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Abstract

Modelling of complex corroding industrial systems is critical to effective inspection

and maintenance for assurance of system integrity. Wall thickness and corrosion

rate are modelled for multiple dependent corroding components, given observations

of minimum wall thickness per component. At each inspection, partial observations

of the system are considered. A Bayes Linear approach is adopted simplifying pa-

rameter estimation and avoiding often unrealistic distributional assumptions. Key

system variances are modelled, making exchangeability assumptions to facilitate

analysis for sparse inspection time-series. A utility based criterion is used to as-

sess quality of inspection design and aid decision making. The model is applied to

inspection data from pipework networks on a full-scale offshore platform.
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Chapter 1

Complex industrial systems

1.1 Complex industrial systems

Industrial processes contain large complex structures made up of many intercon-

nected parts or components. Such systems need careful monitoring to assess perfor-

mance. Deterioration of these systems, due to processes such as corrosion, can lead

to reduced performance, and cause system failures and breakdowns. These system

failures can be extremely financially and environmentally costly and are a potential

risk to safety. Inspection is usually carried out to assess the current state of repair

of the system and where necessary perform maintenance.

The aim of this thesis is to consider aspects of a tractable approach to modelling

and learning about complete systems. We present methodology to update model

parameters including uncertainties for irregular, incomplete, short time series. Then

we show how to design inspection schemes to improve efficiency and effectiveness of

inspection, minimising potential losses whilst designing to learn about means and

variances.

1.2 Inspection methods

In many cases industrial process are extremely slow and costly to shut down. As a

result, inspections are expensive and not easy to carry out. Non-destructive testing

(NDT) or non-invasive inspection (NII) methods are normally used to inspect these

2
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systems, i.e. components are inspected in-situ without damaging or affecting the

operation of the system. Due to the materials involved, corrosion and fatigue are

often internal and cannot be seen from outside. Most NDT inspection techniques

involve sending an energy source (e.g. sound or electromagnetic) into a material,

and using a detector to measure that energy. Differences or flaws in the structural

integrity of the material will then affect the energy source as it moves through the

material, giving a picture of its internal structure. ASNT [2009] gives an introduction

to NDT.

Ultrasonic testing involves sending sound waves into materials to check for inter-

nal flaws. The time the sound takes to be sent out and reflect back to the detector

gives an idea of component wall thickness. It can be used to detect very small flaws

in the object and doesn’t affect the operation of the component. Krautkrämer and

Krautkrämer [1990] provides a very detailed explanation of the process of ultrasonic

testing. Time of Flight Diffraction (TOFD) is a fast method of implementing ultra-

sonic inspection, which uses a pair of probes sending signals down the length of a

component, allowing quick inspection over a large area.

Radiographic testing involves using gamma rays to penetrate materials to give an

image of the internal structure of the material. The density of the material affects

the rate of diffusion of the radiologic source and thus affect how clearly various

features and flaws show up and therefore requires calibration.

1.3 Corrosion

Corrosion is a chemical process where a metal reacts with chemicals around it pro-

ducing a new and less desirable material. The most commonly known form of

corrosion is rusting, which consists of iron or steel (or other iron alloys) reacting

with oxygen to form ferrous oxides. Iron in the presence of water and oxygen will

form Iron Hydroxide,

2Fe+O2 + 2H2O → 2Fe(OH)2
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this Iron Hydroxide will then react further with oxygen to form hydrated iron oxide

(rust), [Nimmo and Hinds, 2003].

4Fe(OH)2 +O2 → 2Fe2O3.H2O

Rust is porous, and allows air though, enabling corrosion to continue further inside

the iron beyond the rust. Aluminium is a metal which naturally forms a protective

barrier that insulates it from corrosion. Aluminium is a very reactive metal which

in the presence of air quickly oxidises, just like iron. However, unlike iron, this

oxide is not very reactive and insulates the inside of the material. This process,

known as passivity, can be replicated in other materials such as iron/steel, giving the

metal a protective coating that is non-reactive, protecting the metal from corrosion.

Stainless steel is one such example which is an alloy of iron that includes chromium

to help protect it from corrosion. Talbot and Talbot [1998] gives an overview of

corrosion and protection strategies. There are various different types of corrosion.

• uniform corrosion: the gradual degradation of metals, such as rusting, which

is normally fairly consistent and predictable.

• pitting corrosion: a localised type of corrosion, where the rate of corrosion in

particular places is significantly higher than other areas. This type of corrosion

typically occurs in places where protective coatings have broken and can lead

to cracks and failure of components.

• galvanic corrosion: where 2 different metals are in contact with each other

and have different reactivity. One metal can give up electrons and ions to the

other metal.

• stray current: an electric current acting on a metal can turn it into a electrode

and cause it to leech material away.

• microbial attack: certain fungi and microbes can cause damage and corrosion

to metals.

An illustration of a pipework section which shows evidence of uniform and pitting

corrosion is shown in figure 1.3. The temperature of metals also affects how fast
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Figure 1.1: Internal corrosion of a typical pipework section

things corrode. In a high temperature environment, metals become more reactive

and thus more susceptible to corrosion. Uhlig [1971] provides a detailed summary

of types of corrosion damage that can occur.

1.4 Offshore platform data

Throughout this thesis we will illustrate ideas and methodology with an example

of a complex industrial system: an offshore oil platform, figure 1.4. On an offshore

platform, there are a large number of complex pipework networks. These can be

broken down into many corrosion circuits. Within an individual corrosion circuit,

there will be many interconnected components. A component, c, may be considered

as a small region/section of a corrosion circuit which can be replaced and behaves

in a consistent way with respect to its corrosion properties. A schematic of one such

corrosion circuit is shown in figure 1.3 with pipework structure is shown by lines

and individual components marked and numbered. The schematic shows a pipework

system where components occur at irregular intervals. There are several branches
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Figure 1.2: A typical offshore platform

and sub-branches along the length of the corrosion circuit. It seems reasonable to

think that components which are corroding in the same system, subject to similar

conditions will behave in similar ways so we want to be able to include this feature

whilst modelling. The strength of relationships between components will be related

to how close together they are. Although components may be physically closer to

one another the important factor controlling relationships between components is

the notion of distance along the pipe. We will therefore consider a distance metric as

the number of components between components along the pipe. Multiple Corrosion

circuits, although not necessarily linked, also perform similar tasks and also may be

related.

1.4.1 Inspection of an offshore platform

Inspection and maintenance on offshore platforms is a difficult task. As a result it

is very rare that complete systems will be inspected. Inspections are carried out

at relatively large time intervals, t, (months or years apart) and not carried out

on a regular basis. So we end up with short irregular time series for individual

components within the system. However we do have large numbers of components
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Figure 1.3: A typical schematic diagram of a corrosion circuit. Dots on schematic

represent individual components
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Figure 1.4: A typical inspection design for the offshore application, consisting of 64

components over 83 time points. Black lines correspond to 174 observations of the

system.

so sharing information across components is important. When components are in-

spected, generally inspectors are most concerned with where the component is at

its most vulnerable. Consequently only one measurement is usually recorded for a

whole component, the minimum wall thickness, since this is where the component

is most likely to break.

For the current application, we will model a system of 4 corrosion circuits con-

sisting of a total of 64 pipe-work weld components. Historical data are available

for component minimum wall thickness, obtained during inspection campaigns us-

ing non-intrusive ultrasonic measurements for the period 1998 - 2005. The data

is given in a table in the appendix A. Based on the frequency of observations and

the requirements for inspection planning, we select a monthly time-increment for

modelling; the historical period therefore consists of 83 time points. The actual

historical inspection design is given in Figure 1.4. From the figure it is clear that

inspections are typically incomplete and irregularly spaced in time. A total of 174

observations of the system are available.
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1.4.2 Synthetic data

Applying methodology to real-life examples is important. However it can be difficult

to analyse performance since we don’t know what the “real” answer should be. The

use of diagnostic tests gives us some idea of whether things are behaving as expected.

To illustrate ideas then we will also be using simulated data sets similar in set up

to the real data, where we know the underlying parameters. We can then quantify

exactly how well our methodology is performing. Discussion of the use of simulators

for large systems is given in Craig et al. [2001] and Goldstein and Rougier [2006].

1.5 Contribution of the thesis

The original contribution of the thesis is in presenting a methodology for tractable

modelling of large systems of short time series using incomplete and irregularly

spaced correlated time series. The use of second order exchangeability assump-

tions provides a structure to correlations and allows interference on both mean and

variance quantities.

1.6 Thesis outline

In chapter 2 we introduce some of the key theoretical concepts used in the thesis and

examine other current approaches in this area. We then discuss a modelling approach

for complex systems in chapter 3, modelling the systems as a combinations of a global

and local system. In chapter 4 we look at how to use historical data to update

our understanding of the system using Bayes Linear analysis. We also look at the

specification of prior beliefs and also diagnostics to check consistence and coherence

of data. We then move on to look at the problem of learning about variability. In

chapter 5 we look at Bayes linear variance learning for a linear growth DLM, using

exchangeability assumptions. In chapter 6 we then generalise to update the global

effect variances for the model described in chapter 3; learning about variances in the

case of a non linear observation equation. We look at using the Mahalanobis Distance

for parameter estimation including variance learning in chapter 7. A candidate set of
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parameter values are chosen, each of which is compared with observations using the

Mahalanobis distance. We then consider how to design efficient inspection schemes

in chapter 8. A utility based criterion is used to assess designs. Designs which inspect

components about which there is a high probability of failure or about which there

is high uncertainty are favoured. Discussion of the methodology and some areas of

further study is given in chapter 9. In appendix C is a table of with an explanation

of the notation used in this thesis.



Chapter 2

Theoretical background

We now introduce some of the key concepts we will use in this thesis as well as

reviewing current approaches in the areas of corrosion modelling, inspection and

Bayesian approaches dealing with large problems. We begin by examining existing

literature before presenting an introduction to Bayes linear statistics and second

order exchangeability.

2.1 Literature review

We begin by reviewing existing literature on the subjects of corrosion, modelling,

inspection and Bayesian estimation. We are considering large industrial systems

made up of many interconnected related parts or components. We will model com-

plete systems and update beliefs about the system state including uncertainties in

situations where we have irregular, incomplete, short time series.

2.1.1 Corrosion modelling

Corrosion science is an area in its own right with a vast body of literature. Nimmo

and Hinds [2003] present a beginners guide to the chemical process of corrosion,

whilst Talbot and Talbot [1998] and Uhlig [1971] provide a more detailed explanation

of corrosion science.

Models are an attempt to quantify the physical word mathematically. Modelling

corrosion helps to improve understanding of the system and aid prediction. Industry

11
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guidelines such as Health and Executive [2002] and ASTM-Standard-G16 [2004]

talk in very general terms about the statistics of modelling corrosion. Zhang and

Mahadevan [2000] outline mathematical expressions for initiation and evolution of

different corrosion mechanisms, including pitting and cracking. Estes and Frangopol

[2001] present a cost based approach for maintenance planning, for deterioration of

structures with application to concrete bridges.

Some approaches to corrosion modelling consider corrosion as an extreme value

problem. Coles [2001] provides a good introduction to the statistical modelling of

extremes and Kotz and Nadarajah [2000] gives an overview of extreme value dis-

tributions. Generalised Extreme Value distributions are used to model corrosion in

Glegola [2007]. Scarf and Laycock [1996] give a review of extreme value models used

in corrosion modelling. Caleyo et al. [2009] use Monte Carlo simulation to investigate

external corrosion pit depth, and pit growth rate, in underground pipelines. Qin

and Cui [2003] provide a corrosion model describing the corrosion process on steel

structures. Another examination of corrosion in pipelines is given in Hawn [1977],

where extreme value analysis is used in the prediction of maximum pit depth.

2.1.2 Inspection and maintenance

As well as modelling corrosion, inspection and maintenance planning is an important

area of study. Kallen and van Noortwijk [2005] look at maintenance planning, con-

sidering situations where inspections are not perfect. A number of authors discuss

the inclusion of inspection data and expert judgement, within a risk-based inspec-

tion framework. For example, Faber and Sorensen [2000] present an approach to

estimating the condition of systems, for inspection planning purposes, using a com-

bination of inspection observations and expert judgement. Straub [2004] describes

generic approaches to risk-based inspection of steel structures. Incomplete data is

a feature of inspection of complex industrial systems. Gasemyr and Natvig [2001]

present a Bayesian approach to modelling in situations of partial inspections. It is

not always known whether corrosion has been initiated within a system. Kuniewski

et al. [2009] present a method for compliance sampling, deciding whether or not

corrosion has initiated and how much of a system needs inspecting.
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The majority of these approaches to inspection look at individual system com-

ponents. Alternatively, when modelling larger systems, they consider cases where

components are independent, effectively confining the problem to a univariate case.

Our approach models the entire system and consequently, to retain tractability,

a less complex method of modelling is needed. Little et al. [2004a] use a multivari-

ate dynamic linear model to characterise the corrosion of large industrial storage

tanks, using observations of component minima, and suggest approaches to opti-

mal inspection planning. Little et al. [2004b] describe the application of a spatio-

temporal dynamic linear model to modelling the corrosion of an industrial furnace,

using Bayes Linear updating. Empirical distance-based estimates for covariances of

dynamic linear model observations and system variances are used, and optimal in-

spection planning based on heuristic criteria is considered. Shaddick and Wakefield

[2002] use a hierarchical dynamic linear model, modelling daily multivariate pol-

lutant data, for multiple sites. Alternatively, G.Hardman [2007] presents a utility

based approach to evaluate costs of inspection designs, to give a monetary criterion.

2.2 Bayes linear analysis

Bayesian theory allows incorporation of prior beliefs and expert judgement, together

with observational data. It can deal with very complex types of modelling. However

quantifying prior beliefs can be difficult especially when dealing with experts without

a background in statistics. O’Hagan et al. [2007] deal with the area of elicitation

and describe approaches to help extract expert judgements. Farrow [2003] examines

elicitation and building of subjective covariance structures, for large systems.

2.2.1 The Bayes linear approach

Modelling large and complex systems by full Bayesian analysis can be difficult.

Even in small problems, with few sources of uncertainty, it can be difficult to assess a

satisfactory full joint prior probability specification over all of the possible outcomes.

Unrealistic, simplifying prior assumptions are often made (e.g. conjugacy) to make

inference possible [Raiffa and Schlaifer, 1961].
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Improvements in modern computing has meant that stochastic simulation ap-

proaches such as Markov Chain Monte Carlo Methods have become more prevalent

Robert and Casella [2004]. The advantage of these methods is that given enough

computational time, full and complex posterior inferences can be made. However,

in large problems such as complex industrial systems, there may be hundreds of

relevant sources of uncertainty about which prior judgements are made. In such

problems, it is arguably impossible for us to carry out a full Bayesian analysis. If

such a full prior specification were possible, it would often be the case that the spec-

ification was too time consuming and too difficult to check. Further, the resulting

Bayesian analysis can often be extremely computer intensive. The Bayes linear ap-

proach is particularly appropriate whenever the full Bayesian approach requires an

unnecessarily exhaustive description and analysis of prior uncertainty.

The Bayes linear approach can be viewed as either (a) offering a simple approx-

imation to a full Bayesian analysis, for problems where the full analysis would be

too difficult or time consuming, or (b) complementary to the full Bayes analysis,

offering a variety of new interpretative and diagnostic tools which may be of value

whatever our viewpoint, or (c) a generalisation of the full Bayesian approach where

the artificial constraint that requires a full probabilistic prior specification is lifted.

The Bayes linear approach is particularly helpful for design problems where we need

to search over a large design space. In these cases other approaches would become

computationally intractable.

Prior beliefs are specified in terms of means, variances and covariances. A brief

summary of the Bayes linear approach is given Goldstein [1998] with a detailed

treatment in Goldstein and Wooff [2007]. Farrow and Goldstein [1993] discuss Bayes

linear methods, for grouped multivariate repeated measurement studies, with ap-

plication to cross-over trials. Modelling large systems can be computationally in-

tensive; Bayes linear analysis can be used effectively in large simulator problems.

Craig et al. [2001] discuss the use of large scale simulators and use a Bayes linear ap-

proach to forecasting. Goldstein and Rougier [2006] discuss the calibration of large

simulators, based on adjustment of observational data. The Bayes linear approach,

provides a computationally efficient method for updating beliefs for problems where



2.2. Bayes linear analysis 15

a full Bayesian approach would be too difficult or time consuming. The basis of

Bayes linear analysis, comes from the idea that expectation, not probability, should

be the primitive quantity. The concept of prevision (or expectation) is explored by

de Finetti [1974]. Using the idea of the subjective pricing of gambles, the price you

are willing to pay for a gamble is your prevision. This price is then unique to “You”,

hence, subjective. Whittle [1992] provides a non-subjective approach to probability

theory, derived from expectation not probability.

Learning about variances within models is another important area. This is an

inherently difficult task, since multiple observations are needed to understand vari-

ability. Wilkinson [1997] discusses variance learning for a univariate linear growth

dynamic linear model, and Wilkinson and Goldstein [1997] describe Bayes linear

covariance matrix adjustment for a multivariate constant dynamic linear model.

However, these examples are concerned with long time series and complete data.

Short irregular time series data for large numbers of components is similar to lon-

gitudinal studies where modelling covariance is important. Rawwash [2005] presents

a method of covariance matrix estimation for use when data are incomplete. Diggle

and Verbyla [1998] and Wu and Pouramadi [2003] both consider non-parametric

approaches to estimation of large covariance matrices.

2.2.2 Adjusting beliefs

Suppose we have a collection of vector quantities, X, where X = {X1, X2, . . . XN}.

We then observe a collection, D, where, D = {D0, D1, D2, . . . DT} (where D0 = 1)

and wish to adjust our beliefs about X, given observations, D.

The adjusted expectation of X is defined to be, ED(X), the linear combination

of the D which minimises:

E((X −
k∑
i=0

hiDi)
2),

over all possible choices of h. This is also known as the Bayes linear rule for X given

D. This can be simplified to give:

ED(X) = E(X) + Cov(X,D)[Var(D)]†(D − E(D)) (2.2.1)

where Var(Y )† is the inverse of Var(Y ) if invertible; If not, a generalised inverse,
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such as the Moore-Penrose pseudo inverse should be used. The adjusted variance,

VarD(X), is given by:

VarD(X) = Var(X)− Cov(X,D)[Var(D)]†Cov(D,X) (2.2.2)

and may be considered as the mean squared error of the estimator ED(X). The

resolved variance,RVarD(X), is then given by:

RVarD(X) = Cov(X,D)[Var(D)]†Cov(D,X) (2.2.3)

which is the amount of variation of X, which is explained by D.

When considering design calculations, i.e. optimal inspection schemes, we will

need the ability to examine large numbers of designs and compute beliefs quickly.

Due to the linear nature of the equations, Bayes linear analysis gives the ability

to update our beliefs quickly, even for high dimensional problems. We also only

need to specify a partial belief structure of first and second order quantities; that is

means, variances and covariances. We therefore avoid the need to assume specific

distributional forms. In the context of large industrial systems, we also need to be

able to specify relationships between components to be able to share information.

We do this using exchangeability.

Goldstein and Wooff [2007, page 61-63] discuss the interpretation of adjusted

beliefs, which can be viewed as giving simple tractable approximations to a full

Bayesian approach. More formally, de Finetti defines expectation as the value λ

that minimises the following penalty function (with c > 0 denoting unit loss):

L = c[X − λ]2

In this case adjusted expectation ED(X) extends the definition of expectation to

the case where there are a range of values of λ:

LD = c[X −
k∑
i=0

λiDi)]
2

Conditional expectation E(X|D) can be expressed as the penalty function:

LD = cD[X − E(X|D)]2
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consequently; adjusted expectation can be expressed as:

ED(X) =
k∑
i=1

E(Xi|Di)Di

In the case where D is a partition so that each Di is 1 or 0 and
∑

i(Di) = 1 then

adjusted expectation and conditional expectation are identical.

2.3 Exchangeable events

Consider a situation where we have two dice, die A and die B. We roll both dice

and consider the vector of face scores. Suppose that this vector is unaffected by the

order in which we roll the dice, i.e. whether we roll dice A first then dice B or the

other way around, our beliefs about the vector of scores remain unchanged. This

idea is known as exchangeability.

The concept of exchangeable events is a crucial component of the subjective the-

ory of probability. In essence, exchangeability assumptions in a subjective analysis

provide a similar mathematical framework to independence assumptions in classical

inference [de Finetti, 1974]. Goldstein [1986] discusses exchangeable belief struc-

tures, and presents a way of representing exchangeable quantities through mean

and residual elements. Goldstein and Wooff [1998] describe a process for the Bayes

linear adjustment of exchangeable beliefs. Multivariate partial exchangeability is

considered in Shaw [2000], who examines the idea of co-exchangeable systems. In

the context of Bayes linear analysis, where only partial beliefs need to be specified,

we can restrict exchangeability to first and second order quantities (means, variances

and covariances).

2.3.1 Second order exchangeability

Definition 2.3.1 A collection of vector quantities X = {X1, X2, . . . } is second

order exchangeable if our beliefs about the first and second order specification are

invariant under permutation of X [Goldstein and Wooff, 2007, page 195]

So again, if we have two dice, we roll both dice and consider the vector of face
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scores. Our beliefs regarding the mean and variance of that vector of face scores,

are unaffected by the order in which we roll.

Given a collection of vector quantities X = {X1, X2, . . . } which are second order

exchangeable, each has the same mean, variance and covariance between them i.e.:

E(Xi) = µ Var(Xi) = Σ Cov(Xi, Xj) = Γ i 6= j

This leads to the following representation theorem for second order exchangeable

quantities as given in [Goldstein and Wooff, 2007, page 186] .

Theorem 2.3.2 Given a collection of vector quantities X = X1, X2, . . . which are

an infinitely exchangeable sequence with:

E(Xi) = µ Var(Xi) = Σ Cov(Xi, Xj) = Γ i 6= j

Then we may express each Xi as:

Xi =M(X) +Ri(X)

where M(X) is a random vector known as the population mean with:

E(M(X)) = µ Var(M(X)) = Γ

and the collection Ri(X) are known as the residuals and are also second order

exchangeable with:

E(Ri(X)) = 0 Var(Ri(X)) = Σ− Γ

Each Ri(X) and Rj(X) are mutually uncorrelated for i 6= j and each Ri(X) is

uncorrelated with M(X).

2.4 Adjusting exchangeable quantities

Using exchangeability assumptions allows us to specify relationships between ob-

jects simply through means, variances and covariances. Combining that with the

Bayes linear approach, we have a simple way of adjusting our beliefs given observa-

tional data. Specifying belief structures through the use of exchangeability greatly

simplifies the Bayes linear adjustment.
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Assume X is second order exchangeable with:

E(Xi) = µ Var(Xi) = Σ Cov(Xi, Xj) = Γ i 6= j

then from the representation theorem 2.3.2 we can express each Xi as

Xi =M(X) +Ri(X)

where:

E(M(X)) = µ Var(M(X)) = Γ

E(Ri(X)) = 0 Var(Ri(X)) = Σ− Γ

Cov(M(X), Xi) = Γ Cov(Ri(X), Xi)Σ− Γ

Given this representation we can write down the adjustment equation. Assume

we observe Xi, then by equation 2.2.1 we can find the adjusted expectation of

EXi(M(X)):

EXi(M(X)) = E(M(X)) + Cov(M(X), Xi)[Var(Xi)]
†(Xi − E(Xi))

= µ+ ΓΣ†(Xi − µ)

This is a weighted average between the observation and prior expectation, with

the weighting controlled by the correlation between vectors.

When adjusting exchangeable quantities, we don’t need to adjust beliefs using

individual observations. The sample mean is a sufficient statistic. Also we only need

to adjust beliefs about the population mean M(X).

Theorem 2.4.1 Let {X1, X2, . . . } be an infinite second order exchangeable se-

quence. Then the sample mean vector:

X̄n =
1

n

n∑
j=1

Xj

taken from a sample:

Dn = (X1, X2, . . . , Xn)

is Bayes linear sufficient for adjusting beliefs aboutM(X). Therefore, to learn about

any element of Dn we simply need to adjust our beliefs about the meanM(X) and
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for any values Xi, i > n:

EDn(Xi) = EDn(M(X)) = EX̄n(M(X))

VarDn(Xi) = VarDn(M(X)) = VarX̄n(M(X) + Var(Ri(X)))

see Goldstein and Wooff [2007, page 208].

The adjusted expectation, EX̄n(M(X)) is therefore given by:

EX̄n(M(X)) = E(M(X)) + Cov(M(X), X̄n)[Var(X̄n)]†(X̄n − E(X̄n))

= µ+ Γ(Γ +
1

n
(Σ− Γ))†(X̄n − µ)

Similarly the adjusted expectation, EX̄n(Ri(X)) is given by:

EX̄n(Ri(X)) = E(Ri(X)) + Cov(Ri(X), X̄n)[Var(X̄n)]†(X̄n − E(X̄n))

= 0 + (Σ− Γ)(Γ +
1

n
(Σ− Γ))†(X̄n − µ)

This means when we are adjusting beliefs about exchangeable quantities, it is

enough to adjust beliefs about M(X). We also only need to update using sample

means. This approach greatly simplifies belief updating.

The adjusted variance, VarX̄n(M(X)) is given by:

VarX̄n(M(X)) = Var(M(X))− Cov(M(X), X̄n)[Var(X̄n)]†Cov(X̄n,M(X))

= Γ− Γ(Γ +
1

n
(Σ− Γ))†Γ

The adjusted variance, VarX̄n(Ri(X)) is given by:

VarX̄n(Ri(X)) = Var(Ri(X))− Cov(Ri(X)X̄n)[Var(X̄n)]†Cov(X̄n,Ri(X))

= Σ− Γ− (Σ− Γ)(Γ +
1

n
(Σ− Γ))†(Σ− Γ)



Chapter 3

Modelling complex industrial

systems using mixed linear

temporal models

We now present a generalised approach to modelling the evolution and state of

complex systems which are degrading in time. We model the true state of the

system, Z. We model the surface of each component c, as a grid of Lc locations, l,

for each component in the system, c, over time t. We separate global aspects which

affect the whole component from local aspects. This allows us to distinguish between

different model characteristics. Through the global effects model, we capture the

most important features and model relationships between components. The local

effects model captures behaviour of the surface, in more detail.

3.1 Global effects model

3.1.1 Dynamic linear models

We model the global effects through a dynamic linear model (DLM). Harrison and

West [1989] provides a excellent reference on the subject of modelling with DLM’s.

A dynamic model is a statistical model, which adapts to changes in the model

parameters over time. This is appealing from a Bayesian point of view since inspec-

21
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tion data can be incorporated into the model from which we learn about the model

parameters.

Definition 3.1.1 A constant DLM is given by the model equations:

Zt = FΘt

Θt = GΘt−1 + εΘt

where at discrete times t, Zt = {Zt1, Zt2, . . . , ZtC}T is a C×1 system state vector

over components, where:

• Θt = (Θt1,Θt2, . . . ,ΘtN)T is the N × 1 state vector over parameters at a

particular time, t,;

• F is a known (C ×N) dynamic regression matrix

• G is a known (N ×N) system state evolution matrix.

• εΘt is the N × 1 vector of system state evolution residuals. Properties of the

residuals are given in section 3.1.3.

In general ε is used model residual quantities,. However since there are several

different residuals within the models of interest a convention is used; the parameter

to which the residual refers is referenced using a subscript e.g. εθ is the residual

belonging to the parameter vector θ.

3.1.2 Global effects model

Given a system with C components, we model as above the N × 1 vector of sys-

tem state, Θt, at time, t, where N is the number of parameters (indexed by n) in

the state vector for the model. This parameter set may include multiple parame-

ters per component (for example a wall thickness and corrosion rate parameter per

component giving N = 2C.)

The global effects model does not depend on location, l but does depend on

component c. Using the same notation to section 3.1.1 we have:

Θt = GΘt−1 + εΘt (3.1.1)
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where G is the, N × N , system evolution matrix and controls how the parameters

evolve through time. The system evolves with discrete equally spaced time steps t.

εΘt is the vector system evolution residual, at time t:.

The correlation in the residual structure control the relationships between com-

ponents and parameters in the system. When updating beliefs, the residual structure

also controls how information is passed across components.

3.1.3 Exchangeable residual structures

We use exchangeability assumptions to describe beliefs about the system evolution

residuals. Exchangeability is discussed in section 2.3. We make the following ex-

changeability assumptions regarding the residual structure.

Exchangeability of system evolution residuals in time

Firstly we assume that system evolution residuals εΘnt for each parameter n, are

second order exchangeable in time with:

E(εΘnt) = 0 Var(εΘnt) = ΣΘn Cov(εΘnt, εΘnt′) = 0 t 6= t′

where ΣΘn is a scalar variance which is constant in time for each parameter, n. So

by theorem 2.3.2 we get a representation, for every parameter n = 1, 2, ...N :

εΘnt =M(εΘn) +Rnt(εΘn) (3.1.2)

and in this case M(εΘn) = 0 so this reduces to:

εΘnt = Rnt(εΘn)

and we get that:

Var(Rnt(εΘn)) = ΣΘn

Relationship of system evolution residuals across parameters

We also assume that for fixed time t, the residuals εΘnt are related across parameters

such that:

Cov[εΘnt, εΘn′t′ ] =

 ΣΘnn′ , for t = t′ n 6= n′;

0, for t 6= t′ n 6= n′.
(3.1.3)
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Exchangeability of squared system evolution residuals in time

We assume that the squared evolution residuals, ε2Θnt, are also second order ex-

changeable in time for each parameter choice. Let:

ε2Θnt = [Rt(εΘn)]2 = Vnt (3.1.4)

with:

E(Vnt) = ΣΘn Var(Vnt) = ΦVn Cov(Vnt, Vnt′) = ΞVn t 6= t′

Here ΞVn and ΦVn are fourth moments which need to be specified. From theorem

2.3.2 this leads to representation statements for the squared evolution residuals for

every parameter n = 1, 2, ...N :

Vnt =M(Vn) +Rt(Vn) (3.1.5)

where:

E(M(Vn)) = ΣΘn Var(M(Vn)) = ΞVn Var(Rt(Vn)) = ΦVn − ΞVn

Exchangeability of mean variance across subsets of parameters

There may be circumstances where we can also express relationships of squared

residuals across parameters for one or more subsets of parameters. Where appropri-

ate we then assume second order exchangeability for M(Vn) across parameters, for

a subset of P ≤ N parameters, indexed over p, such that from theorem 2.3.2:

M(Vp) = Wp =M(W ) +Rp(W ) (3.1.6)

where:

E(Wp) = ΣW Var(Wp) = ΦW Cov(Wp,Wp′) = ΞW p 6= p′

so together with the other assumptions we get:

E(ε2Θpt) = E(Vpt) = E(M(Vp)) = E(Wp) = E(M(W )) = ΣW , Var(M(Vp)) = ΦW

and:

Var(M(W )) = ΞW and Var(Rp(W )) = ΦW − ΞW
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and for each ε2Θpt we can write:

ε2Θpt = M(Vp) +Rt(Vp)

= M(W ) +Rp(W ) +Rt(Vp)

3.2 Local effects model

3.2.1 Local effects model

Here we model the local surface behaviour in more detail. We assume that local

effects are specific to particular components and that all relationships between com-

ponents are modelled through the global effects model. Local effects are modelled

by rlct; the local effects at location l, on component c, at time t:

rlct = g(rlc(t−1)) + εrlct (3.2.7)

where the function g is some function which describes the local surface. εrlct is

the local effects evolution residual, at location l, on component c, at time t. The

properties of the local effects residual are given in section 3.2.2.

3.2.2 Exchangeable residual structures

We use exchangeability assumptions to describe beliefs about the local effects evo-

lution residual. Exchangeability is discussed in section 2.3. We assume that εrlct is

second order exchangeable over time, location and components with:

E(εrlct) = 0 Var(εrlct) = Σr Cov(εrlct, εrl′c′t′) = 0 ∀ l 6= l′orc 6= c′ort 6= t′

So by theorem 2.3.2 we get:

εrlct =M(εr) +Rlct(εr) (3.2.8)

and in this case M(εr) = 0 so this reduces to:

εrlct = Rlct(εr) (3.2.9)

and we get that:

Var(Rlct(εr)) = Σr.
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3.3 System state

3.3.1 True system state

Given global and local models in equations 3.1.1 and 3.2.7 respectively, we model

the C × 1 vector of the true system state, Zlt at location l, and time t, by:

Zlct = (FΘt)c + rlct (3.3.10)

where F is a known, C × N , dynamic regression matrix, Θt is, N × 1, vector of

parameter values from the global effects model (equation 3.1.1), then (FΘt)c is the

global effects for component c, and rlct is the local effects term.

3.3.2 Observations of the model

We now model the observation process of the system. The measurement process

produces information that summarises the current state of a component. Observa-

tions, Yct for component c, at time t, are made subject to error, εY lct at each location

l, for component c and time t. We model the observation process as:

Yct = fl (Zlct + εY lct) (3.3.11)

where fl is some function applied over the space of locations, l, which has the

property that (from equation 3.3.10):

Yct = fl (Zlct + εY lct)

= f ((FΘt)c + rlct + εY lct)

= (F ∗Θt)c + fl (rlct + εY lct) (3.3.12)

where, F ∗, is a C×N dynamic regression matrix. The function, fl then preserves the

global modelling term Θt. Possible measurement processes covered by the function

fl, include: averages, quantiles, minima, maxima, modes and medians.
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Example: mean function

Let fl be the mean over locations. From equation 3.3.12:

Yct = fl (Zlct + εY lct)

=
1

Lc

Lc∑
l=1

((FΘt)c + rlct + εY lct)

= (FΘt)c +
1

Lc

Lc∑
l=1

(rlct + εY lct)

where, Lc, is the total number of locations for component, c. In this case:

(F ∗Θt)c = (FΘt)c

3.3.3 Exchangeable residual structures

We make the assumption that the measurement error is second order exchangeable

with respect to time, components and locations where:

E(εY lct) = 0 Var(εY lct) = ΣY Cov(εY lct, εY l′t′c′) = 0 ∀ l 6= l′ or c 6= c′ or t 6= t′

using the representation theorem 2.3.2 this leads to:

εY lct = Rlct(εY )

3.3.4 Complete model

From equations 3.1.1, 3.2.7, 3.3.10 and 3.3.11 we then get:

Observation Equation: Yct = fl (Zlct + εY lct)

True System State: Zlct = (FΘt)c + rlct

Global Effects Model: Θt = GΘt−1 + εΘt

Local Effects Model: rlct = g(rlc(t−1)) + εrlct

3.4 Discussions of exchangeability assumptions

Second order exchangeability assumptions are weaker than the typical independence

type assumptions often made in DLM’s. A clear advantage of exchangeability as-

sumption across components is the ability to exploit the potentially large numbers
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Figure 3.1: Cross Section of a pipework component. Wall thickness is shown as

the distance between the inner and outer walls of the pipe. This is recorded by a

measurement process across a number of locations and the minimum wall thickness

recorded

of components which exist in these types of systems. Specific knowledge about the

system characteristics allows a more detailed specification, for example partitioning

components into subsets of exchangeable components. Together with the Bayes lin-

ear approach, second order exchangeability also gives us the ability to update our

beliefs.

3.5 Example: corrosion model

We illustrate the model using the offshore platform application introduced in section

1.4.1. Inspection measurements are used to characterise the extent of corrosion

within the system. Different measuring devices including ultrasonic and radiographic

are available. Typically, the inspection device generates values for the minimum

wall thickness (or maximum pit depth) corresponding to the surface area inspected

(the “inspection footprint”). Figure 3.1 shows a diagram of the wall thickness of

component, a section of pipework, recorded across L locations. The minimum wall

thickness over all locations is recorded.
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3.5.1 Global effects model

For the global corrosion model we model the couplet of parameters:

Θt =

 Xt

αt

 (3.5.13)

where Xt is the C×1, vector of “global” wall thicknesses at time t (with components

Xct ), and αt is the C × 1 vector of corrosion rates (with components αct ) for C

components. The global effects model from equation 3.1.1, is then given by:

Θt =

 IC IC

0C IC

Θt−1 + εΘt (3.5.14)

where IC is the, C × C, identity matrix and 0C is the, C × C, matrix of zeros. In

this example:

G =

 IC IC

0C IC


εΘt =

 εXt + εαt

εαt

 (3.5.15)

ΣΘ =

 ΣX + Σα Σα

Σα Σα


This is a linear growth DLM for wall thickness, Xct and corrosion rate, αct, both

of which evolve in time according to the random evolution errors εXct and εαct.

Alternatively, equation 3.5.15 can be written:

Xct = Xc(t−1) + αct + εXct

αct = αc(t−1) + εαct (3.5.16)

Second order exchangeability of εXct

We have that:

εΘt =

 εXt + εαt

εαt


We assume that εXct are second order exchangeable in time and correlated across

components. i.e.:

E(εXct) = 0 Var(εXct) = ΣXc Cov(εXct, εXct′) = 0 t 6= t′
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So by theorem 2.3.2 we get:

εXct = Rt(εXc)

We also assume that for fixed time t, the residuals εXct are related across components

such that:

Cov[εXct, εXc′t′ ] =

 ΣXcc′ , for t = t′ c 6= c′;

0, for t 6= t′ c 6= c′.
(3.5.17)

We also assume that the squared residuals, ε2Xct, are second order exchangeable in

time. As in equation 3.1.4 let:

ε2Xct = [Rt(εXc)]
2 = VXct

From theorem 2.3.2 this leads to representation statements for the squared evolution

residuals for every component c = 1, 2, ...C:

VXct =M(VXc) +Rt(VXc)

As in equation 3.1.6 we assume that M(VXc) are also exchangeable across compo-

nents such that:

M(VXc) = WXc =M(WX) +Rc(WX)

where:

E(WXc) = ΣWX
Var(WXc) = ΦWX

Cov(WXc,WXc′) = ΞWX
c 6= c′

so together with the other assumptions we get:

E(ε2Xct) = E(VXct) = E(M(VXc)) = E(WXc) = E(M(WX)) = ΣWX

and for each ε2Xct we can write:

ε2Xct = M(VXc) +Rt(VXc)

= M(WX) +Rc(WX) +Rt(VXc)

Second order exchangeability of εαct

We assume that εαct are second order exchangeable in time and correlated across

components. i.e.:

E(εαct) = 0 Var(εαct) = Σαc Cov(εαct, εαct′) = 0 t 6= t′
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So by theorem 2.3.2 we get:

εαct = Rt(εαc)

We also assume that for fixed time t, the residuals εαct are related across components

such that:

Cov[εαct, εαc′t′ ] =

 Σαcc′ , for t = t′ c 6= c′;

0, for t 6= t′ c 6= c′.
(3.5.18)

We also assume that the squared residuals, ε2αct, are second order exchangeable in

time. Let:

ε2αct = [Rt(εαc)]
2 = Vαct

from theorem 2.3.2 this leads to representation statements for the squared evolution

residuals for every component c = 1, 2, ...C:

Vαct =M(Vαc) +Rt(Vαc)

we assume that M(Vαc) are also exchangeable across components such that:

M(Vαc) = Wαc =M(Wα) +Rc(Wα)

where:

E(Wαc) = ΣWα Var(Wαc) = ΦWα Cov(Wαc,Wαc′) = ΞWα c 6= c′

so together with the other assumptions we get:

E(ε2αct) = E(Vαct) = E(M(Vαc)) = E(Wαc) = E(M(Wα)) = ΣWα

and for each ε2αct we can write:

ε2αct = M(Vαc) +Rt(Vαc)

= M(Wα) +Rc(Wα) +Rt(Vαc)

Therefore, Var(εΘt), using equations, 3.5.15, 3.5.17 and 3.5.18 is given by:

Var(εΘt) = ΣΘ =

 ΣX + Σα Σα

Σα Σα


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3.5.2 Local effects model

The local corrosion model describes how the wall thickness of each component de-

viates from the mean for that component. We assume that the local corrosion, rlct,

for a particular component, c is modelled at a number of locations l within the

component at time t and is given by:

rlct = rlc(t−1) + εrlct

where εrlct is a location effect evolution residual. We assume second order exchange-

ability assumptions as in equation 3.2.8. We assume that the local corrosion of each

component is independent of other components. The function, g, from equation

3.2.7 is simply the identity function.

3.5.3 System State

The C × 1 vector of wall thickness, Zlct, at time, t, observed at location, l, on

the component is given by the sum of the global and local corrosion terms. From

equation 3.3.10, Xt and rlt respectively as follows:

Zlt =
(
IC 0C

)
Θt + rlt

= Xt + rlt (3.5.19)

In this example:

F =
(
IC 0C

)

3.5.4 Observation process

Only the minimum value of observations at each location, Yct, is recorded:

Yct = min
l

(Zlct + εY lct)

where, εY lct is the measurement error. We make second order exchangeability as-

sumptions about εY lct as in section 3.3.2. This can be broken down using equation
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3.5.19 to give:

Yct = min
l

(Zlct + εY lct)

= min
l

(Xct + rlct + εY lct)

= Xct + min
l

(rlct + εY lct) (3.5.20)

In this case the function fl is the minimum over the set of locations.

Examples using the corrosion model will follow in subsequent chapters in sections,

1.4.1, 3.5, 4.9, 5.7.1, 5.7.2, 6.4, 7.7 and 7.9.4).



Chapter 4

Adjusting beliefs about mixed

linear temporal models using

Bayes linear adjustment and

simulation

In chapter 3 we considered the problem of modelling the evolution of complex sys-

tems degrading in time. In this chapter we consider using historical data to update

our knowledge of the system. We show how to use Bayes linear analysis, introduced

in section 2.2, incorporating historical data and combining with a partial prior spec-

ification to learn as much as we can about the current state of the system. When

modelling large systems, it can be difficult or impractical to make full prior belief

specifications. Bayes linear analysis is able to accommodate large systems whilst

avoiding too many non-physical simplifications. Updating beliefs is computation-

ally efficient for high dimensional problems. The use of a Bayes Linear approach

becomes particularly important when evaluating inspection designs as discussed in

chapter 8. A very large space of potential inspection designs requires the need for

methods to update beliefs quickly and allow time to evaluate as many inspection

designs as possible.

In this chapter we consider the process of updating our beliefs using adjusted

expectations. We examine issues involved in the elicitation of beliefs about the

34
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model and the specification of a partial belief structure. We then consider the use of

simulation of the model to compute empirical estimates of useful quantities needed

to carry our updating and diagnostic checks of the prior specification and adjusted

expectations.

4.1 Adjusting beliefs using observational data

Consider a system with C components, where we make observations, Y , of all the

components for time 1 to T :

Y = (Y11, . . . , Yct, . . . , YCT )T

We then want to use the observational data to update our beliefs about the current

state of the system. We compute adjusted beliefs, combining prior beliefs about the

system state and the observational data.

Given a collection of observations Y , to update beliefs about the parameter

space, ΘT at time T , we compute the adjusted expectation, EY (ΘT ):

EY (ΘT ) = E(ΘT ) + Cov(ΘT , Y )[Var(Y )]−1(Y − E(Y )) (4.1.1)

VarY (ΘT ) = Var(ΘT )− Cov(ΘT , Y )[Var(Y )]−1Cov(Y,ΘT )

or alternatively if we want to update out beliefs about the true system state, at time

T , ZT , we compute the adjusted expectation, EY (Z):

EY (ZT ) = E(ZT ) + Cov(ZT , Y )[Var(Y )]−1(Y − E(Y ))

VarY (ZT ) = Var(ZT )− Cov(ZT , Y )[Var(Y )]−1Cov(Y, ZT )

For each of these cases, to be able to update beliefs we need to be able to specify

prior beliefs, namely, expectations, variances and covariances about the quantities,

Y , ΘT and ZT .

4.2 Specifying beliefs

Meaningful prior belief specification for large problems is usually very difficult. Even

in small problems, with few sources of uncertainty, it can be difficult to assess a
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satisfactory full joint prior probability specification over all of the possible outcomes.

In practical problems such as modelling complex industrial systems, there may be

hundreds of relevant sources of uncertainty about which prior judgements are made.

In such problems, it is arguably impossible for us to carry out a full Bayesian analysis.

If such a full prior specification were possible, it would often be the case that the

specification was too time consuming and too difficult to check.

To begin specifying beliefs, we must first identify those quantities for which

beliefs need to be made and assess sources of uncertainty. The use of expert judge-

ment and auxiliary datasets helps us to specify beliefs. When updating beliefs using

Bayes linear analysis only a partial belief specification of expectations, variances

and covariances need to be made.

To specify beliefs about the system, we must consider several different aspects.

These are discussed in the following sections. Specification of model form is dis-

cussed in section 4.3 using the model set-up in chapter 3. Specification of partial

belief structures, starting conditions for the model, (co)variance structures and un-

certainties in the model are discussed in section 4.4. In section 4.5, we look at

expressing the link between quantities within the model through the correlation

matrices. In section 4.6 we look at how simulations of the model be can used to

estimate relevant expectations variances and covariances. Then we discuss methods

of carrying out diagnostic checks of the prior specification in section 4.7.

4.3 Model specification

We must decide how to represent quantities and identify which are linked. To do

this we must decide upon a specific model structure. Using the general model form

described in chapter 3 and summarised in section 3.3.4 we must specify the quantities

fl, F , G and g. The use of graphical models can help to express this structure and

the use of exchangeability can help formalise relationships between quantities to aid

specification. The example in section 3.5, considers the case of specifying a model

for corrosion on an offshore platform.
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4.4 Partial belief specification: general consider-

ations

To perform Bayes linear adjustment, a partial prior belief specification needs to

be made. We need first and second order moments (means, variance and covari-

ances), about the quantities which we are interested in adjusting and the data we

observe. These moments can be specified given distributional assumptions or ex-

pert judgements. Alternatively we can simulate realisations of the model to generate

empirical estimates for any quantiles of interest. The problem of specifying partial

beliefs structures is considered in Goldstein and Wooff [2007, pg 42-57].

4.4.1 Initial conditions

To generate realisations of our model, some starting conditions e.g. initial com-

ponent integrity and expected component life need to be specified. For a large

industrial system, we might suppose that installed equipment has manufacturer

specifications regarding its initial state which could be used for this purpose. Ex-

pert judgement may also be used to specify starting conditions.

4.4.2 Quantifying uncertainties

We also need to specify the variances/uncertainties within the model. Experts may

be prepared to give tolerances or uncertainties about measurement devices as this

is a concept about which they are familiar. In these cases it is therefore natural

to use these tolerances to get a specification of model variances for these types of

errors. In most cases experts will find it harder and be less prepared to specify

beliefs about other uncertainties in the model. Specification of bounds or quantiles

can help to judge variance, e.g. specifying one and two standard deviation intervals

for a quantity would be enough to give an assessment of variance. We could, instead,

use auxiliary data from either a related dataset or a partition of the data set to get

parameter estimates.

We may find it easier to specify model variances if we separate contributions into
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sums of uncorrelated quantities about which we find it easier to express beliefs. A

partition of the variance/covariance into uncorrelated terms is similar to express-

ing limited exchangeability assumptions. Farrow [2003] considers the problem of

specifying covariance structures for large complicated systems.

4.4.3 Specification of higher order moments

In certain cases where we consider the relationships between variances in the model,

4th order beliefs or kurtosis also need to be specified. This could be more difficult for

experts to conceptualise than variances. Specifications of uncertainties or bounds

on variance specifications can be used to give some estimates of these 4th order

quantities. Alternatively we could make a distributional assumption from a family

using a 1st and 2nd order description. This would fix the 4th moment through the

distributional form. For example if X ∼ N (µ, σ2) then the 4th moment is given by:

E(X4) = µ4 + 6µ2σ2 + 3σ4

4.5 Specifying Correlation Matrices

The correlation structures between parameters within the model from chapter 3 are

important since they control the way information is passed within the system. For

large complex systems with many components, correlation matrices may be very

large. Consequently specifying the correlations for all components pairwise can be

impractical if not impossible. We therefore need ways of simplifying the specifica-

tion, reducing the number of quantities which need to be specified. Exchangeability

assumptions allows us to express relationships between sets of quantities and aid

the specification of these correlation structures.

4.5.1 (Co-)Variance structures using exchangeability

Using the global effects model equation 3.1.1, section 3.1:

Global Effects: Θt = GΘ(t−1) + εΘt
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where Var(εΘnt) = ΣΘn and from equation 3.1.3, Cov[εΘnt, εΘn′t′ ] = ΣΘnn′ .

If we were to assume second order (s.o.) exchangeability of εΘnt over n and t:

εΘct =MΘ +RΘnt (4.5.2)

Then ΣΘn = Var(εΘnt) = ΣΘ, for all n, and similarly ΣΘnn′ = Cov(εΘn′t′ , εΘnt) =

ΓΘ, for all n, n′, t and t′, n′ 6= n and t′ 6= t. So using an exchangeability assumption

we get a simple two parameter form for ΣΘ = ΣΘ(σ2
Θ, γΘ). More generally, we can

consider subsets of parameters about which we specify exchangeability assumptions,

leading to a block form for the correlation matrix.

4.5.2 (Co-)Variance structures using adjacency

Alternatively we could specify (co)-variance using a distance based approach.

We define adjacency matrix, S based on the number of intervening components.

This adjacency form defines a distance metric. We use the adjacency matrix, S,

to define a covariance matrix ΣX where the covariance decays exponentially with

distance. The decay term, ν controls the rate of decay of the correlation with respect

to distance:

ΣXcc′ = σXcσXc′e
−νScc′ (4.5.3)

where Scc′ is the number of intervening components and ν is the exponential de-

cay rate. In some cases we may have more detailed information regard the exact

positions of components. This information could be used to give a more accurate

distance matrix. This gives us a method to specify covariance matrices for large

numbers of components, if we think the distance is related to the strength of rela-

tionships between components.

4.5.3 Example: specification of correlation structures for

the corrosion model

Figure 4.1 shows the schematic for a corrosion circuit. Using this corrosion circuit we

can generate an adjacency matrix, S, and different correlation matrices, ΣX , based

on the choice of ν. Figure 4.2 shows an adjacency matrix (based on the number of
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Figure 4.1: Corrosion circuit schematic diagram. Lines shows the route of the pipe.

Numbered circles and dots shows position of components.

intervening components) and correlation matrices for different choices of the decay

parameter, ν = 1, 0.1, and 0.01.

We can also specify a correlation matrix modelling multiple corrosion circuits. In

this case we use a combination of block correlation structures for different corrosion

circuits and distance based specification within corrosion circuits. The covariance

structure of the wall thickness evolution error, ΣX , is assumed to take the form of a

linear combination of three uncorrelated terms:

• a universal underlying correlation, ρ0, between all pairs of components (re-

gardless of the circuit(s) to which they correspond).

• a circuit term ρCirδCirCir′ where Cir, is the circuit containing component, c, and

Cir′ is the circuit containing component, c′:

δCirCir′ =

 1 if Cir = Cir′

0 if Cir 6= Cir′

.

• a covariance term using the adjacency matrix which decays exponentially at
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Figure 4.2: Adjacency matrix and corresponding correlation matrices for different

values of ν

rate ν with distance S (measured in terms of the number of intervening com-

ponents along the circuit between the components).

The covariance between components c and c′ is given thus:

ΣXcc′ = σXcσXc′

(
ρ0 + (1− ρ0)ρCirδCirCir′ + (1− ρ0 − (1− ρ0)ρCir)e

−νScc′
)

(4.5.4)

An example in a case the four corrosion circuits described in section 1.4.1 is illus-

trated in figure 4.3.

4.6 Simulations of the model

Using ideas in section, 4.2, 4.4 and 4.5 we can make belief statements about what we

are prepared to specify. Some quantities we may find hard to specify or find difficult

to quantify. Using the limited prior specification Monte Carlo Simulations of the

model allow us to get empirical prior expectations, variances and covariances for any

quantities of interest. The simulation approach allows us to get an understanding of

relationships between all the quantities within the model and give us estimates for
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Figure 4.3: Covariance matrix in a case with four corrosion circuits. The four

blocks correspond to the intra component distance based correlation in four corrosion

circuits

typical model behaviour. Simulation results are used as the basis for prior values

used in updating beliefs but also for model forecasting . We can use simulation for

modelling uncertainties and check the sensitivity of our prior specification.

Whilst a general DLM can be updated directly, the full corrosion specification

and non linear observation equation is too complicated to write down in closed form.

However it is straight forward to carry out forward simulation given a partial prior

specification. We generate multiple realisations of the model to build up information

about relationships between model quantities. This information can then be used to

generate empirical assessments for any quantity of interest. The use of simulations

means that we can avoid unrealistic simplifying assumptions and modern computing

power makes large scale simulations a much more practical proposition. It must be

remembered, however, that these simulations do not represent the full uncertainty

about the actual system.

The advantage of Bayes linear methods is that only first and second order mo-

ments need to be simulated, greatly reducing the computational burden (we may

also need to specify fourth order moments if we wish to learn about variances as
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well).

4.7 Diagnostic checks

Model diagnostics are an important part of checking whether the outputs from our

model are plausible and coherent. We do checks on both our prior specification and

our adjusted expectation.

4.7.1 Coherence

The prior specification is coherent if:

Var

 Y

ΘT

 =

 Var(Y ) Cov(Y,ΘT )

Cov(ΘT , Y ) Var(ΘT )

 (4.7.5)

is non-negative definite.

In cases using simulation to get empirical estimates of variance and covariance

matrices coherence should hold. However in rank degenerate cases or when the

matrices are ill-conditioned it is possible to get rounding errors which can cause

these conditions to break down.

This matrix, (equation 4.7.5) is non-negative definite if and only if the following

three properties hold (Goldstein and Wooff [2007] page 69):

1. Var(Y ) is non-negative definite

2. Cov(Y,ΘT ) ∈ range(Var(Y )) i.e. Cov(Y,ΘT ) are in the linear span of the

columns of Var(Y ).

3. Var(ΘT )−Cov(ΘT , Y )Var(Y )†Cov(Y,ΘT ) is non-negative definite for any gen-

eralized inverse of Var(Y ).

4.7.2 Data discrepancy

To check that the prior specification does not conflict with the observed data, we can

use the Mahalanobis distance, [Mahalanobis, 1936]. The Mahalanobis distance is a

distance measure based on the correlations between variables, [Mahalanobis, 1936].
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It differs from the standard Euclidean distance metric in that uses the full covariance

matrix so is scale invariant. The Mahalanobis distance or data discrepancy, Dis(Y ),

is given by:

Dis(Y ) = (Y − E(Y ))TVar(Y )†(Y − E(Y )). (4.7.6)

Where Var(Y )† is the inverse of Var(Y ) if invertible and if not a generalised inverse,

such as the Moore-Penrose pseudo inverse should be used. Large discrepancies, may

suggest poor specification of E(Y ) or that Var(Y ) has been underestimated. Very

small discrepancies could suggest that Var(Y ) is too large.

The discrepancy has expected value:

E(Dis(Y )) = E
[
(E(Y )− Y )TVar(Y )†(E(Y )− Y )

]
= E [(Y − E(Y ))E(Y − E(Y ))T ] Var(Y )†

= trace(Var(Y ))Var(Y )†

= rank(Var(Y )).

It is sometimes easier to compare discrepancies if we standardise these values by

dividing by the rank(Var(Y )). We denote this discrepancy ratio for Y , Dr(Y ), as:

Dr(Y ) =
Dis(Y )

rank(Var(Y ))
, (4.7.7)

which has prior expectation 1.

4.7.3 Variance of Discrepancy

When comparing discrepancies we also would like to know how large we would ex-

pect discrepancies to be. Computing the variance of the discrepancy for an arbitrary

distribution would require us to express beliefs about all possible 3rd and 4th mo-

ments of a distribution. As discussed in section 4.4.3 the specification of higher

order moment for large problems is hard. Vysochanskij and Petunin [1980] and

Pukelsheim [1994] describe a “3 σ rule” stating that for any uni-modal continuous

random quantity, u with standard deviation σu:

P (|u− E(u)| ≤ 3σu) ≥ 0.95.
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So an observation 3 standard deviations away from the mean can be used as

a diagnostic on our uncertainty about a quantity. Therefore, we can then test if,

Dr(Y ) from equation 4.7.7:

|1−Dr(Y )| > 3σDrY , (4.7.8)

where:

σDrY =
√

Var(Dr(Y )|)

and if it is more than 3 standard deviations away, then we may have a potential

problem in our prior specification.

4.7.4 Normal Approximation

In the case where Y is multivariate normal:

Y ∼ Nrank(Var(Y ))(µ,Σ)

then by Imhof [1961] the Mahalanobis distance is χ2 distributed:

Dis(Y ) ∼ χ2
rank(Var(Y ))

and so, subject to normality:

Var(Dis(Y )) = 2(rank(Var(Y ))).

and so, under normality Dis(Y )):

3σDrY = 3
√

2rank(Var(Y )) (4.7.9)

and so for the discrepancy ratio Dr(Y )), from equation 4.7.7:

Var(Dr(Y )) = 2
rank(Var(Y ))

rank(Var(Y ))
= 2

and so using equation 4.7.9 in the case of the multivariate normal distribution:

3σDrY = 3
√

2

Then from equation 4.7.8 we can use:

|1−Dr(Y )| > 3
√

2
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as a diagnostic test to check whether discrepancies are higher than we would expect

for the normal distribution.

This can be extended to non-negative definite cases [Liu et al., 2009], but still

under the assumption of normality. We could replace the normal distribution by

any other location/scale family of specified distributions (e.g. the t distribution)

and still extract the higher order moments, using simulation where needed.

4.7.5 Adjustment discrepancy

Using the Mahalanobis distance we can test the adjusted expectations by computing

the adjustment discrepancy for each of our updated values:

DisY (ΘT ) = (EY (ΘT )− E(ΘT ))TRVarY (ΘT )†(EY (ΘT )− E(ΘT )),

where RVarY (ΘT ) is the resolved variance see equation 2.2.3. The adjustment dis-

crepancy ratio is given by:

DrY (ΘT ) =
DisY (ΘT )

rank(RVarY (ΘT ))
.

then test if |1−DrY (ΘT )| > 3σDrY to check for potential problems. The adjustment

discrepancy can be used to see if our adjustment was larger or smaller than expected.

4.7.6 Component-wise discrepancy

We can compute the discrepancy component-wise for each component, c, and time,

t:

Dis(Yct) =
(Yct − E(Yct))

2

Var(Yct)
.

This could identify problems with individual observations rather than overall spec-

ification. Hence this approach may help to identify individual outliers. However

since this is done point-wise, the covariance structure between the observations is

lost, so there may be situations where a single point is considered problematic when

in fact it fits perfectly well with the prior specification. In most cases, it is probably

preferable to do both since they could identify different types of potential problems.
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Figure 4.4: Component-wise discrepancy, Dis(Yct) for a realisation of simulated

corrosion data. The expected value of Dis(Yct) is 1, shown as a horizontal line. Also

shown is the horizontal line corresponding to |1 − Dis(Yct)| = 3
√

2 the 3σDrY rule

under normality, serving as a warning limit for unusually large values of discrepancy.
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Figure 4.4 shows an example of a component-wise discrepancy using simulated

data using the corrosion model (for a single component Dis(Yct) = Dr(Yct) ). Sim-

ulated using forward simulation from an initial system system using the model

summarised in 3.3.4. In this case 14 of the 175 observations are outside the |1 −

Dis(Yct)| > 3
√

2 test. We would expect 5% of cases to fall outside the 95% bound

which would be ≈ 8 so there are more potential outliers than we would expect. If the

discrepancy measure shows many value high discrepancies it is a warning that the

prior specification and the observed data are incompatible. In these cases further

investigation is required to determine the cause of the problem.

4.8 Algorithm for simulation and Bayes linear up-

dating of beliefs

We now present an algorithm for simulating and carrying out the relevant belief

adjustments from the model in section 3.3.4.

1. Specify starting conditions (system state) at time 0, locations, correlations

and system variance etc.

2. Generate a large number of random evolution residuals εΘ1, εY lc1, εrlc1 for all

components, c, and locations, l, at time 1. The number of realisations needed

scales with the size of the problem. For these type of problems > 10000

simulations would be most likely be needed. Sampling variances can be used

to determine if enough variances have been used.

3. Use simulated residuals to generate a set of realisations of Yc1, Zlc1, Θ1 and

rlc1 at time 1 using model described in section 3.3.4.

4. Repeat 2-3 stepping model forward one step at a time to the final time step

when we want to forecast time T .

5. Calculate relevant moments for adjustment e.g. E(Y ), Var(Y ), Cov(Y, θT ),

E(θT ) and Var(θT ).
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6. Perform diagnostic checks for coherence and computing data discrepancy using

prior information to check for consistency of prior beliefs.

7. Compute Bayes linear adjustment of the system state where required (e.g. at

some future forecast time) .

8. Perform diagnostic checks, computing adjustment discrepancy.

4.9 Example: Application to inspection of an off-

shore platform

We now consider prior specification and Bayes linear adjustment of wall thickness

in the analysis of inspection data from a full-scale offshore platform. We model cor-

rosion using the model as given in section 3.5. We use historical data as introduced

in section 1.4.1. Component minimum wall thickness, obtained during inspection

campaigns using non-intrusive ultrasonic measurements for the period 1998 - 2005,

are available, data is given in appendix A. Based on the frequency of observations

and the requirements for inspection planning, we select a monthly time-increment

for modelling; the historical period therefore consists of 83 time points.

We first consider an example using Bayes linear adjustment to update beliefs

about the wall thickness of a single component, (component 43 from corrosion circuit

C in appendix A), about which we have 6 inspections:

Time (Months) Observed Wall Thickness (mm)

12 12

36 9.5

44 11

65 9.5

69 8

76 8
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4.9.1 Prior Specification

We specify partial beliefs about system state as in section 4.4 and generate realisa-

tions of the model to get empirical estimates for the means, variances and covariances

needed to compute Bayes linear adjustments.

To specify the prior wall thickness for a component we use the manufacturers

nominal wall thickness at installation, X0 = 13.49. The prior corrosion rate is

specified using auxiliary data as α0 = −0.15.

The prior variances for the model are specified using expert judgement:

Σα = 0.012 ΣX = 0.22 Σr = 0.22 ΣY = 0.22

We also have to specify the size of the grid for the local effects surface. We

set the number of locations as 20. We can then use this partial prior specification

together with the model and generate 10000 realisations of the model as discussed

in section 4.6.

4.9.2 Updating Beliefs

We compute adjusted expectation and variance of the true minimum wall thickness,

Zt using the vector of observations Y , where:

Y = {Y12, Y36, Y44, Y65, Y69, Y76}.

Then we find adjusted beliefs (as in section 4.1) about the wall thickness at all time

points and forecast into the future up to time 120:

EY (Zt) = E(Zt) + Cov(Zt, Y )[Var(Y )]−1(Y − E(Y ))

VarY (Zt) = Var(Zt)− Cov(Zt, Y )[Var(Y )]−1Cov(Y, ZT )

where E(Zt), E(Y ), Cov(Zt, Y ), Var(Y ) and Var(Zt) are all computed using empiri-

cal estimation over multiple realisations of the model. Figure 4.5 shows a comparison

between the prior and adjusted beliefs when updating a single component. The prior

beliefs are shown in blue and the result of the simulation of the model; extending our

partial belief specification to tell us about the whole system. The inspection points



4.9. Example: Application to inspection of an offshore platform 51

Figure 4.5: Comparison between prior and adjusted beliefs for updating a single

component. The prior beliefs are shown in blue and the result of the simulation

of the model; extending our partial belief specification to tell us about the whole

system. The inspection points are show in black and the adjusted beliefs are show in

green. Shaded areas represents 95% uncertainty bounds. Prior uncertainty is derived

from simulation and posterior uncertainty is derived from the adjusted variance
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are shown in black and the adjusted beliefs are shown in green. We can see that

after observing the system values, we were over estimating the rate of degradation

of the system. We can also see that, our uncertainty about the system state has de-

creased and perhaps unsurprisingly we are more certain about the system state close

to points which we observed. If we were observing the system without error, the

Bayes linear estimate at points for which we observe would be exact. The red line

shows a “critical wall thickness” at which point the component would be replaced.

After computing adjusted beliefs, it may be discovered that the life span of the com-

ponent appears longer than previously thought, which would save money replacing

a healthy component. Figure 4.6 shows the effect of updating beliefs sequentially

for each inspection.

4.9.3 Diagnostics

We can compute the discrepancy on both the data and adjusted beliefs as in section

4.7. The data discrepancy ratio for Y is:

Dr(Y ) = 1.703

and the adjustment discrepancy is:

DrY (Z) = 1.523

where from section 4.7.2 the expected value of Dr(Z) = 1 and under an assumption

of normality we would not expect the discrepancy ratio to be more than 3
√

2, 95%

of the time. Figure 4.7 shows the point wise data and adjustment discrepancies.

We see that the inspection points at time 44 and 65, are slightly higher than the

rest and this is consistent with a comparison between the inspection points with the

prior estimate. The inspection points are on the high side. They are not however

high enough to be considered outliers.

4.10 Example updating several components

We now consider updating adjusting beliefs about multiple correlated components.

(Using data from component 43 and 44 from corrosion circuit C given in appendix
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Figure 4.6: Comparison between prior and adjusted beliefs for updating a single

component, updating beliefs sequentially after each inspection. The prior beliefs are

shown in blue and the result of the simulation of the model; extending our partial

belief specification to tell us about the whole system. The inspection points are

show in black and the adjusted beliefs are shown in green. Shaded areas represents

95% uncertainty bounds. Prior uncertainty is derived from simulation and posterior

uncertainty is derived from the adjusted variance
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Figure 4.7: Point-wise data discrepancy Dis(Y ), blue, and adjustment discrepancy

DisZ(Y ), green. The discrepancies are all below the 3σ bound which suggests that

there are no obvious outliers. Shaded areas represents 95% uncertainty bounds.

Prior uncertainty is derived from simulation and posterior uncertainty is derived

from the adjusted variance.
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A). We have inspection data for two components and want to update beliefs about

these and a third component about which we do not have any observations.

Time (Months) Observed Wall Thickness (mm) Component

12 12 43

12 13.49 44

36 9.5 43

44 11 43

65 9.5 43

69 8 43

69 10.5 44

76 8 43

76 10.5 44

Each component has the same prior specification as the single component given in

section 4.9.1. We also need to specify the correlation matrices between components

as discussed in section 4.5. We specify a flat correlation between all components of

ρ0 = 0.9 between all components giving variance matrices;

ΣX =


0.0400 0.0360 0.0360

0.0360 0.0400 0.0360

0.0360 0.0360 0.0400

 ,

and

Σα =


0.00010 0.00009 0.00009

0.00009 0.00010 0.00009

0.00009 0.00009 0.00010

 .

Figure 4.8 shows the adjusted beliefs of all three components. Shaded areas

represents a 95% uncertainty bounds. We can see that for component 43 and 44

where we inspect we are most certain about the system state. We also learn about

the unobserved component even though we have not directly observed it. This

learning come through the correlation matrices. For both component 43 and 44 the

observed corrosion rate is lower than the prior prediction and consequently we think

our life span of the unobserved component is longer too.
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Figure 4.8: Bayes linear adjustment of three components, correlation ρ0 = 0.9.

Shaded areas represents a 95% uncertainty bounds. Prior uncertainty is derived

from simulation and posterior uncertainty is derived from the adjusted variance.

The prior specification for each of the components is the same. Components 43 and

44 show that the adjusted corrosion rate is lower than the prior prediction. We also

learn about the unobserved component.
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The strength of the correlation between components will control the strength

of the adjustment. Figure 4.9 shows the same example with the exception that

the correlation between components is weaker; ρ0 = 0.3. Consequently the size of

the adjustment from the prior estimates for the unobserved component is reduced.

Figure 4.10 shows the discrepancy for the three components. The adjustment dis-

crepancies for components 44 and the unobserved component between times 6 and

56 are above the 3σ diagnostic. However it must be remembered that the point-wise

diagnostic loses the covariances between observations and successive time points are

not independent.
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Figure 4.9: Bayes linear adjustment of three components, correlation ρ0 = 0.3.

Components 43 and 44 show that the adjusted corrosion rate is lower than the prior

prediction. In comparison with figure 4.8, we get a smaller adjustment of beliefs

about the unobserved component due to the smaller correlation.
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Figure 4.10: Component-wise prior discrepancy Dis(Y ), blue, and adjustment dis-

crepancy DisZc(Y ), green for the three components. The adjustment discrepancies

for components 44 and the unobserved component between times 6 and 56 are above

the 3σ diagnostic.
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4.11 Comparison of independent and correlated

systems

Previous attempts to model corrosion data usually treat components as indepen-

dent, ignoring any dependency structure. We can explore the effect of this indepen-

dence assumption on model performance using synthetic data. 50 synthetic data

are generated sets using the same prior specification and inspection design as the

real historical data given in appendix A. We model each of the 50 data sets, firstly

assuming independence and subsequently assuming dependence. We compute ad-

justed expectations in each case and compare discrepancy diagnostics. Figure 4.11

compares prior and adjustment discrepancy ratios with respect to the independence

and dependence model assumptions.

Green and blue lines, respectively, correspond to data and adjustment discrep-

ancy ratios for the independence model; model fit is poor. The extent of adjustment

is small since adjustment is component-wise. Yellow and red lines respectively,

show prior and adjustment discrepancy ratios for the dependence model; model

fit is better. Perhaps unsurprisingly, by fully exploiting correlation structure we

share information from all observations across components to learn about the whole

system.
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Figure 4.11: Comparison of the discrepancy ratio for cases when system is modelled

treating components as independent or correlated for 50 simulated data sets. Green

and blue lines respectively, correspond to data and adjustment discrepancy ratios for

the independence model; model fit is poor. Yellow and red lines respectively, show

data and adjustment discrepancy ratios for the dependence model; model fit is bet-

ter. By exploiting correlation structure we share information from all observations

across components to learn about the whole system.



Chapter 5

Bayes linear variance learning for

a linear growth DLM

In the previous chapter, we considered updating our beliefs about the system state

using Bayes linear adjustment, the elicitation of prior specifications and the use of

simulation to estimate important quantities. However, in Bayes Linear adjustment

of our beliefs about the system levels, we are not learning anything about the vari-

ance structures within the model. If we don’t learn about the variances within the

model then we are relying on the prior specification to be accurate, which may well

be an unreasonable expectation. We need to construct estimators from the data

which are informative for variance learning, whilst dealing with the issues of short

time series and irregular inspection data. To be able to learn about variances, we

will use a combination of Bayes linear adjustment (section 2.2), and second order

exchangeability assumptions (section 2.3).

We will begin by showing how to use Bayes linear adjustment to update the

variance of a population with known mean using second order exchangeability as-

sumptions. We will then look at the case of a simple univariate DLM and compute

adjusted expectations for the population variance using squared differences of obser-

vations in time. Then we consider learning about variances for a multivariate linear

growth DLM in the case of complete inspections before examining methods to deal

with problems, such as how to deal with irregular inspections, and partial/ incom-

plete observations. We then look at an example using the oil platform application.

62
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In the case of simple DLM’s and the linear growth DLM we could update variance

structures using a full Bayes approach relatively easily (section 2.2.1). The intention

however, is to introduce and explain the ideas for use in later chapters where a full

Bayes approach would prove to be too hard due to the size of the problem, and the

complexity of the observation structure.

5.1 Bayes linear learning about population vari-

ance

5.1.1 Exchangeability and the representation theorem

Firstly, consider the situation where we wish to learn about the variance of a popu-

lation with known mean, µA, [Goldstein and Wooff, 2007, pages 282-283]. We are

given a collection of quantities, A = {A1, A2, . . . }, which we assume to be infinitely

second order exchangeable (see section 2.3) whose prior specification is:

E(Ai) = µA Var(Ai) = ΣA,

We wish to use observational data from this population to update our beliefs about

the population variance whose prior expectation is ΣA. Using the second order

representation theorem,(see theorem 2.3.2), we have:

Ai =M(A) +Ri(A),

where since in this case µA is known and non–random:

M(A) = µA

consequently:

Var(M(A)) = Cov(Ai, Aj) = 0, i 6= j.

To find a representation which will tell us about the variance we let:

Vi = [Ri(A)]2 = (Ai − µA)2
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We assume that this sequence is also second order exchangeable with prior specifi-

cation:

E(Vi) = ΣA Var(Vi) = ΦV Cov(Vi, Vj) = ΞV

and hence we can apply the representation theorem for a second time:

[Ri(A)]2 = Vi =M(V ) +Ri(V ),

then:

E(M(V )) = ΣA Var(M(V )) = ΞV Var(Ri(V )) = ΦV − ΞV .

The quantities, ΦV and ΞV need to be specified directly as prior beliefs. These

are fourth order quantities and so have some relation to the kurtosis or the shape

distribution. Specification of higher order moments is discussed in section 4.2.

5.1.2 Population mean

The population mean terms, M(V ), from the representation theorem are the ran-

dom quantities of interest, whose expectations are informative for variance learning.

These terms go into the Bayes linear adjustment equation to update our beliefs.

5.1.3 Beliefs

Given the exchangeability assumptions, we now consider how to update beliefs

about the population variance. Therefore, given a collection of n observations,

D = {A1 . . . An}, drawn from the population we can calculate the sample estimate

for the variance:

D̄(2)
n =

1

n

n∑
i=1

(Ai − µA)2.
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we have:

E(D̄(2)
n ) = E(

1

n

n∑
i=1

(Ai − µA)2) = E(
1

n

n∑
i=1

Vi)

=
1

n

n∑
i=1

E(M(V ) +Ri(V ))

=
1

n

n∑
i=1

ΣA = ΣA (5.1.1)

and similarly:

Var(D̄(2)
n ) = Var(

1

n

n∑
i=1

(Ai − µ)2) = Var(
1

n

n∑
i=1

Vi)

= Var

(
1

n

n∑
i=1

(M(V ) +Ri(V ))

)

= Var(M(V ) +
1

n

n∑
i=1

Ri(V ))

= ΞV +
1

n
(ΦV − ΞV ) (5.1.2)

and:

Cov(M(V ), D̄(2)
n ) = Cov(M(V ),

1

n

n∑
i=1

(Ai − µA)2)

= Cov(M(V ),
1

n

n∑
i=1

Vi)

= Cov(M(V ),M(V ) +
1

n

n∑
i=1

Ri(V )))

= ΞV (5.1.3)

Then using equations 5.1.1, 5.1.2 and 5.1.3, the adjusted expectation for M(V ) is

given by:

En(M(V )) = E(M(V )) + Cov(M(V ), D̄(2)
n )Var(D̄(2)

n )†(D̄(2)
n − E(D̄(2)

n ))

= ΣA + ΞV
1

ΞV + 1
n
(ΦV − ΞV )

(D̄(2) − ΣA)

=
ΞV D̄

(2)
n + 1

n
(ΦV − ΞV )ΣA

ΞV + 1
n
(ΦV − ΞV )

(5.1.4)

This is a weighted average of the prior and observed estimates. As the sample size

increases our weighting of the prior information decreases as we place more belief in

the observed estimate.
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5.2 Updating the variance of a univariate DLM

We now consider Bayes Linear variance learning for a simple univariate dynamic

linear model. This model can be seen as a single component of the corrosion model

in section 3.5, with fixed corrosion rate and no observation error. We have a model

in time t:

Xt = Xt−1 − α + εXt

where α is a known fixed slope term. The residual εXt has known mean 0 and is

independent in time so our prior specification is:

E(εXt) = 0 Var(εXt) = ΣX Cov(εXt, εXt′) = 0

Using the ideas in the previous section 5.1, we know how to update the population

variance of a collection of quantities with known mean. In our DLM, the set of {εXt}

are a collection of quantities which have prior expected value 0 and prior variance

ΣX . We make the assumption that the residuals εXt are second order exchangeable

in time giving a representation:

εXt =M(εX) +Rt(εX)

In this case we know that M(εX) = 0 so the representation reduces to:

εXt = Rt(εX) (5.2.5)

where Var(Rt(εX)) = ΣX . We also assume that the squared residuals form are

second order exchangeable in time with prior specification:

E(M(V )) = ΣX Var(M(V )) = ΞV Var(Rt(V )) = ΦV − ΞV ,

giving a representation:

(Rt(εX))2 = Vt =M(V ) +Rt(V )

Using observations from our system we wish to update our beliefs about our “pop-

ulation” variance M(V ).
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We do not directly observe the residuals. However, using a simple linear combi-

nation of time steps, we can get a an expression for the residuals at every point in

time:

εXt = Xt −Xt−1 + α.

We can then find:

D̄T =
1

T − 1

T−1∑
t=1

(Xt −Xt−1 + α)2

=
1

T − 1

T−1∑
t=1

ε2Xt

where T is the total number of time observed points. Then as in equations 5.1.1,5.1.2

and 5.1.3 we can find that:

E(D̄T ) = ΣX

Var(D̄T ) = ΞV +
1

T − 1
(ΦV − ΞV )

Cov(M(V ), DT ) = ΞV

and using the same approach as for equation 5.1.4 we find that the adjusted expec-

tation, ET (M(V )), is given by:

ET (M(V )) =
ΞV D̄T + 1

T−1
(ΦV − ΞV )ΣX

ΞV + 1
T−1

(ΦV − ΞV )

5.3 Bayes linear variance learning for the linear

growth DLM

We have shown how to update a population variance and residual variance in a

univariate DLM. We now consider a learning about the residual variances for a

multivariate linear growth DLM. This model is used in [Randell et al., 2010] to

carry out variance learning and design inspection schemes. This paper won the 2010

Donald Julius Groen Prize from the safety and reliability group of the Institution

of Mechanical Engineers.
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5.3.1 Linear growth model

Consider inspection of a collection of components over time. A linear growth DLM,

is used for the system level, Xct, and system slope αct, for component, c, at time t.

Observations of the system state, Yct, are made subject to measurement error of the

form, εY ct. The model equations are:

Observation: Yct = Xct + εY ct

System level: Xct = Xc(t−1) + αct + εXct

System slope: αct = αc(t−1) + εαct, (5.3.6)

where the sets of residual {εY ct}, {εXct} and {εαct} are mutually uncorrelated across

groups. We make a prior specification about the residuals as follows:

E[εY ct] = 0 E[εXct] = 0 E[εαct] = 0

Var[εY ct] = ΣY Var[εXct] = ΣXc Var[εαct] = Σαc.

We assume that the residuals are independent in time but correlated across compo-

nents:

Cov[εY ct, εY c′t] = ΣY cc′ c 6= c′ Cov[εY ct, εY c′t′ ] = 0 t 6= t′ ∀c, c′

Cov[εXct, εXc′t] = ΣXcc′ c 6= c′ Cov[εXct, εXc′t′ ] = 0 t 6= t′ ∀c, c′

Cov[εαct, εαc′t] = Σαcc′ c 6= c′ Cov[εαct, εαc′t′ ] = 0 t 6= t′ ∀c, c′. (5.3.7)

The evolution of this system is driven by the residuals εXct and εαct and their under-

lying (co)variance structure. Therefore learning about these variances is especially

important for reliable forecasting.

5.3.2 Exchangeability in time

We make exchangeability assumptions for the residuals as in section 5.2, the major

differences being that we have three residuals and we now consider multivariate

quantities.

Consider the system level residual εXct, we make the assumptions that for each

component both the residuals and the squared residuals are second order exchange-

able in time as in equation 5.2.5. This gives representation statements for each
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component:

εXct = Rt(εXc)

(Rt(εXc))
2 = VXct =M(VXc) +Rt(VXc) (5.3.8)

where we make the prior specification:

E(M(VXc)) = ΣXc Var(M(VXc)) = ΞVXc Var(Rt(VXc)) = ΦVXc − ΞVXc ,

Then to update the variance of the system level residual of particular components

we learn about M(VXc).

We can make similar exchangeability assumptions about the other residuals,

giving representations for εαct:

εαct = Rt(εαc)

(Rt(εαc))
2 = Vαct =M(Vαc) +Rt(Vαc) (5.3.9)

and for εY ct:

εY ct = Rt(εY c)

(Rt(εY c))
2 = VY ct =M(VY c) +Rt(VY c) (5.3.10)

5.3.3 Squared linear combinations of observations

Within the DLM it is the residuals and their variances which drive the evolution of

the system. However we don’t directly observe these residuals. We consider squared

linear combinations of observations which eliminate the slope and level terms. This

results in expressions which only involve residual terms. These are then informative

for variance learning.

Assuming full inspections observations with equally spaced in time; for compo-

nent, c let:

Y
(i)
ct = Yct − Yc(t−i)

be the ith time step differences of observations. Using equation 5.3.6 and taking one
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step time difference, Y
(1)
ct , we find:

Y
(1)
ct = Yct − Yc(t−1) = Xct −Xc(t−1) + εY ct − εY c(t−1)

= αct + εXct +
(
εY ct − εY c(t−1)

)
= αc(t−1) + εαct + εXct +

(
εY ct − εY c(t−1)

)
(5.3.11)

and similarly we can find the two step differences, Y
(2)
ct :

Y
(2)
ct = Yct − Yc(t−2) = Xct −Xc(t−2) + εY ct − εY c(t−2)

= αct +Xc(t−1) −Xc(t−2) + εXct + εY ct − εY c(t−2)

= αct + αc(t−1) + εXct + εXc(t−1) + εY ct − εY c(t−2)

= 2αc(t−1) + εαct + εXct + εXc(t−1) + εY ct − εY c(t−2). (5.3.12)

Using equations 5.3.11 and 5.3.12 gives the linear combination of differences:

Y
(2)
ct − 2Y

(1)
ct = −εαct + εXct − εXc(t−1) + 2εY c(t−1) − εY ct − εY c(t−2). (5.3.13)

This gives an expression involving only the residuals, the square of which is infor-

mative for variance learning. The particular linear combination, is obviously, not

unique, just one such combination which removes system level effects.

5.3.4 Updating system variances for individual components

We now consider updating beliefs about system level residual variance, Var(εXct),

using exchangeability assumptions and observations on that component. Let Dct be

the linear combination:

Dct = (Y
(2)
ct − 2Y

(1)
ct )2 (5.3.14)

=
((
Yct − Yc(t−2)

)
− 2

(
Yct − Yc(t−1)

))2

If t = 1 is the start time, then for component c let Dc:

Dc =


Dc3

...

DcT

 (5.3.15)
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Theorem 5.3.1 The adjusted expectation of EDc(M(VXc)) is:

EDc(M(VXc)) = ΣXc + 2ΞVXc(Var(Dc))
−1(Dc − 1T (Σαc + 2ΣXc + 6ΣY ))

where Var(Dc) is a matrix composed of elements from equations 5.3.18, 5.3.19, 5.3.20

and 5.3.21 and 1T is the T × 1 vector of ones.

Proof :

Using equation 5.3.13 we find the expectation of Dct for all, c and t:

E [Dct] = E
[
(Y

(2)
ct − 2Y

(1)
ct )2

]
= E

[
(−εαct + εXct − εXc(t−1) + 2εY c(t−1) − εY ct − εY c(t−2))

2
]

= E
[
(−εαct)2

]
+ E

[
(εXct − εXc(t−1))

2
]

+ E
[(

2εY c(t−1) − εY ct − εY c(t−2)

)2
]

= Σαc + 2ΣXc + 6ΣY ; (5.3.16)

as the terms involving cross products are all zero. Then using equations, 5.3.8, 5.3.9

and 5.3.10 we find:

Cov(M(VXc), Dct) = Cov
(
M(VXc),

(
−εαct + εXct − εXc(t−1)

+2εY c(t−1) − εY ct − εY c(t−2)

)2
)

= Cov (M(VXc), (M(Vαc) +Rt(Vαc) + 2M(VXc) +Rt(VXc)

+Rt−1(VXc) + 6M(VY ) + 4Rt−1(VY ) +Rt−2(VY ) +Rt(VY )))

= 2Cov (M(VXc),M(VXc))

= 2ΞVXc (5.3.17)

We can also find Var [Dct] using equations 5.3.13, 5.3.8, 5.3.9 and 5.3.10:

Var [Dct] = Var
(
−εαct + εXct − εXc(t−1) + 2εY c(t−1) − εY ct − εY c(t−2)

)2

= Var (M(Vαc) +Rt(Vαc) + 2M(VXc) +Rt(VXc)

+Rt−1(VXc) + 6M(VY ) + 4Rt−1(VY ) +Rt−2(VY ) +Rt(VY ))

= ΦVαc + 2ΞVXc + 2ΦVXc + 18ΞVY + 18ΦVY (5.3.18)
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Similarly the covariance between squared linear combinations at different times can

be found:

Cov
[
Dct, Dc(t−1)

]
= ΞVαc + 3ΞVXc + ΦVXc + 28ΞVY + 8ΦVY (5.3.19)

Cov
[
Dct, Dc(t−2)

]
= ΞVαc + 4ΞVXc + 35ΞVY + ΦVY (5.3.20)

Cov
[
Dct, Dc(t−k)

]
= ΞVαc + 4ΞVXc + 36ΞVY where k ≥ 3. (5.3.21)

Using equations 5.3.16 and 5.3.17, the adjusted expectation is given by:

EDc(M(VXc)) = E(M(VXc)) + Cov(M(VXc), Dc)(Var(Dc))
−1(Dc − E(Dc))

= ΣXc + 2ΞVXc(Var(Dc))
−1(Dc − 1T (Σαc + 2ΣXc + 6ΣY ))

where (Var(Dc)) is a matrix composed of elements from equations 5.3.18, 5.3.19,

5.3.20 and 5.3.21. 2

Similar expressions can easily be found for adjusting beliefs regarding the other

system variances Σαc and ΣY using:

Cov(M(VY ), Dct) = Cov(M(VY ), Dct)

= Cov (M(VY ), (M(Vαc) +Rt(Vαc) + 2M(VXc) +Rt(VXc)

+Rt−1(VXc) + 6M(VY ) + 4Rt−1(VY ) +Rt−2(VY ) +Rt(VY )))

= 6ΞVY ,

and:

Cov(M(Vαc), Dct) = Cov(M(Vαc), Dct)

= Cov (M(Vαc), (M(Vαc) +Rt(Vαc) + 2M(VXc) +Rt(VXc)

+Rt−1(VXc) + 6M(VY ) + 4Rt−1(VY ) +Rt−2(VY ) +Rt(VY )))

= ΞVαc ,

therefore the adjusted expectation,EDc(M(VY )) and EDc(M(Vαc)) are given by:

EDc(M(Vαc)) = E(M(Vαc)) + Cov(M(Vαc), Dc)(Var(Dc))
−1(Dc − E(Dc))

= Σαc + ΞVαc(Var(Dc))
−1(Dc − 1T (Σαc + 2ΣXc + 6ΣY ))
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and:

EDc(M(VY )) = E(M(VY )) + Cov(M(VY ), Dc)(Var(Dc))
−1(Dc − E(Dc))

= ΣY + 6ΞVY (Var(Dc))
−1(Dc − 1T (Σαc + 2ΣXc + 6ΣY ))

When adjusting variances the covariances are adjusted to maintain the same under-

lying correlation structure. In chapter 9 we look at approaches to learning about

the full covariance structure.

5.4 Exchangeability of variances across compo-

nents

If we are willing to express prior beliefs about certain fourth order quantities we

now have a method, in section 5.3.4, for learning about the variances within the

model. Given long time series of complete regularly spaced observations this would

most likely be sufficient to give good estimates for the standard error variances. In

our case, however we have large numbers of components each with relatively short

time series. We want to be able to share information across components within the

system. To do this we need expressions for beliefs about the relationship between

variances within the model. This is achieved by assuming exchangeability of the

variances in the model across components.

We assume second order exchangeability of mean system level evolution variance,

M(VXc), over components. This leads to representation statements for the variance

of every component, c = 1, 2, ...C:

M(VXc) = WXc =M(WX) +Rc(WX) (5.4.22)

where:

E(M(WX)) = ΣWX
Var(WXc) = ΦWX

Cov(WX ,WXc′) = ΞWX
, c 6= c′

The adjusted expectation ED(M(WX)) gives an updated estimate of, M(WX) and

so tells us something about M(VXc) for all components c.
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Using the second order exchangeability assumptions we can use all the data for

all components so we write the C(T − 3)× 1, vector D:

D =



D1

D2

...

Dc
...

DC


where Dc is as given in equation 5.3.15. Then we adjust beliefs about the mean vari-

ance, M(WX) which tells us about all the variances in the model. Using equations

5.3.16, 5.3.17 and 5.4.22:

ED(M(WX)) = E(M(WX)) + Cov(M(WX), D)(Var(D))−1(D − E(D))

= ΣWX
+ 2(ΞWX

, . . . ,ΞWX
)(Var(D))−1(D − 1C(Σαc + 2ΣXc + 6ΣY ))

where Var(D) can be found using equations 5.3.18, 5.3.19, 5.3.20 and 5.3.21, where

1C is the C × 1 vector of ones The adjusted variance is then:

VarD(M(WX)) = Var(M(WX))− Cov(M(WX), D)(Var(D))−1Cov(D,M(WX))

= ΞWX
− 4(ΞWX

, . . . ,ΞWX
)(Var(D))−1(ΞWX

, . . . ,ΞWX
)′

The use of a second order exchangeability assumption across variances allows us

to have a simple way of adjusting beliefs all at once. Whether this is a sensible

assumption to make is another question. We need to express relationships between

large numbers of components. In certain cases, it may be preferable to express

exchangeability assumptions across subsets of the variances which we thought a

priori were behaving similarly. We could then adjust beliefs using those subsets.

The other variances can be updated using a similar approach.

5.5 Irregularly Spaced Observations

We have so far shown how to update variances in the case of full inspections. In

reality we have irregularly spaced partial inspections so we need to be able to handle

this type of data.
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5.5.1 Matrix form of the linear growth DLM

In the case of irregular and partial inspections we can find similar types of linear

combinations to those discussed in section 5.3. Consider the model in equation 5.3.6.

The DLM can be written in matrix form and generalised to give an expression for

the evolution of the DLM with general time steps.

Lemma 5.5.1 The linear growth DLM can be written in the form:

Yct =
(

1 0
)

Θct + εY ct

Θct =

 1 k

0 1

Θc(t−k) + ξc(t,t−k) ∀k

where:

Θct =

 X

α


ct

and ξc(t,t−k) =
k−1∑
i=0

 1 i

0 1

 εX + εα

εα


ct−i

Proof : Let:

Θct =

 X

α


ct

then from equation 5.3.6:

Yct = Xct + εY ct

=
(

1 0
) X

α


ct

+ εY ct

=
(

1 0
)

Θct + εY ct

and from equation 5.3.6:

Xct = Xc(t−1) + αc(t−1) + εαct + εXct

αct = αc(t−1) + εαct
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in matrix form this can be written as:

Θct =

 1 1

0 1

Θc(t−1) +

 1 0

0 1

 εX + εα

εα


ct

=

 1 2

0 1

Θc(t−2) +

 1 1

0 1

 εX + εα

εα


c(t−1)

+

 1 0

0 1

 εX + εα

εα


ct

=

 1 k

0 1

Θc(t−k) +
k−1∑
i=0

 1 i

0 1

 εX + εα

εα


c(t−i)

=

 1 k

0 1

Θc(t−k) + ξc(t,t−k)

2

This general form of the DLM has a more complicated form of the residuals. We

can still find its mean and variance in terms of the original specification:

E(ξc(t,t−k)) = E

k−1∑
i=0

 1 i

0 1

 εX + εα

εα


c(t−i)


=

k−1∑
i=0

 1 i

0 1

E


 εX + εα

εα


c(t−i)


=

 0

0


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and its variance:

Var[ξc(t,t−k)] =
k−1∑
i=0

Var

 1 i

0 1

 εX + εα

εα


ct−i


=

k−1∑
i=0

 1 i

0 1

Var

 εX + εα

εα


ct−i

 1 0

i 1


=

k−1∑
i=0

 1 i

0 1

 ΣXc + Σαc Σαc

Σαc Σαc

 1 0

i 1


=

k−1∑
i=0

 ΣXc + (1 + i)2Σαc (1 + i)Σαc

(1 + i)Σαc Σαc


=

 kΣXc + 1
6
k(k + 1)(2k + 1)Σαc

1
2
k(k + 1)Σαc

1
2
k(k + 1)Σαc kΣαc

 (5.5.23)

5.5.2 Squared linear combinations of observations

We use the general form of the DLM to find linear combinations of observations

which eliminate the slope and level terms. This leaves expressions only involving

the residual structure as in section 5.3.3.

Consider a set of irregularly spaced observations for particular component, c:

{Yct1 , Yct2 , . . . , YctTc}

observed at time:

{t1, t2, . . . , tTc}.

We consider sets of 3 observations at times Yct, Yc(ti−ki) and Yc(ti−li) where:

ki = ti − ti−1 and li = ti − ti−2

here ki < li, these represent the three most recent previous observations of the

component. Then as in section 5.3.3 we look at differences of observations. Using
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lemma 5.5.1 we find:

Y (ki)
c = Ycti − Yc(ti−ki)

=
(

1 0
)

Θcti −
(

1 0
)

Θc(ti−ki) + εY cti − εY c(ti−ki)

=
(

1 ki

)
Θc(ti−ki) −

(
1 0

)
Θc(ti−ki)

+
(

1 0
)
ξc(ti,ti−ki) + εY cti − εY c(ti−ki)

=
(

0 ki

)
Θc(ti−ki) +

(
1 0

)
ξc(ti,ti−ki) + εY cti − εY c(ti−ki)

=
(

0 ki

)
Θc(ti−li) +

(
0 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) + εY cti − εY c(ti−ki) (5.5.24)

and:

Y (li)
c = Ycti − Yc(ti−li)

=
(

1 0
)

Θcti −
(

1 0
)

Θc(ti−li) + εY cti − εY c(ti−li)

=
(

1 ki

)
Θc(ti−ki) −

(
1 0

)
Θc(ti−li)

(
1 0

)
ξc(ti,ti−ki)

+εY cti − εY c(ti−li)

=
(

0 li

)
Θc(ti−li) +

(
1 ki

)
ξc(ti−ki,ti−li) +

(
1 0

)
ξc(ti,ti−ki)

+εY cti − εY c(ti−li) (5.5.25)

We can now find a linear combination of the observations which eliminates the Θct

terms using equations 5.5.24 and 5.5.25. This will leave an expression involving only

the residuals:

kiY
(li)
c − liY (ki)

c = ki
[ (

0 li

)
Θc(ti−li) +

(
1 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) +

(
εY cti − εY c(ti−li)

) ]
−li
[(

0 ki

)
Θc(ti−li) +

(
0 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) +

(
εY cti − εY c(ti−li)

)]
=

(
(ki − li) 0

)
ξc(ti,ti−ki) +

(
ki ki(ki − li)

)
ξc(ti−ki,ti−li)

+ki
(
εY cti − εY c(ti−li)

)
− li

(
εY cti − εY c(ti−ki)

)
(5.5.26)
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Then if we look at the squared expectation of 5.5.26 using equation 5.5.23:

E[(kiY
(li)
c − liY (ki)

c )2] =(ki − li)2

[
kiΣX +

Σαki(ki + 1)(2ki + 1)

6

]
+ k2

i

[
(li − ki)ΣX +

Σα(li − ki)(li − ki + 1)(2(li − ki) + 1)

6

]
− k2

i (ki − li)2(li − ki + 1)Σα

+ k2
i (ki − li)2(li − ki)Σα

+
(
2l2i − 2kili + 2k2

i

)
ΣY

=
kili(ki − li)(2k2

i − 2kili − 1)

6
σα + kili(li − ki)ΣX

+ 2
(
l2i − kili + k2

i

)
ΣY (5.5.27)

we now have an expression involving the variances which is informative for vari-

ance learning. This is one particular choice of linear combination and is in no way

unique. The use of different linear combinations or linear combinations using more

observations may give more efficient estimates.

5.5.3 Updating system variances

To update our beliefs about the variance we compute ED(M(WX)) (using exchange-

ability assumptions as in section 5.4), where:

Dct = (kiY
(li)
c − liY (ki)

c )2, (5.5.28)

and:

D =


D11

...

DCT

 .

Then the adjusted expectation ED(M(WX)) is given by:

ED(M(WX)) = E(M(WX)) + Cov(M(WX), D)(Var(D))−1(D − E(D))

where from equation 5.5.27:

E(Dct) =
kili(ki − li)(2k2

i − 2kili − 1)

6
Σα + kili(li − ki)ΣX + 2

(
l2i − kili + k2

i

)
ΣY ,
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also from equation 5.4.22:

E(M(WX)) = ΣWX

and:

Cov[M(WX), D] = (Cov[M(WX), D11],Cov[M(WX), D12], ..,Cov[M(WX), DCT ])

where for 3 ≤ i ≤ Tc:

Cov[M(WX), Dct] = Cov
[
M(WX), (kiY

(li)
c − liY (ki)

c )2
]

= Cov

[
M(WX),

((
(ki − li) 0

)
ξc(ti,ti−ki)

+
(
ki ki(ki − li)

)
ξc(ti−ki,ti−li) +

+ki
(
εY cti − εY c(ti−li)

)
− li

(
εY cti − εY c(ti−ki)

))2
]

= kili(li − ki)ΞWX

calculation of Cov[M(WX), Dct] is given in appendix B.1. For i outside this range

we cannot form a triplet as we don’t have enough observations.

This means:

Cov(M(WX), D) = (k3l3(l3 − k3), . . . kT lT (lT − kT )) ΞWX

So the adjusted expectation, ED(M(WX)), is given as:

ED(M(WX)) = E(M(WX)) + Cov(M(WX), D)(Var(D))−1(D − E(D))

= ΣWX
+ (k3l3(l3 − k3), . . . kT lT (lT − kT )) ΞWX

× (Var(D))−1(D − E(D))

and the adjusted variance, VarD(M(WX)) , is:

VarD(M(WX)) = Var(M(WX))− Cov(M(WX), D)(Var(D))−1Cov(D,M(WX))

= ΞWX
− (k3l3(l3 − k3), . . . kT lT (lT − kT )) ΞWX

∗ (Var(D))−1ΞWX
(k3l3(l3 − k3), . . . kT lT (lT − kT ))T

where Var(D) is evaluated as in section 5.3.3, but with irregular time steps. In prac-

tise Var(D) become increasing difficult to calculate in closed form so alternatively
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we can use simulation to estimate its effects, as discussed in section 4.6. We can

generate a large number of realisations of the model in time. For each realisation

we can find the data vector, Dct, as in equation 5.5.28. We can then compute the

variance matrix over the set of realisations to get a simulated estimate for Var(D).

5.6 Summary

We have shown in section 5.3, how to update variances for a linear growth DLM

using second order exchangeability assumptions in time and across components.

Squared linear combinations of observations (section 5.3.3) can be used to remove

system effects and isolate the residual structure to allow variance learning.

The approach of taking differences of observations was extended in section 5.5,

to arbitrary and unevenly spaced inspections, using a generalised form of the DLM.

Linear combinations which involve just 3 observations have been presented, this

approach could easily be extended to linear combinations involving more data.

5.7 Examples

We now consider 2 examples. Firstly, an example using synthetic data, learning

about the variances for a single component in the case of full inspections, as described

in section 5.3. Secondly, we continue the offshore platform example (previously

discussed in sections 1.4.1, 3.5 and 4.9), and consider variance learning in the case

of short time series with irregular partial inspections. In these examples we consider

variance learning for the linear growth DLM.

5.7.1 Updating the variance of a single component: full in-

spections

We first consider an example using synthetic data simulated from a linear growth

DLM as described in equation 5.3.6, with one component and complete inspections.

We consider an example with 100 observations. In this case, from equation 5.3.14
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we can form a data vector of 98 differences,

D =


(Y

(2)
3 − 2Y

(1)
3 )2

...

(Y
(2)

100 − 2Y
(1)

100)2


Synthetic Data

We simulate 100 time points of synthetic “real” data (simulated using the prior

mean specification (corrosion rates and wall thicknesses) as used in for the offshore

platform example 4.9) from a linear growth DLM using variance specification;

ΣY = 1 ΣX = 4 Σα = 0.1

The advantage of using synthetic data is that we can analyse how well a method

is performing. Figure 5.1 shows the data vector of linear combinations, D for each

of the 98 together with the prior discrepancy. There are several values with very

large discrepancies even in this case using synthetic data. Each point represents a

particular linear combination Dt and the red line shows E(D). There are several

linear combinations for which Dt is large and have large discrepancies. There are

several squared linear combinations for which Dt is large and consequently have

large discrepancies.

Prior specification

Our prior variance specification is given as:

ΣY = 1 ΣX = 1 Σα = 0.1

The variance of the corrosion rate is expected to be smaller than that of the wall

thickness. The prior measurement error variance, ΣY , and corrosion rate variance,

Σα are correct. However the prior wall thickness variance has been underestimated.

In this example we will investigate how well we can recover the “real” system vari-

ances.

In order to carry out Bayes linear variance learning we also need to specify 4th

order quantities. We assume the measurement error is know and not random so that
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Figure 5.1: Vector of differences, D, and E(D) and point-wise discrepancies,Dr(D),

for 100 observations of the synthetic “real” data. Each point represents a partic-

ular linear combination Dt and the red line shows E(D). There are several linear

combinations for which Dt is large and consequently have large discrepancies.
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ΦWY
= ΞWY

= 0.

ΦWY
= 0 ΦWX

= 1 ΦWα = 0.1

ΞWY
= 0 ΞWX

= 0.5 ΞWα = 0.05

Bayes linear updating

We compute the adjusted expectation, ED(M(WX)), as in theorem 5.3.1.

We generate 50 sets of synthetic real data and compute the adjusted expectation,

ED(M(WX)), for each. Figure 5.2 shows the distribution of, ED(M(WX)), in this

case. We see that it is centred on the prior side of the true value for the wall thick-

ness variance. Figure 5.3 shows the adjusted beliefs with increasing T . Prediction

of ED(M(WX)), is centered at the correct value and the uncertainty around our

prediction decreases as we see more data. For very small numbers of observations

we can see it is possible to get predictions of negative variances which is undesirable.

The Bayes linear adjustment does not preclude this possibility.

5.7.2 Updating the variances for offshore platform applica-

tion

We now consider an example using the offshore platform inspection application

described in section 1.4.1. We generate synthetic data with the inspection design as

given in figure 1.4. The advantages of using synthetic data are discussed in section

1.4.2. The data is generated using the linear growth model 5.5 with known variances.

As such we can assess how well our method performs.

Synthetic data

We have 174 observations for 64 components over 83 time points from 4 corrosion

circuits, unlike in the example in section 5.7.1, where we considered full inspec-

tions. In this case we have short time series of data per component with incomplete

and irregularly spaced inspections. Figure 5.4 shows the synthetic data with the

observations shown in red.
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Figure 5.2: The range of ED(M(WX)) using 50 sets of T=100. The red line shows

the prior value for ΣX . The green line shows the value of ΣX for the “real” system.
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Figure 5.3: The uncertainty on ED(M(WX)) as a function of number of observa-

tions. The shaded area shows the range of values predicted for ED(M(WX)) over

50 synthetic data sets. Prediction of ED(M(WX)), is centered at the correct value

and prediction uncertainty decreases with increases data.
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Figure 5.4: Synthetic data: observed wall thickness as a function of time. The

observations of the systems are show with red points.
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Updating Variances

To update the variances as described in section 5.5.3, using equation 5.5.28 we

compute:

Dct = (kiY
(li)
c − liY (ki)

c )2

To compute Dct we need at least 3 observations on a particular component, 42 of the

64 components have 3 or more inspections. This gives us 58 observed differences,

Dct. Our prior variance specification is given as:

ΣY = 0.04 ΣX = 0.04 Σα = 0.0001

The real system has variance:

ΣY = 0.04 ΣX = 0.01 Σα = 0.0001

with all variances the same except for the specification of the wall thickness variance.

We specify 4th order quantities thus:

ΦWY
= 0.001 ΦWX

= 0.001 ΦWα = 0.0001

ΞWY
= 0.0005 ΞWX

= 0.0005 ΞWα = 0.00005.

These 4th order values chosen relative to the size of the prior variance.

Figure 5.5 shows the prior point-wise prior for the differences in this case. The

expected value of Dr(Yct) is 1, shown as a horizontal line. The horizontal line

corresponding to |1 − Dr(Yct)| = 3
√

2 the 3σDrY rule under normality, serving as a

warning limit for unusually large values of discrepancy. The few points are over this

warning limit are not huge suggesting the prior specification is reasonable.

Figure 5.6 shows the distribution of the adjustment, ED(M(WX)) in this case.

We see the adjusted expectation has moved in the right direction from the prior. One

potential issue is that in cases where the adjustment is too big, ED(M(WX)) can

become negative, which for adjusting expectations about variances is an undesirable

outcome. Getting negative variances can serve as a diagnostic warning of problems

with the model.
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Figure 5.5: Point-wise Discrepancy for Dct. The expected value of Dis(Yct) is 1,

shown as a horizontal line. The horizontal line corresponding to |1−Dis(Yct)| = 3
√

2

the 3σDrY rule under normality, serving as a warning limit for unusually large values

of discrepancy. A few points are over this warning limit are not huge suggesting the

prior specification is reasonable
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Figure 5.6: The range of ED(M(WX)) using 50 sets of synthetic data. The red line

shows the prior value for ΣX . The green line shows the value of ΣX for the “real”

system.



Chapter 6

Bayes linear variance learning for

the complete model with known

local variance parameters

We now build on the ideas used in chapter 5 for a more general class of models;

the model developed in chapter 3. We will use Bayes linear adjustment to update

our beliefs about the global effects variances. As for variance learning in the case

of the linear growth DLM, we need to still be able to handle the irregularly spaced,

incomplete short time series data. The complete model has the added complication

of the non-linear observation equation.

We will first consider the problems raised by a non linear observation equation,

before extending ideas from the previous chapter to the more general setting. So

we will consider updating the system variances for the global effects model in the

cases of full inspections using linear combinations of observations and second or-

der exchangeability assumptions. We will then extend this to irregular or partial

inspections, before looking at an example using the oil platform application.

6.1 Non linear observation equation

The global effects model, section 3.1.2, is a general form DLM over a parameter

space of N parameters with observations made on C components. We may carry

91
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out variance learning for the global effects terms using a similar approach to that

taken in section 5.3. However, we don’t directly observe the global effects terms.

Instead, we observe a potentially non linear function, fl, which summarises the

surface behaviour of the component. We can re-express the observation equation,

i.e. from equation 3.3.11:

Yct = fl (FcΘt + rlt + εY lct)

= (F ∗Θt)c + fl (rlt + εY lct)

= F ∗c Θt +Mtc

where Mtc = fl (rlt + εY lct) and F ∗c is the 1×N vector, for the cth row of the C×N

dynamic regression matrix F ∗.

We wish to find linear combinations of observations which eliminate model pa-

rameters, leaving expressions involving simply the residual structure using a similar

approach to the linear growth model in section 5.3.3. We can then use second order

exchangeability assumptions to update beliefs about the error structures and learn

about underlying variance parameters.

However, we cannot find expressions which eliminate the effects of the local

effects and measurement error terms inside the observation equation Mtc. This

is because the observation equation is non linear and we have no expression for

its evolution in time. Instead, assuming known local variance parameters we can

simulate relevant information about it, e.g. E(Mtc), Var(Mtc) and Cov(Mtc,Mtc′),

as explained in section 4.6. A method is presented for Bayes linear variance learning

for the general variance parameters with known local variance parameter. In chapter

7 this restriction is then lifted to allow learning about all variance parameters within

the model.

6.2 Bayes linear variance learning for corrosion

model

Consider learning about the variances within the corrosion model section, 3.5. This

model has a non linear, minimum observation equation 3.5.20. We seek expressions
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for squared residuals ε2Xtc from sample data corresponding to partial system inspec-

tions. The general effects DLM part of the model is a linear growth DLM. We can

take linear combinations of observations to isolate expressions for the residuals even

when observations of the system are irregularly spaced in time. Using expressions

for εXtc we adjust our beliefs about the population mean variance using observed

data and assumed known values for the the local corrosion variances as explained

below.

6.2.1 Linear combinations of observations

Firstly we shall consider the case of full inspections. We consider differences of

observations in time; using equations 3.5.16 and 3.5.20.

Let Y
(1)
c and M

(1)
c be the 1 step differences:

Y (1)
c = Yct − Yc(t−1)

M (1)
c = Mct −Mc(t−1)

In the case of the corrosion model using equation 3.5.20:

Mct = min
l

(rlct + εY lct) .

The minima term, Mct is independent of the general effects model. Consequently

assuming known local effects variance parameters and measurement error the local

effects model can be simulated as discussed in section 4.6. Any quantities of interest

about Mct, (E(Mct), Var(Mct), etc.) can be then be estimated empirically from the

simulation.

Consider the one time step difference:

Y (1)
c = Yct − Yc(t−1)

= Xct −Xc(t−1) +Mct −Mc(t−1)

= Xc(t−1) + αct + εXct −Xc(t−1) +M (1)
c

= αct + εXct +M (1)
c

= αc(t−1) + εαct + εXct +M (1)
c
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and the two step differences:

Y (2)
c = Yct − Yc(t−2)

= Xct −Xc(t−2) +M (2)
c

= Xc(t−1) + αct + εXct −Xc(t−2) +M (2)
c

= Xc(t−2) + 2αc(t−1) + εαc(t−1) + εαct + εXc(t−1) + εXct −Xc(t−2) +M (2)
c

= 2αc(t−1) + εαct + εXc(t−1) + εXct +M (2)
c

then the linear combination below isolates the residual error structures from the the

general corrosion model:

Y (2)
c − 2Y (1)

c = −εαtc + εXt−1c − εXtc +M (2)
c − 2M (1)

c

This leaves terms involving the residual structure of the DLM and terms involving

the minimum. For known fixed local variance, the effect of terms involving the

minima can be simulated.

6.2.2 Adjusting beliefs using exchangeability

Let:

Dct = (Y (2)
c − 2Y (1)

c )2

and:

D =


D11

...

DCT

 .

Using second order exchangeability assumptions described in section 3.5.1 and taking

the square of this linear combination and taking expectations we get:

E(Dct) = E
[
(Y (2)

c − 2Y (1)
c )2

]
= E

[
(εαtc + εXt−1c − εXtc +M (2)

c − 2M (1)
c )2

]
= E(ε2αtc) + E(ε2Xt−1c) + E(ε2Xt−1c) + E((M (2)

c − 2M (1)
c )2)

= E(M(Wα) + 2M(WX)) + E((M (2)
c − 2M (1)

c )2)

= ΣWα + 2ΣWX
+ E((M (2)

c − 2M (1)
c )2)
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For known local corrosion variance parameters we can simulate the local corrosion

terms involving the minimum function E((M
(2)
c − 2M

(1)
c )2).

Therefore to learn about general corrosion variances we can compute the adjusted

expectation, ED(M(WX)):

ED(M(WX)) = E(M(WX)) + Cov(M(WX), D)(Var(D))−1(D − E(D))

= ΣWX
+ 1Tn(ΞWX

)(Var(D))−1(D − E(D))

where we can use simulations to find estimates for Var(D))−1. Calculations for

Cov(M(WX), D) is discussed for irregularly spaced observations in the appendix

B.1.

6.2.3 Irregular time steps

In section 5.5 we considered the problem of learning about the linear growth DLM

model in the case where we don’t have full inspections. The general corrosion model

from equation 3.5.16 is given by:

Xct = Xc(t−1) + αct + εXct

αct = αc(t−1) + εαct (6.2.1)

The general corrosion DLM can be rewritten to tell us about time steps longer than

one step: X

α


tc

=

 1 k

0 1

 X

α


t−kc

+
k−1∑
i=0

 1 i

0 1

 εX + εα

εα


t−ic

6.2.4 Linear combinations of observations

We want to isolate the squared residual error terms and use them to update our

beliefs about the underlying variance parameters. As in section 5.5.3, given obser-

vations for components c:

{Yct1 , Yct2 , . . . , YctTc}

at times:

{t1, t2, . . . , tTc}
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then let ki be time between observations, ti and ti−1; let li be time between obser-

vations, ti, and ti−2:

ki = ti − ti−1 li = ti − ti−2

where Tc is the total number of observations of component c. As in equation 5.5.28

we take:

Dct = liY
(ki)
c − kiY (li)

c

where:

E(Dct) =
kili(ki − li)(2k2

i − 2kili − 1)

6
Σα + kili(li− ki)ΣX +E

(
li(M

(ki)
c − kiM (li)

c )2
)

The terms involving E[M
(ki)2
c ], E[M

(li)2
c ], E[M

(li)
c M

(ki)
c ] can be estimated from

simulations for assumed known values of the local corrosion error variance.

To update our beliefs about the variance we compute ED(M(WX)):

ED(M(WX)) = E(M(WX)) + Cov(M(WX), D)(Var(D))−1(D − E(D))

= ΣWX
+ 1TC(ΞWX

)(Var(D))−1(D − E(D))

The calculation of Cov(M(WX), D) is given in the appendix, B.1 and Var(D) is

estimated using simulation.

6.3 Bayes linear variance learning for the com-

plete model

6.3.1 Linear combinations of observations

In the case of full inspections, we take differences of observations in time, then use

equations 3.1.1, 3.2.7, 3.3.10 and 3.3.11.

Let Y
(1)
c and M

(1)
c be the ith step differences:

Y
(1)
ct = Yct − Yc(t−1)

M
(1)
ct = Mct −Mc(t−1)
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We first consider the one time step difference:

Y
(1)
ct = Yct − Yc(t−1)

= F ∗c Θt − F ∗c Θt−1 +Mct −Mc(t−1)

= F ∗c (Θt −Θt−1) +M
(1)
ct

= F ∗c
(
GΘt−1 −Θt−1 + εΘt

)
+M

(1)
ct

= F ∗c
(
(G− IN)Θt−1 + εΘt

)
+M

(1)
ct

= F ∗c
(
(G− IN)GΘt−2 + εΘt + (G− IN)εΘt−1

)
+M

(1)
ct (6.3.2)

and the two step differences:

Y
(2)
ct = Yct − Yc(t−2)

= F ∗c Θt − F ∗c Θt−2 +M
(2)
ct

= F ∗c
(
GΘt−1 −Θt−2 + εΘt

)
+M

(2)
ct

= F ∗c
(
G2Θt−2 −Θt−2 + εΘt +GεΘt−1

)
+M

(2)
ct

= F ∗c
(
(G2 − IN)Θt−2 + εΘt +GεΘt−1

)
+M

(2)
ct (6.3.3)

We now want a linear combination which removes the system state effects, Θt leaving

an expression involving the residual structure and terms involving Mct which can be

simulated.

Lemma 6.3.1 Consider the linear combination:

GT (G− IN)T (F ∗c )TY
(2)
ct − (G2 − IN)T (F ∗c )TY

(1)
ct (6.3.4)

If the N ×N matrix:

(G2 − IN)T (F ∗c )TF ∗c (G− IN)G (6.3.5)

is symmetric then the linear combination in equation 6.3.4, removes the system

state effects, Θt and leaves terms involving only the residual structure as required

for variance learning.
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Proof :

Using equations 6.3.2 and 6.3.3 the linear combination in equation 6.3.4 gives:

GT (G− IN)T (F ∗c )TY
(2)
ct = GT (G− IN)T (F ∗c )TF ∗c (G2 − IN)Θt−2

+GT (G− IN)T (F ∗c )TM
(2)
ct (6.3.6)

(G2 − IN)T (F ∗c )TY
(1)
ct = (G2 − IN)T (F ∗c )TF ∗c (G− IN)GΘt−2

+ (G2 − IN)T (F ∗c )TM
(1)
ct (6.3.7)

note that the coefficient of Θt−2 in 6.3.6 is the transpose of the coefficient of Θt−2

in 6.3.7. Therefore if the matrix in equation 6.3.5. 2

Lemma 6.3.1 holds for the linear growth DLM, in this case:

G =

 IC IC

0C IC

 F ′ =
(
IC 0C

)
and so:

(G2 − IN)T (F ′)TF ′(G− IN)G =

=

 IC IC

0C IC

2

− IN

T  IC

0C

( IC 0C

)

×

 IC IC

0C IC

− IN
 IC IC

0C IC


=

 0C 2IC

0C 0C

T  IC 0C

0C 0C

 0C IC

0C 0C


=

 0C 0C

0C 2IC


this is symmetric and so lemma 6.3.1 holds, and the linear combination in equation,

6.3.4 allows us to get an expression involving only the residual structure.

Lemma 6.3.1 also hold in the case where:

G =

 IC IC

IC IC


This linear combination of observations allows us to carry out variance learning

using the same approach as in section 6.2. For model forms which this lemma does
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not apply it is possible to find other similar linear combinations to get an expression

involving only the residual structure or which assess different parts of the residual

structure.

6.3.2 Adjusting beliefs using exchangeability

From section 3.1.3 we have exchangeability assumptions which express our beliefs

about the relationship of the residuals within the global effects model. We consider

the residuals exchangeable in time from equation 3.1.2:

εΘnt =M(εΘn) +Rt(εΘn),

where from equation 3.2.9.

M(εΘn) = 0

we also assume the squared residuals are exchangeable in time from equation 3.1.5:

[εΘnt]
2 = [Rt(εΘn)]2 = Vnt =M(Vn) +Rt(Vn)

in the same way as in section 5.4, we also make assumptions about the residual

structure across components for parts of the parameter space, M(εΘn), i.e. from

equation 3.1.6:

M(Vp) = Wp =M(W ) +Rp(W )

and so we have that:

ε2Θnt =M(W ) +Rp(W ) +Rt(Vp)

and using section 2.4 it is sufficient to update our beliefs about M(W ) to learn

about the variance.

Given observational data {Yct} we can construct data vector D of squared linear

combinations where:

D =



D11

D12

...

D1T−2

...

DCT−2


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and:

Dct =
[
(G− IN)G(F ∗c )TY

(2)
ct − (G2 − IN)(F ∗c )TY

(1)
ct

]2

Under the assumption, that for a given model form, G and F ′, the expression in

lemma 6.3.1 is symmetric.

To learn about general effects variances we can compute the adjusted expectation

ED(M(W )):

ED(M(W )) = E(M(W )) + Cov(M(W ), D)(Var(D))−1(D − E(D))

Given specific model forms we could either find expressions for E(D), Var(D) and

Cov(M(W ), D) or in cases where they are difficult to compute in closed form use

simulation. This approach can also be extended to irregularly spaced observations

in the same way as we have shown for the corrosion model.

6.4 Example: Updating the variances for offshore

platform application

We continue the full-scale offshore platform example (previously discussed in sections

1.4.1, 3.5 and 4.9, 5.7.1 and 5.7.2).

In the example in the previous chapter, section 5.7.2 we considered learning

about wall thickness variances for a linear growth DLM in the case of synthetic

data (simulated using the prior mean specification as used in for the offshore plat-

form example 4.9). In this example we will update beliefs about variances using

the synthetic data set for component minimum wall thickness, simulated using the

corrosion model described in section 3.5.

6.4.1 Prior specification

The mean prior specification is the same as used in the offshore platform example in

section 4.9. We set the number of locations as 20. Our prior variance specification

is given as:

ΣY = 0.167 ΣX = 0.05 Σr = 0.1 Σα = 0.001
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The “real” system has variance:

ΣY = 0.167 ΣX = 0.1 Σr = 0.1 Σα = 0.001

The prior wall thickness variance has been underestimated. As in the example in

the previous chapter, section 5.7.1 we will investigate how well we can recover the

“real” system variances. Figure 6.1 shows the point wise prior discrepancy of one

realisation of the synthetic data. A large number of simulations are done as described

in section 4.8.

6.4.2 Updating Variances

To illustrate Bayes Linear Variance learning, consider estimating ΣWX
using equa-

tions above in this chapter, in a simulated case for which the actual value is set

at 0.1. For each of 50 independent realisations of the inspection data sample, we

generate D which is used to evaluate ED(M(WX)) which is an estimate for ΣWX
.

The distribution of the adjusted variance, ED(M(WX)) is given in figure 6.2.e

see the distribution of the ED(M(WX)) covers the “real” value. We find that the

mean value of ED(M(WX)) is 0.0994, and that the 5% and 95% values are respec-

tively 0.0872 and 0.1128, consistent with the real value. However the mode of the

distribution is slightly to the left of the of the real value, probably the effect of the

low prior.

Given known local variance terms we can update our beliefs about variances

in the general part of the model. In practice the local corrosion error variance

is unknown. The selection of optimal combination of local and general variance

estimates consistent with the data is discussed in chapter 7.
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Figure 6.1: The point wise discrepancy of one realisation of the synthetic inspection

data. The expected value of Dis(Yct) is 1, shown as a horizontal line. Also shown

is the horizontal line corresponding to |1 − Dis(Yct)| = 3
√

2 the 3σDrY rule under

normality, serving as a warning limit for unusually large values of discrepancy.
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Figure 6.2: Kernel density estimate of adjusted variance ED(M(WX)) using 50

sets of synthetic data for offshore platform example. The “real” general corrosion

variance is ΣWX
= 0.1 shown by the vertical line. We see the distribution of the

ED(M(WX)) covers the “real” value. However the mode of the distribution is

slightly to the left of the of the real value, probably the effect of the low prior.



Chapter 7

Mahalanobis variance learning

In the preceding chapters 5 and 6 it has been shown that we can use exchangeabil-

ity assumptions and Bayes linear adjustments to estimate variances in the global

effects model. However we have not considered learning about the local effects vari-

ances. Unlike the global effects model variance, we cannot find linear combinations

of observations which eliminate parameter system state effects. In this chapter we

will describe a different approach using the Mahalanobis distance to estimate local

variance parameters. The approach is similar to the “history matching” discussed in

Craig et al. [1997], who try to find inputs to a computer simulator that closely match

historical data in the context of oil reservoirs. Note that this method is particularly

appropriate when we are unsure whether there are any choices of parameters which

will give a good fit to the data, as the approach combines parameter estimation with

goodness of fir assessment.

7.1 Bayes linear adjustment for local effects

In section 5.6 we described the use of Bayes linear updating to adjust our beliefs for

the global effects evolution error variances in the case of known local effects error

variances. Updating the global effects uses the linear structure of DLM to update

beliefs and get expressions for the residual structure. Ideally we would use a Bayes

linear scheme to update the local corrosion variances directly. However the local

104
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effects model is embedded within a non-linear observation equation 3.3.12:

Yct = (F ∗Θt)c + fl (rlct + εY lct)

therefore we cannot use Bayes linear assessment directly. Suppose that we consider

a new random quantity:

Mlct = fl (rlct + εY lct) .

Given prior specification for Mlct and suitable exchangeability assumptions we could

use Bayes linear variance learning to update beliefs about Var(M). However this

would tell us nothing directly about variance parameters within the observation

equation. Linear combinations of observations cannot be used to provide direct

estimates for local corrosion evolution variance since the observation equation is

non-linear.

We instead adopt a straightforward fitting procedure to estimate optimal combi-

nations of local and general corrosion error variances which are most consistent with

observational data. The approach adopts a Mahalanobis distance fitting criterion,

exploiting the covariance structure to aid variance learning.

7.2 Mahalanobis learning: normal distribution

We now consider how to carry out parameter estimation using the Mahalanobis

distance. The approach is similar to a profile likelihood, however we can use it in

cases where we don’t have a likelihood . Properties of the Mahalanobis distance

have been discussed in previous section 4.7.2. We begin with a simple example,

intended to introduce the ideas involved in Mahalanobis learning. This simple case

should aid in understanding of the less tractable cases.

Using the Mahalanobis distance we will estimate the parameters in a normal

distribution.

We observe a set of, n, observations , D[n]:

D[n] =


X1

...

Xn


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where each Xk ∼ N(µ, σ2). Use the observations D[n] we estimate parameters µ and

σ from two candidate sets of potential parameter values:

µ = {µ1, . . . , µi, . . . , µm}

σ = {σ1, . . . , σj, . . . , σp}

Given a particular choice of parameters, µi, σj we can then test its fitting perfor-

mance to data by computing the Mahalanobis distance. The observational data,

D[n], can be compared with each possible combination of µ and σ to determine the

choice which best fit the data.

For a particular choice of µi, σj, from equation 4.7.7, the Mahalanobis distance,

Dis(D[n]), is given by:

Dis(D[n]) = (µi −D[n])
T
[
diag(σ2

j )
]−1

(µi −D[n])

=
n∑
k=1

(µi −Xk)
2

σ2
j

and standardised Mahalanobis distance, Dr(D[n]), is given as:

Dr(D[n]) =
1

n

n∑
k=1

(µi −Xk)
2

σ2
j

In following sections we will consider a running example using a vector,D[100], of

n = 100 observations, of X, from a normal distribution;

X ∼ N(10, 4).

7.2.1 Learning about µ

Firstly, treating σ as known we learn about µ given observations, D[100] and candi-

date set:

µ = {1, 1.5, 2, ..., 20}.

Figure 7.1a shows standardised Mahalanobis distance,Dr(D[100]), over the range of

the candidate set, µ. The value of Dr at the minimum is ≈ 1, when µ near true

value of 10, consistent with expected value of Dr.
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Figure 7.1: Mahalanobis learning for parameter in a normal distribution. a) shows

Dr(D[100]) over the range of the candidate set for µ with horizontal line for the

expected value of 1. b) shows the value of Dr(D[100]) over the candidate set for σ

with horizontal line for the expected value of 1. c) shows |log(Dr)| over the range of

σ. In the case of |log(Dr)| the expected value is 0 and the minimum is around the

correct value.
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7.2.2 Learning about σ

So now lets try and learn about the value of σ using data D[100]. Using the same

example but treating µ as known and fixed and we test the candidate set:

σ = {0.1, 0.2, ..., 4}.

Figure 7.1b shows the value of Dr(D[100]) over the candidate set σ:

Dis(D[100]) =
1

σ2
j

100∑
k=1

(µi −Xk)
2

When searching over the variance parameter σ with fixed mean, µi this becomes:

Dis(D[100]) =
κ

σ2
j

κ =
100∑
k=1

(µi −Xk)
2

Consequently, for µ fixed:

lim
σ→∞

(Dis(D[100]) = 0.

This can be seen in figure 7.1b. At the real value σ = 2, Dr ≈ 1 the expected value.

Regions where the Mahalanobis distance is small can either mean we have a good

parameter estimate or very large uncertainty about that point. These regions are

“not implausible” values but may still represent bad parameter choices for example

very large variances.

Alternatively, figure 7.1c shows |log(Dr)| over the range of σ. Here we get a

distinct minimum at σ ≈ 2 and avoid the issues arising as Dr→ 0.

7.2.3 Learning about µ and σ jointly

Consider learning about µ and σ jointly. Here we consider the grid of points formed

by every combination of the candidate sets µ and σ. Figure 7.2a shows a heat-

map where the range of “not implausible” values is everything not in the deep red.

Regions where the Mahalanobis distance is large represent bad parameter choices

and so can be ruled out as being “implausible”.

This forms a wedge shape which will continue on to σX =∞. Its shows there is

a correlation between the µ and σ parameters and so poor estimates of σ will lead
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Figure 7.2: Dr(D[100]) over the range of the candidate sets µ and σ. a) shows a heat-

map where the range of plausible values is everything not in the deep red. b) shows

| log(Dr(D[100]))|. This has an arrow shaped region for which the joint parameter

choice suggest a good fit.
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to poor estimates of µ (and vice versa). Figure 7.2b shows | log(Dr(D[100]))|. This

has an arrow shaped region for which the joint parameter choice suggest a good fit.

One alternative metric which could be used for fitting instead of the Mahalanobis

distance is the Euclidean distance/ Mean Squared Error:

100∑
k=1

(µi −Xk)
2

Figure 7.3a and 7.3b shows a comparison between parameter estimation using the

Mahalanobis and Euclidean distance. Unlike the Mahalanobis distance the Eu-

clidean distance has no (co)variance component. Perhaps unsurprisingly the Eu-

clidean distance is unable to infer the value of σ. For our case any potential distance

metric comparing parameter choice is only useful if it is informative for variance

learning.

7.2.4 Taking Differences

Figure 7.3a shows that the estimate for the mean, µ, influences the estimate for σ.

When trying to learn about the variance parameter, we therefore take differences of

observations X ′k = Xk+1 − Xk for all k = {1, ...n − 1} to remove the mean effects.

We then can compute the standardised Mahalanobis distance Dr(D[n]) on the vector

of differences, D′[n] = X ′1, . . . X
′
n−1.

Figure 7.3c shows | log(Dr(D[n]))| in the case of differences of observations. Here

the estimate of σ is independent of the choice of µ and so we can separate learning

about means and variances. Figure 7.3d shows the Euclidean distance in the case of

differenced observations. As the Euclidean distance has no covariance component

and the mean effects have been removed, this shows no signal at all. Again here the

Euclidean distance is ineffective in trying to learn about variance parameters



7.2. Mahalanobis learning: normal distribution 111

Figure 7.3: Comparison of the Mahalanobis and Euclidean distance over range of

candidate values for µ and σ. a) shows a heat-map where the range of “not implau-

sible” values is everything not in the deep red. We see that the estimate for the

mean, µ it influences the estimate for σ . b) shows the same plot as a) but using the

Euclidean distance. As the Euclidean distance has no covariance component this

shows no signal in the variance component. c) shows | log(Dr(D[n]))| in the case of

differences of observations. d) shows the same plot as c) but using the Euclidean

distance. As the Euclidean distance has no covariance component and the mean

effects have been removed, this shows no signal at all.
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7.3 Mahalanobis learning: Multivariate normal

with correlated observations

Instead of n independent observations we will consider observations now from an n

dimensional multivariate normal:

X ∼ Nn(µ,Σ)

where Σ is parameterised by a constant variance σ2 and constant covariance γ:

Σ =


σ2 γ . . . γ

γ σ2 ...
...

. . . γ

γ . . . γ σ2


where γ = ρσ2, 0 ≤ ρ ≤ 1 is the correlation. We remove the mean effects by

looking at the difference of observations and compute the Mahalanobis distance as

in equation 4.7.6.

Consider estimating the correlation parameter ρ. For example let the “real”

ρ = 0.5 (with µ = 10 and σ = 2 as before) and then examine | log(Dr)| over the

candidate set:

ρX = 0, 0.05, 0.1, . . . , 0.95.

Treating µ and σ as known, figure 7.4a shows | log(Dr)| for fixed σ. The minimum of

| log(Dr)| is ρ ≈ 0.5. However looking jointly at σ and ρ, figure 7.4b shows a region

of low | log(Dr)| making it very difficult to distinguish between σ and ρ.

Figure 7.5 shows profile negative log likelihood for the same data set. The plot

also shows confounding making it difficult to distinguish between σ and ρ. The

confounding problem in the likelihood case is also worse than the Mahalanobis fit

for the same problem. For the full scale problem we do not have a well defined

likelihood.
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Figure 7.4: | log(Dr)| over range of candidate values for ρ and σ with correlated

observations where the “real” ρ = 0.5. a) shows | log(Dr)| for fixed σ = 2 the

minimum is at the correct value of ρ . b) shows heat-map where the range of

plausible values is everything not in the deep red. This shows a region of low

| log(Dr)| making it very difficult to distinguish between σ and ρ
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Figure 7.5: Heat-Map of the negative log likelihood over range of candidate values

for ρ and σ with correlated observations where the “real” σ = 2; ρ = 0.5. This plot

shows confounding making it difficult to distinguish between σ and ρ
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7.4 Mahalanobis Variance Learning for the Local

Effects Model

We now consider the more challenging case, learning about the variances within

the local effects model given in section 3.2. The same approach is taken as in the

example in the previous sections learning about the parameters of a multivariate

normal distribution, in section 7.2.

Observational data is compared to a candidate set of parameters, Σr, of p, po-

tential values for the local corrosion variances:

Σr = {Σr1, . . . ,Σrk, . . .Σrp}.

We then wish to try to decide which of our candidate set of parameters is best the

best fit with the observed data. Again the Mahalnobis distance is the criteria used

to assess goodness of fit.

Unlike in the case of the normal distribution we cannot directly infer the mean

and variance of the observations from the parameter choice Σr. Instead for each

choice for the local effects variance, Σrk, we simulate realisations of the observation

equation 3.3.11, treating the global effects variances as known. The simulations

can be used to give estimates for E(Y ) and Var(Y ). These can be used together

with observations to compute the Mahalanobis distance and assess how “good” a

particular choice of local variance is at explaining the data.

For each parameter choice of the local effects variance, Σrk, we simulate and

assess the fit to data using the Mahalanobis distance:

Dis(Y ) = (Y − E(Y : Σrk))
TVar(Y : Σrk)

†(Y − E(Y : Σrk))

where E(Y : Σrk) and Var(Y : Σrk) are the simulated estimates of E(Y ) and Var(Y )

respectively given a particular choice of local variance Σrk.

The range of parameter choices for which Dr(Y ) is near to 1 (its expected value)

are the best supported by the data.
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7.5 Variance learning for local and global effects

terms together

In the previous chapters, 5 and 6 we have shown that, for a fixed value of the local

effect variance, we can update our beliefs about the global effects variance using

Bayes linear variance learning. We cannot use the same approach to learn about the

local effects due to the non-linearity within the observation equation. In the previous

section, 7.4, a method for estimating local effects variances given fixed global effects

was described.

To learn about local and global effects variances together we could specify joint

candidate values over a grid as in section 7.2.3 and test each one using the Maha-

lanobis distance. However, this could be computationally intensive due to the need

to runs simulations for each choice of parameters.

Alternatively given observational data Y , we specify a candidate set of local

effects variances as in section, 7.4:

Σr = {Σr1, . . . ,Σrp}.

Then for each candidate choice of Σrk we use a two stage process

1. firstly we treat Σrk as known and use the value to learn about the global effect

variance ED(M(W ) : Σrk) using Bayes linear variance learning described in

section 5.6.

2. secondly use adjusted values for the global effects variance together with our

candidate local corrosion variance Σrk. Given the set of global and local vari-

ances we can generate realisations of our model. We can then generate large

numbers of realisations and used them to calculate us empirical estimates of

E(Y : ED(M(W )),Σrk) and Var(Y : ED(M(W )),Σrk) as described in section

7.4.

We then use the Mahalanobis distance to find the candidate variance parameters
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which best fits with our observational data Y :

Dr(Y ) = (Y − E(Y : ED(M(W )),Σrk))
TVar(Y : ED(M(W )),Σrk)

†

× (Y − E(Y : ED(M(W )),Σrk)).

where E(Y : ED(M(W )),Σrk) and Var(Y : ED(M(W )),Σrk) are to be simulated

for each of the candidate variances parameters.

Both stages, the Bayes linear updating of the global effects variances and the

Mahalanobis fitting stage need to be simulated for each of the candidate set, so that

we need to do 2p simulation runs. This could be computationally demanding for p

large. However it is still preferable to joint Mahalanobis fitting of the global and

local over a grid which would require O(p2), simulation runs.

7.6 Algorithm for updating mean and variance

parameters in the model

We now have a methodology to update all the variance parameters and update mean

parameters within our complete model described in section 3.3.4.

The procedure followed to apply the model consists of the stages as explained

below. Firstly we make a prior specification and carry out simple diagnostic checks to

confirm consistency of the data and priors. We then update variance and covariances

in the model. Thereafter we update means and perform model diagnostics assessing

model fit.

Stage 1: prior specification

First we make our prior specification for the, mean, variances, covariances and fourth

order quantities in the whole model and the candidate set of local corrosion variances

we wish to examine (section 4.2).

Stage 2: data diagnostics

We then check that the prior specification is consistent with the data by computing

the discrepancy Dis(X) (section 4.7).
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Stage 3: updating general corrosion variances

Given a local corrosion variance parameter, Σr, we can compute the Bayes Linear

adjusted expectation, ED(M(W )), for the general corrosion variance. Given a set

of local variance parameters we can then in the same way compute the adjusted

expectation for each local variance. This results in giving us a candidate set variance

parameters for each local variance parameter chosen (section 6.2).

Stage 4: updating local corrosion variances

We then need to decide which of the candidate variance parameters best fits the

observed data. We therefore compute the Mahalanobis distance for each set of

variances:

Dr(Y ) = (Y − E(Y : ED(M(W )),Σrk))
TVar(Y : ED(M(W )),Σrk)

†

× (Y − E(Y : ED(M(W )),Σrk)).

The set of variances which best fit the data are then chosen by using min(| log(Dr)|)

(section 7.5).

Stage 5: further data diagnostics

We check the adjusted expectations are plausible by computing the adjustment

discrepancy on the updated variances. (section 4.7)

Stage 6: mean updating

Using our updated variance structure we can generate new simulations of the full

model and use them learn about the system state (section 4.1).

Stage 7: further data diagnostics

We then carry out further data diagnostics once we have updated the means and

variances to check the consistency of updated values. We can compute the ad-

justment discrepancy on both the BL updated of the system state and the general

variances.
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Stage 8: explore reliability of procedure

We could carry out one further stage to give an idea of the uncertainty of our esti-

mates since there is no natural way of estimating the uncertainty in the Mahalanobis

distance. We can generate multiple synthetic datasets using the updated parame-

ter values. These datasets can then be used to assess the reliability of the fitting

procedure.

7.7 Example: Updating the variances for offshore

platform application

We continue the offshore platform example from previous chapters (previously dis-

cussed in sections 1.4.1, 3.5, 4.9, 5.7.1, 5.7.2 and 6.4).

In the previous chapters example (section 6.4) we showed an example learning

about general effects variance for fixed local effects variances. We now extend this

example to consider learning jointly about both local and general effects together.

In the examples we use the same 50 synthetic data sets used the example in

section 6.4. We carry out each of the stages described in the algorithm above in

section 7.6.

7.7.1 Synthetic Data

An application of the method to analysis of inspection data from a full-scale offshore

platform is now considered. In section 6.4 we showed an example using synthetic

data of Bayes linear learning about the general corrosion variances, treating the

local variance parameters as known. Here we consider the same example but learn

about both local and general variance parameters.

Prior Specification

Stage one in the algorithm is the prior specification. The prior mean specification

(corrosion rates and wall thicknesses) is the same as used in for the offshore platform
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example in section 4.9. Our prior variance specification is given as:

ΣY = 0.167 ΣX = 0.1 Σα = 0.001

We specify a prior candidate set for the local corrosion variance:

Σr = 0, 0.01, . . . 0.1, 0.2 . . . 1 (7.7.1)

The simulated real system has variances:

ΣY = 0.167 ΣX = 0.1 Σr = 0.1 Σα = 0.001

As in the example in the previous chapter, section 5.7.1 we will investigate how well

we can recover the “real” system variances.

Stage two in the algorithm is the data diagnostics. Figure 6.1 (in the previous

chapter section 6.4) shows the point wise prior discrepancy of one realisation of syn-

thetic data. Stage three updating the general corrosion variances was also discussed

in the previous chapter.

Variance Learning

Stage four in the algorithm is the joint updating local corrosion variances given

general corrosion variances. In section 6.4.2 in the previous chapter we examined

explored learning about the general corrosion variances using 50 synthetic datasets.

We now illustrate joint Bayes linear and Mahalanobis variance learning for the sim-

ulated example in figures 7.6 and 7.7 using the same datasets.

Given a set of location corrosion variances we can compute the Bayes Linear ad-

justed expectation for the general corrosion variances. Figure 7.6 shows Bayes linear

variance learning for wall thickness variance, ΣWX
, as a function of the candidate set

of local corrosion variances specified in equation 7.7.1. The simulated example has

true values of ΣWX
and ΣVr both 0.1. We can see that for the true local corrosion

parameter we get do indeed predict the correct general corrosion variance.

After the computing the adjusted expectation for the general corrosion variances

for each local corrosion variance in the candidate set we can then ask which of these

combinations is best. We generate simulations of the corrosion model (section 3.5)
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and compute empirical expectations and covariance matrices used to compute the

Mahalanobis distance for each of the candidate set of variances. Figure 7.7 shows the

standardised Mahalanobis distance, Dr(Y ), as a function of local corrosion variance,

ΣVr for the same example. The minimum value of log(Dr(Y )), gives parameter

estimates of gives parameter estimates of ΣVr = 0.09 and from figure 7.6 ΣWX
= 0.11.

We have therefore managed to get a good estimate for both the local and general

corrosion variances jointly. We can then proceed to stages 5-7 in the algorithm, mean

updating and further data diagnostics. These stages have been examined in previous

chapters, section 4.9.

Prior Sensitivity to ΣX

We can examine the sensitivity of the method to the prior specification. Figure 7.8

shows variance learning for the general and local corrosion variances, given 3 prior

choices for ΣX = {0.05, 0.1, 0.2}. We see the range of updating values for the local

corrosion vary from ΣVr = [0, 0.3] and the corresponding general variance range from

ΣWX
= [0.05, 0.16].

The adjusted expectation of the general corrosion variance in all cases has moved

from the prior towards the true value. However we do not have enough data to dis-

regard the prior and use the data mean. The consequence of this is under prediction

of the general corrosion variance in the case of prior which is “too small” and sim-

ilar variances which are “too big” in opposing situation. Choice of local corrosion

variance in these situations seems to want to try to match the total variation in

the model. When the general corrosion variance is too high the location corrosion

variance is small and vice versa. The effect of this is shifting whether the variability

is modelled into the local effects model or the general effects model.

7.8 Example: Historical Inspection Data

We now consider an example of learning about the general and local corrosion vari-

ance parameter in the case of analysis the real historical inspection data described

in section 1.4.1. A system of four corrosion circuits is modelled, consisting of a total
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Figure 7.6: Bayes linear variance learning for wall thickness variance, ΣWX
, as a

function of local corrosion variance, ΣVr . The true values of ΣWX
and ΣVr are both

0.1, as shown by the dashed horizontal and vertical lines. The mean estimate for

ΣWX
is shown as a solid line, and the blue shaded region corresponds to a 90%

uncertainty band for ΣWX
bounded by the 5th and 95th percentiles derived from

simulation using 50 sets of synthetic data.
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Figure 7.7: The standardised Mahalanobis distance, Dr(Y ), as a function of local

corrosion variance, ΣVr . The mean estimate for Dr(Y ) is shown as a solid line, and

the blue shaded region corresponds to a 90% uncertainty band for Dr(Y ) bounded

by the 5th and 95th percentiles derived from simulation using 50 sets of synthetic

data. The minimum value of Dr(Y ), suggests ΣVr = 0.09 and corresponding ΣWX
=

0.11, (from figure 7.6). Vertical lines indicate the mean (solid) and 5th and 95th

percentiles (dashed) for the particular choice of ΣVr in individual realisations. The

true values of ΣWX
and ΣVr are both 0.1.
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Figure 7.8: Variance learning for the synthetic data with 3 different prior choices.

The red line shows joint variance learning for ΣWX
= 0.05, the blue line shows

ΣWX
= 0.1 and the green line shows ΣWX

= 0.2. The coloured vertical lines indicate

the local corrosion variance estimate for each prior choice. The true values of ΣWX

and ΣVr are both 0.1, as shown by the black dot dashed horizontal and vertical lines
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of 64 pipe-work weld components, data is given in appendix A. For problems of

this size simulation and modelling can take around an hour on a standard laptop.

For bigger practical sized problems such as the modelling of an entire oil platform

the scale of simulations would necessitate access to more powerful computing and

multi/core computing. The nature of the simulation procedure means that this

approach is extremely easy to parallelise and send to multiple cores.

Prior specification is the same as given in previous section 7.7.1, for the syn-

thetic data. Figure 7.9 shows the point wise discrepancy of the historical inspection

data. At time 12 we see large discrepancies suggesting there is either something

wrong with our prior specification at these points or maybe different measurement

technique. Using data spread over many years means that consistent data gathering

is problematic, instruments, operators and procedures are all subject to change. In

section 4.9 we discussed updating the expected wall thickness and corrosion rates

for these data. We now consider learning about the general and local corrosion

variances.

We assume that we can specify the measurement error variance directly from our

knowledge of the inspection processes and equipment. Even when instruments have

changed, the device used is recorded. We therefore wish to estimate the general and

local corrosion variances. The procedure is the same as discussed in the previous

section 7.7.1. First a set of candidate local variances decided. The adjusted expecta-

tion for the general corrosion variances is computed for each of the local variances.

Each candidate combination of local and general corrosion variances can then be

compared against data using the Mahalanobis distance.

The updated general corrosion variances ΣWX
and local variances ΣVr results

are shown in Figure 7.10 (to be compared with 7.6 and 7.7). The fitting procedure

suggests that a local corrosion variance of 0.3 and general corrosion variance of 0.1

are best. Unfortunately we have no estimate of the uncertainty around this estimate.

An estimate of the uncertainty around the combination of local and general corrosion

variances can be found by computing the adjusted variance, however there is no easy

way to compute the uncertainty around the Mahalanobis distance. Sensitivity to

the prior specification can be explored in the same way as in section 7.7.1.
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Figure 7.9: The point wise discrepancy of one realisation of the real historical in-

spection data. The expected value of Dis(Yct) is 1, shown as a horizontal line. Also

shown is the horizontal line corresponding to |1 − Dis(Yct)| = 3
√

2 the 3σDrY rule

under normality, serving as a warning limit for unusually large values of discrepancy.

At time 12 we see large discrepancies suggesting there something wrong with our

prior specification at these points.
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Figure 7.10: Bayes linear variance learning for the historical inspection data. The

top plot shows the wall thickness variance, ΣWX
, as a function of local corrosion

variance. The bottom plot shows the standardised Mahalanobis Distance, Dr, as a

function of local corrosion variance. The vertical line shows the minimum log(Dr)

of suggesting a local corrosion variance of 0.3 and corresponding general corrosion

variance of 0.12.
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One approach to quantifying this uncertainty in the Mahalanobis distance could

be done by using the updated model estimates to generate new synthetic data sets

and refit the model. This approach would give an idea of the reliability of the results.

7.9 Covariance Learning

If we had enough data we could attempt to learn about the correlations/covariance

parameters within the model as well as means and variances. One could imagine a

similar approach to that of variance learning using exchangeability.

7.9.1 Exchangeability in Time

First consider the case of full inspections where we have long time series data. We

make the assumption as for the variance learning case that the residuals ,εXct, are

exchangeable in time, giving a representation statements for each component:

εXct = Rt(εXc)

We also make the assumption that the product of the residuals for a pair of compo-

nents, c and c′, are exchangeable in time thus, c 6= c′:

Rt(εXc)Rt(εXc′) = CXt =M(CX) +Rt(CX)

where we make the prior specification:

E(M(CX)) = ΣXcc′ Var(M(CX)) = ΞCX Var(Rt(CX)) = ΦCX − ΞCX .

7.9.2 Adjusting Beliefs in the case of equally spaced obser-

vations

We can then compute the adjusted expectation ED(M(CX)) using a product of

differences of observations:

Dcc′t = (Y
(2)
ct − 2Y

(1)
ct )(Y

(2)
c′t − 2Y

(1)
c′t ),
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then Dcc′ :

Dcc′ =


Dcc′1

...

Dcc′T


In this way we can update our beliefs about individual covariances within the model

by computing the adjusted expectation, EDcc′ :

EDcc′ (M(CX)) = E(M(CX)) + Cov(M(CX), Dcc′)Var(Dcc′)
−1 (Dcc′ − E(Dcc′))

However, in practice we have irregularly spaced data with short time series. In

order to learn about a covariance we need sets of 3 observations on both compo-

nents. Therefore in this case it is highly unlikely we have enough data between

pairs of components to be able to learn about correlation. If we attempted to use

exchangeability assumptions across components we have the problem that different

components are not observed at the same time. If we assume some form of struc-

ture to the correlation matrix such as a distance then we may be able to imagine

exchangeability between equidistant components. However, for a large covariance

matrix this would still become infeasibly complicated, even if you had enough data

to make inferences and could justify the assumptions.

7.9.3 Mahalanobis covariance learning

An alternative approach would be to use Mahalanobis fitting as we did in section

7.4. We choose a candidate set, ΣX of correlation matrices and assess which fits the

data best using the Mahalanobis distance:

ΣX = {ΣX1,ΣX2, . . . ,ΣXp}

We partition the data D into 2 parts, D{c1}, and D{c2} which contain observations

from disjoint sets of components {c1}, {c2}.

Each candidate choice of ΣXi is treated as a prior specification. We can then

generate a large number realisations of the model and calculate empirical estimates

for all relevant means, variances and covariances of interest. We then use the data

D{c1} from the set of components {c1} to learn about the set {c2} by computing
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Bayes linear adjustment, ED{c1}(Y{c2}):

ED{c1}(Y{c2}) = E(Y{c2}) + Cov(Y{c2}, D{c1})[Var(D{c1})]
−1(D{c1} − E(D{c1}))

VarD{c1}(Y{c2}) = Var(Y{c2})− Cov(Y{c2}, D{c1})[Var(D{c1})]
−1Cov(D{c1}, Y{c2})

Since the data is partitioned into 2 disjoint sets of components the only learning

which occurs is directly related to the strength of correlation within the system.

This approach is similar to a cross validation.

Adjusted estimates for the components {c2} can be compared against the real

observations using the Mahalanobis distance. We test the how well each choice of

correlation matrix fits the data D{c2}, from equation 4.7.7:

Dr(D{c2}) = (D{c2} − ED{c1}(Y{c2}))
T [VarD{c1}(Y{c2})]

−1(D{c2} − ED{c1}(Y{c2}))

We could test each choices within the candidate set of correlation matrices and

find which best fits with the observed data. The choice on how to partition the data

into these 2 disjoint sets will have an effect on how the learning occurs. An approach

of repeated resampling of these 2 sets will give an estimate of the sensitivity of the

data to this choice and the associated uncertainty we should attached to estimates.

7.9.4 Example: Covariance learning Offshore Platform ex-

ample

Using the synthetic example continuing on from previous chapters (previously dis-

cussed in sections 1.4.1, 3.5, 4.9, 5.7.1, 5.7.2, 6.4 and 7.7).

7.9.5 Synthetic Data

We use the same 50 synthetic data sets used the example in section 6.4. The prior

mean (corrosion rates and wall thicknesses) specification is the same as used in for

the offshore platform example in section 4.9. The prior variance specification is the

same as used in the offshore platform example in section 7.7.
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Candidate correlation set

We generate the correlation matrices using the approach discussed in section 4.5.3,

from equation 4.5.4:

ΣΘcc′ = σΘcσΘc′

(
ρ0 + (1− ρ0)ρCirδCirCir′ + (1− ρ0 − (1− ρ0)ρCir)e

−νscc′
)

We specify a candidate set of ρCir:

ρCir = [0.001, 0.01, 0.05, 0.1, 0.2, . . . , 0.7]

with fixed:

ρ0 = 0.2 ν = 0.05

The real system has parameter values:

ρ0 = 0.2 ν = 0.05 ρCir = 0.1

Figure 7.11 shows Mahalanobis distance, Dr, as a function of the circuit covari-

ance parameter, ρCir for the simulated example. The expected value of Dr, shown

as a horizontal line is 1, suggesting a value of ρCir = 0.1. The true value of ρCir is

also 0.1 so on average we pick the correct value. Even in this cases with synethitic

data we see that we could have chosen a correlation anywhere from [0− 0.4].

7.9.6 Historical Inspection Data

Consider an example of learning about the general and local corrosion variance

parameters in the case of analysis of the real historical inspection data described in

section 1.4.1. A system of four corrosion circuits is modelled, consisting of a total of

64 pipe-work weld components, data is given in appendix A. Figure 7.12 shows the

Mahalanobis fitting for the covariance structure varying over the circuit covariance

parameter, ρC . Bounds are generated by resampling and fitting with different sets

of data and fitting sets. The bounds are massive and Dr is large suggesting there

is insufficient data or the model fit is too poor to be able to chose a correlation

parameter. It is possible that with more data that there we could get an estimate

for the correlation parameter. However we are reaching the limit of insights from

the data.
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Figure 7.11: Mahalanobis distance, Dr, as a function of the circuit covariance pa-

rameter, ρC . The mean estimate for Dr is shown as a solid line, and the shaded

region corresponds to a 90% uncertainty band for Dr bounded by the 5th and 95th

percentiles derived from simulation. The expected value of Dr, shown as a horizontal

line is 1, suggesting a value of ρC = 0.1. The true value of ρC is also 0.1.

Figure 7.12: Mahalanobis fitting for the covariance structure varying over the circuit

covariance parameter, ρC . The bounds are quite wide and not centered around 1

suggesting model fit is far for perfect. However a choice of ρC = 0.05 would seem to

be best



Chapter 8

Efficient Inspection

We now have a model which can be used to predict the current state of the system

at any time. We also have a way of updating our beliefs about mean and variance

structures using Bayes linear adjustments. We will now consider the problem of

designing an efficient inspection scheme. Its value is assessed in terms of reducing

uncertainty about the system state, thus minimising potential losses from component

failure. The following is discussed in [Randell et al., 2010] and [G.Hardman, 2007].

We begin by formalising the decision problem, section 8.1. We then discuss the

utility/loss criteria for a given design, section 8.2, Before showing how to evaluate

the expected loss, in section 8.3 and evaluate expected under certain normality

assumptions, in section 8.4. Once we have a method of evaluating the worth of a

particular design we then discuss the problem of efficient searching of the design

space, section 8.5. We then extend the design selection in section 8.6 to consider a

design approach also incorporating variance learning. We then consider an example

applied to the offshore platform data in section 8.7. Work described in sections 8.1

to 8.4 are based on work described in [G.Hardman, 2007], which is then extended

in the subsequent sections to incorporate variance learning.

8.1 The decision problem

We first consider the value of inspecting a single component using a utility based

criterion. For collections of components, summation over components allows evalu-

133
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ation of complete designs.

To simplify the inspection problem, suppose that there are two possible out-

comes, o ∈ O, namely failure, F , or survival, F̄ per system component. System

maintenance involves replacing a component, decision R, or leaving it alone, R̄.

Replacing a component incurs cost, LR, whereas component failure costs LF . Fur-

thermore when a component fails it also needs replacing, i.e. LR ≤ LF . This cost

structure can be summarised as:

F F̄

R LR LR

R̄ LF 0

That is, the four possible outcomes are:

1. Replace component when it would have failed ; cost LR

2. Replace component when it would not have failed ; cost LR

3. Don’t replace component and it fails ; cost LF

4. Don’t replace component and it does not fail ; cost 0

We also need to consider that carrying out the inspection itself will incur costs.

We will model these inspection costs as follows:

LIC = LSUC + ndLC , (8.1.1)

where LSUC is the cost of setting up the inspection, LC is the cost of inspecting

a particular component, nd is the number of components in the inspection design

d being considered. This means that as the scale of the inspection increases the

cost of the inspection increases as well. These costs are added up to give the total

inspection cost, LIC for a particular design.

The loss incurred through inspection is independent of the other loss and so we

can combine these costs with our expected loss criteria for maintenance simply by

adding the costs together. The real benefit of including a measure of the inspection

costs is that it gives a way of comparing designs which inspect different numbers of

components so we can work out whether it is beneficial to inspection more or less

components.
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8.2 Utility

Utility quantifies preferences concerning different uncertain rewards on scale for

which expected utility equals actual utility. Loss is negative utility. In a space of

possible decisions ∆ = {R, R̄}, the best decision procedure, δ∗, has maximum utility

or minimum loss. For design d, yielding inspection data, Yd, the expected loss of

decision δ(Yd) is:

E[L(O, δ(Yd))] = E{E[L(O, δ(Yd))]|Yd}

= E{L(F, δ(Yd))P (F |Yd) + L(F̄ , δ(Yd))P (F̄ |Yd)}. (8.2.2)

The component is replaced, decision R, if E[L(O,R)|Yd] < E[L(O, R̄)|Yd]:

E[L(O,R)|Yd] = E{L(F,R)P (F |Yd) + L(F̄ , R)P (F̄ |Yd)} = LR

E[L(O, R̄)|Yd] = E{L(F, R̄)P (F |Yd) + L(F̄ , R̄)P (F̄ |Yd)} = LFP (F |Yd).

Hence, the component is replaced if LR < LFP (F |Yd), i.e.:

δ∗(Yd) =

 R if p(F |Yd) ≥ η

R̄ if p(F |Yd) < η
where η =

LR
LF

.

Let q(Yd) = P (F |Yd), the probability of failure given current system observations.

From equation 8.2.2 the expected loss of the optimal decision, δ∗(Yd), is:

E[L(O, δ∗(Yd))] =E{L(F, δ∗(Yd))P (F |Yd) + L(F̄ , δ∗(Yd))P (F̄ |Yd)}

=E{L(F, δ∗(Yd))q(Yd) + L(F̄ , δ∗(Yd))(1− q(Yd))}

=E

[
L(F, δ∗(Yd))q(Yd)+

L(F̄ , δ∗(Yd))(1− q(Yd))
∣∣∣∣q(Yd) ≥ η

]
P (q(Yd) ≥ η)+

+ E

[
L(F, δ∗(Yd))q(Yd)+

L(F̄ , δ∗(Yd))(1− q(Yd))
∣∣∣∣q(Yd) < η

]
P (q(Yd) < η)

=LRP (q(Yd) ≥ η) + LFE[q(Yd)|q(Yd) < η]P (q(Yd) < η)

=LR

∫ 1

η

p(q(Yd))dq(Yd) + LF

∫ η

0

q(Yd)p(q(Yd))dq(Yd)

=LRI1 + LF I2. (8.2.3)
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Therefore calculation of the expected loss of decision δ∗, requires evaluation of inte-

grals I1 and I2 as explained in section 8.3 and in a specific case in section 8.4.

8.3 Evaluating expected loss

A component is deemed to have failed if the system level falls below some critical

value WC . The probability of component failure before some future time t+ k is:

q(Yd) = P (F |Yd) = P (Xt+k < WC |Yd),

where Xt+k is the unknown future system level at time t+ k. To evaluate integrals

I1 and I2 from equation 8.2.3 expressions for q(Yd) and its probability distribution,

p(q(Yd)) are required, which can be evaluated for any proposed design. This is

achieved using a combination of Bayes linear analysis and appropriate distributional

assumptions.

For inspection data Yd, the adjusted mean and variance are:

EYd(Xt+k) = E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)
−1(Yd − E(Yd))

VarYd(Xt+k) = Var(Xt+k)− Cov(Xt+k, Yd)Var(Yd)
−1Cov(Yd, Xt+k).

Note that the adjusted variance, VarYd(Xt+k) depends only on prior beliefs and the

specific design, d. It does not depend on the observed inspection data, Yd. However,

the adjusted expectation, EYd(Xt+k), depends directly on Yd. Bayes Linear analysis

is therefore also used to update beliefs about its mean, E(EYd(Xt+k)), and variance,

Var(EYd(Xt+k)). For the adjusted mean:

E(EYd(Xt+k)) =E(E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)
−1(Yd − E(Yd)))

=E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)
−1(E(Yd)− E(Yd))

=E(Xt+k). (8.3.4)

To find the adjusted variance Var(EYd(Xt+k)), use:

Var(Xt+k) = Var
(
EYd(Xt+k) +Xt+k − EYd(Xt+k)

)
= Var(EYd(Xt+k)) + Var(Xt+k − EYd(Xt+k))

= Var(EYd(Xt+k)) + VarYd(Xt+k),
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so that:

Var(EYd(Xt+k)) = Var(Xt+k)− VarYd(Xt+k) (8.3.5)

These expressions for the first and second moments of Xt+k, and the adjusted ex-

pectation EYd(Xt+k) given in this section are general and make no assumptions on

distributional forms. In practice through searching for optimal designs requires fast

calculations of I1 and I2. Under normal distribution assumptions (given in section

8.4), calculations can be simplified allowing fast evaluation of the expected loss.

8.4 Evaluating expected loss under normality

We now consider the evaluation of the expected loss and the integrals I1 and I2 from

equation 8.2.3 in the case of normal distributional assumptions. Expressions for the

first and second moments of Xt+k, and its adjusted expectation EYd(Xt+k) are given

in section 8.3. Henceforth, these quantities are assumed to be normally distributed:

Xt+k(Yd) ∼ N(EYd(Xt+k),VarYd(Xt+k))

EYd(Xt+k) ∼ N(E(Xt+k),Var(Xt+k)− VarYd(Xt+k)) (8.4.6)

The adjusted variance VarYd(Xt+k) does not depend on particular realisations of data

and thus can estimated from the simulated data. From equation 8.2.3 expected loss

for a given design, d, is given by:

E[L(O, δ∗(Yd))] = LR

∫ 1

η

p(q(Yd))dq(Yd) + LF

∫ η

0

q(Yd)p(q(Yd))dq(Yd)

= LRI1 + LF I2

8.4.1 Evaluating I1

The probability of component failure is given by:

q(Yd) = P (F |Yd) = P (Xt+k < WC |Yd)

Therefore using the normality and standardising:

P (Xt+k < WC |Yd) = P

(
Xt+k − EYd(Xt+k)

VarYd(Xt+k)
<
WC − EYd(Xt+k)

VarYd(Xt+k)

∣∣∣∣Yd)
q(Yd) = Φ

(
WC − EYd(Xt+k)

VarYd(Xt+k)

)
(8.4.7)
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Let z =
WC − EYd(Xt+k)

VarYd(Xt+k)
(8.4.8)

Then using equation 8.4.6:

µz = E(z) = E

(
WC − EYd(Xt+k)

VarYd(Xt+k)

)
=

WC − EYd(Xt+k)

VarYd(Xt+k)

=
WC − E(Xt+k)

VarYd(Xt+k)
(8.4.9)

σ2
z = Var(z) = Var

(
WC − EYd(Xt+k)

VarYd(Xt+k)

)
=

Var(EYd(Xt+k))

VarYd(Xt+k)

=
Var(Xt+k)− VarYd(Xt+k)

VarYd(Xt+k)
(8.4.10)

So to calculate I1:

I1 =

∫ 1

η

p(q(Yd))dq(Yd) = P (q(Yd) ≥ η)

Then from equations 8.4.7, 8.4.8, 8.4.9 and 8.4.10:

P (q(Yd) ≥ η) = P

[
Φ

(
WC − EYd(Xt+k)

VarYd(Xt+k)

)
≥ η

]
= P (Φ(z) ≥ η)

= P (z ≥ Φ−1(η))

= P

(
z − µz
σz

≥ Φ−1(η)− µz
σz

)
= 1− Φ

(
Φ−1(η)− µz

σz

)
= Φ

(
µz − Φ−1(η)

σz

)

8.4.2 Evaluating I2

Continuing from equations 8.4.7 and 8.4.8, the expression for I2 becomes:

I2 =

∫ η

0

q(Yd)p(q(Yd))dq(Yd)

=

∫ Φ−1(η)

−∞
Φ(z)fq(Φ(z))φ(z)dz
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where fq(Φ(z)) is given by the derivative of Fq = P (q(Yd) < x) and φ(z) is the

standard normal density:

P (q(Yd) < x) = P

[
Φ

(
WC − EYd(Xt+k)

VarYd(Xt+k)

)
< x

]
= P (Φ(z) < x)

= P (z < Φ−1(x))

= P

(
z − µz
σz

<
Φ−1(x)− µz

σz

)
= Φ

(
Φ−1(x)− µz

σz

)

Therefore:

fq =
dFq
dx

=
d

dx

[
Φ

(
Φ−1(x)− µz

σz

)]
=

1

σz
φ

(
Φ−1(x)− µz

σz

)
× 1

φ(Φ−1(x))

Then:

I2 =

∫ Φ−1(η)

−∞
Φ(z)fq(Φ(z))φ(z)dz

=

∫ Φ−1(η)

−∞
Φ(z)

1

σz
φ

(
Φ−1(Φ(z))− µz

σz

)
× 1

φ(Φ−1(Φ(z)))
φ(z)dz

=

∫ Φ−1(η)

−∞
Φ(z)

1

σz
φ

(
z − µz
σz

)
× 1

φ(z)
φ(z)dz

=

∫ Φ−1(η)

−∞
Φ(z)φ

(
z − µz
σz

)
dz

σz

These 2 integrals in the case of normality reduce to a closed form expression for I1

and an integral I2 which is easy to evaluate numerically. This means the calculation

of the expected loss for a component is very quick, allowing us to quickly search the

large design space.

8.5 Design selection

Total inspection cost incorporates expected loss from above, along with other costs

associated with the process of carrying out inspections. For example, any inspection
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will involve set-up costs. Inspection of some components will be more costly. Differ-

ent designs might involve inspection of different numbers of components. Optimal

designs should be selected with respect to total inspection cost, not only expected

loss. To calculate the total loss for an inspection design, expected loss for each

component is summed component-wise and added to the associated inspection cost.

It is possible therefore to quantify the value of any design, d prior to carrying it out,

and to search for good designs.

A method of searching efficiently for good designs from the space of designs is

required. For example, even in the current simple case, with a binary inspection de-

cision for each component, there are 2C (C components) potential designs to choose

from. Stepwise addition of components is one tractable search strategy; compo-

nents are added sequentially to an empty starting design, such that at each step,

the component added minimises the incremental total inspection cost. Alternatively

a stepwise deletion, or any of a large number of possible search algorithms may be

considered. Backward induction schemes for finding optimal designs might be useful

but were not explored. In general a combination of stepwise addition and deletion

works relatively well in practice.

8.6 Designing for variance learning

In section 8.2 we considered an expected loss criterion which preferentially chooses

inspections which reduce model uncertainty. In doing so, the expected loss gets

better predictions of the current mean system state and so reduces the risk of failure.

The components within the model which are likely to have high uncertainty are those

which we have not examined for a long time. Therefore the consequence of this type

of criteria is that we will spread inspections out across many components and in

time inspect the whole system.

It has been shown in section 5.3 that for variance updating, several observations

of the same component are needed for inference. Therefore if we wanted to design

inspection to best learn about system variance, then an optimal strategy would be to

observe the same component at every inspection. The strategy for optimal variance
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learning and the strategy for improving estimation of the system state are therefore

contradictory. Can we design a utility criterion which attempts to do both?

8.6.1 Prior for M(WX)

Consider learning about the variances within the general effects corrosion model

3.5.1. In section 5.3 the adjusted mean variance, ED(M(WX)) was computed to

give an updated estimate for the general effects corrosion.

The adjusted expectation from equation 8.3.4 has prior expectation:

ED(M(WX)) = E(M(WX)) = ΣWX

and from equation 8.3.5 variance:

VarD(M(WX)) = Var(Xt+k)− VarYd(Xt+k)

The following approach combines the design ideas in this chapter with the vari-

ance learning approach described in previous chapters to select good designs for

simultaneous expectation and variance learning. Firstly we observe the system until

time t and update beliefs about system mean and variances as described in sections

4.1, 5.6 and 7.5. Next choose a design d, and update beliefs about system to time

t+ k given design d, using expectation and variance learning as described in section

8.2. Beliefs about the mean value of, M(WX), given the design have mean, ΣWX
,

and variance, Var(Xt+k)− VarYd(Xt+k), the resolved variance given design, d.

8.6.2 Gamma assumption

In a similar vein to the normality assumptions made in section 8.4 we specify a

distributional form forM(WX). We assume thatM(WX) takes a Γ distribution with

mean, ΣWX
, and variance, Var(Xt+k)−VarYd(Xt+k). The choice of a Γ distribution

for the variances enforces positivity of the variances. Given a mean and variance

the Γ distribution can be parametrised thus:

M(WX) ∼ Γ

(
Σ2
WX

Var(Xt+k)− VarYd(Xt+k)
,
Var(Xt+k)− VarYd(Xt+k)

ΣWX

)
. (8.6.11)
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Let fd(M(WX)) be the pdf of the Γ distribution specified in 8.6.11 given design

d. To evaluate the expected loss of design d including the uncertainty around the

variance we calculate the following integral:

E[L(O, δ∗(Yd))] =

∫ ∞
0

E[L(O, δ∗(Yd),M(WX))]fd(M(W ))dM(WX) (8.6.12)

where E[L(O, δ∗(Yd),M(WX))] is the expected loss of the optimal design δ∗(Yd)

from equation, 8.2.3 for a given M(W ).

Since we want to evaluate many design choices, we want to be able to compute

this integral fast. This integral can be calculated numerically using a discretised

version of the Γ distribution to weight the expected losses.

8.6.3 Numerical Approximation

Equation 8.6.12 can be approximated by:

E[L(O, δ∗(Yd))] =
∞∑
i=0

∫ i+h

i

E[L(O, δ∗(Yd),M(WX))]fd(M(WX))dM(WX)

≈
∞∑
i=0

hE[L(O, δ∗(Yd),M(W ))]

(
fd(
M(WXi) +M(WX(i+h))

2
)

)
As for the previous design criterion we can then search across the space of designs, d

(as discussed in section 8.5 ), and choose the design which minimises total expected

loss.

8.7 Example

8.7.1 Simulated example: Inspection and Maintenance

We will now consider an example of optimal inspection design using the expected loss

criterion as described in section 8.4. Using synthetic data generated using corrosion

model from section 3.5. We consider 4 components over 100 time points with each

component inspected at 20 locations. Using the prior wall thickness and corrosion

rate as follows:

X0 = 100 α0 = −3
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Every 5 time steps, we plan an inspection and decide component-wise whether or

not to examine each component. Carrying out inspections has associated costs

calculated as in equation 8.1.1 where the initial setup cost of an inspection is LSUC =

0.05. The cost of inspecting a particular component is LC = 0.05. If a component

is inspected, and is below the critical wall thickness WC = 10, then it is replaced.

System maintenance involves replacing a component, decision R, or leaving it

alone, R̄. Replacing a component incurs cost, LR = 1, whereas component failure

costs LF = 1000 (so a component failure is considerably more expensive than re-

placement). If the corrosion rate were indeed 3 per time point then starting from an

initial wall thickness of 100 we would expect a component to last ≈ 30 time points.

So running over the 100 time points we would have expected to need to replace each

component ≈ 3 times.

In this case there are only 16 designs (42) and at each time point we check all

possible designs. For larger problems it would be impractical for check all designs.

Figure 8.1 shows the resulting inspection and maintenance in this example. The

first inspection doesn’t take place until time 25 when component 4 is inspected.

The “real” wall thickness at that time when observed is much higher than expected

and so the predicted wall thickness is adjusted upwards and the estimated corrosion

rate reduced. Due to the correlation in the system this inspection also causes the

other non-inspected component wall thickness predictions to be adjusted upwards.

The frequency of inspections increases as the components get close to the critical

wall thickness. Maintenance of each of the 4 components occurs at times 50 and 55

without the need to inspect them all. Once maintenance has taken place then com-

ponents are again inspected less frequency due to the decreased chance of component

failure.

Over the whole time period 15 inspections take place on the 4 components with

some components inspected more often than others. Due to the lower than expected

corrosion rate the components in reality have a lifespan of ≈ 50 time points.
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Figure 8.1: Inspection and maintenance of a 4 component system using synthetic

data. The blue line shows the “real” component wall thickness at each time point.

The green line shows the predicted wall thickness at any time. The horizontal

magenta line shows the critical wall thickness below which the component must be

replaced. The vertical dashed red line shows the times when inspections took place.

The vertical cyan line shows the times maintenance took place.
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8.7.2 Inspection Design with variance learning for offshore

platform application

We continue the offshore platform example from previous chapters (previously dis-

cussed in sections 1.4.1, 3.5, 4.9, 5.7.1, 5.7.2, 6.4, 7.7 and 7.9.4).

We consider trying to design an inspection for the oil platform example in the

case of analysis of the real inspection data described in section 1.4.1. A system

of four corrosion circuits is modelled, consisting of a total of 64 pipe-work weld

components, data is given in appendix A. We suppose we had just observed this

data and updated the means and variances as discussed in sections 4.9 and 7.7.

We wish to decide how much of the system to inspect when trying to learn about

means and variances as described in section 8.6.

In this example the cost of three different inspection designs are compared;

1. no inspection

2. inspection of half the system (every other component)

3. full inspection

In practice a large number of designs would be compared to try to find the optimal

inspection scheme, this example is merely for illustration.

From section 7.8 the prior mean for M(WX) is 0.12. Figure 8.2 shows the

discretised Γ in the case of full inspection used to generate probabilities to weight

expected loss estimates.

Critical System Components

Let each component have the same cost of replacement and failure:

LR = 1 LF = 100

so that the cost of component failure is 100 times the cost of replacement, repre-

senting vital system components. The cost of setting up an inspection is 0.01 per

component inspected, so for inspection to be worthwhile the increased information

about the system has to outweigh the increased cost.



8.7. Example 146

Figure 8.2: Discretised Γ distribution in the case of full inpsection for distribution

of M(WX)

For this case:

no insp. half insp. full insp.

Number of Components Inspected 0 32 64

Inspection Cost 0 0.32 0.64

Expected Loss (failures) 1.8774 1.598 1.223

Total Expected Loss 1.8774 1.918 1.863

We see that the expected loss from component failures goes down as we inspect more

components since we have more information and less uncertainty. The expected

loss from component failures must then be balanced against the cost of inspecting

the system. In this case a full system inspection is the best, since in this cost of

component failure relative to the cost of inspection is high.

Critical System Components: More Expensive Inspections

Lets consider the same case again but with the cost of inspection doubled to 0.02

per component.

no insp. half insp. full insp.

Number of Components Inspected 0 32 64

Inspection Cost 0 0.64 1.28

Expected Loss (failures) 1.8774 1.598 1.223

Total Expected Loss 1.8774 2.238 2.503
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Here the expected losses from failures are the same but the increased inspection

costs has meant that no inspection is now the best choice.

Non Essential System Components

Lets consider another case where the cost of failure for each component is lower:

LR = 1 LF = 5

so that the cost of component failure is 5 times the cost of replacement. The cost

of setting up an inspection is 0.01 per component inspected. In this case:

no insp. half insp. full insp.

Number of Components Inspected 0 32 64

Inspection Cost 0 0.32 0.64

Expected Loss (failures) 1.042 0.935 0.842

Total Expected Loss 1.042 1.255 1.482

The expected loss from failures is lower than in previous cases since the risk of failure

is lower. This means that with an inpsection cost of 0.01 per component the best

design is no inspection.

Non Essential System Components: Cheaper Inspection

Consider the previous case this time with lower inspection costs of 0.003 per com-

ponent. In this case:

no insp. half insp. full insp.

Number of Components Inspected 0 32 64

Inspection Cost 0 0.096 0.192

Expected Loss (failures) 1.042 0.935 0.842

Total Expected Loss 1.042 1.0310 1.0340

Here with cheaper inspections we find that the best decision is to inspect half the

system.

The expected loss criterion gives a method for comparing many different designs.

The use of a utility based criterion also means than designs can be compared using
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costs on a scale which an inspection planner can understand. The expected loss

can incorporate both design tries to reduce uncertainty by preferentially choosing

designs which improve mean and variance learning.



Chapter 9

Discussions and further study

This thesis has presented an approach to model large multivariate systems using

Bayes linear updating to allow tractable inference. A model for system integrity

was developed and it was shown how to use historical inspection data to update

beliefs about system parameters, including both means and variances.

9.1 Modelling complex industrial systems

In chapter 1 the problem of complex industrial systems was introduced. These

systems have high dimensionality and inspections of such systems are relatively

infrequent and not carried out at regular intervals.

9.1.1 Model

A model was presented in chapter 3 which attempts to separate the characteristics

of system components into to parts.

1. General effects: model average behaviour of system components and pre-

scribes how components are related to each other through a potentially very

large and difficult to specify dependency structure. The dependency allows the

limited information for individual components to be shared around similarly

behaving components.

149
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2. Local effects: models the local surface deviations from the average compo-

nent behaviour described by the general effects model. The degree of devia-

tions depend on conditions local to each component.

Other work in this area usually treats components as independent entities using

more complex modelling based around the physical process of corrosion. Often with

the exception of some extremely critical system components, there is insufficient

detailed inspection data to warrant this level of modelling detail.

The approach taken in the thesis was to produce a model which was flexible

enough to describe system process but simple enough to allow fast updating of beliefs

about the whole system. The advantage of this approach is in that information from

short time series are combined and shared over the whole system. This gives better

inference and the ability to learn about parts of the system which haven’t ever been

inspected.

9.1.2 Corrosion initiation

For the application within a corrosion setting, components will have measures in

place to mitigate corrosion. Special coatings on components mean that in many

cases corrosion would not begin from the moment a component is installed as would

be predicted from the model. Corrosion engineers consider two distinct types of

inspection;

1. Compliance sampling: to check whether corrosion was initiated, or whether

there is measurable levels of corrosion present within a component.

2. Estimation sampling: once corrosion has begun this type of inspection tries to

estimate corrosion rates and thus remaining life.

The modelling we have presented only really models the latter. One simple

addition to the model would be to have a Poisson initiation time for each component

before which the corrosion rate is zero. This minor alteration to the model would

retain the simplicity needed to still generate fast realisations.
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9.2 Updating model parameters

In chapter 4, an approach updating the current system state, was explored using

Bayes Linear Analysis.

9.2.1 Full Bayesian

A full Bayesian approach to this type of problem would require full prior distributions

specified in high dimensional space. Computation of posterior predictions for the

system state need calculation of difficult integrals or alternatively a simulation based

MCMC scheme which could take a long time to converge. In this type of modelling,

simplifying assumptions in distributional forms are made to reduce computation

complexity, even if the modeller thinks these assumptions are unrealistic. Add to

this that we wish to evaluate potentially hundreds/thousands of inspection design

choices and the full Bayesian approach becomes at best unappealing and very quickly

intractable for real problems.

9.2.2 Bayes linear

Bayes linear analysis is different to a full Bayesian approach in that only partial

priors need to be specified. Inference is carried out by computing adjusted expecta-

tions which are essentially systems of linear equations. This means that for complex

systems, the prior specification and model inference remain tractable. Bayes Linear

adjustment needs means, variances and covariances to be specified, to be able to

adjust beliefs. For some quantities these too, can be difficult to specify, especially

how dependencies evolve in time.

9.2.3 Simulation

To estimate the prior quantities needed for inference, a simulation approach is taken.

The model used is simple enough to allow fast realisations to be generated for

the whole system and its evolution in time. Once a set of realisations has been

generated, simulation output can be used to calculate simple empirical estimates for

any means, variances and covariances which are needed to do inference. If we do
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enough simulations these empirical estimates encapsulate our prior beliefs and the

model form. A MATLAB module based on this modelling, simulation and Bayes

Linear updating approach has been developed for use in Shell’s inspection software.

9.2.4 Prior specification

To begin generating model simulations some starting parameters still need to be

specified. The most difficult of these starting parameters are the variances and

covariance which control model evolution and dependencies. An approach to spec-

ifying correlation structures using relative proximity of components was used. The

assumption being that the closer components are spatially, the more likely they are

to exhibit similar characteristics. In reality, there is a more complex dependency

structure; which would be very difficult to quantify. There is insufficient data to

try to directly estimate this dependency, however we have learnt about its general

characteristics.

9.3 Updating variance parameters

In chapters 5, 6 and 7 we explored methods for trying to learn about the variances

within the model.

9.3.1 Bayes linear variance estimation

Second order exchangeability of observations in time and squared observations across

components, was used to give a method of learning about the “mean” variability

across several components at a time. To have any kind of estimate of variability

a time series of at least 3 observations per component are required. Linear com-

binations of observations are used to remove system effects and give expressions

containing only model residuals. Bayes linear adjusted expectation of the “mean”

variance terms can then be used to update beliefs about all the variances within

the model. These linear combinations mean that we are effectively learning about

sums of several model variances at once. Confounding between model variances
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make it difficult to disentangle their effects with the limited data available. As a

consequence, ratios between model variances sometimes need to be fixed.

The assumptions of second order exchangeability greatly simplify modelling and

could be extended to deal with even larger systems. In the corrosion context, we

could think of exchangeable components, exchangeable corrosion circuits or even

exchangeable oil platforms within the same model.

9.3.2 Mahalanobis variance learning

Some of the model variances are not possible to learn about directly using a com-

bination of Bayes linear variance learning and exchangeability. Instead we adopt

a method similar to profile likelihood of parameter estimation, using a candidate

set of parameters and assess goodness of fit. A distance criterion is needed which

contains information on the variance/covariance structure; a simple mean square

error is insufficient. We use the Mahalanobis distance since this can describe the fit

even in the situation of dependencies. The downside of a Mahalanobis distance is

the lack of an estimate of variance to give an idea of model uncertainty. We can get

an estimate in the case of a multivariate normal approximation. However, this is

unlikely to hold in practice for the complex systems under consideration. Alterna-

tively, synthetic data sets generated using updated model parameters can be used

to explore model reliability.

9.3.3 Correlation updating

In section 7.9 we explored ways of extending variance estimation to learn about

correlation. A cross validation style method was used, separating data into disjoint

sets of separate components. In this way information can only be shared is through

the correlation structure. Good model predictions therefore require a good under-

standing of the correlation structure. Given enough data this method would give

an approach capable of learning about full covariance matrices. In practice using

real data it was found found that there is insufficient information to reliably update

correlation structures.
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9.4 Design of inspections

9.4.1 Expected loss

Given methodology for modelling system integrity, and incorporating historical data,

forecasts can be made. Simulations of the model can give predictions of current

and future system status with associated uncertainties. Forecasts are inherently

uncertain and can only give a guide. Inspections of the system are needed to give

real measurements. The question arises; with limited time and money where are the

optimal locations to inspect?

The locations we wish to observe are;

1. Components which have a high probability of failure. These are most likely to

require maintenance.

2. Places about which we have large uncertainty. These could be components

which we haven’t observed for a long time, or which have weak dependency.

3. Places which improve our variance learning. The previous step would sug-

gest we might want to examine components we haven’t seen for a long time.

Whereas for variance learning we might prefer to observe the same component

many times to build up more information on its variability.

To try to address this question a utility criterion was used to balance the cost

of information from inspection against the benefit from reduced uncertainty and

chance of failures. Locations with high uncertainty or high risk of failure are to be

prioritised. We can quickly evaluate the expected loss of a given inspection design.

We can then search over potential designs and select the one which has the lowest

expected loss. Using Bayes linear analysis with a model from which can get inference

quickly allows us to evaluate a large number of designs.

The expected loss design approach could be extended in several ways. Inspec-

tions are not a one time thing and inspection planning should reflect that. Allowing

components to be inspected at different times would allow this feature to be incorpo-

rated. It would seem likely that tuning upfront inspection costs would become more

important to avoid inspecting small numbers of components at every time point.
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There is an assumption of normality used making computation of the integrals

in the expected loss fast. These assumptions are unappealing in the case of a min-

imum observation case since these are likely to be skewed. It is possible these

assumptions could be relaxed without making the calculations intractable. Simula-

tions are already needed to compute the adjusted expectations. These simulations

contain information on the distribution of everything within the model. It seems

likely that there is some way of using this information without the need to do further

simulation.



Appendix A

Historical Inspection Data

Historical data for component minimum wall thickness, obtained during inspection

campaigns using non-intrusive ultrasonic measurements for the period 1998 - 2005.

Corrosion Circuit Component Inspection Date Observation

A 1 14/08/2001 6.35

A 1 30/08/2003 6.35

A 2 13/12/2000 6.35

A 2 14/08/2001 6.35

A 2 30/08/2003 6.35

A 3 01/06/1998 15

A 3 10/08/1999 15

A 3 13/12/2000 15

A 3 01/12/2001 18

A 3 06/12/2001 18

A 3 31/08/2003 15

A 4 10/08/1999 18.24

A 4 31/08/2003 17

A 5 13/12/2000 6.35

A 5 18/05/2003 6.35

continued on next page
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continued from previous page

Corrosion Circuit Component Inspection Date Observation

A 6 13/12/2000 6.35

A 6 14/08/2001 6.35

A 6 30/08/2003 6.35

A 7 13/12/2000 6.35

A 7 14/08/2001 6.35

A 7 30/08/2003 6.35

A 8 13/12/2000 4.78

A 8 14/08/2001 4.78

A 8 30/08/2003 6.35

A 9 10/08/1999 13.49

A 9 31/08/2003 9.5

A 9 07/07/2004 9.5

A 10 10/08/1999 13.49

A 10 12/08/2001 13.49

A 10 31/08/2003 9.5

A 10 07/07/2004 9

A 11 10/08/1999 7.1

A 11 18/05/2003 7.1

A 12 10/08/1999 7.1

A 12 18/05/2003 7.1

A 13 10/08/1999 5.56

A 13 18/05/2003 5.56

A 14 10/08/1999 5.56

A 14 12/08/2001 5.56

A 14 18/05/2003 5.56

A 15 10/08/1999 13.49

A 15 31/08/2003 9.5

continued on next page
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continued from previous page

Corrosion Circuit Component Inspection Date Observation

A 15 07/07/2004 9.5

A 16 10/08/1999 13.49

A 16 12/08/2001 13.49

A 16 31/08/2003 9

A 16 07/07/2004 9

A 17 10/08/1999 5.56

A 17 30/08/2003 3.7

A 17 07/07/2004 3.9

A 18 10/08/1999 5.56

A 18 12/08/2001 5.56

A 18 30/08/2003 6

A 19 10/08/1999 5.56

A 19 12/08/2001 5.56

A 19 30/08/2003 6

B 20 04/12/2000 7.14

B 20 01/12/2001 7.14

B 20 03/09/2003 8.1

B 21 04/12/2000 7.14

B 21 01/12/2001 7.14

B 21 03/09/2003 7.1

B 22 04/12/2000 6

B 22 01/12/2001 6

B 22 18/05/2003 5.35

B 23 04/12/2000 6

B 23 01/12/2001 6

B 23 18/05/2003 5.35

B 24 01/12/2001 4.78

continued on next page
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Corrosion Circuit Component Inspection Date Observation

B 25 04/12/2000 4.78

B 25 15/08/2001 4.78

B 25 03/09/2003 5

B 26 03/09/2003 5

B 27 15/08/2001 8

B 27 16/08/2001 8

B 27 16/05/2003 7

B 27 30/08/2003 6

B 28 15/08/2001 12

B 28 16/08/2001 12

B 28 16/05/2003 11

B 28 30/08/2003 9.5

B 29 18/05/2003 1.91

B 30 18/05/2003 3.41

B 31 02/09/2003 20

B 32 02/09/2003 20

B 33 02/09/2003 20

B 34 02/09/2003 21

C 35 10/12/1998 17

C 35 12/08/2001 16

C 35 18/08/2001 16

C 35 14/05/2003 16

C 36 10/12/1998 6.35

C 36 09/12/2000 6

C 36 18/05/2003 5.35

C 37 10/12/1998 6.35

C 37 09/12/2000 6

continued on next page
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continued from previous page

Corrosion Circuit Component Inspection Date Observation

C 37 18/05/2003 5.35

C 37 04/09/2003 6.35

C 38 10/12/1998 13

C 38 07/05/2000 15

C 38 09/12/2000 12

C 38 12/08/2001 13.5

C 38 18/08/2001 13.5

C 38 14/05/2003 13

C 38 03/09/2003 8

C 38 08/04/2004 8

C 38 20/05/2004 8

C 39 10/12/1998 6.35

C 39 18/05/2003 3.85

C 39 04/09/2003 5.8

C 40 10/12/1998 6.35

C 40 09/12/2000 6.35

C 40 04/09/2003 6.35

C 41 10/12/1998 6.35

C 41 09/12/2000 6.35

C 41 18/05/2003 4.85

C 41 04/09/2003 4.5

C 41 08/04/2004 5.5

C 42 10/12/1998 6.35

C 42 09/12/2000 6.35

C 42 18/05/2003 6.35

C 43 10/12/1998 12

C 43 09/12/2000 9.5

continued on next page



Chapter A. Historical Inspection Data 161
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Corrosion Circuit Component Inspection Date Observation

C 43 12/08/2001 11

C 43 18/08/2001 11

C 43 14/05/2003 9.5

C 43 03/09/2003 8

C 43 08/04/2004 8

C 44 10/12/1998 13.49

C 44 03/09/2003 10.5

C 44 08/04/2004 10.5

C 45 10/12/1998 5

C 45 09/12/2000 5

C 45 12/08/2001 7.1

C 45 18/05/2003 7.1

C 46 10/12/1998 4

C 46 09/12/2000 5.56

C 46 18/05/2003 3.56

C 47 10/12/1998 5

C 47 09/12/2000 5.56

C 47 18/05/2003 5.56

C 48 10/12/1998 13.49

C 48 03/09/2003 10

C 48 08/04/2004 10.5

C 49 10/12/1998 13.49

C 49 03/09/2003 10.5

C 49 08/04/2004 10

C 50 10/12/1998 5.56

C 50 18/05/2003 3.56

C 50 04/09/2003 3.9

continued on next page
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Corrosion Circuit Component Inspection Date Observation

C 51 10/12/1998 5.56

C 51 18/05/2003 5.56

D 52 12/06/1998 6.35

D 52 12/12/2000 5.35

D 52 18/05/2003 5.35

D 53 12/06/1998 6.35

D 53 12/12/2000 5.35

D 53 18/05/2003 5.35

D 53 31/08/2003 6.35

D 54 12/06/1998 4.78

D 54 12/12/2000 4.78

D 54 18/05/2003 4.78

D 55 12/06/1998 8.74

D 55 12/12/2000 8.74

D 55 18/05/2003 8.74

D 56 17/05/2003 12

D 57 12/06/1998 7.1

D 57 12/12/2000 7.1

D 57 31/08/2003 6.35

D 58 12/12/2000 13

D 58 17/05/2003 13

D 59 18/05/2003 5.56

D 60 12/12/2000 5.56

D 60 18/05/2003 5.56

D 61 17/05/2003 14

D 62 12/12/2000 7.14

D 63 18/05/2003 3.56

continued on next page
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continued from previous page

Corrosion Circuit Component Inspection Date Observation

D 63 31/08/2003 2.6

D 63 08/04/2004 2.8

D 64 12/12/2000 5

D 64 18/05/2003 5.56

Table A.1: Corrosion Data, (This table is split across pages)



Appendix B

Bayes Linear Variance learning for

corrosion model

B.1 Cov[M(WX), D]

Cov[M(WX), D] = (Cov[M(WX), D1],Cov[M(WX), D2], . . . ,Cov[M(WX), Dn])

and from equation 6.2.4,

Dct = (kiY
(li)
c − liY (ki)

c )2

Using equations in section 5.5.2

(kiY
(li)
c − liY (ki)

c )2 =
(

(ki − li) 0
)
ξc(ti,ti−ki) +

(
ki ki(ki − li)

)
ξc(ti−ki,ti−li)

+
(
kiM

(li)
c − liM (ki)

c

)2

which means

Cov
[
M(WX), (kiY

(li)
c − liY (ki)

c )2
]

=

= Cov

[
M(WX),

((
(ki − li) 0

)
ξc(ti,ti−ki)

)2
]

+ Cov

[
M(WX),

((
ki ki(ki − li)

)
ξc(ti−ki,ti−li)

)2
]

we will consider

A.

Cov

[
M(WX),

((
(ki − li) 0

)
ξc(ti,ti−ki)

)2
]
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B.

Cov

[
M(WX),

((
ki ki(ki − li)

)
ξc(ti−ki,ti−li)

)2
]

B.1.1 A

Cov

[
M(WX),

((
(ki − li) 0

)
ξc(ti,ti−ki)

)2
]

= Cov

M(WX),

ki−1∑
j=0

(
(ki − li) 0

) 1 j

0 1

 εX + εα

εα


cti−j

2
= Cov

M(WX),

ki−1∑
j=0

(
(ki − li) j(ki − li)

) εX + εα

εα


cti−j

2

= Cov

M(WX),

ki−1∑
j=0

ki−1∑
j′=0

(ki − li)2εXcti−jεXcti−j′

+(j′ + 1)(ki − li)2εXcti−jεαcti−j′+

+(j′ + 1)(ki − li)2εXcti−jεαcti−j′+

+(j′ + 1)(j + 1)(ki − li)2εαcti−jεαcti−j′


= Cov

[
M(WX),

ki−1∑
j=0

(ki − li)2ε2Xcti−j

]

= (ki − li)2

ki−1∑
j=0

Cov
[
M(WX), ε2Xcti−j

]
= (ki − li)2

ki−1∑
j=0

Cov [M(WX),M(WX) +Rc(WX) +Rt(VXc)]

= (ki − li)2

ki−1∑
j=0

Var [M(WX)]

= ki(ki − li)2ΞWX
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B.1.2 B

Cov

[
M(WX),

((
ki ki(ki − li)

)
ξc(ti−ki,ti−li)

)2
]

= Cov [M(WX),li−ki−1∑
j=0

(
ki ki(ki − li)

) 1 j

0 1

 εX + εα

εα


c(ti−ki−j)


2

= Cov [M(WX),li−ki−1∑
j=0

(
ki jki + ki(ki − li)

) εX + εα

εα


c(ti−ki−j)


2

= Cov

M(WX),

(
li−ki−1∑
j=0

kiεXcti−ki−j + ki(j + 1 + ki − li)εαcti−ki−j

)2


= Cov [M(WX),

li−ki−1∑
j=0

li−ki−1∑
j′=0

(
kiεXcti−ki−j + ki(j + 1 + ki − li)εαc(ti−ki−j)

)
×
(
kiεXcti−ki−j′ + ki(j

′ + 1 + ki − li)εαc(ti−ki−j′)
)


= Cov

[
M(WX), k2

i

li−ki−1∑
j=0

ε2Xc(ti−ki−j)

]
= (li − ki)k2

i ΞWX

Then

Cov
[
M(WX), (kiY

(li)
c − liY (ki)

c )2
]

= A + B.

= ki(ki − li)2ΞWX
+ (li − ki)k2

i ΞWX

= kili(li − ki)ΞWX
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Table of Notation

Symbol Description Format Defined

A r.q. r.q. 5.1

c component index scalar in-

dex

1.4

C numbers of components in the model scalar 3.1.2

Cir corrosion circuit scalar 4.5.3

DisY (ΘT ) adjustment discrepancy of quantity Y scalar 4.7.5

DisY (ΘT ) adjustment discrepancy ratio scalar 4.7.5

Dis(Y ) discrepancy of quantity Y scalar 4.7.2

Dr(Y ) discrepancy ratio Y scalar 4.7.2

d inspection design vector 8.2

D data vector vector 5.1.3

Dct squared linear combination of observations

used in variance learning

scalar 5.3.4

Dc vector in time of squared linear combination

of observations used in variance learning

vector 5.3.4

D̄T average of differences of observations D scalar 5.2

D̄
(2)
n average of squared observations D scalar 5.1.3

f non linear observation function over loca-

tions

functional 3.3.2

continued on next page
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continued from previous page

Symbol Description Format Defined

F outcome component failure outcome 8.1

F̄ outcome component survival outcome 8.1

Fc c’th row of F the dynamic regression matrix vector 3.3.2

F dynamic regression matrix matrix 3.1.1

F ∗c c’th row of F ∗ the dynamic regression matrix vector 3.3.2

F ∗ dynamic regression matrix (outside observa-

tion function)

matrix 3.3.2

g non linear function describing the local sur-

face

functional 3.2.1

G system state evolution matrix matrix 3.1.1

ki time between observations ti and t(i− 1) scalar 5.5.2

li time between observations ti and t(i− 2) scalar 5.5.2

I1 Integral used in calculation of expected loss integral 8.2

I2 Integral used in calculation of expected loss integral 8.2

l location index on the surface of a component scalar in-

dex

3

Lc number of locations observed on a compo-

nent c

scalar 3

LF Cost associated with component failure scalar 8.1

LIC Cost of whole inspection campaign scalar 8.1

LR Cost associated with component replacement scalar 8.1

LSUC Cost of setting up an inspection campaign scalar 8.1

Mct minima of local effects model scalar 6.2.1

M
(i)
c ith time step differences of minima M scalar 6.2.1

M(X) “population mean” of X in the representa-

tion theorem

r.q. 2.3.2

MΘ “population mean” for Θ r.q. 4.5.1

n parameter index scalar in-

dex

3.1.1

continued on next page
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continued from previous page

Symbol Description Format Defined

nd number of inspected components scalar 8.1

N number of parameters in the model scalar 3.1.1

o particular outcome outcome 8.1

O Outcome space outcome 8.1

p parameter index subset of full parameter

space

scalar in-

dex

3.1.3

P size of subset of parameter space P ≤ N scalar 3.1.3

q(Yd) probability of failure scalar 8.3

rlt vector of local effects over components at lo-

cation l, at time t,

vector 3.3.1

rlct local effects at location l, on component c, at

time t

scalar 3.2.1

R decision to replace component decision 8.1

R̄ decision not to replace component decision 8.1

Ri(X) “population residual” of X vector in repre-

sentation theorem

r.q. 2.3.2

RΘct “population residual” for Θ r.q. 4.5.1

S adjacency/distance matrix matrix 4.5.2

Scc′ distance between components c and c′ scalar 4.5.2

t time index scalar in-

dex

1.4.1

ti time of ith observation scalar 5.5.2

T number of time points in model scalar 4.1

Vαct the squared corrosion rate evolution residuals

ε2αct for component c, at time t

r.q. 3.5.1

Vnt the squared evolution residuals ε2Θnt for pa-

rameter n, at time t

r.q. 3.1.3

VXct the squared wall thickness evolution residuals

ε2Xct for component c, at time t

r.q. 3.5.1

continued on next page
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continued from previous page

Symbol Description Format Defined

WC Critical wall thickness scalar 8.3

Wαc M(Vαc) for component c, at time t r.q. 3.5.1

WXc M(VXc) for component c, at time t r.q. 3.5.1

Wp M(Vp) for parameter p, at time t r.q. 3.1.3

Xct wall thickness of component c at time t scalar 3.5.1

Xt wall thickness vector over components at

time t

vector 3.5.1

Xct wall thickness of component c at time t scalar 5.3

Yct observation on component c at time t scalar 3.3.2

Y
(i)
ct ith time step differences of observations Y scalar 5.3.3

Y vector of all observations for full inspections vector 3.3.2

Zt vector of true system state over components

at time t

vector 3.1.1

Zlt vector over components of true system state

at time t and location l

vector 3.3.1

Zlct true system state at location l, component c,

and time t

scalar 3.3.2

αct corrosion rate of component c at time t scalar 3.5.1

αt corrosion rate vector over components at

time t

vector 3.5.1

γ covariance parameter scalar 7.3

γΘ Cov(εΘct, εΘc′t′) in exchangeability represen-

tation

scalar 4.5.1

δCirCir′ 1 if same circuit; 0 if different circuits scalar 4.5.3

δ∗ optimal decision decision 8.2

∆ space of decisions decision 8.2

εαct corrosion rate evolution residual over param-

eters on component cat time t

scalar 3.5.1

continued on next page
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continued from previous page

Symbol Description Format Defined

εrlct local effects residual at location l, on compo-

nent c, at time t

scalar 3.2.1

εΘt system state evolution residual vector over

parameters at time t

vector 3.1.1

εΘnt system state evolution residual for parameter

n, at time t

scalar 3.1.3

εXct wall thickness evolution residual over param-

eters on component c at time t

scalar 3.5.1

εY lct observation error residual at location l, com-

ponent, c at time t

scalar 3.3.2

η ratio of cost of replace to cost of failure scalar 8.2

Θt system state vector over parameters at time

t

vector 3.1.1

Θnt system state for parameter n at time t scalar 3.1.1

Θct system state for component c at time t scalar 3.1.1

µA expectation of r.q. A scalar 5.1

ν exponential decay term in adjacency matrix scalar 4.5.2

ξc(t,t−k) generalised residual for component c within

generalised DLM

vector 5.5.1

ΞVXc 4th order quantity Var(M(VXc)) scalar 5.3.2

ΞVαc 4th order quantity Var(M(Vαc)) scalar 5.3.2

ΞVY c 4th order quantity Var(M(VY c)) scalar 5.3.2

ΞWα 4th order quantity Cov(Wαc,Wαc′) where c 6=

c′

scalar 3.5.1

ΞWX
4th order quantity Cov(WXc,WXc′) where

c 6= c′

scalar 3.5.1

ΞW 4th order quantity Cov(Wp,Wp′) where p 6=

p′

scalar 3.1.3

continued on next page
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Symbol Description Format Defined

ρ correlation parameter scalar 7.3

ρCir circuit correlation scalar 4.5.3

ρ0 underlying universal correlation scalar 4.5.3

Σαc variance for α of component c scalar 3.5.1

Σαnn′ Cov[εαct, εαct] with c 6= c′ scalar 3.5.1

ΣA variance of r.q. A scalar 5.1

Σr local effects variance parameter Var(εrlct) matrix 3.2.2

ΣΘ variance matrix for Θ parameterised by σ2
Θ

and γΘ

matrix 4.5.1

σΘn variance for εΘnt of system state parameter n scalar 4.5.2

ΣΘnn′ covariance for Θ between system state pa-

rameter n and n′

scalar 4.5.2

σ2
Θ Var(εΘct) in exchangeability representation scalar 4.5.1

ΣWα expected value, E(Wαc) scalar 3.5.1

ΣWX
expected value, E(WXc) scalar 3.5.1

ΣW expected value, E(Wp) scalar 3.1.3

ΣΘn Var(εΘnt) = ΣΘn scalar 3.1.3

ΣΘnn′ Cov[εΘnt, εΘn′t] with n 6= n′ scalar 3.1.3

ΣΘ N×N system state evolution variance matrix matrix 3.1.1

ΣX variance of wall thickness in DLM scalar 5.2

ΣXc Var(εXct) = ΣXc wall thickness variance scalar 3.5.1

ΣXcc′ Cov[εXct, εXc′t] with c 6= c′ wall thickness co-

variance

scalar 3.5.1

ΣY observation variance matrix matrix 3.3.2

ΣY c Var[εXct] observation error variance scalar 5.3.1

ΣY cc′ Cov[εY ct, εY c′t] with c 6= c′ scalar 5.3.1

ΦV 4th order quantity of Var(Vi) scalar 5.1

ΦVn 4th order quantity of squared evolution resid-

uals Var(Vnt)

scalar 3.1.3

continued on next page
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continued from previous page

Symbol Description Format Defined

ΦVXc 4th order quantity Var(VXc) scalar 5.3.2

ΦVαc 4th order quantity Var(Vαc) scalar 5.3.2

ΦVY c 4th order quantity Var(VY c) scalar 5.3.2

ΦWα 4th order quantity of Var(Wαc) scalar 3.5.1

ΦWX
4th order quantity of Var(WXc) scalar 3.5.1

ΦW 4th order quantity of Var(Wp) scalar 3.1.3

† inverse if invertible else generalised inverse function 2.2.1

Table C.1: Table of Notation, (This table is split across pages)
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