firing pre-cursor oxides at 1150°C because of the ease of this procedure as 

described in chapter 2.4. The melting point of the pre-cursor oxides is 1984°C for 

NiO and 1585°C for Mn20 3 and the chemical reaction of both oxides leading to 
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NiMn20 4+o can therefore be regarded as a solid state reaction. To ensure an 

appropriate efficiency of solid state reactions a thorough mix of the reactants is 

essential since inter-diffusion will be slow in solids. To achieve this, equimolar NiO 

and Mnz03 were mixed with a pestle and mortar for up to 30 minutes. The mix was 

then fired for 12 hours at 1150°C in a furnace (Lenton Thermal Design) controlled 

by a manual temperature controller (Eurotherm). An annealing process at 800°C for 

60 hours was carried out to re-incorporate released NiO into the spinel crystal. 

According to the phase diagram presented in chapter 2.3 the following reactions 

occurred: 

xNiO (s) + x/6 0 2 (g) 

1150 oc 
12 " 

800 oc 
60 h 

(3- x/3) Ni(3-3x)/ (3-x)Mllti/ (3-x)04 ( S) + 

3.3 

The oxygen gain/loss parameter 8 in NiMn20 4+o has been neglected in eq. 3.3. The 

resulting solid NiMnz04+o was crushed by using a pestle and mortar and the phase 

purity was assessed by using X-Ray diffractometry (XRD) (Philips PW2273). With 

this device only small amounts of powder could be examined, as the powder had to 

be placed on an IPA (Iso-2-Propanol) covered glass slide enabling adhesion to the 

glass after the IPA had dried. The XRD patterns collected were smoothed, the alpha2 

intensity stripped out and the background subtracted using PowderX software [10]. 

48 



Chapter 3 -Thin film production by Electron-beam evaporation 

NiMn20 4+<> films were grown on blank 1 mm thick soda-lime glass substrates of 25 x 

75 mm size and heat resistive quartz glass substrates of 6 x 6 mm size and 0.5 mm 

thickness. 

Layers were also deposited on Ah03 substrates, which had been previously patterned 

with an inter-digitated Al electrode structure as shown in Fig. 3.1. They were 

supplied in sheets on which several 8 x 15 mm electrode patterns had been printed. 

The single patterns had been scribed, so that the sheet could been broken into 

individual samples. 

Fig. 3.1 Alz03 substrate with pre-digitated Al contacts 

After deposition the two square Al contact pads were used to connect the sample to 

two copper wires with solder using a solder iron. For theE-beam film deposition the 

Ah03 substrates were placed on a purpose-built mask to prevent coverage of the two 

contact pads by the film. Contact deposition for all types of NiMn20 4+<> materials is 

described in more detail in chapter 5.3 .I. 

Before film deposition, all types of substrates were cleaned thoroughly in a multi­

step procedure to remove all types of impurities. First, manual cleaning with a 

common detergent and scrub in hot water was carried out, followed by an ultrasonic 

49 



Chapter 3 -Thin film production by Electron-beam evaporation 

water bath with the substrates placed in a solution containing decontamination agent 

(Decon 90). Finally a refluxing procedure in hot IPA (lso-2-Propanol) for up to 4 

hours was applied. IPA contained in a glass flask was boiled and the vapour allowed 

to rise by-passing the substrates through a vapour collector pipe. The IPA vapour 

was then condensed and allowed to drop in order to rinse the substrates in the main 

refluxing chamber, ideally removing any organic or inorganic impurities. Once the 

lP A level had reached a siphon level, all lP A was siphoned out and returned to the 

bottom flask in order for the cycle to be repeated. For refluxing, the substrates were 

loaded in a PTFE purpose-built sample holder, which had been cleaned manually 

with hot water and detergent beforehand. 

3.2.4. The E-beam evaporation system 

The E-beam evaporation system used for film depositions is shown in the schematic 

diagram in Fig. 3.2. Electrons emitted from a tungsten filament were accelerated 

through a variable high potential (high voltage) and focussed onto the source, in this 

case NiMn204+1> powder contained in a graphite crucible. The rising NiMn20 4+8 

vapour condensed on the substrate forming an even and dense film as described in 

section 3.2.1. 

The high voltage and the beam current had to be adjusted carefully to allow 

sufficient heating of the target, but to avoid spontaneous discharge, which short­

circuited the system. Unfortunately, this tended to occur regularly every few minutes 

and the target heating process then had to be re-started. It is believed that the target 

temperature varied significantly during the course of one full deposition process 

depending on the number and frequency of interruptions. 
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Substrate 

Electron Focusing Cage 

Filament \ 
current 

+ Low 
vottageo---.----------..., 

High voltage 

\ I 

\ r 
\ / ./Target Material 

1+ ~· / 
:~~=========..:..Graphite Crucible 

Fig. 3.2 Basic principle ofE-beam evaporation 

Filament 

Furthermore, the beam current and the electron beam focus (spot size s) varied 

significantly with the shape and size of the filament and the reproducibility of the 

target temperature might well have been affected again, as the filament had to be 

changed regularly every few evaporation processes. 

The full evaporation process was carried out in an evacuated chamber under a glass 

dome (10-2 Pa - 10-3 Pa) using a combined rotary and oil diffusion pump system 

(Fig. 3.3). The substrates could be heated with a quartz-halogen lamp controlled by a 

chromel-alumel thermocouple linked with a temperature controller (Eurotherm Cal 

9900). The electron beam source assembly is shown in Fig. 3.4. Three crucibles 

could be fixed on a moveable water cooled pedestal, enabling the deposition of 3 

crucible loads within one experiment. 
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Heater 

Vacuum 
Pipes 

Valve2 

RotaJY Pump 

Fig. 3.3 Schematic diagram of theE-beam evaporation system 

The clean substrates were placed on the metal substrate holder above this 

arrangement (see Fig. 3.3) and it was ensured that the substrates were insulated. The 

substrate holder was earth-grounded and it was found that unless steps were taken to 

prevent it, once the substrate was fully covered with hot conducting NiMn20 4+s, the 

beam would be diverted away from the source onto the film and discharge over the 

substrate holder. This resulted in excessive heating of the substrate, shattering it in 

the case of glass slides and the efficiency of the target heating would be reduced as 

well. 
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Water-cooled 
pedestal 

Fig. 3.4 Electron-beam source assembly 

3.2.5. E-beam evaporation process parameters 

Filament 

Electron 
focus sing 
cage 

For the electron-beam evaporation procedure the following process parameters 

proved to be appropriate: 

Substrate temperature : 

Distance source-substrate (h) : 85mm 

Distance source-filament: 25mm 

Filament diameter: ~ 15mm 

Deposition time : 20 - 90 minutes 

Beam current : ~20mA 

High voltage: ~5 kV 

Deposition rate : ~ 0.8 nm sec-1 

Target (crucible) diameter: 11 mm 
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on the target surface (s) : 
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1.5 mm± 0.3 mm 

The parameter s describes the radius of the E-beam spot on the target surface, which 

determines the active region releasing the vapour. 

Films were grown on the pre-printed Ah03 substrate units containing 4 electrode 

patterns, which were subsequently broken into individual samples and annealed at 

different temperatures. Annealing was carried out in an air tube furnace (Lenton 

Thermal Design) in order to improve crystallinity and microstructure. The 

complicated phase diagram for NiMn204+s would suggest that ideally annealing 

should be carried out at a temperature of 800°C. However, for Ah03 substrates 

annealing had to be restricted to temperatures below 500°C to avoid oxidation of the 

pre-printed Al contacts, with the annealing time shortened to 30 minutes in order to 

mmumse possible segregation of additional phases (see phase diagram in chapter 

2.3.). 

Two samples were produced on Al20 3 substrates, sample 1 was annealed at 200°C, 

300°C and 500°C and one section kept in the as-deposited state, sample 2 was 

annealed at 300°C and 400°C and again one as-deposited section kept. Films 

deposited on soda-lime glass slides were cut into smaller pieces and annealed at 

temperatures up to 300°C as the slides tended to melt at higher temperatures. As a 

consequence, films were also deposited on temperature resistive quartz glass, but the 

films tended to re-evaporate during annealing at 800°C for 30 minutes. 

Sample 3 was grown on soda-lime glass, one section was annealed at 300°C and one 

kept as-deposited. During optimisation of the E-beam evaporation procedure samples 

4-7 were grown on soda-lime glass without post-deposition annealing. 
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3.3. Thickness distribution of E-beam films 

3.3.1. Evaporation theory 

On deposited films, the spatial distribution g( rp) of evaporated particles for 

deposition rates lower than 5 run sec-1 is described by the classical cosine law of 

emission [11]. 

1 
g(lp) = -COS(lfJ) 

Jr 
3.4 

where rp is the evaporation angle (Fig. 3.5). Following the approach described by 

Maissel and Glang [8], the mass sublimation rate r per unit evaporating area Ae can 

be written by using eq. 3.1 as: 

I 

r _ dNe _ ( m J 2 
.. 

- m Aedt - 27r k BT p ; 3.5 

and after time t the total amount of evaporated material Me is 

3.6 

Based on the cosine law of emission (eq. 3.4), the mass evaporated from a point 

source dAe into the elemental solid angle dm is given by 

dM e ((/J) =Me COS (/J dw 
1[ 
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Fig. 3.5 Elemental solid angle dm, evaporating area dAe and substrate area dAr, [8] 

For a substrate element dAr as shown in Fig. 3.5 the deposited mass is 

3.8 

using dAr =? dm lcosB, and K is the sticking coefficient (K < 1} The film thickness 

in dAr is 

3.9 

where p v is the density of the material. For a substrate parallel to the source it is 

clear that B= f/J (cosB = cos<p= h/r (Fig. 3.6)) and one obtains from eq. 3.8 and 3.9: 

d=-~- K Me h
2 

Pv 1! r4 
3.10 
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Fig. 3.6 Relations between e, cp, I, hand r for parallel source and substrate, [8] 

Substituting eq. 3.6 into 3.10 leads to: 

d= f f 3.11 

Eq. 3.11 strictly applies to a point source, so for disc sources of radius s it ts 

necessary to integrate over the source area: 

d= fff S f da K h2 

---=-
4 
-ds dt ; 

Pv 7r r t sa 

3.12 

where the source area is dAe = s dads (Fig. 3. 7). 
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Fig. 3. 7 Geometry of a circular disc source, [8] 

Integration over da and ds may be carried out by using the relation 

? = h2 + P + ; - 2/s cosa, to give : 

3.13 

Eq. 3.13 describes the film thickness d dependent upon the distance I of the film 

element to the source- substrate axis, the total mass of the evaporated material Me 

and the density of the films p v. 
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3.3.2. Film profiles 

The film profiles for all types of E-beam evaporated films were examined using 

alpha-step stylus pro:fileometry (Tencor Systems Alphastep 200). A line was 

scratched through an appropriate part of the film using a razor blade and a scan over 

the resulting substrate-film step gave the film thickness. 

In order to compare eq. 3.13 to the thickness distribution of grown films, a regular 

array of holes was marked into a film in the as-deposited state grown on 3 soda-lime 

glass slides revealing the substrate as depicted in Fig. 3.8. 

Fig. 3.8 E-beam evaporated film on glass slides with arrays of holes 

The film thickness at each of the holes was measured with the Alphastep 

pro:fileometer. 

Examination of eq. 3.13 indicates that the film thickness is critically dependent on 

the beam spot radius sand should be determined as precisely as possible in order to 
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mmnmse uncertainty in the predicted distribution. As mentioned above the 

uncertainty in s is about ±20%, which is rather high leading to high inaccuracy in 

determining the thickness distribution. 

3.3.3. Tllnickness distrillmltiollll of fillms 

The profile of the E-beam evaporated film shown in Fig. 3.8 was obtained by 

plotting the film thickness at each hole scratched in the sample versus the position on 

the film (XN Data). 
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Fig. 3.9 Film profile ofE-beam evaporated film 
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From the thickness distribution in Fig. 3.9 a cross section through the middle of the 

film was taken and plotted in Fig. 3.10 together with a theoretical curve calculated 

from eq. 3.13. For clarity the theoretical curve has been shifted towards higher 

values. 
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Fig. 3.10 Film profile, __ theoretical curve, . . . . . . experimental distribution, 

_ _ target - filament - substrate trajectories 

The theoretical and experimental curves may be aligned by assuming that a sticking 

coefficient K of 80 ± 1.5% occurred, which is a reasonable value for an E-beam 

evaporation process. 

The total evaporated mass Me was measured from the weight loss of the target to be 

0.24 ± 0.01 g and the density p v ofthe films was taken to be 5.25 g·cm-3
, calculated 
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from the unit cell. For thin evaporated films it is reasonable to assume that the film 

density is very close to the theoretical value especially as there were no pores or 

other irregularities observable in the films (see next section). 

From Fig. 3.10 it can be seen that at the film periphery the thickness drops 

dramatically. This is due to the shadowing effect of the focussing cage as 

demonstrated by the target - filament - substrate trajectories in Fig. 3.2 and in Fig. 

3.1 0. The opening angle of the trajectories was determined by the aperture in the 

focusing cage, which was 12 mm in diameter. 

3.4. Phase purity, Ni : Mn ratio and morphology of E-beam films 

The phase purity and orientation of the various layers was assessed by XRD (Philips 

PW2273). The data obtained was smoothed, the alpha2 intensity stripped out and the 

background subtracted using PowderX software [10] as was done for the source 

material. 

The morphology of the films and the residues of the evaporation process left in the 

crucibles were examined by SEM (Scanning Electron Microscopy) using either a 

Cambridge Instruments S600, or a Jeol JSMIC848. 

The Ni : Mn ratio in the source powder and films was assessed using EDAX (Energy 

Dispersive Analysis of X-rays), Link Systems Analytical AN1000, which was linked 

with the SEM systems. The relative concentrations of Ni and Mn were determined 

taking into account ZAF correction terms. For the manganese Ka 1 line the Z, A and 

F correction terms were 1.016, 1.005 and 0.912 respectively leading to a total 

correction parameter of 0.9310. For the nickel Ka1 line 0.982 (Z), 1.037 (A) and 

1.000 (F) gave a total correction of 1.0184. 
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3.4.1. XRD patterns of the target material 

The X-ray diffraction patterns for the source powders obtained from the precursor 

oxide route are shown in Fig. 3.11, indicating the phase purity of the powder when 

annealed at 800°C for 60 hours. The scan for the non-annealed powder shows the 

expected NiO impurities. All peaks apparent could be can assigned to NiMn204+o 

reference peaks obtained from a data base (JCPDS [12] no. 71-852) or NiO 

impurities (JCPDS no. 44-1159). 
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Fig. 3.11 X-ray diffraction pattern ofNiMn20 4+o powder fired at 1150°C for 12 h 

and annealed at 800°C for 60 hours 

The resolution of NiO and NiMn204+o peaks is difficult as they occur at similar 

angles. Two critical NiMn204+o peaks are shown in detail in the inset of Fig. 3.11 

and could be resolved as double-peaks for the non-annealed powder indicating the 

occurrence of NiO impurities. The scan for the annealed powder may exhibit hints of 
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NiO at the shoulders of the peaks at 43° and 62.3° towards higher angles, but this 

trend is not clear and the concentration of NiO impurities, if present at all, would be 

well below the resolution threshold of 5% wt. The reference spectra for all 

compounds containing Ni, Mn and 0 are given in Appendix B. 

3.4.2. XRD patterns of E-beam films 

In Fig. 3.12 the XRD scans ofthe thin film sample 1 are shown, E-beam evaporated 

on Ah03 substrate sections, which were annealed at different temperatures after 

deposition. The phase pure XRD pattern from Fig. 3.11 is shown as a reference. 
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Fig. 3.12 XRD pattern ofE-beam film sample 1, grown on Ah03 

substrate, annealed at different temperatures 
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It can be seen that the XRD-patterns of the films changed significantly compared to 

the target material. The pre-digitated AI contacts and the AI203 substrates showed 

XRD patterns in agreement with reference spectra obtained from the JCPDS data 

base (AI20 3 no. 46-1212 I AI no. 4-787), which allowed an unambiguous 

identification. The films showed only one clear broad peak at ~ 41.8° , but the main 

NiMn20 4+1i line at 35.5° could be overlaid by one from AI20 3 at 35.2°. However, the 

peak at~ 41.8° is not associated with any compound which could be present in the 

films, such as MnO (JCPDS no. 7-230), Mn20 3 (24-508), Mn02 (30-820), Mn30 4 

(24-734), NiMn03 (48-1330), N~Mn08 (42-479), NiO (44-1159) and NiMn20 4+1i· 

According to the JCPDS data base several peaks with lower intensities for some of 

these compounds can be found near 41.8° , but their intensities are all lower than 

35% of the main peak which makes it very unlikely that one ofthese occurred. With 

higher annealing temperatures the 41.8° peak in the spectra gets weaker while the 

crystallinity of the film improves significantly as will be shown later. Therefore, it is 

suggested that an amorphous-like phase existed with unknown composition and no 

references available. 

Fig. 3.13 shows the XRD traces from 5 non-annealed films of different thickness, 

deposited onto soda-lime glass slides. Variations in the XRD-patterns of films with 

different thickness can be seen, but no clear trend is apparent. It may therefore be 

concluded that the differences displayed in the spectra may not be related to film 

thickness, but arise from other origins, such as fluctuations in the target temperature 

during evaporation. In section 3.2.4. it was mentioned that temperature variations 

were very likely to occur. 
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Fig. 3.13 X -ray diffraction patterns for thin film samples 4 - 7, 

non-annealed on soda lime glass 

80 

Samples 4 and 7 seem to exhibit the main NiMn20 4+o peak at 35.5°, but all spectra in 

Fig. 3.13 show unassigned peaks as well, one corresponding to the 41.8° peak 

previously mentioned and additionally at~ 36.0° and~ 61.0°. 

It is suggested that different types of amorphous-like phases may possibly occur 

dependent on the deposition procedure, i.e. the target temperature. The degree of 

disorder in the amorphous-like phases might vary and a short range ordering of 

unknown type might be responsible for the unassigned peaks. 

The presence of an amorphous-like phase raises the question about the cation 

distribution, if no typical spinel crystal structure is present and the effect on the 

electron transport between localised electron states. It may well be possible that the 
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valencies of Mn cations may be different in amorphous-like NiMn204+o and the type 

of hopping transport may vary compared to (poly-) crystalline materials. 

In general it may be concluded that the composition of E-beam evaporated films in 

form of an amorphous phase varied significantly in a rather unpredictable way, 

which prevented the establishment of a reproducible production process of thin 

NiMn204+s films for the use in temperature sensing applications. 

Annealing at higher temperatures of 800°C could possibly lead to a crystalline 

NiMn204+8 phase, but the Al contacts on the Al20 3 would evaporate and soda-lime 

glass substrates would melt. Therefore, films were grown on heat resistive quartz 

glass and annealing at 800°C was attempted, but most of the deposited material 

evaporated during annealing and the residues were too small for XRD analysis. 

3.4.3. Energy Dispersive Analysis of X-rays (EDAX) 

The target material, the deposited films and the residues of the evaporation process 

were examined by EDAX and the ratio of Ni : Mn determined for the target and 

films. Table 3.1 shows the percentage of Ni and Mn detected for a representative 

experiment, together with the ideal value in NiMn20 4+o· 

Table 3.1 Ni and Mn concentrations of the powder and deposited films 

Ni %wt. Mn °/o wt. Ni% at. Mn% at. Ni: Mn at. 

powder 34.5 65.5 33.1 66.9 1 2.03 

films 44.6 55.4 43.0 57.0 1 1.33 

NiMn204+o 34.8 65.2 33.3 66.7.0 1 2 
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From table 3.1 it is evident that the E-beam evaporated films were Ni-rich as is also 

evident from the representative EDAX scans shown in Fig. 3.14 and 3.15, where the 

ratios ofNi to Mn peaks for the target and film were clearly different. 

Mn Mn 

tmJIII 

Ni 

Ni 

energy in eV energy in eV 

Fig. 3.14 EDAX for NiMn20 4+B powder Fig. 3.15 EDAX forE-beam film 

Mn 

.... 

Ni 

energy in eV 

Fig. 3.16 EDAX scan for evaporation residues 

An EDAX scan for the residues of the evaporation process is shown in Fig. 3.16, 

which seemed to be Mn rich compared to the target, but quantitative analysis was not 

carried out. 

Interpretation of these results is difficult as the evaporation process of NiMn20 4+6 

powder is not known. NiMn204+B may well dissociate during sublimation and Ni and 
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Mn atoms or oxides may form the vapour and could recombine on the substrate in an 

unknown way. In steady state, quasi thermal equilibrium may become established in 

the heated part of the source, in which case it is possible that the constituent elements 

of dissociated NiMn20 4+s will tend to establish their respective equilibrium partial 

pressures. This in turn would result in preferential evaporation and may explain why 

the films were Ni- rich and the source residues Mn- rich. 

It is interesting to note that the sublimation temperature for pure elements is higher 

for Ni than for Mn [13], and it might be concluded that Ni and Mn oxides had been 

formed and evaporated. Unfortunately, the evaporation residues extracted did not 

provide enough material to allow XRD analysis. 

All the films investigated were found to be Ni rich, but quantitative values for the Ni 

: Mn ratios varied from sample to sample, probably reflecting differences in the 

deposition conditions. 

Generally, the problems faced with retaining or controlling the composition of E­

beam evaporated films were found to be severe and a production process leading to a 

reproducible film composition could not be established. 

3.4.4. Scanning Electron Microscopy (SEM) 

SEM (S600 Cambridge Instruments) examinations were carried out for sample 1, 

grown on Ah03 substrate sections, which had been annealed at different 

temperatures. Figs. 3.17 - 3.21 show the morphology of the films. 
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Fig. 3.17 E-beam evaporated film on Ah03, as-deposited 

Fig. 3.18 E-beam evaporated film on Ah03, annealed at 200°C 

Fig. 3.19 E-beam evaporated film on Ah03, annealed at 300°C 
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Fig. 3.20 E-beam evaporated film on Ah03, annealed at 400°C 

Fig. 3.21 E-beam evaporated film on Ah03, annealed at 500°C 

The black square at the bottom line of each image corresponds to 20 f.J111 and the 

annealing time was 30 minutes at each temperature. 

The films in Fig. 3.17 and 3.18 seem to exhibit no pronounced grain structure, 

although the resolution is quite poor. Image resolution in Figs. 3.19- 21 is better and 

indicates the formation of a more distinct grain structure in films annealed at 

temperatures above 300°C. At 500°C the grains are more strongly differentiated, but 
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the surface roughness had increased. This might be due to increased phase 

separation, which may well occur at intermediate temperatures T ~ 400°C according 

to the phase diagram described in chapter 2.3. 

The Jeol JSMIC848 SEM system was used to examine thin films grown on heat 

resistive quartz glass. Confirming the trend from the previous SEM images, Figs. 

3.22 and 3.23 show that the film crystallinity improved significantly if post­

deposition annealing was carried out at 800°C. Fig. 3.22 seems to confirm the 

presence of an amorphous-like phase, as previously suggested, whereas the film 

annealed at 800°C showed clear crystallographic grains. 

Fig. 3.22 E-beam evaporated film on quartz glass, as-deposited 
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Fig. 3.23 E-beam evaporated film on quartz glass, annealed at 800°C 

An SEM image of source residues left in the crucibles is shown in Fig. 3.24 and it 

can be seen clearly that two different phases were present. 

Fig. 3.24 Evaporation residues, magnification: x 300 
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In the sequence of images Figs. 3.25 - 27 the magnification of the SEM was 

increased step-wise, revealing the structure ofthe different phases. 

These images suggest that the target temperature during evaporation was high 

enough to initiate crystal growth of separated phases. It appears that at least two 

different structures are present. 

EDAX was carried out focussing the electron beam on the two different phases 

separately. No quantitative analysis was carried out, but the fine structured phase was 

found to be nickel and the coarse phase to be manganese rich, which supports the 

notion that the NiMn204+1> target dissociated when heated by the electron beam. 

Reference to the phase diagram shown in chapter 2.3 (Fig. 2.3) implies that 

NiMn204+1> would dissociate into NiO and a tetragonal spinel Mn30 4 type structured 

phase at temperatures above - 900°C. 

Fig. 3.25 Evaporation residues, focus on fine structured phase 
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Fig. 3.26 Evaporation residues 

Fig. 3.27 Evaporation residues 
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3.5. Conclusioe 

Thin films were produced from a NiMn20 4+B target material by electron-beam 

evaporation techniques, but the composition of the films varied significantly from the 

target and were not reproducible as could be seen from XRD and EDAX 

experiments. It is suggested that this was due to variations in the target temperature 

during deposition, which could not be controlled, leading to differences in the 

mechanism of the evaporation process. 

Annealing procedures were not successful, because the annealing process was 

limited to 500°C for 30 minutes for films grown on Ah03 substrates as the pre­

digitated Al contacts would oxidise. Soda-lime glass substrates would melt and films 

deposited on heat resistive quartz glass substrates evaporated during annealing at 

higher temperatures. It was shown by XRD and SEM that E-beam evaporated films 

may exhibit an amorphous-like structure in the as-deposited state, but the film 

crystallinity can be improved by annealing processes, particularly if annealed at 

800°C. 

It is suggested that substrates without pre-digitated contacts should be used and the 

substrate material should be chosen more carefully to match the crystalline structure 

of NiMn204+8 as far as possible. This would enable better adhesion between substrate 

and film and annealing at 850°C for up to 30 minutes could lead to a pure NiMn20 4+8 

spinel phase making the process independent of differences in the film composition 

in the as-deposited state. 

Additionally, variations of the Ni : Mn ratio in the films and the target material were 

detected using EDAX, and turned out to be not reproducible in the films. 

76 



Chapter 3- Thin film production by Electron-beam evaporation 

The electrical conductivity might vary significantly with different cation distribution, 

which in turn varies with the Ni : Mn ratio, and could be different in a disordered 

amorphous-like phase. (Conduction in theE-beam evaporated films is discussed later 

in chapter 5 .4. 1.). 

Variations in the target temperature may be responsible for these inconsistencies. 

However, for laboratory processes the reproducibility of the production process is 

essential for further investigations and it is believed that the E-beam evaporation 

system used in this study was not appropriate to produce thin films based on 

NiMn204+o· However, the problems encountered with retaining stoichiometry are 

common using PVD methods, especially for depositing complex ternary compounds 

like NiMn204+S· 

Other methods may be more useful, such as thick film techniques where the source 

powder is mixed with a carrier material forming a paste, which can be screen-printed 

directly onto the substrates. Such screen-printing procedures were established to 

produce thick NiMn204+o films and are described in detail in the next chapter. 

In the present chapter it was also shown that the thickness and shape of E-beam 

evaporated films was highly controlled and in good agreement with predictions 

obtained from a theoretical evaporation model. 
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4.1. Introduction 

In this chapter the sample production of a reliable thick film temperature-sensing 

device based on NiMn20 4+& NTCR thermistor material is described. In the previous 

chapter it was suggested that thin or thick films of NiMn204+& may be a way of 

circumventing problems with bulk material and attempts to prepare thin films via 

electron-beam evaporation were described. However, NiMn20 4+& is a complex 

ternary compound and the vapour deposition of thin layers without loss of 

stoichiometry and changes in composition proved to be difficult. Consequently 

screen-printing procedures were developed as an alternative and direct film 

production technique. The aim of this chapter is to review the full thick film sample 

production process, which was largely developed at the University of Erlangen -

Nuremberg. The thick film NiMn20 4+& samples produced in Erlangen were examined 

in detail in this study in terms of their electrical characteristics, as described in later 

chapters, 5 and 6. During the previous work in Erlangen [1], the production process 

of NiMn204+& source powder by the thermal decomposition of eo-precipitated nickel 

manganese oxalate was optimised and the powder was mixed with dispersing agent, 

glass binder and a ''vehicle" to produce a suitable and printable paste. The optimised 

paste was printed onto Ah03 thick film substrates and the layers were sintered for 

densification and to control phase purity, and the morphology and profile assessed. 

The production of NiMn204+& thick films has been further investigated in this study 

by the detailed examination of different source powders and screen-printed films 

using XRD. The powder XRD data was further analysed using the Rietveld 

refinement method [2]. 
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4.2. Co-precipitated NiMn204+<> source powder 

4.2.1. Powder production 

The production of NiMn20 4+o source powder from the eo-precipitation of oxalates 

was investigated in an earlier study [ 1] and is published in detail elsewhere [3]. This 

method was also used in this work, where the powder production was achieved by 

the thermal decomposition of eo-precipitated NiMn2(C20 4)3 · 6 H20 as first 

described by Feltz et al. [ 4]. This compound has the required 1:2 nickel-manganese 

ratio appropriate for forming homogeneous NiMn20 4+o powder and guaranteed an 

intimate mix of nickel and manganese atoms. NiMn2(C204)3 ·6 H20 may be 

thermally decomposed at temperatures of~ 800°C resulting in a NiMn20 4+6 powder 

with a small average grain size distribution. The more conventional procedure of 

firing precursor oxides of the NiO- Mn20 3 system would require higher temperatures 

and an annealing process at 800°C to retain phase purity (see the phase diagram 

given in chapter 2.3.). This extensive heat exposure results in to strong grain growth 

and a high average grain size, unsuitable for screen-printing procedures. 

Fig. 4.1 shows the eo-precipitation production route, which involves three different 

stock solutions containing nickeL manganese and oxalate ions as a starting point. The 

nickel stock solution was prepared by the dissolution of nickel carbonate tetra­

hydrate (NiC03 · 4 H20, 99.996% purity) in diluted acetic acid (10%). Aqueous 

solutions of manganese (II) acetate tetra-hydrate (Mn(CH3C00)2 · 4 H20, 99.99% 

purity) and oxalic acid di-hydrate (H2C204 · 2 H20, 99.5% purity) were used for the 

manganese and oxalate stock solutions. The concentrations of the nickel and the 

oxalate stock solutions were determined precisely by titration methods. 
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NiC03· 4 H20, Mn(CH3C00)2· 3.96H20 
dil. CH3COOH (10%) 

~ 

Ni2+ 

Determination of concentrations 

Calcination leading to phase pure NiMn:P4+8 

Fig. 4.1 Principle ofthe mixed oxalate route, [3] 

For the nickel titration a nickel-amine complex [Ni(NH3) 6f+ solution was produced 

by adding ammonium hydroxide (NH40H) solution to a few millilitres of precisely 

measured nickel solution. The titration was carried out with Titriplex Ill (Na2-

EDTA) titration solution using murexide as an indicator, where the concentration of 

the Titriplex Ill solution had been checked by titrating a nickel standard solution of 

well-known concentration. 

The oxalate titration was carried out in a sulphuric acid environment at 80°C using 

potassium permanganate titration solution (KMn04) without an additional indicator. 

The concentration of the titration solution had been checked previously using a 
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sodium oxalate Na2(C20 4) standard solution, as Na2(C20 4) has no water ofhydration 

and a reference solution of precise concentration can be produced. 

The manganese titrations turned out to be not reproducible. Therefore, the amount of 

water of hydration of the manganese acetate (Mn(CH3C00)2 · 4 H20) was 

determined more precisely by thermal decomposition at 1200°C and weighing the 

original and the resulting powder, the latter being Mn30 4• Five thermal 

decompositions gave a mean value of 3.96 H20 water of hydration (Mn(CH3C00)2 · 

3.96 H20), which is in the range ofthe original value given by the manufacturer. The 

required quantity of manganese acetate Mn(CH3C00)2 · 3.96 H20 was then weighed 

accurately and dissolved in water. 

The nickel, manganese and oxalate stock solutions of well-known concentrations 

were mixed together in the appropriate ratio and NiMn2(C20 4)3' 6 H20 precipitated, 

which was expected to be complete after ~ 24 h. The remaining solution was 

evaporated using an evacuated rotating evaporator at 60°C and 60 mbar, which is 

appropriate for the evaporation of H20 as well as organic impurities. 

In order to further investigate the formation of NiMn20 4+o, eo-precipitated 

NiMn2(C204)3' 6 H20 was decomposed for 6 hours at different decomposition 

temperatures Td of 300°C, 330°C, 350°C, 375°C, 400°C, 500°C, 600°C 700°C and 

800°C. 

A slow heating rate of 1 K/minutes was chosen for heating up to the respective 

temperature and quench cooling was performed at the end of the heating period by 

removing the powder from the furnace and leaving at room temperature, in order to 

retain the phases present at the respective Td. A slow heating rate was necessary to 

avoid an abrupt release of the water of hydration in NiMn2(C20 4)3· 6 H20, which 

would lead to the material spilling out of the crucible. 
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It was previously shown [3] that the heat exposure may be reduced significantly by 

increasing the heating rate at temperatures where no reactions occur, such as the 

release of water of hydration, leading to a smaller average grain size. The optimized 

process was found to be decomposing at 850°C with a minimum holding time of 30 

minutes leading to a regular phase pure NiMn204+o spinel phase. 

4.2.2. XRD analysis of decomposed nickel manganese oxalates 

Fig. 4.2 shows the XRD scans of decomposed NiMn2(C204)3 ·6 H20 and it can be 

seen that the powders exhibited 5 different phase compositions dependent on Td. For 

300°C - 375°C a pure spinel NiMn204+o phase was detected, which is in agreement 

with the work of Feltz and Topfer [4] and Tang et al. [5], who claim that a cation 

deficient meta-stable spinel phase may be present. For Td values of 400°C - 700°C 

the above authors found in agreement with Wickham [6] that a mixed phase 

composition of Mn203 and NiMn03 occurs. The scans in Fig. 4.2 indicate the 

presence of NiMn03 at 400°C and 450°C, but the NiMn204+o spine! phase is still 

present and there is little evidence of the predicted Mn20 3 phase. Powders processed 

at 500°C - 650°C seemed to mainly consist of Mn20 3 and NiMn03, which is still the 

case for materials prepared at 700°C and 750°C, although increasing proportion of 

NiMn204+o can now be seen. This is clearly not in agreement with the phase diagram 

given by Wickham [6) (see chapter 2.3), where a mixture of NiMn03 and a 

NiMn204+o phase was proposed to occur at 700°C and phase pure NiMn20 4+o powder 

at 750°C. The XRD scans for Td = 800°C and 850°C (see Appendix C, xiv) clearly 

indicated the presence of a pure spinel phase, in agreement with Wickham [6). 
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For clarity of presentation, not all peaks in Fig. 4.2 have been labelled, but the full 

analysis of selected scans is given in Appendix C. 

The occurrence of NiMn20 4+s traces at 400°C and 450°C may be the result of the 

slow heating rate, where NiMn20 4+s may have formed at lower temperatures during 

heating up, but the phase transition from NiMn204+S to Mn203 and NiMn03 may not 

have been completed during 6 hours. Higher Td values of 500°C would be required to 

achieve this. The Mn203 and NiMn03 impurities at 750°C, where a pure spinel phase 

was expected, may be well result of the same effect of uncompleted phase transition. 

It is believed that a faster heating rate would minimise this formation of additional 

phases during the sweep through lower temperature regions. 

Rietveld refinement was carried out for the XRD scans shown in Fig. 4.2, and in 

addition for the powder decomposed at 850°C in the optimised procedure. 

4.2.3. The Rietveld refinement method 

The Rietveld refinement method was developed in order to fit a calculated curve to a 

full XRD scan by refining several parameters [2]. In this work the computer 

simulation process was carried out using Topas software [7], where detailed 

information about the crystallographic structure of each compound present in the 

material under investigation enabled calculation of the geometric and structural 

factors, which determine the peak intensities in the XRD scan. The fit was performed 

by using a least squares fitting routine, whereby the following residual sum Sy would 

be minimised : 
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4.1 

where Yi is the observed intensity and Mi(x) is the calculated value from the model. 

In Rietveld refinement analysis the R value of weighted parameters R wp is usually 

defined by (Young, [2]): 

4.2 

where Wi is the weighting factor (wi = llyi). The summations are always taken over 

all refined data points in the respective fit. 

The expected R value Re is defined by ([2]) : 

4.3 

where N is the number of fitting points and P the number of parameters. The 

goodness ofthe fit can then be assessed by determining the parameterS, defined by 

- Rwp. S--, 4.4 
Re 
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S values between 1 and 1.5 are desirable, values above 1.5 would suggest that the 

model is inadequate, whereas S values below 1 would indicate that the model 

contains more parameters than can be justified by the quality of the data [2]. 

In addition, the goodness of fit for each phase present in the material can be assessed 

separately by the factor Rsragg, defined as follows [2] : 

L I I K(obs )-I K(calc) I 
RBragg = =:...__c_---=L=-I-K_(_ob_s_) __ __,_ 

4.5 

where IK (obs) is the observed intensity of a Bragg peak and /K (ea/c) is its intensity 

calculated from the model. This definition implies that Rsragg factors are not always 

based on observed intensities, but on those deduced with the help of the model, i.e. 

one peak in the spectrum could be assigned with the intensities from more than 1 

phase. Therefore, Rsragg factors are biased and in favour of the model, but still they 

give a clear indication ofthe goodness offit for each separate phase [2]. Rsragg values 

between 1 - 2 would indicate an excellent fit, 2 - 5 correspond to a good fit and 

values above 10 suggest that the results of the respective phase may not be 

appropriate for taking any main conclusions or interpretations from them. 

Additionally, the errors in each single parameter i can be assessed by the estimated 

standard deviation (e.s.d.) CTi, defined as [2]: 

4.6 
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where Ui-l is the diagonal element of an inverse matrix and C the number of 

constraints applied. Both, Ui-1 and Care characteristic for each fit performed by the 

computer software. However, the a i values only give an estimation for errors arising 

from random errors alone but do not reflect any experimental error. Furthermore, it is 

important to know that a model inadequacy leading to a systematic error could 

masquerade as random error in the e.s.d. calculation [2]. 

In order to perform a reasonable fit, information is required about the phases or 

compounds present, their crystallographic space-group, unit cell geometry and 

reasonable starting values for the unit cell parameter(s), lattice angle(s) (if 

applicable) and the position of each atom inside the unit cell. This information was 

obtained from a chemical data base (ICSD, [8]) for NiMn20 4+s, Mn20 3, NiMn03 and 

Mn304 , where the positions of each atom in the unit cells were expressed as fractions 

x, y and z of the three unit cell basis vectors with 0 ~ x,y,z ~ 1. 

During the fits performed in this work several global parameters were refined : 

1.) A mathematical function was chosen to fit the shape of each peak (Pseudo­

Voigt) by 6 parameters. 

2.) The type of background (Chebychev) was specified and was fitted using 1 

parameter. 

3.) An arbitrary scale was used to relate the peak intensities of each phase 

present, which enabled quantitative specification of the percentage of each 

compound present in wt.%. 

4.) The correction term Zcorr was allowed to compensate for any possible 

misalignment of sample holder and detector in the XRD device. 
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The following compound specific parameters were refined: 

1.) The unit cell parameter(s) a, (b,c) in A 

2.) The lattice angle a in angular degree (if applicable) 

3.) The position of each atom x, y, z was refined, but only a small shift from the 

original value was regarded as being a reasonable result (complete changes of 

atom positions would change the unit cell symmetry). Special atom positions 

such as (0,0,0) where not refined. 

4.) The thermal factors Bth described the changes of the structural factors due to 

thermal motions of the atoms. The thermal factor Bth is defined by 

4.7 

where U is the square mean shift of the atom due to thermal motions with 

respect to the position of equilibrium : 

U= <r' 2> · 
' 4.8 

Here, the position of equilibrium is assumed at the origin and r' is the atomic 

distance to the equilibrium position. Eq. 4.8 is also based on the notion that a 

scattering event of X-rays involves a much larger time scale than thermal 

oscillations of atoms around the equilibrium position [9]. Bth values between 

I - I 0 would be reasonable and usually they should not differ significantly 

for similar atoms in the same fit. 
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5.) The average crystal size (grain size) Lcr was refined (here the peak type had to 

be changed to FP ( = fundamental parameters)) 

From the compound specific parameters the crystal density p v was calculated in 

g/cm3 for each phase. 

4.2.4. Rietveld refmement analysis 

For all XRD scans of decomposed oxalates Rietveld refinement of the data obtained 

was performed. The compounds present in each powder were identified from Fig. 4.2 

as described in the previous section. 

The 350°C -375°C, 800°C and 850°C XRD scans were analysed assuming only one 

NiMn20 4+s phase present, and the total number of refined parameters was 10. A 

second fit was performed to determine the crystal size with the peak shape set to FP 

(fundamental parameters), and the total number of parameters was 6. The atom 

positions in the NiMn20 4+s spine! were refined in a preliminary fit as described in the 

next section, and it was assumed that the atom positions in the defect spine! (300°C-

375°C) did not change significantly with decomposition temperature and were 

therefore set to be constant for subsequent fits, as was done for the regular spinel 

(800°C and 850°C). 

At 400°C, 450°C, 700°C and 750°C, 3 phases, NiMn03, Mn203, and NiMn204+s 

were assumed to be present. The total number of refined parameters was 32 and for 

the crystal size fit 20. At 500°C --650°C NiMn03, Mn20 3 and Mn30 4 were assumed 

to be present and 33 parameters were refined, for the crystal size scan 21. 
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The atom positions were again taken as constant determined from preliminary fits, as 

described in the next section. 

4.2.4.1. Refinement of atom positions 

It turned out that the simulations did not converge or would not lead to satisfactory S 

and Rsragg values if too many parameters were refined at the same time, which was 

the case if three different phases had to be analysed. Therefore, a preliminary 

refinement of the atom positions in the unit cell was performed from phase pure 

XRD scans. For NiMn20 4+& the atom positions were refined from the scan at 350°C 

representing the pure defect spine! and again at 800°C for the regular spine! phase. 

For further refinements it was supposed that at 300°C - 450°C the defect spine! and 

at 700°C - 850°C the regular spine! was present and the respective atom positions 

were taken as being constant. The same calibration for the atom positions in Mn20 3 

and NiMn03 was carried out from the 600°C scans, where both compounds were 

clearly detected. 

At 600°C the percentage of the Mn304 phase was not significant and was first 

neglected to obtain reasonable atom positions for Mn20 3 and NiMn03. The Mn30 4 

atom positions were then refined thereafter in the same scan. 

All refined atom positions are shown in Table 4.1 - 4.5, with the estimated standard 

deviations a i given and the original values from the ICSD data base given in 

brackets. In the regular NiMn20 4+& spinel the refined positions of the second 

manganese (Mn2) and the nickel (Nil) atoms showed no difference to the data base, 

only the oxygen position showed a slight shift. 
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Table 4.1 Refined atom position of the defect spinel NiMnz04+o 

(space-group fd-3m, point group m-3m) 

X y z 

Mnl 0 (0) not refined 0 (0) not refined 0 (0) not refined 

Mn2 0.6276±0.0051 (0.6250) 0.6276±0.0051 (0.6250) 0.6276±0.0051 (0.6250) 

Nil 0.6276±0.0051 (0.6250) 0.6276±0.0051 (0.6250) 0.6276±0.0051 (0.6250) 

01 0.3786±0.0025 (0.3860) 0.3786±0.0025 (0.3860) 0.3786±0.0025 (0.3860) 

Table 4.2 Refined atom position of the regular spinel NiMn204+o 

X y z 

Mnl 0 (0) not refined 0 (0) not refined 0 (0) not refined 

Mn2 0.6250±0.00035 (0.6250) 0.6250±0.00035 (0.6250) 0.6250±0.00035 (0.6250) 

Nil 0.6250±0.00035 (0.6250) 0.6250±0.00035 (0.6250) 0.6250±0.00035 (0.6250) 

01 0.3908±0.00041 (0.3860) 0.3908±0.00041 (0.3860) 0.3908±0.00041 (0.3860) 

Table 4.3 Refined atom position ofMn20 3 (space-group Pbca, point group mmm) 

X y z 

Mn1 0 (0) not refined 0 (0) not refmed 0 (0) not refined 

Mn2 0.2340±0.0052 (0.285) 0.2259±0.0050 (0.253) 0.0093±0.0068 (0.994) 

Mn3 0.9980±0.0055 (0.00462) 0.2385±0.0065 (0.285) 0.2997±0.0024 (0.246) 

Mn4 0.2178±0.0055 (0.253) 0.0059±0.0075 (0.00130) 0.2421±0.0081 (0.285) 

01 0.3929±0.022 (0.133) 0.3514±0.019 (0.915) 0.1280±0.020 (0.150) 

02 0.1755±0.030 (0.144) 0.1 034±0.025 (0.130) 0.8236±0.020 (0.915) 

03 0.8635±0.0 18 (0.920) 0.1504±0.024 (0.14 7) 0.2036±0.014 (0.124) 

04 0.6470±0.024 (0.626) 0.3748±0.023 (0.418) 0.5805±0.024 (0.644) 

05 0.6660±0.022 (0.649) 0.5769±0.025 (0.628) 0.390 1±0.020 (0.419) 

06 0.1773±0.027 (0.413) 0.6415±0.019 (0.647) 0.5979±0.033 (0.632) 
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For the Mn20 3 atom positions several values deviated significantly from the data 

base, which are printed bold. In particular, the first Mn203 oxygen atom position was 

shifted, as well as the z- value of the second manganese position Mn2 and the x-value 

of Mn3. As a result interpretations about the Mn20 3 phase have to be considered with 

care. 

The atom positions for NiMn03 and Mn30 4 matched well with the expected values 

as shown in Table 4.4 and Table 4.5. 

Table 4.4 Refined atom position ofNiMn03 (space-group R-3r, point group -3) 

Nil 

Mn1 

01 

Nil 

Mol 

01 

X y z 

0.355±0.00038 (0.352) 0.355±0.00038 (0.352) 0.355±0.00038 (0.352) 

0.156±0.00038 (0.148) 0.156±0.00038 (0.148) 0.156±0.00038 (0.148) 

0.549±0.0038 (0.560) 0.946±0.0040 (0.940) 0.250 (0.250) not refined 

Table 4.5 Refined atom position ofMn304 

(space-group 141/amd, point group 4/mmm) 

X y z 

0 (0) not refined 0 (0) not refined 0 (0) not refined 

0 (0) not refined 0 (0) not refined 0.625 (0.625) not refined 

0 (0) not refined 0.229±0.014 (0.227) 0.367±0.0096 (0.383) 
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4.2.4.2. Goodness of fit S, Rsragg, correction term Zcorr and thermal factors Btb 

Rietveld refinement was carried out with the atom positions given above and the 

following Sand R8 ragg values were obtained indicating the validity of the model: 

S values NiMn20 4+o NiMn03 Mn203 Mn304 

300 1.11 3.18 - - -

330 1.15 4.48 - - -

350 1.14 4.08 - - -

375 l.l5 4.35 - - -

400 L24 5.50 3.61 4.62 -

450 1.22 4.66 3.06 3.01 -

500 1.26 - 4.78 3.36 -

550 1.30 - 4.31 2.72 7.03 

600 l.l9 - 3.55 2.61 3.82 

650 1.20 - 3.72 2.93 4.52 

700 1.24 3.83 3.70 4.09 -

750 1.17 4.54 3.11 4.43 -

800 1.20 3.82 - - -

850 l.l3 3.82 - - -

The S values all indicated an acceptable fit (1 < S < 1.5) and the R8 ragg factors 

showed all acceptable values, too, except probably for Mn30 4 decomposed at 550°C, 

where the result may be considered with care. 
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It was attempted to fit all thermal factors Bth for each atom position (Mnl, Mn2, etc.) 

separately, but the values were differing significantly and were open to question. 

Therefore it was decided to set only one Bth value for refinement for each phase 

without differentiation between Ni, Mn or 0 atoms. This would lead to a good 

approximation as Bth is not supposed to vary significantly for different atoms. 

The fact that thermal factors could not be refined separately from XRD data is in 

agreement with the literature, where it was suggested that neutron diffraction data 

should be used for this purpose [2]. The Bth values obtained are shown in Table 4.7, 

together with the estimated standard deviations CJ' i· 

NiMn204+s NiMn03 Mn203 Mn304 

300 1.961±0.48 - - -

330 3.172±0.26 - - -

350 2.48±0.27 - - -

375 3.048±0.22 - - -

400 3.803±0.18 3.876±0.41 11.680± 11.23 -

450 3.982±0.20 3.808±0.29 8.176±10.27 -

500 - 4.60±0.12 0.3901±0.62 -

550 - 4.993±0.13 3.474±0.39 9.603±6.56 

600 - 4.650±0.13 3.567±0.48 5.048±2.10 

650 - 4.560±0.11 4.686±0.29 3.962±1.77 

700 4.662±0.35 4.657±0.12 4.842±0.29 -

750 5.314±0.15 5.095±0.16 4.350±0.27 -

800 4.839±0.075 - - -

850 4.898±0.074 - - -
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These values are all in the expected range and rather similar to each other, except for 

Mn20 3 at 400°C - 500°C, for NiMn204+& at 300°C and for Mn304 at 550°C. Values 

that differ significantly to the trend would suggest that the fit was not very good, 

which was supported by the high a i errors of these values. 

The Zcorr terms describing possible misalignments of sample holder and detector were 

found to be in the range of -0.13° - 0.08° , which are reasonably low values and 

could be explained by variations in the shape and alignment of the different sample 

holders used for each scan. The a i errors in Zcorr were all smaller than 10%, most of 

them significantly. 

4.2.4.3. Phase composition, unit cell parameter and average grain size 

The refined percentages in wt.% of the phases present are shown in Fig. 4.3, where 

the predicted region of instability of the NiMn20 4+o spinel at intermediate 

temperatures can be seen clearly. 

The estimated standard deviations a i for the phase percentages are displayed as error 

bars ofthe data points, except the ai values were too small to be resolved. The phase 

percentages of Mn30 4 were all small and are not displayed in Fig. 4.3. According to 

the computer model at Td = 550°C an amount of 4.87±0.02% Mn30 4 was present, at 

600°C 4.84±0.004% and at 650°C 4.84±0.003%. 
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350 450 550 650 750 

decomposition temperature in Celcius 

- NiMn20 4 - NiMn03 - Mn20 3 

850 

Fig. 4.3 Powder compositions at different decomposition temperatures 

In Fig. 4.4 the refined values of the average crystal sizes are shown in nm, together 

with some a i values depending on whether they were large enough to be displayed. 

It can be seen that the defect spinel NiMn20 4+li phase exhibited a very small average 

grain size in the range of 3 nm - 1 0 nm. This feature is very interesting and might be 

of great importance for nano-technological applications of this defect spinel powder. 

At Td ~ 700°C the grain size of the regular NiMn204+li spinel increased significantly 

with increasing Td as can be seen in the inset of Fig. 4.4. The drop in crystal size for 

the powder decomposed by the optimised process at 850°C demonstrates the 

effectiveness of reducing heat exposure for producing smaller grain sizes. 

NiMn03 exhibited modest increases in grain size with Td, except at 600°C, where the 

crystal size reduced with decomposition temperature as was the case at 750°C. This 

may reflect the fact that at 750°C a significant amount of NiMn204+li was formed 
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from NiMn03 and Mn203 grains, reducing their size. Similarly, at 600°C a strong 

reduction of NiMn03 and an increase of Mn20 3 concentration is shown in Fig. 4.3, 

which may suggest that a similar effect occurred. 
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Fig. 4.4 Average grain size at different decomposition temperatures 

The crystal size of Mn20 3 showed a uniform increase with Tct, except at 400°C and 

450°C, where the errors were too high for assessing the trend, and at 750°C, where 

the corresponding effect as for NiMn03 occurred. 
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In Fig. 4.5 the change in the unit cell parameter a in A and the crystal density p v in 

g·cm-3 are depicted for NiMn20 4+B· For all unit cell parameters the e.s.d. errors were 

too small and were therefore not displayed. 
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Fig. 4.5 Unit cell parameter a and crystal density p v ofNiMnz04+s 

Due to the cubic unit cell of NiMn20 4+s the crystal density p v is proportional to a-3 

as can be seen in Fig. 4.5. It is also apparent that a increased with increasing 

temperature with the exception of the material decomposed at 700°C, where it is 

suggested that a systematic error occurred. 

The increase in the unit cell parameter may well be due to differences in the cation 

distribution as mentioned by Boucher et al. [10]. They reported an increase of the 

lattice parameter between 8.395 A - 8.400 A for Td values between 750°C and 

940°C, which is in reasonable agreement with the results obtained. For the defect 
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spinel, a shows a stronger dependence upon Td, but no data for comparison can be 

found in the literature. 

The unit cell parameter a and the lattice angle a were refined for NiMn03, and the 

change of a with Td is shown in Fig. 4.6. 
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Fig. 4.6 Variation of a with decomposition temperature for NiMn03 

It can be seen that a varied significantly from the original value (ICSD) of 90° to 

values of ~ 54° - 55°, changing the unit cell geometry from a cubic to a 

rhombohedral shape. It is believed that this is reasonable, because other data bases 

(JCPDS [11], no. 48-1330) do suggest a rhombohedral shape. The variations in the 

lattice angle a are all in the range of 0.3 % and show no systematic trend with the 

decomposition temperature. 

In Fig. 4. 7 the unit cell parameter and the crystal density of NiMn03 are plotted vs. 

Td. and the changes in a and p v are rather small and may well be independent of Td, 

too. 
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Fig. 4. 7 Unit cell parameter a and crystal density p v ofNiMn03 

The refined unit cell parameters a,b and c for Mn20 3 are plotted together with the 

crystal density p v in Fig. 4.8. 
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Fig. 4.8 Unit cell parameter a,b,c and crystal density p v ofMn20 3 
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It can be seen that a,b and c varied slightly from each other at Td values of 400°C -

500°C, but were independent of Td at higher decomposition temperatures. Since a ~ b 

~ c, it is suggested that the structure of Mn20 3 was cubic, as reported in the literature 

[11 ]. The crystal density p v showed no significant Td dependence at all. 
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4.3. Screen-printing of thick NiMn20 4+o films 

4.3.1. Principles of screen-printing 

Screen printing is a thick film technique which is used for a wide range of 

applications, such as printing circuits on board or printing batches and labels on a 

wide variety of materials including metals, ceramics, textiles or wood [12]. Screen-

printing is a direct printing technique where the powder is mixed with carrier 

material forming a printable paste. The paste is pressed through a screen and 

deposited directly onto a substrate, which is placed few millimetres beneath the 

screen (snap-off distance) (Fig. 4.9), thus, no problems with loss of stoichiometry 

can occur. 

Paste 

, .. 

Substrate 

Paste drawn from open mesh 

"®) ,:,f: 

Gauze and Mask Frame 

Subst.rate Holder 

Paste lVIask 

r' 

Gauze 

Snap·off 
distance 

Fig. 4.9 Basic principle ofthe screen-printing technique, [13] 

As can be seen from Fig. 4.9, the paste is first placed on a framed screen consisting 

of gauze and mask. By applying a print stroke with a squeegee blade the screen is 

pressed on the substrate and the paste in front of the squeegee blade is forced into the 
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meshes of the screen. Behind the squeegee the screen snaps off the substrate to its 

original position, leaving the paste sticking to the substrate. If the paste rheology is 

correct, it spreads out over the substrate to form an even layer [14], which implies 

that the viscosity of the paste has to match several conditions. The viscosity must be 

high enough to avoid the paste dropping through the meshes when distributed on the 

screen before printing (see Fig. 4.9). Conversely, if any forces are applied to the 

paste in terms of a shear rate during the print stroke, the paste has to exhibit a lower 

viscosity in order to move through the screen easily and "flow" together on the 

substrate to form an even layer (LEVELLING) (Fig. 4.10) [15]. Within a few 

seconds the paste must regain its original viscosity to form a durable and stable film. 

Fluids displaying this sort oftime-dependent behaviour are called thixotropic . 
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Fig. 4.10 Applied shear rates and viscosity changes during screen-printing, [15] 

This specific paste rheology can be obtained by the appropriate mixture of suitable 

solvents and binders in the vehicle and the solid loading. 

Furthermore, a glass phase can be added as well to improve the microstructure ofthe 

printed films. After printing a heat treatment is required to evaporate the organic 
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additives of the vehicle resulting in a sintered film of the original source powder 

composition (and possibly an additional glass phase). The inclusion of a glass phase 

allows liquid phase sintering to occur, as at sufficiently high temperatures (T > 

600°C) the viscosity of the glass becomes low and it can flow between the grains by 

capillary action. On cooling, this results in a highly compacted film. Adhesion to the 

substrate is usually improved as well, particularly where Ah03 substrates are used, 

which also contain a glass phase. 

4.3.2. The screen-printing screen 

The screen is a crucial element in the screen-printing processes and it is essential to 

optimise its dimensions and parameters (14]. The screen mesh can be regarded as a 

volumetric measurement container determining the film thickness. 

After printing, the film thickness reduces due to the evaporation of the solvents and 

densification, but knowing the solid loading of the printing paste this shrinkage can 

be estimated. 

Fig. 4.11 Screen parameter, (14] 
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Fig. 4.11 shows the main screen parameters from which the theoretical film thickness 

hno can be calculated. dr is the thread diameter and m the mesh size. The theoretical 

film thickness hno is given by : 

4.9 

During the printing process, a restoring force is necessary for the screen to snap off 

the substrate and therefore elastic screen materials are used, such as nylon, stainless 

steel or polyester [16]. With a stainless steel screen a higher resolution ofthe printing 

pattern can be achieved, but it can be destroyed easily by applying too high a 

squeegee force. For a polyester screen this is not the case, but the resolution of the 

printed pattern is lower. 

4.3.3. The screen-printing process 

In order to produce an optimum printing paste, resulting in dense and even 

NiMn204+ii films, several components were added to the source powder. Two types 

of printing pastes were used, in one, NiMn20 4+s powder was mixed with the vehicle, 

containing organic solvents and organic binder only, and in the second a glass 

powder and an organic dispersing agent were included additionally. 

Table 4.8 shows the compositions of the two pastes before and after the heat 

treatment. 
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Table 4.8 Composition of the printing pastes in wt%, [3] 

Before thermal After thermal Before thermal After thermal 

treatment/ Paste treatment/ Paste treatment/ Paste treatment/ Paste 

without glass without glass with glass with glass 

Dispersing agent - - 0.85% -

Glass - - 6.8% 8% 

Vehicle 15% - 15% -
NiMn20 4 powder 85% 100% 77.35% 92% 

For the second set of samples the grains of the pure NiMn20 4+o source powder were 

covered with the commercial dispersing agent "Hypermer" (ICI Surfanctants, 

Hypermer LPI), which was dissolved in ethanol as a carrier liquid and mixed 

thoroughly with the NiMn20 4+o powder using an ultrasonic probe (KLN, 250/101). 

The ethanol was then evaporated in an evacuated rotating evaporator (Heidolph, 

VV200) and the glass phase included by mixing a glass powder (ESL Europe, code 

428) to the Hypermer-covered NiMn204+o grains. 

Next, for both sets of samples the powder was dispersed in the vehicle (ESL Europe, 

type 403) using a petri dish and a spatula, and possible agglomerates destroyed by 

drum milling (Otto Herrnann, 2/7533). The progress was monitored periodically by 

determining the size of major agglomerates with a grindometer (Sirnex, PF 50/2) 

until they were < 1 0 fliTl. 

The optirnised pastes were printed through a liST -mesh polyester screen onto Ah03 

substrates (CeramTec AG, thick film quality Rubalit 708) using a manual screen­

printer (DEK, Model 240). The Ah03 substrates contained a glass phase ( ~ 4% ), so 

stronger bonding of the films to the substrates was achieved for glass containing 

printing pastes. 
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For the screen-printing process the optimum distance between screen and substrate 

(snap off distance) was found empirically to be ~1.5 mm and the printing process 

was optimised by varying the viscosity of the paste by adding different amounts of 

vehicle. The optimum viscosity was ~ 10 Pa· s as determined using a viscosimeter 

(Paar Physica, UDS 200) and Table 4.8 shows the corresponding paste compositions. 

After printing, the organic components of the films were thermally decomposed 

(100°C -330°C) and the films sintered at 850°C for 30 min to achieve densification 

and strong film - substrate bonding. The heat exposure for the heat treatment was 

minimised in order to prevent extensive grain growth in the printed films, which 

leaves holes and pores on the film surface as large grains merge together. 

The phase purity of the printed and fired films was assessed by XRD analysis, while 

the morphology was examined using SEM (Cambridge Instr., model S250 MK3) and 

laser profileometry (UBM Messtechnik). 

4.3.4. XRD analysis of screen-printed films 

Screen-printed films with and without glass phase were examined by XRD analysis 

after the thermal treatment. For the scans shown in Fig. 4.12 the data was smoothed, 

the alpha2 intensity stripped out and the background subtracted using Powder-X 

software [ 17]. 

The phase purity of the printed and fired films is clearly demonstrated in the spectra 

given and for both types of film, with and without glass and dispersing agent, no 

peak was present which could not be assigned to either NiMn20 4+s or the Ah03 

substrate material. This is a clear indication for the phase purity of the fired films and 

it may be concluded that no chemical reactions between NiMn20 4+s and the glass 
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phase or the substrate material had occurred. The films with glass and dispersing 

agent showed slightly broader XRD peaks, which could be due to increased strain in 

the crystal or a smaller average grain size. In the next section it will be shown that 

the latter was the case. 
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Fig. 4.12 XRD scans for screen printed films, with and without glass phase 

4.3.5. Scanning Electron Microscopy (SEM) and surface profileometry 

The morphology of the screen-printed and fired films was assessed by SEM and laser 

profileometry. 

The samples containing a glass phase and dispersing agent showed a denser and 

smoother surface with a lower average grain size. The SEM pictures given in Fig. 

4.13 and Fig. 4.15 show the difference in the surface density and the average grain 

size clearly. It may be concluded that the glass phase contracted the grains during the 

sintering process leading to a surface with fewer holes and pores. The glass exhibited 
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a low viscosity at temperatures over 600°C and liquid-phase-sintering occurred 

enabling a rearrangement of the grains. This is demonstrated in Fig. 4.14 and Fig. 

4.16, which show the laser line scans over the surfaces of films prepared with and 

without glass phase. 

Fig. 4.13 SEM image for a film with 

glass phase, fired at 850°C for 30 min 

Fig. 4.15 SEM image for a film without 

glass phase, f1red at 8500C for 30 min 
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As can be seen, the surface of the glass containing film was much smoother. The film 

thickness of the glass containing sample was lower, indicating that the glass phase 

did result in an improvement of the particle packing as intended, leading to a denser 

film. The sample with glass was about 25 f.1IT1 thick, the one without glass - 30 f..IITl· 
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4.4. Conclusions 

In this chapter the NiMn20 4+o powder production by the thermal decomposition of 

NiMn2(C20 4)3' 6 H20 was described. Several powders decomposed at different 

temperatures for 6 hours each were examined by XRD analysis and a phase pure 

NiMn20 4+o spinel phase was found for decomposition temperatures of 300°C -

375°C and 800°C- 850°C. At intermediate temperatures mixed phases ofMn203 and 

NiMn03 were found some of them containing a NiMn20 4+o phase as well. 

Additionally, a small amount of an unpredicted Mn30 4 phase was detected at 550°C-

650°C. The percentages of all phases present were determined by Rietveld 

refinement analysis of the XRD spectra, which was also used to study variations in 

lattice parameter, lattice angles, atom position and grain size with decomposition 

temperature for each phase. 

Decomposition at 300°C - 375°C resulted in a spinel phase with an average grain 

sizes of 3 nm - 10 nm. Applications as source powder for screen-printing processes 

seem promising or as target material for other deposition techniques such as 

sputtering or other PVD processes. 

Source powder production for screen-printing processes by decomposing precursor 

oxalates at 850°C for 30 min was found to be most advantageous, whereby the 

heating rate was increased significantly in regions where no reactions would occur. 

The average grain size of this type of powder was determined using Rietveld analysis 

giving 0.17 Jlffi, compared to 0.30 f1ITl for the powder decomposed at 800°C for 6 h. 
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The paste production, the screen-printing process and the post-printing heat treatment 

were reviewed and the phase purity of the printed films with and without 

incorporated glass phase was demonstrated by XRD analysis. 

Previous results [3] have shown that the addition of a glass phase (5% wt.) lead to 

higher particle packing in the films and a smoother surface. 

Generally, it may be concluded that screen-printing procedures provided 

reproducible phase pure NiMn20 4+B thick films without loss of stoichiometry and a 

good surface morphology of the films. 
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Chapter 5 - D.c. measurements ofNiMn20 4+s materials 

5.1. Introduction 

There has been extensive discussion in the literature concerning the model, which 

describes electrical conduction in NTCR spinel ceramic materials best. The latest 

contributions report on electron hopping either between neighbouring localised 

electron states only [1] or regarding the possibility of variable-range-hopping [2]. It 

has also been pointed out that there might well be a polaron associated with the 

electron hop [3]. 

The aim of this chapter is to clarifY the type of conduction mechanism in NiMn20 4+i5 

for direct currents (d.c.) and resistance versus temperature (R-1) measurements were 

carried out as the means to achieve this. 

In order to display the R-T characteristics in precise detail the accuracy of collecting 

R-T data was optimised by designing an appropriate computer-controlled data 

acquisition system. With this system, R-T data was collected for thin electron-beam 

evaporated and screen printed NiMn20 4+i5 films, and bulk material in the form of 

pressed pellets over a low temperature regime of77 K- 350 K (LTR). Measurements 

at higher temperatures of300 K- 550K (HTR) were carried out manually. 

The slopes of the R-T graphs were analysed in detail to assess, which of the various 

models was appropriate. 
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In chapter 2 a general expression describing hopping conduction was given (eq. 

2.31): 

5.1 

5.2.1. NNH model 

For NNH, rij and C.j in eq. 5.1 have to be replaced by the dominating hopping length 

re to a nearest neighbour and by the average activation energy & 3• Both parameters 

are temperature independent for NNH. The r dependent part of the percolation 

threshold ;c ( eq. 2.11) can be separated and the second term in eq. 2.11, which is 

energy and temperature dependent, then fully describes the exponential temperature 

dependence. 

5.2 

with C, containing independent and C2 material dependent constants. In MKSA units 

the constants are given by : 
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5.3 

The charge carrier concentration n would be the concentration of contributing Mn4
+ 

donor states on octahedral sites, assuming Mn3+/Mn4+ hopping only. If hopping to 

Mn2+ sites occurs as well, n is much more difficult to determine as Mn3+ cations 

would act as both donors and acceptors. 

5.2.2. VRH models 

For VRH the concentration n of contributing electron states in space varies with 

temperature as pointed out in chapter 2. n was determined explicitly using the 

parameterised DOS g(&) shown in eq. 2.20: 

2R g' 

z+l (e'Y 
z+l 

&max 5.4 

g(&) is the total DOS per unit energy and unit volume and R is the fraction of sites 

being donors. Assuming Mn3+/Mn4+ hopping only, this would be: [Mn4+]/ {[Mn3+] + 

[Mn4+] }. Ifhopping to Mn2+ sites occurs, R would be more difficult to determine. 

In order to obtain a general expression for p, n from equation 5.4, cSJj = &nax from eq. 

2.24 and ru = rmax from eq. 2.25 must be substituted into eq. 5.1. Simplification ofthe 

above substitutions gives: 
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5.5 

where C1 are independent constants. C2 are material specific constants, also 

dependent on the parameter z, i.e. the shape of the DOS. p = (z+l)/(z+4). In MKSA 

units the constants are given by : 

I 

r, = :.( !!·;. (c·r (z+l)r 5.6 

The temperature dependence of the exponential and pre-exponential term in 5.5 is in 

agreement with the expressions given by Mansfield [ 4]. 

For an uniform DOS z = O,p = \14, s' = 1 and g' = g(& r), withg(& r) being the DOS at 

all energies in real and energy space. 

Basu et al. found by using STM/STS that the DOS g(s) in NiMn20 4+o has a parabolic 

shape and the parameter z would be 2. The resistivity in NiMn204+o would then be 

described by the following expression: 
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where T0 would be given by: 

1 1'a = 3.99 -
kB 

2/ 

(e'Y3 
a(g')~ 

Setting z = 2 in expression 2.26 gives: 

1/ 1/ 
E = (k 1: )12 (k T) 12 

max B 0 B 

binax clearly increases with increasing temperature according to &rnax ~ T Yz. 

5.7 

5.8 

5.9 

A parabolic DOS might well be the manifestation of a Coulomb type gap around the 

Fermi level. Shklovskii and Efros [5] have proposed the following expression for the 

DOS in the presence of a Coulomb gap: 

3 2 3 

( ) 
ElK 

g E = 6 
tre 

5.10 

8 1 is the energy of electrons with the zero level set to coincide with the Fermi level 

8 F and K = 4Jr 8 r" 8 o. Comparison with eq. 2.20 indicates that 8 1 would correspond 
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to J&-&FJ, z = 2, &'would be 1 and g' equals the constants in 5.10. Applying this 

specific parameterisation of g(&) to T0 in eq. 5.8 gives : 

5.11 

where f3 is a numerical coefficient. Eq. 5.11 is in agreement with To proposed by 

Shklovskii and Efros [5] for a DOS with a Coulomb gap present except that here /31 = 

3.99 rather than 2.8. In eq. 5.11 £ r is the dielectric constant and a the effective 

Bohr's radius ofthe electrons participating on the hopping process. 

5.2.3. Analysis of R - T data 

Direct current R - T characteristics were measured for NiMn204+o pellets, electron-

beam evaporated and screen-printed films. For all three types ofNiMnz04+o materials 

the R - T data was analysed by a sophisticated procedure, developed by Shklovskii 

and Efros [5], and proved to be applicable to real systems by Zabrodskii [6]. The 

method enables the parameter p [ = (z+ 1 )/(z+4)] to be determined and therefore to 

decide which VRH model provides a better description of the R-T behaviour or if 

NNH occurs. 

The starting point for the data analysis are the general VRH and NNH models from 

eq. 5.2 and 5.4 given in generalised form. It is believed that all other models 

described in section 2.5.9. are lacking theoretical justification and have not been 

considered. 
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(VRH) 5.12 

(NNH) 5.13 

First, VRH ( eq. 5 .12) will be considered. Taking the natural logarithm of 5.12 gives: 

lnR = lnC + 2plnT + (
I:To )P 

It is useful to define the parameter W : 

W=_!_ d(InR) =-2p + p(Tr0)P 
r d(r- 1

) 

5.14 

5.15 

W was calculated by differentiating 5.14 according to d(lnR)Id(lnT -1
). Note that W 

can be regarded as the slope ofthe lnR vs. 1/Tplot multiplied by T- 1
• 

The following assumption can be made to a good approximation: 

I-2PI << P(
T,To )P 5.16 

At a later stage in this chapter at the results section it will be shown that this 

assumption was a good approximation for the data obtained. By neglecting l2p I, the 

natural logarithm of W is given by: 
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lnW ~ lnp + plnTa - plnT = C*- pinT 5.17 

C* comprises all parameters independent of temperature T. By calculating lnW from 

the data obtained and plotting lnW vs. lnT the slope of the graph equals -p. 

It can be shown readily that using the same approach for the NNH in eq. 5.13 the plot 

lnW vs. lnT would exhibit the slope -1, if the following assumption is made: 

1-11 << ~ ; 5.18 

Clearly, by plotting lnW vs. lnT the parameter p can be determined independently of 

the pre-exponential factor providing a way to discriminate between the VRH models 

(p = 0.5 or p = 0.25) and the NNH model (p = 1 ). The characteristic temperature To 

of the models in 5.12 and 5.13 can be determined from the slope of a ln(RIT 2P ) vs. 

liT P plot for VRH and from a ln(R/7) vs. liT plot for NNH. For a NNH model T0 is 

directly connected to the average activation energy by & 3 = kB To . For VRH the 

activation energy changes with temperature and is connected to To via eq. 2.26. 
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5.3.1. Contacts 

Chapter 5 - D.c. measurements ofNiMn20 4+8 materials 

In order to measure the R-T characteristics by two-point-measurements, two contacts 

were deposited onto the films and pellets. It was necessary to ensure that the work 

function of the contact material was lower than for NiMn20 4+1i in order to avoid a 

Schottky barrier forming at the contact-sample interface [7]. Aluminium contacts 

were found to lead to Ohmic behaviour, so for each film two aluminium point 

contacts of 1 mm diameter and a distance of 7 mm apart were evaporated onto the 

film surface using a standard coating unit (Edward Ltd., USA, model 6E4). For the 

pellets the circular surface areas on both sides were fully covered and the edges 

polished to remove any possible traces of aluminium, which could short-circuit the 

pellet. 

The contacts were covered with quick drying silver paint (Agar Scientific Ltd., UK) 

immediately after deposition in order to avoid oxidation of the aluminium. The silver 

paint was allowed to dry in air overnight. Two copper wires were soldered to the 

contacts and ohmic behaviour was confirmed over the temperature range of interest 

by measuring the voltage vs. current (!IV) characteristics using a programmable 

electrometer (Keithley Instruments, 617 programmable electrometer) operating in 

"ohms IN " mode. In Appendix D the I - V characteristics at 3 representative 

temperatures (350 K, 293 K, 150 K) are given explicitly. They were recorded by 

applying voltages between 0.5 - 100 V, which showed linear current responses at 

350 K and 293 K. 
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For R-T measurements between 77 K and 350 K the samples were placed m the 

cryostat system (Oxford Instruments Ltd., DN1704) shown in Fig. 5.1. 
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Fig. 5.1 Cryostat system used for two-point R-T measurements 
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The two contacts on the sample were connected to the electrometer (Keithley 

Instruments, 617 programmable electrometer), operating in "Resistance " mode, via 

the sample holder, which was equipped with four pins, each connected to the 

electrometer via coax cables. The accuracy of the electrometer was ±2% as an upper 

limit. The resistance between the pins on the sample holder of the cryostat was 

determined to be - 1·1011 Ohm. Therefore, reliable measurements could be taken up 

to- 1·1 010 Ohm with a leakage current < 10%. 

The cryostat system was linked to a temperature controller (Oxford Instruments Ltd., 

ITC4) capable of setting and controlling the temperature in the sample chamber by 

resistive heaters embedded in a heat exchanger block attached to the sample 

chamber. Liquid nitrogen from an isolated reservoir was passed around the sample 

chamber to provide cooling and the temperature created by this interplay of resistive 

heater and liquid nitrogen was measured using a standard Pt resistance thermometer 

(sensor 1). The accuracy was± 0.2 K as an upper limit. 

The exact temperature of the sample could be measured using a second platinum 

resistance thermometer inside the sample chamber placed right beneath the sample 

(sensor 2), also connected to the temperature controller. 

The sample chamber was evacuated before measurements by a rotary pump to 

remove moisture and dust particles and was then flushed with helium gas. The 

procedure was repeated several times and the measurements were then conducted 

with the sample chamber filled to enable good heat exchange. 

The temperature controller was connected to a personal computer (PC) via a RS232 

data line and the Electrometer via an IEEE interface as can be seen in Fig. 5.2. IEEE 

hardware was installed on the PC for this purpose (Keithley, KPC-488.2 IEEE -

488EX interface) accompanied by the appropriate software (Keithley, GPIB CEC 
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488 drive) to access the interface from a Visua1Basic6.0 program, which allowed 

automated data acquisition as described in the next section. 

The RS232 connection was established over the RS232 port of the PC and no 

additional software was required as Visua1Basic6.0 has an integrated function 

enabling access to a RS232 port. 

Cryostat Temperature Controller 1-

Resistance meter: 
Electrometer 

~~ Sample t~ 
11.20 e21 R823 

0 0 

9_£ 
J 

IEEE 

Coax cables 

D Computer 

J 

Fig. 5.2 Principle of computer controlled two-point measurements 

5.3.3. Control software 

The computer program consisted of two main components. A data input section 

allowed the user to set the measurement parameters and the second control section 

carried out the measurement allowing the user to monitor the experiment on two R-T 

128 



Chapter 5 - D.c. measurements ofNiMn20 4+o materials 

output graphs on different scales. The basic schematic principle underlying the 

program is depicted in Fig. 5.3 and is listed in full in Appendix E. As indicated, the 

program follows consecutively several stages with associated windows. 

First, the user is informed in detail about the experimental set-up, how to connect the 

sample and to flush the sample chamber with helium (Introduction). Fig. 5.1 is 

shown in this section. 

Introduction 

usa information on 
measurement set up 

~ Measurement 

~ 
~ lr----11-- Measurement parameters 

.--------------. 
Data Innut 

Start temperature~~ 

End temperature -~ 
+--------' 

Temp. Increment~~ 

Create data ftle 

Data File 

set the temperature....._------if---1 

wait until tempaature 

has settled 

wait until resistance 

is stable 

Resist. Temp 
~J----t-----"\ write data to data file 

1.2 e+08 273 draw monitoring graphs 

::::::L ... ~~ 
,....... ·. 
·-·- . ... "" ... ... . .. 

End the program 

Fig. 5.3 Schematic principle of the computer program 

I Electrometer I 

The second window (Data Input) allows the user to provide details of the 

measurement procedure; the start and end temperatures of the measurement, the 

temperature increment, i.e. the temperature interval between 2 measurement points, 

and the name and path of the data file. 
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Another option (not shown in Fig. 5.3) provides a selection of measurement 

programs, which allow the resistance to be measured during cooling down or 

heating, or during a cooling and heating cycle or vice versa. The conduction 

mechanism expected can be specified to adjust the scale of the logarithmic 

monitoring plot, by specifYing the parameters A and B in the following equation : 

I 

R=C TA exp(; )" 5.19 

The monitoring plots are shown on a linear scale (R vs. T) and also on a logarithmic 

scale ln(RIT A) vs. ( 1 IT 118 
), enabling the user to assess the linearity of the graph and 

thus the validity of the model chosen. 

The program performs several steps to ensure a stable temperature and resistance 

reading. The first step in the measurement cycle is to set the temperature of the heat 

exchanger block via sensor 1. In order to ensure complete stability, the program takes 

pairs of readings from sensor 1, 3 seconds apart. Only if these two readings do not 

differ by more than 0.5 Kelvin and are within 1 Kelvin from the set temperature is 

the next step initiated, otherwise the program repeats the readings after 1 minute. 

Once the reading from sensor 1 is stable, the program takes a reading from sensor 2 

and the heat exchange is regarded to be accomplished if the readings from sensor 1 

and sensor 2 do not differ by more than 3 Kelvin, which can take several minutes. 

The temperature of sensor 2 is determined by taking 3 readings at 3 second intervals 

and it is ensured that the values do not differ by more than 0.5 Kelvin to guarantee 

temperature stability. 
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The stability of resistance is then assessed by taking two resistance readings from the 

sample within 9 seconds to ensure that they do not differ by more than 1%. This is to 

account for a possible response time of several seconds that NiMn20 4+o sensors are 

expected to exhibit, i.e. a change in temperature is not instantly reflected by a change 

of resistance. However, experience indicated that the limiting factor would be the 

response of the Electrometer and it took about 1 or 2 minutes until the electrometer 

reading stabilised following a change in resistance. 

In taking a 'single' measurement of resistance, the program actually carries out 30 

resistance readings, all within about 2 seconds, and averages the reading in order to 

eliminate statistical effects and to significantly reduce the uncertainty in the 

resistance under 2%. 

When the temperature and resistance readings are stable, one temperature reading 

from sensor 2 and a resistance reading (an average of only 20 readings now) are 

taken in short sequence. The data is written to the data file (Data File) and the two 

monitoring graphs updated, changing the scale of the axes if necessary. 

The program then sets the next temperature and the process is repeated until the end 

temperature is reached. The program can be finished by the user on the "End the 

program" window. The user also has the option of terminating the program at any 

time, either after completing the current temperature cycle or immediately. In both 

cases the data obtained so far is available in the data file. 

It is believed that the procedures employed to ensure thermal equilibrium, stable 

resistance and minimisation of statistical errors, resulted in high accuracy in the R-T 

measurements, which was achieved by fully exploiting the advantages of automated 

data acquisition. 
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5.3.4. High temperature regime (HTR) measurements 

Additionally, two-point measurements were carried out at higher temperatures 

between 300 K and 550 K. For this purpose the samples were placed in a heat 

resistive PTFE sample holder with two stainless steal drop down contacts. A 

chromel-alumel thermocouple was connected to the sample holder allowing the top 

of the thermocouple to touch the sample surface and the whole arrangement was 

placed in an insulated furnace as can be seen in Fig. 5.4. The heater supply was 

controlled by a temperature controller (Eurotherm, UK, Cal 9900) linked to the 

thermocouple, such that the temperature was adjusted manually with an accuracy of 

± 0.2 K. The resistance readings were then taken with the electrometer operating in 

"Ohms" mode. The inaccuracy of the device was corresponding to the L TR 

measurements below 2%. 

Thennocouple 

Temperature 
controller 

"'& 

CCD~ 

Heater Supply 

Sp~loaded drop­

down contacts 

Electrometer 

Contacts 

Insulated furnace 

Sample Sample Holder 

Fig. 5.4 Insulated furnace used for two-point R-Tmeasurements 
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5.4. Results 

R-T data for NiMn20 4+8 electron-beam evaporated and screen printed fibns, and for 

pressed pellets as a reference for bulk materials, were examined using the p-factor 

analysis described in section 5.2.3. The respective trends are presented in detail for 

each type of NiMn20 4+o material separately. The experimental uncertainty in the 

temperature measurement was~ ±0.2 K, which was too low to be displayed as error 

bars in any of the subsequent graphs in this chapter. This was also the case for the 

uncertainty in the resistance R, which was estimated to be below 2%, for the L TR 

significantly. For the L TR measurements it was believed that the averaging over 20 

resistance readings in order to obtain one accurate value lead to an effective 

reduction in the uncertainty in R far below 5%, as mentioned in section 5.3.3. 

The growth of electron-beam evaporated fibns on different substrate materials was 

described in chapter 3, the production of screen-printed fibns with and without an 

incorporated glass phase in chapter 4. NiMn20 4+8 pellets were obtained from 

elsewhere [8] and were used here as a reference for the fibns. They were produced 

from NiMn204+o powder, synthesized from the mixed oxalate route. The powder was 

pressed into pellets in a standard procedure, and the pellets were sintered at 1 000°C 

for 24 hours, annealed at 800°C for 40 hours and then electrically characterised [8]. 

5.4.1. Electron-beam evaporated films 

Thin electron-beam evaporated films grown on Ah03 substrates with pre-digitated 

aluminium contacts (sample 1 and sample 2) and on soda lime glass slides (sample 3) 
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were examined. The p-values were determined from the slope of the best linear fit to 

lnW vs. lnT data, whereby the fit was performed using a least-squares fitting routine. 

The data was fitted to a linear line described by (y = A + Bx), where y would 

correspond to lnW, x to lnT and B would give the negative p-value. Analysis of the 

intercepts A corresponding to c• in eq. 5.17 was not carried out. 

5.4.1.1. Thin films on Ah03 substrates 

The lnW vs. lnT plots of sample 1 in the as-deposited and post deposition annealed 

state are shown in Fig. 5.5. Annealing was carried out at 200°C, 300°C and 500°C 

for 30 min. 
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Fig. 5.5 lnWvs. lnT graphs for sample 1, annealed at different temperatures 

for 30 min, HTR and L TR 
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From Fig. 5.5 it may be concluded that conduction was by NNH asp tended to 1 for 

the HTR and the L TR, except when annealed at 200°C the specimen measured at the 

HTR showed a significant shift to a lower value ofp = 0.5. 

The uncertainty in p was calculated according to the definition given by Taylor [9] 

using the uncertainty a 8 in the B value from the linear least -square fitting routine. 

The values of p ± a 8 are shown in Fig. 5.5 for each graph and were all in an 

acceptable range. The uncertainty in p was higher in the L TR due to the lower 

number of data points and to a higher degree of scattering of the data points. 

Nevertheless, NNH was believed to be identified, with the exception of the sample 

annealed at 200°C, where p was close to 0.5, as expected for a VRH with a parabolic 

DOS. No physical explanation of this p-value seems reasonable and it may well have 

been subject to a systematic experimental error. The scatter in the data especially at 

higher temperatures was significant, possibly due to high temperature fluctuations 

during the measurement. Such high level of scatter reflects the fact that the curves 

are of differentiated data and therefore particular susceptible to noise. 

Fig. 5.5 shows that the alignment between the data obtained from the HTR and LTR 

was less than ideal. The contacts had been changed for measurements at different 

temperature regimes, but still the discrepancy was rather high and the experimental 

accuracy was open to question. 

In Fig. 5.6 the lnW vs. lnT plots are given for sample 2, which seemed to display 

NNH as well, although the specimen annealed at 400°C (for 30 min) deviated 

slightly from the NNH value and the correspondence between high and low 

temperature data was again rather poor. 
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Fig. 5.6lnWvs. lnTplots for sample 2, annealed at different temperatures 

for 30 min, HTR and LTR 

Here the uncertainty in p was reasonably low again and despite the experimental 

uncertainties, a clear trend towards NNH was observed in sample 2 as well as in 

sample 1. 

In section 5.2.3. it was noted that the p-analysis for NNH rested on the assumption 

that 

1-11 << ~ . 5.18 

For the samples investigated in the LTR this was indeed a good approximation as , 

T0/T was in the range of 16.8- 20.9. For HTR measurements the approximation was 

less good as T0/T was 1 0. 9 - 1 7. 5. It is clear that especially at the HTR the p-value 

might contain a perceptible error, but it is believed that the approximation was good 

enough nevertheless to enable a clear distinction between different hopping 

mechanisms in both temperature regimes. 
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As sample 1 and sample 2 were believed to exhibit NNH, the R-T data were plotted 

on ln(R/1) vs. 1/T axes shown in Figs. 5.7 and 5.8. 
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Fig. 5.7ln(RIT) vs. 1/Tfor sample 1, annealed at different temperatures for 30 min, 

HTR and L TR; the graphs in the HTR for the films annealed at 200°C and 300°C 

were shifted by 0.0001 and 0.0002 on the 1/T axis for demonstration purposes 
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In Fig. 5.7 it can be seen that the absolute conductivity at the HTR of the non-

annealed, and the 200°C and 300°C annealed films were all comparable, despite the 

differences in T0, but a change in the conduction mechanism for the sample annealed 

at 500°C was obvious. Fig. 5.8 shows that sample 2 annealed at 400°C showed a 

modest increase in conductivity, too. 

The characteristic temperature To(=& 3 /k8 ) was determined from the slope of the best 

linear fit to the graphs in Figs. 5.7 and 5.8 and the values obtained are summarised in 

Table 5.1. The fit was again performed using a linear least-squares fitting routine of 

the form (y = A + Bx), where y would correspond to In(R/1), x to liT and B would 

give the characteristic temperature T0• The uncertainty in To was calculated as the 

uncertainty in the B-value a 8 and is given for each graph in Figs. 5.7 and 5.8. It is 

shown that the a 8 values indicated an excellent fit, only in sample 1 at the L TR a 8 

was slightly higher than desired. 

Table 5.1 :Characteristic temperature To inK and activation energy & 3 (in brackets) 

in eV from ln(R/1) vs. 1/Tplots 

LTR HTR 
non-ann. 300 non ann. 200 300 400 500 

sample! 3.9 ·103 4.1 ·103 4.9 ·103 5.0 ·103 5.3 ·103 4.5·103 

(0.33) (0.36) (0.42) (0.43) (0.46) (0.39) 

sample2 3.4 ·1 03 4.6 ·103 5.0 ·10 
(0.29) (0.40) (0.43) 
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The T0 and s 3 values given in Table 5.1 are consistent with previous findings for 

bulk material. Brabers and Terhell [10] gave s 3 = 0.37 eV for measurements 

between 385 K and 550 K and Feltz et al. [11] gave T0 = 3.8 ·103 K for temperatures 

of273 K- 343 K. 

From Table 5.1 it is obvious that the characteristic temperature T0 showed generally 

higher values for the HTR than for the L TR. This shift in T0 towards higher values 

with increasing temperature could indicate that conduction was transitional between 

NNH and VRH behaviour. Electron-beam evaporated films on glass substrates, 

screen printed films and pellets all exhibited VRH as discussed later, so in the films 

there might well be a limited VRH component, although the full mechanism was 

clearly better described by a NNH model as the p-values were close to 1. A VRH 

component would indeed lead to an increase of To with increasing temperature, 

because the average activation energy in VRH increases according to &mac T y, (eq. 

5.9). This explanation is supported by the fact that only 3 of a total of 9 p-values 

analysed were marginally higher than 1. All other p-values were lower than 1, some 

ofthem significantly. 

Furthermore, it is obvious from Table 5.1 that the characteristic temperature T0 also 

changed with annealing temperature, as is illustrated in Fig. 5. 9. 

In Fig. 5.9, To was estimated at the HTR for sample 2 for the non-annealed state from 

the corresponding value at the L TR. For other samples T0 seemed to be about 1000 K 

higher at the HTR than for the L TR as could be seen in Table 5.1. The uncertainties 

in the T0- values were small as mentioned above and could therefore not be displayed 

as error bars in the graphs shown in Fig. 5.9. 

139 



Chapter 5 - D.c. measurements ofNiMn204+1l materials 

.!: 
• .... 
~ 52 ... 
i ... 
~ 
a. c 47 j > 

"15 
u :::.::: 
1i 42 'i: 

~ 
G> -s .r:. 37 u 

0 100 2CD DJ 400 500 

anneaing tef'11)erature In Celc:lus 

Fig. 5.9 Characteristic temperature To vs. annealing temperature 

It is clear that To increased with increasing annealing temperature up to 400°C, which 

might be due to improved crystallinity at higher annealing temperatures, as 

demonstrated by the SEM images of sample 1, shown in chapter 3.4.4. It was 

believed that an amorphous-like phase may be present in the as-deposited state, and 

with improving crystallinity and the formation of the typical spinel phase the 

conduction mechanism might well be transitional. The grain growth seemed to be 

more pronounced at temperatures of 300°C - 400°C, which is reflected by a non-

linear increase of T0. 

The activation energy could also be affected by a change in oxygen content 8 in 

NiMn204+S at different annealing temperatures, but the variations in c 3 IT0 are rather 

high and may not be fully explained by this possible effect. 

A significant reduction in To was observed for sample 1 with an annealing 

temperature of 500°C and it is believed that this occurred due to phase transitions at 

higher temperatures and possibly a different grain structure. In chapter 2 it was 

pointed out that NiMn20 4+s is not stable at temperatures in the range of 400°C -
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700°C and at high annealing temperatures of 500°C NiMn20 4+s may have 

decomposed to form NiMn03 and Mn20 3, resulting in a significant change in the 

electrical transport mechanism. This is supported by the fact that not only the 

characteristic temperature but also the absolute resistivity was reduced significantly 

compared to the other samples, as can be seen in Fig. 5.7. However, this trend is less 

clear in sample 2 annealed at 400°C, where the absolute resistivity decreased 

slightly, but no reduction in To could be observed. It is believed that the phase 

separation initiated at 400°C and its effects were much weaker and reflected less 

conclusively than for the sample annealed at 500°C. 

In addition to the To values, the pre-exponential factors C ( eq. 5.13) were determined 

as lnC, corresponding to the A values (y = A + Bx) in the linear least-squares fit, 

together with their uncertainties a A calculated according to the definition given by 

Taylor [9]. The trend of 1/C vs. annealing temperature is displayed in Fig. 5.1 0. The 

uncertainties calculated were in the range of 1.2 % - 3. 7 %, except for sample 1 at 

the LTR, where 7.6 % and 6.3 % was obtained, but still the values were too small to 

be displayed as error bars in Fig. 5.1 0. 
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Fig. 5.10 Pre-exponential factor 1/C vs. annealing temperature 
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Comparison with Fig. 5.9 indicates that 1/C followed a similar trend observed for To. 

This can be understood regarding eq. 5.3, where it can be seen that C is proportional 

to 1/&3 (To= &3 lkn). It may well be possible that non ofthe parameters in C (eq. 5.3, 

C = C1·C2) changed significantly with annealing temperature, except s 3· On the 

other hand, the ratio of the absolute values of 1/C seemed to be altered, suggesting 

that the parameters in C varied in the different samples. 

5.4.1.2. Thin films on glass substrates 

The lnW vs. lnT plots for sample 3, thin films grown on soda lime glass substrates, 

are given in Fig. 5 .11. 

2,7 • ······ ...... ... ~n . 300 
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Fig. 5.11 lnW vs. lnT for sample 3, non-annealed and at 300°C for 30 min, HTR 

Sample 3 exhibited p-values close to 0.25 suggesting that VRH with a constant DOS 

occurred. The uncertainty in p was low enough to exclude any ambiguities in 

identifYing the conduction mechanism. 

The p-value analysis for VRH rested on the assumption given in 5.2.3. : 
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5.16 

With p being 0.25 the expression on the left hand side of 5.16 is 0.5 and for the 

samples investigated at the HTR the right hand side was in the range of 11.5 - 15.4, 

indicating that the approximation was valid. 

The reason why conduction in sample 3 was by Mott VRH is not clear, but may 

reflect differences in possibly the film composition and crystallinity. The different 

substrate materials used or variations in the target temperature might be possible 

explanations for this. However, a change from NNH to VRH would imply that the 

differences mentioned lead to a reduction in the average distance between electron 

states r, and/or a variation in the shape of the electron wave functions dependent on 

a, as described in chapter 2.5.5./2.5.6. (eq. 2.8). 

In this context it should also be considered that electron-beam evaporated films were 

nickel-rich and that the nickel content varied significantly between different samples 

in an uncontrollable way. An increase of nickel concentration would clearly reduce 

the manganese, or in particular the Mn3+ and Mn4+ concentration leading to a higher 

average distance between donors and acceptors, and NNH could then be favourable 

rather than VRH. 

The corresponding ln(RIT 0
·
5

) vs. l/T 0
·
25 plots for sample 3 are given in Fig. 5.12. 

The slope of the graphs represents the characteristic temperature according to (To )0
·
25 

and an increase in To with annealing temperature can be seen, which is consistent 

with the previous findings for thin films exhibiting NNH. The slope B and the 

intercepts A were determined again by a linear least -squares fit, given in Fig. 5.12 as 

To and C together with the uncertainties. 
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For VRH with a constant DOS the characteristic temperature To is connected to the 

uniform DOS g(& F) as can be seen in eq. 5.6 . The explicit relation is 

1 21.2 
Ya= 3 ( ) kB Q g &F 

5.20 

In eq. 5.20, the upper limit of the Bohr's radii a can be obtained from a hard sphere 

model, where the radii of participating manganese cations on octahedral sites were 

given by 0.72 A for Mn3+ (low spin) and 0.67 A for Mn4
+ as an upper limit [12]. In 

fact the radii may well be below these values and at the end of chapter 6.4.3. it will 

be shown that a = 0.3 A is a reasonable estimation. 

g(&F) was then determined to be 4.87 ·1021 cm·3 (eV)"1 for the non-annealed film and 

1.95 ·1021 cm·3 (eV)"1 for the :fiJm annealed at 300°C. 

However, the g(&F) values obtained are low compared to crystalline Ge at the 

conduction band edge, where g( & F) is in the order of 1022 cm"3 
( e vr' [ 13]. On the 
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other hand, the density of states in amorphous H-doped silicon at low temperatures in 

the impurity conduction regime is in the order of 1017
- 1018 cm-3 (eVY1 [14], and the 

values obtained for NiMn20 4+o are more close to the crystalline reference. 

5.4.2. Screen-printed films 

The p-factor analysis for screen-printed films clearly indicated that VRH occurred 

with a parabolic shape of the DOS g(&). The factors p were shown to be very close to 

0.5, and the uncertainties in p were reasonably low. A p-value of 0.5 implies that z = 

2 (i.e. p = (z+1)/(z+4)), where z describes the energy dependence of the DOS 

according to g(s) ~ s=. 

The lnW vs. lnT plots for screen-printed films with and without glass phase are given 

in Fig. 5.13. It can be seen that there was close agreement of the lnW vs. lnT plots for 

films with and without the glass phase and, unlike the electron-beam evaporated 

films, the correspondence in the data obtained at the L TR and HTR was very good. 

It is interesting to note that the data for samples with glass phase was less scattered 

and more linear in the lnW vs. lnT graph, indicating that the R-T measurements for 

the samples with glass phase were more reliable. 

Again, the p-value analysis rested on the assumption 5.16 given above. Withp being 

0.5 the expression on the left hand side of 5.16 is 1 and for the samples investigated 

at the LTR the right hand side was in the range of 12.4- 18.8. For the HTR it was 

9.2- 12.5. Especially at high temperatures the p-value might display an error, but the 

conduction mechanism was again believed to be identified unambiguously. 

145 



Chapter 5 - D.c. measurements ofNiMn20 4+o materials 

3 

2,75 
~ 2,5 c: -

2,25 

2 

1,75 

4,5 5,5 6,5 

In T 

Fig. 5.13 lnW vs. lnT plots for screen-printed films, sintered at 850°C for 30 min, 

HTR and L TR, the graphs obtained for samples with glass are shifted by 0.25 on the 

lnW axis for demonstration purposes 

The R-T data of screen-printed films was plotted as ln(R/1) vs. l!T 0
·
5 (appropriate for 

a VRH model with a parabolic DOS), as shown in Fig. 5.14. 
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Fig. 5.141n(R/1) vs. 1/Tplots for screen-printed films with and without glass phase, 

sintered at 850°C for 30 min, HTR and L TR 
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The resistance for samples with glass phase was about a factor of 2 higher than those 

without glass and presumably was a consequence of the low conductivity of the 

glass. The characteristic temperatures To were determined from the slope of the 

graphs in Fig. 5.14 by least-squares fitting and are summarised in Table 5.2. 

The values of T0 were all similar regardless of whether a glass phase had been 

included, but a difference could be seen as To decreased with increasing temperature 

regune. 

Table 5.2 Characteristic temperature T0 inK from ln(R/T) vs. l!T 0
·
5 plots 

LTR HTR 

with glass 

If it is assumed that a Coulomb type gap in the DOS is present at the Fermi level, the 

product & r ·a can be determined from the characteristic temperature T0 ( eq. 5.11). The 

values for &r'a obtained were 2.78A- 3.09A. As mentioned before, the upper limit 

for the Bohr's radii of Mn3+/Mn4+ cations participating on the hopping was 0.72 A 

and 0.67 A respectively, which leads to a lower limit for the dielectric constant & r in 

NiMn204+8: Er~ 3.9. 

The intercepts A of the linear least-squares fit in Fig. 5.14 were determined and the 

constant C (eq. 5.13) calculated, given in Table 5.3. It can be seen that C increases 

with increasing temperature regime, contrarily to the characteristic temperature T0, 

which confirms the notion that the pre-exponential factor C (eq. 5.12), here 

consisting of all pre-exponential constants in eq. 5.7, is proportional to l!To (eq. 5.8). 
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Table 5.3 Constant C in Ohm I K from ln(R/1) vs. liT 0·
5 plots 

LTR HTR 

with glass 1.7 ·10-7± 5.6 ·10-9 8.6 ·10-7± 3.5 ·10-8 

without glass 3.1 ·10-8± 2.0 ·10-9 3.8 ·10-7± 9.7 ·10-9 

It is remarkable that the VRH model is still valid at higher temperatures, whereas in 

the literature VRH is reported to occur mainly as impurity conduction of 

semiconductors at very low temperatures only. It can be concluded that the first term 

on the right hand side in eq. 2.8 must be sufficiently small even at higher 

temperatures, which would require a small distance Tij between acceptor and donor. 

The Mn3+ and Mn4
+ concentration in NiMn20 4+8 is some orders of magnitude higher 

than any impurity concentration in semiconductors and Tij would be indeed 

comparably small in consequence. This is consistent with the findings in section 

5.4.1.2., where it was suggested that the DOS in thin films on glass substrates is 

several orders of magnitudes higher than in a typical semiconductor impurity 

conduction regime. 

It might also be possible that electron hopping is influenced by double-exchange 

effects via oxygen atoms, which has been reported to occur in manganate perovskite 

structures [ 15]. 

5.4.3. Pellets 

The measurement for a pellet was carried out in the L TR and the p-value was close 

to 0.5 with a low uncertainty, suggesting that a similar VRH mechanism with a 
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parabolic DOS was predominant as in screen-printed films. This finding is identical 

with the one obtained by Basu [8]. 

The lnW vs. lnT graph is given in Fig. 5.15, where the pressed pellet seemed to show 

agreement in the conduction mechanism with screen-printed films, leading to the 

conclusion that screen-printed films may exhibit bulk material rather than typical 

film properties, although the absolute resistance was a factor of 104 Ohms higher in 

films due to the different dimensions of films and pellets. The corresponding ln(R/1) 

vs. liT 0·
5 plot is given in Fig. 5 .16. 
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Fig. 5.15 lnW vs. lnT graph for a pressed pellet, sintered at 1200°C for 24 h and 

annealed at 800°C for 40 h, L TR 
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Fig. 5.16 ln(R/1) vs. 1 IT 0·
5 plot for a pressed pellet, sintered at 1200°C for 24 h and 

annealed at 800°C for 40 h, L TR 
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The characteristic temperature To proved to be slightly higher than for screen-printed 

films suggesting a lower & r'a product, which in turn may correspond to a smaller 

overlap of the wave functions of donor and acceptor. The To value obtained by Basu 

[8] was 2.23·105 K in very good agreement. The constant C in the pellet showed a 

significant shift compared to the films, suggesting that significant differences in the 

pre-exponential constants ( eq. 5. 7), described by C, occurred. 

5.4.4. Summary 

All p-factors determined for pellets, electron-beam evaporated films annealed in air 

at different temperatures and for screen-printed films with and without incorporated 

glass phase are summarised in Fig. 5.17. As can be seen the p-values for the electron­

beam evaporated films varied significantly, although in most samples NNH occurred. 

In contrast, all screen-printed films and pellets clearly followed a VRH model with p 

= 0.5. 

By investigating the trend of p-values for sample 1 and sample 2 it might be 

concluded that the p-values tended to lower values with higher annealing 

temperatures. Previously, an increase of the annealing temperature was associated 

with an increase in crystallinity and it is suggested that the transition from an 

amorphous to a more crystalline phase could be accompanied by a transition from 

NNHto VRH. 

The uncertainties in p are all displayed in Fig. 5.17 as error bars and especially for 

the screen-printed films high confidence may be placed in the identification of VRH 

with a parabolic DOS. 
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5.5. Conclusion 

For all types of NiMn20 4+o materials a strong NTCR effect was observed over the 

full range of temperatures (130K- 550K) as expected. In screen-printed films and 

pressed pellets the conduction was described best by a variable-range hopping 

model, assuming a parabolic DOS, as reported by Basu [8]. The resistance was best 

described by the following equation : 

(
T, )li 

R=CTexp; 5.21 

In most electron-beam evaporated films conduction appeared to be by NNH with the 

following R-T behaviour: 

5.22 

In some of the electron-beam evaporated films conduction followed a VRH model 

with a constant DOS for which the R-Tbehaviour is described by: 

( 

T, )0.25 
R=C TYz exp ; 5.23 
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The p-factor analysis for screen-printed films and pellets gave a very convincing 

indication for VRH with a parabolic DOS, whereas for electron-beam evaporated 

films there was considerable scatter in the p-values. The identification of NNH and 

VRH regimes was correspondingly less certain. The production of screen-printed 

films could be achieved with better control on all process and material parameters as 

described in chapter 4, whereas the production of electron-beam evaporated films 

was less controllable as described in chapter 3. It is believed that it was the better 

reproducibility of the production process that was leading to the greater consistency 

in the p-values as well as in the characteristic temperatures T0• 

It was pointed out in previous chapters that the glass phase enabled better mechanical 

properties of the films, whereas in this chapter the electrical properties seemed to be 

only marginally affected by the glass phase. The characteristic temperature seemed 

to be slightly lower for glass containing films, leading to less temperature dependent 

devices. However, the sensor performance would not be impaired and it may be 

concluded that a reliable temperature sensing device can be obtained by screen­

printing ofNiMn204+.s materials including a glass phase. 

Determining the characteristic temperature T0 of screen-printed films enabled the 

specification of a lower limit of the dielectric constant &r in NiMn20 4+.s (&r ~ 3.9), 

whereby a hard sphere model of the crystal atoms was assumed. 

The conduction mechanism in pellets was found to be very similar to the screen­

printed films, suggesting that screen-printed films with a thickness of~ 20 - 25 J..lffi 

exhibit bulk rather than typical film properties. 

The characteristic temperatures To (thermistor constant) of electron-beam evaporated 

films (3370 - 5310 K) were higher than for commercial bulk thermistors (2750 -

4100 K). The resistance tolerance of~ 5%-10% in commercial devices could not be 
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compared due to different film thickness in samples 1,2 and 3. For screen-printed 

films the absolute resistance varied by ~ 50% between samples with and without 

glass phase, but no data was taken to compare samples of the same sort. No 

assessment of the thermistor constants could be achieved for screen-printed films and 

pellets, as the values given for commercial devices are based on aR-T scale used for 

NNH. 

It was noted that in electron-beam and screen-printed films NNH and VRH models 

might be both valid in a transitional range of an intermediate type of electrical 

conduction, for example in the transition range from an amorphous to a more 

crystalline phase. 
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Chapter 6- A. c. impedance spectroscopy of screen-printed films with glass phase 

6.1. Introduction 

Impedance spectroscopy is a powerful tool to investigate the electrical characteristics 

of specimens of various kinds. Originally, alternating current (a.c.) impedance 

spectroscopy was developed to analyse electrolytic solutions in order to gain separate 

information about cathode and anode reactions [1]. Since then the technique has been 

also applied to the analysis of solid electrolytes and solid materials in general, to 

distinguish between bulk, grain boundaries and sample - electrode interface effects. 

Possible effects of minor secondary phases or surface layers may be identified and 

analysed as well. The principles for using a.c. impedance spectroscopy with ceramic 

materials have been described by Macdonald [ 1] and more particularly by Irvine et 

al. [2] .The first a.c. impedance spectroscopy experiments were carried out using 

single capacitance bridges, which were restricted to small frequency ranges. 

Nowadays, with the development of sophisticated impedance analysers, the 

application of a.c. impedance spectroscopy allows automated data collection of 

sample responses to an a.c. signal of :frequencies between 10-2 Hz up to 107 Hz. 

Impedance spectroscopy enables a qualitative analysis of the electric behaviour 

leading to an equivalent circuit model for the sample under investigation, and the 

quantitative contributions of the respective circuit elements to the overall impedance 

can be determined. In consequence, a.c. impedance spectroscopy is well suited to the 

examination and specification of possible effects of grain boundaries and bulk 

material on the conduction mechanism in thick NiMn20 4+s films and for the 

development of an equivalent circuit model. In general, the electronic properties of 

NiMn20 4+s may be further elucidated and the understanding of a.c. hopping 

extended. 
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6.2. 'lfheoreticaD wevfiew 

6.2.1. Basic principle of impedance §pectroscopy 

The basic impedance spectroscopy experiment is carried out by applying an 

alternating voltage signal to the sample under investigation: V(t) = V m sin ( 2tr f t). 

V(t) is the time (t) dependent voltage, V m the amplitude and f the frequency of the 

applied signal. The resulting current through the sample I (t) = Im sin (2trft + B) is 

measured with Im being the amplitude and B the phase shift. The impedance Z of 

the sample is defined as Z (f)= V(t)/ I (t) and its magnitude is I Z I = V m I I m (1]. 

Z can be represented as a complex number, where the real part Z' is the resistive 

component and the imaginary part Z'' the reactive component of the overall 

impedance Z . The complex impedance Z is given on the complex plane in Fig. 6.1. 

Y axis 
Im (Z) 

ZN ----------
I 
I 
I 
I 
I 
I 
I 

00 
~_j_ 
Z' 

X axis 
Re(Z) 

Fig. 6.1 Complex plane showing IZI, Z'(Re(Z)), Z''(Im(Z)) and B , [1] 

The corresponding relations between IZJ, Z', Z" and Bare listed in 6.1, 6.2 and 6.3. 
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1z I = [(z 'Y + (z "Y ]~ ; 6.1 

tan () = (Z'' I Z' ) ; 6.2 

z, = I z I cos c ()) ; z , = I z I sin(()) ; 6.3 

Instead of applying a voltage signal, a current signal may be used and the voltage 

response measured. This is an equivalent experiment and leads to the same results. 

A.c. impedance spectra are obtained by measuring the impedance with signals of 

different frequencies f over as wide a range as possible, typically 1 o-2 Hz - 10 7 Hz. 

The parameters Z' and Z'' can be related to the complex dielectric constant 5 with 

real and imaginary parts t! and t! ', f is the conductance. 

1 1 -
2rcf iC (c'- ic") =--= = = Y · 0 Z Z'+iZ" ' 

6.4 

C0 is the capacitance of the empty measuring cell, i.e. C0 = c 0 All, where I is the 

length and A the cross section of the conductive path in the sample. In a crude 

approximation for samples of film type, A may be the diameter of the contacts 

multiplied by the film thickness d, and the conducting length I is the distance 

between contacts. 

However, it is believed that Z is only related to the dielectric constant 5, if 

electrical conduction takes place due to ion conduction as in an electrolyte or an ion 

conductor. If electrical conduction is based on electron transport, the dielectric 
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constant of the material is believed to have no significant influence on the transport 

of free or quasi-free electrons as & describes the polarisability of the material. For 

the analysis of a.c. impedance data it is useful to define the modulus function M as 

follows: 

~ 1 1 
M= M'+iM"= 21r f iC0 Z =- = -­

If &'-i&" 

The use of M'' for data analysis is described in the next section. 

6.2.2. Data analysis and equivalent circuit modelling 

6.5 

In order to interpret the sample response to a stimulating a.c. signal it is common 

practice to develop an equivalent circuit model consisting of ideal resistive, 

capacitive and in rare cases inductive components. The theoretical a.c. impedance of 

possible equivalent circuit models may be calculated and compared to experimental 

findings. 

In a conventional equivalent circuit model, a resistive component (R) and capacitive 

component (C) in parallel (RC element) describe a relaxation time r for a certain 

process; e.g. grain boundaries, bulk or electrode conduction. The complex impedance 

of such a RC element is given by 

i _ R _ . 27i f CR 2 
_ R _ . wRr 

- ( )2 l ( )2 - ( 2 l 2 6.6 
1 + 21r f CR 1 + 21r f CR 1 + wr) 1 + ( wr) 
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In eq. 6.6 the time constant r of the corresponding process was substituted for R·C ( r 

= R·C ). In the literature inductive components (L) are hardly ever used in equivalent 

circuits and all recent publications describe models restricted to RC elements m 

series, each representing either bulk, grain boundary or electrode effects [2], [3]. 

One of the most common ways to present a. c. impedance spectroscopy data are as a 

Cole-Cole complex plane locus with frequency of the imaginary part of the dielectric 

constant -li'' vs. the real part s' [4], or, more appropriately for solid materials, as a 

Z' '-Z' complex plane locus of the imaginary part of the impedance -Z'' vs. the real 

part Z' [2]. By convention, both li'' and Z'' are plotted on the positive vertical axis 

even though they are in fact negative quantities for a RC element. 

In the ideal case, for every specific relaxation time r (i.e. RC element) a perfect 

semicircle occurs in both, s"- s' and Z''-Z' loci. Fig. 6.2 shows a standard equivalent 

circuit with the corresponding Z' '-Z' complex plane locus. 

In a RC element, the resistive component R is the real resistance of the bulk, grain 

boundary or electrode resistance. At low enough frequencies the electrons move 

through the whole sample during each half cycle. The capacitive reactance of the RC 

elements representing the electrode, grain boundary and bulk components (Fig. 6.2) 

would all be large and the impedance is effectively just the series resistance Rgb + Rb 

+ Rei· As the frequency is increased, the reactance of the capacitive elements start to 

decrease and eventually short circuit the parallel resistive elements. 

From Fig. 6.2. it is clear that, as the frequency increases, each resistive element gets 

by-passed successively according to the reactance of its parallel capacitive 

component, whereby the capacitance C describes the capacitive effects involved with 

the process. 
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Fig. 6.2 Equivalent circuit model with the corresponding Z"-Z' locus, [2] 

For conductors or semi-conductors with delocalised electrons the bulk resistance 

may break down completely if the frequency becomes high enough leading to a 

conduction path significantly shorter than the mean free path of electrons due to 

scattering events (see high frequency end in Fig. 6.2). However, this may not be 

valid for electron hopping between localised states as discussed in the next section. 

As the main advantage of such equivalent circuit modelling based on RC elements, 

calculation of the resistance and the capacitance of the respective RC element is 

possible from the semicircle in the Z'' -Z' loci. It can be readily shown that the 

frequency fmax at which the imaginary part of the impedance(- Z'') is a maximum is 

given by: 

!, =-1-= 1 
max 21r r 21r RC 6.7 
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The radius of the semicircle equals the resistance R/2, because -Z"if max) = R/2 and C 

can be determined knowingfmax· 

Irvine et al. [2] have pointed out that, for ceramic materials, grain boundary, bulk or 

electrode contributions normally show clearly different magnitudes of the 

capacitance and each semicircle can be attributed to one of those effects in this way. 

However, there are some problems involved with equivalent circuit modelling 

approaches. Two different circuits can display exactly the same impedance at all 

frequencies, so ambiguities may occur and experience and physical intuition are 

needed to find the appropriate model. Usually, the data is compared with theoretical 

calculations of M'', Z'' or Z' vs. f behaviour for different suggested equivalent 

circuits. 

Furthermore it is important to note that two different RC elements may have similar 

time constants and the corresponding semicircles may overlay each other making the 

analysis difficult. If a RC element and another L containing element overlay each 

other, the complex plane locus may become even more complicated, because Z'' for 

an L containing component can be of different sign to that for a capacitive 

component. Therefore, another method based on the modulus function M (eq. 6.5) 

has been developed to distinguish RC elements according to their capacitance C and 

to help identifY L containing components. From eq. 6.5 and 6.6 the imaginary part of 

M for a RC element is: 

6.8 
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M" exhibits a maximum at the same frequency /max as Z'' (eq. 6.7), when 6.8 reduces 

to: 

M"(+ )=_S_ 
Jmax 2C 6.9 

The value of M'' at the peak is dependent on C, and this often allows overlapping RC 

elements to be more readily separated according to their capacitance. Identification 

of an L containing component is possible, because M'' is connected to the resistive 

part of the impedance ( eq. 6.5), which is of the same sign (positive) for all C and L 

containing components. 

The graphs of -Z'' vs. log f, Z' vs. log f and M'' vs. log f may contain additional 

information needed for equivalent circuit modelling, particularly where the 

modelling requires more than a series connection of simple RC elements. Often the 

behaviour at limiting values off ~ 0 and f ~ infinity give a clear indication for the 

validity of a possible model. 

6.2.3. A. C. impedance of hopping processes 

Generally, the a.c. signal response of a hopping system exhibits 3 distinct frequency 

regimes [5], here termed Low (LFR), Intermediate (IFR) and High Frequency 

Regime (HFR). Different models have been proposed for all 3 regimes for NNH and 

VRH hopping mechanisms, although all models for VRH found in the literature were 

restricted to Matt's (To/1)'1. case. 
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In the LFR electrons move through the sample completely during each half cycle, 

thus the percolation threshold coincides with the d.c. threshold and Z' vs. 

temperature characteristics show equivalent behaviour to the d.c. R-T characteristics. 

Therefore, the same models applied for d.c. resistivity are valid at these frequencies 

and the real part of the impedance is frequency independent here ( Z'( w ~ 0) = R ). 

Fig. 6.3 shows a representative logZ' vs. log( plot for 3 different temperatures at the 

LFR, IFR and HFR. 

Fig. 6.3 logZ' vs. log( for NNH hopping type conduction at different temperatures 

Several theoretical models for the IFR, where Z' first starts to drop with frequency, 

are based on cluster theories. With increasing frequency the infinite resistor network 

is assumed to break up and electrons are restricted to finite clusters of decreasing size 

where the percolation threshold ~c decreases with decreasing cluster size [6]. 

Zyvagin [ 6] has considered the general case of a. c. response for hopping systems in 

the IFR from where explicit expressions for NNH or VRH may be derived. 

Alternative approaches have been undertaken by Movaghar et al. [7] , who used a 

Random-Walk model, and by Summerfield and Butcher [8] , who developed an 
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extended pair approximation (EPA). This EPA model by Summerfield and Butcher is 

not only restricted to the IFR, but holds in the HFR as well. In order fit the real part 

of the a.c. conductivity a 1 (m,1) at all temperatures and all frequencies in one curve 

the following equation was developed by Summerfield [9]: 

o-1 m,T _
1
+ A em ( ) 
( 

2 ]0.725 
o-1 (O,T) - a kBT o-1 (O,T) 

1 + (c EPA __ m __ JP 
r o-1 (o,r) 

6.10 

where a 1 (O,T) is the real part of the a. c. conductivity in the LFR if----+ 0), where the 

conductivity is independent of frequency, a is the wave function parameter and A a 

numerical parameter characteristic of the fit. In the more generalised form with the 

parameters CErA and p, eq. 6.10 is able to explain the LFR data as well, where p 

would be 0. At the IFR and HFRp was reported to be 0.725 for impurity conduction 

in n-type semiconductors at very low temperatures [10]. For hopping conduction in 

NTCR thermistors p and CErA have not been examined yet. 

Furthermore, it has not been considered by any author that with increasing frequency 

a transition of the average cluster size beyond the average grain size would occur, 

which may effect the impedance. It is suggested that this could result in a drop in ~c 

as hopping over grain boundaries no longer contributes significantly to the 

conductivity. 

In the HFR (~50 k:Hz- 3 MHz) the real part of the impedance is reported to drop 

with increasing frequency [5] and the temperature dependence of Z' becomes much 

less pronounced, such that the logZ' vs. log( graphs seem to almost coincide (see Fig. 
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6.3). Pollak and Geballe [11] assumed that the total a. c. response in the HFR consists 

of the sum of the individual responses of pairs of sites randomly distributed 

throughout the material (pair approximation). 

At even higher frequencies of~ 3 - 10 MHz (i.e. an Ultra High Frequency Regime 

(UHFR)), no data is available in the literature to determine whether this trend still 

holds here. 

It is clear that in the HFRIUHFR at high enough frequencies electrons will be 

confined to hops only between pairs of electron states, i.e. a constant cluster size . 

Therefore, it may be possible that Z' may not continue to decrease with frequency at 

the UHFR as an increasing number of electrons could be prevented to hop within one 

test signal period, if the frequency becomes higher than the average time interval 

needed for an electron to perform an oscillation between two localised states. Z' 

could instead tend to a constant value or even increase. 
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Thick NiMn20 4+s films (20-25 ,urn) containing a glass phase were printed onto Ah03 

substrates and sintered at 850°C for 30 min, as described in detail in chapter 4. 

Al contacts were evaporated onto the film surface and covered with silver paint to 

prevent oxidation (for contact deposition see chapter 5.3.1.). The samples were 

placed in a ceramic purpose-built sample holder equipped with spring loaded drop­

down contacts, which it has been reported to minimise the contact resistance, so that 

electrode - sample interface effects in the impedance spectra can be neglected [3]. 

The sample holder was placed in an insulated heat calorimeter equipped with an 

Eurotherrn temperature controller in the same arrangement as described in chapter 

5.3.4. The temperature was manually adjusted between measurements and allowed to 

settle down for at least 15 minutes. Complete thermal equilibrium was required, 

because even tiny temperature fluctuations would cause a significant change of the 

impedance due to the strong NTCR effect in NiMn204+S· 

Impedance spectroscopy was carried out using a Hewlett/Packard 4192A LF 

Impedance Analyser with computer controlled automated data collection ("Integrated 

Impedance Analyser Programme", Version #2.6, 1991). Measurements were carried 

out between 5 Hz - 6 MHz and the frequency increased logarithmically. The 

accuracy in the frequency was better than± 0.02%. 

The alternating test voltage had an amplitude of 3V and a 30V d.c. bias voltage was 

applied additionally in order to reduce noise. Spectra were collected over the 

temperature range of 60°C - 220°C in 20°C intervals. 

First, an open circuit calibration was carried out with all test wires in place, but with 

the sample not connected in order to measure parasitic contributions. The calibration 

169 



Chapter 6 -A. c. impedance spectroscopy of screen-printed films with glass phase 

values were recorded by the computer program and later used to correct the data 

obtained from the sample. The impedance values were measured with an uncertainty 

of not more than± 1%, for both reactive and resistive part ofthe impedance. 
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6.4. Results and Discussion 

6.4.1. Impedance spectroscopy data presented as Z''-Z' complex plane loci 

As described in section 6.2.2., -Z" vs. Z' loci on the complex plane give information 

about different relaxation times in the sample. In Fig. 6.4 the Z''-Z' loci for screen-

printed films with the glass phase are presented. The data was collected at different 

temperatures as indicated. The uncertainty in the Z'' and Z' was below 1%, as 

mentioned in 6.3., and no error bars could be displayed. The accuracy of the 

frequency values was extremely high as well (~ 0.02%) and again no errors were 

indicated. 

2500000 

2000000 

E s::. 
0 1500000 
c: 

N 
I 1000000 

500000 

0 

123 

• • • • • • • 

• 

•• .. ····· . 

56.5 kHz. • • • 

1000000 2000000 

Z in Ohm 

• • • • 
• 

3000000 

Fig. 6.4 (a) -Z'' vs. Z' complex plane locus, 60°C- 100°C; 
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Fig. 6.4 (b),( c) -Z'' vs. Z' loci for screen-printed, fired and glass incorporated 

samples at different temperatures; (b) l20°C - 160°C; (c) 180°C - 220°C; 

In Fig. 6.4 (a),(b) and (c) it can be seen that the Z''-Z' loci for different sample 

temperatures all showed one almost perfect semicircle over the frequency range 

shown (5 Hz- 2757kHz), indicating the presence of a single RC element describing 

one time constant in the sample. As the radius of the semicircle corresponds to the 
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resistance R/2 of the RC element, the decreasing siZe of the semicircle with 

increasing temperature was interpreted as the NTCR effect of the sample. 

The semicircle maximum ifmax) was determined and the time constant r calculated 

(eq. 6.7). Fig. 6.5 shows the variation of rwith temperature. 

1/T In 1/Kelvln 

1,00E-06 +----~-------------

5,00E-07 +------____;_:::::........:=----------
O,OOE+OO 4-------r-------r--=~::::=:~==~--.., 

50 100 150 

temperature In Celclus 

200 250 

Fig. 6.5 Time constant rvs. temperature and ln( r) vs. 1/temperature 

It can be seen from the inset in Fig. 6.5, that the time constant r increased 

exponentially with inverse temperature, although there was a shift in the 

characteristics at a temperature of~ 1 00°C. It may be possible that adsorbed water on 

the film surface was present under 1 00°C and evaporated at higher temperatures, 

leading to a small shift in the ln( r) vs. 1 IT characteristics. 

The Z''-Z' loci shown in Fig. 6.4 (a),(b),(c) were regular only for the range of 

frequencies shown; i.e. below 2757kHz. A representative example for a Z''-Z' locus 

over the full frequency regime recorded is given in Fig. 6.6. 
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Fig. 6.6 -Z' ' vs. Z' locus, full frequency range, sample temperature: 180 °C 

It can be seen that for higher frequencies if> 2757kHz) the plot appears to become 

erratic, with an abrupt change of sign at 3221 kHz. At the low frequency end 

(represented by the square in Fig. 6.6) the data points exhibited a high level of scatter 

most probably due to noise in the response signal, but no hint of a second semicircle 

could be found. 

6.4.2. Interpretation of Z''-Z' complex plane loci 

In section 6.2.2. it was pointed out that the resistance R of a specific RC element, 

representing electrode, grain boundary or bulk contributions, can be determined from 

the corresponding Z''-Z' semicircle (radius = R/2). An R-T characteristic from the 

a.c. data at different temperatures was obtained in this way and the p-factor analysis 

described in chapter 5.2.3. was carried out by calculating lnW vs. lnT as shown in 

Fig. 6.7. 
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Fig. 6.7lnWvs. lnTplot for a.c. data of a film screen-printed with glass phase 

The p-value of 0.68 is in good agreement with the d.c. value of 0.67 with the 

linearity of the graph being good as indicated by the low uncertainty in p, which 

suggests that a high degree of confidence may be placed in the impedance 

spectroscopy measurements. 

The R-T data was well described by the same VRH model discussed earlier in 

chapter 5.3 for the d.c. behaviour of screen-printed films and in Fig. 6.8 the 

corresponding plot ofln(RI1) vs. (liT 0·
5

) is given. 
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Fig. 6.8 In(RI1) vs. (liT 0·
5
), 60°C - 220°C 
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The slope of the graph represents the characteristic temperature (To) 112 yielding a 

value for To of 1.87 ·105 K in very good agreement with 1.89 ·105 K from d.c. 

measurements. The value of 6.16 ·1 o·7 Ohm!K for the pre-exponential factor C 

corresponds well to the d. c. value of 8.65 ·1 o·7 Ohm!K. The uncertainties in To and C 

are reasonably low and the results indicate that the conduction process is well 

represented by an ideal RC element for f ~ 2757 kHz and the underlying hopping 

process may well dominate the d.c. conduction in screen-printed NiMn204+0 films. 

As described in section 6.2.2. electrode, grain boundary and bulk contributions can in 

principle be distinguished by the capacitance of the corresponding RC element, 

ideally represented as a semicircle in the Z' '-Z' loci. The capacitance was calculated 

from the frequency fmax where -Z'' is a maximum and from the resistance of the 

corresponding Z''-Z' semicircle (radius = R/2) (eq. 6.7). The capacitance is plotted 

vs. temperature in Fig. 6.9. 
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Fig. 6. 9 RC element capacitance vs. temperature 

According to Irvine et al. [2] bulk effects exhibit a capacitance with an order of 

magnitude of ~ 1 o-12 F, which was the case at all temperatures in the sample 

investigated, shown in Fig. 6.9. It is strongly indicative that the hopping process 
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through the overall sample could be described by one time constant z-, i.e. one RC 

element, where the capacitance seemed to be connected to bulk effects. As no 

additional time constant due to grain boundary effects could be observed, it may be 

concluded that a high film density with good inter-granular contact was achieved in 

the investigated films with incorporated glass phase. 

As pointed out before (chapter 2.5.3.) the sample may be regarded as a random 

resistor network where localised electron states i and j are connected by a resistor Ru, 

which may well be a valid picture here over the whole dimensions of the NiMn20 4+o 

film sample. Electron hopping between sites separated by a grain boundary may not 

be involved with any capacitive effect and may show little difference to 

neighbouring electron states within a grain, but may exhibit a higher separation in 

energy and possibly real space. With good crystallinity the grain boundaries in the 

sample might be distinct and the difference in energy and real space separation more 

pronounced. 

From Fig. 6.9 it is also obvious that at lower temperatures of 60°C- l00°C the graph 

is less uniform, again suggesting an effect disturbing the regular impedance as 

mentioned before. 

6.4.3. Data analysis by modulus M'' vs. frequency plots 

In order to reveal a possible additional time constant in the frequency range 

investigated, the complex modulus function M'' was determined and plotted vs. 

log( frequency) in Fig. 6.10 and against frequency on a linear scale in Fig. 6.11. 

Fig. 6.10 shows that 2 maxima and 2 minima were present at all temperatures. The 

first maximum at intermediate frequencies clearly showed a progressive shift to 
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higher frequencies with increasing temperature, although a uniform trend was 

observed only at temperatures over 1 00°C. This is consistent with the results 

presented before, where it was suggested that adsorbed water on the films may have 

affected the results. 

-1.5 -0.5 0.5 1.5 2.5 3.5 

log (frequency in kHz) 

Fig. 6.10 Modulus M'' vs. logj(frequency) 

The first maxunum could be assigned to the bulk hopping effects as it clearly 

corresponds to the semicircle observed in the Z''-Z' loci. There is no additional peak 

at the low frequency regime present and a significant contribution from grain 

boundary or electrode effects may be excluded, in the latter case justifYing the use of 

spring-loaded drop down probes. 

Concerning the second maximum in Fig. 6.10 and 6.11 , it is indicative that in the 

UHFR a second mechanism appeared to predominate and electron hopping may not 

be described by a simple RC element anymore. 
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Fig. 6.11 Modulus M'' vs. frequency 

It is interesting to note that for all temperatures the reactive component Z" showed a 

change of sign and was positive at the second M" peak frequency of 3221 kHz, and 

negative at all other frequencies, which would imply a change from a capacitive to 

inductive type behaviour. Experimental error at the maximum frequency for this 

single point would seem unlikely as the peak is apparent in the modulus spectrum 

over a significant range of frequency. 

The second maximum in Fig. 6.11 showed no temperature dependence, although a 

small peak shift with temperature might not have been resolved as the data was 

collected in logarithmic frequency intervals. The fact that the height of the peak 

changed significantly with temperature supports this suggestion. 

At the high frequency end M'' seemed to increase mono tonically with little 

indication of a third maximum. A linear increase of M'' with increasing frequency is 
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consistent with an equivalent circuit model containing an inductive-like component 

and it is also consistent with the theoretical considerations described in section 6.2.3. 

Hopping of electrons between 2 sites might not follow high frequencies easily and 

the resistive component Z' could then be expected to approach a constant value at 

high frequencies, as Z' is directly proportional to M'' If 

The implication is that a possible equivalent circuit model may contain an RC 

element and an additional element, most probably including an inductive component. 

In the following discussion, reference to an 'inductive component' is intended to be a 

convenient notation for a reactive impedance, whose magnitude is directly 

proportional to the frequency. It is not intended that the inductive component is a 

'real' or conventional inductor arising out of magnetic field effects. 

The capacitance of the RC element corresponding to the first maximum in the M'' 

spectra was calculated from eq. 6.9 and is plotted in Fig. 6.12 together with the 

capacitance previously obtained from the maximum in Z'' (Fig. 6.9). 
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Fig. 6.12 RC element capacitance vs. temperature in Celcius 
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From Fig. 6.12 it can be seen that the capacitance obtained from the modulus plots 

was in the same range and the trend of the graphs was very similar. Obviously, the 

components Z' (~ f·M") and Z'' measured are connected to each other justifYing the 

description of the semi-circle by a RC element. 

The dielectric constant & r was calculated as &r = 11(2·M''ifmax)), (according to C = & r 

·C0 and eq. 6.9) and was found to vary from 10.2- 10.7 between l20°C -220°C. In 

chapter 5.4.2. the lower limit for & r in NiMn204+o was given by & r ~ 3.9, which is 

consistent with the values obtained here. The lower limit was calculated assuming a 

hard sphere model where the radii of the spheres were interpreted as an upper limit 

for the Bohr's radii of the respective atoms. Ifthe &r values of 10.2 -10.7 are taken 

as a more precise estimation, the Bohr's radii of the manganese atoms in screen­

printed films can be determined to be in the range of0.260A- 0.303A. 

6.4.4. Data analysis by Z' vs. f and Z'' vs. f plots 

For developing an equivalent circuit model, besides the behaviour of M'', also Z'' 

and Z' was plotted vs. frequency and analysed at extreme frequency values. 

In Fig. 6.13 and Fig. 6.14 the real and imaginary parts ofthe impedance were plotted 

vs./ on double-logarithmic scales. 

Fig. 6.13 shows that at low frequencies Z' was independent of frequency, but 

strongly dependent on temperature, which may well be the NTCR effect. The 

temperature dependence of Z' at different frequencies will be discussed in more 

detail in the subsequent section. 
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Fig. 6.13 Z' vs. logf at different temperatures 

At the HFR, Z' dropped with frequency (approx. - f -2
) and the temperature 

dependence became less pronounced. This is in general agreement with theoretical 

predictions for the LFR, IFR and HFR as described in section 6.2.3. Additionally all 

curves showed a sharp maximum at 3221 kHz, corresponding to the maxima in the 

M'' plots. This and higher frequencies may represent a UHFR. At the high frequency 

end Z' seemed to approach a constant value as expected for an L containing 

equivalent circuit. This trend is illustrated in the inset in Fig. 6.13, where Z' was 

plotted vs. f on linear scales. 

Fig. 6.14 shows that the imaginary part ( -Z' ') increased linearly (- f ) at low 

frequencies, reaching a turning point at fmax, as expected for an impedance described 

by a single dominant RC element. 
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Fig. 6.14 - Z'' vs. logf at different temperatures 

The maximum occurred at progressively higher frequencies as the temperature was 

increased and at frequencies above fmax , Z'' became inversely proportional to the 

frequency(~ f- 1
), such that the Z'':fcharacteristics tended to coincide atf> fmax and 

the temperature dependence of Z'' became significantly less pronounced. 

In the UHFR atf= 3221 k:Hz, Z'' changed sign becoming positive. This point could 

not be plotted on a graph of log( -Z' ') and so it has been represented as a gap in the 

characteristics. At still higher frequencies, Z'' may well have continued to drop in 

proportion to f- 1 
, although this could not be established definitely. 
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6.4.5. A. c. conductivity of the hopping mechanism 

6.4.5.1. Extended Pair Approximation (EP A) 

In section 6.2.3. it was mentioned that the real part of the a.c. conductivity a 1 may 

be plotted at all frequencies and all temperatures in one curve, which was described 

by eq. 6.10 based on the EP A theory. In order to test the validity of this expression 

[al(m)/a 1(0,1)] on a logarithmic scale vs. log [(CErA·m)/(T • a 1(0,1)] was plotted in 

Fig. 6.15, where the slope ofthe graph would give the exponential parameter p. Here 

a 1 was replaced by the a.c. conductance 1/Z' as the conductivity could not be 

calculated precisely for film type samples. It was believed that this would only alter 

the constant CErA, but the frequency and temperature dependence would remain 

valid. In Fig. 6.15 a.c. data at the LFR, IFR and HFR was plotted. 
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Fig. 6.15 [a 1(m)/a 1(0,1)] vs. log [(CEPA' m)I(T · a 1(0,1)] plot at LFR, IFR and HFR 
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Fig. 6.15 clearly shows that the conduction mechanism was different for 

temperatures of 60°C - 1 00°C, possibly due to adsorbed water on the films, which 

had evaporated at elevated temperatures. Furthermore, it is obvious that at lower 

frequencies the factor a 1 (m)/ a 1 (O,n exhibited the value 1, as expected for the LFR. 

At the HFR the graph showed a good linearity for both temperature regions, 60°C -

100°C and l20°C- 180°C. The slope of the graph was calculated using a least-square 

fitting procedure and the factor p was determined to be 1.68 ± 0.03 for 60°C- 100°C, 

and 1.50 ± 0.02 for l20°C - 180°C. These results are clearly different to the value of 

0. 725 reported for a. c. hopping conduction between impurity ions in n-type 

semiconductors at very low temperatures [1 0]. 

The values ofthe constant CEPA were determined to be 4.08 ·10-10 and 6.26 ·10-10 in 

MKSA units respectively but are rather meaningless as in Fig. 6.15 the a.c. 

conductance was plotted instead of the conductivity. 

However, the trend of the HTR did not hold in the UHFR as is shown in Fig. 6.16, 

where the data was plotted on the same axis but over the full frequency range. 

Fig. 6.16 shows that the curves deviated from linearity at the UHFR. The data point 

at each graph where the curve starts to deviate from linearity first, strictly 

corresponds to the first minima in the M'' vs. log( graphs shown in Fig. 6.10. This 

shift off frequency may well be regarded as the transition from the HFR to the 

UHFR. 

The UHFR behaviour is clearly not in agreement with the EP A theory and it could be 

confirmed that a modified type ofhopping occurred. 
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Fig. 6.16 [a 1(m)/a 1(0,1)] vs. log [(CEPA·m)/(T · o- 1(0,1)] plot over the full frequency 

range at different temperatures. The data at l20°C is original, all other graphs were 

shifted by 1 unit on the x-axis in respect to the neighbouring graph 

6.4.5.2. Impedance vs. temperature plots 

In order to gain more information about the conduction mechanism, the temperature 

dependence of Z' and Z'' was examined by plotting Z' and Z'' vs. temperature at 

different frequencies. Fig. 6.17 indicates an approximately exponential temperature 

dependence of Z' on T at lower frequencies as expected, whereas at higher 

frequencies this dependence was much less pronounced. The Z' vs. T graph at 3221 

kHz did not show any regular trend and it may be concluded that the shape and 

position of the Z' peak at 3221 kHz was not sufficiently well resolved on the 

logarithmic data scale to enable the observation of any temperature dependence. At 

frequencies below 11.92 kHz the logZ' vs. T graphs in Fig. 6.17 show d. c. behaviour 

and in order to gain a better understanding of the a.c. hopping conduction, the data 
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plotted in Fig. 6.17 is shown again in Fig. 6.18 on a log(Z'·T -1
) vs. 1/T 0

·
5 scale, as 

used for the d.c. conduction mechanism. 
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The slope of the graph at 2.51 kHz gave a characteristic temperature To of 1.86 ·105 

K, in good agreement with the value of 1.87 ·I 05 K obtained from plotting the radius 

of the Z" -Z' loci semicircle and with 1.89 ·105 K from d. c. measurements. The good 

agreement of all 3 values confirms that in the LFR Z' may well approach the d.c. 

behaviour. 

At frequencies over 11.92 kHz the Z'-T characteristics departed from the d.c. limit 

and tended to a constant value at lower temperatures as has been reported by Long 

[5]. The results also suggested that at lower temperatures the electron hopping 

becomes independent of temperature and highly dependent on frequency, although 

the reasons for this change in behaviour are not fully understood. However, this 

tendency became less clear at frequencies over 1729 kHz and the graphs plotted in 

Fig. 6.18, assuming VRH with a parabolic density of states, may not be in agreement 

with the predicted a.c. hopping conduction. 

When plotted on log(Z' IT) vs. 11T , as used to indicate a NNH mechanism, or on 

log(Z' I T 0·
5

) vs. 11 T 0·
25 indicating a VRH behaviour with constant density of states, 

the graphs were inconsistent with theoretical predictions and it is suggested that the 

a.c. conductivity is most correctly displayed on a log(Z'·T -I) vs. liT 0·
5 plot here, 

indicating the validity of the VRH model with a parabolic density of states in the 

LFR, IFR and HFR. 

It is suggested that at f > 1729 kHz a regime of different hopping type conduction 

was present, corresponding to the UHFR features analysed in the previous sections. 

In the literature no conclusive explanations could be found in terms of possible 

physical effects underlying these features. 

As mentioned before, as the frequency is increased the percolation area would 

eventually fall below the average grain size, and this transition might be reflected in 
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the impedance at the respective frequency. The UHFR behaviour may also be 

influenced by effects occurring out of pair hopping, where at high enough 

frequencies electron transfer is restricted to pairs of electron states, possibly between 

nearest-neighbours only. The possibility that electrons could be prevented to hop 

might contribute to the UHFR impedance, as with increasing frequency a decreasing 

fraction of the electrons would be able to follow the applied alternating voltage, 

whereas the percolation area stayed constant, i.e. pairs of electron states. 

In Fig. 6.17 it is shown that at the highest frequency, 6000 k:Hz, Z' remained 

approximately constant with temperature over the measurement range, but was 

higher than corresponding values at the lower frequency of 4396 k:Hz. This was a 

reversal of the previous behaviour where Z' decreased with increasing frequency, but 

which is consistent with pair hopping. 

Furthermore, from Fig. 6.18 it can be seen that the Z'-T graphs departed from the d. c. 

characteristics at different temperatures, here termed 'shift-off temperature', which 

seemed to have increased with increasing frequency, as illustrated in Fig. 6.19. 
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Fig. 6.19 Shift off temperature vs. frequency/ log( freq.) vs. 1 /shift off T 
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The shift off temperature appeared to increase logarithmically with increasing 

temperature, as indicated by the imbedded graph. 

The imaginary part Z'' of the impedance was plotted as a function oftemperature at 

different frequencies as shown in Fig. 6.20. It shows that with increasing frequency 

the dependence of Z'' on temperature vanished, i.e. Z'' tended to be independent of 

temperature. This implies that at the UHFR a temperature independent reactive 

component may dominate the imaginary part of the impedance. 

By analogy with the Z' vs. T plots, the Z''-T curves tended to deviate from the low 

frequency characteristic at lower temperatures first. 
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Fig. 6.20 log( -Z' ') vs. temperature in Celcius 
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6.4.6. Equivalent circuit modelling 

Several equivalent circuit models were considered and the model drawn in Fig. 6.21 

was found to explain the features of the Z' vs./, Z'' vs.fand M' ' vs.fplots best. One 

RC element (R 1,C1) was associated with regular electron hopping in the LFR, IFR 

and HFR, and the UHFR features in the Z' , Z' ' and M' ' vs. f plots were reasonably 

well described by a CRL element ( C2, R2, L2), associated with a modified hopping 

behaviour. 

Rl R2 

Cl L2 

RC CRL 

Fig. 6.21 Equivalent circuit model proposed for screen-printed samples 

with glass phase 

The Z''-Z' loci in Fig. 6.4 a,b,c implied that in the LFR, IFR and HFR, the CRL 

section played no significant effect. The inductance L2 must have been sufficiently 

low and the corresponding impedance small, in order to bypass R2 and C2• In the 

UHFR the impedance of L2 ( i = imL2) became significant and the UHFR effects 

seen in the respective frequency plots would then be described by the CRL section. 
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The equivalent circuit model in Fig. 6.21 was chosen from several models under 

consideration, all containing one RC element and a second element in series 

containing an inductive component L. The complex impedance Z was calculated for 

all models and analysed using Maple® [12]. The trends of Z', Z'' and M' at m~ 0 

and m ~ infinity and the extrema of the respective functions of frequency were 

examined and compared with the measurements. 

For the full model chosen (Fig. 6.21) no solutions for extrema could be found by 

using Maple® due to the complexity of the equations analysed, nor were there any 

references for a description of this CRL type element as a standard analogue filter 

element in the literature [13], [14]. 

Therefore, the RC and the CRL elements were analysed separately, which was 

believed to be a valid approach as long as the two different branches were dominant 

at different frequencies as appeared to be the case here. The first maximum in the Z'' 

or M' spectra, corresponding to the RC element, would probably have very little 

influence on the UHFR features of the resulting spectrum and vice versa. 

6.4.6.1. Z' behaviour in respect to the equivalent circuit model 

For the model in Fig. 6.21 the real part Z' was determined as the sum ofthe real parts 

of its constituents, i.e. the contribution from the RC and the CRL elements: 

6.11 
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It is easily seen that Z' ~ R1 as m~ 0 and Z' ~ R2 as m~ infinity. In Fig. 6.13 it 

was shown that for low frequencies Z' was indeed constant and may well have been 

approaching a constant value at the high frequency end. From the inset of Fig. 6.13, 

R2 could be estimated to be ~ 2.0 ·1 04 Ohm and the temperature dependence of R2 

seemed to be rather weak. 

No extremum of Z' is present for a RC section, for the CRL element the following 

extremum was found at OJmax: 

2 

This is a real number under the following condition: 

R2 < 2L2 . 
2 c ' 

2 

6.12 

6.13 

In Fig. 6.13 one maximum could be seen, which may be associated with the CRL 

element, and therefore R2, L2 and C2 might well fulfil relation 6.13. The second 

derivative of Z' indicated a maximum [(Z'i1 (OJmax) < 0 ], if the same relation shown 

in 6.13 is valid. 

The value of Z' at OJmax was found to be 

Z'(w ) - 4L; 
max - C R (4 L - C R2 ) 2 2 2 2 2 

6.14 
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If relation 6.13 is valid, this is always a positive number. Unfortunately C2 and L2 

can not be determined separately from 6.14, only a limit for C2 could be determined 

by using 6.13, but Z'(Wmax) would have to be determined from the poorly resolved 

UHFR peak in Fig. 6.13 and this was thought to be too inaccurate. 

In Fig. 6.13, two minima in Z' occurred as well. The first minimum at lower 

frequencies may be understood in terms of the interaction between the RC and CRL 

elements. For the RC element Z' ~ 0 as m~ infinity and for the CRL element Z' ~ 

0 as frequency~ 0. Both elements were dominant at different frequency regimes, so 

at intermediate frequencies the overlap would lead to a minimum in the overall Z'. 

The second minimum could not be explained by the model, but all other features of 

the data showed qualitative agreement. 

6.4.6.2. Z'' belnavD.omr lilllll"espect to the equlivalernt cill"cuit modeB 

The imaginary part Z'' of the model in Fig. 6.21 was determined, again as the sum of 

the contributions from the RC and CRL element : 

6.15 

Here Z' '~ 0 as m ~ 0 and increases linearly with m at low frequencies, and Z'' 

decreases ~ m_, as m~ infinity. This is clearly in agreement with the experimental 

findings in Fig. 6.14. 
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The RC and the CRL element were examined separately again. The extremum of Z" 

for an RC element is straightforward and was used for data analysis earlier in this 

chapter (section 6.4.2.). At 3221 kHz, a change in sign of Z'' was observed, which 

was assumed to be associated with the CRL element. Several Z'' extrema were found 

for the CRL element, but the expressions obtained from Maple® were far too 

complicated to draw any conclusion from them. Nevertheless, useful information 

could be obtained by analysing Z'' of the CRL element qualitatively and it could be 

shown that a change of sign in Z'' occurs at 

6.16 

This is a real positive number under the following condition: 

6.17 

Here, the range of R2 is more restricted than in 6.13, but both relations were assumed 

to be valid. It could also be shown that Z'' is positive for angular frequencies lower 

than m 0 and negative otherwise. As Z'' ~ 0 as m~ 0 and Z'' ~ 0 as m~ infinity, 

it could be concluded that at least one maximum for m < m 0 and one minimum for m 

> m 0 was present. In Fig. 6.14 they appear as a minimum and a maximum 

respectively. Fig. 6.14 showed features, which allowed this interpretation and the 

data might well conform with the model. 
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6.5. Conclusions 

In this chapter it was shown that the a.c. conduction mechanism in screen-printed 

NiMn20 4 films with incorporated glass phase was dominated by a hopping process, 

which could be described by a conventional RC element. The Z''-Z' loci showed the 

typical semicircle and in the LFR, IFR and HFR the behaviour of the Z' vs. f and the 

Z' vs. T plots were in agreement with theoretical predictions for a.c. electron hopping 

processes. 

The capacitance of the RC element was in the range of 10-12 F, which is a typical 

value for bulk effects, which implied that grain boundary effects were not significant, 

an implication which was confirmed by analysing M' vs. f data. 

In the LFR, Z' followed the same variable-range hopping model observed for d.c. 

measurements as expected and the In (Z'·T -I) vs. 1/T 0
·
5 plot revealed a characteristic 

temperature To of 1.87 ·105± 7.0 ·102K, which was in good agreement with the value 

of 1.89 ·105 ± 7.0 ·105 K derived from d.c. measurements. 

At the LFR, IFR and HFR the data was found to be consistent with the EP A model of 

Summerfield and Butcher [8], although the exponential dependence of m and other 

parameters was found to be 1.68 :± 0.03 at temperatures of 60°C - 1 00°C, and 1.50 ± 

0. 02 for l20°C - 180°C, which is in contrast to values of 0. 725 reported in the 

literature for impurity hopping conduction in semiconductors [I 0]. 

In the UHFR the EP A theory no longer holds and it was shown that at frequencies 

over 2.8 MHz, the Z'' -Z' loci became complicated with a different mechanism being 

predominant, which was better described by a CRL element. 

An equivalent circuit model consisting of a RC and a CRL element in senes 

described most of the experimental values reasonably well. It is believed that above a 
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critical frequency in the UHFR, electrons are confined to hops between pairs of 

electron states, but the exact physical effects underlying the UHFR impedance 

remained unclear. 

All data was collected on a logarithmic frequency scale and the resolution in the 

UHFR was insufficient to allow for a more precise analysis of the high frequency 

hopping mechanism. 

It was suggested that at temperatures between 60°C and 1 00°C the electronic 

properties were affected by adsorbed water on the films. For future experiments it is 

suggested that the sample under investigation should undergo a drying process first. 
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Chapter 7 

Conclusions 

7.1. Conclusions 

The aim of this work was to produce reliable film type NTCR thermistors based on 

NiMnz04+0 and investigate their electrical properties in a detailed study. 

First, several general properties of the NiMnz04+& spinet system were reviewed in 

chapter 2, in particular the basic crystal lattice structure, the cation distribution and 

the oxygen content. The electrical conduction could be related to these features and a 

detailed consideration of the hopping mechanism present in NiMnz04+& was given. 

Furthermore, the phase stability and, depending on this, possible production routes of 

NiMn20 4+a were discussed. The most recent advances in including dopants into the 

system were reviewed, too. 

Electron-beam evaporation procedures have been applied to produce thin film NTCR 

thermistors. In chapter 3 the production of phase pure NiMn204+& target material via 

a traditional ceramic precursor oxide route, the set-up of electron-beam evaporation 

experiments and the optimisation of the process parameters, yielding a film thickness 

in the range of 1 - 1 0 J.!In, were described in detail. 

The thickness distribution of evaporated films- was investigated and showed good 

agreement with a theoretical model, derived from evaporation theory, and the 
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sticking coefficient of the vapour on the substrates was estimated in this approach to 

be 80% ± 1.5%. 

The composition of the films was analysed in terms of the phase purity and the Ni : 

Mn ratio. It was found that both compositional parameters could not be controlled in 

this PVD type process; no pure NiMn204+li phase was detected in the films using 

XRD despite post-deposition annealing, and the Ni : Mn ratio, as determined using 

EDAX, varied in an uncontrollable way. In addition, SEM revealed that the 

microstructure of the samples was poor in the as-deposited state and improved with 

increasing annealing temperature. 

It was concluded that electron-beam evaporation may not be appropriate for the 

production of films based on complex ternary compounds such as NiMn204+o· 

Dissociation of the target material and preferential sublimation of Ni- rich material 

probably occurred, leading to an excess ofNi in the films. 

In order to circumvent these problems it was decided to develop thick film 

NiMnz04+o NTCR thermistors via direct screen-printing as an alternative film 

production technique. Screen-printed NiMn20 4+o film samples were obtained from 

elsewhere [1] and the synthesis of the source powder, the production ofthe printing-

paste, the screen-printing process itself and the post-printing sintering procedure 

were reviewed in chapter 4. Evidence of good surface morphology and phase purity 

of NiMnz04+o films, screen-printed with the inclusion of a glass phase and 

decomposable dispersing agent, was given. 

In the earlier study it had been concluded that an optimised decomposition process of 

eo-precipitated NiMnz(Cz04h · 6 H20 at 850°C for 30 minutes may be used to 
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produce NiMn20 4+B powder exhibiting a minimum grain stze with a narrow 

distribution as required for screen-printing. 

Here, the formation of appropriate NiMn20 4+o source powder was studied in more 

detail. The wet chemical process used was involved with the eo-precipitation of 

oxalates from ionic Ni, Mn and oxalate stock solutions of well known 

concentrations, as determined by titration methods. The oxalates were thermally 

decomposed at different temperatures for 6 hours and the powders obtained were 

analysed by XRD. It was found that a regular spinel phase can be obtained by 

decomposing at 800°C or higher and additionally for decomposition temperatures 

between 300°C and 375°C. The low temperature spinel phase found was suggested 

by other authors to be a cation deficient meta-stable spinel [2], [3]. 

Rietveld refinement was carried out for all XRD data and the defect spinel phase was 

found to exhibit an average grain size of 3 nm- 10 nm. This very interesting feature 

would enable use in nano-technological applications and it is suggested that this type 

of powder may be used in the future for screen-printing processes. 

Furthermore, Rietveld refinement analysis confirmed that the previously determined 

optimised decomposition process of oxalates leads to an efficient reduction in grain 

size as intended by minimising the heat exposure as far as possible during 

decomposition. 

As the main focus of this work, electrical characteristics were measured for thin and 

thick films and pellet, in order to gain a better understanding of electrical conduction 

in these materials. 

For this purpose, in chapter 2 hopping conductivity was discussed in a general sense. 

It was assumed that a polaron is associated with the electron transfer in NiMnz04+B 
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materials [4] and a "Small-Polaron hopping" model [5] was used to give a general 

expression for all types of hopping resistivity p, in terms of several pre-exponential 

factors, some being material specific parameters and some depending on the type of 

electron hopping occurring, i.e. the hopping length rij and the activation energy s ij­

The exponential dependency of resistivity was described by the percolation threshold 

~c, which in turn was determined by the parameters rij and s ij . The percolation 

threshold ~c was derived explicitly for two different types of hopping, NNH and 

VRH with a parameterised density of states, from a detailed consideration of 

percolation theory [6]. 

In chapter 5 the appropriate parameters for NNH and VRH were substituted into the 

general formula for p, to give expressions for VRH, where the parameterised density 

of states was specified in terms of two physically meaningful cases, a constant and a 

parabolic density of states. 

The R-T data obtained from electron-beam evaporated films on different substrates, 

screen-printed films with and without incorporated glass phase and from pellets were 

characterised using p-analysis to identifY the mode of hopping. For screen-printed 

films and pellets, a p-value of 0.5 was identified indicating VRH with a parabolic 

density of states where R ~ exp (T o/T)05
, according to the Shklovskii and Efros 

model [6]. For these samples the p-values were uniformly close to 0.5, which was 

taken to indicate that production processes for screen-printed films and pellets were 

well controlled. 

Production of electron beam evaporated films was less well controlled and there was 

considerable scatter in the p-values. Given this uncertainty, two modes of hopping 

conduction were tentatively identified; NNH (R ~ exp (T ofT) and Mott hopping (R ~ 

exp (T o/7)0
"
25 

) [7]. It is believed that the hopping mechanisms detected in E-beam 
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films differ from the VRH in thick films and pellets due to the Ni-rich composition 

of E-beam films, and/or due to differences in crystallinity. Hopping in an 

amorphous-like disordered system might well be different from that in the regular 

(poly-) crystalline NiMn204+<5 spinel phase. 

Comparison of screen-printed films with and without an incorporated glass phase 

indicated no changes in the conduction mechanism, and only slight quantitative 

variations in the characteristic temperature To and absolute resistivity were found. 

Due to the better surface density and particle packing in films with the glass phase, 

they are suggested to be an excellent solution for the production ofNTCR thermistor 

devices. Other film deposition techniques have been suggested in the literature [8], 

[9], but especially screen-printing processes are well established for high volume low 

cost commercial applications and therefore, it is suggested that for industrial 

requirements screen-printed films with glass phase may be the most advantageous. 

The film and pellet R-T characteristics examined were obtained for a LTR (130 K-

350 K) with an automated data acquisition system. A sophisticated VisualBasic 6.0 

computer program was developed enabling control of the temperature and resistance 

measurement devices, ensuring thermal equilibrium and stable resistance 

measurements. Statistical errors were minimised by averaging multiple readings, 

which was believed to lead to very accurate R-T data. Manual R-T readings were 

carried out to obtain HTR (300 K- 550 K) characteristics, but were probably less 

precise. 

For screen-printed films with glass phase the electrical conduction mechanism was 

further analysed using a.c. impedance spectroscopy, as described in chapter 6. 
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It was found that electrical conduction in the films is dominated by one specific time 

constant, which was associated with the VRH hopping also found for d.c. 

measurements. For f < 2.76 MHz, the a.c. data was in agreement with theoretical 

predictions for hopping conductivity, and the low frequency behaviour if< 11.9 kHz) 

of Z' was virtually identical with the d. c. characteristics. Conduction for f < 2. 76 

MHz could be described by an equivalent circuit containing a single RC element and 

the R-T characteristics obtained from the semicircle in the Z''-Z' loci clearly 

indicated VRH with a parabolic density of states. The order of magnitude of the 

capacitance in the RC element was determined as well and indicated a typical bulk 

effect. 

The VRH mechanism with a parabolic density of states was confirmed again by 

plotting the real part Z' of the complex impedance vs. T as a log(Z'·T -1) vs. 1/T 0'
5 

plot, which showed the same d.c. behaviour at low frequencies if< 11.9 kHz) as 

found from the semicircle radii and from d.c. measurements. For f < 1729 kHz the 

log(Z'·T -1) vs. 1/T 0'
5 plots were in good agreement with theoretical predictions for 

a. c. hopping [1 0], whereas corresponding plots on different scales appropriate for 

alternative hopping mechanisms were clearly not. This was further strong evidence 

that conduction was by VRH with a parabolic density of states. At the LFR, IFR and 

HFR the a.c. data was consistent with the Extended Pair Approximation theory 

proposed by Summerfield and Butcher [11]. 

At lower frequencies no additional time constant was detected, as might have been 

expected for a possible grain boundary or electrode contribution. Therefore, it may 

be concluded that hopping in NiMnz04-tO thick films can be regarded as uniform 

throughout the sample at these frequencies, no matter whether hopping took place 

over grain boundaries or within grains. 
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At higher frequencies in a UHFR a different contribution to the impedance was 

detected which was best described by a CRL element. This contribution seemed to 

have no influence on the d.c. behaviour and from the a.c. data presented it is believed 

that it was not a standard hopping process and may not be described by a simple 

VRH model. 

At higher frequencies electron hopping would probably be restricted to hopping 

between pairs of electron states. Pair hopping associated with a polaron should 

exhibit some time dependence, such that the hopping probability would decrease 

with increasing frequency, leading to the UHFR effects observed. The hopping 

between pairs of electron states would be restricted to nearest-neighbour hops, and 

clearly VRH models would no longer apply, which may lead to a modified hopping 

type conduction described by the CRL element. 
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Generally, future work should be mainly focussed on the inclusion of different 

dopants into the NiMnz04+0 spine! system, such as Co or Cu, to improve conductivity 

and minimise ageing effects. A promising method for doping would be the eo­

precipitation of oxalates, as Co and Cu oxalates exhibit a very low solubility, 

comparable to Ni and Mn oxalates [12]. 

Low decomposition temperatures of~ 350°C may be chosen to obtain a nano-sized 

powder, which could be mixed and dispersed with a nano-scale glass powder, 

enabling screen-printing processes leading to very dense and even films. 

In general, the amount of glass phase would need more careful adjustment to give 

optimum capillary actions between single grains, which would ideally compact the 

films, so that it would leave a minimum number of pores and holes on the film 

surface. 

It is believed that the conduction mechanism in NiMnz04+0 should be further 

investigated through the use of combined Scanning Tunneling Spectroscopy (STS) 

and Scanning Tunneling Microscopy (STM). In a recent STM/STS study [13], [14] 

the shape of the density of states in NiMnz04+0 was examined and it seems to be 

possible that electron hopping between two impurity bands separated by the Fermi­

level may occur, one impurity band corresponding to electron states consisting of 

Mn3
+ donors and one consisting of Mn 4+ acceptors. The two impurity bands were 

situated in a large band gap, as expected for insulating material, and showed a 

parabolic shaped gap around the Fermi-level, which would explain the validity of a 

variable range hopping model with a parabolic density of states. However, these 
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findings need far more detailed analysis and have to be confirmed in similar 

experiments. Photoelectron spectroscopy may be a powerful tool to obtain more 

precise information on the structure of the density of states in film type NiMn204+S 

[15]. 

Furthermore, the possibility of double-exchange effects occurring in NiMn20 4+o 

should be considered in context with the electrical conduction. Perovskite structured 

manganese oxides do exhibit double-exchange effects between Mn3+ and Mn4
+ 

cations [16]. This leads to a rather high conductivity if a considerable amount of 

Mn3
+ cations change their valence state to Mn4

+, as accomplished by introducing 

dopants of double or single charged cations [17]. Electrical conductivity in 

NiMn204-R> is at least 2 orders of magnitude lower than in these perovskite 

compounds and the occurrence of double-exchange effects is not at all clear. Double­

exchange effects in perovskite manganites were found to rely on a ferromagnetic 

coupling of Mn3
+ and Mn4

+ cations [18]. In Nio.sCUo5 Fe20 4 spinels this type of 

ferromagnetic interaction of outer shell electrons was detected for intra-sublattice 

exchange interactions on octahedral sites, and anti-ferromagnetic interactions were 

found on all inter-sublattice interactions and for intra-sublattice interactions on 

tetrahedral sites [19]. Mossbauer spectroscopy is the appropriate method to 

determine these interactions qualitatively and quantitatively, and should be carried 

out for pure NiMn204+S as well. This would lead to a clear understanding of the 

dimensions of these interactions and possibly, the occurrence of double-exchange 

effects could be supported or negated. Furthermore, pure Mn3
+ and Mn 4+ hopping on 

octahedral sites or the involvement of Mn2
+ cations on tetrahedral sites in the 

hopping process could also be identified. 
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For an explicit understanding of the quantitative correlation of resistivity on cation 

distribution in NiMn20 4+<i it is believed that a comprehensive study would be 

required. Besides the possible involvement of Mn2+ cations on tetrahedral sites, one 

set of samples of varying composition has to be investigated, specifying the number 

of possible Mn2+ cations occurring on octahedral sites, as previously determined 

using neutron diffraction data [20], the oxygen content must be examined using 

titration methods as demonstrated by Feltz and Topfer [2], and the absolute ratios of 

Mn2
\ Mn3+ and Mn4 have to be obtained preferably using XPS [21], [22]. Only if all 

these experiments were to be carried out for the same set of samples, could the 

resistivity of these be connected to the cation distribution. 

Additionally, it is suggested that further electrical characterisations should be carried 

out using a.c. impedance spectroscopy over a larger range of frequency to confirm 

the findings presented and examine the high frequency behaviour of NiMnz04+o 

materials in more detail. Measurements for pellets, thin electron-beam evaporated or 

sputtered films and screen-printed films without a glass phase should be carried out 

as well. 

As a final conclusion it is stated that reliable NTCR thermistors, based on 

NiMn20 4+<i, were produced using screen-printing methods with an included glass 

phase. The d.c. and a.c. characteristics ofthe films were described and specified. 
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Appendix B 

XRD reference patterns from JCPDS data base 

B1 NiMn20 4 ; JCPDS 71-852 

B2 NiMn03 ; JCPDS 48-1330 

B3 NiO ; JCPDS 44-1159 

B4 Mn20 3 ; JCPDS 24-508 

B5 AI ; JCPDS 4-787 

B6 Ah03 ; JCPDS 46-1212 

B7 MnO; JCPDS 7-230 

B8 NioMfl08 ; JCPDS 42-479 

iii 



d-space angle 2-th intensity h k I 
4,85 18,27735 20 1 1 1 
2,97 30,06417 34 2 2 0 
2,53 35,45208 100 3 1 1 

2,425 37,04162 8 2 2 2 
2,1 43,03791 21 4 0 0 

1,71 53,54733 8 4 2 2 
1,62 56,78294 31 5 1 1 
1,49 62,25968 34 4 4 0 
1,42 65,70308 1 5 3 1 
1,33 70,78468 2 6 2 0 
1,28 73,99728 6 5 3 3 
1,27 74,67871 3 6 2 2 
1,21 79,07911 2 4 4 4 

NiMn01; JCPDS 48-1330 

d-space angle 2-th intensity h k I 
3,59 24,78036 40 0 1 2 
2,65 33,79721 100 1 0 4 
2,45 36,65013 80 1 1 0 
2,28 39,49193 5 0 1 5 
2,26 39,85615 7 0 0 6 
2,15 41,98903 25 1 1 3 
2,08 43,47269 6 
2,02 44,83294 10 2 0 2 

1,8 50,67429 40 0 2 4 
1,66 55,29564 80 1 1 6 
1,57 58,76483 4 
1,56 59,17885 5 0 1 8 
1,45 64,17864 30 2 1 4 

1,416 65,91222 20 3 0 0 
1,293 73,1316 20 1 0 10 
1,285 73,66167 5 1 1 9 
1,236 77,10321 10 2 1 7 

NiO; JCPDS 44-1159 

d-space angle 2-th intensity h k I 
2,41 37,28063 61 1 0 1 
2,09 43,25418 100 0 1 2 
1,48 62,72788 35 1 1 0 
1,26 75,37413 13 1 1 3 
1,21 79,07911 8 2 0 2 
1,04 95,5774 4 0 2 4 

iv 



Mn201; JCPDS 24-508 

d-space angle 2-th intensity h k I 
3,84 23,14394 18 2 1 1 
2,72 32,90235 100 2 2 2 
2,52 35,59746 2 3 2 1 
2,35 38,269 11 4 0 0 
2,01 45,06821 9 3 3 2 
1,85 49,21223 10 4 3 1 
1,72 53,21143 2 5 2 1 
1,66 55,29564 27 4 4 0 
1,61 57,16799 2 4 3 3 
1,53 60,4588 2 6 1 1 
1,45 64,17864 4 5 4 1 
1,42 65,70308 11 6 2 2 
1,39 67,3074 3 6 3 1 
1,36 68,99862 3 4 4 4 
1,08 90,99826 2 6 6 2 

AI; JCPDS 4-787 

d-space angle 2-th intensity h k I 
2,3379 38,47483 100 1 1 1 

2,02372 44,74606 47 2 0 0 
1,43117 65,12649 22 2 2 0 
1,22086 78,24018 24 3 1 1 
1,16895 82,44221 7 2 2 2 
1,01236 99,08621 2 4 0 0 

d-space angle 2-th intensity h k I 
3,48003 25,57648 45 1 1 0 
2,55044 35,15865 100 2 1 1 
2,38001 37,76806 21 1 0 -1 
2,08554 43,35136 66 2 1 0 
1,74002 52,55198 34 2 2 0 
1,60125 57,50945 89 3 2 1 
1,51088 61,30564 14 3 3 2 
1,40466 66,51302 23 3 1 0 
1,37357 68,22238 27 1 1 -2 
1,23933 76,85805 29 4 3 3 
1,23448 77,21569 12 4 3 2 
1,09901 88,99893 9 4 4 2 

V 



MnO; JCPDS 7-230 

1 

1 

Ni<M!!08 ; JCPDS 42-479 

cl-space angle 2-th intensity h k I 
4,80188 18,4621 25 1 1 1 

4,1626 21,32837 14 2 0 0 
2,94042 30,37386 13 2 2 0 
2,50673 35,79226 13 3 1 1 
2,39953 37,44934 65 2 2 2 
2,07708 43,53692 100 4 0 0 

1,906 47,67503 2 3 3 1 
1,8576 48,99762 10 4 2 0 

1,69607 54,0227 9 4 2 2 
1,59875 57,6078 10 5 1 1 
1,4681 63,2949 45 4 4 0 

1,40418 66,53871 9 5 3 1 
1,38519 67,57251 5 6 0 0 
1,26693 74,89069 25 5 3 3 
1,19906 79,94488 20 4 4 4 
1,03801 95,81987 13 8 0 0 

vi 



Mn104 ; JCPDS 24-734 

d-space angle 2-th intensity h k I 
4,92308 18,00376 30 1 0 1 
3,08899 28,88038 40 1 1 2 
2,88045 31,02197 17 2 0 0 

2,768 32,31601 85 1 0 3 
2,487 36,08594 100 2 1 1 
2,463 36,44987 20 2 0 2 

2,37 37,93366 20 0 0 4 
2,037 44,43873 20 2 2 0 
1,829 49,81551 7 2 0 4 
1,799 50,70445 25 1 0 5 
1,701 53,85346 10 3 1 2 
1,64 56,02894 8 3 0 3 

1,576 58,51933 25 3 2 1 
1,544 59,85428 50 2 2 4 
1,526 60,63391 2 2 1 5 
1,472 63,10787 3 1 1 6 
1,441 64,62797 20 4 0 0 
1,426 65,39201 3 3 2 3 
1,384 67,63845 4 2 0 6 
1,382 67,74958 2 4 1 1 
1,349 69,64205 6 3 0 5 
1,289 73,39559 2 4 2 0 
1,278 74,13247 10 4 1 3 
1,243 76,58986 6 4 2 2 

1,23 77,54936 5 4 0 4 
1,198 80,0299 5 2 1 7 
1,193 80,4337 4 3 1 6 
1,183 81,25526 4 0 0 8 
1,144 84,65048 2 4 3 1 
1,131 85,85585 4 4 2 4 
1,124 86,52146 8 4 1 5 
1,099 88,99996 2 5 1 2 
1,083 90,67572 8 4 3 3 
1,063 92,87886 3 5 2 1 
1,033 96,437 5 3 2 7 
1,023 97,69843 3 2 2 8 
1,018 98,34455 6 4 4 0 
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Appendix C 

X~ray spectra of decomposed oxalates 

Cl Tn = 350°C; 6 hours 

Phases detected: NiMn204 

C2 Tn = 450°C; 6 hours 

Phases detected : NiMn20 4, NiMn03, Mn20 3 (only hints) 

C3 Tn = 600°C; 6 hours 

Phases detected : NiMn03, Mn20 3, Mn304 (only hints) 

C4 Tn = 750°C; 6 hours 

Phases detected: NiMn20 4, NiMn03, Mn203 

C5 Tn = 850°C; 30 ~ optimised process 

Phases detected: NiMn20 4 
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Oxalates decomposed at 350°C 
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Oxalates decomposed at 450°C 
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Oxalates decomposed at 600°C 
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AppendixD 

I-V behaviour of Al ~onntacts 

Dl I-V characteristics at 350 K 

D2 I-V characteristics at 293 K 

03 I-V characteristics at 150 K 

Current vs. Voltage characteristic at 350 K 
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Appendix E 

Control Software for automated R-T data acquisition 

The principle underlying the program was given in the schematic diagram in Fig. 5.3, 

chapter 5.3. 3. 

Introduction window 

a measuement: 

1 .) Connect the Keithley S1 7 Electrometer to the sample. 
Connect two cables wlh two of the data tines 
ol the cryostat (e.g. AC or BD~ 
Make sure they are connected to the 
sample. The two data lines from the ayostat have to be 
comected with one triaxial cable to the rear panel 
ol the Electrometer. Select 'Otms' and 'Range: 

on the front panel The Zero Check and 
Correct have to be disabled The IEEE address of the 

device has to be set to 20. Press Program/ Select and adjust 
the IEEE addreu with the ~ust biJtons in the V-SOURCE 
menue. Press again SELECT /EXIT. 

2.) Evacuate the sample chantJer. Rush the $ample chamber 
with helium gas and evacuate again. Repeat this process 
several tines end leave the VIICUUITl charmer filled wtlh heium 
gas fa the measurement. 

3.) Fin the liquid nitrogen reservoir after evacuating 
the isolation chamber. 

4.) Make sure that the ITC4 temperature controller 
is comected to the computer via a AS 232 C 
cable. Check if the cables for the temperature 
sensors No1 and 2 are connected to the special 
plug ins on the rear panel ol the IT C4. The Keithley 
S17 Electrometer has to be comected to the 
IEEE port of the comptblr via an IEEE cable. 

5.) Close al other applications on the computer. lt is 
recomencled to ~eh elf the screen saver. 

6.) Unfortunately the program is not free of bugs. lt can happen 
that the program fails after taking several measurements. In this 
case you have to restart from the last temperature. For 
unknown rea;om the program works more stable for resistance 
measu:ements during cooing down. 

7.) During the measurement refil the liquid nitrogen reservoir 
every 31 min and evacuate and refill the sample chamber with 
heium every 180 rni'l. 

The code behind this window is not shown here. 
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Data Input window 

fResistance vs. Temperature Measurement 

jPtea:se enter the lowest tempe1 at16el Please choose a measl6ement p1og1am: 

(80K .!1.1 j eonr~J 
1.) Measure the resistarce dl6ing heating up 
2.) Measure during cooling down 
3. J Go in a cycle up cmd do......-. 

I The lowest tempelatl6e is eo Kl 4.) Go in a cycle do......-. and up 

...ll.!!.l 2.Jdownl 11!!! anc1 c~owr~ 1 ... 1 down an~~~ 1 
I Please enter the highest temper aturel 

JHeating up t. cooing down Confinnelion I 11(10 K .!1.1 j con~ I 
IT he highest temper atl6e is 1 00 Kl 

IFiease enter a fileneme for the file your data wil be stored 
nl Please use no dots or commas in the filename I 

JPiease choose the temperature increment! 
I; our data will be stored in C:\Program Files\Microsoft 
Visual Studio\VB9B\Data\test 

[iK .11 .!1 Conlimltion I Conlimatlon I I The lef11l. increment is 1 Kl 

I 

Please specify the con<ilction The measurement wil contain 41 measurement steps! 
mechansim you e~<pect for the saf11lle The data will be stored in C:\Progr.n Files\Microsoft 
under investigation. Give the values Visual Studio\VB98\Data\test 
for the parameter A and B. You will run the measurement program No. 3 

1 -

(TYr) TAexp B 
I I p=po Change Start 

F lo.5 Commation I f-o.s 
re:- 14 Commelion I fe- 4 

The code behind this window is not shown here. 
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Measurement window 

Experiment Monitoring 

low temperature: 80 Kelvin 
high temperature: 100 Kelvin 
Temperature increment: 1 
Number of measurements: 41 
Measurement Program :3 
Heating up and cooling down 

Code: 

Global Variables 

Option Explicit 

Interrupt the eKperiment 
after the next 

Interrupt the 
el<periment 
immediately 

Global a As Single ' parameter for the conduction mechanism 
Global B As Single ' parameter for Lhe conduction mechanism 
Global buff As Integer 
Global Buffer As String 
Global Check As Integer 
Global Checkbox As String 
Global Checklnterrupt As Integer ' munber to be changed for interrupting the 
Global Command As String 'experiment after the next measurement 
Global DwellingTime As Integer ' time for the temp. to settle down: set to 1 min 
Global Filename As String 'Name of the file where the data is stored in 
Global i As Integer 'general counter 
Global Label As Integer 
Global lnresmax As Single ' maximum resistance measured so far 
Global MeasurementSteps As Single 'number of measurements 
Global MeasProg As Integer 
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Global MeasProgT As String 
Global N As Integer 'Counter for all temperature measurements 
Global NL 
Global o As Integer 
Global Path As String 
Global Pathname As String 'patlmame 
Global Pathnamecheck As Integer 
Global program As Integer 
Global Resistance(! To 210) As Single' resistance in Ohm 
Global resmax As Single 'maximum of the resistance measured so far in one cycle 
Global Sing As Single 
Global Settemp As Integer 'settcmperature in Kelvin * 10 for the ITC4 device 
Global Setternpdisplay As Single 
Global t As Integer 'Counter for all valid temperature measurements 
Global Ternp(l To 2000) As Single 'Buffer for temperatures 
Global TernpEnd As Integer 
Global Temperature( I To 210) As Single 
Global Templncrernent As Integer 'temperature increment 
Global TempStart As Integer 'starting temperature in K 
Global Text As String 
Global value As Single 
Global W As Integer 
Global xt As Long 

Main program 

--------------------------------------------------------------------------------
Private Sub Form_LoadO 'Opens the data file and writes the parameter in it 

Dim MeasProgText As String 

If program = I Then 

MeasProgText = "Heating up" 

End If 

If program = 2 Then 

MeasProgText = "Cooling down" 

Endlf 

If program = 3 Then 

MeasProgText ="Heating up and cooling down" 

End If 

If program = 4 Then 

MeasProgText = "Cooling down and heating up" 

End If 

Datalnput.Hide 

Monitoring.Move 200, 1200 

t = 0 

cycle= I 

Label= 1 

graph.Show 'show the blank graph 

lngraph.Show 

Pathname = "C:\Program Files\Microsoft Visual Studio\Vb98\Data\" & Filename 

Open Pathname For Output As #1 'open the data file as #I and print start parameter in this file 

Print #1, "Start Temperature:" & TempStart & "Kelvin" 
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Print #1, "End Temperature:" & TempEnd & "Kelvin" 

Print #1, "Temperature increment:" & Templncrement & "Kelvin" 

Print #1, "Measurement program=" & program & ": " & MeasProgText 

Print #1, "Measurement steps:" & MeasurementSteps 

Print #1," " 

Print #1, "Temperature in Kelvin Resistance in Ohm 1/(Temperature"" & B & ") 

ln(Resistance*Temperature"-" & a & ") " 
Print #1, "------------------------------" 
Call Timer(1000) 

Text9.Text = "low temperature: " & TempStart & "Kelvin" & NL & "high temperature: " & 

TempEnd & " Kelvin" & NL & "Temperature increment: " & Templncrement & NL & "Number of 

measurements: " & MeasurementSteps & NL & "Measurement Program :" & program & NL & 

MeasProgText 

NL = Chr(13) + Chr(IO) 'define NL(new line) 

End Sub 

Private Sub Command3 _ ClickO 'Main part of the program 

Dim Templ As Integer 

Dim Temp2 As Integer 

Dim v As Integer 

Dim z As Integer 

Command3.Visible =False 

Command2.Visible = Tme 

Command4.Visible = Tme 

Checklntermpt = 0 

'Call TempSim(3) 

'Text3.Te:\1 = "Simulating 3" 

Call Inittc' Initialise the temperatur controller and set start temperature 

t = 0 ' counter for all valid temperature and resistance measurements 

N = 0 ' counter for all measurements 

If program = 1 Or program = 3 Then 

v=TempEnd 

z = TempStart- (2 * Templncrement) 

Endlf 

If program = 2 Or program = 4 Then 

v = TempEnd + (2 * Templncrement) 

z = TempStart 

End If 

If program = 3 Or program = 4 Then 

cycle= 1 

End If 

Do 

Call tempcontroller("$F1 ")'Display sensor] 

Call Timer(l 000) 

Textl.Text ="Set the temperature" 
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Call Settemperature(Settemp) 

Settempdisplay = Settemp I 1 0 

Text4.Text = Settempdisplay & "K" 

N= 1 

Call Dwell(lO) 'Wait tmtil the temperature has settled down 

Call resdwelling 'Wait until the resistance is stable 

t = t + 1 'count the measurement step 

N=N+1 

'Call TempSim(2) 

Call tempmeasurement2(N) 'Measure the temperature in the sample chamber 

Temperature(t) = Temp(N) 'Temp(N)= returned value 

Call resmeasurement(t) 'Measure the resistance 

Print #1, Temperature(!) I 10 'returned value & " " & Resistance(t) & " " & (1 I 

(Temperature(t) I 10)) "(1 I B) & " " & Log((Resistance(t)) * ((Temperature(t)) "(-a))) 

'Write the data to the chosen file 

Call Timer(1000) 

Unload graph 'plots the results in a normal and a logat)1lunic scale 

graph. Show 'remove the old graph and shov,· the new one 

Unload lngraph 

lngraph.Show 

If program = 1 Then 

Settemp = Settemp + (Tempincrement * 10) 'set the next temperature 

End If 

If program = 2 Then 

Settemp = Settemp - (Tempincrement * 10) 

End If 

If program = 3 Then 

If cycle = 1 Then 

Settemp = Settemp + (Tempincrement * 1 0) 

End If 

If Settemp > (TempEnd * 10) Then 

cycle= 2 

Label =t- 1 

v = TempEnd + (2 * Templnc) 

z = TempStart 

End If 

If cycle = 2 Then 

Settemp = Settemp - (Templncrement * 1 0) 

End If 

End If 

If program = 4 Then 

If cycle = 1 Then 

Settemp = Settemp- (10 * Templncrement) 

End If 

If Settemp < (TempStart * 10) Then 

cycle= 2 
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Label= t- 1 

v=TempEnd 

z = TempStart - (2 * Templncrement) 

End If 

If cycle = 2 Then 

Settemp = Settemp + (10 * Templncrement) 

End If 

End If 

Loop Until Settemp > (v * 10) Or Settemp < (z * 10) Or Checklnterrupt = 1 'loop until the end 

Close #1 'temperature is reached or until the 

Call Settemperature(2930) 

Unload Monitoring 'experiment is interrupted by the user 

Finish. Show 'remove the monitoring window and sho\v the finish window 

End Sub 

Private Sub Command1_ClickO' confirmation to continue the experiment 

Check= 1 

End Sub 

Private Sub Command2_ClickO' intem1pt the cxl)eriment 

Checklnterrupt = 1 

End Sub 

'after carrying out the nex1 measurement 

Private Sub Command4_ClickO 

Textl.Text = "Experimerit interrupted" 

Text3.Text ="The data obtained so far" & NL & "is saved to the specified folder." & NL & "Please 

wait until the program has shut down." 

Call Settemperature(2930) 

Call Timer(2500)' time until the monitoring sheet disappears 

Monitoring.Hide 

lngraph.Hide 

graph.Hide 

Finish. Show 

End Sub 

--------------------------------------------------------------------------------
Public Sub Timer(xt) 'Produces a lime delay of X milliseconds 

Timerl.Interval = xt 

Timer1.Enabled =True 'enable Private Sub Timerl_ Timer() 

Do 

Do Events 

Loop Until Check= 3 

Check=O 

Timerl.Enabled =False 

End Sub 
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Private Sub Timerl_TimerO' carries out the command Check= 3 after the 

Check= 3 ' time delay set in Timer !.Interval 

End Sub 

Private Sub MSComm 1_ OnCommO 'serial port control 

End Sub 

Public Sub InittcO 'Initialises the temperature controller and sets the start temperature 

Text1.Text ="Initialise the ITC4 temperature controller" 

Check=O 

Static Buffer$ 

'Choose the settings for the output port 

MSComm 1.CommPort = 2 

MSComml.Settings = "9600,N,8,2" 

MSComm 1.InputLen = 0 

Call tempcontroller("$C3") 'Send remote enable command 

Textl.Text ="Remote enable command sent" 

Call Timer(lOOO) 'Waiting for sending the next command 

Call tempcontroller("$H1 ") 'Send command to enable sensor no. 1 

Textl.Text ="Sensor 1 enabled" 

Call Timer(l 000) 

Call tempcontroller("$Fl ") ' Display sensor 1 

Call Timer(l 000) 

If program = I Or program = 3 Then 

Settemp = TempStart * 10 'The temperature controller needs the temperature 

End If ' in K times 10 

[f program = 2 Or program = 4 Then 

Settemp = TempEnd * 10 

End If 

Call tempcontroller("$11.0") 'set integral constant to 3 

Textl.Text ="Set the integral constant to 3" 

Call Timer( 1 000) 

Call tempcontroller("$D0.5") 'set differential term to I 

Text 1. Text = "Set the differential term to 1" 

Call Timer(l 000) 

Call tempcontroller("$P3.0") 'sctproportional band to 3.0 

Textl.Text = "Set the proportional band to 3.0" 

Call Timer(l 000) 

Call tempcontroller("$A1 ") 'Send command to Auto Heater 

Textl.Text = "Heater set to Auto" 

Call Timer(lOOO) 

Text3.Text ="If your start temperature is lower than 90 Kelvin please open the valve for the liquid 

nitrogen outlet completely, so that the sample chamber can cool down as fast as possible! If your start 
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temperature is higher, open the valve only half a turn (so that the little hole is on top). When the 

measurement has started open the valve half a turn!" 

Command 1. Visible = True 

Check= 0 

Do 

DoE vents 

Loop Until Check= 1 

Commandl.Visible =False 

Check= 0 

Text3.Text =" " 

Textl.Text = " " 

End Sub 

Public Sub Dwell(W) 'Wait until the temperature has settled down and is close 

'to the set temperature: difference is not more than W/10 K 

Dim d As Integer 

Dim cAs Integer 

Check= 0 

Do 

Text3.Text ="Settling down" 

Textl.Text ="Wait until the set temperature is reached." 

d = DwellingTime 

c=O 

If Check > 0 Then 

Do 'loop for a time delay of d seconds 

c=c+1 

Call Timer(60000) 

Loop Until c = d 

Endlf 

'Call TempSim( 1) 

'Text3.Tex1 = "Simulating I" 

Text3.Text ="Measure the temperature from sensor No.1" 

Call tempmeasurement 1 (N) 

N=N+1 

Check = Check + 1 

Text3.Text ="" 

Loop Until Temp(N - 1) - Settemp < WAnd Temp(N - 1) - Settemp > -W 

Textl.Text ="" 

Do 

N = N + 1 ' Counter for all temperature measurements 

Textl.Text ="Checking if the temperature reading is stable." 

d = DwellingTime 

c=O 

Text3.Text ="Settling down" 

If Check > 0 Then 
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Do 'loop for a time delay of d minutes 

c=c+l 

Call Timer(60000) 

Loop Until c = d 

End If 

'Call TempSim( I) 

'Text3.Text = "Simulating!" 

Text3. Text = "Measure the temperature from sensor No.l" 

Call tempmeasurement 1 (N) 

N=N+l 

Call Timer(3000) 

Call tempmeasurementl(N) 

N=N+ 1 

Call Timer(3000) 

Call tempmeasurementl (N) 

N=N+l 

Text3.Text =" " 

Check = Check + 1 

Loop Until Temp(N- 1)- Temp(N- 2) < 5 And Temp(N - I)- Temp(N- 2) > -5 And Temp(N- 2}-

Temp(N- 3) < 5 And Temp(N- 2)- Temp(N- 3) > -5 'Loop Until the sensor reading is stable 

Textl.Text ="" 

Check= 0 

Call Sensorcomparison(30) 'Wait until sensor! and sensor2 differ not more 

End Sub 'than 3 Kelvin 

Public Sub Sensorcomparison(W) 'waits until sensor l and sensor2 display a 

Textl.Text ="Sensor comparison" 'similar temperature: difference not more 

Dim sensorl As Single 'than W/10 Kelvin 

Dim sensor2a As Single 

Dim sensor2b As Single 

Dim sensor2c As Single 

Dim sensor2 As Single 

Dim P As Integer 

P = 0 'counter for the comparisons 

Do 

IfP > 0 Then' no time delay until the first comparison 

Text3.Text ="Wait until sensor! and sensor2 have a similar temperature" 

Call Timer(60000) 

End lf 

Text3.Text = " " 

P=P+l 

N=N+l 

Text3.Text ="Measure the temperature from sensor!" 

Call tempmeasurementl (N) 

Text3.Text = " " 
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sensorl = Temp(N) 

Call Timer(500) 

N=N+ I 

Text3.Text ="Measure the temperature from sensor2" 

Call tempmeasurement2(N) 

sensor2a = Temp(N) 

N=N+l 

Call Timer(3000) 

Call tempmeasurement2(N) 

sensor2b = Temp(N) 

N=N+ I 

Call Timer(3000) 

Call tempmeasurement2(N) 

sensor2c = Temp(N) 

sensor2 = (sensor2a + sensor2b + sensor2c) I 3 

N=N+l 

Text3.Text ="" 

Call Timer(200) 

Call tempcontroller("$Fl ") 'display sensor 1 again 

Loop Until Abs(sensor2- sensor!)< WAnd Abs(sensor2a- sensor2b) < 5 And Abs(sensor2b­

sensor2c) < 5 'wait wttil the sensors show a similar tempemtme 

Textl.Text ="" 

Call tempcontroller("$Fl ") 'display sensor l again 

Call Timer(l 000) 

End Sub 

Public Sub resdwellingO 'wait until the resistance is stable 

Static Buffer As String 

Dim ressum As Single 

Dim tg As String 

Dim Str As String 

Dim i As Integer 

Dim z As String 

Dim cmmt As Integer 

Dim DevMess As Double 

Dim dev As Double 

Dim mev As Integer 

Dim status As Integer 

Dim length As Integer 

Dim RetVal As String 

ReDim re( I To 30) As Single 

ReDim resist(l To 2) As Single 

Textl.Text ="Wait until the resistance is stable" 

mev=O 

initialize 7' 0 
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Send 20, "REN'', status 

Send 20, "F2XROX", status 

Call Timer(3000) 

Do 

For count = I To 2 

Do 

'send 20, "Cl:XZ1X", status 

'Call Timcr(300) 

'send 20, "ZOXCOX", status 

'Call Timer(lOO) 

If status > 0 Then 

Textl.Text ="The Electrometer is not working!" & NL & "Check that the IEEE address is 20 

and the connections!" 

CommandLVisible =True 

Do 

Loop Until Check= 1 

End If 

Check =0 

Loop Until status= 0 

Fori= 1 To 30 

Enter RetVal, 200, length, 20, status 

Call Timer(150) 

z = Right(RetVal, 11) 

re(i) = CSng(z) 

z="" 

Next i 

'RetVal = Shell("C:\Resmeas2.exe", 2) 'Call a Yisua1Basic3 program which measures 

'the resistance and writes it to Resistan.txt 

'Call Timer(8000) 'time which is needed for measuring the resistance 

'AppActivate RetYal 

'SendKeys "{END}" 

'DevMess = Val(RetYal) 

Commandl.Visible ""False 

'Loop Until status = 0 

'Path = "C:\Resistan.txt" 

'Open Path For Input As #20 'open Resistan.txt 

'For i = 1 To 30 'read the 30 measured resistances and average them 

'Input #20, z 

'z = Right(z, 11) 

're(i) = CSng(z) 

'z ="" 

'Next i 

ressum = 0 

Fori= 1 To 30 

ressum = ressum + re(i) 

Next i 
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resist( count)= ressum I 30 'average resistance 

Text13.Text =resist( count) & "Ohm" 

'Close #20 

If count = 1 Then 

'send 20, "RilX", status 

Call Timer(9000) 

'send 20, "ROX", status 

Call Timer(lOOO) 

End If 

Next count 

'send 20, "RllX", status 

dev = Abs(resist(l)- resist(2)) 

If dev >(resist( I) I 100) Then 

Call Timer(60000) 

End If 

Loop Until Abs(resist(l) - resist(2)) < (resist(l) I 1 00) 

Send 20, "CIXZIX", status 

Call Timer(200) 

Send 20, "ZOXCOX", status 

Call Timer(ISOOO) 

Textl.Text ="Resistance stable!" 

Call Timer(SOO) 

End Sub 

Public Sub tempmeasurementl(N) 'Measures the temperature of sensorl 

Static Buffer As String 'Choose the settings for the output port 

Dim Tempstr As String 

MSComml.CommPort = 2 

MSComml.Settings = "9600,N,8,2" 

MSComm l.lnputLen = 0 

MSComm l.PortOpen =True 

MSComml.Output = "$Fl" & Chr$(13) 'display sensorl 

Call Timer(l 000) 

MSComm l.Output = "Rl" & Chr$(13) 'command for reading the temperature 

Call Timer(2000) 'from sensor I 

Buffer= MSComml.lnput 'Writes the input from the tempcontroller into a buffer 

Tempstr = Right$(Buffer, 6) 'extract the temperature from the device response 

Temp(N) = Val(Tempstr) 

Text2. Text = Temp(N) I 10 & " K" 

MSComml.PortOpen =False 'close the output port 

End Sub 

Public Sub tempmeasurement2(N) 'Measures the temperature from sensor2 

Static Buffer As String 'Choose the settings for the output port 

Dim Tempstr As String 
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MSComml.CommPort = 2 

MSComml.Settings = "9600,N,8,2" 

MSComml.lnputLen = 0 

MSComm l.PortOpen = True 

MSComml.Output = "$F2" & Chr$(13) 'display scnsor2 

Call Timer(SOO) 

MSComml.Output = "R2" & Chr$(13) 'read the temperature from sensor2 

Call Timer(SOO) 

Buffer = MSComm l.lnput 

Tempstr = Right$(Buffer, 6) 'extract the temperature from the device response 

Temp(N) = Val(Tempstr) 

Textl2.Text = Temp(N) I 10 & " K" 

MSComml.PortOpen = False 'close output port 

End Sub 

Public Sub Settemperature(Settemp) 'sets the temperature to the current set temperature 

Command= "T" & Settemp 

Call tempcontroller(Command) 'Send the command to set the temperature 

Call Timer(2000) 

End Sub 

Public Sub tempcontroller(Command) 'Sends a command to the 

MSComm l.PortOpen = True 'temperature controller 

MSComml.Output =Command & Cbr$(13) 

Call Timer(l 000) 

Buffer= Buffer & MSComml.Input 

MSComml.PortOpen =False 

End Sub 

Public Sub resmeasurement(t) 'measures the resistance 

Textl.Text = "Measure the resistance" 

Static Buffer As String 

Dim ressum As Single 

Dim i As Integer 

Dim z As String 

Dim RetVal As String 

Dim length As Integer 

Dim status As Integer 

ReDim re( I To 20) As Single 

'Shell "C:\Resmcas2.exe" ' Call a VisualBasic3 program which measures 

'the resistance and writes it to Resistan. txt 

'Call Timer(8000) 'time which is needed for measuring the resistance 

'Path= "C:\Resistan.txt" 

'Open Path For Input As #20 'open Resistan.txt 

'For i = 1 To 30 'read the 30 measured resistances and average them 
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'Input #20, z 

'z = Right(z, 11) 

're(i) = CSng(z) 

'z-=" n 

'Next i 

initialize 7, 0 

Do 

Send 20, "REN", status 

Call Timer(200) 

Send 20, "F2XROX", status 

Call Timer(200) 

If status > 0 Then 

Textl.Text = "lbe Electrometer is not working!" & NL & "Check that the IEEE address is 20 

and the connections!" 

Commandl.Visible =True 

Do 

Loop Until Check= 1 

End lf 

Check= 0 

Command 1. Visible = False 

Loop Until status = 0 

Fori= 1 To 20 

Enter RetVal, 200, length, 20, status 

Call Timer(100) 

z = Right(RetVal, 11) 

re(i) = CSng(z) 

z=n" 

Next i 

ressum = 0 

Fori= 1 To 20 

ressum = ressum + re(i) 

Next i 

Resistance(t) = ressum I 20 'average resistance 

'Close#20 

Textl3.Text = Resistance(t) & "Ohm" 

'send 20, "R11X", status 

End Sub 

Public Sub TempSim(o) 'Simulate a temperature 

If o = l Then 'simulate a temperature for sensor No.l 

Temp(N) = Settemp 

Text2.Text = Settemp I 10 & "K" 

End If 

If o = 2 Then 'temp for sensor No.2 

Temp(N) = Settemp 
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Textl2.Text = Settemp I 10 & "K" 

End If 

If o = 3 Then 'set the start temperature 

Settemp = TempStart * I 0 

End If 

End Sub 

--------------------------------------------------------------------------------
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