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Abstract 

Airborne thermography and ground geophysical investigation for detecting shallow 
ground disturbance under vegetation 

Submitted in September 2003 for the degree of Doctor of Philosophy 

K. B. McManus 

This thesis discusses the potential of airborne thermal prospection for detecting 
shallow ground disturbance beneath vegetation based on images acquired by the 
NERC Airborne Thematic Mapper (ATM) at thermal infrared wavelengths. Shallow 
ground disturbance creates a differential heat flux due to a variation in the thermal 
properties between disturbed and undisturbed soils. When observed above a canopy, 
the effect of vegetation growth on the thermal regime of the underlying soils is poorly 
understood. The research extends current understanding by examining areas where 
ground disturbance is known to exist under variable vegetation cover at an 
archaeological site at Bosworth, Leicestershire and areas of abandoned mine activity 
on Baildon Moor, W. Yorkshire and in the N. Pennine Orefield, Weardale. 

The investigation focuses on qualitative image interpretation techniques, where 
anomalies on day and night thermal images are compared with those manifest on the 
multispectral images, and a more quantitative approach of Apparent Thermal Inertia 
(A Tl) modelling. Physical thermal inertia is a parameter that is sensitive to volumetric 
variations in the soil, but cannot be measured directly using remote sensing 
techniques. However, an apparent thermal inertia is determined by examining the day 
and night temperature contrast of the surface, where spatial variations can signify 
potential features buried in the near-surface environment. Ground temperature 
profiling at the Bosworth site indicates that diurnal heat dissipates between 0.20-
0.50m at an early stage in vegetation development with progressively lower diurnal 
amplitudes observed at 0.20m as the vegetation develops. Results also show that the 
time of diurnal maximum temperature occurs progressively later as vegetation 
develops, implying an importance for thermal image acquisition. 

The quantitative investigation concentrates on the Bosworth site where extensive 
ground geophysical prospection was performed and vertical soil samples extracted 
across features of variable multispectral, thermal and A TI response to enable 
comparison of the observed airborne thermal response with physical soil properties. 
Results suggest that there is a high correlation between A TI and soil moisture 
properties at 0.15-0.25m depth (R2=0.99) at an early stage in cereal crop development 
but has a high correlation at a wider depth range (0.1 0-0.30m) at a later stage in 
development (R2=0.98). The high correlation between physical ground disturbance 
and the thermal response is also corroborated qualitatively with the results of the 
resistivity surveys. 

The A TI modelling reveals similar features to those evident on day or night thermal 
images at an early stage in vegetation growth, suggesting that thermal imaging during 
the day at an early stage in vegetation growth may supply sufficient information on 
features buried in the near-surface environment. Airborne thermal imaging therefore 
provides a useful complementary prospection tool for archaeological and geological 
applications for surfaces covered by vegetation. 
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Chapter 1: Introduction to Thesis 

Chapter 1 : INTRODUCTION to THESIS 

1.1 INTRODUCTION 

This chapter outlines the concepts behind this thesis, stating the mms and 

objectives and the reasons for conducting the research and concludes with a brief 

outline of the structure of the thesis. 

1.2 RESEARCH AIMS 

The research seeks to assess the value of airborne remote sensing in the context of 

geological and archaeological applications in the UK environment where the ground 

surface is covered by a layer of vegetation. Vegetation is a severe limiting factor in 

detection of variations in surface characteristics since the underlying materials are not 

exposed at the surface and are masked from direct observation. Airborne remote 

sensing is becoming more widely used in this style of research as it provides a 

synoptic view of the ground surface, however, the effect of vegetation is more poorly 

understood for the detection of surface variations beneath the canopy. 

The main aims of the study are: 

e To investigate the use of multispectral and thermal airborne remote sensmg 

techniques and ground geophysical prospection for detecting shallow ground 

disturbance beneath a layer of vegetation 

Research to evaluate airborne multispectral remote sensing techniques has been shown 

to offer considerable potential for landscape assessment in a range of environments 

(Donoghue & Shennan, 1988; Scollar et a/, 1990) and have provided interesting 

results where certain archaeological and geomorphological features are more evident 

under particular soil and vegetation conditions (Perriset & Tabbagh, 1981; Powlesland 

et a!, 1997, Donnelly & McCann, 2000). Conclusions from the research suggest that 

images acquired at near-infrared and shortwave infrared wavelengths can enhance 

crop and soil marks when compared with visible wavelengths of standard aerial 

photography, as these wavelengths are more sensitive to differences in soil moisture 

and plant health. Images acquired at thermal infrared wavelengths during the day also 

show an ability to detect features not evident at any other wavelength as this emitted 

radiation responds in part to subsurface properties of the ground. As a result, thermal 

prospection techniques are particularly useful in landscape assessment and 
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archaeological prospection by identifying areas of differential heat flux relating 

undisturbed and disturbed soils. 

Infrared thermography has been used with great success using thermal Images for 

locating shallow ground disturbance in areas devoid of vegetation (Kahle et a/, 1976; 

Kahle, 1977; Gillespie & Kahle, 1977; Pratt & Ellyett, 1979; Price, 1980; Watson, 

1982; Kahle & Alley, 1985; Price, 1985, Nash, 1988). However, in the intensively 

farmed areas, such as in UK environment, the ground surface is covered by a layer of 

vegetation and the response from the underlying material will become affected by the 

vegetation fraction that masks the soil to some extent from direct heating and cooling 

processes and the surface will show a more uniform daytime response due to the 

vegetation regulating its surface temperature through plant evapotranspiration 

(Perriset & Tabbagh, 1981; Bellerby et a/, 1990; Scollar, 1990). Although materials 

underlying the vegetation can affect the thermal response observed from above the 

vegetation, the behaviour of surfaces masked by a layer of vegetation is poorly 

understood. The purpose of this research is to understand the effect of vegetation on 

the visibility of features buried in the near-surface environment, which is important 

for landscape assessment in the intensively farmed areas in the UK. 

A second aim of the study is: 

• To examine the relationship between airborne thermal radiance data and the 

characteristics of surface materials beneath a layer of vegetation 

Thermal infrared energy is emitted from the surface materials with different physical 

materials having different emission characteristics based on the thermal properties of 

the materials. Materials that are devoid of vegetation typically exhibit a diurnal 

heating and cooling pattern that is directly influenced by the incoming solar radiation. 

Materials of different compositions will respond differently to solar heating across the 

diurnal cycle and will display different values of day-night thermal contrast. This can 

be used to can give an indication of bulk compositional variations through calculation 

of a value of Apparent Thermal Inertia (A Tl). Therefore, the inclusion of a day-night 

A TI approach is new and forms an important method that needs to be tested for 

geological and archaeological applications. However, it is essential to understand the 

depth to which the diurnal heat can penetrate throughout the vegetation growth and as 

2 
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such, this aim is directed towards establishing the timing when the thermal regime of 

the vegetation can be used to detect feature buried in the near-surface environment. 

1.3 OBJECTIVES 

The study uses multispectral and thermal data measured by the Daedalus 1268 

Airborne Thematic Mapper (A TM), which is provided by the Natural Environmental 

Research Council (NERC), to look at specific sites where suitable airborne thermal 

and geophysical data exist. The A TM instrument is the only source of airborne 

thermal imagery available for use by the academic community in the UK and so it is 

important to assess fully the potential of this instrument for geological and 

archaeological applications. The main objectives of the research are split into issues 

addressing technical processing, ground prospection and analysis techniques that may 

provide assessment of features underlying a layer of vegetation. The main objectives 

of the study are: 

I. To produce fully processed Daedalus-1268 Airborne Thematic Mapper images at 

visible, near-infrared, shortwave infrared and thermal infrared wavelengths 

provided by the NERC Airborne Remote Sensing Facility for the study sites 

2. To provide eo-registered day and night thermal images of the study sites 

3. To provide eo-registered multi-temporal images of the study sites 

4. To calibrate airborne thermal radiance measurements to surface temperature values 

5. To assess the suitability of applying published Apparent Thermal Inertia Models to 

environmental applications 

6. To conduct geophysical evaluation of the soil characteristics beneath vegetation at 

the study sites and compare the results with the airborne survey 

7. To assess the effect of vegetation on the detection of near-surface geophysical or 

archaeological features 

8. To analyse the dynamics of the soil-vegetation heat flux based on a time series 

obtained from ground based contact measurements of soil temperature 

9. To determine times when the temperature contrast within the soil column IS 

optimised to conduct an effective thermal survey 

3 
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I 0. To determine appropriate processing requirements for conducting assessment of 

disturbance occurring in the near-surface environment beneath a layer of 

vegetation using airborne image data 

1.4 RESEARCH FRAMEWORK 

This research was in part funded by the British Geological Survey under their 

University Collaboration Scheme where their interest in the use of thermal radiance 

for site assessment was stimulated from their extensive work on abandoned 

mineshafts on Baildon Moor. In addition, the Bosworth archaeological community 

also showed particular interest to understand if this technique would provide an 

additional prospection tool for detection of buried archaeology. These branches of the 

scientific community require alternative site assessment where terrains may be 

potentially dangerous or have restricted access. 

The study investigates multispectral airborne remote sensing techniques for 

detecting shallow ground disturbance and in particular seeks to better understand the 

value of thermal radiance data. The research uses diurnal airborne imagery acquired 

by the NERC Daedalus-1268 Airborne Thematic Mapper (ATM) to study a number of 

examples of disturbed ground in the UK: ( l) buried archaeology at Bosworth, (2) 

abandoned mineshafts on Baildon Moor and (3) abandoned mine spoil heaps and 

scour marks in Weardale. 

Apparent Thermal Inertia (ATI) can detect physical variations in the near

surface environment using a measure of the diurnal contrast in temperature of a 

material. The research focuses on a particular gap in the current knowledge about the 

effect of surface vegetation on the heat flux of the soil-vegetation system. The 

research tests different published Apparent Thermal Inertia models based on pairs of 

day-night overflights and aims to provide i) an assessment of the methodological steps 

required to conduct effective thermal surveys of vegetated terrains, ii) an analysis of 

the dynamics of the soil and vegetation heat flux based on a time-series of 

instrumented sites and will iii) compare and contrast the relationships between 

airborne thermal radiometry, ground (soil and vegetation) characteristics and results 

from ground-based geophysical surveys. The published A TI models take into account 

variations in temporal, seasonal and vegetation effects of the surface and are used to 

assess features of disturbed ground in the near-surface environment manifest as voids, 
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soil texture or soil moisture ditTerences. These ATI models have never been used 

before for the detection of shallow ground disturbance in terrains covered by a layer of 

vegetation and so may provide a new approach for detection of ground disturbance. 

One to the most significant outputs from the research project will be to provide a 

methodology for selecting the most appropriate conditions where airborne thermal 

radiance can provide useful additional prospection tool that may benefit the wider 

scientific community for new geological, archaeological and ecological applications. 

1.5 STRUCTURE of THESIS 

The thesis opens with a discussion on the theory and methodology behind 

remote sensing in the thermal infrared and introduces the problem involved with 

assessing areas covered by vegetation. A chapter that introduces the conceptual 

framework of the research and introduces the different examples and environmental 

settings assessed in the research follows this. The different sources of data for 

conducting the research are also introduced in this chapter together with a detailed 

discussion on the results of geophysical prospection conducted in two ditTerent 

environmental settings. Chapter 4 presents the methodology for processing the digital 

airborne images collected for the study sites and points out some of the problems that 

are encountered where using multitemporal datasets. Chapter 5 introduces qualitative 

techniques used for image interpretation including a discussion of the features 

detected on multispectral and thermal images and compares the results with ground 

geophysical surveys. This is followed by a chapter that assesses the thermal images in 

a quantitative manner through numerical thermal modelling and includes a discussion 

on the problems of converting the thermal radiance data to ground temperature values 

(Chapter 6). Apparent Thermal Inertia is determined for one of the study areas and 

different models are compared with the results of the ground-based geophysical 

surveys. Physical soil characteristics observed at the instrumented study site are 

discussed in Chapter 7 with an analysis of the thermal characteristics observed at 

different stages of vegetation growth and the physical properties of the soil at sites that 

showed anomalous spectral and magnetic characteristics. The thesis then moves on to 

discuss the observed airborne thermal characteristics and their correlation with the 

physical soil characteristics (Chapter 8) and ends with an evaluation of the research 

and recommendations for further research (Chapter 9). 
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Chapter 2: Theory and Methodology 

The remote sensing of land surface temperatures has become an important part 

of environmental studies over the last few decades with methodologies established for 

retrieval of land surface temperatures from a variety of satellite and airborne remote 

sensing platforms. Remote sensing in the thermal infrared is a well established 

technique for environmental investigations and has been applied to a variety of 

research areas such as lithological mapping (Watson, 1975: Kahle, 1977; Kahle et a!, 

1984), mapping of water surface temperatures (Franca & Cracknell, 1994; Emery & 

Yu, 1997; McManus et a!, 1999), calculation of soil moisture content (Deardorff, 

1978; Pratt & Ellyett, 1979; Price, 1980), detection of fires (Prakash et a!, 1999; 

Giglio, 2000) and the monitoring of volcanic activity (Wright et a!, 2002 & Flynn et 

a/, 2001). 

The vast majority of tenestrial studies have been performed in areas where the 

rock or soils are devoid of vegetation cover and are exposed at the Earth's surface. In 

these situations, the detected response can be directly related to that of the exposed 

material. However, when vegetation grows atop of rock or soil, the response will 

become affected by the vegetation fraction thus preventing direct investigation of the 

underlying materials. Vegetation also masks the underlying surface from direct 

heating and cooling processes and impacts upon the thermal study of the underlying 

surface due to the ability of the overlying plant to regulate is own temperature through 

the biological process of evapotranspiration. Where a dense vegetation canopy is 

present, the land surface temperature is generally viewed as the canopy temperature, 

but where vegetation is more sparse and the surface is heterogeneous in character, 

formulation for temperature retrieval becomes much more complex due to the 

combined influences of the materials present. A relationship may be developed to 

enable the assessment of the underlying soil by examining the diurnal and seasonal 

thermal response of the vegetation cover. 

This chapter introduces the theory of thermal remote sensing, concentrating on 

the determination of land surface temperature, and is coupled with a discussion of 

thermal modelling techniques of apparent thermal inertia on the soil-vegetation 

interface and the thern1al properties of surface materials. 
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2.1 THERMAL REMOTE SENSING 

Thermal remote sensing is the study of the interaction of heat from one source 

to another using non-contact measurements of thermal energy. Thermal infrared 

radiation occupies the 3.0-SO.OJ.lm or middle infrared range of the electromagnetic 

spectrum. However, atmospheric absorption limits the detection of mid-infrared 

energy to two principal atmospheric windows at 3-5J.lm and 8-l4J.lm (Sabins, 1986). 

Thermal energy of Earth surface materials can be related to either the reflected solar 

radiation in the 3.0-S.Opm spectral region or the emission ofthennal energy generated 

by an internal heat source or as re-emission of solar radiation that was absorbed by the 

surface during the day (Figure 2.1 ). 

>
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Figure 2.1: Comparison of natural thermal emission of the Sun and Earth, taken 

from Lillesand & Kiefer (2000) 

As the Earth orbits the Sun, the intensity of solar radiation incident on its 

surface varies as a function of both the geographical location and also the time of 

observation. The solar declination and solar zenith angles determine the amount of 

solar radiation incident on surface materials. The amount of solar radiation reaching 

the surface therefore fluctuates on a diurnal cycle, with heat predominantly being 

conducted into the ground during the hours of daylight and rising back to the surface 

nocturnally, and will also fluctuate on a seasonal basis as the relative positions of the 

Sun and Earth migrate throughout the year. 

When incoming solar radiation comes into contact with the Earth's surface, 

there are three possible interaction processes that can occur, namely reflection, 

absorption and transmission of the incident energy. The proportions of these 

interactions will vary as a function of material type and surface condition and 

variations in the response measured by a remote detector may enable the 

discrimination of surface material composition. The proportions of reflected and 
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absorbed radiation will also vary as a function of wavelength thereby enabling some 

discrimination of materials usmg different spectral wavelengths. Material 

discrimination is possible using thermal infrared wavelengths of radiation because the 

amount of energy emitted by a material is dependent upon its composition, the 

wavelength of observation, and also the physical temperature of the material. The 

temperature of the material will increase or decrease as a result of net gain or loss of 

energy respectively. The spatial variation in thermal response can give an indication 

of variations in the physical properties of the land surface. The most common method 

of evaluating the thermal behaviour of the land surface occurs through remote 

detection of energy from airborne or satellite platforms that give a synoptic view of 

the land surface. 

2.1.1 Thermal Detection 

Thermal infrared images can be generated from remote monitoring of the land 

surface using electromechanical instruments that use a rotating mirror and the motion 

of the platform to build up an image of the ground as the platform moves across the 

land surface. Thermal instruments contain detectors that are sensitive to specific 

wavelengths within the thermal infrared. The thermal radiation emitted from the 

ground is focussed onto a detector encased within the remote sensor, where the 

radiant energy is converted into a digital signal proportional to the intensity of thermal 

radiation received by or at the sensor. The thermal sensor may contain an internal 

thermal blackbody source whose radiance is measured intermittently throughout 

observation to give a reference digital signal for a known temperature value 

(Anderson & Wilson, 1984). The images generated by this type of sensor will give an 

indication of relative variations in thermal response across the land surface as a direct 

result of material composition and surface topography, where topography affects 

emittance values as slopes facing the Sun receive more solar radiation than those 

facing away from the Sun, with slope angle and elevation also controlling shadow 

effects and ambient surface temperature. The effects of material composition will be 

discussed later. 

The radiation that is received by the remote detector will not necessarily 

represent the true amount of radiation emitted by the ground surface. This is due to 

atmospheric interactions as the energy emitted by the ground surface passes through 
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the atmosphere towards the sensor (Franca & Cracknell, 1994). The most common 

atmospheric interactions are the absorption and scattering by atmospheric 

constituents, mainly water vapour and carbon dioxide, which absorb radiation at 

different wavelengths that correspond to specific energies required to alter the energy

state of the atmospheric molecules (Hapke, 1993 ). Atmospheric interactions vary both 

in time and space, adding further complication to the analysis of thermal data. Prior to 

evaluation of thermal radiance data, it is often necessary to perform atmospheric 

correction on the data using an appropriate correction algorithm. 

Airborne acquisition gives greater flexibility of viewing the land surface at 

specific times when the ground conditions are as desired. There is also the additional 

advantage of being able to acquire data under clear-sky conditions enabling land 

surface temperatures to be directly retrieved from the measured ground thermal 

emitted radiation. For the purposes of the research, thermal data was acquired using a 

modified Daedalus-1268 Airborne Thematic Mapper instrument flown by the Natural 

Environmental Research Council (see Appendix A). This instrument is an 11-channel 

multi-spectral scanner that contains 5 channels in the visible (VIS), 3 in the near

infrared (NIR), 2 in the short-wave infrared (SWIR) and 1 in the thermal infrared 

(TIR). The land surfaces investigated in the research will then be examined through 

this single thermal channel, to determine land surface temperatures and evaluate the 

thermal behaviour of the ground materials under investigation. 

2.1.2 Land Surface Temperature Determination 

Thermal radiation emitted from the land surface can be used to determine the 

physical temperature of that surface by using a well-established mathematical 

relationship known as Planck's Law (Equation 2.1) that relates the thermal radiance of 

a blackbody (L) to its temperature (T) with respect to the wavelength of observation 

(A) and constants Cl and C2 (Price, 1989). The values of the constants Cl and C2 can 

be calculated with the SI values of Planck's constant, h=6.63x10-34 Ws2
, the speed of 

light, c=2.99xl08 ms-1 and the Boltzmann constant, k=l.38WsK- 1 using Equation 2.2 

and Equation 2.3 respectively, as denoted in Kahle ( 1980). 
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The inference from the Planck radiation law is that the radiant energy emitted 

by the body will not be the same at all wavelengths for any given temperature and this 

needs to be taken into account in the determination of land surface temperature from 

the detected amount and wavelength of thermal radiation. However, some authors 

have misrepresented the inversion equation (Price, 1989 & Cresswell et a/, 1999) 

therefore it is imperative that the correct equation be used for accurate temperature 

calculation. 

The usual outcome of the calibration process to convert raw scanner data into 

radiances is for the supplier of the data to provide values of fcp(A.)L(A.)dA. where the 

integral is taken over the wavelength range from A-1 to A-2 of the spectral band in 

question and where cp(A.) is the transmission function of the filters for this band in the 

scanner. Therefore to find the temperature what needs to be done is to invert the 

definite integral fcp(A.)L(A.)dA. (A-1 to A-2). This cannot be done explicitly. One has to 

work the other way round, i.e. to use a range of values ofT that is likely to cover all 

the temperatures one is likely to encounter and use the (assumed known) cp(A.) (almost 

certainly as a table of values) to calculate a table of values of fcp(A.)L(A.)dA. (A-1 to A-2) 

versus T. Then to calculate Tone can either use this table (stored in one's computer) 

or develop an empirical equation derived from this table and use that to calculate T. 

This is clearly a considerable undertaking. 

One can make an approximation if the band is narrow, so that L(A.) does not 

vary significantly over the range A-1 to A-2, and if cp(A.) is a perfect filter, i.e. cp(A.) =I for 

A-1 < A. < A-2 and cp(A.) = 0 elsewhere. Then fcp(A.)L(A.)dA. (A-1 to A-2) can be approximated 

by L(A.)f'..A. where f'..A. = A-2 - A-1, i.e. the width of the band. One can then determine L(A.) 
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by dividing the total radiation detected in the band by 1'1A. Then knowing L(A) one can 

invert the Planck equation (Equation 2.4) to find temperature. 

Equation 2.4 

In the literature, temperature was consistently stated in units of Kelvin (K) but 

the units of measurement for radiance, wavelength and the physical constants showed 

a lack of consistency among the authors. In addition, there was also a variation in the 

quoted units and magnitudes of the constants C1 and C2, which is a direct result of 

variations in the magnitude of the units associated with the other parameters (Table 

2.1 ). This generates a serious problem in understanding which values of C 1 and C2 are 

correct for calculating surface temperature using the quoted values of the radiance 

obtained from a given scanner. Specific inconsistencies arose for: 

(1) radiance, where units were specified in Wm-2 (Kahle, 1980; Cresswell et af, 

1999), Wm-3 (Elachi, 1987; Kealy & Hook, 1993; Schmugge et af, 1998), Wm-2 

!lm-1 (Price, 1989 & 1983; Qin & Kamieli, 1999) or were not specified (Suits, 

1983; Hook, 1989; Hapke, 1993; Li et al. 1999) 

(2) wavelength, where units were specified in m (Suits, 1983; Kealy & Hook, 1993; 

Schmugge et af, 1998; Qin & Kamie1i, 1999), cm (Li et af, 1999) or otherwise 

!liD 

(3) C1, where units were specified in W11m (Hook, 1989), wm-2 11m4 (Price, 1983; Li 

et al, 1999) or otherwise Wm2 and values specified as 1.19 (Price, 1983; Li et al, 

1999) or otherwise 3.74 

( 4) C2 where units were specified in 11mK (Hook, 1989; Price, 1983), cmK (Li et a!, 

1999) or otherwise mK 

As far as the units of the radiance are concerned, it is L(A)dA which is the 

amount of radiation (W m-2 in SI units) emitted by a perfect emitter (black body) at 

temperature T (K) within the wavelength range A to A + dA. The units of L(A) are 

therefore W m-3
, provided we express dA in metres; if we express dA in J.tm or nm then 
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there will be some extra powers of 10 to be applied to these units and this is the 

reason for some of the differences among the various values of C1 in Table 2.1. If the 

SI values for the Planck constant (h=6.63xl0-34 Ws\ the speed of light (c=2.99xl08 

ms-1
) and the Boltzmann constant, k=l.38WsK- 1 are used in the calculation of C1 

(Equation 2.2) and C2 (Equation 2.3) then the values are calculated as C1=3.74x10- 16 

Wm2 and C2=0.0144 mK (to 3 significant figures) and the wavelength /... and the 

differential wavelength d/... will be in metres, see the last line of Table 2.1. It is these 

values that have been applied for temperature calculations in this research. 

AUTHOR L(A.)d A. A. T c1 c" 
Kah1e ( 1980) wm-2 llm K 3.74xl0- 16 Wm2 0.0144 m K 

Suits ( 1983) NIA m K 3.74x10-' 6 Wm2 1.44x 1 o-2 m K 

Elachi ( 1987) wm-3 llm K 3.74x10- 16 Wm2 0.0144 m K 

Hook (1989) NIA llm K 3.7413x104 W 11m 1.4388x104 11m K 

Hapke (1993) NIA llm K 3.74151x10- 16 Wm2 0.0143879 m K 

Kea1y & Hook ( 1993) wm-3 m K 3.74151x10- 16 Wm2 0.0143879 m K 

Price (1983) wm-2 1-lm-' NIA K 1.19x108 wm-2 llm4 1.439x 104 11m K 

Price (1989) W m-2 11m- 1 llm K 3.74x108 1.439x104 

Schmugge et a1 ( 1998) wm-3 m K 3.74151x10- 16 Wnl 0.0143879 m K 

Cresswell et a! ( 1999) wm-2 NIA K 3.74x108 1.439x I 04 

Li et a! (1999) NIA cm K 1.19x108 wm-2 llm4 1.439 cm K 

Qin & Karnieli ( 1999) W m-21-lm-' m K 3.74x10- 16 Wm2 1.43879x10-2 mK 

SI (m, kg, s) wm-2 m K 3.74x10- 16 Wm2 0.0144 m K 

Table 2.1: Planck's Radiation Law parametric units and values 

The Planck Relationship denoted in Equation 2.1 assumed that the thermal 

radiation was emitted from a surface known as a blackbody that absorbs all 

wavelengths of energy without preference and re-radiates the stored energy with 

perfect efficiency. A blackbody is essentially a closed cavity with opaque walls, 

coated with an absorbing material, that are maintained at equal temperature. The 

blackbody radiation is then measured from a small opening in the cavity wall, 

representing a reference radiation of the known wall temperature (Suits, 1983 & Price, 

1989). Since the blackbody is a theoretical material introduced solely for the 

development and formulation of energy relationships, a parameter must be introduced 

to the Planck relationship, which allows for the fact that natural materials do not 

exhibit blackbody behaviour. Natural materials re-radiate only a portion of energy that 
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is absorbed and never emit energy m excess of that of a blackbody at the same 

temperature (Figure 2.2). 

SPECTRAL 
RADIANT 

EMITTANCE 

).. 

lFigure 2.2: Thermal radiation emitted by a bDackbodly, greybody and! a natural 

materiaD, taken from Elachi (1987) 

The efficiency of a material to re-radiate energy is known as the spectral 

emissivity (£) with blackbody materials having an emissivity of one. Greybody 

materials have a constant emissivity value less than one throughout all wavelengths, 

with natural materials having a value between zero and one that is variable as a 

function of wavelength (Kahle, 1984; Sabins, 1986; Hapke, 1993 & French et a/, 

2000). Although emissivity varies with wavelength, it is often considered constant 

across the 8-14!-lm thermal channel of broad-band sensors like the Daedalus-1268 

A TM. Therefore, an emissivity value of 0.97 will be assigned to the mid-channel 

wavelength of the sensor representing healthy vegetation dominating the surface 

cover of the study sites with the value taken from empirical measurements by the Jet 

Propulsion Laboratory. Land surface emissivity is defined as the ratio of the radiation 

emitted by a natural surface to that emitted by a blackbody at the same temperature 

and will have a value between zero and one for all natural materials (Equation 2.5). 

By introducing the emissivity factor to the Planck Radiation Law, the temperature of a 

natural material can be more accurately evaluated (Equation 2.6). 

Equation 2.5 

Equation 2.6 

£ = L material 

L blackbot!r 
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It is often very difficult to determine the emissivity of a natural surface and a 

common assumption in many environmental studies is that the surface emissivity is 

effectively unity, as for a blackbody. This may be appropriate for sea surfaces that are 

homogeneous with a relatively constant emissivity over a large area, but there may be 

a greater variation in emissivity on a smaller spatial scale over most natural surfaces 

due to the heterogeneous nature of the land surface. 

There are a variety of factors that affect the emissivity of surface materials, 

most notably the composition, moisture content, surface roughness and vegetation 

cover. The most common mineral in geological materials is quartz and an abundance 

of this mineral results in a decrease in the emissivity of the material (Sabins, 1986; 

Becker, 1987; French et a!, 2000). Soil moisture will increase the emissivity of the 

soil due to an increase in the amount of water-coated particles, which have an 

emissivity approaching that of water (Schmugge et a!, 1991; Lillesand & Kiefer, 

2000). An increase in surface roughness tends to increase the emissivity of the 

material when compared with the value of a smooth surface of the same material 

(Anton & Ross, 1990; Schmugge et a/, 1991 ). Emissivity tends to increase with an 

increase in view angle away from nadir (Qin & Kamieli, 1990; Jupp, 1998; 

Verbrugghe & Ciemiewski, 1998). These factors are important when assessing bare 

soil surfaces, however, this is rare in the UK environment where the soil tends to be 

concealed under vegetation. It is therefore important to understand the effects of 

vegetation on surface emissivity in order to assign an appropriate emissivity for a 

vegetated surface. 

For vegetation canopies, the view angle effects are considered negligible over 

homogeneous and densely vegetated areas (Anton & Ross, 1990; Carlson et a/, 1995). 

In general, the emissivity of a canopy tends to increase with an increase in leaf area 

index. When the leaf area index is small in the early part of the growing season, there 

will be a greater proportion of the underlying soil visible through the vegetation 

canopy than when leaf area index is high late in the growing season. Soils have a 

lower emissivity than vegetation and so the emissivity of a canopy with a low leaf 

area index will be lower than that for a high leaf area index due to the greater 

proportion of the soil visible to the sensor (Guoquan & Zhengzhi, 1992; Sugita et a!, 

1996). Vegetation structure and geometry also affects the emissivity with an 
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individual leaf having a lower value than that of the whole canopy due to the multiple 

internal interactions that occur within the canopy structure (Fuchs & Tanner, 1966; 

Anton & Ross, 1990; Guoquan & Zhengzhi, 1992; French et a!, 2000). For a 

homogeneous canopy, the emissivity will have a value that is representative of the 

proportions of soil and vegetation fractions present for an open canopy with a value 

representative of the vegetation at full canopy closure (Guoquan & Zhengzhi, 1992; 

Sugita et a!, 1996). Heterogeneous canopies require more complex characterisation 

with emissivity varying as a function of vegetation type, cavity effects and leaf-stem 

ratio within the canopy (Colton, 1996; Iaquinta & Fouilloux, 1998). Senescent or 

stressed vegetation can have lower emissivities than associated with healthy green 

vegetation, thus reducing the canopy emissivity with leaf litter reducing the emissivity 

of an open canopy (Sugita et a!, 1996). 

A range of emissivity values associated with natural materials is indicated in 

Table 2.2. From the variability in the published emissivity values, it is suggested that 

the allocation of a single emissivity value across a heterogeneous terrain may be 

inappropriate when determining surface temperatures due to the diverse surface 

composition. The implication is therefore to select an emissivity value representative 

of each material comprising the surface taking into account the problem of pixel 

heterogeneity by the proportions of each material that are present. Emissivity can be 

determined for each surface material (Zilioli et a!, 1992; Rubio et a!, 1997). However, 

since the areas under observation in the research are covered by agricultural crop, the 

vegetation within each field is considered to have a homogeneous character. 

Material Emissivity Material Emissivity 

Clear Water 0.98-0.99 Healthy Green Vegetation 0.96-0.99 

Wet Sandy Soil 0.95-0.98 Dry Vegetation 0.88-0.94 

Dry Sandy Soil 0.92-0.94 Short Grass 0.981 

Loamy-Sand Soil 0.914 Deciduous Leaf 0.96 

Stony Ground 0.959 Deciduous Tree Crown 0.98 

Table 2.2: Emissivity values of common land surface materials, compiled from 

Rubio et al (1997), Qin & Karnieli (1999) and Lillesand & Kiefer (2000) 

The use of an improper emissivity value for a specific material in the Planck 

Radiation Law will determine an incorrect value of surface temperature. Although the 

sensitivity of temperature to emissivity is relatively low (Figure 2.3), with Fuchs & 
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Tanner ( 1966) and Schrnugge et a! ( 1998) showing that an uncertainty in emissivity of 

±0.03 can translate to an error of ±2.2K. 
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Figure 2.3: Sensitivity of temperature to variable emissivity for constant 

radiance 

Several studies have shown the problem of accurate temperature calculation of 

a surface by using an incorrect emissivity value, where there was a discrepancy 

between the calculated value and that measured in situ for the individual materials 

(Komfield & Susskind, 1977; Rubio et a!, 1997 & Platt & Prata, 1993). Therefore, an 

accurate quantification of emissivity is vital for accurate determination of land surface 

temperature. 

The problem of the unknown surface emissivity can be alleviated by 

performing a variety of techniques, such as those that have been developed using 

sensors with multiple thermal channels, such as A VHRR, TIMS and ASTER, thermal 

with detection across more than one thermal wavelength range. Emissivity values are 

known to be spectrally variable across thermal wavelengths (Price, 1984 & Schrnugge 

et a!, 1991 ), so if the radiance is measured in n spectral channels, there will be n+ 1 

unknown emissivities and one temperature value (Kealy & Hook, 1993; Schrnugge et 

al, 1998) and this forms the basis of the following techniques with mathematical 

inversion to calculate surface emissivity from the known temperature. 
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The Reference Channel Method (Kealy & Hook, 1993; Li et a!, 1999) assumes 

that the emissivity in one channel has a constant value for all the pixels and the 

radiance measured for each pixel can then be used to derive the pixel temperature. 

The temperature is then used to derive the emissivity values for the remaining 

channels using a simple mathematical inversion. Emissivity Normalisation (Kealy & 

Hook, 1993; Li et a!, 1999) assumes that a constant emissivity is present in all n 

channels for given pixel, enabling calculation of n temperatures for each pixel from 

the measured radiance. The maximum temperature is then assumed to be the true land 

surface temperature for the pixel and is used to derive emissivity values for all other 

channels. The Spectral Ratio Method (Li et a/, 1999) and Temperature Emissivity 

Separation Algorithm (Schmugge et a!, 1998) are based on the concept that, although 

the radiances are sensitive to small changes in temperature, their ratios are not and the 

emissivity can be calculated using the maximum brightness temperature measured 

through then channels. The Alpha Emissivity Method (Kealy & Hook, 1993; Li et a/, 

1999) eliminates surface temperature from calculation by taking natural logarithms of 

the Planck equation and subtracting one channel from its mean for all n channels. The 

Split- Window Technique is the most commonly used technique for emissivity 

determination (Becker, 1987; Becker & Li, 1990; Franca & Cracknell, 1994; Emery & 

Yu, 1997; Qin & Karnieli, 1999). This technique assumes that the temperature of a 

particular pixel has the same value for each thermal channel with the emissivity 

calculated from a simple mathematical relationship using the different wavelengths 

and single temperature value. 

The techniques discussed assume a radiance measurement in more than one 

thermal channel. Since the Daedalus-1268 A TM has only a single thermal channel 

these techniques are not suitable for determination of the land surface emissivity. 

Alternative approaches for emissivity quantification can be to acquire in situ data on 

the structure and composition of the ground surface, or to even determine the 

emissivity of every material (Sugita et a!, 1996). However, empirical measurement is 

rarely possible due to the complexity of heterogeneous terrain and as a result a value 

that is representative of the bulk terrain composition is usually estimated for use in the 

Planck Radiation Law. Although we have seen through previous examples that use of 

an inaccurate emissivity measure will translate to uncertainties in the calculated 

temperature, the relatively homogeneous composition of agricultural areas will reduce 
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the uncertainty in emissivity designation. Since there is a relatively narrow range of 

emissivities associated with healthy vegetation (Becker, 1987) a single emissivity 

value representative of healthy vegetation will be assumed for the research. 

From the above discussions, it is evident that the emissivity of the material 

affects the thennal response observed over the land surface. However, emissivity is 

not the only attribute that affects the thermal response with additional variations due 

to alterations in the heating and cooling energy fluxes acting on the surface. 

2.2 SURFACE ENERGY FLUXES 

A surface will increase or decrease in temperature as a direct response to a 

gam or loss of energy by the material, with the most variable transfer of energy 

occurring across the surface-atmosphere interface (Kahle, 1980). Surface materials are 

subjected to a variety of energy fluxes, namely net solar radiation (S), net thermal 

radiation (R), sensible heat flux (H) and latent heat flux (L) that each interact with the 

surface of the material, with heat of conduction (G) interacting to depth within the 

surface layer (Figure 2.4). The surface on which the above energy fluxes occur is 

represented by a vertical column of material where energy interactions extend to some 

depth, with negligible lateral energy transfer (Watson, 1982). The value of each flux 

can be calculated from empirical formulation using data from a combination of 

physical observation at ground level and meteorological observations (Equation 2. 7). 

Each energy flux is described below with an indication of the relevant parameters that 

enable accurate determination of the flux, obtained from Kahle ( 1977). 

Equation 2. 7 S+R+H+L+G=O 
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Figure 2.4: Energy flux interactions occurring at the surface, taken from Price 

(1985) 

Solar radiation is the dominant energy flux causing thermal changes at the 

Earth's surface, with diurnal penetration to a depth of 1m (Kahle, 1980 & Price, 

1989). For a cloud-free sky, the solar radiation absorbed by the ground (S) is 

calculated with knowledge of key topographic and atmospheric factors (Equation 2.8). 

Equation 2.8 S = (1-agX1- A(u*,z)]o.349S5 cosz + (1-ag{ 
1
-ao ]o.651S5 cosz 

1-a a 
0 g 

For accurate calculation of the net solar radiation absorbed by a horizontal 

surface, it is necessary to know the amount of solar radiation incident on top of the 

atmosphere (Ss) and the fractions of radiation of wavelength greater than 0.9J.lm that 

is absorbed (0.349) and of wavelength less than 0. 9J.Lm that is scattered (0.651 ). 

Atmospheric condition during observation must also be modelled where absorption by 

atmospheric constituents, mainly water vapour, greatly reduces the amount of solar 

radiation incident on the Earth. For a cloud-free atmosphere, the effective water 

content (u*) is the total precipitable water in the atmosphere estimated from 

meteorological data. 

The amount of solar radiation absorbed by the surface will be dependant on 

the surface reflectivity, or the ground albedo ( ag). Atmospheric albedo ( CXo) is also 
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required, which is dependent on the surface pressure and the relative position of the 

Sun with respect to the ground surface, known as the zenith angle (z). The solar zenith 

angle varies with respect to solar declination (o), latitude (A), time from noon (t) and 

the rotation period of the earth (w) (Equation 2.9). 

Equation 2.9 cos z =sin A sin() +cos A coso coswt 

Topographic variations also influence the amount of solar radiation incident 

on the ground where slopes facing the Sun receive more solar radiation than those 

facing away from the Sun, with slope angle and elevation also controlling shadow 

effects. The amount of solar radiation received by the ground is modified by the slope 

and orientation of the surface and requires the calculation of the angle between the 

normal to the slope and the sun (z') from a given slope angle (s) and azimuth (a) 

(Equation 2.1 0). 

Equation 2.10 cos z' =cos s cos z +sins sin z cos a 

The total radiation absorbed by the slanted surface (S-r) (Equation 2.11) is then 

calculated with respect to the amount of radiation diffusely scattered by the 

atmosphere (Sctitr) due to the surface zenith angle (Equation 2.12). 

Equation 2.11 ( {
cosz'] St = s"iff + s - s"iff --

. cosz 

Equation 2.12 s"iff = o.oss +O.l oo- cos z )S 

The net thermal radiative flux (R) is equivalent to the amount of thermal 

radiation that is detected by a thermal sensor and is calculated as the resultant of 

thermal energy tluxes between long-wave radiation emitted by the ground towards the 

atmosphere and the long-wave radiation emitted the by the atmosphere towards the 

ground (Kahle, 1980 & Price, 1985). The long-wave radiation emitted from the 

ground towards the atmosphere (Rsurface) is calculated with respect to the Stefan

Boltzmann constant (cr), emissivity (E) and the ground temperature (Tg) and removes 

much of the heat from the surface, particularly in the afternoon when the ground is 

warm (Equation 2.13). 
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Equation 2.13 

Radiation emitted downwards by the atmosphere is dominated by emission 

from various atmospheric constituents, particularly water vapour, carbon dioxide and 

ozone (Kahle, 1980). Downwelling radiation can be estimated by the product of the 

Stefan-Boltzmann constant ( cr) and the effective sky temperature (Tsky), which 1s 

measured in Kelvin, with respect to time from locall400 hours (t) (Equation 2.14). 

Equation 2.14 R,ky =crT,k;, =cr[263+(10cost)] 

The net thermal radiative flux during the day is therefore the sum of the above 

two equations. Nocturnal atmospheric conditions differ from those occurring during 

the day and the nocturnal atmospheric flux is expressed as a product of the Stefan

Boltzmann constant ( cr), surface temperature (T g) and the atmospheric water vapour 

pressure (e) (Equation 2.15). The net thermal radiative flux during the night is the sum 

of the product of Equation 2.13and Equation 2.15. 

Equation 2.15 R,wctural_sky =crTg
4 
(0.61 + 0.05-J;) 

The sensible heat flux (H) is often the largest parameter in the energy balance 

equation, relating to the amount of energy transferred between the surface and the 

atmosphere through molecular conduction or convection towards the colder medium 

(Kahle, 1977 & Kahle et a!, 1984 ). A negative flux is generated as heat is transferred 

from the ground to the cold atmosphere during the day, with a positive flux at night. 

In dry windy conditions, sensible heat can be calculated using a complex combination 

of specific meteorological parameters (Equation 2.16). 

Equation 2.16 

Meteorological data is required for air density (p ), specific heat of dry air ( cp), 

drag coefficient (C0 ), wind speed corrected for gustiness (W) and air temperature 

(Ta). These can be estimated using either an aerodynamic method measuring the 

atmospheric characteristics at one height, or by a profile method measuring wind 

speed, air temperature and humidity gradients as a function of height with a 

21 



Chapter 2: Theory and Methodology 

radiosonde (Kahle et a!, 1984). The drag coefficient (C0 ) is an empirical variable that 

takes into account the elevation (Z) of the feature (Equation 2.17). 

Equation 2.17 c D = 0.002 + 0.006(_!_) 
5000 

Sensible heat is the heat removed from or added to the surface through either 

convective or conductive processes. Convective processes are present due to wind 

speed, atmospheric temperature and humidity contrast between the ground and 

atmosphere. Conductive processes are mainly due to the availability of solar radiation 

varying with solar declination, latitude and slope, together with wavelength-dependent 

properties of atmospheric transmission and surface reflectivity (Price, 1977). Under 

dry conditions, the sensible heat flux is the main mechanism for removing heat from 

the surface. 

The latent heat flux (L) is similar to the sensible flux with heat transferred 

between the surface and the atmosphere. Latent heat is related to the amount of heat 

removed from the surface under moist conditions through surface evaporation, as well 

as the release of heat within the atmosphere during cloud formation (Equation 2.18). 

Equation 2.18 

The latent heat flux (L) is heavily dependant on the same parameters as the 

sensible heat flux, including the latent heat of evaporation (1) and the mixing ratios of 

air at ( qa) and near ( qg) the ground, determined from the saturation ratio of mixing at 

the temperature (qa(Ta)) and moisture factor (Ma), both as a function of height. The 

latent heat flux is therefore heavily dependant on moisture content and its distribution, 

varying with material composition and porosity. Under wet conditions, the latent heat 

flux is the main mechanism for removing heat from the surface. 

The heat of conduction to the ground (G) is also a very important surface flux. 

This is strongly related to the material thermal property of thermal conductivity (K) as 

a function of surface temperature (T) and the depth (z) (Equation 2.19). When the 

surface is heated during the day, heat is conducted vertically down to the cooler 

material at depth. If the study site is located in a geothermal area, a small constant 
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heat source may be added to the heat flow on the deeper layer, as was included by 

Kahle ( 1980) to account for the possibility of heat transfer from a depth within the 

Earth towards the surface. 

Equation 2.19 

As shown above, the heat fluxes acting on the surface clearly incorporate a 

complex set of meteorological, geographical, topographical and physical parameters. 

According to Newton's law of conservation, there must be a balance between all of 

the energy fluxes acting on the surface, with an increase in one heat f1ux being 

balanced by a reduction in another in order to retain the state of equilibrium. An 

understanding of how heat is transported within a material and its surroundings can 

then be inferred from the relationship between the fluxes acting on the surface 

(Sabins, 1986), thus enabling the retrieval of land surface temperature with respect to 

these particular parameters. 

The thermal response of a homogeneous surface therefore results from the 

balance of these energy f1uxes with the solution of the surface energy balance 

equation combining theoretical expressions or measured values for net radiative flux, 

sensible heat, latent heat and the conduction to the ground. However, the ability to 

'solve' the equations will be dependent on the availability of data for insertion into the 

formulae. Differences in the observed thermal response are therefore dependent upon 

the surface energy fluxes; when relating the energy f1uxes to actual temperature 

values there will also be a complex relationship between the thermal response and the 

thermal properties of the surface materials. Them1al properties of surface materials 

control how the incident solar radiation is distributed through time and depth (Kahle, 

1980). The main thermal properties are discussed in the following section. 
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2.3 THERMAL PROPERTIES 

Thermal properties of surface materials determine how the heat from the Sun 

1s distributed through time and depth, and vary as a result of differences in 

mineralogy, moisture content, particle size, as well as the physical temperature of the 

material (Price, 1977). The most notable thermal properties include thermal 

conductivity, thermal diffusivity, specific heat capacity, heat capacity, and thermal 

inertia. The definitions of the individual thermal properties are that thermal 

conductivity is a measure of the rate at which heat passes through a material, thermal 

diffusivity is the temperature change of a volume of material through time and 

thermal heat capacity determines how well a material stores heat (Curran, 1985; 

Kahle, 1980; Kahle, 1984; Cracknell & Xue, 1996). Thermal inertia is defined as the 

resistance of a material to a change in temperature (Price, 1989). Therefore materials 

with a high thermal inertia will display a small diurnal temperature range (Figure 2.5) . 
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Figure 2.5: Diurnal temperature response with respect to thermal inertia, taken 

from Kahle (1980) 

Physical thermal inertia values (P) can be calculated as the root product of heat 

capacity (C), thermal conductivity (K) and the material density (p), as denoted in 

Equation 2.20. 

Equation 2.20 

The most common geological materials found on the ground surface will vary 

m their density and thermal properties and as a result, the thermal inertia of the 

materials will vary with respect to the physical properties of the materials under 
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investigation. The values associated with thermal properties of a suite of geological 

materials are indicated in Table 2.3. However is it important that the correct values 

are used for the appropriate units since there are variations in the values due to 

conversion from calories to either Joules or Watts (Table 2.4). 

K p c k p 

calcm- 1s- 1K- 1 
gem -3 cal g" 1K- 1 cm2s- 1 calcm-2K- 1 s- 112 

Clay soil (moist) 0.0030 1.7 0.35 0.005 0.042 

Gravel 0.0030 2.0 0.18 0.008 0.033 

Limestone 0.0048 2.5 0.17 0.011 0.045 

Marble 0.0055 2.7 0.21 0.010 0.036 

Sandy gravel 0.0060 2.1 0.20 0.014 0.050 

Sandy soil 0.0014 1.8 0.24 0.003 0.024 

Shale 0.0030-0.0042 2.3 0.17 0.008 0.034 

Table 2.3: Thermal properties of common geological materials, compiled from 

Kahle (1980) and Elachi (1987) 

K p c k p 

Wm-IK- 1 
lOOOkgm-3 1000Jkg-1K- 1 10-6m2s- 1 1 OOOJs- 112 m·2K- 1 

Clay soil (moist) 1.3 1.7 1.5 0.5 1.8 

Gravel 1.3 2.0 0.8 0.8 1.4 

Limestone 0.9 2.5 0.7 0.5 1.3 

Marble 2.5 2.7 0.9 1.0 2.5 

Sandy gravel 2.5 2.1 0.8 1.5 2.0 

Sandy soil 0.6 1.8 1.0 0.3 1.0 

Shale 1.9 2.3 0.7 1.2 1.7 

Table 2.4: Thermal properties of common geological materials (Hapke, 1993) 

Thermal inertia may be used to distinguish between materials exhibiting 

similar reflective properties but due to differences in density have different thermal 

properties (Kahle et a/, 1976; Price, 1977). Thermal inertia is sensitive to volumetric 

variations, and as a result, may be particularly useful when attempting to locate 

features buried at shallow depth through a variation in their thermal properties. 

However, Pratt & Ellyett (1979) stated that thermal inertia determination is effectively 

restricted to the upper 0.1 Om of the surface layer and that changes in thermal inertia 

below 0.1 Om depth cannot be effectively detected at the surface. For the vast majority 

of the research, the upper layer of the ground surface consists of a soil layer with 
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variable composition, porosity, moisture content and organic content. It is therefore 

important to understand how each of these parameters affects the physical thermal 

inertia of the soil. 

Pratt & Ellyett ( 1979) conducted an experiment to examine the thermal inertia 

values determined for a continuous variation in the sand-clay content, porosity and 

moisture content for a soil sample. Results of their model showed that as the sand and 

porosity of the soil increased, the thermal inertia of the soil decreased (Figure 2.6) . 

When moisture infiltrates the pore spaces, the thermal characteristics of the soil begin 

to alter due to the amount of fluid present therefore the degree of saturation will affect 

the thermal characteristics of the soil. Results of the thermal simulation performed by 

Pratt & Ellyett ( 1979) showed that the thermal inertia of the soil increased with an 

increase in moisture content. The simulation also showed that the thermal inertia of 

the soil decreased as the porosity of the soil increased (Figure 2.7). 
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Figure 2.6: Thermal inertia of a dry soil with variable sand content and porosity, 

taken from Pratt & Ellyett (1979) 
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Figure 2.7: Thermal inertia of soils with variable sand and moisture content for 

porosities ranging from 30%-60%, taken from Pratt & Ellyett (1979) 

Since thermal inertia is defined as the resistance of the material to temperature 

change, the implications of the Pratt & Ellyett ( 1979) simulation is such that soils that 

have a high sand fraction, high porosity or low moisture content will have a lower 

physical thermal inertia than soils of higher clay content, lower porosity or higher 

moisture content and as a result will display a wider temperature range. This 

simulation was based on the assumption that the soil was free of vegetation and that 

the topsoil was uniform in thermal properties to a depth of 020m. In nature, it is 

unlikely that the topsoil will be homogeneous in thermal characteristics to depth and 

so it is important to understand how the thermal inertia will affect the temperature of 

the soil through depth and time. The effect of thermal inertia on the temperature 

evolution through depth and time will therefore be discussed with respect to a 

heterogeneous material that is devoid of vegetation. 
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Kahle ( 1980) assessed the thermal regime of a soil as a function of depth and 

time for different values of thermal inertia. Results of the depth analysis showed that 

for a constant thermal inertia, the temperature showed little variation at the surface 

with a greater degree of temperature separation at depth. The time analysis was 

assessed at 06:00 and 14:00 in the diurnal cycle corresponding to the times of surface 

temperature minimum and maximum respectively. Results of the time analysis 

showed that similar temperatures were observed at the surface independent of the 

thennal inertia of the soil. However, soils of higher thermal inertia showed lower 

temperature amplitudes at depth than was observed for the lower thermal inertia soils 

(Figure 2.8) 
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Figure 2.8: Evolution of temperature through time and depth for low thermal 

inertia (solid line) and high thermal inertia (dashed line), taken from Kahle 

(1980) 

The above temperature evolution through time and depth was calculated using 

thermal inertia values derived from specific thermal conductivity and density values. 

However, these parameters will individually affect the thermal regime of the soil and 

so the temperature of a soil layer was assessed using a variety of thermal inertia 

values determined from variation in thermal conductivity and density. A variation in 

thermal inertia was initially assessed with respect to changing conductivity. As the 

thermal inertia increased, the diurnal temperature amplitude decreased with more heat 

penetrating to deeper levels in the soil layer (Figure 2.9). The thermal inertia of the 

soil was also assessed for variable density resulting in a decrease in amplitude as the 

thermal inertia increased with more heat retained at the surface (Figure 2.1 0). 
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Figure 2.9: Thermal inertia as a function of depth and time for variable 

conductivity, taken from Kahle (1980) 
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Figure 2.10: Thermal inertia as a function of depth and time for variable density, 

taken from Kahle (1980) 

The above simulations performed by Pratt & Ellyett ( 1979) and Kahle (1980) 

were conducted on soils that were devoid of vegetation cover, however, in the UK 

environment this is rarely the case. Therefore, it is important to understand how the 

vegetation affects the thermal behaviour of the underlying soil and this has not 

received much attention in the literature. This research aims to extend knowledge of 

the effect of vegetation on the thermal behaviour of soil. 

Although thermal inertia cannot be directly determined from remotely sensed 

thermal data, the response of the surface to temperature change can be determined by 

observing the surface at the times of maximum surface temperature, typically early 

afternoon, and minimum surface temperature, just before dawn, across the diurnal 

heating and cooling cycle. The variation between these values gives the diurnal 
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temperature range expressed at the surface, indicating the resistance of the surface to 

heating. Although this technique does not give a measure of the physical thermal 

inertia of the surface, an Apparent Thermal Inertia (AT!) of the surface can be 

determined. A TI modelling can assist investigations of the shallow subsurface where 

there is insufficient detail on auxiliary atmospheric and topographic parameters for 

calculation of surface energy fluxes. 

The ATI approach can be based on either qualitative or quantitative analyses, 

the latter aimed at relating the measure thermal response to thermal properties of the 

surface materials. The following section discusses the models that have been 

developed for thermal inertia mapping of the land surface. 

2.4 THERMAL MODELLING 

In order to understand and quantify land surface temperature variations fully, 

it is necessary to develop an empirical relationship between the response of a surface 

to solar heating as a function of the thermal properties of the material. The thermal 

properties of the materials will determine how the heat is distributed as a function of 

time and depth with both horizontal and vertical spatial variations across a surface. 

Variations in the temperature response expressed at the surface enables discrimination 

of materials that display different bulk thermal characteristics. The main thermal 

properties that control heat distribution include the density, thermal conductivity, 

specific heat capacity, heat capacity, thermal diffusivity and thennal inertia, which are 

known to vary with composition, porosity and moisture content. 

Several models have been developed to examine the relationship between 

thermal radiation and the physical properties of materials. However, for remote 

observation the property that is most amenable to remote thermal investigations is that 

of Apparent Thermal Inertia (AT!), which can be inferred from the diurnal 

temperature variations observed at the surface. Variations in ATI will then give an 

indication of variations in bulk material properties. A TI techniques have been 

successfully applied to geological exploration and mapping (Kahle et a!, 1976; Kahle, 

1977; Gillespie & Kahle, 1977; Watson, 1982; Kahle & Alley, 1985, Price, 1985) and 

soil moisture studies (Price, 1977, Pratt & Ellyett, 1979) in areas that are devoid of 
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vegetation. It is through ATI modelling that the research aims to address the effect of 

vegetation on the detection of variation in subsurface thermal properties. 

2.4.1 Apparent Thermal Inertia Modelling 

The design of ATI models is essentially driven by the parametric relationship 

under investigation and the type of auxiliary data available for incorporation in the 

model. There is a range of modelling techniques that shall be discussed in detail, from 

a simplistic image-based approach using images of the maximum and minimum 

diurnal response of the surface, through to quantitative techniques involving more 

complex mathematical relationships with knowledge of surface parameters. 

The simplest approach to thermal analysis was documented as a part of the 

Heat Capacity Mapping Mission where a relation was defined between the apparent 

thennal inertia (ATI) of the surface with respect to the diurnal temperature change 

(~ T) and albedo (A) of the surface (Equation 2.21 ). Although this model essentially 

relates to the HCMM, it shall be referred to as the Cracknell & Xue ( 1996) model 

from this point forward since the model was presented in numerical form in Cracknell 

& Xue (1996). 

Equation 2.21 AT!= (1- A) 
~T 

The diurnal temperature range of the surface can be determined by the 

difference in thermal response between a pair of day and night thennal Images 

acquired when the surface was at its maximum temperature and at its minimum 

temperature respectively across a 12-hour cycle, or 36-hour cycle if clear-sky 

conditions prevail (Kahle & Alley, 1985). In addition to the diurnal temperature 

change, this technique requires knowledge ofthe surface albedo. 

Albedo is a dimensionless measure of the reflectivity of the surface, or the 

fraction of incident solar radiation that is reflected by the surface (Barrett & Curtis, 

1982). From this definition, albedo appears to be the reciprocal of emissivity 

suggesting that albedo can therefore be determined from a simple relation (Equation 

2.22), as defined in Price (1989). 
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Equation 2.22 A+£= 1 

Albedo is affected by properties similar to those that affect emissivity, such as 

surface composition, roughness and moisture content as well as vegetation structure, 

view angle and the solar zenith angle. In general materials with a low albedo will have 

high surface temperatures. The reflectivity of materials tends to decrease with a 

darkening of the colour of materials with reflectance of organic-rich soils lower than 

sands (Snyder et a/, 1997). Soils will also differentially absorb radiation at discrete 

spectral wavelengths depending on the mineralogy. The albedo will therefore be 

wavelength-dependent and will vary with the material under observation (Goetz, 

1989). An increase in surface roughness results in a greater portion of radiation that 

can be scattered back towards the remote sensor, with a resulting increase in albedo. 

Moisture has a tendency to decrease the albedo with greater absorption of radiation. 

The albedo varies with view zenith and azimuth angles due to variations in the 

amount of solar radiation available to interact with the ground (Barnsley et a/, 1997; 

Cresswell et a!, 1999) although Snyder et a! ( 1997) determined that the effects were 

relatively small for all materials except sands. Surface roughness can affect the 

apparent reflectivity of the material at the remote sensor with slopes facing the sun 

showing greater reflectivity than those facing away from the sun with a variation in 

the albedo between nadir and off-nadir depending on the view and solar zenith angles 

(Verbrugghe & Cierniewski, 1998). The effects of topographic slope and aspect can 

however be removed by creating ratios of images in two different spectral bands 

(Goetz, 1989). 

Vegetation has a pronounced effect on the surface albedo due to the spectral 

properties of the canopy elements and particularly the leaf and canopy geometries 

(Grover et a!, 2000). In general forest canopies will have a lower albedo than 

grasslands or erectophile vegetation with a more pronounced seasonality due to an 

increase in leaf area index of the forest canopy and reduction of the proportion of soil 

visible through the canopy (Sharratt, 1998). Surface albedo will show a diurnal 

variation as the solar position moves with respect to the surface. Ideally, albedo shows 

a symmetrical pattern with peak values at dawn and dusk with low values around 

solar noon. If the canopy is vertical and stable, there will be a symmetrical pattern in 

surface albedo. However, there will be a strong asyrmnetry over vegetation canopies 
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in windy conditions due to the vegetation leaning in response to the prevailing wind, 

thus altering the canopy reclination angle and direction with respect to the solar 

position (Song, 1998). 

As discussed in the calculation of emissivity, homogeneous surfaces may be 

assigned an albedo value that is representative of the surface material. However, 

where the imaged surface exhibits a heterogeneous composition, the designation of a 

single albedo over a large spatial area will be inappropriate and so albedo must be 

determined for each of the pixels in the image. A variety of methods for determining 

surface albedo are discussed in the literature. These range from the acquisition of field 

spectral data coincident to image acquisition (Gillespie & Kahle, 1977), the weighting 

of synchronised visible and near-infrared image data according to the solar 

illumination curve (Kahle et al, 1976; Xue & Cracknell, 1995, Grover et a!, 2000), the 

use of the spectral response function of the instrumentation (Gillespie & Kahle, 1977), 

the use of the reflectance measured in one of the visible or near-infrared spectral 

channels (Price, 1985), or the combination of reflectance data with topographic 

information (Watson, 1982). Other authors fail to state their method of albedo 

determination (Pratt & Ellyett, 1979) or are ambiguous in their descriptions, such as 

"converting from reflectance" (Price, 1977) or "measurement of the broadband visible 

and near-infrared radiance" (Kahle & Alley, 1985). 

The problem of selecting an appropriate albedo values for the image in the 

research was therefore alleviated by selecting a single albedo value representative of 

the grasslands and erectophile crops present in the imagery, on the assumption that 

non-vegetated materials would be excluded from further analysis. Table 2.5 indicates 

published albedo values that have been determined for a range of different surface 

materials over visible spectral wavelengths. 

Material Albedo 

Fine Sandy Soil 0.37 

Dry Black Soil 0.14 

Moist Black Soil 0.08 

Wheat 0.16-0.23 

Deciduous Forest 0.17 

Pine Forest 0.14 

Table 2.5: Albedo values of natural surfaces, extracted from Barrett & Curtis 

(1982) 
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Once the diurnal temperature range and albedo have been determined for the 

surface, the A TI can be calculated using a selection of A TI models. The simple 

relationship denoted in Equation 2.21 fonns the basis of most other A TI models, 

where variations arise in the scaling factor applied to the equation. Price ( 1977) 

incorporated parameters on the solar constant (S), atmospheric transmittance (V), 

angular speed of rotation of the Earth ( w) and the ratio of heat flux transferred to the 

atmosphere to that towards the ground (a) for the calculation of A TI (Equation 2.23). 

Equation 2.23 
AT!= 2SV 

0
(1-A) 

.Jri ~V +a 2 +a.J2) t!.T 

Kahle & Alley ( 1985) made a slight modification to the above scaling factor 

by taking into account a parameter (C) that related to the declination (8) and latitude 

(A.) of observation (Equation 2.24). 

Equation 2.24 
AT!= 2SVC • (1- A) 

.fri ~(1 +a 2 + a.J2) t!.T 

C = _!_ [sin8 sin A. arcco~l- tan8 tan A.)+ cos8 cosA.~(l- tan2 8 tan2 
/...)] 

1t 

The A TI model developed by Price (1985) gives an advantage of use in 

situations where the ratio of the heat flux towards and away from the ground is 

unknown (a). This model also uses the parameter C to take into account the 

declination and latitude of observation, although there was slight variation in 

definition from the value used by Kahle & Alley ( 1985). In this approach, the scaling 

factor greatly simplifies calculations and essentially brings the values within the 

standard 0-255 data range associated with 8-bit quantisation of standard satellite 

imagery (Equation 2.25). 

Equation 2.25 AT1=10007t • (I-A)C 
t!.T 

C=_!_[sin8 sinA.~(l-tan2 8 tan2 t...)+cos8 cosA.arccosE-tan8 tant...)] 
1t 
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The A TI models discussed above provide a method of assessing variations in 

subsurface properties based on the acquisition of day and night thermal image pairs 

when the surface is at its maximum and at its minimum temperatures respectively. 

The contrast in thermal response gives an indication of the diurnal temperature 

change, or the resistance of the surface to heating, and this is incorporated with a 

measure of the surface albedo in order to calculate the apparent thermal inertia of the 

surface. The simplest model given in Cracknell & Xue ( 1996) required no further 

parameterisation, however, the models by Price ( 1977) and Kahle & Alley ( 1985) 

required some auxiliary detail on the heat tlux interaction at the ground surface as 

well as solar and atmospheric properties, providing a scaling factor to the calculation. 

The Kahle & Alley ( 1985) model introduced a parameter to take into account solar 

variations due to the latitude and the relative position on the surface with respect to 

the sun at the time of observation. This factor was also incorporated into the Price 

( 1985) model with simplification of the scaling factor to bring the values into the data 

range associated with standard 8-bit quantisation satellite data and reduces the need 

for detail on the physical parameters of the surface. 

2.4.2 Energy Flux Modelling 

A more quantitative approach to thermal modelling can been performed 

through application of numerical energy tlux models that incorporate detailed 

parameterisation of the surface under investigation. The majority of numerical models 

are based on the same basic principle, solving the one-dimensional thermal diffusivity 

heat tlow model for periodic heating and cooling of a layer of homogenous material 

consisting of uniform vertical and lateral thermal characteristics (Watson, 197 5; 

Kahle, 1977; Pratt & Ellyett, 1979; Price, 1980; Watson, 1982; Xue & Cracknell, 

1996). The layer represents a vertical section through the surface with an upper 

boundary condition defined by the surface energy balance equation (Equation 2. 7) and 

a lower boundary characterised by a constant temperature at depth. Solution of the 

equation occurs by calculating temperature (T) through time (t) and depth (z) for a 

range of thermal properties such as the thermal diffusivity (k) for the material under 

investigation (Equation 2.26). Solution of this equation gives the gradient of heating 

extending to the depth of diurnal heat penetration, with a decrease in temperature 

through depth. 
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Equation 2.26 

Variations in the numerical model arise from the method of solving the heat 

flow equation for temperature as a function of time and for a range of thermal 

properties. In addition, the models vary in the initial assumptions made about the 

properties of the surface layer. A brief description of each application of the main 

quantitative thermal models is given below. 

Watson (1975) used a finite difference solution to the 1D periodic heating 

model to determine ground surface temperature variation with respect to atmospheric 

heating fluxes occurring on the upper boundary of the surface layer. The model used 

the expression for the upper boundary condition as the balance between geothermal, 

solar and atmospheric sources of radiation. Initial assumptions for the investigation 

were that a there was a uniform geothermal flux occurring at depth and that under 

clear-sky conditions the meteorological parameters were spatially invariant. The 

model also ignored the effects of sensible and latent heat transfer across the sparsely 

vegetated surface under investigation. The flux absorbed by the surface was then 

calculated as a function of albedo, topography, geographical location and surface 

emissivity with complex formulations for these factors used in the model to predict 

the thermal response for variations in thermal inertia, albedo, geothermal flux and 

surface emissivity (Figure 2.11 ). Results of the model showed that a decrease in the 

geothermal heat flux and an increase in albedo and emissivity resulted in a 

progressive decrease in the temperatures calculated at any stage in the diurnal cycle. 

Variations in thermal inertia, representing materials of different thermal properties, 

showed the greatest influence on the contrast between day and night diurnal 

temperatures with a constant mean temperature observed at all values. This suggests 

that materials of different thermal properties can be discriminated by using the 

contrast between the day and night temperature values measured over the diurnal 

cycle. 
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Figure 2.11: Sensitivity of diurnal temperature to variations in (A) thermal 

inertia, (B) geothermal heat flux, (C) albedo and (D) surface emissivity. DC 

indicates mean diurnal temperature, taken from Kahle (1980) 

Kahle (1977) also used a finite difference solution to the heat flow equation 

(Equation 2.26) by subdividing the surface layer into finite depth sections and 

calculating the temperature response of each layer through time. In this model, 

meteorological conditions were assumed to be uniform with latent heating disregarded 

due to application in an arid environment. The effects of surface emissivity and 

atmospheric emission and absorption were also ignored. The model essentially gave a 

look-up table of diurnal temperature variations calculated as a function of albedo, 

slope, slope azimuth and thermal inertia, for specific latitude, elevation, time and 

meteorological conditions in the barren environment (Figure 2.12). The values were 

then inverted to indicate the thermal inertia of the surface from a measured diurnal 

temperature range. The results of the analysis showed that there was no variation in 

the minimum temperature for variations in albedo, slope angle and slope azimuth with 

a decrease in the maximum temperature on decreasing albedo and increase in slope 

angle_ The thermal inertia results were similar to those in Watson (1975) with values 

calculated from a range of density, thermal conductivity and diffusivity values. 
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Figure 2.12: Sensitivity of diurnal temperature to variations in (A) albedo, (B) 

slope, (C) slope azimuth and (D) thermal inertia, taken from Kahle (1977) 

Pratt & Ellyett ( 1979) generated a similar calibration of thermal inertia values 

with respect to specific values of diurnal temperature and surface albedo. A TI values 

were then generated by running the one-dimensional heating model specified in 

Equation 2.26 for a given set of meteorological conditions (Figure 2.13). 
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Figure 2.13: Thermal inertia calibration chart from known diurnal temperature 

and albedo for specific meteorological conditions, taken from Pratt & 

Ellyett (1979) 

The model was then used to predict the influence of particular soil properties 

on the conductivity of soils , which can be directly related to the thermal inertia and 

moisture content of the soil. The primary variables for inclusion in the model were the 

sand-clay fraction, moisture content and porosity of the soil with secondary variables 

of heat capacity, thermal conductivity, thermal diffusivity and thermal inertia. The 

initial assumption was that the measurements were representative of a vegetation-free 

surface with uniform thermal properties to depth. Continuous variations in these 

parameters were then run through the model and the results showed that the thermal 

conductivity and diffusivity were dependent on soil type and the water content, 

whereas the thermal inertia showed a strong dependence on soil moisture with only a 

small dependence on soil type (Figure 2.14). In the previous discussion on thermal 

inertia (Chapter 2.3), the Pratt & Ellyett (1979) model also showed that the thermal 

inertia decreased as the porosity of the soil increased (Figure 2.7). 
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Figure 2.14: Thermal properties (A) heat capacity, (B) thermal conductivity, (C) 

thermal diffusivity and (D) thermal inertia for variable sand-clay fraction 

and water content for a fixed porosity, taken from Pratt & Ellyett (1979) 

The thermal model developed by Price ( 1980) assessed the effect of soil 

moisture and near-surface humidity on the amplitude of the diurnal temperature range 

and mean surface temperature for specific surface conditions. This model provided a 

slight variation on the earlier models with solution of the ID thermal conductivity 

equation, not the thermal diffusivity previously used, for uniform material of density 

(p), heat capacity (c), thermal conductivity (K) and depth (z) beneath the surface 

(Equation 2.27). 

Equation 2.27 
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The diurnal temperature range expected at the surface was estimated from the 

amplitude of the solar variation (S), atmospheric transmittance (V), albedo (A) and 

diurnal heat capacity, which is a parameter based on Earth's rotation (m), density (p), 

heat capacity (c) and the thermal conductivity (K), Equation 2.28. 

Equation 2.28 
!1T = 2SV(l- A) 

J(mp cK) 

The diurnal temperature range and surface evaporation were calculated using a 

step-wise multiple regression of this model for a given solar input, meteorological 

data, surface albedo, emissivity, humidity, roughness and diurnal heat capacity and 

was performed for a range of soil moisture properties. Results of the model showed 

that the diurnal heat capacity is directly proportional to the temperature range where 

heat stored in the soil and the surface albedo are affected the amplitude of the 

temperature contrast. Surface humidity was observed to be the factor that affected the 

observed mean temperature most. 

Xue & Cracknell ( 1996) presented a mathematical model of near-surface 

conductive heat transfer for interpretation of physical properties in areas of variable 

soil moisture and vegetation cover. The model was based on a Fourier series solution 

of the one-dimensional thermal diffusion equation (Equation 2.19) satisfying surface 

boundary conditions to the depth where the temperature remains constant. Solution of 

the model was mathematically complex with the requirement for detail on flux 

parameters, surface albedo and topographic parameters. If the time of maximum 

temperature is known, the phase difference (b1) can be calculated with respect to the 

rotation of the earth (m), as shown in Equation 2.29. 

Equation 2.29 

The model used the phase of the diurnal temperature change calculated from 

both apparent and real information on the times of maximum and minimum surface 

temperatures. The apparent times were associated with image data assumed to have 

been acquired at peak times, with real assessment using the real times of thermal data 

acquisition. This diurnal phase could then be related, through a very complex 
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mathematical formulation, to the apparent thermal inertia of the surface. The thermal 

properties ofthe surface can then be inferred from this result. 

The models described above have been developed for a homogeneous surface 

layer with unifom1 vertical and lateral characteristics. This poorly characterises the 

natural environment where there is often a very diverse composition at the surface and 

ignore the effects of partial vegetation fractions on the retrieved land surface 

temperatures. These single-source models also have a tendency to overestimate 

sensible heat flux over sparse canopies where there is a greater resistance of heat 

transport from the underlying soils compared with that occurring above the canopy 

(Anderson et a/, 1997). Models are therefore required that incorporate the more 

complex characterisation of heterogeneous surfaces and further take into account the 

effects of variable vegetation cover. 

2.4.3 Thermal Modelling of Soil-Vegetation Systems 

The soil and vegetation components comprising a heterogeneous surface will 

each contribute to the energy fluxes acting on the surface layer and will have 

individual effects on the brightness temperature and also on surface albedo (Graver et 

al, 2000) in proportion to the fraction of pixel that is occupied by each component. 

Thermal models have then been extended to include the effects of a vegetation layer 

on surface temperature determination (Norman et a/, 1995; Zhan et a!, 1996; Kustas 

& Norman, 1999 & Anderson et a!, 1997). These dual-source models enable the 

determination of the view-angle dependence of land surface temperature with respect 

to variations in the soil and vegetation fractions viewed over sparse canopies for a 

range of different view angles (Otterman et a/, 1999). The view angle-dependency is 

not discussed in the thesis since the data acquired from an airborne system is viewed 

at nadir. 

Norman et a! (1995) presented a dual-layer model to relieve problems of 

canopy architecture and fractional vegetation cover on the retrieval of surface 

temperature from a soil-vegetation system. Their approach examined the contributions 

of the soil and vegetation layers to the sensible and latent energy exchanges between 

the layers by including details on the fractional vegetation cover or leaf area index, 

vegetation height, net radiation, air temperature and wind speed associated with the 
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radiometric temperatures. The model also assessed the contribution of individual soil 

and vegetation fractions on the radiometric and aerodynamic temperatures, the latter 

dependent on the temperature difference between each layer and the atmosphere and 

on the coupling between layers. 

The radiometric temperature (T RAD) of a surface can be obtained from the 

measured brightness temperature (T 8 ) with respect to the sky temperature (T SKY) 

where the power n is assumed to have a value of 4 appropriate for thermal 

wavelengths. Although soil and vegetation exhibit different individual emissivities the 

multiple reflections between the soil and leaves tend to equalise the component 

emissivities in a soil-canopy system and therefore a single emissivity(£) was assumed 

for the partially vegetated surface (Equation 2.30). 

Equation 2.30 
I 

Ta = [cTRAD
11 + (1- £ )TsKr /) Jn 

The radiometric temperature (T RAD) of the vegetation surface was then 

determined as a function of the individual temperatures of the soil (T s) and vegetation 

(T c) within the field of view, weighted by their contributions to the brightness 

temperature (Equation 2.31 ). 

Equation 2.31 
I 

T RAD(e) =[res) Tcanopy
11 + (1- /(8 )) Tsvi/

11 Jn 

The vegetation fraction (f(S)) was calculated with respect to the view zenith 

angle (8) and leaf area index (F), assuming a random canopy of spherical leaf 

distribution and uniform emissivity (Equation 2.32). 

Equation 2.32 J(S) = 1- exp(- O.SF) 
cosS 

The sensible heat flux for the soil-vegetation system was calculated as the 

combination of the sensible heat determined for each soil and vegetation present in the 

partial canopy. These were calculated with respect to the volumetric heat capacity of 

air, aerodynamic temperature and aerodynamic resistance, which took into account 

the resistance of heat transport between the soil surface and the heights of wind speed 
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and air temperature measurements, canopy height, roughness length for momentum 

and diabatic correction factors for momentum and heat. The complex formulation for 

the sensible heat flux can be found in Norman et a! (1995). 

The latent heat flux of the soil-vegetation system was estimated from the 

canopy-soil energy balance equation (Equation 2.33), where latent heat (LE) is 

proportional to the net radiation (Rn), sensible heat (H) and the soil heat conduction 

flux (G) with respect to the individual soil and canopy fractions. 

Equation 2.33 LE=R -H -G 
11 

G = 0.35Rn AT NOON 

LE SOIL = R s - H SOIL - G Rs penetrating soil 

Re absorbed by canopy 

Latent heat flux of the canopy (LEe) was then determined as a function of the 

difference in net radiation observed for the soil and that of the vegetation (~R11 ) with 

respect to the fraction of green leaf area index present (fg), slope of saturation vapour

temperature curve (S), psychrometer constant (y), where the fraction of vegetation (fe) 

is calculated with respect to the leaf area index (F), Equation 2.34. 

Equation 2.34 
s 

LEe =l.3fg -S-Mn 
+y 

Mn = Rn - Rn exp(0.9ln(l- fc)) 

fc = 1- exp(- O.SF) 

The above dual-source model examined the individual contributions of the soil 

and vegetation fractions of a partial canopy on the sensible and latent heat fluxes, the 

latter being used to determine radiometric temperatures in the majority of the 

numerical thermal models. Anderson et a/ (1997) modified this dual-source model to 

eliminate the need for measurement of local meteorological conditions, specifically 

eliminating air temperature since this factor was common to both the surface energy 

fluxes and the boundary layer condition at the time of observation. The model 

presented a series of expressions that described the transport of sensible heat from a 
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pat1ially vegetated surface to the overlying boundary layer using the time differential 

of land surface temperature as the surface heated up in the morning. This model did 

not take into account the effects of a partial canopy on the energy interactions 

between evaporation from the soil and transpiration from the overlying canopy. 

Daamen ( 1997) assessed the effect of a partial canopy on the network of 

interactions between the soil, canopy and atmosphere. Results showed that when the 

leaf area index was 1.0 the sensible heat flux was highly sensitive to the aerodynamic 

resistance and as the leaf area index increased there was an increase in the absorption 

of the sensible heat from the soil by the canopy, with subsequent dissipation as latent 

heat. When the leaf area index increased to 2.0, the soil-vegetation system could be 

sufficiently characterised by the dual-source model. 

Kustas & Norman ( 1999) also assessed the effect of a partial canopy on the 

network of interactions between the soil, canopy and atmosphere, in particularly 

focussing on clumped vegetation. A row crop will possess a difference between 

along-row and across-row parameters, such as wind speed, and as a result these 

significantly influence the sensible and latent heat exchanges both inside the canopy 

layer and above the soil surface. Results showed that forest vegetation had a much 

higher aerodynamic resistance than a row crop, mainly due to the leaf area index of 

the vegetation. 

A sensitivity analysis of the Norman et al (1995) model was performed by 

Zhan et a! ( 1997) to assess parametric variation on the heat fluxes. Results showed 

that the model was insensitive to most parameters suggesting that the model has great 

potential where parameters are not easily determined for heterogeneous surfaces. The 

dual-source models are general enough to predict surface energy fluxes over a wide 

variety of surfaces, but operate on a single measurement of brightness temperature. 

The models also require detailed characterisation of soil and vegetation properties of 

the heterogeneous surface and also auxiliary detail on the local meteorological 

conditions during observation. The Norman et a! ( 1995) model presented a solution to 

variable canopy architecture and fractional vegetation on the temperature retrieval by 

assessing their effect on the sensible and latent heat fluxes of the partially vegetated 

surface. The sensitivity analysis performed by Zhan et a! ( 1997) showed that this 

dual-source model was relatively insensitive to variations in the majority of 
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parameters with Anderson et a! ( 1997) modifying this dual-source model to eliminate 

the need for measurement of local meteorological conditions, specifically eliminating 

the need for air temperature. Daamen ( 1997) and Kustas ( 1999) examined the effects 

of clumped vegetation on the sensible and latent heat fluxes showing that a dual

source model was sufficient to characterise the soil-vegetation system when the 

vegetation had a leaf area index greater than 2.0. 

The need for ancillary data on vegetation condition, meteorological and 

topographic parameters is still of considerable importance for application of these 

dual-source models. Although values can be assumed for some of the parameters, 

others will remain uncharacterised and as a result will be a source of uncertainty when 

retrieving land surface temperatures. The application of coupled soil-vegetation 

models would therefore be appropriate to the vegetated surfaces under investigation in 

the research, however, the insufficient auxiliary data on meteorological, topographic 

and surface parameters involved in the energy flux calculations suggests that the dual

source models will therefore be ineffective when quantifying the temperatures of the 

vegetated surfaces. 

This following section summanses the important principles that have been 

discussed on the parameters involved in temperature characterisation of the land 

surface and its application to surfaces covered by vegetation. 
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2.5 SUMMARY of THERMAL RESEARCH 

All natural surfaces emit radiation at middle infrared wavelengths that can be 

measured by a remote detector sensitive to these wavelengths. The detected radiation 

can be converted to land surface temperature using Planck's Radiation Law, which 

relates thermal radiation to temperature with respect to the wavelength of observation 

and the emissivity of the material under observation. Homogeneous surfaces will be 

sufficiently represented by a single emissivity value over a large area. Where 

vegetation completely covers the land surface, a single emissivity value that is 

representative of the bulk vegetation canopy may be assumed. Heterogeneous surfaces 

require much more complex characterisation and therefore the assumption of a single 

emissivity value may be inappropriate. The emissivity must therefore reflect the 

proportions of the various land surface materials, such as soil and vegetation, which 

comprise the land surface. With sufficient emissivity characterisation, the 

temperatures of the land surface may then be determined using the Planck 

relationship. Spatial variations in the thermal response will suggest variations in the 

thermal characteristics of the surface and it is therefore important to be able to relate 

the detected response to the thermal properties of the materials under investigation. 

The main thermal property that is most amenable to remote thermal investigations for 

single-channel remote sensing instruments is that of thermal inertia, which is a 

volumetric thermal property and can give an indication of variations in material 

properties to some depth beneath the surface. Thermal inertia was shown to have an 

inverse relationship to sand content and soil porosity, but was proportional to the 

moisture content of the soil. In addition, thermal inertia increases due to conductivity 

resulted in a greater penetration of heat to depth, but increases due to density resulted 

in a greater retention of heat at the surface. 

These initial assessments refer to surfaces that were horizontally and vertically 

homogeneous and devoid of vegetation and so alternative approaches were 

investigated to study the effect of heterogeneity. Numerical energy t1ux models 

enabled detailed parameterisation of the surface under investigation with variation in 

the material properties with depth. These models ignored the effects of vegetation on 

the surface and so alternative dual-source models were discussed that incorporate the 

soil-vegetation coupling in their assessments. However, both the energy flux and 
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dual-source models require auxiliary data on meteorological and atmospheric 

properties that are not normally available. 

The solution to thermal modelling when there is insufficient auxiliary data is 

to perform an assessment based on the thennal response of the surface across the 

diurnal heating and cooling cycle. This provides a measure of the resistance of the 

surface to temperature change, otherwise known as the thermal inertia. Although the 

physical thermal inertia cannot be directly measured from remote detection, a related 

property of Apparent Thermal Inertia (ATI) can be inferred from the thermal response 

measured at specific points in the diurnal cycle. A TI can be evaluated using a range of 

techniques that vary in the parameters incorporated in their calculation. The simplest 

approach analysed the temperature response of a day and night thermal image pair 

with respect to the albedo of the surface, but this did not take into account diurnal and 

seasonal variations in solar properties. A more appropriate model was therefore one 

that included the position and timing of observation in the calculations. 

The A TI model that incorporated position and timing of observation as 

well as the day and night temperature response was therefore adopted for the research 

in order to identify areas of variable subsurface bulk thermal characteristics that could 

infer the presence of shallow buried features. The thermal response was also assessed 

at different stages in vegetation growth to determine the effect of vegetation growth 

on the detected response. 
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3 CONTEXT of SUBSURFACE FEATURES and 

TECHNIQUES for ASSESSMENT 

The main aims of the thesis are to investigate the use of multispectral airborne 

remote sensing techniques and ground geophysical prospection for detecting shallow 

ground disturbance beneath a layer of vegetation and to examine the relationship 

between airborne thermal radiance data and the characteristics of surface materials 

beneath a layer of vegetation. Previous published research has evaluated airborne 

multispectral airborne remote sensing techniques for archaeological prospection and 

landscape assessment with conclusions that results from aerial photography are 

dependent on the time of imaging for revealing crop and soil marks associated with 

buried materials in intensively farmed areas, such as exist in the UK. Images acquired 

at near-infrared and shortwave-infrared wavelengths can aid crop mark detection, as 

they are sensitive to soil moisture differences with the imagery less seasonally 

constrained, but often add little additional detail to the results from aerial 

photography. Remote sensing in the thermal infrared has become an important non

contact tool for locating shallow ground disturbance with successful application to 

investigations on bare rock or soil surfaces that are devoid of vegetation cover. 

Shallow ground disturbance creates a differential heat flux between undisturbed and 

disturbed soils (Figure 3.1) and this provides the potential for detection using thern1al 

imagery with improvement in differentiation due to variable moisture content of the 

soil above the feature compared with the surrounding matrix (Pickerill & Malthus, 

1998). 

Figure 3.1: Effect of buried feature on thermal response detected at the surface 

The temperature contrast between the buried feature and the surrounding 

matrix will vary across the diurnal cycle in response to the variation in thermal 

properti es of the materials. Under clear-sky conditions the diurnal thermal response of 
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surface materials shows a minimum temperature in the pre-dawn time period, rising in 

response to solar heating to a peak at solar-noon, after which the temperature 

gradually decreases towards the minimum temperature at pre-dawn the following 

morning (Figure 3 .2). 

bare soil 

00:00 12:00 

vegetation 

/ 

water 

Time 
24:00 

Figure 3.2: Diurnal thermal response of bare soil, vegetation and water 

From this thermal response pattern it can be seen that there will be certain 

times in the day when there will be a minimal thermal contrast between materials of 

different thermal properties. An image acquired at one point in the diurnal cycle may 

therefore have a different thermal response than that acquired at a second point in the 

cycle due to the differential heating properties of the different materials. In order to 

maximise the contrast between the materials, it is therefore appropriate to acquire 

images at the times when the surface is at its maximum temperature and when it is at 

its minimum temperature to reveal features that are otherwise hidden on one-time-of

day thermal images. 

Sparse vegetation growing over a buried feature will have little influence on 

the temperature response compared with that over bare soil due to the low fraction of 

vegetation present at the surface (Figure 3.3) and has been successful for the detection 

of buried waste in areas of sparse vegetation (Zilioli et a!, 1992; Irvine et a!, 1997). 

Figure 3.3: Effect of short vegetation on thermal response at the surface 
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As the vegetation canopy closes, the thermal response of the soil is masked by 

the thermal response of the overlying vegetation with an increase in interaction of the 

energy fluxes within the canopy structure. Features buried in the subsurface will 

therefore be less likely to be detected unless there is a pronounced contrast in thermal 

properties between the buried feature and the surrounding matrix with respect to the 

more uniform thermal characteristics of the vegetation canopy (Figure 3.4). 

Figure 3.4: Effect of vegetation on thermal response detected at the surface 

The temperature of anomalies in the subsurface varies from that observed over 

the surrounding matrix across the diurnal cycle in response to the variation in thermal 

properties of the materials (Figure 3 .2). Thermal imaging therefore has the potential to 

delineate features buried in the shallow subsurface using the thermal contrast over the 

diurnal cycle. Results of previous work have shown that shallow subsurface variations 

have sometimes been detected beneath vegetation when assessed across the diurnal 

cycle at different stages in crop maturity, which were otherwise hidden on 

visualisation of other spectral wavelengths (Bellerby et al. 1990). Where vegetation 

covers the soil during thermal prospection, the observed thermal response may not be 

directly representative of variations in the soil surface as vegetation regulates its own 

temperature through plant transpiration and this results in a more uniform canopy 

temperature above soil containing buried features (Perriset & Tabbagh, 1981; Scollar, 

1990). Vegetation will also show a strong seasonality in thermal response due to 

growth properties so that seasonal variations in thermal response may reveal 

additional subsurface variations. 

The temperature contrast between the buried feature and the overlying 

materials will decrease with depth to a certain depth below which the buried horizon 

will have no measurable effect on the surface temperature. This is known as the 

damping depth. The depth at which thermal damping occurs will depend on the 

contrast in thermal properties of the buried feature and the overlying materials. The 
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influence of the subsurface layer on the surface temperature will be a function of the 

variation in thermal properties between the two layers. Where a more complex three

layer subsurface structure is present, the variation in thermal response will depend on 

the contrast between the individual materials forming the surface (Figure 3.5). 

Figure 3.5: Two-layer and three-layer models representing subsurface structure, 

taken from Perriset & Tabbagh (1981) 

For the two-layer example, the contrast between the properties of the upper 

and lower layers provides suitable separation of the materials however in the three

layer model the important contrast is that between the two materials blanketed by the 

same material (Perriset & Tabbagh, 1981 ). This differential in properties of the 

underlying materials has been particularly successfully in geological applications 

where subsurface topographic variations (Nash, 1985) or buried horizons (Nash, 

1988) can be detected beneath a layer of material where surfaces are devoid of 

vegetation. Vegetation alters the heat flux into the underlying soil and internally 

regulates the temperature of the canopy. Variations in subsurface characteristics 

would be more eas ily detected if temperatures are measured in direct contact with the 

soil rather than above the canopy (Noel & Bellerby, 1990). However, this technique is 

not very feasible for conducting a site survey since contact soil temperatures would 

have to be measured over a large area for widespread characterisation of the 

subsurface. Thermal imaging therefore provides a potential technique for site survey 

due to the synoptic view of the ground surface and control on the timing of imaging. 

The research focuses on a particular gap in the current knowledge about the 

effect of surface vegetation cover on heat flux measurements of soil and overlying 

vegetation canopies and aims to assess the possibility of detecting shallow ground 

disturbance in vegetated terrains. Two examples of environmental settings in which 

shallow ground disturbance is known to occur under variable vegetation are buried 

archaeology and abandoned mine activity. The individual settings are discussed in the 

following sections together with the data that have been gathered for their analysis. 
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3.1 ENVIRONMENTAL SETTING: BURIED ARCHAEOLOGY 

BOSWORTH BATTLEFIELD, LEICESTERSHIRE 

The Battle of Bosworth took place on 22nd August 1485 during the War of the 

Roses, a struggle for power between the royal houses of Lancaster and York. The 

battle had a major impact on the course of British history with the death of King 

Richard Ill, the last English King to be killed in battle. The scheduled ancient 

monument at Bosworth Battlefield marks the site of a deserted medieval village with 

earthwork remains and associated ridge and furrow field systems . The monument is 

located 2 miles south of Market Bosworth, Leicestershire, adjacent to the site of the 

Battle ofBosworth, in an area of intensively farmed land (Figure 3.6). 

Figure 3.6: Location of Bosworth scheduled monument (www.multimap.co.uk) 

The battlefield lies between the villages of Sutton Cheney, Shenton and 

Dadlington. However, the precise location of Bosworth battlefield is a contentious 

issue with historical sources indicating a variety of different possible locations of the 

battle (English Heritage, Proposed Battlefields Register: Bosworth 1485). The modem 

landscape differs markedly from that of the 15th century with draining of the marshes 

that were known to exist. In addition to this, a canal and a railway line were 

introduced in the 19th century. This site was specifically chosen since it was known to 
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be on the site of a deserted medieval village with associated earthworks and ridge and 

furrow field systems that were not immediately recognised on standard aerial 

photography. At this location, buried archaeology is known to exist under variable 

vegetation cover and authorised access to the land enabled the acquisition of auxiliary 

ground data. 

Buried archaeology, such as walls and ditches, differs in their physical 

properties from the surrounding soi l matrix, which make their detection and mapping 

possible using investigative techniques that identify variations in the physical 

properties of the subsurface materials. The most common techniques used in the 

detection of potential buried archaeology involve geophysical prospection techniques, 

such as magnetometry, resistivity and electromagnetometry (Chapter 3.5). In addition, 

vertical or oblique aerial photography has been used for site detection with analysis of 

multispectral data acquired across the visible and near-infrared spectral wavelengths. 

The potential use of thermal infrared wavelengths for buried archaeological 

investigations is addressed in the thesis and forms the basis for assessment. 

In the past, the use of digital imagery in investigations of buried archaeology 

has stemmed from the identification of subtle soi l and crop marks evident on vertical 

or oblique aerial photography, which may give an indication of the presence of 

potential buried walls or ditches due to stress of the overlying vegetation (Wilson, 

1982; Jones & Elgy, 1994). These investigations have yielded excellent results in a 

variety of natural environments , however, the visibility of the crop marks appears 

highly dependant on vegetation type and status, and the condition of the underlying 

soil. Therefore, it is important to consider the vegetation effect when prospecting for 

subsurface structures in intensively farmed areas where the optimum visibi lity of crop 

markings wi ll be dependent on the time of imaging and the maturity of the crop. 

Research has shown that near and short-wave infrared multispectral imagery 

can enhance crop marks as these wavelengths are much more sensitive to the 

absorption and reflectance properties associated with vegetation status and moisture 

content than the visib le spectral region (Donoghue & Shennan, 1988; Scollar et al, 

1990). As a result, the imagery is less seasonally constrained however these 

wavelengths provide only minor additional detail to that extracted from a standard 

aerial photographic survey. 
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Thermal infrared imagery is sensitive to emitted rather than reflected radiation 

and this spectral region has been little studied where features in the shallow 

subsurface are hidden under vegetation canopies. Previous research suggests that 

thermal imagery significantly enhances soil marks in a variety of bare soil 

environments where the soil temperature depends on the direct interaction with solar 

radiation (Perriset & Tabbagh, 1981 ). The thermal heat flux into the ground will vary 

with the properties of the materials with a buried feature causing a different heat flux 

to that of the surrounding undisturbed soil matrix. 
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3.2 ENVIRONMENTAL SETTING: ABANDONED MINES on 

BAILDON MOOR, W. YORKSHIRE 

The area of abandoned mine activity on Baildon Moor, W. Yorkshire marks a 

section of the Yorkshire Coalfield covered mainly by open grassland and bracken 

where coal was extracted from the Lower Coal Measures of Upper Carboniferous 

period (Figure 3.7). 

Figure 3.7: Location ofBaildon Moor, W. Yorkshire (www.multimap.co.uk) 

Abandoned mineshafts represent a potential hazard in the rural and urban 

environment, where there is a need for information on the location and extent to 

which previous mining activity occurred in the near-surface environment. Over the 

past few decades, a range of geophysical and other investigative techniques have had 

variable success in the detection of mineshafts with development of efficient data 

collection and interpretation techniques. However, the physical characteristics about a 

site can be limited through insufficient surveying, inappropriate survey techniques, 

individual data interpretation and also poor integration of the geophysical results into 

the overall site investigation. 

Mining legislation was introduced in its earliest form in 1850, where details on 

proposed mine activity were required to be submitted only a short time before 

excavation in order to update the records and maps. It was not until 1872 that mine 

abandonment plans were also submitted, with the addition of surface features added to 
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the maps in 1896. However, these plans remained inaccurate until 1911 when the 

detail on the spatial relationships between surface features was introduced. 

Additionally, spatial scale was only introduced to mine documentation in 1952 

(Donnelly & McCann, 2000). This history shows that even when mine activities were 

recorded on maps and plans, their position was not always accurately known and 

furthermore, the maps would not have indicated whether the abandoned mine shafts 

had been capped to reduce the risk of collapse and if so, how effectively the capping 

had been carried out. In other circumstances, shafts were marked on plans that did not 

actually exist. 

The potential hazards represented by abandoned mine activity can include the 

sudden collapse or gradual deformation of the ground surface, which may result in an 

accidental fall into a shaft by an individual, and the contamination of groundwater 

through the discharge of mine waters or through the mineral waste deposits. In 

addition to these, there can often be an efflux of hazardous mine gases, such as 

methane or radon that exist in certain rock formations and are known to expand and 

contract with changes in atmospheric pressure (Kearey & Brooks, 1991; Donnelly & 

McCann, 2000). The hazardous nature of abandoned mine activity outlined above 

therefore demonstrates a need to develop a more effective method of mineshaft and 

mineral waste deposit detection and mapping. The most common techniques of 

assessing mine abandonment sites tend to involve the use of geophysical prospection 

techniques (Chapter 3.5). These techniques can be time-consuming and so a more 

efficient method can be adopted through the development of digital image 

interpretation techniques. 

The potential for using thermal imaging in mine abandonment studies was 

recognised during an airborne survey to observe mining-induced fault reactivation in 

the Lancashire Coalfield (Donnelly & McCann, 2000). At the time of the survey a 

ground frost prevailed at the site and circular features could be seen from the air. 

These corresponded to the approximate location of shafts on the mine plan, but on 

immediate ground inspection there was no evidence of surface expression usually 

associated with mine shafts. This suggested that there was a potential temperature 

increase over the shaft sufficient to alter the crystal stmcture of the frost, but 

insufficient to melt the frost completely, in addition to this where gases are emitted 
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from shafts, there is often an increase in temperature due to an exothermic reaction 

between the mine gas and the air. Shafts that display a clear topographic expression 

may also display a thermal anomaly during the day due to the differential heating of 

the shaft slopes that face both towards and away from the sun. From these 

characteristics, a temperature gradient may exist between a mineshaft and its 

surrounding soil generating a thermal anomaly associated with mine activity that may 

be detected using thermal imagery. However, thermal anomalies may not necessarily 

be evident over all mineshafts where there may be no variation in the physical 

characteristics between the shaft and surrounding material with vegetation potentially 

masking subtle material variations. Thermal anomalies may also exist over mineral 

waste deposits, which are created mainly from soil moisture effects of the loose spoil 

material when compared with the undisturbed soil. There may also be a vegetation 

anomaly associated with the spoil material, where soils extracted from the mine may 

contain a higher concentration of heavy-minerals in which normal vegetation 

struggles to grow, with potential growth of rare types of vegetation. 

Some mineshafts on Baildon Moor can be identified on the ground from the 

mine plans, but the true geographical location of others is often poorly identified due 

to both a lack of accurate documentation and also poor topographic expression 

associated with the shafts. The coal measures on Baildon Moor are pseudo-horizontal 

in occurrence with a slight 1-4 o dip to the south, with the relative depth to the coal 

working being a function of the topography. There are two main types of shafts that 

dominate Baildon Moor, known as the Bell Pits and Room & Pillar workings (Figure 

3.8). 
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Figure 3.8: Examples of (A) bell pit and (B) room and pillar shaft formations. 

Both examples show a narrow shaft-head with wide base for coal extraction 
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Bell pits are relatively shallow workings with 2m diameter shaft heads of up to 

1 Om in depth. The base of a typical shaft is excavated to a width of around 6m with 

mounds of spoil material forming a lip around the shaft. These shafts were often 

uncapped and were backfilled using the spoil material. The room and pillar structures 

are much larger with often 5m diameter shafts, sufficient to accommodate mining 

equipment. These workings often extended to 40-80m in depth with a 200m 

excavation at the base. To provide stability, wood, bricks or concrete often lined the 

shafts and when mine activity ceased they were often backfilled. In the case of 

shallow workings they were completely backfilled, but deeper workings were often 

capped at a level below the surface, by timber or mine carts, and spoil material placed 

on top. In the latter structures crown-hole development is commonplace when 

variable compaction of the materials result in subsidence (Figure 3.9). 

Figure 3.9: Crown-hole development above a room and pillar working 

At this location, abandoned mine shafts were known to exist under variable 

vegetation and open access to land enabled the acquisition of auxiliary ground data. 

The main objective of the study on Baildon Moor is to examine the properties of 

mineshafts of known surface expression and compare their response with areas of 

anomalies. The ground investigation will then be extended to where thermal 

anomalies occur in the imagery but where there is no obvious surface expression, and 

geophysical profiling may verify that the observed thermal anomaly can be related to 

shallow ground disturbance associated with mine activity. 
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3.3 ENVIRONMENTAL SETTING: ABANDONED MINE 

ACTIVITY on NORTH PENNINE OREFIELD, WEARDALE 

The area of abandoned mine activity in the North Pennine Orefield, Weardale 

marks an area where there was a sustained period of mining activity, with lead, iron, 

zinc and silver mineral extraction (Figure 3.1 0). The area is covered by fields with a 

varying vegetation cover that are separated by dry-stone dykes and are used for 

agricultural crops and sheep-grazing. 
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Figure 3.10: Location of the North Pennine Orefield (www.multimap.co.uk) 

Mining techniques across the region have resulted in a series of bell pits and 

shallow shafts similar to those occurring on Baildon Moor. In addition to the shafts, 

adits and hushes are also common, which can be directly associated with the industrial 

archaeology of the region. Hushes are scour features created through hydraulic action 

in opencast mining activities where water is used to flush broken rock out of an 

excavation. The classic hush is created where water is stored behind a dam at the top 

of a steep-sided valley on the sides of which the mineral vein outcrops. When the dam 

is breached, the water cascades downslope scouring the loose soil and rock away to 
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expose the mineral vein. An adit is essentially a small shaft-like feature created to 

provide ventilation or access into a shaft and tends to be positioned at an angle to the 

main shaft. In addition to these features, there are also spoil heaps and scours relating 

to the mineral extraction, forming a series of topographic features where vegetation 

struggles to become established in the contaminated loose soils. These features litter 

the landscape of the region with a varying degree of visibility both on the ground and 

on digital imagery. At this location, abandoned mineshafts and spoil heaps are known 

to exist under variable vegetation but prohibited access to land prevented acquisition 

of auxiliary ground data. 
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3.4 REMOTELY-SENSED AIRBORNE DIGITAL IMAGERY 

The research is perfom1ed using digital imagery acquired by the Airborne 

Remote Sensing Facility of the Natural Environmental Research Council. The NERC 

Airborne Remote Sensing Facility (ARSF) managed by NERC Scientific Services and 

Programme Management provides the UK scientitic community and other potential 

users with the means to obtain spatially referenced remotely sensed data as a 

component of environmental research, survey and monitoring programmes. The 

NERC Airborne Remote Sensing Facility (ARSF) deploys a dedicated and highly 

modified research aircraft capable of providing researchers with synoptic digital and 

analogue imagery of high spatial and spectral resolution. 

Multispectral digital imagery was acquired using a Daedalus-1268 Airborne 

Thematic Mapper (ATM). This is an 11-channel multispectral passive remote sensor 

designed to measure surface radiation from an airborne platform (Appendix A 1 ). 

Radiation is captured by the rotating scan mirror of the A TM and is split by dichroic 

filters into a number of radiation paths. The A TM separates the incoming radiation 

into 11 spectral bands with 5 bands in the visible (VIS), 3 bands in the near-infrared 

(NIR), 2 bands in the short-wave infrared (SWIR) and a single band in the thermal 

infrared (TIR). Detail of the spectral characteristics of the Daedalus-1268 A TM 

configuration is shown in Table 3.1. 

Channel Daedalus AADS 1268 
I 0.424 - 0.448 
2 0.469 - 0.518 
3 0.522 - 0.60 I 
4 0.594- 0.635 
5 0.627 - 0.694 
6 0.691-0.761 
7 0.754- 0.924 
8 0.879- 1.027 
9 1.600- 1.785 
10 2.097-2.391 
11 8.400- 11.500 

Table 3.1: Spectral characteristics of the Daedalus-1268 Airborne Thematic 

Mapper 

Unlike the data detected in the VIS, NIR and SWIR bands, the data in the TIR 

band is calibrated in 'real-time' by comparing the response to two on-board 

blackbodies set at known high and low temperatures. The blackbodies are imaged 

immediately before and after the scene pixels of every scan line together to enable 
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calibration of the TIR radiance to known temperature. The data acquired by the A TM 

was provided in digital format together with details on the specific file format and 

extraction procedures. 

The ATM was deployed aboard a Piper Chieftain for the 1997-1998 flight 

seasons with upgrade to a Dornier 228-101 for later flights. Both configurations 

incorporated a 3-axial GPS mounted on the aircraft. This provided detail on the 

attitude and position of the aircraft during flight, which was synchronised with the 

timing of image acquisition. The integrated system enables the compensation of errors 

due to the motion of the aircraft by the synchronisation of the scan lines with the 

detailed navigational and attitude data on the platform. 

As a complement to the multispectral data, high-resolution vertical aerial 

photographs were acquired simultaneous to the ATM imagery using a Wild RC-1 0 

survey camera mounted on the airborne platform (Appendix A2). The camera is 

operated in basic mode with minimal forward overlap over Bosworth and in stereo 

mode with an overlap of 60% between photographs over Weardale. Details on the 

camera optics and calibration properties are provided along with the hard-copy output 

format to enable correction for lens distortions occurring across the aerial 

photographs. The aerial photographs can be scanned, ideally on a photogrammetric 

scanner to minimise optical distortions, and provide a digital format for the 

photographs. 

3.4.1 Digital Imagery: Bosworth, Leicestershire 

Airborne multi spectral imagery was acquired usmg the A TM over the 

intensively farmed land at Bosworth on four separate dates. A day thermal image was 

acquired in May 1998 during early barley growth, with day and night image pairs 

acquired in June 1998 and August 1998 at progressively later stages in barley growth. 

A third day and night pair was acquired in March 2002 during winter conditions to 

complete the seasonal coverage. The large gap between the summer and winter data 

arose from technical problems relating to aircraft and also poor weather conditions, 

which prevented winter acquisition until 2002. In addition to this, winter data was 

intended to provide imagery when crop growth was at its minimum so a larger 

proportion of soil fraction would be present. However, oil seed rape had been planted 
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early on this site resulting in a closed vegetation canopy overlying the region during 

the winter acquisition. The multispectral data gave a good response across all 

multispectral channels, with sufficiently noise-free thermal imagery on all 

corresponding dates (Appendix Cl). The data acquired over Bosworth therefore 

provided suitable multispectral and thermal data for both diurnal and seasonal 

analyses for the area of buried archaeology. 

3.4.2 Digital Imagery: Baildon Moor, W. Yorkshire 

Airborne multispectral imagery was acquired using the A TM over Bail don 

Moor on two separate dates. A day and night thermal pair was acquired in September 

1996 however this data was excessively noisy throughout all channels and therefore 

rejected from further analysis. A second day and night thermal pair was acquired in 

May 1997 and this gave a good response across all multispectral channels, with 

sufficiently noise-free imagery (Appendix C2). The data acquired over Baildon Moor 

therefore provided suitable multispectral and thermal data for only a diurnal analysis 

for the area of abandoned mine activity. 

3.4.3 Digital Imagery: North Pennine Orefield, Weardale 

Airborne multispectral imagery was acquired using the ATM over the North 

Pennine Orefield in August 2001. The day imagery was of moderate to poor quality 

with excessive noise in Band 1 (VIS) and Band 9 (SWIR), the latter consistent with 

electrical discharge across the instrument. The remaining bands from the day imagery 

were sufficiently noise-free however the night thermal imagery contained a moderate 

to high amount of banded noise (Appendix C3). The data acquired over the North 

Pennine Orefield therefore provided a poor multispectral and thern1al dataset for a 

diurnal analysis for the area of abandoned mine activity. 
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3.5 GROUND GEOPHYSICAL PROSPECT/ON 

In order to understand fully the nahtre of the features that may be identified on 

the diurnal and seasonal multispectral imagery, a series of ground validation exercises 

were performed over the study areas relating to the buried archaeology of Bosworth 

and on only one of the areas of abandoned mine activity at Baildon Moor. No 

geophysical survey was performed in W eardale due to restricted access to land and 

was not followed up as a consequence of the poor data quality of the imagery. The 

purpose of conducting the ground investigations through geophysical surveying is to 

determine the physical characteristics of the shallow subsurface and relate the position 

of geophysical anomalies to features detected on aerial photographs, multispectral and 

thermal images acquired over the study areas. In addition to geophysical surveying, 

alternative approaches to ground investigations at Bosworth include field walking and 

metal detecting, however, the position of artefacts detected through these methods are 

often poorly recorded. Ground investigation at this site is therefore performed through 

geophysical prospection due to the accuracy of feature location. 

Geophysical prospection is the application of a range of geophysical surveying 

techniques to the investigation of subsurface materials by making and interpreting 

measurements of physical properties. The main advantage of using geophysical 

techniques is that there is no disturbance of subsurface materials during investigation, 

an important factor where excavation would result in loss of artefact stratigraphy 

when looking for buried archaeology or result in a sudden collapse of the ground 

surface in areas of abandoned mine activity. Another advantage of conducting 

geophysical surveys is that anomalous areas can then be targeted for further 

investigation at a finer level of detail using other ground validation techniques to 

obtain more information on the subsurface structure. 

Geophysical methods identify variations in physical properties of materials 

within the subsurface by locating a spatial or vertical boundary across which there is a 

distinct contrast in response (Reynolds, 1997). Such a contrast gives rise to a 

geophysical anomaly indicating variations in physical properties relative to some 

background value. There are both passive and active geophysical techniques where 

passive techniques detect variations in the Earth's ambient geophysical fields and 

active techniques transmit a field that is modified by the ground before detection. 
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The mam geophysical techniques measure variations m the magnetic, 

electrical resistance and electromagnetic properties of the surface materials with 

additional attenuation and transmittance properties observed using ground penetrating 

radar. The success of each technique can be very site specific and its effectiveness 

may even vary within a site, depending on the nature of physical variations of the 

surface materials that vary with local geology and soil characteristics. From this it is 

clear that a combination of techniques may be needed since each method will be 

sensitive to different physical properties and so a more integrated approach will 

provide a more complete site investigation. 

The geophysical prospection techniques that were applied in the study sites 

include magnetic, resistivity and electro-magnetic surveying, all of which provide the 

ability of generating a 2D representation of the subsurface structure. Other techniques 

exist that provide a 3D representation of the subsurface, such as ground penetrating 

radar and resistance tomography, but such equipment was not available during the 

period of study. The main techniques of magnetometry, resistivity and 

electromagnetometry shall be discussed in detail before discussing the results of 

surveys performed on the two contrasting environments of buried archaeology at 

Bosworth and abandoned mine activity on Baildon Moor. 

3.5.1 Geophysical Surveying: Magnetometry 

Magnetic surveys are often used for rapid site assessment where areas showing 

anomalous magnetic properties can then be targeted for further investigation using 

other geophysical and excavational techniques. The aim of a magnetic survey is to 

identify variations in the magnetic properties of subsurface materials, mainly 

magnetic susceptibility, which is a measure of how susceptible a material is to 

becoming magnetised (Scollar, 1990; Kearey & Brooks, 1991 ). The most common 

rock-forming minerals exhibit a very low magnetic susceptibility, however, certain 

rock types contain a sufficient proportion of magnetic minerals and produce a greater 

magnetic response. Similarly, man-made ferrous objects and human activity can 

locally enhance the magnetic properties of soils and generate local anomalies in the 

Earth's magnetic field resulting from the contrasting levels of magnetism between the 

material and the surrounding soil or geology. 
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There are a variety of highly sensitive instruments known as magnetometers 

that are designed to measure the subtle variations in magnetic properties of the 

subsurface. For soil prospection, the two most commonly used instruments are CS and 

Fluxgate gradiometers. Magnetometers are often used in a prospecting role for 

generating 2D maps of magnetic susceptibility at a specific observation depth. Areas 

of anomalous magnetic activity can then be located and identified as possible buried 

features. Magnetic prospection has provided excellent results in a wide variety of 

environmental situations. Examples include the prospection of silo-pits in limestone 

soils (Marshall, 1999), the analysis of ditch enclosures in loess deposits (Doneus & 

N eubauer, 1998), the determination of the depths of kiln sites and in filled pits 

(Desvignes, et al, 1999) and the identification of anthropogenic materials in leached 

brown soils (Dalan & Banerjee, 1996; Marmet et al, 1999). 

The majority of these surveys were undertaken with a FM36 Fluxgate 

Gradiometer, a passive magnetometer that measures the magnetic gradient between 

two identical magnetic sensors (Figure 3.11 ). 

OPERATOR 

attired in non-magnetic cloth ing to ensure no additiona l 
magnetic component influence 

MAGNETIC SENSORS 

in non-magnetic casing held vertica ll y with no forward 
or side ti lt 

AUTO MA TIC DATA LOGGER 

records magnetic intensity measured at specific spatial 
pos ition 

NON-MAGNETIC SURVEY TAPE 

ensures acquisition at regular spatial intervals 

Figure 3.11: Geoscan FM36 Fluxgate Gradiometer operated by James Lyall, 

Landscape Research Centre 
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The sensors are encased in a non-magnetic rigid structure that is positioned 

vertically so that the sensors have zero horizontal displacement and are aligned 

directly above each. The sensors measure the magnetic field component and the 

magnetic gradient is calculated as the difference in the intensity between the sensors. 

Prior to conducting the survey, the local magnetic field component must be 

determined so that all magnetic readings measured within the survey area are 

observed as positive or negative readings to this background value. The magnetometer 

is then carried with unit pointing North along a set of parallel survey lines marking 

out the survey area with measurements of the magnetic gradient automatically 

recorded at regular spatial intervals. Once measurements have been obtained over the 

complete survey area, a prospection map is generated by visualising the adjacent 

transects to give an indication of areas of anomalously high or low magnetic readings. 

The small vertical separation between the sensors limits magnetic detection to 

relatively shallow depths and so any anomalous readings can be associated with 

material variations located in the shallow subsurface that can then targeted for further 

investigation using other geophysical or excavation techniques. 

3.5.2 Geophysical Surveying: Resistivity 

Resistivity surveys are commonly used m a similar manner to magnetic 

surveying to obtain an accurate depiction of the subsurface structure by identifying 

spatial variations in the ability of the subsurface materials to conduct an electrical 

current. All materials allow movement of electrical current to some extent, however, 

most rock-fom1ing minerals are insulators and current is conducted through a material 

by the passage of ions present in pore waters, with conduction increasing with 

porosity (Kearey & Brooks, 1991; Reynolds, 1997). Soil resistivity depends on the 

structural and chemical characteristics of the soil and when an induced electric current 

encounters a solid buried feature the resistance is greatly increased. Conversely, 

where looser material is located within the soil layer a lower resistance is recorded 

due to an increased moisture content associated with a higher porosity than the 

surrounding undisturbed soil. 

There are a variety of techniques that can be adopted for measurement of the 

resistivity of the subsurface. The most common technique examines the potential 

difference of the surface measured between a set of electrodes. An electric current is 
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passed into the ground by a pair of electrodes and the current radiates outwards 

equally in all directions towards a second set of electrodes (Griffiths & Barker, 1994 ). 

The relationship between induced and received current gives an indication of the 

resistance of the ground between the electrodes and will depend very much on the 

material properties through which it travels and also on the geometry of the electrode 

array. Ground resistance can then be calculated using Ohm's Law where resistance 

(R) is the ratio of the current (I) injected into the ground to the voltage (V) measured 

across a second pair of electrodes, positioned at some distance away (Equation 3.1). 

Equation 3.1 R=v 
I 

Resistivity surveys are usually restricted to relatively small-scale 

investigations due to the labour-intensive approach of implanting electrodes in the 

ground for each measurement. The simplest electrode configuration is that of a twin

electrode array where the electrical potential is measured between a pair of electrodes 

mounted on a rigid frame at a fixed separation. Measurements are taken with respect 

to a remote pair of electrodes that are fixed at a position external to the survey area 

that record the ambient electric potential (Figure 3.12). 

0.5m Twin Array 

15- 50 m 

c 

Mobile Probes Remote Probes 

Figure 3.12: Twin-electrode array provided by the Geoscan RM15 Resistance 

apparatus (www .geoscan-research.co.uk) 

The twin-electrode frame is carried along a set of parallel survey lines marking 

out the survey area with measurements of the electrical resistance automatically 

recorded at regular spatial intervals. This design enables rapid detailed area surveys to 

be performed for observation depth roughly equal to the electrode spacing. Once 

measurements have been obtained along parallel survey lines over the complete 
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survey area, a prospection map is generated by visualising the adjacent transects 

values as a grid of resistance to give an indication of the spatial distribution of 

subsurface features that show anomalously high or low electrical resistance in the 

survey (Mori, et al, 1999). These anomalous areas can then targeted for further 

investigation using other geophysical and excavational techniques. 

Another common electrode configuration is that of a four-electrode Wenner 

array where pairs of current (C) and potential (P) electrodes are moved in unison at 

equal spacing (a) along the survey transect (Figure 3.13). 
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Figure 3.13: Four-electrode Wenner configuration where a current is passed into 

the ground through a pair of electrodes (Cl and C2) and the potential 

measured across a secondary pair of electrodes (Pl and P2), taken from 

Griffiths & Barker (1994) 

This mobile four-electrode configuration does not require that use of remote 

electrodes and can be moved as a complete unit across the survey area. Although the 

unit is less easily moved than the twin-electrode array that is mounted on a rigid 

frame, the separation between current and potential electrodes can be more easily 

varied to represent different investigative depths (Noel & Walker, 1990; Griffiths & 

Barker, 1994; Mori, et a!, 1999). The electrode array is moved along a survey transect 

line at a fixed electrode separation. The spacing can be increased, giving a greater 

volume traversed by the current and providing a greater depth of observation, or 

alternatively decreased along the traverse to give shallower depth of observation. The 

multiple electrode spacing generates a series of vertical cross-sections for the survey 
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transect line that can be used to determine the depth and geometry of buried features 

that can then targeted for further investigation using other geophysical and 

excavational techniques. 

3.5.3 Geophysical Surveying: Electromagnetometry 

Electromagnetic surveys are less labour-intensive than electrical resistivity 

surveys as they do not require the constant moving of electrodes into and out of the 

ground and surveying can therefore be relatively rapid. Electromagnetic surveys are 

used to delineate subsurface discontinuities by identifying variations in the response 

of the ground to the propagation of electromagnetic waves. Electromagnetic waves 

are composed of two orthogonal components, an electric intensity and a magnetising 

force, which propagate along a plane perpendicular to the direction of travel 

(Reynolds, 1997). A primary electromagnetic field is generated by passing an 

alternating current through a wire coil, known as a transmitter coil, with field 

propagation via paths above and below the ground. When electromagnetic radiation 

travels through subsurface materials it is modified slightly relative to that which 

travels through air. If the electromagnetic wave encounters a conductive medium, the 

magnetic component of the incident wave induces a current within the conductive 

material, which generates secondary electromagnetic field components that are 

detected at a receiver coil. The receiver coil also detects the primary field components 

that travelled through the air, so the overall detected response is the combined effect 

of both the primary and secondary field components. Consequently, the measured 

response differs in both phase and amplitude relative to the primary field and this can 

be used to reveal information about the size, geometry and electrical properties of the 

subsurface materials. 

The most common electromagnetic techniques used for environmental 

geophysics is the dual-loop system where primary electromagnetic waves are 

generated in a transmitter coil and are measured at a receiver coil at some distance 

away. This gives an indication of the conductivity of the material at the mid-coil 

position. There are two common coil configurations for the dual-loop systems that are 

simple to operate and provide rapid surveying of the study site. 
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The first is a simple EM31 coil configuration where transmitting and receiving 

coils are mounted on a horizontal pole with an integrated data logger capable of 

automatically recording the conductivity measurements (Figure 3.14). The second is a 

moving-source EM34 dual-coil configuration where the transmitting and receiving 

coils are independently mobile and are connected by a reference cable (Figure 3.15). 

Figure 3.14: Dual-loop EM31 electromagnetic system with transmitting and 

receiving coils mounted on horizontal pole 
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Figure 3.15: Dual-loop EM34 electromagnetic system with moving transmitting 

and receiving coils connected by reference cable at fixed coil separation 

In both dual-loop systems, the transmitting and receiving coils lie in-line with 

the survey transect with the separation between the coils giving a variable depth of 
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observation. The coils are then moved along the transect line at a fixed separating 

distance to build up a profile of variations in electromagnetic response. The coils can 

be aligned as either horizontal coils to measure the vertical magnetic dipole or vertical 

coils to measure the horizontal magnetic dipole. The EM31 is rotated clockwise or 

anticlockwise to change between coil configurations whereas the coils in the EM34 

require a rotation about the vertical axis (Figure 3 .16). 

A B 

Figure 3.16: Horizontal (A) and Vertical (B) magnetic dipole configurations 

In the horizontal configuration, there is relatively very little response from the 

near surface materials, increasing with depth to a maximum at depth approximately 

0.4 intercoil spacing. As a result, the horizontal configuration is insensitive to near

surface features. In contrast, the relative response for a horizontal magnetic dipole 

decreases with depth from a maximum at the surface, making the vertical coil system 

very sensitive to near surface features (Reynolds, 1997). The depth of penetration of 

the electromagnetic fields also depends on the electrical conductivity of the material 

through which it is propagating, with attenuation through the ground resulting in a 

decrease in received resistance exponentially with depth (Kearey & Brooks, 1991 ). 

Since the transmitting and receiving coils do not penetrate the ground surface, these 

electromagnetic surveys are less labour intensive than resistivity surveying and 

provide a rapid assessment of the depth and structure of the subsurface features. 

Electromagnetic surveying is rarely applied to archaeological prospection but was 

73 



Chapter 3: Context of Subsurface Features and Techniques for Assessment 

successfully applied by Luck & Eisenreich ( 1999) as an additional source of 

information on the features revealed on application of the other forms of geophysical 

prospection. 

3.6 GEOPHYSICAL EVALUATION of BOSWORTH 

A geophysical evaluation was commissioned by Leicestershire County 

Council on a section of the Bosworth scheduled monument in 1999 This was 

extended in late 1999 and 2000 to provide a complete magnetic survey of the 

Bosworth scheduled monument and surrounding area. The magnetic survey was 

performed using the passive Geoscan FM36 Fluxgate Gradiometer that detected 

anomalies in the local geomagnetic field component associated with anomalous 

buried materials of anthropogenic activity. The ideal situation for detection is where 

the buried materials have a reasonably high contrast in magnetic response compared 

with the surrounding soil matrix. Since the magnetic survey was designed to detect 

buried ferromagnetic materials associated with anthropogenic activity, the machine 

sensitivity was set to detect magnetic intensity variations in the order of 0.1 nT, the 

nanotesla (nT) being the standard unit of magnetic flux. The local geomagnetic field 

component was determined prior to surveying, represented by an area where the local 

magnetic field gradient is relatively flat. This is assigned a zero base value so that all 

subsequent magnetic readings within the survey are positive or negative of this value, 

due to the dipolar nature of magnetism. 

The Fluxgate Gradiometer was used to survey a series of 30m x 30m grids, 

with magnetic intensity automatically measured at 0.25m spatial intervals along 

survey transect lines at a spatial separation of 1m. The automatic data logger attached 

to the instrument allows the specification of the dimensions of the desired survey grid 

area and will continue to collect magnetic intensity readings until the memory reaches 

full capacity. For best results, magnetic readings were avoided in areas containing 

highly metallic objects such as wire fencing, telegraph poles and buildings as these 

perturb the local geomagnetic field component and can often mask the response of the 

buried features by influencing several readings in the vicinity of the highly magnetic 

feature. The survey grids were then downloaded and visualised as series of grey-scale 

images with goepositioning of the corner points. Each individual survey grid could 

then be examined for the presence of buried features. However, it is much more 
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beneficial to generate a single grey-scale image layer of the complete surveyed area in 

order to identify structures and features of potential interest. In order to achieve this, 

the geographical coordinates of each grid require to be measured at the same time as 

they are surveyed in order to create a georeferenced mosaic of the survey area for 

integration with other georeferenced datasets. The results of the gradiometer survey 

were displayed in grey-scale image format to identify contrasts in grey-scale intensity 

values associated with the potential buried features. The most prominent features on 

the magnetic survey are a series of linear magnetic anomalies and also some point 

anomalies of anomalously high and low paired response (Figure 3.17). 

\ 

Figure 3.17: Results of the Fluxgate Gradiometer survey of Bosworth. Dark grey 

indicates low magnetic response 

There are a wide variety of linear magnetic anomalies present in Ambion field. 

The most prominent magnetic anomalies are a series of rectangular anomalies (A) 

located in the eastern section of the field. These are thought to represent field 

enclosure systems. There is also a prominent double linear NE-SW anomaly that runs 

across Ambion field and this is may represent a trackway (B), although the second 

linear feature is incomplete along its length. On the western section of Ambion field 

there are a series of narrowly-spaced E-W parallel linear anomalies of relatively high 
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magnetic response (C). These represent the presence of a ridge and furrow system. In 

the northern section ofthe field there is a very low magnetic feature (D), however this 

feature is very close to the farm buildings to the west and may be a direct result of the 

highly magnetic character of the tin-roof structures and would therefore require 

further investigation. There is a faint linear NW -SE anomaly located in the northern 

section of Ambion field (E) that continues into the adjacent Arena field, showing a 

double linear anomaly at its eastern end (F) representative of a trackway. In the 

southern section of the Arena field there is a similar continuation anomaly that marks 

the boundary of a field enclosure system (G). Throughout all the fields there are a 

number of small circular bright and dark magnetic spikes (H). The origin of these 

point features is may relate to the position of burned tree stumps that have been 

removed since generation of the 151 edition OS map (MacKinder, pers. comm.), but 

this is only one possible explanation and therefore the features require further 

investigation. 

There are no strong magnetic anomalies evident in the Picnic, Helipad or 

South fields. The implications of this is threefold in that ( 1) there may be no magnetic 

features buried in the near-surface in these fields, (2) the features may be deeper than 

the technique can investigate, or that (3) the magnetic properties of the background 

soils in these fields are similar to those of the buried materials and therefore 

magnetometry appears to have its limitations. 

The Bosworth magnetic survey revealed a wide variety of anomalies that 

suggest the presence of enclosure systems. There are some DMV earthwork remains 

and ridge and furrow marks that are represented by slight topographic features at the 

ground surface and are visible on the aerial photography or multispectral imagery. 

However, not all of these features give rise to magnetic anomalies. Magnetometry 

appears therefore to have its limitations in this physical setting so an alternative 

geophysical technique was applied to further understand the full extent of 

anthropogenic activity. 

Leicestershire County Council commissioned a resistivity survey over small 

sub-sections of the Bosworth scheduled monument in late 1999 where the magnetic 

survey showed variable results. The resistivity survey was performed using a Geoscan 

RM 15 Resistivity Meter to detect anomalies in the electrical conductivity of the soil 
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associated with anomalous buried materials of anthropogenic activity. As for the 

magnetometry survey, the ideal condition for feature detection was where the buried 

materials would have a reasonably high contrast in electrical response compared with 

the surrounding soil matrix. 

The twin-electrode array was mounted on a frame with a fixed electrode 

separation of 0.5m to measure the electrical resistivity of the soil occurring at 0.5m 

depth. The RM 15 resistivity meter was used to survey a series of 30m x 30m grids, 

with resistance automatically measured at I m spatial intervals along survey transect 

lines at a spatial separation of lm. The automatic data logger attached to the 

instrument allows the specification of the dimensions of the desired survey grid area 

and will continue to collect readings of electrical conductivity until the memory 

reaches full capacity. For best results, resistivity readings were avoided in water

logged areas as these can often mask the response of the buried features. The survey 

grid data was then downloaded and visualised as a series of grey-scale images. The 

geographical coordinates of the corner points of each grid were recorded during data 

acquisition to enable the generation of a georeferenced image mosaic of the complete 

survey area for integration with other georeferenced datasets. The results of the 

resistivity survey were displayed in grey-scale image format to identify contrasts in 

intensity values associated with the potential buried features (Figure 3.18). 
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Figure 3.18: Results of the RM15 resistivity survey of Bosworth 

The survey performed in the Picnic field covered a 60m x 60m area consisting 

of nine 20m x 20m grids. The area was situated to the west of the car park on a south

east facing slope containing what appeared to be the remains of earthworks. The 

results of the survey (Figure 3.19) show a cluster of high resistance anomalies 

forming a curved feature on the southern edge of the survey area on the flatter ground, 

suggesting an area of former building materials. There is also an individual high 

resistance feature in the south-eastern corner possibly indicating the presence of a 

building structure. There is a rectangle of medium resistance situated on the north side 

of the cluster that may represent a field surrounded by removed hedgerows that lies in 

an area of low resistance that appears to pre-date the high resistance clusters. There is 

also a linear E-W trending low resistance feature situated parallel to the fence-line in 

the northern section that is bounded on its north and southern edges by high resistance 

anomalies and this may represent a hollow-way or possibly a walled feature leading to 
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the area of low resistance. These results lead to the suggestion of an agricultural area 

surrounding a former building. 

Figure 3.19: Resistivity survey of the Picnic field 

The survey performed in the Arena field covered a 1 OOm x 40m area 

consisting of ten 20m x 20m grids. The area was situated on a south-east facing slope 

that was covered by grass, annually cultivated for silage, with no trace of man-made 

features at the surface except for a square of modem hard-standing near the south-east 

corner. The results of the survey (Figure 3.20) show a prominent linear high resistance 

anomaly trending E-W close to the southern boundary of the survey area, broken only 

by the area of low-resistance modem hard-standing. This feature possibly represents a 

boundary wall. In the north-west corner there is a square of high resistance that is 

surrounded by an area of low resistance bounded on three sides by high resistance 

linear features. This is indicative of a building structure surrounded by a walled field. 

In the north-east corner there is an area of intersecting double linear features that is 

typical of the presence of hollow-ways associated with different phases of 

development, however, the discontinuous nature of these features makes interpretation 

difficult. 
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Figure 3.20: Resistivity survey of the Arena field 

The survey performed in the re-enactment field covered a 60m x 60m area 

consisting of seven 20m x 20m grids with two dummy grids containing no data. The 

area is situated on a slight west facing slope covered by grass with an area of modem 

hard-standing. The results of the survey (Figure 3.21) show a high resistance feature 

in the north where the soil was very thin above a rocky outcrop. There was a similar 

high resistance feature on the eastern section surrounded by an area of small circular 

high and medium resistance anomalies. This is possibly representative of a mound of 

rubble with dispersal of material. The broad low resistance feature on the west can be 

attributed to the area of modem hard-standing that is truncated at the south-western 

end where the hard-standing gives way to soil and grass. 

Figure 3.21: Resistivity survey of the Re-enactment field 
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The survey performed in the South field covered two main areas. The western 

survey covered a 30m x 90m area consisting of three 30m x 30m grids bounded by a 

fence-line on the northern, southern and north-eastern boundaries. The site was 

covered by grass with patches of nettles and thistles and was situated on a southern 

facing slope where there was evidence of earthworks suggested by prominent 

topographic hummocks. The results of the survey (Figure 3.22) show a rectangular 

feature of high resistance in the north, bounded by linear features of low resistance. 

This coincided with the hummocky ground. At the western edge there was a double 

linear anomaly of high resistance possibly representing a narrow track or wall. A 

prominent linear feature of medium resistance trended N-S through the centre of the 

survey area leading to a large circular feature of high resistance that was surrounded 

by small high and low resistance anomalies, possibly representing rubble. To the 

south there was a feature of medium resistance that coincided with the site of a 

modem watering hole for livestock, with an area of well-trampled surrounding 

ground. The east generally showed lower response than the west with a low resistance 

feature in the north-east marking a modem track through the grass. 

Figure 3.22: Resistivity survey of the South field: West section 
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The eastern survey consisted of a single 30m x 30m grid situated in the north

eastern corner of the field, bounded by an oak tree on the western edge and by 

hedgerows on the northern and eastern boundaries. The site was relatively flat with 

slight topographic linear features suggesting ridge and furrow farming. The results of 

the survey (Figure 3.23) show a rectangular feature of high resistance in the east 

representing a man-made structure with a medium resistance section on its eastern 

wall suggesting an entranceway. In close proximity to the main feature there are 

additional high resistance rectangular features, possibly representing outbuildings. In 

the south-west internal corner of the main feature there is a curved medium resistance 

anomaly that may represent a furnace. The survey also revealed a double linear 

feature of medium resistance trending NNW -SSE that suggested the presence of a 

track. 

Figure 3.23: Resistivity survey of the South field: East section 
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The survey performed in the Helipad field covered a 20m x 60m area 

consisting of six 20m x 20m grids bounded by a fence-line on the southern and 

eastern edges and gravel tracks on the northern and western edges. The site was 

situated on a very slight south-east facing slope that was covered by grass . The results 

of the survey (Figure 3.24) show a rectangular feature of high resistance in the south

west with a second rectangular feature of higher resistance in the east, the dimensions 

of which was similar to the structural feature present in the East section of the South 

field. These suggest the presence of man-made structural features that are separated 

by an area of low resistance. There is a curved feature of low resistance in the north

west, bounded by medium resistance anomalies, that possibly represents a track. This 

feature intersects the main rectangular structure in the east, giving an indication of 

relative timing of occurrence of the anomalies. Although there is clear evidence from 

the resistivity survey as to the presence of structural anomalies in this field, there are 

no topographic anomalies at the surface associated with these features. 

Figure 3.24: Resistivity survey of the Helipad field 
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The results of the resistivity survey have indicated that there were a number of 

building structures, boundary walls, hollow-ways and fields present in the area 

surrounding the scheduled monument of Bosworth. Interpretation provided in the 

Leicestershire County Council Report suggests the presence of a deserted medieval 

village of variable use. Although there is little topographic trace of earthworks 

associated with anthropogenic activity, the resistivity showed evidence of buildings 

concentrated in the eastern surveys of the Helipad and South-East fields where there 

were numerous outbuildings and fields associated with the main structure suggesting 

the presence of a possible farmstead. Additional field systems were identified from 

orthogonal walled structures in the Arena and Picnic fields. There were numerous 

tracks and possible hollow-ways that connected the various field surveys with the 

superimposition of a number of these features suggesting several phases of habitation 

was associated with the village. These features were located in an area where there 

was little topographic trace of earthworks associated with anthropogenic activity 

viewed at ground level. The exception to this was the hummock feature in the western 

section of the South field, which clearly marked the site of earthwork remains. 

When the results of the resistivity survey were compared with the results of 

the magnetometry survey, it was clear that the features revealed on the resistivity 

survey did not correspond with the features of magnetic characteristics suggesting that 

resistivity is an important complimentary technique when surveying for potential 

archaeological remains. The results are also compared with the results from field 

walking and metal detecting. 
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3.6.1 Alternative Ground Investigations: Field Walking And Metal Detecting 

Field walking and metal detecting involves the search for artefacts at the 

ground surface within a series of 20m x I Om grid squares. In both situations, the field

walker records any artefacts found within the grid square, such as pottery, coins and 

other objects that may be related to anthropogenic activity (Figure 3.25). Much of 

these features are brought to the surface from depth due to extensive plough activity. 

Some of the more interesting artefacts are extracted and identified by Leicestershire 

County Council with respect to the period of anthropogenic activity. Due to the 

inaccuracy of the documentation of the precise location of the finds within the survey 

area and also the transportation of artefacts within the field due to plough activity, 

maps of the field-walking and metal detecting show only general concentrations of 

specific periods of activity and show poor correlation with the geophysical results. 

The maps generated from the field-walking are held at County Hall by Leicestershire 

County Council. 

3 -= 
s ~ 

::: 
\l ::: 

~j 
~~ 
~ ~ 

....... ,lll,lllllllll,llllllllllttl'ttiitltilttttttmt1 
40 50 60 70 6(1 90 100 

Figure 3.25: Example finds from field-walking in Bosworth 

In order to understand fully the nature of the detected features, further 

investigations are required with extraction and analysis of soil samples across the 

features that show variable characteristics. In addition, it is important to assess the use 

of the multispectral and the thermal data to reduce the necessity for invasive 

investigative techniques. This shall be discussed in later chapters. 
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3. 7 GEOPHYSICAL EVALUATION of BAILDON MOOR 

The British Geological Survey commissioned a resistivity evaluation of a 

section of Baildon Moor using a four-electrode Wenner configuration to detect 

anomalies in the electrical conductivity of the soil associated with the abandoned 

mine activity. The Wenner array formed a complete electrical circuit with transmitting 

electrodes connected to a current source and observing the electrical conductivity 

across a pair of potential electrodes using a voltmeter. The electrodes were separated 

by 5m to enable measurement of the ground resistance at a depth of 2.5m at the mid

electrode position, thus enabling the detection of both capped and uncapped mine 

shafts. 

The Wenner-electrode array was deployed at a single site in the northern 

section of Baildon Moor adjacent to the golf course (Figure 3.26) where there were 

prominent circular vegetation features with moderate topographic expression. One of 

the features was known to represent an abandoned mine shaft (Figure 3.27) and the 

resistivity profile observed over this feature was compared with that observed over a 

secondary feature of similar topographic and vegetation expression to determine 

whether this feature also represented an abandoned mine shaft. Resistivity was 

measured along a transect line that intersected the features of distinct topographic and 

vegetation expression to compare the resistivity response observed over the known 

and suspected shaft features. 

Figure 3.26: Location of Wenner transect line and representation of features on 

natural colour composite and day thermal image 
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Short Grass 
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Figure 3.27: Prominent vegetation anomaly observed over known mine shaft 

Ground resistivity was measured at 2m intervals along the survey line with 

transmitting and potential electrodes moved at equal spatial intervals to generate a 

profile of ground resistivity measured at 2.5m observation depth for the specific 

electrode separation. The survey line originated beside the main road and passed 

through the background vegetation, intersecting the prominent circular vegetation 

features at a distance of 92m and 50m from the profile origin. These were also 

observed as anomalies in the thermal imagery due to the presence of standing water at 

the centre of each feature. Results of the Wenner survey were displayed in graphical 

format showing the resistivity of the ground measured at a distance from the origin of 

the profile (Figure 3.28). 
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Figure 3.28: Resistivity profile trending WNW from origin (Om) beside road 

The above graph shows a clear resistivity anomaly at 92m from the origin, 

which was observed as a pair of raised resistivity values at 85m and 1 OOm on either 

side of a relatively lower resistivity value at 92m. The raised resistivity levels 

correspond to the position of flat areas of short vegetation that immediately surround 

the topographical low of the shaft, which was itself marked on the ground by an area 

of tall reed grass and standing water. The known shaft situated at 92m from the origin 

therefore shows a clear resistivity anomaly, implying that there was a contrast in the 

resistivity characteristics observed at the 2.5m observation depth for the shaft when 

compared with the background vegetation. 

The suspected shaft feature at 50m from the origin that was observed as a 

topographic anomaly on the ground and a vegetation anomaly on the digital colour 

composites did not show a prominent resistivity anomaly, as would have been 

expected if the anomaly represented a shaft similar in nature to that observed at 92m 

from the origin. At 50m from the origin, the observed resistivity was similar to the 

surrounding background material suggesting that there was no difference in resistivity 

characteristics of the suspected shaft feature and the surrounding material at the 2.5m 

observation depth. The suspected shaft feature therefore displays a different physical 

characteristic than the shaft observed at 92m and this may represent a different 
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method of capping of the shaft head, or that the shaft was backfilled with the same 

material as the surrounding soil or that the shaft is insensitive at the specific electrode 

separation. In order to understand fully the nature of the feature observed at 50m 

further investigation was required using other geophysical techniques. 

An electromagnetic evaluation was performed in Area A. Vertical profiles of 

the electromagnetic field properties over the known and suspected features were 

acquired using EM31 and EM34 techniques. Ground conductivity was measured in 

Area A at 2m intervals along the same transect line over which resistivity was 

measured using the EM31 technique with coil separation of 3m to give an observation 

depth of 1.5m. The survey line originated beside the main road and passed through the 

background vegetation intersecting the prominent circular vegetation features at a 

distance of 92m and 50m from the profile origin. These were also observed as 

anomalies in the thermal imagery due to the presence of standing water at the centre 

of each feature. Results of the EM31 survey were displayed in graphical format 

showing the conductivity of the ground measured at a distance from the origin of the 

profile (Figure 3 .29). 
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Figure 3.29: EM31 profile for horizontal and vertical coil configurations 
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The conductivity profiles observed by the horizontal and vertical coil 

configurations are very similar in characteristics, with a gradual decrease in 

conductivity level to a trough at 92m before returning to a relatively constant 

moderate conductivity level away from the origin of the profile. The initial high 

values can be attributed to the acquisition of conductivity readings in close proximity 

to the main road. The low conductivity values measured at 92m correspond to the 

position of the prominent circular vegetation feature with moderate topographic 

expression that was known to represent a mine shaft. In contrast to the results of the 

resistivity survey, there are no anomalies associated with the flat vegetation rims 

surrounding the known shaft. This suggests that there is no anomalous variation in 

soil properties at the 1.5m observation depth across the rims compared to the 

background vegetation. There was no conductivity anomaly evident in the horizontal 

coil configuration corresponding to the suspected shaft at 50m from the profile origin, 

however there was an anomalously elevated conductivity level in the vertical coil 

configuration at this position when compared to the surrounding background 

vegetation measurements. 

Since both features occur in soils of the same composition, the results of the 

EM3l survey suggest that the shaft at 92m displays a variation in electrical properties 

at both shallow and deep observation depths, as detected by the vertical and horizontal 

coil configurations respectively, suggesting that the shaft remained uncapped and was 

not backfilled with material. The suspected shaft feature at 50m shows a variation in 

electrical properties at only shallow observation depth associated with the vertical coil 

configuration and this may suggest that the secondary feature was capped and 

backfilled with material at a level between the horizontal and vertical coil 

sensitivities. However, in order to understand fully the nature of the suspected feature 

at 50m, further geophysical investigation must be performed. 

Ground conductivity was measured using the EM34 teclmique along the 

EM3l survey line at 2m intervals intersecting the prominent circular vegetation 

features. Coil separation was selected at 20m to give a maximum observation depth of 

8m and 6m for the horizontal and vertical coil configurations respectively. Results of 

the EM34 survey were displayed in graphical format showing the conductivity of the 

ground measured at a distance from the origin of the profile (Figure 3.30). 
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Figure 3.30: Profile of EM34 survey at 20rn coil separation for both horizontal 

and vertical coil configurations 

The horizontal coil configuration shows an exponential decline in conductivity 

with an anomalous conductivity peak at 95m corresponding to WNW flank of the 

documented shaft. There is no anomaly observed at 50m over the suspected shaft 

suggesting that the feature shows no variation in electrical properties compared with 

the surrounding material for the 8m observation depth. The conductivity profile 

observed by the vertical coil configuration shows less overall fluctuation in response 

than that observed with the horizontal coil configuration. The electrical response 

shows a gradual increase in conductivity to a peak around 50m before decreasing 

gradually to a wide trough centred around 105m before rising again to an intermediate 

conductivity level associated with the background vegetation. The fluctuation in 

conductivity levels about the maximum or minimum values observed for the known 

and suspected shaft features suggests that the features show similar characteristics to 

the background vegetation at the 6m observation depth. The observed fluctuation may 

therefore be associated with the flat vegetation rims surrounding the shaft features. 

In summary, the known shaft at 92m displayed anomalies in both vertical and 

horizontal coil configurations for the EM31 , with a prominent anomaly observed in 

only the horizontal coil configuration for the EM34 coil separation of 20m. The 
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known shaft therefore displays a variation in soil characteristics at l.5m and 8m 

depths of observation. The suspected shaft at 50m displays anomalies in only the 

vertical coil configurations for both the EM31 and EM34 techniques. The suspected 

shaft therefore displays a variation in soil characteristics for 1.5m and 6m depths of 

observation. The implication of this is that although the surface vegetation and 

thermal characteristics are identical for both features, the variation in electromagnetic 

properties at shallow depth for the suspected shaft may result from a variation in the 

method of capping and backfilling between the features. 

Comparing the results of the EM31 and EM34 surveys with those from the 

resistivity survey, it becomes evident that a combination of geophysical techniques 

was necessary in order to be confident about detection of both the known 92m shaft 

and suspected 50m shaft. 

A secondary geophysical survey was performed over a documented shaft in 

Area B of different physical attributes than those presented in Area A. EM31 and 

EM34 techniques were deployed across a transect line in Area B (Figure 3.31) to 

intersect a shaft of pronounced topographic expression (Figure 3.32) and suspected 

shaft showing a 6m-wide vegetation and thermal anomaly (Figure 3.33). 

Figure 3.31: Location of Area B transect line on Baildon Moor and 

representation of features on natural colour composite and thermal 

imagery 
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Known 
Shaft 

Figure 3.32: Known shaft of pronounced topographic expression 

Figure 3.33: Suspected shaft of circular vegetation and thermal anomaly 

Ground conductivity was measured in Area B at 2m intervals along the survey 

line using the EM31 technique with coil separation of 3m to give an observation depth 

of 1.5m. The survey line intersected the pronounced topographic feature known to 

represent an abandoned mine shaft at 50m from the profile origin and the suspected 

shaft at 80m from the profile origin represented by an anomaly on the thermal 

imagery and represented an area of ground moister than the surrounding moorland. 

Results of the EM31 survey were displayed in graphical format showing the 

conductivity of the ground measured at a distance from the origin of the profile to 

enable the comparison of the electromagnetic field properties of the known and 

suspected shaft features (Figure 3.34). 

93 



E 
()j 
E 
'-' 

0 ·;; 
:;; 
(J 

= '1:1 
c 
Q 

u 

Chapter 3: Context of Subsurface Features and Techniques for Assessment 

30 

25 

20 

15 

10 

5 

0 
0 20 

NW 
40 60 

Area B- EM31 
Tannac 

Road 

100 

KNOWN THERMAL 
SHAFT ANOMALY 

120 140 
SE 

--Horizontal Coil 

-- Vertical Coil 

Distance (m) 

Figure 3.34: EM31 profile for both horizontal and vertical coil configurations 

The conductivity profiles observed by the horizontal and vertical coil 

configurations are very similar in characteristic, with a gradual rise in conductivity 

from the profile origin and a prominent negative anomaly at 50m, corresponding to 

the position of the topographically pronounced shaft. This suggests that there is a 

strong variation in physical characteristics associated with the topographic shaft at the 

1.5m observation depth. The conductivity then rises gradually from the shaft towards 

the background vegetation with a slight plateau of conductivity at 91-95m 

corresponding to the position of a tarmac road before measurements continue to rise 

over the background vegetation. There is no obvious anomaly observed through either 

horizontal or vertical coil configurations relating to the suspected shaft at 80m from 

the profile origin, suggesting that there is no physical variation associated with the 

suspected shaft at this observation depth. The suspected shaft therefore requires 

further geophysical investigation in order to determine whether the thermal anomaly 

represents a true physical variation beneath the surface. 

Ground conductivity was measured using the EM34 in both horizontal and 

vertical coil configurations at 2m intervals along the same survey line for the EM31 

technique. Coil separation was selected at 20m to give an observation depth of 8m 

and also at a separation of 1 Om to give an observation depth of 6m. Results of the 
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EM34 survey were displayed in graphical format showing the conductivity of the 

ground measured at a distance from the origin of the profile (Figure 3.35). 
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Figure 3.35: EM34 profile for both horizontal and vertical coil configurations 

The conductivity profiles observed by the horizontal coil configurations 

showed a strong positive anomaly at both observation depths corresponding to the 

position of the pronounced topographic shaft, with a moderate negative anomaly 

observed at both observation depths through the vertical coil configurations. This 

suggests that there was a strong variation in physical characteristics associated with 

the topographic shaft and that the shaft was probably not backfilled with material at 

either observation depth. There was a slight rise in conductivity towards the suspected 

shaft feature in the shallower-viewing horizontal and vertical coil configurations with 

the deeper-viewing coil configurations showing a more pronounced positive anomaly 

in the horizontal configuration and a negative anomaly in the vertical configuration. 

Since the vertical coil configuration is more sensitive to near-surface variations, the 

results of the EM34 evaluation suggest that the suspected shaft may possess a 

variation in physical characteristics at depth. In this survey, the tarmac road was less 

easily observed in either coil configuration. 
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The results of the EM31 and EM34 surveys over the thermal anomaly were 

inconclusive for all coil configurations and observation depths. Therefore, further 

geophysical investigation was required to detennine the nature of the thermal 

anomaly. A Wenner resistivity profile was surveyed with an electrode separation of 

5m to give an observation depth of 2.5m. The survey line was selected perpendicular 

to the original survey line to intersect the thermal anomaly (Figure 3.36). 

Figure 3.36: Location of EM31 secondary profile over suspected shaft 

Results of the resistivity survey (Figure 3.37) show a gradual decrease m 

resistivity across the background vegetation with a strong positive anomaly at 30m, at 

a 2m offset to the position of the thermal anomaly. The suggestion from this is that 

the thermal anomaly may represent a ventilation shaft since these are known to be 

generated at an angle to a mine shaft and may explain the offset between the thermal 

anomaly and the variation in soil properties at the 2.5m observation depth. However, 

there is a secondary positive anomaly at 40m that does not correspond to a thermal 

anomaly, but coincides with an area of trampled vegetation that may cause a variation 

in the moisture of the ground at this location. The resistivity measurements therefore 

cannot be used in isolation to determine the nature of the thermal anomaly at the 2.5m 

observation depth. Further investigation would therefore be required using additional 

techniques to determine the nature of the thermal anomaly, however there was 

insufficient time to conduct additional surveys using the equipment. 
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Results of the geophysical evaluation of Baildon Moor have shown that a 

combination of techniques was essential for the prospection of the suspected shaft 

features . In Area A, the circular feature of suspected shaft origin showed similar 

vegetation and thermal characteristics as the documented shaft. Geophysical profiles 

were measured using Wenner resistivity, EM31 and EM34 techniques across the 

documented and suspected shaft features. The geophysical characteristics of the 

documented shaft were compared with the characteristics measured across the 

secondary feature and the similar response pattern suggested that the secondary 

feature also represented a shaft. In Area B, the circular thermal anomaly showed a 

similar thermal anomaly to the documented shaft, but displayed a very different 

vegetation and topographic expression. Geophysical profiles were measured using 

EM31 and EM34 electromagnetic techniques in both horizontal and vertical coil 

configurations at a variety of observation depths across the documented and suspected 

shaft features . The geophysical characteristics of the documented shaft showed an 

anomaly through horizontal and vertical coil configurations of both techniques at 

shallow and deep observation depths. These were very different in comparison with 

those measured over the suspected shaft where there was only a slight anomaly 

observed at only the deeper observation depth of the EM34 coil configurations. This 

suggested that the thermal anomaly was of a different nature to the documented shaft, 

as suspected by the pronounced difference in topographic exprc sion. An additional 
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Wenner resistivity survey was performed perpendicular to the original profile line to 

intersect the thermal anomaly and results showed that there was a variation in 

resistivity measured across the secondary feature. This corresponded well with the 

presence of an area of high moisture content however additional geophysical profiles 

would be required across the same survey line to be sure of the nature of the thermal 

anomaly. The results of the geophysical surveys performed on Baildon Moor have 

therefore shown that a combination of techniques was essential for the prospection of 

the suspected shaft features. 

3.8 SUMMARY of SHALLOW SUBSURFACE FEATURES and their 

PHYSICAL CHARACTERISTICS 

Shallow ground disturbance creates a differential heat flux between the 

undisturbed soil matrix and that of the buried feature and it is this characteristic that 

provides the potential for detection using thermal imagery. Variations in the 

temperature observed at the soil surface can be related directly to that of the buried 

feature where the surface is devoid of vegetation or is covered by very sparse 

vegetation. As the vegetation canopy closes, the thermal response of the soil will be 

completely masked by the overlying vegetation resulting in a more complex 

relationship between the vegetation and the buried feature due to the interactions of 

the energy fluxes between the soil and vegetation canopy and within the canopy 

structure. 

The temperature contrast between the buried feature and the surrounding 

matrix will vary across the diurnal cycle in response to the variation in thermal 

properties of the materials with the greatest contrast occurring when the surface is at 

its maximum temperature at solar noon and at its minimum temperature just before 

dawn. The acquisition of a pair of thermal images will therefore improve the ability to 

detect features when comparing the thermal contrast with a thermal image acquired at 

a single time in the diurnal cycle. It is difficult to know whether the features detected 

by the thermal contrast relate to buried features, or whether they relate to structural 

differences within the vegetation. 

The case studies provide a wide range of environmental situations where 

shallow buried features are known to occur under a variety of vegetation conditions. 
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In order to understand the structure of the subsurface in each of the settings, a series 

of geophysical surveys are performed to identify physical variations in the subsurface. 

Results from the different contexts show that the application of a variety of 

geophysical techniques is vital in order to identify subsurface variations since certain 

techniques are more appropriate for specific soil conditions. 

The position and structural appearance of the geophysical features are then 

compared to the position of anomalies identified on the multispectral and thermal 

imagery to determine the suitability of using this type of data for the detection of 

shallow buried features. However, prior to analysis the digital data require a series of 

pre-processing steps in order that any noise or positional variations in the data are 

removed so that the various datasets can be directly compared and contrasted. The 

following chapter discusses the data pre-processing techniques that are applied to the 

digital image data before the qualitative image analysis and thermal assessment are 

performed. 
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In its most raw format, data recorded by the NERC Daedalus-1268 Airborne 

Thematic Mapper contains radiometric, geometric and atmospheric distortions or 

imperfections that prevent or hinder meaningful interpretation of the raw digital data. 

The processes of removing the unwanted or distracting features are termed 

preprocessing techniques as these operations are performed prior to interpretation of 

the imagery. The main preprocessing techniques applied to the raw image data are 

radiometric calibration, geometric correction and atmospheric correction procedures. 

Although radiometric calibration is performed by the NERC Airborne Remote 

Sensing Facility, there is still a need for further preprocessing to remove geometric 

distortions and atmospheric effects from the imagery. Geometric correction can be 

performed using either ground control point collection or through the integration of 

the image data with information on the aircraft attitude during image acquisition. 

Atmospheric effects should ideally be removed from the data, however if this is not 

possible then radiometric normalisation may be performed to provide similar 

radiometric conditions by matching image spectra to field spectral measurements. If 

field spectra are not available for a multi-temporal dataset, variations in the 

illumination conditions may be compensated for by image normalisation. Each of the 

preprocessing techniques is described below after a brief description of the extraction 

procedure required before the image data can be visualised. 

4.1 MULTISPECTRAL ATM DATA 

The image data recorded by the Daedalus-1268 Airborne Thematic Mapper 

(ATM) is supplied in NASA's Hierarchal Data Format (HDF). This data is available 

in a range of standard data products that define the amount of processing that has been 

applied to the raw data before delivery. The NERC Airborne Remote Sensing Facility 

supply the data in radiometrically-calibrated Level 1 b format, if requested. In this 

format, pixel values correspond to the radiance measured for a particular pixel with 

detail on the navigational parameters of each scan line appended to enable further 

processing of the data. 

Although HDF data format is supported by most commercially available 

image processing software, the A TM images cannot be directly visualised as there 
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appears to be an inconsistency between the format of the data and the structure of the 

data expected by the image processing software. The images therefore require 

conversion to a more suitable digital format and this is achieved using the azexhdf 

software provided by NERC along with the image data. The azexhdf software operates 

on a UNIX platform, using command lines to extract the imagery for visualisation. 

Example 4.1 indicates the standard command line defined to extract a radiometrically

calibrated image (input_l b.hdf) and generate an output file in a band interleaved by 

line format (-B) whose values represent the radiance (-r) measured for each pixel. 

Example 4.1 azexhdf input_l b.hdf -r -B output_ file 

In the above example, there is no file format specified for the output image to 

enable the data to be exported as a generic binary image that could be read into any 

commercially available image processing software. During the extraction process, the 

azexhdf software indicates the number of rows, pixels and bands contained within the 

file, together with the type of data and the type of band sequencing. This detail must 

be known in order to specify the dimensions of the generic binary image for 

visualisation and importation into the image processing software. The images are 

initially imported into PCI® image processing software for subsequent manipulation 

using the IMAGERD process in XPace. 

In addition to the process of image extraction, the azexhdf software also 

enables the determination of supporting information contained in the image header, 

such as mission, navigational and instrumentation parameters. The entire parametric 

detail contained in the header can be extracted (-h) to a text file to reveal values 

associated with specific parameters and the abbreviations required in the command 

line for more detailed parametric extraction (Example 4.2). 

Example 4.2 azexhdf -h input_l b.hdf input_l b.txt>input_l b.txt 

The most important detail given in the extracted header for the research is the 

units of radiance associated with the pixel values and the scaling factors applied to the 

values to ensure that the radiance is measured with the correct number of decimal 

places. This is very important where the pixel radiance values are used in numerical 
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models for assessing the apparent thermal inertia of the surface. The units of radiance 

associated with the imagery are 11W cm-2 sr-1 nm- 1
, which are different from the 

standard units of radiance detailed in Chapter 2 used in Planck's Radiation Law. This 

problem will be addressed in more detail in Chapter 6. 

Other important parameters that are extracted from the header are the upper 

(ATwavu) and lower (ATwavl) spectral wavelengths associated with each image 

channel. This is important as the mean spectral wavelength of each channel must be 

specified in order to perform meaningful spectral analysis of the data (Example 4.3). 

Example 4.3 azexhdf -hd A Twavu -v 11 a194031 b.hdf out u.txt>out u.txt - -

Once the wavelength data was extracted, the spectral information is attached 

to all subsequent images since the same instrument was used to acquire all the data 

channels. It is very important to be aware of the units associated with the wavelength 

data to ensure that there is a consistency between the spectral detail of all the imagery 

and that of any ancillary spectral data. The wavelengths are initially specified in 

nanometers, but can be easily converted to other units in the image processing 

software. 

The image header also contains detail on the calibration factors used by the 

NERC Airborne Remote Sensing Facility to provide the radiometrically-calibrated 

images. The following section describes the radiometric calibration procedures 

performed in order to provide the image data in radiance units. 

4.2 RADIOMETRIC CALIBRATION 

Radiometric calibration is an instrument-specific and inter-channel correction 

that removes systematic or random inconsistencies that degrade the radiometric 

content of the digital image data (Mather, 1999). The main causes of radiometric 

inconsistency are the periodic drift, malfunction or electronic interference of the 

detectors during data acquisition. It is especially important to correct for these 

problems where studies require the comparison of pixel values from images obtained 

at different times, or where estimates of surface parameters such as reflectance are 

required for use in physical models. Calibration can be performed either by imaging 
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an external calibration target on the ground and relating the measured value to the 

image data, or by using internal sensor calibration data. 

Instrument detectors are designed to produce a linear relationship between the 

digital number recorded and the spectral radiance measured for a pixel, with the slope 

and intercept of the line known as the gain and offset calibration factors respectively 

(Equation 4.1 ). 

Equation 4.1 Radiance= Offset+ Gain* Pixel Value 

Each detector has a different set of calibration factors associated with it that 

are determined prior to instrument deployment, although the factors will vary over 

time as the response of the detector degrades and therefore substantial differences will 

occur in radiometric calibration if incorrect calibration factors are applied to the data. 

Detail on the gain factors for each image channel can be extracted from the image 

header, but since the images are already radiometrically-calibrated by the NERC 

Airborne Remote Sensing Facility, there is no need to apply the above equation to the 

data (Wilson, pers. comm.) 

Although the images are radiometrically calibrated prior to handling, it is 

necessary to perform other preprocessing techniques to remove the effects of 

variations in atmospheric conditions occurring between the images and also to correct 

for geometric distortions. The topic of geometric correction is discussed in the 

following section. 

4.3 GEOMETRIC CORRECTION 

Raw digital images contain geometric distortions that must be removed from 

the data in order that the structure of the ground surface visualised on the imagery will 

correspond directly with its appearance on a map. The transformation of images so 

that they have the scale and projection properties of a map is known as geometric 

correction and this is especially important when comparing multiple images of an area 

or where the information extracted from the images requires integration with ancillary 

data. The main sources of geometric error result from platform instabilities, including 

variations in altitude and attitude of the platform, and relief effects that cause non

linear dist01iions during image acquisition (Figure 4.1 ). 
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Figure 4.1: Geometric distortions of imagery compared to base map (right) 

All sources of geometric distortions must be removed prior to analysis or 

integration with other datasets. The low altitude airborne platform supporting the 

ATM was affected by air turbulence and fluctuating winds during data acquisition that 

cause pitch, roll, yaw and crabbing of the aircraft causing incoherent movement 

between the sensor and the ground surface. Some of the motion was reduced through 

gyro-stabilisation of the sensor, but the directional motion of the aircraft required the 

acquisition of ancillary navigational data, specifically the latitude and longitude of 

each scan line, in order to transform the image into the specified coordinate system 

and adjust the image so that it represented the geometric integrity of a map. This 

technique tends to be more successful where the topography shows little variation, 

however where surface relief effects are greater the distortions can vary with respect 

to the distance occurring between the aircraft and the elevation of the terrain. When 

viewing at nadir, the relief effects tend to be negligible but as the viewing angle 

increases off-nadir, there may be a greater geometric distortion of sloping surfaces. It 

was possible to remove relief effects by integrating the image data with a digital 

elevation model and this process will be discussed in a later section. 

Geometric correction involves the determination of the relationship between 

the two coordinate systems associated with the map and the image. The process 

defines a set of points representing the pixel centres in the corrected image that, when 

considered as a rectangular grid, define an image with the desired geometric 

properties (Mather, 1999). The process then estimates the new pixel values based on 

some mathematical relationship between the input and output pixellocations. 
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The following sections describe the two main geometric correction procedures 

of Ground Control Point Collection and Automated Geocorrection that were applied 

to transform the images into a grid of pixels with associated coordinates. 

4.3.1 Ground Control Point Collection 

Ground control point collection is an image-based approach to geometric 

correction that requires the identification of well-defined features, such as field 

boundaries, road intersections, building corners or the centre of mineshafts, that can 

be accurately located on both a the digital image and the base map. These features are 

termed ground control points (GCPs) and are used to convert the image coordinates to 

map coordinates. The collection of GCPs requires the presence of a good base map at 

a suitable scale from which the control coordinates can be obtained. The coordinates 

can be extracted using a digital map or by manual extraction from an analogue source. 

Geometric correction is performed on each study site using the PCI® image 

processing software, with GCP correlation between the digital image and a digital 

map source. 

The initial step in geometric correction is to generate a geocorrected database 

whose bounding coordinates enclose the study site. The software internally 

determines the positions of the database pixel centres from the defined pixel 

resolution, database dimensions and bounding coordinates. The geocorrected database 

then provides a reference coordinate system for rectification of an image. 

Prior to geocorrection, it is first necessary to import a digital base map into the 

geocorrected database for accurate GCP location and this is achieved by obtaining 

Digital OS Landline vector data from the EDINA Digimap online facility 

(www.edina.co.uk). The data obtained through this facility is provided in NTF file 

format and requires conversion to the standard vector shape (SHP) file format using a 

file conversion in Map Manager® v6.1. The individual vector tiles covering the study 

site are viewed in ArcView® and are merged together, specifying details ofthe vector 

grids to be merged in the single command line of the Map Calculator available in the 

Spatial Analyst module (Example 4.4). This provides a single vector layer for the 

geocorrected database from which to collect the GCPs. 
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Example 4.4 ( [gridl].mosaic( { [grid2],[grid3],[grid4]})) 

The PCI GCPWorks module enables geocorrection of the study images, 

establishing the Full Processing requirements at the outset for image transformation 

using GCP collection from a vector source. The Thin Plate Spline algorithm is 

selected as the desired mathematical model for transformation as this ensures that the 

warping of the data is exact at each selected control point with errors increasing with 

distance from the point forming a tessellated surface. Once these details are specified, 

image geocorrection begins with selection of an uncorrected image, the geocorrected 

database and the vector layer from which to collect the GCPs. GCP collection begins 

with the selection of a pair of points, a pair being formed by selecting a feature on the 

image and then its corresponding location on the vector layer (Figure 4.2). 

A 

Figure 4.2: GCP collection using PCI GCPWorks software. GCP pairs are 

selected at points recognisable on (A) image and (B) vector layer 

The GCP selection process is straightforward, with points selected at road 

intersections and field boundaries for Bosworth and at the intersections of roads and 

paths in Baildon Moor and Weardale. The vast majority of these features are easily 

recognisable on both datasets. However, problems arise in GCP selection on the 

Bosworth imagery where the position of some field boundaries on the vector layer has 

been altered on the ground since generation of the OS map, due to removal of 

hedgerows since mapping was undertaken (Figure 4.3). 
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Figure 4.3: Change in field boundary position between vector layer and its 

potential position on image 

Vegetation also causes a problem for GCP selection for Bosworth, especially 

around the edges of the fields with either the shadow cast by the hedgerow or the 

crown of the trees masking the position of the field boundary from view on the image. 

When the foliage is at an early stage in the growth season it is possible to make a 

reasonable estimate as to the boundary position. However, where the foliage covers a 

greater surface area later in the growth season, alternative points are selected on either 

side of the problem feature. 

The spatial relationship between the GCP pairs is assumed to represent the 

image distortion and is used to calculate the transformation required to correct the 

image into the database coordinates. There is a minimum requirement of three GCP 

pairs that are defined in order to calculate the mathematical transformation. However, 

the transformation is more accurate through collection of as many pairs as possible. 

When the fourth GCP point is selected from either source, the software estimates the 

position of its corresponding GCP. If the estimated point is positioned far from its true 

position, the GCP must be moved to the appropriate position. To ensure GCP 

estimation is as accurate as possible, the initial three GCP pairs are ideally selected 

with a wide spatial distribution. However the estimation is poorer in accuracy where 

there is a strong topographic variation. In this case, more GCP pairs are selected 

around the feature to reduce the errors during transformation. Once a sufficient 
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number of GCP pairs span the uncorrected image, the points are saved for reference 

and the image transformed into the coordinate system of the geocorrected database 

using an appropriate resampling technique. 

The software offers a range of different methods for resampling the data into 

the new coordinate system from Nearest Neighbour and Bilinear Interpolation to 

Cubic Convolution, with progressively more complex mathematical transformations. 

Bilinear Interpolation uses a distance-weighted average of the four pixels in the input 

image nearest to the output pixel. Cubic Convolution evaluates the nearest sixteen 

input pixels to the output pixel and in both cases the output pixel has a value 

representing the mathematical relationship of the input pixels. To retain the subtle 

variations in the absolute pixel values of the uncorrected image, Nearest Neighbour 

resampling is selected, which assigns the pixel value from the uncorrected image 

directly to the spatially closest pixel position in the geocorrected database (Figure 

4.4). Geocorrection is then performed for the first image of the study region (Figure 

4.5). 

Figure 4.4: Nearest Neighbour Resampling where uncorrected pixel values are 

transferred to the closest corresponding pixellocation 
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Figure 4.5: Geocorrection of image (A) using GCP pairs to generate geocorrected 

image (B) 

Several images are needed to provide complete coverage for the study site so 

that once the first image is rectified it is necessary to mosaic together all subsequent 

images with the geocorrected image. Image mosaicking is achieved by performing the 

GCP collection routine outlined above for all subsequent images. However, before the 

final stage in their transformation, an area is defined where the overlap between 

images is minimal in order to generate a single uninterrupted image of the study site 

when the images are blended together. Mosaicking involves the creation of a polygon 

within the uncorrected image that encloses the desired area. The polygon edges are 

drawn around field boundaries and roads, avoiding fragmentation of individual fields 

and shaft features. Pixels in the geocorrected database that overlap ones enclosed 

within the polygon are then replaced by the corresponding pixels from the new image 

on geocorrection. This ensures that the boundaries between the images are not easily 

seen in the geocorrected image of the study site. 

Once the first mosaic of each study site is generated, the geocorrection process 

is repeated for the additional acquisition dates. In these cases, GCP collection is 

performed using the initial geocorrected image mosaic as the base coordinate source, 

with GCPs selected as features common to the two images. This ensures that eo

registration of the images is as precise as possible so that the variability in the diurnal 

or seasonal response of any feature can be more easily assessed. For consistency in 

the warp transformation, GCPs are ideally selected at the same positions for all the 

images but this is not always possible due to variations in feature visibility. This is 

especially the case for eo-registration of the day and night thermal images where 

features that show a strong thermal contrast with the surrounding material on the day 
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imagery show a much poorer contrast in the night imagery and are therefore less 

easily identified. Some of the field boundary hedgerows on the Bosworth imagery and 

mineshafts on the Baildon Moor imagery display such characteristics where the night 

thermal response of the features is similar to that of the surrounding vegetation. In this 

case GCP pairs are selected at the best estimate of the feature location. Although this 

results in a variation in the number and position of the GCP pairs, there is little visible 

affect on the warp transformation of the multitemporal images. 

Both Bosworth and Baildon Moor represent two situations where there is very 

little variation in topography over the study sites and the GCP collection procedure 

generates geocorrected images that display a similar spatial integrity to the base map. 

When this process is attempted for the W eardale imagery, where there is a much 

greater topographic expression, the number of GCPs required to correct each image is 

extremely high and so the process is very time-consuming and produces poor results. 

An alternative geocorrection method for the W eardale data is then required that 

incorporates the parametric detail on the aircraft position during scanning. NERC 

supply an Automatic Geocorrection software package along with the data and this is 

then applied to the Weardale data. 

4.3.2 Parametric Geocorrection 

The parametric approach to geometric correction is less dependent on the 

collection of ground control points from data sources and provides an automated 

process using detail on the external orientation of the airborne platform (Roy et a/, 

1997). The NERC airborne platform measures sensor orientation using an inertial 

navigation system integrated with a GPS to give detail on the latitude and longitude 

during data acquisition. This data is incorporated into the header of the Level 1 b HDF 

image to indicate the position of the aircraft at the start and end of every scan line. 

The azgcorr Automatic Geocorrection software, supplied by the NERC 

Airborne Remote Sensing Facility, is designed specifically for the geocorrection of 

ATM data. The azgcorr software uses the navigational information contained in the 

image header to compensate for the geometric distortions present in the imagery due 

to the motion of the aircraft. 
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The azgcorr software operates on a UNIX platform, with a distinct set of 

command lines to generate a geocorrected Level 3b HDF image of the study site. 

Example 4.5 indicates the standard command line defined to geometrically correct the 

image (input_lb.hdf) and generate an output image (output_3b.hdf) with a specified 

pixel resolution ( -p) and default settings of Nearest Neighbour resampling and with a 

geocorrected image orientation with North at the top of the image. 

ExampRe 4.5 azgcorr -1 input_1b.hdf -3 output_3b.hdf -p 2 2 

A suitable output pixel resolution is defined from detail on the spatial 

resolution given on extraction of the image data using the azexhdf software (Example 

4.1 ). As a default, the entire number of image channels present in the data is 

geocorrected using the command line (Example 4.5). This is only suitable for 

geocorrection of the day time imagery since the important data in the night imagery is 

contained in only the thermal channel. The individual thermal channel is then 

specified (-b) for geocorrection of the night data (Example 4.6). 

Example 4.6 azgcorr -1 input_1b.hdf -3 output_3b.hdf -p 2 2 -b 11 

Further to a basic geocorrection using only the aircraft navigation coordinates, 

geocorrection is performed by including a digital elevation model of the study site to 

compensate for the effects of aircraft motion relative to the relief of the terrain. 

Ordnance Survey 1:50,000 scale Panorama digital elevation model data for Weardale 

can be obtained from the EDINA Digimap online facility (www.edina.co.uk) in NTF 

file format, which is converted to a vector SHP file using Map Manager® v6.1. The 

elevation data is then visualised in ArcView and converted to a grid before exporting 

to an ASCII text file. In order that the data is recognised as a DEM in the azgcorr 

software, a single line of comma-delimited text is added to the start of the ASCII text 

file to define the dimensions, bounding coordinates and spatial resolution of the DEM. 

The geocorrection process is then performed using the DEM (-eh) and the appropriate 

image (Example 4. 7). 

Example 4.7 azgcorr -1 in_1b.hdf -3 out_3b.bdf -p 2 2 -b 11 -eh dem.txt 
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The initial DEM obtained for Weardale has a spatial resolution of 50m and on 

visualisation of the output geocorrected image, it is apparent that this grid resolution 

is inappropriate for geocorrection since the geocorrected image displays large gaps 

containing no image data where the spatial data of the image is forced to stretch over 

a wide area on the DEM. The gaps can be removed by performing the geocorrection 

using a DEM with smaller spatial resolution, generated using stereo aerial 

photographs that had been acquired simultaneous to the image data by the Wild RC

I 0 survey camera mounted on the aircraft. The analogue stereo aerial photos are 

scanned on a photogrammetric scanner for importation as digital images into the 

Intergraph® software operating on a Microstation at the British Geological Survey. 

The calibration and optical properties of the survey camera are provided by the NERC 

ARSF to compensate for lens distortions on the aerial photography. These parameters 

are specified at the outset and the software compensates for camera distortions using 

these values together with the position of the fiducial marks visible on the digital 

images. Once the general arrangement of the photos is defined, the software 

automatically identifies points that overlap between the images. The user then checks 

their absolute positions and assigns elevation values to specific points. The software 

then generates a DEM with a specified spatial resolution from the images, together 

with a series of orthophotos with the scale, tilt and relief distortions removed. This 

DEM is integrated with the Weardale images in the azgcorr software to generate a 

suitably geocorrected image dataset. 

The geocorrected Level 3b HDF images once agam cannot be directly 

visualised in the image processing software as the file format is incompatible with the 

expected structure of the data. The geocorrected images are again extracted to a 

generic binary format using the azexhdf software as for the Level 1 b HDF images 

(Example 4.1 ). When visualised, the geocorrected images still show a small degree of 

geometric distortion and therefore it is necessary to perform an additional GCP 

collection routine on the images to remove further errors and eo-register the day and 

night images. As with the Bosworth and Baildon Moor data, several images cover the 

Weardale study site and so during the GCP collection process the Images were 

mosaicked together to provide a single uninterrupted image of the site. 
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The procedures outlined above provide geometrically corrected images for the 

study sites. When assessing variations in the response of surface materials, it is 

important to remove all sources of distortions from the data. With the radiometric and 

geometric distortions removed from the data, atmospheric effects require to be 

removed in order that the values represent true variations in material response. The 

geocorrected images are then imported into ENVI® image processing software 

(Appendix B 1) for visualisation (Appendix B2), making sure that the spectral detail of 

the image channels is accurately defined (Appendix B3). 

4.4 SPATIAL RESIZING 

When the geometrically corrected images are imported into the ENVI software 

it is apparent that there is a difference in the spatial coverage of the images associated 

with each study site. It is therefore necessary to spatially reduce the images and 

generate a series of output images that represent the area of image overlap. The area 

overlap of each study site can be determined by generating a series of masks that 

represent the coverage of each individual image (Appendix B6.1 ). Mask definition 

requires the range of data values associated with the individual images to be examined 

through calculation of the image statistics (Appendix B 11) and specifying the 

minimum and maximum values associated with each image. The results generate a 

series of masks representing the spatial extent of each image (Figure 4.6). 

Figure 4.6: Day (upper) and night (lower) masks generated for Bosworth 
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The overlap between the images is then determined by adding the masks 

together through simple band arithmetic (Appendix B7). The area of image overlap is 

then determined from the new mask image (Figure 4.7A) and a secondary mask 

generated for image overlap by selecting the maximum value associated with added 

mask (Figure 4.7B). The secondary mask is then applied to the original geocorrected 

images (Appendix B6.2) to generate a series of images indicating the area of overlap. 

Similar masks are generated for the Weardale and Baildon Moor datasets though these 

are not presented. 

Figure 4. 7: (A) Overlap of Bosworth masks generating mask (B) for overlap 

When the statistics of the masked images are calculated, it is apparent that a 

series of 'non-value' pixels are generated outside the overlap area. Since these pixels 

can produce a problem for further mathematical transformation, the datasets are again 

reduced in size to exclude these pixels. This gives an added bonus of reducing 

computation time of the subsequent analyses. Spatial subsets are generated for each 

site by defining a rectangle on the imagery that contains the surface features of 

greatest importance, namely the features of archaeological interest and of abandoned 

mine activity (Appendix B8). The spatial subset generated for the Bosworth study site 

is selected to incorporate the main fields where geophysical evaluation had been 

performed surrounding the Battlefield visitor centre (Figure 4.8). The spatial subset of 

the Baildon Moor imagery concentrates on a small area where mineshaft features are 

most evident (Figure 4.9) and the spatial subset for Weardale concentrates on an area 

of mineral extraction scour marks and spoil heaps (Figure 4.1 0). 
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Figure 4.8: Spatial subset generated for Bosworth 

Bai ldon Day Thermal Baildon Night Thermal 

Figure 4.9: Spatial subset of Baildon Moor abandoned mine activity 
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W eardale Day Thermal 

Weardale Night Thermal 

Figure 4.10: Spatial subset generated for Weardale abandoned mine activity 
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4.5 ATMOSPHERIC CORRECTION 

The intensity and spectral distribution of energy that is received at the remote 

sensor will not be the same as the intensity and spectral distribution of energy that left 

the ground surface. Solar radiation that is reflected by the surface materials passes 

through the atmosphere before detection and has suffered attenuation by the 

atmospheric constituents present in the atmosphere. Although greatly reduced under 

clear-sky conditions, atmospheric attenuation still affects the quality of the ATM data 

and so a value recorded for a given pixel is representative of the ground-leaving 

radiance at that point, but may also include atmospheric effects. The problem is then 

to be able to restore the detected radiation to the characteristics when it left the ground 

surface to enable pixels radiance values to be related to some physical property of the 

surface. As the Earth orbits the Sun, the amount of solar radiation reaching the ground 

surface varies through time and so variations in the solar radiation must also be 

accounted for when comparing multitemporal data acquired under different solar 

conditions. 

There are a variety of techniques that can be adopted for atmospheric 

correction of image data. Radiative Transfer Modelling can be used to simulate 

atmospheric conditions at the time of image acquisition by quantifying all the various 

processes that corrupt the signal from the surface (Hapke, 1993). These models are 

theoretically sound, but problems arise when values for important atmospheric 

parameters have to be estimated and inserted into the radiative transfer equations, 

particularly when detailed meteorological detail is unavailable. Radiative transfer 

modelling was not pursued because of the lack of meteorological data for accurate 

quantification of the necessary parameters. 

Image Normalisation can be carried out without the need to input additional 

information and can be used to remove the effects of variations in illumination 

conditions and solar illumination between the multitemporal images using the spectral 

response of a spectrally flat target material whose response is assumed to be stable 

between the times of imaging (Warner & Chen, 2001). Empirical Line Calibration is 

the most commonly used technique where empirical relationships are produced 

between the radiance values measured at the sensor and reflectance values measured 

over a number of target materials simultaneous to image acquisition (Smith & Milton, 
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1999). The main technique adopted for atmospheric correction of the A TM image 

data was Empirical Line Calibration with Normalisation of the multitemporal images 

acquired over Bosworth. 

4.5.1 Empirical Line Calibration 

Empirical Line Calibration (ELC) assumes that there is a range of target 

materials of different reflectance characteristics present in an image and requires the 

measurement of the reflectance spectra of each target material at ground level 

simultaneous to image acquisition (Smith & Milton, 1999). Ideal conditions are that 

the target materials are homogeneous in composition with a horizontal surface and are 

devoid of any shadow effects. 

The ELC technique compares two sets of spectral data, one measured at the 

surface over a variety of target materials and the other extracted from the imagery 

over the same target materials. The ELC algorithm calculates the relationship between 

the surface and image spectra measured in each spectral channel. The technique 

therefore matches the sensor spectra with the ground spectral measurements in order 

to correct for atmospheric effects using a linear regression function. 

The use of a single calibration target can provide a simple calibration, but can 

generate large variations between the expected and measured ground reflectance. Two 

calibration targets are preferable with a large spectral contrast for removal of 

atmospheric radiance effects but this still produces a rough approximation for the 

atmospheric effect. Greater accuracy is achieved by increasing the number of spectral 

target materials. The method also assumes that there are no differences in illumination 

conditions across the image with no cloud or topographic shadow effects (Smith & 

Milton, 1999). 

The ELC technique is performed through ENVI® image processing software 

and requires the acquisition of ground reflectance spectra. Field reflectance spectra 

are measured concurrent to ATM overflight using a GER1500 spectroradiometer, a 

hand-held instrument that measures radiance in 512 contiguous spectral bands across 

visible and near-infrared spectral wavelengths (Appendix A3). The GER1500 is used 

to measure the radiance spectra of a standard calibration plate and the radiance spectra 

of a target material. Reflectance is then calculated by taking a ratio of the radiance of 
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the target material with respect to the radiance of the calibration plate. During spectral 

measurement, the user specifies whether the spectral reading is associated with either 

the reference material or the target material with the instrument capable of calculating 

the reflectance of each target with respect to a single reference reading. 

Targets are selected for a wide range of contrasting material types to represent 

the greatest degree of spectrally diversity between the materials. The targets are also 

selected with sufficient size that they can be located on the imagery. To ensure 

accurate target location, the GPS coordinates of each target are measured in the field. 

The target materials selected for the Bosworth study site consist of dark gravel, light 

gravel and a range of different vegetation surfaces including pasture, barley, long 

green grass and short green grass (Figure 4.11 ). 

Dark 

Gravel 

Pasture Barley Long Green Grass 

Figure 4.11: Location of field reflectance spectra for Bosworth study site 

Short 
Green 
Grass 

Light 

Gravel 

Reflectance spectra were measured over these specific targets on three dates of 

daytime image acquisition. The data acquired during June and August 1998 are 

downloaded into a text file where the columns of data represented the wavelength of 

observation, radiance of the calibration plate, radiance of the target material and the 

automatic calculation of reflectance for the target material. When the data from March 

2002 was downloaded it was apparent that the instrument had been unable to 

differentiate between the radiance recorded for a target material and the radiance of 

the reference material. As a result, the generated reflectance spectra were incorrect. 
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Due to insufficient field spectral detail for the March data, an alternative approach to 

atmospheric correction is therefore sought in order that a direct comparison can be 

made in the spectral response patterns of a particular material across the 

multitemporal data. Atmospheric correction using the ELC technique is performed for 

the June and August Bosworth data using the field reflectance spectra visualised for 

each of the target materials. 

In addition to the field reflectance spectra, image radiance spectra are required 

for the ELC technique. Radiance spectra are extracted from the appropriate image by 

defining a region of interest around the target material (Appendix B4). The precise 

position of the target can be located on the geocorrected image by using the GPS 

coordinates measure in the field at each target material. The mean spectral signature 

of the image pixels within each of the defined regions are then visualised and 

extracted as the image radiance spectra for the suite of target materials. The image 

radiance spectra are imported into the Data Spectra Collection of the ELC tool 

together with the field reflectance spectra; pairs of corresponding image and field 

spectra are matched using regression analysis (Appendix B5.3). Prior to determination 

of the regression equations, the software resamples the field spectra measured in 512 

contiguous channels spanning the visible and near-infrared (0.3044-1.1 0781-lm) to 

match the spectral overlap of the 8 channels of the visible and near-infrared measured 

by the ATM (0.4360-0.96201-lm), Figure 4.12. 
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Figure 4.12: Resampling of 512-channel field spectra to the 8-channel resolution 

of the image in the visible and near-infrared wavelength region 
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Using the ELC technique, atmospheric effects are therefore removed from 

visible and near-infrared channels (Bands 1 to Band 8) of the June and August 

Bosworth data. This technique does not however remove atmospheric effects from 

data in the short-wave infrared channels (Band 9 and Band 1 0) nor the thermal 

infrared channel (Band 11 ). This is performed through image normalisation and shall 

be discussed later. In order that the diurnal and seasonal variation in the thermal 

response of the surface materials can be evaluated, the thermal channel must be 

calibrated to temperature values. 

4.5.1.1 Empirical Line Temperature Calibration 

The thermal channel of the A TM is calibrated to surface temperature using the 

same Empirical Line Calibration technique adopted for atmospheric correction of the 

visible and near-infrared data. As for the visible and near-infrared multispectral data, 

the technique forces radiance values measured at thermal infrared wavelengths to 

match ground temperature values measured in situ over a range of target materials. 

Ground temperatures are ideally measured simultaneously to image acquisition since 

the temperature of the materials will vary across the diurnal cycle. 

Ground surface temperatures are measured in contact with the same target 

materials over which ground spectral measurements are acquired. The temperatures 

are recorded in an ASCII text file together with the wavelength associated with 

thermal observations (9.9500j..lm). The ELC algorithm in the ENVI image processing 

software prohibits the use of a single line of ASCII so another line is added in the text 

with duplication of the temperature values at a slightly higher observational 

wavelength (9.9501j..lm). The new ASCII file then provides ground temperature values 

suitable for ELC of the data measured in the thermal channel. 

Before the calibration is performed, it is necessary to extract the thermal 

radiance values from the target materials in the image data where ground temperatures 

are measured. The radiance values are obtained by defining a region of interest around 

the target material and the mean radiance value extracted for all areas. The values are 

then imported into the calibration technique and pairs of corresponding image and 

field values are selected. This provides conversion of the thermal image channel to 

surface temperature values. 
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Ground temperature measurements are acquired simultaneous to image 

acquisition for the Bosworth images. Unfortunately no ground temperatures were 

measured for the Baildon Moor or W eardale data and as a result the thermal channel 

remained in units of radiance. An alternative more quantitative approach to 

temperature calibration can be performed using the radiance values in the Planck 

equation and this is discussed in Chapter 6. 

4.5.2 limage NOJrmali§atimn 

Image normalisation provides an appropriate alternative to the ELC technique 

where there is insufficient auxiliary detail on the spectral characteristics of the 

surface. Image normalisation enables the compensation of variations in seasonal 

illumination effects that occur due to the seasonal variation in the geometrical 

relationship between the sensor, the Sun and the topographic slope. This technique is 

especially important when assessing seasonal variations in the reflectance or emission 

of materials present throughout the multi temporal Bosworth data. 

There are a variety of Normalisation procedures that can be applied by using 

the relative reflectance properties between a horizontal and inclined surface (Warner 

& Chen, 2001). An alternative technique is to use one image from a multitemporal 

dataset as the reference spectral response and normalise the other images to it. This is 

suitable where similar surface conditions are present and the vegetation is at a similar 

growth stage (Mather, 1999). Normalisation provided a suitable technique to enable 

the seasonal comparison of the Bosworth dataset for the majority of fields due to 

similar grassland condition. Ambion field, however, was planted with an agricultural 

crop that had different vegetation condition at the various times of imaging so 

normalisation was not necessarily a suitable technique for analysis of this field. 

The Bosworth images were normalised by performing a Flat Field Correction 

algorithm, which norn1alises the images to an area that is known to contain a 

spectrally flat reference material that showed very little variation m response 

throughout the spectral wavelengths and also showed little variation between the 

image dates. For the normalisation of the Bosworth data, an area of gravel was 

selected near the visitor centre as a suitable spectrally flat reference material. This 

material showed the least amount of variation across the visible and near-infrared 
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wavelengths and also the least amount of variation between the temporal data (Figure 

4.13). 
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Figure 4.13: Spectrally flat reference material for Bosworth multi-temporal data 

Before Flat Field Correction was performed, the radiance spectrum of the 

target material was extracted from the visible, near-infrared and short-wave infrared 

spectral channels of the imagery (Band 1 to Band 1 0) by defining a region of interest 

around the target material and determining the mean radiance spectra of the image 

pixels within the define region (Appendix B4). The reference spectral signature was 

then divided into the spectral signature of every other pixel in the image, thus 

normalising the multi-temporal Bosworth data using the Flat Field Correction 

algorithm. The seasonal variation in the particular surface materials was then assessed 

by comparing the spectral response observed on the multi temporal images. 
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4.6 SUMMARY! of IMAGE PROCESSING TECHNIQUES 

The raw image data recorded by the NERC Daedalus-1268 ATM sensor 

contain radiometric, geometric and atmospheric distortions that prevent meaningful 

interpretation of the information content of the digital images. These require removal 

through application of a number of preprocessing steps. 

Radiometric calibration, which is specific to the individual sensor, was 

performed by the NERC ARSF prior to data delivery so that the images extracted 

from the raw file format were calibrated in terms of radiance. The initial file format 

was incompatible with the NASA HDF image standard expected by the image 

processing software so the images required extraction to a more compatible generic 

binary file format. 

Geometric distortions were removed from the data usmg two different 

methods in order to provide the geometric integrity of a georeferenced base map and 

enable the integration with other georeferenced data sources. The initial method 

involved the collection of ground control points whose position were easily located on 

both the imagery and a georeferenced Ordnance Survey base map. This technique 

proved to be most successful for the Bosworth and Baildon Moor images where there 

was minimal topographic variation across the extent of the imagery and also where 

there was minimal aircraft motion. The geometric distortions were more dramatic in 

the Weardale data due to a more pronounced topographic variation and as a result of 

gusting winds. An alternative approach was therefore adopted through application of 

an automatic technique that used the auxiliary navigational detail measured by an 

inertial navigation system that is integrated with each scan line. 

Once the spatial extent of the study sites was reduced to represent the overlap 

between the diurnal or seasonal images, atmospheric effects were removed from the 

data. These proved more difficult to compensate for than the geometric distortions due 

to an insufficient characterisation of the atmospheric condition during overflight for 

application of radiative transfer models. Atmospheric effects were removed from the 

visible and near-infrared channels of two of the Bosworth images using linear 

regression functions to relate image radiance data and field reflectance spectra 

recorded simultaneously to overflight over a series of target materials. This technique 
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can only be applied where there is sufficient field spectral measurement during 

overflight. It was not possible to obtain spectral signatures or meteorological data for 

the Baildon Moor or Weardale data thereby preventing correction of atmospheric 

effects from these images and as a result, atmospheric effects remained. Although 

atmospheric effects were removed from two of the Bosworth images, the effects 

remained in the other images and so evaluation of seasonal variations in surface 

response must bear this in mind. Image normalisation provided a suitable alternative 

with compensation of variations in illumination conditions between the images using 

the spectral response of a spectrally flat target material. 

For extraction of information on the thermal properties of the land surface it is 

useful to convert thermal radiance to surface temperature and this will be discussed in 

detail in later chapters together with interpretation of the observed temperature 

response. 

These preprocessmg techniques have provided a senes of seasonal images 

with normalised visible and near-infrared responses for one of the study sites. These 

data are now ready to be evaluated using a variety of image analysis techniques with 

interpretation of the results before the application of the most promising techniques to 

the uncalibrated data of Bail don Moor and Weardale. 
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5 QUALITATIVE IMAGE INTERPRETATION 

The synoptic view of the ground surface offered by the processed digital 

airborne images is used for the identification and interpretation of archaeological and 

geological features. The research uses both qualitative and quantitative methods to 

assist the process of image interpretation. This chapter concentrates on qualitative 

image interpretation where surface features are identified by their anomalous spectral 

response with respect to surrounding pixels. 

Initial interpretation of the images involves the visualisation of the individual 

spectral channels as a series of monochrome images. The range of response values 

associated with the vegetation covering the ground surface is relatively low compared 

with the surrounding materials and so the appearance of the images requires 

enhancement so that the information contained in the monochrome images can be 

interpreted more easily. This is achieved through a series of contrast enhancement 

techniques, which manipulate the histogram of the display channel to provide 

improved visualisation. The data can also be visualised as a series of colour composite 

images, representing a combination of the sensor's spectral channels. Colour 

composites are initially formed by combining the visible channels to represent the 

output of a standard aerial photograph, with additional colour composites generated 

through combination of the visible, near-infrared and thermal-infrared channels. The 

anomalous features associated with each of the spectral combinations are then 

compared to assess the amount of additional detail provided by inclusion of the 

thermal channel. A series of numerical transformations are then applied to the 

calibrated unage data from the Bosworth site through edge detection, image 

arithmetic and principal component analysis to enhance the detection of the 

anomalous features. The techniques that reveal the greatest amount of detail are then 

applied to the uncalibrated image data from the Bosworth site to determine (i) the 

necessity of calibration and (ii) the most appropriate processing requirements for 

feature detection. The most successful techniques are then applied to the images from 

Baildon Moor and Weardale to locate shallow ground disturbance at each study site. 

The anomalous features from each site are then compared with the results of the 

geophysical evaluations to determine whether the thermal anomalies represent 

variations in the physical nature of the shallow subsurface. The visualisation and 
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enhancement techniques that are applied to the processed images are described below 

together with the results of each enhancement technique, with larger versions of the 

images located in Appendix C. 

5.1 INTERPRETATION from SINGLE BAND 

VISUALISATION 

Basic image interpretation begins with the visualisation of the individual 

spectral channels as a series of separate monochrome images, which are loaded onto a 

single display channel using the ENVI software (Appendix 82). When viewing the 

individual spectral channels of the daytime data, it is apparent that some adjacent 

spectral channels show a very similar response pattern and so performing 

interpretation of each spectral channel would be time-consuming. However, this 

visualisation enables an initial assessment of the similarity between adjacent spectral 

channels and also enables the identification of spectral channels that contain excessive 

noise. Single band visualisation is also important for the assessment of thermal 

anomalies and can be used to assess the variation in diurnal and seasonal thermal 

response of the land surface. 

5.1.1 Bosworth 

The spectral channels of the Bosworth data are visualised as a senes of 

individual monochrome images showing the spectral response from May 1998 (Figure 

5 .l ), June 1998 (Figure 5 .2), August 1998 (Figure 5.3) and March 2002 (Figure 5.4 ). 

These visualisations show that Band 1 contains excessive noise on all dates and as a 

result is excluded from further analysis. 

The majority of this site is covered by an agricultural field system that 

surrounds the Battlefield visitor centre (Figure 5.16) consisting mostly of grass

covered fields (Arena, Helipad, South and Picnic) where the grass varies in height 

between acquisition dates. The remaining field (Ambion) was covered with barley in 

1998 with oil seed rape present in 2002. The other fields surrounding the visitor 

centre are used for livestock grazing and agricultural crops, but these fields are 

excluded from analysis due to restricted access. 
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Figure 5.1:: Monochrome images of spectral channels ofBosworth May 1998 
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Chapter 5: Qualitative Image Interpretation 

On initial inspection, the fields that are covered with grasses (Arena, Helipad, 

South and Picnic) show a gradually more uniform spectral response as the grass 

height increases from March through to June and masks the underlying soil from 

observation, with greatest anomaly visibility when the grass is short. Ambion field 

shows a more variable internal response during barley growth with prominent plough 

markings evident in May and June 1998 and a more variable degree of crop maturity 

observed in August 1998. Present day plough markings are also evident in Ambion 

field in March 2002 during oil seed rape growth where there is a much more uniform 

vegetation response than observed for the barley. 

On initial inspection of the May 1998 data, there appears to be a very similar 

spectral response between Bands 4 and 5, representing visible red wavelengths of 

radiation, which is also evident in June and August 1998 and March 2002. There is 

also a very similar response between Bands 7 and 8, representing near-infrared 

wavelengths in May, June and August 1998. However, in March 2002 the near

infrared Band 6 also shows a similar spectral response as Bands 7 and 8. From these 

observations, it is apparent that the spectral response of the adjacent spectral channels 

is similar and so alternative spectral analysis techniques, discussed later in the 

chapter, are applied to the data rather than interpreting the individual spectral channel. 

5.1.2 Baildon Moor 

The spectral channels of the Baildon Moor data are visualised as a series of 

individual monochrome images showing the spectral response from May 1997 (Figure 

5.5). This visualisation shows that Band 1 contains excessive noise and as a result is 

excluded trom further analysis. The majority of this site is covered with moorland 

grasses with patches of bracken occurring in the central region. The topography of the 

site is relatively flat with a topographic high occurring to the north with a gradual 

increase in elevation towards the south-east 

On initial inspection, the feature that shows the most prominent spectral 

characteristic is a linear feature trending east to west in the northern section of the 

study site. This feature represents a tarmac road and shows a strong low response in 

Bands 5, 6, 7, 8, 9 and 10 but is indistinguishable from the surrounding materials in 

the other day channels. The tarmac shows a contrasting response to that of the ditt 
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track running north-east from the caravan park in the south-west corner. This feature 

shows a bright response in the visible Bands 2, 3, and 4 but is indistinguishable from 

the surrounding materials in the other day channels. Another characteristic feature of 

Baildon Moor is the golf course to the north of the main road. Here the well-kept 

fairways show a prominent high response across Bands 5, 6, 7, 8 and 9, low response 

in Bands 2, 3, 4 and 10 compared to the surrounding vegetation. There are two 

features of unknown origin on the Moor. The first represents a subtle curvilinear 

feature of low response in Bands 5, 6, 7, 8 and 9 and high response in Band l 0 that is 

otherwise indistinguishable from the surrounding material. The second is represented 

by an elliptical feature in the west that is evident in only Band 10 with a poor spectral 

contrast throughout the remaining channels. These may represent variations in the 

underlying geology, whose mineralogy and porosity affects vegetation growth. 

The features that are of most significance in the context of the research are the 

abandoned mineshafts, which are represented by circular features of low central 

response surrounded by a rim of high response. These are clearly evident in Band 10 

with a very subtle contrast in Bands 5, 6, 7, 8 and 9, but are absent from Bands 2, 3 

and4. 
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5. ]_ .3 W eanhde 

The spectral channels of the Weardale data are visualised as a senes of 

individual monochrome images showing the spectral response from August 2001 

(Figure 5.6). This visualisation shows that Band I and Band 9 contain excessive 

noise, the latter representative of electrical discharge across the instrumentation, and 

as a result these bands are excluded from further analysis. In addition, the night 

thermal image shows a considerable amount of noise, which is manifest as alternating 

dark and light banding that shows a variable orientation as a result of the 

georectification process. 

The majority of the site is covered with moorland grasses that occupy fields that 

are separated by dry-stone dykes. The topographic setting is represented by a v

shaped valley carved out by the Rookhope Bum that flows south-eastwards from an 

upland area in the north-west 

On initial visualisation, the feature that shows the most prominent spectral 

characteristic is a triangular area in the north-eastern section of the study site. This 

feature shows a strong high response in Bands 2, 3, 4 and 5 with a more subtle higher 

response m Bands 6, 7, 8 and 10. This feature represents a variation in solar 

illumination conditions between the north-eastern and south-western flanks of the 

valley. There is an additional prominent contrast observed in the eastern section that is 

a result of a contrast in radiance values between the adjacent flight lines that could not 

be removed prior to creating a mosaic of the study site during image processing. This 

is seen in the south-eastern section in Bands 6, 7 and 8. In addition to these 

immediately apparent features, there is an area of very low response in the centre of 

the image that is evident on all multispectral bands. This represents an area of cloud 

shadow that is absent from the day and night thermal images. 

The features that are of most significance in the context of the research are the 

areas of abandoned mineral excavation. There are three main mineral excavation sites 

in the study site represented by (i) spoil heaps, (ii) scour marks and (iii) abandoned 

mineshafts. The spoil heaps have a bulbous representation on the images, radiating 

from a central position, with several phases of heaping of spoil suggested by the 

overlapping of the radial pattern. There are two main spoil heap sites in the valley, 
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one on the north-eastern flank and the other on the western flanks. The sites have a 

contrast in response due to the variable topographic illumination conditions, with the 

site on the north-eastern flank having a higher response. The extremities of the spoil 

heaps at both sites show a relatively low response in Bands 6, 7 and 8 and a higher 

response in Band 10 when compared to the surrounding material with a more 

prominent response evident in the north-eastern site. The extremities of the spoil 

heaps also show high day and night thermal response compared to the inner spoil heap 

materials and also the surrounding moorland due to the exposure of soils at the 

vertical edge of the spoil heaps where vegetation struggles to grow. 

The scour marks are represented by a line of circular features along the northern 

edge of the image, on the north-eastern flank of the valley. These features display a 

low near-infrared response and a subtle visible and short-wave infrared response 

pattern. Each scour mark has a bright north-eastern side and a dark south-western 

side, which is representative of a differential solar heating due to topographic aspect. 

This pattern is replicated on the day thermal image with a more uniform night thermal 

response from both sides of the scour marks. 

The abandoned mineshafts are scattered across the western flank of the valley 

and are represented by high response in the short-wave and thermal infrared bands 

compared to the surrounding material. This response is highly contrasting to the 

abandoned mineshafts of Baildon Moor mainly due to the more variable surface 

composition of the region. 
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Chapter 5: Qualitative Image Interpretation 

Although visualisation of the individual spectral channels as a series of 

monochrome images provides initial assessment of some of the more prominent 

features occurring within the agricultural fields and moorland, subtle variations are 

much more difficult to detect due to the poor spectral contrast associated with the 

vegetation. A detailed assessment of the individual spectral channels would be time

consuming and so alternative methods are required to assist with the interpretation of 

the multispectral data. However, in order to assess the thermal characteristics of each 

study site, a more detailed analysis of the day and night thermal images is required. 

Initial visualisation of the individual thermal channels shows poor spectral contrast 

over the vegetated terrains and requires enhancement prior to interpretation. This is 

performed through a series of contrast enhancement techniques that manipulate the 

histograms of each thermal image. The techniques are described in the following 

section with respect to the study site of Bosworth. 

5.2 CONTRAST ENHANCEMENT 

The poor contrast in thermal response observed over vegetation is often a direct 

result of anomalously high or low radiance values associated with non-vegetated areas 

such as farm buildings or roads within the spatial extent of the images. As a result, 

subtle anomalous features occurring within the vegetation become difficult to detect 

as the values associated with the vegetation are clustered into a small section of the 

image histogram. Therefore, the vegetation shows a uniform grey-scale intensity over 

large areas and lacks contrast and so the identification of the subtle features requires 

contrast enhancement. 

Contrast enhancement techniques are applied to the displayed images so that the 

contrast between high and low values is enhanced whilst maintaining the relative 

distribution of the grey-scale intensity levels in the image. The contrast of the 

displayed image is enhanced by extracting the image histogram (Appendix B9) and by 

manipulating the range of observed values through a series of contrast stretches, 

which generate a look-up table to correlate an observed input value to a stretched 

output value. The overall effect of the histogram manipulation is to brighten an 

underexposed image or to darken an overexposed image. The most common methods 

used for contrast stretching are Linear, Gaussian and Histogram Equalisation. 
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The simplest method is the Linear stretch that translates the range of observed 

pixel values to the full capability of the visual display, which is usually 0-255 for an 

8-bit image display (Mather, 1999). The pixel values are scaled so that the lowest 

observed value is mapped to the minimum visual display value (0) and the largest 

observed value is mapped to the maximum display value (255), with all intermediate 

values stretched so that they retain their relative distribution. The Gaussian stretch fits 

the observed input histogram to a standard Gaussian distribution, where the 
-

probability (p) for a value (x) decreases symmetrical away from the mean value ( x ), 

with respect to the standard deviation (cr) ofthe input values (Equation 5.1). Although 

image processing software usually provides a default standard deviation value, the 

user is able to specify the number of standard deviations for the histogram stretch, 

with larger values decreasing the visual contrast 

Equation 5.1 1 (-(x-~)2 ] p(x) = ~exp 2 a-v2tr 2a 

Histogram Equalisation automatically scales the data so that each histogram bin 

in the output image contains an approximately equal number of pixel values. The 

effect of this stretch is to increase the contrast in the densely populated parts of the 

histogram and to reduce contrast in the more data sparsely areas (Mather, 1999). 

Results from the application of the different contrast enhancement techniques to 

a thermal image from the Bosworth site are displayed to show the variation in the 

amount of detail visible through each enhancement (Figure 5.7). 
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LINEAR August 1998 Day Thermal 

August 1998 Day Thermal 

GAUSSIAN August 1998 Day Thermal 

EQUALISATION August 1998 Day Thermal 

Figure 5.7: Histogram manipulation on Bosworth August 1998 day thermal 

image 
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The different contrast enhancement techniques are applied to each of the 

thermal images from the study sites to enable interpretation of the thermal anomalies. 

5.3 INTERPRETATIONofTHERMALIMAGES 

The thermal anomalies from each site are interpreted through application of the 

contrast enhancements detailed above. However, performing the enhancements on the 

entire image can often mask subtle features occurring with the vegetation cover. 

Additional enhancements are therefore performed on specific ranges of data values 

selected to highlight particular features of the histogram. By specifying the range of 

values to be stretched, those parts of the image histograms associated with bright or 

dark features such as buildings and roads are excluded. In addition to specifying a 

range of data values, the interactive functionality of the software also enables contrast 

enhancements to be performed on spatial subsets of the image data. Both these 

techniques provide enhancement of the more subtle features occurring within areas 

covered by vegetation. 

The following section presents the thermal images of each study site displayed 

using the contrast enhancement that provides optimum visualisation of features 

observed in areas covered by vegetation. An interpretation layer is also presented for 

each image displaying the anomalous features that are used to assess the diurnal and 

seasonal variations in thermal response of the vegetation. 

5.3.1 Visualisation and Detection of Bosworth Thermal Anomalies 

The optimum visualisation for the May 1998 (Figure 5.8), June 1998 day 

(Figure 5.9), August 1998 night (Figure 5.12), March 2002 day (Figure 5.13) and 

March 2002 night (Figure 5.14) thermal images is obtained through a Linear 2% 

contrast enhancement with the optimum visualisation for June 1998 night (Figure 

5 .I 0) and August 1998 day (Figure 5.11) thermal images obtained through Histogram 

Equalisation. 
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May 1998 Day 

May 1998 Day Interpretation 

Figure 5.8: Thermal features on Bosworth May 1998 day thermal image 
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June 1998 Day 

June 1998 Day Interpretation 

Figure 5.9: Thermal features on Bosworth June 1998 day thermal image 
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June 1998 Night 

June 1998 Night Interpretation 

Figure 5.10: Thermal features on Bosworth June 1998 night thermal image 

144 



Chapter 5: Qualitative Image Interpretation 

August 1998 Day 

August 1998 Day Interpretation 

Figure 5.11 :Thermal features on Bosworth August 1998 day thermal image 

145 



Chapter 5: Qualitative Image Interpretation 

August 1998 Night Interpretation 

Figure 5.12: Thermal features on Bosworth August 1998 night thermal image 
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March 2002 Day 

March 2002 Day Interpretation 

Figure 5.13: Thermal features on Bosworth March 2002 day thermal image 
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March 2002 Night 

March 2002 Night Interpretation 

Figure 5.14: Thermal features on Bosworth March 2002 night thermal image 
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In order to assess the diurnal and seasonal characteristics of the study site, the 

interpretation layers from each thermal image are displayed on top of one another 

(Figure 5.15) to look at similarities and differences in the position and recognition of 

thermal anomalies. From this visualisation, it becomes apparent that there is a 

complex relationship between the stage in the vegetation growth and detection of 

thermal anomalies. In order to develop an understanding of the diurnal and seasonal 

effects of vegetation on the detection of thermal anomalies, the site is broken down to 

field level with interpretation concentrating on the fields surrounding the visitor centre 

where ground geophysical evaluation has been performed (Figure 5.16). 

- Mayday 
- June day 
- June night 

August day 
- August night 
- March day 
- March night 

Figure 5.15: Display of complex relationship of Bosworth thermal interpretation 

Ambion 

Arena 

Helipad 

Picnic 

South 

Figure 5.16: Field nomenclature for Bo worth study site 
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5.3.1.1 Ambion Field Interpretation 

The topographic setting of Ambion field is such that there is a plateau in the 

eastern section of the field in line with the northern boundary of the Arena field. The 

plateau runs to the mid-field position (Figure 5.17) where there is a steep down slope 

towards the NW and NE (Figure 5.18) with a more gradual down slope towards all 

other directions and an area of flat land in the far SW corner (Figure 5.19). 

Figure 5.17: Plateau on Bosworth Ambion Field 

Figure 5.18: Northeast corner of Bosworth Ambion Field 
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Figure 5.19: Southwest corner of Bosworth Ambion Field 

Visualisation of the day (Figure 5.20) and night (Figure 5.21) thermal images of 

Ambion field show that the most consistently detected feature under the barley is aN

S linear anomaly that shows a progressively more subtle contrast through May, June 

and August 1998 with a moderately low night temperature in June and August 1998. 

This feature is completely absent on the March 2002 diurnal thermal images under the 

oil seed rape. At the southern end of this feature there are two parallel subtle 

anomalies trending E-W that are evident on the May and June 1998 day images, with 

a moderate temperature on the June and August 1998 night images. These linear 

anomalies mark the position of field hedgerow boundaries that have been removed 

since generation of the 1st edition OS map. There is a secondary N-S linear anomaly 

of low temperature to the east of the main feature that is evident on the June and 

August 1998 night images, with a third N-S linear anomaly of high temperature on the 

west of the main feature that is evident on the day and night images under the barley. 

This feature possibly represents the position of an infilled ditch with higher moisture 

content giving rise to the elevated night signature. 

There is a series of parallel E-W linear anomalies on the western region of 

Ambion field that show moderately contrasting temperatures on the daytime images 

under a barley crop that are more prominent on the corresponding night images, but 

are absent under the oil seed rape. These features have a slight topographic expression 

at ground level suggesting the presence of ancient ridge and furrow plough marks. 

There is a series of parallel NW -SE linear anomalies spanning the field on the May 

1998 image that show progressively more subtle temperature contrast through June 

and August 1998. These represent present-day plough markings where the high 
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temperature corresponds to the visible soil fraction that decreases as the vegetation 

cover masks the soil as the barley crop develops. In March 2002 the present-day 

plough marks alter to a N-S orientation and are less noticeable due to the higher leaf 

area of the vegetation. 

In the southwest corner of the field there is a patch of low day and high night 

temperatures under the barley that is absent under the oil seed rape. This marks the 

position of flat land whose high night temperature may signify high moisture content 

as the moisture drainage from the main field. 

There are two patches of high day temperatures in Ambion field under the 

barley that have corresponding low night temperatures. The patch in the NE corner of 

the field adjacent to the Arena field marks an area of recently deposited manure. The 

similar patch adjacent to SW corner of Arena field marks the position of a badger set. 

Both features are devoid of vegetation cover and as a result, the response is 

representative of the soil that underlies the rest of the field. 

In the NW corner of Ambion field there is a series of elliptical anomalies 

evident on the June and August 1998 night images that are absent on the day images 

and also absent at all times under the oil seed rape. These possibly represent areas 

where trees have been either removed prior to the present-day cultivation of the field 

and may be infilled with a different material, or whose stumps have been burned in 

situ with a different compaction compared to the surrounding material. 

All of the anomalies mentioned above are difficult to detect on the August 1998 

day thermal image due a wind shear effect. Wind affects the temperature observed for 

the soil-vegetation system by increasing the movement of cool air through the canopy 

and removing heat from the underlying soil. As a result there is an increase in heat 

flux from the canopy towards the soil and a reduction in canopy temperatures. 

The results from Ambion field suggest that the anomalous features have a 

different response at different stages in barley growth and also vary when compared 

with their response under the oil seed rape. The variation in response under the 

different vegetation types can be attributed to the different characteristics of the 

vegetation, such as leaf area where the oil seed rape has a more leafy structure and 

covers more of the underlying soil. 
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Figure 5.20: Anomalies on Bosworth day thermal images of Ambion field 
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June 1998 Night under barley August 1998 Night under barley 

Figure 5.21: Anomalies on Bosworth night thermal images of Ambion field 

March 2002 Night under oil seed rape 
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When the images that show the most distinct thermal anomalies are compared 

with the magnetic survey conducted on the field (Figure 5.22), it is apparent that the 

thermal anomalies representing the old field boundaries and the anomalous area in the 

south-west corner are not evident on the magnetic survey and so do not represent 

variations in magnetic properties of the soil. However, the ridge and furrow marks are 

clearly evident on both sources of data and suggest a concentration of magnetic 

materials in the plough marks. 

Magnetic Survey 

August 1998 Night Magnetic Survey 

Figure 5.22: Comparison of Bosworth August 1998 thermal images with 

magnetic survey of Ambion field 
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5.3.1.2 Arena Field Interpretation 

The topographic setting of the Arena field is such that there is a topographic 

high in the NW corner with a gentle downward slope towards all other directions. 

Visualisation of the day and night thermal response of Arena field (Figure 5.23) show 

a fairly uniform day response in March, May and June with generally lower 

temperatures on the eastern side where the topographic slope faces away from the sun 

resulting in a cooler response. The August image is more variable with a patch of 

lower temperature near the NW topographic high and in the SW corner where there is 

a break in the tree-line and shows a continuation of the wind shear effect that 

dominates Ambion field. 

May 1998 Day 

August 1998 Night 

Figure 5.23: Thermal anomalies in Bosworth Arena field 

March 2002 Night 

The night thermal images contain more noise than the day thermal Images, 

because at night there is less energy emitted from the ground. The diagonal stripes 

seen in the June and August 1998 night images are caused by slight inaccuracy in the 

calibration of the thermal detector, which is set by looking at a hot and cold 

blackbody at the start and end of each scan line. March 2002 and June 1998 night 

images show an elongated patch of low temperatures hugging the southern fence line 

with wider patches occurring between the individual trees where the ground flattens 

out at the base of the slope. There is a similar pattern on the August 1998 night image 

slightly further to the north at the break of slope. The March 2002 night image shows 

an area of low temperature in the NE corner on the steeper E-facing slope with more 
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pronounced additional patches in the SW corner. These features suggest an affect of 

wind on the vegetation covering the ground surface. 

The August 1998 day image reveals a series of parallel E-W linear anomalies 

that are not evident at any other point in the vegetation cycle. These possibly represent 

ridge and furrow plough markings, suggested by their similar temperature pattern and 

spacing to the ridge and furrow markings observed in the west of Ambion field. 

Perpendicular to these anomalies there is a small N-S linear feature at the eastern end 

of the ridge and furrow markings of unknown origin. The linear features present on 

the August 1998 day image are absent at all other times of imaging. This may be a 

result of the grass being cut for silage in late July 1998 with a greater visible soil 

fraction within the field. 

The feature that is the most consistent between the images is a rectangular area 

of bright day and night temperatures at the centre-point of the southern fence line. 

This marks the position of an area of hard-standing consisting of gravel (Figure 5.24). 

However this feature is absent from both day and night March images when the area 

was covered with weeds of similar stand height to the surrounding grass. 

Figure 5.24: Area of hard-standing in Bosworth Arena Field 

Results from the Arena field suggest that the most variable thermal response 

occurs when the grass is short suggesting that the underlying soil may have a stronger 

influence on the thermal response of the surface than when the vegetation fraction 

dominates. When the image that shows the mo t distinct thermal contrast is compared 
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with the geophysical surveys conducted on the field (Figure 5.25), it is apparent that 

the linear thermal anomalies thought to represent ridge and furrow marks are not 

evident on the magnetic survey. The resistivity survey shows faint linear anomalies 

parallel to the more obvious thermal features but did not stretch far enough north to 

cover their position. 

Resistiv· 

Figure 5.25: Comparison of Bosworth August 1998 day thermal image with 

results of geophysical surveys of the Arena field 

5.3.1.3 Helipad Field Interpretation 

The topographic setting of the Helipad field is such that there is a very shallow 

downward slope towards the south with negligible internal topographic variation 

(Figure 5.26). 

Figure 5.26: Topography of Bosworth Helipad Field 

The day and night thermal images of the Helipad field (Figure 5.27) show a 

prominent NW -SE linear anomaly of high temperature on the May and June 1998 day 

images with corresponding low temperatures in August 1998 that is absent from the 
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night images. This feature can be clearly seen on the aerial photography from May 

and June 1998 (Appendix Cl) marking a path trodden by livestock wandering 

between fields. Perpendicular to this feature there is a series of linear features of 

alternating high and low temperatures that are prominent on the May 1998 image but 

are less evident on the June 1998 image and are absent from the other day and night 

images. Since the grass of this field was kept at a fairly uniform height across the 

seasonal dataset, the anomalies cannot be explained as a vegetation effect and may 

therefore represent variations in the moisture content of the soils due to differential 

compaction of the subsurface by the presence of ditches or tracks. Ditches tend to 

retain more moisture than the surrounding soil due to the looser infilling material 

therefore a higher night response would be expected compared to the surrounding soil. 

Since the night temperatures are fairly uniform across the field, one hypothesis is that 

the features may represent pipes. There are also areas of low night temperatures in the 

SE corner of the field and along the eastern fence line that possibly relate to wind and 

shadow effects caused by the hedgerow. 

May 1998 Day June 1998 Day August 1998 Day March 2002 Day 

June 1998 Night August 1998 Night March 2002 Night 

Figure 5.27: Thermal anomalies in Bosworth Helipad field 

The results from the Helipad field suggest that the thermal characteristics are 

likely to represent variations in the moisture content of the ground due to variable 

compaction. When the image that shows the most distinct thermal anomalies is 

compared with the geophysical surveys conducted on the field (Figure 5.28), it is 

apparent that the NE-SW linear thermal anomalies though to represent potential water 

pipes or ditches are not evident on the magnetic survey, but show a similar pattern to 

the linear features located on the resistivity survey. Since the resistivity is sensitive to 
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variations in moisture content, the linear features may well represent ditches where 

there is a variation in the compaction of the soil infilling the ditch and as a result will 

have a contrasting response to the undisturbed surrounding soil. 

Figure 5.28: Comparison of Bosworth May 1998 day thermal image with results 

of the geophysical surveys of the Helipad field 

5.3.1.4 Picnic Field Interpretation 

The topographic setting of the Picnic field is such that there is a moderate 

downward slope towards the SW corner from the northern fence line with a 

pronounced NE-SW dip in the topography in the centre of the field (Figure 5.29). 

Figure 5.29: Topography of Bosworth Picnic Field 

The field shows fairly uniform temperatures on the day images with slightly 

higher temperatures forming an L-shaped feature observed in the centre of the field on 

all dates, which corresponds to the position of the topographic hollow (Figure 5.30). 

The night images are also fairly uniform in response with an area of low temperature 

observed in the SW corner at the base of the topographic slope in June and August 

1998. This marks a thermal shadow effect created by the fully-grown tree adjacent to 
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this corner of the field. The March 2002 day image shows two pronounced linear 

features of high temperature along the northern and southern fence lines with 

moderate temperatures in the SE area to the west of the elliptical car park. The former 

anomalies mark gravel paths that were created between the 1998 and 2002 flight 

seasons with the latter marking an area of compacted ground created when the work 

was being undertaken. 

March 2002 Day March 2002 Night 

Figure 5.30: Thermal anomalies in Bosworth Picnic field 

The results from the Picnic field suggest that the topography of the field results 

m wind shadow and solar heating effects that influence the observed thermal 

response. When the image that shows the most distinct thermal anomalies are 

compared with the geophysical surveys conducted on the field (Figure 5.31 ), it is 

apparent that the wide L-shaped thermal anomaly marking the position of the 

topographic hollow is not evident on the magnetic anomaly. The results of the 
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resistivity survey show a similar anomalous pattern with a pseudo-vertical area of 

high resistivity in the northern area and a pseudo-horizontal area of low resistivity 

along the southern edge of the field possibly representing an intersection of 

compacted ground. Since resistivity is sensitivity of moisture content and the response 

pattern is similar to the thermal anomaly, this suggests that when the grass is short, 

the thermal image is sensitive to variations in moisture content of the soil underneath 

the vegetation. 

Figure 5.31: Comparison of Bosworth August 1998 day thermal image with 

results of the geophysical surveys of the Picnic field 

5.3.1.5 South Field Interpretation 

The topographic setting of the South Field is such that there is a shallow 

downward slope towards the south over the main part of the field with the NW area 

having a steeper gradient. The surface vegetation consists mainly of grass that is used 

for cattle-grazing with scattered thistle and nettle patches in the western section. 

Visualisation of the day and night thermal response of the South field (Figure 5.32) 

shows that the nettle patches have lower day and higher night temperatures than the 

surrounding grasses that increase in contrast with growth. There are two trees within 

the field, one in the NW and the other in the NE, that result in a lower day 

temperatures and higher night temperatures than the surrounding materials. 

South field is split into three main sections, subdivided by two NW -SE paths of 

compacted ground that are represented by an elevated day and night temperatures. 

The field shows fairly uniform temperatures on the May, June and August 1998 

images with NW -SE linear anomalies of subtle temperature contrast evident in the 

two eastern sections and in the far west. These are more prominent on the March 2002 

day image when the grass is at its shortest with additional NE-SW linear anomalies 

cross-cutting these in the western section. These linear anomalies are suggestive of 
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ancient ridge and furrow markings. There is a pronounced topographic hummock 

marking earthwork remains in the NE corner adjacent to the car park area (Figure 

5.33) and this is represented on all the imagery as a rectangular feature of high 

temperature with low temperatures on the northern and southern slopes respectively. 

March 2002 Day March 2002 Night 

Figure 5.32: Thermal anomalies ofBosworth South field 
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Figure 5.33: Hummock in Bosworth South Field 

The night thermal images reveal an area of low temperatures in the SE section 

suggesting thermal shadowing effect caused by the adjacent wooded area. There is a 

circular feature seen in both day and night time thermal images as a warm patch in the 

SE that marks the position of a water-hole used by the grazing cattle, which are also 

responsible for the patch of high temperatures by the eastern fence marking the gate 

between the grazing fields . 

Since the grass was at a variable height and condition between the images, the 

results from the South field suggest that both the vegetation and the topography 

influence the observed thermal response. When the image that shows the most distinct 

thermal anomalies are compared with the geophysical surveys conducted on the field 

(Figure 5.34), it is apparent that the thermal anomalies representing the ridge and 

furrow markings are evident only as faint linear magnetic anomalies. Since the ridge 

and furrow marks were clearly evident in the Ambion field on the magnetic survey, 

this suggests that the soils in the South field may be more clay-rich and as such are 

less susceptible to magnetic variations. The ridge and furrow marks are absent from 

the resistivity survey, although there is not sufficient spatial coverage to be confident 

of detection. The topographic hummock evident on all the thermal images is not seen 

as an anomaly on the magnetic survey, but is clearly evident on the resistivity survey 

as an area of low resistance corresponding to the topographic high. This again 

suggests that the thermal image is sensitive to moisture variations in the near-surface 

environment. 
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Figure 5.34: Comparison of Bosworth August 1998 day thermal image with 

results of magnetic survey of the South field 

5.3.1.6 Summary of Bosworth Interpretation 

The results from the geophysical prospection of the Bosworth site suggested 

that there is a range of physical features occurring beneath the soil surface in the main 

fields surrounding the visitor centre (Chapter 3.4). The fields surrounding the visitor 

centre are covered by fallow grasses and agricultural crops, such as barley and oil 

seed rape, and are imaged at different stages in the vegetation growth cycle. 

The grass-covered Arena field shows few thermal anomalies when the grass is 

long in May and June 1998, however, when the grass has been shortened in August 

1998 there are a few linear thermal anomalies that can be seen on the day thermal 

image possibly representing non-topographic ridge and furrow marks. The results of 

the magnetic survey reveal a series of linear features that are different to the thermal 

anomalies and so the thermal response does not represent variations in magnetic 
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response of the soil. The results of the resistivity survey reveal some faint linear 

anomalies the correlate to the position of the ridge and furrow anomalies suggesting 

that when the grass is short, the thermal response is sensitive to variations in moisture 

in the near-surface environment. However, both the magnetic and resistivity surveys 

reveal features that are additional to those evident on the thermal images suggesting 

that the thermal images cannot be used on their own to describe the shallow 

subsurface environment. 

The grass-covered Helipad field shows strong linear thermal anomalies when 

the grass is short in May and June 1998, however, when the grass is lengthened these 

features become masked. The NW-SE and NE-SW linear anomalies are not evident 

on the magnetic survey. However, both anomalies can be clearly seen on the 

resistivity survey. As with the Arena field, this suggests that the thermal anomalies 

may represent variations in the moisture content of the underlying soil when the grass 

is short. Once again, both the magnetic and resistivity surveys reveal features that are 

additional to those evident on the thermal images so the thermal images cannot be 

used on their own to describe the shallow subsurface environment. 

The grass-covered Picnic field shows a faint L-shaped feature in May and June 

1998 and a much stronger contrast in August 1998 when the grass is shorter. This 

corresponds to the pronounced variation in the topographic slope and is absent from 

the magnetic survey. However, the feature is evident on the resistivity survey again 

suggesting that the thermal images represent variations in the moisture content of the 

soil and are more readily observed when the grass is short. As for the other fields, the 

magnetic and resistivity surveys reveal features that are additional to those evident on 

the thermal images. 

The grass-covered South field shows a series of parallel linear anomalies on all 

thermal images that represent ridge and furrow marks. Although these are evident as 

only very faint anomalies on the magnetic survey, this may be due to the presence of 

the clay-rich soils that mask variations in the magnetic response. The features are 

absent from the resistivity survey, although poor spatial coverage due to insufficient 

time prevents confidence in their detection. The topographic hummock marking 

earthwork remains is absent from the magnetic survey, but this is likely to be a factor 

of the clay-rich soils masking the magnetic response. The feature is clearly evident on 
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the resistivity survey where there is a variation in the moisture content between the 

soil above the earthwork remains and the surrounding soil and again suggests that the 

thermal imagery represents moisture variations in the near-surface environment. 

The Ambion field shows a series of parallel linear anomalies on the day and 

night thermal images during barley growth that represent ridge and furrow marks. 

These are clearly evident on the magnetic survey. The linear anomalies representing 

the old field boundaries are progressively less evident on the day thermal images as 

the barley matures but show similar night response at all stages of barley growth. 

However, these features are absent from the magnetic survey. The magnetic survey 

also reveals numerous linear features that are not evident on any thermal image 

suggesting that the thermal response is sensitive to different physical properties than 

the magnetic survey. None of these features are detected under the oil seed rape 

suggesting that the high leaf area of the vegetation completely masks the response 

from the underlying soil. 

The results from the thermal analysis of Bosworth suggest that an optimum 

detection for thermal anomalies occurs during diurnal maximum temperatures when 

the soil is covered by a layer of short grass or at an early stage in barley growth when 

there is a greater visible soil fraction. Thermal detection is poor during diurnal 

minimum temperatures for the grass-covered fields, but provides a more consistent 

thermal response when barley is present. When the images are compared with the 

results of the geophysical surveys, there appears to be poor correlation between the 

thermal images and the magnetic response. This result leads to simple assumptions 

that either the depth of observation varies between the thermal and magnetic 

techniques or that the thermal response is sensitive to different environment properties 

than the magnetic response. However, when the images are compared with the results 

of the resistivity survey, there appears to be much better correlation in feature 

detection. This suggests that the thermal response is likely to represent variations in 

moisture content of the surface. In order to understand fully the relationship between 

the physical soil characteristics and the thern1al properties in more detail, soil profiles 

are extracted across some of the features showing variable thermal and geophysical 

response and the results shall be discussed in later chapters. 
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5.3.2 Visualisation and Detection of Baildon Moor Thermal 

Anomalies 

Interactive contrast stretching was applied to single-band visualisations of the 

day and night thermal data obtained over Baildon Moor (Figure 5.35). There are three 

main features highlighted that shall be discussed in detail: 1) abandoned mineshaft of 

pronounced topographic expression (Figure 5.36), 2) abandoned rnineshaft of distinct 

concentric vegetation (Figure 5.37) and 3) a thermal feature of no topographic 

expression but with a different central vegetation (Figure 5.38). 

Baildon Moor Night 

Figure 5.35: Thermal anomalies on Baildon Moor 
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Figure 5.36: Baildon shaft of pronounced topographic expression (radius 8m) 

Figure 5.37: Baildon shaft of pronounced vegetation expression (radius llm) 

Figure 5.38: Baildon suspected shaft feature (radius 2m) 
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5.3.2.1 Shaft of Topographic Expression 

The abandoned mineshaft of pronounced topographic expression is represented 

at ground level by an increase in elevation of the shaft rim compared to the 

surrounding grassland due to spoil mounding with a topographic hollow at the centre 

corresponding to the position of the shaft. This is typical of the majority of abandoned 

mineshafts in the southern region of Baildon Moor. The shaft is represented by a 

circular thermal feature on both day and night images with a low response at the shaft 

centre surrounded by a rim of high response on the day image, with only a slight 

elevation in response compared to the surrounding material on the night thermal 

image (Figure 5.35). Thermal profiles are generated over the shaft to determine spatial 

characteristics in response. Since the physical temperature of the surface is unknown 

due to the lack of auxiliary ground temperature measurements, the profiles of the shaft 

are discussed in terms of uncalibrated thermal radiance values whose shape will 

emulate the shape generated when using calibrated temperature values. 

Profiles generated across the shaft in the day (Figure 5.39) show a fairly 

symmetrical W-E and N -S profile with pronounced warming of the rim of the shaft 

and a decrease in thermal response to a flat response at the centre of the shaft, 

emulating the topographic expression. Both profiles show a similar width in response 

of the rim of the shaft and a similar level of response on either side of the shaft 

corresponding to the area of background vegetation. The profiles show a slightly 

elevated thermal response on the SE rims of the shaft, which is expected since the 

topographic slopes face solar heating. Profiles generated across the shaft at night 

(Figure 5.40) again show a pronounced decrease in thermal response at the base of the 

shaft on both W-E and N-S profiles. The flat response seen in the daytime imagery 

has disappeared in the pre-dawn imagery with a warmer response of the SW area of 

the base of the shaft. The W-E profile shows a slight elevation in thermal response on 

the western rim, however, the eastern rim is less easily discriminated from the 

background vegetation. The margins of the shaft are more easily recognised on theN

S profile by their elevated response, however the shape is more asymmetrical with the 

southern margin having a wider response than that of the northern margin. Therefore, 

the profiles suggest that the material on the SW margin has the ability to retain more 

heat and may have a different composition or higher moisture content than the NE 

slopes. 
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Figure 5.39: Thermal profiles generated across topographic shaft from Baildon day thermal image 
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When the day and night thermal profiles are compared with the EM31 

electromagnetic profile (Figure 5.41), it is apparent that the observed thermal anomaly 

corresponds to a variation in the conductivity of the subsurface materials. Since 

conductivity is sensitive to variations in moisture content, this suggests that the drop 

in thermal response measured over the topographic shaft may be caused by a decrease 

in moisture content at the 8m depth of observation possibly due to capping of the 

shaft. Unfortunately, no alternative geophysical survey techniques were performed at 

this site to provide greater insight into the nature of the feature. 
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Figure 5.41: Comparison of thermal profiles with EM31 electromagnetic profile 

across Baildon topographic shaft 

5.3.2.2 Shaft of Variable Vegetation 

This abandoned mineshaft shows a pronounced concentric vegetation 

expression with tall reed grass at the centre of the shaft, where there is standing water, 

that is surrounded by a ring of flat short grass leading to the background vegetation. 

This is typical of the abandoned mineshafts in the northern region of Baildon Moor. 

The shaft is represented by a circular thermal feature on both day and night images, 

with a low response at the shaft centre surrounded by a rim of higher response on both 

images (Figure 5.35). Thermal profiles are generated over the feature to determine 

spatial characteristics in response. 
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Profiles generated across the shaft in the day (Figure 5.42) show an 

asymmetrical response with pronounced elevated values on the SW margin of the 

shaft. The centre of the shaft is marked on the N-S profile by a symmetrical U-shape 

of low response compared to the elevated response provided by the surrounding rim. 

The background vegetation on the southern margin shows a lower response than the 

northern margin, which may be a result of the slight topographic slope towards the 

south. The centre of the shaft shows a more asymmetrical pattern on the W-E profile 

with higher values evident on the western area of the shaft centre, which may be an 

indication of variations in the material properties beneath the surface or differential 

heating of the surface vegetation. Profiles generated across the shaft at night (Figure 

5.43) again show an asymmetrical response relating to the rim surrounding the shaft 

centre with elevated response evident on the SE margin of the shaft. The W-E profile 

again shows higher values on the western area of the shaft centre. The response 

patterns recorded over this feature suggest that there may be a wider rim on the SW of 

the shaft centre suggesting that the entrance to the shaft may be slightly angled 

towards the NE. 

When the day and night thermal profiles are compared with the Wenner 

resistivity profile (Figure 5.44), it is apparent that the observed thermal anomaly 

corresponds to a variation in the resistance of the subsurface materials. Since 

resistance is sensitive to variations in moisture content, this suggests that the drop in 

thermal response measured over the vegetation feature may be caused by an increase 

in moisture content, which is corroborated by the presence of standing water at the 

centre of the feature. However, the results of the electromagnetic survey also show a 

decrease in the conductivity across the shaft at the 8m depth of observation (Figure 

3.29) suggesting a change in physical characteristics of the soil at depth, possibly 

representing capping of the shaft. 
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Figure 5.44: Comparison of thermal profile with resistivity profile across 

Baildon vegetation feature 

5.3.2.3 Suspected Shaft Feature 

The circular feature that is suspected to relate to mine activity is much smaller 

in dimension than the previous shaft features being only 4m in diameter. The feature 

is expressed at the surface by an area of slightly taller reed grasses with a boggy 

region at the centre. The feature is easily recognised on the night thermal image by an 

area of slightly lower night response. However, the feature is more difficult to locate 

on the day imagery since the feature has similar response to the surrounding 

vegetation (Figure 5.35). There is also the additional problem of eo-registration 

between the day and night images over this feature due to lack of suitable ground 

control where the adjacent track is similar to the spatial resolution of the data with the 

wall adjacent to the track causing an additional mixed pixel problem. Thermal profiles 

are generated over the feature to determine spatial characteristics in response using 

the position of the feature identified on the night thermal image and the corresponding 

pixels on the day image. 

The W-E profile generated across the feature in the day (Figure 5.46) shows a 

slight decrease in response across the vegetation with a minor negative anomaly 

corresponding to the position of the suspect feature. The N-S profile again shows a 

negative anomaly at the position of the feature, with a pronounced negative anomaly 

corresponding to the position of the dirt track and a positive anomaly on the 
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topographically higher southern slope. The profiles across the feature at night (Figure 

5.47) show a more pronounced negative anomaly with respect to the background 

vegetation over the feature with a gradual increase in response over the dirt track 

towards the SE of the feature. The higher response to the SE suggests potentially 

higher moisture content of the soil on the SE of the feature. 

When the day and night thermal profiles are compared with the Wenner 

resistivity profile (Figure 5.45), it is apparent that the asymmetry in the observed 

thermal anomaly also corresponds to an asymmetry in the resistance of the subsurface 

materials with a decrease in resistance across the suspected shaft feature. Since 

resistance is sensitive to variations in moisture content, this suggests that the decrease 

in thermal response to the SE of the suspected shaft feature may be caused by an 

increase in moisture content. The EM31 electromagnetic profiles show no prominent 

anomaly at the 8m depth of observation (Figure 3.34) suggesting that the thermal 

anomaly is present at very shallow depth. 
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Figure 5.45: Comparison of thermal profile with resistivity profile across 

Baildon suspected shaft feature 
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5.3.3 Visualisation and Detection of Weardale Thermal Anomalies 

The interactive contrast stretching was applied to single-band visualisations of 

the day and night thermal data obtained over Weardale to identify areas of anomalous 

thermal response (Figure 5.48). The main features of interest at this site are the areas 

of scour marks and spoil heaps on the north-eastern flank of the valley, which are 

created by processes of mineral extraction. 

Weardale Night 

Figure 5.48: Thermal anomalies in Weardale 

The scour marks are represented at ground level by a senes of connected 

circular features that are excavated from the surface of the moor (Figure 5.49). The 

scour marks are represented by circular thermal features on both day and night images 

with a pronounced high thermal response on the side affected by solar heating during 

the day with a more uniform response from both sides at night. 

178 



Chapter 5: Qualitative Image Interpretation 

Connected Scour Marks 

Figure 5.49: Scour marks on north-eastern flank of valley in Weardale 

The spoil heaps were difficult to assess from ground level due to restricted 

access to the moorland during the foot and mouth crisis. They have a bulbous 

appearance on the images spreading out from a central location, with high response at 

the extremities. There appear to be several phases of heaping on the imagery where 

more recent heaps cover previous surface patterns. Thermal profiles are extracted 

across the scour marks and spoil heaps from the day (Figure 5.50) and night (Figure 

5.51) thermal imagery to assess thermal response patterns that are typical of such 

features . 
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Figure 5.50: N-S thermal profiles of mineral extraction features from Weardale day thermal image 
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The profile across the daytime imagery for the scour mark shows a prominent 

positive and negative thermal anomaly relating to the sides of the scour marks facing 

towards and away from the sun respectively, with the night thermal profile across the 

scour mark showing a single positive anomaly corresponding to the side that was 

facing the sun during the day. The day profile extracted across the spoil heap shows a 

gradual rise in radiance values towards the edge of the spoil heap that faces the sun 

and has a prominent positive thermal anomaly. In contrast, the extracted night profile 

shows a more uniform thermal response with a slight positive thermal anomaly 

associated with the edge of the spoil heap that was facing the sun during the day. 

These thermal profiles are consistent across each of the scour marks and spoil heaps. 

Unfortunately, due to restricted access to the land during the foot and mouth 

crisis, no geophysical surveying was performed in the region therefore the physical 

nature of the thermal anomalies associated with the abandoned mine activity cannot 

be described fully. Although surveying could have been performed at a later stage, 

this was not carried out as a result of a combination of the poor quality of the night 

data and the lack of ground spectral calibration for the day data. 

5.3.4 Summary of Single Band Assessment 

The diurnal data from Bosworth showed pronounced thermal anomalies in the 

grass-covered fields during the day when the grass is short, which are not evident on 

the night thermal images. Thermal anomalies are evident in the barley-covered field 

on both day and night images during early stages in crop growth but when the crop 

reached maturity, the thermal anomalies are only evident on the night thermal image. 

This suggests that the fuller crop masks the thermal response of the underlying soil. 

However, the diurnal data under the oil seed rape showed no internal field variation, 

which may be due to the higher leaf area compared with the barley masking the 

underlying soil. The results from geophysical analysis of these fields revealed a 

number of linear geophysical anomalies that correlated with the thermal anomalies 

representing ridge and furrow marks in Ambion field. However, thermal anomalies in 

the grass-covered fields were closely correlated with resistivity anomalies suggesting 

that the thermal anomalies can be attributed to variations in moisture content in the 

shallow subsurface. The lack of correspondence between the magnetic survey and the 
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thennal anomalies suggests that the thermal images cmmot describe fully the features 

in the shallow subsurface. 

The diurnal data from Baildon Moor suggests that the abandoned mineshafts of 

pronounced topographic or vegetation expression can be identified as circular features 

on either day or night thermal images, with use of histogram manipulation techniques 

to enhance the visual contrast of the area surrounding the features. Thermal profiles 

extracted across the topographic feature show a strong negative day or night anomaly 

corresponding with the position of the centre of the shaft and this matches the position 

of pronounced electromagnetic anomaly measured at 8m depth of observation. Since 

this geophysical technique detects variations in conductivity and moisture content, the 

thermal anomaly may be related to a physical change in soil structure at depth. 

Thermal profiles extracted across the vegetation feature, represented by concentric 

vegetation growth at ground level, again show a strong negative day and night 

anomaly over the feature with slight asymmetry towards the SE margin of the shaft. 

The geophysical surveys detected a negative resistance anomaly over the shaft 

suggesting an increase in moisture content at depth and also an increase in 

conductivity over the shaft suggesting a change in the physical characteristics of the 

soil at depth, possibly relating to capping of the shaft at depth. Thermal profiles 

extracted across the suspected shaft feature, represented at ground level by a minor 

vegetation change, show a pronounced negative anomaly only on the night thermal 

image corresponding to the suspected feature, with an asymmetry in response towards 

the SE. The resistivity survey also showed a slight asymmetry across the feature with 

an increase in moisture content to the SE of the feature. However, the electromagnetic 

surveys failed to show an anomaly across this feature, suggesting that the night 

thermal anomaly corresponds to an increase in moisture content at very shallow depth. 

The diurnal data from Weardale suggests that the scour marks of abandoned 

mine activity can be identified as circular features on either day or night contrast 

enhanced thermal images with the spoil heaps displaying a radial pattern. Thermal 

profiles extracted across the scour marks show a positive day and night anomaly on 

the sides of the scour that face the sun with uniform temperatures representing the 

surrounding vegetation. Since the scour marks are known to have little internal 

vegetation growth the thermal response may be characteristics of bare soil. The 
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thermal profiles extracted across the spoil heaps show a similar positive day and night 

anomaly at the edge of the spoil heaps suggesting that there is little vegetation growth 

at the edges. However, it was not possible to verify this due to restricted access to the 

land and was not followed up at a later date as a consequence of poor data quality. 

The archaeological and mining features of interest in the research have shown 

characteristic thermal response patterns on the day and night monochrome thermal 

images under different vegetation conditions, some of these features correlate with 

geophysical survey others do not. However, it is important to compare and contrast 

the thermal infrared data with that of aerial photography or visible, near-infrared or 

shortwave infrared spectral wavelength. To investigate this, a series of colour 

composites are generated using the available spectral wavelengths and the response 

patterns are compared with the results of the thermal assessment. This is conducted on 

only the Bosworth dataset due to problems encountered in removal of atmospheric 

effects from the Baildon Moor and Weardale datasets. By comparing the colour 

composites with the thermal assessment, this gives both an indication of the amount 

of additional detail provided by the inclusion of the thermal channel and also if there 

are particular times in the vegetation growth cycle when the visible, near-infrared or 

shortwave infrared response matches that of the thermal channel and can be used to 

provide an adequate depiction of the near-surface environment. 

5.4 COMPARISON of TIR EMITTANCE with VISIBLE, NEAR

INFRARED and SHORTWAVE INFRARED 

The amount of additional detail provided by the inclusion of the thermal 

channel is assessed by visualising a series of colour composite images from Bosworth 

where a combination of spectral bands is displayed on the red, green and blue VDU 

display channels. The interpretation layer of the Bosworth thermal features generated 

through the previous thermal band assessment is then displayed on top of each of the 

appropriate colour composite images to assess the amount of additional detail 

provided by inclusion of thermal infrared channel. There are two main spectral 

combinations that are used for assessment with generation of natural colour and near

infrared false-colour composites. In addition, the thermal channel is also displayed as 

part of the spectral combination to assess the variability in the visualisation 

techniques. 
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5.4.1l Natmran Cohmr Composites 

Natural Colour Composites tor the Daedalus 1268 sensor are generated by 

displaying a combination of the visible red (Band 5), green (Band 3) and blue (Band 

2) spectral wavelengths on the corresponding image display channels to simulate the 

visualisation of the standard colour aerial photographs of the study site (Appendix 

C 1 ), which are subsequently over lain by the interpretation of the corresponding day 

thermal data (Figure 5.52). 

In May 1998 the fields surrounding the visitor centre show a fairly uniform 

surface coverage of healthy green grass. The Helipad field appears to be covered with 

browner shade of grass, which is a result of recent mowing reducing the height of the 

grass and revealing a higher visible soil fraction that correspond with areas of higher 

day thermal response. The strong alternating light and dark brown linear anomalies on 

the natural colour composite correspond with the position of alternating high and low 

thermal response respectively. The Arena and Picnic fields show very little internal 

field variation on the natural colour composite and display a similar uniform thermal 

response. The natural colour composite reveals a series of NW -SE linear anomalies in 

the South field that correspond to the position of similar thermal anomalies suggestive 

of ridge and furrow marks. Ambion field shows a strong linear characteristic of the 

surface vegetation as a result of present-day ploughing of the agricultural crop, which 

can also be identified on the thermal image. There are faint N-S and E-W linear 

anomalies on the natural colour composite that correspond to the positions of linear 

anomalies on the day thermal image that represent old hedgerow boundaries. The faint 

E-W linear anomalies on the west of the field are representative of ridge and furrow 

marks that are also evident on the day thermal image. Results from this stage in 

vegetation development suggest that thermal infrared does not provide additional 

detail to natural colour composite at an early stage in barley growth but enhances 

detail in fields with a cover of grass. 
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May 1998 May with TIR interpretation overlay 

June with TIR interpretation overlay 

August 1998 August with TIR interpretation overlay 

March 2002 March with TIR interpretation overlay 

Figure 5.52: Natural colour composites of Bosworth 
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In June 1998 there is a greater contrast m response between the fields 

surrounding the visitor centre. The Helipad field has lost much of its brown 

appearance as the grass has developed and reduced the visible soil fraction. The N-S 

linear anomaly is still prominent and corresponds to a linear thermal anomaly within 

this field. The Arena and Picnic fields again show little internal variation with a 

uniforn1 thermal response. The ridge and furrow marks in the South field are more 

prominent than in May, which may be a result of differential shadow effects caused 

by the topographic features, but these features show poor thermal contrast. There is a 

decrease in the visibility of the present-day plough marks in Ambion field compared 

with May with a similar reduction in thermal contrast. The N-S and E-W old 

hedgerow boundaries are represented by continuous linear features on the day and 

night thermal images, but they have a more disjointed appearance on the natural 

colour composite with patches of greener vegetation at discrete positions on the 

boundaries. The E-W ridge and furrow marks are equally visible on the natural colour 

composite and the thermal images with the edges of the field showing a higher 

thermal response than within the field due to an increase in the visible soil fraction at 

the edges. The natural colour composite also reveals a diagonal NW -SE feature, 

parallel to the plough marks, which is not evident on the thermal data. However, the 

thermal image reveals a set of N-S linear features on the east of the field that are not 

evident on the natural colour composite. Results from this stage in vegetation 

development suggest that thermal infrared does not provide additional detail to natural 

colour composite in the fields covered by grass, but enhances detail in the barley field. 

There is also evidence of anomalous features that are specific to the individual 

spectral wavelengths. 

In August 1998 there is no internal variation in the Helipad field, whereas the 

thermal images shows a series of parallel E-W linear anomalies. The Arena field 

shows patches of slightly darker green response in the NW at the brow of the hill in 

the west, adjacent to a gap in the hedgerow, and also in the middle of the field where 

there is a small N-S linear anomaly. These features correspond to thermal anomalies. 

The thermal image also shows a series of E-W linear anomalies that are absent from 

the natural colour composite. The Picnic field again shows a uniform response on the 

natural colour composite with the thermal image showing a patch of high thermal 

response at the brow of the topographic slope. The South field shows a greater degree 
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of internal variation with grazed grass in the eastern section showing a darker 

response than the grass in the western section, in which there are additional circular 

features corresponding to thistle and nettle patches that are also evident on the thermal 

images. Ambion field shows a brown response compared to the surrounding green 

fields where the barley has reached maturity prior to harvesting. The thermal image 

shows a prominent wind shadow effect that is absent from the natural colour 

composite. The N-S and E-W old hedgerow boundaries show a moderate thermal 

response that are marked by intermittent patches of green vegetation on the natural 

colour composite. The E-W ridge and furrow marks have a faint appearance on the 

natural colour composite and correspond to subtle thermal anomalies. The NW -SE 

diagonal feature shows a strong visible contrast with the surrounding material but is 

absent from the thermal image. The colour composite also reveals an E-W feature in 

the west beside the buildings that is not evident at any previous stage in barley growth 

and is also absent from the thermal image. Results from this stage in vegetation 

development suggest that thermal infrared provides additional detail to natural colour 

composite in fields covered by both grass and barley with evidence of features that are 

specific to the individual spectral wavelengths. 

In March 2002 there is again no internal colour or thermal variation in the 

Helipad field. The Arena field shows a darker visible response on the SE topographic 

slope that corresponds with a low thermal response. The Picnic field shows areas of 

brown response at the edge of the car park where the soil fraction dominates and can 

be correlated with the position of high thermal response. The small white squares on 

the edges of the field correspond with picnic tables near the gravel paths that display a 

dark thermal response. The South field shows little internal variation with a similarity 

in visibility of the ridge and furrow markings between the colour and thermal images. 

Ambion field again shows present-day plough markings through the agricultural crop, 

which follow a different orientation than the other images due to crop rotation from 

barley to oil seed rape. There is little internal variation in Arnbion field on either the 

natural colour composite or on the thermal images. However, there are two areas of 

brighter response SE corner that correspond to areas of elevated thermal response. 

Results from this stage in vegetation development suggest that thermal infrared does 

not provide additional detail to natural colour composite in the fields covered by grass 

or the oil seed rape. 
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Results from the comparison between the natural colour composites and the 

corresponding day thermal images suggest that the thermal infrared enhances the 

detail in the grass-covered fields at an early stage in growth where there is a higher 

visible soil fraction and also at later stages in cereal crop development where there is a 

greater degree in crop stress. The hedgerow and ridge and furrow features previously 

identified under the barley are noticeably absent from visualisation of the natural 

colour composite and thermal image under the oil seed rape due to an increase in leaf 

area masking the underlying surface. 

5.4.2 Near-Infrared False-Colour Composites 

Near-Infrared False-Colour Composites are generated by displaying a 

combination of the near-infrared (Band 7), visible green (Band 3) and the blue (Band 

2) spectral wavelengths on the corresponding RGB display channels, which are 

overlain by interpretation of the corresponding thermal images (Figure 5.53). 

In May 1998 the Helipad field reveals the N-S linear anomaly but does not 

reveal the perpendicular features that are evident on the natural colour composite or 

thermal image. The Arena field is very uniform in response with an area of anomalous 

blue response adjacent to the fence line that is not evident on the natural colour 

composite but corresponds to an area of elevated day thermal response and can be 

associated with a patch of gravel. The Picnic field shows an area of darker response in 

the NW that corresponds to an area of moderately elevated thermal response and can 

be associated with the top of a topographic slope. The colour combination does not 

enhance the visualisation of the ridge and furrow marks in the South field, but 

enhances visualisation of the hummock in the north shown by a dark linear feature on 

the north-facing slope of the hummock. The present-day plough markings in Ambion 

field show less of a contrast with the surrounding vegetation than on the natural 

colour composite with a higher contrast to the bright blue response around the edges 

of the field suggesting that there is a greater degree of bare soil at the edges of the 

field. The N-S and E-W old hedgerow boundaries are less easily identified than on the 

natural colour composite, but the ridge and furrow marks in the west are more readily 

delineated. There is an area of bright red response adjacent to the NW corner of the 

Arena field that is absent from the thermal image. 
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March 2002 March with TIR interpretation overlay 

Figure 5.53: Near-infrared false-colour composites of Bosworth 

Results from the early stage in vegetation development suggest that near

infrared wavelengths provide detail that is additional to the natural colour composite 
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in the grass fields but does not enhance features in the barley field and shows a similar 

variation in visibility compared with the thermal infrared. 

In June 1998 the Helipad field again reveals the N-S linear anomaly of the day 

thermal image, with the Arena and Picnic fields having a more uniform internal 

response similar to the uniform thermal response. The ridge and furrow marks in the 

South field are more prominent than on the thermal image and are indicated by 

alternating dark and light red lines. There is a strong NE-SW linear feature in the 

western section marking a cattle track across the field that has a low thermal response. 

The N-S and E-W old hedgerow boundaries in Ambion field show a bright red 

response compared with the surrounding crop with an intermittent response compared 

with the response on the thermal image. The ridge and furrow marks in the west are 

more easily delineated than on the natural colour composite but are better identified 

on the thermal image. The NW -SE diagonal feature is absent from the thermal image 

and there is more internal field variation observed in the southern section where there 

are patches of redder response that are not evident on the thermal image. 

In August 1998 the Helipad field shows a series of orthogonal linear feature that 

are similar to those identified on the thermal image, but that were absent from the 

natural colour composite. The Arena field shows a similar response pattern to the 

thermal image with redder areas corresponding with elevated thermal values. The 

small N-S feature shows an extension on the false colour composite towards the south 

that was not evident on the natural colour composite or on the thermal image. The 

Picnic field has no internal variation whereas there is a patch of high thermal response 

at the top of the topographic slope. The patches of nettles and thistles in the western 

section of the South field are shown with a dark red response. The ridge and furrow in 

the eastern section and the E-W linear anomaly show poor internal contrasts 

compared with the thermal image. The N-S and E-W boundaries in Ambion field 

show patches of red response on the false colour composite that is in contrast with the 

continuous feature on the thermal image. Although the ridge and furrow marks are 

less easily delineated on the false colour composite than the thermal image, the linear 

feature in the west section near the buildings is absent from the thermal image. In 

addition, the false colour composite reveals several patches of red in the NW of the 
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tield that were absent from the natural colour composite and can be correlated with 

anomalies of moderate thermal response. 

In March 2002 the Helipad field has a uniform response with no evidence of the 

linear thermal anomalies. The Arena field shows very similar response with the 

thermal image with redder areas corresponding to lower thermal values. The Picnic 

field shows a more variable internal response with blue linear anomalies along the 

field boundaries corresponding with the position of thermal anomalies with the blue 

linear anomalies adjacent to the car park correlating with thermal anomalies. The 

ridge and furrow markings in the South field show poor contrast on the false colour 

composite compared with the thermal image. The hummock is also poorly visible. 

There are two prominent patches of blue response in the southern area of Ambion 

field on the colour composite that correspond with patches of bright response on the 

thermal image. 

The anomalies identified on the near-infrared false colour composite of the main 

fields vary from those identified on the natural colour composite with a dendritic 

drainage network evident in the field to the west of Ambion field that was not evident 

on the natural colour composite. These results suggest that near-infrared wavelengths 

provide useful additional detail to that provided by a standard aerial colour 

photograph. Results from the comparison between the near-infrared false colour 

composites and the corresponding day and night thermal images suggest that there is a 

good correlation between the day thermal anomalies identified in the fields covered 

by grass at early times in the growing season when there is a greater visible soil 

fraction. The day thermal images providing greater detail when the grass is longer and 

dominates the surface cover and provide enhanced detail at later stages in cereal 

growth where there is a reduced visible soil fraction. The night thermal images 

revealed additional features in Ambion field when the cereal crop dominated the 

surface cover with a greater visibility of the old hedgerow boundaries and ridge and 

furrow marks. The anomalies identified on the colour composite and thermal images 

under barley in Ambion field were absent under the oil seed rape suggesting that the 

complete canopy cover of the vegetation blanketed the soil surface. 

The results of the natural and near-infrared colour composites suggest that these 

specific spectral combinations do not necessarily always reveal the same anomalous 
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features as detected through visualisation of the thermal infrared data. A more 

complete spectral assessment will therefore result from inclusion of the thermal 

channel in the visualisation and will provide a useful complementary spectral dataset 

for feature identification. A series of thennal day and thermal night colour composites 

are generated where the thermal infrared data from either the day or night is displayed 

on the red image display channel. 

5.4.3 Thermal Day Colour Composites 

Thermal Colour Composites are generated by displaying a combination of the 

day thermal infrared (Band 11 ), the near-infrared (Band 7) and the visible red (Band 

5) spectral wavelengths on the corresponding RGB display channels (Figure 5.54). 

May 1998 June 1998 

August 1998 March 2002 

Figure 5.54: Thermal day colour composites of Bosworth 

The linear anomalies in the Helipad field show a reduction in visibility across 

the seasonal dataset even under the uniform height of the grass. Therefore, this may 

be due to changes in the characteristics of the underlying soil with a variation in 

moisture content. The anomalies in the Arena field are more prominent in August 

1998 after the grass had been cut for silage when there was again a greater visible soil 
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fraction in the field. This is similar to the response in the Picnic field where thermal 

anomalies are clearly evident at earlier stages in grass growth. The ridge and furrow 

marks in the South field are more prominent in March 2002 when the grass is at its 

shortest and also in August 1998 when the grass in the field has been shortened as a 

result of grazing. The hummock in the South field shows greatest visibility in August 

1998 as a result of topographic shadow but does not show a thermal anomaly. The 

cattle tracks show strongest visibility in June 1998 when the grass was longer and was 

trampled flat. The March 2002 image reveals a channel leading from the hummock in 

the north of the field towards the thermally warm well and this was not evident at any 

other time of visualisation. The old hedgerow boundaries in Ambion field show their 

greatest visibility on the June 1998 colour composite with the ridge and furrow 

markings decreasing in visibility as the cereal crop developed. 

5.4.4 Thermal Night Colour Composites 

An alternative approach to thermal visualisation is to generate Night Colour 

Composites by displaying the night thermal infrared, the daytime near-infrared (Band 

7) and the visible red (Band 5) spectral wavelengths on the corresponding ROB image 

display channels (Figure 5.55). Generation of the night colour composites requires the 

accurate georectification and eo-registration of the day and night images to prevent 

the misalignment of field boundaries. The main eo-registration problem was caused 

by variable hedgerow and tree growth resulting in a different degree of shadow on the 

surface and therefore a greater inaccuracy in field boundary eo-registration and 

misalignment of internal field anomalies. As a result, there may be a misalignment of 

the internal field anomalies due to the inability to accurately select the same ground 

control points as used for the day image georectification. 

193 



Chapter 5: Qualitative Image Interpretation 

June 1998 August 1998 

Figure 5.55: Thermal night colour composites of Bosworth 

The thermal night colour composites reveal no additional features in the Helipad 

field than the other colour composites with reduction of the visibility of the linear 

anomaly in June 1998 and enhancement of the hedgerow shadow on the eastern side 

of the fie ld in March 2002. The Arena field shows a greater degree of internal field 

variation in August 1998 and March 2002 compared to the day thermal composite 

with enhancement of the visibi lity of the linear anomalies in August 1998 and the 

variation present in March 2002. The gravel paths round the edges of the Picnic field 

are more prominent on the March 2002 night composite than on any other composite 

with additional enhancement of the visibility of the topographic effect in June and 

August 1998. The South field shows little internal variation in June 1998 with 

enhancement of the visibility of the linear anomalies in August 1998 and March 2002. 

The hummock shows greatest visibility on the colour composite for August 1998 than 

on any other spectral combination. The old hedgerow boundaries in Ambion field 

show a more consistent detection between June and August 1998 than on the other 

colour combinations but the ridge and furrow marks are less prominent. There is more 

internal variation evident in March 2002 than on any other combination with an area 
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of increased night response at the brow of the hill trending from the flagpole towards 

the western farmhouses with an additional higher night response evident in the NW. 

5.4.5 Summary of Colour Composite Visualisations 

From these different colour composites of Bosworth it is clear that near-infrared 

wavelengths provide detail that is additional to that provided by visualisation of a 

natural colour composite generated to represent a standard colour aerial photograph. 

This is most evident in the grass fields at an early stage in vegetation growth where 

the grass is short and there is a greater influence from the visible soil fraction. This is 

also true at later stages in cereal crop development where the visible variations in crop 

stress are potentially due to variations in the underlying soil properties. The day 

thermal data provides greatest additional detail at earlier stages in grass growth and at 

later stages in cereal crop development, and, is assumed to relate to variations in the 

moisture properties of the soil and vegetation. The night thermal composite provides a 

more consistent enhancement of the old hedgerow boundaries in Ambion field 

throughout cereal crop development with additional features revealed at all stages in 

grass growth. In addition, the night thermal composite provides an increase in internal 

field variations under the leafy oil seed rape crop. As a result, the inclusion of the 

thermal channel appears to provide a more comprehensive depiction of the anomalies 

in the near-surface environment. 

Even though atmospheric correction could not be performed on the Baildon 

Moor and Weardale datasets, similar results are observed on generation of the same 

colour composites with the near-infrared and thermal channels providing additional 

detail to that observed on the natural colour composite. 

Interpretation of the colour composite visualisations IS still rather time

consuming and so alternative image enhancement techniques are applied to the 

images to provide a more concise approach to multispectral and thermal evaluation. 
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5.5 FURTHER IMAGE ENHANCEMENT 

Image enhancement operations transform digital data into a more interpretable 

form. When multi-spectral images are displayed as RGB colour composites, the 

human eye can distinguish more subtle variations than when displaying a grey-scale 

image. Enhancement of individual image channels results in only increasing the 

contrast on the specific image channel. There are a variety of multi-channel spectral 

enhancement techniques that can be adopted that increase the contrast between highly 

correlated image channels. The enhancements that are applied to the datasets are Edge 

Detection Filtration, Image Arithmetic and Principal Component Analysis techniques 

that are aimed at enhancing the anomalous features. Once again, the enhancement 

techniques are applied to only the Bosworth images to assess their effectiveness in 

feature detection compared with the thermal assessment. 

In order to assess the response of features present within the vegetated areas, the 

non-vegetated areas are masked from the images prior to spectral enhancement 

(Appendix B6). The vegetated areas that remain are covered by vegetation and 

represent the fields where ground geophysical investigations were performed (Figure 

5.56). 

Figure 5.56: Field subset and nomenclature for Bosworth 
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5.5.1 Edge Detection Filtration 

Edge detection filtration is the process of enhancing image data in the spatial 

domain through numerical transformation of tonal variations contained within an 

Image. Filter operations can be used to smooth or sharpen the information in an 

Image, or to reduce noise while maintaining detail for subsequent processing. A 

digital image contains both low and high frequency spatial information components 

with their sum constituting the original image. Low frequency components describe 

gradual grey-level changes across an image whereas high frequency components 

describe the more abrupt changes in grey-level intensity from one pixel to the next. 

Low pass filters preserve low frequency components, effectively smoothing the image 

and is useful for noise removal. High pass filters remove low frequency components 

and enhance abrupt edges between pixel intensities and as such are often referred to as 

edge detection filters. A filter is a defined by a square or rectangular matrix of an odd 

number of pixels and lines. As the filter kernel is moved across an image, the central 

pixel is replaced by a value based on a numerical transformation of the kernel 

coefficients on the original central pixel value. Edge detection techniques are applied 

to the temperature-calibrated images from Bosworth to assess their effectiveness in 

feature detection. 

5.5.1.1 Low Pass Filtration 

Low pass filtration smoothes the central pixel value by an amount that depends 

on both the size of the filter kernel and also the weighting factor of the kernel 

elements. The basic low pass filter is a standard 3x3 averaging filter, giving equal 

weighting to all kernel elements (Figure 5.57). 

Figure 5.57: Standard averaging low pass 3x3 filter kernel 

Low pass filtration was applied to the August day thermal image of Ambion 

field in Bosworth (Figure 5.58) to provide an example of the filtration output on 

application of a 3x3 low pass filter kernel. The results of the filtration provide a 

smoothed image where the subtle temperature contrast associated with the features is 

197 



Chapter 5: Qualitative Image Interpretation 

not enhanced for detection. Low pass filtration is therefore inappropriate for feature 

detection and as a result was not applied to the other thermal images. 

August 1998 day thermal August 1998 low pass filtration 

Figure 5.58: Results of low pass filtration on Bosworth August 1998 day thermal 

image 

5.5.1.2 High Pass Filtration 

High pass filtration is designed to emphasise features that are smaller than the 

size of the filter kernel and de-emphasise features that are greater than the size of the 

fi lter kernel. High pass filters have a high central coefficient, surrounding by typically 

negative values for the other kernel elements and as a result accentuates the central 

pixel value with respect to the surrounding pixels (Figure 5.59). 

-1.0000 -1.0000 -1.0000 
-1.0000 8.0000 -1.0000 
-1.0000 -1.0000 -1.0000 

Figure 5.59: Standard high pass 3x3 filter kernel 

High pass filtration was applied to the August day thermal image of Ambion 

field in Bosworth (Figure 5.60) to provide an example of the filtration output on 

application of a standard 3x3 high pass filter kernel. The results of the filtration 
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provide an image where the boundary between the extracted field area and the field 

hedgerows is greatly enhanced and there is little enhancement of anomalies within the 

field. This may be due to the subtle temperature contrast between the feature and the 

surrounding vegetation. High pass filtration is therefore inappropriate for feature 

detection and as a result was not applied to the other thermal images. 

August 1998 day thermal August 1998 high pass filtration 

Figure 5.60: Results of high pass filtration on Bosworth August 1998 day thermal 

image 

Results from the high and low pass filtration suggest that there is no benefit 

from applying these techniques for feature enhancement due to the subtle nature of the 

thermal response of the features occurring within the field. As a result, alternative 

directional filtration techniques are applied to the thermal data to assess their 

effectiveness for feature detection. 

5.5.1.3 Directional Filtration 

A directional filter is a specific form of high pass edge enhancement filtration 

that selectively enhances image features having a specific directional component or 

gradient between pixel values. Specific filter kernels can be used to enhance features 

showing strong directional contrasts with respect to the surrounding pixels. In general, 
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the elements in the kernel have high values along the directional component with the 

sum of the kernel elements being zero. The result is that areas with similar pixel 

values have a uniforn1 value in the output image, while pixels that have a high 

contrast with the surrounding pixels are presented as bright edges. Specific directional 

filters can be applied to enhance known morphological features if the pixel values 

show a strong directional contrast with the surrounding pixels. Specific orientations of 

the directional filter kernel can be applied to the data to enhance the directional 

component of the images (Figure 5.61). 

0° (N-S) 45° (NE-SW) 
-1 0 -1.414 -0.707 0 
-1 0 -0.707 0 0.707 
-1 0 0 0.707 1.414 

90° (E-W) 135° (NW-SE) 
-1 -1 -1 0 -0.707 -1.414 
0 0 0 0.707 0 -0.707 
1 1 1 1.414 0.707 0 

Figure 5.61: Standard 3x3 directional filter kernels 

Directional filtration was applied to the August day thermal image of Ambion 

field in Bosworth (Figure 5.62) to provide an example of the variations in feature 

detection produced on application of various directional filters. The subtle anomaly 

representing the position of the N-S old hedgerow boundary showed prominent 

enhancement on all but the E-W filtration, which was expected due to the orthogonal 

nature of the filter enhancements and the orientation of the field boundary not 

perfectly N-S. The subtle E-W ridge and furrow marks on the western side of the field 

showed great enhancement on all but the NE-SW filtration with additional parallel 

linear features evident on the south-eastern area of the field that were very subtle on 

visualisation of the thermal image. The thermal effect caused by the wind forcing the 

vegetation to lean showed enhancement on all but the N-S filtration with most 

prominence on the southern edge of the field where there is a greater thermal contrast 

between the leaning and vertical vegetation. The NW -SE present-day field plough 

marks on the western side of the field show equal prominence on all directional 

filtrations where the ploughing caused a variation. The SW corner of the field shows a 

greater degree of variability on all filtration than was visible on the thern1al image. 
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August N-S filtration August NE-SW filtration 

August E-W filtration August NW -SE filtration 

Figure 5.62: Results of directional filtration on Bosworth August 1998 day 

thermal image 
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Results of the filtration suggest that the combination of directional filter is more 

effective for enhancement of the thermal anomalies within the barley field than is 

provided by using a single directional filter. The directional filters were also applied 

to the images obtained at alternative stages in barley growth and the results showed 

similar features to those revealed at the later stage in barley growth. When the 

directional filters were applied to the grass-covered Arena, Helipad and Picnic fields 

and the grass and nettle covered South field, there was little additional detail revealed 

than provided by the contrast enhancement techniques. This was probably due to the 

more uniform temperatures of the individual fields than was experienced in the 

agricultural field where the barley showed a greater thermal variability. When the 

directional filtration was applied to the oil seed rape field, there were few thermal 

anomalies revealed suggesting that this crop type and stage in its development was 

insufficient for delineation of thermal features. 

Directional filtration appears to provide a useful technique for rapid assessment 

of thermal variations occurring within the barley field at any stage in crop growth. 

However, the directional filtration provided little additional detail to that revealed on 

standard contrast enhancement in the grass-covered fields at any stage in the 

vegetation development, and also in the field covered by oil seed rape. When the 

results of the directional filtration are compared with the results from the geophysical 

survey, the directional filters did not reveal the geophysical anomalies suggesting that 

the subtle thermal variations relate to surface vegetation characteristics only. 

Directional filtration is one enhancement techniques that provides useful feature 

detection. However, alternative image enhancement techniques such as image 

arithmetic operations may also be effective for feature detection. 

5.5.2 Image Arithmetic 

Basic image arithmetic can be applied to image data to enhance particular 

features through the combination of specific spectral band. Numerical transformations 

are applied to any combination of input bands with the association of a particular band 

to a specific variable in the algorithm. The algorithm is applied across the whole 

image on a pixel-by-pixel basis, assuming that the selected bands are spatially eo

registered and have the same spatial resolution. A new image is then forn1ed 
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representing the output of the defined algorithm. The four main arithmetic operators 

are addition, multiplication, division and subtraction. 

Addition can be used as a stand-alone function on two images or can be used as 

part of a more complex mathematical expression. Addition is commonly used as a 

form of averaging to help reduce noise components between images taken at the same 

time over the same region. It can also aid feature detection by adding some of the 

original image back into a filtered image and producing a much more interpretable 

result. 

Multiplication is often used to mask particular image features. Areas of interest 

are multiplied by a factor of 1 to retain the data, and the areas to be masked or omitted 

from the output image are multiplied by a factor of zero. This mathematical function 

is applied during the data pre-processing step to spatially subset the image data based 

on the areas of image overlap and also to remove data that is not associated with the 

vegetation surface. 

Division acts to reduce the dimensionality of image data and divides pixels in 

one spectral band by the corresponding pixels in another. This process is also known 

as a spectral ratio technique and is used to enhance the spectral characteristics of an 

image by reducing the affects of factors such as topographic shadowing and sun 

angle. A spectral ratio will enhance extraneous factors that do not act equally on the 

image channels and factors such as noise must therefore be removed prior to 

generating a spectral ratio. The technique can also be used in land cover change 

detection by creating a ratio of two spectral images acquired on different dates with 

the resulting image showing zero pixel values for no temporal change. 

Subtraction is performed on a pixel-by-pixel basis on a pair of eo-registered 

images taken at different times to assess the magnitude of surface change. Where no 

change has occurred, the radiometric intensity of the normalised images will be the 

same and the resultant subtraction image will have a grey value of zero. Grey values 

other than zero, both positive and negative, represent the amount of change that has 

occurred. This technique can be applied in thermal investigations to determine the 

variation in diurnal temperature response by subtracting a eo-registered day and night 

thermal image pair. The amplitude of the temperature change gives an indication of 
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the resistance of the surface to changes in temperature and can indicate variations in 

the bulk them1al properties of the surface materials through an apparent thermal 

inertia property of the material (Chapter 2.3) and may provide detection for features 

buried in the near-surface environment. The following section describes the results of 

applying a simple day-night image subtraction on the Bosworth thermal images for 

determination of variations in the Apparent Thermal Inertia of the vegetation-covered 

fields. A more quantitative approach to Apparent Thermal Inertia modelling is 

discussed in Chapter 6. 

5.5.2.1 Diurnall'hermal Contrast at Bosworth 

The contrast in thermal response between the day and night thermal images of 

Bosworth is calculated by subtracting the night temperature response from the day 

temperature response for each pixel in the temperature-calibrated thermal image pairs 

from the study site (Figure 5.63). 

The result of the June 1998 subtraction shows a stronger anomaly relating to the 

N-S old hedgerow boundary and the ridge and furrow marks than is evident on either 

day or night thermal image. The secondary E-W field boundary is poorly detected 

through this technique suggesting a difference in physical nature of the feature 

compared with the other field boundary. The E-W ridge and furrow marks are greatly 

enhanced on the June image subtraction. There are also additional irregular-shaped 

features revealed in the NW and SW areas on the contrast image that are not easily 

recognisable on the single band visualisations. The result from the August 1998 

subtraction shows a similar response to that of the August 1998 day thermal image, 

which is dominated by the wind shear effect. There is poor internal field contrast on 

this output with only subtle anomalies relating to the old hedgerow boundaries and 

ridge and furrow marks. The result ofthe March subtraction again shows poor internal 

field variation with much more pronounced present-day plough marks. 
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March 2002 Day March 2002 Night March 2002 Contrast 

Figure 5.63: Day, night and thermal contrast ofBosworth Ambion field 
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This simple subtraction technique appears to enhance some features present in 

the barley-covered field at an early stage in crop growth when compared to single

band visualisation of the day and night thermal images. When the histograms of the 

Ambion field are extracted from the day and night images from any observation date, 

the day histogram shows a wider range of temperatures than is evident at night, with 

much higher temperatures observed during the day. When the histogram of the 

subtraction image is generated, the distribution of values is similar to that from the 

day image showing a Gaussian distribution (Figure 5.64). 
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Figure 5.64: Histograms generated from August thermal images of Bosworth 

Ambion field 

The subtraction technique was repeated for the grass-covered fields at the 

Bosworth site and the results appeared to enhance the thermal anomalies associated 

with each field when compared to the features detected on single band visualisation of 

either day or night thermal images, with greater feature enhancement at early stages in 

grass growth. The results of this technique suggest that image subtraction may be 

most useful where the vegetation has a low leaf area or is relatively short. 

5.5.2.2 Diurnal Thermal Contrast on Baildon Moor 

Image subtraction was performed in Baildon Moor on the uncalibrated day and 

night thermal radiance images of the abandoned mineshaft of pronounced topographic 

expression (Figure 5.65). W-E and N-S thermal profiles generated from day-night 

thermal image subtraction (Figure 5.66) show a slight elevation in response of the SE 

rims with a decrease at the centre ofthe shaft. There is a slight asymmetry in response 

with higher values on the NE slope at the base of the shaft. The higher thermal 

contrast suggests that the materials on the NE slope may have a lower thermal ineriia 
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than the opposite side and may indicate an increase in moisture content. However, due 

to the acquisition of a single transect of geophysical properties, it was not possible to 

determine variations in moisture content at depth on this part of the shaft. 

Day and night thermal image subtraction was also performed for the vegetation 

shaft on Baildon Moor (Figure 5.67). W-E and N-S thermal profiles generated from 

the day-night thermal image subtraction (Figure 5.68) show a slight decrease in 

response over the vegetation feature with an asymmetric response with a positive 

skew towards the SW. The W-E and N-S profiles are very similar to those generated 

from the day thermal image suggesting that the day response dominates the 

subtraction. The higher thermal contrast in the SW suggests that the materials may 

have a lower thermal inertia than the surrounding materials and may again indicate an 

increase in moisture content. This is verified through observation of an area of 

standing water towards the SW of the vegetation feature and was also corroborated by 

the results of the geophysical profiles. 

Day and night thermal image subtraction was also perfom1ed on the suspected 

shaft feature on Baildon Moor (Figure 5.69). The W-E and N-S thermal profiles 

generated from the day-night thermal image subtraction show a slight decrease in 

thermal contrast eastwards with a more pronounced southerly decrease (Figure 5.70). 

However, there is little difference between the thermal response over the suspected 

shaft feature and the surrounding vegetation. This is similar to the results of the 

geophysical analysis. 

When the thermal subtraction profile from the suspected shaft feature is 

compared with the profiles generated over the known topographic and vegetation 

shafts, the suspected shaft feature shows different profile characteristics suggesting 

that the feature has a different physical nature than the other shafts. 
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Figure 5.65: Day, night and thermal contrast images of Baildon topographic shaft 
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Figure 5.66: Thermal profiles generated across Baildon topographic shaft on thermal contrast image 
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Figure 5.67: Day, night and thermal contrast images of Baildon vegetation feature 
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Figure 5.68: Thermal profiles generated across Baildon vegetation feature from thermal contrast image 
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Figure 5.69: Day, night and thermal contrast images of Baildon suspected shaft 
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Figure 5. 70: Thermal profiles generated across Bail don suspected shaft from thermal contrast image 
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Results from Baildon Moor suggest that the simple day-night them1al image 

subtraction technique is useful for detection of thermal anomalies relating to 

topographic and vegetation shaft features associated with abandoned mine activity, 

even though the thermal radiance was not calibrated to ground temperature. 

5.5.2.3 DiurnaB Thermal Contrast in Weardale 

Image subtraction was perfom1ed on an area of abandoned mining activity in 

Weardale using the uncalibrated day and night thermal radiance images (Figure 5.71). 

Thermal profiles extracted over a representative spoil heap and scour mark (Figure 

5.72) show similar response pattern to those extracted from the day thermal image 

(Figure 5.50). As a result, the image subtraction technique does not provide 

enhancement of these features and suggests that acquisition of a day thermal image is 

sufficient for detection of spoil heaps and scour marks where there is a strong thermal 

contrast between the bare soil areas associated with the mine activity and the 

surrounding vegetation. 

Although the thermal image subtraction technique is useful for feature detection 

in areas covered by vegetation, alternative image enhancement techniques such as 

spectral enhancement may also be effective for feature detection and prevent the need 

for the problematic day-night image eo-registration. 
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Figure 5.71: Day, night and thermal contrast images ofWeardale mineral extraction features 
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Figure 5.72: Thermal profiles generated across Weardale mineral extraction features from thermal contrast image 
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5.5.3 Spectral Enhancement through Principal Component Analysis 

It is not uncommon to find strong correlation between adjacent spectral bands in 

multi-spectral imagery. This is represented by the fact that if the pixel reflectance is 

high in one band then it is likely to be high for the adjacent spectral band for the same 

pixel. Principal Component Analysis (PCA) is a statistical analytical technique that 

reduces the correlation of adjacent spectral bands and enhances the spectral variability 

contained in the imagery (Mather, 1999, Jia & Richards, 1999). When the pixel 

distribution of an image band is plotted against the adjacent image band, the majority 

of the data points form an elongate elliptical cluster centred about a diagonal line 

representing a high band correlation between the adjacent spectral bands (Figure 

5.73). 
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Channel2 

Figure 5.73: Schematic scatter-plot showing pixel distribution of adjacent 

spectral bands and location of new PC coordinate system axes (PCl & PC2) 

The origin of the principal component coordinate system is centred about the 

mean of the data distribution with generation of a set of orthogonal axes. The first 

Principal Component axis (PC 1) is directed along the maximum variance of the 

dataset and the second orthogonal axis (PC2) represents the second greatest variance. 

The PC transforms the input data into a set of uncorrelated orthogonal components 

with the greatest amount of information concentrated in the first PC bands with 

successively less infom1ation through to the final PC band where the noise component 

of the original data is concentrated. PC transformations reduce the dimensionality of 

the data and generate more 'colourful' composite images because each component is 

uncorrelated. 
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The PC transformation is applied to the Empirical Line Calibrated images of the 

Bosworth site to assess the spectral variability of the vegetation. The grey-scale 

images display in Figure 5.74 give an example series of the PC bands generated 

through application of a PC transformation on the calibrated visible and near-infrared 

bands of the August data, excluding band 1 due its poor quality. 

Results from the PC transformation show that the first few PC bands show little 

internal field variation but show a highly variable contrast between the individual 

fields. The old hedgerow boundaries in Ambion field are visible as subtle anomalies 

in most of the PC bands. However, the ridge and furrow marks in the western side of 

Ambion field are poorly defined. This technique therefore fails to reveal useful detail 

internal to the individual fields, probably because of the inclusion of the spectral 

detail associated with the hedgerows, roads and buildings. In order to assess the 

spectral variability of the individual fields, materials external to the field are masked 

out and omitted from analysis. 

The PC transformation is applied on an individual field basis where areas of 

interest that are covered by vegetation have been cut out from the rest of the image. 

As an example, the PC transformation is applied to the August 1998 visible and near

infrared bands from Ambion field (Figure 5.75) and is also performed with inclusion 

of the thermal band (Figure 5.76). The results of the PC transformation show that the 

spectral variability within Ambion field is greatly enhanced compared with the 

visualisation ofthe same field on transformation ofthe entire image. 

Although the Bosworth dataset has been calibrated to ground-leaving 

reflectance and surface temperature, this is not always possible to perform without 

sufficient auxiliary ground calibration as in the case of Baildon Moor and Weardale. 

The PC transformation was therefore repeated on the August 1998 uncalibrated 

visible and near-infrared bands of Ambion field (Figure 5.77) and was performed with 

inclusion of the uncalibrated thermal band (Figure 5.78). This allowed determination 

of the necessity for spectral calibration prior to using Principal Component Analysis 

as a suitable method of spectral analysis 
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Figure 5.74: Monochrome images of PC transformation bands of Bosworth 

August 1998 visible and near-infrared bands 
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0\ Figure 5.75: PC transformation ofBosworth August 1998 visible and near-infrared bands of Ambion field 
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Figure 5.76: PC transformation ofBosworth August 1998 visible, near-infrared and thermal bands of Ambion field 
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N -00 Figure 5. 77: PC transformation of Bosworth August 1998 uncalibrated visible and near-infrared bands of Ambion field 
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Although the main features of Ambion field are clearly evident on both the 

calibrated and uncalibrated image datasets, the uncalibrated images contain much 

more spectral noise in more of the PC bands. As a result the uncalibrated data reduces 

the number of useful PC bands that can be used for interpretation. However, rather 

than interpret the monochrome images of each transformation band individually, a 

more practical method for interpretation is to generate a series of colour composites. 

A variety of band combinations can be selected for interpretation omitting bands 

containing excessive noise. The bands selected for colour combination are PC Bands 

1-5 from both the calibrated (Figure 5.79) and uncalibrated (Figure 5.80) visible and 

near-infrared transformations and also the calibrated (Figure 5.81) and uncalibrated 

(Figure 5.82) visible, near-infrared and thermal transformations. Similar procedures 

are performed on the June 1998 and March 2002 images from Ambion field and also 

on the other grass-covered fields, although the results of these visualisations are not 

illustrated. 

The result of the PC band combinations suggest that features internal to the 

barley field can be more easily delineated on the uncalibrated visible and near

infrared visualisations rather than the calibrated equivalent. However, there is little 

variation in the results from the uncalibrated and calibrated band combinations of the 

visible, near-infrared and thermal infrared visualisations. The images from the other 

stages in both barley growth and the grass-covered fields also show the same results 

with the uncalibrated visualisation revealing features similar to those revealed on the 

calibrated equivalents. The implications from the Principal Component Analysis is 

that it appears to be unnecessary to perform spectral calibration on the noise-free 

A TM channels prior to sufficient feature delineation in the barley and grass-covered 

fields using the PC spectral enhancement transformation. 

Since the uncalibrated data appears to be sufficient for detection of internal field 

variations, the PC transformation is performed on the uncalibrated data from Ambion 

field when the oil seed rape is present. The results show poor internal field variation 

on either the visible and near-infrared band combinations (Figure 5.83) or from 

inclusion of the thermal band (Figure 5.84). The oil seed rape is therefore deemed an 

unsuitable vegetation condition on which to perform feature detection using Principal 

Component Analysis. 
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Figure 5. 79: PC Band combinations on transformation of Bosworth August 1998 calibrated visible and near-infrared 

bands of Ambion field 

(J 
:::r .g 
....., 
~ 
>-f 

Vl 

10 c e:. ...... ...... 
~ ....., <. 
~ 

........ 
8 
~ 

(IQ 
~ 

........ 
:::::: 
~ -a 
>-f 
~ s 
c. 
0 
:::::: 



N 
N 
N 

-

PC 123 PC 134 PC 234 PC 523 

Figure 5.80: PC band combinations on transformation of Bosworth August 1998 uncalibrated visible and near-infrared 

bands of Ambion field 

n 
:J' 

~ 
~ 

C'D 
'""t 

Vl 

D 
§. 
,... . 
g 
<: . 
C'D ......, 
8 
~ 

C'D 

S' 

~ 
'""t 
C'D 
~ 

Pl 
~ c; · 
:::3 



N 
N 
w 

PC 123 PC 234 PC 52 1 PC 41 5 

Figure 5.81: PC band combination on transformation of Bosworth August 1998 calibrated visible, near-infrared and 

thermal bands of Ambion field 
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Figure 5.82: PC band combination on transformation of Bosworth August 1998 uncalibrated visible, near-infrared and 

thermal bands of Ambion field 
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Figure 5.83: PC Band combinations on transformation of Bosworth March 2002 uncalibrated visible and near-infrared 

bands of Ambion field 
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Figure 5.84: PC Band combinations on transformation of Bosworth March 2002 uncalibrated visible, near-infrared and 

thermal bands of Ambion field 
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Chapter 5: Qualitative Image Interpretation 

5.6 SUMMARY of QUALITATIVE ANALYSIS 

This chapter has outlined a range of qualitative analysis techniques that can be 

applied to visible, near-infrared and thermal images to enhance features contained 

within the spectral data measured by the NERC A TM sensor. The individual spectral 

channels are initially visualised as a series of monochrome images to assess the 

similarity in response of adjacent spectral channels and also enables identification of 

channels that contain excessive noise that are subsequently excluded from further 

analysis. 

Visualisation of the thermal images shows relatively little contrast within the 

vegetation areas as a direct result of anomalously high and low radiance values 

associated with non-vegetated areas within the spatial extent of the imagery. This 

results in the values associated with the vegetation occupying a relatively small 

section of the image histogram. Subtle variations in response occurring within the 

vegetation are therefore difficult to detect without performing contrast enhancement 

techniques. Contrast enhancement techniques are applied to the range of intensity 

values associated with the vegetation so that there is a greater visual contrast in 

intensity values. The contrast enchantments that provide the most useful enhancement 

of the more subtle thermal features in the vegetation areas are the Linear 2% and 

Histogram Equalisation algorithms that enable the removal of values associated with 

the non-vegetated pixels. 

The single-band visualisation technique allows interpretation of the thermal 

anomalies present on the diurnal thermal images from all study sites and also the 

seasonal thermal images obtained at the different stages in vegetation growth at the 

Bosworth site. Vector layers of the interpretation of the thermal anomalies are 

generated from the contrast enhanced images and a comparison is made between the 

diurnal results from each site and also the seasonal results from Bosworth. A seasonal 

assessment of Baildon Moor and Weardale could not be performed due to the 

acquisition of a single diurnal pair over these sites. The diurnal results from Baildon 

Moor suggest that both the abandoned mineshafts of distinct topographic and 

vegetation expression are more readily distinguished from the surrounding moorland 

on the day thermal images, with only a subtle contrast evident at night. The scour 

marks and spoil heaps from Weardale are easily identified on both the day and night 
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thermal images, mainly due to the lack of vegetation associated with the edges of the 

features giving rise to a distinct thermal response compared to the surrounding 

vegetation-covered areas. 

The diurnal results from Bosworth show that the grass-covered fields reveal a 

series of thermal anomalies on the day thermal images when the grass is short, with 

moisture content and topographic aspect appearing to have the greatest effect on the 

thermal response. The night thermal images of the grass-covered fields fail to reveal 

the same detected features. The diurnal results from the barley-covered field showed a 

similar set of thermal features on the diurnal images obtained at each separate stage in 

vegetation growth. The night thermal images showed a similar response pattern at the 

middle and late stages in barley growth. The day thermal images obtained at these 

times showed a greater variation in response with a greater degree of thermal variation 

evident at earlier stages in barley growth, although the response from the later stage 

may be hampered by the wind shear effect. The diurnal response from the oil seed 

rape failed to reveal features that were revealed under the barley, suggesting that this 

type of vegetation is unsuitable for feature detection. The complexity in results from 

the diurnal and seasonal images from Bosworth suggests that the type and stage in 

vegetation growth can greatly affect the observed response in the vegetation-covered 

fields. From the single-band visualisations, the optimum observation appears to occur 

during the day when the grass is relatively short and at early stages in barley or at 

night in later stages ofbarley growth. 

Although the single-band visualisation is important for the interpretation of the 

thermal anomalies, it is not very easy to compare the results with the response 

observed in the other spectral channels. Comparison with each of these bands 

individually is laborious and so a more suitable method of spectral comparison is to 

generate colour composite images of selected spectral channels. The series of colour 

composite images generated for the Bosworth site suggest that the near-infrared 

enhances the spectral variability of the individual fields with the inclusion of the day 

thermal channel further enhancing visual interpretation. A similar result is also 

evident on colour composite visualisation of the Baildon Moor and Weardale data. 

From the series of the colour composite images it is clear that the inclusion of the 
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thermal infrared is very important for the interpretation of anomalous features within 

the study site. 

Alternative enhancement techniques are applied to the multispectral imagery, 

such as Edge Detection Filtration, Image Arithmetic and Principal Component 

Analysis, which aim to enhance the variability associated with vegetation cover. In 

order to enhance the detail associated with the vegetation, areas that did not contain 

vegetation were omitted from analysis. Spatial enhancement involves the use of 

mainly Low Pass, High Pass and Directional Filtration techniques that aim to enhance 

contrasts in the response measured in the vegetation. Results of the Low Pass 

filtration smoothed the imagery and did not enhance the detail of the vegetation areas. 

Results of the High Pass and Directional filtration enhanced some of the strong 

contrast in response within the vegetation, but are only useful as an initial 

investigation of the thermal contrast occurring within a vegetated area and do not 

necessarily reveal all thermal anomalies within the vegetation. 

Image arithmetic or more specifically image subtraction is important in thermal 

assessments where the thermal contrast in diurnal response can indicate the resistance 

of the materials to temperature change, or the apparent thermal inertia, and relate to 

variations in the bulk properties of the surface materials. This technique can only be 

successful where radiometric calibration has been performed on the diurnal thermal 

images and the same thermal response on either diurnal image will have the same 

digital number. Image subtraction is performed on the calibrated data from Bosworth 

to detect potential anomalies that may relate to bulk material variations. Results from 

the barley field showed substantial enhancement of the thermal features at an earlier 

stage in crop development, whereas the results from later in the barley growth and 

under the oil seed rape show thermal response patterns similar to the day thermal 

images, supported by the similarity in histograms generated from the day and contrast 

images. This characteristic is also evident in the Weardale imagery. However, the 

Baildon Moor data shows a more variable response pattern across the shafts. When 

the thermal profiles are extracted across the shaft features in Baildon Moor there 

appears to be a variation in the shape of the profile between the day and night images, 

and, as a result, the thermal profile across the mine shaft shows a skew towards one 

side of the feature, suggesting a variation in the materials beneath the surface. When 
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the results of the thermal interpretation are compared with the results from the 

geophysical survey in Baildon Moor, the variation in shape of the thermal profile 

correlates with a skew in the geophysical properties of the materials at depth. When 

the results of the thermal interpretation from Bosworth are compared with the results 

from the geophysical survey, it is apparent that the thermal features no not necessarily 

correlate with geophysical anomalies suggesting that the thermal anomalies relate to 

variations in the vegetation rather than variations in the underlying soil characteristics. 

Principal Component Analysis is performed on the calibrated and uncalibrated 

multispectral data from the Bosworth site to determine the necessity for spectral 

calibration prior to feature detection. The results from the PCA transformation suggest 

that the uncalibrated dataset provides a suitable spectral basis from which to detect 

features present in the vegetation areas with inclusion of the thermal channel 

revealing further features. The promising results from this technique suggest that 

substantial feature enhancement may be obtained in the Baildon Moor and Weardale 

areas by performing PCA on the uncalibrated datasets, and omitting the non-vegetated 

areas from analysis. PCA therefore appears to provide a useful approach to detecting 

features in vegetated areas where ground data may not be available for spectral 

calibration. 

The different qualitative analyses described in this chapter have shown that a 

range of visualisation and transformation techniques can provide the basis for feature 

detection when areas that contain non-vegetated materials are excluded from analysis. 

In addition, the results from the calibrated and uncalibrated Bosworth data suggest 

that it is not entirely necessary for spectral calibration of the data in order to detect 

features, as long as there is linearity in the thermal response across the day and night 

thermal images. Results from Baildon Moor suggest that the thermal anomalies can be 

related to strong geophysical anomalies of the soil properties at depth. This is not the 

case for the Bosworth site where the geophysical anomalies are not associated with 

thermal anomalies, and vice versa, suggesting that the thermal response may indicate 

variations in the vegetation cover. 

In order to test this hypothesis, soil samples are examined across positions of 

some of the thermal and geophysical features in the Bosworth site to assess the 
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relationship between the observed thermal anomaly and variations in the physical 

characteristics of the underlying soils. 
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6 NlJMJERliCAlL 'fHERMAL MODlEILLliNG 

The processing requirements for thermal infrared image data is typically 

dependent on the type of information to be extracted from the data, such as the 

calibration to absolute surface temperature or the determination of physical thermal 

properties of the surface (Schott, 1989). Both of these requirements are examples of 

processing that enable extraction of quantitative information from manipulation of the 

numerical image data. 

When exposed materials are altered by weathering or are covered by a layer of 

a different material, the observed surface reflectance is unrepresentative of the bulk 

composition and materials with different compositions will often display similar 

temperature values when observed at one point in the diurnal cycle. As a result, 

interpretation of thermal images is often complicated because information on the 

physical properties of the surface is contained in both the spatial and temporal 

variations of the data and thermal models are necessary to extract and display this 

information. Thermal inertia is especially useful in such circumstance as a 

complement to surface reflectance data because it depends on the volumetric rather 

than the surface properties of the material. Thermal inertia is a measure of the 

resistance of a material to a change in temperature and physical thermal inertia can be 

calculated from the root product of the physical parameters of thermal conductivity, 

heat capacity and density. Due to the inclusion of density in the calculation, thermal 

inertia can indicate volumetric variations in surface materials and so thermal inertia 

may be particularly useful when attempting to locate features buried at shallow depths 

where there will be a variation in physical and thermal properties of the features 

compared to the surrounding matrix. 

Although thermal inertia cannot be measured directly from remote thermal 

observation, an Apparent Thermal Inertia (ATI) can be inferred from the diurnal 

resistance of the surface to temperature change. This requires the acquisition of 

thermal images at times when there is the greatest difference in temperature response 

at the surface with an image acquired during the day when the surface is at its 

maximum temperature, with a complementary image acquired at night when the 

surface is at its minimum temperature. The apparent thermal inertia can then be 
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calculated from the contrast between the day and night response and is displayed in 

image format. However, this technique requires the accurate calibration of the thermal 

radiance measured at the sensor to temperature values. An empirical surface 

temperature calibration can be performed on the thermal data using ground 

temperature values measured at the surface at the time of overflight and is performed 

on the data during preprocessing. However, if such data is unavailable then an 

alternative is to perform a quantitative temperature calibration where radiance is 

converted to temperature using the Planck Radiation Law. 

Once the thermal data is converted to temperature, quantitative information on 

the thermal nature of the surface can be extracted by calculating the Apparent 

Thermal Inertia using a variety of algorithms. Some of the algorithms require 

auxiliary detail on topographic, meteorological or physical parameters relating to the 

surface. However, such detail is often unavailable at the time of observation. 

Alternative algorithms that require limited auxiliary detail are applied to the calibrated 

diurnal temperature images and the results from the Kahle et al (1984) and Price 

( 1989) algorithms are compared with the results from the simple day-night image 

subtraction performed during qualitative assessment. 

The ATI values calculated from the thermal imagery gives a snap-shot of the 

thermal characteristics of the surface, however, an uncertainty lies in whether the 

values relate to a combined effect of the soil and surface vegetation or related solely 

to the vegetation layer. In order to assess this phenomenon, contact soil temperature 

values are measured at depths within the undisturbed soil column to generate a 

vertical thermal profile at selected locations in the study area. The thermal behaviour 

of the soil column is assessed throughout the vegetation growth cycle by measuring 

the heat flux at specific depths. The purpose of these measurements is to assess the 

relationship between the vegetation growth and the thermal regime of the surface to 

identify situations when the response of the vegetation is similar to that of the 

underlying soil. 
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6.1 QUANTITATIVE TEMPERATURE CALIBRATION 

The data acquired by the 8-121-lm channel on the ATM sensor give a measure 

of the thermal radiance measured for a discrete location on the ground surface. This 

value can be converted to temperature using an Empirical Line calibration technique 

during preprocessing where a particular thermal radiance value is assigned to a 

temperature value measured at the ground location, with interpolation between sets of 

thermal radiance and known temperature values. However, errors may occur using 

this calculation because it may be wrong to assume that every surface material 

behaves in the same way. An alternative approach is therefore adopted, where thermal 

radiance measured by the remote sensor is converted to temperature values using the 

mathematical inversion of the Planck Radiation Law (Equation 6.1) to calculate 

temperature (T) from known radiance (L) with respect to wavelength of observation 

(A), emissivity ofthe surface (E) and radiation constants Cl and C2 (Equation 6.2). 

Equation 6.1 

Equation 6.2 

The above equation can be applied to the whole thermal image since the 

thermal radiance is known for every pixel in the imagery. However, there are two 

main factors in this equation that are not precisely known, that of spectral wavelength 

and surface emissivity. Therefore, prior to accurate temperature calibration of the 

thermal channel it is necessary to understand the sensitivity of the calculated 

temperature values to these factors. 
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In order to assess the sensitivity of the Planck Equation to variations in each 

parameter, a series of C++ programs are written to calculate thermal radiance from a 

constant temperature with respect to variable wavelength and emissivity. In addition, 

temperature is also assessed with respect to a constant thermal radiance with variable 

wavelength and emissivity. 

Where sensitivity is assessed with respect to variable wavelength, wavelength 

values are varied from 8.401J.m to 11.501J.m in increments of 0.051J.m to represent the 

full spectral response curve of the ATM thermal channel. The spectral response of the 

ATM thermal channel, provided to NERC by NPL, indicates that the quantised 

boundary wavelengths associated with the thermal channel are set to an upper limit of 

8.401J.m and a lower limit of 11.501J.m, giving the mid-channel wavelength of 9.951J.m 

for the thermal infrared channel. Therefore all further calculations using thermal 

wavelengths were performed using this full spectral range, even though the response 

of the thermal channel varies across this spectral range (Figure 6.1 ). 
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When sensitivity is assessed with respect to variable emissivity, the emissivity 

values are varied from 0.90 to 1.00 in 0.01 increments to represent the full range of 

possible natural material emissivity values present in the imagery, excluding those of 

roads and buildings. All sensitivity analyses are performed on the calibrated Bosworth 

data due to the availability of ancillary ground data. 

The first analysis was performed to assess the sensitivity of radiance with 

respect to variable wavelength (Appendix F1). For this, values are substituted into the 

Planck equation (Equation 6.1) for a constant emissivity of 0.97, chosen to represent 

healthy vegetation that dominates the fields in the study site, and a constant 

temperature of 288K, chosen to represent the mean daytime temperature recorded for 

the study site. Results of the sensitivity analysis generate a 3rd order polynomial 

solution, with maximum radiance occurring at a wavelength of 1 0.0011m (Figure 6.2). 

Further analyses are performed, first by varying the temperature and then the 

emissivity. Results of the temperature variation show that an increase in temperature 

results in the peak of calculated radiance moving to shorter wavelengths with 

progressively higher associated radiance values (peak at 9.601Jm for 300K). In 

addition, a decrease in temperature results in the peak of calculated radiance moving 

to longer wavelengths with a decrease in radiance values (peak at 10.551Jm for 273K) 

(Figure 6.2A). Results of the emissivity variation show an increase in emissivity 

results in progressively higher calculated radiance values with the peak of radiance 

always occurring at 1 0.0011m for a constant temperature of 288K (Figure 6.2B). 
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Figure 6.2: Sensitivity of thermal radiance to variable wavelength at (A) variable 

temperature and (B) variable emissivity 
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The second analysis was performed to assess the sensitivity of radiance with 

respect to variable emissivity (Appendix F2). For this, values are substituted into the 

Planck equation (Equation 6.1) for a constant wavelength of 9 .95J..lm, chosen to 

represent the mean wavelength of the A TM thermal channel, and a constant 

temperature of 288K, chosen to represent the mean daytime temperature recorded for 

the study site. Results of the sensitivity analysis are summarised by an inverse linear 

relationship between radiance and emissivity for constant temperature and wavelength 

(Figure 6.3). 

Further analyses are performed, first by varying the temperature and then the 

wavelength. Results of the temperature variation show that the gradient of the line 

increases with increasing temperature, with calculated radiance values also increasing 

with temperature (Figure 6.3A). Results of the wavelength variation show that the 

gradient of the line also increases with increasing wavelength. However, the radiance 

values do not show a linear increase with wavelength. A wavelength increase from 

8.40J..lm to lO.OOJ..lm results in a progressive increase in radiance values. However, 

wavelength values from 1 O.OOJ..lm to 11.50J..lm results in a gradual decrease in 

subsequent radiance values (Figure 6.3B). 
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The third analysis was performed to assess the sensitivity of temperature with 

respect to variable wavelength (Appendix F3). For this, values are substituted into the 

inverse Planck equation (Equation 6.2) for a constant emissivity of 0.97, chosen to 

represent healthy vegetation that dominates the surface cover in the study sites. A 

constant radiance of 66 wm-2 was chosen to represent the radiance calculated by 

Equation 6.1 using the mean parameter values recorded for the study sites. Results of 

the sensitivity analysis generate a 3rd order polynomial solution between temperature 

and wavelength for constant radiance or emissivity (Figure 6.4). 

Further analyses are performed, first by varying the radiance and then the 

emissivity. Results of the radiance variation show that an increase in radiance results 

in an increase in the associated temperature values, with the minimum temperature 

moving to shorter wavelengths with an increase in radiance (Figure 6.4A). Results of 

the emissivity variation show that an increase in emissivity results in a decrease in the 

associated temperature values, with the minimum temperature occurring at 

progressively longer wavelengths with an increase in emissivity (Figure 6.4B). 
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The fourth analysis was performed to assess the sensitivity of temperature 

with respect to variable emissivity (Appendix F4). For this, values are substituted into 

the inverse Planck equation (Equation 6.2) for a constant wavelength of 9.95J.!m, 

chosen to represent the mean wavelength of the ATM thermal channel, with a 

constant radiance of 66 W m _z, chosen to represent the radiance calculated by Equation 

6.1 using the mean parameter values recorded for the study sites. Results of the 

sensitivity analysis generate a 2nd order polynomial solution with an inverse 

relationship between temperature and emissivity for constant wavelength and radiance 

(Figure 6.5). 

Further analyses are performed, first by varying the radiance and then the 

wavelength. Results of the radiance variation show that an increase in radiance results 

in an increase in the associated temperature values (Figure 6.5A). Results of the 

wavelength variation are more complex with progressively shallower gradients with 

an increase in wavelength from 8.40J.!m to 1 O.OOJ.!m, and progressively steeper 

gradients observed from 1 O.OOJ.!m to 11.50J.!m (Figure 6.5B). 
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From these sensitivity analyses, the range of emissivity values used appears to 

have little effect on calculated radiance (Figure 6.3) and temperature (Figure 6.5), 

with an uncertainty of ±0.03 emissivity resulting in an uncertainty of ±2.2K in 

temperature as is published in the literature (Fuchs & Tanner, 1966 and Schmugge et 

a/, 1998). Emissivity values are known to be spectrally variable with wavelength in 

the thermal infrared region (Price, 1984 & Schmugge et a/, 1991) but without having 

multiple channels within the thermal infrared, the true thermal emissivity of a surface 

cannot be determined. However, since the areas of most interest in the study sites are 

covered by vegetation of variable composition, structure and condition and there is 

only a slight variation in their associated emissivity values (Table 2.2), an emissivity 

of 0.97 can be assumed for the whole of the study sites as long as roads and buildings 

and other non-vegetated surfaces are omitted from analysis. Wavelength appears to 

have a greater influence on the calculated radiance (Figure 6.2) and temperature 

(Figure 6.4) and as such an assumed value of wavelength may be inappropriate. In 

addition, the spectral response of the A TM thermal channel shows a variable response 

across the 8.00J.tm-15.00J.!m range of thermal wavelengths (Figure 6.1 ). However, the 

mean spectral response occurs at a wavelength of 9.95Jlm and as a result, this 

wavelength is assumed for all further calculations on the A TM data using the Planck 

relationship. 

The sensitivity analyses performed on the Planck Radiation Law have 

indicated that the assumed emissivity and wavelength values may have little affect on 

the calculation of temperature using the Planck relationship. As a result, users of the 

NERC Daedalus-1268 ATM sensor should be able to convert thermal radiance to 

temperature by substituting the radiance extracted from the A TM thermal channel and 

defining appropriate values for the wavelength of observation and the emissivity of 

the ground surface in the Planck relationship. However, there is great uncertainty in 

this process. 

6.2 CONVERTING RADIANCE to TEMPERATURE USING THE 

PLANCK RELATIONSHIP 

Thermal radiance can be converted to temperature usmg the Planck 

relationship (Equation 6.2) with respect to the wavelength of observation and surface 

emissivity. However, on closer inspection of the literature there was great uncertainty 
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on the definition of the parameters used by the various authors (Chapter 2.1.2). The 

greatest variation occurred in the units of measurement associated with radiance and 

wavelength, with additional discrepancies in the units and values of the physical 

constants. Further problems arose where some of the authors failed to state the units 

associated with specific parameters (Table 2.1). As a result, this posed a considerable 

problem for determining which description of the Planck equation should be applied 

for converting measured ATM radiance to ground temperature. A review of the 

literature revealed only three authors that state the complete set of units associated 

with radiance, temperature, wavelength and the physical constants, and also state the 

values of the physical constants used in the Planck equation: 

1) Price (1989) defines radiance in wm-2 11m-1 with respect to temperature (K) 

and wavelength (~-tm) with values ofC1=3.74x108 and C2=1.439x104 

2) Qin & Karnieli (1999) define radiance in Wm-2 ~-tm- 1 with respect to 

temperature (K) and wavelength (m) with values of C1=3.74x10-16 Wm2 and 

C2=1.439xl0-2 mK 

3) Kealy & Hook (1990) define radiance in wm-3 with respect to temperature (K) 

and wavelength (m) with values of C1=3.74151x10- 16 Wm2 and 

C2=0.0 143879 mK 

Although Price ( 1989) and Qin & Kamieli ( 1999) use identical radiance and 

temperature units, there are variations in both the unit of wavelength and in the values 

of their physical constants. It is also apparent that there must be a discrepancy 

between Qin & Kamieli ( 1999) and Kealy & Hook ( 1990) since there is a variation in 

the units defined for radiance and yet the authors state identical units for the 

temperature and wavelength and also state identical values of their two physical 

constants. It is therefore necessary to assess the effect of these differences on the 

Planck equation in order to determine which Planck definition shall be applied to the 

thermal data measured by the ATM. This involved a simple technique of substituting 

values for emissivity (E=0.97) and temperature (T=296K) into the equation together 

with a value of wavelength (A-=9.95, in the units appropriate to the authors' 

specificatio~and values of their associated physical constants (Equation 6.3). 
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L = 0.97 x 3.74x10
8 

9.95s[exp(1.439 x 104) -1] 
9.95x 296 

L = 2.82 X 101 

L = 0.97 X 3.74 X 10-16 

(9.95 X 1 o-6 Y(ex ( 1.439 X 1 o-2 ) -1] 
p (9.95 X 10-6 )x 296 

L = 2.82 X 107 

L= 0.97x3.74151x10-16 

~.95x1o-6Y(ex ( 0.0143879 )-1] 
p (9.95 X 10-6 )x 296 

L=2.82x107 

If we refer back to the definition of radiance provided by the authors, Price 

(1989) and Qin & Kamieli ( 1999) state identical units of radiance and yet there is a 

factor of 1 x 1 06 between the radiance values calculated above, which relates to the 

magnitude of the units of the other parameters. There is an additional problem in that 

the radiance calculated above for the Qin & Kamieli ( 1999) and Kealy & Hook 

( 1990) definitions are identical and yet the units defined for radiance would suggest a 

factor of 1x106 between these authors, i.e. converting from wm-2f!m- 1 (Qin & 

Kamieli, 1999) to Wm-3 (Kealy & Hook, 1990). Although the discrepancy between 

the latter two authors would suggest that the units of the parameters are different from 

those used in their respective definitions of the Planck equation, the definition 

provided by Price ( 1989) is deemed the most reliable for temperature calculation with 

parametric definitions for radiance in wm-2f!m- 1
, wavelength in f!m and values for 

C1=3.74x108 and C2=1.439x104
• The Price (1989) definition is therefore applied to 

the ATM radiance to determine ground temperature. However, prior to its application 

users of the NERC A TM data must ensure that the A TM radiance is presented in the 

same physical units as defined by Price ( 1989). 

6.3 CONVERSION of ATM RADIANCE to PRICE RADIANCE 

When the header is extracted from each A TM image, the unit of measurement 

associated with the ATM radiance is J.tWcm-2 sf1 nm-1
, which is in stark contrast to 
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the units of Wm-2 stated in the Price (1989) definition of the Planck relationship. As a 

result, a conversion factor must be determined and applied to the ATM data to provide 

the appropriate radiance units for the determination of ground temperature. The 

conversion factor can be determined by comparing the magnitude of the radiance 

units from each source (Calculation 6.1). 

Calculation 6.1 

Source ATM PRICE 

Radiance Units JlW cm-2 sr" 1 nm·' W m·2 11m- 1 

Magnitude 10-()x 10°x (1 o·LrLx (1 o·'.lr 1 10°x (10°)"Lx (10-())" 1 

107 106 

This calculation suggests that A TM radiance can be converted to Price 

radiance by multiplying by a factor of lx10 1
• However, this calculation does not take 

into account the scaling factor that was introduced during the radiometric calibration 

process to ensure that the values of A TM radiance were recorded within the numerical 

range of 0-1. The ATM radiance therefore requires further division by this scaling 

factor, which is represented by a factor of 1 x 103 that is detailed in the header of each 

A TM image. The above calculation must therefore incorporate this scaling factor 

prior to determining the conversion between A TM radiance and Price radiance 

(Calculation 6.2). 

Calculation 6.2 

Source ATM PRICE 

Radiance Units JlW cm-2 sr" 1 nm·' W m-2 11m-1 

Magnitude SCaling factor X 10-tJX 10°X (1 o·2rzx (1 o·lJr 1 10°x (10°)"2x (10-6)"1 

107 106 

The above calculation suggests that A TM radiance reqmres division by a 

factor of 1 x 102 in order to represent Price radiance units. However, this calculation 

has not taken into account the per steradian (sr- 1
) part of the ATM radiance units, a 

factor introduced to take into account the solid angle associated with observation from 

the sensor. However, there is great uncertainty as to whether steradian should be 

represented by 2n as in normal laboratory-based investigations where both northern 

and southern hemispheres of an object are observed, or should be represented by 1t 

when the northern hemisphere of the object is observed as in the case when the 
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ground surface is observed from the airborne platform. This latter approach is more 

plausible and as such a value of n was suggested for incorporation in the conversion 

between ATM and Price radiance (Wilson,pers.comm). 

However, since there is such uncertainty in the literature on this issue, an 

empirical approach was adopted to assess the conversion between A TM radiance and 

Price radiance detailed in the previous discussion. Radiance was empirically 

determined for known ground temperature values using the Price ( 1989) definition 

(Equation 6.3) and comparing the calculated radiance with the ATM radiance 

extracted from the corresponding pixels, taking into account the conversion factor 

determined through Calculation 6.2 and the solid angle of observation (Table 6.1 ). 

Temperature 
Price Extracted A TM Price-converted A TM 

Radiance Radiance Radiance 
296K 28.3 0.86 0.86--;- 10L X 7t = 2.7018 
288K 24.7 0.79 0.79--;- 102 

X 7t = 2.4819 
299K 29.7 0.92 0.92 --;- 102 

X 7t = 2.8903 

Table 6.1: Comparison of Price and ATM radiance for known ground 

temperatures, calculated using wavelength of 9. 95f.1m and emissivity of 0.97 

It would appear from the above table that even when the scaling factor and the 

solid angle are taken into consideration, the A TM radiance still does not equate to the 

expected Price radiance value. As a result, the thermal radiance measured by the 

NERC ATM cannot be directly inserted in the Price relationship to determine surface 

temperature, which has serious implications for users of the NERC A TM thermal 

data. The NERC ARSF is still reviewing this issue and hope to provide a solution in 

the near future to enable the determination of ground temperature directly from the 

measured ATM thermal radiance (Wilson, pers. eo mm). 

Although the above discussion has outlined great uncertainty in the conversion 

of A TM radiance to Price radiance, this does not affect the remainder of the thesis 

where quantitative Apparent Thermal Inertia models were applied to ground 

temperature values of the study sites that were determined through application of an 

empirical line image calibration technique, which calculates a linear regression 

between the A TM radiance extracted for speci fie features and the corresponding 

known ground temperature values (Chapter 4.5.1.1). This technique provides day and 

night temperature images of the study sites on which to perform Apparent Thermal 
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Inertia modelling and to assess variations in the surface response potentially relating 

to features buried in the near-surface environment. 
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6.4 APPARENT THERMAL INERTIA MODELLING 

Apparent thermal inertia can indicate volumetric variations m surface 

materials and may be particularly useful when attempting to locate features buried at 

shallow depths where there will be a variation in physical and thermal properties of 

the features compared to the surrounding matrix. Although thermal inertia cannot be 

measured directly from remote thermal observation, an Apparent Thermal Inertia 

(A TI) can be determined from the diurnal resistance of the surface to temperature 

change. A TI calculation requires the acquisition of thermal images at times when the 

surface displays the greatest difference in temperature response across the diurnal 

cycle with each thermal image calibrated to surface temperature via the empirical line 

method. A TI is then calculated for the eo-registered image pair by subtracting the 

night temperature from the day temperature value for every pixel. ATI values are 

initially calculated using the temperature-calibrated diurnal image pairs from 

Bosworth before comparing the results performed with the uncalibrated image pairs to 

assess the necessity for temperature calibration. 

A TI models are essentially driven by the parametric relationship under 

investigation and the type of auxiliary data available for incorporation in the model. A 

simple image-based approach can be used, as discussed in the previous chapter, using 

the day-night temperature difference of each pixel from a diurnal image pair. 

Alternative approaches can be adopted involving more complex mathematical 

relationships that require auxiliary detail on meteorological, topographical or surface 

characteristics. 

The simplest approach to A TI calculation was initially conceived as part of the 

Heat Capacity Mapping Mission (HCMM) where A TI is calculated as a function of 

the diurnal temperature change measured across the surface (~ T) with respect to 

surface albedo (A), Equation 6.4. This was expressed in Cracknell & Xue (1996) and 

as such shall be referred to the Cracknell & Xue ( 1996) model from this point 

forward. 

Equation 6.4 
AT/=(1-A) 

~T 
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A C++ program was written using the above equation, where the A TI is 

calculated on a pixel-by-pixel basis from the temperature change observed between 

eo-registered diurnal temperature images and a value of the surface albedo (Appendix 

F5). 

Surface albedo is a dimensionless measure of the reflectivity of the surface, or 

the fraction of incident solar radiation that is reflected by the surface (Barrett & 

Curtis, 1982, Sabins, 1986 & Elachi, 1987). Initially, the A TI is calculated with 

respect to a constant user-defined albedo value, which may be appropriate where 

surfaces have a homogenous composition. However, areas that have a heterogeneous 

nature may be poorly represented by a single albedo value. Albedo is affected by 

properties such as composition (Goetz, 1989 & Snyder et al, 1997), roughness 

(Verbrugghe & Cierniewski, 1998) and moisture content as well as view angle and 

solar zenith angle (Barnsley et al, 1997; Song, 1998 & Cresswell et a!, 1999). 

Vegetation also affects surface albedo through variations in leaf and canopy 

geometries (Grover et al, 2000), leaf area index and fractional cover (Sharratt, 1998) 

and also canopy reclination (Song, 1998). Heterogeneous areas therefore require 

determination of surface albedo for every pixel in the image. A variety of methods for 

determining albedo are mentioned in the literature (Price 1977; Kahle et al, 1976; 

Gillespie & Kahle, 1977; Pratt & Ellyett, 1979; Watson, 1982; Price, 1985; Kahle & 

Alley, 1985; Xue & Cracknell, 1995 & Grover et a!, 2000). However, none of the 

authors give any detail on the specific methods of calculation. 

Since surface albedo cannot be easily determined for heterogeneous surfaces, 

all non-vegetated areas are masked from the images to ensure homogenous land 

cover. This reduces the variation in surface albedo values and enables the designation 

of a single albedo value to the remaining surface cover. Although albedo varies with 

structural properties of the vegetation, there is a narrow range of vegetation values 

published in the literature. However, to understand the sensitivity of A TI calculations 

to variations in albedo, a C++ program was written using Equation 6.4, where the A TI 

is calculated with respect to a specific temperature change, reflecting the range of 

diurnal temperature contrasts determined for the study site through the simple day

night temperature subtraction, and a range of albedo values from 0.00 to 1.00 in 
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increments of 0.01 (Appendix F6). Results of the sensitivity analysis are plotted as a 

graph of A TI against variable albedo (Figure 6.6). 

Sensitivity A TI -albedo 

0.1000 

0.0800 

0.0600 - 20K -E-< 
< - 15K 

0.0400 - JOK 

0.0200 

0.0000 

0.00 0.20 0.40 0.60 0.80 1.00 

albedo 

Figure 6.6: Sensitivity of ATI to variable albedo 

The results from the sensitivity analysis show an inverse relationship between 

A TI and albedo, with a decrease in the gradient of the line on an increase in 

temperature contrast. Albedo values that are published in the literature range between 

0.30 for green leaves (Song, 1998) to 0.16 for wheat (Barrett & Curtis, 1982) and vary 

between these values for different types of vegetation. From the above graph, such 

uncertainty in albedo value results in a relatively low uncertainty in ATI value with a 

decrease in uncertainty on increasing temperature contrast. Since the temperature 

contrast for a pixel is constant, a variation in the albedo value inserted into the 

Cracknell & Xue ( 1996) model (Equation 6.4) will result in a series of output images 

of identical visual appearance irrespective of the value of albedo. This is due to the 

image processing software scaling the output image values to fit the full radiometric 

resolution of the display. Although the albedo of the surface is therefore unknown for 

the study sites, a mid albedo value of 0.23 can be assumed where vegetation 

dominates the surface of the study sites. 
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The A TI model is applied to the diurnal thermal images to assess whether ATI 

modelling reveals any detail that is additional to that revealed on colour composite 

visualisation or on visualisation of the individual day and night thermal images. The 

A TI model is applied to the diurnal thermal images from only the Bosworth site since 

this is the only dataset that is calibrated to surface temperature due to the lack of 

ground temperature measurements during both Baildon Moor and W eardale image 

acquisition. 

A TI is calculated for the diurnal thermal image pairs from June and August 

1998 and March 2002 at the Bosworth site using the temperature-calibrated images 

the individual fields consisting of relatively homogeneous vegetation cover (Figure 

6. 7). Ambion field is covered with an agricultural crop of barley in 1998 and oil seed 

rape in 2002. Arena, Helipad, Picnic and South fields are all covered by fallow grass 

that vary height with the Arena field grass grown mainly for silage, the South field 

used for livestock grazing, the Picnic field used for public car parking with the 

Helipad field kept reasonably short at all times for a mixture of uses. 

Ambion 

Arena 

Helipad 

Picnic 

South 

Figure 6.7: Field nomenclature for Bosworth site 

ATI is calculated for only June and August data for Ambion field due to the 

very small temperature contrast occurring between the March images. 
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Results from the diurnal pairs of Ambion field (Figure 6.8) show that the 

linear old field boundaries and the ridge and furrow marks are greatly enhanced on 

ATI generation of both the June and August data. The June data shows a greater 

thermal contrast in the NW corner of the field that is not evident on either the day or 

night thermal images. The wind shear effect that dominates the August day thermal 

image appears to be present on the August ATI image, which suggests that the ATI 

shows mainly a surface temperature effect. 

August 1998 Day August 1998 Night August 1998 A TI 

Figure 6.8: Cracknell & Xue (1996) ATI images for Ambion field at Bosworth 
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When the results from the Cracknell & Xue ( 1996) model are compared with 

the results of the simple image subtraction (Figure 6.9) there is a greater distinction in 

the main linear features on both June and August than is visible on the simple 

subtraction images. However, the images generated from the A TI model are similar to 

the images generated from the reciprocal ofthe simple image subtraction technique. 

June 1998 
Cracknell & Xue A TI 

August 1998 
Cracknell & Xue A TI 

June 1998 
Day-Night Subtraction 

August 1998 
Day-Night Subtraction 

une 1998 

August 1998 
Reciprocal Subtraction 

Figure 6.9: Comparison of results generated for Bosworth Ambion field from 

Cracknell & Xue (1996) A TI model and simple image subtraction 
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The results from the assessment of Ambion field suggest that there is little 

benefit for feature enhancement on application of the Cracknell & Xue (1996) model 

compared with taking a simple reciprocal of the image subtraction technique. This is 

mainly due to the inability to generate albedo values that accurately represent 

variations in individual pixel compositions of the barley field, and as a result of 

assuming a constant albedo value for every pixel, the numerator of the A TI model has 

a constant value and the A TI model takes the same form as the reciprocal image 

subtraction. The other fields in Bosworth have a much more homogeneous 

composition therefore the use of a single albedo value may be more appropriate. 

Results from Arena field (Figure 6.10) show that in June when the grass is 

long A TI does not enhance feature detection. However, in August the grass has been 

shortened and there are a few linear features revealed in the south and east of the field 

on the day thermal image that are greatly enhanced by the A TI generation. Results 

from the Helipad field (Figure 6.11) show a linear feature on the June day thermal 

image when the grass is short, with a similar feature on the August day thermal image 

when the grass is longer. The Picnic field (Figure 6.12) has similar grass length in 

June and August, however, the June day thermal image reveals a linear feature that is 

enhanced on the A TI image that is not evident at any other time. The South field 

(Figure 6.13) has a more variable composition than the other fields with a couple of 

trees and patches of nettles and thistles that dominate the west section of the field. 

These are evident on all thermal images but are less evident in June when they have a 

similar height and similar day and night temperatures to the surrounding grass. 

The results of the Cracknell & Xue ( 1996) A TI modelling of the grass fields 

show identical results to those produced by the simple reciprocal image subtraction 

technique. This is due to the use of a single albedo value for the entire image that 

generates a constant numerator of the algorithm, giving the A TI model the same form 

as the simple reciprocal subtraction technique. 
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June ATI 

August ATI 

June Day-Night 
Subtraction 

August Day-Night 
Subtraction 

Reciprocal June 
Subtraction 

Reciprocal August 
Subtraction 

Figure 6.10: Comparison of results generated for Bosworth Arena field from 

Cracknell & Xue (1996) ATI model and simple image subtraction 
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June Day-Night 
Subtraction --

August Day-Night 
Subtraction 

June ATI 

Reciprocal June 
Subtraction 

Reciprocal August 
Subtraction 

Figure 6.13: Comparison of results generated for Bosworth South field from 

Cracknell & Xue (1996) ATI model and simple image subtraction 

The results from the individual fields of Bosworth, separated for homogeneous 

land cover, suggest that although the Cracknell & Xue (1996) model enhances feature 

detection within each field, the detail is identical to generation of a reciprocal of the 

day-night subtraction image due to the use of a constant albedo value on the 

numerator of the algorithm. This characteristic occurs at any stage in vegetation 

growth suggesting that the single albedo value that is assumed for the surface 

composition of all the fields may not represent fully any subtle variations in albedo 

occurring within the field due to slight variations in vegetation composition or 

structure. As a result this technique does not provide enough of an enhancement of the 

data for feature detection compared with the simple image subtraction technique. 

There are a number of alterative models detailed in the literature that enable 

the calculation of A TI from the diurnal temperature. The Cracknell & Xue (1996) 

model forms the basis of most ofthe alternative ATI models, where variations arise in 
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the inclusion of different auxiliary parameters based on meteorological, topographic 

or surface parameters. 

The model presented by Price (1977) gives a more complex formulation for 

ATI calculation by incorporating parameters on the solar constant (S), atmospheric 

transmittance (V), angular speed of rotation of the Earth (eo) and the ratio of the heat 

flux transferred between the atmosphere and the ground (a), as well as knowledge of 

the temperature difference and surface albedo (Equation 6.5). 

Equation 6.5 
AT!= 2SV • 1- A 

J;~[1+a+~] !1T 

The model presented by Kahle & Alley (1985) made slight modification to the 

Price ( 1977) model by including a parameter that takes into account additional detail 

on the latitude (A.) and solar declination (o) associated with the timing and position of 

observation (Equation 6.6). The solar declination can be calculated using a pre

defined sun angle program from http://www.susdesign.com/sunangle (Appendix E) 

where detail is required on the geographical position and the precise date and time of 

observation. 

Equation 6.6 
A TI _ 2SVC • 1 - A 

- J;~[1+a+~] !1T 

C = _!_[sin 8 sin A arccos(- tan 8 tan A)+ cos 8 cos A~(1- tan 2 8 tan 2 A)] 
1r 

Although the Price ( 1977) and Kahle & Alley ( 1985) models give greater 

characterisation of the ground surface during observation, it is quite common in many 

remote sensing studies that only partial detail may be available on meteorological and 

surface parameters and as a result the heat flux ratio remains undetermined in the 

model. Although this parameter is unknown, the model is applied to the temperature

calibrated diurnal images from the study sites by modifying the initial A TI C++ 

program to incorporate the C parameter derived from the detail provided in the A TM 

header files, and the known values of the solar constant, atmospheric transmittance 
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and the angular rotation of the Earth (Appendix F7). The results from the Kahle & 

Alley (1985) model are then compared with the results from the Cracknell & Xue 

(1996) and the standard image subtraction models to establish whether there are any 

visible variations in the thermal anomalies. 

The results from the Kahle & Alley ( 1985) model appear to produce results 

that are identical to the Cracknell & Xue ( 1996) and reciprocal subtraction, suggesting 

that their model does not significantly enhance features detection under vegetation 

compared to the more simple techniques (Figure 6.14). 

Cracknell & Xue ( 1996) Reciprocal Image 
Subtraction 

Figure 6.14: Comparison of June 1998 results from Kahle & Alley (1985), 

Cracknell & Xue (1996) A TI models and the image subtraction technique 

for Bosworth Ambion field 

Since detail is not available for calculation of the heat flux ratio between the 

atmosphere and the ground that is required for the Kahle & Alley ( 1985) model, 

alternative A TI models are investigated for their suitability in feature detection on the 

temperature-calibrated images of the study sites. 
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The model presented by Price (1985) simplifies the Price (1977) and Kahle & 

Alley (1985) models and requires additional detail on only the latitude (A) and solar 

declination (8) associated with the timing and position of observation, with 

application of a scaling factor to bring the values into the full radiometric resolution 

of the VDU image display (Equation 6. 7). In this model the C parameter has a slight 

variation to that stated in the Kahle & Alley ( 1985) model, however, the values 

derived for a specific latitude and declination are identical. 

Equation 6.7 
AT1=1000Jr (1-A)C1 

T;nax - T;nin 

C1 =_!_[sin 5 sin A~(1- tan2 5 tan2 A)+ cos 5 cos A cos-1 (-tan 5 tan A)] 
Jr 

The model is applied to the image data by modifying the initial A TI C++ 

program to incorporate the C parameter, which is derived using the detail provided in 

the ATM header files (Appendix F8). The results from the Price (1985) model are 

then compared with the results from the Kahle & Alley (1985), Cracknell & Xue 

( 1996) and the standard image subtraction models to establish whether there are any 

visible variations in the revealed thermal anomalies. 

The results from the Price ( 1985) model appear to produce results that are 

identical to the Kahle & Alley (1985), Cracknell & Xue ( 1996) and the reciprocal 

subtraction images, suggesting that the model does not significantly enhance feature 

detection under the vegetation compared to the more simple techniques (Figure 6.15). 

This similarity may relate to the image processing software stretching the output A TI 

values to fit the full radiometric resolution of the VDU display. However, the 

histograms also show a similarity in shape associated with each model output (Figure 

6.16), suggesting that any of the models would provide adequate separation of thermal 

features within the vegetation surface. 
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The histograms in Figure 6.16 show that although there is a similarity in the 

shape of the model histograms, the absolute values of the calculated A TI values varies 

between the models (Table 6.2). Since the absolute temperature difference of each 

pixel is constant between the individual models, the variation must relate to the 

scaling factors associated with each model, which consist of numerous parameters 

that are assumed to be spatially invariant, although this may be an inappropriate 

assumption for characterisation of the natural vegetation surface. The Reciprocal 

Image Subtraction has no scaling factor applied to the data with values representing 

the reciprocal of the absolute temperature difference between the day and night 

images. The Cracknell & Xue ( 1996) model includes the estimated surface albedo 

value, which is constant across the whole image, with no additional scaling factors 

applied to the data. The Price (1985) model alters the scaling factor to incorporate the 

solar declination and latitude, with the Kahle & Alley ( 1985) model also including the 

solar constant, atmospheric transmittance and angular rotation of the Earth. The A TI 

values generated through the individual models are compared with A TI values 

presented in the literature. Unfortunately, Xue & Cracknell ( 1995) is the only paper 

where A TI values are actually published and although they use a much more complex 

ATI formulation, the range of values associated with the more complex model are 

similar to the range of values generated by the Cracknell & Xue (1996) model. 

June August 
Cracknell & Xue 0.060 - 0.065 0.065 - 0.095 

Price 60-65 65-95 
Kahle & Alley 0.85-0.925 0.9- 1.4 

Table 6.2: Comparison of absolute values from the ATI models on Bosworth 

Ambion field 

The histograms generated for each model show a narrow range of values for 

the June data with a much wider Gaussian distribution occurring for the August data 

from Ambion field (Figure 6.16). This suggests that the A TI modelling technique 

shows seasonality in them1al response with the differences in value potentially 

relating to a variation in the condition of the vegetation between the observation dates. 

In order to test this hypothesis, A TI values are extracted from manmade objects that 

should not show seasonality in response due to consistent composition and condition 

between observation dates. The A TI images generated for the whole image area are 
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linked through their coordinates and coordinate systems. Regions of interest are then 

drawn around different manmade materials that should have consistent A TI values 

between observation dates (Figure 6.17). 

June ATI August ATI 

Figure 6.17: Location of regions of interest for manmade objects at Boswortb 

The defined regions enclose a tiled roof area of the main building ( cyan), a 

tiled roof area of the garage (red), an area of flat thin roof of the cafe (green) and an 

area covered by flat paving slabs in the courtyard of visitor centre (blue). When the 

regions are displayed on both the June and August 1998 ATI images, it becomes 

apparent that there is a misalignment in the position of the edges of the buildings 

between the dates. This is mainly due to the ground resolution of the imagery (1m x 

1 m) and the variation in building shadow present during the daytime observation and 

the angle of observation of the ground surface, which hinder the selection of ground 

control points when the images were originally geocorrected (Chapter 4.4). 

Histograms are extracted from the June and August ATI images for each of the 

materials. Since the manmade materials are unlikely to change in their composition or 

condition throughout time, it is expected that there would not be a variation in the 

range of A TI values observed between the dates, although the actual ATI values may 

vary between the observation dates due to variations in diurnal temperatures. When 

the June and August histograms are compared for each region, the August imagery 

consistently shows a wider range of values than is observed for June (Figure 6.18). 
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Figure 6.18: ATI histograms extracted from manmade objects at Bosworth 

As a result of variation in the values associated with the manmade objects, the 

seasonality in the ATI values associated with the vegetated areas does not necessarily 

represent a change in the condition of the vegetation between the observation dates. 

In June, the agricultural crop that dominates Ambion field has a fairly uniform 

structure and condition and as such, there is a fairly uniform temperature response 

observed across the field at the early stage in crop growth, suggesting that the 

vegetation may be sufficiently characterised by a single albedo value. Although the 

same agricultural crop is present in August, the crop is at a much later stage in 

maturity, resulting in patches of crops that are at a different stage in growth or that 

suffer from water stress. As a result, the single albedo value that is assumed for the 

whole field may be inappropriate in such situations, although the model outputs still 

show sufficient visual separation of the thermal features. 

The A TI models are also applied to the temperature-calibrated images of the 

Arena, Helipad, Picnic and South fields. The histograms generated for these fields 
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show a similar distribution pattern to those generated for Ambion field with a wider 

range of ATI values ofhigher mean occurring in August (Figure 6.19) . 
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Figure 6.19: Bosworth field histograms generated from Cracknell & Xue (1996) 

ATI model 

The results from the Arena field show a symmetrical distribution in June with 

a slight skew towards higher ATI values in August suggesting a higher resistance to 

temperature change possibly the result of a higher moisture content where the linear 

anomalies of low A TI values are evident (Figure 6.1 0). The results from the Helipad 

field show a slight bimodal distribution of the June data with a slight peak 

corresponding to the strong linear anomaly of low ATI values, with a more 

symmetrical appearance of the August data where few ATI anomalies are evident 

(Figure 6.11 ). The results from the Picnic field show a symmetrical distribution on 

the June data with a slight skew towards lower ATI values corresponding to a linear 

anomaly of low A TI value along the southern field boundary. The August data shows 

a more prominent skew towards lower A TI values that correspond with the anomalous 

patch of low ATI values on the topographic slope (Figure 6.12). The results from the 

South field show a much more prominent bimodal distribution pattern with a 
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secondary peak at higher ATI values corresponding to the trees, nettle and thistle 

patches occurring in the field. The peak is more pronounced in August when the nettle 

and thistle patches have grown to considerable height and have a much more 

anomalous ATI value compared with the surrounding grasses (Figure 6.13). Although 

the results from the histogram generation suggest that the A TI modelling may help 

differentiate features at later stage in grass growth where there is a tendency for a 

wider range of ATI values when the grass is longer, when the June ATI values are 

stretched to fit the full radiometric resolution of the VDU display, the shape of the 

resulting histogram is identical to that generated from August. 

Although the A TI models show suitable visual enhancement of the features 

evident in the temperature-calibrated images from Bosworth, these techniques can 

only be performed on diurnal images where the day and night radiance values lie on 

the same scale, i.e. where a certain temperature has the same radiance value on the 

day and night images. As a result, the A TI modelling technique is only suitable for the 

diurnal image pairs from Bosworth where radiance is calibrated to ground 

temperatures. 

When the results of the ATI modelling are compared with the results from the 

geophysical surveying, it is clear that the majority of features revealed by the A TI 

modelling do not coincide with features located on the magnetometry (Figure 6.20 

and Figure 6.21) and resistivity (Figure 6.22 and Figure 6.23) with the only feature 

that does correspond to a geophysical anomaly being the ridge and furrow marks on 

the western section of Ambion field. Since the June 1998 or August 1998 ATI images 

show a poor correlation with the results of the geophysical survey in the fields 

covered with a late stage barley crop or tall grasses. This suggests that the A TI 

technique is sensitive to different properties than the geophysical techniques and that 

the A TI technique may represent a pure surface temperature effect rather than depth 

properties as a result of the vegetation cover. The A TI technique may therefore be 

unsuitable for detecting physical soil properties where the surface is covered with tall 

grasses or agricultural crop. 
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Figure 6.20: Comparison ofBosworth June 1998 Cracknell & Xue ATI with 

magnetometry 
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Figure 6.21: Comparison ofBosworth August 1998 Cracknell & Xue ATI with 

magnetometry 
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Figure 6.22: Comparison ofBosworth June 1998 Cracknell & Xue ATI with 

resistivity 
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Figure 6.23: Comparison ofBosworth August 1998 Cracknell & Xue ATI with 

resistivity 
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6.5 SUMMARY of NUMERICAL MODELLING 

It has been shown in the previous chapter that data acquired at thermal infrared 

wavelengths during the day adds considerable detail for characterising the surface 

when compared to the detail concurrently observed at visible, near-infrared and 

shortwave-infrared wavelengths. Similarly, thermal infrared data observed at night 

within the same 12-hour period adds additional detail to that observed during the day. 

However these characteristics are observed at single points within the diurnal cycle 

when materials with different compositions will often emit similar energies at thermal 

infrared wavelengths. As a result, single-point observations may conceal materials 

that have anomalous bulk compositions compared with the surrounding materials. 

Materials of different compositions will have different associated thermal properties 

and as a result will tend to display different heating and cooling patterns across the 

diurnal cycle in response to the solar input. A useful technique for enhancing material 

delineation is therefore to use the contrast in thermal response observed across the 

diurnal cycle, or the resistance to temperature change. This property is referred to as 

the thermal inertia of the material and physical thermal inertia values can give 

indications of bulk variations in material properties in response to material density 

changes. Although physical thermal inertia values cannot be measured directly from 

thermal observations, an Apparent Thermal Inertia (A TI) can be determined from the 

diurnal resistance of the surface to temperature changes, observed at times when the 

surface is at its maximum temperature during the day with a complementary thermal 

image acquired at night when the surface is at its minimum temperature. Since this 

technique requires the use of temperature images, the thermal infrared radiance 

response measured by the A TM must be calibrated to ground temperature values. 

The Inverse Planck Radiation Law can be used to convert radiance to 

temperature with respect to the wavelength of observation, the surface emissivity and 

two physical constants. However, without accurate knowledge of surface emissivity, a 

sensitivity analysis was performed to assess the variation in calculated temperature 

values with variable emissivity. The results show similar temperature values when the 

emissivity values are varied between 0.90 and 1.00, which correspond to the range of 

values associated with the materials comprising the surface. The results are best 

summarised by a 2nd order polynomial equation with an inverse relationship between 

temperature and emissivity for constant wavelength and radiance. Since there is little 
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variation m the output temperatures for this range of emissivity values, a single 

emissivity value of 0.97 is used in the Planck relationship to represent the mean value 

of the vegetation that covers the majority of the study sites. In addition to uncertainty 

in the precise value of emissivity associated with each individual pixel composition, 

the wavelength measured by the ATM has a range of values from 8.40~-tm to 11.50~-tm 

and so the sensitivity of Planck temperature is assessed with respect to a range of 

wavelengths. These results can also be summarised by a 2nd order polynomial 

equation but are more complex than for the emissivity analysis with the gradient of 

the relationship getting progressively shallower from 8.40~-tm to 1 0.00~-tm and then 

getting progressively steeper from 10.00~-tm to 11.50~-tm, but does not flatten out at 

10.00~-tm, which is very close to the 9.95~-tm mid-channel wavelength of the ATM 

thermal channel. 

The Inverse Planck Radiation Law is suitable for conversion of radiance to 

temperature only where specific units of radiance and wavelength are used in the 

calculation. The literature details a variety of unit combinations used in the Planck 

relationship with several authors omitting to state the specific units for each 

parameter. Although there are only three authors in the literature that state all 

parametric units, two of the authors state identical units for the temperature and 

wavelength and state identical values of the two physical constants, and yet state 

different parametric units for radiance. As a result, the definitions provided by the 

remaining author (Price, 1989) are deemed the most suitable for temperature 

calculation however the given units of radiance have a noticeable contrast to the units 

of radiance associated with the ATM data. The conversion between ATM radiance 

and Price radiance has proved to be more problematic that at first anticipated, even 

when taking into account the difference in magnitude of the radiance units, the scaling 

factor applied to the ATM radiance data to provide values in the 0-1 range and also 

the solid angle associated with measurement from the A TM sensor. As a result of the 

problems associated with the conversion between the A TM radiance and the Price 

radiance, the A TM radiance cannot be directly converted to ground temperature using 

the Price relationship. 

Due to the uncertainty in the conversion between A TM radiance and ground 

temperature values further assessment of the thermal response of the study sites was 
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performed using the empirical line calibration images where ground temperature was 

determined through a linear regression between ground temperatures measured for 

specific features and the A TM radiance values extracted for the corresponding image 

pixels. 

Quantitative Apparent Thermal Inertia (ATI) modelling can provide a useful 

technique for detecting features buried in the near-surface environment, where the 

buried features will have a volumetric variation in physical and thermal properties 

compared to their surrounding matrix that influences the A TI response of the ground. 

Since ATI modelling requires knowledge of the day and night temperature contrast 

observed for each pixel to reveal variations in bulk thermal characteristics, A TI 

modelling was applied to the empirical line calibrated images of the study sites, thus 

avoiding the uncertainty in the conversion between ATM radiance and Price radiance. 

A variety of A TI models can be applied to the diurnal temperature images for 

assessment of thermal variations caused by potential features in the subsurface. These 

are essentially driven by the parametric relationship under investigation and the type 

of auxiliary meteorological, topographical or surface data available for incorporation 

in the model. The simplest formulation expressed in Cracknell & Xue (1996) uses the 

reciprocal of the temperature contrast and incorporates a measure of the surface 

albedo into the algorithm. Since no detail is known about the albedo values of the 

individual pixels within the image, a single albedo value is assumed for the whole 

area representing the mean albedo expected for vegetation, since all non-vegetated 

surfaces are omitted from analysis. The use of a single albedo value results in a 

constant numerator of the A TI model that is essentially identical to the reciprocal of a 

simple image subtraction. Although the values of the individual techniques are very 

different, the image processing software scales the values to fit the full radiometric 

resolution of the VDU display and as a result, the A TI image shows an almost 

identical pattern to the reciprocal subtraction image. This occurs at any stage in grass 

growth. However, there is more variability between these images where barley covers 

the surface with significant enhancement of feature at an early stage in barley growth 

(June) that are not evident on either day or night thermal images. The ATI image is 

again identical to the reciprocal subtraction image. 
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Alternative ATI models are applied to the data, where variations arise in the 

scaling factor to the Cracknell & Xue (1996) algorithm with different auxiliary 

meteorological, topographic and surface parameters incorporate in the algorithm. The 

Kahle & Alley (1985) model makes use of solar constant and atmospheric 

transmittance parameters as well as the rotation of the Earth and the ratio of the heat 

flux transferred between the atmosphere and the ground. In addition, their model 

includes a parameter that takes into account the latitude and solar declination 

associated with the timing and position of observation, which is given in the A TM 

image header files. Although this model uses the declination parameter that takes into 

account seasonal variation in the diurnal observations, the additional surface detail of 

the heat flux ratio between the atmosphere and the ground is unknown and as a result, 

the scaling factor remains constant for all pixels. As a result, the A TI image has an 

identical appearance to the Cracknell & Xue ( 1996) and reciprocal subtraction 

images. Since detail on the heat flux ratio between the atmosphere and the ground is 

unavailable, an alternative model presented by Price (1985) makes use of only the 

latitude and solar declination parameters. Since these parameters are constant for each 

pixel in the image and the albedo value remains constant, the results of the A TI model 

are again identical in appearance as the other models. Although the results of the A TI 

models are visually identical and the histograms extracted from each model have 

identical distribution patterns, the numeric values generated from each model are very 

different. However, there is a lack of numeric A TI values published in the literature 

with which to compare the results ofthe models. 

The histograms generated for the June A TI data have a much narrower range 

of values than generated from the August A TI data, with higher mean values recorded 

for the August data from any of the fields under investigation. The June histogram 

generated for Ambion field has a uni-modal distribution pattern with values in the 

0.045-0.50 range, which is similar to the values from the other grass-covered fields. 

The Helipad, Picnic and South fields all show a slight bi-modal distribution pattern 

with the minor frequency crest associated with the anomalous features revealed on the 

A TI imagery. The August histogram generated for Ambion field has a Gaussian 

distribution pattern with values in the 0.50-0.80 range, which have a higher mean 

value than the grass-covered fields. The grass-covered fields all have a fairly uniform 

uni-modal distribution pattern of the August data with a slight skew towards slightly 
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lower or higher A TI values associated with the more subtle anomalous features 

revealed on the A TI imagery. Although the results from the histogram generation 

suggest that the A TI modelling may help differentiate features at later stage in 

vegetation growth where there is a tendency for a wider range of ATI values, when 

the June A TI values are stretched to fit the full radiometric resolution of the VDU 

display, the shape of the resulting histogram is identical to that generated from 

August. This is somewhat puzzling since the A TI values extracted from manmade 

objects such as the tiled roofs of various buildings and the paving slabs also show a 

similar wider range of values for the August data and the histograms would be 

expected to show little seasonal variation. This suggests that there may be 

miscalibration ofthe data. 

Although the A TI models have revealed features through the contrast between 

the day and night temperature response that are not evident on the individual thermal 

images, the technique is only applicable where the thermal radiance can be calibrated 

to temperature values. A TI is thought to represent variations in the bulk thermal 

properties of the surface, through the definition of thermal inertia, however, it is 

unknown whether an anomaly in A TI values may be caused by a subsurface feature or 

whether it may be due to variations in the surface vegetation, or indeed a combination 

of the two. In order to assess this issue, temperature profiles are measured 

continuously throughout the different stages in vegetation growth to determine the 

depth to which the diurnal heat penetrates the ground surface during vegetation 

growth and to assess whether this may be related to the surface A TI response. The 

characteristics of the thermal regime of the soil are dealt with at the start of the 

following chapter. 

When the results of the A TI modelling are compared with the results of the 

geophysical surveying for variations soil properties beneath the surface, there is a 

poor correlation between the A TI anomalies and the geophysical anomalies at late 

stages in agricultural crop growth and also when the surface is covered by tall grass. 

This suggests that the A TI technique is sensitive to different properties than the 

geophysical techniques. In order to assess whether the A TI technique can be related to 

subsurface characteristics maybe at a different depth in the soil column than the 

geophysical techniques reveals, a series of soil samples are extracted across specific 
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features of variable A TI and geophysical response. The physical characteristics of the 

soil column are discussed after a discussion on the thermal properties of the soil 

column in the following chapter. 
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7 JBOSWORTH SOIL CHARACTERISTICS 

The thermal radiance values calibrated to ground temperature gives a snap

shot of the day and night thermal characteristics observed for the surface. However, 

the observed temperature response may not represent the true response of the soil to 

solar heating and will represent the combined effects of the soil and vegetation 

fractions comprising each pixel. In order to understand the effect of vegetation growth 

on the thermal regime of the underlying soil, contact soil temperature values were 

monitored from specific depths in the undisturbed soil column. A series of vertical 

thermal profiles were then generated at specific times in the vegetation growth cycle 

to determine the effect of vegetation growth on the thermal behaviour of the 

underlying soil. In addition to the thermal characteristics of the soil column, the 

physical properties of the soil were also determined in order to assess whether the 

observed variations in A TI value can indicate variations in true physical 

characteristics of the soil. The ultimate aim of the sampling technique is to bring 

together the soil characteristics and try and relate the contact temperature variations to 

the variations observed in the A TI response. 

7.1 CONTACT TEMPERATURE MEASUREMENTS 

The diurnal thermal response of surface materials under clear-sky conditions 

shows a minimum temperature in the pre-dawn time period, rising in response to solar 

heating to a peak at solar-noon, after which the temperature gradually decreases 

towards the minimum temperature at pre-dawn the following morning (Figure 7.1 ). 

bare soil 

water 
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The amplitude of the temperature response varies with material composition in 

response to a variation in material thermal inertia. Where the ground surface is 

completely devoid of vegetation, the thermal response observed over the surface will 

tend to display a wide diurnal temperature range associated with the low physical 

thermal inertia values associated with pure soil. However, the composition, porosity 

and moisture content will affect the thermal inertia value of the particular soil, with 

sandy soils having lower values than those associated with clays for the same 

moisture content. The porosity of the soils also affects the thermal inertia with soils 

that have a higher moisture content having higher associated thermal inertia values 

(Pratt & Ellyett, 1979). 

Where the ground surface is completely covered by vegetation, the thermal 

response will display a lower temperature range than that observed over bare soil due 

to a higher thermal inertia value associated with the vegetation. The type of vegetation 

present will also affect the thermal response with broad-leaved vegetation having 

higher thermal inertia values than cereal crops and as a result will tend to display 

lower diurnal temperature amplitudes. Where there is a combination of soil and 

vegetation components present at the surface, the thermal response of the surface will 

be represented by a combination of the heat tluxes associated with the individual soil 

and vegetation components. 

Vertical temperature profiles were continuously monitored for a soil column 

throughout the growing season to observe the variations in surface temperature values 

with respect to the effect of the overlying vegetation. Vertical profiles were monitored 

at two specific locations to assess whether the variation in multispectral characteristics 

correlated with a variation in the physical thermal characteristics of the soil layer at 

two localities. The thermal profiling was also performed at the same localities under 

two different vegetation canopies, with pasture present in 2000 and barley present in 

2001. This enables the assessment of the effect of vegetation structure on thermal 

characteristics of the soil. 

Temperature probes, connected to a Tempcon® HOBO-H8 data logger 

(Appendix AS), were inserted with minimal soil disturbance, so as to preserve the 

structural integrity of the soil profile, at four individual depths in the soil column 

(O.OOm, 0.1 Om, 0.20m and 0.50m) to assess the effect of vegetation growth on diurnal 
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and seasonal thermal regime of the underlying soil. Temperatures were monitored at 

l 0-minute intervals from an early stage in crop development where the soil fraction 

dominated the pixel composition through a gradual increase in vegetation 

development until the crop reached full maturity and dominated the pixel 

composition. The temperatures recorded across the vegetation growth cycle were then 

downloaded, using BoxCarPro® 3.1 v software, and the times for each recorded 

temperature value were converted into a minute count from the start of each day and 

also from the start of the year. The data was then analysed through development of a 

C++ program (Appendix F9) to identify trends in l) the temperature maximum and 

minimum values, 2) the amplitude of the diurnal cycle and 3) the temperature patterns 

at depth with respect to the vegetation development. An assessment was also 

performed to identify trends in the timings when heat flux from depth exceeded that at 

the surface or near-surface soils. Results from the two localities were then compared 

to assess whether the observed variation in multispectral characteristics correlated 

with variations in physical thermal characteristics. 

The thermal characteristics of the soil column were visualised as a series of 

graphs showing the temperature response at each depth through time. However, when 

the entire thermal profile from each location were visualised, there were sporadic 

periods during observation when the diurnal temperature response of the soil showed 

a much more muted thermal response with reduced maximum temperatures and 

diurnal amplitudes (Figure 7.3). In other cases the temperature continually fell during 

the diurnal cycle (Figure 7.4). Since the soil column was undisturbed during the 

periods of study with no pesticide spraying, fertilisation or ploughing, the variations 

in thermal characteristics is assumed to relate to an external factor such as 

meteorological conditions acting on the soil column. Ancillary meteorological data 

was therefore obtained for the entire period of observation to assess whether these 

sporadic thermal characteristics could be accounted for by variations in 

meteorological condition. The meteorological data was obtained from the archive of 

the British Atmospheric Data Centre (http://badc.rl.ac.uk) and provided detailed 

hourly and daily information on the amount of rain, the wind speed and wind 

direction that were recorded at the Church Lawford Saws meteorological stations 

located 20km south of the Bosworth study site (Figure 7.2). 
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Bosworth Study Site 

Church Lawford Saws 
Meteorological Station 

Figure 7.2: Location of Church Lawford Saws meteorological station and the 

Bosworth study site 
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Figure 7.3: Thermal characteristics with overlay showing moderate daily rainfall 
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Figure 7.4: Thermal characteristics with overlay showing high daily rainfall and 

high wind speed 

During periods of rain the soil column will retain moisture. Since moisture is 

known to have a higher thermal inertia, or higher resistance to temperature change 

than soils, the wet soils would be expected to display a smaller amplitude in the 

diurnal temperature range than would be observed for dry soils. When the 

meteorological rainfall and wind pattern data was examined, the dates where the soil 

exhibited a muted diurnal thermal response showed a strong correlation with dates 

exhibiting a significant amount of rainfall. There was also a strong correlation 
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observed between days where the soil showed a continual fall m temperature, 

indicated on the graph by a negative heating gradient, and days with significant 

rainfall and elevated wind speeds. The soils appeared to return to normal diurnal 

thermal characteristics a single solar heating and cooling cycle after rain ceased. 

However, under the same meteorological conditions, the soil under the pasture 

returned more quickly to normal characteristics than was observed under the barley. 

This may be a result of the different root systems of the different crops with a more 

complex network of roots in the cereal crop potentially locking more moisture in the 

soil column, and slowing the return of the soil to the characteristic diurnal response to 

solar heating. 

In order to visually assess diurnal and seasonal trends m the thermal 

characteristics, specific diurnal cycles were chosen at different stages m crop 

development where the meteorological data showed a prolonged absence of rain and 

low wind speeds to remove variations caused by meteorological conditions. The 

typical thermal characteristics observed at the different stages in crop development, 

which are selected to represent the times associated with airborne image acquisition, 

are discussed in the following sections for the individual profiling locations. The 

trends in the observed thermal characteristics are then compared and contrasted in 

order to suggest the optimum times for thermal imaging of the soil surface under the 

specific vegetation canopies. 

7.2 THERMAL PROFILE CHARACTERISTICS: SITE A 

A continuous thermal profile was extracted from the mid-point of a feature 

that appeared as a linear anomaly on the day, night and A TI thermal images from both 

June and August 1998 but does not represent a geophysical anomaly (Figure 7.5). 

This feature corresponds with the position of an abandoned hedgerow boundary that 

was removed since generation of the 1 sr edition OS map. The temperature response of 

the soil was observed at four stages in vegetation development representing times 

when the surface was covered by vegetation at (i) and early stage m barley 

development when the soil fraction dominates, (ii) a middle stage m barley 

development during an increased stand height of the barley where equal fractions of 

the soil and vegetation components are present, (iii) a late stage in barley development 

where the vegetation dominates and is at its maximum stand height and (iv) a final 

286 



Chapter 7: Bosworth Soil Characteristics 

stage in barley development where the vegetation is at its maximum stand height and 

has reached maximum maturity prior to harvesting. 

Magnetometry 

June 1998 A TI August 1998 ATI 

Figure 7.5: Location of Site A thermal profile observed at Bosworth 

The temperature response of the soil column is observed by plotting the 

temperature against time at four specific stages in vegetation development 

corresponding to the stage in surface vegetation growth present at A TM image 

acquisition. The main features of interest are the diurnal maximum and minimum 

temperatures and the amplitude of the temperature curve and the variations occurring 
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with respect to the depth of observation. These are discussed for the specific stages in 

crop development. 

7.2.1 Stage 1: §oil Fraction Dominates 

The soil temperature observed under the pasture (Figure 7.6) shows a gradual 

decrease in the maximum temperature recorded through depth in the soil column. In 

addition, the peak temperatures occur at progressively later times in the day through 

depth suggesting a Jag in the time that the soil at depth takes to respond to the 

penetrating solar heat flux compared with the surface soil. The soil shows a gradual 

increase in the minimum temperature recorded through depth, again occurring at 

progressively later times in the day and suggests a Jag in the diurnal cooling through 

depth. The amplitude of the heating and cooling cycle decreases with depth. The rate 

at which the soil responds to solar heating decreases with depth, which is determined 

by the gradient of the morning temperature rise calculated from the ratio of the 

amplitude of the diurnal temperature variation with respect to the time between 

temperature extremes. Similar thermal characteristics are also observed when the 

surface is covered by barley at the early stage in crop development (Figure 7. 7). 

For both vegetation surfaces, the temperature response observed at the surface, 

0.1 Om and 0.20m depths shows typical diurnal heating and cooling cycles, with the 

peak of the heating cycle occurring shortly after mid-day and the peak of the cooling 

cycle occurring in the early hours of the following morning. The graphs indicate that 

there is a Jag in the time when the soils from the surface reach their maximum and 

minimum temperatures compared with those from depth, with the temperature 

extremes at the surface observed earlier in the day than those at depth. The 

temperature response measured at 0.50m does not show the typical diurnal heating 

and cooling characteristics observed at the shallower depths suggesting that the 

diurnal solar heating dissipates between 0.20m and 0.50m depth under either 

vegetation. 

It is apparent that the values recorded under the barley are significantly higher 

than those observed at the equivalent depth under the pasture. This may be a direct 

result of variations in crop structure between the different vegetation types since the 
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ancillary meteorological data records consistently similar rainfall, wind speeds and air 

temperature values at this stage of pasture and barley growth (Table 7.1 ). 

7.2.2 Stage 11: Equal Soil and Vegetation Fraction§ 

The soil temperature observed under the pasture (Figure 7.8) shows a decrease 

in the maximum temperature recorded through depth in the soil column with a Jag in 

the heating of the soil at depth. In addition, the soil shows an increase in the minimum 

temperatures recorded at depth with a similar Jag in the cooling of the deeper soils. 

The amplitude of the heating and cooling cycle decreases with depth and is much 

smaller than was observed at the earlier stage in vegetation growth. The rate of solar 

heating increases with depth, which is in direct contrast to the heating gradients 

observed at the earlier stage in pasture growth and may be a result of the vegetation 

interacting with and masking the underlying soil from solar heating. As for the earlier 

stage in vegetation development, the pasture shows a dissipation of heat between 

0.20m and 0.50m depths, where the deeper soil at 0.50m shows no diurnal fluctuation. 

The barley shows the same maximum, minimum and amplitude patterns as the pasture 

and at the earlier stage in vegetation growth with a Jag in heating and cooling with 

depth (Figure 7.9). However, the barley shows much higher temperatures than 

recorded at the equivalent depth under the pasture with a much greater diurnal 

temperature range for the specific depth (Table 7.2). Since the ancillary 

meteorological data records similar rainfall, wind speeds and air temperatures 

between the pasture and barley growth, the variation observed between the thermal 

characteristics of the pasture and the barley may be a direct result of a difference in 

vegetation root or leaf structure between the different vegetation types that influenced 

the direct solar heating of the soil. 

7.2.3 Stage Ill: Vegetation Fraction Dominates 

The soil temperature observed under the pasture (Figure 7.1 0) shows a 

decrease in the maximum temperature through depth with a more fluctuating pattern 

in minimum temperatures. Both parameters show a Jag in the heating and cooling of 

the soil with depth with a fluctuation in the rate of heating with depth. The amplitude 

of the heating and cooling cycle decreases with depth and is much smaller than 

observed at the earlier stages in pasture growth. The temperature recorded at 0.20m 
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shows very little variation across the diurnal cycle suggesting that the vegetation 

masks the underlying soil from solar heating with the dissipation of heat just below 

0.20m, which is shallower than observed at the earlier stages in pasture growth. The 

barley shows the same maximum, minimum and amplitude temperature patterns as 

the pasture with a similar lag in the heating pattern (Figure 7.11 ). The barley shows 

much lower temperatures than recorded at the equivalent depth under the pasture 

(Table 7.3 ). Since the ancillary meteorological data records similar rainfall, wind 

speeds and air temperatures between the pasture and barley growth, the variation 

observed between the thennal characteristics of the pasture and barley may be a direct 

result of a difference in vegetation root or leaf structure between the different 

vegetation types that influenced the solar heating of the underlying soil. 

7.2.4 Stage IV: Mature Vegetation 

The soil temperature observed under the pasture (Figure 7 .12) illustrates one 

of the problems encountered when using the profiling equipment, where one of the 

probe connections becomes detached between periods of data download. When the 

data logger has been emplaced in the ground, it is then impossible to tell whether the 

probe connections have been broken until the data has been downloaded. The probes 

became detached at random intervals throughout the period of observation as the 

ground surrounding the logger moved. At this late stage in pasture growth, the probes 

at the surface and at 0.50m became detached from the logger and as a result no 

temperatures are recorded under the pasture. The remaining data shows an increase in 

minimum and maximum soil temperatures with depth with a lag in the heating and 

cooling of the soil. The amplitude of the heating cycle is identical at either depth with 

both depths showing a diurnal temperature fluctuation. The main variation between 

Stage Ill and Stage IV in pasture growth appears at 0.20m, where the Stage IV pasture 

shows a greater diurnal temperature range than the earlier stages which may be a 

result of foliage on the underlying soil. Temperatures are recorded at all depths under 

the barley (Figure 7.13). Although the soil at 0.20m shows higher maximum and 

minimum temperature than at 0.1 Om, there is a general decrease in the heating 

gradients with depth as the diurnal amplitude decreases. The barley shows much 

higher temperature than recorded at the equivalent depth under the pasture, which 

may be a result ofthe variation in leaf structure between the crops (Table 7.4). 
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Figure 7.6: Diurnal thermal profiles at Site A under Stage I pasture 2 000 
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Figure 7.7: Diurnal thermal profiles at Site A under Stage I barley 20 01 

Early Pasture Tmax Tmin tmax tmin ~T At Rate 
O.OOm 9.82 4.15 859 464 5.67 395 0.0144 
O. IOm 8.23 5.81 949 629 2.42 320 0.0076 
0.20m 7.83 6.62 1039 829 1.21 210 0.0058 

Early Barley Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 7.43 2.46 719 459 4.97 260 0.0191 
O.IOm 6.62 3.31 729 499 3.31 230 0.0144 
0.20m 6.22 4.57 789 589 1.65 200 0.0082 

Table 7.1: Thermal characteristics ofBosworth Site A soil column at Stage I 

291 



30 

25 

Q: 20 

~ 
:J 

1§ 15 
Cll 
Cl. 
E 

(!!. 10 

5 

0 

0 360 

Chapter 7: Bosworth Soil Characteristics 

Middle Pasture (A) 

~~ __,...... 

720 

Time (min) 

......._""'---< 

1080 

-........ 

1440 

--Surface 

--10cm 

20cm 

- 50cm 

Figure 7.8: Diurnal thermal profiles at Site A under Stage 11 pasture 2000 
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Figure 7.9: Diurnal thermal profiles at Site A under Stage 11 barley 2001 

Pasture Tmax Tmin tmax tmin LiT Lit Rate 
O.OOm 14.85 11 .38 918 363 3.47 555 0.0063 
0.10m 13 .32 I 1.38 848 583 1.94 265 0.0073 
0.20m 13.32 12.55 918 833 0.77 85 0.0091 
Barley Tmax Tmin tmax tmin LiT Lit Rate 
O.OOm 15.62 6.62 878 358 9.00 520 0.0173 
0.10m 13.70 7.03 898 458 6.67 531 0.0126 
0.20m 12.96 7.83 958 498 5.13 460 0.0115 

Table 7.2: Thermal characteristics of Bosworth Site A soil column at Stage 11 

292 



Chapter 7: Bosworth Soil Characteristics 

Late Pasture (A) 

30 

25 

Q: 20 
- Surface 

~ 
::J -- 10cm 
~ 15 

20cm Q) 
a. 
E - 50cm Q) 

10 t-

5 

0 

0 360 720 1080 1440 

Time (min) 

Figure 7.10: Diurnal thermal profiles at Site A under Stage Ill pasture 2000 
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Figure 7.11: Diurnal thermal profiles at Site A under Stage Ill barley 2001 

Pasture Tmax Tmin tmax tmin LlT lit Rate 
O.OOm 18.66 17.14 900 530 1.52 370 0.0041 
O.lOm 16.38 15.23 955 570 1.15 385 0.0030 
0.20m 16.38 16.00 1070 1065 0.38 5 0.0760 
Barley Tmax Tmin tmax tmin liT lit Rate 
O.OOm 22.09 15.23 873 353 6.86 520 0.0132 
O. IOm 19.81 14.85 883 413 4.96 470 0.0106 
0.20m 18.66 15.62 963 503 3.04 460 0.0066 

Table 7.3: Thermal characteristics of Bosworth Site A soil column at Stage Ill 
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Figure 7.12: Diurnal thermal profiles at Site A under Stage IV pasture 2000 
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Figure 7.13: Diurnal thermal profiles at Site A under Stage IV barley 2001 

Pasture Tmax Tmin tmax tmin t..T t..t Rate 
O.OOm NIA NIA NIA NIA NIA NIA NIA 
O.IOm 19.04 16.76 997 437 2.28 560 0.0041 
0.20m 19.42 17.14 1047 477 2.28 570 0.0040 
Barley Tmax Trnin tmax tmin t..T t..t Rate 
O.OOm 20.57 18.28 923 573 2.29 430 0.0053 
O.IOm 19.04 17.52 923 633 1.52 290 0.0052 
0.20m 19.42 18.66 943 753 0.76 190 0.0040 

Table 7.4: Thermal characteristics of Bosworth Site A soil column at Stage IV 
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7.2.5 Summary of Site A Thermal Characteristic§ 

The maximum temperatures recorded at Site A show an increase from Stages 

I-III under both pasture and barley, with maximum temperatures recorded at the 

surface higher than those at depth. The minimum temperatures are similar at Stage Ill 

and Stage IV under either crop with values under the barley initially lower than those 

recorded under the pasture at all depths. As the vegetation grows, the minimum 

temperatures recorded under the barley begin to exceed those recorded under the 

pasture at the equivalent depth. As a result, the amplitudes recorded under the barley 

are progressively lower than those recorded under the pasture, suggesting a greater 

resistance to temperature change of the soil under the cereal crop. The heat flux 

gradients determined under the barley show a progressive decrease with depth as the 

vegetation developed with the gradient at the surface exceeding that at depth. The 

values recorded under the pasture show a general decrease for a particular depth as the 

vegetation develops (Table 7.5). The ancillary meteorological data shows very similar 

meteorological conditions between the selected stages in crop development, therefore 

the variations in observed thermal characteristics may be a direct result of variations 

in the root systems, leaf or canopy structures associated with the different vegetation. 

The data also shows that there are times during the diurnal cycles when the 

temperature from depth exceeds that observed at the surface. This gives an indication 

of potential times for remotely observing thermal heat flux characteristics from depth 

associated with buried structures, as opposed to those relating to surface 

characteristics. Temperatures recorded at depth are much higher than those recorded 

at shallower depths in the pre-dawn thermal regime. As the soil responds to solar 

heating, the temperatures recorded at depth appear slower to respond to heating than 

those at shallower depths. As a result, the cross-over in temperatures between the 

surface and 0.1 Om depth always precedes the timing of the cross-over observed 

between the surface and 0.20m. As the soil cools in the afternoon, the times between 

the cooling cross-over temperatures are very much shorter than those occurring for the 

morning heating, with surface temperatures decreasing progressively below those 

observed at 0.1 Om and 0.20m. The thermal cross-over times are progressively less 

distinct as the vegetation develops suggesting that the potential for observation of 

thermal characteristics from depth associated with buried structures decreases with 
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vegetation growth. From the thennal characteristics observed at this site, the 

maximum surface temperatures occur consistently between 14:00-15:00 local time 

with minimum surface temperatures occurring progressively later from 06:00-09:30 as 

vegetation developed. These values give an indication of the optimum times for 

thermal imaging of the surface under a particular stage in both vegetation canopies for 

use in apparent thermal inertia modelling. Times for optimum imaging of deeper 

properties become difficult to interpret from the date due to the wider range of times 

associated with the temperatures extremes from the deeper soils. 

Pasture 
Stage I Tmax Tmin tmax tmin AT At Rate 
O.OOm 9.82 4.15 859 464 5.67 395 0.0144 
0.10m 8.23 5.81 949 629 2.42 320 0.0076 
0.20m 7.83 6.62 1039 829 1.21 210 0.0058 

Stage 11 Tmax Tmin tmax tmin AT At Rate 
O.OOm 14.85 11.38 918 363 3.47 555 0.0063 
0.10m 13.32 11.38 848 583 1.94 265 0.0073 
0.20m 13.32 12.55 918 833 0.77 85 0.0091 

Stage Ill Tmax Tmin tmax tmin AT At Rate 
O.OOm 18.66 17.14 900 530 1.52 370 0.0041 
0.10m 16.38 15.23 955 570 1.15 385 0.0030 
0.20m 16.38 16.00 1070 1065 0.38 5 0.0760 

Stage IV Tmax Tmin tmax tmin AT At Rate 
O.OOm N/A N/A N/A N/A N/A N/A N/A 
0.10m 19.04 16.76 997 437 2.28 560 0.0041 
0.20m 19.42 17.14 1047 477 2.28 570 0.0040 

8 ar ey 
Stage I Tmax Tmin tmax tmin AT At Rate 
O.OOm 7.43 2.46 719 459 4.97 260 0.0191 
0.10m 6.62 3.31 729 499 3.31 230 0.0144 
0.20m 6.22 4.57 789 589 1.65 200 0.0082 

Stage 11 Tmax Tmin tmax tmin AT At Rate 
O.OOm 15.62 6.62 878 358 9.00 520 0.0173 
0.10m 13.70 7.03 898 458 6.67 531 0.0126 
0.20m 12.96 7.83 958 498 5.13 460 0.0115 

Stage Ill Tmax Tmin tmax tmin AT At Rate 
O.OOm 22.09 15.23 873 353 6.86 520 0.0132 
0.10m 19.81 14.85 883 413 4.96 470 0.0106 
0.20m 18.66 15.62 963 503 3.04 460 0.0066 

Stage IV Tmax Tmin tmax tmin AT At Rate 
O.OOm 20.57 18.28 923 573 2.29 430 0.0053 
O.IOm 19.04 17.52 923 633 1.52 290 0.0052 
0.20m 19.42 18.66 943 753 0.76 190 0.0040 

Table 7.5: Summary of thermal characteristics observed at Bosworth Site A 
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7.3 THERMAL PROFILE CHARACTERISTICS: SITE B 

A continuous thermal profile was extracted from an area that showed no 

anomaly on the day, night and A TI thermal images from June and August 1998 and 

does not show a geophysical anomaly, thus representing background characteristics 

(Figure 7.14). 

Magnetometry 

June 1998 A TI August 1998 A TI 

Figure 7.14: Location of Site 8 thermal profile observed at Bosworth 

This site is has a similar topographic slope to Site A, but is situated lower 

down the south-west facing slope of the field. The temperature response of the soil 
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column was observed at the same stages in vegetation growth as observed at Site A. 

However, initial equipment enabled acquisition of temperatures at only the surface, 

0.20m and 0.50m depths until Stage Ill under the pasture, after which temperatures 

were additionally recorded at O.lOm. The temperature response of the soil column is 

observed by plotting the temperature against time at the same specific stages in 

vegetation growth as plotted for Site A. 

7.3.1 Stage 1: Soil Fraction Dominates 

The soil temperature profile observed under the pasture (Figure 7.15) shows a gradual 

decrease in the maximum temperatures with depth, with a lag in the response of the 

soil from depth to solar heating. There is an increase in minimum temperatures with 

depth, with a similar lag in the diurnal cooling through depth. The amplitude of the 

heating and cooling cycle decreases with depth with a resulting decrease in the 

heating gradient of the deeper soils. This is similar to the characteristics observed at 

Site A under Stage I pasture. Although the temperatures under the barley are higher 

than under the pasture at Site B (Table 7 .6) and also under the Stage I barley at Site A, 

the barley shows similar thermal characteristics to the Stage I pasture (Figure 7 .16). 

As for Site A, the soil at 0.50m depth does not show a diurnal heating and cooling 

pattern under both pasture and barley, suggesting that the diurnal solar heating again 

dissipates between 0.20m and 0.50m depth. Since the same meteorological and 

vegetation conditions exist between the sites, the topographic aspect or physical 

properties of the underlying soils may be responsible for the thermal variations. The 

soil characteristics are discussed later in the Chapter. 

7.3.2 Stage 11: Equal Soil and Vegetation Fractions 

The soil temperature profile observed under the pasture (Figure 7.17) shows a 

decrease in the maximum temperatures recorded through depth with a heating lag 

through depth. The soil shows an increase in the minimum temperatures at depth with 

a similar cooling lag of the deeper soils with an associated decrease in the amplitude 

with depth. The soil at 0.50m again does not show diurnal heating and cooling, 

suggesting dissipation of solar heating between 0.20m and 0.50m depth. These 

characteristics are very similar to those recorded at Site A for the Stage 11 pasture 

growth and also for the Stage I pasture at Site B. The maximum temperatures 
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recorded under the barley are higher than under the pasture with minimum 

temperature lower than under the pasture (Figure 7.18), but in excess of those 

recorded at Stage II barley at Site A. The amplitude again decreases with depth 

resulting in decreasing heating gradients with depth, similar to those observed under 

the same Stage II barley at Site A, however, these values exceed those determined 

under the Stage 11 pasture at this site (Table 7. 7). Since the same meteorological 

conditions and vegetation condition existed between the sites, the variation in thermal 

response must be explained by an external factor, such as physical soil characteristics, 

which is discussed later in the chapter. 

7.3.3 Stage Ill: Vegetation Fraction Dominates 

The soil temperature observed under the pasture (Figure 7.19) shows a decrease in 

maximum temperatures and an increase in minimum temperatures recorded through 

depth, which are lower than those recorded for Stage Ill pasture at Site A. The 

amplitude and diurnal heating gradient decrease with depth and are higher than those 

recoded at for Stage Ill pasture growth at Site A. The temperature recorded at 0.50m 

again does not show a diurnal fluctuation suggesting solar heat dissipation between 

0.20m and 0.50m depth, which is similar to observed at Site A. The barley shows the 

same maximum, minimum and amplitude temperature patterns as the pasture (Figure 

7.20). The barley records higher maximum and lower minimum temperatures and than 

observed under the pasture (Table 7.8), with values lower than observed under Stage 

Ill barley at Site A. The barley also records higher amplitudes and diurnal heating 

gradients than under the pasture observed for Stage Ill barley at Site A. Since the 

same meteorological conditions and vegetation condition existed between the sites, 

the variation in thermal response must be explained by an external factor, such as 

physical soil characteristics, which is discussed later in the chapter. 

7.3.4 Stage IV: Mature Vegetation 

The soil temperature profile observed under the pasture (Figure 7.21) shows a 

decrease in the maximum temperatures through depth with an increase in minimum 

temperatures with a lag in the heating and cooling of the soils with depth. The 

amplitude and heating gradients decrease with depth, but remain higher than those 

recorded at Site A. The soil at 0.50m again does not show diurnal heating and cooling, 
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agam suggesting the dissipation of heat between 0.20m and 0.50m. The soil 

temperature profile observed under the barley (Figure 7.22) shows a decrease in 

maximum temperatures and increase in minimum temperature with a similar lag in 

heating and cooling as for Stage I and Stage 11 barley. The amplitude and diurnal 

gradient decrease with depth beneath the barley and are consistently higher than those 

observed under the pasture (Table 7.9) and at Site A under Stage III barley. Since the 

same meteorological conditions and vegetation condition existed between the sites, 

the variation in thermal response must be explained by an external factor, such as 

physical soil characteristics. 
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Figure 7.15: Diurnal thermal profiles at Site B under Stage I pasture 2000 
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Figure 7.16: Diurnal thermal profiles at Site B under Stage I barley 2001 

Pasture Tmax Tmin tmax tmin 6-T 6-t Rate 
O.OOm 11.08 3.51 907 432 7.57 475 0.0159 
0.10m NIA NIA NIA NIA NIA NIA NIA 
0.20m 8.28 6.66 1177 682 1.62 495 0.0033 
Barley Tmax Tmin tmax tmin 6-T 6-t Rate 
O.OOm 15.18 3.32 784 544 11 .86 240 0.0494 
O.IOm 13.18 5.27 844 564 7.91 280 0.0283 
0.20m 11.62 8.30 934 694 3.32 240 0.0138 

Table 7.6: Thermal characteristics of Bosworth Site B soil column at Stage I 
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Figure 7.17: Diurnal thermal profiles at Site B under Stage 11 pasture 2000 
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Figure 7.18: Diurnal thermal profiles at Site B under Stage 11 barley 2001 

Pasture Tmax Tmin tmax tmin LiT Llt Rate 
O.OOm 14.62 10.80 809 425 3.82 384 0.0099 
O.IOm N/A NIA NIA NIA N/A NIA N/A 
0.20m 13.13 11 .95 937 681 1.18 256 0.0046 
Barley Tmax Tmin tmax tmin LiT Llt Rate 
O.OOm 25.60 8.18 951 481 17.42 470 0.0371 
0.10m 22.43 10.18 1021 591 12.25 430 0.0285 
0.20m 18.74 11.63 1141 691 7.1 1 450 0.0158 

Table 7.7: Thermal characteristics of Bosworth Site B soil column at Stage 11 
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Figure 7.19: Diurnal thermal profiles at Site B under Stage Ill pasture 2000 
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Figure 7.20: Diurnal thermal profiles at Site B under Stage Ill barley 2001 

Pasture Tmax Tmin tmax tmin ilT Llt Rate 
O.OOm 18.43 13 .13 872 360 5.30 512 0.0104 
O.!Om NIA NIA NIA NIA NIA NIA NIA 
0.20m 15.86 14.02 1000 696 1.84 304 0.0061 
Barley Tmax Tmin tmax tmin ilT Llt Rate 
O.OOm 19.42 7.03 829 439 12.39 390 0.0318 
O.lOm 17.14 8.23 959 509 8.91 450 0.0198 
0.20m 13 .32 8.63 1079 649 4.69 430 0.0109 

Table 7.8: Thermal characteristics of Bosworth Site B soil column at Stage Ill 
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Figure 7.21: Diurnal thermal profiles at Site B under Stage IV pasture 2000 
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Figure 7.22: Diurnal thermal profiles at Site B under Stage IV barley 2001 

Pasture Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 26.34 10.60 831 331 15.74 500 0.0315 
O.IOm 22.09 10.99 941 331 11.10 610 0.0 182 
0.20m 17. 14 12.16 lOll 511 4.98 500 0.0100 
Barley Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 24.40 15.62 949 509 8.78 440 0.0200 
O.IOm 21.71 16.76 979 569 4.95 490 0.0121 
0.20m 19.42 17.52 1049 759 1.90 290 0.0066 

Table 7.9: Thermal characteristics of Bosworth Site B soil column at Stage IV 
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7.3.5 Summary of Site B Thermal Characteristics 

The maximum temperatures recorded under the pasture at Site B increase 

throughout pasture growth with minimum temperatures increasing from Stages I-III. 

The maximum and minimum temperatures recorded under the barley at Site B show 

an increase from Stages I-ll with a drop in values at Stage Ill followed by an increase 

to Stage IV. The maximum temperatures recorded under both vegetation canopies 

decrease with depth with an associated increase in minimum temperatures, which are 

lower under the barley until Stage IV. The temperature amplitude and heating 

gradients decrease with depth under both crops with higher values under the barley 

until Stage IV (Table 7.1 0). 

As discussed for Site A, the there are times when the temperature at depth 

exceeds that observed at the surface, usually in the predawn thermal regime. The 

cross-over in temperature rise between the surface and 0.1 Om always precedes the 

cross-over between the surface and 0.20m as the soil from depth takes longer to 

respond to solar heating. The difference in time between these thermal cross-over 

points decreases as the vegetation develops and becomes less distinct and so the 

optimum timing for observing thermal heat flux characteristics from depth associated 

with potential buried structures becomes less distinct. The maximum surface 

temperatures occur consistently between 13:00-16:00 local time with minimum 

surface temperatures occurring progressively later from 05:30-08:30 local time, which 

is similar to the timing observed at Site A. 
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Pasture 
Stage I Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 11.08 3.51 907 432 7.57 475 0.0159 
O.IOm NIA NIA NIA NIA NIA NIA NIA 
0.20m 8.28 6.66 1177 682 1.62 495 0.0033 

Stage 11 Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 14.62 10.80 809 425 3.82 384 0.0099 
O.IOm NIA NIA NIA NIA NIA NIA NIA 
0.20m 13.13 11.95 937 681 1.18 256 0.0046 

Stage III Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 18.43 13.13 872 360 5.30 512 0.0104 
O.IOm NIA NIA NIA NIA NIA NIA NIA 
0.20m 15.86 14.02 1000 696 1.84 304 0.0061 

Stage IV Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 26.34 10.60 831 331 15.74 500 0.0315 
O.JOm 22.09 10.99 941 331 11.10 610 0.0182 
0.20m 17.14 12.16 lOll 511 4.98 500 0.0100 

8 I ar ey 
Sta_g_ei Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 15.18 3.32 784 544 11.86 240 0.0494 
O.IOm 13.18 5.27 844 564 7.91 280 0.0283 
0.20m 11.62 8.30 934 694 3.32 240 0.0138 

Stage 11 Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 25.60 8.18 951 481 17.42 470 0.0371 
O.IOm 22.43 10.18 1021 591 12.25 430 0.0285 
0.20m 18.74 11.63 1141 691 7.11 450 0.0158 

Stage III Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 19.42 7.03 829 439 12.39 390 0.0318 
O.IOm 17.14 8.23 959 509 8.91 450 0.0198 
0.20m 13.32 8.63 1079 649 4.69 430 0.0109 

Stage IV Tmax Tmin tmax tmin ~T ~t Rate 
O.OOm 24.40 15.62 949 509 8.78 440 0.0200 
O.IOm 21.71 16.76 979 569 4.95 490 0.0121 
0.20m 19.42 17.52 1049 759 1.90 290 0.0066 

Table 7.10: Summary of soil thermal characteristics at 8osworth Site 8 
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7.4 SOIL COMPOSITIONAL CHARACTERISTICS 

A soil is a layer of organic and inorganic weathered material that accumulates 

at the Earth's surface, reflecting the influence of the climate in which it developed, the 

relief of the land, the nature of the parent material or bedrock on which the soil 

developed and the effects of cultivation as well as the physical, chemical and 

biological processes involved in its formation (Duff, 1993). A soil profile is the 

vertical arrangement of the various discrete horizontal layers called horizons that 

make up any soil from the surface downward to the unaltered parent material or 

bedrock. A soil horizon is identified as a layer of soil that can be distinguished from 

adjacent layers by physical properties, such as structure, texture and colour, or 

through variation in its chemical composition. However, deeply cultivated soils may 

be more or less uniform throughout with little vertical variation in soil characteristics 

due to the effects of agricultural practise reworking the soils (Morgan, 1985). Soils 

consist mainly of combinations of solid particles, fluids and air. The particles forming 

the soils are separated into sand, silt and clay particles based on their particle size 

using the Wentworth classification scheme (Table 7.11) and the soils can then be 

classified using the Saxton textural scheme that is based on the fractions of sand, silt 

and clay components present within the soil (Figure 7.23 ). 

Wentworth Size Class Soil Particle Size (mm) 
Sand > 0.0625 
Silt 0.0039-0.0625 
Clay <0.0039 

Table 7.11: Soil particle size definition 

Particle size analysis can be used to identify variations in soil properties that 

may be a result of the presence of infilled ditches, where the ditch soil has a different 

structure from the surrounding matrix. However, particle size is only one component 

of a complex set of interrelationships that characterise the physical and chemical 

properties of a soil, with the mineralogy of the soil components important for soil 

classification (Whalley, 1985). Variations in the composition of the soil can therefore 

suggest the presence of past anthropogenic activity, such as the presence of ash or 

organic-rich layers in the soil. 
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Figure 7.23: Soil classification scheme from Saxton (USDA Agricultural 

Research Service) 

The particle size distribution and mineralogy of the undisturbed soil are 

permanent and unchanging characteristics, but variations in these characteristics can 

influence the permeability and porosity of the soil. These factors relate to the shape, 

angularity and surface texture of the soil particles, which can affect the retention of 

moisture contained in the soil pore spaces (Catt, 1985). Moisture has a high thermal 

inertia or a low diurnal temperature contrast and is represented by a dampening of the 

diurnal heating and cooling curve (Figure 3.2). Moist soils will therefore have a lower 

diurnal temperature contrast than dry soils enabling the differentiation of soils based 

on their variation in day and night temperature contrast (Pratt & Ellyett, 1979). When 

a feature is buried in the shallow subsurface, this causes a variation in the retention of 

soil moisture due to the differential compaction of the soils. As a result, the thermal 

regime of the soil above a feature may have a different response compared with that 

of the undisturbed soil matrix (Pickerill & Malthus, 1998). The moisture content of 
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the soil can affect the growth of vegetation above a feature due to the limitation in the 

availability of moisture into the root system of the vegetation and inflict stress on the 

crop (Morgan, 1985). 

In order to establish whether the thermal variations observed in the soil 

column can be attributed to variations in the physical soil properties, soil profiles are 

extracted from the two positions where continuous thermal profiling was obtained, in 

addition to locations where variable spectral, thermal and magnetic response are 

apparent (Figure 7.24). There are five main features over which soils are extracted, 

with additional soil samples extracted at 5m and 1 Om lateral offset, where background 

characteristics are observed at the latter site. The main features are: 

(A) - an anomaly seen at visible and near-infrared wavelengths 

(B) - an anomaly seen at visible, near-infrared, thermal infrared wavelengths 

and the A TI images 

(C) -an anomaly seen on August day and night thermal and magnetic images 

(D) - an anomaly on day and night thermal, A TI and magnetic images 

(E) - a location that has uniform characteristics 

The intention was to extract complete 0.50m profiles from each location, 

however penetration of the soil layer using standard coring equipment was not 

possible due to the excessive amount of pebble material within the soil column at the 

Bosworth site. As a result, a 0.50m vertical trench was excavated, or down to the 

maximum depth where extraction was physically possible, with soils extracted at 

0.05m intervals from the undisturbed soil face. Soils were extracted from the site once 

the crop had been harvested and access was permitted to the land, but prior to 

ploughing to ensure the soil underwent minimal reworking of its vertical and lateral 

characteristics to correspond with soil conditions associated with the imagery. 

Representative soil samples from each depth are analysed in the laboratory for particle 

size distribution (Appendix G 1 ), moisture content (Appendix G2) and organic content 

(Appendix G3) and vertical profiles generated for each core sample. Lateral profiles 

are also generated across each feature from the adjacent soil characteristics for 
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comparison with the results from the A TI modelling to assess whether the variation in 

thermal response correlates with a variation in true physical soil characteristics of the 

features . 

Feature C 
Core 14 
Core 15 
Core 16 

Location E 
Cores 23:22 

FeatureD 
Cores 21 :20 

Feature A 
Cores 3:2:1 

Feature B 
Cores 8:7:6 

Figure 7.24: Location and nomenclature of Bosworth soil extraction profiles 

7.4.1 Feature A 

Feature A corresponds to an anomaly that is evident at visible and near

infrared wavelengths throughout the barley growth in 1998 but is not evident under 

the oil seed rape of2002. Soil profiles are extracted from the feature (core 3), at a 5m 

eastern lateral offset (core 2) and at a 1 Om eastern lateral offset (core 1) for 

assessment of vertical and lateral trends in soil characteristics. The vertical soil profile 

extracted from the feature is visualised by plotting particle size distribution, moisture 

content and organic content through depth (Figure 7 .25). 
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Figure 7.25: Vertical soil profile extracted from Bosworth Feature A 

The soil profile from Feature A shows no variation in Saxton classification 

through depth with soils uniformly classified as sandy loams. The sand content is 

fairly uniform at shallow depths (<0.30m) with values in the 71.90%-69.60% range. 

There is a pronounced increase to 75.50% at 0.35m, below which the sand fraction 

gradually decreases but still remains higher than observed at shallower depths. The 

profile of the clay content shows the opposite pattern with a minimum value observed 

at 0.35m. The profile of the moisture content shows a more pronounced variation with 

depth with a gradual rise to 13.56% at 0.15m, below which values continually 

decrease. The organic content shows little variation with depth with a slight rise to 

3.97% at 0.15m, below which values gradually decrease. The profiles of the sand and 

clay fractions suggest a change in physical characteristics between 0.30m-0.35m 

possibly relating to the plough depth where pebbles become visibly more widespread. 

The soi l profile extracted from above Feature A is compared with the adjacent 

soil profiles to assess any lateral trends in soil properties that may relate to the visible 

and near-infrared image anomaly (Insert A). Since the feature is evident at visible and 

near-infrared wavelengths then one would expect variations in moisture and organic 

differences associated with the feature, which affect vegetation growth. Since there 

was no volumetric A TI anomaly associated with the feature, the soil was not expected 

to show volumetric compositional variation associated with the feature if A TI 

corresponds to soil properties beneath the vegetation. 
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The results of the lateral soil profiles show very similar particle stze 

distribution, moisture content and organic content across the feature at any depth, with 

no obvious variation in soil physical characteristics that can be related to the visible 

and near-infrared feature (see Insert A). This suggests that the visible and near

infrared feature is more likely to represent a surface vegetation effect. 

7.4.2 Feature B 

Feature B corresponds to an anomaly that is evident at visible, near-infrared 

wavelengths and on the day, night and ATI thermal images under the barley in 1998 

but is not evident under the oil seed rape of 2002. This feature corresponds to the 

position of the field boundary hedgerow that has been removed since generation of the 

151 edition OS map. Soil profiles are extracted from the feature (core 8), at a 5m 

eastern lateral offset (core 7) and at a 1 Om eastern lateral offset (core 6) for 

assessment of vertical and lateral trends in soil characteristics. The vertical soil profile 

extracted from the feature (Figure 7.26) gives no variation in Saxton classification 

through depth with soils uniformly classified as sandy loams, similar to Feature A. 
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Figure 7.26: Vertical soil profile extracted from Bosworth Feature B 
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The profile of the clay content shows little variation through depth with values 

in the 11.00%-12.80% range, with a minimum value recorded at 0.15m and a peak at 

0.20m, below which values continually decrease. The profile of the organic content 
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shows little variation with values in the 2.13%-3.78% range, with a slight peak at 

0.1 Om, below which values continually decrease. The profile of the moisture content 

shows a more pronounced variation with values in the 4.29%-13.84% range, with a 

peak occurring at 0.1 Om, below which values again decrease. The sand fraction 

gradually increases to 70.20% at 0.15m, below which the values decrease to a 

minimum at 0.35m with a subsequent increase below this depth. The profiles of the 

clay, organic and moisture content suggest a variation in physical characteristics of 

the soil occurring between 0.1 Om and 0.20m depth. The sand content shows a strong 

variation at 0.35m similar to Feature A where the pebbles become more widespread 

and again possibly correlates to the plough depth. 

The soil profile extracted above Feature B is compared with the adjacent soil 

profiles (Insert B). Since the feature is evident on the visible, near-infrared and day 

and night thermal images then one would expect to see an anomaly in soil properties 

at the surface and since there is also an A TI anomaly evident in June and August, then 

one would also expect to see a lateral variation in soil properties at depth, that is if the 

A TI corresponds to volumetric soil properties beneath the vegetation. 

The results of the lateral soil profiles show very similar particle stze 

distribution, moisture content and organic content across the feature with no obvious 

variation in soil physical characteristics relating to the feature (see Insert B). This 

suggests that the feature does not represent an anomaly in terms of the vertical 

properties of the soil and so the feature is more likely to represent a surface vegetation 

effect. 

7 .4.3 Feature C 

Feature C corresponds to an anomaly seen at visible, near-infrared 

wavelengths and on day and night thermal images under a barley crop in August 1998 

but is not evident under an oil seed rape crop during 2002. The anomaly is also 

evident on the geophysical image representing a variation in magnetic characteristics 

of the upper soil layer. Soil profiles are extracted from the feature (core 14), at a 5m 

southern lateral offset (core 15) and at a 1 Om southern lateral offset (core 16) for 

assessment ofvertical and lateral trends in soil characteristics. The vertical soil profile 

extracted from the feature (Figure 7.27) shows a more variable Saxton classification 
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with depth with loams between O.OOm-0.1 Om, sandy loams between 0.1 5m-0.20m, 

loams between 0.25m-0.30m all sitting on a basal layer of clay loam. 
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Figure 7.27: Vertical soil profile extracted from Bosworth Feature C 

The profile of the clay fraction shows fairly uniform values until a dramatic 

increase in values from 19.80% at 0.30m to 30.60% at 0.35m. The moisture content 

gradually decreases with depth to a minimum of 12.57% at 0.30m, below which there 

is a slight jump to 16.67% at 0.35m followed by a gradual decrease. The profile ofthe 

organic content shows little variation through depth with values in the 5.59%-6.68% 

range, with a slight peak observed at 0.25m. The sand content is fairly uniform at 

shallower depths until 0.15m-0.30m where there is a much more variable response. 

There is a dramatic decrease from 50.70% to 30.10% at 0.35m with a gradual increase 

in sand content below this depth. From the profiles of the sand, clay and moisture 

content there appears to be a dramatic change in physical soil characteristics occurring 

between 0.30m and 0.35m. This is similar to the plough depth suggested from the 

results from Feature A and Feature B. However, since there is a magnetic anomaly 

evident at thi s position, the change in physical properties may relate to the presence of 

a physical feature at this depth in the soil column. 

The soil profile extracted from above Feature C is compared with the adjacent 

soil profiles (Insert C). Since the feature is evident on the visible and near-infrared 
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channels in August 1998 then maybe one would not expect an anomaly in lateral sand 

and clay characteristics at the surface, otherwise the feature would be evident on the 

June 1998 images. Since there is no anomaly on the A TI images at this location, then 

one would not expect a variation in lateral properties if the ATI corresponds with soil 

properties beneath the vegetation. However, the presence of a magnetic anomaly at 

this position suggests a change in soil characteristics down to about I .OOm of 

observation depth. 

The results of the lateral soil profiles show that there is a slight elevation in 

moisture content at 5m lateral offset to the feature (core 15) between 0.1 Om and 

0.30m depths and little variation in organic content across the feature (see Insert C). 

There is an abrupt variation in sand and clay pattern across the feature below 0.35m 

where the core on the actual feature (core 14) shows greatly reduced sand and 

increased clay fractions. Although this depth corresponds a position to where pebbles 

become more widespread as for Feature A and B, the variation in sand and clay 

content is much more dramatic. Since the soil was fairly uniform above 0.35m depth, 

below which there was an abrupt change in lateral composition, and there was no 

volumetric A TI anomaly, then A TI may be associated with soils shallower than 0.35m 

if the parameter corresponds to soil properties beneath the vegetation. 

7.4.4 FeatureD 

FeatureD corresponds to an anomaly that is evident on the day, night and ATI 

thermal images throughout the barley growth in 1998 but is not evident under an oil 

seed rape crop during 2002. This feature is also represented by a magnetic anomaly. 

Soil profiles are extracted from the feature (core 20) and at a 5m south-western lateral 

offset (core 21) for assessment of vertical and lateral trends in soil characteristics. The 

vertical soil profile extracted from the feature (Figure 7.28) shows no variation in 

Saxton classification through depth with soils uniformly classified as sandy loams. 
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Figure 7.28: Vertical soil profile extracted from Bosworth FeatureD 

The profile of the organic content shows little variation with values in the 

4.63%-5.62% range with a maximum at 0.15m. The profile of the moisture content 

shows a dramatic increase to 14.99% at 0.1 Om, below which the moisture content 

gradually decreases. The profile of the clay content shows little variation through 

depth with values in the 16.00%-17.70% range, with a maximum occurring at 0.20m. 

The profile of the sand fraction shows a narrow range from 55.00%-58.20%, with a 

gradual decrease to 0.20m from the surface below which there is a fluctuation in sand 

content. The soil profiles suggest a variation in characteristics between 0.1 Om and 

0.20m depth, which is shallower than evident across the other features. 

The soil profile extracted above Feature D is compared with the adjacent soil 

profile (Insert D). Ideally a further soil profile should have been extracted at I Om 

lateral offset for further evaluation, but this was not acquired. Since the feature is 

evident as an anomaly on the ATI images then one would expect to see an anomaly in 

soil properties at depth if the A TI corresponds to volumetric soil properties beneath 

the vegetation. The results of the lateral soil profi les show a slight increase in surface 

moisture content associated with the feature that may correlate with the day and night 

thermal anomaly (see Insert D). There is a slight increase in sand content between 

0.1 Om and 0.20m associated with the feature (core 20), which may correspond with 

the A TI anomaly if A TI corresponds to volumetric soil properties beneath the 

vegetation. 
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7 .4.5 Location E 

Location E was situated at where the soil showed uniform characteristics 

throughout the images, thus corresponding to a position where the soil characteristics 

are not expected to show on the geophysical surveys. Soil profiles were extracted 

from the location (core 22) and at 5m western lateral offset (core 23) for assessment 

of vertical and lateral trends in soil characteristics. The vertical soil profile extracted 

from the feature (Figure 7.29) shows no variation in Saxton classification through 

depth with soils uniformly classified as sandy loams. 
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Figure 7.29: Vertical soil profile extracted from Bosworth Location E 

The profile of the moisture content shows a gradual decrease from 22.95%-

14.82% to depth, suggesting a greater retention of moisture at shallower depths. The 

profile of the organic content showed a fluctuation in values between 0.00m-0.20m 

with a gradual decrease in organic content below 0.20m. The profile of the sand 

content shows values in the 61.20%-69.30% range with a pronounced peak and trough 

fluctuation in values above 0.20m, with a decrease towards 0.30m, followed by a 

gradual increase with depth. The profile of the clay content mirrored that of the sand 

content with a decrease in clay content towards 0.1 Om that is followed by a gradual 

rise to 0.30m with subsequent decrease in values below this depth. 

The soil profile extracted from Location E is compared with the adjacent soil 

profile (see Insert E). Since there is no anomaly on the imagery at this location then 
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would not expect there to be a variation in soil characteristics across the feature at any 

depth. The organic profile shows no lateral variation through depth. The moisture 

content is fairly uniform except at 0.25m and 0.30m where there is an increase in 

moisture of core 23. However, the sand profile shows an elevated value at 0.05m at 

core 23 and lowered values at 0.40m and 0.45m for this core. If the A TI represents 

volumetric variations in the soil properties then an anomaly would be expected at this 

location. Since this is not the case then the A TI is more likely to represent surface 

temperature variations of the vegetation and not of the underlying soil. 

7.4.6 Summary of Compositional Characteristics 

The compositional characteristics of the soil were examined by extracting a 

senes of vertical soil profiles at 5m lateral intervals across the features showing 

variable spectral, thermal and magnetic characteristics. The soils were examined for 

particle size distribution, moisture and organic content at 0.05m vertical intervals 

from a trench of 0.50m at each location with examination of the variations in both 

vertical and lateral profile characteristics. 

The anomaly evident at visible and near-infrared wavelengths (Feature A) 

suggests a surface vegetation difference with variations in moisture and organic 

content associated with the feature, which affect vegetation growth. Since there was 

no volumetric A TI anomaly associated with the feature, the soil was expected to show 

no volumetric compositional variation associated with the feature if A TI corresponds 

to soil properties beneath the vegetation. The results of the soil analysis showed that 

there is little variation in soil characteristics through depth associated with this 

feature, suggesting that the feature is likely to represent spatial variations in the 

vegetation characteristics. 

The anomaly evident at visible and near-infrared wavelengths associated with 

the abandoned hedgerow boundary (Feature B) again suggests a surface vegetation 

difference with variations in moisture and organic content associated with the feature 

affecting vegetation growth. Since the feature was also marked by a thermal anomaly, 

a variation in surface moisture would also be expected with additional volumetric 

compositional variations at depth associated with the presence of the ATI anomaly, if 

A TI corresponds to soil properties beneath the vegetation. The results of the soil 
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analysis showed very little variation in soil characteristics by depth associated with 

this feature, suggesting that the A Tl anomaly is more likely to represent an effect of 

temperature variations of the surface vegetation. 

The anomaly seen in the August day and night thermal images (Feature C) 

suggests a difference in surface moisture content, which affects the heating and 

cooling of the moist surface. Since there was no volumetric ATI anomaly associated 

with the feature, the soil was expected to show no volumetric compositional variation 

associated with the feature if ATI corresponds to soil properties beneath the 

vegetation. However, there may be variations in composition at depth due to the 

presence of a magnetic anomaly, but it is possible that variations down to l.OOm 

observed by the magnetometry technique may not be evident in the 0.50m excavation 

trench. The results of the soil analysis showed that there was an anomaly in moisture 

content at the soil surface adjacent to the feature. Since the soil was fairly uniform 

above 0.35m and there was no volumetric A TI anomaly, then A TI may be associated 

with soils shallower than 0.35m if this parameter corresponds to soil properties 

beneath the vegetation, otherwise the variation in lateral compositional characteristics 

would have produced an ATI anomaly. However, the results from Feature B where 

there was an A TI anomaly and there were no compositional variations through depth 

strongly suggest that A TI may correspond to an effect of temperature variations of the 

surface vegetation. 

The thermal day, night and ATI anomaly (Feature D) suggests a difference in 

surface moisture content, which affects the heating and cooling of the moist surface, 

and also volumetric compositional variations if A TI corresponds to soil properties 

beneath the vegetation. There may also be a variation in composition at depth due to 

the presence of the magnetic anomaly, but it was possible that variations down to 

l.OOm observed by the magnetometry technique may not be evident in the 0.50m 

excavation trench. The results of the soil analysis showed that there was a variation in 

surface moisture content that may be associated with the day and night thermal 

feature. There was also a volumetric variation in sand content between 0.1 Om and 

0.20m that may correspond with the A TI anomaly. Since the variation in soil 

characteristics is only very slight between the two profiles (<4%) it is difficult to be 

confident that the A TI anomaly may relate to volumetric properties between O.Om and 
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0.20m without extracting a further soil profile at 1 Om lateral offset and assessing the 

background characteristics. The results from Feature B suggested that the ATI 

anomaly is more likely to represent an effect of temperature variations of the surface 

vegetation and this may explain the A TI anomaly at Feature D. 

Location E marks an area where no anomalies were apparent no the visible, 

near-infrared, thermal, ATI and magnetic images. The non-anomalous characteristics 

suggest that there should be no variation in moisture or organic content, since this 

would be expected to affect vegetation condition at the surface observed at visible, 

near-infrared and thermal wavelengths. Since there is a lack of an anomaly on the A TI 

images at this position, no difference in volumetric composition would also be 

expected if the A TI corresponds to soil properties beneath the vegetation. The results 

of the soil analysis showed no variation in organic content, as expected, although the 

soil did show a difference in moisture content between 0.25m and 0.30m with a 

variation in composition between 0.40m and 0.45m. Since there is no volumetric A TI 

anomaly at this location and the soil showed a clear compositional variation, then the 

A TI anomaly is more likely to represent an effect of temperature variations of the 

surface vegetation, as was suggested from the results from the other sites. 

The results from these specific features suggest that visible, near-infrared and 

day and night thermal anomalies tend to correspond to variations in moisture content 

at the surface. There was a poor correlation between the magnetic anomalies and the 

soil characteristics at depth, suggesting that the variations down to l.OOm observed by 

the magnetometry technique are not evident within the 0.50m excavation trench. The 

results from the A TI assessment are more variable with suggestions that the A TI is 

likely to represent an effect of temperature variations of the surface vegetation. In 

order to assess the ATI characteristics more fully, the lateral properties of the soil are 

numerically compared with the ATI values recorded over the same features to assess 

whether the observed variations in A TI value can indicate variations in true physical 

characteristics of the soil. This is discussed in the following chapter and examines the 

necessity to determine the A TI for detecting subsurface soil characteristics beneath a 

layer of vegetation. 
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8 JD][§C1U§§ION 

The main aims of the thesis are to investigate the use of multi spectral airborne 

remote sensing techniques and ground geophysical prospection for detecting shallow 

ground disturbance beneath a layer of vegetation and to examine the relationship 

between airborne thermal radiance data and the characteristics of surface materials 

beneath a layer of vegetation. The vegetation effect is particularly important for 

detecting shallow ground disturbance in the UK where the majority of the ground 

surface is covered by agricultural crops that mask the underlying soil from direct 

observation from above the canopy. 

The previous chapter assessed the dynamics of the heat flux in the soil

vegetation system at an instrumented site in Bosworth where accessibility to land 

enabled monitoring of the soil thermal characteristics beneath growing vegetation. 

The results from the study indicated that there was less of a contrast between the 

diurnal temperature extremes of the soil as the vegetation matures, suggesting that 

mature vegetation masks the underlying soil from direct solar heating processes. In 

addition, the contrast between the diurnal temperature extremes diminishes as the 

observation depth increases in the soil column with the dissipation of the diurnal 

heating and cooling pattern occurring between 0.20m and 0.50m in early stages of 

vegetation growth and occurring closer to 0.20m at later stages in vegetation growth. 

The results from the ground thermal observation suggests that if A TI can be used for 

assessing volumetric parameters, then the depth of diurnal heat penetration may be an 

important issue for detecting variations within the vertical soil layer occurring above 

these depths. The thermal characteristics also show the time when the surface is at its 

maximum temperature and when it is at its minimum temperature alters as the 

vegetation grows. From the extensive contact temperature measurements, the soil 

surface reaches its maximum temperature between 14:00-15:00 local time with 

minimum temperatures recorded progressively later from 06:00-09:30 the following 

morning as the vegetation grows. This will have implications on the appropriate times 

for thermal observation above the canopy for detecting features relating to soil 

properties. 

321 



Chapter 8: Discussion 

The previous chapter also assessed the compositional properties of the soil 

column over specific features of variable visible, near-infrared and thermal 

characteristics. This was again performed at only the Bosworth site due to 

accessibility to the land for soil extraction for laboratory analysis and also since the 

diurnal thermal images acquired over this study site could be calibrated to ground 

temperature enabling A TI calculation. Although diurnal thermal images were 

acquired over Baildon Moor and Weardale, the lack of ground temperature 

measurements prevents calculation of A TI for these environmental settings. The 

results of the soil analysis from the specific features suggest that the anomalies at 

visible, near-infrared and day and night thermal wavelengths, which are more easily 

detected at early stages in vegetation development, tend to correspond to lateral 

variations in moisture content at the surface. This suggests that observation above the 

canopy at these wavelengths when the vegetation is under-developed may provide a 

suitable method of detecting variations in the very near-surface based on soil moisture 

differences between the disturbed and undisturbed soils. 

However, one of the main issues of the research is to determine whether A TI 

can be used to detect volumetric variations within the soil column. If A TI represents 

volumetric variations as suggested by the inclusion of density in the definition of 

thermal inertia (Price, 1977) then one would expect a variation in the organic, 

moisture, sand or clay content, or a combination of all properties. When the lateral 

soil properties were assessed in the previous chapter with respect to the position of an 

A TI anomaly, the results suggested that since there was little lateral soil variation 

where the A TI feature occurs the ATI anomaly was more likely to represent an effect 

of variations in the temperature of the surface vegetation, probably relating to 

structural variations within the vegetation. However, these results were based on a 

purely visual assessment of the lateral soil properties with respect to the presence of 

anomalies evident on the A TI images. 

A more quantitative approach for assessing whether A TI can be used to detect 

volumetric variations within the soil column can be perforn1ed by looking at the 

correlation between the A TI and soil characteristics across specific features. This is 

performed using a standard correlation technique where correlation coefficients are 

generated for the relationship between the lateral ATI values and soil properties for 
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each depth in the soil column. Specific features from the Bosworth study site are 

selected for discussion, due to limited soil sampling across the remaining features, 

providing some examples of feature of different A TI and multi spectral characteristics. 

The correlation analysis is restricted to assessment of the features where soil profiles 

were extracted on the feature, at 5m and 1 Om lateral offset. As a result, the analysis 

can only be used to indicate possible trends in the data and is not statistically robust. 

The features assessed using the correlation analysis correspond to Features A, B and 

C that coincide with the position of soil extraction (Figure 7.24), with Feature B 

providing the only location where an anomaly is evident on the A TI imagery. When 

the A TI profiles are extracted across the specific features it is immediately apparent 

that the range of values observed for the June imagery is much smaller than that 

observed for the August imagery (Figure 8.1 ). 

Since the thermal images were acquired under similar meteorological 

conditions, the variation in the range of A TI values between June 1998 and August 

1998 for each feature was initially thought to represent the variations in the condition 

of the vegetation. In June 1998 the field was covered with an under-developed cereal 

crop ofbarley, but in August 1998 the cereal crop was fully mature. This implies that 

a greater resistance to temperature change is observed at a later stage in crop maturity. 

However, another possible explanation for the variation in A TI values is that the 

thermal images were not acquired when the surface displayed the maximum 

temperature contrast on each observation date. From the ground contact 

measurements it is known that the surface displays a maximum temperature between 

14:00-15:00 local time, however, the day thermal image from August 1998 was 

acquired 10:00 suggesting that the surface would have still been heating up. When 

histograms were extracted for specific man-made features there was a clear variation 

in the range of ATI values observed between June 1998 and August 1998 (see 

Chapter 6.5). Since man-made materials are not expected to show seasonality in 

response, this suggests that there may be a miscalibration of the thermal images to 

ground temperature. 
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Figure 8.1: June and August ATI profiles across specific Bosworth features 
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Although there is a different range of A TI values between the observation 

dates the correlation analysis relates the shape of the A TI profile to the shape of the 
' 

soil profile across each feature. 

Since there was no volumetric ATI anomaly associated wit h the Feature A, 

he A TI and soil then one would not expect to observe a high correlation between t 

profiles if the volumetric A TI parameter corresponds to variations i n soil properties 

ure A (Table 8.1) 

ed with the sand 

ent at 0.25m and 

beneath the vegetation. Results from the correlation analysis for Feat 

suggest that the June 1998 A TI profile appears to be strongly correlat 

and clay profiles at 0.45m, with a high correlation with moisture cant 

organic content at 0.05m. The August 1998 A TI profile shows a neg ative correlation 

with the sand and clay properties near the surface at 0.05m, with a high correlation 

with moisture content at 0.30m and organic content at 0.40m. Ho wever, since this 

feature did not represent a visible A TI anomaly then the correlation 

and volumetric soil properties may be purely coincidental and may 

limited soil sampling. 

JUNE under-developed barley 
DEPTH SAND CLAY MOISTURE 

O.OOm -0.34 0.54 0.20 
0.05m -0.02 -0.27 0.64 
O.lOm NIA NIA 0.58 
0.15m -0.73 0.67 -0.41 
0.20m -0.86 0.74 -0.88 
0.25m -0.99 0.98 0.99 
0.30m -0.98 0.94 -0.20 
0.35m -0.93 0.92 -0.71 
0.40m -0.86 0.85 0.56 
0.45m -1.00 0.99 -0.24 

AUGUST mature barley 
DEPTH SAND CLAY MOISTURE 
O.OOm -0.98 0.91 -0.94 
0.05m -0.99 0.92 -0.67 
O.IOm NIA NIA 0.89 
0.15m -0.78 0.82 -0.96 
0.20m -0.62 0.77 0.36 
0.25m 0.04 -0.06 0.28 
0.30m -0.34 0.45 -1.00 
0.35m -0.49 0.51 -0.79 
0.40m -0.62 0.63 -0.75 
0.45m -0.17 0.00 -0.99 

between the A TI 

be a result of the 

ORGANIC 
0.56 
1.00 
0.99 
0.14 
0.96 
0.98 
-0.98 
-0.37 
0.03 
0.42 

ORGANIC 
0.89 
0.22 
0.28 
-0.96 
-0.15 
-0.04 
0.05 
-0.97 
-0.99 
-0.84 

Table 8.1: Correlation of A TI with soil properties across Boswort h Feature A 
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Since Feature B was marked by an ATI anomaly on the imagery then one 

would expect to observe a high correlation between the A TI and soil profiles if the 

volumetric A TI parameter corresponds to variations in soil properties beneath the 

vegetation. Results from the correlation analysis for Feature B (Table 8.2) suggest that 

the June 1998 A TI profile shows a strong correlation with the sand and clay profiles 

at 0.1 Om, with a high correlation with moisture content at 0.20m and organic content 

at the surface. The August 1998 A TI profile shows moderately high correlation values 

of -0.75 and 0. 74 with the sand and clay profiles respectively at 0.15m, with a high 

correlation of 1.00 with moisture content at 0.05m and organic content at 0.25m. The 

strongest correlation between the A TI and soil profiles occurs at shallower depths 

than was apparent for Feature A where there was no A TI anomaly. The possible 

implications of this is that the anomaly on the ATI images at Feature B may 

correspond to variations in moisture content at the very near-surface at both stage in 

development of the barley crop, as was suggested by Pratt & Ellyett (1979). Although 

this is corroborated by the comparison between the resistivity survey, which is 

sensitive to soil moisture differences (Kearey & Brooks, 1991; Reynolds, 1997), and 

the A TI images in the grass-covered fields (Figures 6.22 and 6.23), the results are still 

inconclusive since Feature B shows a similar correlation pattern to Feature A where 

there was no ATI anomaly, which may again be a result of the limited soil sampling. 

JUNE d d un er- eve ope db I ar ey 
DEPTH SAND CLAY MOISTURE ORGANIC 
O.OOm -0.99 1.00 -0.04 1.00 
0.05m -0.89 0.94 -0.58 0.96 
O.!Om -1.00 1.00 -0.15 0.97 
0.15m -0.96 0.96 -0.12 0.96 
0.20m -0.47 0.35 -1.00 0.89 
0.25m -0.80 0.88 0.14 0.53 
0.30m -0.99 1.00 -0.62 0.75 
0.35m -0.32 0.74 0.44 0.97 

AUGUST t b I ma ure ar ey 
DEPTH SAND CLAY MOISTURE ORGANIC 
O.OOm -0.42 0.46 0.83 0.58 
0.05m -0.08 0.21 -1.00 0.29 
0.10m -0.52 0.57 -0.92 0.32 
0.15m -0.75 0.74 -0.90 0.75 
0.20m 0.50 -0.61 -0.45 0.86 
0.25m 0.09 0.05 -0.76 1.00 
0.30m -0.38 0.52 0.34 0.96 
0.35m 0.64 -0.18 -0.53 0.71 

Table 8.2: Correlation of ATI with soil properties across Bosworth Feature B 
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Since there was no volumetric A TI anomaly associated with Feature C then 

one would expect to observe a low correlation between the A TI and soil profiles if the 

volumetric A TI parameter corresponds to variations in so il properties beneath the 

C (Table 8.3) suggest that 

the sand and clay profiles 

5m and organic content at 

correlation with the sand, 

1th a high correlation with 

feature is similar in June 

vegetation. Results from the correlation analysis for Feature 

the June 1998 A TI profile shows a strong correlation with 

at 0.45m, with high correlation with moisture content at 0.1 

0.25m. The August 1998 A TI profile shows only a poor 

clay and organic profiles in the near-surface environment, w· 

moisture content at 0.1 Om. The correlation pattern for this 

1998 when the barley crop is under-developed to that obse rved at Feature A, where 

ttem is different when the 

py closure with Feature C 

om observation at Feature 

there was also no A TI anomaly. However, the correlation pa 

barley crop is more mature, which may be a result of cano 

representing soil moisture differences that may be masked fr 

A. However, the reason for the variation between the featu res is inconclusive due to 

the limited soil sampling. 

JUNE under-developed barley 
DEPTH SAND CLAY MOIS TURE ORGANIC 
O.OOm -0.83 0.81 -0. 37 0.40 
0.05m -0.85 0.82 0. 25 0.62 
O.IOm -0.56 0.49 -0. 70 0.50 
0.15m -0.65 0.62 -0. 99 0.38 
0.20m -0.52 0.58 -0. 92 0.62 
0.25m -0.74 0.76 -0. 22 1.00 
0.30m -0.82 0.81 -0. 16 0.76 
0.35m -0.93 0.93 0. 68 0.75 
0.40m -0.88 0.89 0. 67 0.77 
0.45m -0.94 0.93 0. 78 0.92 

AUGUST mature barley 
DEPTH SAND CLAY MOIS TURE ORGANIC 
O.OOm 0.02 -0.06 0. 58 -0.56 
0.05m -0.02 -0.04 -0. 68 -0.33 
O.IOm 0.40 -0.47 -0. 98 -0.46 
0.15m 0.29 -0.33 -0. 42 -0.57 
0.20m 0.44 -0.38 -0. 83 -0.33 
0.25m 0.17 -0.14 -0. 94 0.56 
0.30m 0.05 -0.06 -0. 92 -0.13 
0.35m -0.18 -0.18 -0. 25 -0.16 
0.40m -0.07 -0.09 -0. 26 -0.13 
0.45m -0.21 0.19 -0. 10 0.17 

Table 8.3: Correlation of ATI with soil properties across Feature C 
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Feature B is the only feature that showed an anomaly on the ATI images. 

However, the results from these correlation analyses between the A TI and soil profiles 

are inconclusive since there were similar correlation coefficients for features where an 

A TI anomaly existed and where there was no A TI anomaly. Price ( 1977) suggested 

that thermal inertia could be used to infer surface properties in the order of 0.1 Om 

depth. However, the results from this study suggest that thermal inertia may 

correspond to temperature effects of the surface vegetation that may be caused by 

variations in the structure of the vegetation. 

When the A TI and soil characteristics are correlated usmg an alternative 

graphical matrix approach (Figure 8.2), the correlation in the data can be quickly 

assessed where clusters of points suggest homogeneous characteristics with outliers 

corresponding to anomalous characteristics. In the graphic matrix, points are plotted 

to represent the inter-relationship between the A TI and soil properties. The results of 

the graphical matrix approach show that there is little variation in the clustering of 

points between the June and August images for each feature. This suggests that there 

is little dependence of the seasonal A TI values on the soil characteristics. This is 

particularly noticeable for Feature B, which is the only feature corresponding to an 

anomaly on the A TI images. The results for this feature exhibit a strong clustering of 

points on both June and August graphs suggesting relatively homogeneous soil 

characteristics and this clustering pattern is very similar to that exhibited by Feature 

A. Since there is no anomaly on the A TI images associated with Feature A, this 

implies that A TI is unlikely to be affected by variations in the physical characteristics 

ofthe soil beneath the vegetation and is more likely to correspond to differences in the 

temperature response of the surface vegetation. 
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The results from the correlation analysis suggest that there is a poor 

correlation between the A TI and the sand and clay profiles, observed at the different 

times in the growth of the barley crop, with the A TI showing a strong dependence on 

the moisture content, as suggested by Pratt & Ellyett ( 1979). This is corroborated by 

results from field assessment where the magnetometry survey, which is sensitive to 

the composition of the soil materials (Scollar, 1990; Kearey & Brooks, 1991 ), show a 

poor correlation with the June A TI (Figure 6.20) and August A TI (Figure 6.21) 

images. The results from the resistivity survey, which is sensitive to moisture content 

(Kearey & Brooks, 1991; Reynolds, 1997), also corroborates the Pratt & Ellyett 

(1979) findings with a strong correlation with the June A TI (Figure 6.22) and August 

A TI (Figure 6.23) images. Although this discussion has focussed on the 

characteristics of the correlation between the A TI images and the soil characteristics 

at the Bosworth study site, this soil moisture effect concurs with the results from the 

Baildon Moor study site, where the thermal images of Baildon Moor show a series of 

circular mineshafts (Figure 5.35) where structural differences exist between the shaft 

and the undisturbed surrounding soil. These features also show anomalies in the 

resistivity profiles (Figure 5.44) suggesting a close relation between anomalies at 

thermal wavelengths with soil moisture differences. 

From the above discussion, the method of applying ATI models to diurnal 

thermal images can provide useful detail on the moisture properties of the soil just 

beneath the surface when an open vegetation canopy, such as short grass or an under

developed barley crop, covers the soil. This has particular implications for geological 

and archaeological applications in the UK environment where the ground surface is 

predominantly covered by a layer of vegetation and features in the near-surface cause 

differences in the soil properties and may be masked from observation in visible and 

near-infrared wavelengths above the canopy. If the A TI modelling approach is to be 

used in such situations, a specific set of processing steps need to be defined so that the 

assessment can be executed efficiently. 

First of all, it is important to acquire day and night thermal images at times in 

the diurnal cycle when the surface is at its maximum temperature and is also at its 

minimum temperature. Times when the surface is at its maximum and minimum 

temperatures are established from the time series obtained from ground based contact 
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measurements of soil temperature at the Bosworth site. From the heating curve 

observed during this experiment, the time when the surface is at its maximum 

temperature occurs between 14:00-15:00 local time with the time when the surface is 

at its minimum temperature occurring progressively later from 06:00-09:30 the 

following morning as the vegetation develops (Chapter 7.2.5). In practice it can be 

difficult to acquire images at such specific times, especially if the study site covers a 

large spatial area. There are also the logistical problems associated with flying at night 

and additional problems of ensuring that there are similar meteorological conditions 

between the day and night flights. If there are too many constraints on image 

acquisition then there is less chance that the images will be obtained at all. However, 

even with these factors taken into account and a thermal image pair acquired at 

appropriate time across the diurnal cycle, there still remains an issue of the time-scale 

involved in processing the data prior to assessment. Table 8.4 gives an indication of 

the processing steps involved for efficient modelling of the data, together with an 

example of the time involved for processing of a single flightline using each 

procedure. 

DAY-NIGHT ATI MODELLING 

Radiometric Calibration 
(specifically performed by NERC ARSF prior to handling) 

Temperature Calibration 
Acquisition of ground temperature measurements over specific target materials simultaneously to flight 

(data logged automatically over 24-hour cycle) 
Empirical Line Calibration of thermal image using ground temperature values 

(30 minutes per image) 
Geometric eo-registration 

Ground Control Point Collection 
(6 hours per day-night pair) 

NERC Automatic Geocorrection Software with subsequent GCP collection 
(4 hours per tlightline) 

A TI Modelling 
Cracknell & Xue ( 1996) model 

Table 8.4: Processing steps for generation of ATI images using Cracknell & Xue 

(1996) model 

The first step is to radiometrically calibrate the images. When using data from 

the Airborne Thematic Mapper, the images are radiometrically calibrated by the 

NERC Airborne Remote Sensing Facility prior to handling and require no additional 

radiometric calibration (Chapter 4.2). Following this, the thermal radiance is 

calibrated to ground temperature usmg temperature values recorded over specific 
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target materials simultaneously to the flight usmg an Empirical Line Calibration 

(Chapter 4.5.1.1 ). Once the day and night thermal images are calibrated to ground 

temperature, they require individual geometric correction so that the images have the 

geometric integrity of a map and can be directly lain on top of each other. This is best 

achieved using Ground Control Point Collection for small areas (Chapter 4.3.1) with 

an automatic approach for larger coverage using software supplied by NERC with 

additional geocorrection required to ensure direct overlay (Chapter 4.3.2). The day 

and night thermal images are then run through the Cracknell & Xue ( 1996) A TI 

model with an appropriate value for surface albedo for assessment of the surface 

characteristics. 

However, the results from this research suggest that the A TI approach may not 

be entirely necessary for surface assessment under similar environmental conditions. 

In order to consider the necessity for A TI modelling, the results of the A TI technique 

were compared with the results of the visible, near-infrared and thermal visualisations. 

This shall be illustrated using specific examples of features occurring under different 

vegetation conditions from the Bosworth site. The variability between the 

multispectral, thermal and A TI response is demonstrated using Feature B representing 

the abandoned hedgerow in Ambion field where the surface is covered by a barley 

crop in 2001 (Figure 7.24) and a linear feature in the Helipad field where the surface 

is permanently covered by grass (Figure 6.11 ). These features are both evident on the 

June and August ATI images. 

The abandoned hedgerow boundary shows a decrease in visibility between 

June and August on both natural colour composites (Figure 5.52) and near-infrared 

false-colour composite (Figure 5.53) as the barley matures. When the day and night 

thermal images are visualised, the feature is also evident on both images with a more 

prominent response at night (Figure 6.8). Although this feature is also evident on the 

June and August A TI images (Figure 6.8), this suggests that there is no real benefit to 

using the A TI approach for detection of this feature in the barley-covered field and 

suggests that the maximum detail relating to soil moisture may be extracted from 

visualisation of the night thermal image. 

The linear feature in the Helipad field is evident on the June natural colour 

composites (Figure 5.52) and near-infrared false-colour composites (Figure 5.53) but 
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is completely absent from the same colour composites using the August data as the 

grass develops. This feature also displays a strong decrease in visibility on the day 

thermal images and is completely absent from both night thermal images (Figure 6.8). 

Although this feature is also evident on the June and August A TI images (Figure 6.8), 

the results closely match those of the day thermal image suggesting that there is once 

again no real benefit to using the A TI approach for detection of this feature in the 

grass-covered field and suggests that the maximum detail relating to soil moisture 

may be extracted from visualisation of the day thermal image. 

It is clear from this assessment that the A TI approach may provide 

complementary information to the standard method of ground geophysical 

investigation. However, the results of the A TI modelling are similar to those 

established from visualisation of the visible, near-infrared or day and night thermal 

images in which case there is no real need for eo-registration of the day and night 

thermal images and removes the problems involved in acquiring a diurnal thern1al 

image pair. In order to get the maximum information from the data without the A TI 

modelling approach it is therefore important to understand the time-scale involved and 

the necessary processing steps required prior to assessment. Table 8.5 gives an 

indication of the processing steps involved for efficient assessment of the data, 

together with an example of the time involved for processing of a single flightline 

using each procedure. 

QUALITATIVE ASSESSMENT 

Radiometric Calibration 
(specifically performed by NERC ARSF prior to handling) 

Atmospheric Correction 
Acquisition of ground spectral measurements over specific target materials simultaneously to flight 

(2 hours) 
Geometric Correction 

Ground Control Point Collection 
(3 hours per flightline- minimum of I 00 GCP per flightline) 

Automatic Geocorrection 
(2 hours per flightline) 

Principal Component Analysis 
(I hour per flightline) 

Table 8.5: Processing steps for assessment of multispectral images 

The processing steps are similar to those executed for the A TI assessment. The 

NERC Airborne Remote Sensing Facility radiometrically calibrates the data prior to 

handling. Atmospheric effects are then removed from the visible and near-infrared 
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wavelengths using an Empirical Line Calibration and ground spectral measurements 

recorded over specific target materials simultaneously to the flight. Geometric 

distortions are then removed from the data using Ground Control Point Collection for 

small areas or an automatic approach for larger coverage using software supplied by 

NERC. The spectral variability of the data is then assessed through a Principal 

Component Analysis (Chapter 5.5.3) for assessment of the surface characteristics. 

The above discussion has shown that the day and night thermal images 

acquired by the single-band thermal system can be used to model the A TI of the 

surface and can give an indication of variations in moisture content in the soil beneath 

a layer of vegetation, which is shown through the strong correlation with the results of 

the resistivity survey, which is sensitive to soil moisture differences. Comparison of 

the ATI results with the resistivity survey gives particularly good results when the 

surface is covered by short grass or under-developed cereal crop. Although the A TI 

appears to be a useful complementary tool to conventional geophysical prospection 

techniques, there appears to be no real benefit for surface assessment than provided by 

visualisation of the visible, near-infrared and thermal wavelengths. In addition, the 

poor correlation between the volumetric A TI values and the soil characteristics 

extracted over specific feature suggest that the A TI technique may correspond to 

surficial surface temperature effects of the vegetation rather than characteristics of the 

soil beneath the vegetation. 
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9 CONCLUSIONS and RECOMMENDATIONS 

The thesis has examined the use of multispectral and thermal airborne remote 

sensing techniques and ground-based geophysical prospection for detecting shallow 

ground disturbance beneath a layer of vegetation and has examined the relationship 

between thermal radiance data and the characteristics of surface materials beneath a 

layer of vegetation. The following section reviews the specific set of aims and 

objectives outlined in the introduction (Chapter 1) and discusses the relative 

outcomes, problems and possible solutions raised in each issue. 

9.1 EVALUATION of AIMS and OBJECTIVES 

The original aims of the study were: 

1. To investigate the use of multispectral and thermal airborne remote sensmg 

techniques and ground geophysical prospection for detecting shallow ground 

disturbance beneath a layer of vegetation 

The research has concentrated on three environmental situations over which 

multispectral and thermal images were acquired. In order to show the variation in 

feature detection throughout the multispectral and thermal wavelengths, this can be 

illustrated by using one of these particular settings, that of the buried archaeology at 

the Bosworth study site, and examining the visibility of a particular feature at 

different wavelengths and times in vegetation growth. Images are displayed for two 

stages in the cereal crop growth with June representing a time when the surface was 

covered by an under-developed barley crop and August representing a time when the 

surface was covered by a mature barley crop. Additional images are displayed for 

March when the surface was covered with a leafy crop of oil seed rape. An 

abandoned hedgerow boundary is evident on natural colour and near-infrared false

colour composites at both stages in barley development, although the feature is less 

evident when the crop is more mature. The feature is clearly evident on the day and 

night thermal images at both stages in barley growth, with a more consistent visibility 

on the night thermal images. This feature is completely absent when the surface is 

covered by oil seed rape. The conclusion is therefore that features can be more easily 
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detected during an early stage in cereal growth, with a leafy crop being unsuitable for 

feature detection, with enhancement of visibility using night thermal radiance. 

2. To examine the relationship between airborne thermal radiance data and the 

characteristics of surface materials beneath a layer of vegetation 

This aim was investigated by considering the set of specific objectives 

outlined in the introduction and acquiring additional ground geophysical detail on the 

surface composition beneath the vegetation. The objectives outlined in Chapter I are 

discussed below together with comments on the individual issues. 

2.1 To produce fully processed Daedalus-1268 Airborne Thematic Mapper images 

at visible, near-infrared, shortwave infrared and thermal infrared wavelengths 

provided by the NERC Airborne Remote Sensing Facility for the study sites 

Radiometric, geometric and atmospheric correction was applied to the seasonal 

Bosworth images with removal of atmospheric effects, using ground spectral 

reflectance measurements synchronous to airborne acquisition over vast array of 

surface materials. Geometric distortion was removed through ground control point 

collection, which was simple to perform on the Bosworth and Baildon Moor images 

due to the availability of detailed base map data and a relatively small spatial 

coverage of the study site. The Weardale images were geometrically corrected using 

automatic geocorrection software provided by NERC that uses the coordinates of the 

platform recorded for each pixel. However, the output showed poor correlation with a 

base map, which may have been a result of the high topographic range occurring over 

the area. This dataset required additional ground control point collection and due to 

the large spatial coverage of the study site this proved to be very time consuming. It 

was not possible to remove atmospheric effects from the Baildon Moor images due to 

lack of coincidental ground spectral measurements nor from the Weardale images due 

to a combination of restricted access to land and equipment failure during acquisition. 

The results from this research suggest that it is not always possible to perform 

satisfactory atmospheric or geometric correction on the NERC A TM images and that 

it is not always easy to carry out some of the techniques. This has implications for 

other similar studies where staff input may be more restricted. 

2.2 To provide eo-registered day and night them1al images of the study sites 
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Accurate eo-registration of the day and night thermal images ideally requires the use 

of identical ground control points from the day and night images for a similar warping 

effect with mosaicking along field boundaries where several images cover the study 

site. Problems arise where there may be different shadow effects such as occurring 

from buildings, hedgerows and trees. In addition, some features are not easily 

recognised on both day and night thermal images where there may be little 

temperature contrast compared to the surrounding materials. Sufficiently accurate eo

registration was performed on the Bosworth images by using the same ground control 

points for each image. The ground control point collection method was more difficult 

to perform for the abandoned mineshafts on the Baildon Moor images due to the 

differential topographic shadow effects with a poor thermal contrast in some of the 

control point features on the night thermal images. The Weardale images showed very 

poor day and night eo-registration suggesting that the onboard inertial navigation 

system of the airborne platform may not have been sufficiently integrated with the 

A TM pixel positions resulting in misalignment of the day and night images generated 

from the automatic geocorrection process. This has serious implications for using the 

NERC system for apparent thermal inertia studies, where the day-night contrast can 

only be sufficiently calculated using the ground control point geocorrection method 

and may be very time consuming for large study areas. 

2.3 To provide eo-registered multi-temporal images of the study sites 

Accurate eo-registration of the seasonal images also ideally requires the use of 

identical ground control points from the seasonal images for a similar warping effect 

with mosaicking along field boundaries where several images cover the study site. 

Again problems arise in differential shadow effects caused as the sun angle varies 

throughout year with respect to a particular feature. Problems also arise from 

differential vegetation growth with some features showing similar response to 

surrounding materials at different times in vegetation growth and substantial tree 

crown development and leaf area index masking underlying and surrounding 

materials. eo-registered images were produced for the Bosworth study site using the 

same ground control points for each image. Although there was a second day and 

night image pair acquired over Baildon Moor, the second dataset contained excessive 

noise and was unused. There were no additional images acquired over Weardale 
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preventing seasonal eo-registration. As a result, eo-registered images were provided 

for only the Bosworth study site and provided the only study site with which to assess 

the effect of vegetation growth on the visibility of features. 

2.4 To calibrate airborne thermal radiance measurements to surface temperature 

values 

Attempts to use the established Planck radiation law to convert the thermal radiance 

measured by the A TM to ground temperature produced inaccurate results for pixels 

whose A TM radiance and ground temperature were known. Even when the units of 

radiance measured by the A TM were converted into the same units used in the Planck 

relationship, there was still a discrepancy between the A TM radiance of known 

surface temperature and the Planck radiance calculated using the known temperature. 

The cause of this discrepancy is unknown. An alternative method was to use ground 

temperature measurements and convert the thermal radiance to temperature using an 

empirical line calibration method. This was performed for the Bosworth dataset where 

numerous ground temperatures were recorded over a range of materials using thermal 

probes. The thermal radiance acquired over Baildon Moor could not be converted to 

ground temperature due to a lack of coincidental surface temperature measurements 

for use in the empirical line calibration technique. Although surface temperatures 

were measured at Weardale, the temperatures showed little variation across the 

different materials and were unfortunately clustered on a single ATM image and were 

not spread across the three main A TM images that covered the study site. As a result 

the empirical line temperature calibration method was inaccurate for the Weardale 

dataset. The inability to easily calibrate the ATM thermal radiance to surface 

temperature poses a problem for thermal studies, especially where apparent thermal 

inertia requires accurate day and night temperature values for calculation of the 

temperature contrast of the surface. This suggests that the NERC A TM thermal data is 

inadequate for radiance calibration and also has implications for multitemporal work. 

2.5 To assess the suitability of applying published Apparent Thermal Inertia 

Models to environmental applications 

Apparent Thermal Inertia modelling requires accurate calibration of day and night 

thermal radiance, acquired when the temperature contrast of the surface is maximised, 
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to surface temperature values observed over specific target materials synchronous to 

airborne image acquisition. The results from the A TI modelling show that there is 

little variation in the output of the established A TI models (see Chapter 6.5). This is 

caused by variations in only the scaling factors between the Price ( 1977) and 

Cracknell & Xue (1996) models with the insufficient knowledge of the heat flux ratio 

between the ground and atmosphere in the Kahle & Alley ( 1985) model resulting in a 

similar constant scaling factor for each pixel. There is also insufficient detail on the 

albedo of the surface, which is incorporated in each of the tested models. The albedo 

of vegetation is known to vary throughout the diurnal cycle (Song, 1998) and with 

changes in vegetation structure (Grover et a/, 2000). However, albedo remained at a 

constant value for all pixels in the models where there may have been small albedo 

differences due to lateral variations in vegetation characteristics. Albedo is also 

known to vary where the vegetation is affected by wind (Song, 1998) and this may be 

a strong factor for the August A TI imagery where the day image was dominated by 

wind shear. The simple Cracknell & Xue ( 1996) model gives an indication of similar 

thermal features to those revealed on the day thermal imagery at early stages in grass 

growth (see Chapter 6: Figures 6.10, 6.11 and 6.12) and on the night thermal imagery 

at any stage in barley development (see Chapter 6: Figure 6.8), suggesting there is no 

real benefit from performing A TI modelling on a surface covered by vegetation for 

detection of features where complete characterisation of soil and meteorological 

parameters can not be determined. 

2.6 To conduct geophysical evaluation of the soil characteristics beneath 

vegetation at the study sites and compare the results with the airborne survey 

Existing geophysical magnetometry and resistivity surveys performed on Bosworth 

by Leicestershire County Council were extended using the same sampling strategy. 

There were some features revealed on the magnetometry survey that were not evident 

on the resistivity survey, and vice versa. This is mainly due to a difference in the 

physical properties of the materials detected by each technique and may also be partly 

due to a difference in the investigative depth of each technique. Ridge and furrow 

marks that were evident on aerial photography, multispectral and thermal images in 

both sand-rich and clay-rich fields, the magnetometry survey did not reveal these 

features in the clay-rich field. This suggests a limitation of magnetic surveying in 
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clay-rich fields. The features revealed on the geophysical surveys cannot be correlated 

with features on the thermal images suggesting that the different techniques are either 

sensitive to different properties of the soil or that the different techniques may have 

different observation depths. However, the features revealed on the ATI images from 

Bosworth and the thermal images from Baildon Moor closely correlate with features 

on the resistivity surveys. This suggests that the thermal response is highly sensitive 

to soil moisture differences even beneath a layer of vegetation and concurs with 

laboratory analyses conducted by Pratt & Elllyett (1979). The implications from the 

comparison of the thermal and geophysical results are that the techniques reveal 

different features and so may be complementary. However, another important 

implication is that features revealed in one technique may not necessarily imply the 

presence in the other and so geophysics cannot be used to corroborate the anomalies 

seen in the airborne thermal imagery. 

2. 7 To assess the effect of vegetation on detection of near-surface geophysical or 

archaeological features 

Dual-source soil-vegetation models (Norman et al, 1995; Anderson et a/, 1997 and 

Kustas & Norman, 1999) may reveal differences in soil properties underlying the 

vegetation. However, these models require detailed parameters on specific vegetation 

and soil properties that have to have been obtained simultaneous to thermal image 

acquisition. As a result, these models were not applied to the data consequentially the 

effect of vegetation was based on a purely visual assessment of the imagery. The 

abandoned hedgerow boundaries in Ambion field are evident on the visible, near

infrared and diurnal thermal images at early stage in barley growth but are not 

evident under the oil seed rape. This suggests that oil seed rape is an unsuitable 

vegetation cover for detecting variations in soil properties as the leafy canopy masks 

the underlying soil from solar heating and introduces canopy-soil interactions that 

regulate the temperature over larger areas. The most suitable conditions for feature 

visibility appear to be when the surface is covered by short grass or when a cereal 

crop is not fully mature. 

2.8 To analyse the dynamics ofthe soil-vegetation heat flux based on a time series 

obtained from ground based contact measurements of soil temperature 
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The undisturbed soil column shows typical diurnal heating and cooling pattern at 

depths shallower than 0.20m under barley and pasture that are at an early stage in 

development. The diurnal pattern does not occur in the soil at 0.50m under these 

conditions suggesting that the solar heat penetrates to a depth between 0.20m and 

0.50m, which is deeper than the 0.1 Om suggested by Pratt & Ellyett ( 1979). When the 

barley reached full maturity, the diurnal heating and cooling pattern dissipates 

between 0.1 Om and 0.20m suggesting that the vegetation effects the solar heat 

penetration. Rain causes little variation between maximum and minimum soil 

temperatures with return to diurnal pattern a complete 24-hour cycle after the rain has 

ceased. Wind has a similar effect of dampening the diurnal curve under strong wind 

speeds, but the soil returns to diurnal pattern almost immediately the wind has ceased. 

However, when rain has dampened the soil and strong winds prevail then the soil 

takes longer to return to normal diurnal pattern than for either effect on its own. This 

implies that the most suitable conditions for which to conduct a thermal survey are at 

least 24-hours after significant rainfall when the soil displays its maximum 

temperature range. 

2.9 To determine times when the temperature contrast within the soil column is 

optimised to conduct an effective thermal survey 

Results from the instrumented site show that the temperature contrast observed at the 

surface is maximised by obtaining a day thermal image between 14:00-15:00 local 

time and a night thermal image around 06:00 local time the following morning. The 

temperature contrast observed at 0.1 Om in the soil column appears to exist when the 

day thermal image is obtained at 15:00-16:00 local time with the night thermal image 

showing minimised temperatures at 07:00. At 0.20m and 0.50m depths the times of 

maximum and minimum temperature is less well-defined with little variation in the 

diurnal temperature, which concurs with the thermal analysis conducted by Kahle 

(1980). Although the soil displays its maximum temperature between 14:00-16:00 for 

shallow depth throughout vegetation growth, the time when the soil is at its minimum 

temperature becomes progressively later as the canopy closes. To maximise the 

observed temperature contrast, it is also best to avoid times when the temperature 

from depth within the soil column is similar to that observed at the surface since there 

will be no variation in heat flux at different depths in the soil, and is best when the 
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temperature from the surface is higher in the morning than that at depth. If thermal 

images are acquired over a large surface area, then it may be more difficult to specify 

these times since there may be as much as an hour between acquiring the first and 

last thermal images over the study site. As a result, the thermal observations 

performed on the study sites were not acquired when there would have been the 

greatest contrast in temperature extremes of the soil and the A TI may therefore not 

represent the heat flux from depth beneath the vegetation. 

2.10 To determine appropriate processing requirements for conducting assessment 

of disturbance occurring in the near-surface environment beneath a layer of 

vegetation using airborne image data 

If airborne image data is to be used in similar environmental situations, then it 

is useful to determine the most appropriate processing requirements for assessing the 

presence of disturbance occurring in the near-surface environment. The processing 

requirements that proved most useful in the study examples are outlined below 

together with an indication of the relative time taken to perform such techniques. 

Initially the images require geocorrection to a standard coordinate system for 

overlaying of other airborne images or auxiliary coordinate data. This can be 

performed in areas where there is accurate ground control using GCP collection 

technique. Where accurate ground control is difficult, an alternative method is to 

perform automatic geocorrection using the supplied geocorrection software with 

optional use of a DEM of similar spatial resolution. However, in areas of large 

topographic range further ground control point collection is often required. This is 

essential for comparison with other imagery or auxiliary data such as ground-based 

geophysical surveys. If several images are required to provide complete coverage of 

the study site then the images are mosaicked together along field boundaries to 

minimise variations within the vegetation, assummg that the Images are 

radiometrically normalised or atmospherically corrected to avoid variations in 

illumination or atmospheric conditions occurring between the images. Atmospheric 

correction is simple if ground visible and near-infrared spectral signatures are 

measured over numerous different target materials simultaneous to image acquisition. 

However, since it is imperative to select targets of sufficient surface area at locations 

spanning the entire study site for measurement simultaneous to airbome acquisition 
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and this may be difficult on larger study sites where atmospheric characteristics can 

change quickly. When assessing areas covered by vegetation, all pixels that are not 

covered by vegetation are excluded from assessment with contrast enhancement of the 

remaining areas. This process can be performed easily using standard image 

processing software. Where there is no possibility to atmospherically correct the 

images, the simplest method for rapid assessment of large vegetated areas is to 

perform Principal Component Analysis, which enhances the spectral contrast 

contained in the data, on the image channels that do not contain excessive noise. 

When the ground is covered by short grass or cereal crop at an early stage in 

development, feature can be rapidly assessed by visualising natural colour composites 

or false-colour composites using the visible and near-infrared spectral channels. When 

the grass is longer or the cereal crop is more mature and dominates the pixel coverage, 

night thermal visualisation is the most useful for feature visibility with similar results 

at different stages in cereal crop growth. Night thermal visualisation also prevents the 

need to calibrate day and night thermal radiance to ground temperature values that are 

required for A TI modelling, since the result from the A TI modelling revealed no 

additional features. This is particularly useful where access may be restricted to land 

or where there may be problems with equipment failure when acquiring temperatures 

at ground level. 

343 



Chapter 9: Conclusions and Recommendations 

9.2 CONCLUSIONS 

The thesis has established a working methodology for them1al image 

processing for detecting ground disturbance in the near-surface environment beneath a 

layer of vegetation. The results of this research have shown that although the day and 

night thermal images acquired by the single-band thermal system can be used to 

model the A TI of the surface and can give an indication of variations in moisture 

content in the soil, the A TI does not provide adequate detection of features that may 

be manifest as compositional changes in the soil column and may only be useful 

under specific vegetation conditions when the surface is covered by short grass or 

under-developed cereal crop such as barley. This has been revealed from observation 

of a partially open canopy of a barley crop and also at early stages in grass growth at 

the Bosworth study site and also when the surface is covered by moorland vegetation 

on Baildon Moor. 

Although this research has indicated there is a potential for using airborne 

thermal radiance images to assess the surface characteristics beneath vegetation, the 

technique appears to reveal different features compared with those revealed on ground 

geophysical assessment with a poor correlation between volumetric A TI features and 

soil composition. As a result, the A TI approach appears to provide a useful 

complementary tool to conventional geophysical prospection techniques. However, 

the research has also concluded that there is no real benefit for using A TI modelling 

for feature location than is provided by visualisation of images acquired at visible and 

near-infrared wavelengths at early stages in vegetation development. The greatest 

benefit for feature location appears to come from acquisition of day thermal images 

when the surface is covered by an early stage in vegetation growth or by acquiring 

night thermal images when the surface is covered by an under-developed cereal crop 

such as barley. This suggests that thermal investigations can provide a useful 

complementary tool to conventional aerial photography or other multispectral 

techniques for detection of features in the near-surface environment beneath a layer of 

vegetation. 
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9.3 FUTURE RESEARCH DIRECTIONS 

Although this research has indicated the potential for usmg single-band 

airborne thermal radiance images to assess the characteristics of the ground surface 

beneath vegetation, it has been shown that there are some limitations of this 

technique. As a result, there are several key considerations for future applications of 

them1al remote sensing techniques for detecting ground disturbance in the near

surface environment beneath a layer of vegetation. 

The A Tl models applied to the June and August Images may have shown 

greater internal field variation if the albedo values associated with the vegetation 

could have been determined for each pixel. Albedo is known to vary with material 

composition and also shows a temporal fluctuation in value. The models could 

therefore be improved by incorporating spatially and temporally variable albedo, 

although documentation of such techniques proved elusive in the literature. 

It is also essential that the day and night thermal images be acquired when the 

temperature contrast observed at the surface is at its maximum so that the resistance 

of the surface to temperature change may be associated with variations in volumetric 

properties through Apparent Thermal Inertia calculations. This requires the measure 

of temperatures over a variety of surface materials in order that the thermal radiance 

can be calibrated to ground temperature values. Since ground calibration is not always 

possible, acquisition of thermal radiance by a multispectral thermal instrument may 

enable calculation of surface temperature for use in Apparent Thermal Inertia Models. 

At present multi-band thermal data is difficult to obtain at spatial resolutions similar 

to those of the archaeological and geological features assessed in this study and 

studies for the UK academic community are restricted to use of the NERC single-band 

thermal system. However, future generations of spacebome thermal instruments may 

one day provide the spatial and temporal resolutions for such environmental 

applications. 

As a further approach, it would have been very useful to acquire a day and 

night thermal image pair when there was minimal vegetation cover of the surface. The 

results from the vegetation-free surface would have been compared with the results 

from the observations during vegetation growth to enable assessment of when in the 
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vegetation season the visibility of features would be maximised. Although a winter 

diurnal image pair was requested, by the time the data was flown the surface was 

covered by leafy oil seed rape, which completely masked the underlying soil from 

direct observation. Thermal imaging during vegetation-free conditions may have also 

shown a different correlation with the geophysical data and high correlation of 

features between the datasets may have suggested that thermal imaging of a 

vegetation-free surface may have optimised feature detection. As a result, the research 

had to concentrate on assessing the thermal characteristics from ditlerent stages in the 

vegetation growth, rather than having background soil characteristics with which to 

compare with the vegetation response. 

In conclusion, this body of research has shown that single-band thermal 

imagery provided by an airborne system can give good results under specific 

vegetation conditions when the surface is covered by short grass or under-developed 

cereal crop and has shown to be a useful complementary tool to conventional aerial 

photography, other multispectral techniques or ground geophysical evaluation for 

detection of features in the near-surface environment beneath a layer of vegetation. 
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Appendix A: INSTRUMENTATION 

A1: AIRBORNE THEMATIC MAPPER 

The Airborne Thematic Mapper (A TM) is a 
passive remote sensor designed to measure 
radiation from the Earth's surface from an 
airborne platform (Figure A1). It separates 
the incoming radiation into 11 spectral 
bands ranging from the visible (VIS) and 
near-infrared (NIR) and in particular 
provides two channels in the short-wave 
infrared (SWIR) and a single channel in the 
thermal infrared (TIR). Detail of the 
spectral characteristics ofthe ATM is 
shown in Table A 1. 

Channel 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Figure Al: Daedalus AADS1268 Airborne 
Thematic Mapper, taken from 
http://www.nerc.ac.uk/arsf 

Daedalus AADS1268 ATM 
0.424 - 0.448 
0.469 - 0.518 
0.522- 0.601 
0.594 - 0.635 
0.627 - 0.694 
0.691 - 0.761 
0.754 - 0.924 
0.879- 1.027 
1.600 - 1.785 
2.097 - 2.391 
8.400 - 11.500 

Table Al: Spectral characteristics of the Daedalus AADS1268 A TM 

Radiation captured by the rotating scan mirror is split by dichroic filters into a number of 
radiation paths and are imaged onto detectors. VIS and NIR radiation is split by a prism 
before being imaged onto an array of silicon detectors (Channels 1-8). SWIR and TIR is split, 
imaged and recorded on single detector elements held within three individual liquid nitrogen 
cooled dewars (Channels 9-11). Unlike the VIS, NIR and SWIR channels, the TIR channel is 
calibrated by comparison in 'real-time' to two on-board black-bodies set to bound the high 
and low temperatures expected for the scene. These are imaged immediately before and after 
the scene pixels during every scan line and the temperature of the black-body responses 
recorded for radiometric calibration. However, the spectral response of the thermal channel 
varies across the thermal wavelength range (Table A2). 

AI 



A Response A Response A Response A Response A Response A Response A Response 

8.00 0.355 9.00 82.382 10.00 97.839 11.00 83.905 12.00 38.788 13.00 30.039 14.00 3.517 

8.05 0.601 9.05 83.753 10.05 96.276 11.05 79.661 12.05 38.903 13.05 27.925 14.05 3.5X4 

8.10 1.516 9.10 85.393 10.10 95.595 11.10 77.323 12.10 39.965 13.10 25.090 14.10 1.962 

8.15 3.861 9.15 87.673 10.15 93.101 11.15 73.960 12.15 40.435 13.15 23.672 14.15 2.043 
i 

8.20 9.288 9.20 90.818 10.20 90.414 11.20 71.288 12.20 41.115 13.20 20.754 14.20 2.200 I 

8.25 18.909 9.25 93.771 10.25 89.376 11.25 68.293 12.25 41.589 13.25 18.254 14.25 2.027 

I 
8.30 32.217 9.30 97.239 10.30 88.846 11.30 63.318 12.30 40.722 13.30 16.791 14.30 2.063 

I 

8.35 49.088 9.35 99.093 10.35 88.937 11.35 59.337 12.35 40.448 13.35 15.736 14.35 1.373 I 

8.40 66.147 9.40 99.788 10.40 89.450 11.40 56.775 12.40 39.724 13.40 12.703 14.40 2.123 

8.45 74.362 9.45 99.303 10.45 89.090 11.45 54.588 12.45 39.700 13.45 10.610 14.45 1.357 

8.50 73.921 9.50 97.256 10.50 88.989 11.50 52.397 12.50 40.509 13.50 8.807 14.50 I.IX2 

8.55 74.650 9.55 94.367 I 0.55 89.273 11.55 50.389 12.55 39.513 13.55 8.775 14.55 1.296 

8.60 79.395 9.60 91.656 10.60 89.493 11.60 48.655 12.60 39.043 13.60 7.364 14.60 0.652 

8.65 85.655 9.65 89.055 10.65 91.365 11.65 46.431 12.65 38.721 13.65 6.668 14.65 1.234 

8.70 89.796 9.70 89.012 10.70 91.361 11.70 44.638 12.70 38.377 13.70 6.233 14.70 0.645 

8.75 89.961 9.75 89.984 10.75 90.564 I 175 42.024 12.75 37.527 13.75 4.960 14.75 0.676 

8.80 86.917 9.80 91.436 10.80 93.651 11.80 41.344 12.80 36.191 1380 3.874 14.80 0.695 

8.85 83.729 9.85 93.076 10.85 96.481 11.85 39.604 12.85 35.059 13.85 3.444 14.85 0.687 

8.90 81.554 9.90 96.083 10.90 94.359 11.90 39.065 12.90 35.889 13.90 3.832 14.90 0.577 

>- 8.95 81.689 9.95 97.547 10.95 89.362 11.95 38.557 12.95 32.060 13.95 4.096 14.95 0.686 
N 

Table A2: Spectral response details of A TM thermal channel, obtained from Wilson pers. comm. 



The scan mirror has three synchronised speeds (12 .5, 25 and 50Hz) to optimise the scan-rate 
to more closely match data acquisition and coverage over the ground at various altitudes, thus 
avoiding under-sampling and over-sampling in the along-track direction. Ground spatial 
resolution will be dependent on the flying altitude of the aircraft with the instrument having a 
fixed IFOV of 2.5mrad ( ----0.14 degrees). The acquisition electronics of the Daedalus 
AADS1268 provided 8-bit ND conversion with 16-bit ND conversion introduced with the 
AZ-16 system, with an increased signal to noise ratio. Detail of the technical characteristics of 
the ATM is shown in Table A3. 

Characteristic Daedalus AADS1268 (1998) AZ-16 (200112002) 
Digitised FOV 73.72° 90° 
Instantaneous FOV 2.5 mrad 2.5 mrad 
Pixel Swath 716 938 
Scan Rate 12.5, 25 and 50Hz 12.5, 25 and 50Hz 
Radiometric Quantisation 8 bit 16 bit 
Spectral Units uW.cm-2.sr-1.nrn-l u W.cm-2.sr-l.nm-l 
Table A3: Technical characteristics of the Daedalus AADS1268 ATM, taken from 
http://www .nerc.ac.uklarsf 

The A TM is part of an Integrated Data System, provided to integrate the imagery provided by 
the scanners with the navigation and attitude data of the platform to ideally provide a fully 
geo-referenced digital data set without the need for ground control point collection. However, 
in some cases this is inadequate due to excessive motion of the platform caused by wind. The 
integrated system involves a fibre-optic gyro system providing 64Hz attitude information on 
pitch and roll angles and magnetic heading. The later 200 l /2002 system also incorporated a 3-
axial GPS mounted on the aircraft to provide 20Hz GPS attitude and position reference 
system which synchronises the GPS information with the scan line acquisition time. The 
flexible data recording on removable hard drives enables the ease of data transfer to CD prior 
to data transcription by the ground processing system. During data transcription, the GPS 
time-integrated information is incorporated into the data stream to enable navigational 
processing for geometric correction. 

The ATM is deployed aboard a Domier 228-101 research aircraft flown by the NERC 
Airborne Remote Sensing Facility. The Do-228 (Figure A2) is a non-pressurised twin turbo
propeller-powered research aircraft whose payload and configuration characteristics can 
accommodate a range of remote sensing and digital sensors. 

Figure A2: The NERC aircraft (Dornier Do228-101 D-CALM), taken from 
http://www.nerc.ac.uklarsf 
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A2: WILD RC-10 SURVEY CAMERA 

The Wild RC-10 survey camera system is designed for taking near-vertical serial exposures 
from the air (Figure A3) and is capable of providing high definition black and white, colour or 
false-colour infrared imagery by interchanging the lens cones during flight, giving versatile 
aerial data acquisition. The lenses are colour corrected for the visible and infrared spectral 
ranges and enable exposures to be made at all the usual scales with various focal lengths up to 
the operational ceiling of the survey platform. The camera can be operated in either ' Basic' 
mode with minimal forward overlap of in 'Stereo' mode with up to 60% forward overlap with 
the standard output formats as ·ve and/or film. 

Figure A3: Wild RC-10 Survey Camera, taken from http://www.nerc.ac.uklarsf 

The camera is flown either as a complement to the remote sensing instrumentation, or on its 
own for high resolution photographic missions with alignment and levelling of the camera 
during flight enabled by a drift sight, remotely adjusting the camera attitude and correcting for 
aircraft roll, pitch and yaw. 

The calibration specifications of the camera enable photogrammetric correction for lens 
distortion occurring across the aerial photograph with specified fiducal coordinates for the 
fiducal marks on the output photographs. Detail on the camera optics is provided along with 
the hard-copy output. 
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A3: GER1500 SPECTRORADIOME.TE.R 
The GER lSOO from the Geophysical and Environmental Research (GER) Corporation is a 
light-weight, high performance field spectroradiometer measuring over the visible to near 
infrared wavelength range (Table A4). The instrument is very rapid scanning, acquiring single 
spectra in milliseconds. Its lightweight qualities mean that it can be used as a hand-held 
instrument, or alternatively mounted on a tripod for collecting measurements at different 
heights. The GERlSOO can be used in one of three different modes. 'Stand-alone' mode 
allows the radiometer to be used without the need for a controlling PC, with up to SOO 
individual scans stored on the on-board memory. 'Single-beam' mode allows operation via a 
notebook PC, with near real-time spectrum display. 'Dual-beam' mode gives advanced 
functionality, allowing dual radiometer operation for target and reference scans 
simultaneously, thus reducing the effects of changing atmospheric conditions on data 
collection. 
Parameters GER-1500 
Spectral Rang_e 300-1100nm 
Spectral Sampling l.Snm 
Spectral resolution 3nm 
Field of View 3° or 1S 0 

Quantisation 16 bit 
Typical scan time under ideal field conditions < 1 second 
Power Source Mains, NiMH rechargeable 12V gel cells 
Size 1S cm x 8 cm x 26 cm 
Weight 1.8 kg 
Environmental Limits -1 ooc to S0°C 
Table A4: Technical characteristics of the GER1500 Spectroradiometer 

A4: GER3700 SPE.CTRORADIOMETER 
The GER3700 from the Geophysical and Environmental Research (GER) Corporation is a 
high performance single-beam field spectroradiometer measuring over the visible to short
wave infrared wavelength range (Table AS). The instrument is mounted on a tripod and is 
controlled by a notebook PC via a 2m serial cable. PC operation gives a distinct advantage, as 
it offers near real-time data display. The GER3700 can be accurately positioned using a laser 
positioning beam with a range of foreoptics available, making it suitable for a wide variety of 

r . app. tcattons. 
Parameters GER-3700 
S_pectral Ran_ge 300-2S00nm 
Spectral Sampling l.Snm (300-1 OSOnm) 

6.Snm (10S0-1900nm) 
9.Snm ( 1900-2S00nm) 

Spectral resolution 3nm (300-10S0nm) 
11nm (10S0-1900nm) 
16nm (1900-2S00nm) 

Field ofView 3° or 10° 
Quantisation 16 bit (300-lOSOnm) 

1S bit (1 OS0-2SOOnm) 
Typical scan time under ideal field conditions < 1 second 
Power Source rechargeable gel cells 
Size 33 cm x 33 cm x 11.S cm 
Weight 6.4 kg 
Environmental Limits -1 ooc to S0°C 
Table AS: Technical characteristics of the GER3700 Spectroradiometer 

AS 



A5: TEMPCON® HOBO-HB DATA LOGGER 
The HOBO-H8 data logger consists of a weatherproof unit with 4-external sensors (Figure 
A4) specified to measure a particular environmental parameter. To set up the unit, the socket 
head screws that hold the lid onto the case are removed. The dome nuts, which protect the 
connection points, are removed and the sensor cables inserted through the nut head and 
connected to the corresponding jack on the circuit board. The dome nuts are then screwed 
back onto their fittings on the outside of the case. Two blue dessicant cartridges, which turn 
pink when in need of replacement, are placed in the cavity at the top of the case to protect the 
unit from moisture. A lithium CR-2032 battery is placed under the lever, with the printed side 
facing away from the circuit board. The lid is then replaced ensuring that the 0-ring, which 
lies in a groove on top of the case, is lubricated to provide a perfect seal between the lid and 
the base unit. Finally, the socket head screws are tightened to ensure unit is sealed and 
weatherproof ready for deployment. 

,", 

Parameter HOBO-HS 4-Channel Data Logger 
External Sensors Input cable 0-20.1 mA± I% sensitivity 
Measurement Capacity 32,520 time-sampled measurements 
Power Source CR-2032 (lithium) replaceable battery 
Size 14 cm x 13.7 cm x 3.2 cm 
Weight 0.2 kg 
Environmental Limits -20°C to 70°C 

Figure A4: HOBO-HS outdoor 4-channel data logger with table of characteristics 

To operate, the unit is connected to a PC by inserting the connector cable through the plug at 
the front of the unit and attaching the cable to the serial port on the PC, which has the 
BoxCar® Pro 3.5 software installed on it. The 'Launch' button is selected from the Logger 
menu to open the launch dialogue box (Figure A5). 

r HOBO TEtr~P. RH. U# 00 (C) 1996 ONSET 

oa 6/"l.SS!n02:07PN 

1 
1 
1.2 
1.2 
1.2 

: r~_...,. ... ,......,._...,, 
; "'0-S1 .. t J71flfif97 (Or :J1if:fiS !!!.] ±I 
1. ~entE~Chameb: ~2.3.4 [n.eHe/DiutM~- I' 

" 

Figure AS: BoxCar® Pro 3.5 launch window 
enabling channel and sample-interval 
specifications 

A description of the logger is entered as a logger reference. The time interval between 
measurements is selected from the drop-down menu, together with an indication of the total 
time the logger will collect data. The sensor channels are enabled or disabled by checking the 
appropriate channel number (corresponding to the number on the lid of the unit). It is also 
necessary to specify which type of sensor is used on each channel, so that the temperature can 
be measured correctly. The launch dialog box also gives a battery level indication, best to be 
above 30% before deployment. Once launched, the HOBO has a red light on the front that 
blinks brightly at every measurement, and weakly every two seconds if the interval between 
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measurements is longer than two seconds. The unit continues to take measurements until the 
battery life expires, or until the memory has reached its full capacity. The data can be 
downloaded at any time, by connecting the unit to the PC, as for the launch sequence, with 
selection of the 'Readout' button from the Logger menu. After the download, the user is 
prompted for a filename for data storage. The data is then exported to text file for analysis by 
selecting the 'Microsoft Excel' button from the Export menu and selecting the appropriate 
channels for data exportation. 
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Appendix B: ENVI PROCESSING 

81: BASIC IMAGE IMPORTATION 

ENVI - File - Open Data File 

1) Define Header for importation of raw image format 

jJ Header lnfo.C:\RSI\ad f3 
File Size: 46.137,344 bytes 

I Input Header lnfo From I Edit Attributes ] 
Sampleslim! alines 11024 a sands 111 a 
Offset 10 a xstartjl 657 aystartl1414 a 
Data Type Floating Point ] Byte Order Host (lntel) ) 
Fde Type ENVI Standard 11 nterleave BSQ I 

~ File Resize Result x resize factor: 1.000000, y 
resize factor: 1.000000. [FriJan 1112:21:42 
2002) 

l 
d 

IJ.J .!... 

llr@ Cancelli 

Samples number 

Lines number 

Bands number 

Offset 0 
xstart 

ystart 

Data Type float 

Byte Order Network IEEE 

File Type unknown 

Interleave BIL 

A8 



82: IMAGE VISUAL/SA TION 

ENVI - File Open Data File 

liJ Available Bands List l!!lfil EJ 
File Options 

r Gray Scale f.' RGB Calor 

f.' A 15 (0.6605):ad 

rG 13 (0.5615):ad 

rs 12 (0.4935):ad 

Dimsll 024 M 1 024 (Floating Point) [BSQ] 

I Load RGB I No Display 11 

l) Image Band Selection (Grey Scale Single Band or RGB colour composite from open image 
file) 

83: EDIT FILE HEADER DETAILS 

ENVI - File- Edit ENVI Header 

li1 Edol Band Name values D 

Reset I Cunent Band Names: 

1 
2 
3 

5 
6 
7 
8 
9 
10 
11 

Ed~ Selected Item: 

E I 

~~ Cancel ill lmportASCII... I Clear 11 

1) Edit Attributes- Band Names (left) 
2) Edit Attributes - Wavelengths (right) 

iJ Edol Wavelength values D 

A eset I Cunent Wavelength Values: 

1: 0.43600 
2: 0.49350 
3: 0.56150 
4: 0.61450 

6: 0.72600 
7: 0.83900 
B: 0.96200 
9: 1.69250 
10: 2.24400 
11 : 9.95000 

Edit Selected I tern: 

IIL!illhi 
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84: DEFINE REGIONS of INTEREST for SPECTRAL EXTRACTION 

On Open Image Display - Overlay- Region of Interest 

j)lll AO I Tool l!!lliJEJ !!illl l AOI Tool l!illiJEJ 
File AOI_T ype Options Help File AOI_ Type Options Help 

Wndow: r. Image r Scroll r Zoom r Off Wrr [IPolyline oom r Off 

Available Ae9orls Of Interest f-=...,1 ... 1 P,..m....,· =.......,~.....,.......,..,..= rest: 

C 
[I Rectangle ·--
[I Ellipse 

1•1 Multi Part Off 

~ 
[I Multi Pa~t On 

I NewA~ ~~~~~~~ ~.,.-.~~~-

Input Points from ASCII... 

I Goto I Stats I Mean I Grow 11 

I) Select appropriate Window (Image, Scroll or Zoom) in to generate ROI (left) 
2) Select type of polygon to generate (right) 
3) Draw polygon on image window using Left Mouse 
4) Close region with Right Mouse 
5) Alter corners with Left Mouse (click & drag) then finalise with Right Mouse 

!illl l RO t Tool l!!lliJEJ 
File A 01_ Type 0 ptions Help 

Wndow: r. Image r Scrol r Zoom I Off 

Available Regions Of Interest: 

arena [Green1)1 points 
barley [Blue 1 I 1 points 
ambion [Yelow11 1 points 
station [Cyan1 I 1 points 
grass (Magental I 1 points 

6) Select new region for each new target 
ri) Il l ROI fool ... ~£1 

File AOI_Tl'J)e Options H.-, 

Meauement Report. .. 
Wl"ldow (." lm~ Report Area ol ROis .. 

Av Load AI Regions 

"'ena [Green1J 1 
Er_, AI Regions 

~,tey [Bk.oe1J 1r Delete AI Regions 
embion [Y ellow1 : 

Slats tor AI A egions station [CJI'Ifl1] 1 
grass [Magerta1 

~I Merge Regions ... 

Reconcie ROI$. .. 

I NewReoon I Reconcie ROts VIa Map 

I Goto I Slats 

Band Ttvoohold to ROt... 
Create Class Image from ROts.. 
Create Bliler Zone horn ROts . 

li) IHll Means I!III~EJ 

Fie Edrl Options Plot_F<n:tion He~ 

0.8 

2 0.6 
0 
> 

0.4 

0.2 

4 6 8 
Wavelength 

8) Extract mean spectral signature of each region of interest (left) 
9) Mean spectral signatures are plotted on graph (right) 
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85: EMPIRICAL LINE CALIBRATION 

85.1 ENVI - Basic Tools - Calibration Utilities - Empirical Line - Compute 
Factors and Calibrate 

lliJ Emprucallme Input Foie EJ 

Select Input File: File lnfmmation: 
File: C:\RSI\ad 
Dims: 1024 K 1024 K 11 [BSQ] 
Size: [Floating Point]46,137,344 bytes. 
FileT ype : ENVI Standard 
Sens01 Type: Unknown 
Byte Order : Host (lntel] 
Projection : United Kingdom 

Datum : Ordnance Swvey ol Great Britain 
X Pixel : 1.00000 Meters 
Y Pixel : 1. 00000 Meters 

Wavelength : 0.4360-9.9500 
Upper left Corner: 1657,1414 
Description: File Resize Resuk, x 

Spatial Subset I! Full Scene 
11 

Spectral Subset 1111111 Bands 
11 

~~ Cancelli OpenlmageFie I Open Spectral library 11 Previous 11 

85.2 Empirical Line Spectra- Data Spectra I Field Spectra- Import Spectra 
1) Select to import either Data Spectra (left) or Field Spectra (right) 

ii1 Empirical line Spectra l!!lliJ £J ii1 Empincalline Spectra RliJ £J 

Data Spectra: Import Spectra I 

I I 

Data Spectra: jr"i~ ·--~;·i ··s··--~~i·;~ ·i ..... ... P. ........... P-........... ~ 

I I 
Selected Spectrum: Selected Spectrum: 

11 J !I I 

Field Spectra: lr.I~P..9_~-(~p-~_g_\"i_~4 

I I 

Field Spectra: Import Spectra I 

I I 
Selected Spectrum: Selected Spectrum: 

11 J I I 
=;:;c;;;· , I Enter Patr I ----,..----

I Enter Pa1r I 
Selected Pairs: Selected Pairs: 

~~Cancelli ~~~ Cancel 11 

All 



85.3 Data Spectra Collection 

i1 Data Spectra Collection 1!!1~ 13 

Fie Edi Options Plot_Function Help 

0.8 

~ 0.6 
0 
> 

0.4 

0 .2 

8 

Selected Endmember Spectra:D 

Mean car arl. 
Mean: arena 
Mean: barley 
Mean:ambion 
Mean: station 
Mean: grass 

Delete Spectrum I 

~~Cancelli 
l) Click and Drag spectral signature to Data Spectral Collection window 
2) Drop spectral signature into Data Spectral Collection black box 
3) Apply desired spectra for calibration 

85.4 Field Spectra Collection -Import- from ASCII 

llillnput ASCII Frle £I 

llil Freld Spectra Collection l!lliJ £I 

from ASCII f~e 
from Spectral Library .. 
from RDI from Input File .. . 
from RDI from Other Fie .. . 
from Stats F~e ... 

Delete Spectrum I 

~~Cancelli 
l) Select appropriate ASCII file 
2) Select columns of data for importation 

Input File: C: \AS I \adspeclib. txt 
Columns: 9. Rows: 513 
0.304440 0.130053 0.107990 0.112825 0.1033 
0.306140 0.134109 0.109087 0.109697 0.1074 
0.307840 0.124327 0.112288 0.112304 0.1012 
0.309540 0.123821 0.108763 0.107922 0.1028 
0.311240 0.125221 0.106722 0.106791 0.1003 ... 

a 
Select Y Ale is Columns 

b.:;rley a 
c;rparll l 40 I 
c ;rparll 0 30 
qravel 
:::.n.:,l a 
Numbel of ~ems selectedEJ 

Select An Items I Clear All Items I 
X Data Multiplierl1.000000 

Y Data Multiplierl1.000000 
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85.5 Spectral Pairing for Empirical Line Calibration 

BiJ Empuical Line Spectra l!lliJI3 BiJ Empi1ical Line Cahb1ation Pa1ameters 13 

Data Spectra: Import Spectra I 
Mean: car ark 

Mean: ambion 
Selected Spectrum: 

!Mean: arena 

Field Spectra: Import Spectra I 
:mbion 

~rass 
.:,ren.:, 

!arena 

Selected Spectrum: 

~~Cancelli 
1) Click to select appropriate Data Spectra 
2) Click to select appropriate Field Spectra 
3) Select all pairs (left) then click OK 

Output Result to f." File r Memory 

Enter Output Filename ~ r Compress 

lad_elc 

Output Calibration Filename [.elf] Choose I 
lad_elc.cff 

~~ Queue I Cancelli 

4) Empirical Line Calibration is performed to defined output file (right) 

Al3 



86: IMAGE MASKING 

B6.1 ENVI - Basic Tools- Masking - Build Mask 

Mask Definition - Options - Import Band Data Range 

j'J Mask Delm1hon R~EJ 

Import EVFs ... 

Mask Fin~e Values 
Mask "NaN"/'Inf" Values 

I I Selected Areas "Off" 
[")Selected Areas ''On" 

liJimporl Band Data Range EJ 

[") Selected Attributes [Logical OA I 
I I Selected Attributes [Logical AND) 

Memory 

Enter Output F~ename ~ r Compress 

~~Cancelli 

Selected Band: 

Select New Input Band. .. 

Band M in ValueiL..o_.o_oo_o_o_l __ _,I 

Band MaxValuellOOOOO I 

~~Cancelli 
1) Image must be open prior to mask definition from data range 
2) Select Band Minimum and Maximum Values as limits of retained data (right) 
3) Select Output Filename 

B6.2 ENVI -Basic Tools- Masking- Apply Mask 
li1 Apply Mas t- Input Ill £' 

Select Input Fie: Fie lrlormation: 
Fie; C IRSI\ad_aub 
Dims 000 ' 566 ' 11 {BSQ] 
S""' {f1oalwlg Pornl{19.923.200 by! .. 
Fie Type ElM Stondald j'J Apply Mask Parameters EJ 
Semo T we; U'*"'-' 
B)'le Order : Hod Ontol) 
Pro,ecbon Uried Krogdom 
Oab.m · Ordnanc<o 5"""!1 cl GroatBrtrin 
Xf'i>rel 1.IXO)) lo4oten 

r.J,Pi>rel 1 IXO)) lo4oten 
.-..elenglh 0.4360 . 99500 

Uppe~ Left Cane.- 1 GS/.1589 
Descnpbon. Fie ReNo A~. ' 

J Spa~~<~ Stboet JJF_. Scene 

ll 

1) Select Image file on which to apply mask 
2) Select Spatial and Spectral Subsets 
3) Select Mask Band (mask must be open) 

Mask Valuel1.000000 

I Output Aesuk to (0 File r Memory 

Enter Output Filename 8 r Compress 

lad_ mask 

4) Select mask value= I to retain masked area of image (right) 
5) Select Output Filename 
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87: BAND MATHEMATICS 

ENVI - Basic Tools- Band Math 

lii) Band Malh Ei li1 Vanables to Bands Pairings f3 

, I 
Previous Band Math Expressions: 

I 
Save I Restore I Clear I 

Exp:IB1+82 
I 

Variables used in expression: 

~81 · 1 f0. 436~: ad 

I aau~llll:ll 

Enter an exp1ession: 

IB1+82 
I 

I I 
~~ Cancel I Help 11 

Available Bands List 

1· <ad> • 
1 (0.4360) -'--

'1 3 (0.5615) 
4 [0.6145) --5 [0.6605) 

I 6 (0.7260) 
~I I 7 i0.83901 

-
I 

Map Variable to Input File 

Spatial Subset JIFull Scene 
I 

Output Result to r. File r Memory 

Enter Output Filename Choose I r Compress 

lad_1plus2 I 

, I~ Queue j Cancel ~~~~ Clear 11 

I) Enter mathematical expression (left) 
2) Select representative bands from open images or masks (right) 
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BB: IMAGE RESIZING 

ENVI- Basic Tools- Subset Image 

lil ReSile Oala lnpul f ole Ei 

Selecllnpul Fie· Foie ln/OI!Miiorr 
Fie: C:\RSI\an 
Doms: 1024 x 1024 x 1 (BSQ] 
Size: (Fioati1g POOl] 4.194.304 bytes. 

ii1 Spaloal Subset £J 
Fie Type : ENVI Standard 
Sens01 Type: Unknown 
B~e Order : Hosl (lnlel) 
f'Tojection : Uniled Kingdom 

'File: C:\ASI\an 

I Dims: 1024 M 1024 

Dab.m : Ordnance S1.1vey of Great Br~aon 
X Pixel · 1.01XXXJ Mele<s \J. Pixel · l .OIXXXJ Melers 
avelerqh . 9. 9500 · 9.9500 

Upper Lefl Corner: 1657.1414 

Samples~ lrol1024 1Nsi1024 I 

Lines 11 lrol1024 INL,1024 I 
Descrrption: Fie Resize Rent. x 

I s~ SWsel IIFul Scene 

wull Band Size : 4.194,3().4 bytes I Subset Band Size: 4.194.304 bytes 

I Subset by Map I Subset by Image IBandO I 
I~ Cancel ill Open image Fie I OpenSpeclrallbary Ill f'Tevious 11 ~~ Cancel Ill Reset I Prevoos 11 

1) Select image file for spatial resizing 
2) Spatial subset defined by Map coordinates or by Image (top right) 
3) 'Previous ' button allows image resizing using a previous example 

lil Subset I unc loon £i 

4) Define rectangular area by dragging corners of red box 
5) Alternatively define sample and lines and move red box over desired area 
6) Save output file to removes 'non-value ' pixels from analysis 
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89: HISTOGRAM EXTRACTION 

Image Display #1 - Enhance - Interactive Stretching 

illtl Band Resrze (5 ad) ad_sub 1!100 £I 
File Stretch_ Type Histogram_Sowce DelauUs Options Help 

1) Select source of histogram (Image, Scroll, Zoom, Band or ROI) 
2) Select Stretch-Tyoe (Linear, Piecewise Linear, Gaussian, Equalisation, Square Root, 
Arbitrary, User-Defined LUT) 
3) Type range of values for stretch 
4) Move Vertical Bars on Input Histogram for range of histogram for stretch 
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810: PRINCIPAL COMPONENT ANALYSIS 

ENVI- Transform- Principal Components- Forward PC Rotation -Compute 
New Statistics and Rotate 
l) Select image file for forward PC rotation (selecting spatial or spectral subsets) 

j'J Forward PC Rotation Parameters f3 

i StatsX Resize Factorl1.000000 I 
Stats Y Resize Factorl1 .000000 I 
Enter Output Stats Filename [.sta] Choose I 

lad_pc.sta I 
Calculate usingiCovariance Matrix 1.!!1 
0 utput Result to r. File r Memory 

Enter Output Filename Choose I 
lad_pc I 
Output Data Type Floating Point I 
Select Subset from Eigenvalues~..!:!l 

I Number of Ouput PC Bandsj11 8 

I~ Queue I Cancel 11 

2) Define Forward PC Rotation Parameters 
3) Enter Output Statistics Filename 
4) Select to Calculate using either Covariance Matrix or Correlation Matrix 
5) Select Output Filename 
6) Select Output Data Type 
7) Select Subset from Eigenvalues (NO) allowing definition of specific number of output PC 
Bands 
8) Select Subset from Eigenvalues (YES) will display graph of eigenvalues graded from 
I =data to O=noise from which to select appropriate number of output PC bands (closest to l) 
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811: COMPUTE IMAGE STATISTICS 

ENVI- Basic Tools- Statistics- Compute Statistics- Compute New Statistics 
and Rotate 
1) Select image file for calculation of statistics (selecting spatial or spectral subsets) 

1iiJ Calculate Statistics Pa1amete1s El 
8 a sic Statistics 

P' Text Report ~ Min/Max/Mean Plot 

P' Stdev Plot r EigenValue Plot 

P' Calculate Histogram Statistics 

Options~ Histogram Plots r Text A eport 

Histogram plots per window~ 

P' Calculate Covariance Statistics 

Options P' Covariance Image r Text Report 

Samples Resize Factorl1 .00000 I 
Lines Resize Factor 11.00000 I 
Enter Output Stats Filename [.sta) Choose I 
I C: \8 osworth_ envi\aug\ad. sta I 
Report P' Screen P' File 

Enter Output Report Filename [.txt) Choose I 
I C: \8 osworth_ envi\aug\ad. txt I 

I~ Queue j Cancel Ill Set Report Precision ... 11 

2) Select type of basic statistics w1th chmce of text report, minlmax/mean plot and/or stdev 
plot 
3) Choice of selecting histogram statistics with choice of histogram plots and/or text report 
with choice of number of histogram plots per window 
4) Choice of selecting covariance statistics with choice of covariance image and/or text report, 
which releases the choice of generating an additional eigenvalue plot on the basic statistics 
5) Optional to enter an output stats filename (can be recalculated at any stage) 
6) Select choice of writing statistics report to screen or file (entering appropriate filename) 
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Appendix C: ATM IMAGES & AERIAL PHOTOGRAPHS 

Cl BOSWORTH IMAGES 
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May Day Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 



;l> 
N 
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June Day Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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June Night Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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August Night Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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March Day Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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March Night Thermal 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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May Day Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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June Day Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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June Night Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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August Day Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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August Night Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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March Day Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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March Night Thermal Interpretation 
Image Dimensions: 
Vertical 0.566 km 
Horizontal 0.800 km 
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May Natural Colour Composite Simulating Aerial Photograph 

Image Dimensions: 
Vertical 1.60 km 
Horizontal 1.25 km 

A36 



May Day Thermal Image 

Image Dimensions: 
Vertical 1.60 km 
Horizontal 1.25 km 
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May Night Thermal Image 

Image Dimensions: 
Vertical 1.60 km 
Horizontal 1.25 km 

A38 



C3 WEARDALE IMAGES 

August Natural Colour Composite Simulating Aerial Photo 

Image Dimensions: 
Vertical km 
Horizontal km 
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August Day Thermal 

Image Dimensions: 
Vertical km 
Horizontal km 
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August Night Thermal 

Image Dimensions: 
Vertical km 
Horizontal km 
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Dl: BOSWORTH FLIGHT DETAILS 

Flight Day No Time 

mdl 139 12: 12:59-12:16:00 

md2 139 12: 19:00-12:22:04 

md3 139 12:26:00-12:29:04 

jdl 170 12:25:00-12:28:00 

jd2 170 12:32:00-12:34:00 

jd3 170 12:46:00-12:48:00 

jd4 170 12:53:00-12:55:00 

jnl 171 03:20:00-03:2:1:00 

jn2 171 03:27:00-03:29:00 

jn3 171 03:34:00-03:36:00 

ad! 217 09:39:00-09:41 :00 

ad2 217 09:45:00-09:47:00 

ad3 217 09:51:00-09:53:00 

ad4 217 09:56:00-09:58:21 

adS 217 I 0:03:00-10:05:00 

ad6 217 I 0:09:00-10: I I :00 

ad7 217 10:15:00-10:17:00 

ad8 217 10:21:00-10:23:00 

ad9 217 10:30:00-10:31:00 

Air Speed (kt) Altitude (ft) Lat Lower Limit 

105 2250 52.5752 

105 2220 52.5718 

105 1940 52.5796 

110 2010 52.5999 

110 2200 52.6105 

110 2140 52.6090 

110 2180 52.6084 

110 2290 52.6104 

110 2140 52.6035 

110 2350 52.6110 

110 2140 52.5810 

110 2330 52.5736 

110 2150 52.5789 

115 2110 52.5802 

110 2280 52.5714 

110 2270 52.5690 

110 2530 52.5742 

110 2190 52.5789 

110 2170 52.5800 

Lat Upper Limit Long Lower Limit Long Upper Limit 

52.5981 1.4547 1.4061 

52.6057 1.4524 1.3897 

52.6074 1.4471 1.3926 

52.5791 1.3992 1.4392 

52.5785 1.3918 1.4416 

52.5806 1.3922 1.4447 

52.5798 1.3838 1.4407 

52.5799 1.3869 1.4429 

52.5793 1.3974 1.4402 

52.5795 1.3914 1.4442 

52.6070 1.4108 1.40~6 

52.6084 1.4030 U990 

52.6106 1.4227 1.4189 

52.6073 1.4271 1.4233 

52.6055 1.4111 1.4116 

52.6085 1.3926 1.390 I 

52.6058 1.4164 1.4107 

52.6061 1.4307 1.4281 

52.6078 1.4069 1.4063 

bbtl bbt2 

6.08 46.11 

6.05 46.12 

6.09 46.13 

7.02 39.03 

7.03 .W04 

7.04 39.04 

7.12 39.09 

4.70 28.61 

4.95 28.60 

5.24 28.64 

6.06 38.03 

6.07 38 04 

6.09 38.05 

6.09 38.05 

6.08 38.06 

6.10 38.06 

6.10 38.08 

6.11 38.08 

6.12 38.09 
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pt: BOSWORTH FLIGHT DETAILS (cont.) 

Flight Day No Time 

adiO 217 I 0:36:00-10:38:00 

ani 218 04:12:00-04:15:00 

an2 218 04:20:00-04:23:00 

an3 218 04:28:00-04:31:00 

mardl 085 15:47:00-15:49:00 

mard2 085 15:51 :00-15:54:00 

mard3 085 15:57:00-15:59:00 

mard4 085 16:0 I :00-16:04:00 

mard5 085 16:07:00-16:09:00 

mard6 085 16:13:00-16:15:00 

mard7 085 16: 19:00-16:21 :00 

mard8 085 16:25:00-16:28:00 

maml 086 03:48:00-03:50:00 

mam2 086 03:54:00-03:56:00 

mam3 086 04:00:00-04:03:00 

mam4 086 04:05:00-04:08:00 

mam5 086 04:11:00-04:14:00 

mam6 086 04:17:00-04:20:00 

mam7 086 04:24:00-04:26:00 

mam8 086 04:30:00-04:32:00 
- - ---· ---

Air Speed (kt) Altitude (ti) 

110 2160 

110 2360 

110 2350 

110 2150 

125 3250 

125 3180 

125 3190 

125 3290 

125 3280 

125 3260 

125 3210 

125 3240 

125 3180 

125 3200 

125 3220 

125 3220 

125 3200 

125 3180 

125 3240 

125 3210 

Lat Lower Limit Lat Upper Limit Long Lower Limit Long Upper Limit bbtl bbt2 

52.5727 52.6057 1.4199 1.4045 6.14 38.10 

52.6094 52.5811 1.3925 1.43H7 2.01 18.14 

52.6081 52.5760 1.3771 1.4424 2.05 18.46 

52.6086 52.5794 1.3799 1.4449 2.07 18.0S 

52.6120 52.5690 1.4380 1.4373 NIA NIA 

52.5610 52.6091 1.4067 1.4062 NIA NIA 

52.6140 52.5699 1.4310 1.4320 NIA NIA 

52.5709 52.6085 1.4105 1.4095 NIA N/A 

52.6133 52.5710 1.4262 1.4278 NIA NIA 

52.5644 52.6106 1.4128 1.4116 NIA NIA 

52.6147 52.5704 1.4198 1.4220 NIA NIA 

52.5643 52.6093 1.4178 1.4163 NIA NIA 

52.6178 52.5702 1.4373 1.4362 NIA NIA 

52.5663 52.6113 1.4169 1.4149 N/A NIA 

52.6170 52.5702 1.4303 I .4325 NIA NIA 

52.5661 52.6098 1.4113 1.4107 NIA NIA 

52.6152 52.5706 1.4251 I .4273 NIA NIA 

52.5716 52.6094 1.4097 1.4073 NIA N/A 

52.6153 52.5701 1.4204 1.4222 NIA NIA 

52.5667 52.6098 1.4060 1.4055 NIA NIA 



02: BAlLOON MOOR FLIGHT DETAILS 

Flight Day No Time Air Speed (kt) Altitude (ft) Lat Lower Limit Lat Upper Limit Long Lower Limit Long Upper Limit bbtl bbt2 

septnl 259 05:22:00-05:25:00 145 2650 53.8105 53.8578 1.8795 1.7890 0.08 16.10 

septn2 259 05:28:00-05:31:40 135 2650 53.8648 53.7977 1.7276 1.8942 0.10 16.11 

septn3 259 05:33:00-05:36:34 145 2650 53.7987 53.8679 1.9208 1.7687 0.09 16.12 

septn4 259 05:38:00-05:42:00 135 3650 53.8702 53.8037 1.7344 1.8989 0.02 16.13 

septn5 259 05:44:00-05:46:00 145 2650 53.7908 53.8200 1.9163 1.8583 0.02 16.14 

septn6 259 05:47:00-05:49:39 145 3650 53.8164 53.8503 1.8475 1.7518 0.03 16.13 

maynl 123 03:59:00-04:30:00 135 3540 53.7865 53.8559 1.8975 1.7454 2.01 17.97 

mayn2 123 04:05:00-04:09:00 125 3370 53.8675 53.80.17 1.7411 1.8960 1.98 17.96 

mayn3 123 04: I 0:21-04: 14:00 130 3660 53.8030 53.8630 1.9212 1.7589 2.07 17.95 

mayn4 123 04:15:00-04:19:00 125 3340 53.8775 53.8074 1.7552 1.9070 2 01 17.96 

mayn5 123 04:22:00-04:24:00 125 3260 53.7942 53.8283 1.8855 1.8141 2.03 17.96 
-- --- - - --- - L__ ___ 

> _.,. _.,. 
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03: WEARDALE FLIGHT DETAILS 

Flight Day No Time 

augdl 240 14:08:00-14: 11 :30 

augd2 240 14:15:30-14:16:40 

augd3 240 14:20:00-14:23:30 

augd4 240 14:26:00-14:29:30 

augd5 240 14:33:00-14:36:30 

augd6 240 14:39:00-14:42:30 

augd7 240 14:45:00-14:48:30 

augd8 240 14:51:00-14:54:30 

augd9 240 14:57:00-15:00: I 0 

augdiO 240 15:02:00-15:05:30 

augdll 240 15:11:00-15:14:41 

augd 12 240 15:21:00-15:24:00 

augd13 240 15:29:00-15:30:41 

augd14 240 15:38:00-15:41 :00 

augd15 240 15:45:40-15:48:00 

augd 16 240 15:50:30-15:54:30 

augd18 240 16:04:00-16:06:30 

Air Speed (kt) Altitude (I\) 

115 4100 

110 4030 

120 3980 

110 3950 

115 4000 

115 3950 

115 4000 

115 4000 

115 4000 

115 4000 

115 4050 

110 3900 

115 3900 

115 4050 

115 4030 

120 4070 

115 4070 

Lat Lower Limit Lat Upper Limit Long Lower Limit Long Upper Limit bbtl bbt2 

NIA NIA NIA NIA NIA NIA 

54.7519 54.7840 2.1429 2.1075 NIA NIA 

54.7954 54.7331 2.1154 2.1845 NIA NIA 

54.7349 54.7954 2.2033 2.1363 NIA NIA 

54.8036 54.7439 2.1481 2.2147 NIA NIA 

54.7488 54.8157 2.2305 2.1570 NIA N/A 

54.8094 54.7547 2.1841 2.2443 N/A NIA 

54.7502 54.8054 2.2325 2.1722 NIA NIA 

54.8040 54.7464 2.1587 2.2220 NIA NIA 

54.7304 54.7868 2.1777 2.1153 NIA NIA 

54.8010 54.7413 2.1411 2.2074 NIA NIA 

54.7227 54.7808 2.1643 2.1002 NIA NIA 

54.7952 54.7640 2.1267 2.1609 NIA N/A 

54.7513 54.8115 2.2487 2.1818 NIA NIA 

54.8040 54.7466 2.1591 2.2219 NIA N/A 

54.7477 54.8074 2.2313 2.1655 NIA N/A 

54.7432 54.8027 2.2264 2.1600 NIA NIA 
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03: WEARDALE FLIGHT DETAILS (cont.) 

Flight Day No Time 

augnl 241 02:02:00-02:05:00 

augn2 241 02:08:00-02: I 0:00 

augn3 241 02:14:20-02:16:30 

augn4 241 02:21:00-02:29:00 

augn5 241 02:26:50-02:32:00 

audn6 241 02:33:00-02:35:40 

augn7 241 02:38:40-02:40:50 

augnH 241 02:46:00-02:48:00 

augn9 241 02:51:00-02:53:30 

augniO 241 02:58:00-03:00:40 

augnll 241 03:05:00-03:07:30 

augn 12 241 03:12:00-03:14:17 

augn 13 241 03:18:30-03:21:17 

augn 14 241 03:26:00-03:28:20 

Air Speed (kt) Altitude (fi) 

115 4010 

115 4000 

115 4000 

115 4100 

115 4000 

115 4000 

115 4050 

115 4000 

115 4050 

120 4100 

115 4200 

115 4100 

115 4050 

115 4100 
-- - --

I 
Lat Lower Limit Lat Upper Limit Long Lower Limit Long Upper Limit bbtl bbt2 

54.7774 54.7231 2.0947 2.1537 N/A N/A 

54.7299 54.7460 2.1682 2.1523 N/A N/A 

54.7297 54.7853 2.1657 2.1063 N/A N/A 

54.7886 54.7339 2.1238 2.1853 N/A N/A 

54.7399 54.7943 2.1976 2.1372 N/A N/A 

54.7994 54.7459 2.1534 2.2161 N/A N/A 

54.7524 54.8050 2.2256 2.1672 N/A N/A 

54.8094 54.7558 2.1846 2.2434 N/A N/A 

54.7545 54.8052 2.2351 2.1779 N/A N/A 

54.7997 54.7478 2.1622 2.2203 N/A N/A 

54.7431 54.7987 2.2039 2.1435 N/A N/A 

54.7897 54.7436 2.1317 2.1815 N/A N/A 

54.7324 54.7854 2.1758 2.1155 N/A N/A 

54.7790 54.7260 2.1011 2.1623 N/A N/A 
- -- ------'- ---
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04: SUMMARY FLIGHT DETAILS for SUN ANGLE CALCULATION 

BOSWORTH Date 

May Day 19-05-1998 

June Day 19-06-1998 

June Night 20-06-1998 

August Day 05-08-1998 

August Night 06-08-1998 

March Day 21-03-2002 

March Night 22-03-2002 

BAlLOON MOOR Dale 

May Day 03-05-1997 

May Night 04-05-1997 

WEAR DALE Date 

August Day 22-08-2001 

August Night 23-08-2001 

Average Time Average Latitude Average Longitude 

12:20 52.59 N 1.41 w 

12:40 5259 N 1.41 w 

03:28 52.59 N 1.41 w 

10:08 52.59 N 1.41 w 

04:21 52.59 N 1.41 w 

16:07 52.59 N 1.41 w 

04:10 52.59 N 1.41 w 

Time Average Latitude A vcragc Longitude 

12:10 53.83 N 1.82 w 

04:11 53.83 N 1.82 w 

Time Average Latitude Average Longitude 

15:30 54.76 N 2.17 w 

02:45 54.76 N 2.17 w 



Appendix E: SUN ANGLE 
Solar declination calculated from known latitude, longitude, elevation and timing of study 
using sun angle calculator on http://www.susdesign/sunangle/index.html 

SunAngle is an on-line tool that calculates solar angles and related information for a given 
location, date and time. The program runs on a web browser. As much information as possible 
should be entered into the inputs selection before calculation, the outputs appearing in the 
output section. 

LATITUDE- in degrees Nor S of equator in either decimal degree (45.5) or degree-minute
seconds (45d30m0s) 
LONGITUDE- in degrees E or W in either decimal degree or degree-minute-seconds 
DATE- indicate the month and date using pull-down menus 
YEAR- indicate year using pull-down menu (although exact year matters very little) 
ELEVATION- elevation compared to the surrounding terrain in meters or feet so relative 
elevation is zero if not require accurate sunrise/sunset outputs 
TIME- indicate time using 12:34 or 1234 notation, indicating AM/PM/24 from pull-down 
menu 
TIME ZONE- select time zone, i.e. GMT when daylight not active 
TIME BASIS -time for clock (observations) or local solar time (sun cycle) 
DAYLIGHT SAVING - if DST is in effect in locations 

El: BOSWORTH SUN ANGLE VALUES 
MAY DAY INPUT MAYDAY OUTPUT 

longitude 1.41 w altitude angle 56.19 
latitude 52.59 N azimuth angle 17.98 
date May 19 clock time 12:20 pm 
year 1998 solar time !1:17am 
elevation lOOm hour angle 10.52 
time 12:20 PM declination 19.78 
time zone (GMT+!) equation oftime 3.56 
time basis Clock time time of sunrise 5:00am 
daylight savings No J Yes time of sunset 9:03pm 

JUNE DAY INPUT JUNE DAY OUTPUT 
longitude 1.41 w altitude angle 60.39 
latitude 52.59 N azimuth angle 12.56 
date Jun 19 clock time 12:40 pm 
year 1998 solar time 11:33 am 
elevation lOOm hour angle 6.73 
time 12:40 PM declination 23.42 
time zone (GMT+!) equation oftime -1.27 
time basis Clock time time of sunrise 4:38am 
daylight savings No I Yes time of sunset 9:35pm 

JUNE NIGHT INPUT JUNE NIGHT OUTPUT 
longitude 1.41 w altitude angle -8.01 
latitude 52.59 N azimuth angle 147.68 
date Jun 20 clock time 3:28am 
year 1998 solar time 2:20am 
elevation lOOm hour angle 144.76 
time 3:28AM declination 23.43 
time zone (GMT +I) equation of time -1.41 
time basis Clock time time of sunrise 4:38am 
daylight savings No I Yes time of sunset 9:35pm 

51.68 
40.83 
12:20 pm 
10:17 am 
25.52 
19.77 
3.57 
6:00am 
10:03 pm 

56.47 
37.94 
12:40 pm 
10.33 am 
21.72 
23.42 
-1.27 
5:38am 
10.35 pm 

-11.95 
161.07 
3:28am 
1:02am 
159.76 
23.43 
-1.40 
5:38am 
10:35 pm 
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AUGUST DAY INPUT AUGUST DAY OUTPUT 
longitude 1.41 w altitude angle 39.51 30.97 
latitude 52.59 N azimuth angle 62.93 77.08 
date Aug 5 clock time 10:08 am 10:08 am 
year 1998 solar time 8:56am 7:56am 
elevation lOOm hour angle 45.91 60.91 
time !0:08AM declination 16.98 16.99 
time zone (GMT+!) equation of time -6.01 -6.02 
time basis Clock time time of sunrise 5:28am 6:28am 
daylight savin_gs No I Yes time of sunset 8.54 pm 9:54pm 

AUGUST NIGHT INPUT AUGUST NIGHT OUTPUT 
longitude 1.41 w altitude angle -9.48 -15.78 
latitude 52.59 N azimuth angle 134.43 147.93 
date Aug6 clock time 4:21am 4:21am 
year 1998 solar time 3:09am 2:09am 
elevation lOOm hour angle 132.64 147.46 
time 4:21AM declination 16.78 16.79 
time zone (GMT+I) equation of time -5.94 -5.94 
time basis Clock time time of sunrise 5:29am 6:29am 
daylight savings No I Yes time of sunset 8.53 pm 9:53pm 

MARCH DAY INPUT MARCH DAY OUTPUT 
longitude 1.41 w altitude angle 26.42 32.55 
latitude 52.59 N azimuth angle -50.28 -34.53 
date Mar 21 clock time 4:07pm 4:07pm 
year 2002 solar time 2:54pm 1:54pm 
elevation lOOm hour angle -43.54 -28.54 
time 4:07PM declination 0.33 0.31 
time zone (GMT+O) equation of time -7.20 -7.21 
time basis Clock time time of sunrise 7:03am 8:03am 
daylight savings No I Yes time of sunset 7:22pm 8:22pm 

MARCH NIGHT INPUT MARCH NIGHT OUTPUT 
longitude 1.41 w altitude angle -25.29 -31.50 
latitude 52.59 N azimuth angle 129.39 144.94 
date Mar 22 clock time 4:10am 4:10am 
year 2002 solar time 2:57am 1:57am 
elevation lOOm hour angle 135.67 150.67 
time 4:10AM declination 0.53 0.51 
time zone (GMT+O) equation of time -7.05 -7.06 
time basis Clock time time of sunrise 7:02am 8:02am 
daylight savings No I Yes time of sunset 7:23pm 8:23pm 
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E2: BAJILIDON MOOR SUN ANGLE VALUES 
MAY DAY INPUT MAYDAY OUTPUT 

longitude 1.82 w altitude angle 50.48 45.90 
latitude 53.83 N azimuth angle 20.73 41.35 
date May 3 clock time 12:10 pm !2:10pm 
year 1997 solar time 11:05 am 10:05 am 
elevation lOOm hour angle 13.53 28.53 
time 12:10 PM declination 15.76 15.74 
time zone (GMT+!) equation of time 3.15 3.14 
time basis Clock time time of sunrise 5:24am 6:24am 
daylight savings No I Yes time of sunset 8:44pm 9:43pm 

MAY NIGHT INPUT MAY NIGHT OUTPUT 
longitude 1.82 w altitude angle -9.62 -15.13 
latitude 53.83 N azimuth angle 134.76 148.41 
date May4 clock time 4:11am 4:11am 
year 1997 solar time 3:06am 2:06am 
elevation lOOm hour angle 133.27 148.27 
time 4:11AM declination 15.95 15.94 
time zone (GMT+l) ~quation of time 3.21 3.21 
time basis Clock time time of sunrise 5:22am 6:22am 
daylight savings No I Yes time of sunset 8:45pm 9:45pm 

E3: WEARDALE SUN ANGLE VALUES 
AUGUST DAY INPUT AUGUST DAY OUTPUT 

longitude 2.17W altitude angle 39.03 44.20 
latitude 54.76 N azimuth angle -45.75 -27.30 
date Aug22 clock time 3:30pm 3:30pm 
year 2001 solar time 2:18pm 1:18pm 
elevation lOOm hour angle -34.62 -19.62 
time 3:30PM declination I 1.63 I 1.64 
time zone (GMT+IJ equation of time -2.82 -2.84 
time basis Clock time time of sunrise 5:54am 6:54am 
daylight savings No I Yes time of sunset 8:28pm 9:28 _IJ_m 

AUGUST NIGHT INPUT AUGUST NIGHT OUTPUT 
longitude 2.17W altitude angle -20.89 -23.38 
latitude 54.76 N azimuth an_Ele 155.38 171.03 
date Aug 23 clock time 2:45am 2:45am 
year 2001 solar time 1:33am 12:33 am 
elevation lOOm hour angle 156.60 171.60 
time 2:45AM declination 11.47 11.48 
time zone (GMT+!) eguation of time -2.70 -2.71 
time basis Clock time time of sunrise 5:55am 6:55am 
daylig_ht savings No I Yes time of sunset 8:26pm 9:27pm 

E4: SOLAR DECLINATION VALUES from SUN ANGLE PROGRAM 
Dataset Lat (N) Long (W) Date Time Solar Declination 

Bosworth May 52.59 I .41 I9-05-98 12:20 19.77 
Bosworth June Day 52.59 1.41 19-06-98 12:40 23.42 

Bosworth June Night 52.59 1.41 20-06-98 03:28 23.43 
Bosworth August Day 52.59 1.41 05-08-98 I0:08 16.99 

Bosworth August Night 52.59 1.41 06-08-98 04:21 16.79 
Bosworth March Day 52.59 1.41 21-03-02 I6.07 0.31 

Bosworth March Night 52.59 1.41 22-03-02 04:10 0.51 
Baildon Moor Day 53.83 1.82 03-05-97 12:10 15.75 

Baildon Moor Night 53.83 1.82 04-05-97 04:11 15.94 
Weardale Day 54.76 2.17 22-08-01 15:30 I 1.64 

Weardale Night 54.76 2.17 23-08-01 02:45 11.48 
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Fn SENSITKVITY of PLANCK RADIANCE to VARIABLE WAVELENGTH, SPECIFYING TEMPERATURE and EMISSIVITY 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

main() 

float radiance=O.OO; 
float wavelength_micron=O.OO; 
float emissivity=O.OO; 
float temperature; 
int Cl=374000000; 
int C2=14390; 
float i; 
printf("\n Sensitivity ofP!anck Radiance to Wavelength\n"); 
printf("\n Specify temperature in K: "); 
scanf("%f'' ,&temperature); 
printf(" Specify emissivity: "); 
scanf("%f'' ,&emissivity); 
for(i=8.40;i<ll.55;i+=0.05) 
{ 

wavelength_ micron=i; 

radiance=( emissivity* C 1 )/ ( (pow( wavelength_ micron,5) )*( exp( ( C2/ (wavelength_ micron *temperature) )-1)) ); 
printf("wavelength\t%.2f\tradiance\t%.2f\n", wavelength_ micron,radiance ); 
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F2 SENSITIVITY of PLANCK RADIANCE to VARIABLE EMISSIVITY, SPECIFYING TEMPERATURE and WAVELENGTH 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

main() 
{ 

} 

float radiance=O.OO; 
float wavelength_ micron=O.OO; 
float emissivity=O.OO; 
float temperature; 
int Cl=374000000; 
int C2=14390; 
float i; 
printf("\n Sensitivity of Planck Radiance to Emissivity\n"); 
printf("\n Specify temperature in K: "); 
scanf("%f' ,&temperature); 
printf(" Specify wavelength: "); 
scanf("%f' ,&wavelength_ micron); 
for(i=O. 90;i< l.OO;i+=O.O 1) 
{ 

emissivity=i; 

radiance=( emissivity*C 1 )/((pow(wavelength _ micron,5))*( exp((C2/(wavelength_ micron*temperature ))-1 ))); 
printf(" emissivi ty\t%.2t\tradiance\t%.2f\n" ,emissivity ,radiance); 
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F3 SENSITIVITY of PLANCK TEMPERATURE to VARIABLE WAVELENGTH, SPECIFYING RADIANCE and EMISSIVITY 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

main() 
{ 

f1oat radiance=O.OO; 
float wavelength_ micron=O.OO; 
float emissivity=O.OO; 
float temperature; 
int Cl=374000000; 
int C2=14390; 
float i; 

printf("\n Sensitivity of Planck Temperature to Wavelength\n"); 
printf("\n SpecifY spectral radiance in W m-2 micron-]: "); 
scanf("%f' ,&radiance); 
printf(" SpecifY emissivity: "); 
scanf("%f' ,&emissivity); 
for(i=8.40;i<11.55;i+=0.05) 
{ 

wavelength_ micron=i; 

temperature=C2/( wavelength_ micron *(log(( emissivity*C 1 )/(pow( wavelength_ micron,S)*radiance) )+ 1) ); 
printf("wavelength \t%.2t\ttemperature\t%.2f\n ",wavelength_ micron, temperature); 
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F4 SENSITIVITY of PLANCK TEMPERATURE to VARIABLE EMISSIVITY, SPECIFYING RADIANCE and! WAVELENGTH 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

main() 
{ 

float radiance=O.OO; 
float wavelength_ micron=O.OO; 
float emissivity=O.OO; 
float temperature; 
int C1=374000000; 
int C2=14390; 
float i; 
printf("\n Sensitivity of Planck Temperature to Emissivity\n"); 
printf("\n Specify spectral radiance in W m-2 micron-!: "); 
scanf("%f' ,&radiance); 
printf(" Specify wavelength: "); 
scanf("%f' ,&wavelength_ micron); 
for(i=0.90;i<l.OO;i+=O.O 1) 
{ 

emissivity=i; 

temperature=C2/(wavelength _micron *(log(( emissivity*C 1 )/(pow(wavelength _ micron,5)*radiance ))+ 1 )); 
printf(" emissi vi ty\t%.2t\ttemperature\t%.2f\n" ,emissivity, temperature); 
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FS CALCULATION of ATI from CRACKNELL & XUE (1996) USING IMAGE DIURNAL TEMPIERAlrURES, SPECIIFYl!NG 
ALBEDO 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

#define DIMENSION_ REQUEST I /can comment out for end of file nnstead of definition/ I 

main() 
{ 

char inTd[30]; 
char inTn[30]; 
char out_ati[30]; 
FILE *infileTd; 
FILE *infileTn; 
FILE *outfile; 

11 File specifications 
printf(" A TI Calculation (Cracknell & Xue, 1996)\n"); 
printf("\n Specify day temperature file: "); 
scanf("%s" ,inTd); 
infileTd=fopen(inTd,"rb"); 
if(infileTd=NULL) 
{ 

printf("\n Error opening day temperature image file\n"); 
exit(l ); 

printf(" Specify night temperature file (same dimensions as day): "); 
scanf("%s",inTn); 
infileTn=fopen( inTn, "rb"); 
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if(infileTn==NULL) 
{ 

printf("\n Error opening night temperature image file \n"); 
exit( 1 ); 

printf(" SpecifY output file for ati image: "); 
scanf("%s" ,out ati); 
outfile=fopen( out_ ati,"wb"); 
if( outfile=NULL) 
{ 

printf("\n Error creating output file\n"); 
exit( l ); 

//Parameter definitions 
long i; 
int pixels,lines; 
long repeatno; 
float imageTd; 
float imageTn; 
float outlmage; 
float albedo; 
float ati; 
printf("\n Specify albedo to 2 decimal places= "); 
scanf("%f' ,&albedo); 

#ifdef DIMENSION_ REQUEST 
printf("\n Specify number of image pixels = "); 
scanf("%i" ,&pixels ); 
printf(" Specify number of image lines = "); 
scanf("%i" ,&lines); 
repeatno=pixels *lines; 
for(i=O;i<repeatno;i++) 
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#else 
while(!feof(infileTd)) 

//Calculation of A TI 
#endif 

{ 
fread( &imageTd,sizeof(float), 1 ,infileTd); 
fread( &imageTn,sizeof(float), 1 ,infileTn); 
ati=( !-albedo )/(imageTd-imageTn); 
fwrite(&ati,sizeof(float), 1 ,outfile ); 

printf(" "); 
//Close files 

fclose( outfile ); 
fclose(infileTn); 
fclose(infileTd); 
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F6 SENSITIVITY of CRACKNELL & XUE (1996) A TI to VARIABLE ALBEDO 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

main() 
{ 

float ati=O.OO; 
float diumal_temp=O.OO; 
float albedo=O.OO; 
float i; 
printf("\n Sensitivity of Cracknell & Xue ( 1996) A TI to Albedo\n"); 
printf("\n SpecifY diurnal temperature change in K: "); 
scanf("%f' ,&diurnal_ temp); 
for(i=O.OO;i<l.OO;i+=O.O 1) 
{ 

albedo=i; 
ati=( 1-albedo )/diurnal_ temp; 
printf("albedo\t%.2f\tA TI\t%.2f\n" ,albedo,ati); 
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F7 CALCULATION of ATI from KAHILE & ALLEY (1985) USING IMAGE DIURNAL TEMPERATURES, SPIECllFYING ALBEDO, 
DECLINATION and LATITUDE 

#include <stdio.h> 
#include <math.h> 
#include <errno.h> 
#include <stdlib.h> 

#define DIMENSION_ REQUEST //can comment out for end of file instead of definition// 

main() 
{ 

char inTd[30]; 
char inTn[30]; 
char out_ati[30]; 
FILE *infileTd; 
FILE *infileTn; 
FILE *outfile; 

11 File specifications 
printf(" A TI Calculation (Kahle & Alley, 1985)\n"); 
printf("\n Specify day temperature file: "); 
scanf("%s" ,inTd); 
infi 1 eT d=fopen( in T d, "rb "); 
if(infileTd==NULL) 
{ 

printf("\n Error opening day temperature image file\n"); 

printf(" Specify night temperature file (same dimensions as day): "); 
scanf("%s" ,inTn); 
infileTn=fopen(inTn,"rb"); 
if(infileTn==NULL) 
{ 



;l> 
0\ 
0 

printf("\n Error opening night temperature image file \n"); 
} 
printf(" Specify output file for ati image: "); 
scanf("%s",out_ ati); 
outfile=fopen(out_ati,"wb"); 
if(outfile==NULL) 
{ 

printf("\n Error creating output file\n"); 

1/C Calculation 
float declination; 
float latitude; 
float dec _rad; 
float lat_rad; 
float pi=3.141592; 
float C; 
printf("\n Calculation of C parameter (Kahle & Alley, 1985)\n"); 
printf("\n Specify solar declination in decimal degrees = "); 
scanf("%f" ,&declination); 
printf(" Specify latitude in decimal degrees = "); 
scanf("%f" ,&latitude); 
dec _rad=declination/180; 
lat_rad=latitude/180; 
printf("\n Solar Declination in radians= %.2f\n Latitude in radians= %.2f',dec_rad,lat_rad); 
C=( ( 1/pi)*( (sin( dec _rad)* sin(lat_rad)*acos( ( -1 )*tan( dec _rad)*tan(lat_ rad)) )+(cos( dec _rad)*cos(lat_rad)*pow( ( 1-

(pow(tan( dec _rad),2)*pow(tan(lat_rad),2)) ),0.5))) ); 
printf("\n Kahle & Alley (1985) C parameter= %.4f\n",C); 

//ATI Calculation 
long i; 
int pixels,lines; 
long repeatno; 
float ati; 
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float albedo; 
float solar_c=l.98; 
float atmos_trans=0.75; 
float rot_ angle=0.004363; 
float scale; 
float imageTd; 
float imageTn; 

printf("\n Calculation of Apparent Thermal Inertia (Kahle & Alley, 1985)\n"); 
printf("\n SpecifY albedo to 2 decimal places = "); 
scanf("%f' ,&albedo); 

#ifdefDIMENSION REQUEST 

#else 

#endif 

printf("\n SpecifY number of image pixels = "); 
scanf("%i ",&pixels ); 
printf(" SpecifY number of image lines = "); 
scanf("%i" ,&lines); 
repeatno=pixels*lines; 
for( i=O; i <repeatno; i++) 

while(!feof(infileTd)) 

fread( &imageTd,sizeof( float), 1 ,infileT d); 
fread( &imageTn,sizeof(float), 1 ,infileTn); 
ati=((2*solar _ c*atmos_ trans*C)/pow(rot_angle,0.5))*(( !-albedo )/(Tday-Tnight)); 
fwrite(&ati,sizeof(float), I ,outfile ); 

printf(" "); 
//Close files 

fclose( outfile ); 
fclose(infileTn); 
fclose(infileTd); 
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JF8 CALCULATION of ATI from PRICE (1985) USING IMAGE DIURNAL TEMPERATURES, SPECIFYING AILBEDO, 
DECLINATION and LATITUDE 

#include <stdio.h> 
#include <math.h> 
#include <stdlib.h> 
#include <string.h> 
#include <memory.h> 

#define DIMENSION_ REQUEST //can comment out for end of me instead of definition// 

main() 
{ 

char inTd[30]; 
char inTn[30]; 
char out_ati[30]; 
FILE *infileTd; 
FILE *infileTn; 
FILE *outfile; 

11 FiHe specifications 
printf(" A TI Calculation (Price, 1985)\n"); 
printf("\n SpecifY day temperature file?: "); 
scanf("%s",inTd); 
infileTd=fopen(inTd,"rb"); 
if(infileTd==NULL) 
{ 

printf("\n Error opening day temperature image file\n"); 
exit(l); 

printf(" Specify night temperature file of same dimensions as day?: "); 
scanf("%s" ,inTn); 
infileTn=fopen(inTn,"rb"); 
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if(infileTn==NULL) 
{ 

printf("\n Error opening night temperature image file \n"); 
exit(!); 

printf(" Specify output file for ati image?: "); 
scanf("%s",out_ati); 
outfile=fopen( out_ ati, "wb"); 
if( outfile=NULL) 
{ 

printf("\n Error creating output file\n"); 
exit(!); 

//Parameter definitions 
long i; 
int pixels,lines; 
long repeatno; 
float imageTd; 
float imageTn; 
float outlmage; 
float albedo; 
float ati; 
float declination; 
float latitude; 
float dec _rad; 
float lat_rad; 
float pi=3.141592; 
float C; 
printf("\n Specify solar declination in decimal degrees = "); 
scanf("%f' ,&declination); 
printf(" Specify latitude in decimal degrees = "); 
scanf("%f' ,&latitude); 
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dec _ rad=declination/ 180; 
lat_rad=latitude/180; 

printf("\n Solar Declination in radians= %.2t\n Latitude in radians= %.2f',dec_rad,lat_rad); 
C=(( 1/pi)*((sin( dec _rad)*sin(lat_rad)*acos(( -1 )*tan( dec _rad)*tan(lat_rad)))+( cos( dec _rad)*cos(lat_rad)*pow(( 1-

(pow(tan( dec _rad),2)*pow(tan(lat_rad),2)) ),0.5))) ); 
printf("\n\n C parameter= %.4f\n",C); 
printf("\n Specify albedo = "); 
scanf("%f' ,&albedo); 

#ifdef DIMENSION_ REQUEST 

#else 

printf("\n Specify number of image pixels = "); 
scanf("%i" ,&pixels ); 
printf(" Specify number of image lines = "); 
scanf("%i" ,&lines); 
repeatno=pixels*lines; 
for(i=O;i<repeatno;i++) 

while(!feof(infileTd)) 
//Calculation of ATI 
#end if 

fread(&imageTd,sizeof(float), 1 ,infileTd); 
fread( &imageTn,sizeof( float), 1 ,infileTn); 
ati=( 1 OOO*pi*C)*(( !-albedo )/(imageTd-imageTn)); 
fwrite( &ati,sizeof( float), 1 ,outfile ); 

printf(" "); 
//Close files 

fclose( outfile ); 
fclose(infileTn); 
fclose(infileTd); 
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F9 CALCULATION of MAXIMUM AND MINIMUM TEMPERA TU RES and their DIURNAL TIMES from a HME-SERIES 

#include <stdio.h> 
#define MAX DATA VALUES 143775 - -
#define MAX DATA DAYS 200 - -

I I Storage for the imported data 
typedef struct 
{ 

long Year Minute; 
float T[4]; 
float deriv 1 [ 4 ]; 
float deriv2[4]; 

LoggedDataS truct; 
LoggedDataStruct LoggedData[MAX_DATA_ VALUES]; 
long nLoggedValues=O; 

I I output values for day minlmax 
typedef struct 
{ 

int Dayld; 
int DayMin[4]; 
int DayMax[ 4]; 

OutputDataStruct; 
OutputDataStruct OutputData[MAX_DATA_DA YS]; 
int nDays=-1; 

11 load tab-delimited text document where temperatures are recorded as time from start of year 
11 [Year Min, T(surface), T(0.10m), T(0.20m), T(0.50m)] 
int LoadData( char*filename) 
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FILE*f; 
if( (f=fopen("input.txt","r"))!=NULL) 
{ 

else 

nLoggedValues=O; 
while( (!feof(f)) && (!ferror(f))) 
{ 

fscanf(f,"%ld %f%f%f%t\n", 
&LoggedData[ nLoggedValues]. Y earMinute, 
&LoggedData[ nLoggedValues ]. T[O], 
&LoggedData[ nLoggedValues]. T[ 1], 
&LoggedData[ nLoggedValues]. T[2], 
&LoggedData[ nLoggedValues]. T[3 ]); 

nLoggedValues++; 
} 
fclose(f); 

printf("Problem opening file.\n"); 

return -1; 

I/ smoothing data removes peaks that are anomalously high compared with surrounding values 
#define USE SMOOTHING 
//#undefUSE SMOOTHING 

#define SMOOTH WINDOW 7 
#define SMOOTH RANGE 3 
float SmoothWeightings[SMOOTH_ WINDOW]={O.l, 0.3, 0.5, l.O, 0.5, 0.3, 0.1}; 

void CalcDeri vati ves() { 
long i; 
int d,j; 
float smoothed[MAX_DATA_ VALUES],SmoothTotal=O.O; 
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#ifdef USE SMOOTHING 
for(j=O;j<SMOOTH _ WINDOW;j++) 

#end if 
Smooth Total+=Smooth W eightings[j]; 

for( d=O;d<4;d++) 
{ 

I/ Iterate for each depth in turn 

#ifdef USE SMOOTHING 
for(i=SMOOTH_RANGE;i<nLoggedValues-SMOOTH_RANGE;i++) 

} 
#endif 

smoothed[i]=O.O; 
for(j=O;j<SMOOTH _ WINDOW;j++) 

smoothed[i]+=LoggedData[i+j-SMOOTH_RANGE].T[d] * SmoothWeightings[j]; 
smoothed[i]/=SmoothTotal; 

#ifdef USE SMOOTHING 

for(i=SMOOTH_RANGE;i<nLoggedValues-SMOOTH_RANGE;i++) 
1/ Use smoothed values while calculating derivatives 
LoggedData[i].derivl[d] = 

#else 

#end if 
} 

(smoothed[i]-smoothed[i-1 ])/ 
(LoggedData[i]. YearMinute-LoggedData[i-1]. Year Minute); 

for(i=I ;i<nLoggedValues;i++) 
I! Use raw values while calculating derivatives 
LoggedData[i].deriv I [ d] = 

(LoggedData[i]. T[ d]-LoggedData[i-1 ]. T[ d])/ 
(LoggedData[i]. YearMinute-LoggedData[i-1 ]. YearMinute ); 
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/1 calculate the times when soil temperature is at maximum and minimum in day 
11 for each soil depth 
void TScan() 
{ 

int Depth; 
long i; 
for(Depth=O;Depth<4;Depth++) 
{ 

int Today=-!; 
nDays=-1; 
for( i=O;i<nLoggedValues;i++) 
{ 

if( (int)(LoggedData[i].YearMinute I 1440) !=Today) 
{ 

} 

nDays++; 
OutputData[nDays].Dayld=i; 
Today=(LoggedData[i]. YearMinute I 1440); 
OutputData[nDays].DayMin[Depth]=i; 
OutputData[ nDays] .DayMax[Depth ]=i; 

if(LoggedData[i).T[Depth] < LoggedData[OutputData[nDays].DayMin[Depth]].T[Depth]) 
OutputData[ nDays ].DayMin[Depth ]=i; 

if(LoggedData[ i]. T[Depth J > LoggedData[OutputData[ nDays] .DayMax[Depth ]] . T[Depth]) 
OutputData[ nDays ].DayMax[Depth ]=i; 

11 calculate heating gradients for each soil depth 
void DerivlScan() 
{ 

int Depth; 
long i; 
for(Depth=O;Depth<4;Depth++) 
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int Today=-1; 
nDays=-1; 
for(i=O;i<nLoggedValues;i++) 
{ 

it{ (int)(LoggedData[i].YearMinute I 1440) !=Today) 
{ 

} 

nDays++; 
OutputData[nDays].Dayld=i; 
Today=(LoggedData[i].YearMinute I 1440); 
OutputData[ nDays] .DayMin[Depth ]=i; 
OutputData[ nDays] .Day Max[Depth ]=i; 

if(LoggedData[ i]. T[Depth] < LoggedData[OutputData[ nDays] .DayMin[Depth ]].deriv 1 [Depth]) 
OutputData[ nDays] .DayMin[Depth ]=i; 

if(LoggedData[i].T[Depth] > LoggedData[OutputData[nDays].DayMax[Depth]].derivl[Depth]) 
OutputData[nDays].DayMax[Depth]=i; 

11 create output file with day, year day, temperatures and times in day forT min and T max for each depth 
void OutputDays(FILE*t) 
{ 

int i,d; 
fprintf( f, "day\tyday\tgrad\ttmin \tTmin \ttmax \t\ Tmax\n "); 
for(i=O;i<nDays;i++) 
{ 

fprintf(f,"%.2d\t%.3d ",i,(LoggedData[OutputData[i].DayMin[O]].YearMinute)ll440); 
for( d=O;d<4;d++) 
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} 

for( d=O;d<4;d++) 

fprintf(f,"\n"); 

fprintf( f, "\t%.2t\t%4d\t%. 2t\t%4d\t%.2f', 
(LoggedData[OutputData[ i] .DayMax[ d]]. T[ d]-LoggedData[OutputData[i] .Day M in[ d]]. T[ d])/ 
(LoggedData[OutputData[i].DayMax[d]].YearMinute-LoggedData[OutputData[i].DayMin[d]].YearMinute), 
LoggedData[OutputData[ i] .DayMin[ d]]. Y earMinute% 1440, 
LoggedData[OutputData[i].DayMin[d]].T[d], 
LoggedData[OutputData[i].DayMax[ d]]. Year Minute% 1440, 
LoggedData[OutputData[i].DayMax[d]].T[d]); 

I/ calculate time when inflexion point of heating/cooling for each depth 
I/ create output file with day, year day and inflexion value and times of inflexion for each depth 
void OutputDerivDays(FILE*f) 
{ 

int i,d; 
fprintf(f, "\n"); 
for( i=O;i<nDays;i++) 
{ 

fprintf(f,"%.2d\t%.3d" ,i,LoggedData[OutputData[i] .DayMin[O]]. Y earMinute/ 1440); 
for( d=O;d<4;d++) 

fprintf( f, "\t%.2t\t%4d\t%.2t\t%4d\t%.2f', 

fprintf(f,"\n"); 

(LoggedData[OutputData[ i] .DayMax[ d]] .deri v 1 [ d]-LoggedData[OutputData[ i] .DayMin[ d]] .deriv I [ d])/ 
(LoggedData[OutputData[i].DayMax[ d]]. Y earMinute-LoggedData[OutputData[i] .Day M in[ d]]. Year Minute), 
LoggedData[OutputData[i].DayMin[ d]].YearMinute% I440, 
LoggedData[OutputData[i].DayMin[ d]] .deriv I [ d], 
LoggedData[OutputData[i].DayMax[d]].YearMinute%1440, 
LoggedData[OutputData[ i] .DayMax[ d]] .deriv 1 [ d]); 
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int main(int argc,char* argv[]) 
{ 

FILE* f _out; 
printf("File : '%s'\n" ,argv[ 1 ]); 
LoadData( argv[ 1 ]); 
f_ out=fopen("output. txt", "w"); 
TScan(); 
OutputDays( f _out); 
CalcDerivatives(); 
printf("\n\n\n 1st Derivatives\n\n"); 
Deriv 1 Scan(); 
OutputDerivDays(f_ out); 
fclose(f_ out); 
return -1; 



Appenulliix G: §OITL AN AIL Y§IT§ 

Gl PARTICLE SIZE ANALYSIS 
SOIL SAMPLE PREPARATION 

e Weigh approximately 0.5g sample into a 50 m! tube 

e Add approximately 20 m! of 20% Hydrogen Peroxide solution 

o Cover tube with aluminium foil and place in a boiling water bath for 2 hours 

o After 2 hours inspect the sample to make sure all organic matter has been dissolved 

o Fill tube up to 40 m! with distilled water 

o Centrifuge sample at 4000 rpm for 4 minutes 

o Decant the supernatant liquid then refill to 40 ml with distilled water 

• Centrifuge sample at 4000 rpm for 4 minutes 

s Decant the supernatant liquid 

• Add approximately 20 ml distilled water 

• Add approximately 2 ml Sodium Hexametaphoshate solution and agitate sample to 
separate particles 

PARTICLE SIZE INSTRUMENTATION (COULTER COUNTER) 

e Run- Run cycle- New Sample- Start 

• Instrument measures offset and will auto align once an hour 

• Instrument takes a background reading (check that detector 100 measures~ 15 flux) 

• Add sample through a 2 mm sieve by washing tube with distilled water when software 
registers 'measure loading' 

• Instrument will measure Obscuration and PIDS and after a minute click on done 

• Enter sample details (group ID, sample ID) then run 

e The sample undergoes 2 runs before generating a graph when the sample is finished 

• Individual Graph 

e Run file - open for overlay - add $01 file for the sample to generate graphical overlay 

• Run file -average all 

e Average Graph 

• On graph of average select limits- suppress limits 

o Graph - diff and cum < 

"' Run file - export for interpretation and visualisation in Microsoft Excel 
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DETERMINATION OF SAND, SILT AND CLAY FRACTION 

e The cumulative volume is indicated for 22 different categories of particle diameter for 
each soil sample 

• Jn order to determine the volume of particles in each category, the difference between 
adjacent categories is detennined 

a Clay (0-0.0039 mm), silt (0.0039-0.0630 mm) and sand (0.0630 - 2.0000 mm) volumes 
are then determined for each fraction by accumulating category values based on the 
W entworth Scale 

SAND AI A2 A3 86 B7 B8 Cl4 Cl5 Cl6 020 021 £22 £23 

O.OOm 69.8 70.1 71.6 66.1 71.6 68.4 49.4 59.2 66.3 56.4 56.6 62.9 65.7 
0.05m 67.8 67.0 71.4 66.1 72.8 66.7 49.9 56.7 61.0 57.7 57.5 63.2 84.2 
O.IOm 68.7 69.8 63.4 72.4 68.1 51.4 55.1 67.2 58.2 55.6 69.1 65.9 
0.15m 66.3 69.6 71.9 65.6 71.4 70.2 53.2 57.1 64.7 59.2 56.1 63.9 62.8 
0.20m 68.2 69.3 69.6 68.6 70.7 66.5 52.7 54.6 62.9 60.1 55.0 69.3 70.0 
0.25m 68.3 71.0 69.7 67.3 70.9 66.9 48.3 57.2 68.2 55.8 58.2 64.5 63.7 
0.30m 64.3 70.6 69.8 64.3 70.5 66.7 50.7 60.1 67.6 57.7 56.1 61.2 63.5 
0.35m 69.0 75.2 75.5 67.6 68.7 65.6 30.0 58.6 67.5 59.2 58.2 64.9 62.8 
0.40m 66.3 72.5 74.2 68.9 66.9 30.1 54.8 67.4 57.7 67.0 62.3 
0.45m 66.9 75.9 73.2 68.9 31.7 60.8 68.4 69.2 62.3 
0.50m 73.9 72.5 63.8 63.1 64.5 

CLAY AI A2 A3 B6 B7 B8 Cl4 Cl5 Cl6 020 021 £22 £23 

O.OOm 11.2 10.9 I 0.4 13.0 10.6 11.9 20.1 16.1 12.8 16.4 16.6 12.2 10.5 
0.05m 11.3 12.1 10.3 13.0 10.3 12.4 19.4 16.8 14.8 15.9 16.1 11.5 8.1 
O.IOm 11.4 10.9 13.9 I 0.4 11.9 18.5 17.5 12.1 15.6 16.9 9.7 10.7 
0.15m 12.4 11.0 9.7 13.0 10.7 11.2 18.2 16.7 13.2 15.1 16.6 10.9 11.7 
0.20m 11.8 11.2 10.8 11.7 11.0 12.8 18.3 17.2 14.0 14.7 17.7 10.3 9.7 
0.25m 11.7 10.5 11.1 12.4 10.7 12.3 20.4 16.4 11.9 16.3 16.0 11.5 11.7 
0.30m 12.7 10.6 10.6 13.6 11.1 12.3 19.8 15.3 11.5 15.3 16.4 12.8 11.9 
0.35m 11.2 9.1 8.9 12.4 I 1.1 12.7 30.6 15.8 11.2 15.1 16.0 11.6 11.7 
0.40m 12.0 9.9 9.4 11.1 11.9 30.9 17.8 11.5 16.2 10.8 11.9 
0.45m 11.5 8.8 10.0 11.0 29.8 15.8 11.5 10.0 12.5 
0.50m 9.6 10.1 14.0 11.3 11.6 
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G2 MOISTURE CONTENT 
o Weigh clean/dry crucible to O.OOOOg 

o Add approximately 3-Sg soil sample 

e Weigh crucible+ wet sample 

e Dry in oven at l 05°C overnight 

e Weigh crucible+ dry sample 

Lr. C (o;) [(crucible+wet)-(crucible+drv)]*iOO 
Ql 1v10lsture ontent ;o = -

sample 

H20 Al A2 A3 B6 B7 B8 Cl4 Cl5 Cl6 D20 

O.OOm 5.80 5.01 7.05 7.00 7.23 4.29 9.66 9.67 10.50 9.12 
0.05m 9.52 8.90 9.65 6.07 7.47 8.62 14.67 14.92 12.99 12.10 
0.10m 11.60 11.08 10.34 8.15 8.90 13.84 14.27 18.03 14.65 14.89 
0.15m 11.37 11.89 13.56 9.70 9.86 11.53 15.97 16.84 16.82 11.24 
0.20m 11.24 11.94 11.40 9.52 10.94 10.16 14.54 20.90 17.46 12.19 
0.25m 11.12 8.20 8.76 9.67 9.64 9.79 13.18 14.40 12.21 11.30 
0.30m 7.61 7.62 8.58 7.70 8.56 7.25 12.57 14.01 11.17 10.56 
0.35m 7.04 7.76 8.31 7.28 7.15 7.41 16.14 14.15 10.89 10.52 
0.40m 7.50 6.90 7.72 6.44 5.81 16.67 14.24 9.98 
0.45m 6.37 6.38 6.58 6.79 16.46 13.86 11.36 
0.50m 6.02 6.01 11.88 

G3 ORGANIC CONTENT (LOSS on IGNITION) 
• Weigh crucible+ dry sample 

o Heat sample in furnace at 550°C for 4 hours 

• Weight crucible+ ignited sample 

D21 

7.19 
14.55 
14.99 
14.76 
13.14 
12.92 
13.45 
12.93 
12.75 

0 . C (01 ) [(crucible+dry)-(crucible+ignited)]*IOO • rgamc ontent 1o = 
sample 

LOI Al A2 A3 B6 B7 B8 Cl4 CL5 Cl6 D20 D21 

O.OOm 3.20 3.03 2.77 3.55 3.25 3.37 6.35 6.27 4.76 5.69 5.06 
0.05m 3.33 2.52 2.73 3.67 3.14 3.52 6.59 6.08 4.89 5.43 5.54 
0.10m 3.83 2.93 3.10 4.11 3.12 3.78 6.53 6.24 4.81 5.67 5.51 
0.15m 3.37 3.08 3.97 4.50 3.17 3.44 6.23 6.19 4.86 5.64 5.62 
0.20m 2.95 2.76 2.87 4.73 3.61 3.64 6.35 5.95 5.02 5.49 5.03 
0.25m 3.01 2.35 2.67 4.09 3.58 3.08 6.68 4.82 5.18 6.50 5.18 
0.30m 1.76 3.65 2.72 3.69 3.22 2.93 6.41 4.81 3.08 5.28 4.63 
0.35m 1.67 1.83 2.49 3.63 2.30 2.64 5.84 4.39 2.69 4.80 4.98 
0.40m 1.74 1.58 2.29 1.99 2.32 5.59 4.19 2.70 4.71 
0.45m 1.66 1.34 1.88 2.13 5.61 3.70 3.04 
0.50m 1.38 1.91 4.00 

E22 E23 

18.26 19.51 
18.67 20.67 
18.29 18.64 
17.67 20.00 
17.62 19.08 
16.21 25.25 
14.06 18.60 
13.52 13.58 
12.90 13.92 
13.67 13.60 
12.73 13.43 

E22 E23 

4.24 3.88 
4.06 4.43 
4.19 3.87 
4.07 4.22 
4.19 4.00 
3.47 3.97 
2.51 3.71 
2.30 2.65 
2.18 2.57 
2.18 2.54 
2.00 2.46 
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