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Abstract

This thesis presents the first realisation of a new type of hybrid quantum
device based on spintronic technology. We demonstrate an interaction be-
tween the magnetic fringing fields produced by domain walls within planar
permalloy nanowires and a cloud of ultracold 87Rb atoms. This interaction
is manifested through the realisation of a magnetic atom mirror produced by
a two-dimensional domain wall array. The interaction is tuned through the
reconfiguration of the micromagnetic structure.

Analytic modelling of the fringing fields is developed and shows good
agreement with calculations based on micromagnetically simulated struc-
tures. The accurate and rapid calculation of the fringing fields permits simu-
lation of the resulting atom dynamics, which agrees well with data. In turn,
we use the atom dynamics as a probe of the micromagnetic reconfiguration
processes that take place and observe a collective behaviour which is both
reliably reproducible and in agreement with alternative, conventional mag-
netometry. We also observe evidence of stochastic behaviour, characteristic
of superparamagnetic systems.

We consider the development of a more advanced spintronics-based atom
chip which will allow for the creation of extremely tight mobile atom traps.
We consider the problems associated with ensuring that the trapping poten-
tial is adiabatic, sufficiently deep, and technically feasible. In particular we
examine techniques to circumvent losses due to Majorana spin-flip transi-
tions. As a result of this study we propose a novel scheme for creating time-
averaged potentials via the piezoelectric actuation of magnetic field sources.
We show that this technique presents significant fundamental and technical
advantages over conventional time-averaging schemes.
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Chapter 1

Introduction

1.1 Hybrid quantum systems

The field of atom optics has experienced enormous growth that has produced

a vast array of experiments which have transformed the typically tumultuous

quantum world into a tractable and fecund environment for research [1, 2, 3].

The continuing development of microfabrication techniques such as lithogra-

phy [4] has filliped a shift within atom optics towards miniaturisation which

has resulted in the birth of a new type of ‘lab on a chip’ for ultracold quan-

tum particles [5]. This has permitted the production of a wide variety of

arenas for study which boast an unrivalled combination of freedom of design,

robustness and compactness, allowing very precise control over the external

and internal degrees of freedom of quantum particles. Whilst the advent of

ultracold physics paved the way towards the paradigm of an isolated quan-

tum system, the development of hybrid devices has allowed the interfacing

of quantum particles with solid-state architectures through a range of novel

methods, giving rise to many new regimes of study and applications.

Through the use of such hybrid devices we are able to not only study the

building blocks of quantum matter, but also to use quantum objects as tools

with which to study other systems. The use of ultracold atoms as a probe

has been demonstrated in a number of applications, for example through the

imaging of nanoscale structures [6] or as a precise and sensitive measure of

magnetic fields [7]. There have also been numerous demonstrations of the

coupling of quantum particles to macroscopic objects [8, 9, 10, 11, 12].

1
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Perhaps the most exciting aspect of the use of hybrid devices is that they

are often inherently scalable, allowing for the simultaneous control and ma-

nipulation of large numbers of quantum objects. The notion of a quantum

computer remains the quintessential embodiment of such quantum control

and has fuelled many of the developments of hybrid interfaces which com-

bine microscopic particles with macroscopic objects. Such devices also allow

the user to combine the varying benefits of different physical objects. For

example, the creation of an array of atom-photon junctions has been realised

[13], combining the fundamental mobility of photons with the strong inter-

actions of atoms within a scalable architecture that bears the hallmarks of a

quantum information processing scheme [14].

We can roughly divide hybrid quantum devices according to the type

of field which is employed. Electric fields have found greatest utility in the

manipulation of ions, leading to exceptionally strong confinement and the in-

dividual shuttling of single particles [15]. This exquisite control has provided

some of the best demonstrations of quantum gates to date [16, 17].

The use of optical fields has always played an extremely important role

within atom optics, ever since the advent of laser cooling. Optical dipole

traps have helped to realise routes to achieving Bose-Einstein condensation

[18] and the extension to optical lattices has permitted the development of

scalable systems of ultracold atoms through which the optical confinement,

detection and manipulation of single atoms has been achieved [19].

One of the most ubiquitous developments within atom optics is the

magneto-optical trap. A magnetic quadrupole field is used to provide a spa-

tially dependent dissipative optical force to cool and confine atoms [20, 21]

— a technique which has been adopted by thousands of researchers. The

magnetic quadrupole is also used on its own to trap atoms in a conservative

potential. Magnetic trapping was the culmination of years of experiments

that utilise magnetic fields to manipulate microscopic particles [22] that be-

gan with the experiments of Stern and Gerlach in 1922 [23]. Their epony-

mous force arises from applying a spatially varying magnetic field, ~B, to a

permanent magnetic dipole, ~µ:

~FSG = ~∇
(

−~µ. ~B
)

. (1.1)

The Stern-Gerlach force underpins all magnetic atom optics, and in this work
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we shall focus on magnetic devices throughout.

Magnetic atom optics can be roughly divided into two types of device:

those which are based on current-carrying wires, and those which are based

on permanent magnetic material. Some of the first realisations of magnetic

atom optics were based on current-carrying wires. Their flexibility allows for

easy production of a range of magnetic field geometries, as prescribed by the

Biot-Savart law:

~B(~r) =
µ0I

4π

∫

d~l × ~r

|~r|3
, (1.2)

which describes the field at a position r produced by a current I flowing

along a path made of elements dl. The guiding of thermal atoms was first

demonstrated using current-carrying wires [24] and has since been replicated

with ultracold atoms [25]. The first magnetic traps were also realised using

current-carrying wires in the form of the aforementioned quadrupole trap

[26] — the simplest possible geometry that will provide 3D confinement.

Since then, similar technology has been used to create a variety of traps,

including Z- or U-traps which are often incorporated into atom chips to act

as stepping-stones to more complicated experiments [27, 28, 29].

An advantage of using current-carrying wires to trap atoms is that they

can be switched on and off, allowing for a degree of dynamic control. The

same technology has also allowed for the creation of more complex trapping

geometries via the technique of RF-dressing, e.g. [30]. However, there is

also a clear disadvantage when using current-carrying wires in that they

are inherently noisy objects [31]. Imperfections in the fabrication of the

wires can result in corrugated potentials which have been observed to cause

fragmentation of atomic clouds [7, 32, 33]. Technical noise within the applied

currents leads to heating via modulation of the potential and can induce spin-

flip losses [34, 35]. The electrical conductance of wires also results in Johnson

noise that can lead to significant losses which may jeopardise the efficacy of

traps [36].

Another disadvantage of using current-carrying wires is that there is an

inherent limit to the feature size due to considerations of the microfabrication

procedures and the fact that one must be able to dissipate the power produced

by the wires in an effective manner. Both of these factors make producing

high field gradients with current-carrying wires challenging.
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Until the advent of microfabrication techniques, current-carrying wires

generally afforded the user a greater freedom of design due to their inherent

flexibility. However, with the correct tools, the use of permanent magnetic

material began to garner favour. Tailoring of magnetic fields by the micro-

scopic design of the bulk magnetisation, ~M , became possible. The resulting

fields are provided by [37]

~B(~r) =
µ0

~∇r

4π

∫ ~∇r′ . ~M(~r ′)

|~r − ~r ′| d3~r ′. (1.3)

The first demonstrations of patterned magnetic material controlling atomic

motion were realised in magnetic mirrors [38, 39]. Since then permanent

magnetic material has been used to create a variety of atom traps.

When using permanent magnetic material there are a number of bene-

fits, directly related to the points made above. Because there is no current

flowing there are no issues with power dissipation when using permanent

magnetic material. Together with the inherently small characteristic length-

scales afforded by microfabrication techniques this allows for the creation

of very large magnetic field gradients, potentially up to the order of around

106 T/m [40]. In addition, the fact that no electrical connections are required

provides greater flexibility of design and practicability; some topologies are

in fact only possible when using permanent magnetic material [41]. Another

advantage of not using electric currents is that a number of the sources of

noise previously discussed are simply not present. The use of material which

has minimal electrical conductance can in fact extend the lifetimes of atomic

traps from the order of seconds to being vacuum limited [42]. One caveat

to this is that one must still take care to avoid inhomogeneities within the

material which, in a manner similar to current-carrying wires, can induce

fragmentation of an atomic cloud [43].

There is one significant disadvantage associated with the use of permanent

magnetic material in atom chip experiments, which is that the fields created

are not dynamic: they can not be tuned or switched. Whilst there have been

some realisations of dynamic atom traps using permanent magnetic mate-

rial [44], these rely on the application of additional external magnetic fields

and the induced motion of the trapping minima is always significantly con-

strained using such techniques [45]. The characteristically small feature size
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and freedom of design afforded by microfabrication techniques is not reflected

in the motion that is possible. There is, however, a fluorishing technology

that utilises lithographically deposited permanent magnetic material which

does have inherent mobility, and it is this which we discuss in the following

section.

1.2 Nanowires and spintronics

Whilst lithographic techniques have fuelled the developing trend of atom chip

experiments, the same technology has long been the mainstay of many other

burgeoning areas of research. Perhaps one of the most exciting and broad of

these is the field of spintronics. Whilst ultracold physics exploits and inves-

tigates the atom, the particle of interest for spintronics is the electron. It is

the electron that is responsible for the physics of both solid-state magnetism

and electric current. Spintronics combines these phenomena in a technology

exhibiting properties associated with both. This typically manifests itself as

spin waves, i.e. the propagation of spin, exhibited as a magnetic moment,

and is normally characterised in the form of a magnetic domain.

Magnetic domains are macroscopic regions where the magnetisation direc-

tion of a material is uniform, and they are present in many different magnetic

materials. Perhaps the most popular material for studying magnetic domains

is permalloy, as it has a number of physical characteristics which lend itself

to the creation, positioning and control of domain walls.

Permalloy is a ferromagnetic material with the chemical formula Ni80Fe20.

One of the most important physical characteristics of permalloy is that it is

a highly magnetic material, having a saturation magnetisation of around

8.6 × 105 A/m, comparable to iron [46]. This makes it an ideal material for

studying spintronic behaviour and phenomena associated with magnetisation

in general. It also means that divergences in the magnetisation will result in

large magnetic fields.

Permalloy is also an extremely soft magnetic material, having a magnetic

permeability of the order of 102–103 µ0 [47, 48] (for iron this is around 200
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[49]), and a coercivity of the order of 1 Oe1 [50]. This means that reconfig-

uration of the magnetisation structure of permalloy requires relatively low

applied fields. This property also lends itself to the study of spintronics as it

facilitates the creation and manipulation of magnetic domains.

Domains of different orientations are separated by domain walls. The

orientation of domains is governed by anisotropies in the magnetic mate-

rial, either in the crystal structure, or the macroscopic shape. For the case

of permalloy, there is a negligible magnetocrystalline anisotropy, meaning

there is no preferred axis for the magnetisation according to the microscopic

structure. This is characterised by the energy density associated with mag-

netisation aligned along a particular crystal axis and is quantified by the

parameter K1. The closer this is to zero, the more isotropic the material.

Permalloy has a vanishingly small (in some cases < 10 J/m3) value of K1

[51, 52]. By comparison, iron has a value of K1 of around 5 × 104 J/m3

[53]. Thus the magnetic structure of permalloy is governed almost entirely

by macroscopic anisotropies. When working with nanowires, objects with

obvious inherent shape anisotropy, the domains which they host naturally

align with the long axis of the wire; this is the energetically favoured mag-

netisation configuration. There is of course a degeneracy as there are two

possible directions for domains within such nanowires. Thus, the domain

walls that form are always between domains of opposite orientation. We

label these domain walls as being either ‘head-to-head’, where the surround-

ing magnetisation points towards the domain wall, or ‘tail-to-tail’, where the

surrounding magnetisation points away from the wall.

The reversal of the magnetisation that occurs at the domain wall is a

quasi-discontinuous one that occurs over a lengthscale of the order of the

nanowire width (the thickness of the wire is considered to be less than the

wire’s width). Over this lengthscale there is a rotation of the magnetisa-

tion direction. The structure of this rotation is generally complex in nature.

An example of the resulting magnetisation structure is illustrated in Fig-

ure 1.1, as calculated using micromagnetic techniques (Schrefl et al.). These

1We note here that there is a disparity between the units conventions for the use of

units between the magnetics community and the atomic physics community. The former

tends to use gauss and oersted to signify the magnetic flux density ( ~B) and the magnetic

field ( ~H) respectively. In vacuum we have that 1 G = 1 Oe = 0.1 mT.



Chapter 1. Introduction 7

techniques, and the resulting magnetisation structure are discussed in more

detail in Chapter 2.

Figure 1.1: The magnetisation structure of a head-to-head domain wall, as

calculated via micromagnetic simulations (Schrefl et al.) in a planar permal-

loy nanowire of cross section 200 nm × 5 nm. Shading represents the com-

ponent of the magnetisation transverse to the wire axis. Arrows represent

the magnetisation direction in the plane of the wire. The magnetic structure

can be approximated by two head-to-head magnetic dipoles, separated by a

transversely orientated dipole.

Domain walls are inherently dynamic objects and it is the motion and

interaction of domain walls that forms the basis of spintronic technology.

Once populated, domain-wall motion can be induced by a number of meth-

ods, all of which directly modify the magnetisation structure of the material.

Consider the picture shown in Figure 1.1. Applying an external magnetic

field, orientated along the nanowire length, pointing to the right, will cause

domain wall motion. The left hand domain, which is aligned parallel with

the applied field will grow in size, as this is energetically favourable. Corre-

spondingly, the right hand domain, aligned anti-parallel to the applied field,

will reduce in size. As a consequence, the region between these domains, the

domain wall, will be shifted to the right accordingly.

A similar process occurs when one applies a current through the wire.

Injected current causes the transport of electrons through the domain wall.

Upon transmission through the wall the electron experiences a spin flip, i.e.
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a reversal of angular momentum. Due to conversation of angular momentum

there is a corresponding shift in the position of the domain wall. Thus, a

current of given magnitude (and polarisation) will then cause the domain

wall to propagate at a speed which is well defined in the steady state regime.

Alternative methods of inducing domain wall motion are also possible,

such as by the application of stress to the magnetic material. Through the

energy changes due to magnetostriction the position of the domain wall is

changed [54].

The motion of domain walls has been quantitatively studied in great detail

[55, 56, 57, 58, 59, 60] and has given rise to a number of exciting technological

applications, such as alternative forms of memory storage and data transfer

[61, 62], logic gates [63], and magnetic sensors [64].

One characteristic of domain walls that we have yet to consider is the

presence of fringing fields. As previously stated, the divergence of mag-

netisation within permalloy can lead to significant magnetic fields, and this

occurs at the locations of domain walls. Fringing fields are in fact a vital

component of the realisation of magnetic memory (MRAM) technology. In

a manner entirely analogous to conventional hard disk drives, a read/write

head converts the magnetic fringing fields present at heights of around 10 nm

above domain walls into an electrical signal [65]. In the following section we

will consider the use of these fields as a tool with which to interact domain

walls and quantum particles, thus combining the fields of atom optics and

spintronics.

1.3 Nanowires and atoms

In this work we present an amalgamation of two disparate yet flourishing ar-

eas of research. The fringing fields which provide the ability to remotely sense

the magnetisation structure of spintronics-based memory devices may also

be harnessed within atomic physics applications. The two technologies are

naturally complimentary: spintronic devices provide the deterministic pro-

duction of large, dynamic magnetic fields on submicron lengthscales, whilst

chip-based atom optics devices demand precisely this kind of precision and

flexibility on a commensurate lengthscale in order to realise new and exciting
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applications.

By exploiting spintronic technology to produce a new type of atom chip

architecture a number of advantages over conventional devices can be realised

by combining the benefits of both current-carrying wires and permanent mag-

netic material. As spintronic devices utilise permanent ferromagnetic mate-

rial which can be manipulated by external magnetic fields, technical noise

due to electrical currents can be completely eliminated. Similarly, Johnson

noise can be removed through the use of ferrite materials which have very

low conductivity.

Whilst potential inhomogeneities are present in atom chips based on per-

manent magnetic material, this is not necessarily the case for spintronics-

based devices. The fringing field source can be precisely confined to a region

of around 100 nm in size, at the location of a domain wall. Thus, at sufficient

distance, the field source becomes point-like in nature and any magnetisa-

tion inhomogeneity present within the domain wall is not reproduced in the

resulting magnetic field. Spintronic devices also benefit from not requiring

careful consideration of power dissipation within the device, or the need for

electrical connections to be made (although the use of such connections would

enhance dynamic control by allowing addressing of individual nanowires).

Whilst many of the problems inherent in current-based devices are

avoided, some of the associated benefits are kept. Current-carrying wires

afford tunability of the resulting potentials, which in turn leads to the pro-

duction of dynamic behaviour. This will also be possible with potentials

based on domain walls. We anticipate that a trapping potential created us-

ing domain wall fringing fields will be inherently mobile due to the ability

to reliably move domain walls [66]. The result is an architecture analogous

to ion-trap chips which have demonstrated the shuttling and interaction of

individual ions within circuits of very tight trapping potentials. The reali-

sation of an equivalent device for atoms will yield the same benefits whilst

providing an alternative route to achieving high-fidelity interactions.

The marriage of spintronics and atom optics into a hybrid device heralds

exciting possibilities for producing controlled quantum interactions. How-

ever, significant work must be done to overcome the technical and fundamen-

tal challenges faced in such novel experiments. This is the subject of much of
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the work presented in this thesis. In the same way that atomic mirrors based

on patterned magnetic media represented a precursor to more elaborate atom

chips, we present a proof-of-principle experiment that demonstrates the fea-

sibility of realising an interface between spintronics and ultracold atoms. We

observe a reliable and tunable interaction is realised which promises much for

the new hybrid quantum device that we promote and lays the foundations

for future work.

1.4 Thesis layout

This thesis presents the first work which combines spintronic technology with

ultracold atoms. The foregoing discussion has motivated the development of

tight, mobile atom traps based on nanomagnetic domain walls, and it is this

goal towards which we work.

In Chapter 2 we consider the calculation of fringing fields from nano-

magnetic domain walls. An analytic model is derived in a phenomenological

manner and is compared to standard numerical techniques. We show that

the model we developed provides a quick, easy and intuitive method of ac-

curately calculating the fringing fields.

In Chapter 3 we move on to describe an experiment that demonstrates

the interaction between domain walls and ultracold atoms via the realisation

of a magnetic atom mirror. The design of the mirror is discussed, with

comparison to the ideal magnetic mirror, followed by a description of the

manufacture and characterisation of the nanowire device. The experimental

setup and procedure are then described.

In Chapter 4 we present the results of the mirror experiment, showing the

reflection of ultracold atoms from the nanowire array, as well as the use of

the atom cloud as a probe of the associated micromagnetic reconfiguration.

In Chapter 5 we describe the theory and methods used to simulate the

atom mirror experiment. The interactions between the atomic cloud and the

optical and magnetic fields are considered in detail.

In Chapter 6 we describe the implementation of a moving molasses scheme

to launch atoms closer to the surface of the nanowire array. Initial data ob-

tained using this scheme are presented and compared to theoretical predic-
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tions. In particular we look at the feasibility of using this technique to carry

out studies of the van der Waals surface interaction.

In Chapter 7 we describe the technique of magnetic trapping and present

the scheme that we hope to implement, which is based on the fringing field

produced by a single domain wall. We then discuss one of the major ob-

stacles to realising a magnetic trap based on a domain wall, which is the

presence of Majorana spin-flip losses. We also describe how the conventional

methods used to circumvent this problem are not appropriate in the regime

of exceptionally tight traps.

In Chapter 8 we present a solution to the problem of spin-flips in very tight

traps, which is a time-averaged potential based on the mechanical oscillation

of a field source via piezoelectric devices. We describe how this method is

inherently better suited to producing a deep, adiabatic and harmonic trap for

atoms than conventional time-averaging techniques, both in a fundamental

and a practical sense. We also discuss the possibility of using the same

technique to produce more elaborate trapping geometries, such as a ring

trap.

In Chapter 9 we summarise the conclusions drawn from this work.

1.5 Publications arising from this work

Design and characterization of a field-switchable nanomagnetic atom mirror

T. J. Hayward, A. D. West, K. J. Weatherill, P. J. Curran, P. W. Fry, P. M.

Fundi, M. R. J. Gibbs, T. Schrefl, C. S. Adams, I. G. Hughes, S. J. Bending

and D. A. Allwood

J. Appl. Phys. 108, 043906 (2010)

Nanomagnetic engineering of the properties of domain wall atom traps

T. J. Hayward, A. D. West, K. J. Weatherill, T. Schrefl, I. G. Hughes and

D. A. Allwood

J. Appl. Phys. 110 123918 (2011)

A simple model for calculating magnetic nanowire domain wall fringing fields

A. D. West, T. J. Hayward, K. J. Weatherill, T. Schrefl, D. A. Allwood and

I. G. Hughes

J. Phys. D 45 095002 (2012)

http://dx.doi.org/10.1063/1.3466995
http://dx.doi.org/10.1063/1.3671631
http://dx.doi.org/10.1088/0022-3727/45/9/095002
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Realization of the manipulation of ultracold atoms with a reconfigurable nano-

magnetic system of domain walls

A. D. West, T. J. Hayward, K. J. Weatherill, P. W. Fry, T. Schrefl, M. R. J.

Gibbs, C. S. Adams, D. A. Allwood and I. G. Hughes

arXiv:1112.0485

Piezoelectrically-actuated time-averaged potentials

A. D. West, C. G. Wade, K. J. Weatherill and I. G. Hughes

In preparation

Many of the ideas discussed in this thesis are also closely related to the

following paper:

Mobile atom traps using magnetic nanowires

D. A. Allwood, T. Schrefl, G. Hrkac, I. G. Hughes and C. S. Adams

Appl. Phys. Lett. 89, 014102 (2006)

http://arxiv.org/abs/1112.0485
http://dx.doi.org/10.1063/1.2219397


Chapter 2

Domain Wall Fields

Schematic of a transverse domain wall within a planar magnetic nanowire. A

quasi-discontinuous reversal of the magnetisation results in a complex mag-

netic structure which gives rise to fringing fields out of the plane of the wire.

13
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The work in this section forms the basis of the following paper:

A simple model for calculating magnetic nanowire domain wall fringing fields

A. D. West, T. J. Hayward, K. J. Weatherill, T. Schrefl, D. A. Allwood and

I. G. Hughes

J. Phys. D 45 095002 (2012)

2.1 Introduction

The fringing fields produced by nanomagnetic domain walls have been har-

nessed within the field of spintronics. We plan to utilise the same fields to

interact atoms with nanomagnetic domain walls. The character of this inter-

action is determined by the precise nature of the magnetic fringing fields. In

order to design, realise and analyse an experiment which produces the afore-

mentioned interaction it is important to be able to quickly and accurately

calculate the fringing fields created by domain walls for a range of experi-

mental parameters. In this section we will discuss a theoretical model which

allows us to do precisely that. We will derive the model from a phenomeno-

logical consideration of the structure of domain walls and then analyse the

fidelity of the model through a comparison with established numerical tech-

niques.

The calculation of nanomagnetic fringing fields from domain walls is in

general a difficult task. Micromagnetic techniques represent the most ac-

curate method of calculation [67, 68]. Throughout this work, references to

calculations carried out according to micromagnetic techniques correspond

to work carried out by colleagues at The University of Sheffield (Schrefl,

Hayward et al.). Whilst described in detail elsewhere [69] we will give just

a brief overview of the method here. The Landau-Lifshitz-Gilbert equation

is solved within a finite element framework [68] whilst accounting for energy

contributions due to magnetostatics, magnetocrystalline anisotropy, Zeeman

interactions and exchange interactions. A bi-domain structure is introduced

into the simulated wires which are allowed to relax to equilibrium. The

resulting magnetisation structure is then used as the basis of a calculation

of the associated magnetic fields according to the quasi-static Maxwell equa-

tions using finite element/boundary element methods [65]. The fringing fields

http://dx.doi.org/10.1088/0022-3727/45/9/095002
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created at the discontinuities of the wire ends are subtracted.

In this work we consider domain walls within planar nanowires which form

between oppositely orientated domains. Examples of the resulting magneti-

sation structure are shown in Figure 2.1(a). Sufficiently far from the domain

Figure 2.1: Magnetisation structures as calculated via micromagnetic meth-

ods (Schrefl et al.) [70]. In both parts the upper wire contains a transverse-

type domain wall (200 nm × 5 nm cross section) and the lower a vortex-type

wall (200 nm × 15 nm cross section). (a) shows the direction of the magneti-

sation, shading represents the longitudinal magnetisation component. (b)

shows the divergence of the magnetisation. Dark (light) areas represent pos-

itive (negative) ~∇. ~M , or effective ‘north’ (‘south’) poles.

wall the magnetisation is uniformly aligned along the wire length. Between

the two domains the quasi-discontinuous reversal of the magnetisation over

the width of the domain wall produces a much more complicated magnetisa-

tion structure. This non-trivial direction change produces a region of mag-

netisation divergence, pictured in Figure 2.1(b), which results in fringing

fields out of the plane of the wire. Away from the domain wall there are

no such out-of-plane fields. The same features have also been observed via

experimental methods [71]. The domain walls form in two characteristic

shapes, transverse or vortex, with the latter being found in wires of larger

cross section.
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Whilst the use of micromagnetic techniques is the most rigorous and ac-

curate method of calculating fringing fields, it is also time consuming and

requires specialist knowledge and software to perform. A quicker and more

accessible method is desirable, particularly during the planning of experi-

mental applications, as excellent precision is not vital at all times.

The divergence of the magnetisation can also be thought of as a concen-

tration of magnetic poles, from which magnetic field emanates. In this way

an analogy is drawn between electrostatics, and we can associate a magnetic

charge density with the domain wall region. This picture is the basis of the

analytic models for calculating the fringing fields.

2.2 Derivation of models

2.2.1 Monopole model

The simplest analytic model assumes that a domain wall is a point object —

an assumption which is increasingly valid as one considers going further from

the wall. The result is that the domain wall is represented by a magnetic

monopole. Whilst this is explicitly forbidden by Maxwell’s equations, mag-

netic monopoles have been posited and observed as quasiparticles [72, 73, 74].

We will use the monopole as a theoretical construct to which we prescribe an

effective magnetic charge. This representation is one followed elsewhere, e.g.

[72, 75, 76]. We now derive the associated charge, following the treatment in

[77].

Consider a planar nanowire of width w and thickness t as illustrated in

Figure 2.2. The domain wall is contained within a width s. In the presence

of a magnetic medium we have from Maxwell’s equations

µ0
~∇.

(

~H + ~M
)

= 0, (2.1)

where µ0 is the permeability of free space, ~H is the magnetic field and ~M is

the bulk magnetisation. The volumetric charge density of the domain wall

is given by ρm. Thus, in analogy to Gauss’ law for electrostatics, we have

~∇. ~H = ρm/µ0. (2.2)

The charge within the domain wall is due to both the volume charge associ-

ated with divergence of ~M within the bulk, and by edge charge regions which
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Figure 2.2: Schematic of a planar nanowire of cross section wt containing

a domain wall within a region of width s. As s → 0 the wall becomes a

discontinuous reversal. The wall is approximated by a charge qm.

occur at the discontinuities of the nanowire edges. We assume for the remain-

der of this treatment that the former of these is the dominant contributor

to the magnetic charge. This is supported by experiment, micromagnetic

simulations [71], and the resulting accuracy of our analytic models.

If, as we have assumed, the magnetic charge is confined to a point, its

value is then given by the integral of ρm over the domain wall volume:

qm =

∫

ρm dV = −µ0

∫

~∇. ~M dV. (2.3)

This can be recast, by using the divergence theorem, in terms of the mag-

netisation through an enclosing surface. If we take the limit of the domain

wall being a discontinuous reversal of magnetisation, i.e. s → 0 in Figure 2.2,

then this yields a simple expression for qm:

qm = −µ0

∫

~M.n̂ dS = 2µ0Mswt. (2.4)

Here n̂ is the unit normal of the surface element dS, with S enclosing V .

From hereon we useMs, the saturation magnetisation of the nanowires (Ms =

8.6 × 105 for permalloy [46]). We have assumed that the domain wall is of

a ‘head-to-head’ type; a ‘tail-to-tail’ domain wall has an associated charge

of −qm. Note that Equation 2.4 also provides an expression for the surface

magnetic charge density, σm = −µ0
~M.n̂. The expression on the right hand

side of Equation 2.4 is very similar to that prescribed in other systems, cf.

e.g. [75]. The magnetic flux density, ~B, (‘magnetic field’ from hereon), at a

position ~r is then given, in direct analogy to Coulomb’s law, by

~B (~r) =
qm

4π|~r|2 r̂. (2.5)
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Note that ~B and ~H only differ by a factor of µ0.

This is the simplest analytic model, and is accurate at large distances

from a domain wall, where the approximation of the wall being a point object

becomes valid. We will now extend this model to more accurately represent

a domain wall as an object of finite size. As already stated, we assume

that volume charge is the dominant contribution to the magnetic charge.

Thus each refinement of the model produces a more faithful representation

of the characteristic shape of the magnetic pole distribution, illustrated in

Figure 2.1(b).

2.2.2 1D model

The first extension we present is to model the domain wall as a 1D line

of charge, across the width of a nanowire. This situation is illustrated in

Figure 2.3. The infinitesimal element of magnetic field, dB, produced by

t

w

z

dB

dx
N x

y

r

Figure 2.3: Schematic of a domain wall represented by a line of charge across

a nanowire width. The wire axis is into the page (along y). The magnetic

field, dB, from an element of this line of charge is shown.

the element of magnetic charge within a length dxN is shown. We use the

subscript ‘N’ to signify coordinates within the nanowire.

The magnetic field from such a line of charge is found by integrating

the contributions from infinitesimal elements of charge, dqm = 2µ0Mst dxN,

across the width of the wire. We define a position ~r = (rx, ry, rz) =

(x− xN, y − yN, z − zN) as the vector from an infinitesimal element of charge,

located at (xN, yN, zN) to the point under consideration. Note in this case
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that yN = zN = 0. The components of magnetic field are thus

Bi =
µ0Mst

2π

∫ w/2

−w/2

ri

|~r|3
dxN. (2.6)

Evaluation of these integrals yields:1

Bx = µ0Mst
2π

[

2√
(w−2x)2+4(y2+z2)

− 2√
(w+2x)2+4(y2+z2)

]

, (2.7)

By =
µ0Msty
π(y2+z2)

[

w−2x

2
√

(w−2x)2+4(y2+z2)
+ w+2x

2
√

(w+2x)2+4(y2+z2)

]

, (2.8)

Bz =
µ0Mstz
π(y2+z2)

[

w−2x

2
√

(w−2x)2+4(y2+z2)
+ w+2x

2
√

(w+2x)2+4(y2+z2)

]

. (2.9)

These expressions will be seen to confer significant advantage over the simple

point charge model when the distance from the domain wall is reduced.

2.2.3 2D model

The models presented up until now have considered the domain wall to have

no extent along the length of the wire, or through its thickness. We now

consider both of these situations.

Let us consider first the case of a domain wall having some finite size,

s, along the wire length, y. This situation is illustrated in Figure 2.4. The

domain wall now resembles a rectangular sheet of magnetic charge of width

s. We choose to fix the value of s to be w. This is a rule of thumb which

provides the user good accuracy without having to find the optimal value of

s. Using s = w is representative of the magnetisation structures calculated

via micromagnetic methods [78], and the observed structures of real domain

walls. As will be discussed later, there is only a very small loss of accuracy in

using this rule of thumb. The corresponding expression for an infinitesimal

element of this charge, contained within an element dA = dxNdyN, is dqm =

2µ0Mst/w dxNdyN. In analogy to Equation 2.6 we now have

Bi =

∫ w/2

−w/2

∫ w/2

−w/2

µ0Mstri

2πw |~r|3
dxNdyN. (2.10)

1An alternative route to deriving these expressions is to use the magnetic scalar poten-

tial, Φ, and integrating in an entirely analogous manner. The magnetic field is then given

by −~∇Φ. Whilst entirely equivalent, we will integrate expressions for the magnetic field

directly throughout for the sake of clarity.
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Figure 2.4: Schematic of a domain wall represented by a 2D sheet of charge

extending along the wire length. The wire axis is into the page (along y).

The magnetic field, dB, from an element of this sheet of charge is shown.

These integrals were performed symbolically [79], see also e.g. [80], yielding:

Bx =µ0Mst
2πs

log

[

(s−2y)+
√

(2x−w)2+(2y−s)2+4z2

(s−2y)+
√

(2x+w)2+(2y−s)2+4z2
.
(−s−2y)+

√
(2x+w)2+(2y+s)2+4z2

(−s−2y)+
√

(2x−w)2+(2y+s)2+4z2

]

,

(2.11)

By =
µ0Mst
2πs

log

[

(w−2x)+
√

(2x−w)2+(2y−s)2+4z2

(w−2x)+
√

(2x−w)2+(2y+s)2+4z2
.
(−w−2x)+

√
(2x+w)2+(2y+s)2+4z2

(−w−2x)+
√

(2x+w)2+(2y−s)2+4z2

]

,

(2.12)

Bz =
µ0Mst
2πs

{

tan−1

[

2(w/2−x)(s/2−y)

z
√

(2x−w)2+(2y−s)2+4z2

]

+ tan−1

[

2(w/2−x)(s/2+y)

z
√

(2x−w)2+(2y+s)2+4z2

]

+ tan−1

[

2(w/2+x)(s/2−y)

z
√

(2x+w)2+(2y−s)2+4z2

]

+ tan−1

[

2(w/2+x)(s/2+y)

z
√

(2x+w)2+(2y+s)2+4z2

]}

.

(2.13)

Equivalent expressions were also found for the case of a sheet of magnetic

charge in the x− z plane by evaluating the following integrals,

Bi =

∫ w/2

−w/2

∫ t/2

−t/2

µ0Msri

2π |~r|3
dzNdyN, (2.14)

however this type of 2D model was not seen to confer greater accuracy than

the 1D model so shall not be discussed further. This can be understood

intuitively by the fact that the wire thickness is in general small compared

to the distance from the wire.
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2.2.4 Triangular model

The final extension to the model is to incorporate the characteristic trian-

gular shape that is observed in both real domain walls and micromagnetic

simulations (cf. Figure 2.1). This shape is particular to transverse-type do-

main walls; for the case of a vortex wall the region of high
∣

∣

∣

~∇. ~M
∣

∣

∣
, and hence

volume charge, is approximately rectangular, so the 2D model of the pre-

vious section is more appropriate. We now consider a triangular region of

magnetic charge that emulates this characteristic shape. The geometry of

this triangular model is illustrated in Figure 2.5. As with the 2D model of

t

w

z

dB

s

y
dA

x

r

Figure 2.5: Schematic of a transverse domain wall represented by a triangular

sheet of charge. The wire axis is into the page (along y). The magnetic field,

dB, from an element of this sheet of charge is shown.

the previous section there is a free parameter, s, which is the size of the

base of the triangle. Again we implement the rule of thumb s = w which is

representative of real domain walls [78] and provides a good accuracy.

It is easy to modify the equations of previous sections in accordance with

the new geometry. The same amount of charge is now contained in half the

area so we have dqm = 4µ0Mst/w dxNdyN. Equation 2.10 is modified so that

the bounds of integration now describe a triangle:

Bi =

∫ w

0

∫ xN

−xN

µ0Mstri
πsr3

dyNdxN. (2.15)

Note again that we have made the assumption s = w. Unfortunately it was

not possible to find a closed expression for all 3 components of the magnetic
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fields (or equivalently, 2 components and | ~B|). Thus it was necessary to per-

form the integration numerically. Performing this integration is quicker and

easier than performing micromagnetic simulations for comparable resolution,

but it is significantly slower than the analytic expressions which we have used

up until now. It is possible, however, to speed up the integration significantly

by using the result for a 2D (rectangular) domain wall.

We consider dividing a triangular domain wall into a series of infinites-

imally wide rectangular elements, as shown in Figure 2.6. The form of the

w

s

dx
Nx

y

Figure 2.6: Schematic of a triangular domain wall divided into a set of thin

rectangular sheets of magnetic charge. The wire axis is along y. Typically

around 40 rectangles are used.

field from each of the rectangles is known analytically. It is then a sim-

ple matter to perform a coordinate transformation between each rectangle

(whilst modifying the length of the rectangle appropriately) and sum the

field contributions. This provides a much quicker method of calculating the

field from a triangular domain wall. For example it takes around 2 seconds

to calculate the field from each rectangle on a desktop PC. It is possible to

use as few as 40 rectangles with negligible loss of accuracy.

2.3 Analysis of models

As has already been stated, calculations based on micromagnetic simula-

tions are the most accurate possible. To assess the accuracy of the models

we present we shall compare their results with those from micromagnetics.

The fields produced by the latter are considerably more complex than those

produced by the analytic models, indicating the complicated magnetisation

structure. This detailed structure becomes increasingly apparent nearer the
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domain wall – moving further away the approximation of the wall as a point

object becomes increasingly valid. This behaviour is illustrated in Figure 2.7.

From here on we will label these two regimes as the ‘near-field’ and ‘far-field’

Figure 2.7: Plots of the magnetic fringing field magnitude calculated via mi-

cromagnetic simulations (Hayward et al.) [70]. (a) and (c) correspond to

a transverse-type domain wall (cross section = 200 nm × 5 nm), whilst

(b) and (d) correspond to a vortex-type domain wall (cross section =

200 nm × 15 nm). (a) and (b) show the field magnitude at a height of

200 nm whilst (c) and (d) show the field at 12.5 nm. Note the complex field

structure at short distances, indicative of the domain wall’s complicated mag-

netisation.

regions. We will now discuss the quantitative analyses of the accuracy of the

calculated fringing fields.

The magnetic fringing fields from six different nanowires were calculated.

The geometries of these wires are summarised in Table 2.1. For the sake of

brevity we will present analysis for just one wire geometry, wire B, but data
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Table 2.1: The six geometries of wire examined in comparisons with fields

from micromagnetic methods.

Label Width (nm) Thickness (nm) Wall type

A 100 5 Transverse

B 200 5 Transverse

C 400 5 Transverse

D 100 15 Vortex

E 200 15 Vortex

F 400 15 Vortex

for all six wires considered is provided in Appendix A. We consider a region

of size 1 µm × 1 µm × 1 µm, evenly divided into a mesh of 106 points. The

base of this cube is centred on the middle of the domain wall. This region

is representative of the typical regime that atomic physics applications aim

to work within. The size of the field outside this region is typically less than

1 G.

In the following analysis we will make comparisons of the magnitude of the

magnetic field, for clarity. Comparison of the field direction is also provided

later in the section.

2.3.1 Maximum field error

The first figure of merit to be considered is the maximum field at a given

height. This provides a good indicator of the models’ accuracy and is also

an important quantity in relation to magnetic trapping applications as it can

define the position of the trap minimum. Figure 2.8 shows the maximum

field at a given height according to the models presented and as calculated

via micromagnetic simulations. One can immediately see that there is very

good agreement with micromagnetic simulations at heights above around

100 nm. Below this height the analytic models begin to show significant

inaccuracy, with the largest error being apparent in the ‘monopole’ model.

At smaller heights the approximation of the wall as a point object becomes

increasingly inaccurate and in general the micromagnetic structure becomes

much more important. As will be seen this is an unavoidable problem with
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Figure 2.8: The maximum fringing field magnitude at a given height above

a transverse domain wall (cross section = 200 nm × 5 nm) as calculated by

the various analytic models and via micromagnetic simulations. Note the log

scale on the main figure.

the analytic models — in the near-field region none of the models accounts

for the complex structure of real fringing fields.

The observant reader will note that within this near-field region there

are points where the 1D model provides better accuracy than the 2D model.

The accuracy of the 2D model can be improved significantly by tuning the

parameter s, however this is contrary to the aim of the analytic models as this

would require optimisation against micromagnetics for each wire geometry.

We also note that whilst this may improve the accuracy of the maximum field

value, it also decreases the overall accuracy of the fields, which is a figure of

merit we will now consider.

2.3.2 RMS field error

A more thorough analysis of the fidelity of the models is provided by exam-

ining the accuracy of the fringing fields over the entire 1 µm3 region. We

now calculate the root mean square (RMS) error, ERMS, over all points at a

given height, expressed as a percentage. For an analytic field, | ~B|, and the
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field calculated via micromagnetics, | ~BM|, given over a set of N points {~ri}
we have

ERMS =

√

√

√

√

1002

N

N
∑

i

(| ~B(~ri)| − | ~BM(~ri)|)2
| ~BM (~ri) |2

. (2.16)

Figure 2.9 shows ERMS over the 1 µm range of heights for all the analytic

models presented.
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Figure 2.9: The RMS percentage error in the fringing field magnitude at a

given height above a 200 nm × 5 nm domain wall according to the analytic

models presented. Note the log scale.

As with the analysis of the maximum field magnitude in Figure 2.8 there

is an obvious trend — the error significantly increases as one enters the

near-field region. There are also some clear distinctions between the models.

There is little difference between the accuracies of the monopole, 1D and 2D

models until small heights, where increasing the dimensionality of the model

of the domain wall gives an improved accuracy, in particular moving from

the monopole model to a 1D line of charge gives great improvement. This is

an intuitive result as nearer the domain wall the approximation of it being

a point object becomes less appropriate. A smaller improvement is seen by

giving the domain wall finite extent along the wire.

There is a stark improvement gained by incorporating a triangular shape.
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This change provides a much more accurate representation of the magnetic

field shape. Examination of Figure 2.7(a) shows that the field is in fact

skewed across the width of the wire, with larger fields observed closer to

the triangle’s base. This observation supports our choice of representing the

domain wall by a region of volume charge; the magnetic pole distribution

is an important determining factor when considering the resultant fringing

fields.

We note that for heights of 100 nm or greater we achieve accuracies of 15%

or less. Whilst the accuracy breaks down lower than this it is unlikely that

magnetic trapping schemes will aim to work within this region as such traps

may suffer from anharmonicities due to the complex field shape and from

noise due to thermal fluctuations [31]. Some spintronics applications require

knowledge of fields at distances of the order of 10s of nm, e.g. read/write

heads for ‘racetrack memory’ [61] can be located at heights of around 10 nm

[65]. For these kinds of applications one must use calculations based on

micromagnetics.

The RMS error over the entire 1 µm3 region for all wires and models is

quoted in Appendix A. We also provide the mean percentage error,

EM =
100

N

N
∑

i

∣

∣

∣
(| ~B(~ri)| − | ~BM(~ri)|)

∣

∣

∣

| ~BM (~ri) |
. (2.17)

2.3.3 Domain wall width

In the derivations of the 2D and triangular models the free parameter s was

introduced. This describes the physical extent of the charge region used to

describe the domain wall. To establish the rule of thumb, s = w, the RMS,

mean and maximum (Emax) percentage errors were analysed as s was varied.

By doing so it was possible to find the optimal values of s for each wire ge-

ometry and for both the 2D and triangular models. For example, Figure 2.10

shows the variation of these errors with s for the case of a 200 nm × 5 nm

domain wall modelled according to the triangular model. In this instance s

represents the length of the base of the triangular sheet of charge. As can be

seen there are clear minima in the errors. Through an examination of this

dependence on s the rule of thumb of s = w was chosen. As can be seen in

Figure 2.10 this value is close to the minima of all the measures of the error
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Figure 2.10: The RMS, mean and maximum percentage errors in the field

above a 200 nm× 5 nm domain wall, calculated over a 1 µm3 region according

to the triangular model, as the parameter s is varied.

(recall w = 200 nm in this case).

To assess the loss of accuracy associated with by employing this rule of

thumb, the RMS error using an optimised value of s was also calculated. This

is given by E ′

RMS and values are provided where appropriate in Appendix A.

It is clear that the loss of accuracy is very small.

The relative insensitivity to the parameter s is perhaps counterintuitive

but unsurprising when one notes that the distribution of charge across the

wire width is independent of s for both the rectangular and triangular models.

Whilst the former of these is obvious, the inifinitesimal element of charge

located at a position xN within a triangle of base s is given by

dqm(xN) = 4Msµ0t/s dA = 4Msµ0txN/w dxN, (2.18)

which is clearly independent of s. This result is related to the geomet-

ric fact that all triangles have centres of mass at barycentric coordinates

(1/3,1/3,1/3). This is reflected in the fields calculated according to the tri-

angular model. When sufficiently far from the wire the maximum field at a

given height is located at (x, y) = (w/3, 0). Recall, as per Figure 2.5, the
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coordinate origin is defined to be at the centre of the triangle’s base. Note

that integrating Equation 2.18 with respect to xN yields Equation 2.4.

2.3.4 Distribution of error

The figures of merit analysed so far indicate that it is possible to achieve

a good accuracy using a simple analytic model, in particular the triangle

model reproduces the shape of real fringing fields well. However, the best

indicator of the accuracy of a model is found by examining the distribution

of error. It is possible that measures such as ERMS or EM hide the fact that

there are regions of very high error. In order to check this the distribution

of the percentage error over all points was analysed. An example of this

is given in Figure 2.11 for the case of the 200 nm × 5 nm wire, using the

triangular model. The distribution of error shows that the figures of merit

used thus far are suitable indicators of the accuracy of the calculated fields;

there are no regions with unexpectedly high error. The large majority of

points have an error of 20% or less at all heights. It is reasonable to expect

that the points with the largest error at a given height are those closest to

the domain wall barycentre, i.e. those near to x = w/3, y = 0. The field

further from the domain wall varies much more smoothly and is more easily

replicated. To an extent this is true – points far from the wall generally have

a lower associated error. However the white line in Figure 2.11 represents

the points above the barycentre and it can be seen that there are a number

of points with both larger and smaller error. Although the error generally

increases as one goes closer to the wall centre there is not a simple reason for

the observed deviations from this trend, particularly at small heights.

2.3.5 Field isosurfaces

As should be apparent from the previous discussion, the error that one as-

sociates with the calculated fields can depend on the region over which the

fields are examined. The overall error can be minimised by comparing the

field over a larger region as this includes more points with very small field

which are more easily accurately reproduced by our models. However, a

small absolute (percentage) error in calculating a small (large) field produces
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Figure 2.11: The distribution of the percentage error in the fringing field

magnitude above a 200 nm × 5 nm domain wall, calculated according to

the triangular model. At each height the data are divided into 100 evenly

distributed bins (note the bin centres vary dramatically across the range of

heights). The white line represents the error in the maximum field at each

height.

a deceptively large percentage (absolute) error.

Whilst it will be clear that the desired application will define the region

of space to consider, and that few applications are likely to utilise the fields

very far from nanomagnetic domains, for the purpose of this analysis a scale-

invariant figure of merit is desired. This is provided by examining the models’

accuracies over regions of specific field strength, rather than regions of space.

Figure 2.12 shows the RMS percentage error associated with a set of

points located around an isosurface of ~BM. For a given B0 the RMS error is

calculated over all points that satisfy 0.9B0 ≤
∣

∣

∣

~BM

∣

∣

∣
≤ 1.1B0. Thus the error

is analysed over different magnetic field strengths, removing biases associated

with the size of the region examined, or the size of the nanowire, whilst still

permitting a meaningful analysis of the fidelity of the models to the shape



Chapter 2. Domain Wall Fields 31

of the magnetic fields. This can be a particularly useful measure as in many

applications it is the field, rather than the physical location, that defines the

working regime.
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Figure 2.12: The RMS percentage error of fringing fields associated with

regions surrounding isosurfaces of field strength. Calculations are performed

for a 200 nm × 5 nm domain wall, according to the triangular model. For a

given B0 the error is calculated over all points for which | ~BM| is within 10%

of B0.

Examining Figure 2.12, familiar trends are observed. There is an increase

in the error of the model as the magnetic field increases — this corresponds

to points which are generally closer to the wire. There is also a clear im-

provement by incorporating a triangular shape to the model. For small fields

(large distances) the monopole, 1D and 2D models converge as the approxi-

mation of the domain wall as a point object becomes more appropriate. For

very large fields the distinction between the different models becomes less

clear. This is indicative of the fact that none of the models accurately repro-

duces the complex field shape seen in regions of high field (cf. Figure 2.7),

and that there are fewer points with very high field over which a comparison

can be made. The regime where there is the clearest difference between the

accuracy of the models is around 10–100 G — the triangular model shows a
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three- or four-fold improvement over other models. It is within this regime

that the asymmetry of the transverse wall becomes apparent in the fringing

fields, without displaying the complex structure seen at very short distances.

2.3.6 Field direction

Discussion up to this point has deliberately focussed on the magnitude of

the magnetic field. We now examine the direction of the field. Comparing

the magnetic field components, Bi, has the inherent problem that Bx and By

have zero points for all z. Instead we compute the relative angle between the

magnetic field vectors ~BM and ~B. The error observed shows a very similar

trend to the errors in the magnetic field magnitude. As expected, none of

the models reproduces the field direction well at very short distances, but

the error above around 100 nm is small. For example, Figure 2.13 shows the

RMS error in the direction of the field from a 200 nm × 5 nm domain wall,

modelled by a triangular sheet of charge.
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Figure 2.13: The RMS error in the fringing field direction at a given height

for a 200 nm × 5 nm domain wall, calculated using each of the analytic

models.

Through an examination of the various models it is clear that there is

very little difference in the accuracy of the field direction calculated using
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the monopole, 1D and 2D models. This is intuitively expected as the shapes

of the fields are very similar, especially in the far-field region, for example

moving from 1D to 2D can simply be thought of as a small ‘spreading out’

of the magnetic field source, which from sufficiently far away has very lit-

tle effect on the field direction (although, as has been seen, it can have a

significant effect on its magnitude). In contrast, the triangular model con-

fers a significantly more accurate field shape at all heights. This reflects

the fact that the triangular model reproduces the skewed shape apparent in

transverse domain wall fringing fields (cf. Figure 2.7(a)) at all heights.

The computed RMS error values suggest a high level of accuracy — when

using the triangular model there is an error of less than 10◦ (5◦) at heights

above 25 nm (125 nm). The corresponding errors when using the 2D model

are 14◦ and 9◦. However there are regions within the near-field where there

are large discrepancies. This is due to the fact that the magnetisation struc-

ture of real domain walls gives rise to areas of negative magnetic charge.

This is indicated in Figure 2.1(b) by the small region of edge charge at the

apex of the triangle — the sign of the divergence is opposite to that of the

volume charge within the triangle itself. Thus the direction of the magnetic

field near this point is primarily into the nanowire, rather than out of it. As

would be expected, this feature is not well reproduced by any of the models

we have developed, but its influence is limited to very close to the apex of

the domain wall, and has significantly less influence on the field magnitude.

The analysis presented here has considered one nanowire geometry in

particular. Analysis was carried out for all six of the geometries given in

Table 2.1. For each of the wires the trends are very similar to those already

presented. Between the wires there was also a noticeable trend – the error is

generally larger for wires of larger cross section. This is an intuitive result as

the near-field region of larger wires occupies a greater proportion of the 1 µm3

region examined, and it is this region which produces the largest errors.

2.3.7 Case study — a time-averaged-potential

As a demonstration of the utility of the models that we have presented we con-

sider one particular application — that of a time-averaged potential (TAP)

based on domain wall fringing fields. The details of TAPs will be discussed
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further in Section 7.3.2. For now we will simply compare the calculated val-

ues of the trap frequency associated with these magnetic traps, ωTrap. We

consider in particular traps formed at a height of 1 µm, as per the simple

scheme illustrated in Figure 7.1, and TAP fields in the range 2–10 G. We

also consider four different domain wall geometries. The trap frequency is

then calculated by fitting the resulting potentials with a quadratic function

over a distance of ±100 nm from the trap minimum. The resulting values

are given in Table 2.2.

Table 2.2: Errors associated with our analytic (2D) model when calculating

the trap frequency of a time-averaged potential (see Section 7.3.2 or [69]

for details), as compared with results based on micromagnetically simulated

structures. We consider a trap height of 1 µm and TOP fields in the range

2–10 G.

Wire Cross Section (nm) Mean/Max Error in ω (%)

200 × 40 3.4/3.8

400 × 20 12.6/13.5

800 × 10 (vortex) 40.5/41.6

800 × 10 (transverse) 5.0/5.4

The accuracy of the calculated trap frequencies is generally good, partic-

ularly for wires of smaller widths and wires hosting transverse-type domain

walls. For larger wires the near-field region becomes larger. We also obtain

larger errors for vortex-type domain walls, which have a more complex near-

field structure (cf. Figure 2.7(d)). We conclude that our model shows great

utility when modelling trapping potentials above domain walls, particularly

for smaller wires.

2.4 Alternative models

Micromagnetic simulations show that the magnetic fringing fields are com-

plex in nature, as illustrated in Figure 2.7; there are features which the simple

analytic models presented here do not account for. One obvious failing of

the models presented is that real domain walls show regions of both positive
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and negative charge, which are primarily associated with edge charges. For

example a transverse-type domain wall has a concentration of charge of op-

posite parity at the apex of the triangle. Efforts were made to emulate this

structure by incorporating a spatially dependent charge density and parity,

which we now briefly detail.

The magnetic charge density of a triangle of height w and base s is given

by ρm = 4µ0Mst/s. We now consider ρm to be spatially varying. This

variation could in principle take any form but to keep the model simple we

assume a linear variation with ρm = 0 at xN = 0 (the wire centre). This

yields a modified charge density

ρ̃m(x) = ρm × (w/2− x) , (2.19)

It is also necessary to renormalise this expression by a constant, C, so that

the total charge is not altered. For this, we require that

qm = 4CMsµ0t/s

∫ w

0

(w/2− x) dA (2.20)

= 4CMsµ0t/s

∫ w

0

(w/2− x) (s− xs/w) dx = 2Msµ0wt. (2.21)

Evaluating this integral yields C = 6/w and hence

ρ̃m(x) =
24Msµ0t

sw
(w/2− x) . (2.22)

This process can also be carried out in an entirely analogous manner for a

domain wall with a trapezoidal shape. For both shapes we observe that the

accuracy of the model is significantly less than that of the models already

presented.

The models presented thus far have been based on the volume charge

contributions within the domain wall, as these are dominant, however an al-

ternative representation can be formulated based on sheets of charge around

the domain wall region, as illustrated in Figure 2.14. Previous models have

represented the volume charge by 2D sheets of charge because the thickness

of the nanowire, t, is negligible. As such, the fields according to the represen-

tation shown in Figure 2.14 can be easily calculated from previous results.

Again, a trapezoidal shape was also investigated in an analogous manner. We

note again that the calculated fields are less accurate than those according

to the models presented in detail.
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Figure 2.14: A schematic of a transverse domain wall represented by sheets

of magnetic charge around the wall.

2.5 Conclusions

In this chapter we have developed an analytic model which allows for the

rapid and accurate calculation of the fringing fields produced by domain walls

within planar magnetic nanowires. The model prescribes an effective charge

to the domain wall, with a value defined by the geometry of the nanowire.

The shape of the charge is made to replicate the characteristic shape of the

domain wall — for the case of a transverse (vortex) type domain wall this is

triangular (rectangular). This methodology assumes that the volume charge

within the domain wall is the dominant contributor, rather than surface

charges.

Through a comparison of the calculated fringing fields with those gen-

erated via micromagnetic simulations we found that the model provides a

good accuracy, particular in the ‘far-field’ regime (heights &100 nm). Nearer

the wire our model breaks down as the complex magnetisation structure be-

comes more important. We also note that models which more accurately

represent the shape of the magnetisation divergence produce more accurate

fringing fields. We have shown that it is possible to use a rule of thumb to

define the shape of the corresponding charge distributions so that the models

can be used without any a priori information, allowing for fast and accurate

computation of the fringing fields.

We note that the model performs well for fields of ∼1–10 G, which is the

regime in which we expect atomic physics applications to be based. This

analytic model is an important tool when considering atom-nanowire inter-
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actions and is used extensively in the work presented here. In the following

chapter we describe our first realisation of an interaction between atoms and

domain wall fringing fields.
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Mirror Experiment

Schematic image of our atom mirror. Pictured are the undulating nanowires

with domain walls of alternating parity, giving rise to fringing fields. Above

this is an effective isosurface from which the atoms can be considered to

reflect.

38
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Some of the work in this chapter forms the basis of the following paper:

Design and characterization of a field-switchable nanomagnetic atom mirror

T. J. Hayward, A. D. West, K. J. Weatherill, P. J. Curran, P. W. Fry, P. M.

Fundi, M. R. J. Gibbs, T. Schrefl, C. S. Adams, I. G. Hughes, S. J. Bending

and D. A. Allwood

J. Appl. Phys. 108, 043906 (2010)

3.1 Introduction

In Chapter 1 the use of spintronic technology to create a magnetic atom

trap was briefly discussed. Whilst such an application of planar nanowires

would offer a number of benefits over conventional atom chip architectures,

this is offset by the difficulties associated with realising such a trap, which

will be discussed in detail in Chapter 7. Even after overcoming some of

the fundamental obstacles to creating such a trap, there are many technical

challenges which still remain. The difficulties faced are largely due to the

regime we aim to work in, i.e. using a single domain wall to trap a very small

number of atoms in an exceptionally tightly confining potential.

Instead we desire an experiment that demonstrates the possibility of ex-

ploiting the magnetic interaction between atoms and domain walls on a larger

scale. This is achieved by turning our objects of interest from single domain

walls and atoms to collections of both which we can much more easily ma-

nipulate and observe. This regime shift is provided through the creation of

an atom mirror. Atom optics elements based on patterned magnetic material

were first realised through atom mirrors, which provided a stepping-stone to

more complex systems. We hope that the spintronics-based atom mirror we

present will fulfill the same role.

3.2 Atom mirrors

3.2.1 Introduction

A classical mirror is most familiar as an object which reflects light. Whilst

this mirror may vary in shape, efficiency or spectral response, the character-

http://dx.doi.org/10.1063/1.3466995
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istic feature is a momentum reversal through a transient interaction. For the

case of light, this interaction is an electromagnetic one. However, we wish to

reflect matter, not radiation. This is easy to achieve with macroscopic ob-

jects as their internal structure can facilitate an elastic interaction. Moving

to the microscopic realm of individual atoms makes the realisation of such an

elastic interaction difficult. An atom incident on a hard surface is typically

either scattered in a stochastic manner or adsorbed. This behaviour is again

governed by electromagnetic interactions, but they are not tractable or pre-

dictable ones. To produce an atom mirror which is analogous to a classical

mirror we must employ a more controllable and deterministic interaction.

Realisations of mirrors that reflect microscopic particles can be roughly

divided according to the type of field employed. In this work we shall not

consider the realm of quantum reflection (i.e. the reflection of particles by

a nominally attractive potential) as the mirror that we use always operates

classically in this sense. The choice of field is governed mainly by the inter-

action created. Electric fields have been used extensively to reflect molecules

[81, 82, 83], and more recently, Rydberg atoms [84], both of these types

of particles experience large Stark shifts due to their large polarizabilities.

This in turn has lead to the development of Stark decelerators which control-

lably modify this electric interaction to produce a cooled beam of molecules

[85, 86].

Optical fields have been used in an analogous manner to slow or reflect

molecules [87, 88] and to reflect atoms [89, 90], as the electric component of

an optical field also produces a Stark shift. This interaction has also been

used to confine atoms [91], molecules [92, 93] or even macroscopic objects

[94, 95], in the form of the dipole trap.

Whilst molecules in an electric field can exhibit a large electric dipole

moment, atoms in their ground states typically have comparitively small

polarizabilities, but can have large associated permanent magnetic dipole

moments (although the direction of such a dipole is poorly defined in the

absence of a magnetic field to define the quantisation axis). A permanent

magnetic dipole in an applied field will experience a Zeeman interaction. For

a particle with magnetic dipole moment ~µ in a magnetic field ~B this is given
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by

EZ = −~µ. ~B. (3.1)

For the case of an atom the magnetic dipole moment is given, in a sufficiently

weak magnetic field, by

µ = −mF gFµB, (3.2)

where mF is the magnetic quantum number, gF is the Landé g-factor and µB

is the Bohr magneton. Note that this quantisation of the magnetic moment

relies on the presence of a magnetic field to define a quantisation axis. The

interaction energy can thus be expressed as

EZ = mF gFµB| ~B|. (3.3)

A spatially varying magnetic field will produce an associated Stern-Gerlach

force,

FSG = −~∇EZ = −mF gFµB
~∇| ~B|. (3.4)

Atoms which are in a state that fulfils mF gF > 0 are said to be in a ‘weak-

field-seeking’ state and are attracted to minima of magnetic field. Atoms in

a ‘high-field-seeking’ have mF gF < 0 and are attracted to field maxima. For

the specific case of mFgF = 0 the atoms experience no magnetic interaction

in weak fields.

Due to the comparitively strong interaction, magnetic fields are often the

preferred tool for realising atom mirrors. In this work we interface atoms with

sources of magnetic field, so we restrict the following discussion to magnetic

mirrors.

3.2.2 Ideal magnetic mirror

To reflect atoms we use the Stern-Gerlach force, as defined in Equation 3.4,

to oppose motion towards a surface. Hence we require a magnetic field which

decays away from the surface. An ideal mirror will have such a decay perpen-

dicular to the mirror’s surface with no field variation in transverse directions.

Such an ideal magnetic atom mirror can be realised through the use of an

infinite sheet of magnetic material, which we define to be in the x-y plane,

with a sinusoidally varying in-plane magnetisation pattern given by [22]

~M(x) = M0 cos(kx)x̂, (3.5)
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where k = 2π/λ, with λ being the wavelength of the magnetisation pattern.

The shape of the resulting magnetic fields is illustrated in Figure 3.1. This

N NS NS

z

x

Figure 3.1: Magnetic field shape arising from an ideal magnetic mirror. The

magnetisation is directed within the plane of the material and varies sinu-

soidally.

configuration gives rise to a magnetic field magnitude of the form

| ~B| = µ0

2
M0(1− e−kt)e−kz = B0e

−kz, (3.6)

where t is the thickness of the magnetic material. We recall that the magnetic

potential is given by EZ = mF gFµB| ~B|. As can be seen, the magnetic field

magnitude does not vary with either x or y, so the mirror is in this sense a

‘flat’ one. Given such a configuration the trajectory of an atom entering this

field can be derived analytically and results in a reflection which (on a scale

larger than the length over which the reflection takes place) is completely

specular. A similar field shape is obtained by considering a sinusoidally vary-

ing out-of-plane magnetisation [22]. We note that the characteristic decay

length of the magnetic field is prescribed by the wavelength of the magneti-

sation variation — a smaller characteristic size gives rise to higher gradients,

and thus a larger force on an atom entering the field.

If the pattern of the magnetisation deviates from a purely sinusoidal form

this introduces a degree of corrugation to the shape of the magnetic field

magnitude [96]. This in turn changes the nature of the reflection of atoms

from specular to diffuse. In the following section we will describe how we

used the domain walls present in planar magnetic nanowires to replicate an

analogue of an ideal magnetic mirror.
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3.3 Nanowire atom mirror

3.3.1 Mirror design

In Section 1.2 the current applications and technologies associated with mag-

netic nanowires were briefly described. We now consider in particular the

planar magnetic nanowires which we used to create an analogue of the con-

ventional atom mirror. The most important feature of such nanowires, in

both the work presented here and other spintronic applications, is the fact

that they host highly controllable magnetic domains. We will show that

the ability to populate, position and control such domains is vital to the

realisation of an atom mirror based on domain walls.

The atom mirror which we have created relies on exactly the same physics

as a conventional magnetic mirror. The difference lies in the sources of

magnetic field used, and subsequently, the behaviour of these sources. In

Section 2 the nature of the fields emanating from nanomagnetic domain walls

was studied in detail. The task at hand is now to use these fields to create a

flat, decaying magnetic field. The way in which this is achieved is to create

a checkerboard of domain walls, as illustrated in Figure 3.2.

The picture we have is one of a 2D array of alternating dipoles. In Sec-

tion 2 the domain wall was described as a point source of fringing fields akin

to a monopole. If one restricts consideration to one side of the nanowire array,

i.e. either above or below the wires, then this situation is entirely analogous

to an array of magnetic dipoles of alternating orientation.

The magnetic field line pattern that is yielded from the 2D array is qual-

itatively very similar to that of an ideal mirror (cf. Figure 3.1), and is shown

in Figure 3.3. However there is an important difference: the magnetisation

produced by the domain wall array is significantly more discretised than the

ideal case due to the point-like nature of the domain walls. This results in a

significant deviation of the field magnitude shape from the flat one achieved

in the ideal case. This is indeed observed in the field magnitude plotted in

Figure 3.3. The result is an atomic potential which displays a great deal more

roughness than an ideal mirror. This is clearly detrimental — we desire as

flat a mirror as possible. To minimise this effect, the domain walls were cho-

sen to be as close together as permitted by the lithographic processes used.
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Figure 3.2: A schematic of the configuration of nanomagnetic domain walls

which we use to create an analogue of the ideal magnetic mirror. The walls

are arranged in a square checkerboard pattern with alternating parity. The

resulting magnetic field lines are illustrated.

This effect will be analysed quantitatively in Section 5.2.3 when we examine

the nature of the atom-nanowire interaction. With the basic principle of the

domain wall mirror established we now consider the manner in which such a

2D lattice of domain walls can be achieved.

The crucial feature of the nanowires when considering the production

of our magnetic mirror is the freedom afforded by the use of lithographic

fabrication techniques. This allows for the creation of patterned magnetic

material of almost any shape and on macroscopic scales. In order to realise

the domain wall lattice we need to be able to populate reliably domain walls

at precise positions. The primary technique for governing domain wall posi-

tion within nanowires is simply the choice of wire shape. Domain walls will

tend to form and reside at positions which minimise the associated magnetic

energy. Bearing this in mind, the shape that we choose for our nanowire

array is an undulating one.

By using an undulating pattern of magnetic material we create a macro-

scopically anisotropic shape which can be populated with (and removed of)

numerous domain walls. This is facilitated by the application of external
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Figure 3.3: The magnetic field from an array of domain walls, as calculated

analytically (cf. Chapter 2) as the sum of the field from many individual

domains. A wire period of 1 µm, a wire width of 125 nm and a wire thickness

of 30 nm are assumed. The data shown are a diagonal slice through domain

walls of alternating parity, i.e. at an angle of 45◦ to the wire length. Shading

represents the magnitude of the magnetic field, arrows represent the magnetic

field direction within the extracted plane.

magnetic fields which switch the wires between two different magnetisation

configurations, illustrated in Figure 3.4. The upper figure shows the ground

state configuration of the nanowire, where there is one single continuous mag-

netic domain orientated along the length of the wire, which defines the easy

axis. There are thus no domain walls present, and no fringing fields. The

lower figure shows the higher energy metastable state which is populated

with domain walls at each apex of the undulating shape. The nanowires can

be forced into this configuration via the application of an external magnetic

field pulse orientated transverse to the wire length (labelled in Figure 3.4(b)).

The applied field saturates the magnetisation in this direction which aligns

to local wire edges after the application of the pulse. The result is the forma-

tion of two magnetic domains per period of the wire structure, with domain
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(a) ‘Off’ configuration

(b) ‘On’ configuration

Figure 3.4: The two magnetisation configurations of our undulating

nanowires. The ground state is shown in (a), where there are no domain

walls present. A higher energy metastable is shown in (b) which has domain

walls present at each apex. The required external field to switch into each

state is also shown.

walls dividing them at each apex. With multiple nanowires arranged next

to each other, separated by a distance equal to the wire period, this results

in a square 2D array of domain walls. The ground state of the wires can be

recovered by applying a magnetic field pulse orientated along the wire length

(labelled in Figure 3.4(a)) which causes the pairwise annihilation of domain

walls within the wire. These processes occur on extremely short timescales

(∼10 ns), typical of micromagnetic reconfiguration [97], and thus the length

of the magnetic pulse used to switch the nanowire state can be very short

indeed.

Whilst the shape of the nanowires dictates the micromagnetic structure,

the characteristic sizes of the pattern govern the precise nature of the in-

teraction between atoms and the domain wall, and is discussed in detail in

Section 5.3. Alternative geometries that produce the same distribution of

domain walls are also possible. For example a triangular shape could be
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used to produce apexes for domain wall sites. However the stronger pinning

of the domain walls that this would produce would lead to much larger fields

being required in order to annihilate the domain walls and switch into the

‘off’ configuration. The nanowire shape used provides both a well defined

and stable array of domain walls whilst maintaining the reconfigurability

inherent to domains within permalloy nanowires.

3.3.2 Mirror fabrication and characterisation

The manufacture and subsequent analysis of the nanowires which we use in

our experiment were performed by colleagues at the University of Sheffield,

also in collaboration with the University of Bath. In this section we will

briefly outline the methods used. The interested reader can refer to [77] and

other sources referenced herein for further information.

The lithographic process used to produce the nanowire array was electron-

beam lithography via lift-off processing. This procedure is outlined in Ap-

pendix B.

The shape of the resulting nanowire pattern was inspected using a scan-

ning electron microscope (SEM). An example image obtained is shown in

Figure 3.5. Inspection of the nanowire structure via SEM imaging reveals

that there is excellent accuracy of the written nanowire shape. While there is

some inherent roughness to the wire edges it is likely that this enhances the

stability of the metastable ‘on’ state as it helps to provide localised pinning

of the domain walls [98].

Analysis of the magnetic behaviour of the fabricated nanowire was per-

formed via a number of techniques. The collective magnetisation recon-

figuration was analysed using hysteresis measurements via magneto-optical

Kerr effect (MOKE) microscopy. The first description of the phenomenon

of MOKE and the associated microscopy techniques are outlined in detail in

[99] and [100]. The behaviour of the fabricated nanowire array was analysed

during a uniaxial switching field pulse sequence, i.e. the fields to switch into

the ‘on’ and ‘off’ states were both orientated along the wire length. The

resulting data indicated the presence of two distinct states. The ‘on’ state

corresponds to all domain wall sites being populated. The application of a

moderate oppositely-orientated field produces the ‘quasi-off’ state; domain
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1 µm

1 µm

Figure 3.5: A scanning electron micrograph of a section of the nanowire

array. The periodicity of the serpentine pattern is 1 µm and each wire is

displaced by a distance of 1 µm.

walls are both annihilated and populated by this pulse, meaning the domain

wall sites are partially populated.

Additional analysis of the dynamic micromagnetic behaviour was pro-

vided through the use of scanning Hall probe microscopy (SHPM), a tool

which provides much greater resolution compared to MOKE microscopy

[101, 102, 103], permitting a direct observation of the alternating field pat-

tern. The annihilation and population of domain walls is observed for both

a uniaxial and biaxial switching scheme. It was found, as expected, that

the biaxial scheme produced a more extensive annihilation of the domain

walls. Together with the MOKE microscopy we observe that 100% of the

domain wall sites become populated, and 98% of these remain populated at

remanence. Population of the domain walls is achieved by a field of 120 mT

transverse to the wire length. Complete removal of the domain walls is

achieved by a longitudinal field of around 22 mT.

3.4 Experimental setup

In this section we will discuss the details of the experimental apparatus used

to carry out the nanowire atom mirror experiment. The emphasis is placed
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on elements of the setup which are novel or in some way particular to the

experiment. For more details on the general apparatus referred to within this

section the reader is advised to consult other sources which will be referenced

where appropriate.

3.4.1 Vacuum chamber

The basis of most studies of ultracold atoms is a vacuum chamber in which

the experiment takes place, and it is the details of the experiment which gov-

ern the requirements placed upon such a chamber. The vacuum system used

in our experiment is shown schematically in Figure 3.6. Perhaps the most

Figure 3.6: Schematic illustration of the vacuum system used in the exper-

iment. The flange sizes are as per the expanded spherical cube referred to

in the text. A nipple and 4-way cross are connected to either side of the

chamber. The latter is then connected to an ion pump (not pictured) and

an all-metal valve, which is open during baking out. A glass cell is shown

connected on top of the chamber. The axes used for the cooling beams are

shown in red. The axes for the optical pumping beam and light sheet are

shown in maroon and orange respectively (cf. Figure 3.8). The supports for

the chamber are not shown.
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important feature to consider when designing the vacuum system was flexi-

bility and freedom, and this was afforded by the use of a chamber with a large

amount of optical access. The chamber used is the Kimball 4.5” expanded

spherical cube (MCF450-SphCube-E6C8A12) [104]. The large number of

ports allows for very good optical access. This was particularly advantageous

given that the experiment was the first to incorporate a nanowire based chip

in vacuum; with the large amount of access available this allowed for some

degree of contingency. The vacuum in the chamber was achieved using a

combination of a backing pump, turbo pump and ion pump combined with

a bakimg out procedure at 200◦C. The ion pump with which the vacuum

was maintained is a Varian VacIon Plus 55 StarCell [105]. The final pressure

inside the vacuum system according to the ion gauge used during baking out

was observed to be around 1 × 10−9 mbar. The load measured on the ion

pump controller after baking out was around 32 µA which corresponds to

around 6 × 10−9 mbar according to the calibration of the controller. An

estimate of the vacuum pressure was also achieved by performing lifetime

measurements of an ultracold atom cloud in a magnetic quadrupole trap. A

lifetime of 43± 2 s was measured from which we can use a rule of thumb to

estimate the background pressure to be around 3 × 10−10 mbar [106].

In comparison to some other ultracold atom experiments, the vacuum

system is a relatively simple one. Three electrical feedthroughs were incor-

porated to provide connections to the coils which reconfigure the state of the

nanowire array, which are described in Section 3.4.3, and also to connect the

dispensers (SAES Getters [107]) which act as the source of rubidium. An

all metal valve (Caburn-MDC MAV-150-V [108]) was used in order to make

the connection to the vacuum chamber during the bake-out procedure. The

final part which was attached to the chamber was a cuboidal glass cell. The

purpose of this cell is to allow for imaging of atoms launched upwards in a

manner akin to an atomic fountain [109], allowing analysis and optimisation

of the moving molasses procedure, which is described in detail in Section 6.2.
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3.4.2 Lasers

Overview

As well as the vacuum chamber, the other ingredient essential to any ultracold

atom experiment is the laser system. This is the tool which we require in

order to cool, and often to manipulate, the atoms being studied. Efficient

laser cooling of alkali atoms requires at least two different laser frequencies.

For the case of 87Rb, the species which we use, we need two. This requirement

is set by the energy level structure of the D2 transition, which is illustrated

in Figure 3.7. The two transitions required to cool 87Rb are labelled by red

780.24 nm
384.23 THz

F=2

F=1

F=0

F=1

266.7 MHz

156.9 MHz

72.2 MHz

6.83 GHz

5 P
2

3/2

5 S
2

1/2

F=3

F=2

193.7 MHz

2.56 GHz

G p= 2 × 6.07 MHz

D

Figure 3.7: Energy level structure of the D2 transition in 87Rb. The possible

transitions between states of different F are labelled. The red arrow repre-

sents the cooling or pump transition, which has a detuning from resonance of

∆. The blue arrow represents the repump transition. Also labelled in green

is the transition associated with optical pumping. Diagram is not to scale.

Values are taken from [110].

(pump transition, F = 2 → F ′ = 3) and blue (repump transition, F = 1 →
F ′ = 2) arrows. As required by the technique of laser doppler cooling [106],

the pump laser is red-detuned from resonance by a frequency ∆, whose value
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is typically around 2Γ, where Γ is the natural linewidth of the transition.

An overview of the laser system that was built for this experiment is

shown schematically in Figure 3.8. A number of acousto-optic modulators
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Figure 3.8: An overview of the optical setup of the experiment. Green boxes

represent AOMs with typical operating frequencies labelled. For the case

of the AOMs for the magneto-optial trap (MOT) beams the frequencies la-

belled correspond to the end of the molasses ramp. Blue cubes are polarising

beam splitters, white cubes are 50:50 beam splitters. After passing through

the AOMs the light is coupled into fibers and passed to the chamber. The

chamber setup is shown on the right. The top drawing of the chamber is a

view from above, the bottom drawing is a view from the side — the mount

holding the nanowire chip is shown beneath the intersection of the MOT

beams. The drawing is not to scale and many optical elements have been

omitted for clarity.

(AOMs) are shown in green that are used to shift the frequency of the light.

The AOMs used for the optical pumping and repump beams (AA Opto-

electronic MT80-A1-IR [111]) have a central operating frequency of 80 MHz.

The remainder (AA Opto-electronic MT200-A0.5-800) all have a central op-

erating frequency of 200 MHz. The signal for all these AOMs is produced by

voltage-controlled oscillators (VCOs) which were built in-house (with the in-
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corporation of moving molasses, described in Section 6.2, arbitrary function

generators are also used). The signal from these then passes to amplifiers (AA

Opto-electronics AMPA-B-34) before being used to drive the corresponding

AOM. For all of these AOMs the light is double passed, which helps min-

imise any steering of the beam as the frequency of operation of the AOMs

is altered. In each case the +1 order of the diffracted light is selected, cor-

responding to an increase in the frequency of the light. The uses of each of

these AOMs will be described in the following sections.

Laser cooling

The pump light required to cool the atoms is provided by a Toptica DL100

diode laser, which outputs a maximum power of around 150 mW [112]. This

laser is frequency stabilised using a polarisation spectroscopy (‘polspec’) ref-

erence [113, 114]. This choice of locking technique was made as it provides a

fairly narrow locking signal (width typically around 20 MHz [115]) within a

setup which is easy to build. The actual locking procedure is performed by a

Toptica PID controller module. We note that the light for the polspec setup

is taken after a double pass through an AOM, thus the pump laser is not in

fact locked on resonance, but at a frequency approximately 200 MHz lower.

Subsequent AOMs then shift the frequency by an amount slightly less than

200 MHz, thus allowing for a realisation of the small detunings required for

the experimental procedure.

The pumping light for the MOT has three associated AOMs. The reason

for this, as discussed in Section 6.2, is that the moving-molasses technique

requires three different frequencies of light. When not performing moving

molasses all three of these AOMs operate at the same frequency. The fre-

quency labelled for these AOMs in Figure 3.8 is the frequency at the end of

the molasses ramp.

The repump light is provided by an external cavity diode laser which was

built in-house. This laser outputs a maximum power of around 30 mW and

is frequency stabilised using a dichroic atomic vapour laser lock (DAVLL)

setup [116]. This method was chosen for the repump laser because it is easy

to set up and provides a very stable lock: the effective ‘capture range’ of the

lock is large compared to other locking methods. This does, however, mean
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that the width of the locking feature can be of the order of 1 GHz [117].

Whilst this may lead to a relatively imprecise laser lock this is not a problem

for the repump transition, given the relatively low scattering rate required

to ensure that the atomic population in the lower hyperfine ground state

is effectively transferred back into the cooling transition. There is also an

offset associated with the zero point of the DAVLL lock signal. Because the

spectroscopy does not resolve sub-Doppler features, i.e. we can’t resolve the

individual upper hyperfine energy levels, the associated absorption is due to

the contributions of all the upper states. The locking signal is thus centred

at a frequency associated with the transition from the F = 1 ground state to

the unsplit 52P3/2 excited state manifold. Because of the broad nature of the

locking signal, the aforementioned offset, and the fact that the position of the

locking point is easily tuned through a variation of the optical or electronic

setup, it is only necessary to use one AOM for the repump light. It is a

simple matter to lock at a frequency which is offset away from resonance by

an amount which is then accounted for by the AOM frequency shift.

The other necessary component of producing a MOT is the magnetic

field, which takes a quadrupole form. This is produced by coils which are

placed in vacuum, which shall be described in Section 3.4.3.

Following the loading of the MOT the atoms are cooled further by the

use of the optical molasses technique [118]. During this process the magnetic

field is removed and the size of the detuning of the lasers is increased (a re-

duction in frequency). In its simplest form, the frequency is simply stepped

as the magnetic field is removed, however we find that a lower temperature is

achieved by ramping the frequency in a continuous manner. Either of these

two schemes is easily implemented through the use of VCO control. The op-

timisation of this cooling procedure will be briefly discussed in Section 3.4.4.

Optical pumping

After the atoms are cooled they undergo an optical pumping procedure. The

purpose of this part of the experimental sequence is to prepare the sample

in the correct mF state. We desire the atoms to be in the F = 2, mF = 2

ground state as this is the weak-field-seeking state which experiences the

largest Zeeman shift. In order to do this we must stimulate atomic transitions
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which transfer the population from lower mF values into this state. This is

achieved through the use of σ+ transitions, i.e. transitions from the state mF

tomF ′ = mF+1, which are driven by circularly polarised light. In order to be

able to define meaningfully the necessary polarisation of light to induce this

transition we must define a quantisation axis to which the magnetic dipoles

align. This is achieved via the application of a weak magnetic field, which

is described in Section 3.4.3, in the direction of propagation of the optical

pumping beam.

For the case of 87Rb atoms there are in fact two main options for pumping

the population into the F = 2, mF = 2 state. The first is to use a single laser

frequency which addresses the transitions between F = 2 and F ′ = 3. Due to

quantum mechanical selection rules, the atoms cannot decay into the F = 1

ground state unless, as in the case of laser cooling, they are off-resonantly

excited into the F ′ = 2 state. Given the short duration of the optical pumping

sequence (∼1 ms) and the relatively low intensity of the beams we can neglect

this effect. Thus there is no need for a repump beam when we pump on this

transition. The disadvantage to this scheme is that once the atoms reach

the F = 2, mF = 2 state it is not dark, i.e. the atoms continue to scatter

photons. Whilst this does not significantly perturb the polarisation of the

atomic sample it does lead to heating of the atoms.

To avoid this heating effect we use an alternative scheme. We now con-

sider driving the transition between F = 2 and F ′ = 2. Unlike the previously

mentioned scheme this allows for decay back to the F = 1 ground state, at

which point the atoms no longer scatter light from the optical pumping beam.

Thus a repump beam is required. This beam addresses the same transition

as the repump beam used in laser cooling, i.e. the F = 1 to F ′ = 2 transi-

tion. The complete optical pumping scheme is shown in Figure 3.9. Whilst

it is less convenient to use two light frequencies to perform optical pumping,

there is a significant benefit in that the atoms are pumped into a dark state.

When they reach the F = 2, mF = 2 ground state they no longer scatter any

photons. This has the benefit of dramatically reducing the heating of the

atoms. Simulations which are described in Chapter 5 show that the scheme

we adopt results in each atom scattering on average around 3.7 photons,

whilst the single frequency scheme results in the scattering of around 160
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Figure 3.9: Energy levels of 87Rb with the transitions addressed by the op-

tical pumping beams labelled. Green arrows represent the pumping transi-

tions, blue arrows represent the repumping transitions (cf. Figure 3.7). The

numbers labelling the arrows are the corresponding dipole matrix elements,

indicating the relative strength of the transitions. Note that the magnetic

sub levels are drawn shifted by a magnetic field. The atoms are pumped

into the |F = 2, mF = 2〉 ground state, which is dark. The separations of the

energy levels are not to scale.

photons (cf. Section 5.2.2). The resulting momentum kick is in fact reduced

further due to the retroreflection of the beam.

To realise this scheme we use an 80 MHz AOM to shift the pumping light

to the correct frequency (note in Figure 3.7 that the frequency difference

between F ′ = 3 and F ′ = 2 is 267 MHz ≈ (200− 80) × 2). The repumping

light is the same as that used for laser cooling, so this light is split by a

polarising beam splitter and sent to two different fibers (cf. Figure 3.8). The

1/e2 radius of the optical pumping beam is around 1.4 mm and 0.6 µW

(40 µW) of pumping (repumping) light is typically used.

One difficulty encountered when implementing the optical pumping was

due to the need for it to share an axis with the light sheet. This required

careful alignment to ensure correct positioning of the beam. Using a cres-

cent mirror allows for the optical pumping beam to be directed onto a path

just above the light sheet, and also ensures that no optical pumping light is
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detected by the photodiode associated with the light sheet.

Imaging

Once the atomic sample has been prepared, we desire to track the motion of

the atoms. The most direct way of doing this is to take an image of them.

This is achieved by illuminating them with resonant light which is then scat-

tered and observed on a detector. This light is derived from the same AOM

that we use to produce the pump light for laser cooling, but using a different

AOM frequency, which shifts it onto resonance. The required frequency was

determined by maximising the observed scattered light, and was in general

different to the frequency used for the light sent to the polarisation spec-

troscopy setup (as can also be seen for the AOM associated with the light

sheet in Figure 3.8). The reason for this is likely due to some small offset

on the locking signal used, and/or the presence of a magnetic field which

Zeeman shifts the energy levels of the atomic sample.

The imaging light is switched on in synchronisation with the triggering

of a Pixelfly VGA camera [119]. An image of the scattered light is then

taken from a distance of around 30 cm using a pair of lenses such that a

magnification of around 1.7 is achieved. The direction from which the cloud

is imaged is shown in Figure 3.8. The camera is connected to a computer

via an ethernet cable and the image is read in via the associated Labview

drivers.

Additional imaging is also provided using another camera (Computar FC-

65 II [120]) which is run continuously, providing real time observation of the

atom cloud which aided in optimisation of various aspects of the experiment.

Light sheet

Whilst the imaging techniques described in the previous section are undoubt-

edly very useful, a more sensitive and precise measure of the atom dynamics

is provided through the use of a light sheet. This is realised via the fo-

cussing of a laser beam in one dimension. This beam then passes between

the initial position of the atom cloud, and the nanowire array, as pictured in

Figure 3.10. The height of the light sheet is 4 mm above the nanowire array,

which was chosen in accordance with the theoretical predictions presented
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in Section 5.3. In the context of our atom mirror, atoms which fall onto

LS

OP

4 mm 10 mm

5 mm

2 mm

l/4

Figure 3.10: Schematic of the experimental setup showing the position of the

light sheet between the atomic cloud and the nanowire array. Diagram is not

to scale.

the nanowire array pass through the light sheet, scattering light. Some of

the atoms are then reflected and subsequently pass through the light sheet

a second time, again scattering light. A photodetector recording the trans-

mitted power of the beam will then observe a reduction in the light level as

the atoms pass through.

In our setup the beam is linearly polarised such that it is transmitted by

a polarising beam splitter before being focussed by a telescope of cylindrical

lenses (Thorlabs LJ1212L1 [121]) with a focal length of 30 mm. This results

in a beam profile with semi-major axes which have 1/e2 widths of 7.8 mm

and 0.18 mm. Because the light sheet shares the same axis as the optical

pumping beam we choose to circularly polarise the light sheet in the same

sense such that the polarisation of the atomic sample is perturbed as little as

possible as the atoms pass through the light sheet. Thus the optical pumping

beam and light sheet pass through the same quarter-wave plate before enter-

ing the vacuum chamber. After passing through the vacuum chamber (and

the telescope of cylindrical lenses) the light sheet is then retroreflected. As
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will be shown in Section 5.3 this is very important in order to minimise the

perturbation of the atomic cloud. The light sheet then passes back through

the chamber and the quarter-wave plate such that when it reaches the po-

larising beam splitter again it has undergone a π/2 rotation of polarisation

and is reflected out of the opposite port. It is then focussed onto a pho-

todetector (Hamamatsu C5460 APD), which has a 10 MHz bandwidth and a

photosensitivity of 1.5 × 106 V/W. Care was taken to place the photodector

sufficiently far from the optical pumping coils to avoid ringing in the pho-

todiode signal caused by the switching of these coils. The setup we have

described is illustrated in Figure 3.11. The signal from the photodetector is

then amplified a further 10 times by a TTi WA301 waveform amplifier.

Figure 3.11: Illustration of the setup used to create and detect the light sheet

used in the experiment. PBS is a polarising beam splitter, CL is a cylindrical

lens λ/4 is a quarter-wave plate, and PD is a photodiode. Diagram is not to

scale.

In order to minimise the aforementioned perturbation to the atoms as

they pass through the light sheet we must ensure that the power used is very

small (around 50 nW). At the same time it is important that the relative
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stability of this power is very precise, as we predict that reflected atoms will

scatter only around 1% of the light. Because of factors inherent to the laser

setup, such as pointing of the beam, polarisation drift and deviations about

the locking point, there are significant fluctuations in the power within the

light sheet that vary on timescales comparable to the duration of the signals

we wish to extract. To eliminate this we utilise a locking technique which ser-

vos the power within the light sheet to a set level. This is achieved by picking

off a small amount of the laser light and monitoring it on another fast pho-

todiode (Hamamatsu C5460 APD). The position of the servoing photodiode

was chosen to be as close to the light sheet as possible so that fluctuations in

the beam caused after the point of servoing (e.g. due to passing through an

optical fiber) are eliminated. The signal obtained is servoed against a stable

DC voltage, which can be manually tuned. The electronic circuit used to

achieve this servoing is shown in Appendix C.2. An estimate of the sensitiv-

ity of the light sheet can be inferred by considering the noise on the signal.

If we assume that atoms falling through the light sheet spend a time δt in

the beam we can then calculate the standard error on the signal over this

time period. Using the scattering rate of an atom in the F = 2, mF = 2 state

allows us to convert this into an estimated sensitivity of around 103 atoms.

Increasing the power in the light sheet would allow increased sensitivity but,

as will be shown in Section 5.3, would cause a detrimental perturbation of

the atomic cloud.

3.4.3 Magnetic fields

Switching coils mount

Within the vacuum chamber described in Section 3.4.1 there is a mount which

holds the nanowire chip as well as the coils used to both form the MOT and

to switch the magnetic configuration of the nanowires. This mount is shown

in Figure 3.12.

A number of factors were borne in mind when designing this mount.

Firstly, the optical access afforded by the choice of vacuum chamber should

be jeopardised as little as possible by the inclusion of the mount. This im-

poses some constraints on the size and shape of the mount — the minimum

requirement is the need for access through which to pass MOT beams. Extra
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Figure 3.12: The mount used to hold the nanowire chip and associated coils.

The lower images are drawn to scale and dimensions are labelled in millime-

tres. The entire structure is screwed into a 4.5 inch Conflat flange.

access is also desired through which to perform imaging and optical pumping.

Efforts were made to minimise the amount which the mount and associated

electrical feedthroughs blocked the axes of the spherical cube.
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Another important point to consider is that the mount should be as non-

magnetic as possible, as the mount will be subjected to large magnetic fields,

given that it holds the coils used to switch the nanowire array. This require-

ment is effected by using grade 316 stainless steel for the construction of the

mount, which has a relative magnetic permeability very close to 1 [122] and is

thus non-magnetic. Eddy currents are also minimised by avoiding conducting

loops in the structure. This is achieved by utilising MACOR ceramic spacers

within the loops that the wire of the coils is wound onto (cf. 3.12). MACOR

is an excellent insulator, so effectively prevents the creation of eddy currents.

It also has a number of characteristics that make it favourable for use in ex-

periment — it has very little thermal expansion, high compressive strength,

is easily machinable and is UHV compatible with negligible outgassing.

Other factors that were accounted for when designing and building the

mount include such things as the ease with which electrical connections could

be made to the coils; ensuring sufficient turns in the coils which are wound

onto the mount in order to achieve the desired field; and using methods of

construction compatible with working under a UHV environment, e.g. the

use of vented screws to prevent virtual leaks.

A consideration of all these factors culminated in the design illustrated

in Figure 3.12. The mount is screwed in place on a CF flange adapter.

The other side of this adapter has an electrical feedthrough attached which

provides the connections to the coils which switch the nanowire array into

the ‘on’ configuration and provide the magnetic field for the MOT. A second

electrical feedthrough is used on an adjacent port of the expanded spherical

cube to provide a connection for the coils which switch the array into the

‘off’ configuration. The chip upon which the nanowires are written is held

within a mount such that the array is located equidistant between the on

coils, equidistant between the off coils, and 1 cm below the axes of the coil

pairs.

Switching/MOT field characterisation

To study the micromagnetic behaviour of the nanowires we shall be changing

the magnetisation configuration through the use of coils in vacuum. As such

we need to know the field which these coils apply to the chip. This was
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done both theoretically and empirically. The axial field produced by both

sets of coils was measured using a Hall probe. For the square ‘off’ coils this

was performed with the current flowing in Helmholtz configuration and a

maximum field of 7.60±0.06 G/A was measured, located at the centre of the

coil pair. For the circular ‘on’ coils, which also produce the quadrupole field

required for our MOT, the field was measured in both Helmholtz and anti-

Helmholtz configuration. In Helmholtz configuration the field at the centre

of the coil pair was found to be 12.7±0.1 G/A. The maximum field on axis

was found to be located away around 10 mm either side of the centre of the

coil pair, with a value of 13.6±0.1 G/A. In anti-Helmholtz configuration a

field gradient of 10.0±0.5 G/A/cm was measured at the centre of the coil

pair.

The data taken were compared with a simple theoretical treatment ac-

cording to the Biot-Savart law, which states that the on-axis field at a dis-

tance z from the centre of a current loop of radius R, carrying a current I,

is given by [37]

~B(z) =
µ0I

2

R2

(R2 + z2)3/2
ẑ. (3.7)

Whilst there is reasonable agreement between the measured fields and theo-

retical calculations, the discrepancies between the two are significant. This

is expected as the theoretical model is an approximation which doesn’t take

into account factors such as the finite width of the wire, or technical imper-

fections such as inaccuracies in the winding of the coils. Thus the measured

values are chosen as the basis for calibrating the fields that we apply to the

chip.

The data presented give a good estimate of the field experienced by the

nanowires but we would like to assess the shape of the magnetic field on

the scale of the chip. This kind of sub-millimetre resolution is not possible

through a direct measurement, and the simple theoretical treatment pre-

sented above is not appropriate as the coils are not centred on the nanowires

themselves, but on the MOT position, 1 cm above. Thus the analytic form

is rather more complicated than the ‘on axis’ case, but the form of the fields

can be derived from the Biot-Savart law. The radial and axial components
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of field, ~Br and ~Bz, are then given by [123]

~Br(r, z) =
µ0I

2π

z

r
√

(R + r)2 + z2

[

R2 + r2 + z2

(R − r)2 + z2
E(k2)−K(k2)

]

r̂, (3.8)

~Bz(r, z) =
µ0I

2π

1
√

(R + r)2 + z2

[

R2 − r2 − z2

(R− r)2 + z2
E(k2) +K(k2)

]

ẑ, (3.9)

where we define k2 = 4Rr/ [(R + r)2 + z2], and K and E are the complete

elliptic integrals of the first and second kind respectively. Using these expres-

sions it is then possible to calculate the field present across the nanowire chip

for either Helmholtz or anti-Helmholtz configuration coils. The results are

shown in Figure 3.13. In both cases we assume a current of 1 A is applied.

For the Helmholtz case the fields are quoted relative to the field at the centre

of the chip.
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Figure 3.13: The magnetic field present across the nanowire chip due to the

MOT coils. The field is shown for both a Helmholtz and anti-Helmholtz

configuration, with 1 A of current in both cases. Shading represents the

magnetic field magnitude. Arrows represent the direction of the field in the

plane of the chip.

When we consider coils in Helmholtz configuration we note that there

is almost no variation of the field over the chip; the maximum deviation

of the field from that in the centre is around 48 mG/A and the maximum

deviation in direction from a purely axial field is an angle of around 0.8◦.

This is intuitively expected as the chip is significantly smaller than the coils

and their separation. This uniformity is desired as the field used to switch
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between magnetisation states should be orientated axially with respect to

the coils. It is likely that the accuracy with which the chip is physically

orientated in the mount is less than the fidelity of the field to an axial one.

When the coils are in anti-Helmholtz configuration there is of course much

greater variation in both the field direction and size.

The MOT coils have a further use, which is as a purely magnetic trap for

the atoms. This is achieved by running them in an anti-Helmholtz config-

uration, but with a larger current. The magnetic field gradient required to

levitate atoms against gravity is given by mF gFµB
~∇| ~B| = mg, where m is

the mass of the atom and g is gravitational acceleration. This corresponds

to a value of ~∇| ~B| of 15.4 G/cm for a 87Rb atom in the F = 2, mF = 2

ground state. Using the measurements of the field from the coils this then

corresponds to a current of around 1.5 A. However, using this value would

provide a trap of zero depth, so the atoms would be almost immediately

lost. Instead a current of around 6 A is used when trapping atoms in the

quadrupole trap. Because the current passing through these coils must be

changed on a short timescale, the voltage supplied to them is controlled using

a couple of field-effect transistors (FETs) which combine two separate power

supplies in parallel. Analysing the switching behaviour of these coils using

a Honeywell current sensor (CSNF661 [124]) we observe a rise (fall) time of

around 0.5 ms (0.2 ms).

Electronic control

In order to drive the MOT coils a circuit was developed to switch between

operation in Helmholtz and anti-Helmholtz configuration and to control the

application of the switching field. When in Helmholtz configuration a current

pulse is created which is drawn from a bank of three car batteries (Bosch S5

[125], 12 V, 520 A). A rheostat was used to tune the magnitude of this cur-

rent pulse. The circuit used to provide the pulse is detailed in Appendix C.1.

Since the characteristic timescale of micromagnetic reconfiguration is of the

order of tens of ns [97] we aim to apply as short a pulse as possible in or-

der to limit any heating which occurs. The speed of this pulse is limited by

the inductance of the coils and a minimum duration of around 500 µs was

observed (as discussed in Appendix C.1 the edges of the pulse are slowed to
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ensure proper operation of the FET used to gate the high current pulse, thus

at the minimum pulse duration the pulse shape is approximately triangular).

Testing of the circuit out of vacuum showed that constant operation with

a pulse generated at a rate of 1 Hz did not produce any observable heat-

ing, which was deemed satisfactory given that in practice the duty cycle of

operation is orders of magnitude less.

Bias fields

There are two more uses of magnetic fields within the experimental procedure

which are yet to be described. These are the weak bias fields used to cancel

residual background magnetic fields and to define a quantisation axis for

optical pumping. The bias (quantisation axis) coils are produced using square

loops of current carrying wire of 23 (26) turns, 58 × 51 cm and 58 × 58 cm

(58 × 51 cm) in size, which are mounted on a construction rail frame around

the vacuum chamber. The field produced at the centre of these coil pairs is

calculated to be approximately 0.36 G/A and 0.43 G/A (0.40 G/A) when

operated in Helmholtz configuration. The coils which are used to define the

quantisation axis for optical pumping are operated dynamically and are thus

controlled by a FET. For these coils we observe a rise time of around 0.5 ms.

Ringing in the coils is minimised by ensuring that an overvoltage does not

occur. For the other two axes the current passing through the wires does not

vary so the coils are connected directly to power supplies.

3.4.4 Experimental procedures

Atom reflection

In this section we shall describe the experimental routines employed to carry

out the experiment and optimisation procedures. The timing for the routines

was achieved via Labview computer control, using one digital (PCI-6713) and

one analogue (PCI-DIO-32HS) PCI card [126] to process the required outputs

and triggers.

The first routine that we shall consider is that associated with the experi-

ment proper, i.e. the realisation of the magnetic atom mirror. A schematic of

the timing sequence is shown in Figure 3.14. The procedure is as follows: the
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Figure 3.14: Experimental sequence performed when observing the reflection

of atoms from the nanowire array. The individual lines represent whether

the individual elements are on or off. For the cooling light the line height

represents qualitatively the frequency of the light. During moving molasses

three distinct frequencies are used, for normal molasses the central frequency

is used for all beams. Typical durations of the individual steps are labelled.

Diagram is not to scale.

MOT is loaded for a duration of around 10 s, producing a cloud of around

2 × 107 atoms at a temperature of around 100 µK. During this MOT phase

the detuning of the beams is −2π × 12 MHz and the current passing through

the MOT coils is around 2 A, corresponding to a magnetic field gradient of

approximately 20 G/cm.

After loading the MOT a molasses phase is carried out for a duration of

around 1.5 ms whereby the quadrupole magnetic field is turned off and the

detuning of the pumping light is ramped down linearly to a value of around

−2π × 62 MHz. This ramp is controlled via an analogue signal supplied

to the VCOs which control the pumping light. With the implementation

of moving molasses a slight modification is made to the experimental pro-

cedure. Three separate AOMs, controlled by arbitrary function generators

(Tektronix AFG3252), are used to produce three different frequencies of light

(cf. Section 6.2). Thus in Figure 3.14 we see that the frequency of light is

split into three during molasses. With the implementation of moving mo-

lasses the function generators were also used when performing conventional

molasses.

The atoms are then optically pumped for a duration of around 2 ms with

the beams described in Section 3.4.2. During the optical pumping procedure
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a bias field is applied along the direction of the beam to define a quantisa-

tion axis. This field is provided by one pair of the coils that act to cancel

residual background fields. In practice we found that this coil pair could be

switched off when a quantisation axis was not needed, with no detriment to

the temperature of the atomic cloud. A current of around 10 A is applied to

the coil pair, resulting in a magnetic field of around 4 G.

At the end of the optical pumping sequence the atoms are then released

and allowed to fall under gravity. During this time the only light field present

is the light sheet. The magnetic field defining the quantisation axis for optical

pumping is kept on in order to maintain the polarisation of the atoms; the

magnetic dipoles of the atoms remain aligned with this applied field as they

fall, and this helps to ensure an adiabatic passage into the large fringing fields

from the nanowire array.

MOT load optimisation

One of the most basic parameters in any ultracold atom experiment is the

number of atoms that are cooled. To measure this we make use of the light

scattered from the MOT. A large lens is used to focus this light onto a

photodiode. Due to practical considerations the best signal was obtained by

using a lens with a diameter of 2” with only a fraction of the area of the lens

collecting the MOT fluorescence. To measure this fraction quantitatively a

photograph of the lens was taken in situ. The number of pixels within the

area of the lens exposed to the fluoresced light was then counted, as well as

the number of pixels within the lens as a whole. Because a large amount of

scattered light not associated with the MOT was detected at the photodiode

it was necessary to measure the signal with reference to a background level.

This was simply achieved by automating a repeated loading and emptying

of the MOT. It is then possible to make an estimate of the atom number,

NMOT, according to the following formula which describes the photodiode

voltage produced, VMOT:

VMOT = REpNMOTfηZ, (3.10)

where R is the corresponding scattering rate of the cycling transition, as-

suming a two-level atom (cf. Equation 5.7), Ep is the energy per photon, f is
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the fractional solid angle over which light is collected, η is the responsivity of

the photodiode (in A/W) and Z is the impedance of the photodiode circuit.

Note that care must be taken to use the correct value of light intensity —

for a six-beam MOT this is the total intensity from all six beams.

Whilst the above formula provides a reasonable estimate of the atom

number, it is not particularly accurate as a large number of the quantities

used have significant errors in their measurement. A better estimate of the

atom number is possible by using the light sheet. By fitting the acquired

light-sheet signal, either to Monte Carlo simulations, or analytic expressions

[127], allows for a much more accurate measure.

Time-of-flight measurements

To optimise the temperature of the atomic cloud fluorescence images were

used to make time-of-flight measurements [118]. A cloud of atoms in thermal

equilibrium under freefall will evolve according to Newtonian mechanics with

a Maxwell-Boltzmann distribution of velocities. We assume that the initial

atom positions are described by a Gaussian with standard deviations σi(0)

for each of the cartesian directions. The standard deviation in a particular

direction evolves according to

σi(t) =

√

σi(0)2 +
kBTit2

m
, (3.11)

where Ti is the temperature in the corresponding direction, kB is Boltzmann’s

constant and m is the mass of the atom. To infer the temperature we simply

have to measure the width of the cloud as a function of time. Whilst such a

measure of the temperature could be achieved using the light sheet [127] it

was found to be less precise than using fluorescence images. The experimental

sequence employed is shown in Figure 3.15 and is described as follows. The

atomic cloud is loaded and cooled via optical molasses. Because the optical

pumping procedure can cause a small amount of heating it is also included in

the routine. After optical pumping the cloud is released and allowed to fall

under gravity. Some time later, the MOT beams are flashed on again briefly,

now at a resonant frequency, and an image is taken of the scattered light. In

order to remove any scattered light not produced by the atoms, dark-frame

subtraction is used. A second image is taken under the same conditions at
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MOT Load Molasses Release

Cooling Light

MOT Coils

O.P. Light

O.P. Coils

Repump Light

Optical Pumping

10 s 1.5 ms 1 ms 100 ms

Image ImageWait

0.6 ms 0.6 ms1 s

Figure 3.15: Experimental sequence performed when carrying out time-of-

flight measurements of the atomic cloud temperature. The diagram is laid

out as per Figure 3.14.

a later time, when the atoms have moved out of the imaged region. After

background subtraction the image is smoothed and the profile of the scattered

light is fitted to a Gaussian form in both the x and y dimensions. This process

is repeated for a range of different times of flight and the resulting evolution

is fitted according to Equation 3.11.

Through the use of this time-of-flight procedure it is possible to optimise

a number of aspects of the experimental procedure such as the molasses

duration, molasses detuning, shim fields etc. to produce as low a temperature

as possible. Through this optimisation we estimate we can cool the atomic

cloud to temperatures of around 10-15 µK with atom numbers of around 107

(temperatures as low as around 5 µK were possible at the expense of atom

number).

Optical pumping optimisation

There is one other important quality to optimise for the experiments that

were carried out, and that is the polarisation of the atomic cloud. This

was achieved by loading the atoms into a magnetic quadrupole trap. The

experimental sequence is illustrated in Figure 3.16 and is as follows: the

atomic cloud is loaded and cooled using optical molasses, and then optically

pumped. Immediately after optical pumping the magnetic quadrupole trap is

turned on, and maintained for a short duration whilst any untrapped atoms

move away from the imaged region. The coils are then turned off at the

same time as a fluorescence image is taken. A dark frame is also acquired a

short time later when the imaged region is empty of atoms. As a reference, a
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MOT Load Molasses Hold

Cooling Light

MOT Coils

O.P. Light

O.P. Coils

Repump Light

Optical Pumping

10 s 1.5 ms 1 ms 50 ms

Image ImageWait

0.6 ms 0.6 ms1 s

Figure 3.16: Experimental sequence performed when loading the quadrupole

trap. The diagram is laid out as per Figures 3.14 and 3.15. Note that the

variation in current through the MOT coils is represented qualitatively by

the height of the corresponding line.

fluorescence image is taken without the quadrupole trap hold, i.e. so that all

of the cooled atoms are imaged. The fraction of atoms that are magnetically

trapped is then found by summing the total counts for both images, and

finding the ratio.

Ideally we wish to analyse the number of atoms that are pumped into

the F = 2, mF = +2 state. In order to do this we must choose the magnetic

field gradient of the quadrupole trap appropriately. As per Section 3.4.3, a

field gradient of around 15.4 G/cm is required to levitate mF = +2 atoms

against gravity, however we require a trap which is deep enough to trap these

atoms, yet not deep enough to hold mF = +1 atoms. Whilst calculations

can provide an estimate of the field required to do this, the best method is

to use the signal from the quadrupole trap. By varying the current passed

through the coils one can observe an increase in the signal as atoms in the

mF = +2, and subsequently mF = +1, state become trapped. The signal

change is not a stark one however, as there is a continuous increase in the

number of atoms trapped as the potential depth is increased. To help assess

the points where magnetic sublevels begin to be trapped it is also possible

to observe motion of the atoms in a weakly confining potential by varying

the hold time within the quadrupole trap. Using these methods a current of

around 6 A was chosen to create the quadrupole trap.

This method of loading a quadrupole trap was used to optimise the optical

pumping procedure by analysing the variation in signal as parameters such

as the beam power and polarisation were varied. Through this optimisation
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we estimate we are able to pump around 90–95% of the atomic cloud into the

mF = +2 state, which we consider to be an excellent efficiency, comparable

to some of the best reported polarisations [128].

3.5 Conclusion

In the foregoing discussion we have outlined the experimental equipment and

techniques that were used to realise an atom mirror based on nanomagnetic

domain walls. Whilst many of the features described are common to other

cold atom or atom mirror experiments, we have described in detail the fea-

tures characteristic of our setup. In particular, the method for sensitively

detecting the atoms via an intensity-stabilised light sheet and the manner

in which the micromagnetic reconfiguration of the nanowire array is realised

have both been discussed. In the following chapter the experimental results

achieved using this setup are presented.
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Mirror Results

Fluorescence images of a cloud of ultracold 87Rb atoms reflecting from the

fringing fields produced by a 2D array of nanomagnetic domain walls.
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The work in this chapter forms the basis of the following paper:

Realization of the manipulation of ultracold atoms with a reconfigurable nano-

magnetic system of domain walls

A. D. West, T. J. Hayward, K. J. Weatherill, P. W. Fry, T. Schrefl, M. R. J.

Gibbs, C. S. Adams, D. A. Allwood and I. G. Hughes

arXiv:1112.0485

4.1 Introduction

In this chapter we present the results from the atom-mirror experiment. We

have observed the first interaction between ultracold atoms and nanomag-

netic domain walls. We shall discuss the nature of this interaction, and what

we can deduce, both about the dynamics of the atoms and about the nature

of the micromagnetic reconfiguration of the nanowires.

We shall see that the atom-nanowire interaction is manifested as the dif-

fuse reflection of the atoms from the fringing-field region above the nanowire

array, in a manner consistent with theoretical predictions and approxima-

tions. Some discrepancy is observed when analysing the dynamics in detail.

Reasons for this discrepancy are suggested.

The use of the atoms as a probe of the micromagnetic behaviour of the

nanowire array is also examined by exploiting the switchability of our device.

We demonstrate that this switching process can be employed in a highly de-

terministic and reliable manner. However, examination of the nature of this

reconfiguration procedure reveals that it displays elements of stochasticity.

We will see that this switchability permits an accurate and repeatable tuning

of the interaction between the atomic cloud and the nanowire array.

4.2 Atom dynamics

4.2.1 Overview

The primary result of the experiment described in the previous chapter is the

controllable interfacing of atoms with domain walls. This is realised via the

transient interaction of atoms with our nanowire array, acting as a magnetic

http://arxiv.org/abs/1112.0485
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atom mirror. This reflection process is pictured on the previous page, and is

shown annotated in Figure 4.1. The images are taken at the labelled times

Figure 4.1: A sequence of fluorescence images showing the reflection of a

cloud of ultracold 87Rb atoms from the nanowire array. Superimposed on

the fluorescence images is an image of the chip and surrounding mount. The

colour map is not to scale between frames.

after the optical molasses and optical pumping sequences. Each frame is an

average of multiple fluorescence images. The number of repetitions increases

as the time increases, because the signal to noise decreases. The maximum

number of images averaged over is 20. Each frame has an image of the chip

and mount superimposed. There is a significant amount of scattered light

from the mount which makes it difficult to resolve the cloud when it is close

to the nanowires. Because of this some background subtraction was carried

out by hand for these frames, which manually supresses the scattered light1.

4.2.2 Light-sheet signal

Whilst the images shown in Figure 4.1 provide a good overview of the ex-

perimental realisation of an atom mirror, we demand a more quantitative

handle on the atom dynamics, and this is provided by the light-sheet signal

(cf. Section 3.4.2). An example of the resulting signal is shown schemat-

ically in Figure 4.2 as a reference for the following discussion. There are

two clear features to the light-sheet signal. The first peak corresponds to

atoms which are falling under gravity through the light sheet. The second

1The cloud size is determined from the side furthest from the chip. The signal is then

suppressed in a gradated manner below an equivalent distance on the other side of the

cloud.
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Figure 4.2: An example of the signal obtained via the light sheet. The

features corresponding to falling and reflected atoms are labelled. We define

the ‘reflection signal’ as the height of the reflection feature divided by the

height of the drop feature, i.e. R/D.

peak corresponds to atoms which have been reflected and are travelling back

up through the light sheet (for sufficiently high atom temperatures the two

features become less well resolved and the assignment of falling or reflected

atoms becomes less appropriate). Unless otherwise stated, from hereon the

‘reflection signal’ is defined as the ratio between the heights of these two

features (R/D in Figure 4.2). Whilst the number of atoms is strictly propor-

tional to the integrated signal, this definition of the signal suffices provided

the initial temperature of the atomic cloud is kept constant.

Figure 4.3 shows the light-sheet signal obtained for a range of initial

cloud temperatures. Also displayed are the predicted lineshapes according

to Monte Carlo simulations, which are discussed in Chapter 5. The temper-

atures labelled are those according to independent time-of-flight measure-

ments.

The shape of the features we observe has a strong dependence on temper-

ature which can be intuitively explained. For higher cloud temperatures the

atoms are on average moving more quickly. Thus the cloud will spread out
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Figure 4.3: Observed light-sheet signal during the reflection of atoms from

the nanowire array for a range of initial cloud temperatures. Coloured lines

represent experimental data, black lines represent predictions according to

Monte Carlo simulations. Data sets at different temperatures are vertically

offset by increments of 5% for clarity.

more. This has a number of consequences. Firstly the cloud is more diffuse

when it passes through the light sheet which means that the resulting signal

is broader and has a smaller height. We note that the integrated area of the

drop feature is approximately constant as very few atoms miss the light sheet

for the temperatures considered, since the light sheet is large compared to

the size of the atomic cloud at the height of the light sheet.

Perhaps the most striking feature of the light-sheet signals obtained is the

smallness of the reflection signal. This is simply because the atom cloud is

significantly larger than the nanowire array when it reaches the chip. Thus

a large proportion of the atoms miss the region where the fringing fields are

located and are not reflected. An estimate of the fraction of atoms that will

hit the chip can be calculated analytically by considering the dynamics of a

Gaussian cloud of atoms in thermal equilibrium.

We consider a cloud of atoms falling onto a chip in the x-y plane at height

z = 0, with size d × d. An atomic cloud in thermal equilibrium has a spatial
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distribution described by a Gaussian in each dimension. This is a good

approximation of the cloud shape following an optical molasses sequence, as

evidenced by fluorescence images. We label the standard deviations of the

distribution σi. As the cloud falls under gravity these standard deviations

evolve according to Equation 3.11:

σi(t) =

√

σi(0)2 +
kBTit2

m
. (4.1)

σi(0) is the standard deviation of the initial spatial distribution and Ti is

the temperature in the corresponding direction. Note that as t increases

the approximation of a Gaussian cloud becomes more accurate. The time

taken to reach the nanowire array is given by tfall =
√

2h/g. Thus one can

calculate the sizes of the cloud in the x and y directions at the height of the

chip, σ̃x,y = σx,y(tfall). Given a square chip we have σ̃x = σ̃y. The fraction of

atoms that have an x coordinate within the bounds of the chip, χx, is then

given by an integral of the spatial distribution, i.e.

χx =

∫ d/2

−d/2

1√
2πσ̃x

exp

(

− x2

2σ̃2
x

)

= erf

(

d

2
√
2σ̃x

)

, (4.2)

where erf is the error function, given by erf(x) = 2/
√
π
∫ x

0
e−t2dt [129]. If we

make the assumption that the cloud is initially isotropic in size and temper-

ature the total fraction that hit the chip is then provided by χ2
x. Evaluating

this expression using the width of our nanowire array d = 2.0 mm, and values

of T = 13 µK and σx(0) = σy(0) = 0.74 mm from time-of-flight measure-

ments (cf. Section 3.4.2) yields the result that only around 19% of the atomic

cloud will actually hit the chip.

Examining Figure 4.3 we can compare this prediction with experimental

observations. By evaluating the integrated signal associated with both the

falling and bouncing atoms we can calculate an associated fraction (we as-

sume that all falling atoms pass through the light sheet). Doing this yields a

fraction of around 14%. The fact that this is lower than the fraction hitting

the chip indicates that a number of atoms are being lost for another reason.

This reason, which has been discussed before, is that the effective isosurface

that the atoms reflect from is corrugated and is not continuous. As such,

some atoms will be incident on the area of the chip but are not reflected, or

are reflected at such angles that they do not reach the light sheet again.
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The most noticeable discrepancy between simulation and experimental

data is observed in the reflection feature — this is somewhat expected as

the nature of the reflection is the least well understood aspect of the experi-

ment. We note that theory predicts a smaller reflection signal than observed

in experiment. One possible explanation for this discrepancy is an inaccu-

racy in the shape of the isosurface. The isosurface was calculated via an

approximate analytic model of the fringing fields, rather than by more accu-

rate micromagnetic methods. If the degree of corrugation of the calculated

surface is greater than that of a real domain wall then one would expect

a larger proportion of the atoms to be reflected. Unfortunately it is very

difficult and time consuming to perform a full micromagnetic calculation of

the fringing fields — doing so for the case of a large array of domain walls is

computationally unfeasible.

Another possible explanation for the discrepancy is an inaccuracy within

the simulation of the atom-field interaction. In Section 5.2.3 we will discuss

how the atom-nanowire interaction is approximated as a point one. Whilst

this is demonstrated to be an accurate approximation, the possibility of mul-

tiple interactions with the fringing fields is not considered which may occur

for atoms which are reflected at large angles relative to normal.

4.2.3 Time-of-flight image analysis

Whilst the light-sheet signal provides a more quantitative and precise mea-

sure of the atom dynamics, the data are somewhat limited as we observe

an integrated signal at one particular height and the spatial distribution of

the atoms is only examined in the vertical direction. Fluorescence imaging,

however, provides more data on the shape of the atom cloud, and we can

use these data to infer the nature of the effective isosurface from which the

atoms are reflected.

In Section 5.2.2 we describe the manner in which the time-of-flight imag-

ing procedure is simulated. Using the data obtained from fluorescence images

and the predictions from simulation, efforts were made to measure the effec-

tive roughness of the mirror, i.e. the mean angle of the effective isosurface,

through a comparison between experiment and theory. The resulting data

are shown in Figure 4.4. The initial cloud width and temperature for the
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Figure 4.4: Comparison of the experimentally observed and theoretically pre-

dicted evolution of the atomic cloud width. The theory curves are calculated

via Monte Carlo simulations. Error bars are smaller than the data points.

The range of data is limited by poor signal to noise preventing an accurate

fit of fluorescence images.

theoretical simulations are set by independent time of flight measurements.

The most important observation to make from this comparison of data

and theory is that the data are poorly fit by the theory curve which uses

the calculated isosurface. We note that the expansion of the cloud is ob-

served to be slower than expected. This suggests that the effective isosurface

from which the atoms are reflected is less corrugated than we calculate. The

possibility of this inaccuracy was also posited as possible explanation of the

discrepancy between observed and expected light-sheet signals shown in Fig-

ure 4.3.

A number of approaches were adopted to try and fit the data. A rescaling

of the calculated isosurface from which the atoms are reflected was attempted,

as was the use of a manually defined isosurface, either with a fixed angle, or

a distribution of angles with a fixed mean. These approaches are described

in more detail in Section 5.2.3. Unfortunately none of the theoretical traces
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achieved a good agreement with the experimental data. This is expected near

the time when the atoms are reflected (around 50 ms) as the cloud width

is poorly defined here and the atoms have moved out of the imaging beams

by this point. After the reflection one might anticipate a better fit but this

is not found. The reflection of the atoms maps the initial atom trajectories

(well fitted by theory) onto new trajectories, and a possible explanation for

the inaccuracy is that this map is inaccurate. Because the nature of the

reflection is defined not only by the mean angle of the surface but by its

overall shape it is difficult to produce a good fit.

We also note that the cause of the discrepancy may be an experimental

one — as will be shown explicitly in the following section, the signal obtained

via fluorescence imaging of the atomic cloud is small when observing the

reflected atoms. Because of this the range of data obtained is limited. It

may also be the case that there are some effects that are unaccounted for

and contribute to modifying the cloud shape, for example the presence of

stray fields from the experimental apparatus. Future work could modify the

experimental setup to aid in providing a more accurate measure of the atom

cloud evolution. For example, the use of an imaging beam separate from

the MOT beams would permit the moving of this beam so that it followed

the atomic cloud and would hence provide a much larger signal. However,

the diffuse nature of the reflection is the price knowingly paid for using a

spintronic device as the basis for our mirror. The reward, and the feature we

shall now focus on, is the dynamic nature of the magnetic sources.

4.3 Micromagnetic reconfiguration

The data presented thus far have primarily examined the behaviour of the

atoms and the nature of the interaction with the fringing fields produced by

our chip. As demonstrated by the good agreement exhibited in Figure 4.3,

this behaviour is well understood. Given this, we now consider the use of the

atoms as a probe of the behaviour of the nanowires.



Chapter 4. Mirror Results 82

4.3.1 Switching of the array

It is possible to use the reflection signal as a measure of the micromagnetic

reconfiguration. An initial examination of the behaviour of the nanowire

array is obtained by switching the chip between the ‘on’ and ‘off’ states

described in Section 3.3.1. Previous magnetometry has provided values of

the fields for which the array is considered to be switched fully, i.e. where

the domain wall sites are either all vacant or all populated [77]. As described

in Section 3.4.3, the field that we produce is well in excess of the required

switching fields in both magnitude and duration. Thus we expect to be

able to switch fully the chip state and completely remove or maximise any

interaction, and thus reflection. The behaviour of the chip was examined by

observing the light-sheet signal between switching events. The resulting data

are shown in Figure 4.5. The chip was switched with a single magnetic field

pulse of maximum possible strength.
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Figure 4.5: The reflection signal observed as the nanowire array state is

toggled. The black line represents data. Each data point is extracted from a

single shot (one reflection). Each rising/falling edge is due to a switching of

the array caused by a single magnetic field pulse. The red line and shading

represent the desired mirror state.

When switching the array we observe that there is a very high level of

repeatability; every magnetic field pulse produces a stark change in the ob-

served reflection signal. Thus we can toggle the interaction between the

atoms and chip with 100% reliability. However, there is an unexpected fea-

ture of the signal that we observe. When the array is switched into the ‘off’
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state there is still a non-negligible reflection signal. This shows that a frac-

tion of the atomic cloud is still being reflected, despite the expectation that

all the domain walls have been removed from the array. Upon switching into

the ‘off’ state there is a reduction in the reflection signal by a factor of al-

most 2.5. This is also representative of the corresponding reduction in atom

number, which is found by integrating the reflection signal. We estimate that

around 6% of detected falling atoms are subsequently detected again after

reflection. This compares to a fraction of around 14% when the chip is in

the ‘on’ state.

Given the unexpected light-sheet signal observed, further investigation

was carried out using fluorescence imaging. The resulting images are shown

in Figure 4.6. As expected, we observe a cloud of atoms reflected from the

surface of the chip when the latter is in the nominally ‘off’ configuration.

The colour map used in Figure 4.6 is such that it is approximately to scale

compared with Figure 4.1. Significant effort was required to get adequate

signal to noise as the scattered light from the chamber masks the atom flu-

orescence. To demonstrate this we provide an example of the data obtained

from fluorescence imaging. Figure 4.7(a) shows the data obtained using dark

frame subtraction, and (b) shows the data after additional processing, both

for a time of flight of 87.5 ms. The removal of the remaining background

light is relatively easy when the atomic cloud is spatially distinct from the

atom chip mount (the primary source of scattered light), near the point of

reflection noise subtraction becomes increasingly difficult. This effect is ex-

acerbated by the fact that as the atoms approach the chip they move out of

the imaging beams so the fluorescence is significantly reduced.

The technique of release-recapture was also investigated as an alternative

measure of the reflected atom number. The method is outlined as follows: the

MOT is loaded and the fluorescence produced during the load is measured

by a photodiode. The fluorescence at the start of the loading sequence is

noted. The atom cloud is then dropped and reflected from the nanowire

array. The MOT is then turned back on again, at the point in time when the

reflected atoms are returning to the original position. The fluorescence at the

start of the new MOT load is recorded and compared to that for a normal

MOT load (i.e. without the presence of reflected atoms). Unfortunately, the
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(a) Chip on

(b) Chip off

Figure 4.6: A series of time-of-flight fluorescence images taken when the chip

has been switched off, shown in (b), is compared to the equivalent images

with the chip on, shown in (a). A small fraction of the atomic cloud can be

seen to reflect when the chip is off. The colourmap is not to scale between

frames, but is approximately to scale between the on and off sequences.

number of reflected atoms and their corresponding contribution to the MOT

fluorescence is too small to make a noticeable difference. This is supported

by simulation as we predict that the maximum fraction of atoms that will

return to the MOT region at any time is only around 1%2. Thus we conclude

that the methods of fluorescence imaging or light-sheet absorption are much

better measures of the atom number reflected.

The images shown in Figure 4.6 show a rather suprising result. There are

two explanations as to why we observe atom reflection when the nanowire

2This fraction is defined by the number of atoms that are observed to be within the 1/e2

radius of at least one of the MOT beams — the atom velocity is significantly lower than

the MOT capture velocity so we assume that all atoms entering the beams are recaptured.
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(a) Raw data (b) Processed data

Figure 4.7: Example data from fluorescence imaging. The left hand figure

shows data obtained from an average of multiple images, using dark frame

subtraction, note that there is still a significant amount of background light.

The right hand image shows the result once the remaining noise from scat-

tered light has been manually suppressed. The image shown is for the case

of the nanowire array in the off configuration.

array is turned ‘off’. Firstly, our assumption that the chip is indeed ‘off’ may

be untrue — there may be fringing fields that remain despite the application

of the switching off pulse. Many alternative magnetometry techniques exist,

but could not be carried out with the nanowire array in situ. Efforts were

made to carry out magneto-optical Kerr effect (MOKE) microscopy (cf. Sec-

tion 3.3.2) but this was not possible. In MOKEmicroscopy the magnetisation

reconfiguration is obtained by analysing the polarisation rotation of a laser

beam reflected from the magnetic material. This rotation is then observed as

a small intensity change of the output of a polarising beam splitter, during

the reconfiguration process. Unfortunately, the application of the magnetic

pulse to switch the array caused a small amount of motion of the chip which

also caused intensity changes of the beam, thus masking the desired signal.

The alternative explanation of this unexpected behaviour is that the re-

flection observed when the chip is in the off state is not caused by mag-

netic fields. To test this possibility a simple null experiment was performed.

Rather than pumping the atoms into a weak-field-seeking magnetic sublevel,

which will be repelled from the fringing fields, we pump the atoms into a
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strong-field-seeking state, which should never be reflected, regardless of the

state of the nanowire array. Experimentally this is an easy adjustment to

make and we do not observe any atoms reflected from the nanowire array,

according to both the light-sheet signal and fluorescence images. Given the

sensitivity of the light sheet (cf. Section 3.4.2) this corresponds to less than

around 0.01% of the atomic cloud being reflected. Examples of the light-sheet

signal obtained are shown in Figure 4.8.
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Figure 4.8: Light-sheet signals for a cloud of atoms pumped into the

F = 2, mF = −2 state. These atoms are strong-field-seeking so there is

no reflection signal at any temperature.

There is a clear result: no reflection of the atoms is observed at any

temperature. This is also the case when examining fluorescence images of

the cloud. This clearly demonstrates that any reflection of atoms is caused

by a magnetic interaction, as expected, and suggests that the unexpected

reflection of atoms when the mirror is supposedly in a non-interacting state

is due to the presence of remaining magnetic fields. Unfortunately, further

investigation of the source of these magnetic fields is not possible whilst the

chip is incorporated in the current setup, but analysis in the future would be

of great interest.
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4.3.2 Tuning the atom-nanowire interaction

Whilst Figure 4.5 demonstrates the tunability of the atom-nanowire interac-

tion, this modification is a purely digital one. We now consider tuning the

interaction in a continuous manner. This is achieved by varying the field

used to switch the array configuration. The chip was prepared in either the

‘on’ or ‘off’ state through a repeated application of a maximal field pulse

in the appropriate direction. The array is then switched into the opposite

state through the application of a single orthogonal magnetic pulse. The

magnitude of this pulse is varied. The reflection signal is examined after

application of the single switching pulse. The resulting data are shown in

Figure 4.9.

Figure 4.9: Dependence of the observed reflection signal on the field used to

switch the chip. The left half of the figure shows the nanowires being switched

on, populating domain walls. The right hand half shows the nanowires being

switched off, annihilating domain walls. The resulting domain wall config-

uration and corresponding switching field directions are illustrated in the

corresponding insets. The error bars are smaller than the data points and

represent the standard error on the mean. The black lines are fits of the form

of error functions.

By varying the magnetic field pulse size we observe a continuous varia-
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tion in the size of the reflection signal. This can be intuitively understood by

considering a gradual population or annihilation of the domain walls. As the

switching on (off) field is increased, more domain walls are populated (anni-

hilated) and more (less) of the array has associated fringing fields, meaning

a larger (smaller) fraction of the atoms impinging on the array are reflected.

Once the field pulse is sufficiently large there is no further variation in the

reflection signal as the array is considered to be fully switched.

The data in Figure 4.9 are fit by functions of the form

c1 + c2 erf

(

B − B̄√
2σ2

)

, (4.3)

where c1 and c2 are fitting constants, B is the applied field and erf is the

previously defined error function [129]. As will be elaborated upon, B̄ and

σ are the associated mean and standard deviation of the field distribution.

The data are fit well by a function of this form, with reduced χ2 values

of 5.3 and 1.0 for the on and off fields respectively. This agreement with

the form of an error function suggests that the required switching field for

individual sites follows a normal distribution. This suggests that the variation

in the required field is goverened by random fluctuations in the lithographic

pattern across the chip. Small changes in the width, thickness, roughness

or shape of the wire can lead to slightly different magnetic behaviour [98,

130]. From the fits we can extract parameters characterising the shape of

the corresponding normal distribution. The standard deviation of the ‘on’

(‘off’) field distribution is 103± 10 G (32± 3 G). The mean ‘on’ (‘off’) field

is 771± 8 G (78± 2 G). These values are observed to agree well with values

obtained using alternative magnetometry techniques [77]. In particular we

note that the values that fully switch the array are in agreement with those

measured following the fabrication of the chip.

4.3.3 Stochastic behaviour

It is well known that the micromagnetic reconfiguration processes which oc-

cur in superparamagnetic objects exhibit a degree of stochasticity [97, 131,

132], i.e. when subjected to a magnetic field pulse there is some probability

that the magnetisation structure will macroscopically reconfigure. We used

the reflection signal to search for evidence of the presence of this stochastic
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behaviour in our system. To do this we apply a particular switching field

multiple times. If there is some stochastic character to the switching process,

one would expect that not all of the domain walls that could switch with the

provided field, would do. Subsequent applications of the same switching pulse

would then lead to additional switching of the chip. In an effort to maximise

the apparentness of this effect a field which, according to Figure 4.9, switches

approximately half of the domain wall sites, was used. This would imply that

a significant number of domain wall sites would be initially switched, pro-

ducing a noticeable signal change, but there would be a significant number

of unswitched sites which could then switch upon a repeated application of

the switching field. Example data achieved through this process are shown

in Figure 4.10 for the case of switching the chip off.
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Figure 4.10: Evolution of the reflection signal during multiple single applica-

tions of a switching off field of roughly 90 G. Error bars indicate the standard

error on the mean. The data are normalised relative to the reflection signal

before switching off. The red line is a fit to guide the eye.

The data clearly suggest a stochastic element to the behaviour of the

chip. The first application of the switching off field produces a big change

in the reflection signal as a large number of domain wall sites are switched.

However, subsequent applications of the same field produce a discernible
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change in the reflection signal as well. These subsequent field pulses switch

additional domain wall sites and hence reduce the fraction of the chip from

which fringing fields are produced.

This observation of stochastic behaviour highlights the sensitivity of the

reflection signal to the magnetic configuration of our chip; we use a macro-

scopic atomic cloud to analyse the collective state of an array of nanoscale

objects with good precision in a quick and repeatable manner. This repre-

sents a robust interface between a quantum ensemble and a condensed matter

ensemble, both of which contain ∼107 particles.

It is difficult to make quantitative deductions from the data presented

for a couple of reasons. Firstly, this method of analysis is significantly less

precise than other magnetometry techniques, and secondly the formulation

of the stochastic behaviour is complex, and may be of limited applicability

for the processes we are considering. This is especially true since the typical

characteristic timescale of stochastic superparamagnetic reconfiguration is of

the order of tens of ns [97], which is much smaller than the length of magnetic

pulses we employ, which are typically 0.5 ms or greater.

4.4 Conclusions

The application of nanowires as a magnetic mirror was designed to facili-

tate a collective interaction, between a large number of domain walls and

a macroscopic ensemble of atoms. This has clearly been achieved, and is

well understood. The data presented are shown to agree well with theoreti-

cal predictions. We observe a diffuse reflection which produces a dispersion

of the atomic cloud. The behaviour of the atomic cloud shows good agree-

ment when we consider the signal obtained from the light sheet — this is the

most accurate measure of the atom dynamics. Greater discrepancy is ob-

served when we analyse the evolution of the atomic cloud via direct imaging

methods. Reasons for this discrepancy have been suggested, but improved

agreement would require significant effort to investigate a feature which we

know to be a drawback when one considers our device simply as an atom

mirror.

Instead we consider this experiment as a successful demonstration of a
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new type of interaction and an exposition of the benefits of spintronic tech-

nology which paves the way to more elaborate atom-nanowire interfaces.

Whilst we have observed that the domain wall array acts as an imperfect

mirror, the data also show it provides extremely reliable switching and tun-

ing of the magnetic interaction; we are able to use the interaction as a probe

of the device’s behaviour. We see that the dynamic nature of domain-based

material provides a new kind of functionality to permanent magnetic field

sources which we hope will confer great utility to atom-trapping applications

of domain walls.

In Chapters 7 and 8 we will discuss how the small characteristic size

of our device provides massive field gradients which act as a double edged

sword, both presenting challenges and conferring benefit. In the context of

the mirror experiment they allow the close approach of the atoms and the use

of the point interaction approximation which provides us with our effective

isosurface. In Chapter 6 we will consider extending study beyond the region

of this isosurface, and utilising the close approach of the atoms to examine

new physics. In the following chapter we will discuss the simulations which

provided the theoretical predictions with which the experimental data were

compared.



Chapter 5

Mirror Simulation

Schematic of the simulation of atoms falling onto and being reflected from the

effective isosurface associated with a nanowire array populatead with domain

walls. Atoms passing through the light sheet are highlighted.
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5.1 Introduction

This section will detail the simulation, via Monte Carlo methods, of the mir-

ror experiment. The corresponding Matlab code is provided in Appendix D,

and will be referred to by line number in the following discussion. We will

consider the theoretical description of the experiment in a chronological pro-

gression through the experimental routine as this is perhaps the most intu-

itive. Some results used to guide the experimental design are then presented.

5.2 Theory

Monte Carlo simulations are based on a fundamental feature: randomness.

The goal of any Monte Carlo simulation is to reproduce the behaviour of a

distribution by observing a representative and randomly sampled subset of

that distribution. In the case of the work at hand, i.e. the magnetic atom

mirror, we wish to know the behaviour of a distribution of atoms as they

interact with our nanowire array, and also with the light fields that they

experience.

5.2.1 Initial conditions

Our starting point is a cloud of ultracold atoms. The experimental pro-

cedures for producing such a cloud were outlined in Chapter 3. In order

to characterise the atomic cloud we need just a couple of parameters: the

temperature and the size of the cloud. We make the assumption that the

cloud has Gaussian distributions of position and velocity components — an

assumption supported by observations made via fluorescence imaging. The

position coordinates {ri} = {x, y, z} are thus described by a probability dis-

tribution

fr(ri) =
1

√

2πσ2
i

exp

(

− r2i
2σ2

i

)

, (5.1)

where σ is the standard deviation of the distribution, which we derive from

time of flight measurements (cf. Section 3.4.4). Note that the mean of the

distribution is zero — we define the origin to be at the cloud’s centre. We

can define a similar distribution for the components of the atoms’ velocities.

In this case we know that a Maxwell-Boltzmann distribution of velocities
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comprises Gaussian distributions of velocity components with standard de-

viations equal to
√

kBTi

m
, where kB is the Boltzmann constant, Ti are the

temperatures in each of the cartesian coordinates and m is the atomic mass.

Thus the distribution of speeds is given by

fv(vi) =

√

m

2πkBTi

exp

(

− mv2i
2kBTi

)

. (5.2)

We make the assumption that the cloud of atoms is isotropic, such that all

σi and all Ti are equal.

These distributions are macroscopic descriptions of the atomic ensemble.

We now change regime and consider what happens to a particular atom

within this distribution. This is an easy task which we can repeat many

times by taking multiple samples from the distribution. By propagating the

behaviour of many microscopic particles we will then recoup the macroscopic

properties of the system.

The remaining question is then how to appropriately sample the distribu-

tion in a random manner. This is the basis of the Monte Carlo method, which

we will now describe briefly. For a more rigorous discussion see e.g. [133, 134].

There are two main methods for achieving this, the first, which will be de-

scribed here, relies on the existence of an inverse cumulative distribution,

the second is the ‘accept-reject’ method, which, whilst computationally less

efficient, is more versatile.

The cumulative of a distribution describes the probability of occurence of

a variable less than or equal to some value. This then maps onto the interval

[0, 1]. Thus if we make a uniform random sampling on this interval we can use

the inverse cumulative distribution to map the values appropriately onto the

associated probability distribution. This can be understood intuitively by

considering that regions of low probability density will occupy small regions

of the interval [0, 1] when the cumulative is taken.

For a normal distribution fN(x) of standard deviation σ and mean µ,

defined as

fN(x) =
1√
2πσ2

exp

[

−(x− µ)2

2σ2

]

, (5.3)

the inverse cumulative distribution is well defined, given by

Φ(p) = µ+ σ
√
2 erf−1 (2p− 1) , p ∈ (0, 1) , (5.4)
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where erf is the so-called error function [129]. Note that Φ(p) is poorly

defined for p = 0 or p = 1. Using this inverse cumulative it is a simple

matter to select a number randomly and derive the corresponding velocity

and position. This is carried out on lines 219–230 of Appendix D.

5.2.2 Atom-light interactions

During their journey to the nanowire array and back, the atoms are interro-

gated by light fields. These are, to some degree, perturbative to the atoms’

motion, so cannot be neglected.

Optical pumping

Once laser cooling has occured the external degrees of freedom of the atoms

are defined. We must also define the internal states. This is achieved via

optical pumping, as described in Section 3.4.2, and the efficiency of this

process is measured. Hence we know the fraction of atoms in the mF = +2

state, and assume that the small number that remain are not in a weak-field-

seeking state. This is an assumption that represents a worst-case scenario

given the information we have, but also simplifies the calculation by not

considering atoms in an mF = +1 state. We can justify this choice by

considering that atoms in the mF = +1 state will experience a potential

which is significantly more corrugated than for the mF = +2 atoms so are

unlikely to be detected as being reflected. The nature of this potential is

discussed in more detail in Section 5.2.3.

The optical pumping process involves the scattering of photons through

absorption and subsequent spontaneous or stimulated emission. As such

there is momentum imparted onto the atoms by the light. Recall in Sec-

tion 3.4.2 we discussed two different optical pumping schemes. We have

chosen to address the F = 1 → F ′ = 2 and F = 2 → F ′ = 2 transitions

as this pumps the atoms into a dark state, thus minimising the number of

photons scattered during the optical pumping sequence. To calculate how

many photons are scattered on average, we use a Monte Carlo simulation.

We consider the atoms to be initially evenly distributed amongst the five

magnetic sublevels in the F = 2 ground state and then propagate their inter-

nal dynamics when they are subject to two laser beams. Choosing an atom
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at random it has a limited number of transitions possible due to quantum

mechanical selection rules. We define the ‘strength’ of a particular transition

as

Si = ciRi, excitation/stimulated decay (5.5)

Si = Γ, spontaneous decay (5.6)

where Γ is the atomic linewidth, ci are the relative strengths of the squared

dipole matrix elements (see e.g. [106]) and Ri are the scattering rates, given

by [135]

R =
Γ

2

I/Isat
1 + I/Isat + 4 (∆2 ± k2v2) /Γ2

, (5.7)

where I is the intensity of the incident light Isat is the saturation intensity of

the transition, ∆ is the detuning from resonance, k is the magnitude of the

wavevector of the light and v is the speed of the atom resolved along ~k. In

using this formula we assume that the approximation of a two-level atom is

appropriate. We also assume for the case in hand that v = 0 as the atoms

are approximately at rest when they are optically pumped. The probability

of a particular transition occuring is then simply Si/
∑

i ciRi, where the sum

is over all possible transitions. A simple accept/reject method is then used

to randomly determine which transition occurs. A random number, p, on

the interval [0, 1] is chosen and transition n occurs, with n being the smallest

integer satisfying

p <

n
∑

i

Si. (5.8)

This process is repeated until the atom reaches the dark state.

Note that during the optical pumping process a quantisation axis is de-

fined by the application of an external magnetic field. This has the effect of

Zeeman splitting the magnetic sublevels, introducing an extra detuning of

the energy levels given by

∆Z = ±mF gFµBB/~, (5.9)

with a positive sign corresponding to the ground states and the negative sign

to the excited states. A positive detuning corresponds to the applied laser

field being of greater frequency than the transition frequency.
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To deduce the net momentum kick due to the optical pumping procedure

one simply counts the photons absorbed and emitted. Each excitation of

the atom is accompanied by the absorption of a photon which we define as

providing a quantum of positive momentum. A stimulated emission of a

photon thus corresponds to a quantum of negative momentum. Spontaneous

emission has no preferred direction of emission, but the random nature of the

process leads to heating. Thus, spontaneous emission breaks the symmetry,

and the number of photons that are scattered defines the net momentum

kick in ~k. Carrying out this procedure yields Figure 5.1 which shows the

distribution of the net momentum imparted on a collection of atoms.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

Net Momentum Kick (h̄k)

P
er

ce
n
ta

g
e

o
f
A

to
m

s

Mean net momentum kick = 3.8 h̄k

Figure 5.1: The distribution of the net momentum imparted on a collection

of 87Rb atoms being optically pumped as per the scheme illustrated in Fig-

ure 3.9. The intensities of the two beams are as per experimental values; the

pump beam has I/Isat = 5.6 × 10−3 and the repump has I/Isat = 0.37. A

magnetic field of 4 G to define the quantisation axis is assumed.

The result is a favourable one; only a very small net momentum kick is

imparted during the optical pumping procedure, with a mean kick of 3.8 ~k.

Less than 10% of the atoms receive a net momentum kick of greater than

7 ~k. We note that this result is extremely insensitive to the intensities
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of the beams (and indeed to the magnetic field applied). However both of

these factors strongly affect the rate at which the optical pumping procedure

occurs. There are some assumptions inherent to this model which may not be

exactly true, for example the polarisation of the beams may not be perfectly

circular, and the initial distribution of the mF states of the atoms is not

known. Again, the result we obtain is largely independent of such factors.

The result is that the optical pumping scheme we choose imparts only

a very small momentum kick on the atoms. In practice we also retroreflect

the optical pumping beam to reduce the effect even further; the mean net

momentum kick is thus reduced (assuming perfect alignment and no loss of

beam power on reflection) to around
√
3.8 ~k. The effect of this momentum

kick is applied to the atom trajectories manually based on the average value

(lines 505–510 of Appendix D).

With the optical pumping procedure complete the atoms then simply fall

under gravity, according to classical mechanics, i.e. ~r(t) = r0 + v0t− 1/2gt2

(lines 369–372 of Appendix D).

Light sheet

In our experiment there is another optical field which perturbs the atoms

during their journey — the light sheet. Similar considerations to those de-

scribed for the optical pumping beams are applicable. However there is an

important difference in that we are addressing a closed transition. Thus there

is no dark state and the rate at which photons are scattered is now impor-

tant in determining the perturbation to the atoms. For the case of optical

pumping the momentum kick from the laser had no associated timescale —

a fact illustrated by its independence of beam intensity and hence scattering

rate. This is no longer the case.

The transition that the light sheet resonantly addresses is F = 2, mF = 2

to F ′ = 3, mF ′ = 3. The scattering rate is again given by Equation 5.7 (we

assume ∆ = v = 0). The rate of spontaneous emission is simply given by Γ

and the rates of absorption and stimulated emission can also be found via

a solution of the optical Bloch equations [136]. It is immediately clear that

for small I/Isat it is a good approximation that all of the atoms decay by

spontaneous emission, rather than stimulated emission, since R � Γ. For
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the intensities used in our experiment this approximation is appropriate. The

force imparted by the light sheet on the atoms is given by

FLS = ~kR =
~kΓ

2

I/Isat
1 + I/Isat

≈ ~kΓI

2Isat
, (5.10)

i.e. it is proportional to intensity. For a power of 1 µW the probability of

decaying by stimulated emission is around 2.5%. We typically use powers of

around 50 nW, and the probability scales linearly with intensity. Thus we

can use Equation 5.10 to accurately calculate the force imparted by the light

sheet.

We now include a feature ignored in the treatment of the optical pumping

beams — the intensity profile of the laser beam. The light sheet is focussed

in one direction, so it has an asymmetric intensity profile, given by

I(x, z) = I0 exp(−4x2/w2
x) exp(−4z2/w2

z) (5.11)

where I0 is the maximum beam intensity, and wx and wz are the 1/e
2 widths

along the semi-major axes of the profile. Note that I0 = 8P/πwxwz where P

is the power of the beam.

To compute numerically the appropriate modification of the trajectories

of the atoms the following process is applied. For each timestep all atoms

that are within two 1/e2 widths of the light sheet are found. The intensity

at each of these positions is then computed according to Equation 5.11. The

force on the atom is then found using Equation 5.10. For a time step dt this

then modifies the velocity according to v′y = vy + FLS/m dt. Note that only

one component of the velocity is affected – that along the direction of the

light sheet.

In order to represent accurately the random nature of the scattering of

photons from the light sheet we also incorporate Poissonian fluctuations of

photon number. To achieve this we again utilise an inverse cumulative distri-

bution. However, the corresponding distribution does not have a closed form.

Instead we use the normal distribution as an approximation in the limit of

large numbers of events. The Poisson distribution describes the probability

of scattering N = R dt photons, given some mean N̄ = R̄ dt, as

P
(

N, N̄
)

=
N̄Ne−N

N !
. (5.12)
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For the case of large N this can be very well approximated by a normal

distribution of mean N̄ and standard deviation
√
N̄ . Thus for each atom we

incorporate fluctuations around the expected scattering rate by randomly

sampling a normal distribution.

As with the optical pumping beam the light sheet was retroreflected in

order to minimise the effect on the atoms. In doing so, a significant push

on the atoms is reduced to a 1D heating effect. The net momentum kick

on an atom is on average reduced from N~k to
√
N~k. The retroreflec-

tion is incorporated by computing the scattering rate for the incoming and

retroreflected beams independently and then calculating the net momentum

imparted. This calculation is performed on lines 470–502 of Appendix D.

Upon simulating the reflection of the atoms the importance of using a

low power and retroreflecting the beam is observed. Using the experimen-

tally adopted power of 50 nW we observe that without retroreflecting the

beam most of the atoms will be pushed such that they completely miss the

nanowire array. If the beam is retroreflected we note that for powers of

greater than 1 µW there is a significant reduction in the number of atoms

that are reflected. It is also a simple matter to simulate the beam imbalance

resulting from absorption of the light sheet at the retroreflecting mirror. This

simulation of the atom-light interaction was an important tool in configuring

the experimental setup and is described further in Section 5.3.

Whilst the discussion of the light sheet thus far has focussed on the per-

turbation of the atoms’ trajectories, its purpose is of course to detect the

passage of the atoms. This is performed by observing the corresponding dip

in intensity as the atoms pass through. Computation of this is simple given

the preceding discussion. Each atom scatters a known number of photons,

which yields an associated light power scattered, calculated by multiplying

by the photon energy, Ep = hc/λ. This then yields the percentage absorption

of the light sheet for the number of atoms simulated. The actual signal is

then the same shape as that calculated, but for the correct number of atoms,

i.e. multiplied by some prefactor. This prefactor is treated as a fitting pa-

rameter; as previously mentioned the light sheet is in fact a very good way

of determining the atom number [127].

The light sheet in our experiment is circularly polarised in the same sense
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as the optical pumping beam in order to maintain the polarisation of the

atoms. It is possible to solve the rate equations from an assumed initial

distribution of mF states, as in Section 3.4.2. However doing so we observe

that given an initial population of the mF = 2 state of around 90–95%, and

the fact that we are driving a closed transition, the effect on the population

distribution is negligible.

Imaging

The final light field which we consider is that of the imaging beams. These

are identical to the MOT beams, except with a different frequency of light.

They are used to carry out time-of-flight fluorescence imaging. The observed

signal is predicted in a similar manner to that already described for the light

sheet and optical pumping beams. The intensity of the light from each of the

imaging beams at a given position is calculated according to measured values

of the beam width and power. Together with the atom velocity along the

direction of the beam this allows for a calculation of the scattering rate for

each atom. The photons scattered are then binned spatially and time-of-flight

fitting is performed in an identical manner to the experimental procedure (cf.

Section 3.4.4). Thus we extract a predicted cloud width as a function of time

which we can compare with the experimentally observed behaviour. The

simulated time-of-flight fitting procedure is carried out on lines 239–313 of

Appendix D.

5.2.3 Atom-nanowire interaction

The simulation details presented thus far have considered aspects of this work

which are common to other atom mirror experiments. It is the interaction

between the atoms and the nanowire array which is the novel aspect of the

work and thus perhaps the most important/interesting aspect to consider.

Atom-magnetic field interaction

The magnetic fields emanating from the domain walls hosted by the

nanowires were examined extensively in Chapter 2. We now consider the

nature of the interaction of ultracold atoms with these fields.
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In Section 3.2 we considered the linear Zeeman shift associated with plac-

ing an atom in a magnetic field. This picture of the interaction energy is in

fact an approximation valid for low fields. For a trapping application atoms

will be localised near a field minimum so will never experience very high

fields. A more rigorous treatment of the energy shift is obtained through a

solution of the complete Hamiltonian. In general this must be done numer-

ically, however it is possible for the case of J = 1/2 to derive an analytic

expression known as the Breit-Rabi formula1 [110, 137, 138]:

EBR = − ∆Ehfs

2(2I + 1)
+ gIµBmF | ~B| ± ∆Ehfs

2

√

1 +
4mFx

2I + 1
+ x2. (5.13)

Here ∆Ehfs is the hyperfine splitting and I is the nuclear spin (3/2 for 87Rb).

x is equal to (gJ − gI)µB| ~B|/∆Ehfs, with gJ and gI being the Landé g factors

associated with the quantum numbers J and I.

Applying this formula to the F = 2 ground state manifold of 87Rb yields

Figure 5.2. We see that the energy shift is approximately linear for fields

of up to around 0.1 T at which point the prescription of mF as a quantum

number is no longer appropriate. In this regime, expressing the magnetic

potential in the form given by Equation 3.3 is not accurate. In general if we

expect the atoms to experience magnetic fields of this magnitude we should

adopt this more rigorous treatment when considering the resulting potentials.

The exceptions to this are for the stretched states where mF = ±2, for which

the interaction energy is linear at all fields.

To translate the Breit-Rabi diagram into something a little more useful

for our particular application we now map the field strength onto the distance

from the wall, i.e. we can compute V (z), the potential curve associated with

an atom approaching a domain wall. However there is additional complexity

due to the variation of the field in x and y. For the sake of this analysis

we will choose x and y such that we consider a line of z above the point of

1Note that care must be taken to choose the appropriate sign in Equation 5.13. As

described in the derivation provided in [137], the labelling applied is such that we use ±
when F = I±1/2 as defined in zero magnetic field. Defining f(x) = 1+4mFx/(2I+1)+x2

the change in sign occurs where f ′ = 0, i.e. where µB| ~B| = −∆EmF /2(gJ − gI). For the

case at hand this is approximately where the linear Zeeman shift is equal to −∆Ehfs/2. As

it is the stretched state that experiences this sign change it is easier in practice to simplify

Equation 5.13 analytically.
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Figure 5.2: The Breit-Rabi diagram for the F = 2 ground state manifold of
87Rb. The states are labelled by mF values for convenience.

maximum field at the nanowire’s surface. Using fringing fields calculated via

micromagnetic techniques (Hayward et al.) for a nanowire of cross section

125 nm × 30 nm yields the potential curve shown in Figure 5.3.

The overall shape of the potential curves is for the most part as one

would intuitively expect considering the nature of the Zeeman interaction,

and the approximate form of the magnetic fields, i.e. there is an increase

(decrease) in the potential for positive (negative) mF states. Deviations from

the potential assuming that mF is an appropriate quantum number become

more noticeable at heights of less than 100 nm, which corresponds to fields

above around 500 G (this is the region in Figure 5.2 where the dependence

on field begins to deviate from a linear one). This can easily be seen by

comparing the curves using the Breit-Rabi formula (black) and those for a

simple linear Zeeman interaction (grey). For the stretched states (mF = ±2)

the potential is of course just that due to a linear Zeeman shift, as prescribed

by the Breit-Rabi formula (Equation 5.13). Provided we work in the weak-

field-seeking stretched state we need not worry about deviations from a linear

Zeeman shift. We anticipate being able to polarise the atomic sample with

around 90–95% of the population in the mF = +2 state and the remaining

atoms will either experience a significantly more corrugated potential or will
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Figure 5.3: Potential curves associated with a 87Rb atom in the F = 2

ground state manifold approaching the nanowire array. This is simply a

rescaling of the Breit-Rabi diagram shown in Figure 5.2 according to the

height dependence of the magnitude of the magnetic field. Note also that

the offset of the potential present in Figure 5.2 due to the hyperfine splitting

has been removed. Also included are the potentials solely due to a linear

Zeeman interaction, indicated by light grey lines.

not be repelled from the fringing fields. Hence we can approximate the

atomic potential as being solely due to a linear Zeeman interaction with the

magnetic field.

Point interaction approximation

Perhaps the most remarkable feature of the calculated potential curves is the

size of the gradients. Because of this feature we use an approximation which

allows for great simplification of the atom-nanowire interaction. We assume

that the interaction is point-like in nature, i.e. it is analogous to elastic re-

flection from a hard surface. The corresponding equivalent surface is then

defined by a level set of the atomic potential. This set is at a value equal to

the atom’s initial gravitational potential energy. We will now demonstrate

that detailed analysis of the precise nature of the interaction supports ap-

proximating it as a point one, which will facilitate rapid computation of the
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interaction for large numbers of atoms.

We numerically simulate a 87Rb atom in the F = 2, mF = 2 state falling

from a height of 1 cm directly onto a domain wall and being reflected by the

associated fringing fields, which are calculated according to the 1D model

provided in Section 2.2.2. The resulting dynamics are illustrated in Fig-

ure 5.4. The most important feature of the data shown is the range over
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Figure 5.4: Trajectory of an atom falling onto a nanomagnetic domain wall.

The black line shows the numerically calculated trajectory using the 1D an-

alytic model for the magnetic fringing fields. The red line shows the analytic

result for an ideal mangetic mirror of the same characteristic feature size,

i.e. with an exponentially decaying magnetic field. The lower plots show

residuals using the same scale.

which a significant interaction takes place, which is around 1 µm or 0.1 µs.

Also plotted are the dynamics associated with reflection from an ideal mag-

netic mirror of equal periodicity. The corresponding analytic expressions for
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the atom trajectory are [96]:

z(t) = v0τ log [cosh (t/τ)] , (5.14)

ż(t) = v0 tanh (t/τ) , (5.15)

z̈(t) = (v0/τ) sech
2 (t/τ) , (5.16)

where v0 is the initial velocity upon entering the magnetic field region. Given

the small size of the region of interaction, v0 is simply given by
√
2gh for some

drop height h. τ = λ/πv0 is a timescale which characterises the interaction,

with λ being the period of the magnetisation pattern.

Because the interaction with the magnetic field occurs over such a small

region/time it can be well approximated by a point interaction, i.e. an instan-

taneous change in velocity. Under this assumption the atom-field interaction

can be pictured as the atoms being reflected from a hard surface, located

at the turning point of the atoms’ trajectories, i.e. an isosurface of magnetic

field strength.

The resulting computation required to simulate the reflection from a hard

surface is significantly less intensive than a consideration of the incremental

interaction with the magnetic field. In order to demonstrate the validity of

the approximation of a point interaction, we take the case of non-normal

incidence with a magnetic field. To simplify the picture further we actually

consider an atom dropped into an angled magnetic field. In our experiment

the angle of incidence of the atoms will be approximately normal, but the

magnetic field magnitude is by no means flat. We calculate the trajectory

of such an atom for the case of a point interaction and for a continuous one.

Examples of the results of this are shown in Figure 5.5 for a range of angles

of magnetic field.

The discrepancy between the trajectories for the different models is negli-

gible outside the region of interaction. This result can be predicted intuitively

by considering the analytic expressions of Equations 5.14 to 5.16. Far away

from the ideal mirror the trajectories predicted by the aforementioned expres-

sions, and those for a point interaction, converge. It is perhaps unsurprising

then that this is also the case for a magnetic field that decays according to

our fringing field models, rather than those of an ideal mirror. Because the

region over which there is significant interaction is small, the discrepancy in
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Figure 5.5: Trajectories of atoms interacting with a decaying magnetic field.

Black traces represent those using a continuous interaction with a fringing

field from a domain wall (modelled as per Section 2.2.2). Dashed red traces

represent those using a point interaction with a hard surface.

the calculated trajectories in the near-field does not yield an observable dis-

crepancy in the trajectories in the far-field. We consider the simple analysis

presented here sufficient to support our use of the point interaction as the

model of the reflection of the atoms from the nanowire array. The calculation

of the isosurface is carried out on lines 122–146 of Appendix D.

Mirror roughness

With the validity of the point interaction approximation established we now

consider the nature of the atomic reflection through the use of an effective

isosurface. To compute this isosurface one must find all the points where

the magnetic interaction energy is equal to the initial gravitational potential

energy, i.e.

| ~B| = mgh

mF gFµB
, (5.17)

where m is the mass of the atom, g is the acceleration due to gravity and

h is the drop height. For a 87Rb atom in the F = 2, mF = 2 state dropped

from a height of 1 cm this is equal to 15.4 G. The magnetic field is calculated
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analytically for each of NDW domain walls in a 2D array of alternating parity

(cf. Figure 3.2). The contributions from these are then summed, i.e. the total

field is given by

~Btot(~r) =

NDW
∑

i

Pi
~Bi(~r), (5.18)

where Pi is the parity of the ith domain wall. A unit cell of the corresponding

isosurface is pictured in Figure 5.6. The most striking feature of the field

Figure 5.6: An effective isosurface from which we approximate atoms to

reflect from the nanowire array through a point interaction. The surface is a

level set of the magnetic fringing field magnitude at a value of 15.4 G — the

field at which the Zeeman energy is equal to the initial gravitational potential

energy. Note that there are regions where there is insufficient field to reflect

the atoms. Nanowire dimensions are as per experiment, i.e. width = 125 nm,

thickness = 30 nm and the period of the undulation is 1 µm.

isosurface is its roughness. For an ideal mirror the magnetic field magnitude is

flat in the x-y plane. The fact that the calculated surface has a strong degree

of corrugation reflects the fact that our mirror is non-ideal. Because the

sources of magnetic field are highly discretised, being localised at the domain
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wall positions, the equivalent magnetisation pattern is poorly described as a

purely sinusoidal variation.

We also note that there are regions where there is insufficient magnetic

field to reflect the atoms. This occurs midway between the nanowire apexes,

i.e. furthest from the domain walls. Atoms which are incident at or near to

these regions are likely to be either adsorbed onto the substrate of our chip,

or scattered stochastically from the surface.

To characterise the roughness of the isosurface we analyse the angle it

makes relative to flat. This is achieved by numerically differentiating the

isosurface in both the x and y directions. The corresponding angles of in-

clination are then given by θx = tan−1 x′ and θy = tan−1 y′. However the

flatness of the isosurface is defined by the combination of these two angles.

The corresponding angle, φ, is given by the following formula:

θ = cos−1


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






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. (5.19)

That is we take the normalised cross product of two vectors tangential to

the plane at the point under consideration, to give a unit normal vector,

then take the dot product with ẑ to give the appropriate angle. Performing

this analysis over the entire isosurface is carried out on lines 164–208 of

Appendix D and yields Figure 5.7.

The resulting mean angle is 27.8◦ relative to flat, which is rather high2.

Clearly there will be a significant change in direction of the atoms when

reflecting from this surface compared to a flat surface. The result is that the

specular reflection of the individual atoms will manifest itself as an overall

diffuse reflection of the atom cloud. One point to bear in mind, however, is

that it is the atoms that impinge on the flatter areas of the isosurface that

are more likely to enter the light sheet; the mean isosurface angle associated

with these atoms will be significantly lower.

2We note that a consideration of the full trajectory of the atoms as they approach

the nanowire array (beyond the point interaction approximation) suggests that the actual

degree of corrugation experienced by the atoms is likely to be slightly less. As the atoms

enter the magnetic fringing fields they will experience a smoother magnetic field than at

the turning point of their trajectory. The transverse momentum imparted is an integral

over the fringing field region.
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Figure 5.7: The distribution of the relative flatness of the isosurface from

which the atoms are considered to reflect specularly. The angle of the surface

is defined at the angle relative to flat. Regions of the isosurface where there

is insufficient field to reflect the atoms are binned separately and do not

contribute to the mean.

Given that it is unfeasible and unnecessary to compute the field using the

entire domain wall array we choose NDW to be a small number. How small

this can be whilst providing an accurate result was investigated. This was

simply achieved by observing convergence of the calculated result. This is il-

lustrated in Figure 5.8. It is clear from an examination of the isosurface shape

there is a stark difference between the field due to an array of 5 domain walls

and that from 9 domain walls, i.e. with the next nearest neighbours included.

However we note that the isosurface shape displays negligible difference when

comparing an array of 9 domain walls with an array of 61. Thus we use an

array of 9 domain walls when calculating the isosurfaces associated with our

chip.

Within the simulation we also incorporate the ability to simulate the

dynamics of the atoms with an effective isosurface other than that provided

by a particular nanowire geometry. This was performed in a number of

different ways. The simplest manner in which this is achieved is by specifying
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Figure 5.8: Effective isosurfaces and associated distributions of the associ-

ated angle relative to flat for different numbers of domain walls. The field is

calculated analytically by summing the individual contributions from multi-

ple domain walls. (a) shows the result using 5 domain walls, (b) shows the

result using 9 domain walls.

a single angle, θ, for the isosurface. This angle characterises the inclination

relative to flat of the surface. The orientation of this inclination is then

defined by a second angle, φ, which is chosen at random for each reflection

event. This situation is illustrated in Figure 5.9.

This treatment is clearly inaccurate however, as the reflection from a

surface of constant angle θ is not the same as that from a surface of mean

angle θ. The latter will have regions or greater angle which will lead to a

reduction in signal. To simulate better an arbitrary isosurface we try and

replicate the angle distribution of an actual isosurface, as shown in Figure 5.7.
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Figure 5.9: Schematic of an isosurface of fixed angle θ. The azimuthal angle

φ is picked at random.

This was achieved firstly by a simple scaling of the calculated isosurface —

the desired mean angle was set by an empirically deduced scaling factor. An

alternative approach was also used whereby the distribution of the calculated

isosurface was reproduced with a modified mean angle. This was achieved

by fitting the shape of this distribution with a function of the form

c1 + c2 exp(c3x− c4), x < c5 (5.20)

c6 + c7 exp(c8x− c9), x > c5. (5.21)

Because this requires the optimisation of all nine ci this process was carried

out separate to the simulation for a given mean isosurface angle. This pro-

duces an appropriate distribution of θ which is used with an accept-reject

method to randomly assign the angle of inclination of the surface from which

individual atoms are reflected. Again φ is chosen at random. Analysis shows

that this more elaborate simulation of an isosurface of prescribed average

inclination angle produces a noticeable difference in the obtained light-sheet

signals when compared to a model with fixed angle. The calculations using

these manually defined isosurfaces are carried out on lines 395–438 of Ap-

pendix D. In Section 4.2 we comment on how the calculated trajectories of

the atoms are modified by these approaches.

Reflected trajectory computation

Under the approximation of a point interaction it is an easy matter to com-

pute the reflection of the atoms. The first step is to compute the angle of the
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surface. This is achieved by numerically differentiating the magnetic isosur-

face. Once an atom reaches the surface (defined as when its movement in the

subsequent dt will give z < 0) we randomly pick a point on the isosurface,

and its corresponding angles relative to flat, θx and θy. The normal vector

of the surface at this point, n̂, is then given by

n̂ =
1

√

tan2 θx + tan2 θy + 1


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


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. (5.22)

The atom will have some incident direction, ~vi, and the reflected direction,

~vr, is given by

~vr = ~vi − 2(~vi.n̂)n̂. (5.23)

If a position on the isosurface corresponding to a region of insufficient mag-

netic field is chosen the atom is considered to be lost from the system, and

is removed. Atoms which are outside the area of the nanowire array as z

becomes negative are also removed. This reflection process is carried out by

lines 379–393 and 451–457 of Appendix D.

Following reflection the atoms continue to propagate classically, passing

through the light sheet again. In this manner the signal which we extract

from our experiment is simulated. Averaging this process produces a signal

which can be easily compared with experimental data, as shown in Chapter 4.

5.3 Simulation results

5.3.1 Light sheet

A number of features of the experimental realisation of our magnetic atom

mirror were guided by the results of the Monte Carlo simulation. One aspect

in particular which benefitted from such simulations was the setup of the

light sheet used to detect the atoms.
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Light sheet height

One of the first things to be considered was the position and size of the light

sheet. The size of the light sheet is determined by experimental constraints,

described in Section 3.4. A certain degree of freedom is possible in the choice

of the position of the light sheet. The ultracold atomic sample is initially

formed at a height of 1 cm above the nanowire array. This choice was based

on a reasonable distance within which to accommodate the necessary beams

and associated optics to perform the experiment. The exact position of the

light sheet can thus vary by several millimetres, and is predicted to have a

noticeable effect on the signal observed. The dependence of the signal on the

height of the light sheet was analysed through simulation and the results are

shown in Figure 5.10. Note that here the absolute size of the reflection signal

is used since varying the light sheet height also affects the size of the drop

feature.
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Figure 5.10: The reflection signal obtained from the light sheet as the height

of the sheet is varied as calculated via Monte Carlo simulation. Note that the

reflection signal is given as the absolute percentage absorption of the light

sheet (R in Figure 4.2), as the size of the drop feature (D in Figure 4.2) also

varies with light sheet position. We observe that the larger signal obtained for

lower heights is compromised by poorer resolution, as shown in Figure 5.11.
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When the light sheet is located close to the substrate the drop and re-

flection signals become temporally overlapped, making it difficult to resolve

the two peaks. However, the size of the reflection signal is larger as there is

less chance of atoms reflected at large angles missing the light sheet. As the

light sheet is moved further from the substrate the reflection signal becomes

smaller, but better resolved. This behaviour is illustrated in Figure 5.11

0 20 40 60 80
0

2

4

6

8

10

12

14

16

18

Time (ms)

L
ig

h
t

S
h
ee

t
A

b
so

rp
ti
on

(%
)

(a) 2.2 mm

0 20 40 60 80
0

2

4

6

8

10

12

14

16

18

Time (ms)

L
ig

h
t

S
h
ee

t
A

b
so

rp
ti
on

(%
)

(b) 3.4 mm

0 20 40 60 80
0

2

4

6

8

10

12

14

16

18

Time (ms)

L
ig

h
t

S
h
ee

t
A

b
so

rp
ti
on

(%
)

(c) 4.6 mm

0 20 40 60 80
0

2

4

6

8

10

12

14

16

18

Time (ms)

L
ig

h
t

S
h
ee

t
A

b
so

rp
ti
on

(%
)

(d) 5.8 mm

Figure 5.11: Sequence of simulated light-sheet signals with varying light sheet

height above the nanowire array. The atoms are dropped from a height of

1.0 cm. The initial temperature of the cloud is 13 µK.

As a result of this analysis a height of 4 mm was chosen as this was the

minimum height at which the drop and reflection features were predicted to

be completely separate for our expected cloud temperature, i.e. the light-

sheet signal drops to zero between the two peaks.



Chapter 5. Mirror Simulation 116

Light sheet intensity

In Section 5.2.2 the heating effect of the light sheet was discussed. It is clear

that one must take care to ensure that there isn’t too much power in the

light sheet as this can impart significant momentum onto the falling atoms.

Figure 5.12 shows the dependence of the reflection signal on the intensity

of the light sheet for both the retroreflected and non-retroreflected case, as

calculated via Monte Carlo simulations. When the beam is retroreflected we
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Figure 5.12: Dependence of the reflection signal on the intensity of the light

sheet. Note the log scale for the abscissa. Black data points are gener-

ated with a retroreflected light sheet, red data points are generated without

retroreflection.

see that for intensities of above around 3 × 10−3 Isat the perturbation to the

atoms is sufficient such that there is a detrimental effect on the light-sheet

signal. For our experimental setup this corresponds to a power of around

50 nW. The use of higher intensities in the light sheet will provide a larger

absolute signal, but we note that the signal to noise obtained with intensities

of light lower than 3 × 10−3 Isat is more than adequate. Thus a power of

50 nW was chosen such that the highest signal to noise was obtained whilst

ensuring no significant perturbation of the atoms’ motion.

The case of a non-retroreflected beam shows similar behaviour, but on
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a completely different scale. Analytic expressions for the effect of the atom

cloud are given in Appendix E but we consider here just the results from

numerical simulations. We find that the light sheet power is required to be

around 5 nW or less in order to circumvent jeopardising the reflection signal.

This is infeasible as this would give an inadequate signal to noise. We also

note that there is a much more rapid reduction in the bounce signal with an

increase in power. Without retroreflection the bounce signal is reduced to less

than 1% for powers above around 100 nW. By comparison a retroreflected

beam with two orders of magnitude more power produces a signal of around

4%. The reason for this disparity is the very different manifestations of the

imparted photon momentum. A retroreflected beam produces heating in one

dimension with a distribution of imparted momentum centred around zero.

Without retroreflection the momentum kick is always in one direction, and

is centred around a finite mean that increases with the power; the atoms are

simply pushed away as the power is increased. From this analysis it is clear

that it is greatly advantageous to retroreflect the light sheet.

The preceding discussion describes how simulation motivated the choice of

setup for the light sheet. In reality it was a combination of both experimental

observation and theoretical prediction that was used to interpret and optimise

the interaction of the atoms with the light sheet.

Nanowire array dimensions

Perhaps the most striking feature of the light-sheet signal that we obtain is

the size of the reflection feature — only a small fraction of the initial atomic

cloud is in fact detected as being reflected, as shown in e.g. Figure 4.3. As

previously stated, the primary reason for this is that the size of the atomic

cloud once it has reached the height of the chip is large compared to the size

of the nanowire array.

Equation 4.2 suggests that a significant increase in the reflection signal

can be obtained through the use of a bigger nanowire array. Whilst the size

of 2 mm × 2 mm was chosen as the largest possible given the technical lim-

itations of the lithographic techniques used, it is of interest to investigate

the benefit that working to increase the size would provide. The most ac-

curate way to analyse this is through the use of the Monte Carlo simulation
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described in Section 5. We employ this technique to look at the dependence

of the signal on the size of the array from which the atoms are reflected.

Performing this analysis yields Figure 5.13. We observe that there is an
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Figure 5.13: Reflection signal predicted by Monte Carlo simulation with a

varying nanowire array size. The size specified is the length of a square

array. The red line is a straight line fit. The atomic cloud is dropped from a

height of 1.0 cm with a measured initial temperature, T = 13 µK and width

σ(0) = 0.74 mm.

approximately linear increase of the reflection signal with the characteristic

length of the chip, d. Thus increasing the chip size would be an effective

method of achieving a larger reflection signal.

During the design of the chip, the geometry of the wires was a key point

of consideration in order to maximise the efficacy of our device. We now con-

sider the effects of varying nanowire geometry in a quantitative manner. The

first aspect we consider is the period of the nanowire pattern. Calculation

was carried out in the manner already described with a varying characteristic

length of the undulating pattern, d. The results are shown in Figure 5.14.

The general trend observed is that the roughness of the effective isosurface
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(a) d = 2.0 µm (b) d = 1.5 µm

(c) d = 0.5 µm

Figure 5.14: Effective isosurfaces calculated for a range of nanowire undula-

tion wavelengths. A decrease in corrugation is observed for smaller periods.

Also cf. Figure 5.6.

decreases with the period of the nanowire pattern. This is intuitively ex-

pected as by decreasing the distance between neighbouring domain walls the

magnetisation pattern becomes more similar to that of an ideal magnetic

mirror, i.e. a continuous variation of magnetisation. In order to achieve as

specular a reflection of atoms as possible we use as small a value of d as

possible — as described in Section 3.3.1 this is 1 µm.

The next aspect of the nanowire geometry which we consider is the cross

section. As per Section 2, a larger cross section results in a larger effective

magnetic charge prescribed to the domain walls, and hence a larger field is

produced. A result similar to the preceding analysis is found. As the width

of the nanowire is increased the limit of a continuous magnetisation variation
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is approached and the resulting isosurface becomes flatter in a manner very

similar to that shown in Figure 5.14. The choice was made to use as large

a nanowire cross section as possible whilst maintaining an appropriate and

stable domain structure. The corresponding wire width and thickness are

125 nm and 30 nm.

The quantitative analysis presented here confirms the discussion of Sec-

tion 3.3.1. The smoothest isosurface is achieved by using the smallest d and

largest w and t, within the restrictions of practicability.

5.4 Conclusions

In this chapter we have presented the numerical methods employed to sim-

ulate the reflection of an atom cloud from a nanowire array, as realised in

experiment. The interactions of the atoms with the addressing light fields

and, in particular, the interaction with the magnetic fringing fields, are ex-

amined in detail. We use a point interaction approximation to significantly

simplify the simulation of the magnetic interaction, and we show that this

approximation is a very good one.

We have also described how the results of the simulation were used in

conjunction with empirical observations to optimise the experimental setup,

both in terms of the design of the nanowire array and the configuration of

the laser system and experimental procedure.

The true test of the simulations is of course the fidelity with which it

reproduces experimental data. In Chapter 4 we have provided examples that

show the accuracy with which we can replicate the light-sheet signal obtained.

In the following chapter we will discuss the extension of the atom mirror

experiment to incorporate the launching of atoms towards the nanowire array.



Chapter 6

Launched atom interactions

Atoms launched via moving molasses can enter the van der Waals regime.

Their fluctuating dipoles interact with an induced image dipole.
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6.1 Introduction

In Chapters 3 and 4 we discussed in detail the nature of the atom-mirror

interaction and what we can deduce from an examination of the atom dy-

namics. However there is an inherent limitation to our study. Because the

atoms are dropped from a fixed height above the nanowire array, and the

approximation of a point interaction is a good one, the atoms can be consid-

ered to only reflect from one particular isosurface. The result is that we are

only examining a small part of the region where the atoms interact with the

chip. We would like to extend our investigation to explore the nature of the

atomic interaction with the nanowire array over a large range of distances.

We shall consider two aspects to the extension of the work described up

to this point. The simpler of these is further investigation of the magnetic

interaction the atoms experience with the domain wall fringing fields; by

reflecting atoms at different heights we may further test our understanding of

the interaction and the nature of the fringing fields. Such a study is inherently

particular to our system, but the results may be extended to nanomagnetic

domain walls in general: by extending the region over which we consider the

atom cloud to reflect we are able to directly probe nanomagnetic fields at a

range of heights, including the near-field where we know that they adopt a

complex shape [70].

The second way in which we may extend our study is to consider a new

contribution to the interaction between the atoms and the nanowire array,

i.e. the attractive surface interaction. This avenue of research allows us to

probe a brand new aspect of the physics of our system, and has the ultimate

goal of providing a more fundamental test of physical models. Experimental

studies of surface interactions have been attempted for over half a century,

and remain challenging to this day. A number of different approaches have

been adopted, such as examining the deflection of atomic or molecular beams

[139, 140, 141], interferometric methods [142, 143], spectroscopy of atoms

[144, 145] or interactions with cavities [146]. However perhaps the most

direct method of examining surface interactions is via an observation of their

mechanical effects on normally incident atoms, which has also facilitated the

observation of quantum reflection, e.g. [147, 148]. This methodology has been

aided by the advent of laser cooling, yet experiments of this ilk have been
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relatively rare [149, 150]. However, the work presented here is an example of

an alternative method for performing such a study.

We will consider the way in which we can extend our study, and also

discuss the difficulties associated with doing so. In particular, it will be seen

that the complex nature of both the magnetic interaction and the surface

interaction makes a separation of these two contributions extremely chal-

lenging.

6.2 Moving molasses

6.2.1 Theory

In order to extend the region which we probe we must alter the effective

isosurface from which the atom cloud is considered to reflect. This can be

done in a number of ways, such as using a different quantum mechanical state,

or by changing the height from which we drop the atoms. However these have

the disadvantages of only providing a small range of different isosurfaces, or

being logistically difficult. Indeed we anticipate that to approach the array at

a height where surface interactions become important would require a drop

height of the order of 0.1–1 m. The method which we use instead is that of

moving molasses.

This technique harnesses the scattering force that is employed when per-

forming laser cooling in order to launch atoms in a controlled manner [151,

152] and has been used extensively in atomic fountains [109, 153, 154, 155].

During conventional optical molasses the scattering force experienced by a

two-level atom is given by [135]

~F = ~~k
Γ

2

I/Isat
1 + I/Isat + 4 (∆2 + k2v2) /Γ2

, (6.1)

where k is the wavevector of the light, Γ is the atomic linewidth, I is the

light intensity, Isat is the saturation intensity of the cycling transition we cool

on, ∆ is the detuning of the laser from resonance and v is the velocity of the

atom.

The key to the cooling effect of optical molasses is the balance between

∆ and v. Atomic motion produces a Doppler shift which modifies the fre-

quency of a laser beam in the atom frame. This principle is used to laser cool
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atoms through the use of red-detuned laser beams. An atom moving between

counter-propagating beams experiences a force imbalance such that the net

scattering force opposes the atomic motion. The result is a strong confine-

ment in velocity-space. In contrast to the conditions of a magneto-optical

trap (MOT), there is no magnetic field present during optical molasses, and

thus no spatial confinement. During optical molasses we also typically choose

a larger value of detuning than in a MOT in order to produce a more efficient

cooling. Using optical molasses we find that we can achieve temperatures

as low as around 5 µK. As described in Section 3.4.2, optimum cooling is

achieved by ramping the detuning of the lasers through the molasses phase.

The moving-molasses technique modifies conventional optical molasses

such that the cooling mechanism occurs in a moving frame. This is achieved

by introducing a frequency difference between beams. Depending on the

particular geometry of the setup this may be between single beams, pairs, or

sets of three, corresponding to 1D, 2D and 3D moving molasses respectively.

The geometry of our setup, and the one considered in the following discussion,

is 2D, as illustrated in Figure 6.1.

Because of the frequency difference between the beams a force imbalance

is produced. The resulting velocity of the atoms can then be deduced by

considering this force imbalance and the moving frame in which all beams

appear to be the same frequency.

We consider the resonant frequency of the cycling transition to be f0. We

shall now express the detuning applied for conventional molasses as a linear

frequency, ∆L. We define f̃0 = f0 −∆L. We now consider an atom which is

moving with a velocity v in the negative z direction, bisecting two pairs of

beams, with each beam at an angle of φ to the z axis, as shown in Figure 6.2.

f1 and f2 are then the frequencies of the pairs of laser beams observed by

the moving atom, i.e. with the Doppler shift incorporated. These (linear)

frequencies are given by

f1 = f̃0

(

1− v

c
cos φ

)

, (6.2)

f2 = f̃0

(

1 +
v

c
cosφ

)

. (6.3)

The effective frequency difference between these two pairs of beams is then
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f0 −∆L + δ

f0 −∆L + δ

f0 −∆L

f0 −∆L

f0 −∆L − δ

f0 −∆L − δ

Figure 6.1: Schematic of moving molasses for the case of a frequency dif-

ference introduced between two pairs of beams. The upper pair of beams

receives an additional blue (positive) detuning of δ and the lower pair re-

ceives an additional red (negative) detuning of δ.

simply equal to

∆f = f2 − f1 =
2vf̃0
c

cosφ =
2v

λ
cosφ. (6.4)

Thus an atom in motion produces an effective frequency difference, ∆f , which

is equivalent to 2δ as per Figure 6.1. The converse is of course also true; a

frequency imbalance will cause atoms to move at a speed which is given,

according to Equation 6.4, by

v =
λ∆f

2 cosφ
=

λ∆ω

4π cosφ
, (6.5)

where we now express the frequency difference more conventionally in terms

of an angular frequency difference, ∆ω.

We note the somewhat counterintuitive result that the larger the angle φ,

the larger the velocity achieved. This can be understood by considering that
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f1f1

f2f2

φ

v

Figure 6.2: Diagram showing the geometry of 2D moving molasses for some

arbitrary beam angle, φ. f1 and f2 are the frequencies of the beams as

observed by an atom which moves with a speed v in a direction bisecting the

beams within both pairs.

for large angles only a small component of the atom’s velocity is resolved

along the direction of the laser beam, and thus the atom must move very

quickly in order to create the Doppler shift necessary to equilibriate the

forces. However one must bear in mind that using large values of φ may

jeopardise the efficiency of the moving molasses procedure as it will take

a relatively long time to reach equilibrium as the scattering forces in the

direction of motion are comparitively small. Our value of φ is set by the

experimental setup to be 45◦. Evaluating Equation 6.5 with λ=780 nm and

φ = 45◦ we find that the launch velocity is given by

v =
√
2λδ = 0.55 ms−1MHz−1. (6.6)

It is thus a simple matter to ‘dial up’ the desired velocity by setting δ ap-

propriately. We shall now consider how this is achieved in practice.

6.2.2 Experimental setup

In order to achieve efficient moving molasses we require a well defined and

stable frequency difference between the beams. It is also advantageous, as

with the application of conventional molasses, to ramp the frequencies to the

required values, as stepping them can result in the atoms not responding

quickly enough and being ‘left behind’. To achieve such a stable ramp we



Chapter 6. Launched atom interactions 127

make use of arbitrary function generators (Tektronix AFG3252 [156]).

As described in Section 3.4.2 optimal cooling is achieved by ramping the

laser detuning, and this methodology is maintained for moving molasses.

Thus the central frequency, f0, is ramped down by ∆L whilst a frequency

difference between the beams of 2δ, is ramped up, over a molasses duration

of tmol. That is the frequency of the upper, middle and lower beams are

described respectively by

fu(t) = f0 − (∆− δ) t/tmol, (6.7)

fm(t) = f0, (6.8)

fl(t) = f0 − (∆ + δ) t/tmol. (6.9)

Recall that our realisation of conventional molasses uses voltage controlled

oscillators (VCOs) to supply the appropriate signal to acousto-optic modu-

lators (AOMs) via which we control the laser beam frequency for both the

MOT and molasses phases. It is unfavourable in terms of practicality to

use arbitrary function generators to supply the necessary signals throughout

an entire experimental routine, due to the length of the MOT load, so we

make use of RF switches in order to change between the two signal sources

(VCOs and function generators). The function generators are synchronised

and calibrated with respect to each other to ensure an accurate and timely

application of the frequency ramp. A schematic of the apparatus used to

achieve this is shown in Figure 6.3.

During the MOT load a VCO creates the waveform required which is

amplified before passing to a three-way power splitter (Minicircuits ZFSC-

3-1-S+ [157]). Each of the outputs is then passed to one input of an RF

switch (Minicircuits ZX80-DR230-S+ [157]). During the moving molasses

sequence three separate waveforms are produced from two arbitrary function

generators. The three outputs are then passed to the other inputs of the

three RF switches. When the change from the MOT load to moving molasses

occurs the arbitrary function generators are triggered and the RF switches

are switched. Once this setup was developed it was also used for conventional

molasses for experimental consistency.

For the efficient realisation of moving molasses it is important to ensure

that the beams have sufficient power in order to quickly accelerate the atoms
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Arbitrary
Function

Generator 1

Arbitrary
Function

Generator 2

VCO/Amplifier

RF Switch 1

RF Switch 2

Amp.

RF Switch 3

Labview

AOM 2 AOM 3AOM 1

Amp.Amp.

Figure 6.3: Schematic of the setup used to incorporate the moving molasses

technique. The three pairs of MOT beams are driven by individual AOMs.

The RF source passed to these AOMs is either produced by arbitrary function

generators (for the moving molasses frequency ramp) or by a VCO (for the

MOT load). Both of these are controlled/triggered by Labview. The source

is selected using RF switches which are controlled by TTL signals generated

by Labview.

into the moving frame, and also that beams of the same frequency are well

balanced so that there is no net lateral force, i.e. the atoms are accelerated

straight down. Experimental observations indicated that this was indeed the

case for a large range of launch velocities as very few atoms were ‘left behind’

after the moving molasses sequence.

The experimental sequence for launching atoms towards the nanowire

array was carried out in a manner entirely analogous to that for dropping

atoms (cf. Section 3.4.4). After application of the molasses beams an optical

pumping sequence was used, yet we anticipate that significant evaluation

and optimisation of the efficiency of this procedure for a launched cloud is

required.
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6.2.3 Launching simulations

We now consider the effect that launching the atoms has on the reflection

signal. There are two important effects which one must account for. The first

is the behaviour within the light sheet. If the cloud of atoms moves more

quickly it will obviously reach the light sheet sooner and will have spread out

less due to thermal motion in this time. The increased speed of the atoms

in the light sheet means that the associated signal is significantly narrower.

The fact that the cloud has spread out much less means that fewer atoms

miss the light sheet and there are more atoms in the sheet at a given time,

meaning more photons are scattered and the size of the signal increases. This

reasoning is also true of the reflection signal — the atoms will move upwards

more quickly and will have spread out less due to thermal motion. However,

there will still be a significant spreading of the cloud due to the diffuse nature

of the reflection from the corrugated isosurface, and this is the second effect

to consider.

Atoms which are launched more quickly have more kinetic energy as they

enter the magnetic fringing fields and thus the Zeeman energy, and hence

magnetic field magnitude, required to reflect them is greater. Because of this

the isosurface which is pictured in Figure 5.6 is no longer appropriate. To

observe how the isosurface from which the atoms reflect changes, and how

we expect this to alter the observed light-sheet signal, we make use of the

Monte Carlo simulations detailed in Chapter 5, which are easily modified to

incorporate an initial launch speed. The results are shown in Figure 6.4.

As the launch speed of the atoms is increased the level set which defines

the effective isosurface is associated with a larger field magnitude and is thus

located closer to the domain walls. In the limit of a large field the isosurfaces

are to a very good approximation described by ellipsoids [77]. Reflecting

this fact, the ‘holes’ in the isosurface where there is insufficient field that are

found between domain walls become larger for larger field. Thus there is an

overall increase in the corrugation of the surface and a reduction in the mean

height above the nanowires at which the atoms are reflected. The result is

that for larger speeds a larger proportion of the atomic cloud will impinge

on the nanowire array but a smaller proportion of these will be reflected.

The effect on the feature of the light-sheet signal associated with the
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Figure 6.4: The effects of moving molasses. 1-5 correspond to launch speeds

of 0.2, 0.4, 0.6, 0.8 and 1.0 m/s. (a) shows the corresponding isosurface, (b)

shows the distribution of the isosurface angle relative to flat and (c) shows

the corresponding simulated light-sheet signal.
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falling atoms is as intuitively expected — it becomes higher and narrower

for higher launch speeds. The variation in the reflection signal is as per the

two effects described above. The reflection signal initially becomes higher

and narrower in a similar manner to the feature associated with the falling

atoms. In this regime the reduction of the spread of the cloud and increased

speed through the light sheet are the dominant effects. As the launch speed

continues to increase we see a reduction in the size of the reflection signal.

This indicates that for higher launch speeds the shape of the isosurface be-

comes the dominant effect. The increased corrugation of the isosurface due

to a higher atom energy causes a change in the shape of the reflection signal.

We find that the largest reflection signal is predicted for a launch speed of

around 0.6 m/s.

6.2.4 Experimental data

The theoretical treatment we have described makes some approximations

that are not valid in experiment. We assume that the atoms are instanta-

neously accelerated to the appropriate launch speed without any displace-

ment from their initial position. In practice the atoms are accelerated over

the duration of the frequency ramp and during this time there is a displace-

ment of the atom cloud in the direction of the launch. This displacement

is observed to be larger for larger launch speeds and indicates the fact that

the position of the atom cloud depends on the frequency imbalance in the

beams. As previously mentioned, we also observe that not all of the atoms

are successfully launched — there is a small fraction which remain in the

MOT region.

Initial experimental data using the moving-molasses technique have been

acquired, and show behaviour which qualitatively reflects the expected be-

haviour shown in Figure 6.4. Examples of such data are shown in Figure 6.5.

As the launch speed is increased we note that the feature associated with

the falling atoms becomes narrower in a manner similar to theory. A small

discrepancy is observed for larger launch speeds. This is likely to be due to the

fact that the position of the cloud is offset during the moving molasses ramp.

We observe an initial increase in the height of the drop feature, however this
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Figure 6.5: Example light-sheet signals obtained using moving molasses to

vary the speed at which the atom cloud approaches the nanowire array. The

speeds labelled are those according to the applied frequency difference be-

tween the beams. The theoretical curves from Figure 6.4 are also shown as

dashed lines. Successive curves are offset vertically by 1% for clarity.

is then followed by a subsequent decrease, which is not predicted by theory.

This could be due to inefficiency of the moving molasses procedure for larger

speeds resulting in some atoms not being launched.

Examining the feature of the light-sheet signal associated with reflected

atoms also shows qualitative agreement with simulation. There is an initial

increase in the bounce signal, directly due to the increased speed with which

the cloud moves. This is then followed by a reduction in the signal as the

associated effective isosurface becomes more corrugated and the proportion

of the chip providing sufficient fringing fields decreases. This decrease in

the bounce signal is mitigated, however, by the fact that there is a remnant

bounce signal observed when the nanowire array is in the nominally non-

interacting configuration (cf. e.g. Figure 4.6).

There are a couple of notable differences between data and theory. Firstly

the timings of the drop and reflection features are not as expected for higher
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launch speeds. This is likely due to the displacement of the atomic cloud

during the moving molasses sequence (possibly together with some inaccu-

racy in the height of the light sheet). We also note that the reflection signal

decreases sooner than predicted by theory. The reason for this is unclear,

although one possibility is that this is due to the effect of surface interactions.

In order to better compare the data with theory there are a number of

possible approaches. Further analysis, possibly out of vacuum, to ascertain

the nature of the reflection when the chip is in the nominally non-interacting

state may allow us to prevent such reflection. Alternatively the bounce sig-

nal could be measured relative to this null value. It would also be advan-

tageous to combine fluorescence imaging with light sheet measurements to

observe the behaviour of the cloud both during and after the moving mo-

lasses sequence. However, further unexpected behaviour was observed when

optimisation (aligning/balancing of beams, timing of experimental routine,

increased beam power) of the moving molasses procedure was carried out,

and this is shown in Figure 6.6.

We see that as the launch speed associated with the moving molasses

procedure is increased there is a stark change in the shape of the light-sheet

signal, in particular in the feature associated with the falling atoms. At

speeds of around 0.15 m/s and above the peak associated with the falling

atoms becomes split into two. As the speed continues to increase this splitting

becomes more pronounced. It is in fact possible to observe a light-sheet signal

with such a dip corresponding to zero absorption.

This behaviour is entirely unexpected as there is no obvious mechanism

that should produce this structure. The force produced by the moving mo-

lasses procedure should be an isotropic one, and the atoms are almost all

pumped into the same quantum mechanical state. It seems we are faced

with two options: either there is a real density variation imparted on the

atomic cloud, or there is a modulation of the internal state of the atoms.

The more likely of these two options seems to be the former. The moving

molasses procedure clearly modifies the spatial distribution of the atoms as

it cools and launches the cloud, and whilst there is no clear reason why this

process should produce such a stark change in shape, it seems more feasible

than the alternative. The latter option would require a mechanism which
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Figure 6.6: Example light-sheet signals for a range of moving molasses launch

speeds. We note the appearance of a new feature, not present in Figure 6.5.

After optimisation (described in main text) of the moving molasses procedure

we observe that the peak associated with the falling atoms is split into two

as the launch speed is increased.

redistributes atoms into an energy level which has a much lower (indeed zero

in places) scattering rate. Given that the size of the beams used to address

the atoms are always larger than the cloud itself, and that they are known to

be addressing specific transitions, it seems unlikely that a central portion of

the cloud should be transferred to a different state. In order to add evidence

to this idea a number of simple tests were carried out. Repump light was

used to image the atoms, in case some had been transferred to the lower

hyperfine ground state, and the laser frequency and magnetic fields applied

during the optical pumping and molasses phases were altered to examine

the possibility of a redistribution amongst the mF states. No evidence was

obtained to suggest that any such redistribution was occurring.

Fluorescence images of the cloud also showed evidence of the presence of

the bimodal structure within the atomic cloud, although the structure was
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not as well resolved using this method. An example fluorescence image is

shown in Figure 6.7.
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Figure 6.7: Fluorescence image of the atom cloud showing the bimodal struc-

ture. Also shown is a slice through the maximum of the image. Gravity acts

down the page.

Further investigation of the nature of this new feature was carried out as

follows: the distance from the initial cloud to the light sheet was determined

by simply dropping the atoms and observing the time taken to reach the

light sheet, using its associated signal. Next, the moving-molasses procedure

was carried out. Fluorescence images were taken during the moving molasses

ramp to determine how much the atomic cloud was shifted during the ramp.

This was then deducted from the previous distance to determine how far the

cloud had to fall to reach the light sheet when moving molasses was used.

The speed at which the atoms were moving was then deduced from the drop

feature of the light-sheet signal, for both of the peaks. These speeds were

then compared to the speed expected according to the frequency difference

between the beams, and to the speed measured according to time-of-flight

images (the bimodal structure of the cloud was in general not evident in

fluorescence images, so the time-of-flight technique could still be meaningfully
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applied).

The result was that for almost all the data taken the speed expected

according to the beam frequencies and the speed measured according to time-

of-flight images both agreed significantly better with the first of the two peaks

in this new bimodal feature, i.e. the faster of the two speeds. This suggests

that a fraction of the atoms are launched at a significantly slower speed than

expected. We also note that for larger expected speeds the observed speed, by

all measures, becomes less than that expected. This analysis is summarised

in Figure 6.8.
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Figure 6.8: Variation in atom cloud speed with frequency difference during

the moving-molasses procedure. One measure of the speed is provided by

time-of-flight images. Another measure is provided by using the light-sheet

signal to infer the speed from the time at which either of the drop features

occurs. The lines are straight-line fits to guide the eye.

It is clear that there is a mechanism at work which is poorly understood

and is dramatically modifying the structure of the cloud, either directly or

in terms of the internal states of the atoms. Whilst the former seems a

more likely explanation, there is no clear evidence to show the manner in

which this modification occurs. Further work to investigate the nature of
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this mechanism together with a theoretical treatment of the moving molasses

process are likely to be of significant interest, since, as far as we are aware,

no evidence of this kind of behaviour has been previously reported.

6.3 Surface interaction

6.3.1 Introduction

Through the realisation of a magnetic atom mirror we have used ultracold

atoms as a tool with which to probe a nanowire array. By controllably

and transiently interacting the atoms with the magnetic fringing fields we

can obtain information about the interaction. As discussed in the previous

section the technique of moving molasses extends the region from which we

can extract information; we are no longer limited to a single isosurface. It

can also facilitate a more fundamental extension to the physics we can probe.

6.3.2 Theory

In the examination of the atomic potential so far we have considered two

types of interaction: the gravitational acceleration of the atoms and the

magnetic interaction of the atoms with the fringing fields associated with

the domain walls. We have deliberately ignored another form of interaction,

which is the electrostatic interaction with the chip. The reason we have

ignored this interaction up until now is that it is very short range, meaning

that the energy associated with surface interactions is negligible at the heights

from which the atoms are reflected.

However, as shown in Figure 6.4, the distance at which reflection oc-

curs can be dramatically reduced through the use of moving molasses. At

these smaller distances we expect surface interactions to become important

[150]. In general these interactions take a number of forms but are all de-

rived due to electrostatic fluctuations within the interacting objects that have

an associated energy. At very short distances the London-type interactions

are dominant [158] (short range is typically defined as being less than the

wavelength of the associated electromagnetic fluctuations). At larger dis-

tances the finite speed of light becomes an important consideration — this
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extension to the model was provided by Casimir and Polder [159]. Recent

experiments have also observed surface interactions due to thermal, rather

than quantum-mechanical fluctutations at larger distances [160].

To retain an accurate description of the potential that the atoms expe-

rience we must now incorporate the surface interaction. However, this is

extremely difficult to do for our system; analytic expressions for the van der

Waals interaction only exist for the very simplest of systems, such as two

atoms or an atom and an infinite conducting sheet [161, 162]. Our system is

a highly complicated one due to the presence of two different materials (sili-

con and permalloy) in a structure which is not flat — the nanowires extend a

distance of 30 nm from the surface of the substrate. An accurate calculation

of the surface potential will require detailed numerical methods.

To continue the discussion of the effect of the surface interaction we will

use an approximate form of the interaction. We will assume that the atoms

are interacting with an infinite plane of flat silicon at short range, for which

the energy of interaction, EvdW, at some distance z, is given by [149]

EvdW = −εr − 1

εr + 1

1

48πε0

D2

z2
, (6.10)

where εr is the relative permittivity of the surface (for the case of silicon this is

11.7 [122]), ε0 is the permittivity of free space and D is a factor determined

by the particular atomic transition under consideration, analogous to the

atom’s electric dipole moment. Details of the derivation and calculation of

this expression are provided in [163]. Following this treatment we can express

the van der Waals potential in its simplest form as

EvdW = −C3/z
3, (6.11)

where C3 characterises the strength of interaction. Values of C3 for the

particular case of rubidium interacting with a perfectly conducting surface

have been calculated [164, 165], with some work looking more generally at the

modification imparted by incorporating dielectric quality [166, 167]. There

have also been a number of experimental techniques developed to measure

the value directly, e.g. [140, 149, 150]. Following [163] we find a value of C3

of 8.3 × 10−49 J/m3 = 5.1 meV/nm3 = 1.3 a.u. As per [149] the potential

can be re-expressed as

EvdW = −A~Γλ3/z3, (6.12)
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where we have used the approximation that the atom-field interaction is

provided by the strongest dipole transition, and Γ is the atomic linewidth of

this transition, which has a corresponding wavelength of λ. A is a numerical

factor which for our case is 0.11.

Using this model we now consider modifying the energy level diagram

provided in Figure 5.3. The total potential directly above the centre of a

domain wall (where the magnetic fringing field is largest) is now given by the

combination of the magnetic interaction and the van der Waals interaction,

and is shown in Figure 6.9.
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Figure 6.9: Total atomic potential associated with our magnetic mirror when

a van der Waals interaction is included. The magnetic potential is calculated

via micromagnetic simulations as per Figure 5.3 and is shown in grey. The

van der Waals interation is approximated as being due to an infinite sheet of

silicon. The height is defined relative to the surface of the nanowires and we

consider points that are located directly above the centre of a domain wall.

The magnetic states are labelled by mF values for convenience.

The first point to note is that we observe that the van der Waals inter-

action only becomes important at short range. This is intuitively expected

since the surface interaction potential has a 1/z3 dependence, and the mag-

netic interaction a roughly 1/z2 dependence. Down to a height of around
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100 nm the van der Waals interaction has a very small effect, after which it

quickly begins to dominate and the total potential ‘turns over’ and becomes

attractive. By a height of around 40 nm the potential is negative for all mag-

netic sublevels. One must bear in mind however that this treatment is for

the case of a position directly above a domain wall, i.e. where the magnetic

fringing fields are strongest. Away from the domain wall centre both the

magnetic field and the surface potential will reduce in size. This change will

also be nontrivial due to the structure of the nanowire array – the 30 nm

difference in height between the substrate and the top of the nanowires is

significant.

Given the data in Figure 6.9 it is then an easy matter to calculate the

energy required to enter the region where the potential becomes attractive.

For the case of atoms in the mF = 2 state we require a launch speed of

around 1.6 m/s, which is easy to realise within our setup.

Considering the calculations presented here, and those of the previous

section, we can make a qualitative description of how the dependence of

the light-sheet signal on the moving molasses launch speed may be modified

by the incorporation of the effect of surface interactions. We expect that

the bounce signal would decrease in size more rapidly, as the effect of the

attractive interaction to prevent reflection of atoms would add to the effect

of an increasingly corrugated effective isosurface.

6.3.3 Outlook

It is likely that a quantitative analysis of the nature of the surface interaction

experienced by the atoms will be very difficult to obtain. There are two

main reasons for this. In order to make deductions about the character

of the van der Waals potential we require a theoretical model with which

to compare the experimental data. For the geometry of our system this is

hard to calculate. However the problem does not seem entirely intractable

as a significant amount of work has been carried out calculating surface

potentials for regular arrays of material or even objects of arbitrary shape

[168, 169, 170, 171, 172].

The second hurdle to overcome is then the challenge of separating the

effect of the magnetic interaction on the atom dynamics and the effect of the
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surface potential. As previously mentioned, a closer approach of the surface

yields a more corrugated effective isosurface and also results in the surface

interaction becoming more important. Both of these factors will result in

a reduction in the bounce signal. Ensuring a correct interpretation of the

results would be very challenging.

In addition to this, as described in Section 4.3, we observe a bounce signal

in what we expect to be a configuration with no domain walls present. This

adds an extra complication to any analysis of the evolution of the signal we

obtain. As shown in Section 6.2, we have already achieved launch speeds

which we predict will take atoms into the region where the atomic potential

becomes attractive, yet a bounce signal is still observed. Whether this is due

to the same unexpected reflection of the atoms, or due to an inaccuracy in

our understanding of the nature of the potential, is unclear.

In order to use a nanowire array as a method of studying surface forces we

may require modification of our setup. A smoothing of the magnetic potential

would help separate the effects of the two types of potential; working with

a flat mirror would mean any reduction in the number of atoms that are

observed to reflect from the surface would be solely due to the attractive

surface interaction. A flatter magnetic potential could be achieved with a

shorter wavelength of the serpentine pattern, as described in Section 5.2.3.

Working with atoms in a different magnetic sublevel (e.g. F = 2, mF =

+1) may seem like a partial remedy to the complexity of the problem, as

according to Figure 6.9 the launch speed required to reach the point where

the potential turns over is only around 0.8 m/s. However, the potential is

halved with the change in mF and hence the corrugation of the effective

isosurface is exacerbated.

In summary, it is probable that quantitative analysis of the surface forces

arising from our device will be beyond the reach of the current experimental

setup. Such a study would likely require a second generation of nanowire

chip which provides a significantly flatter effective isosurface, and/or detailed

theoretical analysis of the nature of the van der Waals potential due to the

nanowire array, as well as further study into the nature of the magnetic

potential as one probes distances closer to the array.
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6.4 Conclusions

In this chapter we have presented work which builds upon the atom mirror

experiment. The moving molasses technique is seen to be an effective tool to

tune the initial energy of the atomic cloud, thus extending the region over

which we can probe and interact with the fringing fields. However, whilst

the data we obtained qualitatively demonstrate expected behaviour, there

are unexpected features which would benefit from further investigation.

A consideration of a simple van der Waals potential shows that we should

expect a modification to the reflection dynamics beyond that due to the

magnetic interaction. However, accurately discerning such a contribution is

likely to be very difficult, especially on a quantitative level. This is due to

a number of associated challenges: firstly the unexpected features observed

during moving molasses need to be explained; accurate calculation of the

surface interaction due to the nanowire array is very demanding due to the

complex structure; and a detailed quantitative understanding of the magnetic

potential is needed in order to isolate the effect of surface interactions, due

to the corrugated nature of the magnetic potential.

Whilst the technique of moving molasses is a useful tool for extending

the region over which we probe the atom-field interaction, the system we

have is a complex one, which may make the study of surface interactions

impractical without a redesign of the nanowire array. A more productive

avenue for further study, now that we have demonstrated the interaction of

atoms and domain walls, is the realisation of a trapping potential, which we

will consider in detail in the following chapters.
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Magnetic Trapping

Schematic of a magnetic trap based on a biased domain wall. Magnetic field

lines are shown in red and contours of constant magnetic field magnitude are

shown in black.
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7.1 Introduction

Up until this point, the work that we have presented has been focussed on

the realisation of an atom mirror. However, we anticipate that this proof-of-

principle experiment should be a precursor to more elaborate realisations of

an interaction between atoms and domain walls. In particular, we envisage

that individual domain walls can be used as the basis of exceptionally tight

and mobile atom traps [66]. In this chapter we will illustrate how this can

be achieved and discuss the obstacles and possible limitations to the scheme

we propose.

7.2 Theory

Techniques for magnetic confinement of quantum particles were first explored

using cold neutrons [173], but it was immediately apparent that the same

principles could be used to confine atoms [174, 175]. However, it was over

20 years until this was experimentally realised [21, 176, 177], following the

advent of laser-cooling techniques.

Neutrons and atoms have an important common feature — a permanent

magnetic dipole moment. It is because of this that both of these particles can

be confined via an interaction with a magnetic field. We recall that atoms

that are exposed to a magnetic field gradient experience a Stern-Gerlach force

given by

FSG = −~∇EZ = −mF gFµB
~∇| ~B|, (7.1)

where mF is the magnetic quantum number, gF is the Landé g-factor and

µB is the Bohr magneton. Atoms with mF gF > 0 are in ‘weak-field-seeking’

states. Such atoms can be confined to minima of magnetic field magnitude.

The first realisation of magnetic trapping of atoms used a magnetic

quadrupole as the trapping field [21], a configuration which is now ubiquitous

and is described by

~BQ(~r) = B′ (xx̂, yŷ,−2zẑ) , (7.2)

where B′ is the characteristic magnetic field gradient. The recurrence of

the magnetic quadrupole reflects both its utility and the fact that Maxwell’s

equations prescribe it as the simplest form of a magnetic field which has a zero
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point. Since its inception a wide variety of alternative geometries have been

developed based on permanent magnetic material and current-carrying wires.

Notably a number of schemes have been developed that generate harmonic

magnetic potentials, i.e. the magnetic field follows an r2 dependence, rather

than a linear one as in the 3D quadrupole. This results in a potential which is

much better suited to atom trapping. An atom in such a potential undergoes

simple harmonic oscillation.

The shift towards magnetic trapping on microfabricated devices confers

a very important benefit: the parameter B′ is dramatically increased as the

characteristic lengthscale of the magnetic field source is reduced. The result is

that the characteristic trap frequency of a confining potential is significantly

increased. If we consider the variation of the magnitude of a static magnetic

field in one dimension, given by | ~BS(x)|, we can perform a Taylor expansion

to yield:

| ~BS(x)| = B0 +B′x+B′′x2/2 + . . . . (7.3)

For a harmonic potential the quadratic term is the highest order term present.

The effective spring constant associated with the potential, k = mFgFµBB
′′.

The resonant frequency of the trap, ωTrap is then provided by

ωTrap =

√

mF gFµBB′′

m
, (7.4)

where m is the mass of the atom. This is the parameter that we will use

later to characterise the ‘tightness’ of magnetic traps.

We consider the use of nanomagnetic domain walls as sources of magnetic

field. They have exceptionally small characteristic size, ∼100 nm, and very

high associated magnetic fields (∼0.1 T) and field gradients (∼106 T/m). As

was derived in Chapter 2, the fringing fields associated with nanomagnetic

domain walls follow, under the simplest approximation, a 1/r2 relationship.

Adding a bias field in opposition to the fringing fields yields a trapping

potential [66], described by BTrap. This is shown in Figure 7.1 for the case

of a bias field in the negative vertical (z) direction producing a trap located

500 nm above a domain wall. Also illustrated is the potential near the zero

point, defined as EZ/kB where kB is Boltzmann’s constant. Note that while

it is trivial to include the potential energy due to gravity in this analysis,

it is exceptionally weak over the lengthscales we consider when compared to
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Figure 7.1: The magnetic fringing field directly above a nanomagnetic do-

main wall (nanowire cross section 125 nm × 30 nm), with and without a bias

field, for an atom with mF gF = 1. With the additional bias field a trapping

potential is formed at a height of 500 nm. The inset shows the magnetic

potential, EZ/kB close to the zero point.

the huge magnetic fields used to create our traps.

Because of the exceptionally high field gradients the trapping potential

has a very high associated trap frequency, ∼2π × 0.1–1 MHz. Evaporative

cooling will occur quickly [178, 179], until an equilibrium is approached. It is

possible to prescribe a rule of thumb which determines an atom temperature

from the trap depth [180] and we shall assume that atoms at a temperature T

are contained in a potential of depth 10T . This then defines a region of space

to which the atoms are confined, of a diameter of around 50 nm. Within this

region the magnetic field is very well approximated as being linear, as seen

in the inset of Figure 7.1, i.e. the result is a 3D quadrupole1.

What we have created is an extremely tight analogue of the very sim-

plest magnetic trap, localised to the position of a domain wall. This affords

1Note that by the symmetry of the situation the field gradients in the x and y directions

are equal. Through an application of Maxwell’s equations the field thus has the form

~B(~r) = B′ (xx̂+ yŷ − 2zẑ) close to the zero point.
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precise confinement of atoms and the possiblity of investigating new physics

associated with traps with dimensions less than an atom’s de Broglie wave-

length [181]. However, the exceptional tightness produced by nanoscale traps

is a double-edged sword as it makes the loading of such traps challenging.

There is another fundamental problem associated with the potential we have

created, which is common to all magnetic quadrupole potentials and we will

discuss this now.

7.3 Majorana losses

The inset to Figure 7.1 shows the potential associated with our nanowire

traps. However this is only the case for one particular value of mF gF — for

most atomic states there will be a manifold of different mF states. Here we

consider the use of ground state 87Rb atoms, i.e. atoms in the 52S1/2 F = 2

state. In a non-zero magnetic field this energy level is Zeeman split into five,

corresponding to the five possible values of the magnetic quantum number

mF . As such, there are five different associated potentials, in accordance with

Equation 3.3. Without a magetic field, the energy levels are degenerate, and

mF is no longer a good quantum number. Figure 7.1 assumes that mF = 2

(gF = 1/2 for the ground state of 87Rb). A more complete picture is provided

by Figure 7.2 which shows all five potentials. Two out of the five mF states

are weak-field-seeking (mF = +2 and mF = +1), corresponding to trapping

potentials (black in Figure 7.2). The other three states produce non-trapping

potentials (red in Figure 7.2). It is relatively easy to prepare the atomic

sample in the correct mF state through optical pumping (cf. Section 3.4.2).

In a sufficiently large magnetic field an atom’s magnetic dipole moment will

remain aligned (or anti-aligned) with the magnetic field. However, during

the atoms’ traversal of the trap they will pass through the zero point at

the centre. At this point there is a degeneracy, there is no field to define

the quantisation of the magnetic dipole moment, and hence no preferred mF

value. Thus an atom that reaches the zero point will be able to change mF

state by undergoing a Majorana spin flip [182, 183].

The adiabatic theorem of quantum mechanics describes in a fundamental

manner the way in which the evolution of a quantum mechanical Hamiltonian
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Figure 7.2: A Zeeman split magnetic potential experienced by a ground

state 87Rb atom. The potential is formed by adding a bias field of 25.8 G

to the fringing fields from a domain wall in a nanowire of cross section

125 nm × 30 nm (fringing fields calculated analytically, cf. Section 2.2.1).

affects the state of the system [184]. Simply put it states that if the Hamil-

tonian evolves sufficiently slowly the system will remain in its instantaneous

eigenstate. Under these conditions we apply the adiabatic approximation

(conversely the diabatic or ‘sudden’ approximation applies). The validity

of the adiabatic approximation is an important consideration for magnetic

atom trapping. To remain adiabatic an atom must experience a sufficiently

slowly-varying trapping potential, such that the atom remains in its pre-

scribed mF state. If the rate of change is too fast, the sudden approximation

is more appropriate, and it becomes more likely that the atom will undergo

a Landau-Zener transition, which manifests as a spin-flip. For the case of

a magnetic potential the adiabatic criterion can be recast in terms of the

Larmor frequency — this is the frequency with which an atom’s intrinsic

magnetic dipole moment precesses about an applied magnetic field. Pro-

vided the magnetic dipole and field remain aligned, the atom will remain in
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its given mF state. Thus we can write the adiabatic criterion as [185]

ω̇L < ω2
L, (7.5)

where ωL is the angular Larmor frequency of the atom for a change of ∆mF ,

and is given by ωL = |∆mF | gFµB| ~B|/~.
The presence of a zero of magnetic field is clearly disastrous — no mat-

ter how slowly one moves within the trap, the above inequality will not be

satisfied. There is in fact a finite chance of a spin-flip occurring at all points

in the potential. In its simplest form the probability of such a transition is

described the the Landau-Zener formula. Atoms which enter the vicinity of

the zero point are very likely to flip their spin. Magnetic traps with zero

points are in fact widely used within atomic physics — their utility often

relies on the temperature of the atoms being relatively high, and the trap

frequency relatively low, such that the rate of the losses due to spin-flips is

low. This would not be the case for nanowire-based magnetic traps. The

exceptionally high trap frequency means that any atoms contained in such

nanowire traps would traverse the magnetic zero quickly and often — recall

we expect trap frequencies of the order of 2π × 0.1–1 MHz. The result is

that any losses due to spin flips would occur extremely quickly, resulting in

very short trap lifetimes.

In order to circumvent the problem of spin flip losses it is necessary to

remove the zero of the magnetic field to create a non-zero trap minimum in

order to satisfy the inequality given in Equation 7.5. Due to the ubiquity

of the quadrupole field in magnetic trapping a number of different schemes

have been created in order to solve this problem. However, most of them are

not compatible with the type of nanoscale traps which we present here.

It is possible to create a static magnetic potential with an approximately

harmonic form through the use of a Ioffe-Pritchard type trap [26, 175]. Vari-

ations on this type of geometry have given rise to baseball [186] and QUIC

(quadrupole and Ioffe configuration) [187] traps which demonstrate slightly

different methods of achieving traps of similar magnetic field shape. There

is, however, a prohibitive problem associated with using these schemes for

nanowire-based traps. To modify a quadrupole potential to a Ioffe type

potential one must add magnetic fields which vary on the scale of the

quadrupole. Implementing such a scheme for a nanowire trap would require
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the addition of extra nanoscale magnetic field sources (likely current-carrying

wires) at every single trap site, of which there would likely be 104–105. This

would be extremely difficult to implement.

An alternative scheme for overcoming magnetic zeros is the use of a blue

detuned laser as a source of a repulsive potential which keeps atoms away

from the zero point. Implementation of such a scheme would require the

addition of light fields with sizes of the order of 10 nm to every trapping site.

This is not feasible due to the diffraction limit.

In order to solve the problem of Majorana spin flips in a manner which

does not involve the addition of nanoscale objects to modify the potential a

paradigm shift is required. We consider instead the use of time-dependent

potentials. The addition of macroscopic time-dependent magnetic fields has

been used in many applications to remove zero points. One can divide this

methodology into two different regimes, characterised by the frequency of

oscillation of the magnetic fields. This provides us with two techniques,

whose efficacy and suitability we will now discuss.

7.3.1 RF-dressing

Introduction

The problem of diabatic losses within trapping potentials was well known

before the first realisation of cold atom confinement [188]. In comparison,

the technique of RF-dressing as a solution to this problem is a relatively new

one, with the first application being demonstrated in 2004 [189]. Since its

realisation a number of applications have been developed including the pro-

duction of tight atomic traps on a chip [190] and double well potentials [30].

Many other exciting trap geometries based on the RF-dressing technique

have been posited and realised [191, 192, 193]. In this section we will briefly

outline the method of using RF frequency magnetic fields to favourably mod-

ify an atomic potential. Whilst complicated trap topologies are possible we

will restrict our discussion to the simple matter of circumventing trap losses,

and unfortunately, to the reasons why this is not possible for our particular

application.

The canonical example of the dressed-state picture is a two-level atom in

the presence of a light field [136]. If the light field has a frequency close to
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a transition frequency then the two associated energy levels are resonantly

coupled or ‘dressed’ by the applied field. We consider an atom in the ba-

sis |g〉 (ground state), |e〉 (excited state), and a light field described by a

number state |n〉. Diagonalisation of the joint Hamiltonian incorporates the

atom-field interaction and provides the eigenstates of the system. With no

interaction and a resonant light field, the states |g, n〉 and |e, n− 1〉 are deg-
nerate. By permitting a detuning of the light field, δ, these levels are split

by ~δ. By adding in the interaction term of the Hamiltonian these manifolds

then become further split, or ‘dressed’ according to the strength of the in-

teraction, which is characterised by the Rabi frequency, which we define as

Ω = −~d. ~E/~, where ~d is the electric dipole of the atom and ~E is the electric

field.

The process described above can be applied in a completely analogous

manner to more complicated systems. The most important feature which we

are yet to consider is the possibility of spatial dependence. For the case of

a confining atomic potential a spatial variation in the atom-light coupling is

produced. Through this additional complexity, provided by the vector nature

of the interaction, more complicated potentials can be produced.

In this work we will not be considering the use of optical fields, instead

our system will be dressed by the addition of an RF magnetic field. However

the treatment is identical in nature. One can intuitively prescribe a ‘magnetic

photon’ as the particle which dresses the atomic states. Replacing the optical

field in our initial example of a simple two-level atom the Rabi frequency can

be redefined as ΩB = −~µ. ~B/~. For a spatially dependent Hamiltonian the

effective Rabi frequency takes a more complicated form.

The treatment described above can be applied to an atom with a manifold

of magnetic sublevels labelled by mF . The details of the derivation of the

resulting potentials can be found in many other works e.g. [191, 192, 194, 195],

in particular [196] and following theses provide a rigorous explanation. In

this work we will simply quote the result and apply it to our particular traps.

The resulting potentials are given by

V (~r) = mF gFµB

√

(

∣

∣

∣

~BS (~r)
∣

∣

∣
− ~ωRF

|gFµB|

)2

+
B2

RF⊥
(~r)

2
. (7.6)

~BS is the static magnetic field (that due to the biased domain wall fringing
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fields), ωRF is the frequency of the RF field, and BRF⊥
is the component

of the RF field which is perpendicular to the static field at a given point.

We are assuming here that the RF field is isotropic, which is a very good

approximation given the characteristic size of the static trapping potential.

We shall now consider the application of this formula to trapping potentials

based on nanomagnetic domain walls.

RF-dressed domain wall traps

We now consider the application of Equation 7.6 to the static potential pro-

duced by the biased fringing fields from a nanomagnetic domain wall. Recall

that the static field can be very well approximated by a 3D quadrupole (cf.

Figure 7.1). As will be shown, there is an intrinsic problem with trying to

apply the technique of RF dressing to a field of this form, which is that it

is impossible to produce a potential without any zero points. Whilst other

realisations of the technique have circumvented this problem by using grav-

ity to ensure that any atoms do not reach the remaining zero points, we will

show that this is not a feasible option for the regime in which we work.

The shape of the resulting potentials can be understood intuitively by

the schematic shown in Figure 7.3. The static field produces a manifold of

potentials, for each of the mF . These potentials are then coupled by the RF

field, manifesting as a shift of the potentials relative to each other, which

produces a number of crossings at the corresponding resonant positions. The

degeneracies at the avoided crossings are then lifted by the final term in

Equation 7.6 which is analogous to the Rabi frequency between adjacent

sublevels. This Rabi frequency is dependent on both the direction of the RF

field relative to the static field, and the polarisation of the RF field.

It is the calculation of this effective Rabi frequency that is the most

challenging part of the calculation, but can be intuitively understood as being

a calculation of the component of the RF field which is perpendicular to the

static field. For the case of a linearly polarised RF field this is then trivially

given by a term proportional to êS × ~BRF, where êS is the unit vector of the

static field direction. For the case of an elliptically polarised RF field the

calculation is more challenging, and less intuitive. Following the treatment

provided in e.g. [196] we find that the effective Rabi frequency for a circularly
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(c) Shifted potentials (relabelled) (d) RF-dressed potential

Figure 7.3: Schematic of the effect of applying an RF frequency dressing field

to a manifold of magnetic potentials. The resulting adiabatic potentials can

be intuitively understood, with reference to Equation 7.6, as a shifting of the

static field potentials followed by a separation of the resulting degeneracies

characterised by an effective Rabi frequency. The separate potentials are

labelled according to a magnetic quantum number (e.g. mF ).

polarised RF field is described by a term proportional to 1± 2 cos θ+ cos2 θ,

where θ is the angle of elevation, relative to the z axis (aligned with gravity),

and we have assumed that the RF field is polarised in the x-y plane. From

the form of the effective Rabi frequency it is immediately evident that for a

static field described by a 3D quadrupole there will always be points where

the Rabi frequency has at least one zero point. This is a consequence of the

fact that the direction of the static magnetic field takes all possible values.

Examples of the resulting potentials are shown in Figure 7.4.

In considering the full 3D potential, a simple form is observed, which can

be understood by analogy to Figure 7.3. The static potentials are firstly

shifted by the dressing field, producing an ellipsoid of zero points, where
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(a) Linearly polarised RF (b) Circularly polarised RF

Figure 7.4: Example potential isosurfaces created by RF dressing biased

domain wall fringing fields. Half of the isosurface is shown, with a slice being

shown in the x-z plane, where gravity acts in the z direction (the height

above the domain wall). The fringing fields are calculated analytically as per

Section 2. The linear RF field is polarised in the z direction, the circular RF

field is polarised in the x-y plane. The two figures are drawn to the same

scale.

crossings exist. The degeneracies are then lifted by an amount proportional

to the effective Rabi frequency. For the case of a linearly polarised RF field

this Rabi frequency is zero at two antipodal points. For a circularly polarised

RF field there is one zero point.

The best case scenario is then that using a circularly polarised RF field.

Given this choice of polarisation the resulting potential can be tuned by vary-

ing the amplitude and frequency of the dressing field. The former changes

the magnitude of the Rabi frequency, and hence how far the degeneracies

are lifted. The latter changes the relative shift of the static potentials, effec-

tively changing the size of the ellipsoid. These variations are illustrated in

Figure 7.5.

As mentioned, the problem of a magnetic field zero is still present. How-

ever, this has been overcome in other applications of RF dressing by ensur-

ing that this zero point is inaccessible to the trapped atoms [195]. This is

achieved through a consideration of the effect of the gravitational potential,
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Figure 7.5: RF-dressed potential isosurfaces. The figures are as per Fig-

ure 7.4. Isosurfaces extend to 150 µK. Columns left to right represent values

of | ~BRF0
| of 0.5, 1.0 and 2.0 G. Rows from top to bottom represent values of

ωRF of 2π × 2, 5 and 10 MHz. The corresponding diameters of the ellipsoids

of minima are 138, 172 and 354 nm in the x and y directions, and 35, 87

and 183 nm in the z direction. The RF field is circularly polarised in the x-y

plane.

which, up until now, has been tacitly ignored. By ensuring that the remain-

ing zero point is located at the top of the ellipsoid of minima, as shown in

the middle column of Figure 7.5, there is an additional energy cost in moving

from the bottom of the ellipsoid to the top, where the zero point is. Because

of this additional potential the result is that atoms remain at the bottom of

the ellipsoid where there is a finite field minimum.

However, this technique is not applicable in our case. The reason is sim-

ple — because the static magnetic field gradients are exceptionally large, the

resulting trapping potential is very tight, and hence the ellipsoid of minima

that forms is very small (<1 µm). The gravitational potential has a charac-

teristic lengthscale of 9.68 µm/µK for 87Rb atoms. Thus, to create a trap



Chapter 7. Magnetic Trapping 156

of depth 100 µK we required our ellipsoid to be approximately 1 mm in di-

ameter. This is orders of magnitude greater than what we have. Because

we require a finite minimum at the bottom of the ellipsoid, in order to avoid

spin-flips, the gravitational potential must also account for this potential

difference, further exacerbating the problem.

The result we have found is a simple one — the RF dressing technique

is not applicable for the case of a tight 3D quadrupole field, since there will

always be at least one zero point in the potential, which we cannot ensure

the atoms will keep away from. In the following section we will consider an

alternative technique which may present a solution to our spin-flip problem.

7.3.2 Time-averaged potentials

Some of the work in this section forms the basis of the following paper:

Nanomagnetic engineering of the properties of domain wall atom traps

T. J. Hayward, A. D. West, K. J. Weatherill, T. Schrefl, I. G. Hughes and

D. A. Allwood

J. Appl. Phys. 110 123918 (2011)

In the previous section we examined the use of an oscillating magnetic field to

modify atomic potentials. In this section, the same tool will be used to look

at a different kind of potential. The difference is the characteristic frequency

of oscillation. As described in e.g. [197] there are three different regimes. For

sufficiently slow frequencies of oscillation the quasi-static regime is appropri-

ate; the potential which atoms experience is simply the instantaneous one and

the perturbations of an oscillating field act in an entirely intuitive manner.

As previously stated, for high frequencies, close to the Larmor frequency,

the dressed-state regime is appropriate and the corresponding eigenstates

are those of the joint system, including the atom-field interaction2. Between

these two regimes lies the realm of time-averaged potentials (TAPs), where

the frequency of oscillation is significantly less than the Larmor frequency

2For this prescription of regimes we also assume that the rotating-wave approximation

applies within an RF-dressed system. Beyond this approximation the distinction between

regimes is less clear.

http://dx.doi.org/10.1063/1.3671631
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between separate energy levels, but is sufficiently large that the atoms do

not simply experience a perturbed potential.

The technique of TAPs was first utilised in the context of the Paul ion

trap [198] and has since been used to realise a variety of trapping schemes

for both atoms and molecules. The development of magnetic TAPs led to

the first observation of a Bose-Einstein condensate [199]. As with the RF-

dressing technique, a wide variety of TAP geometries have been posited and

realised in experiment, such as a double well trap [200, 201]. Through a

use of a combination of both time-averaging and RF-dressing techniques it

is also possible to create a ring topology [202]. In this section we will simply

consider the feasibility of using a conventional TAP scheme to circumvent

Majorana losses associated with a zero point in an atomic potential.

The simplest form of magnetic time-averaged potential is also known as

the time-orbiting potential (TOP) trap [203]. From hereon we will refer to

all potentials reliant on the time-averaging principle as TAPs. The simplest

TAP consists of the addition of a circulating magnetic field, ~BTAP to a static

confining magnetic field, ~BS(~r). These additional fields are given by

~BTAP = B0 [cos (ωTAPt) x̂+ sin (ωTAPt) ŷ] , (7.7)

i.e. two sinusoidally oscillating fields that are π/2 out of phase. Adding these

fields to a static magnetic field with a zero point has the effect of moving the

zero point in a circular trajectory. This is perhaps most simply imagined by

considering a static potential of the form of a 3D quadrupole. Adding a bias

field of size B0 to this configuration simply shifts the quadrupole centre by a

distance B0/B
′. The direction of this shift then simply rotates in time. The

trajectory of the zero point describes a ‘circle of death’ of radius rD = B0/B
′.

It is so called because atoms that approach the circle describing the locus of

instantaneous zero points undergo spin-flip losses, as described in Section 7.3.

However, if the applied field is rotated quickly enough, atoms with sufficiently

low energy do not explore the region near the circle of death. Rather than

assuming the atoms experience the instantaneous potential we can consider

an effective TAP. The form of this potential is given by

UTAP = mF gFµB
ωTAP

2π

∫ 2π/ωTAP

0

∣

∣

∣

~BS(~r) + ~BTAP

∣

∣

∣
dt. (7.8)
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Assuming the static potential is of the form of a 3D quadrupole this is then

given explicitly by

UTAP = mF gFµB
ωTAP

2π

∫ 2π/ωTAP

0

|[B′x+B0 cos (ωTAPt)] x̂+

[B′y +B0 sin (ωTAPt)] ŷ − 2B′zẑ| dt. (7.9)

This expression can be evaluated analytically in terms of a series expansion

[204]. The result is that the minimum of the potential is no longer a zero

point and the shape of the potential which is yielded is much more harmonic.

Thus atoms in the TAP are confined to a region in the middle of the circle

of death. This transformation of the potential relies on the time-averaging

criterion, which states that the frequency of oscillation must be quicker than

the trap frequency, i.e.

ωTAP > ωTrap. (7.10)

It is not clear how strict this time-averaging condition is and there has been

limited work experimentally testing it [204]. Within this work we shall use the

convention that the inequality is strictly greater than, although it should be

borne in mind that the better this inequality is satisfied, the more appropriate

the use of an effective potential is, and the less likely spin-flips are to occur.

To avoid losses from the trap we must also satisfy the adiabaticity crite-

rion, as described in Section 7.3. As previously stated we require that the

magnetic dipole of the atom remains aligned with the applied magnetic field,

as this field evolves in time. For the system at hand this can be simply

prescribed by requiring that the Larmor frequency is larger than the fre-

quency of oscillation of the magnetic field. Combining this criterion with the

time-averaging criterion provided in Equation 7.10 gives

ωL > ωTAP > ωTrap. (7.11)

As with the time-averaging criterion, this inequality is not absolute; for any

given Larmor frequency and TAP frequency there will always be a finite prob-

ability of a diabatic transition to a different magnetic sublevel, as prescribed

by the Landau-Zener formula. It is obvious that the frequency of oscillation

of the TAP fields does not alter the shape of the resulting potential, thus

we choose ωTAP such that the above inequalities are satisfied as well as pos-

sible. To quantify the stability of the TAP that we create we now define
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ξ = ωL/ωTrap which we shall call the adiabaticity parameter. We can rewrite

Equation 7.11 simply as ξ > 1. The larger ξ is, the better we consider the

trap to be.

There is one more requirement needed in order for the trap we create to

be effective: it must be deep enough. Given the rule of thumb that atoms

of temperature T can be held in a trap of depth 10T we desire a trap depth

of around 100 µK or greater. In a conventional magnetic trap the depth is

trivially defined — it is the potential energy associated with taking an atom

from the minimum of the trap to an untrapped region of space. The picture

of an atom spilling over the side of a bowl is intuitive. The definition of depth

is complicated for the case of a TAP. The conventional definition of depth

still applies, but there is another route out of the trap, through a spin-flip

transition. Although the time-averaging procedure has been presented as a

way of circumventing the problem of a magnetic field zero, it has not been

removed. Thus, any atoms that approach the instantaneous magnetic field

zero will still have a very high probability of spin-flipping to an untrapped

state. As previously stated, the instantaneous zero travels on the circle of

death, and it is this circle which provides a new definition of trap depth —

the energy change associated with taking an atom from the trap minimum

to a point on the circle of death.

As shown in [69] the trap depth due to the circle of death is in fact

independent of all other parameters, including the static magnetic field. This

can be understood by considering the size of the TAP at the circle of death.

The circle of death is the locus of all points where the net magnetic field is

zero in all directions. Because we consider fields oscillating in the xy plane

this is always true for the z component of the field. Since all points on the

circle of death are equivalent by symmetry let us choose the case where the

y component of the static field is zero, i.e. where y = 0. This in turn means

that the x component of the static field is equal to B0. Using Equation 7.9

the value of the time-averaged potential at this point is then given by

UCOD = mF gFµB
1

TTAP

∫ TTAP

0

√

[B0 +B0 cos (ωTAPt)]
2 + [B0 sin (ωTAPt)]

2 dt,

(7.12)

where TTAP = 2π/ωTAP is the period of the oscillating fields. Expanding the
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terms this then simplifies to

UCOD = mF gFµB

√
2B0

TTAP

∫ TTAP

0

√

1 + cos (2πt/TTAP) dt

= mF gFµB
2B0

TTAP

∫ TTAP

0

|cos (πt/TTAP)| dt. (7.13)

Evaluating this integral yields

UCOD = mF gFµB
2B0

TTAP

2TTAP

π
= mF gFµB

4B0

π
. (7.14)

Given that the minimum of the TAP has an associated field magnitude of

B0, we can then write the depth defined by the circle of death, which we

express as

D = mF gFµB
4− π

πkB
B0. (7.15)

The alternative measure of the trap depth, defined by the energy change

moving the atom to an untrapped region is labelled D̃. This can be very

easily expressed for a domain-wall based trap by considering that far away

from the static trapping potential the magnetic field is given by
√

B2
bias +B2

0 .

Since the field at the time-averaged minimum is simply B0 the depth is then

given by

D̃ =
mF gFµB

kB

(

√

B2
bias +B2

0 − B0

)

. (7.16)

We now have two definitions of trap depth and it is the lower of the two

which is applicable. By equating D and D̃ we can easily determine the

regimes under which they apply:

mF gFµB

kB

(

√

B2
bias +B2

0 − B0

)

= mF gFµB
4− π

πkB
B0

⇒ B0 =
π√

16− π2
Bbias. (7.17)

At magnitudes of the oscillating field which are less than this the depth is

prescribed by D, and for fields larger than this it is prescribed by D̃. The

bias field applied is typically larger than the size of the oscillating fields, so

it is generally the trap depth associated with the circle of death that applies.

Through the foregoing discussion we have specified the criteria for a suit-

able magnetic trap. We will now analyse the suitability of the TAP technique

in fulfilling these criteria for the case of a domain-wall based trapping poten-

tial.
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7.3.3 Nanowire-based TAPs

Example potential

All the potentials we consider in this work were calculated numerically.

Whilst the static potential is well approximated by a 3D quadrupole within

the trapping volume region, and analytic forms of a TAP exist for such a

configuration, we note that the circle of death associated with the TAP can

be larger than the region in which this approximation is appropriate. Thus

numerical computation of the resulting potential provides a more accurate

result and is relatively easy to implement. The static fringing fields are cal-

culated via the analytic model described in Chapter 2 throughout.

An example of the result of the time-averaging procedure is illustrated in

Figure 7.6. There is a stark change in the shape of the trapping potential.
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Figure 7.6: An example of the potential resulting from the time-averaging

procedure. Here we consider the fringing fields from a nanowire of cross

section 400 nm × 20 nm, biased by a field of magnitude 47.6 G to form

a static trapping potential at a height of 500 nm. This is then subject to

TAP fields of magnitude 5 G. The resulting TAP has a minimum Larmor

frequency of 2π × 7.00 MHz, a trap frequency of 2π × 326 kHz and a depth

of 93 µK. The adiabaticity parameter, ξ, has a value of around 21.

The desired effect of removing the magnetic zero has been achieved. The

mimimum of the potential is now given by mF gFµBB0/~. We also note that

the shape of the potential is now much more harmonic, rather than linear as

for a 3D quadrupole. Both of these things result in a much more appropriate
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trapping potential – there is much less chance of atoms undergoing spin-

flip transitions and being lost. The parameters chosen for Figure 7.6 are

those which give a particularly favourable trapping geometry, however we

will discuss later the fact that these parameters may present a technically

demanding regime to work in.

Tuning the potential

Until now we have mainly discussed the requirements and restrictions asso-

ciated with the TAP scheme, however there are also a number of variables

at our disposal to try and produce a favourable trapping potential. These

variables, and their effects on the resulting trapping potential, will now be

qualitatively discussed.

As previously stated, the size of the oscillating magnetic field applied has

a strong effect on the character of the trap. Increasing the field size produces

a proportional increase in the radius of the circle of death (assuming we have

a 3D quadrupole static field). The trapping potential becomes ‘smeared’ by

larger fields, resulting in a decrease in the trap frequency. At the same time,

the Larmor frequency also increases proportionally. As we will see later, the

combination of these two effects leads to an overall increase in the value of ξ.

The final effect of increasing the amplitude of the oscillating magnetic field

is to increase the trap depth, as per Equations 7.15 and 7.16.

The other methods of tuning the TAP all rely on the modification of the

static fields. We already know that for small B0 such a modification does not

have an effect on the trap depth, which depends only on B0. It also does not

change the minimum Larmor frequency, which is also defined by B0. Thus,

modifying the static fields only changes the trap frequency and hence the

adiabaticity of the trap, described by ξ.

The height at which the trap is created above a domain wall depends on

the size of the bias field in the z direction (recall this is distinct from the

oscillating bias fields used to perform the time averaging procedure). A larger

bias field produces a smaller trap height, which in turn produces a tighter

static trapping potential – the magnetic field gradient, B′, becomes larger as

one approaches the domain wall. In terms of the TAP, this has the effect of

reducing the radius of the circle of death (recall rD = B0/B
′) which in turn
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results in a higher trap frequency. One caveat to this is that for sufficiently

small TAP fields the region of the trapping potential which is well described

as harmonic becomes smaller as the TAP tends to the shape of the original

static field.

The trap frequency can also be tuned by changing the properties of the

nanowire itself. By increasing the cross section of the nanowire the effective

charge which we prescribe to it increases, and hence the size and gradient

of the resultant fringing fields increase. A further subtle effect is observed

when considering the different types of domain wall. We see that a larger

trap frequency is achieved when using a transverse-type domain wall over a

vortex-type domain wall, for the same effective magnetic charge [69]. This

in turn implies that a more adiabatic trap is formed when using a vortex-

type domain wall. This can be understood intuitively by the fact that the

magnetisation structure of vortex-type domain walls generally has a larger

characteristic size (cf. e.g. Figure 2.1), so the magnetic field source is more

extended. This results in smaller magnetic fringing fields and gradients, and

hence a smaller trap frequency.

TAP analysis

Given the discussion of the ways in which we can adjust the various param-

eters of the TAP, we shall now consider quantitative analysis of the traps

produced. Whilst we know how best to setup the TAP, specific values of the

figures of merit are required to judge what region of parameter space we are

happy to work within, and just as importantly, whether this is compatible

with a technically feasible setup.

The TAP above a nanowire of cross section 400 nm × 20 nm was calcu-

lated using the analytic form of the fringing fields (cf. Section 2) for a range

of values of trap height and B0. Given how well we can approximate the

static fields by a 3D quadrupole, the trap height can be expressed equiva-

lently by a static field gradient, which is a more universal measure of the

tightness of the static potential. Given the symmetry of the situation, the

gradients in the x and y directions are both half that in the z direction, and

we choose the former as the measure of the static field gradient, and label it

B′xy
S . The trap frequency was calculated by fitting the shape of the resulting
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potential to a purely quadratic function over a region defined by a given po-

tential depth. The Larmor frequency and trap depth are also calculated as

previously described, and hence the value of ξ as well. The results are shown

in Figure 7.7.

The data shown display all the trends that we have qualitatively dis-

cussed. Most importantly we find that we achieve a deep and adiabatic trap

for larger TAP fields and for less tight static field gradients. Comparing this

with the data shown in Figure 7.7(a) we see that this corresponds to decreas-

ing the resulting trap frequency. That is the time-averaging technique which

we hope to apply to nanomagnetic field sources works best when the field

gradients are lower. This is an unfortunate result, as the technique is thus

poorly suited for working with small scale field sources for which the resulting

field gradients are characteristically high. In order to achieve a stable trap

we are forced to move further away from the domain wall.

As an example, let us suppose we restrict the trap to having a value of ξ

of 100 or greater, giving an order of magnitude between ωL and ωTAP, and

between ωTAP and ωTrap. For the range of parameters considered we must

then choose a value of B0 of greater than 2 G, and a static field gradient of

less than 15 G/µm, which corresponds to trap heights of around 1 µm or

more. Using a value of 2 G for B0 limits the trap height to being greater

than around 1.5 µm and provides a trap depth of around 40 µK. Increasing

the size of B0 to 5 G, while maintaining ξ = 100 gives a trap depth of around

100 µK.

The range of parameters which we have chosen to display here represent

the kind of regime which we wish to work in, i.e. high adiabaticity, high

frequency traps. We find that this regime is reached for larger and more

quickly oscillating applied fields. However, technical limitations are likely to

make the production of such fields extremely challenging. Creating fields of

moderate magnitude at high frequencies is very difficult. Since the inductive

reactance of any coils used is given by X = 2πfL, where f is the frequency of

oscillation and L is the inductance, there is a clear trade-off. A larger value of

inductance corresponds to a larger field produced, however this increases the

reactance and makes it difficult to drive at very high frequencies. Previous

realisations of TAPs typically work at oscillation frequencies of up to around



Chapter 7. Magnetic Trapping 165

20

40

60

80

12345

0

0.2

0.4

0.6

0.8

1

B0 (G)

B′xy

S (G/µm)

ω
T
ra

p
(2

π
×

M
H

z)

(a) Trap frequency

20

40

60

80

12345

0

2

4

6

8

B0 (G)

B′xy

S (G/µm)

ω
L

(2
π
×

M
H

z)

(b) Larmor frequency

20
40

60
80

1
2

3
4

5
0

100

200

300

400

 

B′xy

S (G/µm)
B0 (G)

 

ξ

10

20

30

40

50

60

70

80

90

Trap Depth (µK)

(c) Adiabaticity

Figure 7.7: Trap characteristics of a time-averaged potential formed above

a nanomagnetic domain in a wire of cross section 400 nm × 20 nm, for a

range of parameters. B0 is the magnitude of the applied TAP fields. B′xy
S is

the gradient of the static magnetic field in the x and y directions. The static

fields are calculated analytically. Note that in (c) the shading represents the

resulting trap depth.

2π × 10 kHz, and require the use of custom-built electronic equipment based

upon a resonant circuit which sacrifices tunability in order to produce the

required fields [205, 206, 207]. Other experiments have used magnetic fields
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which are slightly faster and significantly larger, for example [208] reports

2π × 40 kHz fields of around 1 kG. Whilst this is considerably more field

than we require, it is also at a significantly lower frequency than desired —

these two factors combined suggest that whilst producing the desired high

frequency fields is extremely challenging, it at least seems feasible.

7.4 Conclusions

In this chapter we have presented a proposed scheme for realising a tight

mobile atom trap based on the fringing fields from a nanomagnetic domain

wall. Because of the intrinsically high trap frequency, and the presence of a

zero in the magnetic field, spin-flip losses will be very problematic.

A number of schemes to circumvent spin-flip losses are considered, and

we find most are unsuitable, for both fundamental and technical reasons. In

particular, RF-dressed potentials are shown to be unfeasible on the length-

scales characteristic to the traps we propose. In contrast, the TAP scheme

presents a theoretically feasible method of circumventing the zero point of a

magnetic trap. A judicious choice of parameters must be made in order to

ensure that the potential created is both adiabatic and of sufficient depth.

The parameters which guarantee this are seen to compromise the trap fre-

quency achieved. We also note that there are significant technical challenges

associated with producing the necessary fields, which restricts our choice of

parameters further. In conclusion the conventional TAP scheme seems to be

extremely difficult to implement for exceptionally tight traps.

Whilst the regime presented by nanomagnetic devices is a fascinating and

exciting one due to the enormous field gradients created, it is also difficult to

work effectively in this regime using conventional techniques. In the following

chapter we will introduce a novel technique for producing stable traps which

turns the large field gradients from a burden to an advantage and we hope it

will provide a method for producing some of the tightest atom traps in the

world.
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8.1 Theory

8.1.1 Conventional schemes

In Chapter 7 a number of different schemes were explored in efforts to try and

transform the potential associated with biased domain wall fringing fields into

a harmonic and adiabatic trap by removing the magnetic field zero. There

were problems with each of the methods considered, all of them deriving from

the exceptionally small lengthscales that characterise the trap. The different

methods are summarised in Table 8.1:

Table 8.1: A summary of the different schemes aimed at circumventing spin-

flips to produce an adiabatic trap.

Scheme Example Problem

Ioffe-type trap [187] Requires addition of current carrying de-

vices on the scale of the nanowires, at

every trap site — practically infeasible.

Blue-detuned plug [209] Requires addition of a laser beam at ev-

ery site, focussed down to ∼10 nm — not

possible due to diffraction limit.

RF-dressing [210] RF-dressing a 3D quadrupole leaves at

least one zero point. Gravity has a neg-

ligible effect on the scale of our trap so

will not keep atoms away from the zero.

Time-averaged

potential (TAP)

[203] Best option. Technically challenging to

produce fields of several Gauss at very

high frequency (∼100 kHz). Adiabatic

regime is difficult to achieve.

The best option for removing the zero point of the static potential and

producing a stable and harmonic trap is to use time-averaging techniques.

However, this is difficult for a number of reasons. It is fundamentally hard

to ensure that we are in an adiabatic regime. More specifically it is difficult

to ensure that the inequalities in Equation 7.11 are satisfied:

ωL > ωTAP > ωTrap. (8.1)
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As shown in Figure 7.7 the most favourable parameters are provided by

working with higher TAP fields and at higher frequencies. This leads to the

second problem, which is that it is technically challenging to produce the

necessary magnetic fields.

The difficulties associated with applying a TAP scheme for our traps

derive from the inherently small scale of the magnetic field sources we use,

which produces extremely high field gradients and hence extremely high trap

frequencies. As described in Section 7.3.2, applying oscillating fields moves

the zero of field around in a ‘circle of death’. The larger this circle is, the

deeper and more adiabatic the trap becomes. However, a larger circle of

death requires larger fields, and the circle becomes smaller as the static field

gradients become higher. The result is that we are limited by the inherently

tight static potential.

8.1.2 The PATAP scheme

We will now present an alternative scheme that solves the problem of spin-

flip losses in our traps and circumvents the difficulties associated with TAPs.

This is achieved by transforming the extremely high field gradients from a

hindrance to a help.

The scheme is a direct analogue to a TAP such as those given in [69,

203, 211]; we move the magnetic field zero in a ‘circle of death’, but instead

of achieving this via the application of additional magnetic fields, we will

consider physically moving the source of the static fields. To produce an

analogue of a conventional TAP scheme the position of the static field source,

(x, y), must be described by

(x(t), y(t)) = x0 cos (ωTAPt) x̂+ y0 sin (ωTAPt) ŷ. (8.2)

x0 and y0 are the amplitudes of motion in the x and y directions respectively,

which can in principle be different but from hereon we assume to be the same

and equal to rD. The result is almost identical to that of a conventional

TAP scheme and the same requirements exist, i.e. we require the trap to be

adiabatic and within the time-averaging regime, as per Equation 7.11, and

we require the trap to be deep enough to hold ultracold atoms. There is

one subtle but significant difference: the movement of the zero point does



Chapter 8. Piezoelectrically-Actuated Time-Averaged Potentials 170

not require the use of additional fields and hence does not depend on the

gradient of the static fields. The result is that this alternative scheme is

ideally suited for working with very high field gradients. We will discuss

later the practical realisation of this through the use of piezoelectric devices.

Hence we shall label this new scheme as a piezoelectrically-actuated TAP

(PATAP) from hereon.

8.1.3 Fundamental advantages

The motion of the ‘circle of death’ is now parametrised by rD — the ‘radius

of death’, this is the analogue to B0 in a conventional TAP scheme (cf. Equa-

tion 7.7). Let us assume that the region of the static fields we consider is

purely linear (as seen in Figure 7.1 this is a very good approximation) with

gradient B′xy
S in the x and y directions. In a conventional TAP scheme the

displacement of the zero point, d, is given by d = B0/B
′xy
S . Thus we achieve

a larger d for smaller field gradients. Working with smaller gradients leads

to less tight traps, but the resulting adiabaticity and trap depth suffer as

we move to tighter traps. In contrast, the PATAP scheme has rD indepen-

dent of the static field. The result is that for a given rD the corresponding

change in field is larger for larger field gradients, giving a deeper and more

adiabatic trap. This is best illustrated by analysing the dependence of ξ on

the relevant trap parameters for a PATAP. Recall we define ξ = ωL/ωTrap

with ωL being the minimum Larmor frequency and ωTrap the trap frequency.

We numerically calculate the TAPs in a manner analogous to Section 7.3.2.

The result, along with that for the case of a conventional TAP scheme (Fig-

ure 7.7), is shown in Figure 8.1. The ranges of B0 and rD were chosen to

roughly represent technically feasible values.

The differences between the two schemes are clearly shown. Firstly, the

contrast between the dependences on the gradient of the static field is stark.

As discussed above, the conventional TAP scheme produces a more adiabatic

trap when the field gradients are low, whereas the opposite is true for the

PATAP scheme. Even for fairly low field gradients the value of ξ is signifi-

cantly greater for the PATAP scheme for almost all rD. A very rapid drop in

ξ is observed for the TAP scheme around B′xy
S = 10 G/µm where the efficacy

of the trap greatly reduces.
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Figure 8.1: A comparison of the efficacy of the TAP and PATAP schemes.

Figure (a) corresponds to a conventional TAP scheme realised through the

addition of oscillating fields. B0 is the magnitude of the applied fields, B′xy
S

is the gradient of the static magnetic field in the x and y directions and ξ

is the adiabaticity parameter equal to ωL/ωTrap. Figure (b) corresponds to

a piezoelectrically-actuated TAP scheme. rD is the amplitude of movement.

N.B. the B′xy
S axis is reversed between (a) and (b).
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There is also a very different dependence of the trap depth. We see that

the trap depth increases for higher magnetic field gradients. As previously

discussed this is because a given physical oscillation corresponds to a larger

field change for higher values of B′xy
S , thus the field at the ‘circle of death’ is

higher. For the TAP scheme the depth does not depend on the static field

gradient, only on the magnitude of the oscillating fields [69] (cf. Section 7.3.2).

In contrast there is a more complicated dependence for the PATAP scheme;

the trap depth depends on both the amplitude of oscillation and the static

field gradient. We also see, however, that the dependence on rD is not mono-

tonic. There is an optimum value of rD above which the trap decreases again1.

This behaviour is due to the fact that the static field has a finite size over

which it forms a trapping potential. As rD becomes comparable to the size

of the static potential there is a flattening out of the time-averaged potential

which leads to a reduction in depth. This regime will be discussed further

in Section 8.3 when we consider more complex trapping geometries. We also

note that the trap depth achievable is considerably higher for a given static

field gradient. For very tight static potentials a conventional TAP scheme

requires rather large additional fields in order to produce a good trap depth,

whereas the PATAP scheme needs only very small physical oscillation for the

same depth.

In order to achieve an effective PATAP we must ensure that the inequali-

ties of Equation 7.11 are fulfilled. Whilst ξ gives an indicator of how feasible

this is, it does not indicate an appropriate oscillation frequency. In order

to find this we consider Figure 8.2 which shows both the trap frequency,

ωTrap and the Larmor frequency, ωL, as calculated for the parameters given

in Figure 8.1(b).

8.1.4 Technical advantages

We have discussed the fundamental benefits of the PATAP scheme over con-

ventional TAPs, but there are further advantages conferred by this change

1This is in fact also true for the conventional TAP scheme; for very large B0 the trap

depth is no longer determined by atoms reaching the circle of death, but by atoms reaching

a non-trapping region, determined by the size of the bias field (cf. Figure 7.1) — see [69]

for details.
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Figure 8.2: The trap frequency and minimum Larmor frequency for a trap-

ping potential created via a PATAP scheme. The oscillation frequency of

the actuator must be chosen to be between these two frequencies in order to

achieve an adiabatic trap.

of methodology. We will now consider the details of how we achieve the re-

quired motion, and how this could be a technically easier route to achieving

a time-averaged potential.

To produce PATAPs we need to move the source of the static magnetic

field in a ‘circle of death’. From Figure 8.1 we note that the amplitude of this

movement needs to be around 200–300 nm for the best traps. This motion

can be achieved through the use of piezoelectric actuators. A schematic of

the setup is shown in Figure 8.3. The schematic shows two separate shear

Chip

x-actuator

y-actuator

Figure 8.3: A schematic of the setup required to realise a PATAP. A chip

which hosts a source of magnetic field is mounted on top of a piezoelectric

actuator operating in shear mode. This in turn is mounted on top of another

orthogonally orientated shear actuator.

actuators providing independent motion in x and y. The axes are driven by
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two separate voltages which follow the form

Vx(t) = V x
0 cos (ωTAPt) , (8.3)

Vy(t) = V y
0 sin (ωTAPt) , (8.4)

in direct analogy to Equation 7.7. We shall limit our study to the case of

V x
0 = V y

0 = V0. This configuration of actuators is commercially available in

a single device [212]. Because one actuator is mounted on top of the other

there is no strain when one moves in a direction orthogonal to the other.

An alternative setup is to use two separate piezo devices to push against a

mounted chip. This has the benefit that one can use stack actuators operating

in longitudinal (rather than shear) mode which can typically provide higher

displacements and frequencies of motion [212]. However in this scheme the

motion of the actuators is not independent; the motion of one will introduce

shear strains in the other. The configuration illustrated avoids this at the

(small) expense of frequency and displacement.

The methodology that we have outlined to achieve the desired movement

has a number of advantages compared to a conventional TAP scheme. To

achieve a conventional TAP one must produce magnetic fields of several gauss

which oscillate at several hundreds of kHz. This is conventionally achieved

through the use of coils of current carrying wire. This is a difficult task

in itself as the high inductance of such coils means the application of fairly

large voltages is required to achieve the desired currents. Amplifiers which

can operate under these conditions are either prohibitively expensive, or more

often, built specifically for the task.

In contrast, piezoelectric actuators are almost purely capacitive devices

that draw very little current. Instead they rely on an applied voltage to move

them. Because of their low inductance they can have resonant frequencies of

up to around 2π × 300 kHz. If we consider an actuator with a capacitance

of 1 nF (typical for this type of device) which oscillates with an amplitude

of 200 nm, the required voltage to move it this distance is 50 V. The corre-

sponding average current drawn by an actuator of capacitance C operating

at a frequency f is given by [213]

〈I〉 = 2fCV0. (8.5)

For the aforementioned values this yields a required current of 30 mA. Pro-
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viding this combination of voltage and current at the required frequency is

a much easier task than the requirements for a conventional TAP scheme as

there are many commercially available piezoelectric drivers which are suit-

able, e.g. [214].

The corresponding power required for such a device is then around 1.5 W.

An estimate of the power dissipated into a chip which weighs 0.1 mg suggests

that we would expect a corresponding temperature rise of around 5 K/s.

Given that both the operation duration and duty cycle of such a device are

likely to be small we expect that heating would not be problematic, especially

with good heatsinking in place. By contrast, supplying sufficient current to

produce the fields necessary for a TAP will most likely use 100s of watts of

power which would need careful management in order to avoid problems of

overheating.

Other practical benefits of using a PATAP scheme include the fact that

the devices are both small and UHV compatible, meaning that they can be

easily incorporated into an ultracold atom setup. It is in fact possible to

amalgamate two technologies into a single device by using the PZT (lead

zirconium titanate) material of a piezoelectric actuator as the substrate for

lithographic patterning [215]. This adds the benefit of removing the load as-

sociated with an atom chip from the piezoelectric device, which will increase

the resonant frequency. It also circumvents the need to fix the magnetic

field source onto the actuator. The bond used to achieve this is naturally

a weak point with higher compressibility than the PZT crystal itself, lead-

ing to a damping of the desired oscillation. No such effect would arise for

a lithographically patterned device. Further study may be required before

attempting such a hybrid device though as departures from ideal shear mo-

tion such as bending of the actuator would necessarily bend the patterned

material. One would have to ensure that this did not have a detrimental

effect either to the constitution of the lithographically patterned material or

to the magnetic fields produced — it has been shown that applying strain

to a nanomagnetic domain can have a significant effect on its magnetisation

structure [54].

We conclude, therefore, that the presented PATAP scheme provides nu-

merous fundamental and technical advantages over conventional TAPs, par-
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ticularly in the regime of small-scale traps with high associated frequencies.

To demonstrate the feasibility of such a device we must now verify the suit-

ability of the motion of the piezoelectric actuators.

8.2 Investigating actuator motion

We now describe two methods which were used to analyse the motion of

a selection of piezoelectric actuators. We shall show that the movement

observed suggests that we can actuate an atom chip at suitable frequencies

over sufficient distance. However we also find that further work is required

to verify the fidelity of circular motion.

8.2.1 Michelson interferometer

Setup

Initial studies of the motion of the actuators used a Michelson interferometer.

A schematic of the experimental setup is shown in Figure 8.4. Although

Laser

Reference
actuator

XY actuator

Figure 8.4: Schematic of the interformeter setup used to analyse the motion

of the piezoelectric actuators. A laser beam is passed through a 50:50 beam

splitter. One arm is then reflected from a silvered prism on a shear actuator.

The other is reflected from a mirror on a reference actuator. The beams are

then recombined and passed to an AC photodiode.
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such optical interferometery is a standard technique there are a couple of

subtleties that must be considered. Firstly, the shear motion of the actuator

does not induce a path length change in a reflected laser beam. Thus we must

translate the shear movement into movement along the beam direction. This

is achieved by affixing a prism onto the surface of the actuator (cf. Figure 8.4).

The prism is made from a diagonally halved 1 mm × 1 mm × 1 mm cube,

with a silvered hypoteneuse (Tower Optical MPCH-1.0 [216]), and is glued

using Epotek H77 epoxy, which was chosen for its low compressibility, high

thermal conductivity, low electrical conductivity and suitability for use in an

ultra-high vacuum [217]. Care was taken to ensure that the axis of the prism’s

hypoteneuse was parallel to one of the actuator’s axes. Misalignment would

mean that orthogonal actuation would also produce a small path difference

change. The silvered surface of the prism is then orientated such that the

laser beam is normally incident. The result is that a shear displacement of d

causes a path difference change of ∆s =
√
2d. In practice, two such prisms

are used to allow for analysis of motion along both axes.

It is also important to note that the displacement of the device is typically

less than the wavelength of the light we are observing (780 nm). For a path

difference change of ∆s the corresponding phase difference is δφ = 2π∆s/λ.

If we consider a laser beam of initial intensity I ∝ E2
0/2, with the corre-

sponding electric field given by E0 sin (ωt+ Φ), the field at the photodiode

is given by

EPD = E0/2 [sin (ωt+ Φ + φ1) + sin (ωt+ Φ + φ2)] , (8.6)

where φ1 and φ2 are the phases in the two arms. Defining δφ = φ1 − φ2 and

setting Φ = 0 we have an observed intensity of

IPD(t) ∝ E2
0/4 [sin (ωt) + sin (ωt+ δφ)]2 (8.7)

= E2
0 cos

2(δφ/2) sin2(ωt+ δφ/2). (8.8)

Removing the time dependence by taking the average (ω is much larger than

the actuator oscillation frequency) gives

IPD ∝ E2
0/2 cos

2(δφ/2). (8.9)

From our definition of δφ this corresponds to a periodicity of λ. Displace-

ments of a few 100s of nanometres thus correspond to a phase difference
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change of less than 2π. In order to deduce the movement of the actuator

we use a reference actuator in the other arm of the interferometer which

moves slowly compared to the actuator we are investigating, but also moves

significantly further.

Analysis

To describe how the movement of the shear actuator is extracted from the

resulting signal we consider the time dependence of the observed intensity.

From Equation 8.9 we know that the intensity is of the form cos2(x), where

x is the position of the mirror. However, x is time dependent. The reference

actuator is driven by a triangular waveform and the shear actuator by a

sinusoidal waveform. The observed signal is thus of the form

IPD(t) ∝ cos2 [t+ A sin(ωt)] = 1/2 cos [2t+ 2A sin(ωt)] + 1/2, (8.10)

where A is typically less than 1 (the amplitude of movement of the shear

actuator is less than that of the reference acutator) and ω is significantly

greater than 1 (the movement of the shear actuator is significantly faster).

We choose to centre the signal around 0, which yields a signal of the form

IPD(t) ∝ sin [t+ A sin (ωt)] . (8.11)

Throughout the preceding discussion we have deliberately ignored the precise

prefactors that quantitatively describe the shape of the signal. This is be-

cause it is an entirely self-referenced process; the total amplitude of the signal

relates to a known displacement, against which we then reference the smaller

modulation. For the same reason we shall not quantitatively label any of

the signals illustrated. We shall now describe how the motion of the shear

actuator is inferred from the photodiode signal. The process is illustrated

with experimental data in Figure 8.5.

The photodiode signal and the shear actuator drive voltage are shown

in (Figure 8.5(a)). The signal is normalised and centred around 0, and the

inverse sine is taken (Figure 8.5(b)). This yields a signal of the form t +

A sin (ωt). The envelope of this signal is then found (Figure 8.5(c)), from

which it is possible to fit a straight line. Note that near the extrema of

the slow modulation there is some deviation from a purely linear behaviour.
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Figure 8.5: Illustration of the numerical procedure for determining the mo-

tion of the shear actuator. The amplitude of the slow modulation is mea-

sured, then this modulation is removed to determine the amplitude of the

fast modulation.

To preserve the accuracy of the method, a region where good linearity is

observed is extracted (red region). Dividing by the gradient of this line

provides a signal of the form A sin (ωt). The amplitude of movement of the

shear actuator is given by

Apiezo =
Aλ

2
√
2
. (8.12)

Note that the amplitude of the low frequency signal oscillation corresponds

to a path difference change of λ/2, we must divide by 2 to give the motion

of the prism, rather than the path difference change, and we must multiply

by
√
2 in order to give the movement of the actuator, rather than the prism.
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Although the explanation of this procedure is quite involved, it is a very

quick process to automate once the program to analyse the data has been

optimised. Care must be taken when continuously taking data to ensure a

small duty cycle in order to avoid overheating of the (fast) actuator.

The simultaneous recording of the driving signal permits an independent

check of the amplitude and frequency of the driving voltage. It also allows

measurement of the phase of the response of the actuator. This is achieved

by fitting sine waves to both the driving voltage and photodiode signal. One

can assign an absolute phase to both of these fits. Comparing the two gives

the relative phase.

Results

Using the process described the frequency response of a shear actuator was

obtained and is shown in Figure 8.6. The shear actuator used to acquire the

data is the P-112.01 model x-y shear actuator produced by Physik Instru-

mente [212]. From hereon any quoted frequencies are linear unless otherwise

stated.

The frequency dependence observed is a complicated one but there are

clearly regions where there is a much larger displacement of the actuator. We

note in general that the amplitude of oscillation decreases as the frequency

increases. The predicted resonant frequency of the actuator is quoted as

230 kHz, and given the data shown in Figure 8.6 we can deduce that the

loading of the actuator by the prisms (objects of comparable weight to an

atom chip) does not dramatically reduce the resonant frequency. We also

note that the measured amplitude of oscillation is in agreement with that

suggested by the quoted voltage response. A displacement of 1 µm is pre-

dicted for an applied voltage of 150 V. Thus one would expect for a drive

voltage of amplitude 25 V that one would observe oscillations of amplitude

around 170 nm. This is indeed what we observe at resonant peaks within

Figure 8.6.

Another notable point is that the frequency response is markedly differ-

ent for the different axes of motion. Because of this it is important to choose

a frequency at which both of the axes respond strongly. Applying appropri-

ate drive voltages to the two axes will then allow for circular motion to be
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Figure 8.6: Frequency response of the oscillation of a shear actuator (black

lines), examined by optical interferometry, for both axes of movement. The

different axes are offset by 200 nm for clarity. The amplitude of the voltage

applied to the actuator is 25 V. The red line shows the signal obtained via

impedance spectroscopy.

achieved. Any asymmetry in the movement of the axes will simply modify

the motion of the device from a circle to an oval, and the shape of the re-

sulting potential to being an ellipsoid which is asymmetric in x and y. Note

that in such a case the depth of the trap will be determined by the smaller

of the two amplitudes of movement.

We also carried out some basic impedance spectroscopy (see e.g. [213,

218, 219, 220]) of the actuator to try and provide an alternative measure-

ment of the frequency response. Performing optical interferometry on the

actuator is logistically very difficult within a UHV environment and could

jeopardise the utility of the device by requiring the fixing of a prism to the

actuator. Impedance spectroscopy is a purely electrical measure of the fre-

quency response of the actuator which does not perturb the device or require

any significant additional equipment. The procedure we used was very simple

— the voltage drop across a 1 Ω resistor placed in parallel with the actua-

tor is measured, corresponding to the current drawn. Theory predicts that

mechanical resonances should correspond to frequencies where the current
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drawn is lowest [213]. Example data are shown in Figure 8.6. As can be

seen, there is not a clear cut correlation between the displacement inferred

by the optical interferometry and the impedance spectrum, however there is

a large feature in the latter around 350 kHz where we do observe the device

to undergo large amplitude oscillations. We anticipate that further develop-

ment of the impedance spectroscopy technique will provide a more detailed

and clear indication of the device’s frequency response.

The picture of the frequency response shown in Figure 8.6 shows a very

complicated spectrum from which we must choose a frequency to work at.

Analysis of a region where we observe large oscillations reveals a greater

degree of smoothness — around a frequency of 360 kHz there is a region of

almost 20 kHz width within which the amplitude of oscillation is greater than

three quarters of the maximum value. The maximum possible movement of

the actuator was also examined by applying a driving voltage of amplitude

125 V (the maximum possible with our combination of function generator

and amplifier). Whilst quantitative analysis of the displacement is difficult

using the method described, we observe peak-to-peak displacements that are

significantly larger than λ/2
√
2

The dependence of the oscillation amplitude on the amplitude of the drive

signal was also analysed. This was done away from a resonance to ensure

small displacements so that the analysis method described could still be

applied. We observe that the amplitude of movement varies almost linearly

with the size of the voltage used to drive the actuator. There is a small

negative deviation from linear for large drive voltages. Fitting the data with

a quadratic function yields a reduced χ2 of 1.8.

Another feature of the actuator motion that was examined was the phase

relative to the driving voltage. This is important as the realisation of circular

motion requires there to be a constant phase of π/2 between the motion of

the individual axes. The phase relative to the driving was measured across

a range of frequencies for both axes. From this the relative phase between

the two axes was inferred (simultaneous independent driving of the two axes

was not possible as this requires a second amplifier). Unfortunately, the data

obtained using this method were not useful — no obvious trends within the

data could be observed. This was also the case when focussing on a resonant
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feature of the spectrum. This suggests the presence of an unexpected and

fluctuating delay within the experimental procedure. Further investigation

could be carried out to determine the cause of this behaviour, but we shall

see later that an alternative method provides a better measure of the phase.

In the analysis considered so far we have tacitly assumed a fundamental

feature of the motion of the device: applying a voltage to drive motion in the

x direction does not produce movement in the y direction, and vice versa.

To test whether this was indeed the case we simply examined the movement

of the prism orientated orthogonally to the axis being driven. The result was

a rather suprising one. We found that there was a significant signal observed

on the ‘wrong’ axis, of comparable magnitude to that observed for the correct

axis.

Clearly this behaviour is not expected, however there are a couple of

possible reasons as to why a signal would be produced in such a manner.

The first of these is simple misalignment — if the reflective surface of the

prism is not perfectly orthogonal to the direction of the beam then movement

along the ‘wrong’ direction will also produce a change in the path difference.

However, one would expect that even if such misalignment existed the cor-

responding signal would be small. Thus this is unlikely to account for all of

the signal we see.

Another mechanism for producing the unexpected signal we observe could

be that the motion of the actuator is in fact not as faithful as we expect.

The most obvious mechanism behind this is that shear motion is induced in

both axes, however we are assured by the manufacturers that this should not

happen. Alternatively, more complex motion could also be present, such as

that illustrated in Figure 8.7. The ideal motion that we aim to replicate with

(a) Shear motion (b) Tilting motion (c) Bending motion

Figure 8.7: Possible modes of motion of a piezoelectric actuator.
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our actuator is a purely shear one, shown in (a). In this case the motion of

any magnetic field source is constrained to lie in the x-y plane, and any signal

created by the interferometer is due to translation of the mirror. However,

we can envisage other types of motion that may also produce a signal, such

as a tilting or bending of the device as shown in (b) and (c). This type of

motion could produce a signal in the orthogonal axis. However, in the case

at hand one would anticipate that this mechanism would be mitigated by

the fact that we are using prisms on top of the actuator; it is likely that the

types of motion shown in (b) and (c) would be damped by the bond to the

prism.

If the type of non-ideal motion described is a cause for the unexpected

signal then this is likely to be exacerbated by our detection method. The

Michelson interferometer is a homodyne method, reliant on the spatial po-

sitioning of the beams used. Thus the interferometer is also sensitive to

misalignments of those beams. There is an interference pattern in a plane

orthogonal to the beam direction and if the reflective surface associated with

the actuator is tilted then one of the beams will be tilted relative to the other.

This will create a change in the interference that takes place, and hence pro-

duce signal. To try and minimise this effect, the beams were expanded in the

arm sent to the photodiode. This makes the characteristic lengthscale of the

interference pattern across the beam larger, and enhances the spatial filtering

effect that the photodiode has. This did not result in a significant decrease

of the signal. The possibility of steering of the beam was also investigated by

observing the signal due to just one arm of the interferometer. If the beam

was being diverted significantly the collection efficiency at the photodiode

would vary, thus giving a signal. No such evidence was observed.

Due to the unexpected nature of the signal just described, it was deemed

that further investigation was necessary. One could, for example, investigate

beam deflection over a much larger distance, however an alternative measure

of the motion of the actuator was sought. This was found in the form of a

laser Doppler vibrometer (LDV), and is discussed in the following section.
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8.2.2 Laser Doppler vibrometer

Overview

The laser Doppler vibrometer is an interferometric device, but in contrast

to a Michelson interferometer it operates via heterodyne detection. A laser

beam is reflected from a moving surface, which imparts a Doppler shift to the

frequency of the beam. The reflected beam is then interfered with a reference

beam, which has not been Doppler shifted. The result is a beat frequency

which is a measure of the velocity of the reflective surface. The heterodyne

method has the significant advantage that it is much less sensitive to spatial

misalignments, as the interference procedure is based in the frequency domain

(although the LDV we used also allowed for better spatial alignment as it was

implemented within a microscope setup). If we assume that the motion of

the actuator is sinusoidal in form (i.e. described by simple harmonic motion),

which we observe to be a very good approximation, then the corresponding

amplitude of motion is very easy to calculate, given by x0 = v0/ω, where v0

is the maximum speed observed, and ω is the frequency of motion. As before

we can also calculate a phase of the signal relative to the driving voltage.

However it is necessary to deduct a π/2 shift to convert from the phase of

the velocity to the phase of the position.

In this manner we also analysed the motion of the actuator through the

use of an LDV (Polytec OFV-505 sensor and OFV-5000 controller [221]).

This work was carried out in the laboratory of Dr. Hu in the engineering

department of Newcastle University.

Results

Example frequency response data (cf. Figure 8.6) are shown in Figure 8.8.

We observe behaviour which is qualitatively similar to that derived using the

Michelson interferometer; there is a complex structure of resonances, with

a general trend that the amplitude of motion decreases as the frequency in-

creases. Also shown is the phase of the displacement of the actuator, relative

to the driving voltage applied. We see that this too has a detailed structure.

One point to note is that resonant features are often accompanied by a slow

variation in the phase. To examine this point in more detail, we will now
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Figure 8.8: Frequency response of an x-y shear actuator, obtained using a

laser Doppler vibrometer. The amplitude of motion in one axis is shown in

black. Also shown in red is the corresponding phase, relative to the driving

voltage. The amplitude of the driving voltage is 75 V. We estimate percentage

errors in the oscillation amplitude of less than 5–10%, with the smallest errors

evident for large amplitudes. The error in the phase is estimated to be less

than 10◦. We anticipate significantly lower errors with repeat measurements.

consider one resonant feature in particular. We will study the response of the

actuator around the resonance near 290 kHz. This was chosen as it provides

a large amplitude of oscillation and seems to be quite a ‘clean’ feature, with a

well defined peak. Looking at this resonance in more detail yields Figure 8.9.

We see that the frequency response near the resonance varies quite

smoothly. The phase associated with the motion still shows significant varia-

tion over the frequency range examined, but also varies more gradually, par-

ticularly close to the resonance frequency (around 293 kHz). We also note

that the relative phase is approximately 90 degrees at the resonant point,

which is as expected when modelling the actuator as a driven harmonic os-

cillator. The smoothness of the variation in response suggests that effective

actuation of the device is fairly insensitive to the frequency used. In practice
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Figure 8.9: Frequency response of one axis of a shear actuator being driven

near a resonant frequency. The upper plot shows the amplitude of the result-

ing oscillation. The lower plot shows the phase of the displacement relative

to the driving voltage. The amplitude of the driving voltage is 75 V. Errors

are as per Figure 8.8.

the function generators used to produce the driving signal have a precision

far greater than that required for effective actuation at a resonant frequency.

This will allow for tuning of the amplitude and phase of the motion, which is

important for ensuring that the motion is circular in nature, which we shall

consider later.

As with the investigation using the Michelson interferometer we also ex-

amined the linearity of the device’s response. This is shown in Figure 8.10.

The dependence on the driving voltage amplitude shows a very similar be-

haviour to that observed using the Michelson interferometer — the varia-

tion is an approximately linear one. With our previous methodology it was

difficult to examine this linearity at a resonant frequency as the technique

became less appropriate for large amplitudes of motion. Using the LDV we

see that on resonance it is possible to achieve significantly larger displace-

ments than have previously been measured. We also note that the observed
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Figure 8.10: Amplitude of oscillation of one axis of an x-y shear actuator as a

function of the amplitude of the driving voltage. The frequency of oscillation

is 293 kHz. Errors are as per Figure 8.8.

displacements are larger than those quoted for the device; a displacement of

around 3 µm is expected for an applied voltage of 250 V. However, this value

is based on static operation. Our observations seem to indicate that much

larger displacements are possible when the device is oscillating on resonance.

In our previous investigation of the movement of the actuator we observed

some rather unexpected behaviour. This was the apparent oscillation along

an axis orthogonal to that expected according to the applied voltage. To

investigate this further we observed the frequency response of the device

along the ‘wrong’ axis. In fact, all four combinations of measurement were

considered, and are shown in Figure 8.11.

As before we note that significant displacement is evident when applying

a driving signal which is nominally associated with an axis orthogonal to

that being observed. Again, the size of this unexpected signal is compara-

ble to that associated with the correct axis. Examining Figure 8.11 we see

that there are similarities between the spectra associated with a common

axis being driven, e.g. the 2nd and 3rd traces have very similar structure

between 200 and 300 kHz. This seems to suggest that driving one axis (in
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Figure 8.11: Frequency response of both axes of a shear actuator when driven

by either axis. Significant displacement is observed in all cases. The ampli-

tude of the driving voltage is 75 V. Errors are as per Figure 8.8.

this example the one we label y) produces motion in both axes, with a degree

of commonality in the frequency response. This lends credence to the idea

that modes which deviate from the ideal picture of shear motion are being

excited, as per Figure 8.7.

Drawing comparisons between the spectra we see that for either axis being

driven, a larger displacement is observed in the x-axis than in the y-axis. The

reason for this disparity is not known, but we can suggest that the prism

associated with the x-axis is located at a position on the actuator which is

moving more quickly, and hence produces more signal. We also note when

observing a particular axis, greater movement is seen when driving the x-axis.

This is perhaps less surprising as one would anticipate that variations between

devices created by the manufacturing process would lead to differences in

performance. The x-axis actuator is the upper of the two, so one might

reason that some damping of the motion is present when the lower actuator

is being driven.

From our analysis of the motion of the actuator there are two main points
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to consider. The first is that the kind of motion which we require in order

to realise a PATAP scheme seems very feasible; displacements of the order

of several microns at (linear) frequencies of several hundred kHz have been

observed. By comparison with Figures 8.1 and 8.2 we see that these param-

eters are more than adequate to achieve a time-averaged potential based on

a nanomagnetic domain wall which is both adiabatic and sufficiently deep.

However, the time averaging technique relies on a circular motion. Given

the complexity of the response of the device it is likely that realising such

motion will require further study of the piezoelectric actuator behaviour, and

perhaps a modification of the setup. For example, it is known that the mount-

ing of such actuators can have a dramatic effect on the nature of the motion

[222, 223]. This is one aspect that certainly merits further investigation.

Despite the aforementioned complexity of the motion, we shall consider

an example showing how it may be possible to create circular motion. We

assume a driving frequency of 293 kHz, corresponding to the resonant feature

previously considered and examine how the motion varies as the amplitudes

of the driving signals are changed. The resulting data are shown in Fig-

ure 8.12. We see that there is a relatively smooth variation in the amplitude

and phase of the motion when we maintain a constant frequency. However,

the variation that is present is not insignificant, and it is this, as well as the

fact that a signal in either axis produces motion in both axes, that makes

realisation of circular motion challenging. As previously stated, it was not

possible to drive both axes at the same time due to technical limitations.

Thus we will assume that the contributions to the motion from each axis are

independent, i.e. we can simply add together the motion due to each driving

voltage. This is of course one aspect of the actuator’s behaviour which would

benefit from further study.

To ensure circular motion, we have three parameters to choose, given that

we work at a set frequency. These are the amplitude of the signal provided

to each axis, and the relative phase between each. That is if we drive the

two axes with signals of the form

V x(t) = V x
0 sin (ωt) , (8.13)

V y(t) = V y
0 sin (ωt+ φ) , (8.14)

then we must choose V x
0 , V

y
0 and φ. The easiest way to determine a suitable
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Figure 8.12: Detailed analysis of the motion of a shear actuator at a resonant

frequency. The amplitude and relative phase of the motion of the actuator

are examined as the amplitude of the driving voltage is varied. In addition,

the motion in both axes is considered, in response to voltage applied to either

axis. We note that a voltage applied to either axis induces motion in both.

The red dashed lines show choices of driving voltage for the two axes, which,

along with a relative phase between the applied signals of 188◦, produces

circular motion. Errors are as per Figure 8.8.

set of parameters is simply to compute the resulting motion over all param-

eters, and assess how circular the motion is. This was carried out, and we

found that we could, under the assumptions stated, produce almost perfect

circular motion for a large range of radii, up to around 1.5 µm. The best

choice of parameters yields a circle with a radius of approximately 0.8 µm and

the corresponding parameters are V x
0 = 30.0 V, V y

0 = 42.5 V and φ = 188◦.

This set of parameters is indicated in Figure 8.12 by the red dashed lines.

As we have discussed, additional study is desired to investigate further

the nature of the actuator motion, however the data presented here indicate

that the method which we wish to employ is technically feasible. Future work

should concentrate on deducing the degree to which the motion in the two
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axes is independent, and demonstrating that circular motion can be achieved.

The latter will benefit greatly from the acquisition of a second amplifier in

order to apply two independent high-voltage signals simultaneously.

8.3 A ring trap

The calculations and discussions of the previous sections show that a PATAP

scheme can offer significant benefits over conventional TAPs, and initial ex-

perimental studies into the dynamics of piezoelectric actuators suggest it

to be a feasible method. However, we will now consider the possibility of

creating more complex trapping potentials using the same method.

The potentials we have considered thus far provide confinement in all

three dimensions. This is the simplest type of trap. In contrast a ring

trap provides confinement in only one dimension. We label the position

around a ring of radius R by some angle, θ. For a given θ the position is

then defined by the radial distance from the ring, r, and a second angle, φ.

Confinement is provided in r, but not in θ or φ. This geometry has a number

of potential applications within atomic physics, such as the realisation of

Josephson junctions [224] or Sagnac interferometers [225] using BECs, or

simply to study the dynamics of ultracold atoms in a ring [226, 227, 228, 229,

230]. In some of these applications, the ability to work in arrays of small,

tightly confining potentials is desired. Current realisations of ring traps for

ultracold atoms are typically limited to single traps and have characteristic

sizes which are at least an order of magnitude greater than those which could

be created using a PATAP scheme [202, 231, 232, 233, 234].

It is possible to produce a toroidal microtrap geometry by simply in-

creasing the amplitude of motion of the static potential. A sufficiently large

circular motion no longer leads to a time-averaged minimum at the centre

of the circle of death. Instead there is a set of time-averaged minima which

forms a ring within the circle of death. This is a consequence of the finite size

of the static potential — as R becomes large the static potential is localised

to a small part of the ring at any given time. The transition between these

two regimes is illustrated in Figure 8.13.

The manner in which the path of the potential prescribes the shape of
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Figure 8.13: The resulting PATAP for a range of oscillation radii, R. Ac-

cording to calculations, the character of the trapping geometry changes from

simple 3D confinement to a ring trap with 1D confinement as R increases.

the TAP is analogous to work which has been performed using spatially

modulated light fields to create TAPs [233, 235]. A vital difference between

the PATAP scheme and a scheme utilising optical potentials is of course the

problem of spin flips. Since we are trying to create a ring trap there are now

three definitions of the depth: the conventional definition provided by the

energy required to move an atom far from the trap; the minimum energy

change associated with reaching any point on the circle of death; and the

depth given by the central barrier which defines the ring shape. We shall

take the trap depth to be defined as the lowest of these three. The first

definition of trap depth is in general not of interest as it is much larger

than the other two. We shall now consider how the other definitions of trap
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depth depend on the radius of oscillation as we examine the transition of the

trapping potential shown in Figure 8.13. This is illustrated in Figure 8.14.
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Figure 8.14: The variation in the depth of a PATAP as the radius of oscil-

lation is increased, according to numerical calculations. The depth given by

the central barrier that defines the ring shape, and the depth defined as the

minimum energy change required to reach the circle of death are both given.

A nanowire of cross section 400 nm × 20 nm is assumed, with a trap height

of 500 nm.

The trends observed are intuitively as expected. Examining Figure 8.13

we see that the ring shape of the potential develops as the radius of oscillation

increases. Thus the depth associated with this ring shape also increases, up to

a point, after which it gradually decreases. The depth governed by the circle

of death reproduces the trend shown in Figure 8.1, i.e. a larger oscillation

produces a larger depth, up to a point, after which the depth decreases as the

PATAP changes shape. If we wish to produce a ring trap, the depth is then

given by the smaller of these two definitions. The deepest trap, for the fixed

parameters chosen, is found at a radius of oscillation of around 550 nm, with

a corresponding depth of around 45 µK. In the previous section we found

that this amplitude of movement is well within the technical capabilities of

piezoelectric actuation. We also note that it should be possible to evolve
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the shape of the PATAP in a continuous and adiabatic manner, transferring

atoms from a potential which is confining in three dimensions to a ring trap.

For example if atoms are loaded into a PATAP with an oscillation radius of

250 nm and this radius is increased in a spiral fashion to 550 nm then the

potential evolves into a ring trap, just as shown in Figure 8.13. During this

transition, forced evaporative cooling will also occur as the depth of the trap

is lowered.

The shape of the resulting PATAP is shown in Figure 8.15. By examining

this shape we find that a trap frequency of around 2π × 75 kHz can be

achieved, with a minimum Larmor frequency of 2π × 48 MHz. This results

in a value of the adiabaticity criterion, ξ = ωLarmor/ωTrap, of around 600,

indicating that this trap is likely to be highly adiabatic. We also note that

given these parameters one would probably aim to oscillate the potential at

a frequency of around 2π × 500 kHz, which we note is again well within the

technical capabilities of the technique.

There is great freedom afforded through the use of piezoelectric actua-

tors: since they are almost purely capacitive, the motion is defined by the

applied voltage, which can in principle be arbitrarily complex. Thanks to

this flexibility one might imagine adopting a more complex motion in order

to enhance the adiabaticity or depth of the trap. For a conventional TAP

one ensures that the circle of death surrounds the time-averaged minimum to

avoid spin flips. To completely surround the trap minima for a ring geometry

one would need to adopt a helical motion, i.e. of the form:

~r(t) =









[

R + R̃ cos (ω̃t)
]

cos (ωt)
[

R + R̃ cos (ω̃t)
]

sin (ωt)

R̃ sin (ω̃t)









, (8.15)

where R defines the radius of a circle which the magnetic zero traverses with

a frequency ω. R̃ is the radial displacement from this circle that creates

the helix shape, oscillating at a frequency ω̃. However, we note that this is

actually a worse scheme than that already described. The reason for this

is that the trap depth is significantly lowered, to around 10 µK. The locus

of points which describes the circle of death is greatly expanded, and the

minimum energy required to reach one of these points is much less.
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(a) Ring potential created via a PATAP scheme. The isosurface represents a value

of 45 µK.
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(c) A slice through the ring potential

shown in (a) along the axial dimension.

Figure 8.15: Illustration of a ring potential created using the PATAP tech-

nique. We use a nanowire of cross section 400 nm × 20 nm, a trap height of

500 nm and a radius of oscillation of 550 nm. The depth of the trap is 45 µK

and we find ωLarmor = 2π × 48 MHz, ωTrap = 2π × 75 kHz and ξ ≈ 600.

8.4 Conclusions

The results that we have presented are somewhat surprising: a mechani-

cal analogue of the conventional time-averaging procedure is shown to pro-

duce harmonic potentials in a very similar manner, but with significant ad-

vantages. These are namely that the resulting potentials are significantly

more adiabatic, deep, and technically feasible than for a conventional time-

averaged potential scheme when working with tight traps.
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We have also shown that we can use the same form of motion to produce

a ring trap, simply by increasing the amplitude of the motion. This trap is

also seen to be exceptionally tight and adiabatic, and has a depth which can

easily hold laser cooled atoms. We also note that it is not possible to use

a conventional TAP technique to achieve a ring trap; the addition of extra

magnetic fields ‘smears’ the ring shape that is defined by the circle of death.

Instead, 3D confinement with greater adiabaticity, larger trap depth, and

lower trap frequency is yielded.

The PATAP technique is of course not limited to applications using do-

main walls — it can be applied to any sufficiently small magnetic field source.

Future work aimed at applying this technique should focus on three things:

the characterisation of the degree of independence between the axes of actu-

ation; the role of the physical mounting of the actuator on its motion; and

the simultaneous driving of two axes and observation of the resulting motion.

A thorough understanding of these principles will likely permit an easier and

more effective realisation of the technique we have presented here.
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Conclusions

In this thesis we have described the first realisation of a hybrid quantum de-

vice combining ultracold atoms with spintronics. This was achieved through

the design and characterisation of a ferromagnetic planar nanowire array

which can host 8 million domain walls of alternating parity. The fringing

fields created by this array were employed as a magnetic atom mirror from

which we reflected ∼107 87Rb atoms. We also reported the development of

an analytic model for the fringing fields based on phenomenological consid-

erations, supported by comparison with micromagnetic simulations. This

model showed very good accuracy, particularly in the far-field. Using this

model we calculated the nature of the transient atom-nanowire interaction

and accurately predicted the resulting diffuse reflection.

We have quantitatively analysed the dynamics of the reflected atom cloud

via the use of a resonant sheet of light and observed that the resulting data

agreed well with Monte Carlo simulations. We have also demonstrated the

reconfigurability of the nanowire array through an observation of the mod-

ulation of the atomic reflection. In turn, we have used the atomic cloud as

a probe of the micromagnetic state of the array. We have shown that it is

possible to tune accurately and reliably the interaction between the atoms

and the nanowires. This has revealed that the collective micromagnetic be-

haviour is generally deterministic but there are also elements of stochasticity

exhibited by successive population or annihilation of domain walls.

The technique of moving molasses has been employed as a method to ex-

tend the investigation of the interaction between atoms and nanowires. We
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reported that initial data using this technique showed some agreement with

theoretical predictions, however we also observed some unexpected behaviour

which requires further study to explain. We have also considered the feasibil-

ity of employing this technique to probe the surface interaction arising from

our device. We expect that this will be very challenging to achieve due to the

complexity and concomitance of the magnetic and electrostatic potentials.

We anticipate that the experimental realisation of a spintronics-based

atom-optical element will be a proof-of-principle demonstration that provides

a stepping stone to more complex devices. In this regard we have considered

using the same technology to produce a tight mobile atom trap based on the

fringing field from a single domain wall. We plan to use the large magnetic

field gradients provided to give potentials with trap frequencies of the order of

MHz. We have investigated a number of different methods for circumventing

the problem of Majorana spin-flips within the trapping potentials we hope

to create. We found that many popular methods such as Ioffe-type traps or

RF-dressing are not appropriate when working in the regime of extremely

high field gradients.

To overcome this problem we proposed the use of time-averaging tech-

niques to effectively remove the zero point from the potential. We have found

that the conventional method of applying oscillating magnetic fields presents

a significant technical challenge when considering the regime in which we

work. To remedy this we propose a novel technique for achieving time-

averaged potentials based on a mechanical actuation of the magnetic field

source using piezoelectric devices. Theoretical considerations have indicated

that this methodology offers significant fundamental and technical advan-

tages over existing techniques. Initial work into the characterisation of the

movement of piezoelectric actuators suggests that the effective implementa-

tion of this scheme is feasible.

The work presented here lays the foundations for future developments of

spintronic atom chips. We believe that the successful realisation of a domain-

wall based trap will confer significant advantage over alternative methods of

manipulating ultracold atoms, providing unprecedented precision and free-

dom of control.



Appendix A

Fringing field models figures of

merit

The table overleaf provides the figures of merit for all six geometries of

nanowire considered when analysing the accuracy of the analytic models

of nanomagnetic fringing fields in Section 2.3.
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Table A.1: A summary of the figures of merit. ERMS is the RMS error over all points, E ′

RMS is the RMS error with optimal s,

EM is the mean percentage error, EMaxB
RMS is the RMS error in the maximum field for a given height. The labels A-F refer to the

wire geometries detailed in Table 2.1.

Model

Monopole 1D 2D Triangle

Quantity A B C D E F A B C D E F A B C D E F A B C

ERMS (%) 11 20 67 6 21 129 11 18 35 5 17 59 10 16 30 4 10 26 7 8 14

E ′

RMS (%) – – – – – – – – – – – – 10 16 30 3 7 19 6 8 14

EM (%) 7 10 21 2 6 24 7 10 19 2 6 22 7 10 17 1 3 8 4 5 8

EMaxB
RMS (%) 110 169 355 116 330 720 15 10 14 27 52 85 3 4 10 7 10 15 3 6 12



Appendix B

Nanowire manufacture

In this section we briefly outline the procedure used to produce the nanowire

array used in the atom mirror experiment. The process is illustrated in

Figure B.1.

The first step of the fabrication process is to deposit a resist layer of

poly(methyl methacrylate) (PMMA) onto a silicon substrate. The serpentine

pattern is then written into the PMMA layer using an electron beam. To

aid the accuracy and speed of the process, each wire shape was written in

a single pass by defocussing the electron beam to give a dose corresponding

to the desired width of the nanowire, which was chosen to be 125 nm. The

exposed regions are then selectively removed by a developer solvent. With

the pattern written, a 30 nm layer of permalloy is then thermally evaporated

onto the sample with a base pressure of ∼10−7 mbar. The unwanted metal

surrounding the written pattern is then removed via lift-off processing using

acetone, leaving the serpentine permalloy pattern intact.
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(a) Substrate of Si/SiO2. (b) Layer of PMMA resist added.

(c) Pattern written into PMMA using a

single pixel write of electron beam.

(d) PMMA pattern removed by a devel-

oper.

(e) Permalloy thermally evaporated onto

the sample.

(f) PMMA removed via lift-off processing

to leave the nanowire pattern.

Figure B.1: Schematic of the fabrication procedure for producing the undu-

lating nanowires via electron-beam writing and lift-off processing.



Appendix C

Electronic circuits

C.1 Pulse-generating circuit

The circuit shown in Figure C.1 is used to create the magnetic pulses that

reconfigure the nanowire array. It produces a voltage pulse which is sent to a

MOSFET which then controls the voltage across the coils (cf. Section 3.4.3).

The operation of the circuit can be divided roughly into five stages. The first

stage provides electrical isolation between the low voltage, low power com-

puter control circuit and the high power, high voltage circuit which powers

the coils. This is achieved via the use of an opto-isolator (IL213AT). A TTL

pulse is inputted to the circuit which provides a rising edge which acts as a

trigger. This TTL signal is passed through the isolator before passing to the

next stage of the circuit.

The signal out of the opto-isolator is then passed to a timing chip (74123)

which acts to regulate the length of the pulse created. Pin 1 of the chip

detects a falling edge which occurs when the opto-isolator output is high.

Pin 2 is always high as this comes directly from the output of the voltage

regulator (LM29401). Both 1 and 2 need to be high to create an output from

the timing chip. Pin 3 is also kept high and is connected to the ‘clear’ pin of

the chip. This simply prevents the device from resetting, unless the power is

removed. Once the pulse signal is received, the timing sequence starts and

is controlled by the inputs to Pins 5 and 6. The former is buffered by the

presence of a capacitor, C1, and it is this, together with the corresponding

variable resistor, R1, that sets the length of the pulse generated.
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Figure C.1: The circuit used to produce the pulse that controls the current to the switching coils. Grey boxes represent resistors,

yellow boxes variable resistors, red boxes represent the labelled chips, and the white boxes represent connections to the labelled

components, displayed separately for clarity. All other symbols have their standard meanings.
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If the input pulse duration is longer than required the timer output will still

switch off appropriately.

The pulse generated by the timing circuit is then passed to an amplifier

(LM358) which increases the voltage and current so that it is compatible

with the next part of the circuit.

The amplified pulse is then transformed so that it is less square in shape.

This ensures that the MOSFETs which we drive switch cleanly, i.e. no os-

cillation occurs. The rise and fall times of the pulse edges are increased by

a circuit analogous to a typical push-pull output stage. Diagonally opposite

transistors operate on either the rising or falling edge and are buffered by the

capacitor C2, located below. This capacitor, together with variable resistors

R2 and R3 control the length of the rising and falling edges, creating a linear

ramp to the edges of the signal.

The final phase is simply to pass the modified pulse to a power amplifier.

The output is then sent to a high-power MOSFET which controls the current

in the coils that produce the magnetic field.

C.2 Light sheet servo

The circuit shown in Figure C.2 is used to stabilise the power in the light

sheet used to detect the passage of the atomic cloud (cf. Section 3.4.2). This

is achieved by picking off some laser light just before it is focussed into a

sheet. This light is then monitored by a fast photodiode, providing the input

signal for the circuit shown. This is then compared to a stable voltage,

producing a signal proportional to the difference between these two voltages.

The output is then fed back to the VCO which controls the AOM associated

with the light sheet, thus servoing the power in the beam.

The operation of the circuit is as follows. A stable voltage is produced

which is passed through an op amp which smooths the voltage further. A

second inverting amplifier of unity gain is then used to revert the voltage to

being positive. The signal from the reference photodiode is inverted so that

it can be subtracted from the stable voltage. An additional op amp is used

to invert the reference photodiode signal again so that it can be monitored.

After subtraction of the reference photodiode signal a number of gain stages
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are used which amplify the signal by a variable amount and also integrate

the signal.

The operation of the circuit is thus essentially that of a differential am-

plifier. The power in the light sheet is easily tuned by changing the stable

voltage to which the reference photodiode signal is compared. The servoing

behaviour can be tuned by varying the gain of the op amp stages using the

potentiometer or by varying other resistor/capacitor values.
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Figure C.2: Circuit diagram of the servo used to stabilise the power in the light sheet. See text for a detailed description. All

operational amplifiers use the TL072 integrated chip.



Appendix D

Atom mirror simulation code

Provided below is the Matlab code used to simulate the atom bouncing ex-
periment.

1 %%

2 tic

3 clear all

4 scrsz=get(0,’ScreenSize’);

5 figure(’outerposition’,[1,1,scrsz(3),scrsz(4)])

6

7 % DEFINED CONSTANTS/VARIABLES

8 angdist=1; % Use distribution of angles for given mean isosurface angle?

9 animate=0; % Whether to plot the animation

10 c=3e8; % Speed of light

11 chipsize=2e-3; % Dimension of nanowire chip

12 d=1000; % Wire period (nm)

13 dropheight=9.75e-3; % Initial height of cloud

14 dt=0.0001; % Time increment

15 g=-9.81; % Acceleration due to gravity

16 G=2*pi*6.07e6; % Atomic linewidth

17 gF=1/2; % Gyromagnetic ratio

18 hp=6.63e-34; % Planck’s constant

19 ig=200; % Size of isosurface grid

20 interval=5; % Plot every nth iteration

21 Isat=16.7; % Saturation intensity (W/m^2)

22 isoang=15; % Fixed/mean angle of isosurface (degrees)

23 isoangr=pi/180*isoang; % Fixed/mean angle of isosurface (radians)

24 isoload=1; % Whether or not to load the magnetic isosurface from file

25 kb=1.38e-23; % Boltzmann constant

26 lambda=780e-9; % Laser wavelength (m)

27 lost=0; % Number of atoms that fall through the chip

28 lsheight=4; % Height of lightsheet (mm)

29 lspol=0; % Whether or not to consider light sheet pumping

30 lspower=50e-9; % Light sheet beam power (W)

31 lsthick=0.18; % Thickness of lightsheet in mm (1/e^2)

32 lswidth=7.8; % Width of lightsheet in mm (1/e^2)

33 M=8.6e5; % Magnetisation of permalloy

34 m=87*1.67e-27; % Mass of Rubidium atom (kg)

209
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35 maniso=0; % Whether or not to use an isosurface with fixed angle

36 mF=2; % Zeeman sub level

37 missed=0; % Number of atoms that miss the mirror

38 motD=2*pi*12e6; % MOT beam detuning (Hz)

39 motR=4e-3; % 1/e^2 radius of the MOT beams (m)

40 mu0=4e-7*pi; % Permeability of free space

41 muB=9.27e-24; % Bohr magneton

42 N=1000; % Number of atoms to simulate

43 Nact=1.06e7; % Actual number of atoms in system

44 nbins=100; % Number of bins in position histograms

45 opduration=1.5e-4; % Optical pumping duration (s)

46 opP=0e-6; % Optical pumping beam power (W)

47 opr=1.43e-3; % Optical pumping beam 1/e^2 radius (m)

48 plotls=1; % Whether or not to highlight atoms in light sheet

49 plotrecap=0; % Whether or not to highlight recaptured atoms

50 Pmot=10e-3; % MOT beam power (W)

51 recaptest=0; % Whether or not to discard recaptured atoms to get cumulative number

52 retro=1; % Whether or not we retroreflect the light sheet

53 s=0.74e-3; % Standard deviation of Gaussian position distribution

54 sigav=20; % Number of times over which to average the signal

55 T=13e-6; % Temperature in Kelvin

56 Tnum=5; % Number of temperature increments

57 toffit=0; % Whether or not to do time of flight fitting

58 Tstep=5e-6; % Temperature increment

59 tnumb=800; % Number of time increments

60 vlaunch=0; % Moving molasses launch velocity (m/s)

61 wt=30e-9; % Nanowire thickness (m)

62 wv=2*pi/lambda; % Laser wavevector (m^-1)

63 ww=125e-9; % Nanowire width (m)

64

65 % DERIVED VARIABLES

66 I0=8*lspower/pi/lswidth/lsthick/1e-6; % Peak intensity of light sheet (W/m^2)

67 Iavg=I0/2; % Average light sheet power (W/m^2)

68 IaIs=Iavg/Isat; % I/Isat for light sheet

69 Ravg=G/2*IaIs/(1+IaIs); % Average scattering rate of light sheet

70 Ep=hp*c/lambda; % Photon energy (J)

71 Imot=2*Pmot/pi/motR^2; % Mot beam peak intensity (W/m^2)

72 Imotavg=Imot/2; % Average mot beam intensity (W/m^2)

73 Iopa=opP/pi/opr^2; % Average intensity in OP beam (W/m^2)

74 IaIsop=Iopa/Isat; % Average intensity / saturation intensity for OP beam

75 Ropavg=G/2*IaIsop/(1+IaIsop); % Average scattering rate for OP beam

76

77 signal=zeros(sigav,tnumb,Tnum); % Preallocation

78 Psig=signal; %

79

80 xs=[-1e3*chipsize/2,1e3*chipsize/2]; % Define surface to represent nanowire chip

81 ys=xs; %

82 zs=[0,0;0,0]; %

83 xs2=[-1e4*chipsize,1e4*chipsize]; % Define surface to represent light sheet

84 ys2=[-lswidth,lswidth]; %

85 zs2=lsheight*ones(2,2); %

86 zs3=(lsheight+lsthick)*ones(2,2); %
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87

88 % Optical pumping due to light sheet

89 if lspol

90 t_end=lsthick*1e-3/sqrt(2*-g*(dropheight-lsheight*1e-3)); % Time spent in light sheet

91 options=odeset(’RelTol’,1e-6,’AbsTol’,1e-6); % Options for ODE solver

92 % Initial conditions -- atoms in F=2 ground state, zero detuning, intensity

93 init=[1/5*ones(1,5) zeros(1,19) 0 IaIs];

94 [tt,pop]=ode45(@popfunct87b,[0 t_end],init,options); % Population solver

95 mF12frac=pop(length(pop),5); % Weak-field-seeking fraction

96 lspol=0;

97 clear tt pop

98 end

99

100 for df=1:Tnum % Range of temperatures

101

102 time=0:dt:(tnumb-1)*dt; % Preallocation

103 recap=zeros(sigav,tnumb); %

104 recapt=zeros(sigav,1); %

105 signalb=zeros(1,tnumb); %

106 vx=zeros(1,N); %

107 vy=vx; %

108 vz=vx; %

109 x=vx; %

110 y=vx; %

111 z=vx; %

112 num=0; %

113 surface=zeros(ig,ig); %

114 xiso=zeros(1,ig); %

115 yiso=xiso; %

116

117

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

119 % Calculation of isosurface %

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

121

122 if(~maniso) % If not using an isosurface of given angle

123 if(isoload) % If using precalculated isosurface

124 load anglex30nm % Files containing data about isosurface

125 anglex=anglex30nm; %

126 angley=anglex’; % By symmetry

127 else

128 target=(1/2*m*vlaunch^2-g*m*dropheight)/(muB*mF*gF); % Field required to bounce

129 ulim=isofindb(M,wt,ww,0,ww/2,1e-6,target,1e-5)*1.2; % Upper bound to associated field

130 for j=1:ig

131 xiso(j)=(j-(ig+1)/2)*1e-8; % Isosurface x position

132 for k=1:ig

133 yiso(k)=(k-(ig+1)/2)*1e-8; % Isosurface y position

134 surface(j,k)=isofindb(M,wt,ww,xiso(j),... % Subroutine to find height of

135 yiso(k),1e-6,target,ulim); % required field

136 end

137 end

138 surface=surface(57:156,51:150); % Extract unit cell
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139 gradx=diff(surface)/1e-8; % Take simple gradient

140 gradx=[gradx;gradx(1,:)]; % Taking gradient loses a row -- add back in

141 anglex=atan(gradx); % Calculate angle relative to flat

142 grady=diff(surface’)/1e-8;

143 grady=[grady;grady(1,:)];

144 angley=atan(grady);

145 end

146 end

147

148 %%

149

150 %%%%%%%%%%%%%%%%%%%%%%%%%%

151 % Analysis of isosurface %

152 %%%%%%%%%%%%%%%%%%%%%%%%%%

153

154 if(~maniso)

155 % 1D angle distribution

156 angle1=180*abs(anglex(:))/pi; % Convert angle to degrees

157 for i=1:length(angle1)

158 if(angle1(i)==0) % Zero angle corresponds to hole in isosurface

159 angle1(i)=100; % Put the ’holes’ into a separate bin

160 end

161 end

162

163 % 3D angle distribution

164 xb=linspace(-d/2,d/2,100); % Coordinates of unit cell

165 yb=xb; % By symmetry

166 si=length(xb); % Number of divisions in coordinates

167

168 dotted=zeros(si); % Preallocation

169 v1x=ones(si,si); %

170 v1y=zeros(si,si); %

171 v2x=v1y; %

172 v2y=v1x; %

173

174 v1z=tan(anglex); % First tangential vector

175 v1(:,:,1)=v1x; %

176 v1(:,:,2)=v1y; %

177 v1(:,:,3)=v1z; %

178 v2z=tan(angley); % Second tangential vector

179 v2(:,:,1)=v2x; %

180 v2(:,:,2)=v2y; %

181 v2(:,:,3)=v2z; %

182

183 n=cross(v1,v2); % Normal from cross product of tangential vectors

184 nabs=sqrt(n(:,:,1).^2+n(:,:,2).^2+n(:,:,3).^2); % Size of normal

185 nabsb(:,:,1)=nabs(:,:); %

186 nabsb(:,:,2)=nabs(:,:); %

187 nabsb(:,:,3)=nabs(:,:); %

188 n=n./nabsb; % Unit normal

189

190 zunit(:,:,1)=zeros(si,si); % Unit vector in z direction
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191 zunit(:,:,2)=zeros(si,si); %

192 zunit(:,:,3)=ones(si,si); %

193

194 for i=1:si; % Take dot product of normal and unit z

195 for j=1:si;

196 dotted(i,j)=zunit(i,j,1)*n(i,j,1)+zunit(i,j,2)*n(i,j,2)+zunit(i,j,3)*n(i,j,3);

197 end

198 end

199

200 angle3=180*acos(dotted)/pi; % Calculate angle between n and z

201 angles=angle3(:); % Convert to vector

202

203 for i=1:length(angles)

204 if(angles(i)==0) % Zero angle corresponds to hole in isosurface

205 angles(i)=100; % Put ’holes’ into separate bin

206 end

207 end

208 end

209

210 clear angle1 angle3 angles anglex30nm dotted n nabs nabsb surface v1 v1x v1y v1z v2 v2x v2y v2z zunit

211

212

213 %%%%%%%%%%%%

214 % Bouncing %

215 %%%%%%%%%%%%

216

217 % Randomly populate positions and velocities according to Gaussian distributions

218 for h=1:sigav

219 R=rand(1,N);

220 vx=sqrt(2*kb*T/m)*erfinv(2*R-1);

221 R=rand(1,N);

222 vy=sqrt(2*kb*T/m)*erfinv(2*R-1);

223 R=rand(1,N);

224 vz=-vlaunch+sqrt(2*kb*T/m)*erfinv(2*R-1);

225 R=rand(1,N);

226 x=s*sqrt(2)*erfinv(2*R-1);

227 R=rand(1,N);

228 y=s*sqrt(2)*erfinv(2*R-1);

229 R=rand(1,N);

230 z=dropheight+s*sqrt(2)*erfinv(2*R-1);

231

232 for t=1:tnumb

233

234 %%%%%%%%%%%%%%%%%%%%%%%%%%

235 % TIME OF FLIGHT FITTING %

236 %%%%%%%%%%%%%%%%%%%%%%%%%%

237

238 % Transformations to determine light present at atoms and motion relative to beams

239 if toffit

240 xp1=1/sqrt(2)*(x-(z-dropheight)); % Coordinate rotation through 45 degrees

241 zp1=1/sqrt(2)*(x+(z-dropheight)); %

242 vxp1=1/sqrt(2)*(vx-vz); %
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243 vzp1=1/sqrt(2)*(vx+vz); %

244 xp2=1/sqrt(2)*((z-dropheight)-x); % Coordinate rotation through -45 degrees

245 zp2=1/sqrt(2)*(-x-(z-dropheight)); %

246 vxp2=1/sqrt(2)*(vz-vx); %

247 vzp2=1/sqrt(2)*(-vx-vz); %

248

249 Itof1=Imot*exp(-2*(y.^2+(zp1-dropheight).^2)./motR^2)/Isat; % Beam intensities at atoms

250 Itof2=Imot*exp(-2*(y.^2+(zp2-dropheight).^2)./motR^2)/Isat; %

251 Itof3=Imot*exp(-2*(x.^2+(z-dropheight).^2)./motR^2)/Isat; %

252

253 Rmot1=G/2*Itof1./(1+Itof1+(4*wv^2*vxp1.^2+motD^2)/G^2); % Scattering rates

254 Rmot2=G/2*Itof2./(1+Itof2+(4*wv^2*vxp2.^2+motD^2)/G^2); %

255 Rmot3=G/2*Itof3./(1+Itof3+(4*wv^2*vy.^2+motD^2)/G^2); %

256 Rmott=Rmot1+Rmot2+Rmot3; % Total scattering rate

257

258 xphots=[x’,Rmot1’,Rmot2’,Rmot3’]; % Sort photon number spatially

259 xphots=sortrows(xphots,1); %

260 yphots=[y’,Rmot1’,Rmot2’,Rmot3’]; %

261 yphots=sortrows(yphots,1); %

262 zphots=[z’,Rmot1’,Rmot2’,Rmot3’]; %

263 zphots=sortrows(zphots,1); %

264 tphots=xphots+yphots+zphots; % Total number of photons from all beams

265

266 binnum=200; % Sort atom positions into binnum bins

267 binedges=linspace(min(x),max(x),binnum+1); % Define the bins

268 xbincents=linspace(min(x)+(binedges(2)-binedges(1))/2,max(x)-(binedges(2)-binedges(1))/2,binnum);

269 [~,whichbin]=histc(x,binedges); % Label which bin the atoms go into

270

271 for i=1:binnum

272 binlabel=(whichbin==i); % Label the atoms in a particular bin

273 binmems=Rmott(binlabel); % Get the photons those atoms scatter

274 xbinvals(i)=sum(binmems); % Count the photons

275 end

276

277 x0=[0, max(xbinvals), 0, max(xbincents)/2]; % Fit a Gaussian

278 options=optimset(’MaxFunEvals’,1e4,’TolFun’,1e-6);

279 xparams=fminsearch(@gaussian_fit,x0,options,xbincents,xbinvals);

280 xwb(t)=abs(xparams(4));

281

282 binedges=linspace(min(y),max(y),binnum+1); % Repeat for y

283 ybincents=linspace(min(y)+(binedges(2)-binedges(1))/2,max(y)-(binedges(2)-binedges(1))/2,binnum);

284 [~,whichbin]=histc(y,binedges);

285

286 for i=1:binnum

287 binlabel=(whichbin==i);

288 binmems=Rmott(binlabel);

289 ybinvals(i)=sum(binmems);

290 end

291

292 y0=[0, max(ybinvals), 0, max(ybincents)/2];

293 options=optimset(’MaxFunEvals’,1e4,’TolFun’,1e-6);

294 yparams=fminsearch(@gaussian_fit,y0,options,ybincents,ybinvals);
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295 ywb(t)=abs(yparams(4));

296

297 binedges=linspace(min(z),max(z),binnum+1); % Repeat for z

298 zbincents=linspace(min(z)+(binedges(2)-binedges(1))/2,max(z)-(binedges(2)-binedges(1))/2,binnum);

299 [~,whichbin]=histc(z,binedges);

300

301 for i=1:binnum

302 binlabel=(whichbin==i);

303 binmems=Rmott(binlabel);

304 zbinvals(i)=sum(binmems);

305 end

306

307 [mm,pp]=max(zbinvals);

308 cent=zbincents(pp);

309 z0=[0, max(zbinvals), 0, cent];

310 options=optimset(’MaxFunEvals’,1e4,’TolFun’,1e-6);

311 zparams=fminsearch(@gaussian_fit,z0,options,zbincents,zbinvals);

312 zwb(t)=abs(zparams(4));

313 end

314

315 %%%%%%%%%%%%

316 % PLOTTING %

317 %%%%%%%%%%%%

318

319 if(t/interval==floor(t/interval)&&animate) % Plot every 1 in t steps

320 subplot(1,3,1)

321 hold off

322 fig1=scatter3(1e3*x,1e3*y,1e3*z,’filled’); % Atoms

323 hold on

324 colormap bone

325 surf(xs,ys,zs); % Nanowire chip

326 surf(xs2,ys2,zs2); % Light sheet

327 surf(xs2,ys2,zs3); %

328 if plotrecap % Plotting recaptured atoms in green

329 scatter3(1e3*x(recapind),1e3*y(recapind),1e3*z(recapind),’filled’,’g’);

330 end

331 if plotls % Plotting atoms in light sheet in red

332 scatter3(1e3*x(sigcind),1e3*y(sigcind),1e3*z(sigcind),’filled’,’r’);

333 end

334 alpha(0.8);

335 xlabel(’X Position (mm)’,’fontsize’,16,’position’,[18,0,-6],’interpreter’,’latex’)

336 ylabel(’Y Position (mm)’,’fontsize’,16,’position’,[-26,-5,0],’interpreter’,’latex’)

337 zlabel(’Z Position (mm)’,’fontsize’,16,’interpreter’,’latex’)

338 xlim([-chipsize*1e4,chipsize*1e4])

339 ylim([-chipsize*1e4,chipsize*1e4])

340 zlim([0,1.2*dropheight*1e3])

341 text(-25,25,14.5,sprintf(’N=%d’,num),’fontsize’,24,’interpreter’,’latex’);

342 text(-25,25,16,sprintf(’t=%0.1f (ms)’,t*dt*1e3),’fontsize’,24,’interpreter’,’latex’);

343

344 subplot(1,3,2)

345 hold on

346 plot(t*dt*1e3,num*100/N,’-ok’,’MarkerEdgeColor’... % Number of atoms left



Appendix D. Atom mirror simulation code 216

347 ,’g’,’MarkerFaceColor’,’g’,’MarkerSize’,3)

348 xlabel(’Time (ms)’,’fontsize’,16)

349 ylabel(’Percentage of Atoms’,’fontsize’,16)

350 xlim([0,tnumb*dt*1e3])

351 ylim([0,1e2])

352

353 subplot(1,3,3)

354 hold on

355 plot(t*dt*1e3,signal(h,t-1)*100/N,’-or’,... % light-sheet signal

356 ’MarkerEdgeColor’,’r’,’MarkerFaceColor’,’r’,’MarkerSize’,3)

357 xlabel(’Time (ms)’,’fontsize’,16)

358 ylabel(’Percentage of Atoms’,’fontsize’,16)

359 xlim([0,tnumb*dt*1e3])

360 ylim([0,20])

361 drawnow

362 end

363

364 %%%%%%%%%%%%%%%%%

365 % ATOM DYNAMICS %

366 %%%%%%%%%%%%%%%%%

367

368 % Incrementally evolve the positions (and vz) of the atoms

369 x=x+vx*dt;

370 y=y+vy*dt;

371 z=z+vz*dt+0.5*g*dt^2;

372 vz=vz+g*dt;

373

374 % Reflecting the atoms when z position becomes negative

375 for j=1:length(z)

376 if(z(j)<0.0)

377 if(~(abs(x(j))>chipsize/2||abs(y(j))>chipsize/2)) % Can ignore those outside chip

378 if(~maniso) % If using calculated isosurface

379 Ra=ceil(rand*100); % Random points on surface

380 Rb=ceil(rand*100); %

381 angx=anglex(Ra,Rb); % Corresponding angles

382 angy=angley(Ra,Rb); %

383 pumped=rand; %

384 mF12frac=1; % Weak-field-seeking fraction

385 if(angx==0.0||angy==0.0||pumped>mF12frac) % Some atoms go through potential

386 x(j)=100; % These get moved away

387 lost=lost+1; % and counted

388 else

389 x1=[1,0,tan(angx)]; % Vector in plane

390 x2=[0,1,tan(angy)]; % Vector in plane

391 n=cross(x1,x2); % Normal vector

392 n=n/norm(n); % Unit normal vector

393 end

394 else % If using manually set isosurface

395 phi=rand*2*pi; % Randomly set azimuthal angle

396 if(angdist) % If using precalculated angle distribution

397 if isoang==0; % Flat isosurface

398 theta=0;
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399 else

400 loop=1;

401 % Precalculated parameters describing the lineshape, A B C D E F G

402 % For x<F: -0.0031+A*exp(B(x-4.246)), for x>F: C+D*exp(E(x-10.88))

403 % G=Mean angle

404 params=[0.2 0.13 0 0.00485 -0.41 0 2.5;

405 0.17 0.13 0 0.0227 -0.2 0 5;

406 0.18 0.13 0.0004 0.027 -0.18 2 7.5;

407 0.116 0.13 0.0008 0.032 -0.17 4 10;

408 0.088 0.135 0.0014 0.0341 -0.1725 5 12.5;

409 0.068 0.14 0.002 0.037 -0.175 6 15;

410 0.044 0.12 0.0022 0.044 -0.14 8 17.5;

411 0.032 0.125 0.0024 0.054 -0.13 10 20;

412 0.022 0.125 0.0024 0.061 -0.11 12 22.5;

413 0.016 0.12 0.0024 0.063 -0.092 14 25;

414 0.011 0.125 0.0024 0.064 -0.08 16 27.5;

415 0.0092 0.1229 0.0024 0.062 -0.0706 17 30];

416 [pset,~]=find(params(:,7)==(isoang)); % Pick out correct row

417

418 % Accept reject method to generate angles

419 % according to the above distributions

420 while(loop)

421 R=rand*90;

422 R2=rand;

423 if(R<params(pset,6))

424 if(R2<-0.0031+params(pset,1)*exp(params(pset,2)*(R-4.246)))

425 loop=0;

426 theta=pi/180*R;

427 end

428 else

429 if(R2<params(pset,3)+params(pset,4)*exp(params(pset,5)*(R-10.88)))

430 loop=0;

431 theta=pi/180*R;

432 end

433 end

434 end

435 end

436 else % Else use fixed angle

437 theta=isoangr; % Set elevation angle -- determines surface flatness

438 end

439 n=[sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)]; % Normal vectors

440 end

441 v=[vx(j),vy(j),vz(j)]; % Incoming vector

442 v=v-2*(v*n’)*n; % Outgoing vector

443 vx(j)=v(1); % Outgoing vector components

444 vy(j)=v(2); %

445 vz(j)=v(3); %

446 z(j)=-z(j); % Simple reflection

447 end

448 end

449 end

450
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451 inds=find(z>0&x~=100); % Discard atoms that miss the chip or fall through the potential

452 x=x(inds); %

453 y=y(inds); %

454 z=z(inds); %

455 vx=vx(inds); %

456 vy=vy(inds); %

457 vz=vz(inds); %

458

459 % Number of atoms within MOT beam overlap region

460 recapind=find(sqrt(x.^2+y.^2)<motR&sqrt(x.^2+(z-0.01).^2)<motR&sqrt(y.^2+(z-0.01).^2)<motR);

461 recap(h,t)=length(recapind);

462 if t*dt>50e-3&&recaptest % Only count recaptured after 50 ms

463 x(recapind)=100; % Discard atoms once recaptured -- only count once

464 recapt(h)=recapt(h)+recap(h,t);

465 end

466

467 % EFFECT OF LIGHT

468

469 % Number of atoms within 1/e^2 radii of light sheet

470 signal(h,t,df)=length(find(z>((lsheight-lsthick/2)*1e-3)&...

471 z<((lsheight+lsthick/2)*1e-3)&y<(lswidth*1e-3/2)&y>(-lswidth*1e-3/2)));

472 % Atoms within 2 1/e^2 radii of light sheet

473 signalb=(z>(lsheight-lsthick)*1e-3)&(z<((lsheight+lsthick)*1e-3))&...

474 (y<(lswidth*1e-3))&(y>-(lswidth*1e-3));

475 signalc(t)=length(find(signalb));

476 [sigcind]=find(z>((lsheight-lsthick)*1e-3)&...

477 z<((lsheight+lsthick)*1e-3)&...

478 y<(lswidth*1e-3/2)&...

479 y>(-lswidth*1e-3/2));

480 sigcl=length(sigcind);

481

482 Isig=I0*exp((-8*y.^2/(lswidth*1e-3)^2)).*exp((-8*... % Light sheet intensity at atoms

483 (z-lsheight*1e-3).^2/(lsthick*1e-3)^2)).*signalb; %

484 scattsig=G/2*((Isig/Isat)./... % Scattering rates for atoms

485 (1+Isig/Isat+4*wv^2*signalb.*vy.^2/G^2)); %

486 Pscatt=sum(scattsig)*Ep*Nact/N; % Total power scattered

487 Psig(h,t,df)=100-(100*(lspower-Pscatt)/lspower); % Percentage of light sheet absorbed

488

489 if signal(h,t,df)>0

490 R1=rand(1,sigcl); % Random numbers for incoming light

491 R2=rand(1,sigcl); % Random numbers for retro light

492 Pnum1=scattsig(sigcind)*dt+... % Poissonian incoming photons absorbed

493 sqrt(2*scattsig(sigcind)*dt).*erfinv(2*R1-1); %

494 Pnum2=scattsig(sigcind)*dt+... % Poissonian retro photons absorbed

495 sqrt(2*scattsig(sigcind)*dt).*erfinv(2*R2-1); %

496 if retro % If light sheet is retroreflected

497 Pnum=Pnum1-Pnum2; % Net photon kick

498 else % If not

499 Pnum=Pnum1; % Just from one beam

500 end

501 vx(sigcind)=vx(sigcind)+hp/lambda/m*Pnum; % Apply kick

502 end
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503

504 % Optical Pumping Beam Push

505 if t*dt<=opduration % Push happens at start

506 [opatoms]=find((y.^2+(z-dropheight).^2)<opr*1e-3); % Atoms in OP beam

507 opatomnum=length(opatoms); % Number of atoms

508 Pnumop=1.3; % Precalculated scattering rating

509 vx(opatoms)=vx(opatoms)+hp/lambda/m*Pnumop; % Apply kick

510 end

511

512 num=length(inds); % Number of atoms left

513 time(t)=t*dt*1e3;

514 if(isempty(inds)) % Stop if no more atoms left

515 break

516 end

517 end

518 end

519

520 if(sigav>1) % If averaging the signal, take the average

521 signalav=mean(signal);

522 Psigav(:,df)=mean(Psig(:,:,df));

523 recapav=mean(recap);

524 else

525 signalav=squeeze(signal);

526 Psigav=squeeze(Psig);

527 recapav=squeeze(recap);

528 end

529

530 T=T+Tstep;

531

532 end

533

534

535 % Plot resulting light-sheet signal

536 Temps=5e-6:Tstep:Tnum*Tstep;

537 figure

538 waterfall(time’,Temps’,Psigav’)

539 xlabel(’Time (ms)’,’fontsize’,16,’Interpreter’,’Latex’)

540 ylabel(’Temperature ($\mu$K)’,’fontsize’,16,’Interpreter’,’Latex’)

541 zlabel(’$\%$ Absorption of Light Sheet’,’fontsize’,16,’Interpreter’,’Latex’)

542

543 toc
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Light sheet push

An atom falling through the light sheet is travelling at a speed

v =
√

2gs1 (E.1)

where g is the acceleration due to gravity and s1 is the distance from the

drop position to the light sheet. Thus the atom spends a time

t1 = w/
√

2gs1 (E.2)

in the light sheet, where w is the light sheet width (we assume that w � s).

The acceleration imparted on the atom whilst in the light sheet is given by

a = ~kR/m where k is the magnitude of the wavevector associated with the

light, R is the scattering rate, given by Equation 5.7 (with ∆ = v = 0), and

m is the mass of the atom. The displacement produced whilst in the light

sheet is then

d1 =
1

2
at21 =

~kRw2

4mgs1
. (E.3)

Assuming there is no initial speed perpendicular to gravity, the speed in this

direction after passing through is

vLS = at1 =
~kRw

m
√
2gs1

. (E.4)

The time taken to fall the remainder of the distance to the chip is given by

t2 =

√
2gh−√

2gs1
g

. (E.5)

The displacement perpendicular to gravity after the light sheet is then simply

given by

d2 = vLSt2 =
~kRw

m
√
2gs1

√
2gh−√

2gs1
g

(E.6)
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Thus the total displacement produced is given by

dtot = d1 + d2 (E.7)

=
~kRw2

4mgs1
+

~kRw

m
√
2gs1

√
2gh−√

2gs1
g

. (E.8)

We find that for the parameters used in our experiment that a light sheet

power of 50 nW produces a displacement of around 0.4 mm, which is a

significant perturbation to the atomic cloud, given that an atom displaced

by 1 mm will completely miss the nanowire array. This is in contrast to the

case of a retroreflected light sheet where 50 nW is a sufficiently low power to

produced a negligible perturbation.
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condensate coupled to a nanomechanical resonator on an atom chip, Phys. Rev. Lett.

99, 140403 (2007)

[9] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, Cavity
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ometer in a magnetic microtrap, Phys. Rev. A 64, 063607 (2001)

[35] A. E. Leanhardt, Y. Shin, A. P. Chikkatur, D. Kielpinski, W. Ketterle,

and D. E. Pritchard, Bose-Einstein condensates near a microfabricated surface,

Phys. Rev. Lett. 90, 100404 (2003)

[36] C. Henkel, S. Pötting, and M. Wilkens, Loss and heating of particles in small and

noisy traps, Appl. Phys. B 69, 379–387 (1999)

[37] J. D. Jackson, Classical electrodynamics (Wiley, 1975)

[38] T. M. Roach, H. Abele, M. G. Boshier, H. L. Grossman, K. P. Zetie, and E. A.

Hinds, Realization of a magnetic mirror for cold atoms, Phys. Rev. Lett. 75, 629–

632 (1995)

[39] I. G. Hughes, P. A. Barton, T. M. Roach, M. G. Boshier, and E. A. Hinds, Atom

optics with magnetic surfaces: I. Storage of cold atoms in a curved ‘floppy disk’,

J. Phys. B 30, 647–658 (1997)

[40] A. D. West, K. J. Weatherill, T. J. Hayward, P. W. Fry, T. Schrefl, M. R. J. Gibbs,

C. S. Adams, D. A. Allwood, and I. G. Hughes, Realization of the manipulation of

ultracold atoms with a reconfigurable nanomagnetic system of domain walls, ArXiv

e-prints 1112.0485

[41] Y. T. Xing, I. Barb, R. Gerritsma, R. J. C. Spreeuw, H. Luigjes, Q. F. Xiao,

C. Rétif, and J. B. Goedkoop, Fabrication of magnetic atom chips based on FePt,

J. Magn. Magn. Mat. 313, 192–197 (2007)
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