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Abstract 

The organocatalytic iminium activation strategy acting cooperatively with a Lewis 

acidic group has been applied to the development of a novel generation of proline-

based aminoboronic acid catalysts.  

Key steps for their synthesis included (-)-sparteine mediated asymmetric 

deprotonation of N-Boc-pyrrolidine, copper(I) catalysed borylation of alkylhalides 

and catalysed hydroboration of alkenes. The evaluation of the first proline-based 

aminoboronic acids is described in the context of organocatalysed aldol reactions 

between p-nitrobenzaldehyde and acetone. Enhanced reactivity and 

enantioselectivity observed in the presence of a boronate ester analogue of the 

catalyst resulted in further examination regarding the role of the esterification diol in 

these organocatalytic reactions. Notably, 
11

B NMR studies have been assessed, 

allowing the evaluation of different diols in terms of stability and Lewis acid tuning, 

and plausible identification of the catalytic species present.  

The feasibility of the catalyst under optimised reaction conditions was 

demonstrated in the aldol reaction of different substrates. Extended mechanistic 

studies lead to the proposal of a catalytic cycle in which a highly organised transition 

state plays a key role for both the reactivity and enantioselectivity observed. Finally, 

strategies employed to further examine both reactivity and asymmetric induction of 

the free boronic acid catalyst are discussed, examing the carbon length chain 

between the secondary amine moiety and the boronic acid group of the catalyst.   
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"Σαν βγεις στο πηγαιμό για την Ιθάκη, 

να εύχεσαι νάναι μακρύς ο δρόμος, 

γεμάτος περιπέτειες γεμάτος γνώσεις. 

 Τους Λαιστρυγόνας και τους Κύκλωπας, 

 τον θυμωμένο Ποσειδώνα μη φοβάσαι ... 

  Πολλά τα καλοκαιρινά πρωιά να είναι 

  που με τι ευχαρίστησι, με τι χαρά 

  θα μπαίνεις σε λιμένας πρωτοειδωμένους ..."  

        

        Κ .Π.Καβάφης, Ιθάκη, 1911 

 

 

 

 

 

"As you set out on the way to Ithaca 

hope that the road is long one, 

filled with adventures, filled with understanding. 

 The Laestrygonians and the Cyclopes, 

 Poseidon in his anger: do not fear them ... 

   Many may the summer mornings be   

  when-with what pleasure, with what joy- 

  you first put in to harbors new to your eyes ..." 

 

                K. P. Cavafy, Ithaca, 1911 
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rt Room temperature 
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1 Introduction 

 

One of the ultimate goals in organic chemistry is the synthesis of complex natural 

products with multiple chiral centres. Enantiomerically pure compounds are of great 

importance not only in fine chemicals and material science but also in 

pharmaceutical companies. In addition, the development of stereospecific carbon-

carbon bond forming reactions is one of the most challenging fields in organic 

chemistry. As a result, over recent decades the area has been dominated by groups 

interested in asymmetric organocatalysis. This is not only due to the versatile 

character of small organic molecules to function as efficient and selective catalysts 

but it is also attributed to their important role in the construction of complex and 

enantiopure molecular skeletons.
[1] 

A variety of organic molecules have been employed as asymmetric 

organocatalysts but proline and its derivatives are among the most successful 

catalysts studied to date.
[2]

 The first part of this introduction will focus on the 

application of proline in the aldol reaction. Moreover, an effort has been made to 

uncover and report novel organocatalysts that are superior to proline and are 

effective in the aldol reaction. Most importantly the main aim is to provide an 

overview on the recently developed field of proline-based aminoboronic acids and 

their ability to act as organocatalysts, providing reactivities and selectivities beyond 

those of proline and its derivatives.
[3-4]

 

 

1.1 Proline as a Powerful Catalyst in the Aldol Reaction  

 

The ability of proline not only to catalyse organic reactions but to favour the 

formation of a single enantiomer was first noted more than 35 years ago.
[5]

 

Unfortunately, limited interest was observed until the beginning of the year 2000 

when its potential was rediscovered by Barbas and List.
[6]

 Since then an impressive 

number of catalytic applications have been reported, improving the so-called 

organocatalysis field.
[1]

 One of the most important features of this small, natural, 

inexpensive amino acid, is its availability in both enantiomeric forms, giving rise to 

the possible synthesis of an unlimited number of chiral compounds. Similar to 
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enzymatic catalysis, proline can be characterised as a bifunctional catalyst since the 

amine moiety and the carboxylic acid act simultaneously. The increased pKa value 

rising from the presence of the secondary amine functional group enhances the 

nucleophilicity allowing it to react more easily with carbonyl compounds, leading to 

the formation of iminium ions or enamines. 

 

1.1.1 The Hajos-Parrish-Eder-Sauer-Wiechert reaction 

 

In the early 1970s, in an attempt to develop new methods for the synthesis of 

steroids, two industrial groups independently discovered that a small amount of  

(S)-proline can catalyse an asymmetric intramolecular aldol reaction (Scheme 1.1). 

According to Hajos and Parrish, the optically active bicyclic diketone 3 can be 

generated in good yields and enantioselectivity by the proline-catalysed 

intramolecular aldol reaction of triketone 1, followed by the dehydration of aldol 

2.
[5a]

 Analogous results were achieved by Eder, Sauer and Wiechert who proposed 

the in situ dehydration of 2 using perchloric acid as a co-catalyst in order to form the 

aldol condensation product 3.
[5b] 

 

 

Scheme 1.1 First proline-catalysed intramolecular aldol reaction. 

 

Taking into consideration the enantioselectivity observed, a number of 

experimental and theoretical studies have followed, mainly focusing their research 

on the mechanism of the specific reaction.
[5a,7-9]

 Nevertheless, the only synthetic 
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utility of this methodology before the beginning of the new century was only 

illustrated by the synthesis of a variety of steroids and terpenes.
[10] 

 

1.1.2 Proline-catalysed intermolecular aldol reactions 

 

The first proline-catalysed direct intermolecular aldol reaction between acetone and a 

variety of aldehydes 4 was reported (eqn. 1.1) by List and Barbas.
[6] 

High yields and 

enantioselectivities were observed, not only when α-branched aldehydes  

(entries 1-4, Table 1.1) were used, but also when using tertiary aldehydes such as 

isobutylaldehyde (entry 5, Table 1.1). Unfortunately, unbranched aldehydes were 

unreactive. This difficulty is due to the weakness of proline to distinguish between 

the α-protons of the aldehyde and the ketone, leading to the formation of the self-

aldolisation product 6. As a result, further studies changing the reaction temperature 

and the solvent were carried out using α-unbranched aldehydes.
[11] 

Even though the 

cross-aldol products were obtained in poor yields, the enantioselectivities were good 

(entries 6-8, Table 1.1). 

 

 

 

Table 1.1 Enantioselective aldol reaction catalysed by proline, between acetone and a 

variety of aldehydes.  

Entry R Solvent Yield [%] ee [%] 

1 

 

DMSO 68 76 

2 

 

DMSO 62 60 

3 

 

DMSO 74 65 

4 
 

DMSO 54 77 



Introduction 

5 

 

5 
 

DMSO 97 96 

6  CHCl3 29 70 

7  CHCl3 34 72 

8 
 

CHCl3 23 61 

 

In the same context, List et al. developed the aldol reaction (Table 1.2) 

between isovaleraldehyde and cyclic ketones such as cyclopentanone and 

cyclohexanone, giving a mixture of both diastereoisomers.
[11]

  

 

Table 1.2 Proline-catalysed aldol reaction using cyclic ketones. 

 

 

 

 

 

 

 

 

 

In addition to the previous examined aldol reaction using cyclic ketones, 

Córdova et al. also described the reaction of formaldehyde with a series of cyclic 

ketones 7 (eqn. 1.2).
[12] 

This reaction enabled the asymmetric α-hydroxymethylation 

of the ketones in high enantioselectivities, albeit in moderate yields (Table 1.3). 

 

Entry Product ee [%] Yield [%] dr 

1  

86 

41 7:1 

 

89 

2 
 

95 

75 2.5:1 

 

20 
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Table 1.3 Proline-catalysed α-hydroxymethylation of ketones. 

Entry R,R' Yield [%] ee [%] 

1 

 

45 >99 

2 

 

40 95 

 

The (S)-proline–catalysed aldol reaction between a variety of aldehydes 4 and 

dioxanones (eqn. 1.3) was applied by Enders et al. to 2,2-dimethyl-1,3-dioxan-5-one 

in the presence of the catalyst in DMF at 2 
o
C.

[13] 
Similar results were observed in the 

previous reported work of Córdova. In particular, when α-branched aldehydes were 

used the aldol product 8 was obtained in excellent yields and diastereoselectivities 

(entries 1-2, Table 1.4). This contrasted with α-unsubstituted and aromatic aldehydes 

which showed lower yields (entries 3-6, Table 1.4). 

 

 

Table 1.4 Proline-catalysed aldol reaction of dioxanone analogue. 

Entry R Yield [%] ee [%] anti/syn [%] 

1 
 

97 94 >98:2 

2 
 

86 90 >98:2 

3 
 

57 76 1.5:1 
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4 

 

73 86 4:1 

5 
 

61 25 4:1 

6 
 

40 >96 >98:2 

7 

 

76 >98 >98:2 

8 

 

80 >96 
>98:2 

 

 

It is noteworthy to mention that highly regio- and diastereo-selective aldol 

reactions between hydroxyacetone and aldehydes 4 are possible when using  

(S)-proline as the catalyst (Table 1.5).
[14]

 The desired anti-1,2-diols 9 had been 

obtained in moderate yields, although with excellent enantioselectivities in the 

presence of 30 mol% of the catalyst in DMSO at room temperature. In contrast to the 

impressive enantioselectivities observed, the diastereomeric ratio when  

2-chlorobenzaldehyde, α-unsubstituted aldehyde and α-oxygenated  

D-isopropylidene-glyceraldehyde were used was low (entries 4-6, Table 1.5). 

 

 

Table 1.5 Proline-catalysed asymmetric aldol reaction between hydroxyacetone and several 

aldehydes.  

Entry R Yield [%] ee [%] dr 

1 
 

60 >99 >20:1 

2 
 

62 >99 >20:1 
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3 

 

51 >95 >20:1 

4 

 

95 67 1.5:1 

5 
 

38 >97 1.7:1 

6 

 

40 >97 2:1 

 

The first direct proline-catalysed aldol reaction of aldehydes with activated 

carbonyl compounds was reported by Jørgensen et al. in 2002.
[15] 

A catalyst loading, 

solvent and temperature screen was investigated with proline and optimum results 

were observed in dichloromethane at -20 
o
C, where excellent yield (94%) and 

enantioselectivity (93%) were obtained. The reaction between a range of aldehydes 4 

and diethyl 2-oxomalonate was then explored (eqn. 1.5). Excellent yields and 

enantioselectivities were observed for all aliphatic aldehydes, although the use of 

phenylethanol provided the aldol product in 97% yield as a racemic mixture. 

 

 

 

Table 1.6 Proline-catalysed asymmetric aldol reaction between diethyl 2-oxomalonate and 

several aldehydes.  

Entry R T [
o
C] t [h]  Yield [%] ee [%]   

1  -20 4 94 93 

2  25 3 90 90 

3  25 1.25 91 85 

4 
 

25 2 88 85 

5  25 3 94 88 

6  25 1.5 91 84 
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7 
 

25 1 97 0 

 

1.1.3 Proline catalysed intramolecular aldol reactions 

 

The rediscovery of the proline-catalysed strategy has initiated an exponential growth 

of research for both the inter- and intra-molecular aldol reaction. In 2003 List et al. 

developed a new method for the organocatalytic synthesis of trans-1,2-disubstituted 

cyclohexanones 12 through an enol exo aldolization (eqn. 1.6).
[16]

 The reaction scope 

was evaluated by treating several pentane-1,5-dialdehydes 11 with (R)- and   

(S)-proline using dichloromethane as solvent. The absence or presence of the two 

substituents in the 4-position of the starting aldehyde gave the desired products in 

moderate to good yields but in excellent enantioselectivities and 

diastereoselectivities (entries 1-3, Table 1.7). It is worth mentioning that the presence 

of a single substituent led to the formation of all four possible diastereomeric aldols, 

indicating the undesired effect on the stereoselectivity of the cycloaldolisation  

(entry 4, Table 1.7). 

 

 

 

Table 1.7 Intramolecular aldolisation of dicarbonyl compounds catalysed by proline. 

Entry R1 R2 R3 Yield [%] ee [%] dr [%]  

1 H H H 95 99 10:1 

2 H H Me 74 98 >20:1 

3 Me Me H 75 97 >20:1 

4 Me H H 76 75,89,95,8 22:5:5.1 
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In 2006 Enders et al. established elegant approaches for the synthesis of cis-

substituted dihydrobenzofuranols 14 via intramolecular aldol reactions (eqn. 1.7).
[17]

 

Their initial studies were focused on the intramolecular reaction of aldehyde ketone 

13. Under the optimised conditions a variety of aldehyde ketones 13 were 

transformed into the desired 3-hydroxy-2,3-dihydrobenzofurans 14. The bulkiness of 

the R2 substituent played an important role in the stereoselectivity of the final 

product.  In contrast, the R1 aryl substituent had no effect (Table 1.8). 

 

 

 

Table 1.7 Intramolecular proline-catalysed aldolisation of dihydrobenzofuranols. 

Entry R1 R2 Yield [%] de [%] ee [%] 

1 H Me 91 94 94/76 

2 H Et 74 88 88/77 

3 2-Me Me 89 97 97/86 

4 2,3-OMe Me 87 71 71/87 

5 2,3-OMe Me 85 73 73/87 

 

1.1.4 Mechanism of the proline-catalysed intermolecular aldol reaction 

 

The details of the mechanism of the proline-catalysed aldol reaction are generally the 

subject of much debate and discussion. However, it is likely that proline acts the 

same way as enzymes do in the aldolase type I reaction mechanism, without the 

presence of a metal cofactor. Early work by Houk et al. developed elegant 

approaches understanding the catalytic acid-catalysed enamine mechanism, using 

quantum mechanical calculations.
[9]

 As a result, the proton transfer from the proline 

carboxylic acid moiety and the nucleophilic addition of the neutral enamine to the 

carbonyl group is simultaneous. These results are consistent with the kinetic, 
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stereochemical and dilution experiments by List et al., who reinforced the proposal 

of a one proline mechanism
[18]

 since non-linear effects do not exist, this contrasts 

with Agamis proposal of a second proline molecule participating.
[8] 

The general catalytic cycle of proline mediated aldol reactions initiates with the 

secondary amine moiety acting as a nucleophilic enamine catalyst in order to form a 

positive iminium ion.
[1b,2c,19]

 As a result, the acidity of the adjacent α-proton 

increases leading to the formation of the enamine. Recent experimental studies 

showed that the enamine is formed through an oxazolidinone intermediate.
[20]

 

Moreover, the enamine will attack the carbonyl group of the acceptor with the high 

enantiofacial selectivity due to the carboxylic acid acting as a Brønsted catalyst. 

Finally, hydrolysis of the iminium ion affords the aldol product and regeneration of 

proline. 

 

 

Scheme 1.2 Enamine mechanism for the proline-catalysed intermolecular aldol reaction. 
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1.2 Proline Derivatives as Catalysts in the Aldol Reaction 

 

The interesting enantioselective transformations of the proline-catalysed aldol 

reaction which was rediscovered by Barbas and List
[6]

 has emerged as a simple, yet 

powerful method for the synthesis of aldol products. Unfortunately, the excess 

nucleophile and high catalyst loading required in most cases led to the synthesis of 

proline derivatives. The majority of proline derivatives are increasingly attracting 

interest as asymmetric catalysts due to unquestionable advantages over other 

organocatalysts used to generate a wide range of products: all are obtained in high 

enantiomeric excess. In this respect, a series of proline derivatives such as 

prolinamides, bisprolinamides, prolinethiamides and proline sulphonamides have 

been synthesised in order to potentially overcome some of the inherent issues in 

asymmetric organocatalysis.
[1-2]

 Due to the large number of reviews providing an 

overview on both the synthesis and application of proline derivatives, the aim of the 

following part is to present two distinct examples that found application in the 

synthesis of complex molecules.  

 In 2004, Yamamoto et al., taking into consideration the similar pKa value of 

tetrazole and carboxylic acids in water, provided the first indication that tetrazole 

proline derivative 15 can act as a catalyst.
[21]

 Proline triazole 15 was first screened 

for its ability to catalyse the asymmetric aldol reaction between cyclic ketones and 

chloral in MeCN (eqn. 1.8). Initially they observed that when the amount of water 

added was increased to 500 mol% from 100 mol%, the enantioselectivity of the 

reaction could be increased from 84% to 94%. Further studies on the same reaction 

using a variety of ketones showed that aromatic and methyl ketones exhibit high 

enantioselectvities with moderate yields.  
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Shortly after, Arvidsson et al. investigated a variety of solvents and found 

pronounced effects on both the yield and enantiomeric excess, compared with the 

proline-catalysed reaction.
[22]

 Even in the presence of 10% water the yield and 

enantioselectivity had no effect, which contrast with proline-catalysed asymmetric 

aldol reactions. To test the substrate generality of this catalyst, the reaction of 

various aldehydes 4 and acetone was studied in DMSO at room temperature  

(eqn. 1.9). Aromatic aldehydes led to slightly better yields compared with aliphatic 

ones (Table 1.8). The reaction between pyruvic aldehyde dimethyl acetal and a series 

of aldehydes 4 in the presence of catalyst 15 was examined recently by Enders et al. 

(eqn. 1.10).
[22]

 It was observed that even though the yields were moderate, the 

diastereomeric excess of the desired aldol product was excellent (Table 1.9). 

 

 

 
Table 1.8 Direct asymmetric aldol reaction catalysed by tetrazole proline analogue 15. 

Entry  Aldehyde Yield [%] ee [%] 

1 

 

82 79 

2 

 

65 62 

3 

 

69 99 

4 

 

79 99 
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Table 1.9 Direct asymmetric aldol reaction catalysed by tetrazole proline analogue 15. 

Entry  R Yield [%] ee [%] de [%] 

1 

 

38 >99 91 

2 
 

 

31 >99 90 

3 

 

35 >99 92 

 

 In 2006 Ward et al. extended the scope of catalyst 15 for the synthesis of 

serricornin, a sex pheromone produced by the female cigarette beetle.
[24]

 This was 

achieved in seven steps, whereby reacting ketone 19 with the readily available 

aldehyde 20 in the presence of 0.2 equivalents of catalyst 15. This afforded the aldol 

product 21 in good yield and excellent enantiomeric excess (eqn. 1.11). Through the 

above mentioned example it is clear that organocatalysed asymmetric 

transformations are able to grant access to natural products in high asymmetric 

induction, whilst also reducing also the total amount of synthetic steps needed.  

  

 

Efforts to further explore the catalytic activity of proline derivatives led to the 

synthesis and screening of a variety of proline derived diamines.
[25]

 Secondary 

prolinamine 22 exhibited superior reactivity in the “benchmark” aldol reaction in the 

presence of TfOH, proving the influence of the acid to both selectivity and reactivity 

of the reaction.
[26]

 In the same report, the initial test of the specific catalyst was 
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focused on the reaction of p-nitrobenzaldehyde and different ketones 23  

(eqn. 1.12). Remarkably, when cyclohexanone and cyclopentanone were used, the 

yields ranged from 88 to 97%, but the enantioselectivity was moderate.  

 

 

In 2004, Barbas et al. reported their first investigations with organocatalyst 

22 in the direct aldol reaction between p-nitrobenzaldehyde and a variety of aryl 

aldehydes 25 (eqn. 1.13).
[27]

 Notably, the enantioselectivity of the aldol product was 

significantly improved using TFA. In contrast with other proline derivatives, high 

yields and enantioselectivities were observed in most of the reactions even when 

deactivated aldehydes were used. 

 

 

 

Table 1.10 Asymmetric aldol reaction catalysed by secondary prolinamine 22. 

Entry R Yield [%] anti:syn [%] ee of anti [%] ee of syn [%] 

1  96 62:38 91 75 

2  92 66:34 89 66 

3 
 

96 65:35 89 52 

4 

 

97 84:16 95 74 
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5 

 

91 85:15 96 68 

6 
 

91 77:23 90 53 

 

Recently, the synthetic utility of the specific catalyst was illustrated by the 

synthesis of bicyclo[4.3.0]nonene derivatives with the creation of a quaternary 

carbon centre in an intramolecular aldol reaction of a tricarbonyl compound  

(eqn. 1.14).
[28]

 After screening the catalyst using a model tricarbonyl compound in 

different reaction conditions Hayashi et al. were able to determine the best ones and 

use them in order to synthesise the desired bucyclonone derivative 27. 

 

 

 

1.3 Aminoboronic Acids as Catalysts 

 

Even though extended research has been appended to the amine function of proline-

based catalysts, a Lewis acidic group has never been added. Taking into 

consideration that boronic acids are one of the most successful Lewis acidic catalysts 

studied to date,
[29]

 then aminoboronic acids were proposed to act as organocatalysts. 

The catalytic reactivity of the specific bifunctional catalyst is based on the 

cooperative relationship between the Lewis acidic boronic acid and the nucleophilic 

amine moiety. Although there are a number of useful general approaches to the 

synthesis of aminoboronic acids, their catalytic applications are relatively 

undeveloped.
[3]

 The focus of the following section will be on the application of these 

novel catalysts in order to show reactivities and selectivities that go beyond those of 

proline and its derivatives and the potential of developing an excellent catalyst. 
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1.3.1 Chloroalcohol hydrolysis and alcoholysis 

 

Letsinger et al. elegantly initiated the use of aminoboronic acids in catalytic (and 

stoichiometric) reactions of simple chloroalcohol substrates.
[30]

 Preliminary studies 

using 8-quinolineboronic acid 28 as catalyst in a range of reactions with a variety of 

chlorohydrins in DMF solution were examined, where by the rate of formation of 

chloride ion indicated the rate of the reaction. In the presence or absence of 

quinoline, or a mixture of quinoline and benzeneboronic acid, the reactions of all the 

chloroalcohols used were slow. In contrast, in the presence of 8-quinolineboronic 

acid 28 the rate of liberation of chloride ion was increased. For example, in 

chloroethanol the rate rose by a factor of 60 (entry 1 versus 4, Table 1.11). The 

mechanism of the reaction was not initially investigated, however, the formation of 

hydrogen chloride indicated the initial esterification or complexation of the 

chloroalcohol to boron, with the bifunctional participation of the basic nitrogen 

assisting chloride displacement. 

Table 1.11 Hydrolysis of chloroalcohols using different boronic acid catalysts. 

 

Entry 
 

Additive Conversion [%] 

1 n = 1 - 4.0 

2 n = 1 C9H7N
[a] 

4.3 

3 n = 1 C9H7N
[a]

, C6H7O2B
[b] 

3.4 

4 n = 1 QBA
[c] 

44.3 

5 n = 2 - 2.9 

6 n = 2 C9H7N 3.6 

7 n = 2 QBA 44.5 

8 n = 4 - 3.6 

9 n = 4 C9H7N 2.2 

10 n = 4 QBA, n-BuOH 3.5 

[a]
Quinoline; 

[b]
Benzeneboronic acid; 

[c]
8-Quinolineboronic acid 28. 
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Further results from the same group suggested that rather than the nitrogen 

atom of the bifunctional catalyst being alkylated, it could be protonated.
[31] 

As a 

consequence, the same methodology was applied using a stronger base than the 

catalyst (e.g. collidine) in order to ensure the catalyst nitrogen remained 

unprotonated. This resulted in the rates of the reactions being increased, 

demonstrating the ability of collidine to aid catalyst turnover (eqn. 1.15). Moreover, 

glycols, collidine hydrochloride and the recovered catalyst were the major products 

isolated from the reaction. The importance of water was also investigated, with the 

same reactions being carried out with varying water varied content, showing that its 

presence was important at lower concentrations. 

 

  

 These studies indicated that 8-quinolineboronic acid 28 was esterified by the 

chloroalcohols. This was followed by displacement of chloride and the protonation 

of the quinoline nitrogen. Importantly, the glycol was formed and the aminoboronic 

catalyst was regenerated by boron ester hydrolysis (Scheme 1.3). 

 

  

 

Scheme 1.3 Proposed mechanism for the formation of glycols involving the QBA catalyst. 

  

 Further mechanistic studies on the above reaction focussed on the important 

carbon-halogen bond breaking step.
[32] 

Initially, Letsinger et al. proposed two 
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mechanistic routes: the first involved the displacement of halogen by nitrogen; the 

second by oxygen. Investigation of the potential for retention or inversion of 

configuration that could take place in the reactions shown in Scheme 1.4 was 

examined. As a result, using 8-quinolineboronic acid 28 was reacted with two pairs 

of isomers: trans-2-chloro-1-indanol 29 and cis-2-chloro-1-indanol 30, and erythro-

2-chloro-1,2-diphenylethanol 31 and threo-2-chloro-1,2-diphenylethanol 32 (Scheme 

1.4).  

 

 

Scheme 1.4 Proposed intermediates in the 8-quinolineboronic acid 28 catalysed reactions of 

chloroethanol. 

  

 The reaction involving trans-2-chloro-1-indanol 29 provided an 82% yield of 

cis-1,2-indandiol 33, whereas cis-2-chloro-1-indanol 30 did not react. Furthermore, 

in the hydrolysis of the second pair or isomers 31 and 32, dl-hydrobenzoin 34 was 

obtained in 74% yield from the erythro-isomer reaction (run for 50 h), whereas from 

the threo-isomer, the meso-hydrobenzoin 35 was detected after 240 h, although in 

low yield. The observation that the displacement in the stereoselective hydrolysis 

occurred with inversion of configuration led to the conclusion that the halogen was 

displaced by the oxygen. Unfortunately, the exact intermediate in which the oxygen 

was activated was not determined, however, some possibilities were proposed, 

including 36 (N.B. this is shown as a hydroxide-‘ate’-complex rather than as a water 

complex being deprotonated by the quinoline nitrogen as originally reported) and 37 

(Scheme 1.5).
[47] 
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Scheme 1.5 Proposed intermediates in the 8-quinolineboronic acid 28 catalysed reactions of 

chloroethanol. 

 

 The bifunctional nature of another two aminoboronic acids containing an 

imidazole ring was exploited by the same group, by developing alcoholysis of 

chloroethanol using 1-butanol.
[33a] 

Thus, 2-(2-boronophenyl)-benzimidazole 38 and 

2-(2-boronobenzyl)-benzimidazole 39 were used with different bases to catalyse this 

reaction, providing the rapid formation of 2-butoxyethanol as the major product with 

catalyst recovery. The main reason for the reactivity of catalysts 38 and 39 was 

proposed to be the same as that for 8-quinolineboronic acid 28, i.e. that the boronic 

acid undegoes reversible esterification, resulting in increasing nucleophilicity of the 

oxygen due to the nitrogen proximity in an analogous manner to that outlined in 

Scheme 1.5. However, given the observed formation of 2-butoxyethanol with these 

catalysts, one might reconsider Letsinger’s original mechanistic proposals by 

discounting 37, updating the process depicted by 36 and propose that species such as 

40 are likely to be involved (Scheme 1.6). 

 

 

 

Scheme 1.6 Proposed intermediate 40 involved using the benzimidazole catalysts 38 and 39 

with chloroethanol. 
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1.3.2 Direct Amide formation catalysed by bifunctional aminoboronic acids 

 

Over the last few years, the direct formation of amides from carboxylic acids 

and amines involving aminoboronic acid catalysts has been demonstrated. Initially, 

Whiting et al. reported the first comparative kinetic studies of the uncatalysed 

(thermal), boric acid, boronic acids 44 and 45 and amino-boronic 46 catalysed 

reactions in refluxing toluene, and later at a lower temperature in refluxing 

fluorobenzene.
[34] 

In this solvent, it was shown that proto-deboronation of 

arylboronic acids did not take place and that catalytic effects assisted the reactions 

considerably above background uncatalysed reactions. One of the most attractive 

features of this study was the demonstrated utility of the bifunctional catalyst 46a for 

less reactive substrate combinations, such as aryl carboxylic acids and less electron 

rich amines. Moreover, applying soft ionization electrospray mass spectrometric 

techniques provided information on the possible acylating species involved in the 

amidation reaction. Knowing that the carboxylate activation, and not the amine 

acylation, was the rate-determining step, the formation of either a 

monoacyloxyboronic acid or a diacyloxyboronate were thought to be the most likely 

species involved in the acylation. The latter would be more reactive, and hence, 

proposed to be the most likely species involved in amide formation (Table 1.12).  
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Table 1.12 Rate constants for the direct amide formation. 

Entry 41 42 43 Solvent Catalyst k 

1 a a a toluene - (2.91 ± 0.20)×10
-5

 s
-1 

2 b a c toluene - 
(2.20 ± 0.04)×10

-7
 

moldm
-3

s
-1 

3 a a a toluene 46a (4.49 ± 0.35)×10
-5

 s
-1 

4 b a c toluene Boric acid 
(2.16 ± 0.03)×10

-5
 

moldm
-3

s
-1 

5 b a c fluorobenzene 46a (1.24 ± 0.11)×10
-5

 s
-1 

6 b b d fluorobenzene 46a 
(8.26 ± 0.15)×10

-7
 

moldm
-3

s
-1 

7 a a a fluorobenzene 46a (7.90 ± 0.48)×10
-5

 s
-1 

8 a b b fluorobenzene 46a (3.97 ± 0.31)×10
-5

 s
-1 

9 a a a fluorobenzene - (1.04 ± 0.05)×10
-5

 s
-1 

10 b a c fluorobenzene - 0 moldm
-3

s
-1 

11 a a a fluorobenzene 62 (2.47 ± 0.08)×10
-4

 s
-1 

12 b a c fluorobenzene 46b 
(7.83 ± 0.17)×10

-7
 

moldm
-3

s
-1 

13 a b b fluorobenzene 46a (3.97 ± 0.31)×10
-5

 s
-1 

14 b a c fluorobenzene Boric acid 
(5.95 ± 0.07)×10

-7
 

moldm
-3

s
-1 

15 b a c toluene 45 
(3.02 ± 0.05)×10

-7
 

moldm
-3

s
-1 

16 a b a toluene 45 (5.60 ± 0.31)×10
-5

 s
-1 
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17 a a a fluorobenzene 45 (2.47 ± 0.08)×10
-5

 s
-1 

18 b a c fluorobenzene 45 
(8.92 ± 0.11)×10

-7
 

moldm
-3

s
-1 

 

 In  addition, it was proposed that a combination of a more basic and hindered 

bifunctional system such as 46a, together with an electron withdrawing group to 

further activate the boronic acid, resulted in a more useful bifunctional catalyst. 

Consequently, the catalytic activity of the ortho-N,N-di-

isopropylbenzylaminoboronic acid derivatives 49 and 50 was examined (eqn. 

1.17).
[35] 

The use of an electron donating group such as methoxy 49b decreased the 

reactivity of the catalyst compared with 46a. In contrast, the addition of a para-

trifluoromethyl group 50 increased the rate of direct amide formation, especially 

under the lower temperature fluorobenzene conditions.  

 

 

 

 Taking into consideration that catalyst loading, concentration and time were the 

important optimisation factors from DoE studies, the reaction was extended to the 

use of phenyl-substituted carboxylic acids and various amines using catalyst 46a 

(eqn. 1.17).
 
The reaction was found to be effective for the formation of amides from 

more reactive substrates when fluorobenzene was used (entries 1, 3 and 4, Table 

1.13). In contrast, toluene was necessary for less reactive substrates (entries 2, 4 and 
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9, Table 1.13). One of the most important aspects of these direct amide formation 

reactions is the ability to recover the solvent and molecular sieves used, hence, the 

only by-product is water which makes this type of process potentially the most clean 

and green approach to amide formation. 

 

Table 1.13 Direct amide formation using catalyst 46a. 

Entry Solvent 46a [mol%] t [h] Product Yield [%] 

1 PhF 0 

10 

24 

  

16 

68 

2 Toluene 0 

1 

22 

 

0 

46 

3 PhF 0 

10 

24 

 

4 

67 

4 PhF 0 

10 

48 

 

0 

55 

5 Toluene 5 

10 

24 

 

71 

75 

6 PhF 0 

10 

24 

 

0 

11 

7 Toluene 0 

5 

10 

24 

24 

30 

 

0 

16 

21 

8 PhF 0 

10 

24 

 

0 

15 
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9 Toluene 0 

5 

10 

30 

 

7 

42 

59 

 

 The use of bifunctional aminoboronic acids for direct amide formation was 

extended by the first report of an enantioselective synthesis of amides 52 using a 

planar chiral ferrocene-derived catalyst 53 to achieve kinetic resolution (eqn. 

1.18).
[36] 

Catalyst 53 provided the amide 52a in 41% ee (entry 2, Table 1.14) using 

benzoic acid 41b. However, when the more reactive carboxylic acid 41a was used 

the asymmetric induction was reduced (entries 4-12, Table 1.14). In addition, proto-

deboronation of the catalyst 53 led to competitive side-reactions from boric acid. 

Proto-deboronation was reduced when a lower boiling point solvent was used 

(entries 13 and 14, Table 1.14). It was proposed that the nitrogen-boron distance had 

a major impact on the enantioselectivity of the final product, since the reaction may 

involve the benzimidazole function hydrogen-bonding the incoming ammonium salt 

to react with a diacylboronate intermediate.
[34] 

Hence, kinetic resolution might occur 

at the ammonium group hydrogen-bonding stage. 
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Table 1.14 Direct amide formation as outlined in Equation 1.18. 

Entry Catalyst Solvent 41 51 (equiv.) 52 Conversion [%] ee [%] 

1 - PhF b a (1) a 0 n/a 

2 53 PhF b a (1) a 21 41 (S) 

3 53 PhF b a (2) a 13 18 (S) 

4 - PhF a a (1) b 11 n/a 

5 53 PhF a a (1) b 34 29 (S) 

6 53 PhF a a (2) b 67 15 (S) 

7 - PhF a b (1) c 13 n/a 

8 53 PhF a b (1) c 85 9 (S) 

9 53 PhF a b (2) c 64 6 (S) 

10 - PhF a c (1) d 12 n/a 

11 53 PhF a c (1) d 65 7 (S) 

12 53 PhF a c (2) d 63 8 (S) 

13 - iPr2O a a (1) b <1 n/a 

14 53 iPr2O a a (1) b 21 16 (S) 

 

 

1.3.3 Aminoboronic acid-catalysed aldol reaction 

 

Recently, in an attempt to show for the first time that boron enolates could be 

generated catalytically in situ from ketone compounds, it has been shown that the 

‘ate’-complex of benzimidazolphenylboronic acid 57 could catalyse direct aldol 

reactions in water (eqn. 1.19).
[37]

 Initially, hydroxyacetone was reacted with various 

aldehydes 4 providing the aldol adducts 55 (entries 1-6, Table 1.15) with high syn-

selectivity. In contrast, the reaction of acetone with the aldehydes 4 formed primarily 
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condensation products 56, whereas with some aldehydes a complex mixture was 

observed (entries 7-10, Table 1.15). The reactivity and stereoselectivity of the ‘ate’-

catalyst 57 was proposed to be dependent upon intramolecular cooperation between 

the benzimidazole and boronate groups,
[37]

 i.e. the formation of the boron enolate 

‘ate’-complex occured due to the intramolecular nitrogen increasing the effective 

basicity of a boronate-hydroxy group. The resulting boron-bound enolate was then 

proposed to be strategic for the syn-selectivity observed in the aldol addition of 

hydroxyacetone. Furthermore, in the aldol addition of acetone, an analogous 

mechanism was proposed following deprotonation of the ketone, and elimination 

occurs due to the higher reactivity of the boronate-bound intermediate aldol adduct. 

 

 

 

Table 1.15 Product ratios and yields of the aldol reaction outlined in Equation 1.19. 

Entry 4 54 t [h] Conversion [%] 
Yield 55 [%] 

(syn:anti) 
Yield 56 [%] 

1 a a 7 >99 97(2.75:1) 0 

2 
b a 7 >99 76(5.5:1) 0 
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 The novel report of the in situ formation of boron enolates in water was 

followed for the first demonstration of the utility and catalytic compatibility of an 

enamine and intramolecular boronic acid. Hence, an asymmetric aldol reaction of 

acetone with para-nitrobenzaldehyde was developed (eqn. 1.20), catalysed by 

homoboroproline 60 and its ester derivatives, producing mainly the β-

hydroxycarbonyl compound (aldol adducts) with moderate to high 

enantioselectivity.
[38]

  

 

 

  

 Catalyst 60 was difficult to prepare as a neutral compound, and was therefore 

produced in situ by neutralisation of its HX salts using either Et3N or iPr2NEt 

(entries 1-8, Table 1.6). The neutral homoboroproline 60 provided the aldol adduct 

3 c a 9 ca. 70 46(2.2:1) 0 

4 d a 7 >99 64(1.3:1) 0 

5 e a 7 >99 68(2:1) 0 

6 f a 7 >99 62(1:0) 0 

7 a b 7 >99 19 77 

8 b b 7 >99 0 64 

9 c b 9 >93 10 81 

10 d b 7 >85 10 75 
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58 as the major enantiomer in up to 43% ee, whereas its shorter homologue 

boroproline 61 was a sluggish catalyst and provided no asymmetric induction. The 

contrast between boroproline 61 and homoboroproline 60 supported the idea that 

catalyst 60 worked by in situ formation, followed by aldehyde activation by the 

boronic acid function, as outlined in Scheme 1.7 (R´ = H).  

 

 

Scheme 1.7 Proposed enamine transition state involving catalyst 60 and its ester derivatives 

as an aldol catalyst. 

 

 This analysis was further supported by in situ esterification of the boronic acid 

function of 60 with chiral and achiral diols (entries 9-13, Table 1.6) which allowed 

probing of the proposed transition state 62. Tartrate esters increased boronate Lewis 

acidity, tightening the transition state 62 and increasing the asymmetric induction to 

90% (from a 96% ee catalyst) independently of the absolute stereochemistry or 

sterics or stereochemistry of the tartrate (entries 9-11, Table 1.6). Catechol could 

also be used to increase the effective Lewis acidity of catalyst 60, however, its 

additional hydrolytic susceptibility led to compromised results, i.e. 80% ee (entry 12, 

Table 1.6). In addition, the importance of drying the reaction mixture to favour 

boronate ester formation was demonstrated by entry 13, where the ee dropped from 

90% to 82% in the absence of molecular sieves due to competition between the 

boronic acid 60 versus its corresponding tartrate ester mediating the reaction. 

However, although the ee was increased by drying of the reaction mixture, the rate of 

reaction dropped, showing the importance of catalyst turnover due to iminium ion 

hydrolysis and hence, catalyst regeneration. 
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Table 1.6 Yields of the aldol reaction outlined in Equation 1.20. 

Entry Conditions 
Additive

(s) 
t 

[h] 
Conversion 

[%] 
Yield 58 

[%] 
ee 

[%] 
Yield 59 

[%] 

1 
(S)-60.TFA 

Et3N 6 >99 92 40 7 

2 (S)-60.TFA iPr2NEt 6 92 71 43 21 

3 (S)-60.HCl Et3N 6 >99 90 38 10 

4 (S)-60.HCl iPr2NEt 6 95 92 40 3 

5 (S)-60.HBr Et3N 24 97 93 43 4 

6 (S)-60.HBr iPr2NEt 24 97 92 43 5 

7 (S)-60.HI Et3N 40 86 81 38 5 

8 (S)-60.HI iPr2NEt 24 63 61 37 2 

9 

(S)-60.HCl, 

(R,R)-diisopropyl 

tartrate 

Et3N,  

4Å M.S. 

20 65 58 90 7 

10 

(S)-60.HCl, 

(S,S)-diisopropyl 

tartrate 

Et3N,  

4Å M.S. 

20 76 63 90 13 

11 

(S)-60.HCl, 

(R,R)-diethyl 

tartrate 

Et3N,  

4Å M.S. 

20 87 78 90 9 

12 
(S)-60.HCl, 

catechol 

Et3N,  

4Å M.S. 

20 14 11 70 3 

13 

(S)-60.HCl, 

(R,R)-diisopropyl 

tartrate 

Et3N 20 98 94 82 4 
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1.4 Conclusions 

 

A central goal of many chemical companies, the pharmaceutical industries and 

academia is to produce compounds, with a reduction of waste products, non-toxic 

components and improved efficiency. This goal continues to grow in parallel to the 

demand of an economical mean to generate large amounts of enantioenriched 

compounds. Even though the first 30 years following the initial report of a proline-

catalysed reaction witnessed only scattered examples of organocatalytic reactions, an 

intense interest has been observed in the last decade. In its present form, the field of 

organocatalysis has provided a huge range of single-enantiomer building blocks, 

important for the synthesis of complex natural products. As a result, the initial aim of 

the current introduction was to highlight this discipline by demonstrating one of the 

most notable of these catalytic systems, iminium catalysis through proline and its 

derivatives. Close inspection of the different functions being appended to the 

secondary amine-containing proline-based catalysts revealed that the use of Lewis 

acidic groups acting cooperatively was not considered so far. This observation led to 

the synthesis of a privileged yet still under developed class of Lewis acidic 

organocatalysts; aminoboronic acids. The resulting systems and in particular 

homoboroproline 60 has shown catalytic activities beyond those of proline. With 

regard to the former, further studies on the synthesis, application and mode of action 

of proline-based aminoboronic acids were necessary in order to achieve a broadly 

applicable platform for asymmetric organocatalysis.    
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Chapter 2: Results and Discussion 
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2 Results and Discussion 

 

As already mentioned in the introduction, our approach towards the development of 

an asymmetric organocatalytic aldol reaction was based on iminium catalysis and 

Lewis acid activation through boronic acids. Previous work in our group had 

demonstrated that the salt of chiral aminoboronic acid 60 efficiently promoted 

asymmetric aldol reaction of p-nitrobenzaldehyde with acetone via iminium ion 

intermediate 62.
[38]

 In these transformations, improved enantioselectivity and 

reaction rate (58%, 90% ee) result from in situ formation of the boronate ester. It was 

reasoned that the enhanced reactivity and enantioselectivity was partly due to an 

increased boron Lewis acidity of the boronate ester, in comparison to the free 

boronic acid and partly due to a highly organised transition state 62. 

 

 

Scheme 2.1 Proposed enamine transition state involving catalyst 60 and its ester derivatives 

as an aldol catalyst. 

 

 These initial results and assumptions required further investigation in order to 

both optimise the organocatalysed aldol reaction conditions and furthermore, 

understand its mechanistic pathway. Therefore, the initial aim of this research project 

was to synthesise boron analogue of proline 60 and then examine in-depth the 

correlation between the nature of the diol used for the esterification and the influence 

of the resulting boronate ester towards the yield and asymmetric induction in the 

aldol reaction. Following the first tests for the catalytic efficiency, further reaction 

optimisation, for example temperature and solvent screening, would be performed. 

The above studies would determine the best reaction conditions in order to achieve 

high reaction rates, asymmetric induction and relative stereocontrol. Moreover, the 

catalytic activity of 60 was determined in a single aldehyde and ketone aldol 

reaction. As a consequence, further aldol reactions would be carried out between a 

variety of aldehydes and ketones in an attempt to analytically explore the catalytic 
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capability of 60 towards a range of substrates. In addition to the approaches which 

mainly focus on the synthesis and evaluation of catalyst 60, studies would need to 

include the understanding of its mode of action. Thus, taking into consideration the 

proposed transition state 62 and the assumption that the chiral centre on the 

pyrrolidine ring plays a crucial role in the enantiomeric excess of the resulting 

product, the next aim would be the synthesis and application of the opposite 

enantiomer of 60 (Scheme 2.1). On the other hand, the influence of the carbon length 

chain between the secondary amine moiety and the boronic acid would be examined 

in a hope to collect information regarding the mechanistic aspect of the proline-based 

boronic acid-catalysed aldol reaction.       

This chapter will review and describe the experimental work carried out in order 

to probe the scope and limitations of a series of proline-based aminoboronic acids. 

Furthermore, an evaluation and discussion of both the followed procedure and the 

obtained results will be mentioned. 

 

2.1 Importance of Bifunctionality – Synthesis of Benzeneboronate Esters 

 

During the initial studies regarding the homoboroproline-catalysed aldol reaction, it 

was proposed that catalyst 60 functions intramolecularly as a synergic system of two 

distinct functionalities (Scheme 2.1). Operating under this mechanistic hypothesis, a 

strategy for proving the necessity of the cooperative functional reactivity was 

required. Particularly, it was necessary to determine that for cooperative catalysis to 

take place, the secondary pyrrolidine-amine and the boronate moiety needed to be 

within the same molecule. As a result, we considered examining the aldol reaction 

between p-nitrobenzaldehyde and acetone in the presence of pyrrolidine and a 

boronate ester compound.  

Thus, these studies began by forming both the diisopropyl-D-tartrate 63 and 

(R,R)-hydrobenzoin 64 esters of benzeneboronic acid. The synthesis of 

benzeneboronate ester 63 was initially carried out by reacting benzeneboronic acid 

and diisopropyl-D-tartrate in the presence of molecular sieves in dry DCM. 

Unfortunately, the yield of the reaction was only 57%. Hence, the reaction was 

repeated in toluene using Dean-Stark conditions, affording the desired product after 
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recrystallisation in an improved yield of 81%.
[39]

 The same procedure using (R,R)-

hydrobenzoin as the diol was followed for the synthesis of boronate ester 64. 

Nevertheless the lower yield observed was due to difficulties during purification, 

since residual diol co-recrystallised with the product. After several recrystallisations 

64 was isolated in a pure form in 52% yield. In addition, leaving a small sample of 

64 in a hexane and EtOAc solution to evaporate slowly provided crystals suitable for 

single crystal X-ray analysis (see Appendix). 

 

 

Scheme 2.2 Phenylboronic acid esterification to give boronate esters 63 and 64.  

 

Having made boronate esters 63 and 64, it was now possible to probe the 

influence of bifunctionality in the aldol reaction. Thus, a screening study was 

performed in the reaction between p-nitrobenzaldehyde and acetone in the presence 

of 20 mol% of different species in order to determine their catalytic reactivity or 

otherwise. As already mentioned in the literature, pyrrolidine proved to be 

catalytically active
 
by itself, resulting in a racemic mixture of the desired aldol 

product.
[40]

 In this case, the secondary amine acts as a nucleophile affording an 

iminium ion species, which can easily react with the present aldehyde to furnish the 

aldol addition product. In contrast, benzeneboronic acid was found to be unreactive 

(entry 1 versus 2, Table 2.1). In addition, neither benzeneboronate ester 63 nor 64 led 

to any reaction conversion, demonstrating also their lack of catalytic activity. 

Notably, a substantially reduced reactivity compared to using pyrrolidine alone 

resulted, when the reaction was conducted in the presence of both pyrrolidine and 

benzeneboronate ester 63 (entry 5, Table 2.1). Moreover, the product mixture from 

the reaction displayed no enantiomeric excess. These observations clearly revealed 

the importance of the intramolecular mode of action between the pyrrolidine ring 

nitrogen and the boronate function of catalyst 60 since the reaction of 

homoboroproline tartrate ester of 60 (entry 6, Table 2.1) not only efficiently 
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catalyses the reaction, but also provided 90% asymmetric induction in the resulting 

product. 

 

Table 2.1 Catalysed aldol reaction of p-nitrobenzaldehyde and acetone. 

 [a]
Reaction time was 24 h. 

[b]
Isolated yield after SiO2 column chromatography.

 

 

2.2 Studies towards the Synthesis of the Homoboroproline Catalyst 

 

Having proved the importance of the intramolecular bifunctional nature of 

homoboroproline 60 and its esterified derivatives, investigations were directed back 

to the catalyst itself. Specifically, the next goal of the project, before being able to 

focus on optimisation of the enantioselective aldol reactions, was to synthesise 

catalyst 60 and access both enantiomeric forms.
[38]

 Our strategy for the synthesis of 

Entry Catalyst 
Conversion 

[%]
[a]

 
Yield of 58 

[%]
[b]

 
Yield of 59 

[%]
[b] 

1 Pyrrolidine >99 >99 <1 

2 PhB(OH)2 n.r. - - 

3 

 

n.r. - - 

4 

 

n.r. - - 

5 
Pyrrolidine + 63 

 
38 36 >2 

   6
[38] 

+ diisopropyl-D-tartrate 

65 58 (90% ee, S)
 

7 
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60 was based on the enantioselective formation of 2-substituted tert-butoxycarbonyl-

pyrrolidines through asymmetric deprotonation (Scheme 2.3). The access to optically 

active proline derivatives was initially reported by Beak et al.
[41]

 and valuably 

complemented by the work of O’Brien et al.
[42]

 In these transformations, s-BuLi and 

(-)-sparteine promoted the enantioselective lithiation of N-(tert-butoxycarbonyl)-

pyrrolidine, which was followed by the addition of a variety of electrophiles in order 

to afford 2-substituted analogues. It was believed that such a platform would provide 

the desired product 60 if a suitable chloromethylboronate ester was used as the 

electrophile. 

 

 

 
Scheme 2.3 Retrosynthetic route for the synthesis of pyrrolidine boronic acid-based catalyst 

60. 

 

 The synthesis of 60 commenced with a lithium-halogen exchange of 

bromochloromethane with triisopropylborate, which allowed the isolation of 

chloromethylboronic acid 67 (Scheme 2.4).
[43]

 The boronic acid 67 was subsequently 

transformed to the boronate ester 68 using pinacol, as shown in Scheme 2.4. 

Attempts to purify the pinacol boronate ester 68 using silica gel chromatography was 

not feasible since residual pinacol co-eluted with the product in any solvent 

combination. Instead, short-path fractional distillation in vacuo was carried out, 

providing pure chloromethylboronate ester 68 in good overall yield. In addition, the 

reaction was repeated treating bromochloromethane with trimethylborate instead of 

triisopropylborate, however, the yield of the isolated boronic acid was not improved.  

 

 

 

Scheme 2.4 Synthetic route towards the formation of chloromethylboronate ester 68.  
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The second step of the synthesis of 60 involved a simple protection of the 

nitrogen atom of pyrrolidine as a tert-butoxycarbonyl group (eqn. 2.2).
[44]

 The 

reaction was carried out in ethanol in the presence of imidazole using di-tert-butyl 

dicarbonate. The crude product was purified by in vacuo distillation over calcium 

hydride to give N-Boc-pyrrolidine 66 in high yield. 

 

 

 

On the basis of similar reported reactions, a (-)-sparteine-mediated lithiation 

of N-Boc-pyrrolidine 66 in the presence of chloromethylboronate ester 68 afforded 

the desired compound 65 in 62% yield after purification by silica gel 

chromatography (eqn. 2.3).
[42]

 The first key step for the successful conversion was 

the dropwise addition at low temperature of electrophile 68 to the intermediate 

boronate complex 69, which resulted from the asymmetric deprotonation of  

N-Boc-pyrrolidine 66 driven by the presence of (-)-sparteine (Scheme 2.5). This was 

followed by the addition of anhydrous ZnCl2 solution, promoting the rearrangement 

of the ‘ate’-complex 70 and providing the 2-substituted N-Boc-pyrrolidine 65 in 96% 

enantiomeric excess.
[38,45]

 This methodology was firstly indroduced by Matteson et 

al. in an attempt to form chiral α-chloroboronates through asymmetric homologation 

by using ZnCl2-promoted addition of dichloromethyllithium to boronates.
[45]

 It is 

believed that ZnCl2 acts as a Lewis acid inducing a facile boron-promoted 

displacement.  
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Scheme 2.5 (-)-Sparteine-mediated lithiation of N-Boc-pyrrolidine 66 using 

chloromethylboronate ester 68 as electrophile. 

 

In addition, in order to prove the origin of the chirality present in the resulted 

product of the homoboroproline-catalysed aldol reaction, an attempt to synthesise a 

racemic mixture of compound 68 was made. Initially, the same methodology used 

for the enantiopure derivative 68 was followed, replacing (-)-sparteine with TMEDA 

(eqn. 2.4).
[46]

 Unfortunately, no conversion was observed and both starting materials 

were recovered in almost 100%, even though early work by Whiting et al. developed 

approaches for the specific reaction.
[38,47]

  

 

 

 

In order to understand and overcome the problem, several attempts were 

made by changing the reaction conditions. Firstly we assumed that the boronate 

complex 73 had been formed but the amount of ZnCl2 was not sufficient to break 

down the ‘ate’-complex. As a result, the reaction was quenched with 3 equivalents of 

ZnCl2. Nonetheless, the product was still not formed and again N-Boc-pyrrolidine 

and chloromethylboronate 68 were recovered. Moreover, considering that the 

reaction of the electrophile with the TMEDA-coordinated lithium intermediate 72 

could be slow, the addition of 68 was carried out dropwise at -78 
o
C and then 

warmed to room temperature for 1 h before adding the ZnCl2. Once more, only the 



Results and Discussion 

40 

 

starting material 66 and 68 were isolated. In addition, the reaction was repeated 

using THF instead of Et2O as the solvent, but without any improvements. In a 

competition experiment study by O’Brien et al., evidence was provided that the 

diamine-mediated lithiation of N-Boc-pyrrolidine 66 using TMEDA is more reactive 

than (-)-sparteine.
[48]

 Hence, the lithium-mediated deprotonation should have been 

occurring but presumably, intermediate complex 72 was too hindered and stable due 

to the Li atom being fully coordinated both by the TMEDA ligand and the carbonyl 

oxygen as shown in Scheme 2.6. In addition, the bulkiness of the electrophile 68 

contributed to the lack of the ‘ate’-complex 73 to be formed. 

 

 

Scheme 2.6 TMEDA-mediated lithiation of N-Boc-pyrrolidine using chloromethylboronate 

etser 68 as electrophile. 

 

Having prepared enantiomerically enriched 65, the deprotection of this species to 

provide catalyst 60 was examined. The first deprotection methods examined were 

based on the desire to isolate catalyst 60 in its neutral form, if at all possible. 

Therefore, removal of the pinacol ester was attempted using sodium metaperiodate in 

an aqueous solution of NH4OAc in acetone (eqn. 2.5).
[49]

 Unfortunately, even when 

increasing the amount of the oxidizing agent to 10 equivalents, free pinacol was still 

present indicating that the diol was not oxidised to acetone. This made the 

purification of the desired boronic acid 74 from pinacol a hard task to achieve.  
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Furthermore, an alternative method for pinacol boronate ester 65 deprotection 

using a two step process that proceeds via formation of a potassium trifluoroboronate 

was examined (Scheme 2.7).
[50]

 The boronate ester 65 was dissolved in methanol and 

treated with saturated KHF2. After 2 h stirring at room temperature, a white 

precipitate was formed presumably being trifluoroborate 75. The solid was isolated, 

although it was not easy to characterise due to the fact that it was insoluble in 

chloroform and partially soluble in water and MeCN; a mixture of the two was used 

for NMR analysis. The peak at δB 0.21 in the 
11

B NMR spectrum indicated the 

trifluoroboronate 75 formation. However a peak at δF -159.3 in the 
19

F NMR 

spectrum showed that a large amount of the solid was excess KHF2. Attempts to 

purify and characterise the resulting product by recrystallisation proved to be 

difficult since the removal of the excess KHF2 proved to be impossible. 

 

 
 

Scheme 2.7 Deprotection of pinacol boronate ester 65 using KHF2. 
 

Since the attempts for selective deprotection of the pinacol boronate ester were 

unrewarding due to purification difficulties, a previous reported method was 

examined using aqueous solution of HCl as outlined in equation 2.6.
[38]

 Hence 

boronate ester 65 was reacted with 20 mol% of HCl under refluxing conditions. The 

resultant isolated brown oil, was azeotroped with toluene and water, resulting in the 

simultaneous deprotection of the pinacol boronate ester and the N-Boc group and 

affording the desired product 76 as a brown oil in 88% yield. 
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2.3 Lewis Acid Tuning and 
11

B NMR Analysis 

 

The remarkable efficiency with which the diisopropyl-D-tartrate boronate ester of 

homoboroproline 60, compared to the free boronic acid, catalyses the aldol reaction 

of p-nitrobenzaldehyde and acetone in high asymmetric induction (58% yield, 90% 

ee vs 90% yield, 38% ee) promoted us to investigate further the effect of the 

esterification diol.
[38]

 The main aim of this study was to reveal the dependence of 

both the stability of the boronate ester and the Lewis acidity of the resulting boron 

atom on the reactivity and enantioselectivity of the organocatalysed aldol reaction. 

As a result, examination of the relative stabilities and determination of the possible 

isolation of cyclohexyl- and cyclopentyl-boronate esters was initiated.
[51]

   

Firstly, a conventional strategy towards the synthesis of the boronate esters 

was investigated. The relevant boronic acid 77 or 81 were reacted in refluxing 

toluene using azeotropic water removal with diol 78. While this procedure afforded 

the desired boronate esters, the scope for characterisation was limited due to 

difficulties observed in the purification process. This was the result of some of the 

boronate esters being particularly sensitive to hydrolysis and hence impossible to 

purify by column chromatography. In order to circumvent the necessity of isolation, 

a new approach to prove the formation or otherwise of the boronate esters was 

needed. Particularly, boronic acids 77 and 81 were reacted with either diisopropyl-D-

tartrate 78a, (R,R)-hydrobenzoin 78b or catechol 78c under dehydrating conditions 

in refluxing CDCl3 in order to form the boronate esters in situ (Scheme 2.8 and 2.9). 

This was then followed by in situ filtration and 
11

B NMR analysis was carried out for 

each boronic acid and diol reaction combination.
[29,52]

 

 The above protocol was firstly applied to cyclohexylboronic acid 77, i.e. in 

an attempt to form the corresponding esters 79a, 79b, and 79c (Scheme 2.8). This 

resulted in the 
11

B NMR spectra which are shown in Figure 2.1. Surprisingly, when 

diisopropyl-D-tartrate 78a and (R,R)-hydrobenzoin 78b were reacted in order to 

generate boronate esters 79a and 79b, two 
11

B NMR peaks were observed in each 

case (δB 36 and 23, and 35 and 23 respectively). Nevertheless, on treatment with 

catechol 78c, a single peak was observed at δB 23. In accordance with previous 

reports in the literature regarding 
11

B NMR analysis, the recurrent signal in all three 
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cases was the peak at δB 23 which is diagnostic of boroxine formation, presumably 

with either water or the diol acting as a nucleophile to create a partial tetrahedral 

geometry.
[29,52-53]

 These results clearly indicated that catechol 78c does not result in 

esterification to the boronate ester 79c, instead it encourages boronic acid 

dehydration in order to form boroxine 80.
[54]

 In addition, use of diisopropyl-D-

tartrate 78a and (R,R)-hydrobenzoin 78b also resulted in the formation of boroxine 

80 although not exclusively. The boronate esters 79a and 79b were also observed 

presumably in equilibrium. This observation, in addition with the low intensity of the 

boronate ester peaks compared to the boroxine, revealed that boronate esters 79a and 

79b are relatively unstable though not to the same extent as the corresponding 

catechol boronate ester 79c. Hence, it can be proposed that with the 

cyclohexylboronic acid 77, there is a surprising level of instability for the 

corresponding tartrate 79a and hydrobenzoin 79b esters and that they exist in 

equilibrium with boroxine 80. On the other hand, catechol clearly causes complete 

dehydration; a process encouraged by the instability of boronate ester 79c. 

   

 

Scheme 2.8 In situ formation of cyclohexylboronate esters 79a, 79b and 79c. 
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Figure 2.1 
11

B NMR spectra of cyclohexylboronic acid 77 esterified with diisopropyl-D-

tartrate 78a, (R,R)-hydrobenzoin 78b or catechol 78c.  

   

Next, attention was turned to the esterification of cyclopentylboronic acid 81, 

using the same diols 78 as mentioned above (Scheme 2.9). The reason for repeating 

this study using boronic acid 81 was to examine whether there were any major 

effects arising as a result of ring size that affected boronic acid esterification and 

stability of the resulting boronate ester. Hence, esterification was carried out using 

the same azeotropic conditions as discussed above, and again, reaction process was 

monitored by 
11

B NMR.  

As can be seen in 
11

B NMR spectrum d (Figure 2.2), in the presence of 

catechol 78c, exclusive boroxine 83 formation still occurred, as evidenced by the 

major δB 23 signal. In contrast, minimal boroxine formation was observed when the 

two other diols 78a and 78b were used. In particular, the major peak at δB 34 in 

spectrum b in which diol 78a was used shows that the formation of the boronate 

ester 82a is favoured over boroxine 83 formation. However, around 20% boroxine 

 

  

 

 

 



Results and Discussion 

45 

 

was still present. These results also indicate that the cyclopentylboronate ester 82a is 

more stable than its cyclohexyl counterpart 79a, which showed a greater preference 

to form boroxine 80, i.e. in approximately 90% compared to boronate ester 79a. 

Similar observations were noted when (R,R)-hydrobenzoin 78b was used for the 

esterification of boronic acid 81. Indeed, boronate ester 82b appears to be even more 

stable than the corresponding ester 82a, since only a very minor boroxine peak at δB 

23 was observed in the 
11

B NMR spectrum. On the basis of the above observations, 

it can be proposed that cyclopentylboronate esters appear to be more stable than the 

six-ring analogues, and that hydrobenzoin boronate esters are more stable esters than 

the tartrate esters. If this speculation is generally correct, it can be proposed that 

increased asymmetric induction and improved catalytic activity performance over 

those reported previously might be obtained with the (R,R)-hydrobenzoin analogue 

of homoboroproline 60 as a catalyst in the aldol reactions, rather than the tartrate 

esters used to date. To address this hypothesis, further studies were aimed at 

examining the effect of the nature of the diol on the asymmetric aldol reaction. 

 

 

Scheme 2.9 In situ formation of cyclopentylboronate esters 82a, 82b and 82c. 
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Figure 2.2 
11

B NMR spectra of cyclopentylboronic acid 81 esterified with diisopropyl-D-

tartrate 78a, (R,R)-hydrobenzoin 78b or catechol 78c.  

 

Furthermore, it is also important to note that the relative peak intensities and 

chemical shifts of the different 
11

B NMR spectra signals in Figures 2.1 and 2.2 do 

not change when the 
11

B NMR spectra were repeated using longer reaction times, 

showing that the equilibrium had been reached. This is worthy of note as 

enantioselectivity in the homoboroproline 60 catalysed aldol reaction is significantly 

improved through boronate Lewis-acidity tuning. As a result, a boronate ester 

suitable for longer reaction times due to its stability should result in an increased 

asymmetric induction and a reliable, reproducible catalytic reaction. In addition, 

when some of the above mentioned 
11

B NMR spectra were repeated using an 

increasing relaxation time, identical spectra were obtained in every case, showing 

that the intensity of the signals is proportional to the concentration of the relevant 

species. Hence, integration of the two signals observed in the 
11

B NMR spectra could 

give an accurate ratio between the two species present, i.e. boronate ester to 

boroxine.    
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With the objective of understanding the mode of action of the 

homoboroproline catalysed aldol reaction, an attempt to synthesise and characterise 

the diisopropyl-D-tartrate boronate ester analogue of 60 was undertaken in situ. 

Hence, homoboroproline HCl salt 76 was dissolved in CD2Cl2, followed by the 

addition of diisopropyl-D-tartrate 78a and triethylamine. After refluxing the mixture 

for 2 h, Et3NHCl was removed by filtration upon cooling. Surprisingly, the 
11

B NMR 

spectrum of the resulting mixture showed a single peak at δB 10, with no sign of any 

boroxine species in δB 23 region. The observed shift revealed the possible formation 

of a dimer 84a, since it does not correspond to either the free boronic acid 60  

(~δB 30) or boroxine (~δB 23). This is in agreement with the absence of free diol in 

the 
1
H NMR spectrum, since the indicative shift of the α-H of diisopropyl-D-tartrate 

is shifted form a singlet at δH 4.48 to the region of δH 4.30, where the CH2N 

hydrogen of 84a appear too. These results strongly suggest that even though only the 

dimer 84a is observed in the absence of a substrate, it probably exists in equilibrium 

with its monomer form 84b in order for the aldol reaction to take place. In addition, 

the lack of any boroxine signal, strongly suggests that the presence of the anionic 

function in 76 serves to stabilise the tartrate ester formation compared to 

unsubstituted boronic acids. While it is not absolutely clear how this works, one 

might speculate that the tetrahedral ‘ate’-complex 84a is favoured substantially over 

the boroxine because of a possible B-N complexation.  

 

Scheme 2.10 In situ formation of the diisopropyl-D-tartrate etser of homoboroproline 76. 



Results and Discussion 

48 

 

  

Figure 2.3 
11

B NMR spectra: (a) pyrrolidine-based boronic acid 76; (b) condensation 

reaction of 76 with diisopropyl-D-tartrate 78a. 

 

2.4 Reaction Optimisation of the Homoboroproline-Catalysed Aldol Reaction 

 

Taking into consideration the results of the 
11

B NMR analysis and having identified 

the tartrate boronate ester 84b as an effective catalyst for the enantioselective aldol 

reaction, the catalytic activity of different boronate ester derivatives of catalyst 60 

was examined next. Hence, once the catalysts were prepared by reacting 

homoboroproline 74 with the relevant diol in the presence of molecular sieves at 

room temperature for 2 h, they were tested in the classic model aldol reaction 

between acetone and p-nitrobenzaldehyde, to examine their efficiency and 

asymmetric induction (eqn. 2.7).  

This preliminary work revealed that in the presence of 20 mol% of the 

diisopropyl boronate ester catalyst 84a in acetone, the aldol product 58 was afforded 

in 85% yield and 80% enantioselectivity (Table 2.2). To our surprise, the observed 

result was not in accordance with that previously reported by our group.
[38]

 Even 

though the asymmetric induction had decreased to 80% from a claimed 90%, the 

conversion had increased to 95%, compared to 65%. A closer study revealed that the 

only variation in reaction conditions between this work and that of Whiting et al.
[38]

 

was the use of different adsorption capability molecular sieves. Nevertheless, even 

when 4 Å molecular sieves were used instead of 3 Å, neither the enantioselectivity 

nor the conversion changed. Bearing in mind that the final step for the synthesis of 

homoboroproline 76 involves a water-toluene azeotropic procedure, perhaps residual 
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water could have resulted in a lower catalyst loading, and hence, lower conversion in 

the same reaction time period. However, replacement of the tartrate boronate ester 

84b with the hydrobenzoin catalyst 85 improved the ee to 90%, though the yield of 

the chalcone by-product 59 arising from dehydration of the aldol product 58 also 

increased (Table 2.2, entry 2) over the same reaction time period. Interestingly, use 

of catechol had a negative impact on both the reaction conversion and asymmetric 

induction (Table 2.2, entry 3). 

 

 

 

Table 2.2 Catalysed aldol reaction of p-nitrobenzaldehyde in neat acetone. 

[a]
Isolated yield after SiO2 column chromatography.

[b]
Determined by HPLC analysis. 

 

This observation is consistent with the results of the 
11

B NMR analysis, i.e. 

that the use of catechol 78c as a boronate tuning diol mostly result in boroxine 

formation which presumably explains the poor conversion and lower ee. Presumably, 

the boroxine is a sluggish catalyst, although it does result in relatively high ee, 

compared to the free boronic acid (70% ee vs 38% ee). On the other hand, one can 

claim that the asymmetric induction observed could be due to some extent to the 

catechol boronate ester formation. A clear answer as to whether the origin of the ee 

Entry Catalyst Yield of 58 [%]
[a]

 ee [%]
[b] 

Yield of 59 [%]
[a] 

1 
76 + Diisopropyl-D-

tartrate 78a 
85 80 10 

2 
76 + (R,R)-

Hydrobenzoin 78b 
63 90 20 

3 76 + Catechol 78c 11 70 3 
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in the aldol product arises from a catalytic species in the form of boroxine or 

boronate ester cannot be given in the case of catechol esterification. Hence, the use 

of hydrobenzoin as a boronate esterification diol, serves to form a more stable 

boronate ester with an increased Lewis acidity. Such stabilisation and activation has 

two consequences: firstly, the acceleration of the reaction rate; and secondly, 

improvement in the asymmetric induction of the desired aldol product 58. Hence, the 

increased yield of the aldol condensation product 59 observed may also be due to the 

increased reaction rate, which results in the consumption of the aldol product. On the 

other hand, in the case of catechol, boroxine and not the boronate ester is the major 

species formed and hence, a poor yield observed. 

 

 

Figure 2.4 Boronate ester 85, resulting from aminoboronic acid 76 and diol 78b. 

 

As indicated above, initial studies demonstrated the effect of the diol used for 

the boronate ester formation upon both the reactivity and enantioselectivity of the 

aldol reaction. Moreover, it was anticipated that by analysing a different reaction 

parameter, it would be possible to achieve the optimal reaction conditions. In 

particular, solvent screening was necessary since it was likely to significantly 

influence the yield and enantioselectivity of the organocatalysed reactions. To 

investigate this, the aldol reaction between acetone and p-nitrobenzaldehyde was 

performed in various solvents (eqn. 2.8). As revealed in Table 2.3, the highest 

enantioselectivities were obtained using either acetone or DMF as solvent for the 

catalysed aldol reaction. On the other hand, when THF or DMSO was used, a 

decrease was observed in both the yield and asymmetric induction. It is worth 

mentioning that in the case of DMF, homoboroproline salt 76 was fully soluble, in 

contrast with the use of acetone, DMSO and THF, where a homogeneous solution 

occured when the boronate ester starts to form after the addition of the diol. Hence, 

presumably the increased polarity of the solvent accelerates the formation of the 
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boronate ester, minimising the possibility of boroxine formation and enhancing the 

enantioselectivity. Nonetheless, in DMF, a greater aldol condensation product 59 

was observed, suggesting that the reaction in DMF is faster. Indeed, as seen in Table 

2.3 (entry 5), when the reaction was run only until complete consumption of the 

aldehyde, 100% conversion was achieved in only 6 h and there was only minor 

chalcone 59 formation, suggesting that chalcone formation tends to occur after the 

formation of aldol product 58. As a result, the yield of the aldol product 58 increased 

to 88% with an additional improvement of the ee at 95%.  

 

 

 

Table 2.3 Solvent screening of the catalytic reaction between p-nitrobenzaldehyde and 

acetone. 

 

[a]
Isolated yield after SiO2 column chromatography.

[b]
Determined by HPLC analysis. 

 

During the course of these mechanistic and optimisation studies, it was found 

that the use of DMF as the solvent enhanced the formation of the aldol product 58 

Entry Solvent Time [h] Yield of 2 [%]
[a]

 ee [%]
[b] 

Yield of 3 [%]
[a] 

1 Acetone 20 87 93 (S) 10 

2 THF 20 45 88 (S) 41 

3 DMF 20 54 93 (S) 34 

4 DMSO 20 74 81 (S) 18 

5 DMF 6 88 95 (S) 4 
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essentially in 99% asymmetric induction, considering that the enantiomeric excess of 

homoboroproline 76 used was 96%. Thus, the hydrobenzoin boronate ester 85 

proved to be a better catalyst than (S)-proline, regarding both the yield and 

enantioselectivity of the desired product.
[6]

 The (S)-proline catalysed reaction 

between p-nitrobenzaldehyde and acetone has been reported to provide the aldol 

product 58 in 68% yield and 76% ee in DMSO under optimised reaction conditions. 

It is notable that again, polar solvents are preferred with proline, as with our catalyst, 

and this clearly relates to the ease of formation of the relevant enamine/iminium 

species. The two proposed catalytic cycles are shown in Schemes 2.11 and 2.12 

respectively for comparison between the two systems. In addition, considerable 

excess of donor (enamine precursor) usually used in organocatalysed aldol reactions 

was significantly improved at 5 equivalents allowing us to consider that the 

optimised conditions could be beneficial when the amount of ketone needs to be at 

least stoichiometric. 

 

 

Scheme 2.11 Enamine mechanism for the proline-catalysed intermolecular aldol reaction.
[9] 
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Scheme 2.12 Proposed mechanism for the homoboroproline-catalysed aldol reaction. 

              

2.5 Studies towards the Asymmetric Synthesis of the opposite Enantiomer of 

the Homoboroproline Catalyst 

 

In the initial report on catalyst 60, it was reasoned that part of the increased reactivity 

was due to a highly organised transition state occurring from the additional single 

carbon length chain between the pyrrolidine moiety and the boronic acid.
[38]

 This 

results in catalytic activity which is superior to (S)-proline, and usefully readily 

provides access to the opposite enantiomer of the aldol product compared with (S)-

proline, as outlined in Schemes 2.11 and 2.12. Having achieved success in 
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improving the enantioselectivity, rate of reaction and stereoselectivity, the 

investigation was turned from the in situ esterification of the boronic acid to further 

applications. Specifically, the influence of the Lewis acidity of the boron atom has 

been examined systematically using various tartrate diols and had been noted that the 

in situ esterification promoted the aldol reaction to proceed with high 

enantioselectivities independently of the absolute stereochemistry or sterics of the 

tartrate.
[38]

 Consequently, it was claimed that the stereochemistry of the aldol product 

is exclusively dependant on the stereochemistry of the chiral centre adjacent to the 

pyrrolidine moiety of catalyst 60. Hence, it was thought that the synthesis of the 

opposite enantiomer of homoboroproline 60 would be a logical extension of these 

studies to both prove the origin of the stereoselectivity and to enable access to either 

enantiomeric series. Equally important to note is that the external ligand [(-)-

sparteine] used for the asymmetric deprotonation of N-Boc-pyrrolidine in order to 

synthesise homoboroproline 60 had become almost impossible to acquire. The main 

reason provided from suppliers was the lack of availability of the usual plant source 

providing this lupin-derived alkaloid product commercially available.
[55]

 Hence, 

attention was then focused on the synthesis of the homoboroproline enantiomer 86 in 

order to both confirm the origin of the stereocontrol in the aldol reaction and present 

an alternative route for formation of enantiomeric aldol products. A retrosynthetic 

plan to catalyst 86 was formulated in which the use of (S)-proline as the initial 

building block was exploited using the chiral centre already present as outlined in 

Scheme 2.13. 

 

 

Scheme 2.13 Retrosynthetic route for the synthesis of pyrrolidine boronic acid-based 

catalyst 86. 

 

The first synthetic attempt started with a known protection of the nitrogen 

atom of (S)-proline using Boc2O anhydride, followed by reduction with BH3·DMS, 

which afforded the N-Boc-prolinol 89 in 56% overall yield (Scheme 2.14).
[56-57]
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Although this method involved a two step pathway, the relative ease and good 

overall yield made it preferable over attempted one-step procedures. Particularly, 

reduction of proline using LiAlH4 at 0 
o
C, followed by in situ addition of Boc2O, 

upon filtration furnished the desired product 89 in only 23% yield (Scheme 2.15).
[58]

 

In addition, even when (S)-proline was treated with NaBH4 in an iodine-THF 

solution, followed by Boc2O, the yield was poor (Scheme 2.15).
[59]

 Unidentified 

impurities formed made the procedure complicated in terms of purifying the desired 

product.
  
Furthermore, N-Boc-prolinol 89 was successfully converted to iodine 88 in 

83% yield in the presence of iodine, triphenylphosphine and imidazole, as outlined in 

Scheme 2.14.
[57] 

 

 

Scheme 2.14 Synthetic route for the formation of iodomethyl-pyrrolidine 88 starting from 

(S)-proline. 

 

 

Scheme 2.15 Alternative one-pot Boc-protection and reduction of (S)-proline. 

  

Having prepared iodide 88, it was then necessary to convert the iodide 

function to the corresponding boronate, i.e. 87. Borylation of alkylhalides is 
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theoretically accomplished by trapping such reactive species as organolithium 

intermediates with a borate electrophile. However, initial attempts to form the 

alkylboronic acid derivative 86 were unsuccessful using  lithium-halogen exchange 

methods.
[60]

 In a preliminary experiment, a solution of compound 88 and 

trimethylborate in THF was treated with n-BuLi at -78 
o
C. Surprisingly, the reaction 

did not give the expected product but a mixture of the starting material 88 and its 

ring opening analogue 91 in a ratio of 3:1 (eqn. 2.9). This result suggested that the 

intermediate organolithium reagent was unstable towards β-elimination and thus 

gives rise to unsaturated compound 91, rather than being trapped by the 

electrophile.
[57,61]

 In an attempt to optimise the reaction conditions, the same type of 

procedure was carried out whilst increasing the amount of boron electrophile source 

to 3, and then to 10 equivalents, however this did not lead to any improvements. On 

the other hand, quantitive conversion to compound 91 was observed when the 

equivalents of the lithiating agent were increased and when t-BuLi was used instead. 

 

 

 
 

Despite the variety of borylation protocols that have been developed for the 

synthesis of aryl- and alkenyl-boronic acids, a general and reliable method for the 

synthesis of alkylboronic acids remains elusive apart from the trapping of 

organomagnesium or organolithium intermediates with borates or catalytic 

hydroboration of alkenes.
[29]

 As eluded to above, in this case, the direct conversion 

of 88 to 87 was not successful. 

In 2010, metal-free boration of α,β-unsaturated compounds emerged as a new 

strategy for the enantioselective catalytic construction of β-borated carbonyl 

compounds. Fernández et al. were able to obtain β-pinacolboronated carbonyl 

compounds when they treated α,β-unsaturated esters or ketones with B2pin2, Cs2CO3, 

PPh3 and MeOH.
[62]

 They argued that the phosphine promoted the cleavage of the B-

B bond of B2pin2, resulting in the plausible nucleophilic attack of the boron moiety 
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to the substrate. As a result, this reaction became of interest for the potential 

borylation of compound 88 as outlined in equation 2.10. Unfortunately, subjecting 

iodomethyl-pyrrolidine 88 to react with B2pin2, 0.15 equivalents of Cs2CO3, 20 

mol% of PPh3 and MeOH did not furnish the desired product 87 (eqn. 2.10). All 

attempts to modify the reaction conditions, including the use of KO
t
Bu instead of 

Cs2CO3 or the absence of PPh3 proved fruitless in our hands, providing full recovery 

of the starting material as summarised in Table 2.4.   

    

 

 

Table 2.4 Reaction conditions carried out for the attempted conversion of compound 88 to 

boronate ester 87. 

 

 

 

  

    

 

 

 

[a]
Almost 100% recovery of the starting material 88. 

 

The prospect of using diboronyl esters such as B2pin2 in the cross-coupling of 

aryl halides and triflates under palladium catalysis was introduced in 1995 by Miyara 

and co-workers.
[63]

 Since then, the development of modified conditions has expanded 

the scope of transition metal-catalysed coupling reactions between aryl halides and 

diboronyl reagents.
[29]

 While the use of transition metal catalysis in order to access 

Entry Phosphine Base Conversion [%]
[a] 

1 0.2 equiv. PPh3 0.15 equiv. Cs2CO3 0 

2 - 0.15 equiv. Cs2CO3 0 

3 0.2 equiv. PPh3 1.1 equiv K
t
OBu 0 

4 - 1.1 equiv K
t
OBu 0 
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arylboronate esters has been accomplished, the synthesis of alkylboronates through 

transmetalation is much more underdeveloped. Liu et al. reported the first example 

of cross-coupling reactions between organoboron compounds and primary alkyl 

halides using copper-catalysed conditions.
[64]

 These authors were able to obtain 

cross-coupled adducts in up to 85% yield by treating unactivated alkyl electrophiles 

with arylboronic esters in the presence of CuI and LiO
t
Bu. Based on earlier results 

on the copper-catalysed borylation of arylhalides, α,β-unsaturated carbonyl 

compounds and aldehydes,
[65]

 Marder et al. achieved the selective borylation of 

primary and secondary alkylhalides.
[66]

 This study demonstrated that borylation of 

sp
3
-carbon atoms using B2pin2

 
in the presence of CuI, LiO

t
Bu and PPh3, highlighted 

a novel and general method for the synthesis of alkylboronate esters from simple 

alkyl halides. Encouraged by these results, these reaction conditions were applied to 

iodomethylpyrrolidine 88. As a result, compound 88 was treated with B2pin2, LiO
t
Bu 

and 10 mol% of CuI in THF at room temperature to yield pinacol boronate ester 87 

in 48% yield and 97% enantiomeric excess. The yield of the reaction improved to 

65% when an acidic work-up was carried out prior to purification, even though the 

literature procedure suggested a simple filtration. The development of this simple, 

high yielding and reproducible reaction meant that enantiomeric series to catalyst 86 

could be easily achieved through this sequence from (S)-proline. Finally, cleavage of 

the Boc-group and pinacol boronate ester of 87 was readily conducted under the 

standard conditions to afford deprotected 92 in quantitive yield.    

      

 
 

Scheme 2.16 Synthetic route towards the formation of homoboroproline catalyst 92. 

 

When the investigation into the synthesis of homoboroproline 86 was 

commenced, the recently reported paper on the borylation of alkyl halides using 

catalytic CuI had not been published.
[66]

 As mentioned before, (S)-proline was N-Boc 

protected and reduced to give compound 89 which was subjected to iodination 

conditions affording the alkyl halide product 88. However, the borylation using a 

lithium-halogen exchange method was hampered by the facility of 88 to undergo β-
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elimination. A literature search revealed a 2006 paper dealing with the cross-

coupling of organozinc analogues of amino acids with acid chlorides
[57]

 and in this 

report, Tanner et al. showed that the reaction of activated zinc with iodides 88 and 

94a did not afford the desired products 93 and 95a (Scheme 2.17). In the case of 88 

and 94a, the generated organozinc intermediates perhaps not surprisingly β-

eliminated to give the unsaturated compounds 91 and 96a respectively. Nevertheless, 

zinc insertion, occurs when compound 94b is used, yielding exclusively reduced 

product 95b after an aqueous quench rather than the elimination product 96b. 

 

 

 

Scheme 2.17 Generation and possible products from aqueous quenching of organozinc 

reagents. 

 

As a result of these reports, these observations were of interest in the case of 

the studies towards the synthesis of homoboroproline 86. An alternative 

retrosynthetic plan was proposed in which the main idea was to use L-pyroglutamic 

acid as the starting material, hoping to achieve the borylation of iodide 94b to 

boronate ester 98, in an attempt to avoid  the formation of the ring opening analogue 

96b (Scheme 2.18). In addition, this would be followed by the reduction of the 

amide carbonyl group of compound 97, in an effort to furnish the desired 

aminoboronic acid 86.   
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Scheme 2.18 Retrosynthetic plan towards the synthesis of homoboroproline 86, starting 

from L-pyroglutamic acid. 

 

Initially L-pyroglutamic acid was reacted with Amberlyst 15 in refluxing 

MeOH resulting in the isolation of methyl ester compound 100 in 89% yield 

(Scheme 2.19).
[67]

 In a second step, treatment of 100 with NaBH4 in EtOH afforded 

the primary alcohol 99.
[68]

 Even though 1 equiv. of acetic acid was used to quench 

the reaction, some of it was present in the crude product. Efforts to remove it were 

unsuccessful and as a result, compound 99 was used crude for the next step without 

any further purification. Further transformation to iodide 94b was accomplished in a 

two-step sequence consisting of: 1) tosylation with TsCl in the presence of Et3N and 

DMAP; and 2) iodination with NaI in MeCN resulting after purification in 60% 

iodide 94b.
[57]

   

      

 

Scheme 2.19 Synthetic route for the formation of iodide compound 94b starting from  

L-pyroglutamic acid. 
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 As already mentioned above, attempts to obtain boronate ester 87 by lithium-

halogen exchange of 88 were unrewarding, since they led to reductive ring opening 

with formation of 91. Unfortunately, a similar outcome was observed when iodide 

94b was treated with triisopropyl borate and n-BuLi.
[60]

 A complex mixture of 

unidentified products was obtained after the work up procedure, with strong 

implications that one of them was once again the ring opening analogue 96b. Further 

optimisation of the reaction or characterisation of the resulting products was not 

carried out since by that time the synthesis of the desired boronic acid 92 was 

achieved through the initial proposed retrosynthetic plan, starting from (S)-proline.  

  

 

 

In summary, the synthesis of the (R)-enantiomer of the homoboroproline catalyst 

76 was achieved, with the CuI catalysed borylation of alkyl halide 88 being the key 

step of the synthetic strategy. Having in hand novel catalyst 92, it was anticipated 

that further applications would result in an improvement towards attempts in 

understanding the mode of action of this type of catalyst.  

 

2.6 Mechanistic Studies 

 

At this stage, in an effort to better understand the mechanism of the homoboroproline 

catalysed aldol reaction, it was necessary to establish whether the reaction was 

proceeding, as envisioned, via a catalytically accessed iminium ion species in which 

the boronate forms a tetrahedral aldolate ‘ate’-complex 62 (Scheme 2.12). To 

explore these mechanistic questions, a series of experiments in which the standard 

aldol reaction between acetone and p-nitrobenzaldehyde needed to be monitored 

over time using chiral HPLC were carried out. Before being able to conduct these 

experiments, the formation of the relevant calibration curves was necessary. As a 

result, both the racemic aldol condensation product 58 and aldol elimination product 
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59 resulting from the reaction of acetone and p-nitrobenzaldehyde had to be 

synthesised. Both desired compounds were formed following previously reported 

literature procedures (Scheme 2.20).
[37,69]

 Firstly, p-nitrobenzaldehyde was reacted in 

a mixture of water and acetone using 30 mol% of pyrrolidine as a catalyst, affording 

after purification the racemic aldol product 58 as a white solid.
[69]

 In addition, 

chalcone 59 was furnished after reacting acetone and p-nitrobenzaldehyde in a 0.01 

M aqueous solution of NaOH.
[37] 

 

 
Scheme 2.20 Synthetic route for the synthesis of racemic aldol condensation product 58 and 

aldol elimination product 59. 

 

Moreover, the calibration curves for the starting material (p-NO2PhCHO), 

aldol condensation 58 and aldol elimination product 59 were formed using standard 

solutions of the above mentioned compounds. It is worth mentioning that for each 

concentration, the absorption was measured three times and the lowest concentration 

was 0.001 M reaching 0.005 M the highest. In addition, in each case, an identical 

amount of internal standard, i.e. naphthalene, was added in order to minimise the 

error factor. The calibration graphs and equations resulting from these experiments 

were used in order to calculate the concentrations of both reactants and products in 

the following reactions and can be found in the Appendix section for reference. 

In the initial experiment, kinetic measurements were performed on the 

catalytic system which contained only homoboroproline 76. As a model reaction, the 

aldol addition of p-nitrobenzaldehyde with acetone in the presence of Et3N, and 

catalyst 76 was examined (eqn. 2.12). The reaction was carried out in neat acetone at 

room temperature and was monitored over time using HPLC. The results are 

summarised in Figure 2.5. According to Figure 2.5, the aldol reaction was complete 

in 8 h and aldol elimination product 59 remained at a relatively low level throughout. 

In addition, even though the enantioselectivity of the aldol condensation 58 was only 

48%, the fact that it remained relatively constant over time gave the first indication 

of the absence of any non-linear effects.
[70] 



Results and Discussion 

63 

 

 

 

Figure 2.5 Molarity of the starting material, (S)-aldol product 58, (R)-aldol product 58 and 

chalcone 59 when the reaction was carried out in the presence of catalyst 76. 

 

In a second set of experiments, the influence of the in situ formation of a 

boronate ester on the ‘benchmark’ aldol reaction was examined (eqn. 2.13). As a 

result, before the addition of the aldehyde, diisopropyl-D-tartrate catalyst 84b was 

generated in situ by reacting the homoboroproline catalyst 76 with diol 78a in the 

presence of molecular sieves in neat acetone for 1 h. Moreover, the catalytic reaction 

was further monitored every hour for a total period of 9 h, as shown in Figure 2.6. 

Notably, the reaction rate was not affected by the presence of the boronate ester 

instead of the boronic acid as the catalyst. Consequently, the reaction reached 

completion in about 8 h and once again the by-product 59 started to appear only 

when the starting material was almost totally consumed. Nevertheless, although we 
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expected the enantiomeric excess to be constant over time, it started at 70% and by 

the end of the reaction reached 80%. At this point it was assumed that a possible 

explanation for this phenomenon involved the fact that there was an insufficient 

amount of time provided in order to form the boronate ester before the addition of 

the aldehyde. This would have resulted in a reaction where free boronic acid was still 

present in the first hours, acting as a catalyst, and therefore, decreasing the overall 

enantioselectivity.  

 

 
 

 

Figure 2.6 Molarity of the starting material, (S)-aldol product 58, (R)-aldol product 58 and 

chalcone 59 when the reaction was carried out in neat acetone using catalyst 82b. 

 

To verify whether the lower ee observed at the start of the reaction was due 

to a lower boronate ester concentration, the reaction time for its formation was 
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prolonged. When the reaction was repeated allowing a period of 20 h for the catalyst 

84b to be formed, 100% conversion was obtained at 8 h and the ee was constant at 

around 83%. This observation shows the necessity for a longer reaction time for the 

complete esterification of the boronic acid, before the aldol reaction is initiated. 

Similar results were observed when the (R,R)-hydrobenzoin ester of 

homoboroproline 76, i.e. 85,  was used as the catalytic species in the aldol reaction 

between p-nitrobenzaldehyde and acetone in DMF (eqn. 2.14). In this case, an 

enhanced reaction rate was observed, resulting in the completion of the reaction in 6 

h, with minimal elimination product formation occurring (Figure 2.7). In addition, 

the formation of the boronate ester was achieved in 2 h and this is due to the 

increased solubility of the proline-based boronic acid 76 in DMF compared to 

acetone. Most importantly, the desired aldol product was obtained in 95% ee and 

88% yield. Under the optimised reaction conditions, the enantioselectivity of the 

product was proportional to the enantiomeric excess of the catalyst. With regard to 

this, no sign of non-linear asymmetric induction was observed.
[70]

 Despite 

indications that both catalysts 84b and 85 could exist as dimeric species, they do 

react as monomeric entities in order for the aldol reaction to occur with invariably 

high asymmetric induction. 

In an attempt to further elucidate the mechanism of the enantioselective aldol 

reactions catalysed by the boronate ester analogues of 76, further studies were 

undertaken to prove the origin of the enhanced asymmetric induction observed. 

Specifically and as described in previous sections, it was argued that the 

enantioselectivity arises from the chiral centre present on the pyrrolidine ring of the 

catalyst and it is independent of the chirality of the diol used for the esterification of 

the boronic acid.
[38]

 To check this to be the case, the aldol reaction between  

p-nitrobenzaldehyde and acetone in DMF was performed in the presence of  

(meso)-hydrobenzoin analogue 101 of homoboroproline 76 (eqn. 2.15). As expected, 

the rate of the reaction and the yield of the desired aldol product 58 were almost 

identical to the experiment where the (R,R)-hydrobenzoin analogue 85 of the catalyst 

was used (eqn. 2.14). On the other hand, the enantiomeric excess was decreased 

slightly from 95% to 89%. These results, in combination with the previously 

reported observations, revealed that the stereochemistry of the boronate ester does 

not affect the magnitude of the enantioselectivity or absolute configuration of the 
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aldol condensation product 58. The drop in the asymmetric induction when using the 

(meso)-diol is likely to be due to the formation of a less stable boronate ester 

resulting in some boroxine formation. However, more importanlty the use of the 

(meso)-hydrobenzoin as the diol in the catalytic aldol reaction proved to be a 

valuable strategy for confirming that the chirality of the diol has no effect on the 

asymmetric induction of the final aldol product 58.  

  

 

 

 

Figure 2.7 Molarity of the starting material, (S)-aldol product 58, (R)-aldol product 58 and 

chalcone 59 when the reaction was carried out in DMF using the (R,R)-hydrobenzoin 

derived catalyst, i.e. 85. 
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Figure 2.8 Catalytic species present in the reactions outlined in eqn. 2.15 and 2.16. 

 

 

Further information regarding the orientation of the boronate ester analogue 

of homoboroproline catalyst 76 in the transition state (see Scheme 2.12) of the 

enantioselective aldol reaction needed to be obtained. In this context, the effect of 

the absolute stereochemistry of the chiral centre present on the pyrrolidine moiety 

was examined. Therefore, having in hand the opposite enantiomer of the 

homoboroproline catalyst, i.e. 92, it was applied under the optimised reaction 

conditions to carry out the ‘benchmark’ aldol reaction. Specifically, the reaction of 

p-nitrobenzaldehyde and acetone in DMF was carried out in the presence of (R,R)-

hydrobenzoin analogue 102 of proline-based boronic acid 92 (eqn. 2.16). In full 

agreement with our expectations, the aldol product 58 was obtained in its opposite 

enantiomeric form in 96% ee (see entry 6, Table 2.5). 

 

 

 

Table 2.5 summarises the results obtained to date from the mechanistic 

studies. These studies have highlighted the significance of an increased Lewis acidic 

boron moiety in order to obtain high asymmetric induction in our organocatalytic 

methodology. In addition, they have given some insight into the transition state, 
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demonstrating the utility of the chirality present in the pyrrolidine ring and also 

proving that the chirality of the diol plays no part; it simply contributes to ester 

stability. 

 

Table 2.5 Effect of catalytic system and solvent on the homoboroproline-catalysed aldol 

reaction.  

Entry Catalyst Diol Solvent 
Time 

[h]
[a] 

Yield of 

58 [%]
[b] 

ee 

[%]
[b] 

Yield of 

59 [%]
[b] 

1 76 - acetone 8 93 49 (S) 6 

2
[c] 

76 
diisopropyl-

D-tartrate 
acetone 8 89 80 (S) 6 

3
[d] 

76 
diisopropyl-

D-tartrate 
acetone 8 82 83 (S) 9 

4
[e] 

76 
(R,R)-

hydrobenzoin 
DMF 6 88 95 (S) 4 

5
[e] 

76 
(meso)-

hydrobenzoin 
DMF 8 85 89 (S) 7 

6
[e] 

92 
(R,R)-

hydrobenzoin 
DMF 7 89 93 (R) 7 

[a]
 Time period for 100% conversion. 

[b] 
Determined by HPLC. 

[c]
 2 h, 

[d]
 20 h, 

[e]
 3 h Reaction 

time for the formation of the boronate ester. 

 

During the preliminary studies, it seemed that longer reaction times were the 

reason for the aldol condensation product 59 being formed. A closer look at Figures 

2.5, 2.6 and 2.7 reveals that once the starting materials have been consumed, the 

aldol adduct 58 might undergo a slow elimination in the presence of the catalyst 

resulting in the formation of 59. Efforts were then devoted towards investigating 

whether the racemic aldol product 58 could undergo kinetic resolution in the 

presence of catalyst 83 to provide aldol adduct 58 with high asymmetric induction 

and aldol elimination 59 as the by-product. Hence, herein are described results on 
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precisely such a study, performed by reacting the racemic sample of aldol adduct 58 

with catalyst 85 in both the absence and presence of acetone in DMF.      

 Initially, the fate of the racemic aldol 58 in the presence of the (R,R)-

hydrobenzoin boronate ester 85 in DMF (eqn. 2.17) was monitored and the results 

are shown in Figure 2.9 and the corresponding enantiomeric excess in Figure 2.10. 

These show that the two enantiomers of the racemic aldol product 58 were consumed 

at different rates. Notably, the condensation product 59 appeared at a roughly similar 

rate to the starting aldehyde, both of which seemed to be levelling off after 24 h. In 

addition, the intriguing observation that a greater decrease in the concentration of the 

(S)-aldol product of 58 compared to the (R)-aldol was made. The former remained 

essentially constant and hence, an increase in the enantiomeric excess of the (R)-

enantiomer of 58 from 0.15% to 21% was observed, as shown in Figure 2.10. As a 

result, there were a few points of direct evidence that a kinetic resolution process 

was occuring throughout the 48 h period, though the increase in enantiomeric excess 

of the aldol adduct 58 did level off.  

 

 

 

With these results taken into account, it is possible to claim that the catalyst 

derived from 76 and (R,R)-hydrobenzoin consumes the (S)-aldol product 58 highly 

selectively. The outcome was both the formation of the chalcone 59 as a by-product 

through elimination, and the generation of the starting aldehyde by a retro-aldol-

addition reaction. It should be noted that the slight reduction in the amount of the 

(R)-aldol product 58 can be explained by the fact that the asymmetric induction of 

the catalyst itself is 96%. Hence, the minor enantiomer of the catalyst resulted in the 

formation of the opposite aldol product. This fits well with the fact that the (S)-aldol 

product was preferably consumed, giving rise to an increase in the enantiomeric 

excess of the (R)-aldol product. 
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Figure 2.9 Molarity of the starting material, (S)-aldol product 58, (R)-aldol product 58 and 

chalcone 59 over time for the reaction outlined in eqn. 2.17.  

 

 

Figure 2.10 Enantiomeric excess of (R)-aldol product 58 over time for the reaction outlined 

in eqn. 2.17.  
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In a similar fashion, the racemic aldol product 58 was subjected to a catalytic 

amount of catalyst 85 in the presence of excess acetone in DMF with the idea of the 

acetone being present to react with any aldehyde turnover (eqn. 2.18). The first thing 

to note is that the release of the starting aldehyde was not observed, as expected with 

the excess acetone present (Figure 2.11). This seemed reasonable given that the 

aldehyde formed reacts rapidly again with acetone to furnish aldol product 58 in 

favour of the (S)-enantiomer. Hence, the asymmetric induction of the kinetic 

resolution process decreased to 10% after 24 h which was less compared to the 

reaction carried out without acetone (Figure 2.12). This study proved valuable in 

revealing key ideas about the mode of action of the homoboroproline catalyst, 

contributing to the proposed catalytic reaction mechanism described in the following 

section. 

 

       

 

Figure 2.11 Molarity of the (S)-aldol product 58, (R)-aldol product 58 and chalcone 59 over 

time for the reaction outlined in eqn. 2.18.  
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Figure 2.12 Enantiomeric excess of (R)-aldol product 58 over time for the reaction outlined 

in eqn. 2.18.  

 

2.7 Application of the Homoboroproline Catalyst to Other Aromatic 

Aldehydes 

 

The promising enantioselectivity (95%) in combination with the mechanistic studies 

suggested that the homoboroproline-catalysed aldol reaction warranted further 

development for the reaction of p-nitrobenzaldehyde with acetone. The key issue in 

developing a truly useful organocatalyst is the ability to perform the reactions on a 

range of different substrates. With optimal conditions in hand for the aldol reaction 

between p-nitrobenzaldehyde and acetone, a study of the scope of the reaction was 

undertaken to test the limitations of this new process examining different aldehyde 

substrates. 

 Since boronate ester 85 in DMF was found to provide the optimal mix of 

reactivity and selectivity, it was chosen for further study. In particular, using HPLC, 

the capacity of homoboroproline 85 to catalyse the aldolisation of p-anisaldehyde 

and benzaldehyde with acetone was next examined (eqn. 2.19).  

0 

2 

4 

6 

8 

10 

12 

0 5 10 15 20 25 

e.
e.

 (
%

) 

Time (h) 



Results and Discussion 

73 

 

 

 

Table 2.7 Effect of substrate on the homoboroproline-catalysed aldol reaction outlined in 

eqn. 2.19. 

Entry R Conversion [%] Time [h] 
Yield of 

104 [%]
 

ee [%]
[a] 

Yield of 

105 [%]
 

1 p-NO2 >98 6 88
[a] 

95 (S) 4
[a] 

2 p-OMe 15 20 3
[b] 

- 12
[b] 

3 H 10 20 5
[b] 

- 5
[b] 

[a]
 Determined by HPLC.

[b] 
Isolated yield after SiO2 column chromatography. 

 

However, as shown in entries 1 and 2 (Table 2.7) only trace reactivity was 

observed with these aldehydes, even after 20 h and there was no sign of 

enantiocontrol. It should be noted that the by-product arising from the aldolisation 

was generated from the start of the reaction, indicating that elimination was a faster 

competing process in these cases. These organocatalytic results stand in marked 

contrast to the homoboroproline-catalysed aldol reaction of p-nitrobenzaldehyde 

where excellent levels of enantiocontrol and reaction efficiency were obtained. One 

can explain the poorer reactivity of these substrates since they are more electron-rich 

and as a consequence of lower electrophilicity of the carbonyl group. In addition, the 

Lewis acidity of the boron atom present in catalyst 85 proves to be insufficient and 

therefore the aldehyde exists in an inactive form, unable to participate in the 

homoboroproline-catalysed aldol transformation. While increased electrophilicity 

afforded by an aldehyde with an electron-withdrawing group greatly enhances the 

reaction efficiency with high asymmetric induction too.  
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Based on these results that showed that less electrophilic aldehydes proved 

not to be amenable to the organocatalytic conditions of aldolisation, a new method 

was required in order to react these type of substrates. At this point and for the above 

mentioned reasons, studies on the homoboroproline catalyst 76 were abandoned, but 

provided a suggested lead as to how to approach further developments. 

 

2.8 Proposed Mechanism of the Homoboroproline-Catalysed Aldol Reaction 

  

Taking into account the experimental work regarding the homoboroproline-catalysed 

aldol reaction, a revised catalytic cycle reflecting all the results obtained to date can 

be proposed (Scheme 2.21). The absolute stereochemistry of the product obtained 

can be rationalised by a stereochemical model and a transition state 62 can be 

proposed. Commencing, the initial in situ esterification with the diol 78 of the 

boronic acid 76 after neutralisation results in the formation of boronate esters 84 or 

85, and to varying extents, boroxine 106 formation. As already proven, the 

equilibrium is dependent on the stability of the boronate ester formed. This is 

followed by the secondary amine of the pyrrolidine ring acting as a nucleophilic 

catalyst by reacting with acetone to form the corresponding enamine 107. Lewis acid 

activation and coordination of the aldehyde by the boronate ester, enables it to react 

with the enamine through a highly organised transition state 62. Presumably this 

results in the formation of an iminium ion species 108a, in which the boronate forms 

a tetrahedral aldolate ‘ate’-complex. In the case of an electron deficient aldehyde the 

‘ate’-complex 108a is possible to be in an equilibrium with 108b since the hydroxyl 

carbon atom is more electrophilic. Furthermore, hydrolysis of the iminium ion and 

protonation of the boronate ‘ate’-complex of 108b, affords aldol product 58 with 

high asymmetric induction and regeneration of the catalyst. Control of the enamine 

geometry and the resulting absolute stereochemistry of the aldol product can be 

thought of as arising from the chiral centre present on the pyrrolidine ring. This 

control is crucial to high enantiocontrol since exposure to the opposite enantiomer of 

the catalyst leads to the opposite enantiomer of the product 58. On the other hand, 

when an electron rich aldehyde is used instead, the ‘ate’-complex is likely to be in 

the form of 108c, a species which cannot regenerate the catalyst and hence, leads to 

the unreactivity observed. In addition, β-elimination of complex 108a could also 
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give rise to the iminium ion analogue of the chalcone 109, which after hydrolysis 

delivers the by-product 59. Under normal conditions, the hydrolysis of complex 

108a is seemingly faster than the elimination reaction resulting in 109, presumably 

as a result of a sufficient concentration of water despite the presence of molecular 

sieves. Indeed, it may be that water plays a direct part in the active catalytic cycle 

and could be directly associated with each of the species shown as key in the 

process.         

 

Scheme 2.21 Proposed catalytic cycle for the pyrrolidine-based boronate ester aldol 

reaction. 
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2.9 Studies towards the Synthesis of Optimised Homoboroproline Catalysts 

 

Having secured optimised conditions for the enantioselective aldol reaction between 

p-nitrobenzaldehyde and acetone, the use of more electron-rich aldehydes such as p-

anisaldehyde and benzaldehyde was investigated. As mentioned in Section 2.7, it 

was shown that the proposed enantioselective aldol union is inefficient due to the 

electronic nature of the aldehydes, which has a pronounced effect on the efficiency 

of the process. The poor reactivity of these aldehydes under optimised conditions 

that are well suited for p-nitrobenzaldehyde meant that the Lewis acidity of the 

homoboroproline boronate ester 85 was not sufficient to activate the less reactive 

carbonyl towards aldolisation or that aldol adducts deactivate the catalyst by 

alcoholic exchange (see Scheme 2.21). 

Taking into consideration that homoboroproline 60 and its boronate ester 

analogues have proved to be successful in the ‘benchmark’ aldol reaction, in contrast 

to boroproline 61 which was a sluggish catalyst, a new approach was envisioned. In 

particular, in order to overcome this limitation and achieve optimised aldol 

conditions applicable to a vast range of substrates, the synthesis of the longer chain 

homoboroproline 110 and 111 was proposed. This approach in theory would place 

the Lewis acidic boron atom in the ideal position to assist the aldol reaction and as a 

result perhaps overcome the poorer reactivity of the more electron-rich aldehydes, by 

possibly avoiding the need for in situ esterification. 

 

 

Figure 2.13 Proline-based aminoboronic acid catalysts. 

 

Efforts toward the synthesis of catalyst 110 were commenced by using 

homologation methodology (Scheme 2.22).
[71]

 This was based on analogy to similar 

reaction conditions developed in our lab for the synthesis of the one carbon length 

proline-based boronate ester 65 from its boroproline analogue.
[38]

 As a result, 

compound 65 was treated with bromochloromethane and n-BuLi, followed by the 
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addition of ZnCl2 (eqn. 2.20). However, to our disappointment, these conditions did 

not furnish the desired product 112 but led to the full recovery of the starting 

material. Increasing the amount of bromochloromethane or ZnCl2 did not change this 

outcome. 

 

 

 

Scheme 2.22 Retrosynthetic route towards the synthesis of aminoboronic acid catalyst 110. 

 

 

 

Moreover, taking inspiration from detailed studies concerning the 

asymmetric deprotonation and substitution of N-Boc-pyrrolidine, the design of a 

rapid synthesis for the two carbon length chain homoboroproline catalyst 110 taking 

advantage of this methodology was sought. It was envisioned that catalyst 110 could 

be accessed from N-Boc-pyrrolidine 66 by an asymmetric substitution with 

vinylbromide followed by hydroboration and deprotection (Scheme 2.23). This 

transformation provides tremendous simplification, as it would furnish the desired 

product 110 in only three steps, if the asymmetric substitution was highly selective. 

Key to this approach was the recognition that the (-)-sparteine catalysed 

enantioselective substitution of N-Boc-pyrrolidinylcuprates developed by Dieter et 

al. could be used to introduce the chiral centre of 113 enantioselectively.
[72]

 As a 

result, the synthesis of 110 was initiated by reacting N-Boc-pyrrolidine with s-BuLi 

and (-)-sparteine, followed by treatment with CuCN·2LiCl and vinylbromide (eqn. 

2.21). Unfortunately, even though this transformation had already been reported 

affording the desired product 110 in 70% ee in our hands, a lower enantioselectivity 

of 27% was obtained.  
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Scheme 2.23 Second retrosynthetic route towards the synthesis of aminoboronic acid 

catalyst 110. 

 

 

 

However, encouraged by work from Coldman et al.
[73]

 which demonstrated 

that the enantioselectivities of the products arising from the 2-substitution of N-Boc-

pyrrolidine in such sparteine-mediated metallations could be improved by 

transmetallation with ZnCl2/CuCN·2LiCl, further reactions were undertaken. In 

particular, the asymmetric induction for the synthesis of N-Boc-(2-propen-1-yl)-

pyrrolidine was increased to 90% when the reaction mixture was treated with ZnCl2 

before the addition of CuCN·2LiCl, compared to 78% when the reaction was carried 

out in the absence of ZnCl2. Nevertheless, in the case where the electrophile was 

vinylbromide, only a slight increase to 43% was observed using the same conditions 

(eqn. 2.22). Due to these limitations, an alternative synthetic pathway which could 

provide the desired product 110 in a higher enantiomeric excess was necessary. 
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As a result, a new strategy was derived for the synthesis of catalyst 110 that 

would make it possible to avoid the asymmetric substitution step and take advantage 

of synthetic chemistry that had already been developed by using (S)-proline as the 

starting material. Centred on the synthetic methodology used for the formation of 

homoboroproline 92, the retrosynthetic plan proposed included the transformation of 

L-proline to the analogous vinylpyrrolidine derivative 116, followed by 

hydroboration and deprotection (Scheme 2.24).  Nevertheless, this plan posed the 

question as to whether the enantioselectivity of the chiral centre could be maintained, 

especially through an oxidation and a Wittig reaction involving aldehyde 117. 

 

 

 Scheme 2.24 Retrosynthetic route towards the synthesis of aminoboronic acid catalyst 114. 

 

 Despite these concerns, alcohol 89 was furnished following the same 

procedure as reported in Section 2.5. Exposure of alcohol 89 to Swern oxidation 

conditions led to the isolation of the unstable aldehyde 117 in 80% yield.
[74]

 It is 

worth mentioning that a more hindered amine was used instead of triethylamine for 

the Swern oxidation and no purification procedure was carried out in order to avoid 

epimerisation of the aldehyde 117 (Scheme 2.25). Furthermore, a Wittig reaction 

using methyltriphenylphosphinium bromide in Et2O gave vinylpyrrolidine 116 in 

50% yield.
[75]

 The yield of this reaction improved when THF was used as the solvent 

instead of Et2O. To our delight, chiral HPLC analysis of the isolated product 116 

showed that the asymmetric induction was 97%. Even though this procedure did not 

allow a rapid access to vinylpyrrolidine 116, the enantiomeric excess of the desired 

product was excellent, allowing the synthesis of catalyst 114 to continue.                  
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Scheme 2.25 Synthetic route for the formation of vinylpyrrolidine 116 starting from alcohol 

89. 

  

 With a procedure for the synthesis of vinylpyrrolidine 116 in place, a key 

remaining task was the synthesis of the pinacolboronate ester 115 through 

hydroboration. A wealth of catalysed or non-catalysed hydroboration reactions of 

terminal alkenes using a variety of both borane reagents and metal catalysts have 

been described in the literature.
[29]

 However, the hydroboration of compound 116 

employed in this case was based on methodology developed by Miyaura et al. using 

iridium-catalysed conditions (Scheme 2.26).
[76]

 As a result, treatment of 116 with 

½[Ir(cod)Cl]2/dppe and pinacolborane in DCM produced boronate ester 115 in 41% 

yield. Finally, deprotection of 115 was effectively mediated by an aqueous solution 

of HCl, furnishing the target aminoboronic acid salt 118 in 98% yield.
[38]

   

 

 
 

Scheme 2.26 Synthetic route for the formation of pyrrolidine-based boronic acid 118 

starting from vinylpyrrolidine 116. 

 

 In parallel with the synthesis of catalyst 118, additional work to prepare the 

three carbon length aminoboronic acid catalyst 111 has been carried out by Ricardo 

Girling. A detailed discussion of these results will be published in due course, but a 

brief overview is described below. Conditions essentially identical to those 

attempted above were used (Scheme 2.27). The key issue to be addressed was the  

(-)-sparteine mediated asymmetric 2-substitution of N-Boc-pyrrolidine with 

allylbromide. Fortuitously, this was accomplished by using the ZnCl2, CuCN·2LiCl 

catalysed conditions already discussed in this section.
[73]

 The desired product 119 
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was furnished in 96% yield and 82% enantiomeric excess. The remaining steps to 

fulfil the synthesis of HCl salt 121 were an ½[Ir(cod)Cl]2/dppe catalysed 

hydroboration, followed by the usual HCl-mediated deprotection.
[76,38]

  

 

 

 

Scheme 2.27 Synthetic route for the formation of pyrrolidine-based boronic acid 121 

starting from N-Boc-pyrrolidine 66. 

 

 This work represents the combined efforts toward the first synthesis of novel 

proline-based boronic acids 118 and 121 and hence, each of these homologous 

catalysts were available to compare with the homoboroproline system.  

 

2.10 Application of the Optimised Homoboroproline Catlysts on the Aldol 

Reaction 

 

Having demonstrated the inability of chiral pyrrolidine-based esters of 76 to 

function as asymmetric catalysts for the aldol reaction between less reactive 

aldehydes and acetone, there was need to study the effect of chain length between 

the secondary amine and the boronic acid. It was envisaged that extra carbon atoms 

incorporated between the pyrrolidine ring and the boronic acid moiety of the catalyst 

could change the Lewis acidity of the boron atom, altough it would be unlikely to 

enhance it to a great extent. It would however, allow the determination of the ideal 

chain length to make the most of the existing reactivity and perharps remove the 

need for diol esterification. Prior to demonstrating the feasibility of this proposal, the 
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synthesis of pyrrolidine-based aminoboronic acids 118 and 121 was accomplished as 

described in Section 2.9. As a result, preliminary investigations were focused on 

defining the reactivity of these potential catalysts 118 and 121 when participating in 

the optimised aldol reaction conditions reported above. 

Hence, the impact of the carbon chain length part of compounds 118 and 121 was 

next examined on the organocatalytic ‘benchmark’ aldol reaction and compared with 

homoboroproline 76. The initial experiment involved monitoring over time the 

reaction between p-nitrobenzaldehyde and acetone in DMF in the presence of 

catalyst 118, after neutralisation with Et3N (eqn. 2.23). Unfortunately, the reaction 

demonstrated diminished conversion to the aldol (21%) with no asymmetric 

induction, together with 9% of the chalcone formed; a total conversion of 30% over 

48 h. This compares with 92% conversion for the homoboroproline catalyst (entry 1 

vs 2, Table 2.8). At this juncture, it was hypothesised that there was inadequate 

Lewis acidity of the boron atom, resulting in the lower reaction conversion. To 

possibly improve both reactivity and enantioselectivity catalyst 118 was in situ 

esterified using (R,R)-hydrobenzoin under the optimised aldol reaction conditions 

and monitored over time. However, the reaction was completely suppressed, even 

when conducted after 48 h (entry 3, Table 2.8).   

It was immediately apparent that the presence of an extra carbon atom had 

the effect of self-inhibiting the organocatalytic reaction, presumably via stronger B-

N chelation. From the outset, it was hypothesised that the increased flexibility of the 

chain, due to the additional carbon atom, facilitates the intramolecular B-N 

coordination, thereby minimising the nitrogen ability to form the enamine and the 

ability of the boron atom to activate the substrate. Another interesting feature was the 

complete lack of reactivity observed when the hydrobenzoin boronate ester 

derivative of 118 was used. The key point is that the esterification leads to a more 

Lewis acidic boron atom, hence, causing a stronger B-N interaction despite the steric 

bulk of the phenyl groups. 
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Table 2.8 Catalysed aldol reaction of p-nitrobenzaldehyde in neat acetone. 

[a]
Determined by HPLC analysis. 

 

Having examined the possibility of using aminoboronic acid 118, the use of 

pyrrolidine-based boronic acid 121 was next considered as a potential catalyst for the 

organocatalytic aldol reaction. An initial experiment was carried out on the standard 

optimised system, consisting of p-nitrobenzaldehyde and acetone in DMF in the 

presence of catalyst 121. Disappointingly, once again the reaction did not afford the 

desired product 58 or any other by-products in a period of 24 h (entry 4, Table 2.8). 

This unexpected result again revealed the likely strong B-N interaction present in 

neutralised 121 similarly to 118; a scenario that dramatically decreases the ability of 

Entry Catalyst Diol 
Time 

[h] 
Yield of 
58 [%]

[a]
 

ee 
[%]

[a] 
Yield of 
59 [%]

[a] 

1 

 

(R,R)-
hydrobenzoin 

6 88 95 (S) 4 

2 

 

- 48 21 1 (R) 9 

3 

 

(R,R)-
hydrobenzoin 

48 0 0 0 

4 

 

 

- 24 0 0 0 



Results and Discussion 

84 

 

both the boron atom and secondary amine to act as catalytic moieties and lead to 

greatly diminished conversions. 

As revealed in Table 2.8, there is a clear correlation between the reaction 

conversion and carbon length chain of the catalysts. In order to probe this further, 

additional studies aimed at understanding and evaluating the catalytic profile of 

compound 118 and 121 for the aldol organocatalytic transformation were initiated. 

To gain insight into these initial results and justify the assumptions that the catalytic 

species present, the reaction needed to be thoroughly examined by 
11

B NMR 

analysis. With this in mind, firstly, aminoboronic acid salt 118 was neutralised with 

Et3N in CDCl3 and 
11

B NMR analysis was carried out on the resulting mixture. 

Secondly, the same procedure was repeated but with the addition of (R,R)-

hydrobenzoin in order to achieve the in situ esterification (Scheme 2.28). The 

expectation was to be able to observe directly reactants occurring as outlined in 

Scheme 2.28. 

  

 

 

Scheme 2.28 In situ formation of the (R,R)-hydrobenzoin ester of homoboroproline 118. 

 

As shown in Figure 2.14, in the first case, by 
11

B NMR analysis a shift at δB 

18 was observed and the subsequent esterification led to a shift change to δB 13. 

These observations provide direct evidence to validate our hypothesis that the 

compound resulting from the neutralisation of the pyrrolidine-based boronic acid 

118, could indeed be in the form of 122. A distorted tetrahedral geometry of the 

boron atom, originating from an intramolecular B-N coordination results in the 

observed shift.
[77]

 One might then argue that a 
11

B NMR shift in the range of δB 20-

18 could correspond to the relevant boroxine. However, since some conversion is 

observed, the possibility of boroxine is most likely discounted. A closer look in the 

literature revealed that partial tetrahedral geometry at boron could result in 

compounds with a weaker B-N interactions resulting with similar 
11

B NMR shifts. 
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Moreover, the addition of (R,R)-hydrobenzoin leads to a lower 
11

B NMR shift, 

highlighting the presence of a stronger B-N interaction. Given that upon 

esterification the Lewis acidity of the boron atom should increase, a stronger 

interaction occurs between the nitrogen and boron atom. As a result, the boron atom 

is unable to activate the aldehyde since its electron density has been completely lost 

and of course, the nitrogen is similarly deactivated towards aldolisation with the 

ketone. 

 

 

 

 

 

 

 

 

 

Figure 2.14 
11

B NMR spectra: (a) pyrrolidine-based boronic acid salt 118; (b) neutralisation 

reaction of pyrrolidine-based boronic acid salt 118; (c) condensation reaction of 118 with 

(R,R)-hydrobenzoin. 

 

In this context, the pyrrolidine-based aminoboronic acid 121 was then 

examined by 
11

B NMR of the resulting compound after neutralisation (eqn. 2.24). As 

revealed in Figure 2.15, the 
11

B NMR analysis performed demonstrated a shift at δB 
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5. In this case, it is even more clear that the three carbon length chain offers a good 

facility for the boron atom to achieve a strong interaction with the nitrogen atom. 

Notably, a shift at δB 5 is indicative of an essentially 100% tetrahedral boron atom 

and hence, it is inactive and can not participate catalytically in the aldol reaction.
[77] 

 

 

 

  

 

Figure 2.15 
11

B NMR spectra: (a) pyrrolidine-based boronic acid salt 121; (b) neutralisation 

reaction of pyrrolidine-based boronic acid salt 121. 

 

2.11 Conclusions and Future Directions 

 

The synthesis of both enantiomers of homoboroproline-catalyst 76 and 92 have been 

developed. Catalyst 76 is moderately effective in enamine-mediated aldol reactions, 

however, when esterified in situ with different diols the boron Lewis acidity can be 

tuned. This is not entirely straightforward since the facility of the diol to tune the 

boron Lewis acidity depends upon the stability of the boronate ester. Interestingly, 

11
B NMR studies showed that cyclohexylboronic acid derived esters appear to be 

slightly less stable than the corresponding cyclopentylboronate esters, with the 

hydrobenzoin 82b showing good stability compared to other systems examined. 

Applying this knowledge to the esterification of homoboroproline 76, using 
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hydrobenzoin as the esterification diol gives the highest boronate ester stability and 

catalyst 85 is believed to be the active species. Importantly, this ester essentially 

provides complete asymmetric control in the aldol reaction, i.e. 96% e.e. for a 96% 

ee catalyst when run under optimised reaction conditions. These conditions consist 

of running the reactions at room temperature in DMF in the presence of molecular 

sieves in order to maintain the boronate ester in equilibrium strongly in favour of the 

ester.  

Application of boronate ester 102 highlighted the importance of the chiral 

centre present on the pyrrolidine ring for the enantiomeric excess achieved in the 

aldol product. In addition, the independence of the chirality of the diol used for the 

esterification upon the sense of asymmetric control has been proven. All these 

studies have also provided a foundation for understanding the mode of action of the 

catalyst. A highly organised transition state 62 resulting from the cooperative 

relationship between the enamine and the tetrahedral aldolate boron complex was 

proposed. Unfortunately, this methodology has not proven general for more electron 

rich substrates as yet. When aldehydes bearing an electron donating group were 

used, no aldol product formation was observed. Initial investigations have shown 

that electron deficient aldehydes such as ethyl glyoxylate and 

dimethoxyacetaldehyde, could be promising substrates. Hence, following work will 

involve the detail extension of this methodology, by applying boronate ester 85 on 

aldehydes with an electron-withdrawing group, allowing the rapid access to valuable 

products.  

The following efforts were then concentrated on the synthesis and application of 

potential catalysts 118 and 121. Nevertheless, both catalysts were unreactive when 

applied on the optimised aldol reaction conditions; however, this was due to an 

increased facility of B-N chelation. Even though these aminoboronic acids were 

synthesised to see if they could provide enhanced enantiocontrol, faster reaction rates 

and avoid the need for in situ esterification, the design principle was not ideal since 

the extended carbon length chain permitted stronger B-N coordination, deactivating 

the boron and nitrogen atoms. Subsequent future work will involve the design and 

development of proline-based aminoboronic acid catalysts with a more Lewis acidic 

boron atom. Potential catalysts may involve compound 125 with incorporated 

fluorine atoms, boronate ester 126 or even 127. 
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Figure 2.16 Potential proline-based boronate catalysts. 
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Chapter 3: Experimental Section 
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3 Experimental Section 

 

3.1 General Information 

All chemicals and materials were purchased from standard chemical suppliers and 

reagents were tested for purity before use. Glassware was oven dried (130 
o
C) as 

required and cooled under a positive pressure of argon. Dry solvents were prepared 

using the Innovative Technology Inc. solvent purification system and analysed with 

Metrohm 831 KF coulometer. Chromatographic purification of products was 

accomplished using medium pressure column chromatography on 35-70 mesh silica 

gel. Thin-layer chromatography was performed on Polygram SIL G/UV254 plastic 

backed silica gel plates. Visualisation of the developed chromatogram was achieved 

by using fluorescence quenching, or by staining either with potassium permanganate 

or anisaldehyde. All organic solvents were concentrated under reduced pressure at  

20 mmHg on a Büchi rotary evaporator, followed by drying in vacuo (<2 mmHg). 

Molecular sieves were activated by heating at 250 °C.    

All 
1
H NMR were recorded with either of Varian Mercury-400, Bruker Avance-400, 

Varian Inova-500 or Varian VNMRS-700 spectrometers. 
13

C NMR were recorded on 

Varian Mercury-400, Bruker Avance-400, Varian Inova-500 or Varian VNMRS-700 

spectrometers at frequencies of 100, 126 or 176 MHz. 
11

B NMR were recorded with 

the Bruker Avance-400 at a frequency of 128 MHZ. 
19

F NMR were recorded with 

the Varian Inova-500 at a frequency of 500 MHz. Data for 
1
H NMR are reported as 

follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), integration and 

assignment. Data for 
13

C, 
11

B and 
19

F NMR are reported in terms of chemical shift (δ 

ppm). Mass spectra were obtained using a Water Xevo QTOF equipped with 

Atmospheric Solids Analysis Probe (ASAP) or a Thermo-Finnigan Trace GCMS 

with an EI ion source. High resolution ASAP or EI mass spectra were recorded by 

the National Mass Spectrometry Service at Swansea. Chiral HPLC analyses were 

performed on a Perkin Elmer system equipped with a Perkin Elmer Series 200 pump, 

a Perkin Elmer Series 200 autosampler and a Perkin Elmer Series 200 Diode array 

detector. Elemental analysis was performed using an Exeter Analytical E-440 

Elemental Analyser. IR spectra were recorded with a Perkin-Elmer melting point 
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apparatus. Optical rotations were taken using a JASCO P-1020 polarimeter and [α]D 

values are given in deg cm
2
g

-1
 .  

 

3.2 General Procedures 

 

3.2.1 General procedure for the catalysed aldol reaction outlined in eqn. 2.1 

To a solution of p-nitrobenzaldehyde (151 mg, 1 mmol) in acetone (10 mL),  

20 mol% of the examined catalyst (0.2 mmol) was added. The reaction mixture was 

stirred at room temperature for 24 h and then quenched with saturated aqueous 

solution of NH4Cl (10 mL). The aqueous layer was extracted into EtOAc  

(3 × 10 mL). The combined organic extracts were dried and concentrated in vacuo. 

Silica gel chromatography (petroleum ether:EtOAc, 5:4) afforded the aldol product 

58
[69]

 as a yellow oil and the chalcone 59
[78]

 as a yellow solid. All spectroscopic and 

analytical properties were identical to those reported in sections 3.3.15 and 3.3.16. 

 

3.2.2 General procedure for the in situ formation of the cyclohexylboronate 

esters as outlined in Scheme 2.8 

To a solution of cyclohexylboronic acid (15 mg, 0.12 mmol) in CDCl3 (2 mL), the 

relevant diol (0.12 mmol) was added. The reaction mixture was refluxed for 2 h in 

the presence of 3 Å molecular sieves and then filtrated in situ. A 
11

B NMR analysis 

was carried out for the residue. 

 

3.2.3 General procedure for the in situ formation of the cyclopentylboronate 

esters as outlined in Scheme 2.9 

To a solution of cyclopentylboronic acid (15 mg, 0.13 mmol) in CDCl3 (2 mL), the 

relevant diol (0.13 mmol) was added. The reaction mixture was refluxed for 2 h in 

the presence of 3 Å molecular sieves and then filtrated in situ. A 
11

B NMR analysis 

was carried out for the residue. 
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3.2.4 Procedure for the in situ formation of the pyrrolidine-based boronate 

ester 84 as outlined in Scheme 2.10  

To a solution of compound 76 (15 mg, 0.09 mmol) in CD2Cl2 (1.5 mL), diisopropyl-

D-tartrate (19 μL, 0.09 mmol) and triethylamine ( 12.5 μL, 0.09 mmol) were added. 

The reaction mixture was refluxed for 1 h in the presence of 3 Å molecular sieves, 

then cooled at -78 °C and filtrated in situ. A 
11

B NMR analysis was carried out for 

the residue. 

 

3.2.5 General procedure for the aldol reaction with the in situ formation of 

catalytic boronate esters as outlined in eqn. 2.7 

Compound 76 (16.5 mg, 0.1 mmol) and the relevant diol (0.1 mmol) were stirred at 

25 
o
C in the presence of 200 mg of 3 Å molecular sieves in acetone (5 mL) for 2 h 

before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol) and triethylamine (13.9 μL,  

0.1 mmol) were added. The reaction mixture was stirred at 25 
o
C for 24h and then 

quenched with sat. aq. solution of NH4Cl (5 mL). The aqueous layer was extracted 

into EtOAc (3 × 5 mL). The combined organic extracts were dried and concentrated 

in vacuo. Silica gel chromatography (petroleum ether:EtOAc, 5:4) afforded the aldol 

product 58
[69]

 as a yellow oil and the chalcone 59
[78]

 as a yellow solid. All 

spectroscopic and analytical properties were identical to those reported in sections 

3.3.15 and 3.3.16. 

 

3.2.6 General procedure for the aldol reaction with the in situ formation of the 

boronate ester 85 using different solvents as outlined in eqn. 2.8 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred in 4 mL of the relevant solvent for 3 h before p-nitrobenzaldehyde  

(75.6 mg, 0.5 mmol) and acetone (0.37 mL, 5 mmol) were added. After stirring at  

25 
o
C for 20 h in the presence of 200 mg of 3 Å molecular sieves, the reaction was 

quenched with sat. aq. solution of NH4Cl (5 mL) and extracted into EtOAc  

(3 × 5 mL). The combined organic extracts were dried and concentrated in vacuo. 

Silica gel chromatography (hexane:EtOAc, 1:1) afforded the aldol product 58
[69]

 as a 

yellow oil and the chalcone 59
[78]

 as a yellow solid. All spectroscopic and analytical 

properties were identical to those reported in sections 3.3.15 and 3.3.16. 
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3.2.7 General procedure for the formation of the calibration curves 

Standard solutions with concentrations from 0.1 M to 0.02 M were prepared by 

dissolving the appropriate amount of the relevant compound (p-nitrobenzaldehyde, 

recemic aldol condensation product 58 and aldol elimination product 59) in acetone. 

From each concentrated standard solution 50 μL were dissolved in 95 μL of a hexane 

and IPA (9:1) solution, forming diluted solutions with the lowest concentration being 

0.001 M and the highest 0.005 M. In each sample (10 mol%) of naphthalene was 

added as an internal standard. The absorption of every concentration was measured 

three times using chiral HPLC (See Appendix for graphs and equations). 

 

3.2.8 General procedure for monitoring the reaction outlined in eqn. 2.12 over 

time using chiral HPLC   

Compound 76 (16.5 mg, 0.1 mmol) was dissolved at 25 
o
C in the presence of 200 mg 

of 3 Å molecular sieves in acetone (5 mL), before p-nitrobenzaldehyde (75.6 mg,  

0.5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. 

 

3.2.9 General procedure for monitoring the reaction outlined in eqn. 2.13 over 

time using chiral HPLC 

Compound 76 (16.5 mg, 0.1 mmol) and diisopropyl-D-tartrate (21 μL, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in acetone  

(5 mL) for 2  h before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol), triethylamine  

(13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) were added. Every 1 h,  

100 μL were sampled from the reaction mixture, filtered and extracted with 200 μL 

of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase were dissolved in 

0.95 mL of hexane and IPA (9:1) solution. The sample was then analysed by chiral 

HPLC. 
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3.2.10 General procedure for monitoring the reaction outlined in eqn. 2.14 over 

time using chiral HPLC 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. 

 

3.2.11 General procedure for monitoring the reaction outlined in eqn. 2.15 over 

time using chiral HPLC 

Compound 76 (16.5 mg, 0.1 mmol) and (meso)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. 

 

3.2.12 General procedure for monitoring the reaction outlined in eqn. 2.16 over 

time using chiral HPLC. 

Compound 92 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. 
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3.2.13 Procedure for investigating possible kinetic resolution of racemic aldol 

product 58 in the absence of acetone as outlined in eqn. 2.17 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before racemic aldol condensation product 58 ( 104.6 mg, 0.5 mmol), 

triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) were added. 

Every 1 h, 100 μL were sampled from the reaction mixture, filtered and extracted 

with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase were 

dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC.  

 

3.2.14 Procedure for investigating possible kinetic resolution of racemic aldol 

product 58 in the presence of acetone as outlined in eqn. 2.18 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before racemic aldol condensation product 58 ( 104.6 mg, 0.5 mmol), 

acetone (0.37 mL, 5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene  

(6.4 mg, 10 mol%) were added. Every 1 h, 100 μL were sampled from the reaction 

mixture, filtered and extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL 

of the organic phase were dissolved in 0.95 mL of hexane and IPA (9:1) solution. 

The sample was then analysed by chiral HPLC. 

 

3.2.15 General procedure for monitoring the catalysed aldol reaction outlined 

in eqn. 2.19 using 103b as the aldehdye. 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before p-anisaldehyde (68.1 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. After stirring at 25 
o
C for 20 h the reaction was quenched 

with sat. aq. solution of NH4Cl (5 mL) and extracted into EtOAc (3 × 5 mL). The 
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combined organic extracts were dried and concentrated in vacuo. Silica gel 

chromatography (hexane:EtOAc, 1:1) afforded the aldol product 104b as a 

colourless oil and the chalcone 105b as a white solid. All spectroscopic and 

analytical properties were identical to those reported in the literature.
[79,80] 

 

3.2.16 General procedure for monitoring the catalysed aldol reaction outlined 

in eqn. 2.19 using 103c as the aldehdye. 

Compound 76 (16.5 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before benzaldehyde (53.1 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. After stirring at 25 
o
C for 20 h the reaction was quenched 

with sat. aq. solution of NH4Cl (5 mL) and extracted into EtOAc (3 × 5 mL). The 

combined organic extracts were dried and concentrated in vacuo. Silica gel 

chromatography (hexane:EtOAc, 1:1) afforded the aldol product 104c as a colourless 

oil and the chalcone 105c as a yellow solid. All spectroscopic and analytical 

properties were identical to those reported in the literature.
[80,81] 

 

3.2.17 General procedure for monitoring the reaction outlined in eqn. 2.23 

using catalyst 118 over time using chiral HPLC   

Compound 118 (17.9 mg, 0.1 mmol) was dissolved at 25 
o
C in the presence of 200 

mg of 3 Å molecular sieves in DMF (5 mL), before p-nitrobenzaldehyde (75.6 mg, 

0.5 mmol), acetone (0.37 mL, 5 mmol), triethylamine (13.9 μL, 0.1 mmol) and 

naphthalene (6.4 mg, 10 mol%) were added. Every 1 h, 100 μL were sampled from 

the reaction mixture, filtered and extracted with 200 μL of sat. aq. solution of NH4Cl. 

Then 50 μL of the organic phase were dissolved in 0.95 mL of hexane and IPA (9:1) 

solution. The sample was then analysed by chiral HPLC. 
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3.2.18 General procedure for monitoring the reaction outlined in eqn. 

2.23using boronate ester of 118 over time using chiral HPLC. 

Compound 118 (17.9 mg, 0.1 mmol) and (R,R)-hydrobenzoin (21.4 mg, 0.1 mmol) 

were stirred at 25 
o
C in the presence of 200 mg of 3 Å molecular sieves in DMF  

(5 mL) for 2 h before p-nitrobenzaldehyde (75.6 mg, 0.5 mmol), acetone (0.37 mL,  

5 mmol), triethylamine (13.9 μL, 0.1 mmol) and naphthalene (6.4 mg, 10 mol%) 

were added. Every 1 h, 100 μL were sampled from the reaction mixture, filtered and 

extracted with 200 μL of sat. aq. solution of NH4Cl. Then 50 μL of the organic phase 

were dissolved in 0.95 mL of hexane and IPA (9:1) solution. The sample was then 

analysed by chiral HPLC. 

 

3.2.19 General procedure for monitoring the reaction outlined in eqn. 2.23 

using catalyst 121 over time using chiral HPLC   

Compound  121 (19.3 mg, 0.1 mmol) was dissolved at 25 
o
C in the presence of  

200 mg of 3 Å molecular sieves in DMF (5 mL), before p-nitrobenzaldehyde  

(75.6 mg, 0.5 mmol), acetone (0.37 mL, 5 mmol), triethylamine (13.9 μL, 0.1 mmol) 

and naphthalene (6.4 mg, 10 mol%) were added. Every 1 h, 100 μL were sampled 

from the reaction mixture, filtered and extracted with 200 μL of sat. aq. solution of 

NH4Cl. Then 50 μL of the organic phase were dissolved in 0.95 mL of hexane and 

IPA (9:1) solution. The sample was then analysed by chiral HPLC. 

 

3.2.20 Procedure for the neutralisation of the aminoboronic acid salt 118 as 

outlined in Scheme 2.27   

To a solution of compound 118 (22 mg, 0.12 mmol) in CDCl3 (1.5 mL), 

triethylamine (17 μL, 0.12 mmol) was added. The reaction mixture was stirred for  

15 min at 25 
o
C in the presence of 3 Å molecular sieves and filtrated in situ. A  

11
B NMR analysis was carried out for the residue. 

 

3.2.21 Procedure for the in situ formation of the pyrrolidine-based boronate 

ester of 118 as outlined in Scheme 2.27   

To a solution of compound 118 (22 mg, 0.12 mmol) in CDCl3 (1.5 mL), (R,R)-

hydrobenzoin (25.7 mg, 0.12 mmol) and triethylamine ( 17 μL, 0.12 mmol) were 

added. The reaction mixture was stirred for 2 h in the presence of 3 Å molecular 
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sieves at 25 °C and filtrated in situ. A 
11

B NMR analysis was carried out for the 

residue. 

 

3.2.22 Procedure for the neutralisation of the aminoboronic acid salt 121 as 

outlined in Equation 2.24   

To a solution of compound 121 (22 mg, 0.12 mmol) in CDCl3 (1.5 mL), 

triethylamine (17 μL, 0.12 mmol) was added. The reaction mixture was stirred for  

15 min at 25 
o
C in the presence of 3 Å molecular sieves and filtrated in situ. A 

11
B 

NMR analysis was carried out for the residue. 

 

3.2.23 General HPLC method used for analysing the aldol product 58, and 

monitoring the reactions involving aldol 58 and chalcone 59 

The enantiomeric ratio of the aldol product 58 was determined by chiral HPLC using 

OJ-Chiralcel column (250 × 4.6 mm), 15 
o
C, 1 mL/min, hexane:IPA (9:1), tR (S-

aldol product) = 39.7 min; tR (R-aldol product) = 45.9 min, tR (chalcone) = 51.6. 

 

3.2.24 General HPLC method used for monitoring the reactions involving aldol 

104b and chalcone 105b 

The enantiomeric ratio of the aldol product 104b was determined by chiral HPLC 

using AS-H-Chiralpak column (250 × 4.6 mm), 25 
o
C, 1 mL/min, hexane:IPA (9:1), 

tR (S-aldol product) = 30.2 min; tR (R-aldol product) = 33.3 min, tR (chalcone) = 

39.1. 

 

3.2.25 General HPLC method used for monitoring the reactions involving aldol 

104c and chalcone 105c  

The enantiomeric ratio of the aldol product 104c was determined by chiral HPLC 

using AS-H-Chiralpak column (250 × 4.6 mm), 25 
o
C, 1 mL/min, hexane:IPA (9:1), 

tR (S-aldol product) = 12.6 min; tR (R-aldol product) = 14.7 min, tR (chalcone) = 

10.4. 

  

 



Experimental Section 

99 

 

3.3 Synthetic Procedures 

 

3.3.1 (4R,5R)-Diisopropyl-2-phenyl-1,3,2-dioxoborolane-4,5-dicarboxylate 63 

 

 

Procedure A 

To a solution of benzeneboronic acid (750 mg, 6.15 mmol) in dry DCM (10 mL) was 

added diisopropyl-D-tartrate (1.08 mL, 5.13 mmol). The reaction was carried out in 

the presence of 3 Å molecular sieves (0.92 g), under argon and stirred overnight at 

room temperature. The mixture was then filtrated, washed with EtOAc (20 mL) and 

dried. Filtration and evaporation in vacuo furnished the crude product, which was 

purified by recrystallization with a mixture of hexane and EtOAc to give the 

boronate ester 63
[51a]

 as a pale brown solid (940 mg, 57%). Mp 73-74 ˚C; 
1
Η NMR 

(CDCl3, 700 MHz) H 1.32 (d, J = 6.3 Hz, 12H, H1), 4.96 (s, 2H, H4), 5.16 (sep,  

J = 6.3 Hz, 2H, H2), 7.40-7.42 (m, 2H, H7), 7.51-7.54 (m, 1H, H8), 7.90-7.91 (dd,  

J1 = 1 Hz, J2 = 7 Hz, H6); 
13

C NMR (CDCl3, 176 MHz) C 21.8 (C1), 70.2 (C2), 78.3 

(C4), 128.0 (C7), 132.3 (C8), 135.4 (C6), 169.1 (C3); 
11

B (CDCl3, 128.4 MHz) B 

33.1; IR νmax (neat)/cm
-1 

3287, 3028, 1627, 1490; ASAP-MS (positive ion mode) 

m/z: 321 [M+H]
+
, 279 [M+H-C3H6]

+
, 237 [M+H-C6H12]

+
, 193 [M+H-C7H12O2]

+
; 

HRMS-ASAP: Calcd for C16H22BO6 321.1504. Found 321.1500; Anal. Calcd for 

C16H21BO6: C, 60.03; H, 6.61. Found: C, 59.71; H, 6.48. 

 

Procedure B 

To a solution of benzeneboronic acid (750 mg, 6.15 mmol) in toluene (100 mL) 

under argon was added diisopropyl-D-tartrate (1.08 mL, 5.13 mmol). The mixture 

was heated under reflux for 24 h using a Dean-Stark apparatus. After cooling to 

room temperature, the solution was dried, filtered and the solvent was removed in 

vacuo to give a crude brown solid. The solid was then recrystallized from hexane to 
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give the boronate ester 63 as a white solid (1.34 g, 81%). All spectroscopic and 

analytical properties were identical to those reported in procedure A of section 3.3.1.
 

 

3.3.2 (4R,5R)-2,4,5-Triphenyl-1,3,2-dioxoborolane 64 

 

 

To a solution of phenylboronic acid (250 mg, 2.05 mmol) in toluene (40 mL) was 

added (R,R)-hydrobenzoin (439 mg, 2.05 mmol). The mixture was heated to reflux 

for 24 h using a Dean-Stark apparatus. After cooling to room temperature, the 

solution was dried, filtered and the solvent was evaporated to give the crude solid. 

The solid was then recrystallised from hexane to afford the boronate ester 64
[82]

 as a 

white solid (312 mg, 52%). Mp 92-95 ˚C; 
1
Η NMR (CDCl3, 700 MHz) H 5.34 (s, 

2H, H5), 7.35-7.37 (m, 6H, HAr), 7.40-7.42 (m, 4H, HAr), 7.44-7.46 (m, 2H, HAr), 

7.54-7.56 (m, 1H, HAr), 7.99-8.00 (m, 2H, HAr); 
13

C NMR (CDCl3, 176 MHz) C 

87.1 (C5), 126.0, 128.1, 128.5, 129.0, 132.0, 135.4, 140.5 (CAr); 
11

B (CDCl3, 128.4 

MHz) B 31.5; IR νmax (neat)/cm
-1 

3080, 2941, 1602, 1497; ASAP-MS (positive ion 

mode) m/z: 318 [M+NH4]
+
; HRMS-ASAP: Calcd for C20H17BO2NH4 318.1660. 

Found 318.1659; Anal. Calcd for C20H17BO2: C, 80.03; H, 5.71. Found: C, 79.98; H, 

5.74. 

 

3.3.3 2-Chloromethyl-4,4,5,5-tetramethyl-1,2,3-dioxaborolane 68 
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To a stirred solution of bromochloromethane (2 mL, 31 mmol) and triisopropyl 

borate (6.46 mL, 28 mmol), in dry THF (28 mL) under argon at -78 ˚C, n-BuLi  

(13.4 mL, 2.5 M, 34 mmol) was added dropwise. The mixture was allowed to stir at  

-78 ˚C for 1 h, warmed to room temperature overnight (20 h) and then quenched with 

20% (w/v) HCl (6 mL). The mixture was extracted into ether (3 × 10 mL) and the 

organic extracts washed with brine (10 mL), dried over and concentrated in vacuo 

providing the boronic acid 67
[83]

 (1.71 g, 65%). The white solid was redissolved in 

Et2O, followed by the addition of pinacol (1.30 g, 10.98 mmol). The reaction 

mixture was stirred for 20 min. After drying and solvent removal, the yellow oil 

residue was distilled in vacuo (bp 80 ˚C/ 20 mmHg) to yield 68 as a colourless oil 

(1.75 g, 90%, 59% overall yield).
1
H NMR (CDCl3, 400 MHz) δH 1.30 (s, 12H, H3), 

2.97 (s, 2H, H1); 
13

C NMR (CDCl3, 100.6 MHz) δC 24.9 (C3), 84.7 (C1); 
11

B NMR 

(128.4 MHz; CDCl3)  δB 31.5; IR νmax (neat)/cm
-1

 2980, 1343, 1140, 967, 888, 846; 

ASAP-MS (positive ion mode) m/z: 177.1 [M+H]
+
, 161.1 [M-Me]

+
, 91.1 [M- 

C6H11]
+
; Anal. Calcd for C7H14BO2Cl: C, 47.73; H, 8.03. Found: C, 47.65; H, 8.00. 

 

3.3.4 N-tert-butylcarbonyl pyrrolidine 66 

 

 

To a stirred solution of pyrrolidine (11.5 mL, 137.5 mmol) in 200 mL of EtOH, 

Boc2O (40 g, 206.2 mmol) was added dropwise. The reaction was stirred at room 

temperature for 30 min, followed by the addition of imidazole (9.36 g, 137.5 mmol). 

The resulting solution was allowed to stir for 30 min. CHCl3 (100 mL) was added 

and the volatiles removed in vacuo. The residue was dissolved in DCM (200 mL) 

and washed with 1% aq. HCl (2 × 100 mL). The organic layer was dried and 

concentrated in vacuo. The crude was distilled over CaH2 in vacuo (bp 110-112 ˚C/ 

20 mm Hg) and 66
[84]

 was isolated as a colourless liquid (22.3 g, 95%). 
1
H NMR 

(CDCl3, 400 MHz) H 1.46 (s, 9H, H1), 1.82-1.83 (m, 4H, H5), 3.28-3.33 (m, 4H, 

H4); 
13

C NMR (CDCl3, 101 MHz) C 25.2 (C5), 25.9 (C5), 28.7 (C1), 45.8 (C4), 46.1 
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(C4), 79.0 (C2), 154.9 (C3); IR νmax (neat)/cm
-1

 2973, 2874, 1690 (s, C=O), 1396 (s, 

C-O); ASAP-MS (positive ion mode) m/z: 116.1 [M-C4H7]
+
; HRMS-ASAP: Calcd 

for C5H10NO2 116.0712. Found 116.0709. 

 

3.3.5 (S)-2-(Pinacolato)borylmethyl-N-tert-butoxycarbonyl-pyrrolidine 65 

 

 

To a stirred solution of (-)-sparteine (0.87 mL, 3.8 mmol) in dry Et2O (20 mL) under 

argon at -78 ˚C, s-BuLi (2.9 mL, 1.3 M, 3.8 mmol) was added dropwise and the 

solution was stirred for 20 min. Furthermore to the above solution N-Boc-pyrrolidine 

66 (0.5 g, 2.9 mmol) in Et2O (3 mL) was added dropwise and the reaction mixture 

was stirred at -78 ˚C for 2 h. 2-Chloromethyl-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane 68 (0.62 g, 3.5 mmol) was added dropwise followed by the addition 

of ZnCl2 (5.6 mL, 1.0 M in Et2O, 5.6 mmol) after 45 min. The mixture was stirred at 

-78 ˚C for 45 min and then warmed to room temperature and stirred overnight (24 h). 

The reaction was then quenched with 5% (w/v) aq. HCl (10 mL) filtered through 

Celite and washed with 5% w/v aq. HCl (5 mL). The phases were separated and the 

aqueous phase extracted into Et2O (3 × 8 mL). The combined organic extracts were 

dried and concentrated in vacuo. Flash column chromatography (EtOAc:hex, 4:1) 

afforded boronate 65
[38]

 as a colourless oil (0.73 g, 62%). 96% ee; [α]D = +33.2  

(c = 1.00, DCM); 
1
Η NMR (CDCl3, 700 MHz) H 0.84-1.00 (m, 2H, H8), 1.22 (s), 

1.23 (s, 12H in total, H10), 1.45 (s, 9H, H1), 1.15 (brs, 1H, H6), 1.70-1.75 (m, 1H, 

H5), 1.81-1.87 (m, 1H, H5), 2.02 (brs, 1H, H6), 3.30-3.38 (brd, 2H, H4), 3.90-3.99 

(brm, 1H, H7); 
13

C NMR (CDCl3, 176 MHz) C 18.5 (C8), 23.4, 23.9 (C5), 24.9, 25.1 

(C10), 28.7 (C1), 33.1, 33.4 (C6), 46.3, 46.6 (C4), 54.3 (C7), 79.0 (C2), 83.1 (C9), 

154.7 (C3); 
11

B (CDCl3, 128.4 MHz) B 33.2; IR νmax (neat)/cm
-1

 2975 (CH2, CH3), 

1694 (NCO), 1389 (BO), 1165 (C-O); FTMS-MS m/z 645.44 [2M+Na]
+
, 3324.22 
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[M+Na]
+
, 311.22 [M+H]

+
, 256.17 [M-C4H7]

+
, 212.18 [M-C6H11O]

+
; HRMS-FTMS: 

Calcd for C16H31BNO4 312.2341. Found 312.2338. The enantiomeric ratio was 

determined by GC using CP-Chiralsil-Dex-CB column (35 m × 0.25 mm ×  

0.25 μm), 128 
o
C, FID, tR (S) = 124 min; tR (R) = 127 min. 

 

3.3.6 (S)-N-(1,1-Dimethylethoxycarbonyl)-(pyrrolidin-2-yl)methylboronic acid 

76 

 

 

A stirred solution of boronate ester 65 (280 mg, 0.90 mmol) in 20% (w/v) aq. HCl  

(5 mL) was refluxed for 2 h. The mixture was cooled to room temperature, washed 

with Et2O (3 × 10 mL) and concentrated in vacuo. The residue was redissolved in a 

water:toluene solution (1:10) and the mixture was concentrated in vacuo. 

Azeotroping with toluene was repeated a further five times affording 76
[38]

 as a pale 

brown oil (150 mg, 88%). [α]D = +30.0 (c = 1.00, DCM); 
1
Η NMR (CDCl3,  

700 MHz) H 1.27 (unsymmetrical dd, J = 15.4, 9.1 Hz, 1H, H5), 1.39 

(unsymmetrical dd, J = 15.4, 7 Hz, 1H, H5), 1.64-1.68 (m, 1H, H3), 2.00-2.12 (m, 

1H, H2), 2.25-2.29 (m, 1H, H3), 3.29-3.37 (m, 2H, H4), 3.73-3.77 (m, 1H, H4); 
13

C 

NMR(CDCl3, 176 MHz) C 18.2 (C5), 23.1, 23.6 (C2), 31.5 (C3), 44.8, 45.6 (C1), 

58.2 (C4); 
11

B (CDCl3, 128.4 MHz) B 30.9; IR νmax (neat)/cm
-1

 2979 (CH2, CH3), 

1624 (NCO), 1364 (BO), 1217, 1165 (C-O). 

 

3.3.7 N-(tert-butoxycarbonyl)-(S)-proline 90 

 

 



Experimental Section 

104 

 

To an ice-cold suspension of (S)-proline (1.5g, 13.03 mmol) in DCM (30 mL), 

triethylamine (2.36 mL, 16.94 mmol) was added, followed by a solution of di-tert-

butyl-dicarbonate (3.98 g, 18.24 mmol) in 1.5 mL of DCM. The reaction mixture 

was stirred at room temperature for 2.5 h and then quenched with 8 mL of saturated 

aq. citric acid. The organic layer was washed with (2  10 mL) of brine, water  

(10 mL) and dried. Removal of the solvent yielded the crude product, which was 

dissolved in hot EtOAc, followed by the addition of 40 mL of hexane. The desired 

product 90
[56]

 was crystallised and collected by filtration as a white solid in 70% 

yield (1.93 g).Mp 123-126 
o
C; 

1
Η NMR (CDCl3, 700 MHz, mixture of rotamers) H 

1.43 (brs), 1.49 (brs, 9H in total, H1), 1.90-2.04 (m, 3H, CH2Pro), 2.28-2.41 (m, 1H, 

CH2Pro), 3.34-3.55 (m, 2H, H4), 4.25-4.36 (m, 1H, H7); 
13

C NMR (CDCl3, 176 

MHz, mixture of rotamers) C 23.9, 24.5  (C5 + C6), 28.3, 28.6 (C1), 46.5, 47.3 (C4), 

59.0, 59.5 (C7), 80.4, 82.0 (C2), 154.0, 157.2,  (C8), 173.9, 178.3 (C3); IR νmax 

(neat)/cm
-1  

2968, 1736, 1633; ES-MS (70 eV) m/z  429 [2M-H]
+
, 214 [M-H]

+
; 

HRMS-ES: Cald for C10H16NO4 214.1085. Found 214.1081; Anal. Calcd for 

C10H17NO4: C, 55.80; H, 7.96; N,6.51. Found: C, 55.73; H, 7.92, N, 6.35. 

 

3.3.8 (2S)-N-(tert-butoxycarbonyl)-2-(hydroxymethyl)pyrrolidine 89 

 

 

Procedure A 

To a solution of (S)-N-(tert-Butoxycarbonyl)proline 90 (0.60 g, 2.79 mmol) in dry 

THF (5 mL) at room temperature under argon, BH3·DMS (10.0-10.2 M as BH3,  

306 µL, 3.06 mmol) was added dropwise. The reaction mixture was refluxed for 2 h. 

After cooling to rt, ice (2.5 g) was added and the aqueous layer was extracted with  

(2  15 mL) DCM. The solution was filtrated through Celite and the solvent was 

removed affording a white solid. The desired product 89
[56]

 was recrystallised from 



Experimental Section 

105 

 

Et2O (5 mL) and isolated as a white solid (0.45 g, 80%). Mp 55-60 ˚C; 
1
Η NMR 

(CDCl3, 700 MHz) H 1.47 (brs, 9H, H1), 1.56-1.59 (m, 1H, CH2Pro), 1.74-1.86 (m, 

2H, CH2Pro), 1.98-2.03 (m, 1H, CH2Pro), 3.29-3.32 (m, 1H, H8), 3.43-3.46 (m, 1H, 

H8), 3.56-3.64 (m, 2H, H4), 3.95 (brs, 1H, H7), 4.74 (brs, 1H, -OH), (addition of D2O 

caused the signal at H 4.74 to disappear); 
13

C NMR (CDCl3, 126 MHz) C 24.2 

(CH2Pro), 28.6 (C1), 28.9 (CH2Pro), 47.7 (C8), 60.3 (C7), 67.9 (C4), 80.4 (C2), 157.1 

(C3); IR νmax (neat)/cm
-1 

3435 (-OH), 2979 (CH2, CH3), 1660 (s, C=O), 1403, 1129, 

1055, 903; ES-MS (70 eV) m/z: 321 425 [2M+Na]
+
, 224 [M+Na]

+
, 146 [2M-

CMe3+Na]
+
; HRMS-ES: Calcd for C10H23N2O3 224.1257. Found 224.1262; Anal. 

Calcd for C10H19NO3: C, 59.68; H, 9.52; N, 6.96. Found: C, 59.48; H, 9.50; N, 6.87. 

 

Procedure B 

To a stirred solution of LiAlH4 (0.74 g, 19.54 mmol) in dry THF (25 mL) under 

argon at 0 C, (S)-proline (1.50 g, 13.03 mmol) was added portionwise. The reaction 

mixture was stirred for 1 h at 0 C and for an extra 1 h at 25 C. The reaction was 

then quenched with 5 mL of 20% (w/v) aq. KOH solution and filtered under inert 

atmosphere through celite and magnesium sulphate. The solution was diluted with 

dry THF (35 mL) and this was followed by the addition of di-tert-butyl-dicarbonate 

(4.27 g, 19.54 mmol) in a solution of THF (10 mL). The reaction mixture was further 

stirred overnight and then quenched with 15 mL of sat. aq. NaHCO3 solution. The 

aqueous layer was extracted with (3  25 mL) Et2O and the combined organic layers 

were washed with brine (25 mL) and dried. Removal of the solvent afforded the 

crude product, which was purified by flash column chromatography (EtOAc:hex, 

3:1) and afforded compound 89 as a white solid (0.59 g, 23%). All spectroscopic and 

analytical properties were identical to those reported in procedure A of section 3.3.8. 

 

Procedure C 

To a suspension of NaBH4 (1.58 g, 41.69 mmol) in dry THF (30 mL), a solution of 

iodine (4.41 g, 17.37 mmol) in dry THF (8 mL) was added dropwise. The I2-THF 

solution was added at such a rate that it reacts instantly so that the reaction mixture 

remains white. The reaction mixture was stirred under argon at 0 C. (S)-Proline  
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(2.0 g, 17.37 mmol) was added portionwise and the reaction mixture was refluxed 

overnight. After this period, the solution was cooled to 0 C and methanol (4 mL) 

was added. The reaction mixture was diluted with THF (20 mL), followed by the 

addition of triethylamine (2.54 mL, 18.24 mmol) and di-tert-butyl-dicarbonate  

(3.83 g, 17.54 mmol) in dry THF (13 mL). After stirring the reaction for 3 h at rt, the 

solvent was removed in vacuo and the resulting white solid was suspended in 30 mL 

of EtOAc and 20 mL of water. This was followed by the addition of a 1:1 solution of 

1.2 M aq. HCl and brine (26 mL). The aqueous layer was extracted in  

(3  15 mL) of EtOAc and the combined organic layers were washed with a 1:1 

solution of 1.2 M aq. HCl and brine (15 mL), sat. aq. solution of NaHCO3 (8 mL), 

brine (8 mL) and water (15 mL). The organic layer was dried and concentrated in 

vacuo. The desired product 89 was isolated after flash column chromatography 

(EtOAc:hex, 2:1) as a white solid (0.42 g, 12%). All spectroscopic and analytical 

properties were identical to those reported in procedure A of section 3.3.8. 

 

3.3.9 (2S)-N-(tert-butoxycarbonyl)-2-(iodomethyl)pyrrolidine 88 

 

 

To a suspension of imidazole (0.20 g, 2.98 mmol) and PPh3 (0.59 g, 2.24 mmol) in 

Et2O (4 mL) at 0 C under argon, iodine (0.57 g, 2.24 mmol) was added portionwise. 

The reaction mixture was stirred for 10 min, followed by the addition of (S)-N-(tert-

butoxycarbonyl)prolinol 89 (0.30 g, 1.49 mmol) in Et2O and 2 mL of DCM. The 

resulting mixture was stirred overnight at rt, filtrated and concentrated. The crude 

product was purified by flash column chromatography (hex:EtOAc, 6:1) and 

compound 88
[85]

 was isolated as a white solid (0.39 g, 83%). Mp 38-40 ˚C; 
1
Η NMR 

(CDCl3, 700 MHz, mixture of rotamers) H 1.46 (brs), 1.48 (brs, 9H in total, H1), 

1.81-1.91 (m, 3H, CH2Pro), 2.04-2.06 (m, 1H, CH2Pro), 3.14-3.52 (m, 4H, H8+H4), 

3.86-3.89 (m, 1H, H7); 
13

C NMR (CDCl3, 176 MHz, mixture of rotamers) C 10.8, 
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11.2 (C8), 23.0, 23.7 (C6), 28.6 (C1), 31.2, 31.8 (C5), 47.2, 47.7 (C4), 58.1, 58.3 (C7), 

79.74, 80.06 (C2), 154.8 (C3); IR νmax (neat)/cm
-1 

2972, 2869 (CH2), 1674 (CONH), 

1391, 1364 (CMe3); ASAP-MS (positive ion mode) m/z: 255.9 [M+H-CMe3]
+
, 128.1 

[M+H-MeI]
+
; Anal. Calcd for C10H18NIO2: C, 38.60; H, 5.83; N, 4.50. Found: C, 

38.77; H, 5.88; N, 4.44. 

 

3.3.10 tert-Butyl pent-4-enylcarbamate 91 

 

 

To a stirred solution of iodide 88 (100 mg, 0.32 mmol) and triisopropyl borate  

(74 μL, 0.32 mmol) in dry THF under argon at -78 
o
C, n-BuLi (0.26 mL, 2.5 M,  

0.64 mmol) was added dropwise. The reaction was stirred at -78 
o
C for 1 h and then 

warmed up to room temperature overnight. The reaction mixture was quenched with 

20% (w/v) aq. HCl (3 mL) and the aqueous layer was extracted in EtOAc (3 × 5 

mL). The organic extracts were combined, dried and concentrated in vacuo. The 

resulting yellow solution was purified by flash column chromatography (hex:EtOAc, 

10:1) and compound 91 was isolated as a colourless liquid (56 mg, 92%). 
1
Η NMR 

(CDCl3, 400 MHz) H 1.44 (s, 9H, H1), 1.54-1.61 (m, 2H, H6), 2.04-2.11 (m, 2H, 

H5), 3.10-3.14 (m, 2H, H4), 4.52 (brs, 1H, H7), 4.96-5.05 (m, 2H, H8), 5.75-5.85 (m, 

1H, H7). All spectroscopic and analytical properties were identical to those reported 

in the literature.
[86] 

 

3.3.11 (R)-2-(Pinacolato)borylmethyl-N-tert-butoxycarbonyl-pyrrolidine 87 
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To a stirred solution of (2S)-N-(tert-butoxycarbonyl)-2-(iodomethyl)pyrrolidine 88 

(0.50 g, 1.6 mmol) in dry THF (8 mL) under argon at room temperature, B2pin2 

(0.41 g, 1.6 mmol) and LiO
t
Bu (0.26 g, 3.2 mmol) were added, followed by CuI 

(17.5 mg, 0.16 mmol). The reaction mixture was stirred for 20 h and then quenched 

with 5% (w/v) aq. HCl (5 mL). The aqueous phase was extracted into Et2O (3 × 5 

mL) and the combined organic extracts were dried and concentrated in vacuo. The 

crude product was purified by flash column chromatography (EtOAc:hex, 4:1) and 

87
[38]

 was isolated as a colourless oil (0.32 g, 65%). 97% ee; [α]D = -36.4 (c = 1.00, 

DCM). All spectroscopic and analytical properties were identical to those reported in 

section 4.3.5. The enantiomeric ratio of the product was determined by GC using 

CP-Chiralsil-Dex-CB column (35 m × 0.25 mm × 0.25 μm), 128 
o
C, FID, tR (S) = 

124 min; tR (R) = 127 min. 

 

3.3.12 (R)-N-(1,1-Dimethylethoxycarbonyl)-(pyrrolidin-2-yl)methylboronic acid 

92 

 

 

A stirred solution of boronate ester 87 (300 mg, 0.96 mmol) in 20% (w/v) aq. HCl  

(5 mL) was refluxed for 2 h. The mixture was cooled to room temperature, washed 

with Et2O (3 × 10 mL) and concentrated in vacuo. The residue was redissolved in a 

water:toluene solution (1:10) and the mixture was concentrated in vacuo. 

Azeotroping with toluene was repeated a further five times affording 92
[38]

 as a pale 

brown oil (162 mg, 95%). [α]D = -33.1 (c = 1.00, DCM). All spectroscopic and 

analytical properties were identical to those reported in Section 4.3.6. 
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3.3.13 (S)-Methyl-5-oxo-pyrrolidine-2-carboxylate 100 

 

 

To a stirred solution of L-pyroglutamic acid (6.0 g, 46.5 mmol) and MeOH (25 mL) 

was added Amberlyst 15 resin (2.3 g). The reaction mixture was refluxed for 24 h, 

cooled, filtered and concentrated in vacuo affording compound 95
[67]

 as a brown oil 

(5.92 g, 89%). No further purification was carried out; the material was used directly 

in the next reaction.
 1

Η NMR (CDCl3, 400 MHz) δH 2.23-2.51 (m, 4H, CH2Pro), 3.77 

(s, 3H, H1), 4.24-4.28 (m, 1H, H3), 6.33 (s, 1H, -NH), (addition of D2O caused the 

signal at 6.33 to disappear );
 13

C NMR (CDCl3, 126 MHz,) δc 24.9 (C4), 29.3 (C5), 

52.7 (C1), 55.5 (C3), 172.5 (C2), 178.1 (C6); IR νmax (neat)/cm
-1 

3248 (CONH), 1686 

(CONH), 1207, 1180 (OMe); ASAP-MS (positive ion mode) m/z 144.06 [M+H]
+
, 

84.04 [M-CH3COO]
+
; HRMS-ASAP: Calcd for C6H10NO3 144.0661. Found 

144.0623. 

 

3.3.14 (S)-5-Hydroxymethyl-2-pyrrolidinone 99 

 

 

To a stirred solution of methyl-(S)-2-pyrrolidinone-5-carboxylate 100 (2.5 g,  

17.5 mmol) and dry EtOH (60 mL) at 0 
o
C under argon was added portionwise 

NaBH4 (1.32 g, 34.9 mmol). The reaction was allowed to warm to rt and monitored 

by TLC (EtOH:MeOH, 4:1). After 3 h the reaction was quenched with acetic acid  

(1 mL, 17.5 mmol) and stirred for further 30 min. The reaction mixture was then 

filtered through a glass fiber filter and the solvent was evaporated to afford the crude 

product was a white solid. To the product EtOAc (2 mL) and silica gel (2 g) were 

added. The suspension was concentrated and dried in vacuo. The silica gel mixture 

was added to the top of a short silica gel column and eluted using EtOAc:MeOH 
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(4:1), yielding 99
[68]

 as a white solid (1.36 g, 70%). 
1
Η NMR (CDCl3, 500 MHz) δH 

1.76-1.84 (m, 1H, H3), 2.14-2.21 (m, 1H, H3), 2.30-2.42 (m, 2H, H4), 3.48 (dd, J = 

11.5, 7 Hz, 1H, H1), 3.68 (dd, J = 11.5, 3.5 Hz, 1H, H1), 3.78-3.83 (m, 1H, H2), 7.10 

(s, 1H), (addition of D2O caused the signal at 7.10 to disappear); 
13

C NMR 

(CDCl3,126 MHz) δc 22.7 (C3), 30.3 (C4), 56.5 (C2), 66.1 (C1), 179.5 (C5); IR νmax 

(neat)/ cm
-1 

3264 (CONH), 2934 (OH), 1656 (CONH), 1262, 1054. 

 

3.3.15 (S)-5-Iodomethylpyrrolidin-2-one 94b 

 

 

To a stirred solution of (S)-5-(Hydoroxymethyl)-2-pyrrolidinone 99 (0.40 g,  

3.5 mmol) in dry DCM (12 mL) under argon at rt, TsCl (0.79 g, 4.2 mmol) and Et3N 

(1.45 mL, 10.4 mmol) were added, followed by DMAP (43 mg, 0.35 mmol). The 

reaction mixture was then stirred overnight at rt and then diluted with DCM (8 mL) 

and finaly acidified with 0.6 M aq. HCl (20.4 mL). The aqueous phase was extracted 

with DCM (2 × 10 mL). The combined organic extracts were dried, filtered and 

concentrated in vacuo to afford the crude tosylate (0.83 g) as a pale yellow solid. To 

a solution of NaI (1.56 g, 10.4 mmol) in dry MeCN (20 mL) under argon at rt the 

crude tosylate product was added. The reaction was refluxed for 5 h, then cooled and 

concentrated in vacuo. The resulting dark orange oil was acidified with 1M aq. HCl  

(6 mL) and extracted with CHCl3 (10 × 10 mL). The combined organic phases were 

washed with 10% (w/v) aq. solution of Na2S2O3 (10 mL) and the aqueous phase was 

then extracted with CHCl3 (2 × 20 mL). Silica gel (2.0 g) was added to the combined 

organic phases and then concentrated in vacuo. The silica gel mixture was added to 

the top of a short silica gel column and eluted using EtOAc, affording 94b
[85]

 as a 

yellow solid (0.47 g, 60%). Mp 76 
o
C; 

1
Η NMR (CDCl3, 500 MHz ) δH 1.80-1.86 (m, 

1H, CH2Pro), 2.30-2.52 (m, 3H, CH2Pro), 3.18 (dd, J = 10, 7 Hz, 1H, H1), 3.25 (dd, J 

= 10, 5.5 Hz, 1H, H1), 3.84-3.89 (m, 1H, H2), 5.99 (brs, 1H, -NH),  

(addition of D2O caused the signal at 5.99 to disappear); 
13

C NMR (CDCl3, 126 

MHz) δc 11.1 (C1), 27.7 (C3), 30.3 (C4), 55.3 (C2), 177.4 (C5); IR νmax (neat)/cm
-1
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3165 (CONH), 1684 (CON); ASAP-MS (positive ion) m/z  226.0 [M+H]
+
, 99.1 [M-

I]
+
; HRMS-ASAP: Cald for C5H9NIO 225.9729. Found 225.9714. 

 

3.3.16 4-Hydroxy-4-(4-nitrophenyl)-butan-2-one 58 

 

 

To a stirred solution of p-nitrobenzaldehyde (1.0 g, 6.62 mmol) in acetone (9.7 mL) 

and water (10 mL), pyrrolidine (0.17 mL, 2 mmol) was added. The reaction was 

stirred at room temperature for 2 h and then quenched with 5% (w/v) aq. HCl (20 

mL). The aqueous layer was extracted with EtOAc (2 × 30 mL). The organic layer 

was then washed with 5% w/v HCl (2 × 20 mL), dried over MgSO4 and evaporated 

in vacuo. The crude product was purified by silica gel column chromatography 

(hex:EtOAc, 1:1) and afforded the desired product 58
[69]

 as a white solid (0.89 g, 

65%). Mp 55-66 ˚C; 
1
H NMR (CDCl3, 400 MHz) H 2.23 (s 3H, H1), 2.80-2.91 (m, 

2H, H3), 3.55 (d, J = 3.2 MHz, 1H, -OH), 5.26 (qui, J = 3.9 MHz, 1H, H4), 7.53-7.55 

(m, 2H, CHAr), 8.21-8.23 (m, 2H, CHAr), (addition of D2O caused the signal 3.55 to 

disappear); 
13

C NMR (CDCl3, 101 MHz) C 30.9 (C1), 51.8 (C3), 69.3 (C4), 123.9 

(CAr), 208.8(C2), 126.6 (CAr), 150.1 (C8); IR νmax (neat)/cm
-1

 3452 (b, -OH), 1712 (s, 

C=O), 1519 (s), 1339 (s, -NO2); ASAP-MS (positive ion) m/z 208.1 [M-H]
+
, 192.1 

[M-OH]
+
, 144.1 [M- H2NO3]

+
; Anal. Calcd for C10H11O3N: C, 57.41; H, 5.30; N, 

6.70. Found: C, 57.34; H, 5.14; N, 6.43. 

 

3.3.17 4-(4-Nitrophenyl)-3-buten-2-one 59 
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To a stirred solution of p-nitrobenzaldehyde (500 mg, 3.31 mmol) in acetone  

(2.97 mL) was added 0.1 M aqueous solution of NaOH (33 mL). The reaction 

mixture was allowed to stir at room temperature for 10 h and then diluted in EtOAc 

(20 mL). The aqueous layer was extracted into EtOAc (3 × 15 mL) and then the 

organic layers were combined, dried and concentrated in vacuo. Silica gel 

chromatography (hexane: EtOAc, 2:1) afforded the desired product 59
[78]

 as a yellow 

solid (539 mg, 85%). Mp 88-90 ˚C; 
1
Η NMR (CDCl3, 700 MHz) H  2.42 (s, 3H, 

H1), 6.81 (d, J = 16 Hz, 1H, H3), 7.54 (d, J = 16 Hz, 1H, H4), 7.69 (d, J = 9.1 MHz, 

1H, H6), 8.26 (d, J = 8.4 Hz, 1H, H7); 
13

C NMR (CDCl3, 176 MHz) C  28.2 (C1), 

124.4 (C7), 128.9 (C6), 130.5 (C3), 140.2 (C4), 140.8 (C5), 148.8 (C8), 197.6 (C2); IR 

νmax (neat)/cm
-1 

1691 (C=O, α,β-unsaturated), 1509 (NO2), 1339 (NO2); ASAP-MS 

(positive ion mode) m/z: 192.1 [M+H]
+
, 161.1 [M-Me]

+
 144.0 [M-HNO2]

+
; HRMS-

ASAP: Calcd for C10H10NO3 192.0661. Found 192.0655. 

 

3.3.18 (2R)-N-(tert-Butoxycarbonyl)-2-vinylpyrrolidine 113 

 

 

Procedure A 

To a stirred solution of (-)-sparteine (1.77 mL, 7.70 mmol), N-Boc-pyrrolidine 66 

(1.32 g, 7.70 mmol) in Et2O (30 mL) under argon at -78 
o
C, s-BuLi (5.50 mL, 1.4 M, 

7.70 mmol) was added dropwise. The reaction mixture was then warmed to room 

temperature and stirred for 1 h. In a second flask, a solution of CuCN (0.31 g,  

3.50 mmol), LiCl (0.33 g, 7.70 mmol) in 30 mL of THF was stirred at room 

temperature under argon for 20 min. The second solution was added to the N-Boc-

pyrrolidine solution and stirred for 1 h at room temperature. Vinyl bromide  

(7.70 mL, 1 M, 7.70 mmol) was added to the reaction mixture at -78 
o
C and allowed 

to warm to room temperature overnight. The reaction was then quenched with 24 mL 

of sat. aq. solution of NH4Cl and diluted with 18 mL of Et2O. The aqueous phase 
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was extracted with (3 × 30 mL) of Et2O and the combined organic extracts were 

dried, filtrated and concentrated in vacuo. The crude product was purified using flash 

column chromatography (pet. ether:EtOAC, 9:1), affording the desired vinyl 

pyrrolidine 113
[72]

 as a colourless oil (0.59 g, 39%). 27% ee; 
1
Η NMR (CDCl3,  

700 MHz) H  1.68-1.71 (m, 1H, H6), 1.78-1.86 (m, 2H, H5), 2.00 (m, 1H, H6), 3.39 

(brs, 2H, H4), 4.23-4.34 (brd, 1H, H7), 5.04 (brs, 2H, H9), 5.73 (brs, 1H, H8); 
13

C 

NMR (CDCl3, 176 MHz) C 22.9 (C5), 28.6 (C1), 32.2 (C6), 46.3 (C4), 59.3 (C7), 79.2 

(C2), 113.8 (C9), 139.2 (C8), 154.9 (C3); IR νmax (neat)/ cm
-1 

2947 (CH2), 1690 

(NCO), 1388, 1364 (CMe3), 1166, 1112, 987, 913 (CH=CH2); ASAP-MS (positive 

ion mode) m/z:  142.08 [M-C4H7]
+
, 98.09 [M-C5H7O2 ]

+
; HRMS-ASAP: Calcd for 

C7H12NO2 142.0783. Found 142.0818. The enantiomeric ratio of the product was 

determined by HPLC analysis using a column tR (S) = 28.7 min; tR (R) = 31.1  min. 

 

Procedure B 

To a stirred solution of (-)-sparteine (2.4 mL, 10.51 mmol) in Et2O (42 mL) under 

argon at -78 
o
C, was added s-BuLi (7.51 mL, 1.4 M, 10.51 mmol) dropwise and the 

solution was stirred for 30 min. Furthermore, to the above solution N-Boc-

pyrrolidine 66 (1.50g, 8.76 mmol) was added and the reaction mixture was stirred at 

-78 
o
C. After 6 h a solution of ZnCl2 (1.55 g, 11.39 mmol) in 14 mL of THF was 

added dropwise. The reaction mixture was stirred for additional 30 min before a 

solution of CuCN (0.94 g, 10.51 mmol), LiCl (0.92 g, 21.02 mmol) in 35 mL of THF 

was added dropwise. The mixture was allowed to warm to room temperature 

overnight and quenched with 10% (w/v) aq. solution of NH4OH. The organic layer 

was then washed with brine, dried, filtrated and concentrated in vacuo. The residue 

was purified by flash column chromatography (pet. ether:EtOAc, 9:1) affording the 

vinyl pyrrolidine 111 as a colourless oil (0.74 g, 46%). 43% ee.  All spectroscopic 

and analytical properties were identical to those reported in procedure A of section 

3.3.18. The enantiomeric ratio of the product was determined by HPLC analysis 

using a column tR (S) =  28.7 min; tR (R) = 31.1  min. 
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3.3.19 (2S)-N-(tert-Butoxycarbonyl)pyrrolidine-2-carboxaldehyde 117 

 

 

A solution of  DMSO (1.64 mL,  16.40 mmol) dissolved in DCM (4 mL) was added 

dropwise over a 10 min period to a stirred cooled at -63 
o
C

 
solution of oxalyl 

chloride (0.75 mL, 8.94 mmol) dissolved in 20 mL of DCM. After 10 min, a solution 

of alcohol 87 (1.50 g, 7.45 mmol) dissolved in 7.5 mL of DCM was added dropwise 

and the reaction mixture was stirred for 30 min. Diisopropylethylamine (5.20 mL, 

29.80 mmol) was then added and the mixture was then washed with (3 × 10 mL) of 

5% (w/v) aq. solution HCl, (3 × 10 mL) of H2O and (2 × 10 mL) of brine, dried, 

filtrated and concentrated in vacuo. The desired aldehyde 115
[74]

 was stored under 

argon in a freezer without further purification (1.19 g, 80%).
 1

Η NMR (CDCl3, 400 

MHz, mixture of rotamers) H 1.43 (brs), 1.48 (brs, 9H in total, H1), 1.84-2.15 (m, 

4H, CH2Pro), 3.42-3.59 (m, 2H, H4), 4.02-4.21 (m, 1H, H7), 9.45-9.56 (m, 1H, 

CHO). All other spectroscopic and analytical properties were identical to those 

reported in the literature.
[74]

  

 

3.3.20 (2S)-N-(tert-Butoxycarbonyl)-2-vinylpyrrolidine 116 

 

 

To a stirred solution ice-cold solution of methyl triphenylphosphonium bromide 

(1.80 g, 5.00 mmol) in 28 mL of THF under argon, n-BuLi (2.00 mL, 2.5 M,  

5.00 mmol) was added dropwise. The mixture was allowed to warm to room 

temperature, stirred for 3 h and was then added dropwise to cold solution at -78 
o
C

 
of 
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aldehyde 117 (1.00 g, 5.00 mmol) in THF (28 mL). The reaction was allowed to 

warm to room temperature, stirred overnight and quenched with 8 mL of sat. aq. 

solution of NH4Cl. The aqueous layer was then extracted with (3 × 30 mL) of 

EtOAc. The combined organic extracts were dried, filtrated and concentrated in 

vacuo affording the crude product as a brown oil, which was then purified by flash 

column chromatography (hex:EtOAc, 8:1) 114
[72]

 (0.99 g, 50%). 97% ee  All 

spectroscopic and analytical properties were identical to those reported in procedure 

A of section 3.3.18. The enantiomeric ratio of the product was determined by HPLC 

analysis using a column tR (S) =  28.7 min; tR (R) =  31.1 min. 

 

3.3.21 (R)-tert-Butyl-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl) 

pyrrolidine-1-carboxylate 115 

 

 

To a stirred solution of [Ir(cod)Cl]2 (15.3 mg, 0.03 mmol) and dppe (18.3 mg,  

0.046 mmol) in DCM (4 mL), pinacol borane (0.26 mL, 1.82 mmol) and N-Boc-

vinylpyrrolidine 116 (0.30 g, 1.52 mmol) were added. The reaction mixture was 

stirred at room temperature under argon for 20 h, and then quenched with MeOH 

(1.5 mL) and H2O (4 mL). The aqueous layer was extracted with (3 × 5 mL) of Et2O 

and the combined organic extracts were dried, filtrated and concentrated in vacuo. 

Flash column chromatography (hex:EtOAc, 3:1) resulted in the isolation of 115 as a 

colourless oil (0.20 g, 41%). [α]D = -41.2 (c = 0.25, DCM); 
1
Η NMR (CDCl3, 700 

MHz) H 0.70-0.71 (m, 2H, H9), 1.23 (s, 12H, H11), 1.31-1.39 (m, 1H, H6), 1.45 (m, 

9H, H1), 1.64-1.83 (m, 5H, H5+H6), 3.27-3.39 (brd, 2H, H4), 3.65-3.72 (brd, 1H, H7); 

13
C NMR (CDCl3, 176 MHz) C (CDCl3, 176 MHz) C 7.7 (C9), 23.2, 23.8 (C6), 25.0 

(C11), 28.7 (C1), 29.3, 30.2 (C5), 46.3, 46.6 (C4), 59.2 (C7), 79.0 (C2), 83.1 (C10), 

154.9 (C3); 
11

B (CDCl3, 128.4 MHz) B 34.1; IR νmax (neat)/cm
-1

 2975 (CH2, CH3), 

1690 (NCO), 1389 (BO), 1165 (C-O); FTMS-MS m/z 673.47 [2M+Na]
+
, 348.23 
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[M+Na]
+
, 326.25 [M+H]

+
, 270.19 [M-C4H7]

+
, 226.20 [M-C6H11O]

+
; HRMS-FTMS: 

Calcd for C17H33BNO4 326.2497. Found 326.2497. 

 

3.3.22 (R)-2-(2-Boronoethyl)pyrrolidinium chloride 118 

 

 

A stirred solution of boronate ester 118 (300 mg, 0.92 mmol) in 20% (w/v) HCl  

(5 mL) was refluxed for 2 h. The mixture was cooled to room temperature, washed 

with Et2O (3 × 10 mL) and concentrated in vacuo. The residue was redissolved in a 

water:toluene solution (1:10) and the mixture was concentrated in vacuo. 

Azeotroping with toluene was repeated a further five times affording 118
 
as a pale 

brown oil (162 mg, 98%). [α]D = -39.3 (c = 0.25, DCM); 
1
Η NMR (D2O, 700 MHz) 

H 0.87 (t, J = 8.4 Hz, 2H, H6), 1.64-1.67 (m, 1H, H3), 1.74-1.86 (m, 2H, H5), 1.99-

2.09 (m, 2H, H2), 2.22-2.24 (m, 1H, H3), 3.27-3.34 (m, 2H, H1), 3.50 (qui, J = 8.4 

Hz, 1H, H4); 
13

C NMR (D2O, 176 MHz) C 11.3 (C6), 23.0 (C2), 26.4 (C5), 29.3 (C3), 

45.0 (C1), 62.6 (C4); 
11

B (CDCl3, 128.4 MHz) B 32.0; IR νmax (neat)/cm
-1

 2979, 

1624, 1364, 1217, 1015; ES-MS (70 eV) m/z: 124.0 [M-Cl-H2O]
+
, 97.0 [M-Cl-

2H2O-B]
+
, 70.0 [M-C2H8O2BCl]

+
. 
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Applications in Bifunctional Catalysis.", Acc. Chem. Res. 2009, 42, 756-768. 

I. Georgiou, A. Whiting, "Synthesis and Application of Aminoboronic Acids as 

Bifunctional Catalysts. Clean, Green and Asymmetric.", Chimica Oggi/Chemistry 

Today, May/June 2010, 28.  

I. Georgiou, A. Whiting, "Mechanism and Optimisation of the Homoboroproline 

Bifunctional Catalytic Asymmetric Aldol Reaction: Lewis Acid Tuning Through In 

situ Esterification.", Org. Biomol. Chem.2012, DOI: 10.1039/C2OB06872A. 

 

5.2 List of Conferences Attended 

Date Meeting Presentation 

13/01/2009 Sheffield Stereochemistry - 

01/04/2009 
RSC Organic Division North East Regional 

Meeting - Leeds 
- 

30/06/2009 
2

nd
 NEPIC Organic Chemistry and Catalysis 

Symposium 
Poster 

13-17/07/2009 Liverpool Summer School in Catalysis Poster 

11/09/2009 
Symposium in Honor of Professor Bernard 

Golding –University of Newcastle 
- 

12/01/2010 Sheffield Stereochemistry - 

15/04/2010 
RSC Organic Division North East Regional 

Meeting – Durham 
Poster 

13-19/09/2010 
6

th
 EFCATS Summer School –Izmir, Turkey- 

(Bursary) 
Talk 

18/10/2010 1
st
 NORSC Meeting –York Talk 
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5.3 Calibration Curves Used for the Aldol Reactions Outlined in Section 2.6 

 

Figure 5.1 Calibration curve of the starting material, p-nitrobenzaldehyde. 
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24-25/03/2011 
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(Ustinov College Travel Award) 
Talk 

06/04/2011 SCI Postgraduate Symposium-Manchester Talk 

13/04/2011 
RSC  Organic Division North East Regional 

Meeting – Northumbria 
Poster 

22/09/2011 
RSC Heterocyclic & Synthesis Group 

postgraduate meeting at AstraZeneca 
Poster 

y = 467.99x – 0.0720 

R
2
 = 0.983 
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Figure 5.2 Calibration curve of the aldol condensation product 58. 

 

Figure 5.3 Calibration curve of the aldol elimination product 59. 
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5.4 HPLC Spectra 

Figure 5.4 Example of HPLC spectrum of p-nitrobenzaldehyde (tR = 26.63 min) used for the 

calibration curve outlined in Figure 5.1. 

Figure 5.5 Example of HPLC spectrum of (R)- and (S)-aldol condensation product (tR = 

39.74 and 45.92 min respectively) used for the calibration curve outlined in Figure 5.2. 
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Figure 5.6 Example of HPLC spectrum of aldol elimination product (tR = 51.58 min) used 

for the calibration curve outlined in Figure 5.3. 

 

Figure 5.7 Example of HPLC spectrum for the aldol reaction outlined in eqn. 2.12 . 
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Figure 5.8 Example of HPLC spectrum for the aldol reaction outlined in eqn. 2.16 . 

 

5.5 X-Ray Crystallography Data 

5.5.1 Crystallography Data for compound 64 
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Table 5.1 Crystal data and structure refinement 

Empirical formula C20H17BO2 

Formula weight 300.15 

Temperature/K 120 

Crystal system Orthorhombic 

Space group P212121 

a/Å 5.41785 (12) 

b/Å 17.0100 (1)  

c/Å 17.2637 (3)  

α/Å 90.00 

β/Å 90.00 

γ/Å 90.00 

Volume/Å
3 

1590.98 (14) 

Z 4 

Pcalc mg/mm
3 

1.253 

m/mm
-1 

0.618 

F(000) 632.0 

Crystal size/mm
3 

0.36 × 0.17 × 0.07 

2Θ range for data collection 7.3 to 120.76
° 

Index ranges -5≤ h ≤6, -19≤ k ≤19, -19≤ 1 ≤19 

Reflections collected 19157 

Independent reflections 2362[R(int) = 0.0345] 

Data/restraints/parameters 2362/0/208 

Goodness-of-fit on F
2 

1.057 

Final R indexes [I>2σ (I)] R1 = 0.0248, wR2 = 0.0625 

Final R indexes [all data] R1 = 0.0257, wR2 = 0.0632 

Largest diff. peak/hole/ e Å
-3 

0.09/-0.14 

Flack parameter -0.11 (18) 

 

Table 5.2 Fractional atomis coordinates and equivalent isotropic displacement parameters 

Atom x y z Ueq 

O1 7677.7 (17) 4577.0 (5) 2834.2 (5) 28.3 (2) 

O3 4809.6 (18) 4781.8 (5) 1884.1 (5) 28.4 (2) 
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C4 4895 (3) 5512.2 (7) 2312. 1 (7) 26.5 (3) 

C5 6458 (3) 5307.9 (8) 3044.7 (7) 27.2 (3) 

C21 7336 (3) 3505.8 (7) 1796.0 (7) 26.7 (3) 

C22 5982 (3) 3192.2 (8) 1177.8 (8) 30.1 (3) 

C23 6651 (3) 2485.1 (8) 843.0 (8) 33.8 (3) 

C24 8695 (3) 2085.3 (8) 1106.5 (8) 33.9 (3) 

C25 10101 (3) 2391.6 (8) 1704.9 (8) 32.9 (3) 

C26 9410 (3) 3094.3 (8) 2047.8 (7) 29.7 (3) 

C41 5959 (3) 6159.1 (8) 1811.2 (7) 27.2 (3) 

C42 8016 (3) 6033.0 (8) 1351.3 (8) 38.4 (4) 

C43 8961 (3) 6627.9 (9) 892.9 (9) 44.1 (4) 

C44 7858 (3) 7357.4 (9) 890.5 (9) 43.2 (4) 

C45 5828 (3) 7494.7 (9) 1349.2 (9) 43.3 (4) 

C46 4885 (3) 6896.8 (8) 1805.7 (8) 36.0 (3) 

C51 4942 (3) 5192.0 (7) 3767.8 (7) 25.5 (3) 

C52 2847 (3) 4719.1 (8) 3750.1 (8) 29.3 (3) 

C53 1406 (3) 4622.1 (8) 4404.3 (8) 32.2 (3) 

C54 2039 (3) 5003.8 (8) 5084.8 (8) 33.7 (3) 

C55 4109 (3) 5473.4 (8) 5110.1 (7) 33.0 (3) 

C56 5563 (3) 5568.2 (7) 4454.1 (7) 28.0 (3) 

B2 6584 (3) 4295.5 (9) 2177.1 (8) 26.2 (3) 

 

Table 5.3 Anisotropic displacement parameters 

Atom U11 U22 U33 U23 U13 U12 

O1 29.4 (5) 31.5 (5) 23.9 (4) -4.1 (4) -1.7 (4) 6.0 (4) 

O3 34.7 (5) 25.0 (4) 25.4 (4) -2.3 (4) -4.2 (4) 0.8 (4) 

C4 30.4 (7) 26.0 (6) 23.2 (6) -5.0 (5) -2.0 (6) 3.7 (6) 

C5 30.8 (7) 24.7 (6) 25.9 (7) -3.1 (5) -1.1 (6) 1.2 (6) 

C21 28.7 (7) 27.4 (7) 24.1 (6) 2.7 (5) 4.8 (6) -3.5 (6) 

C22 31.4 (8) 29.5 (7) 29.3 (7) 2.5 (6) -1.6 (6) 0.0 (6) 

C23 40.0 (9) 29.7 (7) 31.5 (7) -4.0 (6) -4.1 (7) -2.8 (7) 

C24 37.3 (9) 27.2 (7) 37.4 (7) -3.9 (6) 6.6 (7) 0.4 (7) 

C25 27.5 (7) 30.2 (7) 40.9 (8) 1.3 (6) 0.1 (7) 2.3 (7) 
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C26 29.9 (8) 29.7 (7) 29.5 (7) 0.0 (6) -1.1 (6) -3.9 (6) 

C41 34.2 (8) 25.5 (7) 22.0 (6) -2.8 (5) -3.4 (6) 0.2 (6) 

C42 43.8 (10) 30.7 (7) 40.8 (8) 0.3 (6) 7.3 (7) 5.1 (7) 

C43 45.8 (10) 44.3 (9) 42.2 (8) 2.4 (7) 12.3 (8) -1.3 (8) 

C44 55.8 (11) 35.9 (8) 38.0 (8) 8.9 (7) -1.4 (8) -9.6 (8) 

C45 55.7 (11) 27.4 (7) 46.7 (9) 6.1 (6) -3.0 (8) 7.2 (7) 

C46 39.8 (8) 33.7 (7) 34.5 (7) -1.1 (6) 2.8 (7) 8.6 (7) 

C51 30.4 (8) 24.0 (6) 22.2 (6) -1.1 (5) -1.8 (6) 6.9 (6) 

C52 33.0 (8) 28.7 (6) 26.2 (7) -5.1 (6) -2.5 (6) 1.4 (6) 

C53 31.7 (8) 30.1 (7) 34.6 (7) 2.7 (6) 2.3 (7) 1.0 (6) 

C54 38.6 (10) 37.2 (7) 25.4 (7) 5.9 (6) -5.3 (6) 9.6 (7) 

C55 42.9 (9) 37.2 (8) 19.0 (6) -4.1 (6) -4.4 (6) 9.4 (7) 

C56 27.6 (8) 27.4 (7) 28.9 (7) -1.0 (5) -4.4 (6) 3.3 (6) 

B2 26.4 (8) 28.5 (8) 23.7 (7) 3.3 (6) 2.2 (6) -4.0 (7) 

 

Table 5.4 Bond lengths 

Atoms Length [Å] Atoms Length [Å] 

O1-C5 1.4541 (16) C25-C26 1.3854 (19) 

O1-B2 1.3665 (18) C41-C42 1.385 (2) 

O3-C4 1.4464 (14) C41-C46 1.3834 (19) 

O3-B2 1.3654 (18) C42-C43 1.383 (2) 

C4-C5 1.5612 (18) C43-C44 1.377 (2) 

C4-C41 1.5135 (18) C44-C45 1.375 (2) 

C5-C51 1.5073 (18) C45-C46 1.384 (2) 

C21-C22 1.4004 (19) C51-C52 1.391 (2) 

C21-C26 1.394 (2) C51-C56 1.3880 (18) 

C21-B2 1.550 (2) C52-C53 1.383 (2) 

C22-C23 1.3828 (19) C53-C54 1.385 (2) 

C23-C24 1.377 (2) C54-C55 1.378 (2) 

C24-C25 1.385 (2) C55-C56 1.3889 (19) 
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Table 5.5 Bond angles 

Atoms Angle [
°
] Atoms Angle [

°
] 

B2-O1-C5 108.06 (10) C46-C41-C42 118.36 (13) 

B2-O3-C4 107.97 (10) C43-C42-C41 120.83 (14) 

O3-C4-C5 103.88 (9) C44-C43-C42 120.05 (15) 

O3-C4-C41 110.17 (10) C45-C44-C43 119.86 (14) 

C41-C4-C5 114.72 (12) C44-C45-C46 119.89 (14) 

O1-C5-C4 103.55 (9) C41-C46-C45 121.00 (14) 

O1-C5-C51 110.05 (10) C52-C51-C5 120.13 (11) 

C51-C5-C4 113.86 (12) C56-C51-C5 120.96 (12) 

C22-C21-B2 121.06 (13) C56-C51-C52 118.89 (12) 

C26-C21-C22 117.95 (12) C53-C52-C51 120.77 (12) 

C26-C21-B2 120.98 (12) C52-C53-C54 119.80 (14) 

C23-C22-C21 120.85 (13) C55-C54-C53 120.01 (13) 

C24-C23-C22 120.14 (14) C54-C55-C56 120.22 (12) 

C23-C24-C25 120.20 (13) C51-C56-C55 120.32 (13) 

C24-C25-C26 119.64 (14) O1-B2-C21 122.82 (13) 

C25-C26-C21 121.20 (13) O3-B2-O1 113.62 (12) 

C42-C41-C4 121.43 (12) O3-B2-C21 123.55 (12) 

C46-C41-C4 120.21(13) 

 

Table 5.6 Hydrogen atom coordinates and isotropic displacement parameters 

Atom x y z Ueq 

H4 3220 5657 2472 32 

H5 7695 5719 3133 33 

H22 4617 3463 990 36 

H23 5718 2279 439 41 

H24 9133 1608 882 41 

H25 11501 2127 1876 39 

H26 10348 3295 2453 36 

H42 8771 5542 1351 46 

H43 10343 6535 587 53 

H44 8484 7756 579 52 
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H45 5091 7988 1353 52 

H46 3508 6993 2113 43 

H52 2412 4465 3293 35 

H53 15 4302 4387 39 

H54 1067 4943 5525 40 

H55 4534 5728 5568 40 

H56 6961 5885 4475 34 

 

 


