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Abstract 

Traditional thermosetting materials generally display good durability, yet poor 

tractability, reworkability, and degradability. This project, however, provides a class of 

thermoset ring-opening metathesis polymerization (ROMP) materials based on 

norbornene dicarboximide moieties containing acetal ester group linkage which is 

degradable when subjected to heat or acidic-catalysis.  

In this study, acetal ester linkages were introduced into di-functional monomer by a 

one-step neat reaction between a functionalised imidonorbornene containing a 

terminal carboxylic acid group and a 1,4-butanediol divinyl ether. Each monomer and 

product was characterised by 1H and 13C NMR analysis, while the obtained polymers 

were analysised by thermogravimetric analysis (TGA), FTIR, dynamic mechanical 

analysis (DMA) and oven. The results of TGA indicated that the cross-linked 

materials started losing weight at 150℃ and the extent of the weight loss at 300℃. 

The IR spectra as it showed the reduction in the intensity of acetal ester band not the 

complete disappearance. The samples were heated in the oven at 300℃ and 250℃. 

The results showed the higher the DFM content of the cross-linked materials and the 

heating temperature and the duration of the heating. 1H NMR analysis of cross-linked 

sample C11, after the heating treatment in the oven at 300℃ for 2hr, indicates the 

partial formation of linear polymer upon heating. The cross-linked materials were also 

subjected to acid-catalysed hydrolysis. The samples after hydrolysis in dilute acid 

were completely soluble in DCM and were therefore characterised by NMR, which 

shows all the acetal ester linkages were broken down during hydrolysis and that 

cross-linked polymers changed into linear polymers. Dynamic mechanical analysis 

was carried out on the cross-linked polymer, linear polymer, polymer after heating, 

and polymer after hydrolysis, which support that the crosslinking in the polymer were 

breakdown during heating, but a new kind of network was formed, and the complete 

breakdown of actela ester linkages after hydrolysis. 
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1.1 Thermosetting materials 

Thermosetting materials are an important class of materials with excellent thermal 

and mechanical properties.  They have been used in a wide range of applications 

particularly as coatings, adhesives, and encapsulants.
1-3

 Thermoset materials are 

stronger than thermoplastic materials due to their three-dimensional network of bonds. 

The polymer chains lose some of their ability to move as individual one when they are 

linked together by cross-links.  The cross-link not only brings the polymer toughness, 

good adhesive and high stable temperature, but also makes the polymer much harder 

to recycle.  Low cross-link densities increase the viscosities of polymer melts; 

intermediate cross-link densities transform gummy polymers into materials that 

possess elastomeric properties and potentially high strengths; very high cross-link 

densities can make materials become very rigid or glassy, for example, 

phenol-formaldehyde materials.  Although, traditional thermoset materials generally 

display good durability, they exhibit poor tractability, poor recyclability, and poor 

biodegradability.  These characteristics limit their use particularly in applications in 

where degradablability or reworkablility are advantageous. For example, it is costly to 

discard a multi-chip package with a single failed chip.  Thus, the use of an adhesive 

that could decompose to allow chip repair or replacement would be desired for 

reworkable semiconductor manufacturers.  A potential application of reworkable 

materials lies in packaging areas of electronic devices.  A reworkable adhesive could 

facilitate the repair or reprocessing of individual electronic components.
1
 Moreover, 

there is a great need for adhesives, coatings, and encapsulates to be reworkable in 

many applications. In order to be reworkable, a material must be removable under 

controlled conditions, whilst also exhibiting properties that are comparable or exceed 

those of contemporary materials.
2 

 

In recent years, various research groups have been working on the development of 

thermoset materials. Epoxy resins have been the adhesive of choice in the 

microelectronics industry and are widely used.  This is due to their good unique 

properties, such as, electric and physical properties, excellent chemical and corrosion 
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resistance, high adhesion and good thermal stability, and low shrinkage on curing.
3
  

An epoxy adhesive carries the ability to enhance the thermal and mechanical 

flexibility of components on a circuit board.  They are also easy to use, as uncured 

epoxy resins are able to flow into complex parts of a circuit board before being cured. 

Once the resins are cured, they display a highly cross-linked three dimensional 

behaviour with greater adhesive properties.  Although the adhesive may be reliable, 

the difficulty to recycle the material remains an undesirable characteristic of the 

resins.
1
 

1.2 Weak linkages in thermosetting materials 

Several groups have prepared reworkable materials by introducing cleavable linkages 

into their respective monomers.  These linkages, depending on their nature, can be 

cleaved chemically or thermally. 

1.2.1 Thermally breakable linkages 

1.2.1.1 Ester linkage in thermosetting epoxy 

The secondary and tertiary ester groups were identified as potential heat-cleavable 

linking groups, as they could be broken down by heating based on their thermal 

degradation mechanisms.
4
  A series of cycloaliphatic epoxy monomers incorporated 

ester groups has been designed by many groups.
5,6

  Some selective examples are 

shown in Fig. 1.1. The epoxy 1-5 was cured by hexahydro-4-methylphthalic 

anhydride (HHMPA) as hardener. The curing process uses 

1-cyanoethyl-2-ethyl-4-methyimidazole (2E4MZ-CN) as the catalyst.  The study of 

the thermal degradation of the ester linkages showed that they start breaking down 

between 250℃ and 300℃. It should be noted that epoxy resins without ester 

linkages degraded at 350℃. The crosslink density, Tg (glass transition temperature) 

and strength of the epoxy decreased at the same time during the degradation test.  

Aliphatic esters are very sensitive to hydrolysis.  And the electronic packaging needs 
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good resistance to hydrolysis. Therefore aromatic esters 6 and 7 (Fig. 1.1) were 

synthesised and cured by HHMPA.  This curing process is initiated by 2E4MZ-CN. 

The thermally degradability behaviour of thermosetting polymers from cured 6 and 7 

were studied by TGA.  The polymers from cured 6 started breaking down at 330℃, 

but polymers from cured 7 started decomposing at 250℃.  The thermoset materials 

from 6 and 7 started breaking down at 330℃ and 250℃, respectively.  This is most 

likely due to difference between the stability of secondary (material 6) and tertiary 

(material 7) ester linkages. 

 

Figure 1.1: Di-epoxide monomers 1-7 containing ester linkages 

1.2.1.2 Carbamate linkage in thermally degradable thermosetting epoxy 

A series of epoxy monomers containing carbamate linkages were synthesised by some 

groups,
 7

 some examples of which of them are showed in Fig. 1.2.  The di-epxoide 

monomers 8-13 were cured by HHMPA, and the curing process was initiated by 

2E4MZCN.  The resulting thermosetting polymers started to break down at 250℃

-300℃.  However, the resins obtained from the commercial cycloaliphatic epoxide 

which do not contain any carbamate linkages also started breaking down at 350℃. 

Moreover, the system is further complicated by the fact that the carbamate groups 

within the di-epoxides can act as an internal catalyst.
8
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Figure 1.2: Di-epoxide monomers 8-13 containing carbamate linkages 

1.2.1.3 Carbonate linkages in thermally degradable thermosetting epoxy 

Cycloaliphatic or aliphatic epoxide monomers with carbonate linkages have also been 

prepared (Fig. 1.3).
9
 Cycloaliphatic di-epoxides monomer 14 contains primary 

carbonate linkages, 15 contain secondary carbonate group, and 16 contain tertiary 

carbonate linkage.  Although, the synthesis of primary or secondary carbonates with 

aliphatic groups on both sides were reported to be straightforward, but a carbonate 

containing tertiary aliphatic groups on one or two sides was much more difficult to 

prepare.
10

  The epoxy monomers 14-16 were cured by HHMPA, and the curing 

process was initiated by 2E4MZCN.  The thermal degradation test, by TGA, showed 

that the resulting thermoset started to break down at 300℃ which is slightly lower 

than the decomposition temperature of the epoxy resins without carbonate at 350℃.  

 

Figure 1.3: Di-epoxide monomers 14-16 containing carbonate linkages 
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1.2.1.4 Maleimides-based thermosets  

Thermosetting resins based on maleimides have been developed for electronic 

packaging applications.
11

 The maleimides resin exhibit fast cure speed, better 

adhesion and low shrinkage after curing.
11-14

 Maleimide-based functionality not 

only could be homo-polymerised, but also could be copolymerised with a variety 

of comonomers (eg, styrenical, acrylate) by free radical processes. However, the 

resulting thermosetting materials could not be re-worked or recycled. Therefore, 

attempts have been made to develop thermosetting materials based on maleimide 

compounds that can provide the advantages offered by maleimide adhesives in a 

re-workable adhesive system.
14

 

Multi-functional maleimide monomers have been prepared containing acetal ester 

linkages 18-22 (Fig. 1.4).
10

 Free radical polymerisation process initiated by 

1,1-di(tert-amyl peroxy) cyclohexane (USP-90MD) was adopted to polymerise 

multi-functional maleimide monomers to produce thermosetting materials with acetal 

ester linkages. DSC, TGA, GC–MS, and hot-stage FTIR were used to analyse the 

thermal degradation behaviour of the resulting thermosetting materials. The 

degradation result showed that the acetal ester linkage degraded when the heating 

temperature reached above 225℃ .  Moreover, the re-workability of adhesively 

bonded substrates was improved when the acetal ester linkage was introduced into the 

formulation. 
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Figure 1.4: Maleimide based monomers 18-22 containing acetal ester groups 

1.2.2 Chemically breakable linkages 

The chemical cleavage of cross-linked materials based on an acrylic polypropylene 

oxide polymer network containing urea linkages was investigated.
15

 The materials 

showed complete degradation in hexanol and nonaol at 125℃. 

A number of cycloaliphatic di-epoxides with ketal and acetal linkages (Fig. 1.5) were 

synthesized which were cured with cyclic anhydride to produce thermosetting 

materials.
16

 Thermosets containing ketal linkages (23) dissolved readily and those 

containing acetal linkages (24) partially in ethanol/water/acetic acid (4.4M) at 88℃. 

However, thermosets containing both linkages dissolved readily in 

butyrolactone/water/phosphoric acid (1.5M) at 106℃. 

 

Figure 1.5: Structures of cycloaliphatic epoxides containing ketal and actal groups 
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1.3 The polymerisation process 

1.3.1 Olefin Metathesis 

Olefin metathesis, an organic reaction, refers to redistributing alkylene fragments 

through the chain scission of C=C double bonds in olefins (alkenes) with the merits of 

creating fewer side-products and hazardous wastes.  Yves Chauvin, Robert H. 

Grubbs, and Richard R. Schrock shared the 2005 Nobel Prize in Chemistry for their 

contribution in "The development of the olefin metathesis method in organic 

synthesis".  Metals like nickel, tungsten, rhenium, ruthenium and molybdenum have 

been used as catalysts in olefin metathesis.
17-20

  

 

Scheme 1.1: Example of Olefin metathesis 

Since its discovery, olefin metathesis has received a broad application and has 

developed into a mighty technique for both organic and polymer synthesis, such as 

Cross Metathesis (CM), Ring Closing Metathesis (RCM), Ring Opening Metathesis 

Polymerisation (ROMP), and Acyclic Diene Metathesis (ADMET), scheme 1.1.
21

 

The widely acceptable mechanism for olefin metathesis has been put forward by 

Herisson and Chauvin in 1971, scheme 1.2.
22

  The olefinic C=C double bonds reacts 

with metal alkylidene-species in a reversible [2+2] cyclo-addition, to form a 



Durham University Synthesis and characterisation of degradable thermosetting materials Shenghui Hou 

13 
 

metallacyclobutane species. The metallacyclobutane ring opens either degeneratively 

to regenerate the original reagents, or productively to form a new olefin and new 

metal alkylidene species. 

 

Scheme 1.2: Mechanism of olefin metathesis 

Olefin metathesis reactions either do not generate by-products, or only produce a 

by-product, such as ethane, which can be easily removed by evaporation.
23

  

1.3.2 Ring-Opening Metathesis Polymerisation 

The process of ROMP is an adaptation of olefin metathesis, where strained cyclic 

olefins are polymerised to form linear polymers using transition metal complexes as 

initiators.  The reaction makes use of strained ring systems, such as norbornenes and 

their derivatives, to produce an array of stereoregular and monodisperse polymers and 

copolymers.24 ROMP can be described as a chain growth polymerisation process, and 

it includes three steps: initiation, propagation and termination (scheme 1.3).  
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Scheme 1.3: Three steps in ROMP of cyclic olefin 

The initiation process begins with the coordination of the transition metal alklidene 

complex to the cycloalkene. A [2+2] cycloaddition leads to the formation of a 

metallocyclobutane intermediate. The productive opening of metallacyclobutane 

intermediate yields a new metal alkylidene. While the new metal alkylidene is larger 

due to the inclusion of the monomer, the reactivity towards other monomer molecules 

remains similar to that of the original metal alkylidene complex. As a result, the 

propagation process consists of a series of analogous steps, until such a point where 

polymerisation ends. This termination can be brought about by complete consumption 

of the monomer, or by deliberately terminating the reaction. In ROMP, the reaction 

can be terminated via the addition of a particular reagent. The reagent could have two 

specific roles; to selectively remove the transition metal complex from the end of the 

polymer chain and to incorporate an easily traceable functional group in its place.25 

The ROMP process allows a route to prepare complicated polymers, which might not 

be possible using other traditional polymerisation techniques. 

1.3.3 Living Ring-Openging Olefin Metathsis Polymerisation 

ROMP in most cases is a living process and results in polymers with high levels of 

structure and molecular weight control, whilst retaining very low polydispersity. The 
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terms “living polymerisation” and “living polymer” were introduced by Szwarc 

following his ground breaking work on anionic polymerisation in 1956.
26,27

 As stated 

by Szwarc, a living polymerisation proceeds “without chain transfer or termination’.
28

 

Living polymerisations can afford polymers with narrow weight distributions. These 

can be determined by considering the polydispersity index (PDI) of the sample,  

PDI= Mw/Mn 

Where Mw represents the weight averaged molecular weight and Mn the number 

averaged molecular weight. In living polymerisations, the molecular weight is directly 

proportional to amount of monomer converted to polymer, as all the polymeric chain 

ends are effectively growing at the same rate. The degree of polymerisation is 

essentially the average number of monomer units per polymer chain, and it is obtained 

by the ratio of Mn to molecular weight of the monomer unit. 

Control over the polymerisation is the best achieved when the rate of initiation is 

greater than or similar to the rate of propagation. When fulfilled, the results are the 

formation of well-defined, monodispersed materials.
29

 

1.4 ROMP Initiators 

1.4.1 Ill-defined initiators 

It was found that polymers could be formed from ROMP of norbornene using 

heterogenous initiators loved on various transition metal (Ti, Mo, W) halides.
30,31

 In 

addition, the polymerisation could be enhanced by the introduction of Lewis acidic 

co-catalysts (Ph4Sn or Me4Sn).
32

  

1.4.2 Well-defined initiators 

Though the ill-defined initiator systems did not to give living polymerisations and did 

not tolerate functional groups, they did provide a valuable insight into the mechanism 

of ROMP and provided a platform for the development of better defined initiators.
32 
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1.4.2.1 Titanium-based initiator 

The first well-defined initiators for ROMP were based on titanium alklidenes. Ti 

initiator provided polymers with narrow polydispersities (PDI < 1.2) and molecular 

weights that were directly proportional to the amount of monomer consumed. 

However, the initiator suffered from tolerance of the functional groups.
 33

 

The initiator was also found to be reactive towards aldehydes and ketones, which 

offer a simple way of concluding the ROMP process if needed.34 

1.4.2.2 Tungsten- and molybdenum-based initiators 

By the late 1980’s, Schrock began the development of better defined initiators 

designed to polymerise strained cyclic olefins and focused on alkylidene complexes 

based on the structure M(CH
t
Bu)(NAr)(O

t
Bu) (where, M=W or Mo, Ar is 

diisopropylphenyl) (Fig. 1.6).
35

 

 

Figure 1.6: The structure of M(CH
t
Bu)(NAr)(O

t
Bu) 

The W-based complex was found to be a good initiator for ROMP of norbornene and 

polydipersities as low as 1.03 was achieved.
36

 The ROMP reaction was quenched with 

benzaldehyde. The tolerance of ROMP initiator towards functional groups was further 

improved by the development of molybdenum alkylidene complexes. The initiators 

were found to tolerate a great array of functionalities including molybdenum esters, 

carbonates, ethers imides, cyano and halo containing groups.37 Another advantage of 

the Mo initiator was that they were more stable towards decomposition and secondary 

metathesis reactions than their tungsten analogue. 
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1.4.2.3 Ruthenium-based initiators 

Ruthenium initiators were found to have better functional group tolerance relative to 

titanium, tungsten and molybdenum based initiators.
38

 Ruthenium initiator can be 

used for ROMP of monomers that possess an alcohol, carboxylic acid or an aldehyde. 

Moreover, the polymerisations could take place in aqueous or protic media.
39 

 

The first example of a well-defined Ru complex reported for ROMP was 

(PPh3)2Cl2Ru=CH-CH=CPh2.
40

 The stability was remarkable; being stable for many 

weeks in dry and degassed solvents and indefinitely in the solid state. The complex 

was shown to perform ROMP of norbornene in a living manner. 

Although, the initiator was shown to limit secondary metathesis reactions and 

displayed a large tolerance towards functionality, it was not a very active for ROMP. 

As a result, the spotlight shifted towards the alteration of ligands on the metal centre 

to create a more active initiator. It was found that replacement of PPh3 ligands by 

bulky, electron rich ligands such as PCy3 paved the way for more active initiators.
41

 

Grubbs 1
st
 generation initiator (G-I) was found to be more stable and more tolerant of 

functional groups than its predecessors (Fig. 1.7). Although these catalysts were 

shown to ROMP norbornene, the control they showed over the polymerisation was 

limited.42 The complex polymerised a variety of functionalised norbornenes and 

cyclobutenes in a living fashion, displaying low polydispersities.
 43 

 

Figure 1.7: Grubbs 1
st 

(G-I), 2
nd

 (G-II), and 3
rd

 (G-III) generation catalyst, 

(PCy3=tricyclohexylphosphine, Mes=2,4,6-trimethylphenyl) 
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Grubbs 2
nd

 generation initiator (G-II) utilises N-heterocyclic carbenes (Fig. 1.7). 

These ligands are known to be strong σ-donors, but also less labile than phosphines. 

Consequently, the ligand is less likely to dissociate from the catalyst, but also 

stabilises intermediates through possession of a greater electron density. 

In some cases, the high steric hindrance present in macromonomers can hinder ROMP 

initiated by G-I resulting in slow and incomplete polymerisation.
44

 However, this 

steric hindrance become benficial for polymerisations initiated by G-II because it 

lowers kp relative to ki and suppresses chain transfer reactions, resulting in 

well-controlled polymeristions.
45

 

The replacement of PCy3 ligand with two pyridine ligands, in particular 3- 

bromopyridine (3-BrPyr) in G-II, gave Grubbs 3
rd

 generation initiator (G-III) (Fig. 

1.7). Grubbs 3
rd

 generation initiator exhibits high reactivity, fast initation and high 

functional group tolerance. In contrast to G-II, the polymerisations, performed by 

Grubbs-III complex, exhibit much higher values of ki relative to kp and result in the 

formation of polymers with narrow molecular weight distributions (PDI of ~1.05).
46, 

47 

1.5 Thermosetting ROMP materials 

ROMP, initiated by well-defined ruthenium initiators, has been shown to display 

excellent functional group tolerance and allow the synthesis of well-defined polymers 

with controlled architectures, molecular weights, polydispersities, and terminal 

functionalities. The ROMP process has also been utilised for the formation of 

thermosetting materials. 

Polydicyclopentadiene, widely used in industrial moulding processes and also in 

heavy machinery manufacturing applications, is a cross-linked polymer yielded by the 

ROMP of dicyclopentadiene.
48 

Although the polymer is easily produced and possesses 

good mechanical properties, the ROMP is exothermic and the cross-linking is difficult 

to control which limits the mechanical properties of the polymer.
49

 (Fig. 1.8) 
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Figure 1.8: The structures of endo-dicyclopentadiene and cross-linked polymer 

ROMP processing techniques have also been developed for the synthesis of 

thermosetting materials with well-defined cross-linked networks from mixtures of 

mono-functional and di-functional norbornene dicarboxyimide monomers (Fig. 1.9) 

using ruthenium initiators for applications in Resin Transfer Moulding (RTM) 

(scheme 1.4) and Reaction Injection Moulding (RIM). By this ROMP processing 

technique, an excellent level of control over crosslink density and hence over material 

properties has been achieved. The cross-linked materials produced show high values 

of yield strength and toughness, which are either comparable or better than the 

engineering polymer materials, such as polycarbonates which are not easy to 

synthesize and process.
49

 

 

Figure 1.9: Mono-functional N-alkyldicarboxyimidonorbornenes and di-functional 

bis(alkyldicarboxyimidonorbornenes) 
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Scheme 1.4: RTM-ROMP processing of mono- and di-functional norbornene 

derivatives giving rise to the synthesis of well-defined cross-linked polymers 

 

1.6 Rheological analysis 

Rheological analysis is investigated by dynamic mechanical analysis (DMA) which is 

a technique used to study and characterise materials. It is most useful for studying 

the viscoelastic behaviour of polymers. A sinusoidal strain is applied and the stress in 

the material is measured, allowing one to determine the complex modulus. 

The temperature of the sample or the frequency of the strain are often varied, leading 

to variations in the complex modulus; this approach can be used to locate the glass 

transition temperature (Tg) of the material, as well as to identify transitions 

corresponding to other molecular motions. There are two kinds of sweep, which are 

temperature sweep and frequency sweep. Temperature sweep is a common test 

method that involves measuring the complex modulus at constant frequency while 

varying the sample temperature, usually at a constant gradient. A prominent peak 

in tanδ (phase angle) appears at the Tg of the polymer. Frequency sweep is that a 

sample can be held to a fixed temperature and can be tested at varying frequency. 
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1.7 The aim of this project 

Several research groups have reported epoxy-based thermosetting materials 

containing ester, carbamate and carbonate linkages.  The degradation temperature for 

these resins is reported to be around 350℃.  Although these materials might have 

potential application as re-workable adhesives, they are not biodegradable. Moreover, 

the resins exhibit 100% weight loss at temperature between 250℃ and 350℃ which 

prevent the recycling of the materials into useful products. 

The well-defined cross-linked materials synthesized previously by ROMP from the 

mixtures of mono-functional and di-functional norbornene dicarboximide monomers 

were very thermally stable, degrading above 400℃.
52-54

 So these materials are not 

ideal as re-workable adhesives and above all they are not biodegradable.  

Therefore, the aim of this project was to design and synthesise a range of well-defined 

thermosetting ROMP materials that are thermally degradable, biodegradable and 

recyclable. The crucial part of the design of these thermosetting materials was the 

thermal breakdown or biodegradation of only the linkages, leaving the main chains 

intact.  This would also allow the transition from thermosetting to thermoplastic 

facilitating the recycling. 

We therefore decided to synthesise thermosetting ROMP materials based on 

poly(norbornene dicarboximide) networks containing acetal ester linkages, Scheme 

1.5.
55

  It was anticipated that the combination of well-defined ROMP process and 

thermal degradation and biodegradability potential of acetal ester groups would 

enable us to achieve the overall aims of the project. 
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Scheme 1.5: Schematic representation of the aim of the project  
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Chapter 2 

Synthesis and characterisation of monomers 
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2.1 Introduction 

The focus of this chapter is on the synthesis of di-functional monomers. They are 

synthesised in three steps. The first step is a Diels-Alder cycloaddition reaction of 

maleic anhydride and di-cyclopentadiene to give a mixture of exo- / endo- 

norbornene-5,6-dicarboxyanhydride. This is followed by recrystallization in acetone 

for several times to give pure exo-norbornene di-carboxyanhydride. The second step 

is the reaction of the pure exo-anhydride with 6-aminocaproic acid. The third step is 

the reaction of exo-norbornene imidocaproic acid and 1,4-butanediol divinyl ether. 

2.2 Materials and Instrumentation 

Maleic anhydride, 1,2-dichlorobenzene, dicyclopentadiene, 6-aminocaproicacid 

(>99%), 1,4-butanediol divinyl ether (98%), 4-methoxyphenol (99%), amberlyst A21 

free base, and 1,2-dichlorobenzene were purchased from Aldrich and used as 

supplied.  

Dichloromethane (DCM) (Analytical Grade, Fisher Scientific), chloroform (HPLC 

grade, 99.5%, fisher scientific), acetone (analytical grade, fisher scientific), ethyl 

acetate (analytical grade, fisher scientific) were used as supplied. 

Dry toluene was acquired from the departmental solvent purification system. 

All monomer synthesis reactions were carried out under an atmosphere of nitrogen.  

NMR spectra were either recorded on a Bruker Avance 400 spectrometer at 

400.0MHz (
1
H) and 100.6MHz (

13
C); or a Varian Inova 500 spectrometer at 

499.8MHz (
1
H, COSY, HSQC) and 125.7MHz (

13
C).  All chemical shifts were 

referenced to the residual proton impurity of the deuterated solvent, CDCl3, unless 

otherwise stated.  

2.3 Gel content determination 

The gel content of the cross-linked materials were determined by sol-gel extractions. 
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The cross-linked materials were weighed before extraction to get the initial weight, 

Winitial.  The cross-linked polymer was cut into pieces and transferred into a flask 

equipped and DCM (10ml) was added. The mixture was refluxed for 6 hr.  The solid 

polymer was recovered by filtration.  The product was dried in a vacuum oven for 24 

hr at 50℃.  The product was weighed again after dry to get the final weight, Wfinal. 

The gel content was therefore calculated by: 

Gel content (%) = 
𝑊𝑓𝑖𝑛𝑎𝑙

𝑊𝑖𝑛𝑖𝑡𝑖𝑎𝑙
× 100 

2.4 Synthesis of monomers 

2.4.1 Mono-functional monomers 

Mono-fucntional monomer 1 (MFM1) and mono-fucntional monomer 2 (MFM2) 

used in this work were supplied by EK’s group.  The structures of mono-functional 

monomers are shown in figure 2.1. MFM1 and MFM2 were characterised by 
1
H 

NMR and 
13

C NMR. 

N

O

O
MFM 1

     

N

O

O
M F M  2

 

Figure 2.1: Structure of mono-functional monomers used in the project 

2.4.2 Di-functional monomer 

2.4.2.1 Synthesis of exo-norbornene-5,6-dicarboxy anhydride (I). 

Scheme 2.1: Reaction scheme for the formation of the exo-anhydride (I) 
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Maleic anhydride (49g, 0.5mol) and 1,2-dichlorobenzene (50ml) were placed in a 

three necked round bottomed flask fitted with a condenser, a dropping funnel and a 

stirrer bar.  The mixture was heated to 180-185℃ and dicyclopentadiene (33g, 

0.25mol) was added via the dropping funnel over a period of 2 hr.  The colour of 

solution was changed from clear to light yellow. The mixture was heated to reflux for 

further 6 hr. After which the solution became brown.  After that the mixture was 

allowed to cool down and the yellow crystals were recovered by filtration.  The 
1
H 

nmr spectrum showed the product was essentially a mixture of 71% exo- and 29% 

endo-isomer.  Therefore, the cured product was recrystallised several times from 

acetone to obtain 100% pure exo-isomer as colourless crystals (27g, 0.16mol, 

33%yield, mp = 165-167˚C). 

1
H NMR, (d6-acetone, 500 MHz, δ(ppm)): 6.33 (2H, t, H1), 3.35 (2H, m, H2), 3.13 

(2H, d, H3), 1.58 (1H, m, H4), 1.38 (1H, m, H5) 

 

Figure 2.2: Assignment of H atoms in exo-anhydride (I) 

13
C NMR, (d6-acetone, 126MHz, δ(ppm)): 173.00 (C4), 138.68 (C1), 49.77 (C3), 47.38 

(C2), 44.59 (C5). 

 

Figure 2.3: Assignment of C atoms in exo-anhydride (I) 
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2.4.2.2 Synthesis of exo-norbornene imidocaproic acid (II) 

 

Scheme 2.2: Scheme for the formation of the exo-norbornene imidocaproic acid (II) 

All glassware were dried in an oven and purged with nitrogen prior to use. 

Exo-norbornene dicarboxylic anhydride (I) (4g, 24.4mmol), 6-aminocaproic (3.5g, 

26.9mmol) and a stirrer bar were placed in a two necked round bottom flask fitted 

with a rubber septum and a reflux condenser. Dry toluene (16ml) was added to the 

flask by a syringe and the mixture was heated to reflux (115℃) for 17 hr. The 

reaction mixture was left to cool down to room temperature and the toluene was 

removed under reduced pressure. The cured product was recrystallized twice in ethyl 

acetate. The product was dried in a vacuum oven giving the final product as white 

powder (26.2g, 96.32mol, 89% yield, mp=62-63˚C). 

1
H NMR, (CDCl3, 500 MHz, δ(ppm)): 10.97 (1H, broad, -OH), 6.22 (2H, t, H1), 3.40 

(2H,t, H4), 3.20 (2H, m, H2), 2.64 (2H, d, H3), 2.32 (2H, t, H8), 1.61 (2H, m, H7), 1.57 

(2H, m, H5), 1.48 (1H, d, H9), 1.32 (2H, m, H6), 1.19 (1H, d, H10). 

 

Figure2.4 Assignment of H atoms in exo-norbornene imidocaproic acid (II) 

13
C NMR, (CDCl3, 126 MHz, δ(ppm)): 179.47 (C10), 178.40 (C4), 138.01 (C1), 48.00 

(C3), 45.34 (C2), 42.92 (C11), 38.64 (C5), 34.03 (C9), 27.61 (C6), 26.55 (C7), 24.37 

(C8). 
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Figure2.5: Assignment of C atoms in exo-norbornene imidocaproic acid (II) 

2.4.2.3 Synthesis of di-functional monomer (DFM) 

O
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O

O O
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Scheme 2.3: Reaction scheme showing the formation of DFM 

All glassware were dried in an oven and purged with nitrogen prior to use. 

1,4-butanediol divinyl ether (2.37g, 16.5mmol), 4-methoxyphenol (0.053g, 0.43mmol) 

and a stirrer bar were placed into a dry two necked flask fitted with a stopper, and a 

reflux condenser. The mixture was heated to 90℃ and compound II (10g, 36mmol) 

was added over a period of 2 hr. The clear colour mixture changed into orange upon 

the addition of the compound II. The mixture was kept refluxing for 21 hr under 

nitrogen. The reaction mixture was left to cool down to room temperature and toluene 

(30ml) was added to dissolve the product. Amberlyst A21 free base ion exchange 

resin (10g) was added, the mixture was thoroughly stirred for 2 hr and the Amberlyst 

resin was removed by filtration. The toluene was removed under reduced pressure. 

The product was dried in a vacuum oven, giving a very viscous brown liquid (8.6g, 

12.4mmol, 83% yield). 

1
H NMR, (CDCl3, 500 MHz, δ(ppm)): 6.25 (4H, t, H1), 5.87 (2H, q, H11), 3.62-3.48 

(4H, m, H13), 3.42 (4H, t, H6), 3.21 (4H, m, H2), 2.64 (4H, d, H3), 2.32 (4H, t, H10), 
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1.61 (4H, m, H9), 1,60 (4H, m, H14), 1.57 (4H, m, H7), 1.48 (2H, d, H4), 1.36 (6H, d, 

H12), 1.32 (4H, m, H8), 1.19 (2H, d, H5). 

 

Figure 2.6: Assignment of H atoms in di-functional monomer (DFM) 

13
C NMR, (CDCl3, 126 MHz, δ(ppm)): 178.25 (C5), 173.33 (C11), 138.03 (C3), 96.44 

(C12), 68.99 (C14), 48.00 (C2), 45.36 (C1), 42.95 (C4), 38.65 (C6), 34.46 (C10), 27.66 

(C7), 26.65 (C8), 26.37 (C15), 24.55 (C9), 21.01 (C13). 

 

Figure2.7: Assignment of C atoms in d-ifunctional monomer (DFM) 
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Chapter 3 

Synthesis and characterisation of polymers 
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3.1 Introduction 

The focus of this chapter is on the synthesis of linear polymers via ROMP of 

mono-functional monomer 1 and 2 and synthesis of cross-linked polymers via 

co-polymerisation of mono- and di-functional monomers. The thermal degradation 

behaviour of linear and cross-linked polymers was investigated by thermogravimetric 

analysis (TGA), dynamic mechanical analysis (DMA) and in the oven. 

3.2 Materials and Instrumentation 

Mono-functional monomer 1 and 2 (supplied by EK’s group), di-functional monomer 

(prepared in chapter 2), dichloromethane (DCM) (Analytical Grade, Fisher Scientific), 

chloroform (HPLC Grade, 99.5%, Fisher Scientific), hexane (Analytical Grade, Fisher 

Scientific), ethyl acetate (Analytical Grade, Fisher Scientific), hydrochloric acid (HCl, 

36%, 1.19g/cm
3
), Grubbs’ 1

st
 generation initiator. Dry DCM was acquired from the 

departmental solvent purification system. 

All polymerizations were carried out in an M-Braun glove box.  

NMR spectra were either recorded on a Bruker Avance 400 spectrometer at 

400.0MHz (
1
H) and 100.6MHz (

13
C); or a Varian Inova 500 spectrometer at 

499.8MHz (
1
H, COSY, HSQC) and 125.7MHz (

13
C).  All chemical shifts were 

referenced to the residual proton impurity of the deuterated solvent, CDCl3, unless 

otherwise stated.  

Infrared spectra were recorded using a Perkin Elmer RX1 FT-IR machine.  

TGA measurements were performed using a Perkin Elmer Pyris 1 TGA in conjunction 

with a Hiden HPR20, heating from 30°C to 300°C at 10°C/min.  

The oven used to investigate the thermal degradability of the materials had a 

temperature range between 25℃-500℃.  

The dynamic mechanical analysis (DMA) was carried out using Texas instrument 
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AR2000 shear rheology meter. 

3.3 Synthesis of polymers 

3.3.1 Preparation of cross-linked polymers C4 and C5 from ROMP of di-functional 

monomer 

 

Scheme 3.1: Reaction scheme for the polymerisation of DFM 

Di-functional monomer (DFM) (0.422g, 0.606mmol) was dissolved in dry 

dicholoromethane (2ml) in a sample vial. Grubbs’ 1
st
 generation catalyst (0.01g, 

0.012mmol) was dissolved in dry dicholoromethane (0.5ml) in another sample vial 

containing a stirrer bar. The ratio of monomers to initiator was 50:1. The solution of 

the monomer was added to the solution of initiator, and stirring commenced. The 

polymer was formed in the vials. DCM was removed under reduced pressure resulting 

cross-linked material C4. Gel content was found to be 83%. 

Cross-linked material C5 was prepared in a similar manner using di-functional 

monomer (0.835g, 1.2mmol) and ruthenium initiator (0.01g, 0.012mmol). The ratio of 

monomer to initiator was 100:1. The gel content of 5 was found to be 78%. 
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3.3.2 Preparation of cross-linked materials (C6-19) from the co-polymerisation of 

di-functional and mono-functional monomer 

 

Scheme 3.2: Scheme of co-polymerisation of DFM and MFM 

DFM (0.313g, 0.45mmol) and MFM 1 (0.044g, 0.15mmol) were dissolved in dry 

dichloromethane (3ml) in a sample vial. Grubbs’ 1st generation catalyst (0.01g, 

0.012mmol) was dissolved in dry dichloromethane (0.5ml) in another sample vial 

containing a small stirrer bar. Then the solution of the monomers was added to the 

solution of initiator. Polymer was formed. Dichloromethane was removed under 

reduced pressure giving cross-linked materials C6. The gel content was found to be 

77%. Cross-linked materials C7-13 was prepared similarly using different quantity of 

MFM1, see table 3.1. 

Table 3.1: The quantity of monomer and initiator used in synthesis of cross-linked 

materials C6-13 

Polymer 
DFM 

g, mmol 

MFM1 

g, mmol 

Initiator 

g, mmol 
DFM:MFM1 

Gel content 

% 

C6 0.313, 0.45 0.044, 0.15 0.01, 0.012 75:25 77 

C7 0.209, 0.30 0.088, 0.30 0.01, 0.012 50:50 81 

C8 0.104, 0.15 0.133, 0.45 0.01, 0.012 25:75 82 

C9 0.626, 0.9 0.088, 0.3 0.01, 0.012 75:25 89 

C10 0.418, 0.6 0.177, 0.6 0.01, 0.012 50:50 74 

C11 0.209, 0.3 0.266, 0.9 0.01, 0.012 25:75 77 

C12 0.24, 0.34 0.90, 3.06 0.01, 0.012 10:90 85 

C13 0.12, 0.17 0.95, 3.23 0.01, 0.012 5:95 74 
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Cross-linked materials C14-19 were prepared by a similar technique using different 

quantities of MFM2, see table 3.2. 

Table 3.2: The quantity of monomer and initiator used in synthesis of cross-linked 

materials C14-19 

Polymer 
DFM 

g, mmol 

MFM2 

g, mmol 

Initiator  

g,mmol 
DFM:MFM2 

Gel content 

% 

C14 1.305, 1.875 0.172, 0.625 0.04125, 0.05 75:25 82 

C15 0.87, 1.25 0.344, 1.25 0.04125, 0.05 50:50 86 

C16 0.435, 0.625 0.516, 1.875 0.04125, 0.05 25:75 71 

C17 1.305, 1.875 0.172, 0.625 0.0206, 0.025 75:25 83 

C18 0.87, 1.25 0.344, 1.25 0.0206, 0.025 50:50 82 

C19 0.435, 0.625 0.516, 1.875 0.0206, 0.025 25:75 79 

3.3.3 Synthesis of linear polymer L20-23. 

Mono-functional monomer MFM1 and MFM2 were subjected to ROMP using 

Grubbs 1
st
 generation ruthenium initiator to prepare linear polymer L20-23. The 

quantities of monomers and initiator used are shown in table 3.3. 

Table 3.3: The quantity of monomer and initiator used in synthesis of linear materials 

L20-23 

Linear Polymer 
MFM1 

g, mmol 

MFM2 

g, mmol 

Initiator 

g, mmol 

L20 1.000, 3.40  0.0561, 0.068 

L21 1.000, 3.40  0.0281, 0.034 

L22  1.000, 3.6 0.060, 0.076 

L23  1.000, 3.6 0.030, 0.036 

In a typical polymerisation reaction a known monomer (known amount) were 

dissolved in dry dichloromethane (2.0ml), initiator (known amount) was dissolved in 

dry DCM (0.5ml) in another sample vial containing a small stirrer bar. The monomer 

solution was added to the vial containing initiator and stirred for 12 hr. 

Ethyl vinyl ether (10 fold excess with respect to initiator) was added and the mixture 

was stirred for further 1 hr. The reaction mixture was then added drop-wise to hexane 

(10 fold excess). The polymer precipitated which was filtered and dried in an oven to 

obtain the linear polymer L20-23.  
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3.4 Thermal degradation of polymer samples 

The polymer was weighed and placed in the oven at 300°C for two hours. The product 

cooled down to room temperature and weighed again to calculate the weight loss 

(Table 3.4).  

Table 3.4: Thermal degradation result in oven at 300°C for 2 hr 

Sample 
DFM  

% 

Before heated  

mg 

After heated  

mg 

Weight loss  

mg (%) 

C4 100 51 33 17.1(34) 

C6 75 50 33.5 16.5(33) 

C7 50 53.5 42.3 11.2(21) 

C8 25 50.6 42.3 8.3(16) 

L20 0 51.2 49.7 2.5(5) 

C5 100 196.7 127 69.7(35) 

C9 75 201.7 133 68.7(34) 

C10 50 198.3 141 57.4(29) 

C11 25 204.3 165 39.2(19) 

C12 10 50.3 44.2 6.04(12) 

C13 5 49.8 46.3 3.5(7) 

L21 0 48.7 46.3 2.4(5) 

C14 75 51.45 35 16.5(32) 

C15 50 52.63 37.89 14.7(28) 

C16 25 49.89 38.91 10.9(22) 

C17 75 53.84 35.53 18.3(34) 

C18 50 54.23 37.96 16.3(30) 

C19 25 52.85 42.28 10.6(20) 

The colour of the samples changed from yellow to black. The product was transferred 

to a vial and dichloromethane (10ml) was added to test the solubility. The product did 

not dissolve completely. The mixture was filtrated. The solvent was removed under 

reduced pressure and a brown solid was obtained. The solid was subjected to 
1
H NMR 

analysis.  
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3.5 Hydrolysis of cross-linked polymer in hydrochloric acid 

3.5.1 Sample preparation 

The sample was prepared as a film using a 4cm×5cm Teflon mould. DFM (0.5g, 

0.7mmol) and MFM (1.1g, 3.8mmol) were dissolved in dry dichloromethane (1ml) in 

a sample vial. Grubbs’ 1
st
 generation catalyst (0.037g, 0.045mmol) was dissolved in 

dry dichloromethane (0.5ml) in another sample vial containing a stirrer bar. The ratio 

of monomers to initiator was 100:1. The solution of the monomer was added to the 

solution of initiator, and stirring commenced. Immediately, the mixture was injected 

into a Teflon mould. The polymer was formed in the mould. The mould was left in for 

dichloromethane to evaporate. The mould then was transferred into a vacuum oven to 

dry at 50℃ for 12 hr. The polymer film formed in the mould. 

3.5.2 Hydrolysis test 

Table 3.5: Weight loss of the samples during hydrolysis 

Sample code 
DFM  

% 

Before hydrolysis  

mg 

After hydrolysis  

mg 

Weight loss  

% 

C5 100 94.7 54.9 42 

C9 75 99.2 59.2 41 

C10 50 379.4 231.4 39 

C11 25 501.6 316 37 

C12 10 98.6 67.0 32 

L21 0 97.8 93.9 4 

The degradation of linear and cross-linked materials by acid hydrolysis was 

investigated. In a typical test, polymer films (known amount) were put into a two 

necked round bottom flask equipped with a reflux condenser and a stirrer bar. HCl 

(30ml, pH=3.4) was added and the mixture was refluxed for 24 hr. The flask was 

cooled down to room temperature. Some small bubbles were observed on the surface 

of films. The polymer was recovered by filtration, and washed by pure water 3 times. 

The product was dissolved in DCM and precipitated in hexane. The final product was 

dried in the vacuum oven. The dried product was weighed to calculate the weight loss. 
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3.6 Rheological analysis 

3.6.1 Sample preparation 

The polymer samples were compression moulded at 150°C into 25mm diameter disks, 

1mm thick, to be used with 25mm parallel plate geometry. The samples were annealed 

at 150°C for 30 minutes. 

3.6.2 Frequency sweep 

The material rheology was measured using a TA-AR2000 (Texas instruments) shear 

rheometer fitted with 25mm parallel plates. Sample degradation was tested and found 

to not be significant for times up to 4 hours. 

A sample could be tested at varying frequency while the temperature was fixed. All 

the samples were tested at 100℃, 130℃, 160℃, and 190℃. At each temperature, the 

frequency was varied from 0.01Hz to 100Hz sampling 10 points per decade. And the 

shear stress was measured at each frequency.  

If the sample was subjected to an applied strain;  = 0 sin (t). The storage 

modulus shear stress in phase with the strain, representing an elastic response, and 

the loss modulus measures the shear stress in phase with the strain-rate, representing a 

viscous response. The shear storage and loss moduli are defined as follows:
68

 

Storage Modulus:  



cos'

0

0G

 

 

Loss Modulus:  



sin''

0

0G  

Phase angle, Tan (delta): 
'

''
tan

G

G
  

3.6.3 Temperature sweep 

A common test method involves measuring the complex modulus at constant 

frequency (here 1Hz) while varying sample temperature at a constant negative ramp 

(here -2°C/min). In this test mode, δ, where tanδ= G’/G’’, was measure at different 



Durham University Synthesis and characterisation of degradable thermosetting materials Shenghui Hou 

38 
 

temperatures. A prominent peak in δ appears at the Tg of the polymer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Durham University Synthesis and characterisation of degradable thermosetting materials Shenghui Hou 

39 
 

 

 

 

 

 

Chapter 4 

Results and discussion 
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4.1 Monomer synthesis 

4.1.1 Synthesis of exo-norbornene-5,6-dicarboxy anhydride (I) 

Pure exo-norbornene dicarboxy anhydride was prepared following scheme 4.1. 

 

Scheme 4.1: synthesis route for exo-norbornene-5,6-dicarboxy anhydride (I) 

The Diels-Alder reaction between maleic anhydride and dicyclopentadinene was 

carried out at 190℃.  

2

 

O
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O

O

O

O

+

 

Scheme 4.2: The Diels-Alder reaction 

The dicyclopentadiene was cracked into cyclopentadiene at the reaction temperature, 

which then reacted with maleic anhydride to result in a mixture of exo/endo 
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nobornene anhydride isomers, scheme 4.2.  A temperature above 180℃  was 

necessary for this reaction in order to obtain more thermodynamically favoured 

exo-anhydride isomer. 

Exo/endo norbornene anhydride was characterised by 
1
H NMR in acetone-d6 and the 

spectrum is shown in figure 4.1.  

     

 

Figure 4.1: 
1
H NMR spectrum of exo-(II) and endo-(I) anhydride, in acetone-d6 

A resonance due to exo and endo isomer can be observed, peaks 1-5 and 6-9, 

respectively (Fig. 4.1.A).  The ratio of exo to endo isomer was determined from the 

ratio of the integration of the resonance due to the olefinic protons of the exo isomer 

(peak 1) to that of the endo isomer (peak 6). The ratio was found to be 1:0.5, 

indicating 67% exo and 33% endo isomer. 

Although the endo-isomer was preferentially formed in the reaction, unlike 

exo-isomer it is not very reactive for ROMP using Grubbs’ first generation catalyst.  

B 

A 
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The pure exo-isomer was obtained by recrystallization (3 times) from acetone.  The 

1
H NMR spectrum (Fig. 4.1.B) showed the expected resonance for protons of the 

exo-product.  The ratio of the integration of peaks 1 to that of 6 was found to be 

1:0.01, indicating the exo content of 99%. 

The structure of exo-isomer was further confirmed by 
13

C NMR.  The 
13

C NMR 

spectrum (Fig. 4.2) showed resonance due to the olefinic carbon (a) at 138.68ppm and 

the carbon (d) at 173.00ppm as expected for pure exo-isomer.  

 

 

Figure 4.2: 
13

C NMR spectrum and the structure of exo-anhydride, in acetone-d6 
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4.1.2 Synthesis of exo-norbornene imidocaproic acid (II) 

The reaction of exo-anhydride norbornene (I) and 6-aminocaproic acid was a one-step 

reaction in toluene with a yield of 89%.  The mechanism of the reaction is shown in 

scheme 4.3. 

 

Scheme 4.3: Mechanism for the formation of exo-norbornene imidocaproic acid 

Both ring opening and ring closing reactions are required before the nitrogen atom 

can be incorporated into the ring system.  The reaction would give amide acid as a 

crucial intermediate via a ring-opening process.  The amide acid intermediate is 

crucial as it is here that the formation of a good leaving group occurs.  In this 

reaction, the carboxylic acid abstracts a proton from amide creating a good leaving 

group, H2O, and thus the ring closing reaction is promoted. 

The 
1
H NMR spectrum of exo-norbornene imidocaproic acid is shown in figure 4.3.  

All resonances due to the product can clearly be seen in the 
1
H NMR spectrum.  A 

resonance due to –COOH at 11ppm is seen along with the ratio of 1:1 for H8: H1, 

indicating the formation of the product. The ratio of the integration of resonance due 
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to peak 1 and that of peak 4 is 1:1, indicating the formation of dicarboxymide (ring 

has been closed).  

 

 

 

 

Figure 4.3: 
1
H NMR spectrum and structure of exo-norbornene imidocaproic acid ,  

in CDCl3 (II). 

The 
13

C NMR spectrum also shows peaks expected for the product (Fig. 4.4). The 

spectrum shows characteristic resonance due to C=O of the dicarboxylic (d) and the 

carboxylic acid (j) at 178.40ppm and 179.47ppm, respectively. The olefinic carbon (a) 

and the –CH2 next to nitrogen (e) can also been seen at 138.01ppm and 38.64ppm, 

represtively.  
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Figure 4.4: 
13

C NMR spectrum and structure of exo-norbornene imidocaproic acid, 

in CDCl3 (II). 

4.1.3 Synthesis and characterization of di-functional monomer (DFM) 

The di-functional monomer (DFM) containing acetal ester functionalities was 

synthesised in a one-step neat reaction between exo-norbornene imidocaproic acid (II) 

and 1,4-butanediol divinyl ether.  Exo-norbornene imidocaproic acid (II) possess an 

obvious acidic character and is able to catalyse the polymerisation of 1,4-butanediol 

divinyl ether.
59 

 In order to prevent the polymerisation of 1,4-butanediol divinyl ether, 

4-methoxyphenol was used as inhibitor in this reaction. The pure di-functional 

monomer (DFM) was obtained in a yield of 83%. 
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The 
1
H NMR spectrum (Fig. 4.5) showed that the product was very pure. The proton 

spectrum shows clearly resonance due to olefinic protons (H1) at 6.25ppm. It also 

shows resonance at 5.87ppm (H11) and 1.36ppm (H12) due to the formation of acetal 

ester group. The ratio of the integration of resonance due to peak 1 to that of peak 11 

and 12 is found to be 4:2 and 4: 6, respectively, indicating the formation of 

di-functional monomer containing two acetal ester groups as expected. 

 

 

Figure4.5: 
1
H NMR spectrum and structure of DFM, in CDCl3 

The 
13

C NMR spectrum (Fig. 4.6) shows resonance due to olefinic carbons (a) at 

138.03ppm, carbonyl of the dicarboximide (e) at 178.25ppm. It also shows resonance 

due to carbonyl of the acetal ester group (k) at 173.33ppm. Furthermore, resonance 

are observed for –CH (l) and –CH3 (m) of the acetal ester group at 68.99ppm and 

21.01ppm, respectively.  
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Figure 4.6: 
13

C NMR spectrum and structure of DFM, in CDCl3 

4.2 Polymer synthesis 

All polymers were prepared via Ring Opening Metathesis Polymerization (ROMP) 

using Grubbs’ 1
st
 generation initiator.  The di-functional monomer (DFM) and two 

mono-functional monomers (MFM1 and MFM2) were used in this experiment.  

DFM was subjected to ROMP to prepare cross-linked materials with a maximum 

degree of cross-linking.  

In order to prepare cross-linked polymer with different degrees of cross-linking, 

di-functional monomer and mono-functional monomer were co-polymerized in 

different ratios (scheme 4.4).  The linear polymer was also prepared by ROMP of 

mono-functional monomer to provide samples some comparisons. 
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Scheme 4.4: Schematic representation of co-polymerisation of DFM and MFM 

The summary of homo and cross-linked polymers synthesised for this project are 

shown in table 4.1. 

Table 4.1: Summary of polymers prepared in this project 

 
Monomers: initiator 

50:1 

Monomers: initiator 

100:1 

Cross-linked 

materials 
100%DFM C4 C5 

Cross-linked 

materials 

(DFM+MFM1) 

75%DFM C6 C9 

50%DFM C7 C10 

25%DFM C8 C11 

10%DFM N/A C12 

5%DFM N/A C13 

Cross-linked 

materials 

(DFM+MFM2) 

75%DFM C14 C17 

50%DFM C15 C18 

25%DFM C16 C19 

Linear homo-polymer (MFM1) L20 L21 

Linear homo-polymer (MFM2) L22 L23 
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4.3 Degradation studies 

4.3.1 By Thermogravimetric Analysis 

4.3.1.1  Weight loss behaviour 

The weight loss behaviour for cross-linked samples C4, C6-8 and also linear polymer 

L20 was investigated by TGA and the TGA thermographs are shown in Fig. 4.7.  

 

Figure 4.7: TGA thermographs observed for samples C4(100%DFM), C6(75%DMF), 

C7(50%DMF), C8(25%DFM) and L20(linear polymer). 

Table 4.2: Weight loss at 300℃ for C4, C6-8 and L20 

Samples C4 C6 C7 C8 L20 

DFM 

% 
100 75 50 25 0 

Weight loss 

% 
23 22 16 11 2 

The percentage weight loss observed during the TGA is shown in table 4.2.  The 

results indicate that the cross-linked material start losing weight at 150˚C and the 

extent of the weight loss at 300˚C depends on the level DFM in the samples; the 
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higher the DMF content the bigger the weight loss.  The sample with 100%DMF (C4) 

show a weight loss of 23% and the weight loss for the sample with 25%DMF content 

is reduced to 11%.  The weight loss is believed to be due to the thermal breakdown 

of the acetal ester linkages in the cross-linked material as no weight loss was observed 

for the linear polymer (L20) without any acetyl ester groups. The linear sample only 

shows 2% weight loss at 100˚C due to the moisture in the sample. 

The weight loss behaviour for cross-linked samples C5, C9-13 and also linear 

polymer L21 was investigated by TGA and the TGA thermographs are shown in Fig. 

4.8. 

 

Figure 4.8: TGA thermographs observed for samples C5(100%DFM), C9(75%DMF), 

C10(50%DMF), C11(25%DFM) , C12 (10%DFM), C13 (5%DFM) and L20 (linear 

polymer). 
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Table 4.3: The weight loss of C5, C9-C13, L20, and L21 in TGA 

Samples C5 C9 C10 C11 C12 C13 L21 

DFM 

% 
100 75 50 25 

10 5 0 

Weight loss 

% 
28 25 20 9 

7 5 2 

The percentage weight loss observed during the TGA is shown in table 4.3.  

The results also indicate that the cross-linked material start losing weight at 150℃ 

and the extent of the weight loss at 300℃ depends on the level of DFM in the 

samples. The higher the DMF content the bigger the weight loss.  The sample with 

100%DMF (C5) show a weight loss of 28% and the weight loss for the sample with 

5%DMF (C13) content is reduced to 5%.  The weight loss is again believed to be 

due to the thermal breakdown of the acetal ester linkages in the cross-linked material 

as no weight loss was observed for the linear polymer (L21) without any acetyl ester 

groups. The linear sample only shows 2% weight loss at 100℃ due to the moisture in 

the sample. 

4.3.1.2  Solubility behaviour  

Solubility tests were carried out on the cross-linked samples before and after the TGA 

analysis and the results are shown in table 4.4. The linear materials are completely 

soluble in DCM and as expected the cross-linked materials are not soluble even at 

elevated temperature.  The cross-linked materials contain acetal ester groups in the 

network which are expected to breakdown upon heating, Figure4.9. 

Table 4.4: The solubility test of cross-linked and linear samples in dichloromethane, 

before and after TGA 

Samples C4 C6 C7 C8 L20 C5 C9 C10 C11 C12 C13 L21 

Solubility 

before 

TGA 

No No No No Yes No No No No No No Yes 

Solubility 

after 

TGA 

No No No No Yes No No No No Partial Partial Yes 
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Figure 4.9: The structure of cross-linked materials C4, C6, C7, and C8 

The complete breakdown of the acetal ester linkages is anticipated to result in the 

formation of soluble linear thermoplastic materials. The retrieved materials after the 

TGA analysis were found to be insoluble in DCM.  One plausible reason for the 

insolubility of materials could be that on the timescale of the TGA measurement there 

is not enough time for all acetal ester linkages to breakdown. 

4.3.1.3  IR investigation 

The cross-linked sample C7, containing 50% DFM was subjected to FTIR analysis, 

before and after TGA, Figure 4.10. 

 

Figure 4.10: FTIR spectra of cross-linked material C7 (50%DFM) 
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The FTIR spectra show that the C-O vibration at 1134 cm
-1

 to shifted to 1148 cm
-1

. A 

considerable reduction in the intensity of C-O bands is also observed for the retrieved 

materials after the TGA measurement.  The reduction is estimated to be about 70% 

which is comparable to that reported for thermal degradation of maleimide resins 

containing acetal ester linkages
8
. The presence of the C-O band further confirms that 

the acetal ester linkages have not been completely broken down.  

4.3.2 Oven 

The results of TGA investigation showed that the retrieved materials after the TGA 

analysis remained insoluble in DCM.  This was attributed to incomplete breakdown 

of the acetal ester linkages on the timescale TGA measurements.  Therefore the 

thermal degradation behaviour was investigated in an oven to see the effect of 

prolonged heating on the degradation of the acetal ester linkages. 

4.3.2.1 Weight loss behaviour 

The cross-linked materials C4, C6-8 were heated in an oven at 250˚C and 300˚C for 

1-4hr and the resulting weight loss are presented in the Fig. 4.11. 

 

Figure 4.11: Weight loss of polymers (C4, C6, C7, C8, L20) upon heating in an oven 

The general trend observed is that samples heated at 300˚C for 2hr exhibit the most 
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weight loss, even more than 250˚C for 4 hr. The sample heated at 250˚C exhibit more 

weight loss after 4hr compared to 2hr and 1hr. 

The results show a clear correlation between the DFM content of the cross-linked 

materials and the heating temperature and the duration of the heating; the higher the 

temperature and the heating duration the more weight loss.    

The cross-linked materials C5, C9-13 were also heated in an oven at 250˚C and 300˚C 

for 1-4hr and the resulting weight loss are presented in Fig. 4.12.  The same general 

trend to those describe earlier for cross-linked materials C4-C6-8 were observed. 

 

Figure 4.12: Weight loss of polymers (C5, C9, C10, C11, C12, C13, L21) upon 

heating in an oven 
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Table 4.5: Weight loss of C4-13, L20, and L21 in oven at 300℃ after 2hr and TGA 

Sample 
DFM  

% 

Weight loss  

% 

Oven TGA 

C4 100 34 23 

C6 75 33 22 

C7 50 21 16 

C8 25 16 11 

L20 0 5 2 

C5 100 35 28 

C9 75 34 25 

C10 50 29 20 

C11 25 19 9 

C12 10 12 7 

C13 5 7 5 

L21 0 5 2 

The weight loss observed by heating in an oven are compared to those obtained from 

TGA are shown in table 4.5 for comparison. 

The weight loss observed for heating in an oven at 300˚C for a period of 2hr are more 

than that observed over the timescale of TGA.  This indicates that more heating 

times are required for the breakdown of the acetal ester linkages. 

It should be pointed out that no weight loss was observed for the linear polymers 

L20-21 during the TGA investigation and heating in oven at 250˚C and 300˚C for 

1-4hr, Fig. 4.9 and 4.10.  This is taken as indication that the weight losses observed 

resulted from the thermal breakdown of the acetal ester linkages. 

4.3.2.2  Solubility behaviour 

The samples of the cross-linked C4-C13 and linear polymer L20-21 became black 

upon heating in the oven at 300˚C for 2hr. Black particles were observed when these 

samples were dissolved in DCM which were removed by filtration.   It appeared that 

the samples were not completely soluble in DCM and that some polymer residue 

remained in solution. 
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Table 4.6: The solubility in dichloromethane before and after oven (300℃ after 2hr) 

Samples DFM% Solubility before oven Solubility after oven 

C4 100 No Partial 

C6 75 No Partial 

C7 50 No Partial 

C8 25 No Partial 

L20 0 Yes Partial 

C5 100 No Partial 

C9 75 No Partial 

C10 50 No Partial 

C11 25 No Partial 

C12 10 No Partial 

C13 5 No Partial 

L21 0 Yes Partial 

The sample of cross-linked material C11 after the heating treatment in the oven at 

300˚C for 2hr was similarly recovered, re-dissolved in dichloromethane-d and 

analysed by 
1
H NMR, Fig. 4.13A.  The 

1
H NMR spectrum shows expected 

characteristic resonances due to the protons of aromatic group (peaks 1-3), vinylic 

group (peak 4), and -CH2- group (peak 5).  The spectrum is similar to that of the 

linear polymer L21 (Fig. 4.13B), indicating the formation of linear polymer upon 

heating the cross-linked material in oven at 300˚C for 2 hr. 

The black solid is believed to be the result of the decomposition of ruthenium initiator 

(unreacted and reacted).  When the ruthenium initiator was treated in the oven under 

similar conditions a black solid was formed. 
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Figure 4.13: NMR spectrum of corss-linked material C11 (25%DFM) degraded in 

oven at 300℃ during 2 hours (A) and the linear polymer L21 (B), in CDCl3 

4.3.3 Acid-catalysed hydrolysis 

The acetal ester linkage is expected to readily undergo acid-catalysed hydrolysis. The 

acid-catalysed hydrolysis of acetal esters has not been reported.
29

 However, linear 

polymers containing ketal and acetal linkages have been reported, Fig. 4.14.   The 

linear polymers have been shown to under acid-catalysed hydrolysis forming low 

molecular weight materials for therapeutics and drug deliveries. 
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Figure 4.14: Ketal and acetyl containing linear polymers studied by acid-catalysed 

hydrolysis 

4.3.3.1  Weight loss behaviour 

The cross-linked material C5, C9-12 and linear polymer L21 were subjected to 

acid-catalysed hydrolysis.  The weight loss for these materials after hydrolysis is 

shown in table 4.7.  Determination of the weight loss of the materials after 

hydrolysis was time consuming as due to the removal of water and acid from the 

surface of the films. 

Table 4.7 also shows the comparison between the weight losses after hydrolysis and 

those obtained after heating in the oven at 300˚C for 2 hr.  It can clearly be seen that 

the weight losses are greater than those heated in the oven indicating more cleavage of 

the acetal ester linkages upon hydrolysis. 

Table 4.7: The weight loss of samples after acid-catalysed hydrolysis and oven 

Sample code DFM % 
Weight loss % 

Acid Oven 

C5 100 42 35 

C9 75 41 34 

C10 50 39 29 

C11 25 37 19 

C12 10 32 12 

L21 0 4 5 
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4.3.3.2  Solubility behaviour 

The samples of cross-linked material C5, C9-12 after hydrolysis were readily soluble 

in DCM, table 4.8.  The cross-linked sample C11 was dissolved in 

dichloromethane-d and analysed by 
1
H NMR, Fig. 4.15A.  

Table 4.8: The solubility of samples after acid-catalysed hydrolysis 

Samples C9 C10 C11 C12 L21 

Solubility before hydrolysis No No No No Yes 

Solubility after hydrolysis Yes Yes Yes Yes Yes 

The samples after hydrolysis were purified and characterised by 
1
H NMR. 

 

Figure 4.15: NMR spectra of 25%DFM polymer after acid-catalysed hydrolysis (A) 

and linear polymer (B), in CDCl3 

The 
1
H NMR spectrum shows expected characteristic resonances due to the protons of 

aromatic group (peaks 1-3), vinylic group (peak 4), and -CH2- group (peak 5).  The 

spectrum is identical to that of the linear polymer L21 (Fig. 4.15B), indicating the 

formation of linear polymer upon acid catalysed hydrolysis of the cross-linked 

material.  The ratio of the integration of the resonances due -CH2- group (Peak 5) 

and the vinylic group (peaks 1-3) remained the same as that observed for linear 

polymer. This indicates that the dicarboximide segments in the cross-linked materials 

R
R

H

N

O

O

1

2

3

4
5



Durham University Synthesis and characterisation of degradable thermosetting materials Shenghui Hou 

60 
 

are resistant to acid–catalysed hydrolysis.   

It should be noted that linear polymer L21 remained unchanged after being subjected 

to acid –catalysed hydrolysis under the same conditions, table 4.8.  This further 

confirms the stability of the dicarboximide segments towards acid-catalysed 

hydrolysis. 

4.4 Rheological analysis 

The samples were tested at 100℃, 130℃, 160℃, and 190℃. The results at each 

temperature were superposed onto a master curve (at one temperaute) using 

“time-temperature superposition”, which was based on Williams–Landel–Ferry (WLF) 

equation.
69

 We put all master curves at the same reference temperature 130℃ which 

can be seen in figures 4.16 and 4.17. The data was analysed using RepTate software 

(freeware at www.reptate.com) 

 

Figure 4.16: Linear rheology ramps of linear polymer sample 

In figure 4.16, the elastic modulus G’ and viscous modulus G’’ were recorded via 

http://www.reptate.com/
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frequency sweep. There are two crossover of G’ and G’’. The one at low frequencies 

the crossover of G’ and G’’ indicated a characteristic the relaxation time, when G’=G’’. 

This shows the characteristic time for the whole polymer to relax its stress. The 

relaxation time is caculated by τ =
1

𝜔
 (where, ω is the crossover frequency). The 

other one at high frequency, the crossover of G’=G’’ was the characteristic time scale 

of the untangent section of the polymer to relax.  

 

Figure 4.17: Linear rheology ramps of linear polymer (B), 25% cross-linked 

polymer (D), 25% cross-linked polymer after heating (A), and 25% cross-linked 

polymer after hydrolysis (C) 

In figure 4.17, the relaxtion time of linear polymer (B), 25% cross-linked polymer (D), 

25% cross-linked polymer after heating (A) and 25% cross-linked polymer after 

hydrolysis (C) are compared. Curve D has the longest relaxation time of all samples. 

Curve A does not have a low-frequency cross. The cross-linked polymer after heating 

was rubber like and the structure (or net-work) of the cross-linked materials changed 

during heating. 

Curves B and C almost superimpose. They had the same relaxation time, that is to say, 

linear polymer and 25% cross-linked polymer after hydrolysis have the same 
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characteristics.  

The glass transition temperature was measured by temperature sweep (Fig.4.17). 

Where tanδ=G’’/G’. The peak of the curve represents the phase transition, which 

was glass transition temperature in this experimental. All the polymers had the similar 

Tg, which was around 80℃. 

 

Figure 4.17: Temperature sweep 
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Chapter 5 

Conclusions and future work 
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5.1  Conclusions 

The aim of this project was to design and synthesise a range of well-defined 

thermosetting ROMP materials that are thermally degradable, biodegradable and 

recyclable. The crucial part of the design of these thermosetting materials was the 

thermal breakdown or biodegradation of only the linkages, leaving the main chains 

intact.  This would also allow the transition from thermosetting to thermoplastic 

facilitating the recycling.  In order to achieve the aims, thermosetting ROMP 

materials based on poly(norbornene dicarboximide) networks containing acetal ester 

linkages were synthesised.  

First, the pure exo di-functional monomer containing acetal ester functionalities was 

successfully synthesised with a yield of 83% which were fully characterised by 
1
H 

and 
13

C NMR spectroscopy.  Di-functional monomer was subjected to ROMP using 

ruthenium initiator to prepare thermosetting materials with maximum degree of 

cross-linking.  Second, thermosetting materials with different degrees of 

cross-linking were also prepared by the ROMP of the mixtures of di-functional and 

mono-functional monomers.  

The results of TGA indicated that the cross-linked materials started losing weight at 

150℃  and the extent of the weight loss at 300℃  depended on the level of 

di-functional content (DFM) in the samples; the higher the DMF content the bigger 

the weight loss.  The sample with 100%DMF content (C5) showed a weight loss of 

28% and the weight loss for the sample with 5%DMF (C13) content was decreased to 

5%.  The weight loss is attributed to the thermal breakdown of the acetal ester 

linkages in the cross-linked material as no weight loss was observed for the linear 

polymer (L21) without any acetal ester groups. The linear polymer sample only 

showed 2% weight loss at 100˚C due to the moisture content in the sample. The 

retrieved cross-linked samples, after TGA test, did not dissolve in DCM completely, 

suggesting that the total breakdown of the acetal ester linkages had not been achieved 

on the timescale of TGA investigation.  This observation is supported by the IR 



Durham University Synthesis and characterisation of degradable thermosetting materials Shenghui Hou 

65 
 

spectra as it showed the reduction in the intensity of acetal ester band not the 

complete disappearance. 

The samples were heated in the oven at 300℃ and 250℃. The results showed a clear 

correlation between the DFM content of the cross-linked materials and the heating 

temperature and the duration of the heating. The higher temperature and heating 

duration, the more weight loss would exhibit. The cross-linked samples after heat 

treatment were not completely soluble in DCM. 1H NMR analysis of sample C11, 

after the heating treatment in the oven at 300℃ for 2hr, gave a spectrum similar to 

that of a linear polymer L21.  This indicates the partial formation of linear polymer 

upon heating the cross-linked material in oven at 300℃ for 2 hr.  

The cross-linked materials were also subjected to acid-catalysed hydrolysis. The 

weight losses observed were greater than those heated in the oven, indicating more 

cleavage of the acetal ester linkages upon hydrolysis. The samples of cross-linked 

material after hydrolysis were readily soluble in DCM. The samples after hydrolysis 

in dilute acid were completely soluble in DCM and were therefore characterised by 

NMR. The observed 1H NMR spectra were the same as those observed for the linear 

polymer L21.  This is a clear indication that all the acetal ester linkages were broken 

down during hydrolysis and that cross-linked polymers changed into linear polymers.  

Dynamic mechanical analysis was carried out on the cross-linked polymer, linear 

polymer, polymer after heating, and polymer after hydrolysis. Curves for linear 

polymer and cross-linked polymer after hydrolysis had the same relaxation time. That 

is to say, linear polymer and cross-linked polymer after hydrolysis had the same 

characteristic, supporting the complete breakdown of actela ester linkages. However, 

curves for cross-linked polymer after heating had no relaxation time at low frequecy. 

It showed that the cross-linked polymer after heating was rubber like. This may 

indicate the breakdown of the actal aster linkages followed by the formation of new 

cross-links. 
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It is therefore concluded that the complete breakdown of the acetal ester linkages 

could not be achieved on the timescale of the TGA experiments. Although, the total 

beakdown is achieved by prolonged heating in the oven, but it appears that other 

cross-linking processes also takes place.  However, complete breakdown of the 

acetal ester linkages could be achieved by acid-catalysed hydrolysis.  This is 

anticipated to allow the transition from thermosetting to thermoplastic facilitating the 

recycling and reworking. 

5.2  Future Work 

The reactions used for the synthesis of monomers have resulted in products with high 

yields. These routes could be designed to synthesise monomers containing oxygen in 

7-position, to improve the bio-degradability of the resulting thermosetting materials. 

An example of such monomer is shown in Fig. 5.1. 

 

Figure 5.1: Structure of oxanorbornene dicarboxyimides 

The ROMP of oxanorbornene dicarboxyimides has been described in the literature. 

The ROMP polymer used in this experiment have provided a good platform for 

development of better reworkable materials. The cross-linked ROMP polymers 

containing acetal ester linkeages prepared in this project are expected to have exellent 

hydrolysis property, therefore, they could be developed as bio-degradable materials.  

An entire library of di-functional monomers could be synthesized by incorporating 

different divinyl ethers and amino acids. An area of interest may be the investigation 

of the properties of monomers and resulting polymers that include cyclohexyl 

functionalities in their structure. 
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Thus far, there have not been any reported di-functional nonomers incorporating both 

cleavable linkages and imidonorbornene functionalities. It may be of interest to try to 

synthesise monomers based on the imidonobornene formation that contain cleavable 

linkages. Further study could consider chemical degradation of polymer. 
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Appendix 1: 
1
H NMR spectrum of DFM1 

 

Appendix 2: 
13

C NMR spectrum of DFM1 
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Appendix 3: 
1
H NMR spectrum of DFM2 

 

 

Appendix 4: 
13

C NMR spectrum of DFM2 
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