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Abstract 

We investigate some of the properties of D-brane configurations which behave 

as BPS monopoles. The two D-brane configurations we will study are the enhan<;on 

and D-strings attached to D3-branes. 

We will start by investigating D3-branes wrapped on a K3 manifold, which are 

known as enhan<;ons. They look like regions of enhanced gauge symmetry in the 

directions transverse to the branes, and therefore behave as BPS monopoles. We 

calculate the metric on moduli space for n enhan<;ons, following the methods used 

by Ferrell and Eardley for black holes. We expect the result to be the higher­

dimensional generalisation of the Taub-NUT metric, which is the metric on moduli 

space for n BPS monopoles. 

Next we will study D-strings attached to D3-branes; the ends of the D-strings be­

have as BPS monopoles of the world volume gauge theory living on the D3-branes. In 

fact the D-string/D3-brane system is a physical realisation of the ADHMN construc­

tion for BPS monopoles. We aim to test this correspondence by calculating the en­

ergy radiated during D-string scattering, working with the non-Abelian Born-Infeld 

action for D-strings. We will then compare our result to the equivalent monopole 

calculation of Manton and Samols. 
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Chapter JL 

Introduction 

This thesis is based on the work we have carried out concerning D-brane configura­

tions which behave like BPS monopoles. Since the discovery of D-branes in string 

theory, and the realisation that they can be alternatively interpreted as soliton so­

lutions of supergravity, it has been apparent that our knowledge of branes of all 

types is crucial for our understanding of string theory and M-theory. Studying the 

properties of D-branes should deepen our understanding of string theory at strong 

coupling, and give us more insight into the nature of M-theory. Also, the con­

struction of D-brane configurations allows us to construct multi-dimensional gauge 

theories in string theory. Therefore an understanding of the many and varied ways 

in which D-branes interact with one another is an essential step towards the goal of 

constructing a realistic model from string theory. 

Research has shown that there are many instances in which a D-brane configu­

ration behaves like a magnetic monopole. In particular we will be investigating here 

the enhanc:;:on, and D-strings attached to D3-branes. Since much is already known 

about magnetic monopoles, it is natural for us to use what we know to develop a 

deeper understanding of D-branes. 

In this introductory chapter we will review some basic facts about the properties 

of D-branes and monopoles. In chapter 2 \Ve focus on the case of the enhanc;on, 

and describe our calculation of the metric on moduli space for many enhanc:;:ons. 

In chapters 3 and 4 we investigate the energy radiated during the scattering of D­

strings stretched between D3-branes. We compare the result to the calculation of 

1 



1.1. Properties of D-Branes 2 

Manton and Samols in ref. [80] for the energy radiated during monopole scattering. 

1.1 Properties of D-Branes 

We discuss here some of the basic aspects of D-branes; how they arise as BPS 

states in string theory, and their complementary description as soliton states of 

supergravity. All the material from this section is reviewed in refs. [3] and [4]. See 

also refs. [5] and [6] for more compact reviews of D-branes. 

1.1.1 D-Branes in String Theory 

A Dp-brane in string theory is defined to be a surface with p spacelike dimensions 

and one timelike dimension on which the ends of open strings are constrained to 

lie. Historically D-branes in string theory were discovered by the action ofT-duality 

on the bosonic string (see ref. [7]). T-duality is a duality between string theory 

compactified on a circle of radius R and string theory compactified on a circle of 

radius R = ci / R. 1 Let XJ.t( T, a") be the fields which describe the embedding of the 

string worldsheet, with parameters T and CY, into the target space (for bosonic string 

theory J.l = 0, ... , 25). For a closed string, compactification on a circle corresponds 

to the identity 

(1.1.1) 

where m is an integer called the winding number; it is the number of times the 

closed string has wound around the extra dimension. The left-moving and right­

moving momenta of the bosonic string, vl5 and pJf, are discretised and contain extra 

components due to the winding number: 

25 n mR 
PL = R+7 

25 n mR 
PR=---

R a' 
(1.1.2) 

where n E Z labels the momentum states. In the limit R ~ oo the momentum 

states with n < R become light, while the winding states become so massive as 

1Here a' is the universal Regge parameter, which has dimension £ 2
. It sets the fundamental 

string tension TF = 1/2?ra'. 
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to be irrelevant; we have a 26-dimensional theory, as we would expect. In the 

T-dual theory R --+ 0, and the momentum states become massive, indicating the 

disappearance of the compactified dimension, but the winding states become light; 

a new uncompactified dimension has opened up. So we see that closed strings in 26 

dimensions are T-dual to closed strings in 26 dimensions. However, open strings are 

unable to wind around the compactified dimension, and so there is no open string 

equivalent of the winding number m. So there is no uncompactified dimension which 

opens up in the limit R --+ 0, and we see that open strings in 26 dimensions are 

T-dual to open strings in 25 dimensions. For a theory containing both open and 

closed strings there appears to be a discrepancy here; does the T-dual theory have 

25 or 26 dimensions? This discrepancy is resolved by observing that under T-duality 

the usual Neumann boundary condition for the ends of the open string gets changed 

into a Dirichlet boundary condition of the form 

(1.1.3) 

where a = 0 and a = 1r are the ends of the open string, XJ1. denotes a T-dualised 

direction, and l is an integer. This means that the ends of the open string are fixed 

in the T-dualised direction, and so they must end on a surface with 24 spacelike 

dimensions, which we call a D24-brane. Similarly, T-dualising on a direction parallel 

to a Dp-brane produces a D(p- 1)-brane, and T-dualising on a direction transverse 

to a Dp-brane produces a D(p + 1)-brane. The D25-brane, which fills all the 26 

dimensions of bosonic string theory, corresponds to a theory in which the open 

strings are unconstrained. 

In the spectrum of open string theory there is a massless vector which has a U(l) 

gauge invariance. This gauge invariance manifests itself as follows 

14J) CV I4J) + -'11/1) , (1.1.4) 

where I4J) is any open string state, and 11/1) is a 'spurious' state, which can be 

added without physical effect since it is orthogonal to all other states and null. In 

the worldvolume of a single D-brane the open string therefore corresponds to the 

massless gauge boson of a U(l) field theory living on the brane. The string is massless 

because it can achieve vanishing length. Let us consider what happens when we allow 
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N D-branes to coincide. There is now a choice of D-branes for the open string to end 

on; there are N 2 choices for each string, and all are massless, corresponding to the 

gauge bosons of a U(N) gauge theory (see refs. [8] and [9]). The gauge theory can 

be broken by separating the D-branes; the strings stretched between two separated 

branes become massive, thus breaking the gauge group. This is equivalent to the 

Higgs mechanism in SU(N) gauge theory, where the gauge bosons acquire masses 

due to the non-zero expectation value of the Higgs field. We will comment further 

on how the Higgs mechanism works in the D-brane context later on. Since the gauge 

vector is constrained to the world volume of the D-brane, we will henceforth denote it 

by A:~:, where a is an index corresponding to a D-brane direction, a= 0, ... , p. We 

will denote the corresponding two-form gauge field strength by Faf3, where F = dA. 

There are other fields living on the worldvolume of a Dp-brane whose dynamics 

we must take into account. We can see that this must be the case by considering the 

T-duality transformation of a D25-brane. The gauge vector Aa of a D25-brane has 

26 components, a = 0, ... , 25. Under T-duality on the X 25 direction a D25-brane 

transforms into a D24-brane, whose gauge field has 25 components, a = 0, ... , 24. 

The extra component of the D25-brane gauge field, A25 , transforms into a scalar 

field, which we will denote <I> 25 

Ao Ao 

(1.1.5) 

If we T-dualise further we find that a Dp-brane has (25- p) scalar fields living on its 

worldvolume, which we will denote <I>i, i = p + 1, ... , 25. Since these fields originate 

from components of Aa, they belong to the adjoint representation of the gauge group 

on the D-branes. To see the role the <I>i play, let us consider N coincident Dp-branes; 

from the discussion of the previous paragraph the gauge group on these branes is 

U(N). If we compactify the direction XP on a circle of radius R, then we can include 

a constant gauge field 

(1.1.6) 



1.1. Properties of D-Branes 5 

This gauge field is in the diagonal subgroup of U(N), namely U(1)N. Locally it is 

pure gauge, but when we gauge it away the charged fields pick up a phase 

(1.1. 7) 

An analysis of the open string mode expansion reveals that an open string which 

has charge +1 under U(1)i has its Dirichlet boundary condition (1.1.3) changed to 

(1.1.8) 

From equation (1.1.6) we can write, up to an arbitrary additive constant, 

(1.1.9) 

So we see that the scalar field <PP is related to the position of the D-brane in the 

transverse direction XP as follows 

(1.1.10) 

More precisely, the N eigenvalues of the field <QJ represent the positions of the N 

D-branes in the direction x1 as follows 

(l.l.ll) 

where Xt is the position of the ath D-brane in the x1 direction, and <P~ denotes the 

ath eigenvalue of the field <QJ. 

We can now see where the Higgs mechanism, which we mentioned above, comes 

from. From equation (1.1.10) we can see that separating D-branes in the Xi direction 

corresponds to giving a vacuum expectation value to the field <Pi. Therefore it is <Pi 

which plays the role of the Higgs field, breaking the gauge group when the branes 

are separated. 

In our discussion so far we have considered the fields originating from the open 

strings, but not those originating from the closed strings. Closed strings can pen­

etrate all of the 26 dimensions of the bosonic theory, and therefore they should be 

considered as background fields to the worldvolume of the D-brane. The massless 

part of the closed string spectrum contains the background metric, GJ.tv, the anti­

symmetric Kalb-Ramond field, BJ.tv, and the dilaton <P (not to be confused with the 
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transverse fields <f>J which we discussed above). The vacuum expectation value of 

the dilaton field, which we will denote <P0 , sets the string coupling 9s as follows 

9s = e<Po . (1.1.12) 

From now on we will turn our attention away from the bosonic string theory 

to superstring theory in ten dimensions. The arguments used so far concerning D­

branes in bosonic string theory all apply to the superstring theory as well. The fields 

G, B and <P come from the massless part of the NS-NS sector of closed superstring 

theory. In addition there are fields coming from the massless part of the R-R sector. 

For type liA superstring theory these are the R-R fields C(l), C(3) (where C(p) 

denotes a p-form field), and their Hodge duals C(5l and C(7). In type liB string 

theory we have C(o), C(2) and their Hodge duals C(6), C(8), and also the self-dual 

field C(4). It was shown in ref. [10], using a tadpole calculation, that the Dp-brane is 

a source for the R-R field C(p+l) (i.e. the action containing C(p+l) is a generalistion of 

the term e J AJ.LvJ.L from electromagnetism, where e is the electric charge and vi-Lis the 

velocity- see section 1.2 for more details). In type li string theory the field c(7-p) is 

related to the field c(p+l) by Hodge duality, dC(7-Pl = p(s-p) = *p(p+2l = *dC(p+l). 

We say that the Dp-brane is a magnetic source for C(7-p). In type liA string theory 

there exist Dp-branes for p = 0, 2, 4, 6 and 8. In type liB string theory there exist 

Dp-branes for p = -1, 1, 3, 5, 7, 9. The D8-brane and D9-brane, for which there are 

no corresponding R-R fields, are special cases which we will not be considering here. 

The actions describing the dynamics of the worldvolume fields are the Born­

Infeld and Chern-Simons actions. We will review these actions both for the Abelian 

case and for the non-Abelian case in section 1.2. 

Let us consider the tension Tp and the Ramond-Ramond charge /-Lp of a Dp-brane. 

These can be calculated using the vacuum cylinder diagram as follows. This diagram 

corresponds to the exchange of a closed string between two parallel D-branes (it 

looks like a cylinder joining the two D-branes, hence its name). Its amplitude can 

be calculated by a tree-level closed string diagram computation. But this diagram 

also corresponds to an open string going round in a loop. So its amplitude can 

also be calculated by a one-loop open string diagram computation. In fact the 

amplitude is zero, which is to be expected seeing as the open string calculation is 



1.1. Properties of D-Branes 7 

a supersymmetric vacuum diagram. However, the closed string amplitude can be 

separated into terms describing the exchange of NS-NS states, and terms describing 

the exchange of R-R states. Equating coefficients with the corresponding terms in 

the open string amplitude leads to two equations. The equation relating to NS-NS 

terms gives an expression for Tp, since the NS-NS fields of the closed string couple 

to Tp. The expression is 
n+l 

= -1(2 )-P( ')-2 Tp 9s 7r a . (1.1.13) 

The equation relating to R-R terms gives an expression for f-tp, which is 

(1.1.14) 

So the tension and charge of a Dp-brane are related as follows 

-1 
Tp = 9s /-Lp · (1.1.15) 

This equality between charge and tension resembles a BPS bound. In fact an analysis 

of the supersymmetries preserved by a D-brane state shows that exactly half of the 

supersymmetries present in the background are broken, and so it is indeed a BPS 

state. The amplitude of the vacuum cylinder diagram being zero is also indicative 

of a BPS state; the NS-NS diagrams, which correspond to the attractive gravity and 

scalar forces, cancel the R-R diagrams, which correspond to repulsive R-R forces, so 

that there is no net force between two parallel D-branes. 

1.1.2 D-Branes as Supergravity Solitons 

In the previous section we described how D-branes arise in string theory as surfaces 

on which open strings can end. In this section we describe the alternative formulation 

of D-branes, as soliton solutions of supergravity. These solutions can be considered 

as solitons in the sense that they are localised in the transverse directions. See 

ref. [11] for a review of D-branes from the supergravity point of view. 

Supergravity arises from string theory by taking the low energy limit a' -t 0 

(i.e. the limit in which all massive modes become infinitely massive and can be 

neglected). The low energy limit of string theory is ten-dimensional supergravity, 



1.1. Properties of D-Branes 8 

from ref. [12]. The type IIA string theory contains only even R-R forms; the bosonic 

part of the corresponding supergravity action in the string frame is 

SnA = 

(1.1.16) 

where 

(1.1.17) 

sets the ten-dimensional Newton's constant G N. Here H(3), G(2) and G(4) are defined 

in terms of the NS-NS and R-R field as follows 

(1.1.18) 

(1.1.19) 

The type liB string theory contains only odd R-R forms; the equivalent action is 

(1.1.20) 

where H(3) is defined in (1.1.18) and 

(1.1.21) 

and C(o) is the R-R scalar. We also need to impose the self-duality constraint on 

F(5) = dC(4) by hand in the equations of motion 

p(5) = *p(5) . (1.1.22) 

The solution to the supergravity equations of motion which corresponds to N 

coincident D-branes is, from ref. [13], 

(1.1.23) 

(1.1.24) 

(1.1.25) 
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where, as before, a, (3 = 0, ... , pare the D-brane directions, and i = p + 1, ... , 9 are 

the transverse directions. The function ZP is a harmonic function given by 

(
r ) 7-p 

Zp = 1 + 
7
: , (1.1.26) 

where 

(1.1.27) 

and 

r;-p = dp(27r)P- 2g
8
Na'9 , dP = 27- 2P7/-;

3
rf (

7
; p) (1.1.28) 

The above solution has the appropriate symmetries of (p+ 1 )-dimensional Poincare 

invariance in the brane directions and S0(9- p) rotational symmetry in the trans­

verse directions. In fact the solution we have described above is not the solution to 

the pure supergravity equations of motion; we must also include in the action the 

source terms for the tension and the R-R charge of the D-branes. These are given 

by the Dirac-Born-Infeld action and the Chern-Simons action respectively, which we 

will discuss in section 1.2. 

The supergravity solution (1.1.23)- (1.1.25) is valid providing the lengthscale of 

the solution, given by rp, is large compared to the string length l8 = #(recall that 

superstring theory reduces to supergravity in the limit a' - 0, i.e. l 8 - 0). From 

(1.1.28) we have 

r7-P "'g Na'(?-p)/2 
p 8 ' 

(1.1.29) 

and so the supergravity solution is valid as long as g8 N » 1. We also need the 

string coupling to be weak for the supergravity solution to be valid, and so we 

require N » 1. For open string perturbation theory each loop in an open string 

Feynman diagram carries a factor of g8 N (theN comes from a trace over the gauge 

indices). So open string perturbation theory is valid when g8 N << 1. Therefore what 

we have are two descriptions of open string theory which are valid in complementary 

regions of the parameter space. In open string perturbation theory D-branes can 

be treated as objects in flat background, whereas in supergravity the curvature of 

spacetime must be taken into account. 
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1.2 D-Brane Worldvolume Actions 

We devote this section to a description of the Oirac-Born-Infeld and Chern-Simons 

actions, which describe the dynamics of the fields living on the worldvolume of D­

branes. A detailed knowledge of the properties of these actions will be necessary for 

the chapters which follow this one. We will begin in section 1.2.1 by describing the 

Abelian 0-brane actions, and then in section 1.2.2 we will move on to the less familiar 

non-Abelian D-brane actions. In section 1.2.3 we will describe some corrections to 

the Oirac-Born-Infeld and Chern-Simons actions which will be necessary for our 

discussion of the enhanc;on mechanism in section 1.4.1. Most of the material from 

this section can be found in refs. [3] and [4]. 

1.2.1 Abelian D-Brane Actions 

Here we will review the actions which describe the dynamics of a single 0-brane. 

The gauge group on the brane is therefore the Abelian group U(1), and the fields 

living on the brane, Ao: and <J>i, commute with one another. We will consider only 

the bosonic fields of the ten-dimensional type II superstring theory. 

We start with the action describing the coupling of the D-brane fields to the 

NS-NS background fields, which will turn out to be the Dirac-Born-Infeld action. If 

we introduce the coordinates ~o: on the brane, then the metric on the worldvolume 

of the brane is the background metric pulled-back to the brane's worldvolume. This 

is given by 

(1.2.1) 

where we have used the notation P to denote the pull-back. Recall from (1.1.11) 

that for the transverse fields <J>i we have 

(1.2.2) 

and so the pull-back of the metric describes the coupling of the background metric to 

the transverse fields. The appropriate action for the metric is given by the higher­

dimensional equivalent of the action for a point particle; it is the tension of the 

brane multiplied by the higher-dimensional 'volume' of the surface swept out by the 
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D-brane's worlclvolume. This action is given by 

(1.2.3) 

We also need to introduce the appropriate couplings to the fields B, <P and A 

into the action (1.2.3). We will discuss first the coupling to F = dA (see ref. [14]). 

Consider a D2-brane in the directions X 1 and X 2 , with a constant gauge field F 12 . 

One can fix the gauge such that the only non-zero component of A is A2 = X 1 F 12 . 

T-dualising in the X 2 direction, and using the relation (1.1.9) 

(1.2.4) 

1.e. the result is a D1-brane which is tilted in the X 1-X2 plane. The action for the 

D1-brane is 

(1.2.5) 

Generalising the above result, the appropriate factor ofF in the action of a Dp-brane 

lS 

(1.2.6) 

The dependence of the D-brane action on B can be deduced from the combination 

of B and F in the string world-sheet action, which is given by 

- B+ A 
1 1 1 21ra' M BM . 

(1.2.7) 

It turns out that the combination of the fields B and F which is invariant under 

the gauge transformations of both B and A is (B + 21ra' F) (see ref. [15]). So the 

required action for a Dp-brane is 

(1.2.8) 

which is the Dirac-Born-Infeld action. The factor of the dilaton in (1.2.8) gives the 

appropriate factor of the string coupling, 9s = e.Po, since the action is also the action 

for open string scattering at tree level. The tension Tp in (1.2.8) is related to the 

physical tension Tp by 

(1.2.9) 
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This action can also be deduced using the fact that the D-brane fields originated 

from the ends of open strings, whose action is a sigma model action (see ref. [18]). 

The Dirac-Born-Infeld action (1.2.8) is correct to all orders in a', but it is only 

accurate for slowly varying field strengths, since derivatives ofF have been neglected 

(see ref. [19]). 

The T-duality rules for the NS-NS fields can be deduced from the action for an 

open string in a curved background, which is a sigma model action. They are given 

by 

1 

Gp,p' 

GJl-P 

Gp,p, 

e2.P 

Gp,p' 

- BMP 
cjl-p=c, 

p,p 

(1.2.10) 

where G, Band 1> are the T-dualised fields. We assume that the fields in (1.2.10) are 

independent of the direction xP, and so the metric G has an isometry corresponding 

to translations in the xP direction. Because we will only consider T-duality in 

spacelike directions, the norm of the associated Killing vector is greater than zero, 

i.e. Gp,p > 0. It is possible to use the rules given in (1.2.10), along with (1.1.5) 

for the D-brane fields, to show that the Dirac-Born-Infeld action is indeed invariant 

under T-duality, as we would expect (see refs. [16] and [17]). 

The low energy limit of string theory is a' ~ 0, when all the massive fields 

become infinitely massive, and can be ignored. Expanding the Abelian Dirac-Born­

Infeld action (1.2.8) as a series in a', we find that the leading order term is given 

by 

(1.2.11) 

which is Yang-Mills theory with the coupling 

q2,. = 9 r-1(21ra')_2 = q (27r)p-2a'(p-3)/2 . 
. } M,p . s p . . . s . (1.2.12) 

Next we consider the coupling of the D-branes to the R-R fields. Since the Dp­

brane acts as a source for the C(P+l) R-R field, we must integrate this field over 

the Dp-brane's worldvolume. Again, since c<v+I) is a background field, it must be 
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pulled back to the D-brane's worldvolume. So the coupling we require is 

(1.2.13) 

where Mp+I is the D-brane worldvolume (the term (1.2.13) is the higher-dimensional 

generalisation of the term e J Al-l v~-' in the action for electromagnetism, where e is 

the electric charge, and v~-' is the velocity). We must also consider the possibility of 

lower-dimensional R-R fields coupling to the antisymmetric fields B and F. Using 

T-duality arguments it is possible to show that the full coupling to the R-R fields is 

given by 

(1.2.14) 

which is the Chern-Simons action (see refs. [20] and [21]). The combination of Band 

Fin (1.2.14) can be understood using the same arguments as those we discussed 

for the Dirac-Born-Infeld action above. The summation sign in (1.2.14) means 

that we must include all possible combinations of c<n), B and F which have the 

form specified in (1.2.14), and which combine to give a (p + 1)-form. In particular 

this means that a Dp-brane can couple to lower-dimensional R-R fields. When this 

happens the lower-dimensional brane becomes delocalised in its transverse directions 

which are parallel to the higher-dimensional brane; it is said to be 'smeared out' in 

the extra directions. 

1.2.2 Non-Abelian D-Brane Actions 

In this section we consider the worldvolume actions for N D-branes. The gauge 

group on the branes is now non-Abelian; for N coincident D-branes it is U(N). 

Therefore the fields Ao: and <I>i, which live on the D-brane, are now non-commuting. 

We take the convention that the <I>i and the Ao: are hermitian matrices, so that the 

field strength on the branes is given by 

(1.2.15) 

We first outline some considerations which must be taken into account when 

extending the Abelian actions (1.2.8) and (1.2.14) to the non-Abelian case (see 
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ref. [22]). For the actions to remain gauge invariant all partial derivatives must be 

converted into covariant derivatives in the non-Abelian case, i.e. 

(1.2.16) 

Recall from equation (1.1.5) that under T-duality in the xP direction we have Ap---+ 

<f>P, and so 

(1.2.17) 

And so we may need to include extra commutators of the <J>i in our non-Abelian 

actions, which would be zero in the Abelian case. Also, it is necessary to perform 

some sort of trace over the gauge indices. 

We start by considering the non-Abelian extension of the Dirac-Born-Infeld ac­

tion (1.2.8). The full non-Abelian Dirac-Born-Infeld action was found in ref. [22] by 

taking the Dirac-Born-Infeld action for a D9-brane and applying T-duality (see also 

ref. [23]). Since a D9-brane has no transverse directions in string theory, there are 

no <Pi's, and so the non-Abelian generalisation of (1.2.8) with p = 9 does not contain 

any extra commutators. So the non-Abelian Born-Infeld action for the D9-brane is 

defined to be 

(1.2.18) 

where STr denotes the symmetrised trace, which we will explain below. In what 

follows we will assume static gauge, in which ~a = X 0 for the D-brane directions. 

Applying T-duality to the action (1.2.18) results in the non-Abelian Dirac-Born­

Infeld action for a Dp-brane, which is 

SjyBI = -TP J tfP+ 1~STr (e-<~> V- det (P[Eaf3 + Eai(Q- 1 - o)iiEif3] + 27ra'Faf3) 

x .Jdet(Qj)) , (1.2.19) 

where 

(1.2.20) 

and 

(1.2.21) 
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In the derivation of the action (1.2.19) it was assumed that det Qj -/: 0 (see ref. [22] 

for more details). The Abelian case is given by Qj = t5j, when the action (1.2.19) 

reduces to the Abelian Born-lnfeld action (1.2.8). In the low energy limit the leading 

order term in o/ of (1.2.19) is the action for non-Abelian U(N) super-Yang-Mills 

theory, as we would expect. 

Next we consider the non-Abelian extension of the Chern-Simons action (1.2.14). 

Again, the form of this action can be deduced by requiring consistency with T­

duality. The result is [22] 

(1.2.22) 

Here iq, denotes the interior product by q>i regarded as a vector in the transverse 

space, e.g. for a two-form C(2) 

iq,C<2) 

iq,iq,C<2) 

<I>iC(2) dxJL 
tJL ' 

<I>i<I>jc(2) = ~c<2) [<I>j <Pi] 
t) 2 t] ' . 

(1.2.23) 

So the i.p introduce dependence on the commutators of the q>i into the non-Abelian 

Chern-Simons action. As with the Abelian case, only forms of dimension (p + 1), 

and combinations of forms whose dimensions total (p + 1) contribute to the action 

(1.2.22), since they must be integrated over the worldvolume of the Dp-brane. 

In the non-Abelian actions (1.2.19) and (1.2.22) a symmetrised trace over the 

worldvolume fields has been included. This notation indicates that we should sym­

metrise over all orderings of Fo.f3, Do. <Pi and [<Pi, <I>J] when we take the trace. Naively 

one might include an ordinary trace in the non-Abelian actions. However, this leads 

to an ambiguity over the ordering of the fields when calculating the determinant in 

the action (1.2.19). The symmetrised trace prescription was proposed by Tseytlin 

in refs. [24] and [25] as an alternative. The argument behind Tseytlin's conjecture 

was that, if we expand the Dirac-Born-Infeld action in powers of the field strength 

F, then the symmetrised trace prescription retains only even powers of F. This is 

encouraging because odd powers ofF can be written in terms of derivatives ofF, 

which, as we pointed out in section 1.2.1, are neglected in the Abelian Dirac-Born­

Infeld action. Therefore in generalising the Abelian Dirac-Born-Infeld action, the 
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symmetrised trace prescription appears to be the correct way to include a trace over 

the non-Abelian fields. In ref. [26] it was argued that the symmetrised trace is the 

correct trace operation to include because it is the only candidate which allows the 

existence of certain soli tons, e.g. monopoles in the D3-brane action (on which the 

work in two chapters of this thesis will be based). 

Having obtained candidates for the non-Abelian D-brane actions, (1.2.19) and 

(1.2.22), they can be tested using open string scattering calculations. Such calcula­

tions have received much attention in the literature; see for example ref. [27], and the 

references therein. It turns out that the symmetrised trace prescription is correct at 

order (a')2, but that there are higher order corrections at order (a') 3 and (a') 4 . We 

will be working to leading order in a', and so these corrections need not concern us. 

1.2.3 Couplings to the Background Curvature 

It turns out that the Dirac-Born-Infeld action and the Chern-Simons action, which 

we discussed in the previous two sections, are not the whole story. When we wrap 

a D-brane on a non-trivial manifold we must also take into account the corrections 

to the action due to the background curvature. It will be sufficient for our purposes 

to work with the Abelian Dirac-Born-Infeld and Chern-Simons actions. We will 

discuss the case of a Dp-brane wrapped on a K3 manifold, p 2:: 4, which will be 

relevant for our discussion of the enhan~on mechanism in section 1.4.1. Recall that 

a K3 manifold is a four-dimensional, Ricci flat, simply connected, compact Kahler 

manifold with SU(2) holonomy. It contains one four-cycle and 22 independent two­

cycles. When we say that a D-brane is 'wrapped' on K3 we mean that four of the 

brane's dimensions take on the geometry of a K3 manifold, and the D-brane metric 

(1.1.23) is modified accordingly. 

For the Dirac-Born-Infeld action the relevant corrections are given by [28] 

sbBJ = -Tp J dp+l~ e-4> V- det(P[G + B]o/3 + 27!'0'1 Fa{3) 

X (1- (4n2a')2 (Ro{3"(8 R - Rijo{3 D.. - 2.flo/3 R + 2Rij D.·) 768n2 o{3"(8 .1 LiJof3 o{3 .1 LiJ 

+0((a')4
)) , (1.2.24) 



1.2. D-Brane Worldvolume Actions 17 

where, again, the indices a, (3, /, r5 denote directions tangent to the worldvolume of 

the brane, and i, j denote transverse directions. Raf3 is constructed by pulling-back 

the Riemann tensor to the D-brane worldvolume, then contracting it. Similarly, kj 
is constructed by pulling-back the Riemann tensor to the space transverse to the 

D-brane worldvolume, and then contracting. For the case of a D-brane wrapped on 

K3, only the corrections involving D-brane directions contribute. Also, since K3 is 

Ricci fiat, the only contribution from the D-brane directions is Ro.f316 Raf316 . After 

integrating over the K3 directions, the action (1.2.24) becomes 

sbBI = - J d!-3~ e-<P ( Tp VK3 - Tp-4) J- det(P[G + B]af3 + 27rct1 Fa(3) ' (1.2.25) 

where VK3 is the volume of the K3 manifold. Note that the tension in (1.2.25) now 

has an extra component due to the curvature of the K3 manifold. 

Including the curvature couplings in the Chern-Simons action, the action be-

comes 

(1.2.26) 

where A is the 'A-roof' or Dirac genus (see refs. [29] and [21]). A is a generating 

function, which can be expanded in terms of the Pontryagin polynomials Pi as follows 

A 1 1 2 
A(F) = 1- -p1(F) + -(7p1(F) - 4p2 (F)) + · ... 

24 5760 
(1.2.27) 

Keeping just the first two terms in the expansion (1.2.27), we have 

A(47r2a' R) = 1 + (4rr;:')
2 

( 8~8 ) TrR 1\ R + O(a'4 ) . (1.2.28) 

Integrating over K3 (see ref. [29]), the additional term in (1.2.26) is 

-~Jp-41 ccp-3
) , (1.2.29) 

Mp-3 

where Mp- 3 is the manifold consisting of the unwrapped brane directions. 

Taking (1.2.25) and (1.2.29) together, we deduce that wrapping a Dp-brane on 

a K3 manifold induces a unit negative charge of a D(p- 4)-brane. Note that this is 

a different object to an anti-D2-brane; it has a negative charge, but it preserves the 

same unbroken supersymmetries as a D(p- 4)-brane. From (1.2.25) we see that the 

overall tension is given by 

(1.2.30) 
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where the volume of the K3 manifold, VK3 , may be allowed to depend on the di­

rections transverse to the K3 manifold. The equation (1.2.30) has the potential to 

vanish and to become negative. But the enhan<;on mechanism will prevent this from 

happening, as we will see in section 1.4.1. 

1.3 Magnetic Monopoles 

In this section we will review some of the aspects of magnetic monopoles which we 

will be using later on. See refs. [30] and [31] for monopole reviews. The magnetic 

monopole was originally postulated in the 19th century as a pointlike source for the 

magnetic field; it was studied by Dirac in ref. [32]. If we include magnetic source 

terms in Ma.xwell's equations then they take the form 

a FILV = J·v a *FILl/= J·v 
/.L e > /.L m' (1.3.1) 

where FILv is the electromagnetic field strength, and j~ and j~ are the electric and 

magnetic four-currents respectively. The equations (1.3.1) are invariant under the 

transformation 

J
. V -t-+ ). V 

e m' (1.3.2) 

which is called electromagnetic duality (in essence the electric and magnetic fields are 

exchanged, as well as the electric and magnetic currents). For a pointlike magnetic 

charge there is no single gauge potential which can describe the magnetic field 

everywhere; we must define two overlapping gauge potentials, one for the Northern 

half of a two-sphere surrounding the charge, and one for the Southern half. By 

requiring that physical quantities are continuous in the overlapping region it turns 

out that the electric charge is quantised as follows 

eg = 27rn , n E Z , (1.3.3) 

where e is the electric charge and g is the magnetic charge. This is the Wu-Yang 

derivation [33] of Dirac's quantisation condition (see ref. [32] for the original deriva­

tion). It is this property which makes the magnetic monopole so attractive to 

quantum field theorists. 
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In this thesis we will be dealing with a topological version of the monopole, which 

is called the 't Hooft-Polyakov monopole. In section 1.3.1 we will review some of 

the basic properties of the 't Hooft-Polyakov monopole, and the limit which results 

in the BPS monopole. In section 1.3.2 we will discuss ways of constructing BPS 

monopole solutions, in particular the ADHMN construction. In section 1.3.3 we will 

review monopole moduli spaces, and their bearing on monopole scattering. 

1.3.1 The 't Hooft-Polyakov Monopole and BPS Monopoles 

The 't Hooft-Polyakov monopole is a topological soliton solution of the Yang-Mills­

Higgs theory. It was originally postulated independently by 't Hooft and Polykov 

in refs. [34] and [35] respectively. The appropriate Lagrangian is 

(1.3.4) 

where 9YM is the Yang-Mills coupling. Here J.L, v, ... denote spacetime indices, and 

a, b, .. . denote the gauge indices labelling the adjoint representation of the gauge 

group. We take the gauge group to be SU(2) for simplicity at this stage. The gauge 

field is defined as follows 

F a a Aa a Aa abcAb Ac 
J.LV= J.L V- V J.L-f J.L Vl (1.3.5) 

and the covariant derivative is defined to be 

(1.3.6) 

The Bianchi identity 

(1.3. 7) 

follows from the definition of pa J.LV. The potential V (<I>) is chosen such that the 

vacuum expectation value of the Higgs field <I> is non-zero. We will take 

(1.3.8) 

V is minimised when <I>a<I>a = v2 ; we say that the Higgs field <I> has a non-zero 

expectation value v. This breaks the symmetry of the gauge group from SU(2) to 
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U ( 1). Then the perturbative spectrum of the theory consists of a massless photon, 

massive spin one gauge bosons w± with mass 

mw=v, (1.3.9) 

and also the Higgs field. 

We define 

F~' 
1 'k 
- E· .kpaJ 
2 ZJ ' 

(1.3.10) 

where i, j, k E {1, 2, 3}. Then Ef and Bf are analogous to the electric and magnetic 

fields, respectively, of electromagnetism. Then the energy density corresponding to 

the Lagrangian (1.3.4) is 

£ = ~ (Ea I Ea+ jja I jja + rrarra + jjcpa I jjcpa) + V(CJ>) ' (1.3.11) 

where rra is the momentum conjugate to CJ>, rra = D0 CJ>a. From the form of the 

energy density (1.3.11) we can see that £ is positive, and £ = 0 if and only if the 

following conditions are met 

(1.3.12) 

So the conditions (1.3.12) define the vacuum solution of the theory. For a solution to 

have finite energy it is necessary that the vacuum conditions are met on the surface 

of the sphere at spatial infinity, which we will denote S!,. In particular, the Higgs 

field on the surface of S~ must minimise the potential V, with V(CJ>) = 0. We define 

MH to be the set of all such configurations, then 

(1.3.13) 

which has the topology of a two-sphere. Therefore, for finite energy, the Higgs field 

configuration at spatial infinity defines a map from one two-sphere to another 

(1.3.14) 

Such a map has a topological quantity associated with it called a winding number, 

which we will denote by n. For the case considered here, i.e. SU(2) broken down to 
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U(1), the winding numbers are the integers, and are given by 

n = ~ JTr(B-D·iP) d3x n E '71 S1r t t , ID · (1.3.15) 

In our discussion so far we have not explained the connection to magnetic 

monopoles. It turns out that for a solution with n # 0 to have finite energy there 

must be a non-zero gauge field to cancel a contribution from the angular part of 

(Vi!>a) 2 at spatial infinity. The required gauge potential has an angular component 

which falls off as 1/r as r ---+ oo, giving rise to a non-zero magnetic field at infinity, 

with magnetic charge given by 
47rn 

g =- . (1.3.16) 
9YM 

Equation (1.3.16) is once again Dirac's quantisation condition with 9YM = 2e (the 

factor of 2 comes from the charge of field in the fundamental representation of 

SU(2)). So we deduce that the solutions we have been discussing, with winding 

number n # 0, are magnetic monopoles with magnetic charge g. The conservation 

of g comes about because it would take an infinite amount of energy to transform a 

solution with n = n 1 into a solution with n = n2 # n 1. 

Next we will look for a Bogomol'nyi bound on the energy for the monopole 

solutions (see ref. [36]). Consider a static solution with the electric field set to zero. 

Then the energy of the solution is given by 

E = + Jd3 r (~Ea· Ea+ ~fjif_>a · Dif.>a) +V( if.>) 
9YM 2 2 

> J d3r (~Ea. Ea+ ~fjif_>a. Dif.>a) 

-i- Jd3r (Ea- Dif.>a) ·(Ea- Dif.>a) 
2gYM 

++ Jd3r Ea. Dil>a. 
9YM 

(1.3.17) 

The first term in (1.3.17) is positive. Integrating the second term by parts and using 

the Bianchi identity ( 1. 3. 7) 

(1.3.18) 

where g is the magnetic charge. So we have 

(1.3.19) 
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where we have included the modulus in (1.3.19) to account for the case with negative 

magnetic charge. Equality holds in (1.3.19) if and only if V(<I>) = 0 and 

(1.3.20) 

Consider the condition V(<I>) = 0. For the 't Hooft-Polyakov monopole of the 

Yang-Mills-Higgs theory (1.3.4) with potential given by (1.3.8), this condition 1s 

realised if we take the limit ,\ --> 0, while keeping fixed the boundary condition 

I <I> I --> v as r --> oo . (1.3.21) 

This limit is called the BPS limit, and the monopole of this theory which satisfies 

the Bogomol'nyi equation is the BPS monopole (see ref. [37]). From (1.3.19), the 

mass of a BPS monopole is given by 

vg 
ffimon = -2- · 

9YM 
(1.3.22) 

The theories we will be dealing with in this thesis will be supersymmetric theories 

in which V(<I>) - 0. However, it still makes sense to impose the boundary condition 

(1.3.21) because to change from one value of the Higgs expectation value v to another 

in the theory would take an infinite amount of energy. Therefore the value of v has 

to stay fixed once it has been imposed, and so the theory has a well-defined Hilbert 

space. 

It can be shown that for a 't Hooft-Polyakov monopole configuration, i.e. for the 

winding number given by (1.3.15) to be non-zero, the Higgs field must be zero at 

some point in space. At this point the unbroken SU(2) gauge symmetry is restored. 

In our discussion so far we have considered solutions which are purely magnetic. 

Solutions with combined electric and magnetic charge are called dyons (see ref. [38]). 

For dyons we have the Dirac-Zwanziger-Schwinger condition, which generalises the 

Dirac quantisation condition. For two dyons with electric charges e1 , e2 and magnetic 

charges 91, g2 it is given by 

(1.3.23) 

By calculating the energy of a static configuration with non-zero electric and mag­

netic fields, one can also obtain the generalised Bogomol'nyi bound, 

(1.3.24) 
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for a dyon with magnetic charge g and electric charge e. 

1.3.2 Constructing Monopole Solutions 

In this section we consider the techniques available for constructing explicit solutions 

for BPS monopoles. We will take the gauge group to be SU(2) throughout. 

The charge one solution to the Bogomol'nyi equation (1.3.20) was first found by 

Prasad and Sommerfield in ref. [37]. It is given by 

where 

<Pa 
ra 
--

2
H(vgyMr), 

9YMT 

r1 
E~j 2 (1- K(vgyMr)) , 

9YMT 

H(y) = ycothy- 1, K(y) = -._Y_. 
smhy 

(1.3.25) 

(1.3.26) 

Note that the solution (1.3.25) is spherically symmetric. For monopoles with 

monopole number n 2:: 2 there are no spherically symmetric solutions. But for 

n = 2 an axially symmetric solution has been calculated numerically in ref. [39]. 

Its charge is concentrated in a ring around the origin, so that it has the shape of 

a two-torus (i.e. a 'doughnut'). Also, for n 2:: 2, multimonopole solutions can be 

constructed which are n static, well-separated versions of the charge one solution 

(1.3.25). As was shown in ref. [40], this can be done for BPS monopoles because the 

Higgs field is massless, and so the Higgs force is long-range. The scalar attraction 

due to the Higgs field cancels out the magnetic repulsion between monopoles so that 

they can remain static. 

There are also some indirect methods which can be used to construct multi-

monopole solutions. One of these uses twistor methods, and was originally described 

by Ward in ref. [41]. Using this method, Ward also obtained the axially symmetric 

two-monopole configuration described in the previous paragraph. This approach 

was studied further by Hitchin in ref. [42]. In the rest of this section we will dis­

cuss another indirect technique which can, in principle, be used to construct all the 

monopole solutions for a given monopole number n. This technique was adapted 

from the ADHM instanton construction of ref. [43] by Nahm in refs. [44] and [45]; 

it is called the ADHMN construction. See ref. [46] for a review. 
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First we demonstrate that the Bogomol'nyi equation (1.3.20) is equivalent to the 

self-duality equation in four dimensions 

(1.3.27) 

when the fields are independent of the Euclidean time x4 . Setting 

(1.3.28) 

in (1.3.27) recovers the Bogomol'nyi equation (1.3.20). 

The first step of the ADHMN construction is to find the Nahm data. These are 

n x n Hermitian matrices, which depend on the real parameter~ E [0, 2], and which 

satisfy the following 

1. Nahm's equations 

(1.3.29) 

2. The 1i have simple poles at ~ = 0 and~= 2. 

3. The matrix residues at the poles form an irreducible n-dimensional represen­

tation of SU(2). 

The second step of the ADHMN construction is to solve the construction equa­

tion, which is given by 

(1.3.30) 

The equation (1.3.30) must be solved for the complex 2n-vector v(~, x). For SU(2) 

there are two linearly independent solutions for iJ, which we call v1 and iJ2 . These 

can be normalised so that 

(1.3.31) 

In the third step of the ADHMN construction, the solutions for the Higgs field 

<I> and the gauge potential Ai can be calculated from the vP. Assembling a 2n x 2 

matrix v out of v1 and iJ2 , the solutions are given by 

(1.3.32) 
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For the general SU ( N) case there is a fundamental monopole associated with 

each factor of U ( 1) which occurs when the gauge group is broken. These monopoles 

look like embeddings of the unit SU(2) monopole. Then the Nahm data becomes 

more complicated; there is a set of Nahm data associated with each U(1) factor. We 

will not discuss this in detail as it will not be necessary for the work described in 

this thesis; see ref. [47] for a review. 

Returning to the Nahm data for the SU(2) case, we can orientate the Nahm 

data for a two-mono pole so that it has the form 

(1.3.33) 

where fi are three real functions of ~, and cri are the Pauli matrices. With this 

ansatz Nahm's equations reduce to 

dh 
d~ = hh l 

(1.3.34) 

The solution to (1.3.34) satisfying the appropriate boundary conditions is [48] 

h (~, k) 
K(k) K(k)dn(K(k)~, k) 

sn(K(k)~, k) ' h(~, k) = - sn(K(k)~, k) 

J((k)cn(K(k)~,k) 

sn(K(k)~, k) 
(1.3.35) h(~, k) = 

where K(k) is the complete elliptic integral of the first kind with parameter k, which 

is defined as follows 

(1.3.36) 

Also, sn(x, k), cn(x, k) and dn(x, k) are the Jacobi elliptic functions with argument x 

and parameter k. See ref. [49] for a review of the properties of these functions. The 

parameter k is a modulus of the solution with 0 < k < 1. The functions f1 (~, k) and 

h(~, k) are symmetric about~= 1, while h(~, k) is antisymmetric about~= 1 (this 

can be seen from the periodicity properties of the elliptic functions- see ref. [49]). 

1.3.3 The Moduli Space and Monopole Scattering 

In this section we will discuss the moduli space of monopole solutions. By the 

'modulus' of a solution we mean a physical zero mode, i.e. a parameter of the 
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solution which can be changed without changing the energy of the solution, or 

alternatively a parameter corresponding to a flat direction in the potential energy. 

The charge one monopole (1.3.25) has four moduli. Three of these are easy to spot 

- they correspond to the freedom to reposition the monopoles anywhere in JR3 . The 

fourth modulus is not so obvious. It can be obtained by deforming a BPS monopole 

configuration in such a way that the Bogomol'nyi equation (1.3.20) and the Gauss' 

law constraint, given by 

(1.3.37) 

are kept fixed. Working in A0 = 0 gauge, there is a unique physical transformation 

which obeys these constraints; it is given by the following rigid gauge transformation 

U = ex(t) .P 

' 
(1.3.38) 

When x = 0 in (1.3.38) xis a physical zero mode because the transformed configu­

ration still satisfies the Bogomol'nyi equation. The transformation (1.3.38) belongs 

to the global U(l) group of electromagnetism, which is compact since it has been 

embedded in SU(2), and so x is periodic. The modulus x is therefore called the 

phase of the monopole. For a charge n monopole there are 4n moduli, of which 

3n represent the positions of the monopoles (at least when the monopoles are well­

separated), and n represent the monopoles phases. 

The moduli define a 4n-dimensional manifold M called the moduli space, with 

each modulus corresponding to a dimension of M. See ref. [50] for a detailed geo­

metrical discussion of the properties of monopole moduli spaces. In ref. [51 J Manton 

showed how it is possible to use the moduli space to describe slow motion monopole 

scattering. He argued that, for an initial configuration which is tangent to the mod­

uli space, and in the limit of low velocity, the motion is constrained to min(V), 

where min(V) is the space of solutions which minimise the potential of the Yang­

Mills theory, i.e. the moduli space. Then the motion is described by a geodesic in 

the moduli space, with the action 

s = ~ j dt 9,.._>. z"'z>. , (1.3.39) 

where z"' are the moduli with r;,,). = 1, ... , 4n, and g,.._>. is the metric on moduli 

space. This action can be obtained from the standard action for a path in the 
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configuration space of monopole solutions (see ref. [51] for details). The action 

(1.3.39) is the effective action in which terms of order i 3 and higher have been 

ignored. For monopole motion this means that there are some effects, such as energy 

radiation, which have been ignored. We will focus more on the energy radiated 

during monopole scattering in chapters 3 and 4. 

For a two-monopole solution the geometry of the moduli space is (see ref. [52]), 

5 1 
X M 

IR3 X---z2 (1.3.40) 

In (1.3.40) the IR3 corresponds to the centre of mass position of the monopoles, the 

5 1 to the overall phase, and M is a four-dimensional manifold which specifies the 

relative position and phase. The quotient by Z2 is because the monopoles cannot 

be distinguished. The metric on moduli space for the centre of mass coordinate X 
and the overall phase x is fiat 

dX. dX + dx2 
. (1.3.41) 

The metric on moduli space for M is more interesting. It can be shown to be 

invariant under 50(3) rotations, and hyper-Kiihler. In ref. [52] these properties were 

used to deduce the asymptotic form of the metric in the limit that the monopoles are 

well-separated; it is the Taub-NUT metric with a negative mass parameter, which 

is given by 

(1.3.42) 

where r = (x1 - x2) is the relative position of the monopoles, and 'lj; = (XI - X2) is 

the relative phase. Here U(r) is a function of r = lf1, which is given by 

Also w is defined by 

2 
U(r) = 1-- . 

r 
(1.3.43) 

( 1.3.44) 

Note that, although the metric (1.3.42) contains a singularity at r = 2, this is not a 

problem because the singularity is outside the region in which (1.3.42) is valid. The 

unique metric with the properties of 50(3) isometry and hyper-Kiihlerity, which 

has Taub-NUT as its asymptotic limit, and is also smooth, is the Atiyah-Hitchin 
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metric. We will not discuss the details of this metric here - the Taub-NUT metric 

will be sufficient for our purposes. 

For monopoles with monopole number n the metric on moduli space is not known 

accurately. It was calculated in the asymptotic limit by Gibbons and Manton in 

ref. [53]. They used the fact that allowing the phases to depend on time results 

in a non-zero electric field, so that the monopoles become dyons. By studying 

the dynamics of the dyons, and reinterpreting the electric charges as phases, they 

used (1.3.39) to deduce the asymptotic form of the metric. They obtained the 

generalisation of the Taub-NUT metric to higher dimensions. Defining rrs = IX'r-X'sl 

and 

(1.3.45) 

where r, s = 1, ... , n. The metric is given by 

(1.3.46) 

where 

1 
9rr 1-2::-, (no sum over r) (1.3.47) 

rrs r#s 
1 

(r:f=s), (1.3.48) 9rs 
rrs 

Wrr - LWrs, (no sum over r) , (1.3.49) 
r#s 

-+ 

Wrs Wrs' (r:f=s). (1.3.50) 

We next discuss a particular geodesic in the two-monopole moduli space which 

we will make use of in chapters 3 and 4 (see ref. [50]). Consider two monopoles ap­

proaching each other headlong along the x1 axis. When they collide the monopoles 

form the axisymmetric 'doughnut' configuration in the x1-x2 plane. Therefore the 

motion corresponds to motion in a sub-manifold of the moduli space which is in­

variant under rotations of angle 1r about the x3-axis. This submanifold is therefore 

isometric to IR2 /Z2 , which is the cone with vertex angle 1r /3. Since the Atiyah­

Hitchin manifold is smooth, we can think of the sub-manifold as this cone with 

a smoothed out vertex. The geodesic corresponding to headlong collision is the 

one which bounces back from the vertex of the cone. This geodesic corresponds to 

scattering by an angle of 1r /2 in IR3 . 
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1.4 D-Branes as BPS Monopoles 

In sections 1.1 and 1.2 we have reviewed some of the basic properties of D-branes, 

and in section 1.3 we have reviewed some of the properties of BPS monopoles. 

In this section we will review some of the ideas on which the work in this thesis 

was based; how D-branes can act as BPS monopoles. We will concentrate on two 

specific examples; the enhan<;on, and D-strings (i.e. D1-branes) attached to D3-

branes. There are many other examples of D-brane configurations which act as 

BPS monopoles, which we will not discuss here (some of them are related to the 

configurations we shall discuss by the various dualities of string theory). In section 

1.4.1 we will review the enhan<;on, and in section 1.4.2 we will review D-strings 

attached to D3-branes. 

1.4.1 The Enhanc;;on Mechanism 

In this section we will review what happens when a Dp-brane is wrapped on a K3 

manifold for p ;::: 4. Recall from section 1.2.3 that this induces a unit negative charge 

of a D(p- 4)-brane. To be concrete we will discuss the case p = 6. Most of the 

material from this section can be found in the original enhan<;on paper, ref. [54], 

and in ref. [4]. 

The Supergravity Solution 

Using the harmonic function rule for p-brane solutions (see refs. [55] and [56]), the 

supergravity solution for this object in the string frame is given by 

ds2 = z:; 112 z-; 112rta{3dxQdx{3 + zi12 z~12dxidxi 

+vl/2 zl/2 z-l/2ds2 
2 6 K3 ' 

2 zl/2 z-3/2 
9s 2 6 ' 

(1.4.1) 

(1.4.2) 

(1.4.3) 

where a,{J now represent the directions common to both branes, a, {3 E {0, 4, 5}, 

and as usual i,j represent directions transverse to the branes, i,j E {1,2,3}. The 
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harmonic functions z2 and z6 are given by 

(1.4.5) 

(1.4.6) 

N is the number of D6-branes, and also the number of induced D2-branes. The 

parameter V is the volume of K3, measured at spatial infinity. From the form of 

the metric (1.4.1) we see that the volume of K3 at radius r is given by 

(1.4.7) 

There is something obviously wrong with the supergravity solution we have pre­

sented above; it has a naked singularity at r = -r2 , when Z2 = 0. So the region 

r < lr21 appears to be unphysical. The resolution to this problem is the enhanc;on 

mechanism, which was proposed in ref. [54]. 

A Brane-Probe Calculation 

There is clearly a problem with the supergravity solution given by equations (1.4.1) 

- (1.4.6). In order to understand the geometry better we can probe it with a single 

D6-brane wrapped on K3, which we move in from spatial infinity. The effective 

action governing the motion of the brane probe is the Dirac-Born-Infeld action 

and the Chern-Simons action together, taking into account the curvature couplings 

discussed above. It is given by 

(1.4.8) 

where M 2 is the unwrapped part of the D-branes' worldvolume, and P denotes the 

pullback to M 2 . The D-brane charges p 2 and p6 were given in equation (1.1.14). We 

allow the D-brane probe to move with very slow velocity. As for the monopole case, 

which we discussed in section 1.3.3, the positions of the D-brane probe in the three 

transverse dimensions are moduli (there is also a phase, which we will discuss later). 
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Moving with slow velocity therefore corresponds to following the path of a geodesic 

in moduli space. Since D-branes are BPS states, this motion does not affect their 

potential energy, but they will have a small kinetic energy. We can calculate this by 

expanding the action (1.4.8) up to terms which are second order in the transverse 

velocity v. The resulting Lagrangian is given by 

Lprobe = _J-t6VZ2- J-t2Z6 + /-l6v (Zfil _ 1) _ J-t2 (z;-1 _ 1) 
9sZ2Z6 9s 9s 

1 2 4 +- (J-t6VZ2- /-l2Z6) v + O(v) 
2gs 
1 1 2 

-- (J-t6 v- f-l2) + - (J-t6 v z2- J-t2Z6) v . 
9s 2gs 

(1.4.9) 

The first term in (1.4.9) is a constant potential energy, as expected, and the second 

term is the kinetic energy due to a non-trivial metric on the moduli space. The 

effective tension of the probe is 

7eff = (1.4.10) 

(1.4.11) 

where we have defined V* = (21r)4 (a') 2
. We will assume that V > V* so that the 

tension of the probe brane at spatial infinity is positive. The radius re is defined to 

be the value of r where the tension of the brane-probe is zero, 

2V 
re = V_ V* lr2l . (1.4.12) 

Note that V* is therefore the volume of K3 at this radius, VK3(re) = V:. For r <re 

the effective tension is negative, and therefore unphysical. This tells us that it is 

unphysical to allow the brane probe to move inside the sphere with radius re. The 

interpretation is that the brane probe becomes delocalised as it approaches this 

sphere, and so the charge of the D-branes is smeared out to live on the surface of 

this sphere in the transverse directions. Inside the shell there are no sources, and so 

the geometry is flat, and is given by 

ds2 = [Z2(re)Z6(re)t 11217af3dxadxf3 + [Z2(re)Z6(re)jll2dxidxi , 

+ v;.l/2 dSJo 

2 Z2(Te) 
gs Z6(re) 

cC3) = cC7) = o . 

(1.4.13) 

(1.4.14) 
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It was shown in ref. [57] that the solution given by (1.4.1) - (1.4.6) outsider= re, 

and (1.4.13)- (1.4.14) insider= re can be consistently matched onto one another. 

The Enham;on as a BPS Monopole 

Let us examine more closely what is happening at the radius re. Recall that the 

D6-brane couples magnetically to c<1l, and the D2-brane to c<s). So the magnetic 

duals of the wrapped D6-branes are D4-branes wrapped on K3, with some induced 

DO-brane charge. Since ~-t4 / f.-to = ~-t6 / ~-t 2 , a wrapped D4-brane probe also becomes 

tensionless at the enhanc;on radius. 

This scenario is suggestive of an enhanced gauge symmetry, with the wrapped 

D4-branes acting as the W-bosons of the theory. To see where the gauge symmetry 

has come from, consider the R-R fields wrapping the cycles of the K3 manifold. The 

unwrapped C(l) R-R potential is one U(1), and the c<s) R-R potential wrapped 

on the overall four-cycle of the K3 is another. It is the diagonal combination of 

these two U(1)'s which provides the broken U(1) gauge symmetry. The W-bosons 

becoming massless at the radius re is indicative of an enhanced gauge symmetry; 

it is enhanced from U(1) to SU(2). For this reason the wrapped D6-brane that we 

have been discussing is called an enhanc;on, and the radius re is the enhanc;on radius. 

So the enhanc;on is a region of enhanced gauge symmetry in the transverse dimen­

sions (there are three of them). Therefore it appears to be like the BPS monopoles 

that we were discussing in section 1.3 (see ref. [58]). This ties in with the enhanc;on 

being the magnetic dual of the W-boson of the enhanced gauge symmetry. There 

must also be the enhanc;on equivalent of a Higgs field - it is related to the running 

volume of the K3 manifold VK3 , because it is VK3 that sets the mass of the enhanc;on, 

via (1.2.30). 

So we have seen that the enhanc;on behaves like a BPS monopole in a theory 

with gauge symmetry broken from SU(2) down to U(1). 

The Field Theory Interpretation 

Let us now consider the interpretation of the enhanc;on from the point of view of 

the field theory living on the branes. On the unwrapped brane worldvolume there 
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is a (2+I)-dimensional SU(N) gauge theory. Since wrapping the D6-brane on K3 

breaks half of its supersymmetries, the theory has eight supercharges. The moduli 

space of supersymmetric vacua of the field theory is parametrised by the vacuum 

expectation values of the three transverse fields <Pi (recall these fix the positions of 

the branes in the transverse space). Allowing the <Pi to have vacuum expectation 

values breaks the gauge symmetry of the branes from SU(N) to U(I)N- 1 . Then 

the gauge fields living on the branes' worldvolume are Abelian, and can be dualised 

to give N - I more scalars, which are also moduli (see below for the details of 

this calculation). Therefore the moduli space is 4(N- I)-dimensional. In fact it is 

known that the moduli space of (2 +I)-dimensional supersymmetric gauge theory 

with eight supercharges is hyper-Kahler (see ref. [59]), and so its dimension has to 

be a multiple of four. The full moduli space is identical to that of N BPS monopoles 

(see refs. [60], [61] and [62]). 

The Enhan<_;on Phase 

The arguments discussed in the previous paragraph imply that the moduli space 

of the enhanc;on solution is identical to the moduli space of BPS monopoles. This 

supports the theory that the enhanc;on behaves like a BPS monopole. To make this 

argument more explicit, let us consider the moduli space of the D6-brane probe. 

To include the phase terms we must include the effects of the gauge field on the 

D-branes, F = dA. The Dirac-Born-Infeld action is modified as follows 

(1.4.I5) 

The D6-brane field also couples magnetically to the gauge field via the term 

(1.4.16) 

The field strength G(2) = dC(l) is Hodge dual to G(s) = dC(7), so the field C(l) is 

given by 

C(l) =- r6 cosBdc/J. 
9s 

(1.4.17) 

As we mentioned above, we can exchange the vector potential A1~ for a scalar s by 

introducing an auxiliary vector field vJ.L which acts as a Lagrange multiplier for F. In 
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the DBI part of the action we must replace 27ra' Faf3 by e2
<I> (~t6 VK3( T)- tt2 )-

2va Vf3, and 

add the term 27fa' JM
2 

F 1\ v overall (see ref. [63] for the details of this calculation). 

Integrating out v in this action gives us back the action we started with. However, 

we can also treat F as a Lagrange multiplier - it's equation of motion gives 

(1.4.18) 

Integrating the above equation we find 

(1.4.19) 

where the scalar s is the fourth modulus. Using (1.4.19) to eliminate Va from the 

action, and using a static gauge, we can calculate the effective Lagrangian of the 

probe 

·2 2"2 -1 s cjJ ( 
.)2 

Leff = F(r) (r + T n ) + F(r) 2- /-l2c<P2 ' (1.4.20) 

where 
z6 

F(r) =- (J-l6VK3(r)- M2) . 
2gs 

(1.4.21) 

Taking the low energy limit a' --> 0, while holding the gauge theory coupling fixed 

(1.4.22) 

and the energy scale U = r /a', the metric on moduli space is given by 

ds2 ~ f(U) (dU2 + U2dfl2
) + J(U)- 1 

( da- 4~2 A.;d</>) 
2 

, (1.4.23) 

where 

1 ( g~MN) 
f(U) = 41f2g~M 1- U ' (1.4.24) 

where (J =a's and A.p = ±1- cos e. As we promised, the metric (1.4.23) is a Taub­

NUT metric with negative mass parameter. By comparison with the monopole case, 

including the effects of instanton corrections should complete the metric (1.4.23) to 

the full Atiyah-Hitchin metric. However, this has not yet been shown explicitly. 
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1.4.2 D-Strings Attached to D3-Branes 

As the second example of a D-brane configuration acting as a BPS monopole, we 

consider in this section a D-string attached to D3-branes. 

To put this discussion into context, let us first consider a solution to the Abelian 

Dirac-Born-Infeld action for a Dp-brane, which was found by Callan and Maldacena 

in ref. [64]. They considered solutions with the electric field on the D-brane excited, 

and just one transverse field excited, X 9 say. The solution is given by 

X 9 = ____s:_ D a X 9 
' rar = r ' rP-2 

(1.4.25) 

where r is the radial coordinate in the D-brane's worldvolume, and Cp is a constant. 

Recall that X 9 represents the position of the Dp-brane in the x 9 direction, and so the 

solution (1.4.25) looks like an infinitely long spike protruding from the worldvolume 

of the Dp-brane. For this reason this solution is called the Bion spike. Note that 

the gauge field in (1.4.25) is purely electric. Recall from section 1.1.1 that the gauge 

field on a D-brane results from the charge associated with the end of an open string. 

Therefore we expect this electric field to originate from the end of an open string. 

Indeed, a calculation of the energy density of the solution yields the energy of a 

semi-infinite fundamental string. This provides further evidence that this solution 

represents a fundamental string attached to the Dp-brane, and that the end of the 

string looks like a pointlike source of electric charge in the D-brane's worldvolume. 

From now on we will restrict our attention to the case p = 3. Note that in the 

solution (1.4.25) the geometry of the D3-brane is bent into a spike in response to 

the tension exerted by the string. This phenomenon was studied in more detail in 

ref. [65]. The interpretation of the geometry of the solution (1.4.25), with a semi­

infinite string attached to a D3-brane, is that the string is strong enough to pull the 

spike out of the D3-brane indefinitely; the local R-R charge of the spike is that of 

a D3-brane. In ref. [65] the electric-magnetic dual of the solution (1.4.25) was also 

studied. Under the duality, the fundamental string transforms into a D-string, the 

electric charge becomes a magnetic charge, and the D3-brane remains a D3-brane. 

So the dual picture consists of a D-string attached to a D3-brane, with the end of 

the D-string acting as a pointlike magnetic charge, i.e. a magnetic monopole. For 
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a single D-string the monopole charge is one, and so the solution is the Prasad­

Sommerfield solution given in equation (1.3.25). 

As we have discussed above, a D-string should represent a magnetic monopole 

in the worldvolume of the D3-brane at the point where the string is attached. This 

configuration was studied in refs. [66] and [67], which we shall review next. Consider 

again the Dirac-Born-Infeld action with a single transverse field <I>9 excited, but this 

time with a magnetic field excited, Bi = 1/2Eijk Fjk· We substitute this ansatz 

into the Abelian Dirac-Born-Infeld action (1.2.8), setting all other fields to zero, 

and assuming flat background. We wish to find a static solution, so there is no 

kinetic energy, and the potential energy, which is the negative of the action we have 

obtained, is 

E T3 J d3~ Vl + (a')21~<I>912 + (a')21BI2 + (a')4(B. ~<I>9)2 

T3 J d3~ V(a')21~<I>9 ± Bl2 + (1 ± (a')2B · ~<I>9 )2. (1.4.26) 

Using the Bianchi identity in the form~· B = 0, the second term under the square 

root is a total derivative. This term is topological since it only depends on the 

boundary values of the fields at infinity and near singular points. Since the first 

term under the square root in equation (1.4.26) is always positive, we can write 

(1.4.27) 

Equality holds in (1.4.27) when 

(1.4.28) 

which is the BPS condition for a magnetic monopole, with the transverse field <I>9 

acting as the Higgs field. The solution to (1.4.28) and the Bianchi identity, which 

corresponds to the solution (1.4.25) for the electric field, is 

- n B(f} = :r:-3 r. 2r 
(1.4.29) 

Substituting this solution into the energy (1.4.27) we find 

(1.4.30) 
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which is the energy for a D3-brane with n infinitely long D-strings protruding from 

it, as we would expect. 

The solution obtained above describes D-strings intersecting with a D3-brane. 

We should also be able to study this solution from the point of view of the fields 

living on the D-strings. Since we have n D-strings we should use the non-Abelian 

Born-Infeld action, which we discussed in section 1.2.2. We excite three of the 

transverse scalars <J>i, i E {1, 2, 3} which will correspond to the D3-brane directions. 

The <J>i are now n x n matrices transforming in the adjoint representation of the 

U ( n) world volume gauge group. We set all other fields to zero, and again assume 

flat background. We can use the non-Abelian Dirac-Born-Infeld action (1.2.19) to 

deduce the energy of this ansatz. Again, there is no kinetic energy, and so the total 

energy is given by 

E = Tl J daSTr 1 + (a')2(cVI>i)2- ~(a')2[<J>i, <J>jj2- ~(a')4 (cijk8a<I>i[<J>j, <J>k])2 

~ T1 j du STr ( a')2 ( iJ.<I>' 'f ~fijk [<I>i, <I>' I)' + (I ± ~ ( a')2<ijkiJ" <I>'[<J>j, <I>' 1 )' 
(1.4.31) 

From (1.4.31) we can see that the first term under the square root is always positive, 

and so we can write 

E > T1jdaSTr (l±~(a')2cijk8a<I>i[<I>j,<I>kJ) 

NT1 J da± ~(a') 2T1 Jda8aTr(cijk<I>i<J>-i<I>k). (1.4.32) 

We are allowed to do this because we are again just left with a topological term in 

(1.4.32). Equality in (1.4.32) holds when 

a <I>i = ± !_Eijk [<I>j <I>kJ 
a 2 ' ' 

(1.4.33) 

which are Nahm's equations. 

So what we have is a nice physical realisation of the ADHMN construction of 

section 1.3.2, with the D3-brane point of view describing the (3+ 1 )-dimensional 

gauge theory description of a monopole, and the D-string point of view describing 

the ( 1 + 1 )-dimensional N ahm perspective. N ahm 's equations in this context were 

also derived in ref. [68] using supersymmetry arguments. 
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The solution to Nahm's equations proposed in ref. [66] is 

(1.4.34) 

where the o:i are the n x n matrix representation of the SU(2) algebra, and 

f(O") = ±~. 
20" 

(1.4.35) 

which is again an infinitely long spike. The geometry of this solution is a noncom­

mutative two-sphere whose physical radius is given by 

o:' v'n2 - 1 
r(O") rv . 

0" 
(1.4.36) 

where the factor of v'n2 - 1 in (1.4.36) is the Casimir of SU(N) (see ref. [69]). 

The range of validity of these solutions was discussed in ref. [66]. Recall that 

in the Born-Infeld action derivatives of the gauge field have been neglected. From 

the D3-brane perspective, the transverse fields are slowly varying as r _. oo, but 

they start to vary rapidly as r _. 0. From the D-string perspective the reverse is 

true. Schematically we require J(;i 82 <t>i » a<t>i in order to be able to ignore the 

contributions from the derivatives of the <.Pi. For the D3-brane solution (1.4.29) we 

have 

r » #, O" ~ n#, (1.4.37) 

and for the D-string solution (1.4.34) we have 

O" » # , r ~ nls . (1.4.38) 

So the solutions are valid in two complementary regions of the space, which may 

overlap for large n. 

We have discussed how Nahm's equations arise from the non-Abelian Dirac-Born­

Infeld action for D-strings. But the ADHMN construction also specifies boundary 

conditions for the Nahm data. It was shown in refs. [70] and (71] how these arise in 

the D-brane picture. We will outline the argument from ref. [70], although we will not 

go into the details of the calculation, since it is beyond the scope of this thesis. The 

boundary conditions arise from considering the fundamental strings which connect 

the D3-brane to the D-strings. These are localised at the intersection of the two 
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branes, and they prevent the ends of the D-strings from leaving the worldvolume of 

the D3-brane, since they would then become massive. In field theory language their 

degrees of freedom belong to the fundamental hypermultiplet of the supersymmetric 

gauge theory. Because they are localised, their terms in the low-energy effective 

Lagrangian come with a delta function 6 ( O") attached. The equations of motion 

of this Lagrangian are Nahm's equations, with an extra term involving the delta 

function 6(0"). It is this term which leads to the pole in the solution at O" = 0. 



Chapter 2 

Enhan~ons as BPS Monopoles: 

the Moduli Space Perspective 

In this chapter we describe the work carried out in our paper, ref. [1], in which we 

calculate the metric on moduli space for n enhan~ons. We have explained in section 

1.4.1 how the enhan~on behaves like a BPS monopole, and how the supersymmetric 

gauge theory on the branes forces the moduli space to be hyper-Kahler. Therefore 

we expect the metric on moduli space for the enhan~ons to be the Atiyah-Hitchin 

metric. Here we will work with the limit in which the enhan<_;ons are far apart from 

one another, and so we expect to obtain the generalised Taub-NUT metric (1.3.46) 

as our result. Although it has already been shown that the moduli space for a brane 

probe is Taub-NUT, it is worthwhile showing that this result does indeed generalise 

to the case of n enhan~ons. 

We start, in section 2.1, by reviewing the procedure we will use to calculate the 

metric on moduli space; it was used in refs. [72], [73] and [7 4] to calculate the metric 

on moduli space for maximally charged black holes. In section 2.2 we dimensionally 

reduce over the brane directions to obtain a (3 + I)-dimensional system. Then in 

section 2.3 we describe our calculation for the metric on moduli space, and in section 

2.4 we summarise the chapter. 
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2.1 The Metric on ModuH Space of Maximally 

Charged Black Holes 

We will use the procedure from refs. [72], [73] and [74] to calculate the metric 

on moduli space. In those papers the metric on moduli space was calculated for 

maximally charged Reissner-N ordstrom black holes in the Einstein-Maxwell system 

by applying the method of Manton from ref. [51] for the slow motion scattering of 

monopoles, which we reviewed in section 1.3.3. Since the black holes are maximally 

charged, their masses and charges saturate the Bogomol'nyi bound for black holes, 

Qa = G112 !via, where the index a labels the ath black hole. This means that, for 

stationary maximally charged black holes, the electromagnetic repulsion cancels the 

gravitational attraction, and so Manton's method is applicable. We will outline the 

steps of the calculation from these papers. We omit the details of the calculation, 

since they are very similar to those we will describe for the enhan<_;ons, in the rest 

of this chapter. 

1. First allow the moduli, which are the positions of the black holes Xa, to depend 

on time, and perturb the fields to take account of the time dependence. 

2. Substitute the perturbed fields into the action which governs the system, ne­

glecting all terms which are of order u~ or higher, where Ua is the velocity of 

the ath black hole. 

3. From this action, deduce the equations of motion for the field perturbations 

(these will be correct up to linear order in ua)· 

4. Solve the equations of motion for the perturbations, and substitute them back 

into the action. 

The resulting action will be an effective action, dependent only on the velocities Ua 

and the density of the static solution. Fro1n this action the metric on moduli space 

can be deduced, using (1.3.39). 
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The above calculation was generalised to the case of the Einstein-Maxwell-dilaton 

system in ref. [75]. The action for that system in four dimensions is given by 

J 4 ~ ( 1 2 1 a<I> (2) 2) SEMD rv d X y -g R- 2(C9<I>) - 4e- (F ) , (2.1.1) 

where R is the Ricci scalar, F(2) is the U(1) gauge field strength, and <I> is the 

dilaton. We will take the dilaton constant coupling to be a = 1, which is the case 

for string theory. The solution to (2.1.1) for n black holes is given by 

-F(x)- 1dt 2 + F(x)dx2
, A= (1- F(x)- 1 )dt, 

F(x), 

where, if we include source terms, 

(2.1.2) 

(2.1.3) 

(2.1.4) 

In (2.1.4) ka sets the mass of the ath black hole via ma = ka/2. This solution is very 

similar to the D-brane solution (1.1.23) - (1.1.25), if we generalise it to a higher­

dimensional spacetime and allow the black holes to be higher-dimensional membrane 

objects. The calculation of Shiraishi was generalised to unwrapped branes in ref. [76]. 

Since these solutions are very similar to the enhanc;on solution, it makes sense for 

us to adopt the procedure used in these papers to calculate the metric on moduli 

space for the enhanc;ons. 

2.2 Dimensional Reduction to Four Dimensions 

In order to apply Ferrell and Eardley's technique from refs. [72], [73] and [74], we 

must compactify over the spatial brane directions x 4
, ... , x 9

. This will leave us with 

the three-dimensional space transverse to the branes, as well as time, to make four 

dimensions in total. We will assume that the enhanc;ons are far apart, so that they 

can be treated as pointlike objects in this four-dimensional spacetime. In this section 

we will describe the dimensional reduction of the brane directions, compactifying 

them on K3 x T 2
. We follow the dimensional reduction procedure given in ref. [77]. 

We will allow the volumes of the K3 and the T 2 to vary; these will act as scalar fields 
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in the dimensionally reduced version of the action. As in the enhant;on supergravity 

solution (1.4.1)- (1.4.4) these scalar fields will be dependent only on the directions 

transverse to all branes, x 1 , x2 and x 3
, and time. 

Our dimensional reduction procedure applies to compactification on any Ricci 

flat six-dimensional manifold. We choose to focus on the case of K3 x T2 because, 

from what we know about the enhant;on mechanism, we expect the moduli space 

to be Taub-NUT in this case. Also because compactification on K3 gives us N = 1 

supersymmetry for the (2 + I)-dimensional gauge theory on the D2-branes, whose 

moduli space of vacua is known to be Taub-NUT. 

2.2.1 The Type IIA Action in the Einstein Frame 

We start with the type IIA ten-dimensional supergravity action in the string frame 

with a D6-brane field strength and a D2-brane field strength excited. From ( 1.1.16), 

this is 

ss = _1_ jdwx ~gs {e-2<I>[Rs + 4(\7s<I>)2)- _l_(F(4))2- _l_(F(s))2} 
IIA 2K6 V -y- 2.4! S 2.8! S 

(2.2.1) 

It will be more convenient for us to work in the Einstein frame, so we convert from 

string frame to Einstein frame by setting 

g
s _ e(<I>-<I>o)/2gE 
MN- MN' (2.2.2) 

where the superscript S denotes the string frame, and the superscript E denotes the 

Einstein frame. Here lvf, N denote spacetime indices, M, N = 0, ... , 9. In (2.2.2) <I>0 

is the expectation value of the dilaton field <I>, and 9s = e<~>o is the string coupling. 

Let cl> = (<I> - <I>0 ). Then 
~ 10~ r--Y. 

V - y- = e-4 V - gE . (2.2.3) 

The formula for the Ricci scalar under a conformal transformation of the form ( 2. 2. 2) 

is 

(2.2.4) 
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where D is the number of dimensions (see for example [78]). Since we are working 

in ten dimensions, this yields 

The kinetic terms in (2.2.1) transform as follows 

where we have defined 

e-<i>/2(V'E<J>)2 , 

-2 -2<i>(p(4))2 
9s e E ' ( p(8))2 = -2 -4<l>(p(8))2 

S 9s e E ' 

F (4) - -lp(4) p(8) -lp(8) 
S - 9s E ' S = 9s E · 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

Substituting (2.2.5)- (2.2.7) into (2.2.1) gives us the action in the Einstein frame 

SE _1_ jdwx ~gE {RE- ~('\7Eif..)2- _l_et (F(4))2 
IIA = 2""2 V -y- 2 v '±' 2.4! E 

__ 1 _ _ 3! (F(s)) 2 } 

2.8!e E ' 
(2.2.9) 

For simplicity, in what follows we will relabel <I> as <I>. 

2.2.2 Dimensional Reduction on K3 

Here we dimensionally reduce the wrapped brane dimensions on K3. After the 

dimensional reduction it will be necessary to perform a conformal transformation so 

that the gravity part of the dimensionally reduced action is of the Einstein-Hilbert 

form. 

Dimensional Reduction 

We rewrite the action (2.2.9) as 

1 J 10 r--::. { ~ 1 ~ 2 1 .'!'. ~ ( 4) 2 1 - 3<1> ~ (8) 2} SnA=-
2 

d xy-g R--(V'<I>) --1e2(F) --1e 2(F) , 
2"" 2 2.4. 2.8. 

(2.2.10) 

where we have relabelled all the fields with hats to indicate that they are ten­

dimensional fields. The hat in (FC4l? also indicates that the metric [JJLv is used to 

compute the square, i.e. 

(2.2.11) 
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F(4) is a 4-form field strength with potential F(4) = dC(3). Similarly fr(s) = dC'(7). 

We wish to calculate the dimensionally reduced version of (2.2.10) when the direc­

tions x 6
, x7

, x 8
, x 9 are compactified on a K3 manifold. 

We set 

A ( 9pa 0 ) 
9MN = , 

0 vl/2 ef3/2 g~~ 
(2.2.12) 

where M, N = 0, ... , 9, p, O" = 0, ... , 5, m, n = 6, ... , 9 and VK3 = V ef3 is the 

volume of the K3 manifold, with V being a constant of dimension L 4 . The form of 

the metric which we have chosen in (2.2.12) is consistent with the enhanc;on metric 

(1.4.1). 

We will assume that gpa, (3, <D and p(s) are independent of the compactified 

directions xm. We also take the metric on K3, g~~' to depend only on the xm. 

Again, these assumptions are consistent with the enhanc;on solution (1.4.1)- (1.4.4). 

Then a calculation, which we have given in appendix A, yields 

Also 

A - 5 - 2 -2 
R = R- -(\7(3) - 2(\7 (3) . 

4 
(2.2.13) 

(2.2.14) 

We make the choice that each non-vanishing component of (;(?) contains the 

indices 6,7,8,9. This is consistent with the form of the enhanc;on solution for C(7) 

(1.4.4). We set 

(2.2.15) 

where we have used a prime to distinguish the dimensionally reduced D6-brane 

potential C'(3) from the D2-brane potential, which in the dimensionally reduced 

action we will denote C(3). Then 

(2.2.16) 

Also 

(2.2.17) 

since C(3) does not have components in the K3 directions. 



2.2. Dimensional Reduction to Four Dimensions 46 

Substituting (2.2.13)- (2.2.17) into the action (2.2.10), we get the six-dimensional 

action 

-
1
- jd6xVe!3v=9 [R- ~(V;3) 2 - 2(V2;3)- ~(V~) 2 

2,.,2 4 2 

__ 1_e!-(_F(4))2- _1_e_3i e-2/3(_F'(4))2] (2.2.18) 
2.4! 2.4! 

Conformal Transformation 

The action (2.2.18) is not of the standard form since there is a factor of e/3 multiplying 

R. In order to remove this factor we perform the following conformal transformation: 

- -/3/2-
9pa- = e 9pa- · (2.2.19) 

Then, again using the formula (2.2.4) for the Ricci scalar under a conformal 

transformation, we find 

Also 

and 

For the gauge field terms, 

~ - -3{3/2 ~ 
y-y- e y-g' 

ef3/2('{j;3)2, (V~)2 = e/3/2(V~)2, 

ef3/2(V2;3)- ef3/2(V;3)2 . 

Substituting (2.2.20)- (2.2.24) into the action (2.2.18), we get 

SuA = 

where we have neglected the total derivative terms. 

(2.2.20) 

(2.2.21) 

(2.2.22) 

(2.2.23) 

(2.2.24) 

(2.2.25) 
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2.2.3 Compactifying on T 2 

Here we dimensionally reduce the action (2.2.25) over the directions x 4 , x 5 , which 

we will compactify on a T 2 . 

Dimensional Reduction 

We set 

9pa = (2.2.26) 

where p, CJ = 0, ... , 5, J-L, v = 0, ... , 3, r, s = 4, 5. As in section 2.2.2 we assume that 

gJ.L"', p, <i>, P<4> and F'(4) are independent of the compactified directions x4 , x5 . Then 

a similar calculation to that given in appendix A for the dimensionally reduced Ricci 

scalar yields 

Also 

and 

- = =2 3 = 2 R=R-2\1 p--(Vp) . 
2 

(2.2.27) 

(2.2.28) 

(2.2.29) 

We make the choice that the non-vanishing components of 6<3) and C'(3) contain 

the indices 0,4,5, which is consistent with the form of the enhan<;on solution for C(3) 

(1.4.3) and c<7) (1.4.4). We set 

=c1) -c3) 0=,cl)_ 0-,c3) 
Go = Co4s , o - o4s · (2.2.30) 

Then 

(2.2.31) 

Substituting (2.2.27) - (2.2.31) into (2.2.25) we get the four-dimensional action 

SIIA = £
2

~ Jd~ePyl-§ [R- 2V2p- ~(Vp) 2 - ~(V/3) 2 - ~(V<P) 2 
161rG 2 2 2 

-lete3/3/2e-2P(p(2)? -le-3i e-N2e-2P(F'(2))2] ' (2.2.32) 

where L is a constant which will set the lengthscale of the compactified T 2 dimensions 

at spatial infinity. 
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Conformal Transformation 

Again we wish to convert the action (2.2.32) to the standard form. We remove 

the factor of eP multiplying R in the action (2.2.32) by performing the following 

conformal transformation 

(2.2.33) 

Then the Ricci scalar becomes 

(2.2.34) 

and 

(2.2.35) 

The scalar fields transform as follows 

(2.2.36) 

and 

(2.2.37) 

For the gauge field terms 

(2.2.38) 

Substituting (2.2.34) - (2.2.38) into the action (2.2.32) and neglecting total 

derivative terms, we get the dimensionally reduced action 

SuA = 

(2.2.39) 

This is the four-dimensional action of the compactified theory. 

2.2.4 A Symmetry of the Action 

Note that the six-dimensional action (2.2.25) is invariant under the transformation 

<I> ---t -{3, f3 ---t -<I> and F(4) f--7 F'(4) and the four-dimensional action is invariant 

under a similar transformation with F(2) f--7 F'(2). That is, the dilaton is exchanged 

with the volume of K3, while the D2-brane and D6-brane potentials are interchanged. 
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This symmetry is a consequence of the duality between type IIA strings com­

pactified on K3 and heterotic strings compactified on T 4
. Under this duality, the 

dilaton field e<P, which plays the role of the type IIA string coupling in the type IIA 

string action, becomes the volume of the T 4 in the heterotic string action. And vice 

versa, the field ef3 plays the role of the volume of K3 in the type IIA action, and the 

role of the heterotic string coupling in the heterotic string action. 

In terms of the field strengths, the p(s) field strength in the ten-dimensional 

type IIA action is Hodge dual to a F(2) field strength. The F(2) field strength is 

not wrapped in the six-dimensional type IIA theory. Under the heterotic-type IIA 

duality this F(2) field strength becomes an F(2) field strength in the heterotic theory, 

which is wrapped on the T 4 directions. Therefore in the ten-dimensional heterotic 

string theory the corresponding field strength is F(6 ), which is Hodge dual to F(4). 

So the p(s} in the ten-dimensional string theory becomes F(4
) in the heterotic theory, 

and vice versa, as the transformation requires. In other words, the D6-brane charges 

in the type IIA string theory are transformed into Kaluza-Klein monopole charges 

in the heterotic string theory, and the D2-brane charges are transformed into H­

monopole (wrapped NS5-brane) charges. 

2.2.5 The Static Solution 

We restate here the ten-dimensional solution which corresponds to the enhan<_;on (at 

least outside the enhan<;on radius), 

ds~ z-;_- 112 z;; 112 'rlaf3dxa dxf3 + zi12 zi12 dxi dxi + V 1/
2 zi12 z;; 112 dS'f<3 , 

e21> g; zi/2 z;;3/2 ' 

cC3l g_;-- 1(1- Z:; 1 )dx0 l\dx4 1\dx5
, 

C(7) V g_;-- 1 (1 - Z(3 1 )dx0 1\ dx4 1\ dx5 1\ dx6 1\ dx7 1\ dx8 1\ dx9 
. 

This is a solution to the ten-dimensional type IIA action, (2.2.1) with added source 

terms (which we will consider in section 2.3.3). We need to apply the compactifica­

tion procedure from sections 2.2.2 and 2.2.3 to this solution in order to obtain the 

enhan<;on solution to the four-dimensional compactificd action (2.2.39). 
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'vVe convert the string frame solution to the Einstein frame using 

gf.tN e-(<P-<Po)f2g~1N 

z-l/8 z3/8 s 
2 6 9Jv!N, (2.2.40) 

and we apply the formula (2.2.8) for the gauge field. Then the ten-dimensional 

solution in the Einstein frame is 

d 2 z-5/8z-l/8 d ad f3 + z3!8z7/8d id i 
SE = 2 6 'r/a{3 X X 2 6 X X 

+vl/2 z3/8 z-l/8 dS2 
2 6 K3 ' (2.2.41) 

zi12 z-;312 
, (2.2.42) 

(1 - Z21 )dx0 1\ dx4 1\ dx5 , (2.2.43) 

V(1 - Zf:1 )dx0 1\ dx4 1\ dx5 1\ dx6 1\ dx7 1\ dx8 1\ dx9 
. (2.2.44) 

Again we will relabel <I> as <I>. We wish to compactify this ten-dimensional solution 

following the same steps as in sections 2.2.2 and 2.2.3 to obtain the four-dimensional 

solution to the action (2.2.39). 

Compactifying on K3 

First we compactify the ten-dimensional solution (2.2.41) - (2.2.44) over the K3 

directions x 6
, x 7, x 8, x 9 as in section 2.2.2 

We apply the dimensional reduction procedure from section 2.2.2, as described in 

equations (2.2.12), (2.2.15) and (2.2.17), to the enhanc;on solution (2.2.41)- (2.2.44). 

We thus obtain the six-dimensional enhanc;on solution to the action (2.2.18), which 

is 

ds2 z-5/8 z-l/8 d ad f3 + z3/8 z7/8 d id i 
2 6 'r/a(3 X X 2 6 X X , (2.2.45) 

ef3 z314z-ll4 
2 6 l 

2<1> _ zl/2 z-3/2 
e - 2 6 ' (2.2.46) 

C'(3) (1 - Z21 )dx0 1\ dx4 1\ dx5 , (2.2.47) 

C'(3) (1 - Zf: 1 )dx0 1\ dx4 1\ dx5 . (2.2.48) 

We then perform the conformal transformation (2.2.19) which implies 

_ z3!8z-ll8-
gpu = 2 6 9pu · (2.2.49) 
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So the solution to the action (2.2.25) is 

- 2 
ds 

Compactifying on T 2 

Z -1/4z-l/4 d ad f3 + z3/4z3/4d id i 
2 6 'r/a/3 X X 2 6 X X ' 

Z3/4z-l/4 2<1> _ zl/2z-3/2 
2 6 'e -2 6' 

(1 - Z21 )dx0 
(\ dx4 (\ dx5 

) 

(1 - Z6 1 )dx0 1\ dx4 1\ dx5 
. 

51 

(2.2.50) 

(2.2.51) 

(2.2.52) 

(2.2.53) 

Now we wish to compactify the six-dimensional solution (2.2.50) - (2.2.53) over the 

T 2 directions x 4
, x 5 following the same steps as in section 2.2.3. 

We apply the dimensional reduction procedure from equations (2.2.26) and 

(2.2.30) of section 2.2.3 to obtain the four-dimensional enhanc;on solution to the 

action (2.2.32), which is 

d= 2 - -z-ll4z-l/4d od 0 + z314z3/4d id i S- 2 6 XX 2 6 XX, 

p _ z-l/4z-l/4 13 _ z314z-l/4 2<1> _ zl/2z-3/2 
e- 2 6 'e- 2 6 'e- 2 6' 

We then perform the conformal transformation (2.2.33), which implies 

_ z-l/4z-l/4 = 
9JLV - 2 6 9JLV · 

So the four-dimensional enhanc;on solution to the action (2.2.39) is 

-z:;t/2 Zi,'t/2dxodxo + z;/2 zil2dxidxi ' 

Z -l/4z-l/4 13 _ z314z-l/4 21> _ zll2z-3/2 
2 6 'e- 2 6 'e- 2 6' 

2.3 The Multi-Enhanc;on Moduli Space 

(2.2.54) 

(2.2.55) 

(2.2.56) 

(2.2.57) 

(2.2.58) 

(2.2.59) 

(2.2.60) 

We observe that the dimensionally reduced action (2.2.39) is identical to the action 

for four-dimensional gravity, with two U ( 1) gauge potentials, coupled to three scalar 
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fields, as we would expect. As we discussed in section 2.1, the form of the four­

dimensional enhan<;on solution (2.2.58) - (2.2.60) is very similar to that of Reissner­

Nordstrom black holes in the Einstein-Maxwell-dilaton system. 

In this section we follow the steps outlined in section 2.1 to calculate the metric on 

moduli space for the enhan<;ons. We then describe how to augment this calculation 

to include the phase terms in the metric. 

2.3.1 The Static Solution 

We start with the static four-dimensional enhan<;on solution given by (2.2.58) -

(2.2.60), which we restate here, relabelling C'(1) as c<l), 

-z:;l/2 z;;l/2dxodxo + zi/2 z~l2dxidxi , 

Z -l/4z-l/4 13 _ z314z-ll4 2<1> _ zll2z-3/2 
2 6, e-2 6, e -2 6, 

(2.3.1) 

(2.3.2) 

(2.3.3) 

The solutions for ds 2
, e'~>, C(l) and C(l) are in agreement with the black hole solution 

(2.1.2) - (2.1.4) if we take Z2 = Z6 . The main difference between the black hole 

solution and the enhan<;on solution is the extra scalar fields {3 and pin the enhan<;on 

solution. 

Since we are taking the limit where the enhan<;ons are a long distance apart, we 

can ignore their spatial extent, and assume that they are pointlike. Therefore the 

source terms for the U(1) charges in the action have the form of 6-functions. Then 

the equations of motion for C(l) and C(l) imply that z2 and z6 obey 

a a 

where the positions of the enhan<;ons are denoted Xa, with a = 1, ... , n. As expected, 

the Xa are the moduli of the solution. We write 

(2n) 4gsQaa.'512 9sQaa'112 

(r2)a = -
2

V , (r6)a = 
2 

, (2.3.5) 

where Qa is the number of D6-branes in the ath enhan<;on. Equations (2.3.4) have 

the asymptotically fiat solutions 

(2.3.6) 
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The solutions (2.3.6) contain singularities at x = Xa, which lead to infinities in 

the calculation of the effective action. As in ref. [74] we will avoid these infinities 

by assuming a general charge distribution Q(x). Then (2.3.4) become 

(2.3.7) 

We will take the enhan<;on limit Q ---+ I:a Qa5(3l(x- ia) in the final stage of the 

calculation. It will turn out that the infinities will cancel to leave a finite answer for 

the effective action (i.e. we have to regularise the problem, but renormalisation is 

not necessary) . 

2.3.2 Perturbing the Static Solution 

In the slow-velocity approximation we can make the static solutions time-dependent 

by allowing the moduli to depend on time Xa ---+ Xa(t). We define 11a to be the 

velocity of the ath enhan<;on, so that 11a = i'a(t). For the general charge density we 

define 71 = f(t) to be the velocity of a charged particle of dust. 

We perturb the enhan<;on solution (2.3.1)- (2.3.3) to take into account the effects 

of the time dependence. Since we are assuming that u = 1711 is small we only need 

calculate the perturbed fields to O(u). As in [74], we can expand fields which are 

even or odd under time reversal in even or odd powers respectively of u. Then a 

Taylor expansion of a Lagrangian about a static solution reveals that first-order 

perturbations in quantities which are even under time reversal vanish. Therefore 

the perturbed solution has the form 

... 

( 1 - ( Z2) -l) dt + A . dx , 

(1- (Z6)- 1
) dt +.A. dx, 

(2.3.8) 

(2.3.9) 

(2.3.10) 

where N, A and A are perturbations which are of first-order in the velocity 71. The 

scalar fields <I>, (3 and p remain unperturbed. The perturbations A and fJ depend 

on time through x(t). 

According to Manton's technique we can neglect radiation effects, because these 

effects are of higher order than u2
. Therefore we can assume that the energy in the 
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system remains in the zero modes; the non-zero modes are not excited. This means 

that the motion takes the form of a geodesic in moduli space, as we explained in 

section 1.3.3. 

2.3.3 The Action in the Slow Motion Limit 
.... 

We wish to find the equations of motion for the perturbations N, A and A in order 

to express these fields as functions of Q and fi. We need expressions for N, A 
.... 

and A to O(u), so we must calculate the perturbed action to O(u2 ). Therefore we 

will substitute the perturbed solutions (2.3.8) - (2.3.10) into the action, neglecting 

terms 0( u 3), then we will derive equations of motion for the perturbations from the 

resulting approximate action. 

In section 2.2 we found that the ten-dimensional type IIA supergravity action 

with four dimensions compactified on K3, and two dimensions compactified on T 2 

reduces to the following four-dimensional action 

SuB = Sgravity + SMaxwell + Sscalar , (2.3.11) 

where 

Sgravity = k J d~ v/-9 R , (2.3.12) 

S = k J d~ c-;:9 ( _ ~e<I>/2e3.B/2e-P(F(2))2 _ ~e-3<I>/2e-.B/2e-P(f(2))2) 
Maxwell V -y 4 4 ' 

(2.3.13) 

J 4 r-::: ( 2 1 2 1 2) Sscalar=k d-xy-g -(V'p) -2(V'/3) -2(V'<P) ' (2.3.14) 

where k = L2Vj2r;,2 is a constant. 

Substituting the perturbed solutions (2.3.8) - (2.3.10) into the action (2.3.11), 
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and integrating by parts several times, we find 

sapprox = k dix { -~IV X (A+ z;-112 zi12 N) 12 
- ~IV X (A+ zi12 Z~ 112 N)l 2 

JIB f 2 Z21 Z6 2 Z2Z6 1 

(V x (A+z;-112zi12R)). (V x (zi12zii2N)) 
+ z6 

(V x (A+ z~12 Z~112 N)) . (V x ( zi12 zi12 N)) 
+ z2 

__, 1/2 1/2 __, 2 

-~IV' x (z;2~6 N)l - z2z6- v(z2). (A+ z;-112 zi12 R) 

-V(Z6). (.A+ z~12Z~112R)}. (2.3.15) 

We also need to include source terms in the action for the matter density and for 

the current. To find the matter source terms we need to dimensionally reduce the 

Born-Infeld action for the D6-branes and the Born-Infeld action for the D2-branes. 

From (1.2.8) of section 1.2.1 we see that these are given by 

Smatter =-J d7~ e-<1> n V- det G8 + J d¥, e-<I>r2 J- det G 8 ) (2.3.16) 

where G8 and G8 are the induced metrics on the D6-brane worldvolume and the 

D2-brane worldvolume respectively, and n and -T2 are the D6-brane tension and 

the (negative) D2-brane tension respectively (see equation (1.2.9)). We follow the 

same steps as in section 2.2 to reduce the ten-dimensional action (2.3.16) to a four­

dimensional one; we convert to the Einstein frame, then compactify on K3, then 

compactify on T 2 to get 

Smatter = -£2 j dt e-<I>/4 e-3{3/4 ePI2
( e<I> e13V T5 - T2) .;=G; , (2.3.17) 

where Tp = Tpg; 1 is the physical tension, which is given in equation (1.1.13). Also, 

G00 is the metric induced from the four-dimensional metric (2.3.8). Substituting the 

perturbed solutions (2.3.8) - (2.3.10) into the action (2.3.17), we find 

sapprox = -£2 J dt z-1(VZ z-1 - ) (1- Z 112 Z112 N. __,- ~z z __,2) matter 2 2 6 T6 T2 2 6 U 2 2 6U 

(2.3.18) 

The BPS bounds (1.1.15) give 

(2.3.19) 
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where q6 is the D6-brane charge and q2 is the D2-brane charge and, from equation 

(1.1.14), ~-t 2 = (2n)-2et'-312 anclp6 = (2n)-6et'-712 . In terms of the current density 

Q(x) we have 

I 3 - ~ 
q6 = -q2 = d x Q(x) . (2.3.20) 

So 

sapprox = _£2 ld4 Q (V z-1 _ z-1 ) ( 1 _ z1/2 zl/2 fJ. ~ _ ~z z ~2) 
matter X 6 /-L6 2 /-L2 2 6 U 2 2 6 U 

9s 
(2.3.21) 

The source term in the action for C(3) is given by 

(2.3.22) 

where et0 , et1 , et2 , (30 , (31 , /32 = 0, 1, 2. Similarly for C(7) we have 

(2.3.23) 

where K.0 , . .. , K.6 , .\0 , ... , .\6 = 0, ... , 6. Compactifying (2.3.22) on T 2 and (2.3.23) 

on T 2 x K3, then substituting in the perturbed solution (2.3.8) - (2.3.10) gives 

s:~;~~t - L2 I d4
x ((Z21

- 1) +A. a) Q:2 

+L2 I d4
x ((Z61 -1) +A. a) Q~:6 

. (2.3.24) 

Altogether we have 

S - sapprox sapprox sapprox 
approx - I I B + matter + current · (2.3.25) 
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Substituting (2.3.15), (2.3.21) and (2.3.24) into (2.3.25) we get 

= k d4x {-~IV x (A+ z;1/2z~/2 N)l2 -~IV x (A+ z;/2 z~1/2 N)l2 
Sapprax J 2 Z21 Z6 2 Z2Z61 

(V x (A+ z;- 112 zt12 N)). (V x (z;12 zt12 N)) 
+ z6 

(V x (A+ z~12 Z~112 N)). (V x (zi12 zt12 N)) 
+ z2 

11v x (z~12 zt12N)I 2 

-- - Z2Z6 
2 Z2Z6 

-Q (2_q6J.L6 V+ 2_q2112) + ~Q (V /-L6z2 _ 112Z6) u 2 
9s 9s 2 9s 9s 

- (A+ z;-112 z~12 R) . ( V(Z2) + Q~:u) 

- (A+ z~12 z~112 R) . ( v(z6) - Q v:6 
u) } . (2.3.26) 

_, 

The dynamical variables in (2.3.26) are N, A and A (Z2 and Z6 are not dynamical, 

since they are fixed by equation (2.3.6)). 

2.3.4 Perturbation Equations of Motion 

Since we have calculated sapprox up to O(u2), we can derive equations of motion 
_, 

from it which are correct to O(u). The equations of motion for A and A are 

(v x (A+~;112 z~12N)) +kV x (v x (z~12 zt12N)) 
Z2 z6 z6 

-kV z2- QJ.L2 L2u = 0 , 
9s 

(v x (A+ z~~: Z~112 N)) + kV x (v x (Z~12 
zt

12 N)) 
Z2Z6 z2 

-kV Z6- QV I-L6 L2u = o , 
9s 

(2.3.27) 

(2.3.28) 
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and the equation of motion for N is 

If we define 

for some constant c, then 

-+ -+ -+ cV -+ • -

V' X (V' X K) =- (
2 

)5 ,512 Y'Z2- cQu, 
7f a 9s 

58 

(2.3.29) 

(2.3.30) 

(2.3.31) 

where we have used the expression for Z2 (2.3.6) and also charge conservation in the 

form 

(2.3.32) 

Comparing (2.3.31) to the equation of motion (2.3.27), we find that with c = 

1J2L2 I g8 k. We get 
..... ..... ..... ..... . 0JJ2 ..... 2 

V' X (V' x K) = -V' Z2 - -uL , 
9sk 

where we have used 2/'1,2 = ( 27f) 7 a'4 . Similarly we can define 

..... 

k = -cV'-2 (Qi1) , 

with c = V !JBL2 I g8 k, then 

(2.3.33) 

(2.3.34) 

(2.3.35) 

Taking linear combinations of the equations of motion (2.3.27), (2.3.28) and 
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(2.3.29), and using (2.3.33) and (2.3.35) we get 

V X = V X (V X K) ' (
v x (A+ z;112 z~12 N) _ v x (Z~ 12 z~12 N)) 

Z2 1Z6 Z6 

(2.3.36) 

( 
v (A+ Z 112 z-112 N) v x (Z112 Z112 N)) ~ ~ ;::;' 

X 2 6 - 2 6 = \7 X (\7 X K) 
Z Z-1 z ' 

..... 
\7x 

2 6 2 

(2.3.37) 

Vx ( 
v x (A+ z;112 z~12 N) + v x (A+ z~12 Zi112 ii) 

z6 z2 

_ v x ( z~12 z~12 
N) ) = 0 . 

Z2Z6 
(2.3.38) 

2.3.5 The Effective Action 

We can integrate the equations of motion (2.3.36) - (2.3.38) to get 

v x (A+ z-112 Z 112 N) v x (Z1
;

2 z1
1

2 N) ~ ~ ~ 
------=-2 __ 6'------'-- - 2 6 = \7 x K + \7 a 

Z-lz z ' 2 6 6 

(2.3.39) 

v (A+ Z 112 z-112 N) v x (Z112 Z1
;

2 N) ~ ;::;' ..... x 2 6 _ 2 6 =\lxK+\70: 
~~1 h ' 

(2.3.40) 

v x (A+ z;112 z~12 N) v x (A+ z~12 z;1
;

2 N) 
--~-~-~-~+--'----~-'----~ 

z6 z2 
v x (z~12 z~12 N) ..... 

- z2z6 = \7v' (2.3.41) 

where v, a and 0: are functions of integration. Using the techniques of ref. [74] it 

is possible to show that the main contribution of the functions of integration to the 

effective action comes from the regions very near the enhanc;ons. As in ref. [74], 

expanding the fields in powers of r = lx- xal near the ath enhanc;on, one finds 

that the functions of integration do not contribute to the effective action. We will 

therefore neglect them from now on. 

Then linear combinations of (2.3.39) - (2.3.41) give 

v x (A+ z;112 z~12 ii) 

v x (A+ z~12 z;112 N) 

v x ( z~12 z~12 N) 

..... 

-V xk 
' 

-V X j{' 
~ 

-Z2 v x k - z6 v x R . 

(2.3.42) 

(2.3.43) 

(2.3.44) 
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Substituting (2.3.42), (2.3.43) and (2.3.44) into the action (2.3.26) and integrat­

ing by parts gives 

Sapprox = J d4.x [ k{ - z2z6 +~(V X (A+ Z2 112 zi12 N)). (V X K) 

+~(v x (A+ z~12 z;; 112 N)). (v x K)} 
+L2{- Q (,u6V- ,U2) + ~ Q (,u6VZ2- ,U2Z6)u

2
}] (2.3.45) 

9s 2 9s 

We now take the enhan<;on limit, in which the charge density becomes 

(2.3.46) 
a 

where Xa and Qa are the position and charge respectively of the ath black hole. 

Then Z2 and Z6 are given by the equations (2.3.6). Also the equations (2.3.30) and 
.... 

(2.3.34) for K and k have the solutions 

(2.3.47) 

where fa = i- Xa· 

Then the first term in the action (2.3.45) becomes 

(2.3.48) 

and the second term becomes 

(n K-) (n K:;') 1 V,u2,u6L
4 
"QaQb{(- .... )(- .... ) ( ........ )( ........ )} 

v X . V X = - (4 )2 2k2 L....; _3_3_ T a. Tb Ua. Ub - Ta. Ub Tb. Ua . 
n 9s rarb a,b 

(2.3.49) 

Consider the fifth term in the action (2.3.45). Writing the delta function in Q as 

(2.3.50) 

then integrating by parts, we find 
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Substituting (2.3.48), (2.3.49) and (2.3.51) into the action (2.3.45), and rearranging, 

we find 

Seff = j Leff dt ' (2.3.52) 

where 

2.3.6 The Metric on Moduli Space 

For two enhanc;ons (2.3.53) reduces to 

Leff = -- (I16V- 112) (Ql + Q2) +- (I16V- 112) -
1

-1 + ~ £2 £2 (Q u2 Q u2) 

9s 9s 2 2 

L
2 Jd3 QlQ2 {(-+ -+) (-+ -+) + ( )3 , x - 3 -3 r1 x r 2 · u 1 x u2 4 2n a r 1 r 2 

-~lul- u2l 2(f1 · f2)} , (2.3.54) 

where r1 = lx- i1l, and r2 = lx- i2l· 

Consider the integral 

I= jd3x (fl . f2) 
rrr~ 

We can introduce a Feynman parameter w using the formula 

1 11 wQ-1(1- w)/3-l r(a + /3) 
AaB/3 = 0 dw [wA+ (1-w)B]o+/3 f(a)f(/3) 

Then (2.3.55) becomes 

(2.3.55) 

(2.3.56) 

J 3 11 
w112(1- w) 112(f1 · f 2) r(3) 

I= d X 0 dw [w(x2- 2x. Xl + xD + (1- w)(x2 - 2x. £2 + x~)p r(~)r(~) . 
(2.3.57) 

Completing the square in the denominator in (2.3.57), and substituting if= x­
wxl- (1- w)x2 gives 

I = f(3) 1ldwwlf2(1- w)l/2 x 
r(~)r(~) o 

Jd3 Y2 + (2w- 1)if. (xl- £2)- w(1- w)(xl - i'2) 2 

y [y2 + w(1- w)(xl- x2)2P (2.3.58) 
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Now 

(2.3.59) 

since the integrand is the sum of odd functions of the Yi· Therefore we can write 

I - f(3) td 1/2(1 - )1/2 id" d y2(y2- a2) 
- f(~)f(~) lo WW W H2 y (y2 + a2)3 ' 

(2.3.60) 

where a2 = w(1-w)(i1-x2 )
2 > 0. We can do they integral using contour integration 

to get 

I 

(2.3.61) 

Using Feynman parameters again we can show that 

(2.3.62) 

Substituting (2.3.61) and (2.3.62) into (2.3.54) we get 

L (c D ) ( ~ 2 ~ 2 ) 2D ~ ~ 
ef J = - I~ ~ I U1 + U2 + 1..... ..... I U1 · U2 , x 1 - x 2 x 1 - x 2 

(2.3.63) 

where 

(2.3.64) 

In order to compare our metric to the Taub-NUT metric, we can rewrite Leff in 

terms of the overall position X and relative position r of the monopoles, which are 

given by 

(2.3.65) 

The overall velocity 0 and relative velocity i1 are then defined by 0 = X and i1 = f. 

We find 

1 ~2 1 ( 2D) ..... 2 L ff = -C U +- C- - u . 
e 2 2 lf1 (2.3.66) 

From this we see that the metric for the overall position of the D-branes is flat, as we 

would expect from comparison with the monopole case, and the metric on moduli 

space for the relative position of the D-branes is given by 

(2.3.67) 
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where T = lf1 and dO~ is the metric on a two-sphere with coordinates ( B, fjJ). Note 

that this metric is identical to the position moduli part of the Taub-NUT metric 

with negative mass parameter. We will discuss how to incorporate the phase terms 

in section 2.3.7 below. 

The metric (2.3.67) is the position moduli part of the metric on moduli space 

for two enhan<;ons. From the form of the effective Lagrangian (2.3.54) we see that 

it consists of only two-body interactions. Therefore we can obtain the metric for 

the N enhan<;ons by summing over the result for the two-body case. The resulting 

metric has the following form 

(2.3.68) 

where 

9ab (2.3.69) 

9aa no sum on a. (2.3.70) 

In (2.3.69) and (2.3.70) we have removed the constant factor in front of the metric 

(2.3.67), and we have defined 

(2.3.71) 

The metric we have obtained is the position moduli part of the generalised Taub­

NUT metric (1.3.46). In the next section we will discuss how to incorporate the 

phase terms into this metric. 

2.3. 7 Adding the phase terms 

In the work we have described so far in this chapter we have found the metric on 

moduli space for the position moduli :za, which is given in equation (2.3.68). But 

there must be some moduli missing from that metric because, as we explained in 

section 1.4.1, the moduli space for n enhan<;ons is identical to the moduli space 

of the three-dimensional supersymmetric gauge theory on the worldvolume of the 

D2-branes. This space is hyper-Kiihler with 4n dimensions, whereas the moduli 
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space in (2.3.68) has only 3n dimensions; there are n moduli missing. Comparing to 

the metric on moduli space for n BPS monopoles (1.3.46) we find that the missing 

moduli are those corresponding to the phases of the monopoles. 

In ref. [53] Gibbons and Manton obtained the phase terms in the metric on moduli 

space for magnetic monopoles by endowing the monopoles with some electric charge, 

and then reinterpreting the electric charges as phases. For the enhan<;on case that 

we are studying here the missing part of the calculation is an electric coupling of 

the Ramond-Ramond field which is Hodge dual to c<7l; we denote this field cgl. It 

couples to the gauge field living on the D-branes, Faf3 in the following way: 

-2rro/ 112 J Tr [ cgl 1\ F] . (2.3.72) 

We have defined the field cgl to be the Hodge dual field to C(7), so 

(2.3.73) 

After some algebra we find 

(2.3.74) 

The Born-Infeld actions are also modified as follows: 

(2.3.75) 

The field Fa.f3 is the gauge field that lives on the unwrapped part of the branes' 

worldvolume. Since we are considering the Abelian case where the branes are far 

apart from one another, we can write Fa.f3 as 

(2.3.76) 

where the index a labels the branes, a = 1, ... n, and ta is the ath U ( 1) generator. 

We choose the following basis for the ta 

t a = diag { ... , 0, ... , 1, ... , 0, ... } , (2.3.77) 

where the '1' occurs in the ath position. Then 

(2.3.78) 
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We can calculate the charge Qa of any object ( with respect to the ath U(1) as 

follows 

(2.3.79) 

Let us consider the Dirac-Born-Infeld theory in the Yang-Mills limit a'-----+ 0. In 

this limit the part of the action involving the determinant is given by 

'If ( ( -detG) ( 1 + ~(27ra') 2 Gaf1G'Y"F~'YF~.,tatb)) + O((a')4
) 

(- det G) ( 1 + ~(27ra')2 Gaf1G'Y" F~'YF$.,) + O((a')4
) . (2.3.80) 

The prefactor to the kinetic term for the F's can be thought of as a metric 9ab on 

the space of U ( 1) generators 

(2.3.81) 

From (2.3.80) we find that 9ab is apparently proportional to the identity matrix. 

Let us take a step back for a moment, and consider the metric 9ab· This metric 

defines the space of U(1) generators ta. However, from section 1.1.1, theta can be 

interpreted as the n positions of the enhanc;ons, xa. We deduce that the metric 9ab 

should be identical to the metric 9ab in equation (2.3.68). But this does not agree 

with the discussion above, which suggested that 9ab is proportional to the identity 

matrix; what has gone wrong? In fact equation (2.3.80) is incorrect because the 

techniques we have used to obtain it are unable to handle the interactions between 

the U(1) generators. We would need to apply some sort of regularisation procedure 

on the generators ta, similar to that we used for the xa. Unfortunately it is not 

currently known how to do this. 

It turns out that we can manage without such extra mathematical tools. Since 

we know that 9ab = 9ab, we can build up the action involving F from scratch. The 

Yang-Mills term is given by 

S 1 j d3c pa ,ba/1 
YM = ~ r..,9ab a/11' · 

9YM 
(2.3.82) 

where 9YM is the Yang-Mills coupling, which in this case is given by 

2 9s ( V )-1 
gyM = (27ra')2 {L6 - /L2 . (2.3.83) 
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We must also include the coupling of F to the field cgl, which takes the form of the 

Chern-Simons coupling (2.3.72). We need to build up this term carefully. Consider 

for now the perspective of a single brane, brane a say. The magnetic field on brane 

a due to brane b, pulled back to brane a's worldvolume, is given by 

(2.3.84) 

where 

(2.3.85) 

The form of c5 in (2.3.85) can be deduced from the relation (2.3.74) between Z6 and 

cgl, and the solution (2.3.6) for Z6 . The field (2.3.84) couples to the gauge field F, 

given in (2.3.76). So the expression we require is 

Scs = _ __!__ Jd3CTr (caf3'Ytcpc W ·a _Xatb) 
87f <, af3 ab "( 

_ __!__ Jd3 c Eaf3"f pb W . a _X a 

87f <, af3 ab "f ' (2.3.86) 

where we have defined 

- :::.' (4 )2 I Wab = Wab 7f a /-l2 , (2.3.87) 

to obtain the correct coupling in (2.3.86). There is one more term we need to include 

in the action. We are working with (2 + 1 )-dimensional gauge theory, for which the 

field pa has a winding number na E Z (i.e. a topological invariant, equivalent to 

the instanton number in (3 +I)-dimensional gauge theory). It is given by 

n a = J d3 ~ Ea[3"( a"( F~f3 . 

The na couple to phases O"a, giving the following term in the action 

Swind = J d3 ~ Eet{3"( a"( F~f3 (]"a . 

(2.3.88) 

(2.3.89) 

For the path integral ei8 to be single-valued, the phases O"a must be 2rr periodic. 

Then the total action dependent on F is given by 

(2.3.90) 

We can replace F in the action (2.3.90) by O"a, using the procedure of ref. [63]. 

The equation of motion for F~f3 is 

(2.3.91) 
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Inverting this equation, and substituting it back into the action (2.3.90), we find 

(2.3.92) 

Compactifying the D2-brane spatial directions on a T 2 in the action (2.3.92) gives 

(2.3.93) 

So, modulo some constant factors, the phase terms in the metric on moduli space 

are given by 

(2.3.94) 

2.3.8 The Final Metric 

Putting our result for the phases from the previous section together with our result 

for the position moduli, we find that the final metric on moduli space is given by 

d 2 d-.a d-.b ( -l)ab(d __, d_,c)(d __, d-oe) S = 9ab X · X + g a a + Wac · X ab + Wbc · X , (2.3.95) 

where 9ab is given by equations (2.3.69) and (2.3.70). This metric is identical to the 

generalised Taub-NUT metric (1.3.46). 

2.4 Summary 

We have calculated the metric on moduli space for n enhanc;ons in the limit that 

they are far apart from one another. We followed the procedure from refs. [72], [73] 

and [74]. Our result was the generalised Taub-NUT metric with negative mass 

parameter, which is identical to the metric on moduli space for BPS monopoles in 

the same limit, as we had predicted. We expect that the full metric on moduli space 

will turn out to be the 4n dimensional hyper-Kahler manifold which generalises the 

Atiyah-Hitchin manifold. 

In the process of our calculation we realised that the enhanc;on is dual to the 

bound state of a Kaluza-Klein monopole and an H-monopole in heterotic string 

theory compactified on T 4 (see ref. [79]). Therefore we have indirectly computed 

the metric on moduli space for n of these objects as well. 
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It is interesting to note that D6-branes wrapped on T 4 instead of K3 (or indeed 

any other Ricci flat manifold) also have position moduli whose metric is given by 

(2.3.68) (this was shown in ref. [76]). In order to calculate the phase terms in the 

K3 case we used the field theory living on the (2 + I)-dimensional world-volume 

of the induced D2-branes. The equivalent calculation in the T 4 case would involve 

the ( 2 + I )-dimensional field theory living on the unwrapped D6-brane directions. 

Recall from section 2.3. 7 that in the K3 case this calculation relied on there being a 

term in the action like J CCl) 1\ F (see (2.3. 72) ). But the action for the field theory 

in the T 4 case, which originates from a (6 + I)-dimensional field theory, does not 

necessarily contain such a term. However, it is possible to generate a term of this 

form, and it would be interesting to investigate this further in the future. 



Chapter 3 

Using D=Strings to Describe 

Monopoles = Analytic Calculations 

3.1 Introduction 

In this chapter we will turn our attention to the second example from section 1.4 of a 

D-brane configuration acting as a BPS monopole, i.e. aD-string stretched between 

two D3-branes. 

In all the work we reviewed in section 1.4.2 the solutions described a semi-infinite 

string attached to a D3-brane. In refs. [81], [82], a slightly different scenario was 

considered, where the string was truncated by placing the system in the background 

of a second D3-brane. The work we describe in this chapter will take a different 

approach - we will explicitly construct the solution for D-strings stretched between 

two D3-branes. It turns out that in order to do this we will need to take an ansatz 

for the positions of the D-string in the D3-branes which is not spherically symmetric 

(this is in contrast to the ansatz (1.4.34) which was used in ref. [66]). 

As we explained in section 1.4.2, the D3-D1Brane configuration provides a phys­

ical realisation of the AD HMN construction. In order to test the correspondence 

further, it seems natural to ask whether there is any monopole calculation, whose 

result is known, which could be recalculated in the (1 + 1) dimensional D-string 

picture. We could then compare the two results. One possibility is the calculation 

of the energy radiated during scattering of the D-strings, which has been calculated 
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for the BPS magnetic monopole case by Manton and Samols in ref. [80]. They ob­

tained the result Erad rv 1.35mm0nV~=' where mmon is the mass of the monopoles, 

and v_= is their asymptotic velocity. We will aim to recalculate this result, this 

time working from the point of view of the D-strings. In this chapter we present 

our analytic calculations, which lead to equations of motion for the non-zero mode 

perturbations of the D-strings. We will describe our numerical calculations of the 

energy radiated, and present our results, in the next chapter. 

The layout of this chapter is as follows. In section 3.2 we review the calculation of 

the energy radiated during monopole scattering from ref. [80]. In order to repeat this 

calculation from the D-string perspective we will need to perturb the static solution 

to analyse the dynamics of the scattering beyond Manton's geodesic approximation 

(which, as we pointed out in section 1.3.3, ignores the effects of the radiation). There 

is already some work in the literature concerning perturbations of the Bion spike -

we will review these in section 3.3. The calculations from section 3.4 onwards will 

cover the material from our paper, ref. [2]. In section 3.4 we will analyse the non­

Abelian Born-Infeld action forD-strings in fiat background, and present the solution 

corresponding to two D-strings stretched between D3-branes. We will point out that 

it is necessary to be careful when taking the a' -+ 0 limit to ensure that the mass of 

the W-boson, and the mass of the monopole remain finite. We will also discuss the 

validity of the solutions, given the limitations of the Born-Infeld action, as described 

in section 1.4.2. In section 3.5 we will repeat the calculation from section 3.4, but this 

time working in a D3-brane background, instead of fiat background. In section 3.6 

we will describe the scattering of the two D-strings using the slow motion technique 

of Manton, which we reviewed in section 1.3.3. In section 3. 7 we will examine the 

effects of perturbing the BPS solution, and calculate the equations of motion for the 

perturbation; these perturbations will embody the effects of the energy radiation. 

Finally, we will present a summary of the chapter in section 3.8. 
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3.2 The Energy Radiated During Monopole Scat= 

tering 

In this section we review the work of Manton and Samols, ref. [80], where they 

calculate the energy radiated during the scattering of BPS magnetic monopoles in 

the slow velocity limit. We take the case here in which the monopoles' motion is 

restricted to the x1-x2 plane. They approach each other along the x1-axis, then 

scatter at 90° to move away from each other along the x2-axis (see section 1.3.3). 

The two monopoles are assumed to have the same charge. 

Since the monopoles are moving in the slow velocity limit, a first approximation 

to the motion is the geodesic approximation, as described in section 1.3.3. In a 

multipole expansion of the fields the leading order contribution to the radiation 

then comes from the leading order multipole moment. 

From the Bogomol'nyi equation for a BPS monopole (1.3.20) it can be seen that 

the magnetic and scalar multipoles are equal. A multipole expansion gives 

where the multipole moments are 

Q J d3r' p(f') , 

J d3r' p(f')r~ , 

J d3r' p(f')(3r~rj- r 26ij) , 

and where p(T) is the magnetic charge distribution and i,j = 1, 2, 3. 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

We will take v = 1, where vis the Higgs expectation value, and 9YM = 1. Then 

from (1.3.22) the monopole charge is equal to the monopole mass, mmon, and 

Q = 2mmon · (3.2.5) 

Since the two monopoles have equal charge, di = 0, and so the leading order contri­

bution to the radiation comes from the quadrupole moment Qij· During the scat­

tering the field configuration evolves smoothly from the asymptotic configuration, 

when the monopoles are far apart along the x 1-axis, to the axisymmetric 'doughnut' 
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configuration at the point of scattering, to being far apart again along the x2-axis. 

Therefore the configuration is always invariant under reflection in the x 1 and x2 

axes, i.e. p(r~,r~,r~) = p(-r~,r~,r~) = p(r~, -r~,r~). Using this in the definition of 

the quadrupole moment, equation (3.2.4), reveals that Qij is diagonal, 

(3.2.6) 

In the asymptotic limit, when the monopoles are far apart, they can be treated 

as pointlike objects. Then from the definition of the quadrupole moment, equation 

(3.2.4), we have 

(3.2.7) 

fort < 0, and with Q1 and Q2 interchanged fort> 0. Here r is the distance between 

the monopoles, which can be calculated in the asymptotic limit by integrating the 

Taub-NUT metric (1.3.42) with respect to time to get 

ln 2vt 1 
r ( t) = 2vt + ln 2vt + c + -- + - ( 2c - 1) + .. · , 

2vt 4vt 
(3.2.8) 

where c is a constant with 

c = 1 + ln 2. 

A constant R is defined such that (3.2. 7) is a good approximation to the quadrupole 

moments, providing r > R. A comparison with the Atiyah-Hitchin metric shows 

that it is safe to take R ~ 10. 

When the monopoles coincide the configuration is axisymmetric in the x1-x2 

plane, and the far field on the x3-axis is given by 

<[> = 

(3.2.9) 

Comparing this to the multipole expansion (3.2.1), and using the axisymmetry in 

the x1-x2 plane gives 

(3.2.10) 
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The behaviour of the quadrupole moment during the scattering is some smooth 

interpolation between (3.2. 7) and (3.2.10). The total energy radiated, expressed in 

terms of Q is given by the formula 

which can be found in any standard electromagnetic textbook, such as ref. [83] or 

ref. [84]. 

Minimising this energy with respect to the unknown quadrupole moments, sub­

ject to the boundary conditions discussed above, and solving the resulting equations 

numerically, gives a lower bound for the energy radiated, which is 

(3.2.11) 

where v_00 is the asymptotic velocity of the monopoles initially. Moreover, Manton 

and Samols argue that (3.2.11) is a good approximation to the energy radiated, not 

just a lower bound, because the minimising configuration they found exhibited all 

the important properties expected of the true evolution in time. 

3.3 Perturbations of the Blon Spike Solution 

In this section we will review the work that has been done in the literature on the 

dynamics of the spike soliton for the case of a string attached to a D3-brane. 

In ref. [64], for an F-string attached to a D3-brane, the dynamics of small trans­

verse fluctuations were studied (i.e. fluctuations which are transverse to all the brane 

directions). In that paper only 8-wave fluctuations were considered. If TJ denotes 

the fluctuation coordinate, then the linearised small fluctuation expansion of the 

Born-Infeld action about the spike solution (1.4.25) is given by 

(3.3.1) 

where c is a constant. For r ~ oo (i.e. in the D3-brane region), the equation (3.3.1) 

looks like a (3+ 1 )-dimensional wave equation. For r ~ 0, i.e. in the string region, 

a change of coordinates to a= g8 cjr results in a (1+1)-dimensional wave equation. 
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Restricting to a wave of frequency w, (3.3.1) becomes 

where 

~ = wg8 c , 
r 

2 ""= gscw . 

We can change to a new coordinate x, which satisfies 

We also transform rJ to fJ as follows: 

( 
2) 1/4 

fJ = 1 + ;4 'TJ . 

Then (3.3.2) becomes 

where 
5""2 

V(x) = (~(x)2 + ""2/~(x)2)2 
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(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 

So the problem reduces to a scattering problem with potential V(x), where from 

(3.3.4) we see that the coordinate x is defined on the real axis. In ref. [64] it was 

shown that, in the low energy limit, a potential of the form (3.3. 7) is perfectly 

reflecting. This means that the end of the string is unable to leave the surface of 

the D-brane in the transverse directions, i.e. it has a Dirichlet boundary condition 

in those directions, as we would expect. In refs. (82] and [85] it was also shown 

that relative transverse fluctuations of the spike (i.e. fluctuations in one of the D3-

brane directions) lead to the Neumann boundary condition. In ref. [86] the case 

of perturbations carrying non-zero angular momentum modes was considered. It 

was found that these perturbations could be transmitted clown the spike. Therefore 

the 'F-string' appears to remain effectively three-dimensional all the way along the 

spike. This might have been expected for a infinite spike from the discussion of the 

shape of the Bion spike in section 1.4.2. 

Everything we have described so far in this section has been done from the point 

of view of the D3-brane action. If we consider D-strings attached to a D3-brane 
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we also have the option to study the problem from the point of view of the non­

Abelian DBI action for the D-strings; this was done in ref. [66]. It was found that 

there was good agreement with the calculations which had been done from the D3-

brane perspective, providing the angular momentum l was not too high. However, 

there was a difference for perturbations with large l; the D3-brane calculations 

found that perturbations with arbitrarily large l could be transmitted down the 

spike, whereas the D-string calculation showed that the spectrum of modes was 

truncated at lmax = n - 1 for n D-strings. This discrepancy could be due to the 

three-dimensional nature of the semi-infinite spike, all the way out to infinity. 

The calculations we will describe in this chapter differ from the calculations we 

have reviewed above in that we will consider D-strings stretched between two D3-

branes, rather than semi-infinite D-strings attached to a D3-brane. We will need to 

consider an ansatz for the D3-brane directions which is not spherically symmetric, 

therefore the perturbation equations will turn out to be more complicated in our 

case. 

3.4 The Action for D=Strings in Flat Background 

In this section we investigate the non-Abelian Dirac-Born-Infeld action forD-strings 

in flat background, and obtain the solution corresponding to two D-strings stretched 

between two D3-branes. 

3.4.1 The Born-Infeld Action 

The non-Abelian Dirac-Born-Infeld action forD-strings is given by equation (1.2.19) 

in section 1.2.2. 

Jj ( e-r/J(-D) 1
/

2 
) 

S = - T1 dTda STr . . 1; 2 , 
(- det ( EtJ)) 

(3.4.1) 

where 

(3.4.2) 
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with EJ.Lv = GJ.Lv + BJ.Lv and where a, f3 = 0, 9 are the D-string directions which 

we have taken as x0 = T = t and x 9 = cr. Here i, j = 1, ... , 8 are the transverse 

directions. We also take the dilaton <I> to be constant, BJ.Lv = 0, and we fix the 

gauge such that Faf3 = 0. We excite the fields <1>1, <1>2, <1>3, which will turn out to 

correspond to the D3-brane directions, and we set <1>4 = · · · = <1>8 = 0, which is 

consistent with the equations of motion. 

In fiat background we have 

EJ.Lv = G J.LV = diag ( -1, 1, ... , 1) , 

giving 

So 

-1 0 a'<h a'<h a'<h 

0 1 a' <I>' 1 a' <I>' 2 a' <I>' 3 

D =- det -a'<i>1 -a' <I>' 1 1 a'[<I>1, <1>2] a'[<I>1, <1>3] (3.4.3) 

-a'<h -a' <I>' 2 a'[<I>2, <PI] 1 a'(<I>2, <l>3] 

-a'<i>3 -a' <I>' 3 a'[<I>3, <l>1] a'[<l>3, <1>2] 1 

where a dot denotes differentiation with respect to t and a prime denotes differen­

tiation with respect to er (except in the case of a', which is a constant). 

To describe the D-strings funnelling out into D3-branes we should take the trans­

verse fields to belong to representations of the group SU(2). In order to have two 

D-strings the appropriate representation to take is the (2 x 2) representation, i.e. 

the Pauli matrices cr1. So we take the following ansatz, which will correspond to the 

90° scattering of the D-strings, 

(3.4.4) 

where j = 1, 2, 3, and the qy1 are real functions oft and er (this ansatz is consistent 

with the <1>1 being anti-hermitian). 

Substituting the ansatz (3.4.4) into the determinant (3.4.3), then evaluating the 
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determinant and performing the symmetrised trace gives the action 

(3.4.5) 

where L is the length of the string. In (3.4.5) + · · · denotes addition of cyclic 

permutations of cp 1 , cp2 and cp3 - we will adopt this notation throughout the rest of 

this chapter. 

3.4.2 Taking the Low Energy Limit 

We will investigate what happens to the action (3.4.5) in the low energy limit a' ---+ 0. 

To ensure that the limit is taken in an appropriate manner we must make precise 

the dictionary between the monopole of Yang-Mills-Higgs theory, and the monopole 

described by aD-string stretched between two D3-branes. Recall from section 1.3.1 

that the monopole of Yang-Mills-Higgs theory is described by the following action 

As explained in that section, giving the Higgs field <P an expectation value v results 

in a mass for the W-boson with 

mw=v. (3.4.6) 

Recall from equation (1.3.22) that the monopole solution for the resulting action 

has mass 

(3.4.7) 

We wish to compare the results (3.4.6) and (3.4. 7) to those of the corresponding D­

brane picture, in which the monopole is represented by aD-string stretched between 

two D3-branes. The (3 + 1 )-dimensional picture, equivalent to the monopole picture 

described above, is described by the (3 +I)-dimensional Born-Infeld action for the 

D3-branes. In the D3-brane picture we have g~M = 9s from equation (1.2.12). The 

Higgs field <I> is represented by an excited transverse field, X 9 say, which represents 
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the position of the D3-brane in the corresponding direction x 9
. Since v has the 

dimensions of 1/length, by dimensional analysis we have 

v = (cl>) = (Xg) = !:.._ 
a' a' ' 

where L represents the distance between the D3-branes in the x 9 direction, and 

therefore the length of the strings stretched between the D3-branes in that direction. 

The W-boson corresponds to a fundamental string stretched between the D3-branes, 

so we have 

where TF is the fundamental string tension. The above result for mw agrees with 

the monopole result (3.4.6). Also the monopole corresponds toaD-string stretched 

between the D3-branes, so, using equation (1.2.9) for the tension of a D-brane, we 

find 
L V 

ffimon = T1L = -- = -- , 
gsa' g?M 

which also agrees with the monopole result (3.4. 7). 

Returning to the D-string picture, in taking the limit a' -+ 0 the usual procedure 

is to take the string length L = a'v to be fixed, while the Higgs expectation value 

v -+ oo. Recall from the discussion in section 1.2.1 that applying this limit to the 

action (3.4.5), and keeping terms of order (a')2 results in the Yang-Mills action. In 

our case it is given by 

(3.4.8) 

The Bogomol'nyi equations for the action (3.4.8) are Nahm's equations (1.3.29). For 

our ansatz (3.4.4) they are 

(3.4.9) 

In general, the equations of motion derived from (3.4.8), which are also implied by 
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(3.4.9) in the static case, are 

.. " 2 2 c/Jl - c/Jl + c/Jl ( c/J2 + c/J3) 

~2 - c/J~ + cfJ2 ( cfJ5 + c/Ji) 

~3 - c/J~ + c/J3 ( c/Ji + c/J~) 

0, 

0, 

0. 
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(3.4.10) 

(3.4.11) 

(3.4.12) 

However in this limit, i.e. as v ----> oo, mw (3.4.6) and mmon (3.4. 7) both blow up to 

infinity, which is clearly undesirable. 

Instead of taking the limit ci ----> 0 as described above, we will take an alternative 

limit in which we keep v fixed, while allowing the string length L ----> 0. This limit 

ensures that the mass of the W-boson (3.4.6), and the mass of the monopole (3.4. 7) 

remain fixed and finite, unlike the previous limit we described. In the remainder of 

this section we will investigate the form of the action (3.4.5) under this alternative 

limit. 

3.4.3 Rescaling the String Coordinate 

Although we are taking the limit in which L ----> 0, in order to make a connection 

with the discussion of section 1.3.2, we will work in coordinates in which the string 

length runs from 0 to 2. And so we perform the rescaling 

2 
a---->~ --a, 

a'v 
(3.4.13) 

To ensure that the Bogomol'nyi equations of the rescaled action retain a familiar 

form, we must also rescale the c/Ji as follows 

(3.4.14) 

Under this rescaling the action (3.4.5) becomes 

(3.4.15) 



3.4. The Action for D-Strings in Flat Background 80 

3.4.4 The Bogomol'nyi Equations and the D3-Brane Solu-

tion 

We define 
- 4 

H = 1 + - 2 4 8~(hhh). a'v 
(3.4.16) 

Then the action (3.4.15) is 

(3.4.17) 

For a static solution, A = j2 = j 3 = 0, the action is minimised providing that 

!{ = hh, ~~ = hh, ~~ = hh. (3.4.18) 

When (3.4.18) holds, the Lagrangian density is equal to a total derivative term. So 

(3.4.18) are the Bogomol'nyi equations for the action (3.4.17), and are identical to the 

Bogomol'nyi equations found by taking the usual limit (3.4.9); again they are Nahm's 

equations. So for the purposes of finding the BPS solutions it does not matter which 

limit we take. However, since we will be interested here in perturbations of the BPS 

solutions, it is important that we use the correct limit for our calculations, i.e. we 

must use (3.4.17) instead of (3.4.8). 

The appropriate solutions to Nahm's equations are those corresponding to a 

two-monopole. From equation (1.3.35) of section 1.3.2 we know that they are 

h(~,k) 
-K(k) 

(3.4.19) 
sn(K(k)~, k) ' 

h(~, k) 
-K(k)dn(K(k)~, k) 

(3.4.20) 
sn(K(k)~,k) 

h(~, k) 
-K(k)cn(K(k)~, k) 

(3.4.21) 
sn(K(k)C k) 

The solutions (3.4.19) - (3.4.21) have divergences at~= 0 and~= 2 because this 

was imposed as a condition on the N ahm data. In the D-string description these 

divergences correspond to the positions of the D3-branes along the D-strings, and 
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Figure 3.1: Plots of (a) !I(~, k) (b) h(~, k), (c) h(~, k) with k = 0.9999999999 

originate from fundamental strings localised at the brane intersection, as described 

in section 1.4.2. Recall that the parameter k is a modulus which runs from k = 0 to 

k = 1. The limit k ~ 1 corresponds to the asymptotic limit in which the D-strings 

are far apart from one another. Figure 3.1 shows graphs of !1(~, k), f2 (~, k) and 

h(~, k) fork= 0.999999999. In this limit 

!1(~, k) "'K(k) , h(C k) "'h(~, k) "'0, (3.4.22) 

except, of course, near the ends of the string, ~ = 0 and ~ = 2, where all three 

functions have poles. The approximations (3.4.22) become more exact as k ~ 1, 

since the width of the poles tends to zero in this limit. 

At k = 0 we have !1 ( ~, k) = h ( ~, k), and this configuration corresponds to the 

mono pole configuration which is axisymmetric in the x 1- x2 plane, where the two 

monopoles coincide (i.e. the 'doughnut' configuration, which we discussed in section 

1.3.2). In this limit the Jacobian elliptic functions are trigonometric functions. 

If we take the limit a'~ 0 in (3.4.17), keeping v fixed, then 
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and we can expand the square root in (3.4.17) to get 

0:

1 

V 100 12 

{ - 1 [ 1 1 2 S = - T1- dt d~ H + -- ( (!1 - hh) + · · ·) 
2 -oo 0 8t.Ud2h) 2 

1 2 1 ( . . 2 )] } + 2v2 (8t(!Ihh)) + 2v2 (fd~- hf{) + · · · 

(3.4.23) 

We can calculate the metric on moduli space for the solutions (3.4.19) - (3.4.21) 

using Manton's technique, described in ref. [51] for slowly moving monopoles. The 

motion is described by a geodesic in the moduli space of parameters. So we must 

allow the modulus k to vary slowly with time, such that the Bogomol'nyi equations 

(3.4.18) continue to hold. Then the action reduces to 

which gives the correct metric on moduli space, since fi is a total derivative. 

3.4.5 Validity of the Born-Infeld Action 

In what we have done we have been using the Born-Infeld action. However, as we 

discussed in section 1.4.2, there are limitations to the Born-Infeld action - it is not 

very accurate when the geometry is highly curved, because higher derivatives of the 

fields on the brane have been ignored. So we expect the action (3.4.23), which we 

obtained from the Born-Infeld action, to become inaccurate near the ends of the 

D-strings, where the geometry does become curved. This suggests that the limit 

we proposed in section 3.4.2, in which we take the string length to be small, may 

make the situation worse, since we are taking to be small the region in which the 

Born-Infeld action is accurate. 

In the light of this discussion our calculation does not seem very promising. 

However, we may be redeemed by the fact that, in our approximation, we are working 

close to the BPS solutions (3.4.19) - (3.4.21). More precisely, we have taken 

f . I'V c 
t ' 

(3.4.24) 

and 

(f{ - hh) I'V c ) (f~- h!I) I'V c ' (f~- !Ih) I'V c ' (3.4.25) 
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where E is small. Since we expect the BPS solution to be a correct solution to the full 

equations of motion, it is reasonable to assume that motion in which the solutions 

remain close to the BPS solution is accurately described by the Born-Infeld action 

(3.4.23). 

3.5 The Action for D-Strings in a D3-Brane Back-

ground 

In the previous section we were working with D-strings in a flat background. In this 

section we will consider the same scenario, but this time in a D3-brane background 

in order to take into account the effects of the back-reaction of the D3-branes on 

the geometry. We will conjecture that the action remains unchanged when this 

back-reaction is taken into account. 

Recall from section 1.1.2 that the supergravity solution for a Dp-brane becomes 

more accurate when we have a large number of D-branes present. So we will consider 

the case with D-strings stretched between two parallel stacks of D3-branes, each of 

which contains N 3 D3-branes. In this configuration we have a gauge group SU(2N3 ) 

on the D3-branes broken down to SU(N3 ) x SU(N3 ) x U(1), according to the usual 

interpretation of gauge groups on branes. 

3.5.1 The Born-Infeld Action 

For now we concentrate on the Dirac-Born-Infeld action. We will investigate the 

contribution from the Chern-Simons action in section 3.5.3 below. We again use the 

non-Abelian Dirac-Born-Infeld action forD-strings (3.4.1), which we restate here 

JJ ( e-<P ( -D) 1
/

2 
) 

SnBI = - T1 dTdo- STh . . 
112 

. 
(- det ( E~J)) 

(3.5.1) 

As before we take Faf3 = 0 and we set <P4 = · · · = <P8 = 0. However, this time we 

wish to include the effects of the D3-branes on the geometry. From equation (1.1.23) 

in section 1.1.2 we find that the background metric for D3-branes is given by 

(3.5.2) 
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where m = 4, ... , 8 and the harmonic function 'H, which corresponds to N 3 D3-

branes positioned at a = 0, and N 3 positioned at a = L is given by 

(3.5.3) 

We also have BJ.Lv = 0, and for D3-branes the dilaton <I> is constant. 

Substituting (3.5.2) into the definition of D, equation (3.4.2), we find 

1 0 a' 8o<I>1 a' 8o<I>2 o/8o<I>3 
-..fit 

0 VR o/ a1 <I>1 a/ al <I>2 a'al <I>3 

D = det -o/8o<I>1 -a'81 <I>1 VR a' [<I>l, <I>2] a' [<I>l, <f>3] 

-o/8o<I>2 -a'81 <I>2 a' [ <I>2, <I> I] VR a' [ <f>2, <f>3] 

-o/8o<I>3 -a' al <I>3 a' [ <I>3, <f>l] o/ [ <I>3' <I>2] VR 

As in the previous section, to describe the D-strings funnelling out into D3-

branes, we should take the fields <I>i to be proportional to the Pauli matrices 

1 
<I>j = --cpjaj (no summation over j) , 

2 
(3.5.4) 

where j = 1, 2, 3, and the c/Jj are real functions oft and a Then some calculation 

yields 

(3.5.5) 

3.5.2 Rescaling the Action 

To compare with the flat background case we will need to rescale the coordinate a 

to a new coordinate~ so that one D3-brane is positioned at~= 0 and the other is at 

~ = 2. So we need to calculate the coordinate distance between the two branes. In 

order to do this consider the action for a test D-string in the supergravity background 

(3.5.2). The Born-Infeld action for the D-string is of the form 
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where 9tw is the metric for the background with two D3-branes that we had previ­

ously. We can take 

(3.5.6) 

(3.5.7) 

where i = 1, 2, 3 and m = 4, ... , 8. Since the string must end on the D3-brane, we 

have wm = 0. So 

Jr f ((1 -vivi)H-1/2 
Snm = -T1 J dadt - det 

0 

= -T1 J J dadt V1- vivi 

= -LT1 j dtV1- vivi , 

(3.5.8) 

(3.5.9) 

(3.5.10) 

where Lis the coordinate length along the string. Comparing this to the action for 

a relativistic particle 

we obtain 

S=-m jdty'1-(vi)2, 

m I 
L=-=av. 

T1 

This is identical to the coordinate length along the string in the fiat background 

case. 

We rescale the coordinate a and the fields cPi to f, and fi respectively, so that 

the positions of the two D-branes become 0 and 2, and the fi still obey Nahm's 

equations, as we did in section 3.4.3 for the fiat background case. So 

Then the action becomes 

a
1

v loo 12 SnBI = -T1- dt df, 
2 -oo 0 

(3.5.11) 

(3.5.12) 

1 4 1 ·2 ·2 ·2 

[( )

2 

1 + 7-{ cx12v4 °E..(hhh) - v2 (h + h + h ) 

1 4 2 1 4 (( 1 )2 ) ---(8t(hhh)) + -- !1- hh + ... 7-{ al2v6 7-{ al2v4 

1 4 . . ') ] 1/2 
--- (Udl- hf')~ + · · ·) , 7-{ al2v6 2 1 

(0.5.13) 
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with 
'1..1 

1 
16gN3 1 16gN3 1 

I t = + + ____c:____ ----------,-

7[ a'2v4~4 7f a'2v4/~- 2/4 ' 
(3.5.14) 

where ~ = 2 is the location of the second D3-brane. 

According to refs. [87] and [88], the Bogomol'nyi equations derived from (3.5.13) 

should be the same as those we calculated for the flat background case, which 

are given in equations (3.4.18). In order to verify this we will need to include the 

contribution from the Chern-Simons action, which we will discuss in the next section. 

3.5.3 The Chern-Simons Action 

Recall from section 1.2.2 that the non-Abelian Chern-Simons action for the D-strings 

takes the form 

(3.5.15) 

where P denotes the pullback to the D-strings' worldvolume, and iq, denotes the 

interior product by <I>i regarded as a vector in the transverse space. In (3.5.15) we 

have set F = B = 0. Since we have two D-strings, the relation between the tension 

and the charge is given by 

(3.5.16) 

Recall from equation (1.1.25) that the R-R field C(4), which acts as a source for the 

D3-brane, is given by 

(3.5.17) 

Substituting (3.5.17) into the action (3.5.15) results in a non-trivial interaction term, 

which is 

Now 

So we find 
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Substituting in the ansatz (3.5.4) for the <Pi, and the expression (3.5.17) for Ct\1k, 
and performing the rescalings (3.4.13) and (3.4.14) we find 

Using the expression for iJ (3.4.16), and ignoring the total derivative term and 

the constant terms, we find 

(3.5.18) 

And using the BPS condition (3.5.16), this becomes 

(3.5.19) 

3.5.4 The Bogomol'nyi Equations 

In the D3-brane background the total action is given by 

S = SnBI + Scs , (3.5.20) 

where SnBI and Scs are given by (3.5.13) and (3.5.19) respectively. Let us consider 

a static configuration with j 1 = j 2 = j 3 = 0, which also satisfies 

!{ = hh' !~ = hh' !~ = hh' (3.5.21) 

Substituting this ansatz into the Dirac-Born-Infeld action (3.5.13), we find that it 

reduces to 

(3.5.22) 

Adding the Chern-Simons term (3.5.19) to this, we obtain the total action 

(3.5.23) 

which is a constant, since 1-l is given by equation (3.5.14), which is independent of 

the k We deduce that (3.5.21) are the Bogomol'nyi equations for the case with 

the D3-brane background. Note that they are identical to those we had in the fiat 

background case (3.4.18), as we expected. 
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In fact, the Bogomol'nyi equations are given by (3.5.21), irrespective of the form 

of 1t. This means that the Bogomol'nyi equations are not affected by the way in 

which we minimally break the SU(2N3 ) symmetry; for example a string stretched 

between a single D3-brane on one side and a large stack of D3-branes on the other 

would have the same Bogomol'nyi equations. This suggests that the D-strings may 

only be aware of one D3-brane at each end - it makes no difference to them how 

many other D3-branes we stack together. 

Note that we do not need to consider here the jumping points of SU(N) Nahm 

data, because we are dealing with the case of minimal symmetry breaking with only 

one interval of Nahm data; see ref. [47] for a discussion of how jumping points occur 

in the D-brane description. 

3.5.5 The Supergravity Limit 

In section 3.4.4, in the flat background case, we expanded out the square root in the 

Born-Infeld action by taking the low energy limit ci ---t 0. However, if we compare 

the action we used for section 3.4.4, which was (3.4.15), with the action (3.5.13) 

which we are currently dealing with, there is a significant difference. In (3.4.15) the 

leading order term in a' is the first term under the square root, which is of order 

1/o/4 . However, in (3.5.13) all terms are of leading order a'0 , and so all contribute 

to the leading order term in a'. This would make an expansion in a' very messy for 

the action (3.5.13). 

There is an alternative limit we can take; recall that for the supergravity solution 

to be accurate we need N 3 to be large. In this limit 

1 
- rv 

1t 
7r 124() 

6 
Navh~, 

1 9s 3 

where h(~) is a function of~ given by 

1 
h(O = ~-4 +I~- 2J-4 

(3.5.24) 

We can expand the square root in (3.5.13) as a series in 1/N3 . So defining 

1 ( ·. 2 . 2 . 2) 
J = 1 - v 2 !1 + h + h , 
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then 

where we have substituted the expression for H (3.5.24) in (3.5.25) in order to make 

the dependence on N3 explicit. 

Since we are dealing with solutions close to the Bogomol'nyi bound we will 

assume that ji "'E, and all cyclic permutations of(!{ - hh) "'E, where E is small 

(see (3.4.24) and (3.4.25)). So we can expand the factors of v0 and 1/ J in powers 

of E to get 

(3.5.26) 

where 

(3.5.27) 

as we had in (3.4.16) in the flat background case. 

Adding in the Chern-Simons term (3.5.19), we find that the total action is 

(3.5.28) 
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3.5.6 Comparing with the Flat Background Case 

We will compare (3.5.28) to the result we had for the flat background case, which 

was 

a'v loo 12 [- 2 2 2 2 S ~ -T1 - dt d~ H + - ((!{- hh) + · · ·) - - (8t(!Ihh)) 
2 -oo 0 H a'2v4 H a'2v6 

2 ( . . 2 )] - fi a'2v6 (fd~- hf{) +... . (3.5.29) 

The two actions (3.5.28) and (3.5.29) agree up to a total derivative for solutions 

close to the Bogomol 'nyi bound, providing that 

'H= H. (3.5.30) 

Now 1{ is a harmonic function, and fi is expressed in terms of elliptic functions, 

so clearly the above equality cannot hold exactly. But 'H and H are qualitatively 

similar in that they are both symmetric about ~ = 1, and they have the same 

pole behaviour at ~ = 0 and ~ = 2. Recall that the Born-Infeld action is only an 

approximate action, so it is possible that when the full action is used instead, the 

equality above may be exact. 

3.6 Scattering D-Strings 

Here we consider how to make the static solutions (3.4.19)- (3.4.21) time dependent 

in order to describe the scattering of the D-strings. 

3.6.1 Describing the Scattering 

We wish to initiate the motion of the D-strings in the limit where the D-strings are 

very far apart. Recall from section 3.4.4 that the required limit is k --+ 1. In this 

limit we have !I ~ K(k), h ~ 0 and h ~ 0. Recall that <I> 1 , the field describing 

the positions of the D-strings in the x1 direction, is given by <I> 1 = fi a 1 , and a 1 

has eigenval ues ± 1. From the discussion around equation ( 1.1.11) in section 1.1.1 

it follows that the D-strings' positions are at ±j1 in the x1 direction, and 0 in the 

x2 and x 3 directions. 
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We describe the D-string scattering by decreasing k to k = 0 as time increases. 

At k = 0 we have h = h, and the D-strings can be thought of as being at a 

minimum distance apart from each other (although we have to be careful about what 

'distance' actually means in this scenario, since we are dealing with noncommutative 

geometry). At this point we have the 'doughnut' configuration, described in section 

1.3.2. 

To conclude the scattering picture we swap the roles of h and h at k = 0. 

Therefore as time tends to infinity, the 02-strings grow further apart, but this time 

in the x 2-direction. So in this description the two D-strings scatter at 90°. Recall 

from section 1.3.3 that two monopoles also scatter at 90° when they approach one 

another headlong. 

3.6.2 A Symmetry of the Solutions 

We quote here a transformation of the Jacobian elliptic functions, which can be 

found in ref. [49]. If we transform k and~ as follows 

where 

- ik 
k~----+k=­

k' ' 

k' = v1- k2, 

then the Jacobian elliptic functions transform as 

(c k) = k' sn(~, k) 
sn "'' dn(~, k) ' 

- - en(~, k) 
en(~, k) = dn(~' k) 

- - 1 
dn(~, k) = dn(~, k) 

Also the complete elliptic integral of the first kind K(k) transforms as 

K(k) = k' K(k) , 

Under this transformation the functions !I, h and h transform as 

!I(f., k) = h(~, k) , h(f., k) =!I(~, k) , h(f., k) = h(~, k) . 

Therefore this transformation takes motion from before the scattering to motion 

after the scattering and vice versa (since at the point of scattering k = 0, j 1 and h 

are interchanged). 
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Under this transformation k takes on imaginary values. Therefore we could 

think of the motion after scattering as being described by a modulus k continued 

to imaginary values. Equivalently we could think of the motion as being described 

by a modulus k2
, with k2 

-t 1 as the initial configuration, and k2 
-t -oo as the 

final configuration, and the point at which k2 is zero as the 'minimum distance' 

configuration. 

3. 7 Perturbing the Fields 

We wish to describe the scattering of the two D-strings, taking into account the 

possibility of energy radiation. Therefore it is not enough to allow the modulus k to 

depend on time in the solutions to the Bogomol'nyi equations (3.4.19)- (3.4.21); we 

also need to include perturbations to account for the energy in the non-zero modes. 

We perturb the ansatz (3.4.4) as follows 

<I>i = L ( -~</>i(O",k) +fi(O",T)) O"i+ 0Eij(O",T)O"j' 
l l-;-) 

(3.7.1) 

where </>i(O", k) is the static solution to the Bogomol'nyi equations (3.4.9) (it is related 

to the static solution (3.4.19) - (3.4.21) by a rescaling of the </>i given by equation 

(3.4.14), and a rescaling of O" given by (3.4.13)). The Ei(O", T) can be thought of 

as 'diagonal' perturbations of the <J>i, with the Eij(O", T) as the 'off-diagonal' pertur­

bations. As before, the O"i are the Pauli matrices. Substituting the ansatz (3.7.1) 

into the non-Abelian Born-Infeld action (3.4.1), and applying the symmetrised trace 

prescription, we find that there are no terms in the action which are of linear or­

der in the Eij. This means that the equations of motion for the Eij are at least 

linear in Eij, and so the Eij can be consistently set to zero. Furthermore, when we 

evolve a configuration with Eij = 0 initially the Eij modes can never be excited. We 

will start the D-strings' motion with a configuration tangent to the static solution, 

i.e. <J>i(~, t = 0) = -</>i(O", ko)O"i/2, where k0 is some initial value of k, so we will 

have Eij = 0 initially (see section 4.5.4 for more details of the initial conditions). 

Therefore, since we will have Eij = 0 initially, we should take Eij = 0 at all times. 

We have shown that we can neglect the 'off-diagonal' perturbations of the <I>i 

when we perturb the static solution. Therefore, instead of working from scratch 
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with the non-Abelian Dirac-Born-Infeld action (3.4.1 ), we can just perturb the fields 

in the low energy, rescaled action (3.4.17). vVe will relabel the fields fi(C t) in that 

action as 'Pi(~, t) in order to keep the notation fi for the static solutions (3.4.19) -

(3.4.21). Then we write 

(3.7.2) 

We take the slow motion approximation, with fi small, and therefore we can assume 

that the perturbations ci and their derivatives c~ and E;i are also small and of the 

same order as c:i· 

Substituting (3. 7.2) into the action (3.4.23), we get 

S = -T1 a~v l!t 12 
d~ ~ [ { (jl + E:I) 2 + U2 + E:2)

2 + (j3 + E:3) 2} 

- ~ { (c:~ - hc:3- hc:2) 2 + .. ·}] , (3.7.3) 

where + · · · again denotes the addition of all cyclic permutations of the indices of 

the first term in the brackets, and we have defined 

H = Uffi +Jiff+ (fjf). 

We next define the row vectors Oi, 

( a~ -h 

( -h a~ 
( - h -!I a~ ) 

Then we can rewrite the action (3.7.3) in the more compact form 

a' V 100 r [ 1 7' 1 ] S = -T12 -oodt Jo d~ 2(! + £) 2
- 2H(OiE', DiE) 

(3.7.4) 

(3.7.5) 

(3.7.6) 

(3.7.7) 

If we had taken the alternative limit in section 3.4.2, i.e. v ~ oo as a' ~ 0, 

which is the Yang-Mills limit, then we would have H = 1 in (3. 7. 7). Then the 

equations of motion with respect to E would be 

where 

-a~ 

at-1- -h 
-h 

at-2-

-h 
-a~ 

-!I 

Ot_ 
3-
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Now we include the factor of H in (3.7.7). Following the discussion from section 

3.3, we rescale ~ t----t x such that 
dx r;; 
d~ = vH, 

and we make the following definitions 

fi 
.Jij' 

(ox -F3 -F2 ) 

( -F3 ox -F1 ) 

( -F2 -F1 ox ) 

(3.7.8) 

(3.7.9) 

(3.7.10) 

(3.7.11) 

(3. 7.12) 

Then substituting (3.7.8), (3.7.9), (3.7.10), (3.7.11) and (3.7.12) into (3.7.7) we get 

Next we rescale 

and we redefine the ni 

H -1/4 
c:-. t----t n. = c· 
'-'t • tt t ' 

( ox(lnH114
) +ox -F3 -F2 ) 

( -F3 Ox(lnH114 )+ox -F1) 

(-F2 -F1 ox(lnH114 )+ox) 

(3.7.13) 

(3.7.14) 

(3.7.15) 

(3.7.16) 

(3.7.17) 

Then substituting (3.7.14), (3.7.15), (3.7.16) and (3.7.17) into (3.7.13) we get 

(3.7.18) 

Then the equation of motion for ij is 

-:-! t __. 14-:-! 1 . -:' 
n+fl-fl.n=-HI F---HF. 
., t t·t 4H3/4 (3.7.19) 

These equations are three coupled equations, with each of the form of a Laplacian 

with a potential given by the form of the nrni, and a forcing term given by the 

right-hand side of equation (3.7.19). 
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3.8 Conclusions 

We have presented the solutions to Nahm's equations (3.4.19)- (3.4.21) which repre­

sent two D-strings stretched between D3-branes. We compared the flat background 

calculation to the calculation in a D3-brane background, and made a conjecture 

which would ensure that the two agree. The D3-brane background calculation also 

showed that, when considering two stacks of D3-branes, it doesn't matter how many 

branes are put in each stack - the shape of the D-strings remains the same. Therefore 

it appears that the D-string 'funnel' can only feel the presence of a single brane - it 

doesn't notice the rest of the branes in the stack. This was maybe to be expected 

from the monopole solutions for SU(2N) broken down to SU(N) x SU(N) x U(1), 

which transform trivially under the two groups, as we discussed in section 1.3.2. We 

have described the slow motion scattering of the D-strings by allowing the modu­

lar parameter k to depend on time. We have also derived the equations of motion 

(3.7.19) for the time evolution of perturbations on the D-strings. 

Our object in these calculations has been to calculate the energy radiated dur­

ing the scattering of D-strings stretched between D3-branes. The perturbations 

corresponding to the non-zero modes of the solutions describe the energy radiated. 

Therefore it remains to solve the equations of motion for the perturbations and 

to calculate the energy retained in them in order to find out the energy radiated. 

We have performed this calculation numerically, and we will discuss our numerical 

calculations in the next chapter. 



----------------

Chapter 4 

Using D=Strings to Describe 

Monopole Scattering = Numerical 

Calculations 

4.1 ][ntrod uction 

In the previous chapter we described the scattering of two D-strings stretched be­

tween D3-branes, and calculated linearised equations of motion for perturbations 

to the static solution. We can think of the D-strings' motion as being split into 

zero modes and non-zero modes. The zero modes describe the motion of the cen­

tres of mass of the two D-strings; it is the motion described by Manton's geodesic 

approximation from ref. [51]. The dynamics of the non-zero modes is described by 

the dynamics of the perturbations to the static solution. After the D-strings have 

scattered, the energy in the non-zero modes represents the energy radiated during 

scattering, as we will show explicitly in section 4.4.3 below. 

Unfortunately we were unable to solve the equations of motion (3.7.19) analyt­

ically, and so we decided instead to use numerical techniques to solve the problem. 

vVe will present our numerical calculations in this chapter. The chapter is organised 

as follows. In section 4.2 we will explain how it was unfeasible to solve the equations 

of motion for the Born-Infeld action numerically, and how we solved the equations 

of motion for the Yang-Mills action instead. We will also discuss the differences be-

96 
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tween these two systems. In section 4.3 we will describe the motion of the D-strings 

in the asymptotic limit using analytic calculations. In section 4.4 we will show that 

the total energy of the system is conserved, and demonstrate the decoupling of the 

energy between zero modes and non-zero modes in the asymptotic limit. In section 

4.5 we will describe the numerical techniques we have used to solve the equations 

of motion. In section 4.6 we will describe the numerical techniques we have used 

to calculate the energy radiated during scattering, and we will present the results 

of our calculations. In section 4. 7 we will summarise the chapter, and discuss some 

conclusions. 

4.2 Yang=Mills vs Born=lnfeld 

In this section we will describe how it is unfeasible to solve the equations of motion 

for the Born-Infeld action numerically, and we shall examine the Yang-Mills action 

which we shall use instead. 

In order to solve numerically the equations of motion for the perturbations 

(3.7.19) we would have to evolve in time the modular parameter k (since the equa­

tions depend on the zero-mode solutions f1 (~, k), h(~, k) and h(~, k)). It turns out 

to be too complicated to do this numerically, the program taking too long to run 

because of the necessity to evolve k( t) in time. As an alternative approach we could 

try to solve the full equations of motion for the fields 'Pi. The equation of motion 
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for y? 1 , derived from the Born-Infeld action (3.4.23) is 

( 
1 [( 1 2 ) 1 2 -at. - 20t.(hh!J)2hh U1- hh) + · · · + v23t(hhh) 

+ :2 (Ud~- id{) 2 + · · ·)] 

+ (at.(h
1
hh)) { U{- !213)- :2 Ud~- id{)i2- :2 Ud~- id{)i3}) 

-Ot ( v2af..(;Ihh) { Bt(hhh)hh + Ud~- id{)!~+ (id~- j3j{)j~}) 

+(- (at.U1 ~2h))2U~h+f~h) [(U{ -hh)
2 +···) + : 2at(hhh? 

+V~ ( Ur!~ - id{) 2 + ... ) ] 

98 

1 { 1 . . }) + at.(hhh) - hU~- hh)- hU~- fr/2) + v2atUlhh)(hh + hh) 

== 0 ) (4.2.1) 

and the equations of motion for y?2 and y?3 can be obtained from cyclic permutations 

of (4.2.1). We found that these equations of motion were also too complicated to 

solve numerically. 

We turned instead to the Yang-Mills equations of motion (3.4.10) - (3.4.12). 

These equations are much simpler than the Born-Infeld equations of motion, and 

so we were able to solve them numerically. We will consider here the differences 

between the two systems. 

In section 3.4.2 we described how the low energy limit ci --+ 0 can be taken in 

two ways; keeping L fixed leads to the Yang-Mills action, whereas keeping v fixed 

leads to what we have called the Born-Infeld action. As we pointed out in that 

section, the Yang-Mills limit leads to monopoles and W-bosons with infinite mass. 

And so, when we solve the Yang-Mills equations numerically we will be describing 

the scattering of infinitely massive monopoles. This means that the energy radiated 

during scattering, given by equation (3.2.11), will also be infinite. To keep our 

calculations finite we will calculate the ratio of energy radiated to the total energy, 

since this quantity will not depend on the monopole mass. 

To get an idea of the differences between the Yang-Mills action and the Born­

Infeld action, let us consider the equations of motion for the perturbations derived 
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from each action. We calculated the perturbation equation of motion for the Born­

Infeld action in section 3.7. Using the definitions of the Oi (3.7.4) - (3.7.5), we find 

that these equations take the form 

( 4.2.2) 

where Vi are potentials which depend on c-1 , c-2 and ~: 3 . We can put the equations 

(4.2.2) in the form of coupled wave equations by rescaling the coordinate~' as in [64] 

(4.2.3) 

Due to the poles in H at ~ = 0 and ~ = 2, the range of the new coordinate x is 

-oo < x < oo. We also need to redefine the fields 

H -1/4 
fi -t T/i = fi . ( 4.2.4) 

Then the equations of motion for the T/i are 

(4.2.5) 

where we have defined 

(4.2.6) 

So the perturbation equations of motion for the Born-Infeld action take the form of 

three coupled wave equations, defined on the real line, with forcing terms given by 

the right hand side of ( 4.2.5). So for the Born-Infeld equations the energy radiated 

is the energy that escapes to x = ±oo during scattering. 

Next we consider the perturbation equations of motion for the Yang-Mills action. 

They are given by 
.. 82

Ei ·· 
Ci- ae + Ui(EI,f2,E3) = -fi' (4.2.7) 

where Ui are the Yang-Mills potentials. These equations already take the form of 

three coupled wave equations, without the need to redefine ~- So the Yang-Mills 

perturbation equations are wave equations in a box, since 0 < ~ < 2. It is not clear 

that any energy will be able to radiate in this case, because it may get trapped inside 

the box (i.e. the energy may be reflected back and forth within the box, without the 

possibility of escaping up the poles, which correspond to the D3-branes' spacetime). 
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4.3 The D-String Dynamics in the Asymptotic 

Limit 

In this section we will present some more analytic calculations which will be useful 

for our numerical work. 

4.3.1 The Static Solutions and their Asymptotic Expansions 

We have shown in the previous chapter that the Dirac-Born-Infeld action for two 

D-strings with the ansatz (3.4.4) for the <Pi yields the Bogmonl'nyi equations: 

f{- hh = 0' ~~- h!I = 0' ~~- !Ih = 0' (4.3.1) 

where the fi are defined in terms of the c/Ji by the redefinitions (3.4.14). We have also 

shown that the solutions to (4.3.1) which correspond to D-strings stretched between 

two D3-branes are: 

!I(~, k) 

h(~, k) 

h(~, k) 

-K(k) 
sn(K(k)~, k) ' 
-K(k)dn(K(k)~, k) 

sn(K(k)~,k) 

-K(k)cn(K(k)~, k) 
sn(K(k)~,k) 

(4.3.2) 

( 4.3.3) 

( 4.3.4) 

where k is a modular parameter which runs from k = 0 to k = 1. Let us examine the 

functions f 1 , h, and h more closely in the limit k ~ 1. In the crudest approximation 

we have: 

JI '"'-' K(k) , h '"'-' 0 , h '"'-' 0 , ( 4.3.5) 

with 

K(k) ~ oo as k ~ 1 , (4.3.6) 

(except near ~ = 0 and ~ = 2, where the fi have poles). So in the limit k ~ 1 the 

monopoles are positioned far apart on the x1 axis. We can get a better approximation 

for fi, h and h in the far-field limit by expanding the elliptic functions in ( 4.3.2) -

( 4.3.4) as series in k' = )1 - k2. 

In order to obtain f 1, h and h as functions of k' we will use the following 

transformation of elliptic functions, which can be found in ref. [49]. Under the 
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transformation 

~ --t ~ = -i~ , k --t k = k' = v1 - k2 , (4.3.7) 

the elliptic functions transform as 

--+ K(k) = K'(k) = K(k') , K(k) 

sn(~,k) 
- - . sn(~, k) 

--+ sn(~, k) = -\n(~, k) , 
- - 1 

en(~, k) --+en(~, k) = en(~, k) , 

- - dn(~, k) 
--+ dn(~, k) = ( k) . 

en~' 
dn(~, k) 

Then fr, h and h become 

fr(~, k) 

h(~, k) 

-iK(k) cn(iK(k)~, k') 
sn(iK(k)~, k') ' 

- -iK(k) sn(iK(~)~, k') 

(4.3.8) 

f (c k) = _ .K(k) dn(iK(k)~, k') 
2 

"'' ~ sn(iK(k)~, k') ' 

(4.3.9) 

We will also use from ref. [49] the expansions for sn(~, k), en(~, k) and dn(~, k) for 

small k. These are 

(4.3.10) 

Substituting these into the expressions (4.3.2)- (4.3.4) for j 1 , hand h we find 

!I(~, k) =- sinh%i(k)) ( cosh(~K(k)) + ~ sin~~~~k)) (k')
2

- ~ cosh(~K(k))(k')2 
+· .. ) l (4.3.11) 

and 

f (c k) K(k) ( 1 + 1. ~K(k)cosh(~K(k)) (k')2 + 1. cosh2(c K(k))(k')2 
2 "'' = -sinh(~K(k)) 4 smh(~K(k)) 4 <, 

( 4.3.12) 
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and 

+···. 

We can also expand K(k) as a series ink', 

K(k) = (ln4 -lnk') + ~(ln4 -lnk'- 1)(k') 2 + O(lnk'(k')4), 

which implies 

e-2K(k) = (k')2 + O(K(k)e-4K(k)) . 
16 

102 

( 4.3.13) 

(4.3.14) 

( 4.3.15) 

Using (4.3.15) in (4.3.11), (4.3.12) and (4.3.13), we can write h, j 2 , and has series 

in e-2K to get 

and 

and 

h (.;, K) = - sinh%K) ( cosh(.;K) + 4 ( sin~~K) - cosh(.;K)) e-2
K 

+0(K2e-4K)) , ( 4.3.16) 

f (c K) K (1 + 4 (~~i~~(~~f) + cosh2(C K)- 2) e-2
K 2 "' =- sinh(.;K) " 

+0(K2e-4K)) , (4.3.17) 

K 
h(.;, K) = - sinh(.;K) ( 1 + 4 (~K.cosh(~K) _ cosh2(.;K)) e-2K 

smh(~K) 

+0(K2e-4K)) . ( 4.3.18) 

4.3.2 Introducing Time Dependence 

We can introduce time dependence into the static solutions ( 4.3.2) - ( 4.3.4) by 

allowing k to depend on time, k( t), and giving the solutions an initial velocity via 

a non-zero k(t). When the monopoles are far apart we can use the approximations 

(4.3.16) - (4.3.18), which depend on k only through K(k). So we can discard the 

parameter k(t) in favour of the parameter K(t). This is a more natural parameter 

to use because h "'K, and so the velocity of the monopoles is jl '""'K. 
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. .. 
We will describe here how to calculate expressions for K and K using energy 

conservation (we will show explicitly in section 4.4.2 that the total energy of the 

system is conserved). Energy conservation takes the form: 

~ T 12 ( dfi) 2 + ( dh) 2 + ( d!J) 2 dE, = E 
2 0 dt dt dt ' 

(4.3.19) 

where we have neglected the contribution of the potential energy because it is very 

small in the asymptotic limit. Here E is a constant which represents the initial 

energy of the D-strings, i.e. their energy when they are an infinite distance apart. 

Also T is a constant which is determined by the mass of the monopole. Recall from 

section 3.4.2 that in our Yang-Mills system the mass of the monopole is infinite. 

However, ultimately we will be interested in the ratio of the energy radiated to 

the total energy of the system, which does not depend on the monopole mass. In 

practise, in order to be able to handle the calculations numerically, we will just set 

the mass to be m = 2. But we should bear in mind that our results will only really 

make sense when considered as ratios of energies. 

Writing (4.3.19) in terms of the parameter K(t), and using that fi, h and !J 

only depend on time through K, we obtain 

~ /{212 ( dfi ) 2 + ( dh ) 2 + ( d!J ) 2 dE, = E . 
2 0 dK dK dK 

(4.3.20) 

We define 

1 = r ( dfi ) 
2 
+ ( dh ) 

2 
+ ( d!J ) 

2 
dE, . 1 

} 0 dK dK dK 
(4.3.21) 

Then the expression fork is given by 

K=f¥. (4.3.22) 

Using the leading order terms in the expansions (4.3.16)- (4.3.18) for JI, hand !J, 

we find 

!1 = 2 (1- ~ + O(Ke-2K)) 

To obtain k we differentiate ( 4.3.20) to get 

( 4.3.23) 

(4.3.24) 
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So 

( 4.3.25) 

where 

( 4.3.26) 

Again, using the leading order terms in (4.3.16)- (4.3.18), we find 

1 ( 3 -2K ) 12 = K 2 1 + O(K e ) . ( 4.3.27) 

4.3.3 The Asymptotic Expansion of K(t) 

The leading order terms in equation ( 4.3.22) give 

( ) 

-1/2 

K = E 112 1- ~ ( 4.3.28) 

We let v_00 be the velocity of the D-strings in the asymptotic limit t -----+ -oo. Then 

E = v:.=. We can separate the variables in (4.3.28) to get 

( 4.3.29) 

In the asymptotic limit K is large, and so we can expand out the square root in 

(4.3.29) 

J ( 1 - 2~ - 8~2 + 0 ( J~3)) dK = J V_oo dt . (4.3.30) 

Integrating this expression gives 

1 1 ( 1 ) K- 2lnK + SK +0 K2 = v_00 (t+To), ( 4.3.31) 

where T0 is a constant parameter corresponding to the freedom to translate the 

problem in time. To first order the solution to (4.3.31) is 

(4.3.32) 

We can find higher order solutions by perturbing ( 4.3.32) and substituting it into 

(4.3.31). So we write 

K = v_=(t + T0 ) + t:(t) , (4.3.33) 
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where E rv ln V_oo(t +To). Then substituting this expression in ( 4.3.31) gives the 

following asymptotic expansion for K ( t) 

J( = 
1 ln(v_00 (t +To)) 1 

V_ 00 (t +To)+ -ln(v_00 (t +To))+ ( T,) - ( ) 
2 4v_00 t + o 8v_00 t + To 

+0 (
(ln(v_00t

2

)
2

) . 
( ) ( 4.3.34) 
V_00t 

Note that this agrees with the expression (3.2.8) for r(t) in the three-dimensional cal­

culation by Manton and Samols in [80], if we take c = 2v_00To -ln 2 (this agreement 

was to be expected, since the transformation between the metric of the (3 + I)­

dimensional monopole description and the metric on Nahm data is known to be an 

isometry from ref. [89]). 

4.3.4 Decoupling of Zero Modes and Non-zero Modes 

In the introduction to this chapter we described how the D-strings' motion can be 

thought of as being split into two parts; the motion of the zero modes, i.e. the 

motion of the centres of mass of the D-strings, and the motion of the non-zero 

modes, which act as perturbations on top of the zero modes. (see equation (3.7.2) 

and the discussion above it). Energy can be transferred between the zero modes and 

the non-zero modes as a result of the interaction between the two D-strings. But 

when they are far apart, and the interaction can be neglected, we expect the zero 

modes and the non-zero modes to decouple. We will show here explicitly that this 

is the case. 

We consider the D-strings' motion after scattering, when 

/I rv 0 l h rv -K(t) , h "-' 0 l (4.3.35) 

with K(t) constant. The approximations (4.3.35) hold true for all~' except when~ 

is very close to 0 or 2, where h, h and h all contain poles. For now we will work 

with the approximations ( 4.3.35); we will consider the effects of the poles later on 

in this section. 

The linearised equation of motion for E1 from the Yang-Mills action is 

(4.3.36) 
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and the equations for E2 and E3 are given by cyclic permutations of ( 4.3.36). With 

the approximations ( 4.3.35) these equations of motion become 

0, 

0, 

0. 

(4.3.37) 

(4.3.38) 

( 4.3.39) 

Since the D-strings are far apart, I< is large, and ( 4.3.37) and ( 4.3.39) imply that 

E1 = 0 , and E3 = 0 . (4.3.40) 

So it seems that in the asymptotic limit the energy in the non-zero modes is entirely 

contained in E2 , which from ( 4.3.38) takes the form of a harmonic oscillator, and has 

completely decoupled from the zero mode motion. 

The above analysis is accurate away from the boundaries ~ = 0 and ~ = 2. We 

now consider what happens at the boundary ~ = 0; the calculation for the boundary 

~ = 2 works in a similar way due to the symmetries of the fi about ~ = 1 that we 

pointed out in section 1.3.2. Consider the equations of motion for the full fields 'Pi, 

which are 

'i?1 - cp~ + 'P1 ( cp~ + 'PD 

'i?3 - cp~ + 'P3 ('Pi + 'PD 0. ( 4.3.42) 

Expanding the functions cp1 , cp2 and cp3 as series in ~, and imposing the equations 

of motion (4.3.41)- (4.3.42) we find 

1 3 
'P1 -€ + a1~ + 0(~ ) , (4.3.43) 

'P3 = - z + cl~ + 0 (e) ' ( 4.3.44) 

where a 1, b1 and c1 are functions of time which satisfy 

( 4.3.45) 

Now when we expand the solutions for the fi ( 4.3.2) - ( 4.3.4) as series in small ~ we 

obtain 

( 4.3.46) 

(4.3.47) 
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where 

a{ + b{ + c{ = 0 . 

So we can deduce that the series for the Ei(~, t) have the form 

where 

a~~+ Q(e) , E2 = b~~ + Q(e) , 

c~~ + o(e) ' 

a~ + b~ + c~ = 0 . 
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(4.3.48) 

(4.3.49) 

(4.3.50) 

( 4.3.51) 

So we can see that Ei ---+ 0 as ~ ---+ 0, which gives us the following boundary conditions 

for the Ei 

(4.3.52) 

So we deduce that the boundary conditions ( 4.3.52) are consistent with ( 4.3.40), 

and t:2 being a harmonic oscillator. 

4.4 Energy Considerations 

In this section we outline some general points about the energy of the Yang-Mills 

system we wish to solve. 

4.4.1 The Energy Densities 

The kinetic and potential energy densities of the system governed by the Yang-Mills 

action (3.4.8) are given in terms of the functions 'Pi by 

We can rewrite the potential energy density as 

( 4.4.1) 

(4.4.2) 

P.E. density=~ ((<p~- <p2<p3) 2 + (<p;- <fJI<fJ3) 2 + (<p;- 'Pl'P2)2) + &r,(<fJI'P2'P3) , 

(4.4.3) 
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where or;( 'PI cp2 cp3 ) contains singular terms which, when integrated, contribute an 

infinite constant to the potential energy. Neglecting this term we obtain 

P.E. density=~ ((cp~- 'P2'P3) 2 + (cp;- 'PI'P3)2 + (cp;- 'PI'P2) 2) . (4.4.4) 

Recall that the Bogomol'nyi equations for the Yang-Mills action (3.4.8) are given 

by 

(4.4.5) 

The potential energy density for a solution obeying ( 4.4.5) is therefore zero, as 

we would expect. Also, we can see that the potential energy density ( 4.4.4) for a 

general field configuration measures the deviation of the solution away from the BPS 

solution. 

4.4.2 Energy Conservation 

We will show here that the total energy remains conserved. We consider the Noether 

currents for time translation t ---+ t - a, which are defined by 

·fJ. - o£ a " £11-
J - 0(011-Cf?i) O'f?i- L Uo . 

Therefore the N oether currents are 

. 0 1 ( . 2 . 2 . 2) 1 ( 12 12 12) 1 ( 2 2 2 2 2 2) 
J 2 'PI + 'P2 + 'P3 + 2 'PI + 'P2 + 'P3 + 2 'PI 'P2 + 'P2'P3 + 'P3'PI ' 

yi 'P~ <PI + 'P;<P2 + <p;ch . 

As usual we have current conservation in the form 

a ·0 !:} ·I 0 oJ - ul) = . 

We define the energy E to be the charge associated with the N oether current j 0 , 

Therefore we have 

E= 1
2

ld~. 

atE - [
2 

ot]0d~ 
... o 

12 

or;ld~ 
[yi]~ 

(4.4.6) 



4.4. Energy Considerations 109 

where we have used current conservation to get from the first line to the second. 

Using the expansions for the IPi ( 4.3.43) - ( 4.3.44) near ~ = 0, we have 

(a1 + ~1 + c1) + O(~) 

0 at~= 0. ( 4.4. 7) 

Similarly we can show that the contribution to ( 4.4.6) at~ = 2 is also zero. Therefore 

we have 

and so the total energy of the system is conserved. 

4.4.3 Decoupling of the Energy 

We have shown in section 4.3.4 that the motion of the zero modes and the motion 

of the non-zero modes decouple when the D-strings are far apart. Therefore we also 

expect the energy in the non-zero modes to decouple from the energy in the zero 

modes in this limit. We will show here explicitly that this is the case. 

The kinetic energy density is given by equation ( 4.4.1). Substituting IPi = fi + Ei 

we find that the coupling between the zero modes and the non-zero modes in the 

kinetic energy is generated by the terms: 

12 

jif_i d~ . ( 4.4.8) 

But we have shown in section 4.3.4 that the non-zero Ei behave like harmonic oscil­

lators in the asymptotic limit, and the fi are approximately constant. Then, in this 

limit, 

( 4.4.9) 

and so the kinetic energy does indeed decouple. (The poles of the fi at ~ = 0 and 

~ = 2 are fixed, so that fi = 0 at~= 0, 2. Therefore we do not need to worry about 

the contribution of the poles to ( 4.4.8)). 

Next consider the potential energy. Substituting tpi = fi + Ei into the potential 

energy density, and keeping only terms which are quadratic in Ei, we find that the 

potential energy is given by 

P.E. = ~ 12 

( ( E~ - j 2E2 - hc3)
2 + {cyclic perms.}) d~ . 

2 0 
(4.4.10) 
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Away from the poles the fi are given by the approximations (4.3.35) in the asymp­

totic limit. We have also shown in section 4.3.4 that E1 = E3 = 0 in this limit. Then 

the potential energy is given by 

P.E. = ~ 18 

( ( E;) 2 + (-hE2)2 + (-h E2)2) d~ + ~ 1
2

-(E;) 2d~ 
+-

2
1 

{
2 

((E;) 2 +(-iJE2) 2 +(-jlE2)2)d~, (4.4.11) 
12-8 

where the first and third terms in ( 4.4.11) take into account the behaviour of the fi 

near the boundaries. The series expansions ( 4.3.46) - ( 4.3.4 7) for the fi and ( 4.3.49) 

- (4.3.50) for the Ei imply that 

(4.4.12) 

where we have used that bl = E2 (~)I~=O· So the contributions to the potential energy 

from the two boundary terms are given by 

~ 18

(E;) 2 d~ + ~ 1:~E;) 2 d~ . ( 4.4.13) 

Since these terms are finite, and J ----. 0 as the D-strings get further apart, the 

contributions to the potential energy from ( 4.4.13) are negligible. So the potential 

energy is given by 

112( I )2 P.E. = - E2 d~ ' 
2 0 

( 4.4.14) 

which has also decoupled from the zero mode motion. 

We have shown that the energy in the non-zero modes after the D-strings have 

scattered has become decoupled from the energy in the zero modes. It is this energy, 

that has been transferred to the non-zero modes as a result of the D-string scattering, 

which represents the energy radiated during scattering. 

4.5 Solving the Equations of Motion Numerically 

In this section we will describe the numerical methods we used to solve the Yang­

Mills equations of motion. The equations are 

<Pl - <p~ + i.p} ( <p~ + <p~) 

<P3 - <p~ + <p3 (<pi + <p~) 

0 ) <P2 - <p~ + i.p2 ( <p~ + <pi) = 0 ' 

0, 

(4.5.1) 

(4.5.2) 
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where a dot denotes differentiation with respect to time, and a prime denotes dif­

ferentiation with respect to~· We will describe in section 4.5.2 how we removed the 

poles in the solutions for the 'Pi in order to evolve them numerically; we will find 

from the results presented in section 4.6.2 that this method will give us sufficient 

numerical stability. 

4.5.1 The Range of~ 

We wish to solve the equations (4.5.1) - (4.5.2) for ~ E [0, 2]. We will start the 

motion by taking the 'Pi to be equal to the fi for some chosen value of k, k0 say, and 

giving the 'Pi a velocity via a non-zero initial value of k, k0 say. So initially we will 

set 

(4.5.3) 

Recall from section 1.3.2 that fi and h are symmetric about ~ = 1, and h is 

antisymmetric. From ( 4.5.3) we can see that the initial configuration for the 'Pi and 

cpi will also have these symmetries. By inspection of the equations of motion (4.5.1) 

- ( 4.5.2) we can see that the configurations will be evolved in time in such a way that 

these symmetries are preserved. Therefore it will be sufficient to solve the equations 

of motion for the 'Pi with ~ in the range ~ E [0, 1], because we can then use these 

symmetries to deduce the solutions for the 'Pi on the full range of~· 

4.5.2 Removing the Singularities in the 'Pi 

Recall from the series solutions (4.3.43)- (4.3.44) that near~= 0 the 'Pi take the 

following form 
1 

'Pi(~, t) = -~ + 0(~) . (4.5.4) 

So the 'Pi have singularities at ~ = 0. A numerical program would not be able to 

handle this singularity, and so we must remove it by the following redefinition 

(4.5.5) 
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Note that 

(4.5.6) 

because the poles are fixed in time. The equations of motion for the fields 9i are 

00 - 11 ( 2 2) - (9~ + 9j + 29192 + 29193) (291 + 292 + 293) - 0 
91 91 + 91 92 + 93 ~ + e - , 

(4.5.7) 

00 - 11 + ( 2 + 2) - (9j + 9i + 29293 + 29291) + (291 + 292 + 293) - 0 
92 92 92 93 91 ~ e - , 

(4.5.8) 

00 - 11 + ( 2 + 2) - (9i + 9~ + 29391 + 29392) + (291 + 292 + 293) - 0 
93 93 93 91 92 ~ e - . 

(4.5.9) 

The third and fourth terms in these equations are apparently singular at ~ = 0. 

However, from the series solutions for the 'Pi (4.3.43)- (4.3.44), we have 

with 

al~ + o(e) , 92(~, t) = b1~ + o(e) ' 

cl~+ o(e) ' 

(4.5.10) 

(4.5.11) 

(4.5.12) 

From this we can deduce that the terms which appear to be singular in ( 4.5. 7) -

( 4.5.9) are in fact finite at ~ = 0. 

4.5.3 Numerical Methods 

We wish to solve the equations of motion ( 4.5. 7) - ( 4.5.9) numerically, given initial 

configurations 9i(~, 0) and boundary conditions 9i(O, t) and 9i(1, t). We will discuss 

these in sections 4.5.4 and 4.5.5 respectively. To solve the equations we will use the 

numerical procedure from ref. [90], which we will briefly review here. The program 

we used to solve the equations was based on the program in ref. [90), with appropriate 

modifications. We also used the routines from ref. [91] to calculate the Jacobian 

elliptic functions numerically. 

We model spacetime using a two-dimensional lattice. The spatial dimension is 

discretised by splitting it into N regular intervals of size d~ = -h, with the points on 
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the lattice labelled as E,j for j = 0, ... , N. The time dimension is also discretised, 

with dt being the time lapse between successive points in time. 

We take a configuration at time t, and evolve it to time t + dt as follows. 

1. First we calculate all spatial derivatives of the 9i that are present in the equa­

tions of motion for the configuration at time t. For the equations of motion 

for 9i ( 4.5. 7) - ( 4.5.9) we require g~'· We calculate g~' at point E,J using seven 

[,-points 

(for points close to the boundaries it may not always be possible to use seven 

points in the calculation of g~'- see section 4.5.5 for more details). 

2. Using g?(E,j, t) we can calculate gi(E,j, t) for all points E,J on the spatial lattice 

using the equations of motion. Therefore we effectively have ( N - 1) coupled 

equations to evolve in time, one for each spatial point (but neglecting the 

boundary points [,0 and E,N+l, which we will deal with later). So we can use a 

fourth-order Runge-Kutta procedure on each equation to evolve it from time 

t to time t + dt. 

3. Finally we evolve the boundary points [,0 = 0 and E,N+l = 1 in time according 

to the specified boundary conditions. 

This procedure evolves the solution at time t to a solution at time t + dt, and 

can be repeated many times until we reach the final configuration. 

To obtain solutions with sufficient accuracy we used dE, = 0.0001 and dt 

0.00005 in our program. 

4.5.4 Initial Conditions 

We wish to start the motion with the monopoles moving tangential to the static 

solutions. So we take 

( 4.5.14) 
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where k0 is chosen so that the D-strings are sufficiently far apart initially. In [80], 

Manton and Samols found that two monopoles cease to interact with one another 

for r > 10. So we must start our motion with h > 10. We take k0 = 0.9999999999, 

for which K(k0 ) = 12.55264624. 

Having specified initial configurations for the cpi, we also need to specify initial 

configurations for the cpi. We want to start the motion by allowing k to depend on 

time in the initial configurations (4.5.14). So the initial configurations for the cpi are 

0i(~, 0) = ko ~I , 
(~,ko) 

(4.5.15) 

where k0 is a parameter we must choose to fix the initial velocity of the D-strings. 

We can fix k0 by choosing a value for ji(1, k0 ), which is the initial velocity of the 

centres of the D-strings. Since h (~, k0 ) is approximately constant in ~ initially, 

ji(1, k0 ) gives approximately the initial velocity of the D-strings, 

(4.5.16) 

We choose Vinit to be small initially; we will take two cases (a) vinit = 0.05 and (b) 

Vinit = 0.1. ko can be calculated using 

Vi nit 
ko = c!h..l (4.5.17) 

dk (l,ko) 

Then the initial conditions for the 0i can be calculated using (4.5.17) in (4.5.15). 

The initial conditions for the 9i and gi can be deduced from the initial conditions 

for the 'Pi and cpi respectively using the definitions (4.5.5) and (4.5.6). 

4.5.5 Boundary Conditions 

We describe here the boundary conditions we used to fix gi(O, t) and 9i(1, t). We 

will also describe how we calculated g~'(~, t) for points near the boundaries. 

We first consider the left-hand border, ~ = 0. The series expansions (4.5.10) -

(4.5.11) for the 9i near~= 0 imply 

( 4.5.18) 

It is not necessary to calculate g~' at ~ = 0, because the solutions are fixed there 

by the boundary condition (4.5.18), and do not need to be evolved in time. For 
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the point next to the left-hand border, 6, the best we can do is to evolve the point 

using 3 points to calculate g~' ( 6, t) 

Similarly for the next point 6, the best we can do is to use 5 points to calculate 

gr(6, t) 

g;'(6, t) = d~2 ( - 1
1

2 gi(~o, t) + ~gi(~I, t)- ~gi(6, t) + ~gi(6, t)- 1
1

2 gi(~4, t)) 

(4.5.19) 

For ~j with j > 2 we have enough points to use the 7-point calculation for g?(~j, t) 

from equation (4.5.13), until j > (N- 2), when we reach the right-hand border. 

To fix the right-hand border we use the symmetry properties of the solutions 

about ~ = 1. These symmetries imply that 

These imply for the gi 

g~(1,t) 

g3(1,t) 

g; (1 ) t) = -1 ) 

1 0 

(4.5.20) 

( 4.5.21) 

(4.5.22) 

On the right-hand border, ~ = ~N+l = 1, g3 is fixed by (4.5.22). So the boundary 

condition is 

g3(1, t) = 1 ) fl3(1, t) = 0 0 ( 4.5.23) 

But we cannot fix g1(1, t) and g2 (1, t) in the same way, because their values may 

vary at ~ = 1; it is only their derivatives with respect to ~ which are fixed. Instead of 

fixing a boundary condition, we evolved g1 and g2 using the Runge-Kutta method, 

as described in section 4.5.3, using their symmetry about ~ = 1 to calculate g~ and 

g~ at ~N+I using five points. We obtained 

"( ) 1 ( 1 ( ) 8 ( ) 5 ( ) 7 gl ~N+l, t =de - 6gl ~N-1, t + 3gl ~N, t - 2g1 ~N+l> t - 3dx 

--dx + -dx . 4 3 8 5) 
3 3 ' 

( 4.5.24) 
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Figure 4.1: Plots of the numerical solutions for the rpi at t = 0 with Vinit = 0.05. 

and similarly for 92 . We can also use the symmetries to calculate all the 9~' at the 

point next to the right-hand border, ~ = ~N = 1 - d~. For 91 we found 

and similarly for 9~· For 93 we found 

9~(~N, t) = d~2 (- :2 93(~N-2, t) + ~93(~N-1, t)- ~~93(~N, t) + ~93(~N+l 1 t) 

+ ~ (7- dx2
- dx4

)) . (4.5.26) 

For the next point ~N- 1 , we find that it is sufficient to use the 5 point calculation 

as in ( 4.5.19). 

4.5.6 Results 

Figures 4.1, 4.2 and 4.3 show graphs of some of the solutions we obtained from our 

numerical program. 

Figure 4.1 shows the initial configuration for rp1 , rp2 and rp3 . As we explained in 

section 4.5.4, this configuration is given by rpi(~, 0) = fi(~, k) with k = 0.9999999999. 

From these graphs we can see that rp1 ,......, - K(0.9999999999) = -12.55264624 and 

rp2 rv 0 and rp3 ,......, 0, except for the poles at~= 0 and~= 2, as we expected. 

Figure 4. 2 shows the solutions for cp 1 , rp2 and rp3 at the point of scattering. Here 

rp1 = rp2 , which corresponds to the axisymmetric monopole solution (the 'dough-
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Figure 4.2: Plots of the solutions for the 'Pi at t = 200 with vinit = 0.05. 
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Figure 4.3: Plots of the numerical solutions for the 'Pi at t = 650 with Vinit = 0.05. 
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nut'), which we discussed in section 1.3.2. The time evolution from the configura­

tions in figure 4.1 to the configurations in figure 4.2 is a smooth deformation between 

the graphs in figure 4.1 and the graphs in 4.2. 

Figure 4.3 shows the solutions for <p1 , <p2 and <p3 after scattering, with t = 

650. Note that after scattering <p 1 and <p2 have exchanged roles, as expected. This 

corresponds to the D-strings scattering at 90°. 

4.6 Calculating the energy radiated 

In this section we describe the techniques we have used to calculate the energy 

radiated during scattering, using the numerical solutions for the 9i from the program 

discussed in the previous section. 

The energy densities in terms of the 9i are 

K.E. density 1 ·2 ·2 ·2 
2(91 + 92 + 93) ' (4.6.1) 

P.E. density 1 ( 12 12 12) 1 ( 2 2 2 2 2 2) 
2 91 + 92 + 93 + 2 9192 + 9293 + 9391 

1 
-~(9192(91 + 92) + 9293(92 + 93) + 9391(93 + 9d) 

1 2 2 2 ) 
+ e (91 + 92 + 93 + 9192 + 9293 + 9391 

-(9~9293 + 9;9391 + 9~9391) 

+~(91(9; + 9~) + 92(9~ + 9~) + 93(9~ + 9;)) . (4.6.2) 

Although there appear to be singularities in the potential energy density ( 4.6.2) at 

~ = 0, all terms are in fact finite when we substitute in the series expansions for the 

9i (4.5.10)- (4.5.11) (as was the case for the equations of motion (4.5.7) - (4.5.9)). 

We find 

P.E. density(O, t) = ~(a1 + b1 + c1)2 = 0 . (4.6.3) 

4.6.1 Numerical methods 

In this section we describe the numerical methods we have used to calculate the 

energies in our numerical solutions. 
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In order to calculate the potential energy density ( 4.6.2) we need to calculate g~ 

for all ~-points. For the interior ~-points we used four points to calculate g~ 

1 1 (1 2 2 1 ) gi(~n' t) = d~ 12 gi(~n-2' t) + 3gi(~n-l, t)- 3gi(~n+l, t)- 12 gi(~n+2, t) · (4.6.4) 

On the left-hand border, ~0 = 0, the potential energy density is zero (see (4.6.3)). 

For the point next to the left-hand border, 6, we used two points to calculate g: 

g~(~I, t) = :~ ( ~gi(6, t) - ~gi(~o, t)) . ( 4.6.5) 

On the right-hand border, ~N+I, we used the boundary conditions (4.5.21), 

(4.6.6) 

To calculate g~ at ~N+l = 1, we used the symmetries of the CfJi about ~ = 1, as we 

did in section 4.5.5 to calculate g~'· Using four points we find 

(4.6.7) 

Similarly for the point next to the right-hand border, ~N, we used the symmetries 

(4.6.8) 

Having calculated the energy densities, we integrated them using Simpson's rule. 

Simpson's rule states that the integral 

I= 1~N f d~ 
~0 

(4.6.10) 

can be calculated numerically to order de using 

lapprox = ~~ ( fo + f N +1 + 4 L J m + 2 L f m) ' 
m odd m even 

(4.6.11) 

where fo = f(~o), !N = f(~N) and fm = f(~m) for 0 < m < N, with the interval 

[~0 , ~N] being discretised to the (N + 1) points ~i with 0:::; i :S N, which are distance 

d~ apart. See ref. [92] for a discussion of Simpson's rule. 
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4.6.2 Calculating the Energy in the VJi 

In this section we present the results of our energy calculations for the 'Pi (i.e. the 

energy in the zero modes and the non-zero modes together). 

First we present the total energy in the 'Pi in table 4.1 for vinit = 0.05 and in table 

4. 2 for V in it = 0.1. Because we expect the total energy to be conserved (see section 

4.4.2), the order of magnitude at which the total energy deviates from conservation 

gives us a measure of the numerical inaccuracy in our calculation. 

a) From table 4.1, for Vinit = 0.05, we can see that for 0:::; t:::; 725 the total energy 

is conserved up to order 10-u. So we deduce that our calculations of the energy 

in the 'Pi are correct to order around 10-u (this error is slightly higher than 

that predicted from our numerical methods, but this was to be expected since 

part of our numerical routine involved the cancellation of numbers of similar 

orders of magnitude). 

For the later times t = 750 and t = 775 the total energy has started to increase 

slightly by around 3 x 10-u, so there appear to be some extra numerical 

inaccuracies coming into effect at these later times. 

b) Similarly from table 4.2, for Vinit = 0.1, the numerical inaccuracy in the total 

energy is around 1 x 10-u for 0 :::; t:::; 260, and around 2 x 10-u fort> 260. 

Next we present the potential energy in the 'Pi in figure 4.4(a) for Vinit = 0.05, 

and in figure 4.4(b) for vinit = 0.1. As we pointed out in section 4.4.1, the potential 

energy measures the deviation of the solution from the solutions to the Bogomol'nyi 

equations, the k So the potential energy originates entirely from the non-zero 

modes. In section 4.3.4 we found that the non-zero modes behave like harmonic 

oscillators when the D-strings are far apart. So at late times the kinetic energy is 

of the same order as the potential energy, and so the magnitude of the potential 

energy is approximately half the total energy in the non-zero modes. 

a) In the graph in figure 4.4(a), for Vinit = 0.05, we can see that the potential 

energy increases up to order 10-8 around the point of scattering t ~ 200. After 

scattering the potential energy decreases back down to order 10-11 , which is 
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Time Total energy in the i.{Ji Time Total energy in the c.pi 

0 0.0023008388119039563 400 0.0023008388028718015 

25 0.0023008388080045165 425 0.0023008388041421109 

50 0.0023008388040325276 450 0.0023008388043416878 

75 0.0023008388035914325 475 0.0023008388094051973 

100 0.0023008388045730349 500 0.0023008388101757415 

125 0.0023008388064388033 525 0.0023008388052310619 

150 0.0023008388051433152 550 0.0023008387979028245 

175 0.0023008388043897336 575 0.0023008388038038862 

200 0.0023008388049627743 600 0.0023008388137977869 

225 0.0023008388052134037 625 0.002300838810471318 

250 0.0023008388054121024 650 0.002300838814647431 

275 0.0023008388046028864 675 0.002300838803442902 

300 0.0023008388045520022 700 0.0023008388033493934 

325 0.0023008388058299747 725 0.0023008388157896432 

350 0.0023008387998940645 750 0.0023008388221448599 

375 0.0023008388018124133 775 0.0023008388304597495 

Table 4.1: Table showing the total energy in the numerical solutions c.pi at different 

times, with initial velocity Vinit = 0.05. 
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Time Total energy in the l.fJi Time Total energy in the <pi 

0 0.009203355247594738 160 0.0092033552484803473 

10 0.0092033552425785873 170 0.0092033552543866384 

20 0.0092033552427108634 180 0.009203355255166067 

30 0.0092033552452017824 190 0.0092033552560935126 

40 0.0092033552483386689 200 0.0092033552553977428 

50 0.009203355246432756 210 0.0092033552608578265 

60 0.0092033552471731343 220 0.0092033552573199656 

70 0.0092033552516308723 230 0.0092033552536499603 

80 0.0092033552505522004 240 0.0092033552486662056 

90 0.0092033552513087272 250 0.009203355252019858 

100 0.0092033552511301756 260 0.0092033552427458355 

110 0.0092033552512737656 270 0.0092033552315330305 

120 0.0092033552511940186 280 0.0092033552317870183 

130 0.0092033552524599157 290 0.0092033552332674035 

140 0.00920335525272108 300 0.0092033552319790869 

150 0.0092033552508128894 310 0.0092033552417399717 

Table 4.2: Table showing the total energy in the numerical solutions l.fJi at different 

times, with initial velocity Vinit = 0.1. 
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the order of the numerical inaccuracies in this calculation. This suggests that 

all the energy has been transferred back into the zero modes after scattering, 

and therefore no energy has been radiated. 

b) Similarly for Vinit = 0.1, in the graph in figure 4.4(b), we find the potential 

energy increases up to the order of 10-6 around the point of scattering at 

t ~ 100. Then it decreases back down to the order of 10-lO after scattering. 

Although this is slightly higher than the order of numerical inaccuracy, it is 

still much lower than we would expect from Manton's prediction, which would 

give Erad rv 10-5 . 

4.6.3 Separating the non-zero modes from the zero modes 

In the previous section we deduced the energy radiated from the potential energy of 

the full numerical solution 9i· In the next section we will calculate the energy in the 

non-zero modes Ei directly. In order to do this we need to separate out the non-zero 

modes Ei from the full solutions 'Pi· In this section we will describe the method we 

have used to separate them out. Recall that 

(4.6.12) 

where fi(~, k(t)) are the 'static' solutions (4.3.2) - (4.3.4), and Ei(~, t) are the non­

zero modes. The value of k(t) at timet completely specifies the functions fi(~, k(t)). 

So, given k(t), we can calculate the Ei by subtracting fi(~, k(t)) from our numerical 

solutions for the 'Pi· 

Finding k(t) is difficult because the fi are complicated functions. However, if we 

work in the asymptotic limit, when the D-strings are far apart, we can use the leading 

order terms in the series (4.3.16)- (4.3.18) for the fi, which are (after scattering): 

1 
- K -----:--...,... 

sinh(~K) 

-K 1 
sinh(~K) 

!
2 

= -Kcosh(~K) 
sinh(~K) 

Then we can work with the parameter K(t) instead of k(t). 

(4.6.13) 

(4.6.14) 
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Figure 4.5: Graph showing (2 (~, t) fort= 700 and Vinit = 0.05 

At~ = 1 the approximations (4.6.13) - (4.6.14) can be expanded as series in 

e- 2K to give 

h(~ = 1,K) 

h(~ = 1, K) 

O(Ke-2K) , !2(~ = 1, K) = -K + O(K e-2K) , ( 4.6.15) 

O(Ke-2K). (4.6.16) 

Substituting these into ( 4.6.12), we find for '{)2 

'P2(~ = 1, t) = -K(t) + E2(~ = 1, t) . ( 4.6.17) 

We find a first approximation for K, call it k, by taking E2 (~ = 1, t) = 0. Then 

K(t) is just the value of -'{)2 at~= 1 at timet. Using K(k(t)) =kin (4.6.12) we 

can calculate our first approximation for E2 , call it (2 , 

(4.6.18) 

The graph in figure 4.5 shows (2 ((, t) fort= 650 with Vinit = 0.05. 

Recall from section 4.3.4 that we expect E2 (~, t) to take the form of a harmonic 

oscillator in the asymptotic limit. So we expect 

(4.6.19) 
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This is clearly not the case for E2 = E2 for the graph in figure 4.5. This is because 

we took E2 (1, t) = 0 in calculating our estimate K. We can improve our estimate for 

E2 by taking 

( 4.6.20) 

in (4.6.17), where 6 is chosen such that (4.6.19) is true. If we assume that f 2 is 

constant then 

6 ~ 12 
E2(~, t) d~ . (4.6.21) 

So we can calculate an improved estimate forK, call it k, using (4.6.17), 

4?2 ( 1' t) = - k + 6 . ( 4.6.22) 

And we can calculate an improved estimate for the Ei, call them fi using 

(4.6.23) 

We can calculate an approximation for k and the Ei using a similar procedure 

to that described above. 

The results of this procedure for the ci and Ei at t = 700 for Vinit = 0.05 are 

given in the graphs in figures 4.6 and4.7 respectively. The graph for c2 does seem to 

take the form of a harmonic oscillator, as we expected from section 4.3.4. However, 

the graphs for c1 and c3 , which we expect to be zero in the asymptotic limit from 

section 4.3.4, are not much smaller than c2 . This is because, in that section, in order 

to obtain c1 = c3 = 0 we neglected terms of order 1/ K 2 in the equations of motion 

for c1 ( 4.3.37) and c3 ( 4.3.39). At t = 700 K ~ 24 and 1/ K 2 ~ 1/600, so these 

neglected terms are still reasonably large. We conclude that at this time the zero 

modes and non-zero modes have not completely decoupled, leading to errors in our 

approximation procedure. 

The results for the approximations for K and k from the method described 

above are given in table 4.3 for vinit = 0.05 and in table 4.4 for Vinit = 0.1. For 

Vinit = 0.05 we have Ci f"V w-7 at t = 650 from the graphs in figure 4.6. So our 

result for K at t = 650 is correct, at least to order w-7
. So it is worth proceeding 

to use these results to calculate the energy in the non-zero modes, in spite of the 

inaccuracies in our method which we discussed above. 
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Time K K 

325 7.680119995022257 0.051431773724365769 

350 8.9587692742531644 0.050890837263380694 

375 10.225917788445766 0.050499674421269791 

400 11.484537657012579 0.050202380890253015 

425 12.736568653767913 0.049968841747149655 

450 13.983349590185279 0.049780127466368805 

475 15.22584516271003 0.049624395287705729 

500 16.464774138455645 0.049493741101254325 

525 17.700686939799251 0.049382094290754054 

550 18.934014703559839 0.049286216460765905 

575 20.165101601234785 0.049202360879168044 

600 21.394226868661601 0.049129188080153978 

625 22.621620253924849 0.049063762833720333 

650 23.847473133479966 0.049005543236356822 

675 25.071946612115951 0.048953323932775197 

700 26.295177622390725 0.0489060136694019 

725 27.517283598259574 0.048863102166153673 

750 28.738365938824291 0.048824095413400083 

775 29.958512884936482 0.048788264692838888 

Table 4.3: Table showing the approximate values forK and K, calculated using the 

method described in section 3.6.3, for Vinit = 0.05. 
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Time K K 

130 4.2528185487278103 0.10955490088679257 

140 5.3310367773774052 0.10642112694577098 

150 6.384 7076708880319 0.10446144578589162 

160 7.4222831652072534 0.10313046001030289 

170 8.4485637959300757 0.10216922583118802 

180 9.4664 709163334937 0.10144251134346198 

190 10.4 77911667 493794 0.10086 772807 43 7738 

200 11.484199801359248 0.10040412922644423 

210 12.486282292425347 0.10002230200495914 

220 13.484863263207957 0.099702905926008153 

230 14.480482559027372 0.099429881851804125 

240 15.473562599582436 0.099191582006006154 

250 16.464440746205028 0.098986270927379813 

260 17.453390705432682 0.098807028106371125 

270 18.44063 7838834185 0.098646325983717795 

280 19.426369398126088 0.098502604562491852 

290 20.410743946579903 0.098374461405384403 

300 21.393895600174691 0.098258158780689761 

310 22.375939554267504 0.098152194222099989 

Table 4.4: Table showing the approximate values for K and k, calculated using the 

method described in section 3.6.3, for Vinit = 0.1. 
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4.6.4 Calculating the energy in the non-zero modes directly 

In this section we present the results of calculating the energy in the Ei, having 

used the techniques of the previous section to separate out the Ei from the l.fJi. In 

order to calculate the energy in the Ei we have to assume that the zero modes and 

non-zero modes have decoupled from one another. Then the kinetic energy density 

and potential energy density for the Ei are given by 

K.E. density 1 ·2 ·2 ·2 2(El+E2+E3), (4.6.24) 

P.E. density ~(E'2 + E'2 + E'2) 2 1 2 3 

1 2 2 2 ) + e (El+ f2 + f3 + E1E2 + E2E3 + f3E1 

+~(El(E; + c;) + E2(E; + E~) + E3(E~ + c;)), (4.6.25) 

where we have neglected all terms of order E3 and higher in the potential energy 

density ( 4.6.25). 

The graphs in figures 4.8 and 4.9 show the potential and kinetic energies calcu­

lated for Vinit = 0.05 and Vinit = 0.1 respectively. 

a) In figure 4.8, for vinit = 0.05, the potential energies are much higher than 

those found in section 4.6.2 for 325 < t < 525. This could be because the zero 

modes have not decoupled sufficiently from the zero modes at these earlier 

times, leading to inaccuracies in the energy densities ( 4.6.24) and ( 4.6.25). 

For t ~ 550 the potential energies are of the order 10-n, which agrees with 

the results presented in section 4.6.2. As we claimed in that section, the kinetic 

energy in the Ei is of the same order as the potential energy in the Ei at later 

times. 

b) Similarly for Vinit = 0.1, in figure 4.9, the potential energies are higher than 

expected for 130 ::; t < 250. For t ~ 260 the potential energies are of the 

order 10-10 , which agrees with the results presented in section 4.6.2. Again, 

the kinetic energy in the Ei is of the same order as the potential energy in the 

Ei at later times. 
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Figure 4.8: Graphs showing the kinetic and potential energy densities in the Ei, 

calculated using the method described in section 3.6.3, for Vinit = 0.05. 
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Figure 4.9: Graphs showing the kinetic and potential energy densities in the Ei, 

calculated using the method described in section 3.6.3, for vinit = 0.1. 
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4. 7 Conclusions 

We have described in this chapter our numerical calculations for the energy radiated 

during D-string scattering. We found that the Born-Infeld equations of motion were 

too complicated to solve numerically, and so we solved the Yang-Mills equations of 

motion instead. 

Our numerical results reproduce the 90° scattering which we expected from the 

comparison to monopole scattering. It is encouraging that this follows directly from 

the equations of motion, rather than having to be put in by hand, as we did in 

section 3.6. 

Our calculations for the energy radiated during D-string scattering indicate that 

no energy is radiated, in contrast to the prediction of Manton and Samols in ref. 

[80], which we reviewed in section 3.2. However, it may be that, by making the 

approximation to the Yang-Mills system, we prevented it from being able to radiate 

energy. It would be nice to be able to support the conclusion we have reached 

here with further evidence from the Born-Infeld action. We will discuss possible 

approaches for doing this in our conclusions in chapter 5. 



Chapter 5 

Con cl us ions 

At the time of writing, string theory is the only candidate we have as a theory 

of quantum gravity. However, so far, all attempts to use the known properties of 

string theory to build a realistic four-dimensional model have failed. In the light of 

this, we should seek to understand string theory better in the hope that we may 

uncover some properties of the theory which could lead us to a realistic model. 

We have seen how D-branes are necessary for superstring theory to be consistent; 

they act as sources for the Ramond-Ramond fields, which are necessary to fill out 

the supergravity multiplets. D-branes also exist outside of string theory as objects 

in their own right; they are soliton solutions of supergravity. Although much is 

known about the properties of D-branes, there are still many features which are 

currently not well understood. It is therefore important that we continue to explore 

the unknown properties of D-branes in the hope of finding new ways of proceeding. 

We have seen that there are many ways in which a D-brane configuration can be 

regarded as a BPS monopole. Since BPS monopoles have been studied extensively 

since the 1970's, it makes sense to use what we already know about monopoles to 

teach us more about D-branes. This was the motivation on which the work in this 

thesis was based. 

One example of a D-brane configuration behaving as a BPS monopole is the 

enhanc;on mechanism. When we wrap a D6-brane on a K3 manifold there is some 

negative D2-brane charge induced. To avoid having a negative tension, the D6/D2-

brane charge is smeared out on a spherical shell in the transverse dimensions. The 
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W-boson of the theory, which is the D4/DO-brane object Hodge dual to the D6/D2-

brane one, become massless at the enhan<;on radius, indicating the presence of a 

region of enhanced gauge symmetry. For this reason the D6/D2-brane object is 

called the enhan<;on. We deduce that it has the behaviour of a BPS monopole, 

which also looks like a place of enhanced gauge symmetry. 

These arguments imply that the metric on moduli space for enhan<;ons, in the 

limit that they are far apart, will be the generalised Taub-NUT metric. We have 

shown explicitly in chapter 2 that this is the case. Obtaining the position terms in 

the Taub-NUT metric was relatively straightforward, following Ferrell and Eardley's 

calculation for black holes from refs. [72], [73] and [7 4]. Obtaining the phase terms 

in the Taub-NUT metric was more difficult; our calculation highlights once again 

the inability of supergravity techniques to handle situations where stringy physics 

is important. Since the phase terms in the enhan<;on case arise from the coupling of 

the fields to the gauge field F living on the branes, we were able to deduce them by 

building the action for F from scratch, and using the method of ref. [63]. 

Having seen some of the things that monopoles can teach us about the enhan<;on, 

it's also worth asking the following question: can the enhan<;on teach us anything 

about monopoles? We know that the enhan<;on is composed of tensionless objects. 

This was discovered by moving a brane probe in from infinity, and observing that it 

becomes tensionless at the enhan<;on radius. But the enhan<;on is not massless; its 

mass is related to the vacuum expectation value of the Higgs field at infinity, as is 

the case for a BPS monopole. For the enhan<;on this is set by the volume of the K3 

manifold at infinity. This seems strange; it would be interesting to see if a similar 

effect happens for monopoles by studying the behaviour of a monopole probe in the 

background of a monopole with large charge. 

A second example of a D-brane configuration behaving as a BPS monopole is 

D-strings attached to a D3-brane; the ends of the D-strings look like monopoles 

in the worldvolume gauge theory of the D3-brane. Minimising the D3-brane ac­

tion with the appropriate fields excited leads to the Bogomol'nyi equation for a 

BPS monopole. And minimising the D-strings action with the appropriate fields 

excited leads tu Nalnu's equations. So the D-string/D3-brane construction provides 
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a physical realisation of the ADHMN construction for a BPS monopole. 

Again, we may be able to use what we know about monopoles to learn about 

this D-brane configuration. In chapters 3 and 4 we aimed to calculate the energy 

radiated during the scattering of two D-strings stretched between two D3-branes, 

working from the D-string perspective. We could then compare our result with 

the calculation of Manton and Samols for the energy radiated during monopole 

scattering from ref. [80). By taking the appropriate limit of the non-Abelian Born­

Infeld action for D-strings, we obtained the action to describe D-string scattering in 

the low-energy limit. However, we were unable to solve the equations of motion for 

this action analytically. We tried instead to solve it numerically. But the equations 

of motion were too complicated to solve numerically, so we approximated the theory 

to a Yang-Mills theory, and solved the equations of motion resulting from the Yang­

Mills action instead. Our results showed that there was no energy radiated during 

D-string scattering, in contrast with the prediction of Manton and Samols, which 

was Erad rv 1.35mm0nV~, where Erad is the energy radiated, mmon is the mass of 

the monopole, and V00 is the initial velocity of the monopoles. However, our result 

could have been affected by approximating to the Yang-Mills action, because this 

confines the theory to a finite box. 

It would be nice to be able to confirm our numerical result from a calculation 

using the Born-Infeld action. It may be possible to do this in the future by expanding 

out the perturbations in terms of their angular momentum modes. An expansion 

of this kind has been done by Constable, Myers and Tafjord in ref. [66) for the case 

of semi-infinite D-strings attached to a D3-brane (although in that calculation the 

authors worked with a different limit of the Born-Infeld action). It may also be nice 

to investigate the effects on our calculation of the higher order corrections to the 

non-Abelian Born-Infeld action. 

In conclusion, a lot of work has already been done which has uncovered many 

beautiful properties of D-branes. However, there are many situations where we can­

not describe the physics accurately because our hands are tied by our inability to 

understand some important aspects of D-brane behaviour. In particular, we must 

seek to understand LetLer the behaviour of non-Abelian fields in the Dirac-Born-
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Infeld and Chern-Simons actions, and also in supergravity. We should also seek to 

understand the string theory actions and the supergravity action in the sectors of 

the theory in which they are currently ill-defined. The examples of D-brane config­

urations which have discussed in this thesis highlight some of these problems. For 

example, in the case of the enhan<;on, we would like to understand better the be­

haviour of the non-Abelian fields, which must be present where the gauge symmetry 

is enhanced. Some progress has already been made in this direction in ref. [93]. 

This would also be necessary for us to be able to construct explicitly the corrections 

to the Taub-NUT metric for the enhan<;ons; we expect the full metric to be the 

higher-dimensional generalisation of the Atiyah-Hitchin metric, by comparison with 

the monopole case (see the discussion in ref. [58]). See also ref. [94] for a more recent 

discussion of these issues. In our other D-brane configuration, D-strings stretched 

between D3-branes, we require the full version of the non-Abelian action in order to 

show that the solutions presented here are solutions to the equations of motion of 

the full theory; we expect this to be the case by comparison with the S-dual picture, 

a fundamental string stretched between D3-branes. We would also like to be able to 

understand the solutions in the region where the geometry becomes highly curved. 

We conclude that more progress is necessary in these areas before we can claim to 

fully understand the D-brane configurations we have discussed. We look forward to 

following the progress of the theory in the future. 
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Appendix A 

Calculating the Dimensionally 

Reduced Ricci Scalar 

In this appendix we outline in more detail the calculation from section 2.2 to calcu­

late the Ricci scalar of the dimensionally reduced theories. 

We wish to calculate the Ricci scalar for a metric of the form 

( 
gJ.lV 0 ) 
0 vl/2ep/2/'ij 

where GMN is aD-dimensional metric, 9J.Lv is a (D- d)-dimensional metric, and /'ij 

is a d-dimensional metric, which is Ricci fiat. So M, N = 0, ... , (D- 1), J-L, v = 

O, ... ,(D- d- 1), and i,j = (D- d), ... ,(D -1). We take 91w and p to be 

independent of the xi and /'ij to be independent of the xll. 

We make the conformal transformation 

so that 

( 

-p/2- 0 ) e 9J.Lv 
HMN= . 

o vl/2, .. 
11] 

Then the formula for the Ricci scalar under a conformal transformation (2.2.4) gives 

R(G) = e-p/2 ( R(H)- D; 1 (''V(H)P)- (D- 1i~D- 2) ('Vu-nP)2) ' (A.0.1) 

where the subscript H in the second and third terms of (A.0.1) indicate that the 

metric H is used to raise and lower indices in these terms. 
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Since H J-L"' is independent of the xi and Hij is independent of the xJ-L, we have 

R(H) R(e-P12g) + R(V112r) 

eP/2 ( R(g) + (D- ~- 1) (V2p)- (D- d- 2i~D- d- 1) (Vpf1.Q.2) 

where again we have used the formula for the Ricci scalar under a conformal trans­

formation and we have also used that rij is Ricci fiat. 

We can calculate the terms ("\l(H)P? and ('iJ(H)P) in (A.0.1) -we obtain 

and 

By definition 

R 1 RS( ) r(H)MN = 2H HsM,N + HsN,M- HMN,S ' 

(see ref. [78]). So we get 

f(H)~"' = -~ (P,vb~ + P,J-Lb~- P,uc>-uci-L"') + f'~v , 

and 

Substituting (A.0.5) and (A.0.6) into (A.0.4) we get 

(\l~p) = ePI2(V2p) + (2- (D- d)) ePI2(Vp)2. 
4 

Substituting (A.0.2), (A.0.3) and (A.0.7) into (A.0.1),we get 

R(G) = R(g)- ~(V2p)- d(d: 1) (Vp)2' 

as required. 

(A.0.3) 

(A.0.4) 

(A.0.5) 

(A.0.6) 

(A.0.7) 


