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Abstract

Detailed major/trace element and high-precision Hf-Nd-Sr isotope data has been
acquired for 86 samples of kimberlites from the recently discovered Lac de Gras
kimberlite field in the Northwest Territories, Canada, plus 23 samples from other
Canadian kimberlite occurrences. This constitutes the most comprehensive
geochemical database available for kimberlites at the present time, and allows detailed
comparisons to be made with the well-documented kimberlites of the Kaapvaal craton,
southern Africa. Major and trace element data shows that some Lac de Gras
kimberlites have interacted extensively with continental crust, whereas others are
minimally contaminated with crust but have physically incorporated large quantities

(>30%) of lithospheric mantle peridotite.

Fresh, minimally-contaminated kimberlites from Lac de Gras have both elemental and
isotopic characteristics that are transitional relative to those typical of southern African
Group I and II kimberlites. The Hf-Nd isotope variations of these samples also define a
linear array that strongly suggests mixing of two or more components/reservoirs within
the mantle. Isotopic mixing models and mass balance considerations constrain the
most likely candidate components/reservoirs to be depleted sub-continental lithospheric
mantle and a component with an isotopically-enriched, negative Aeyr signature that is
derived from beneath the lithosphere. Such a component has previously been identified
in southern African kimberlites, indicating that it is globally extensive within the
mantle. Its restriction to magmas generated at great depths, and its unusual Hf isotope
signature also suggest that it may reside in isolation at some mantle boundary layer.
Ancient oceanic crust, generated by melting in the presence of garnet and subsequently
subducted and stored below the lithosphere, could evolve to negative Agye
compositions. Melts of this material, variably recombined with the depleted, garnet-
rich melting residua that constitute the lithosphere, can then account for the Hf-Nd
kimberlite isotopic array. Trace element characteristics, such as K and Sr anomalies,
are consistent with those of OIB-like magmas derived from within the convecting

mantle.
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Chapter 1

Introduction

1.1 STUDY OBJECTIVES

Most studies of the geochemistry and petrogenesis of kimberlites during the last four
decades have been based upon the numerous well-documented occurrences of these
rocks in southern Africa. The discovery, from 1991 onwards, of a large kimberlite
province in the Northwest Territories-Nunavut region of northern Canada (Carlson et
al., 1999; Nowicki et al., 2003), has provided the ideal opportunity to test and expand
the petrological understanding of kimberlites developed from southern Affrican

samples.

This study is based on comprehensive major/trace element and high-precision isotopic
analyses of 98 samples from the newly discovered Slave kimberlite province, plus
several samples from other, recently discovered kimberlite fields elsewhere in Canada.
This new dataset enables a detailed geochemical comparison to be made between suites
of kimberlites that have been emplaced within different cratonic regions. Further to
this, a principal aim of the study has been to use this detailed data to investigate more
thoroughly the processes that act to modify the geochemistry of kimberlite magmas as
they ascend from their mantle source region through the sub-continental lithosphere
and crust. By improving our understanding of these processes, it is possible to place
better constraints on the elemental and isotopic character of the primary kimberlite
magma. This in turn assists in constraining the location of the kimberlite source region

within the mantle,




The analysis of the isotope geochemistry of Slave kimberlites presented here builds
upon recent studies of Hf-Nd-Sr isotope variations in South African kimberlites
(Nowell et al., 1999; in press). These studies identify an unusual Hf isotope signature
in the South African samples, which only appears to be observed in magmas that
originate from the extreme depth within the mantle (e.g. diamond-bearing rocks such as
kimberlites and lamproites). The second main aim of this study has been to investigate
whether or not this Hf isotope signature exists within kimberlites from the Slave
province, and if it does, to obtain further insight into its origin. This may also have

implications for identifying the location of the kimberlite source region.

A subsidiary objective of this study has been to expand the isotopic database on
kimberlites, and to broaden its scope given the predominance of samples from southern
Africa. The solution chemistry of Hf presents a variety of analytical challenges to
obtaining high and reliable yields from high Mg/Si and Ca/Si matrices, such as those of
kimberlites. There is clearly a need for these challenges to be addressed if
determinations of the Hf isotope geochemistry of these rocks are to become routine,
thus enabling the isotopic database for kimberlites to expand further to other, so far less

well-characterised provinces (e.g. Siberia, Brazil, Australia, Inida, Finland, China).

1.2 ASPECTS OF KIMBERLITE PETROLOGY

Due to the many unusual characteristics of kimberlites, literature relating to them is
particularly rich in descriptive terminology, much of which is not normally applied to
other kinds of igneous rocks. A summary of the key characteristics of kimberlites is

therefore provided below.



1.2.1 Ocecurrence

Kimberlites occur in small (typically <1km diameter), volcanic pipe-like structures and
associated networks of hypabyssal dykes and, more rarely, sills. They are found only
in continental settings and are typically situated within or marginal to cratonic areas.
Almost all diamondiferous kimberlites are found within cratons, and consequently the
‘on-craton’ or ‘off-craton’ distinction is an important characteristic of a kimberlite
body. The level of exposure within the pipe varies, depending on the erosion history of
the area. In southern Africa preservation of the crater region, which marks the
palacosurface at the time of eruption, is rarely observed. Crater facies deposits are
more commonly found among Canadian occurrences. The only suggested occurrence
of kimberlite lava to date is from the Igwisi Hills, Tanzania (e.g. Bassett, 1954),

although this interpretation is controversial.

1.2.2 The facies concept

The petrography of kimberlite specimens is very variable within a kimberlite body.
The relationship between the petrography of a specimen and its location within a body
1s described by the ‘textural genetic classification’ system (Clement and Skinner, 1979;
Mitchell, 1986). In this framework, based on observations made on southern African
kimberlites, three distinct zones, or facies, of kimberlite are recognised as resulting
from different magmatic processes acting upon a single magmatic entity (Hawthorne,
1975; Clement and Skinner, 1979). The interrelation of these three facies is shown in

Figure 1.1.
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Figure 1.1 Location of different textural-genetic kimberlite facies within an idealised pipe
structure. After Hawthorne (1975)and Mitchell (1986).

The crater facies, where preserved, consists primarily of pyroclastic and reworked
epiclastic rocks. These are dominated by variably well to poorly bedded tuffs and tuff
breccias. Epiclastic shales and mudstones typically take the form of lacustrine deposits
and are probably associated with the development of crater lakes or maars above the
kimberlite body. Crater facies rocks are rarely found at Southern African kimberlite
localities, but do appear to be very common, especially in western Canadian

occurrences.



The diatreme facies occupies the steep-sided, ‘inverted cone’-shaped pipe that is
characteristic of many kimberlite bodies. The rocks found in this zone are termed
tuffisitic kimberlites and tuffisitic kimberlite breccias (Clement, 1979; Clement and
Skinner, 1979) and are composed of clasts of xenolithic and autolithic material set in a
fine-grained matrix that is dominated by serpentine. Mitchell (1986) points out the
term ‘tuffisitic’ has genetic implications, which may not be applicable to the formation
of the diatreme itself, and hence proposes ‘volcaniclastic’ (Fisher, 1961) as a more

appropriate, non-genetic term.

Hypabyssal facies kimberlites are found in the ‘root zone’ of the intrusion below the
base of the diatreme, and consist mainly of dykes and occasional sills, which act as
feeder structures to the diatreme and crater. Dykes at high structural levels are rarely
observed to cross-cut diatreme zone rocks. At many localities the crater and diatreme
have been completely removed by erosion, and only the hypabyssal intrusive rocks
remain. Hypabyssal kimberlites are massive, crystalline rocks that tend to be less
altered and contain significantly lower levels of xenolithic contamination than the rocks
of the diatreme and crater facies. Consequently, they are the most appropriate rocks to
choose for geochemical analysis in any study of the chemistry of the kimberlite
magma. Hypabyssal kimberlites usually contain abundant olivine macrocrysts, which
may be either cognate (i.e. phenocrysts), or xenocrysts derived from disaggregated
peridotites. Rare examples of hypabyssal kimberlite are devoid of phenocrysts or
xenocrysts and are consequently described as ‘aphanitic’. In the absence of genuinely
glassy kimberlites, aphanitic material that is free of any visible contamination may be
most representative of the parental magmatic liquid, if it can be ascertained that these

samples are not flow-differentiated.



It is clear, from studies during the past decade in Canada, that many of the kimberlites
in western Canada (e.g. Lac de Gras occurrences) bear no resemblance to the classic
southern African model of a kimberlite pipe (Figure 1.2). This is especially relevant in
the Lac de Gras area, where a number of kimberlite pipes (e.g. Grizzly, Leslie, Arnie,
Aaron) are comprised solely of or are dominated by hypabyssal material. Estimates
based on sedimentological reconstructions of the Lac de Gras area (e.g. Stasiuk et al.,
2003; Sweet et al., 2003; Hamblin et al., 2003) indicate that there has been only ~200m
of erosion since the time of kimberlite formation, implying that large volumes of
kimberlite magma were emplaced as hypabyssal intrusions very close to the
palacosurface. Morphological differences between kimberlites from southern Aftica
and Lac de Gras are likely to primarily reflect differences in the lithological and
structural character of the rocks into which they are emplaced (Field and Scott-Smith,

1999; Kjarsgaard, 2003).

1.2.3 Composition

Kimberlites are notoriously difficult to classify petrologically (Mitchell, 1986; 1995)
because of their highly complex and variable chemical and mineralogical composition.
They are hybrid magmatic rocks, composed partially of xenolithic and xenocrystal
material incorporated into the magma as it ascends from its source region to the
surface. Kimberlites typically have a highly inequigranular texture ranging from a very
fine-grained groundmass up to xenoliths or xenocrysts that are several tens of

centimetres in diameter.
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Figure 1.2 Cartoons to illustrate differences in style and variety of pipe morphologies in southern
Africaand Lac de Gras. After Kjarsgaard (2003).

The extremely fine-grained groundmass and microphenocrystic phases typical of most
hypabyssal kimberlites are considered to be most representative of the parental magma.
These constituents are typical silica-poor and ultrabasic in nature, with an unusually
high content of volatile components (dominantly H,O and CO,). Unlike most igneous
rocks, archetypal kimberlites are typically richer in K,O than Na,O. They are often
classified as ultrapotassic rocks, but this is misleading, because their high K,0/Na,O
ratios derive from having very low Na,O, rather than very high K,O. Principal
groundmass minerals include olivine, spinel, monticellite, phlogopite, perovskite,
primary carbonates and apatite. One or two of these phases are typically dominant in

any given specimen, and this forms the basis of the classification scheme proposed by



Skinner and Clement (1979), which is widely used. A much greater mineralogical
diversity is imposed on the kimberlite by its compliment of xenoliths and megacrysts,
including olivine, garnet, ilmenite, phlogopite, orthopyroxene, clinopyroxene and
spinel. The provenance of the megacryst suite (i.e. cognate versus xenocrystal origins)
is as yet unresolved. In addition to these relatively common phases, kimberlites may
also contain rutile, brucite, various clay minerals, sulphides and other, more exotic
phases in small quantities. Mitchell (1986; 1995, 1997) provides a comprehensive

coverage of the complex petrography of these rocks.

1.2.4 Group I and Group I kimberlites

The study of Nd and Sr isotopic variation in South African kimberlites by Smith (1983)
demonstrated that there are two distinct groups of kimberlites that occur within the
Kaapvaal craton. Group I kimberlites have an isotopic signature that is indicative of
derivation from a source that is near chondritic and similar to that seen in ocean island
basalts (OIBs), whereas Group II kimberlites have a more enriched isotopic signature,
which may relate to derivation from an EM Il-type (Zindler and Hart, 1986) source
within the lithosphere (Smith, 1983). These two groupings correspond broadly to the
‘basaltic’ (~Group I) and ‘micaceous’ (~Group II) kimberlites defined by Wagner
(1914). To date Group II kimberlites have only been identified within the Kaapvaal
craton of South Africa, where they tend to pre-date the majority of Group I bodies in
the region (Gurney et al. 1991). Skinner et al. (1994) have also identified a small
number of kimberlites from the NW edge of the Kaapvaal craton that have isotopic
signatures that are transitional between Group I and Group II. This kind of signature is
similar to those seen in the few isotopic analyses of kimberlites from Brazil (Bizzi et

al., 1994), Finland (O’Brien and Tyni, 1999) and China (Tompkins e al., 1999).



1.3 REGIONAL GEOLOGY

The majority of samples analysed in this study (Appendix A) are drawn from the Lac
de Gras field of the Archaean Slave province, Northwest Territories, Canada.
Consequently this section focuses on the geology of the Slave craton and the immediate
area around Lac de Gras. A small number of samples have been analysed from
Somerset Island, in the Churchill province of northern Canada, and several localities in
the Superior province of south-central Canada. The regional geology of these areas is
not reviewed here, but key references suitable for gaining a geological overview are

provided in Table 1.1.

1.3.1 Slave province

The Slave province (Figure 1.3) is an Archaean cratonic region covering approximately
210,000km’ of the Northwest Territories and Nunavut, northern Canada (Pell, 1997).
Like other Archaean cratons, exposed rocks consist of basement gneiss complexes,
intruded by granitic plutons and overlain by various supracrustal rocks, i.e. granite-
greenstone terranes. Unlike most cratonic regions, the greenstone belts of the
Yellowknife Supergroup (YKSG), which dominate the supracrustal sequences of the
Slave craton, are dominated by metasedimentary, rather than metavolcanic, units
(Padgham and Fyson, 1992). Granitoid plutons, which were emplaced in several
episodes both contemporaneous to and postdating the Yellownife Supergroup, account
for ~65% of current exposure in the Slave province (King er al., 1992; Padgham and
Fyson, 1992; van Breeman et al., 1992; Davis et al., 1994). Four major swarms of
Proterozoic diabase dykes were emplaced after stabilisation of the craton. These are
dominated by the 1.27Ga Mackenzie swarm (LeCheminant and Heaman, 1989), but

also include the older (2.02-2.23Ga) Lac de Gras, Mackay and Malley swarms



(LeCheminant and van Breeman, 1994). The orientation of these dyke swarms is
indicative of dominant structural grains within the crust, which may also be exploited

by kimberlites as they ascend to the surface.

Events References

Churchill province (Somerset Island and Rankin Inlet kimberlites)

Pre- and syn-orogenic (3.0-2.0Ga) igneous

activity (komatiites, basalts and granites), Bickford et al. (1994); Percival (1996)

Continental collision Hoffman (1988, 1990)
Post-orogenic igneous activity Peterson er al. (1994)
Somerset Island

Frisch ef al. (1987); Frisch and Sandeman

Development of Archaean basement (1991)

Blackadar (1967); Okulitch et al. (1986);

Proterozoic igneous and sedimentary events Fahrig (1987)

Phanerozoic sedimentary events Okaulitch ef al. (1986); Stewart (1987)

Superior province (Attawapiskat, Kirkland Lake and Timiskaming kimberlites)
Geological overview Card (1990)

e.g. Wooden et al. (1982); Moser (1988);

Gneisses Moser et al. (1991)

Plutonic rocks e.g. T. E. Smith er al. (1985); Beakhouse et
al. (1988); Corfu er al. (1989)
e.g. Turner and Walker (1973); Dimroth et

Supracrustal rocks al. (1982); Sylvester et al. (1987)

Langford and Morin (1976); Ludden ef al.

Tectonic assembly (1986); Hoffman (1988)

Table 1.1 Papers summarising the geology of the Churchill Province (including Somerset
Island) and the Superior Province.
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Some insight into the large-scale tectonic structure of the craton is provided by isotopic
studies, which appear to broadly divide the Slave province into western and eastern

207pp,/2%%py ratios in crustal rocks from the

domains. Thorpe ef al. (1992) reported high
western Slave, and low ’Pb/”%Pb from the east. This was interpreted in terms of lead
being derived from an ancient, enriched upper crustal source in the west, and from a
more juvenile, mantle source in the east. The boundary line between the two domains
passes to the west of the Lac de Gras kimberlite field; the kimberlites thus appear to be
located within relatively juvenile neo-Archaean crust. Although this boundary line is
based on relatively few isotopic analyses, it is supported by Nd isotope evidence (Davis
and Hegner, 1992), which also indicates that granitic crust from the central and eastern
parts of the province is derived from more juvenile sources, whereas granitoids from
the western side of the craton preserve an older crustal signature. The Nd isotope
boundary is oriented more NE-SW than the Pb isotope line, and passes slightly further
to the east. Despite this, crustal xenoliths from the Grizzly and Torrie kimberlites are

meso-Archaean in age, suggesting that in the Lac de Gras area, juvenile neo-Archaean

crust overlies older meso-Archaean basement (Bleeker ef al., 1999a; Kjarsgaard, 2001).

The 1sotopic subdivision defined by Thorpe ez al. (1992) and Davis and Hegner (1992)
is broadly consistent with the tectonic structure of the craton envisaged by Kusky
(1989), whereby high-strain zones representing orogenic sutures separate four discrete
crustal terranes. From west to east, these tectonic blocks are the Anton terrane, the
Contwoyto terrane and the Hackett River terrane. The Sleepy Dragon terrane is also
included as an easterly extension of the Anton terrane. The current assembly of these
terranes 1s interpreted (Kusky, 1989) as an Archean analogue of collision between a

micro-continent (Anton-Sleepy Dragon) and an island arc and associated accretionary
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prism (Hackett River). The location of the Hackett River terrane thus represents the
position of an ancient subduction zone, with the Contwoyto terrane representing the
fold-thrust orogenic belt produced by the collision of continent and arc. The Lac de
Gras kimberlites are all located within the metasedimentary rocks and associated

granitoid plutons of the Contwoyto terrane.

1.3.2 Vicinity of Lac de Gras

Table 1.2 provides a summary of the bedrock geology of the area around the Lac de
Gras kimberlite field, which is described in detail by Kjarsgaard er al. (2002) and
references therein. The geology of the area (Figure 1.4) is dominated by the
greywackes of the Yellowknife Supergroup (YKSG) and the granitoid plutons that
intruded during and after formation of these metasedimentary units. Metavolcanic
elements are not common in the area, as is typical of the Slave province in general.
The structural grain of the central part of the area, where most of the Lac de Gras
kimberlites are situated, is NW-SE trending, which again is characteristic of the eastern
Slave province (Henderson et al., 1999). Direct evidence for faulting is limited
(Kjarsgaard et al., 2002) but up to four main trends are evident from joint set
measurements (Wright, 1998). These structural elements may play a role in controlling
the distribution of kimberlites in the upper crust within the Slave province and the Lac
de Gras field. The bedrock lithologies intruded by each kimberlite at the present
exposure level 1s also shown in Figure 1.4. The majority of kimberlites investigated
from the BHP claim block on the north side of Lac de Gras are emplaced within
syn-YKSG granitoids, while most of those. from Kennecott claims to the south and
south-east are situated within YKSG metasediments and post-YKSG granitoids at the

present-day erosion level.
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Major kimberlite occurrence
investigated in this study

D Area covered in Figure 1.3b

"EARLY PROTEROZOIC |
@m cover
[7] sikaiine intrusives
ARCHEAN
gnnlh, granodiorite
mm. granite

metagraywscke

intermediate 1o silicic
metavolcanic rocks

mafic and undivided
metavolcanic rocks

Figure 1.3 a) Location of the Lac de Gras and Somerset Island kimberlite occurrences in
continental North America (modified from Kjarsgaard, 2003); b) Generalised geology of the
Slave craton, showing distribution of basement gneisses and metasedimentary and
metavolcanic rocks of the Yellowknife Supergroup (modified from Kusky, 1989).
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Bedrock elements

References

a) Pre- and syn-YKSG basement

Quartzofeldspathic gneisses, granitoid
migmatites and meta-granite/tonalite, e.g. Jolly
Lake Complex

Migmatitic gneiss from SW shore of MacKay
Lake has zircon U-Pb age of 3325+8Ma

Central Slave Basement Complex (CSBC),
consisting of Jolly Lake and similar meta-
granitoid/gneiss complexes (¢.g. Big Lake,
Anton, Sleepy Dragon)

Central Slave Cover Group (~2.9-2.8Ga)
overlies BSBC in Jolly Lake area; small
exposures of quartzites and banded iron
formations (BIF)

b) YKSG volcanics and syn-YKSG felsic/mafic
intrusives

Courageous Lake greenstone belt; ~2700Ma
mafic-dominated west side and ~2670Ma
felsic-dominated east side. Basalts, breccias,
agglomerates, rhyolites, felsic porphyries

Central Volcanic Belt: ~2670Ma intermediate
volcaniclastics and tuffs, plus minor mafic and
felsic lavas

Back River Complex: stratovolcanic
succession composed of andesitic-rhyolitic
lavas, tuffs and volcaniclastics; oldest rocks
~2710Ma, end of activity ~2690Ma

Aylmer Lake volcanic dome: mafic to felsic
volcanics and volcaniclastics of ~2680Ma

¢) YKSG sediments

Extensive meta-greywacke turbiditic
mudstones, divided into Contwoyto (+ BIF)
and Itchen (- BIF) formations. BIFs common
at interface between sediments and volcanics

{continued)

McGlynn (1977); Thompson et al.
(1993; 1994; 1995); Thompson and
Kerswill (1994)

Bleeker et al. (1999a)

Bleeker et al. (1999a)

Bleeker et al. (1999b)

Folinsbee (1949); Moore (1956);
Villeneuve (1993); Thompson and
Kerswill (1994); Villeneuve et al.
(1997)

Bostock (1980), King ef al. (1988);
Mortenson et al. (1988)

Lambert (1982; 1996); van
Breeman et al. (1987); Villeneuve
et al. (2001)

Renaud et al. (2001); MacLachlan
et al. (2002)

Bostock (1980); King et al. (1991)
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Bedrock elements References

d) Syn- and post-YKSG granitoids

~2650Ma biotite tonalities/granodiorites, van Breeman et al. (1990), King et
intruding metasedimentary turbidites al. (1991)

~2625-2608Ma trondhjemites, diorites, quartz

diorites, hornblende-biotite tonalities and van Breeman et al. (1990; 1992);
biotite granodiorites; often found as composite  Villeneuve (1993)

intrusions

~2599-2588Ma muscovite-biotite granites and  van Breeman ef al. (1992);
biotite granites Thompson and Kerswill (1994)

e) Proterozoic intrusions

Dominantly diabase/dolerite dykes divided into
5 groups on basis of orientation and age:
Palaeoproterozoic Malley, Mackay and Lac de
Gras swarms; Mesoproterozoic Mackenzie and
‘305’ swarms

LeCheminant and van Breeman
(1994); Wilkinson et al. (2001)

Table 1.2 Bedrock lithological elements in the vicinity of the Lac de Gras kimberlite field
(summarised from Kjarsgaard et al., 2002).

1.3.3 Location of kimberlite pipes

Stubley (2003) presents a geometric analysis of the distribution of kimberlites within
the Slave province, which indicates that occurrences may be preferentially concentrated
along two ‘corridors’. The ‘western corridor’ is aligned NNE-SSW and encompasses
the kimberlites of the south-west and far northern Slave, which are not represented in
this study. The remainder of the Slave occurrences, including those from the vicinity
of Lac de Gras, Contwoyto Lake, Kennady Lake and Snap Lake (see Appendix A), are
accommodated within a ‘central corridor’ that is oriented broadly NW-SE. Stubley
(2003) suggests that the orientation of these trends correspond to structural controls

operating at lower crustal to mantle depths. Structural elements are clearly important
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controls on kimberlite emplacement, although as Helmstaedt and Gurney (1997) point
out, there may be little or no connection between the tectonic controls on emplacement
within the upper crust, and those that initially trigger melting within kimberlite source

regions.

Figure 1.4 Bedrock geology of the area around the Lac de Gras kimberlite field (from
Kjarsgaard et al., 2002), showing locations of known kimberlites, including those investigated
in this study.

The locations of all Lac de Gras kimberlite bodies investigated in this study are shown
in Figures 1.5 and 1.6. These samples account for 70 of the 80 Slave kimberlite

analyses produced for this study; a more detailed regional breakdown of all samples

analysed is given in section 4.3.2. For convenience of statistical analysis in Chapters
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4-6, the hypabyssal kimberlites are divided into a number of groups, on the basis of
mutual proximity, as indicated in the legend to Figure 1.5. The focus of these groups is
the Grizzly kimberlite (group A1), for which analyses of 14 separate samples have been
obtained. These samples are subsequently considered together with a further eight
hypabyssal kimberlites from ‘central north Lac de Gras’ (group A2). The remaining
six hypabyssal bodies situated north of Lac de Gras constitute group B. The
kimberlites located on or south of Lac de Gras are contained within groups C and D:
the two close clusters of three bodies between Lac de Gras and Aylmer Lake (T-34, T-
35, T-36 and T-19, T-21, T-237) constitute group C, while the remainder of the more
southerly bodies are contained in group D. The grouping of the kimberlites in this way
is primarily an aid to data representation and does not directly imply any petrological or
petrogenetic association. The positions of all Lac de Gras kimberlites included in this

study are identified by name in Figure 1.6.

As indicated in Appendix A, the published ages of kimberlites studied from Lac de
Gras range from 45.2 + 1.3Ma (for Aaron: Creaser et al., 2003) to 73.7 + 3.2Ma (for
C13: Heaman ef al., 2003). All kimberlites from the BHP Billiton claim that feature in
this study and have published ages, fall within a range 0of45.2 + 1.3Ma to 59.7 + 1.5Ma
(Creaser et al., 2003). In contrast, the kimberlites from the De Beers claim south of
Hardy Lake have been dated at 72 + 2Ma (Scott-Smith and McKinlay, 2002), and the
T-series kimberlites from the Kennecott claim area around the northern edge of Afridi
Lake are inferred to be of a similar age (B. A. Kjarsgaard, pers. comm.). Where
published ages are not available for bodies analysed in this study, an age estimate is
provided by the average age of dated kimberlites in their vicinity (53Ma for those in the

immediate vicinity of Lac de Gras, 72Ma for those around Hardy Lake and Afridi
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Lake). In practice, changing the age of any given kimberlite by up to 10Ma only
produces a shift in the calculated initial ratio of 2-3 in the sixth decimal place, or <<1
epsilon unit (see Chapter 6 and Appendix F). It should be noted that while kimberlite
ages are very similar in groups Al, A2 and C (as defined above), groups B and D
include bodies from both the 45.2-59.7Ma age range and the ~72Ma kimberlites more
typical of the Hardy Lake and Afridi Lake areas. Groupings of kimberlites from
beyond the Lac de Gras field (see Chapter 4) also include bodies with a wider range on

ages, these ages are tabulated in Appendix A.

The kimberlites from the Contwoyto (Jericho, Muskox) and South-East Slave fields
(Snap Lake, Kennady Lake) are located just beyond the extent of the map shown in
Figure 1.4, to the north and south respectively. All of these kimberlites intrude
Archaean granitoids (Price et al., 2000, Mogg et al., 2003; Hetman et al., 2003); the
Snap Lake dyke is also known to intrude metavolcanics of the YKSG (Mogg et al.,
2003) and the Jericho and Muskox pipes commonly contain xenoliths of limestone

derived from sedimentary cover that is now completely eroded (Cookenboo and Daoud,

1996).

1.4 PETROGRAPHY

Detailed petrographic studies of the kimberlites from Lac de Gras, which are the focus
of this investigation, have been undertaken by Armstrong ef al. (in press) and B. A.
Kjarsgaard (unpublished). The mineralogy of selected kimberlites studied by these and
other workers is summarised in Appendix B. No significant additional petrography
was undertaken during this project, because the majority of samples were received as

powders; exceptions to this are listed in Appendix C.
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Figure 1.5 Sketch map of area around the Lac de Gras kimberlite field showing locations of
hypabyssal and volcaniclastic kimberlite bodies investigated during this study. Positions are
shown relative to major lakes in the area, and groupings of kimberlites adopted in Chapters 4 and
5 areindicated. Map based on Kjarsgaard e al. (2002).

Hypabyssal kimberlites from the Slave craton, and the Lac de Gras field in particular,
are noted for their freshness relative to samples from southern Africa. In many cases,
such as those illustrated in Figure 1.7, there is minimal evidence of alteration in these
kimberlites, with olivine macrocrysts and microphenocrysts remaining largely
unserpentinised, and low proportions of clay minerals and secondary calcite in the

groundmass. Geochemical measures of alteration are discussed further in section 5.2.
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The apparent absence of alteration in these samples makes them preferable for
petrogenetic studies in comparison to less fresh alternatives. The main petrographic

characteristics of Lac de Gras kimberlites are summarised below.

1.4.1 Silicate and oxide phases

Olivine is ubiquitous in Lac de Gras kimberlites, both as macrocrysts derived from
diaggregated peridotite, and as phenocrysts that have crystallised directly from the
kimberlite magma. Macrocrysts are discriminated from phenocrysts primarily on the
basis of grain size and shape. Macrocrysts are typically anhedral and larger than 1mm,
whereas phenocrysts are typically euhedral to subhedral and smaller than 0.4mm
(Armstrong et al., in press). Although there is some overlap in the Mg number of both
olivine populations, macrocrysts are on average more magnesian than phenocrysts

(Armstrong et al., in press).

Phlogopite macrocrysts are rarely observed in the kimberlites studied, but phlogopite
and kinoshitalite are common microphenocryst and groundmass phases. Koala West
and Porpoise are particularly phlogopite-rich bodies. The majority of phlogopite from
Lac de Gras kimberlites appear to follow Type 1 and Type 3 TiO,-Al,0; compositional
trends as identified by Mitchell (1986). An exception to this is the phlogopite from the
Porpoise body, which follows the Type 2 TiO,-Al,0; trend of Mitchell (1986) towards
tetraferriphlogopite; this trend is more characteristic of the micas in Group II, rather

than Group I, kimberlites (Mitchell, 1995).
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Figure 1.6 Sketch map of area around the Lac de Gras kimberlite field showing locations of
individual kimberlite bodies investigated during this study: a) north and central Lac de Gras; b)
central and south Lac de Gras. Positions are shown relative to major lakes in the area. Map based
onKjarsgaard et al. (2002).
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The modal abundance of spinel varies between Lac de Gras kimberlites, but is present
in greater than accessory quantities in some bodies (Grizzly, Misery East, Rattler) and
is abundant in others (Anaconda, Koala West). Resorbed spinels with ‘atoll’
morphologies (Mitchell and Clarke, 1976) are observed in many bodies (e.g. Anaconda,
Koala West, Porpoise, Rattler) and these are found to be consistently more TiO,-rich
and Cr,O;-poor than non-atoll spinels from other Lac de Gras kimberlites (Armstrong

et al., in press).

Monticellite is present in variable amounts in the Lac de Gras kimberlites studied, and
is quite abundant in the Leslie and Rat kimberlites. Monticellite is easily altered to
calcite (Mitchell, 1986); the presence of fresh monticellite in many bodies is thus
indicative of the exceptional freshness of many Lac de Gras kimberlites. The low Fe
content of monticellite from kimberlites of the BHP claim block distinguishes them
from the majority of other published monticellite analyses (Armstrong et al., in press),
including those from kimberlites of the Diavik property, located just a few kilometres

further south (Masun, 1999).

Perovskite and apatite are present as accessory phases in most of the Lac de Gras
kimberlites; perovskite is particularly common in the Leslie, Porpoise and Rattler
bodies, and apatite is most common in Koala West and Porpoise. These minerals are

important geochemical repositories for elements such as the REEs and U.

Modal abundance of primary groundmass serpentine in the Lac de Gras kimberlites is

very variable, being of minor importance in bodies such as Anaconda, Leslie and

Rattler, more common in Grizzly, Koala West and Misery East, and abundant in
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Porpoise. The abundance levels reported in Appendix B do not include secondary

serpentine introduced by alteration of olivine, monticellite, etc.

Figure 1.7 Photomicrographs showing typical fresh, largely unaltered appearance of Slave
hypabyssal kimberlite in thin section: a) Leslie (Lac de Gras field), x2.5, PPL; b) Leslie, x2.5,
XPL; ¢) Muskox (Contwoyto field), x2.5, PPL; d) Muskox, x2.5, XPL. Courtesy of Dr. B. A.

Kjarsgaard.

1.4.2 Carbonate phases
Carbonates occur in kimberlites as either primary, magmatic phases, or as secondary
phases introduced by alteration of minerals such as olivine, monticellite and phlogopite.

Careful examination of textures for the presence of pseudomorphs can help to
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determine which carbonates are the result of alteration, but more recently stable isotope
studies have been used to distinguish primary and secondary carbonate. Preliminary
carbon and oxygen isotope data indicate that the majority of carbonates in the Lac de
Gras kimberlites studied have mantle-type signatures, and are thus primary
crystallisation products from a CO,-rich magma (B. A. Kjarsgaard, pers. comm.). This

again demonstrates the freshness of many of these kimberlites.

Four separate parageneses of carbonate mineralisation in the Lac de Gras kimberlites
are listed in Appendix B. The most commonly observed is that of non-segregational
accumulations throughout the groundmass. Sr-Ba calcite is particularly ubiquitous
among carbonate phases from Lac de Gras kimberlites, with the cores of calcite grains

typically more enriched in Sr and Ba than the rims (Armstrong et al., in press).

Carbonate of intermediate calcite-dolomite composition is observed in the Anaconda,
Misery East, Rat and Rattler bodies; in these instances discrete domains of calcite-
dolomite and dolomite-magnesite solid solution exist within carbonate grains
(Armstrong ef al., in press). End-member compositions of dolomite or magnesite are
rarely observed. Armstrong et al. (in press) divide the eight kimberlites in their study
into two groups that are, respectively, predominantly calcite-bearing and dolomite-
bearing. The calcite-bearing group commonly exhibit strongly serpentinised olivine
phenocrysts, abundant groundmass monticellite that is unaltered, or pseduomorphed by
calcite, and a serpentine-rich groundmass. Conversely, the dolomite-bearing group
display fresh olivine phenocrysts, and a groundmass that contains an abundance of
monticellite that is psedumorphed by serpentine, but is otherwise serpentine-poor.

Armstrong et al. (in press) interpret these relationships as evidence of the Lac de Gras
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kimberlites being derived from magmas that have variable CO,/H,O contents, with
high CO,/H,O magmas crystallising dolomite-rich carbonate paragenesis, and low
CO,/H,0 magmas producing calcite-rich parageneses. Kimberlite carbonates may
therefore contain a great deal of information regarding the relative abundance of

volatile components within the parent magma.
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Chapter 2

Pre-concentration of Hf, Nd and Sr from
the kimberlite matrix

2.1 CHAPTER OVERVIEW

During the course of this project it has been necessary to develop a new
pre-concentration chemistry procedure to address the difficulties associated with
obtaining consistently high yields of Hf from kimberlites. The new technique
incorporates modifications to a number of existing, published methodologies, and has
the advantage of enabling time- and cost-efficient separation of Hf, Nd and Sr from a
wide variety of geological samples prior to isotopic analysis by PIMMS. This chapter
presents the rationale for this new technique, describes the methodology and provides a
discussion of associated issues regarding the analysis of samples prepared in this

manner, with particular reference to applying corrections for isobaric interferences.
A previous version of this chapter has been published as Dowall et al. (2003).

2.2 INTRODUCTION

Ultramafic rocks and their constituent minerals pose a particular problem in Hf isotope
geochemistry, as they are one of the few groups of geological materials that cannot be
routinely analysed for Hf isotope composition using procedures based on established
chemical pre-concentration techniques. This is principally due to the fact that these

materials contain very high levels of Mg and Ca in relation to their Si content.
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The technique presented here was developed initially as a means of obtaining improved
yields of Hf from kimberlites, which typically have some of the highest Mg/Si and
Ca/Si ratios encountered in silicate rocks. It can, however, be successfully applied to a
wide range of whole rock and mineral separate samples to perform the necessary pre-
concentration chemistry for Hf, Sr and Nd isotopic analysis from a single dissolution.
The combined chemistry and mass spectrometry technique also offers significant
benefits in terms of cost and time efficiency in comparison to other published

procedures.

One of the major benefits of performing isotopic analyses by plasma ionisation
multi-collector mass spectrometry (PIMMS, aka MC-ICP-MS) is that large numbers of
samples can be analysed very quickly in comparison to thermal ionisation mass
spectrometry (TIMS). Consequently, it is now usually the case that pre-concentration
chemistry, not mass spectrometry, is the rate-determining step in obtaining an analysis.
The rapidity of this procedure is therefore well suited to studies requiring large

throughputs of samples for Hf-Sr-Nd isotopic characterisation.

2.3 PRE-CONCENTRATION OF TRACE ELEMENTS FROM GEOLOGICAL
MATERIALS

2.3.1 The role of chemical pre-concentration in isotope geology

Studies of the isotopic character of geological materials require that the element, or
elements, of interest (e.g. Sr, Nd, Hf, Pb, Os and their respective radioactive parents)

are efficiently separated from the bulk matrix of the sample.
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This process, commonly known as pre-concentration, is essential when employing
TIMS techniques, because the presence of impurities on the filament can seriously
inhibit ionisation of the analyte and may also lead to severe isobaric interferences. The
advent of PIMMS during the last decade has effectively eliminated the problem of
ionisation suppression due to the very high temperatures attainable within the plasma.
Recent associated developments such as dynamic reaction cells have, for some
applications, also reduced the need for pre-concentration as spectral overlaps can be

resolved within the instrument.

However, to achieve the extremely high levels of analytical precision required in
isotope geochemistry (e.g. <20ppm accuracy and 10-20ppm internal precision) it is
desirable to separate the analyte as fully as possible from other elements that may cause
atomic (e.g. *Rb on ¥Sr) or polyatomic/molecular (e.g. BaO on Nd) isobaric
interferences, or matrix effects. This is achieved typically by dissolution of a powdered
rock sample in an appropriate combination of acids, and subsequently isolation of the
analyte by utilisation of the selective retention and release of different elements on ion-

exchange resins in the presence of acid solutions.

2.3.2 Limitations of silicate digestion techniques

Conventional procedures for the dissolution of silicate rocks are all based around attack
by hydrofluoric acid (HF), usually in combination with another mineral acid. HF is the
only acid that can readily dissolve silicates, due to the solubility of the SiF¢’ ion in acid
solution. A review of the rationale for mixed-acid digestion of silicates is given in
Potts (1987). Once digested, the sample is dissolved in a dilute acid appropriate for the

1on-exchange technique being employed.
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Not all fluorides are highly soluble. Magnesium and calcium in particular have been
shown to form a variety of insoluble fluoride compounds on digestion of silicate
minerals with concentrated HF (Langmyhr and Kringstad, 1966; Croudace, 1980).
These compounds incorporate, or co-precipitate, a wide range of trace elements within
their structures (Yokoyama et al., 1999), directly affecting the yields. This process can
have disastrous consequences for elemental abundance determinations and inter-
element fractionation (Boer et al., 1993). Although 100% yields during dissolution are
not essential for heavy (high mass number) isotope ratio measurements, low yields
translate directly into smaller signals, and consequently less precise analyses, according

to counting statistics.

The solution chemistry of Hf is particularly sensitive to co-precipitation by insoluble
Ca-Mg fluorides. Consequently, a key objective of obtaining consistently high Hf
yields during sample dissolution is to avoid or limit the formation of these compounds.
One solution to this problem is the addition of perchloric acid (HC1O;,) during or after
the initial HF digestion step (Walsh, 1980; Patchett and Tatsumoto, 1980; Blichert-Toft
et al., 1997), to drive off residual HF on evaporation. XRD characterisation of
precipitates formed by HCIO, addition (Yokoyama et al., 1999) appears to confirm that
HF is completely expelled from the solution, suppressing fluoride formation.
Unfortunately, these studies also report formation of oxide precipitates during
evaporation of HCIO,. XRD analysis indicates that these oxides also contain high field

strength elements (HFSE) such as Hf (Yokoyama ef al., 1999).
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David ef al. (1999; 2001) suggest that the co-precipitation of Hf into insoluble fluorides
is a function of the silica content of the sample, with low-silica materials being more
likely to be associated with poor yields of tetravalent ions. Consequently, Hf extraction
when using HF-based digestion procedures might be expected to be most problematic

from materials with high Mg/Si and Ca/Si ratios.

Mg/Si and Ca/Si ratios vary widely in igneous rocks (Figure 2.1). Sub-alkaline and
alkaline non-potassic basic to acidic rocks are all located within a region bounded by
Mg/S1 <0.3 and and Ca/Si <0.35. Few problems with Hf yield are encountered when

using HF to digest such rock types.

Ultrabasic rocks have higher Mg/Si in the range 0.5-1.5 and Ca/Mg below 0.4.
Common mineral separates such as garnet, orthopyroxene and clinopyroxene similarly
have Mg/Si between 0.5-1.0 and Ca/Si of less than 0.5. With the exception of
clinopyroxene, which has the highest Ca/Si ratio, these sample types also tend not to
pose particular problems regarding extraction of trace elements when using

conventional HF-based chemistry.

In contrast to most types of igneous rocks, Mg/Si and Ca/Si ratios in kimberlites are
both elevated and highly variable. This is due largely to the fact that kimberlites are
crystallisation products of complex, hybrid magmas that are naturally lower in silica
(typically 20-40%, average ~32% SiO,) than most igneous rocks. This suggests that
severe problems with fluoride formation and co-precipitation of trace elements should

beset dissolution of kimberlites, and in practice this is generally the case. Hf yields
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Figure 2.1 Variation in average Mg/Si and Ca/Si ratios for some common geological materials.
Based on data from Le Maitre (1976).

vary widely (from 90% to almost zero) in an unpredictable manner, reducing

systematic analysis of suites of kimberlites virtually to a process of ‘trial and error’.
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23.3 Existing procedures for dissolution and separation of Hf, Sr and Nd from
geological materials

Table 2.1 provides a comparison of the modified procedure presented here with some
widely adopted published procedures for separation of Hf, Sr and Nd. All of these
techniques involve a HF-based digestion of the silicate rock matrix, followed by
isolation of the elements of interest from solution using ion-exchange columns.
Variations between techniques arise mainly from differences in the target element and
the method of analysis, i.e. TIMS versus PIMMS. Most procedures in the literature
tend to be specific to a single element and, as a result, multi-element isotope studies
require multiple dissolutions of a sample, increasing the amount of time and resources

expended on acquiring data for a single sample.

The simplest kind of scheme is that reported by Fraser (1987) for Sr and Nd separation.
After a mixed HF and HNO; digestion, followed by treatment with HNO; and dilute
HCI, the sample is ready for the ion-exchange process. The separation of Hf requires
additional steps. The majority of recent techniques for Hf separation are based on
anion-exchange chemistry (Blichert-Toft ef al., 1997, David ef al., 1999, 2001; Salters
and Hart, 1991; Nowell ef al., 1998a). In this approach the sample is loaded on to the
column in dilute hydrofluoric acid solution, with Hf present as an anion complex. This
requires a time consuming series of acid leaching and decanting steps with dilute HF to
extract Hf from the fluoride precipitate formed during digestion. In our cation-
exchange chemistry this leaching step is unnecessary and excellent Hf yields can be
obtained using a standard dissolution procedure similar to that used by Fraser (1987)

for Sr and Nd.
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The length of time required for the dissolution stage depends, to a large extent, on the
nature of the sample. Samples containing refractory accessory phases such as zircon
ideally require a high-pressure bomb dissolution or fusion technique to ensure that all
silicates are fully decomposed, and this can take several days. Otherwise, a duration of

2-3 days is typical of most techniques, including that proposed here.

The quantity of acid used during the digestion is more variable and is broadly
dependent on the amount of rock powder being digested. This has been reduced over
the years as advances in analytical instrumentation have permitted high-precision
analyses to be obtained from progressively smaller amounts of analyte. The volume of
acid used in our procedure is minimal compared to most published techniques, which

assists in reducing associated blank levels.

In previous integrated Hf-Nd-Sr isotopic studies of rock suites it has been common
practice to perform one dissolution for Sr and Nd and a second dissolution on a
separate aliquot of powder for Hf. A sufficiently pure Sr fraction can then be obtained
from a single cation-exchange column, with the Nd fraction obtained requiring a further
purification step on a subsequent column. Separation of Hf is a more involved process,
typically requiring 3 columns to fully isolate Hf from Ti and Zr (Patchett and
Tatsumoto, 1980; Salters and Hart, 1991; Nowell ef al., 1998a). This is an essential
requirement for TIMS analysis but for analysis of Hf by PIMMS the Zr removal step is
unnecessary (Blichert-Toft ef al., 1997). Using the modified technique presented here

it can be demonstrated that, contrary to Blichert-Toft et al. (1997), only partial removal
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of Ti is necessary to ensure a high-precision Hf analysis (section 2.4.4), simplifying the

chemistry further.

Because our procedure enables Hf, Nd and Sr fractions to be collected from a single
cation-exchange column, the amount of dissolution and column chemistry required for
a batch of samples is significantly reduced. The effect this has in terms of reduction in

column stages, resin, reagents and time is evident from Table 2.1.

24 A MODIFIED PROCEDURE FOR DISSOLUTION AND CHEMICAL
SEPARATION OF Hf-Sr-Nd FROM GEOLOGICAL MATERIALS

2.4.1 Dissolution of the silicate matrix

The sample dissolution scheme is shown in Table 2.2. Whole rock digestions are
carried out in 15mL Savillex teflon beakers using approximately 100mg of sample
powder. All dry-downs for isotopic work at Durham University are conducted using
infrared lamps in a HEPA filtered clean air environment to minimise the likelihood of

fall-in blank during the evaporation.

2.4.2 Stage I ion-exchange column

The purpose of this step is to produce separate Hf-, Sr-, and Nd-bearing fractions that
are, as far as possible, free of elements which may cause isobaric or matrix
interferences (e.g. '"°Lu on °Hf, *’Rb on ¥7Sr). 1.5mL of Bio-Rad AG50W-X8 200-
400 mesh cation-exchange resin is loaded into an 8 x 40mm Bio-Rad polypropylene
column. Before sample loading the resin is cleaned and pre-conditioned according to
the scheme outlined in Table 2.3. After each use the resin may be cleaned and reused

without any loss in functionality.
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The elution scheme for this chromatography column (Table 2.4) is based on a measured
calibration profile (Figure 2.2) produced by collecting successive 1mlL fractions of a
dissolved kimberlite sample and analysing them using the PerkinElmer ELAN 6000
quadrupole ICP-MS at Durham University. Table 2.4 also indicates which other
elements are collected along with Hf, Sr and Nd. The Nd cut, for example, is a general
rare earth element (REE) fraction, containing the elements La through to Lu. It is
essential to include the Ba removal step indicated in Table 2.4 for any samples with
high Ba concentrations, such as kimberlites. This is because BaO" formed in the
plasma causes several isobaric interferences on Sm and Nd isotopes, which cannot be
corrected for with sufficient accuracy. This has a detrimental effect on the corrections

made for mass bias and interfering elements (section 2.6.4).

Overlap between Hf, Sr and Nd peaks on this column is effectively zero (Figure 2.2),
and the narrowness of each peak permits virtually the entire fraction of each element to
be collected in a small volume of acid, which promotes excellent column yields and
low blanks. Furthermore, it is evident from Figures 2.3a and 2.3b that almost complete
separation of Hf from Lu and Sr from Rb can also be achieved. In practice the Sr cut
contains a small amount of Rb for which an interference correction must be made
(section 2.6.4). The small spike in Lu present within the Hf-bearing fraction is
probably due to breakthrough of cations that are only loosely bound to the resin; this is

a common phenomenon at the beginning of an elution.

Nd and Sm are both rare earth elements and therefore have very similar chemical

properties. As a result it is not possible to separate them using this chemistry (Figure
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2.3¢). Fortunately, one of the major advantages of PIMMS techniques in comparison to

TIMS is the ability to ionise and monitor element pairs like Sm and Nd or Rb and Sr

Reagent Action Purpose
1 mL 16N HNO, + Seal, 24-48 hrs at 120°C Conversion of silicates to H,SiFs
4 mL 29N HF Drv down Decomposition of H,SiF4 to SiF,;
y volatilisation of SiF, and excess HF
2 mL 16N HNO Seal, 24 hrs at 120°C Residual HF removed; sample in soluble
3 Dry down nitrate form
Seal, 24 hrs at 120°C
5 mL 12N HCI Solution in chloride form
Dry down
1 mL 1N HCI Warm Sample in same medium as conditioned
columns

Table 2.2 Procedure for dissolution of silicate geological materials.

Reagent Volume (mL) Purpose
4N HF 10 Removes residual Hf
18.2MQ H,0 10 Washes off HF
6N HCI 10 Removes residual Nd and Sr; converts resin to chloride
form
18.2MQ H,0 10 Washes off HCI1
IN HCI 10 Conditions column in loading acid

Table 2.3 Procedure for cleaning and pre-conditioning of Bio-Rad AG50W-X8 cation-exchange resin.

Reagent Volume (mL) Action Fraction contents
st f
1IN HCI 1 Load and collect Hf -+ other .H.FSE and 17 period
transition elements
st 3
IN HF - IN HCI 3 Collect Hf+ other HFSE and 1 period
transition elements
IN HF - 1IN HCI 13 Elute Bulk sample including Rb
2.5N HCI 14 Collect Sr + other alkaline earths
2N HNO; 10 Elute Ba
6N HCI 12 Collect Nd + other REE

Table 2.4 Procedure for separation of Hf-, Sr- and Nd-bearing fractions from the Stage I column.
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Figure 2.2 Calibration curve for elution of Hf, Sr and Nd from Bio-Rad AG50W-X8 200-400 mesh

cation-exchange resin. ‘Intensity’ scale represents recorded signal intensity in millions of counts per
second.

simultaneously and then make a mathematical correction for any spectral overlaps
(section 2.6.4). Consequently, the Sr- and Nd-bearing fractions obtained from this

column require no further processing and once diluted in 3% HNO; are ready to be

analysed.

2.4.3 Stage Il ion-exchange column

This column stage consists of a 8 x 40mm Bio-Rad polypropylene column containing
ImL of Bio-Rad AGI1-X8 200-400 mesh anion-exchange resin, cleaned and
pre-conditioned before sample loading according to the scheme outlined in Table 2.5.
As with the stage I columns, the anion-exchange resin may be cleaned and re-used

without compromising the chemistry in any way.
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Figure 2.3 Calibrated degrees of separation of: a) Hf from Lu; b) Sr from Rb; ¢) Nd from Sm, during
mixed acid elution from Bio-Rad AGS0W-X8 200-400 mesh cation-exchange resin. ‘Intensity’ scale
represents recorded signal intensity in millions of counts per second.
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Volume

Reagent (mL) Purpose
29N HF 10 Removes residual Hf
18.2MQ H,0 10 Washes off HF
12N H;80, 10 Converts resin to sulphate form
18.2MQ H,0 10 Washes off H,SO,
0.52N H,S04 - 5% H,0, 10 Conditions column in Joading acid

Table 2.5 Procedure for cleaning and pre-conditioning of Bio-Rad AG1-X8 anion-exchange resin.

Volume .
Reagent (mL) Action Contents
. st .
0.52N H,S04— 5% H,0, 1 Load and elute Ti and other 1" period
transition elements
- st .
0.52N H,S0, — 5% H,0, 4 Elute Ti and other 1™ period
transition elements
IN HF — 2N HCI 5 Collect Hf, Zr + other HFSE

Table 2.6 Procedure for separation of Hf and Zr from Ti on the Stage II column.

The purpose of the second stage column is to remove Ti, which according to Blichert-
Toft et al. (1997) can reduce the transmission of Hf within the PIMMS instrument.
This is supposedly due largely to deposition of titanium oxide around the aperture of

the skimmer cone, although space-charge effects in the ion beam may also be a factor.

The procedure for separating Ti from Zr and Hf (Table 2.6), is a modified and
miniaturised version of the widely adopted technique presented by Barovich et al.
(1995). The elution profile shown in Figure 2.4 demonstrates that for low-Ti samples,
such as many kimberlites, 5SmL of 0.52N H,SO4 — 5% H,0, is sufficient to remove

almost all Ti from the resin, and significantly reduce the Ti/Hf ratio in the collected
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fraction. Even in the case of samples with higher Ti content, such as basalts, SmL of
0.52N H,SO4 — 5% H,0, removes enough Ti to ensure that transmission of Hf in the

PIMMS instrument is not inhibited.

10 , |
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Figure 2.4 Calibration curve for elution of Ti, Hf and Zr in a synthetic kimberlite matrix from Bio-
Rad AG1-X8 200-400 mesh anion-exchange resin. Dashed line indicates change of eluant from
0.52N H,SO,-5% H,0,,to INHF - 2N HCL.

2.4.4 Testing the criticality of Ti removal for Hf isotope ratio determination

To ensure that miniaturisation of the Ti removal chemistry was justifiable and that data
quality was not being compromised, a separate experiment was conducted to
investigate the sensitivity of Hf to the presence of Ti in solution. A series of 50ppb and
200ppb Hf standard solutions (made from 1000ppm Johnson Matthey ICP standard)
doped with progressively larger amounts of Ti were analysed on the ThermoFinnigan

Neptune PIMMS instrument at Durham University. The analysis method was identical
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to that used for samples (see section 2.6) and the average '*°Hf intensity and measured

761£/'""Hf ratio were recorded for each solution.

It is evident that the presence of Ti up to concentrations of 100ppm in either a 50ppb or
200ppb Hf solution has very little effect on the intensity of the '*°Hf beam (Figure
2.5a). At concentrations in excess of ~500ppm, the '*°Hf intensity begins to diminish
exponentially. This critical value appears to be similar for both the 50ppb and 200ppb
Hf solutions, which suggests that it is the absolute abundance of Ti in solution, rather
than the Ti/Hf ratio, that controls the measured Hf intensity. After running solutions
containing in excess of 1000ppm Ti, the undoped Hf solutions were re-analysed. In
both cases it was found that the "**Hf signal only recovered to about 60% of its initial
intensity. This suggests that the effect of large amounts of Ti in a solution is not
transient, as would be expected if Ti were simply causing ionisation suppression of Hf

in solution.

A critical part of an ICP-MS instrument is the low vacuum interface region, which
enables transmission of ions from the plasma source, at atmospheric pressure, to the
focussing and mass analysis systems, which are kept at moderate and high vacuum,
respectively. The interface region consists of two nickel cones, known as the sampler
and skimmer cones. These are arranged co-axially, allowing ions to pass through the
apertures at their vertices into the instrument, while deflecting away other, uncharged
particles in the ion beam. After running the series of Ti-doped solutions through the
instrument, these cones were found to be coated with white deposits of titanium oxide,
reducing the size of the aperture. Consequently, the efficiency of ion transmission

across the instrument interface had been reduced.
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Figure 2.5 Variation in: a) measured '“Hf intensity; b) measured '"*Hf/'""Hf isotope ratio, with

different levels of Ti doping in Johnson Matthey Hf ICP standard solution. Dashed line in (b)
represents accepted value for IMC 475 Hf isotopic standard (0.28216, Nowell ez al., 1998). This
standard is considered to be isotopically indistinguishable from the JM Hf ICP standard (Blichert-
Toftetal., 1997).
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The ""°Hf/'"Hf ratio measured for each doped 200ppb Hf solution is shown in Figure
2.5b. The Johnson Matthey Hf ICP standard is considered to be isotopically
indistinguishable from the JMC 475 international Hf isotope solution standard
(Blichert-Toft et al., 1997), for which the established '"®Hf/'"’Hf ratio is 0.282160
(Nowell et al., 1998a). The measured value in the Ti-doped solution does not deviate
from within error of this accepted value until the Ti concentration is raised to in excess
of 1000ppm. The associated internal precision, in terms of the standard error of the
mean, only begins to deteriorate significantly at these levels. This effect is not directly
due to any molecular interaction between Ti and Hf in solution, but is predominantly
the result of the decrease in instrumental sensitivity. There is thus little evidence that
the presence of Ti in the sample solution at concentrations below 1000ppm is
responsible for reduction in accuracy or precision of isotopic measurements, such as the

‘systematic drift’ in measured Hf isotopic ratios reported by Blichert-Toft ef al. (1997).

This observation supports our approach of not fully removing Ti from samples prior to
Hf isotopic analysis, which would require a particularly time-consuming elution and
subsequent fuming of H,SO4 (Barovich er al., 1995) for samples containing several
weight percent TiO,, e.g. basalts or ilmenite. While we do not advocate the routine
analysis of sample solutions containing several hundred parts per million Ti, as this will
result in cones regularly becoming encrusted with Ti deposits, our observations
introduce the possibility of reducing the amount of elution required on the second stage
column. Reduction in the elution volume can contribute towards minimising blank

levels, and is both more time- and cost-efficient.
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2.5 BLANKS AND YIELDS
Blank levels for Hf, Nd and Sr measured in both the dissolution and column stages of
the chemistry are reported in Table 2.7. The total procedural blank (TPB) is considered

to be the sum of the blank contributions from these two stages.

. . Stage I column blank Stage IT column blank
Analyte Dissolution blank
Y (p2) (pg) (rg)
Hf 30 30 70
Nd 20 50 —
Sr 200 300 —

Table 2.7 Measured Hf, Nd and Sr blanks measured from the dissolution and column stages.

The respective TPBs of 130pg and 70pg for Hf and Nd are negligible in comparison to
the amount of Hf and Nd in a kimberlite dissolution, which is typically in the order of
100ng of Hf and 1000ng of Nd. For 100mg kimberlite dissolutions the high levels of
Sr and Nd in these rocks meant that ultra-pure acids were not considered necessary.
This resulted in a Sr blank of ~500pg. This value is unusually high, and may also
reflect the presence of residual Sr, not fully removed by the Teflon cleaning procedure,
in the beakers used for preparing the Sr blank analyses. In the case of samples with low
(sub-pg levels) of Sr, blanks can be further reduced by use of commercial ultra-pure
grade or Teflon re-distilled acids, and more stringent Teflon cleaning protocols.
Microchemistry techniques have recently been developed at Durham University, which

offer Sr blanks of ~10-15pg.

Typical yields of Hf, Sr and Nd using this modified chemistry are reported for three

different sample types in Table 2.8. All of these recoveries compare favourably with
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those quoted for similar pre-concentration techniques and ensure sufficient quantities of

analyte are present to obtain a high-precision isotopic analysis.

Sample type Hf yield (%) Nd yield (%) Sr yield (%)
Alkali basalt >85 >90 >70
Lamproite >80 >75 >70
Kimberlite >80 >75 >70

Table 2.8 Typical recoveries of Hf, Nd and Sr from different geological materials.

2.6 MASS SPECTROMETRY

2,6.1 General

All isotopic measurements on samples processed using this modified chemistry have
been made using the ThermoFinnigan Neptune PIMMS instrument at Durham
University. This represents the majority of all Hf, Nd and Sr isotopic analyses within
the dataset for this study. The remainder of the Hf analyses were performed by PIMMS
on a VG Elemental Plasma 54, and some of the Nd and Sr analyses were acquired by
TIMS using a Finnigan MAT 262, at the NERC Isotope Geosciences Laboratory
(NIGL), Keyworth. All sample preparation for these analyses was based on prototype
versions of the chemistry described in the previous sections, and is not discussed
separately here. The operating conditions described below are those used routinely on
the Neptune instrument at Durham; these do not differ significantly from those used

with the Plasma 54 at NIGL.

2.6.2 Sample introduction
Once collected from the ion-exchange columns, the Hf, Sr and Nd fractions are

evaporated to dryness and taken up in 1mL 3% HNO; solution. Sample solutions are
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introduced into the plasma using an Elemental Scientific Inc. (ESI) PFA-50 microflow
nebuliser and an ESI dual cyclonic Scott double pass (CSDP) quartz spray chamber.
For lower concentration samples a Cetac Aridus desolvating nebuliser is used for
sample introduction. Typical sample uptake rates were 70-100ul/min. Each analysis is
based on the average of 90 measurement cycles with an integration time of 4.1 seconds

per cycle.

2.6.3 Cup configurations

The Durham Neptune is equipped with nine Faraday cup detectors. The standard cup
configurations employed for each element are shown in Table 2.9a-c. Hf, Nd and Sr all
have isotopes that are subject to isobaric interferences, which are also shown in Table

2.9.

L4 L3 L2 L1 Axial H1 H2 H3 H4
aHf 'Yb Pyp 1750 176y £ e By 19¢ 180 4¢
1767 1807, %
176y, 180y

b) Nd 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 149Sm 150Nd
142Ce 144Sm 148Sm 150Sm

oSt ¥Kr  ®Kr  ¥sr  ®Rb g Sy Sy
gy ®Kr  *Rb

Table 2.9 Standard cup configurations for isotopic analysis of: a) Hf. b) Nd; ¢) Sr, on the Thermo-
Finnigan MAT Neptune at Durham University. Isobaric interferences on specific isotopes are shown in
italics. * = interference not corrected for.

2.6.4 Interference corrections
One of the main sources of isobaric interference during isotopic analysis of Hf, Nd and

Sr arises from spectral overlaps from the parent elements of the analyte, i.e. Lu on Hf,
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Sm on Nd and Rb on Sr. There are also other isobaric overlaps to account for, namely
Yb on Hf, Ce on Nd and Kr on Sr. The correction for **Kr is particularly critical

because instrumental mass bias during Sr analyses is measured using the **St/**Sr ratio.

The separation of Hf from Lu and Yb provided by the modified chemical procedure
presented above is such that corrections to the "*Hf/'’"Hf ratio are in fact minor and
can be performed during data acquisition by applying established (Nowell and Parrish,
2001) values for the natural "°Lw/"’Lu and "°Yb/'*Yb ratios. Since Rb is not
completely separated from Sr, and Sm and Nd are not resolved at all by the chemistry,
larger corrections are required on measured *’Sr/*Sr and '*Nd/"**Nd ratios. At present
these are performed externally to the data acquisition routine. Detailed descriptions of
fhe correction procedures adopted for isobaric interferences on Hf, Nd and Sr are given
in Nowell and Parrish (2001) and Nowell er al. (2003). To provide an example of the
general principles of the correction routines, an outline of the procedure for Nd is given

below.

Nd is subject to isobaric interferences from Sm and Ce on four of its seven isotopes
(Table 2.9). The objective of the correction procedure is to determine how much of the
signal intensity measured at a particular mass is due to the appropriate Nd isotope, and
how much is due to the interfering element. One approach is to peak-strip measured
“2Nd, **Nd, '**Nd and "“°Nd away from the interfering Sm and Ce isotopes. This is
possible because the Sm and Ce interferences are all on stable Nd isotopes and the
ratios of these isotopes to the stable, interference-free '**Nd and '**Nd isotopes are well

established (Wasserburg ez al., 1981).
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The alternative approach, which is currently in use at Durham, is to peak-strip Sm from
Nd. Unfortunately, the cup configuration used (Table 2.9b) does not permit stripping
of '“Ce from '**Nd, as it does not include an interference-free Ce monitor peak (e.g.
"Ce).  However, measurements of four stable Nd isotope ratios (‘*’Nd/"*'Nd,
"oNd/"*Nd, **Nd/"**Nd and “*Nd/ **Nd) are made in each analysis to ensure that the
'"Nd/"**Nd ratio obtained is reliable and the Sm correction is accurate.

“*Sm and '*’Sm is made by monitoring the

The correction for the presence of '*‘Sm,
intensity of the interference-free '*’Sm and '**Sm isotopes in the H1 and H3 cups. The
“7Sm/"*’Sm ratio is used to derive the instrumental mass bias for each sample by
comparison to the accepted value of 0.9216 (Wasserburg et al., 1981). Application of
this mass bias coefficient to the accepted values of "“*Sm/**’Sm, '**Sm/'*’Sm and
P0Sm/*'Sm (Wasserburg ef al., 1981; Table 2.10) enables the ‘measured’ values of
these ratios to be calculated for each sample. Since the measured intensity of '*'Sm is
known, the ‘measured’ '**Sm, '®Sm and '*’Sm intensities can then be determined.
Subtracting these values from the measured intensities at masses 144, 148 and 150

gives the true intensities for “*Nd, '®Nd and "Nd, from which the ‘measured’,

interference-free '*Nd/"**Nd, '**Nd/'**Nd and "*°Nd/***Nd ratios can be obtained.

IMSmll47Sm 148Sm/147sm ISOSm/147Sm

0.20504 0.74970 0.49213

Table 2.10 Natural Sm isotope ratios (from Wasserburg ef al., 1981) used for correction of isobaric
interferences of Sm on Nd.

Although the same principles can be used to correct for the interferences of *Kr and

8"Rb on *Sr and 87Sr, the situation is more complicated (Nowell et al., 2003). Kr is an
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inherent impurity in the argon supply, and consequently, the **Sr/**Sr ratio, which is
used in TIMS analysis to determine the Sr mass bias of the instrument, is not
interference-free in a PIMMS analysis due to the presence of *Kr. A correction for the
presence of **Kr must be applied before a mass bias measurement can be made. The
difficulties associated with making accurate corrections for interference of Kr and Rb
on Sr, and approaches for resolving these problems, are discussed in detail in Nowell et

al. (2003).

2.6.5 Accuracy, precision, reproducibility and repeatability of corrected data

To ensure that sample data is of consistently high quality during isotope ratio
measurement it is essential to regularly monitor the accuracy and reproducibility of
isotopic values in a standard reference material. The long-term reproducibility of the
oH/"HE, "*Nd/"**Nd and ¥Sr/*°Sr ratios for appropriate standard solutions during
the first two years of operation of the Durham Neptune is shown in Table 2.11.
Average measured values for these ratios are within error of the accepted values.
Further details of the long-term performance of the Durham Neptune and
reproducibility of other Hf, Nd and Sr isotope ratios are presented in Nowell et al.

(2003).

It is also important to ensure that the interference corrections applied to the data, such
as for Sm on Nd, are accurate and consistent over time. To achieve this it is common
practice at intervals during Nd analytical sessions at Durham to run both a pure J&M
Nd isotopic standard solution and the same solution doped with Sm to give a Sm/Nd
ratio of 0.2 or 0.4. Table 2.11 shows the close agreement between the mean measured

"“Nd/"**Nd ratio in doped and undoped solutions of the J&M Nd standard. The
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variation in measured "“Nd/"**Nd, “*Nd/'**Nd and "°Nd/"**Nd ratios for both doped
and undoped J&M over time (Nowell er al., 2003) indicates that the interference

correction routine produces values that are both accurate and reproducible.

Element and Accepted Number of Mean Error Error
Standard Ratic value standards measured (+2SD (+2SD
(with refs) run value abs) ppm)
Hf JMC 475) 'SHE'Hf  0.282160" 237 0.282156 11 39
Ndpgr‘i‘)“’l T OONGMNG 0511112 258 0.511101 17 33
I\;‘Iln gg}‘}:{i)‘ BNAMIND 0511112 136 0.511105 18 35
Nd J&M —all) '""Nd/™Nd  0.51111? 394 0.511103 18 34
Sr (NBS 987)  ¥Sr/*st 0.71024° 274 0.710264 26 37

Table 2.11 Reproducibility of measured Hf, Nd and Sr isotope ratios for standard solutions. Based on
all analytical sessions conducted during first year of operation of the Durham Neptune. References: 1 =
Nowell ez al. (1998a); 2 = Royse et al. (1998); 3 = Thirlwall (1991).

A further check on the effectiveness of the interference corrections is provided by a
comparison of Nd data for clinopyroxenes run by PIMMS with values for the same
samples previously determined by TIMS (Figure 2 in Nowell ef al., 2003). The close
agreement between the two data sets suggests that use of the chemical pre-
concentration procedure proposed here, in conjunction with PIMMS techniques and
appropriate mathematical corrections for residual isobaric overlaps, can produce data of

comparable accuracy and precision to that obtained by TIMS.

The repeatability of isotope ratio measurements between replicate analyses of a single

sample, such as for the kimberlite shown in Figure 2.6, is also excellent. GRZ-1/1,
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Figure 2.6 Effect of applying interference corrections to: a) Nd isotopic ratios; b) Sr isotopic ratios, for
three replicates of the kimberlite GRZ-1. Open symbols are uncorrected data; closed symbols are
corrected data. Dashed lines denote mean values. All errors are + 2 standard deviations from the mean.
Error bars in (b) are smaller than the data points at scale of the diagram.

GRZ-1/2 and GRZ-1/3 are separate dissolutions of the same whole rock kimberlite
powder, processed using the modified pre-concentration chemistry and analysed by
PIMMS with appropriate interference corrections for Nd and Sr. The repeatability of
the '*Nd/'**Nd and ¥ Sr/*Sr ratios is represented by the magnitude of the deviation of
each replicate analysis from the mean (Figure 2.6). It is evident that the repeatability of
the "’Nd/'**Nd ratio and, in particular, the ¥Sr/*Sr ratio is greatly improved by

applying appropriate corrections to the data.
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The magnitude of the discrepancy between mean corrected and uncorrected values for
the Sr data emphasises the importance of these corrections in obtaining accurate and
repeatable isotope ratio measurements. Nowell et al. (2003) provide a detailed
discussion of this with reference to correcting Sr isotope data for six replicate analyses
of a whole rock powder based on separate dissolutions, and analysed at a range of beam

intensities.

2.7 SUMMARY

A modified dissolution and pre-concentration technique has been developed that is
widely applicable to non-ore lithologies and provides a rapid and efficient means of
separating Hf, Sr and Nd for isotopic analysis by PIMMS. The technique offers the

following major advantages:

1. Genuine savings in laboratory time, resources and cost relative to most currently
available techniques.

2. Methodology suited to high throughput of samples. At present 60 isotopic
measurements (20 x Hf, Sr, Nd) can be obtained within a week, from powder to
data. This could easily be scaled up further.

3. Recovery of separate Hf-, Nd- and Sr-bearing fractions from a single
ion-exchange column, with minimal requirement for further purification.

4. Miniaturised Hf-Ti separation chemistry simplifies overall procedure, reduces
blank levels and further increases sample throughput. For low-Ti samples it is

possible to omit the Hf-Ti separation step altogether.
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. Reliable recovery of Hf and high Hf, Sr and Nd yields are obtained for a wide
variety of rock types, including high-Mg and high-Ca materials.
. Low blanks are easily achieved due to the low reagent and resin volumes

required.
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Chapter 3

Statistical treatment of geochemical data

3.1 INTRODUCTION

This chapter outlines and provides a rationale for certain aspects of the treatment
applied to the major and trace element data in Chapter 4. It should be emphasised at
the outset that the ideas presented in this chapter are not new. They are simply a
restatement of statistical principles and methods that have been advocated by many
members of the mathematical geology community (most notably Chayes, 1960, 1971;
Butler, 1981; Aitchison, 1986) for several decades as a means of avoiding erroneous
statistical treatment and consequent misinterpretation of geological data. The uptake of
these ideas into the geochemical literature has in general been extremely slow and, as a
result, some of the approaches adopted in this study differ from the more conventional
approach taken in previous similar investigations of variations in whole-rock kimberlite
geochemistry, e.g. Fraser (1985), Spriggs (1988), Tainton (1992). A further reason for
applying these principles in this study is because they offer a solution to the particular
problem posed by the large variations in volatile content that is characteristic of

kimberlites, and which makes comparison of kimberlite analyses very difficult.

Three main data processing issues are addressed. Firstly, and most fundamentally, the
nature of compositional data and its special characteristics are reviewed, and a method
for statistical manipulation of the data is presented. Secondly, the effects of widely
variable volatile contents in elemental datasets, which is of particular relevance to

kimberlites, is discussed. Thirdly, the usage and limitations of ratio correlation in
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petrogenesis is reassessed. Points one and three are the subject of comprehensive
works by Aitchison (1986) and Chayes (1971) respectively, and extensive
mathematical proofs for the arguments outlined below can be found in these references.
More accessible summaries of these arguments, with a minimum of supporting
mathematics, can be found in Rollinson (1992; 1993), Reyment and Savazzi (1999) and

Davis (2002).

3.2 ANALYSIS OF COMPOSITIONAL DATA

3.2.1 Nature of compositional data

Major and trace element analyses together with many other kinds of geological
measurements are examples of compositional data. The defining characteristic of such
datasets is that the values are reported in proportional, rather than absolute, terms. In
geochemistry, for example, major element concentrations are quoted in parts per
hundred, i.e. percentages, and trace elements in parts per million, billion or trillion.
Whichever of these units is in use, the quantity being expressed is effectively a ratio,

the denominator of which is a function of all the other variables being measured.

A fundamental property of compositional data is that the sum of all components (i.e.
each quantity analysed for) in any sample must equal 100%, or unity. In reality a
geochemical analysis rarely, if ever, sums to exactly 100% but this is due to either
omissions (i.e. elements not detected or not looked for) or analytical errors, which are
unavoidable. The fact that the original sample is the sum of its component parts
remains incontrovertible. Major and trace element data are consequently examples of
constrained data, because they are not free to take any value but instead must range

between zero and 100%.
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3.2.2 Consequences of closure in compositional datasets

The property of summing to unity is often referred to as ‘closure’ or the ‘constant-sum
effect’. A number of problems arise from the effects of closure in a dataset. Firstly,
constrained data can never consist of mutually independent variables. Any change in
the value of any variable may potentially produce a change in any other variable,
because the sum of all variables must always equal unity. This negates the usual null
hypothesis of correlation between two variables, which states that there is no

interdependence between the variables.

Major and trace element data is necessarily expressed relative to the sum of all
components, so this data will always be auto-correlated to some extent, regardless of
whether any correlation between the variables really exists: correlation is induced by
the constant-sum constraint. Standard statistical tests of correlation such as Pearson’s
product-moment coefficient cannot therefore produce a meaningful result with

composttional data, because the conventional null hypothesis is not valid.

A second, related problem is the existence of negative bias in the data. This arises
because an increase in any component must result in a decrease in at least one of the
other components, to preserve the constant sum condition. Conversely, a decrease in
any given component implies that at least one of the other components must increase in
magnitude. In statistical terms, this means that the covariance of at least one pair of
variables within a composition must be negative. In geochemical analyses this effect is
most obvious when the control variable is an abundant oxide. Kimberlite analyses are

dominated by MgO, SiO; and volatile content, which together typically constitute
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60-85% of the analysis by weight. This inevitable tendency towards negative bias is a
common feature in sets of major element binary variation diagrams based on any
geochemical dataset. An excellent example of enforced negative bias is shown by the

data of Bhatia (1983).

The third major difficulty encountered with compositional data concerns the generation
of subcompositions from the original data array. A subcomposition is simply a subset
of components from within a set of several components. In geochemistry, this is a
convenient means of reducing the dimensionality of the dataset from 10 or more, to 2
or 3, which can easily be represented on a flat sheet of paper. A common occurrence of
this is the recalculation of oxide data to produce plotting parameters for AFM
diagrams. Unfortunately, unpredictable variations in the covariance between pairs of
variables occur between the full composition and the subcomposition, i.e. the
correlation coefficient between any two variables will differ between the
subcomposition (e.g. the AFM) and the parent data set. In addition, the rank order of
variances of each variable is liable to change between the subcomposition and the
initial dataset. Consequently, inferences made about the correlation of variables and
the relative strength of correlations in a small number of compositional dimensions, are

unlikely to be true for the parent dataset as a whole.

The unfortunate consequence of these simple properties of compositional data is that
any analysis and interpretation based upon the covariance of raw major or trace element
data is fundamentally unsound. This extends from the simple correlation of two
vanables, such as Harker diagrams of major element oxides, to complex multivariate

analytical techniques, such as principal components or cluster analysis. Clearly, a very
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large proportion of published interpretations of geochemical data are subject to these
limitations, and some attempt must be made to address the extent of this problem, at
least for the purposes of this study, to ensure that inferences made from the data are

statistically meaningful.

3.2.3 Methods for removing compositional interdependence

The properties of compositional datasets outlined above appear to invalidate many of
the constructions commonly used for statistical analysis of geochemical data. At the
very least, it is implicit that many of the correlations observed between ‘raw’ variables
are spurious and thus inferences based upon such observations may be erroneous. If we
are to make the most informed use of the data, in the collection of which so much time
and care is invested, then we require statistical procedures that are conceptually robust

to distinguish real variations from those that are induced within the data.

Aitchison (1986) presents a set of mathematical transformations that can be applied to
compositional data to remove the effects of interdependence. The details of these
functions and their application are beyond the scope of this thesis, but the fundamental
principle that underlies them forms the basis of the approach adopted in this study.
Aitchison (1986) observes that compositional data is a measure of proportionality
rather than an absolute quantity, and consequently any analysis of compositional data
should be concerned with the relative magnitudes of components, rather than their
absolute magnitudes. Ratios of components are thus a more appropriate means than

absolute values for representing the variation within compositional datasets.
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Aitchison (1986) goes on to state that, because the computation of the variance and
covariance of ratios is complex, a more convenient means of manipulating the data is to
work in terms of log-ratios. The logarithmic transformation used is normally the
natural logarithm, log.(x), or In (x). In this study, the term ‘log-ratio’ implies ‘the
natural logarithm of a ratio>. A component X, such as SiO, in a major element
analysis, is thus represented by the natural logarithm of the ratio X/Y, where Y is
another component within the composition. The variable /n (X/Y) is completely
unconstrained and thus is not subject to constant-sum restriction. The choice of the
component Y does not affect the covariance structure of the data, but Y must be
common to all components within any single composition. For the purposes of this
study it is sufficient to work in terms of simple ratios, although in some instances use of
log-ratios enable scales to be compressed for convenient graphical representation. Use
of log-ratios is also consistent with the approach of Aitchison (1986) in the full
construction of covariance matrices, which can be used as a basis for more complex,
multivariate analysis of compositional data. This kind of analysis is not performed

here, but would be a useful extension of this project.

In some sections of Chapter 4 data énalyses are presented in terms of raw, rather than
ratio data. The reason for this is usually to maintain consistency with the approach
taken by previous studies when comparing other datasets with that presented here.
Wherever possible in these cases, analyses have been performed in terms of both raw
and ratio data as a means of assessing the magnitude of any spurious relationships
within the raw data. Any correlations based on ‘raw data’ that are presented have thus
been compared with equivalent ‘log-ratio’ plots to ensure that observed trends are not a

function of closure and auto-correlation.
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3.3 VOLATILE CONTENT IN WHOLE-ROCK ANALYSES

3.3.1 Volatile components in kimberlites

Kimberlites are characterised by very high contents of volatile components in
comparison to most other mantle-derived rocks. The average volatile content of the
hypabyssal Lac de Gras kimberlites is ~12 wt%, and in some cases is in excess of 20
wt%. This volatile fraction is composed mostly of H,O and CO,, with lesser amounts
of sulphur. Chlorine and fluorine may also be present in trace quantities. In Appendix
D volatile data is reported either on the basis of individual components or collectively

as a ‘loss on ignition’ (LOI).

Volatiles may be cognate to the magma, or introduced by alteration processes after
emplacement of the body within the crust. Mitchell (1986) has suggested that the
presence of magmatic volatiles in high concentrations can promote the development of
localised textural and compositional heterogeneities, which if sampled may yield
analyses far removed from the ‘true’ magmatic composition. A thorough petrographic
examination of samples prior to selection for analysis is therefore essential. Given the
high probability of depletion and re-enrichment of volatiles taking place during
eruption of the kimberlite and subsequent near-surface alteration, it seems unlikely that
the eventual concentration of volatiles determined in a sample can ever be truly
representative of the parental magma. Hypabyssal kimberlites are presumably less
susceptible to these processes than volcaniclastic kimberlites, which have almost
certainly been partially devolatilised. Nevertheless, the variability of volatile content
on both an inter- and intra-kimberlite scale (Appendix D), even within hypabyssal

facies rocks, suggests that caution should be adopted if making inferences about
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magma composition on the basis of volatile content. This is a problem of less
consequence when dealing with more common, volatile-poor rocks such as basalts,

granites, etc.

3.3.2 Statistical effect of volatile content on compositions

As a component of a whole-rock composition, which is subject to the constant sum
constraint, the magnitude and variability of volatile content in kimberlites directly
affects the magnitide of other major and trace element components within the analysis.
Due to the negative bias effect, the magnitude of components such as MgO and SiO;
are likely to be lower in kimberlites with high volatile contents. It is clear, therefore,
that the abundance of MgO, or any other component, in kimberlites with very different
volatile contents cannot be directly compared; some kind of normalisation process is

required to account for the variation in volatile content between samples.

Fortunately, using ratios rather than raw data removes the problem of variable volatile
content as well as solving the problem of closure. This is because the ratio of any two
components within a composition is not dependent on the magnitude of any other
component (Table 3.1). In scenario 1, the five components, A-E, sum to 100% with
A/B = 0.5 and C/D = 0.25. In scenario 2, the abundance of component B has doubled
to 40%. The entire composition must still sum to 100%, so components A, B, C and D
must decrease proportionately in magnitude. In scenario 3 component E is not
detected, so the other components proportionately increase to satisfy the constant-sum
constraint. If we assume that component E represents a volatile component, and is thus
not necessarily truly representative of the sample, then there is also a problem in

determining the ‘true’ representative values of components A-D. In which scenario is
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component E representative of the initial magma conditions? The simplest solution is
to work in terms of ratios of components, rather than their absolute values, because
these ratios do not change as absolute magnitudes vary. This is demonstrated for the
ratios A/B and C/D in Table 3.1. For the purposes of this study, the complicating
effects of high and variable volatile contents can be ‘normalised out’ by forming a

subcomposition that excludes the volatile components, and then working in terms of

ratios.

Scenario A B C D E A/B C/D
1 10 20 10 40 20 0.5 0.25
2 7.5 15 75 30 40 0.5 0.25
3 12.5 25 12.5 50 - 0.5 0.25

Table 3.1 Demonstration of the invariance of component ratios, as individual components vary to satisfy
the constant-sum constraint.

3.4 RATIO CORRELATION

The correlation of ratios is commonly employed in the analysis of geochemical data,
with strong positive or negative correlations typically being interpreted as evidence of
petrogenetic processes such as mixing, or fractionation during melting or
crystallisation. The use of ratios, rather than absolute values of elemental abundances,
as advocated in the preceding sections, might appear to increase the importance of ratio

correlation as an analytical tool still further.

If ratio correlation is to be used in geochemical data analysis, then the variables used as
numerators and denominators in the ratios must be selected with great care. This is

because the use of numerators or denominators that are common to both ratios can

63



produce large amounts of auto-correlation, which may easily and erroneously be
interpreted as indicating systematic trends in the data. Pearson (1896) initially showed
that, given a set of uncorrelated variables A, B and C, ratios formed from these
variables, such as A/C vs B/C, A/B vs A/C, A vs A/B, or B vs A/B, will always
demonstrate some degree of correlation. Chayes (1949, 1971), Butler (1986) and
Rollinson and Roberts (1986) all present examples of the detrimental effects this can

have on analysis and interpretation of geochemical data.

Since meaningful interpretations cannot be made of trends in variables that are
auto-correlated to some extent, it is advisable to avoid using these kinds of ratios in the
first place. Sometimes, however, there are only a limited number of elements available
to use in forming ratios, and common numerators or denominators may become
necessary. In these instances binary variation diagrams of ratios with common
elements may be used for visual classification of samples into groupings, but any
interpretation of apparent systematic variation within the data should be strictly
avoided. Wherever possible in the analyses of Chapters 4 and 5, ratio pairs of the form
A/B vs C/D are used, so there are no common numerator or common denominator

effects.
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Chapter 4

Variation of major and trace element
abundances in Lac de Gras kimberlites

4.1 CHAPTER OVERVIEW

Kimberlites are hybrid rocks and as a result characteristically display a large degree of
compositional variation both within and between provinces, fields and even individual
intrusions. It is well known that most kimberlites incorporate variable amounts of
different mantle and crustal materials en route to the surface, and these processes can

be a major control on the eventual whole-rock chemistry of the sample.

This chapter provides a brief summary of previous influential studies of the major and
trace element geochemistry of kimberlites, and discusses some of the problems inherent
in the investigation of these unusual rocks. The variability of key major and trace
element abundances in the Canadian kimberlites is described and illustrated, and
comparisons are made with other well-characterised suites of kimberlites from southern
Africa and elsewhere. This forms the basis for the detailed analysis of processes

responsible for producing these elemental variations, as presented in Chapter 5.

4.2 INTRODUCTION

4.2.1 Previous studies of kimberlite major/trace element geochemistry

For a hundred years following the 1870s discovery of primary (i.e. non-alluvial)
diamond deposits in South Africa the majority of kimberlite research was concerned
with the more easily accessible questions of petrography, mineralogy, diamond content,

and structure and emplacement of pipes. Some of this early work is summarised in the
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classic monographs by Wagner (1914) and Williams (1932). These works also contain
a small number of good quality whole rock major element analyses, performed by
classical wet chemistry techniques. Advances in analytical technology and the
discovery of the Siberian kimberlite province in the 1950s precipitated an escalation in
investigations of the chemical composition of kimberlites. Large volumes of
compositional data for Siberian kimberlites were generated, although Mitchell (1986)
points out that much of this data was semi-quantitative and cannot be used in
comparison to more recent data. A useful distillation of some of the Soviet work is

given in Frantsesson (1968, and 1970 in translation).

The ‘modern era’ of kimberlite geochemical studies dates from the early 1970s, with
the influential compilation of work on kimberlites from Lesotho by Nixon (1973) and
the inception of the First International Kimberlite Conference. The publication of the
proceedings of this meeting marked the beginning of a large increase in the number of
well-documented  investigations of kimberlite petrography, mineralogy and
geochemistry. The monographs of Dawson (1980), Mitchell (1986) and Mitchell

(1995) provide comprehensive reviews of this body of kimberlite literature.

Some of the carliest high quality major and trace element analyses of whole-rock
kimberlites during this period were acquired by Gurney and Ebrahim (1973), Fesq et al.
(1975), Kable et al. (1975) and Mitchell and Brunfelt (1975). These studies helped to
identify some of the fundamental geochemical characteristics of these rocks, such as
their potassic nature and extreme enrichment in both compatible and incompatible

elements. They also provided some of the first chemical evidence to support the
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distinction between the ‘basaltic’ and ‘micaceous’ types identified by Wagner (1914)

on a petrographic basis.

These foundations were built upon by the work of Smith es al. (1985a), who presented
a comprehensive set of trace element data obtained on hypabyssal samples carefully
selected in order to minimise the input from alteration and contamination. This data,
used in association with the isotopic data of Smith (1983) and by application of
multivariate statistical analysis, more firmly established the key elemental distinctions
between kimberlite groups. Smith (1983) introduced the concept of Group I and 11
kimberlites, which is broadly synonymous with the basaltic/micaceous petrographic
classification of Wagner (1914), but defines these two groups entirely on the basis of
isotopic character. Smith er al. (1985a) showed that Group II kimberlites — orangeites
in the terminology of Mitchell (1995) — are enriched in SiO,, K,O, Pb, Rb, Ba and
LREEs and depleted in TiO, and Nb in relation to Group I — or archetypal (Mitchell,

1995) — kimberlites.

With the advent of plasma source techniques in mass spectrometry it has now become
relatively routine to acquire large volumes of accurate and precise trace element data.
For this study new major and trace element determinations have been made on 123
whole rock kimberlite samples, including 86 from the Lac de Gras kimberlite field,
North West Territories. These analyses form part of a comparative database of 388
kimberlite analyses, incorporating data from southern Africa (Smith et al., 1985a;
Fraser, 1987; Spriggs, 1988; Tainton, 1992; Nowell, unpublished), West Africa (Taylor
et al., 1994), Finland (O’Brien and Tyni, 1998) and China (Tompkins ef al., 1998).

Samples from Sisimiut area of Greenland (Scott, 1979) have subsequently been shown
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not strictly to be archetypal kimberlites, as in some cases they contain melilite
(Mitchell er al., 1999). These rocks are better classified as ultramafic lamprophyres,
but are included here to extend comparisons of elemental characteristics in alkaline

ultramafic rocks on a global scale.

4.2.2 Problems inherent in comparisen of kimberlite compositional data

A number of problems exist when attempting to draw comparisons between
geochemical data acquired in different kimberlite studies. Firstly, there is the issue of
differential data quality between studies. Inevitably, the accuracy and precision of trace
element data in particular has improved steadily since the 1970s as analytical methods
and instrumentation have evolved. Associated errors are not always fully quoted in the
literature, making it difficult to assess the relative quality of datasets and the extent of
coherence between them. Wherever possible in this study, trace element data acquired

by ICP-MS methods is used for comparative purposes.

Secondly, due to the hybrid nature of kimberlites, samples of whole rocks will
commonly contain material contributions from the lithospheric mantle and crust
through which the magma has passed. Kimberlite is also extremely susceptible to
secondary alteration processes, which also act to modify the original magma chemistry.
The effects of these processes are in general much more pronounced in the
volcaniclastic portions of the intrusion (i.e. the diatreme and crater facies). It is
therefore of great importance to select only samples known to be from the hypabyssal
facies if any meaningful interpretation of the data regarding parental magma

characteristics is to be made. This has not always been the case in a number of studies
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of kimberlite geochemistry. In this work only data from hypabyssal facies rocks are

used, unless otherwise stated (e.g. for comparative purposes).

Thirdly, even within hypabyssal samples it is common to see evidence of small
fragments of xenolithic material. In this study attempts have been made to extract by
hand any such crustal material from the coarse crush, but it is impossible to remove all
crustal contamination in this way. Furthermore, finely comminuted crustal material can
be disseminated throughout a sample that appears ‘uncontaminated’ to the naked eye.
Contamination by lithospheric mantle material (e.g. olivine, spinel, phlogopite) is also
extremely difficult to remove by hand-picking, as these phases also occur as
phenocrysts and microphenocrysts in the kimberlite. This leads to issues such as the
‘olivine macrocryst problem’ discussed by Mitchell (1986). It is not always stipulated
in the literature to what extent, if any, xenolithic material has been screened out from
samples. If samples are not handled in the same manner there will certainly be

compositional inconsistencies between them.

Lastly, there is a danger in kimberlite studies of introducing a sampling bias into the
data. The kimberlites that have been most extensively studied, and from which most
samples are made available, tend to be those where mining operations have taken place.
This is partly because better quality samples for geochemical purposes are usually
found at some depth below the erosion level in an intrusion (i.e. hypabyssal facies
rocks from below the surficial weathering profile), but also because there is naturally
more interest in richly diamondiferous bodies than those that are barren or uneconomic.
The average geochemistry of kimberlites represented in a database could, therefore, be

biased towards components that may be linked to diamond content. Elevated content
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of lithospheric mantle might be an example of such a component. In the Lac de Gras
dataset there is a representative range of kimberlites from economic, through marginal
to barren, with regard to diamond content, so any ‘mine bias’ effects should be

minimal.

4.3 DATA REPRESENTATION

4.3.1 General major/trace element characteristics

4.3.1.1 Comparison of elemental distribution patterns

All major and trace element data acquired during this study is tabulated in Appendix D.
The extent of compositional variation observed in selected hypabyssal kimberlites from
around the world is shown in Figures 4.1 to 4.3. The set of hypabyssal kimberlites
from Canada is composed mostly (80 of 94, 85%) of samples from the Slave craton,
and of these 70 (87%) are from the Lac de Gras field. In this thesis, the term ‘southern

Africa’ covers South Africa, Namibia, Lesotho and Botswana.

Figures 4.1 to 4.3 compare, for selected elements, key descriptive statistics between
regions hosting major kimberlite provinces. Similar diagrams for other elements of
interest can be found in Appendix E. Note that Figure 4.1 is merely an annotated key
to assist interpretation of these diagrams. The magnitude and dispersion (range and
variability) of each element is represented by means of box-plots, which display the
mean, median, range, inter-quartile range and 5 and 95" percentiles of each dataset.
Comparison is made between several global provinces for which reliable compositional
data exist. A further analysis of the distribution of data between samples from North

America and Southern Africa is also provided in the form of histograms. These help to
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visualise the shape of the data and in particular indicate whether a dataset has a
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Figure 4.1 Interpretation of major and trace element dispersion and distribution diagrams: a)
measures of magnitude and dispersion; b) measures of the shape of the distribution.

Gaussian distribution, the extent of any skewness or kurtosis, and the number of

apparent modes within a dataset.
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4.3.1.2 Major elements

The oxides of Si, Mg, Al and Ca (Figure 4.2a-d) together constitute over 70% by
weight of most kimberlites and thus exert the greatest influence on the bulk chemistry
of these rocks. Processes of alteration, crustal contamination, and olivine accumulation
and removal also affect the relative abundance of these elements in a sample. The
dispersion of SiO,, Al;03; and CaO in Canadian kimberlites is very similar to that
observed in Group I kimberlites from Southern Africa. The ranges of SiO; and CaO
are distinct between southern African Group I and Group II samples. There is some
overlap in the ranges of Al,0; in Canadian and Southern African kimberlites, but the
median of the southern African Group I samples is much higher than that of the
Canadian and southern African Group II kimberlites. The inter-quartile range of MgO
in the Canadian dataset is slightly elevated relative to southern African Group I
samples, and encompasses the inter-quartile range in MgO of Group II kimberlites.
The median MgO of the Canadian data is intermediate to that of southern African

Group I and Group IL

The distribution of SiO; in both Canadian and southern African samples approximates
to a normal or Gaussian model, with a degree of negative and positive skew,
respectively. In the Canadian samples MgO, Al,O; and CaO clearly have distributions
with more than a single mode, and this is also apparent in the southern African data.
This could indicate that more than one process may be controlling the abundance of
these oxides in kimberlite magmas. The bimodal distribution of MgO in southern
Africa appears to correspond to the modes of the individual Group I and Group II

populations, but the position of modes in the Canadian MgO data is much more
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variable. This suggests that the extent to which processes controlling composition

operate may be very variable, even within a single province or field.

The variability of Fe,O; 1, TiO;, Na,O and K,O in these samples is illustrated in

Appendix E.

The main sinks for Ti in kimberlites are ilmenite, a ubiquitous member of the low-Cr
megacryst suite, perovskite, a common accessory mineral that is also the principal
carrier of REEs in kimberlites, phlogopite and late-stage groundmass spinel
(Ti-magnetite), which can be abundant in some occurrences. Canadian and southern
African samples are TiO,-poor relative to most of the other regions represented. The
TiO; content of Canadian kimberlites is very similar to that of southern Africa Group
I, rather than Group I. The distribution of TiO, in Canada and southern Africa

approximates to a unimodal Gaussian model with a prominent positive skew.

Kimberlites are potassic rocks and typically have K,0O/Na,O > 1, due primarily to low
abundances of Na,O. Elevated levels of Na,O in kimberlites are generally considered
to represent input from crustal contamination. Many of the hypabyssal samples from
Lac de Gras analysed in this study have Na,O abundances below the XRF detection
limit of 0.05-0.1%. As a result the lower end of the inter-quartile range for Na in the
Canadian data is effectively zero, and the distribution inevitably has a strong positive
skew. Even in the most Na-rich hypabyssal kimberlites from Lac de Gras, the Na,O
content rarely exceeds 0.5%. Volcaniclastic kimberlites from the diatreme or crater

facies routinely have in excess of 0.5% Na,0, which is typically inferred to be due to
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contamination and alteration. The median and inter-quartile range of Na,O in Canadian

hypabyssal samples is more similar to southern African Group II kimberlites.

Levels of K,O in kimberlites are closely linked to the modal abundance of phlogopite.
Consequently, Group II kimberlites from southern Africa tend to be richer in K,O than
Group I rocks. The distribution of K,O in Southern African kimberlites is polymodal
with a large positive skew. The two most prominent modes are likely to correspond to
the discrete populations of Group I and II kimberlites. The Canadian K,O distribution
also has a large positive skew, but is not unequivocally polymodal. The median and
inter-quartile range of K,O abundance in Canadian kimberlites is clearly more similar

to southern African Group I samples.

4.3.1.3 Trace elements I: compatible elements

The compatible elements of greatest importance in kimberlite studies are Ni and Cr, as
these elements are highly representative of the modal abundance of olivine in a sample
(Mitchell, 1986). The regional variability of Sc and V abundance in kimberlites is

shown in Appendix E.

The magnitude and dispersion of Ni content (Figure 4.3a) is quite variable on a regional
scale. The median Ni content of the Canadian data (1100ppm) is intermediate to that of
southern African Group I (930ppm) and Group II (1340ppm). The inter-quartile range
of Group II kimberlites has the greatest offset to high Ni in the entire database. The
median Ni content in West African samples (1270ppm) is also high, but in China,
Greenland and the East European Platform median Ni levels are much lower

(<1000ppm in each case). The distribution of Ni in both the Canadian and southern
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African data is clearly bimodal. There are obvious peaks at 700-900ppm in both

datasets, which is close to the median value observed in China, Greenland and the East
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European Platform kimberlites. In addition there is a second peak in the southern
African data at 1300-1500ppm, which corresponds to the Group I samples. The

second peak in the Canadian data is at approximately 1500ppm Ni.

In addition to olivine, Cr is often hosted within chromite (Cr-spinel xenocrysts and
early phenocrysts) in kimberlites. This refractory phase is difficult to dissolve for
analytical purposes, and comparisons of Cr abundance data obtained by XRF and
solution—-based methods should be approached with caution. The trace element data
table in Appendix D indicates which method was used for each sample. The median Cr
content of the Canadian data (1590ppm) is again intermediate to the medians of
southern Africa Group I (1260ppm) and Group II (1750ppm). Polymodality in the
southern African data is controlled by the differential Cr content of Group I and Group
I samples.  The distribution is essentially unimodal, with a negative skew
corresponding to input from Group I samples. The Canadian data has an extremely

high kurtosis, but it is not clear whether there is more than a single mode.

4.3.1.4 Trace elements II: large ion lithophile elements (LILLs)

LILEs (or low field strength elements, LFSE) are distinguished from other
incompatible trace elements on the basis of having an ionic potential greater than 2.0
(Rollinson, 1993). This group thus consists of elements with an ionic charge of +1 or
+2 and large ionic radii. Rb, Sr, Cs, Ba and Pb are the LILEs of particular geological
interest. The principal carrier of Rb, Ba, Cs and Pb in kimberlites is phlogopite, and so
Group II and other mica-rich samples might be expected to have greater abundances of
these elements. Perovskite may also be a carrier for Pb. Sr substitutes primarily for Ca

in apatite, carbonate phases and perovskite. Ba also substitutes for Ca in carbonates
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(Armstrong et al., in press). LILEs tend to be amongst the most chemically mobile
elements, and may be leached from kimberlite by near-surface syn- and
post-emplacement alteration processes, although the effects of this are rarely seen in
fresh hypabyssal facies samples. The regional variation in abundance of Rb, Ba and Pb

1s shown in Appendix E.

Variation in Sr content (Figure 4.3¢) is very similar in Canadian and southern African
Group I and Group II kimberlites. The Rb and Pb content of Canadian samples are
more akin to southern African Group I kimberlites, whereas their Ba content is more
similar to southern African Group II samples. The distribution of Pb and Ba in both
regions 1s unimodal with a positive skew, while the distribution of Rb in Canada and

southern Africa is more bimodal in character.

4.3.1.5 Trace elements I1I: high field strength elements (HFSEs)

The HFSEs are here considered to include Nb, Ta, Hf, Zr, Y, U and Th. With the
exception of Y, all of these elements are hosted in kimberlites primarily by perovskite.
Other accessory phases are more selective hosts, e.g. ilmenite (Nb, Hf and Ta), zircon
(Hf and Zr), and apatite (U and Th). Nb is a particularly immobile element that is
frequently used in geochemical models as a benchmark against which to measure the

variable mobility of other elements.

The dispersion and distribution of Nb content (Figure 4.3d) in Canadian kimberlites is
most similar to Group I kimberlites from southern Africa, although the median of the
Canadian data is slightly lower and its inter-quartile range is broader. In both regions

there appear to be multiple modes in the data distribution. South African Group I
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kimberlites show two peaks in Nb abundance at approximately 150 and 350ppm, the
first of which corresponds to the mode of the Group II samples. The Canadian data has
a principal mode at around 200-250ppm, with a secondary peak at 350-400ppm and a

long positive skew up to 700ppm.

The regional variability of Hf, Zr and Y is shown in Appendix E. All of these elements
are considerably less abundant in Canadian kimberlites than in those from southern
Africa. There is little difference in their median and inter-quartile range between

southern African Group I and Group II samples.

4.3.1.6 Trace elements IV: rare earth elements (REEs)

Kimberlites are more enriched in the larger radius light REEs (LREEs) than smaller
radius heavy REEs (HREEs), and consequently form characteristic sloping patterns on
chondrite-normalised rare earth diagrams. This distribution pattern is very similar to
that observed in kimberlite perovskite (Jones and Wyllie, 1984), which is a typical
groundmass phase and not commonly encountered as a xenocryst. This phase is thus
the major sink for REEs in kimberlites. Very similar patterns of REE distribution, at
lower abundances, are also observed in apatite and carbonate minerals in carbonatites
(Hornig-Kjarsgaard, 1998); thus these minerals are the most likely hosts for the REEs

in kimberlites that have little or no modal perovskite.

The dispersion and distribution of La, Nd, Sm and Lu (Appendix E) are broadly similar
with only small variations between regions. The abundance of any given REE tends to
be greater in the southern African data than in the Canadian samples. There is no

evidence of bimodality in the Canadian data. There are multiple peaks in the southern
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African La and Nd data, but this does not persist in the mid- and heavy-REEs. This
observation may also be related to the effects of crustal contamination on the HREE in

some southern African samples.

4.3.1.7 Distribution of log-ratio data

Figures 4.2-4.3 are constructed from ‘raw’ elemental data, which is subject to the
limitations of closure and differential volatile content discussed in Chapter 3. It is
important to know how the translated log-ratio data proposed as a solution to this
problem is distributed in relation to the raw data. As noted in Chapter 3, the ‘log-ratio’
transformation employs the natural logarithms (log[x] or In[x]) rather than logarithms

to base 10 (log;o[x]).

Figure 4.4 compares the distribution of raw and log-ratio data for a selection of major
and minor elements. Nb has been selected as the denominator for ratio construction
because of its immobile nature, and because its abundance changes little in relation to
many other elements during processes such as alteration, crustal and lithospheric
contamination, and fractionation. The conversion from oxide (wt%) data to elemental
(ppm) data for the major elements (e.g. Si instead of SiO,) does not affect the shape of

the distribution (Figure 4.4).

In each case shown in Figure 4.4 the log-ratio translation process does not affect the

overall shape of the distribution. For example, the distribution of SiO, and In (Si/Nb)

are both unimodal and skewed; Ni and In (Ni/Nb) are both bimodal. In the case of Mg,
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the log-ratio conversion also appears to remove some of the ‘noise’ of the raw data
distribution, although in both instances the overall distribution is polymodal. In all
cases the variation structure of each element is preserved between the raw data and the
log-ratio data. While the log-ratio format is preferable for maintaining statistical
integrity during modelling, it is conceptually more abstract and thus less easy to
interpret directly than the raw data format. For this reason, having observed that there
are no artificial correlations resulting from closure, the raw data format is retained in

this chapter for the purposes of visual representation of the data.

4.3.1.8 Comparison with southern African Group I and Group I kimberlites

Although the Group I/II classification system for kimberlites from Southern Africa was
originally based on isotopic criteria (Smith, 1983), distinctions can also be made
between the groups using major and trace element characteristics (Smith et al., 1985a).
Group I kimberlites tend to have higher TiO,, Fe;0; T, CaO and Na,O, and lower SiO,
and K,O than Group II kimberlites. The variation of major element abundance with
MgO content in hypabyssal kimberlites from Canada is compared to that of Southern
African Group I and II samples in Figure 4.5. The variation of SiO,, CaO, K;O and
P;0s with MgO in the Canadian samples is most similar to Southern African Group I,
whereas the vanation of TiO,, Fe,O; T and Na,O with MgO is more similar to Group 11

kimberlites.

The levels of Ti present in Canadian kimberlites are similar to those of Southern

African Group II kimberlites on a chondrite-normalised distribution diagram of the

compatible elements (Figure 4.6a-b). The Ni content of Southern African Group I
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kimberlites provides the best fit to the Canadian data, while Group II kimberlites have
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more similar abundances of Cr and Co. The LREE content of Canadian kimberlites is
similar to that of Group I samples from southern Africa (Figure 4.6¢c-d), but their
MREE-HREE content is lower than observed in both Group I and Group II samples.
The abundance of some of the most incompatible elements (e.g. Pb, Cs, Rb: Figure
4.6e-f) 1s most like that of Group I kimberlites. Only the abundance of Ba and U is

more akin to Group II kimberlites.

Figure 4.7 illustrates selected geochemical characteristics of Canadian hypabyssal
kimberlite samples on a series of variation diagrams originally devised to demonstrate
compositional differences between Group I and II kimberlites (Smith ez al., 1985a; Le
Roex, 1986). The bivariate plots of K,O-TiO; and SiO,-Pb (Figure 4.7a-d) were found
by Smith er al. (1985a) on the basis of multivariate discriminant analysis to be the most
efficient two-component classifiers of kimberlites into their correct isotopically-defined
groups. In both plots, the data from Canadian kimberlites do not fall exclusively into
either grouping, although in SiO,-Pb space there appears to be a greater affinity for
Group I, with some samples having anomalously high Pb content. By contrast, data
from other Group I kimberlites outside southern Africa (Siberia, West Africa,
Greenland, Finland and China) are mostly located in the southern African Group I
fields. Le Roex (1986) put forward a discrimination scheme based on the variation of
La, Ba and Zr with Nb content (Figure 4.7e-h). The location of the Canadian samples
in these projections indicates that they have a character intermediate to Group I and
Group II in terms of La-Ba-Nb, but more similar to Group I kimberlites in terms of Ba-
Zr-Nb variation. In these instances the data from other non-southern African Group I

occurrences behaves in the same manner as the Canadian samples.
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These simple comparisons between the elemental signatures of southern African Group
I/ kimberlites and the data from Canadian hypabyssal samples indicates that the latter
have characteristics of both Group I and Group II. In some cases the signature of the
Canadian samples is transitional between the two Southern African groupings. Table
4.1 summarises some of these similarities and differences. It is often argued that
kimberlites inherit their trace element character almost exclusively from their mantle
sources, because their abundances of compatible and incompatible elements are too
high to be modified significantly by contamination. If this is the case, then the
Canadian kimberlites do not appear to be derived exclusively from either a southern
African Group I-like or Group II-like source. The effects of crustal contamination on

the Canadian kimberlites are discussed further in Chapter 5.

Affinity of Canadian kimberlites Elements
Southern African Group I Si0,, Ca0, K0, Rb, Pb
Southern African Group II Al O3, Fe,05, TiO,, Na,0, V, Ba
Intermediate MgO, Ni, Cr, Nb
Both Sr, La, Nd
Neither Sc, Hf, Zr, Y, Sm, Lu

Table 4.1 Apparent similarities and differences between variation in abundance of selected
major and trace elements within hypabyssal kimberlites from Canada and southern Africa.
Based on data dispersion and distribution patterns shown in Figures 4.2-4.3 and Appendix E.

4.3.2 Compositional variation in Canadian kimberlites
4.3.2.1 Introduction
This section investigates the detailed variations in chemical composition between and

within selected Canadian kimberlite occurrences. A total of 94 new major and trace
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element analyses have been acquired for hypabyssal facies samples from Canada. 80
of these are samples from the Slave craton, 70 of which are drawn from intrusions
within the Lac de Gras kimberlite field. The kimberlites have been grouped for
comparative purposes on a broadly geographical basis (Figure 1.5). The 14 samples
from the Grizzly pipe are considered as an individual group to investigate the extent of
any compositional heterogeneity within a single intrusion. Two additional groups
incorporate the intrusions immediately adjacent to and outlying from Grizzly.
Similarly, two groups cover the small clusters and more widely dispersed kimberlites

around and to the south-east of Lac de Gras.

A further two groups encompass analyses from beyond the Lac de Gras field. One
consists of all other hypabyssal samples from the Slave craton (Contwoyto Lake and
South-East Slave), while the other contains all other hypabyssal samples from outside
the Slave (Churchill and Superior provinces). No analyses of volcaniclastic kimberlite

are included in these groupings.

4.3.2.2 Variation between Canadian kimberlite fields

88 of the Canadian hypabyssal samples analysed are drawn from just three individual
kimberlite fields. This subset of the data is dominated by the 70 samples from Lac de
Gras, but in addition there are 8 analyses from the Contwoyto field, which is located
approximately 100km north of Lac de Gras, 9 analyses from the Somerset Island field
(1200km NE of Lac de Gras) and one sample from Rankin Inlet in the Churchill
province, approximately 1200km east of Lac de Gras. The range of variation in key

major and trace element abundances for each of these fields is shown in Figure 4.8.
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The Lac de Gras kimberlites have, on average, the greatest abundance of SiO,, MgO
and Al,O;, and the lowest abundance of CaO. The kimberlites from Somerset Island
have the greatest CaO content, but these intrusions are emplaced into Palaeozoic
platform carbonate sequences (e.g. Mitchell and Fritz, 1973). The median Ni and Cr
content of the Lac de Gras and Contwoyto fields are very similar and greater than in
Somerset Island kimberlites. This is quite surprising because the MgO content of the
Contwoyto samples is considerably lower than that of Lac de Gras, and is more closely
comparable to Somerset Island. While both Lac de Gras and Contwoyto host
diamondiferous kimberlites with economic potential the Somerset Island kimberlites
are very low grade or barren. The Somerset Island samples have lower La and higher
Yb levels than the Lac de Gras average, and hence have flatter normalised rare earth
patterns, which could be indicative of greater crustal contamination. The Contwoyto
samples have both greater La and Yb than the Lac de Gras average, and have similar
normalised La/Yb ratios to those in kimberlites from Lac de Gras. Since differential
contamination would be expected to produce a range of La/Yb (see Chapter 5), the
difference in REE content between Contwoyto and Lac de Gras kimberlites is most
likely inherent to the magmas from these different regions, possibly generated by

different amounts of melting in a common deep mantle source.

4.3.2.3 Group Al: Intra-kimberlite variation in Grizzly

Grizzly (Figure 1.5-1.6) is part of a large cluster of kimberlite bodies situated between
Lac de Gras and Exeter Lake (see also Group B below). Most of these bodies have
been emplaced within a syn-Yellowknife Supergroup composite intrusion of
hornblende-biotite tonalite, biotite granodiorite and quartz diorite. The country rock to

Grizzly at the present erosion level is quartz diorite (Kjarsgaard e al., 2002). The 14
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Grizzly samples have been obtained from various depths within a single diamond drill-
core. Most of the pipes owned and studied by BHP Billiton appear to contain more
than one intrusive phase of kimberlite magma (D. Dyck, pers. comm.). 1t is impossible
to be certain, therefore, that each Grizzly sample is representative of the same
individual magmatic injection; the only assumption made for the purposes of this
exercise 1s that all of the samples are derived from magmas that share a common source
and have experienced very similar petrogenetic histories culminating in emplacement
in extremely close proximity within a single kimberlite pipe. Nevertheless, some
inherent variability in mineralogy (e.g. modal olivine content) between samples is an
inherent feature of kimberlites and may contribute to any observed compositional

variation.

The MgO contents of the Grizzly samples are among the highest of all from Lac de
Gras (Figure 4.9), consistent with petrographic observations that these samples contain
high modal abundances of olivine (Appendix B). The variation in MgO between the
Grizzly samples could be generated by either addition (e.g. through contamination by
lithospheric mantle) or removal (e.g. by fractionation) of olivine. This is investigated
further in sections 5.3 and 5.5. The variation in MgO content cannot be attributable
merely to differential volatile content and associated constant-sum effects, because
recalculating the analysis on a volatile-free basis does not remove this observed
variation. In addition, the samples from Grizzly have some of the lowest volatile (CO,

+ H,O) contents of all the Canadian kimberlites analysed.
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Increasing MgO content is associated with increases in abundance of SiO; and Fe; O3 T,
and decreases in abundance of Al,O;, CaO, K;O and P,Os. The abundances of the
three major components of olivine are thus positively correlated, while most other
major elements show negative correlations with MgO. The most notable major element
variations within Grizzly are those of Na,O and K,O. Higher contents of these
elements may indicate a greater contribution from crustal contamination or alteration
processes, although variation in KO could also be controlled by differential content of
phlogopite, or a variable dilution effect by differential olivine addition/removal. There
is, however, no correlation between SiO, and K,O content in these samples, which does
not support phlogopite control. The general increase in SiO; and decrease in K,O with
increasing MgO is consistent with olivine control.  Olivine and phlogopite

addition/removal, and crustal contamination are discussed in detail in sections 5.3-5.5.

Trends in variation of trace element content in Grizzly are broadly consistent to those
observed in the Lac de Gras kimberlites as a whole (Figure 4.10). The Grizzly samples
are notably some of the least REE-enriched of all. The chondrite-normalised rare earth
distribution pattern (Figure 4.10a) for Grizzly is parallel to the median distribution for
Lac de Gras. Abundances of compatible elements (Figure 4.10b) are also close to the
values of Lac de Gras, with the exception of Grizzly having slight relative depletions in

Sc, Ti, V and Cu, and enrichment in Ni.
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Figure 4.10 Variation in trace element composition in hypabyssal facies samples from Grizzly,
relative to other Lac de Gras kimberlites.
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On an extended incompatible element distribution diagram (Figure 4.10c¢), Grizzly has
slightly lower Cs, Rb, Ba and K compared to the Lac de Gras median; otherwise the
other elements are of similar abundance. The pronounced negative anomaly at K is a
striking feature of this pattern that is commonly observed in both Group I and Group II

kimberlites.

The number of separate samples analysed from Grizzly enables a comparison of
intra-kimberlite compositional variation to be made against the Finsch kimberlite of
South Africa, from which multiple samples have also been analysed (Fraser, 1987).
Finsch is a group II kimberlite and is known to consist of several separate phases of
intrusion (Fraser, 1987) corresponding to different textural-genetic facies and
mineralogies. Consequently, some differences in the magnitude of major and trace
element abundances in comparison to Grizzly are to be expected. Consistent with this
hypothesis, Figure 4.11a-b clearly shows that the extent of variation in each oxide is
much greater in Finsch than in Grizzly. At least three of these intrusive phases, plus
internal and external dykes are represented in the 15 samples considered here, and this

appears to account for much of the major element variation.

It is not known to what extent, if any, there are discrete intrusive phases at Grizzly, but

the limited major element variation suggests that the body as sampled is relatively

homogeneous. Sampling at Grizzly does not cover the entire extent of the kimberlite
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body, as is the case at Finsch. The extent of trace element variations in Grizzly is
similar to that observed in Finsch for Ni, Cr, Sr and Nd, but is more variable for Nb, La

and Rb (Figure 4.11c¢-d).

4.3.2.4 Group A2: Neighbouring kimberlites to Grizzly

This group 1s composed of the other kimberlites situated between Lac de Gras and
Exeter Lake (Figure 1.5). With the exception of Rat, all of these bodies are located
within a 20km radius of Grizzly. Three kimberlites — Mark, Aaron and Arnie — form a
tight cluster within just 2-3km of each other, and are all situated within a narrow
outcrop of Itchen Formation metaturbidites of the Yellowknife Supergroup. Further to
the west, the Rat and Pigeon bodies are also emplaced into metaturbidites at the present
erosion level. The remainder of the kimberlites in this group (Roger, Koala West, and
Leslie) intrude through a pluton of biotite granodiorite and hornblende-biotite tonalite

(Kjarsgaard et al., 2002).

Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. There is a large degree of major element variation between
the individual kimberlites in the group. Intra-kimberlite variation is very limited in
some kimberlites (e.g. Leslie, Roger, Pigeon) but is substantial in others (e.g. Rat,
Aaron, Koala West). Leslie, Mark, Arnie and one sample from Aaron all have MgO
contents in excess of 35 wt %, similar to that observed in Grizzly. Roger and Koala
West have lower MgO and SiO; than Grizzly, but higher Al,O; and P,Os. Pigeon also
has in excess of 3 wt% Al,Os. Roger is the most Ca-rich of this group, while Pigeon

and Koala West have similar CaO abundances to Leslie, Mark and Arnie.
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Intra-kimberlite variations in trace element abundance are small in Roger, Koala West,
Leslie and Pigeon, but are considerably greater in Rat and Aaron. Roger and Koala
West tend to have the highest trace element abundances in this group, while Mark,
Leslie and Pigeon have lower concentrations of trace elements, more akin to Grizzly.
The chondrite-normalised rare earth distribution patterns of most of these kimberlites
are parallel to each other and the trends observed in Lac de Gras as a whole. Aaron and
Rat are the exception to this: in each of these bodies the sample with the lowest MgO
has lower LREE-MREE and higher HREE concentrations than the other. This
produces a flattening of the distribution pattern in the Eu-Lu range. The samples from
Pigeon also display this MREE-HREE flattening, which is characteristic of crustal

contamination.

Amie, Mark and Leslie have some of the highest abundances of Ni and Cr in this
group, while Roger and Koala West have some of the lowest. By contrast, Roger and
Koala West contain high concentrations of Sc and Ti. The transition element signature
of Pigeon is similar to that of Mark and Arnie, except for a notable depletion in Cr.
The most anomalous transition element patterns are again displayed by low-MgO

samples from Rat and Aaron.

All of the kimberlites in this group display a negative K anomaly on a normalised
incompatible element distribution diagram. This anomaly is most pronounced in Arnie,
Mark, Leslie and Roger, and least pronounced in Pigeon. The low-MgO ‘anomalous’
samples from Aaron and Rat tend to be less enriched in LILE and HFSE than the more

MgO-rich samples from the same intrusions.
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4.3.2.5 Group B: Other kimberlites north of Lac de Gras

The group is composed of two kimberlite clusters (Figure 1.5). The first is situated
between Yamba Lake and Exeter Lake, and consists of the Porpoise and Rattler bodies,
which are emplaced into biotite monzogranite, and the Anaconda body, which intrudes
through biotite granodiorite and hornblende-biotite tonalite (Kjarsgaard et al., 2002).
The second cluster, consisting of the Cretaceous Anne (HL-10), Finlay (HL-11) and
Don (HL-12) intrusions, is located a few kilometres south of Hardy Lake, north-east of
Lac de Gras. These kimberlites have also been emplaced into biotite monzogranite at
the current erosion level (Kjarsgaard ef al., 2002). There is a distance of approximately
50km between the two clusters, although within each cluster only 5-10km separates the

individual kimberlites.

Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. The extent of major element variation between these
kimberlites is very similar to that observed in the bodies adjacent to Grizzly. The Don
kimberlite has the closest major element composition to Grizzly, although its SiO, and
KO contents are slightly higher and its CaO content is lower. The other kimberlites in
this group have MgO contents below 35 wt%. Anaconda and Porpoise are the only two
bodies to display intra-kimberlite variations; they have a range of MgO and most other
major oxides. Finlay and Porpoise have significantly higher Al,O; than the other
bodies in these two clusters. Anaconda, Rattler and Porpoise all have CaO contents in

excess of those in the kimberlites from the Hardy Lake area.

All six kimberlites in this group have typical normalised rare earth patterns parallel to

the overall Lac de Gras trend. Finlay has the highest abundance of REEs, while Anne,
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Don and Anaconda are the most deficient in these elements. Rattler and Porpoise show
a small range of intra-kimberlite variation in the REEs and some compatible elements.
Porpoise is notably depleted in Ni, Cr and V relative to the Lac de Gras median, this
kimberlite has the lowest MgO in this group. Don also has lower Ni than is typical
among the Lac de Gras kimberlites. None of these bodies display any significant
intra-kimberlite variation across the other incompatible elements, with the exception of
an anomalous U spike in one of the samples from Anne. The negative K anomaly is
present in all of these samples to varying degrees and is most pronounced in the

Anaconda and Don kimberlites.

4.3.2.6 Group C: Kimberlites south and east of Lac de Gras

This group of six kimberlites again consists of two clusters of three bodies, separated
by about 15km (Figure 1.5). The first cluster consists of T-34, T-35 and T-36, while to
the east lie T-19, T-21 and T-237. All of these kimberlites intrude through

metasedimentary rocks of the Yellowknife Supergroup (Kjarsgaard et al., 2002).

Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. All of these samples have significantly lower MgO (<30
wt%) and higher Al,O; (>3 wt%) contents than those of Grizzly. The T-36 and T-237
kimberlites show some intra-kimberlite variation in MgO and other major oxides.

Major element variation within the other kimberlites in this group is minimal.

Intra-kimberlite trace element variations are also rare amongst these six kimberlites. In

each case the normalised REE patterns are mutually parallel, but all show a tendency

towards flattening out in the MREE-HREE range. The REE contents of all these
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samples are higher than the median value for Lac de Gras. Similarly, the Ni and Cr
abundance in all of these samples is lower than typical for the Lac de Gras suite as a
whole. Together with the lower MgO and higher Al;O; contents, and higher MREE
and HREE, this could be evidence of dilution of a typical ‘olivine’ signature with
crustally derived material (see Chapter 5). Incompatible element abundances are
similar to or greater than the Lac de Gras median value. K anomalies are generally
smaller than those observed in the kimberlites situated on the north side of Lac de Gras.
This is most pronounced in this group in the T-237 body, and is again consistent with

addition of crust (Chapter 5).

4.3.2.7 Group D: Other Lac de Gras kimberlites

This group covers the remainder of the hypabyssal samples drawn from seven widely
spaced intrusions around the immediate area of, and to the south and far east of Lac de
Gras (Figure 1.5). The easternmost extent of the study area is marked by the kimberlite
at Nicholas Bay, on the northern shore of Aylmer Lake. Nicholas Bay, TR-107 and
DD-39 are emplaced within Yellowknife Supergroup metasediments, while the other
kimberlites of this group intrude muscovite-biotite monzogranites (Kjarsgaard et al.,

2002).

Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. The inter-kimberlite major element variation observed
between these seven bodies is very large, encompassing almost the entire range seen in
the Lac de Gras field. Intra-kimberlite variation is again limited, with only Misery,
Misery East and T-146 showing any significant differences between samples from a

single body. DD-39 has the highest MgO content, comparable to that of Grizzly, while
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TR-107 and T-146 are the most MgO-poor. These two samples also have high Al,Os3,
K70, Na,O and P,0s. Only DD-39, Misery and Misery East contain less than 3 wt%

Al O3 in this sample group.

The general lack of intra-kimberlite variation is again also reflected in the trace element
compositons of these kimberlites. All have mutually parallel normalised REE patterns.
The greatest abundance of REEs is found in T-146 and TR-107, while all the other

bodies have REE contents typical of the Lac de Gras median.

The MgO-poor kimberlites from T-146 and TR-107 are depleted in Ni and Cr relative
to the Lac de Gras median. These kimberlites also have a commensurate excess of Sc,
V and Ti relative to the more MgO-rich bodies in this group. T-146 and TR-107 are
also significantly enriched in incompatible elements relative to the other kimberlites in
this group and the Lac de Gras median. DD-39 appears to be depleted in Cs and Rb
relative to Lac de Gras as a whole, and with Misery is the one of only two kimberlites
to display a negative K anomaly of a comparable magnitude to those observed in the
more northerly groups. Petrographically, these two kimberlites are more similar to the

intrusions on the northern side of Lac de Gras (groups 1 and 2).

4.3.2.8 Group E: Slave kimberlites outside the Lac de Gras area

This group includes kimberlites from the Contwoyto field (Jericho and Muskox), and
from the South-East Slave field (Kennady Lake and Snap Lake). Sample JD-51 from
Jericho has been proposed by Price et al. (2000) to be a compositional proxy for a
primary kimberlite liquid, on the basis of an absence of any evident macrocrystal

olivine.
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Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. The extent of intra-kimberlite major element variation
appears to be greater in these kimberlites than that typical of Lac de Gras intrusions.
Unfortunately only single samples of hypabyssal material were obtained from the
South-East Slave bodies, so intra-kimberlite variations in this area cannot be assessed.
The two samples from RND-120 (Jericho) have very disparate MgO contents,
potentially indicating a large amount of differential olivine addition/subtraction. This
1s also observed to a lesser extent in JD-69. Only a single sample from RND-120 has
an MgO content similar to that of Grizzly. JD-51 has very low MgO, in accordance
with its olivine-poor nature. The Jericho samples are also notable for displaying a wide
range in CaO from one intrusion to another. JD-69 and JD-82 are the only kimberlites

in this group to have Al,Os contents below 3 wt%.

RND-120 is highly enriched in trace elements relative to the other kimberlites in this
group and those from Lac de Gras. The MREE-HREE abundances in JD-51, JD-69
and JD-82 are also elevated relative to the Lac de Gras median. The negative K

anomalies are more accentuated in the kimberlites from the Contwoyto field.

4.3.2.9 Group F: Canadian kimberlites beyond the Slave Province

Analyses have been obtained on a further nine samples from kimberlites located
outside the Slave craton. Four samples analysed for this study are from separate
kimberlites (Batty Bay, Elwin Bay, Jos and JP South) from Somerset Island, which is
located at the northern end of the Gulf of Boothia and is part of the Churchill Province.

For comparison, a further four analyses of a Somerset Island kimberlite (Nikos) from
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the study of Schmidberger et al. (2002) are included. An additional sample from the
Churchill Province is also included from the kimberlite at Rankin Inlet. Four samples
are also taken from the Attawapiskat, Kirkland Lake and Timiskaming fields of the
Superior Province. The two samples from the Timiskaming field are taken from

different kimberlites (Guigues and Peddie).

Major and trace element variations within and between kimberlites in this group are
illustrated in Appendix E. The four samples from Nikos (Schmidberger et al., 2002) on
Somerset Island do not provide strong evidence for intra-kimberlite homogeneity in this
body. As in the other kimberlite groups investigated, there is a considerable range of
major clement compositions between different kimberlites. The samples from Kirkland
Lake and Timiskaming have the highest MgO contents, although these are still lower
(<35 wt%) than the values typical of Grizzly. The Churchill Province samples are
notable for their high TiO, and Ca0O, and low SiO, and Fe,O; T relative to Lac de Gras
kimberlites. High CaO contents in the Somerset Island kimberlites may be related to
the carbonate sedimentary cover through which the bodies intrude in this area (Mitchell
and Fritz, 1973). Alternatively, this could be due to higher modal proportions of

primary magmatic carbonates.

All the kimberlites from the Churchill and Superior provinces show considerable trace
element deviations from the median of the Lac de Gras dataset. The Churchill province
kimberlites are variably enriched in REEs relative to those from Lac de Gras. The
samples from the Superior province display a range of REE enrichment and depletion
relative to Lac de Gras, and the REE patterns from Attawapiskat and Kirkland Lake are

noticeably flattened in the MREE-HREE.
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The Churchill province kimberlites analysed in this study are variably depleted in Cr
and Ni, and enriched in Ti, relative to Lac de Gras. Only partial compatible element
data is reported by Schmidberger et al. (2002), so this data is not included here. The
Superior province kimberlites are also Cr-poor and Ti-rich relative to Lac de Gras. The
patterns of variable enrichment and depletion in REEs relative to Lac de Gras also
apply broadly for other incompatible elements. All the kimberlites from both the

Superior and Churchill provinces have a negative K anomaly.

4.3.2.10 Summary

Although a large range in major and trace element abundances is evident between
kimberlites on both a local and regional scale, there is a striking degree of
intra-kimberlite homogeneity in many intrusions. This is exemplified by the limited
variation observed between the multiple analyses of hypabyssal kimberlite from the
Grizzly pipe. Many of the most MgO-rich kimberlites analysed, including Grizzly, are
found within 20km of each other between Lac de Gras and Exeter Lake. Similarly, the
majority of kimberlites from south and east of Lac de Gras have Al,O; and HREE

contents indicating more extensive contamination by crustal material.

Where intra- and inter-kimberlite geochemical variations do occur, they tend to be
coupled across the major and trace element chemistry of the kimberlite (e.g. variations
in MgO are coupled with those in Ni and Cr, adding olivine to a magma may
concentrate these elements and ‘dilute’ others, such as the HREESs). Certain element
distribution patterns are characteristic of kimberlites, such as high LREE/HREE ratios

and negative anomalies in K relative to other LILE and HFSE elements. Variations in

108



the magnitude of these characteristics may also be diagnostic of variable addition and
subtraction of material derived from the mantle and crust. The effect of processes such
as contamination, alteration and fractionation on the elemental geochemistry of

kimberlites is investigated in detail in the next chapter.
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Chapter 5

Major and trace element geochemistry -
processes

5.1 CHAPTER OVERVIEW

In this chapter, the detailed major and trace element data presented in Chapter 4 are
used to investigate the processes responsible for modifying the chemistry of a
kimberlite melt subsequent to separation from its mantle source region. There are four
main controls which may operate to varying degrees: contamination of the magma by
physical incorporation of lithospheric mantle xenoliths, contamination of the magma by
continental crust, fractionation of early crystallising phases from the magma, and post-
emplacement alteration. Each of these processes and their effects on kimberlite

geochemistry is discussed.

5.2 ALTERATION

5.2.1 Nature and extent of alteration processes

Mineral assemblages typical of kimberlite are very susceptible to alteration, which
proceeds by a range of processes, often in discrete stages. There are two main phases
of alteration. The first is a deuteric process, whereby late-stage fluids cognate to the
intrusion interact with the kimberlite mineralogy. Subsequently, post-emplacement
weathering processes can produce alteration and leaching of the kimberlite by

groundwater in the near-surface environment.
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Deuteric alteration occurs during and immediately after emplacement of the kimberlite
and may be promoted by high volatile contents in the magma, which exsolve during the
eruptive phase. This process can result in partial to complete replacement of olivine
macrocrysts by pseudomorphs of fine-grained serpentine and redistribution of primary
carbonate within the groundmass (Spriggs, 1988; Tainton, 1992). The subsequent
alteration of serpentine to other low-temperature hydrated magnesium silicates such as
vermiculite and saponite (Kresten, 1973) are an extension of these deuteric processes,
rather than weathering effects. Spriggs (1988) maintains that the bulk composition of
the system remains unchanged by deuteric alteration, although Kresten (1973) argues
that some material will be lost in solution, such as brucite, which is a common by-
product of the breakdown of olivine to serpentine. The resulting low activity of Mg®*
in the system is the driving force for subsequent formation of vermiculite and saponite

(Kresten, 1973).

Weathering processes may occur at any time after emplacement of the kimberlite and
result in the breakdown of phlogopite and serpentine to chlorite, a variety of clay
minerals including illite, kaolinite and montmorillonite, calcite and calc-silicates such
as members of the epidote group (Kresten, 1973; Deer, et al., 1992). Secondary
serpentine may be formed as fibrous overgrowths on olivine pseudomorphs which are
distinct from deuteric serpentine (Spriggs, 1988). Removal of material from the
system, in particular leaching of mobile elements in solution, is common during
weathering (Fesq, 1975; Spriggs, 1988; Tainton, 1992). Calcretes and lateritic
assemblages often develop at the near-surface (Kresten, 1973; Tainton, 1992),

particularly in tropical latitudes (Fairbairn and Robertson, 1966).
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All kimberlites that ascend fully through the crust and become emplaced in a surficial
environment are likely to be affected to some degree by circulating groundwater fluids,
or by exposure to subaerial weathering processes. Crater and diatreme facies rocks are
thus more likely to be immediately subject to near surface alteration, but erosion could
subsequently bring any level of the kimberlite intrusion into the near surface alteration
zone. Tainton (1992) describes how alteration in dykes of hypabyssal facies kimberlite
from South Africa tends to decrease from the margins to the centre of the feature,
suggesting ingress of fluids along the contact between the dyke and the country rock,
whereas in the diatreme environment alteration is more evenly distributed throughout
the pipe. This is probably due to the inherent high porosity of crater and diatreme
facies kimberlite. It is conceivable that fluids responsible for alteration could exploit

fractures and other structures to reach any part of a kimberlite body.

In general, massive hypabyssal facies kimberlite has low porosity and should be less
altered than the kimberlite breccias of the diatreme facies. Consequently hypabyssal
facies rocks are the preferred focus of the current study. Petrographic examination of
the LDG samples indicates that they have experienced variable, but limited
post-emplacement alteration (Armstrong et al., in press), particularly in relation to
many hypabyssal kimberlites from southern Africa (B. A. Kjarsgaard, pers. comm.).
Mitchell (1986) suggests that in many studies of South African kimberlites, samples

categorised as ‘fresh’ are in fact altered to some extent.

5.2.2 Mineralogical and chemical effects of alteration processes

Modification of the whole-rock chemistry by weathering and other near-surface

alteration processes is a complex function of the specific mineralogy of the kimberlite,
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the chemistry of the fluids involved and the amount of alteration that takes place. The
pre-alteration bulk chemistry of the rock is already a function of the initial primary
magma composition, the amount of mantle and crustal material assimilated by the
kimberlite magma during ascent, and crystal fractionation processes. The rate and
extent of alteration may be controlled by proximity to the surface, and thus indirectly
by the ambient rate of erosion, together with other structural characteristics of the local
geology and prevailing conditions of subsequent hydrothermal systems. Despite the
complex nature of the problem, it is possible to make some observations about the
probable effects of alteration based on the few studies that have actively included these

rocks (e.g. Fesq et al., 1975; Taylor et al., 1994).

Alteration processes do not affect all the mineralogical constituents of a kimberlite
equally, although the phases that are typically altered often tend to be some of the most
modally abundant. These include olivine, which becomes partially or fully
serpentinised, phlogopite, which is degraded to chlorite and other clay minerals, and
carbonates such as calcite and dolomite (Fairbairn and Robertson, 1966; Tainton, 1992;
Taylor et al., 1994). Primary carbonates are leached from kimberlite by some fluids,
and reintroduced as secondary carbonates by others (e.g. formation of magnesite during
serpentinisation; re-precipitation of calcite from solution, e.g. Armstrong ef al., in
press). These different phases of carbonate can be difficult to resolve chemically,
although detailed studies of mineral chemistry are currently being conducted to assess

their relative contributions (e.g. Armstrong ef al., in press).

The replacement of olivine by serpentine and, subsequently, other minerals proceeds by

several chemical reactions, examples of which are given in Deer er al. (1992). Further
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decomposition of serpentine to talc, chlorite, other clays and carbonates such as calcite
and magnesite is dependent on the H,O and CO, content of the ambient pore fluids
(Deer et al., 1992). The net flux of elements during these processes tends to lead to a
decrease in the Mg, Fe’* and Si content of the rock and an increase in the Al Fe** and
Ca content. Serpentinisation also produces a large net decrease in the density of the

rock, and thus there is a large volume expansion for a given mass of material.

Phlogopite is a major constituent of Group II kimberlites but is also often found as a
groundmass phase in Group I intrusions, and more rarely as a phenocryst phase.
During alteration it degrades to sericite, chlorite and a range of other clays, as well as
calcite and epidote group minerals (Deer er al, 1992). These reactions lead to a

decrease in Mg and K coupled with an increase in Al and Ca.

The clay minerals introduced by alteration of both olivine and phlogopite are capable of
hosting a variety of trace elements. The more mobile incompatible elements in these
systems tend to be those with large ion lithophile tendencies, such as the alkaline (e.g.
Rb, Cs) and alkaline-earth metals (e.g. Sr, Ba) and the lightest rare earth elements (La,
Ce). Other incompatible elements, such as the high field strength elements (e.g. Nb,
Ta, Hf, Zr) are considered to be relatively immobile during alteration. Taylor et al.
(1994) suggested the following order of mobility on the basis of analyses of altered

kimberlites from Liberia:

MOBILE Sr ~ Rb > Ba > La ~ Ce > P ~ Zr > Nb TMMOBILE
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This is consistent with the study of Nesbitt et al. (1980), which found that alkaline and
alkaline-earth elements with smaller ionic radii (e.g. Na, Ca, Sr) are preferentially
removed in solution during weathering while those with larger ionic radii (e.g. Rb, Cs,
Ba) are mobilised but become adsorbed onto clays and so remain within the weathering

profile unless mass wasting processes (e.g. erosion) are active.

Aside from major and trace element, it seems probable that there is some relationship
between volatile content and the degree of alteration of a sample. The role of H,O and
CO; in serpentinisation and carbonation of the rock has already been noted.
Unfortunately, the pattern is complicated due to the naturally high and variable volatile
content of kimberlite magmas. There is also a lack of information regarding the extent
to which the magma devolatilises during emplacement and to which volatiles
(particularly CO,) are lost from the system during alteration. Given the number of
unconstrained factors influencing volatile content it seems unwise to use this in

1solation as a measure of alteration.

3.2.3 Identifying major and trace element indicators of alteration

Identifying major and trace element variations that are characteristic of alteration is not
straightforward. The effects of alteration can be difficult to distinguish from the effects
of crustal contamination. In addition, most studies (including this one) have
deliberately avoided analysing altered material. Well-characterised altered kimberlites
are therefore scarce. Gurney and Ebrahim (1973) reported major element analyses of
25 kimberlites from Lesotho, subsets of which constitute suites of fresh to altered
material from individual localities, e.g. Lemphane. Fesq ef al. (1975) presented major

and average trace element data for a selection of South African kimberlites, including
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the contaminated and altered Koffiefontein and Ebenhaezer intrusions. They noted
relative depletion of Cs > Rb > K in the vicinity of contacts between kimberlite dykes
and country rock, and suggested the use of the ratios K/Rb, K/Cs and Th/U as tracers of

alteration.

More recently, Spriggs (1988) attempted a more detailed major and trace element
comparison of fresh and altered kimberlites from Namibia. A number of trends can be
identified relative to Nb content on binary variation diagrams that appear to
discriminate the effects of alteration from those of fractionation and crustal
contamination. The main observations of this study were that alteration, or some
combination of alteration and contamination, causes depletion of alkali and
alkaline-earth elements along with P and Pb. Taylor ef al. (1994) also presented major
and trace element data for two suites of kimberlites: a set of variably contaminated
hypabyssal and volcaniclastic samples from the Koidu area of Sierra Leone, and a set
of altered but apparently uncontaminated kimberlites from just below the weathering
profile at Sample Creek, Liberia. They concluded that high total H,O content together
with depletion in CO, and mobile incompatible elements are the most diagnostic

geochemical signatures of alteration in these rocks.

Although the binary variation alteration vectors of Spriggs (1988) provide a reasonable
fit to the few Namibian data, it is difficult to apply these same vectors successfully to
other similar datasets, such as that of Taylor et al. (1994). The main reason for this is
that Spriggs (1998) expresses the alteration vectors in terms of concentrations, which
tend to be specific to a particular suite of related rocks. Given the large scope for

relative enrichment and depletion in many elements between kimberlites from different
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fields, or even neighbouring intrusions, it is more appropriate to work in terms of
elemental ratios if we want to develop a more general scheme for recognising

signatures of alteration.

A possible approach to identifying trends of progressive alteration in kimberlites is to
attempt to quantify the development of clay minerals within the bulk rock as a result of
post-emplacement weathering-related processes. This will, on average, lead to an
increase in the abundance of SiO; and Al,O;, with a decrease in MgO. The Na,O/K,0
ratio is also likely to increase. Unfortunately, these are also the trends produced by
crustal contamination of a kimberlite (Section 5.4), making it highly problematic to

assess the relative contributions of alteration and contamination.

An alternative approach is to utilise the differential mobility of minor and trace
elements released from minerals during weathering. A wide variety of minerals are
found in kimberlites (Mitchell, 1986; 1995), but by far the most abundant of those
phases susceptible to alteration are olivine and phlogopite. Primary groundmass
calcite, the content of which is very variable between kimberlites, and apatite are also

commonly re-precipitated or replaced as a result of interaction with groundwater.

Although the majority of olivine serpentinisation is thought to occur as an isochemical,
deuteric process, in reality some Mg is likely to be lost from the system during
serpentinisation as a result of formation and subsequent dissolution of brucite (Kresten,
1973). The principal trace elements hosted by olivine are compatible elements such as
Ni and Cr, which are not considered to be particularly mobile. Using Mg or elements

such as Ni and Cr as tracers of alteration within a suite of rocks would be complicated
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by the hybrid nature of kimberlite, which results in samples having very variable

olivine contents that differ from those of the primary magma.

The decomposition of phlogopite to a succession of clay minerals during weathering is
potentially a better approach to identifying alteration effects, since phlogopite is the
main host for a variety of alkaline and alkaline-earth elements such as K, Na, Ca, Ba,
Rb and Cs (Deer et al., 1992). Sr is also present as an interlayer cation in phlogopite,
but is mainly hosted within carbonate phases. It may be mobilised as a result of
groundwater dissolution and re-precipitation of primary carbonate. The most leachable
of these cations tend to be those with low ionic charge (i.e. 1+ or 2+) and small ionic
radius. These are easily mobilised by exchange with H" ions in acidic groundwater
fluids and are less readily adsorbed into exchange sites in clay minerals than larger
radius cations (Nesbitt ef al., 1980). Na, Ca and Sr are thus more extensively removed
in solution while Rb, Cs and Ba will tend to remain to some extent in the clay-rich,

weathered portion of the kimberlite.

Apatite has been observed to be pseudomorphed by late-stage calcite in some
kimberlites (Mitchell, 1986). Weathering of apatite may also release other elements

that substitute for Ca in the apatite structure, such as Sr and LREE:s.

In contrast to these easily weathered phases, some trace elements are primarily hosted
in more refractory oxide minerals such as perovskite. Nb is particularly abundant as a
substitute for Ti in the dysanalyte variety of this mineral, along with lesser amounts of
Ta;, REEs are enriched in the knopite and loparite varieties (Boctor and Boyd, 1979;

Deer et al., 1992). Abundances of these relatively immobile elements should therefore
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remain virtually constant throughout weathering processes. This is borne out by the
choice of Nb as an immobile reference element by Spriggs (1988) in his bivariate
‘alteration vector’ diagrams and by its common utilisation in geochemical classification
schemes. Nevertheless, under some weathering conditions refractory phases like
perovskite and 1lmenite can break down to products such as leucoxene (Mitchell, 1986;
Heaman and Kjarsgaard, 2000). Thus, no element is entirely resistant to the effects of

alteration.

S.2.4 Quantifying alteration

Compositional datasets for kimberlites from Namibia (Spriggs, 1988) and West Africa
(Taylor et al., 1994) contain both fresh and altered samples and provide the best
opportunity within the literature to investigate the effect of alteration on selected
elemental abundances. If parameters capable of charcterising alteration in these
kimberlites can be identified, they may be applicable to identifying alteration in the
Canadian kimberlites. In the case of the Gibeon kimberlites, both fresh and altered
samples are from the same kimberlite field, all samples are hypabyssal and there is
good evidence that all the rocks are genetically related (Spriggs, 1988). This not the
case for the West African samples, which are drawn from different fields in Sierra
Leone (fresh samples) and Liberia (altered samples). It cannot be assumed that there is
any genetic link between the magmas that were emplaced in these two areas.
Consequently, while there is considerable variation in the abundance of some elements
between the populations of ‘fresh’ and ‘altered’ kimberlites (Figure 5.1) in West
Africa, these variations cannot exclusively be attributed to alteration, and this data
should be treated with caution. It is included in Figures 5.1 and 5.2 for comparison

purposes only.
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The greatest difference between elemental abundances in fresh and altered kimberlites
from Gibeon is seen in the LILEs and LREEs (e.g. Na, K, Rb, Ce), with more moderate
variation in elements such as Ba and Sr, and very little variation in Nb (Figure 5.1).
Some of the reduction in abundances, particularly of less mobile elements, may be due
to volume expansion in the rock as a result of serpentinisation. This will reduce
elemental abundances on a weight-for-weight basis. These observations are broadly
supported by the West African data, and are reasonably consistent with the arguments

concerning relative element mobility developed above.

The differential mobility of elements can be used as a basis for discriminating between
chemically altered and fresh material, and to provide some indication of the extent to
which the alteration has proceeded. The theoretical considerations and practical
examples presented above suggest that the most effective indicators of alteration should

take the form:

[Alkaline or Alkaline-earth element] / [HFSE]

Suitable choices of element would include Na, Rb, Ca, Sr for the numerator and Nb,
Ta, Hf, Zr, Y for the denominator. In practice there are some limitations on these
selections. For instance, the use of Ca is questionable given the extreme variability in
abundance of this element between kimberlites. Also, high quality Ta and Hf data for

altered kimberlites in the literature is very limited.

Examination of various trace element log-ratio pairs indicates that few are able to

discriminate fully between samples known to be altered, and those considered
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relatively fresh. Despite Na being supposedly one of the most mobile elements,
Na/HFSE ratios cannot distinguish between fresh and altered samples. This may be
due to opposing effects of Na being removed by leaching, but introduced by crustal
contamination. Ratios involving K, Rb or Ba are sensitive to the presence of
phlogopite in the sample. Consequently, the field of fresh mica-rich (principally South
African Group II intrusions) and mica-poor kimberlites are offset in K-Ba-HFSE or K-

Rb-HFSE space.

Ratios involving Ce, Ba and Sr in association with HFSEs appear to be most effective
at discriminating between fresh and altered material in African kimberlite datasets
(Figure 5.2). These ratios are not sensitive to variable volatile content between
samples. Both the change in magnitude of the ratio (Figure 5.2a-c) and the change in
relative abundance of numerator and denominator (Figure 5.2d-f) are illustrated. The
relative change in elemental abundance between Ce-Nb, Ba-Nb and Sr-Nb in fresh and
altered samples is quite clear, even when there appears to be little change in the In
(Ba/Nb) or In (Sr/Nb) ratios. The trends observed are consistent with progressive
removal of Sr, Ba and Ce from less refractory phases like phlogopite, apatite and
calcite.  Crustal contamination is likely to lead to rapid reduction in the Nb
concentration in any mixture with a typical kimberlite composition, relative to
reduction in Ce, Ba or Sr. Consequently, it should be possible to discriininate crustal

contamination trends from alteration trends using these parameters.
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Figure 5.2 Variation of log-ratios and abundances of selected elements that demonstrate differential
mobility during alteration in kimberlites from Namibia (Spriggs, 1988) and West Africa (Taylor et al.,

1994).
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5.2.5 Alteration in the LDG and other Canadian kimberlites

Hypabyssal samples from LDG are recognised as being generally less altered than
those from many African kimberlites, but the 16 volcanilcastic samples analysed from
LDG might be expected to show some chemical effects of alteration. There is in fact
very little offset towards low Ce/Nb, Ba/Nb and Sr/Nb apparent in either the
hypabyssal or volcaniclastic kimberlites from LDG (Figure 5.3). In the case of all three
parameters the LDG data display limited scatter around a median value (~0.1 for In
[Ce/Nb]; ~2.3 for In [Ba/Nb]; ~1.5 for In [St/Nb]). Although some samples plot well
below the median value for a particular log-ratio parameters (Figure 5.3a-c), none do so
consistently for all three parameters. It is difficult to rule out the inherent
compositional variability of kimberlites as being the possible cause of these variations.
There is very little variation evident in the volcaniclastic kimberlites relative to the
hypabyssal samples, suggesting that any additional alteration in the volcaniclastic rocks

is not detectable on the basis of log-ratios alone.

An analysis of the relative abundance of Ce, Ba, Sr and Nb in the LDG samples (Figure
5.3d-f) indicates that two samples, from Aaron (AAR-2) and Rat (RAT-4), have very
low abundances of all these elements. These trends are not, however, well correlated
with low In (Ce, Ba, S1/Nb) and consequently could be recording crustal contamination,
or a combination of crustal contamination and alteration. Several of the volcaniclastic
kimberlites from LDG have similar low Ce, Ba, Sr and Nb abundances, and low Ce/Nb,
Ba/Nb and Sr/Nb; these rocks might be expected to contain signatures of both alteration

and crustal contamination.
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Figure 5.3 Variation of log-ratios and abundances of selected elements that demonstrate differential
mobility during alteration in kimberlites from Lac de Gras.
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Among Canadian kimberlites analysed from fields and provinces beyond LDG and the
Slave craton, the four volcaniclastic samples from the South-West Slave, South-East
Slave and Fort a la Corne fields all have low abundances of Ce, Ba and Sr and low
Ce/Nb, Ba/Nb and Sr/Nb. None of the hypabyssal samples from outside the Slave
province have clear signatures of alteration in terms of Ce-Nb, Ba-Nb and Sr-Nb
variations. The two samples from the RND-120 intrusion at Jericho in the Contwoyto
field do have In (St/Nb) that is negative and much lower than any of the other
kimberlites analysed from Jericho. This is partly due to the Nb content of these
samples, which is higher than any of the other Jericho samples, but RND-120 also has

very low (<200ppm) Sr abundances.

S.2.6 Summary

Syn- and post-emplacement alteration processes are capable of leaching substantial
amounts of mobile trace elements from kimberlite matrices. Ratios such as Ce/Nb,
Ba/Nb and Sr/Nb, in conjunction with elemental abundances of Ce, Ba, Sr and Nb, may
offer some insight into which kimberlites have experienced measurable amounts of
alteration. Despite this, the hypabyssal kimberlites from LDG appear to be very fresh,
with none having clear Ce-Ba-Sr-Nb signatures of alteration comparable to those
observed in some southern African kimberlites. This supports field and petrographic
observations regarding the general freshness of hypabyssal kimberlites from LDG.
Only two hypabyssal samples from LDG have low Ce, Ba, and Sr abundances, with
variable Ce/Nb, Ba/Nb, Sr/Nb ratios. Low abundances of Nb associated with these

samples suggest that the observed chemical trends may reflect a combination of
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alteration and crustal contamination. Several of the volcaniclastic samples analysed

from LDG have these kinds of signatures.

3.3 FRACTIONATION OF KIMBERLITE MAGMAS

S.3.1 Evidence for fractionation in kimberlites

No clear consensus exists on the extent, if any, to which primary kimberlite magmas
undergo crystal fractionation. One of the largest barriers to resolving this issue is the
complicating effects of other processes, namely contamination by mantle and crustal
material and post-emplacement secondary alteration that act to modify the primary
composition of kimberlite magmas. Entrainment and assimilation of olivine derived
from the lithospheric mantle in particular masks the effects of possible olivine
fractionation. An additional constraint is that few detailed studies have been conducted
on sets of kimberlite samples that can be regarded with confidence as being genetically
related, e.g. studies of intra-kimberlite compositional variations. Exceptions to this are
the studies of South African Group II kimberlites of Fraser (1985) and Tainton (1992).
Scott (1979) and Spriggs (1988) have investigated geochemical variations in suites of
ultramafic lamprophyres and Group I kimberlites, respectively, that are likely to be
related on a local geographical scale. The conclusions of these studies with regard to

the effects of fractionation are summarised in Table 5.1.

S.3.2 Fractionation mechanisms

The fractionation of kimberlite magmas cannot be considered in isolation from other
processes of magmatic evolution such as contamination by the crust and lithospheric
mantle, which can and probably do affect kimberlite magmas (see sections 5.4 and 5.5).

A kimberlite magma can start fractionating as soon as it is separated from its source
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region and begins ascending. This is an important consideration, because assimilation
of mantle peridotite and crust will alter the composition of the magma, i.e. pre-, syn-
and post-contamination fractionation will commence from different initial bulk
chemistries. This is, of course, dependent on the extent to which any entrained mantle
or crustal material actually dissolves in the kimberlite magma. A considerable
proportion of any macrocrystal olivine that is separated out from the evolving magma
could, in fact, be xenocrystal in origin. Equally, olivine macrocrysts can also be high-
pressure phenocrysts; careful petrography is required to determine the relative modal

abundance of xenocrysts and phenocrysts.

Incorporation of crustal material into the kimberlite magma (see section 5.4) can lead to
significant reductions in the bulk MgO content of a sample. Differential amounts of
crustal contamination in a suite of samples may produce a range of MgO and other
major element compositions that superficially resemble fractionation trends. Careful
examination of major and trace element data should enable the effects of fractionation

to be resolved from those of contamination by crustal and also mantle material.

The two most likely mechanisms for removing early-forming phases from the
kimberlite magma are gravitational separation during ascent and flow differentiation
during ascent and emplacement. Several workers have observed flow differentiation
phenomena in dykes and sills from South Africa (Dawson and Hawthorne, 1973;
Clement, 1982; Mitchell, 1986). Hand specimens from the Jagersfontein kimberlite
clearly show development of olivine-rich and olivine-poor layers on a centimetre scale,
producing extreme chemical heterogeneity on a local scale. There is also evidence on a

thin-section scale of flow banding in samples from the dykes of the Jericho intrusion.
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Arndt (2003) envisages a process operating in South African Group II kimberlites
whereby the ascending magma interacts with the lithospheric mantle, entraining
peridotitic olivine as xenocrysts and chemically assimilating orthopyroxene and other
less refractory phases. This increases the SiO, content of the magma and adjusts its
Mg/Fe ratio such that olivine crystallising from it has a forsterite content like that of the
assimilated material.  Although it is not stipulated to what extent, if any, the
crystallising olivine is fractionated from the magma, this is essentially an assimilation-
fractional crystallisation (AFC)-type process, where latent heat of crystallisation drives
the assimilation of material into the magma (DePaolo, 1981). Arndt (2003) suggests
that this process does not operate to the same extent in Group [ magmas, which pass
upwards through the mantle more rapidly, entraining but not resorbing lithospheric
material and thus retaining an isotopic signature characteristic of the sub-lithopsheric
convecting mantle. Differential volatile content is proposed as a possible means of
varying the speed of ascent and degree of lithospheric interaction between Group I and

Group II magmas.

5.3.3 Fractionating phases in LDG kimberlites

The phases most commonly considered on the basis of textural evidence to represent
phenocrysts in kimberlites are olivine and phlogopite (Mitchell, 1986). Together with
spinel, these are the earliest crystallising phases within kimberlite magmas. Phlogopite
is not, however, commonly observed as a phenocryst phase in the LDG kimberlites;
instead it occurs mainly as microphenocrysts or as a groundmass phase (Armstrong et
al., in press). In addition, the experiments of Edgar et al. (1988) on phase relations in
the aphanitic Wesselton kimberlite from South Africa at 10-50kbar, show that above

1200°C, the only phases that crystallise are olivine and spinel. Phlogopite phenocrysts
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are only likely to form in the rare cases when the K,O content of the magma is >2wt%
(B. A. Kjarsgaard, pers. comm.). In the following analysis ilmenite and perovskite are
also included because they are ubiquitous phases and exert important controls on the

budget of elements such as the HFSEs and REEs.

The 14 analyses of samples from the Grizzly kimberlite are used to investigate in detail
fractionation trends within the LDG dataset. These samples can reasonably be assumed
to be cogenetic, and thus be derived from a magma with a common initial bulk
chemistry and evolutionary history. Observations made on this well constrained group

can then be extended to the dataset at large.

S5.3.4 Major and trace element models of fractionation

Plotting the major and minor element variations of LDG hypabyssal kimberlites with
respect to vectors describing the evolution of residual liquids during fractional
crystallisation of phenocryst phases (Figure 5.4), allows general trends in
compositional control by those phases to be identified. Any correspondence with
trends evident in the kimberlite data can then be identified. Vectors representing
addition of typical crustal compositions are included on these diagrams for comparative
purposes. The effects of crustal admixing with kimberlite magmas are discussed

further in section 5.4.

Any analysis of fractionation or contamination of magma must take into consideration
the initial composition upon which these processes operate. In this case, the models
presented in Figure 5.4 require specification of the initial kimberlite magma

composition, from which phenocryst phases may crystallise. Identification of such a
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‘primary’ composition is usually complicated by the large and variable amounts of

contamination by crust and lithospheric mantle typically experienced by kimberlites.

In previous work on kimberlites (e.g. Edgar er al., 1988; Price e al., 2000), samples of
aphanitic kimberlite, which contain virtually no discernable olivine macrocrysts, have
been used as the closest available proxy for a ‘primary’ kimberlite liquid. Aphanitic
kimberlites are, however, very rare, and it is also difficult to be certain that these rocks
are not macrocryst-free due to efficient fractionation having taken place. The study of
Price et al. (2000), for example, identifies ‘aphanitic’ compositions with a wide range

of MgO contents.

Graphical methods have also been used to estimate possible primary compositions.
Arndt (2003) uses MgO and FeO variations in South African kimberlites to constrain
the MgO content of the primary magma to 18-22wt%. Le Roex et al. (2003) use
inflections in compositional trends between macrocrystal and aphanitic kimberlites
from South Africa to obtain a value of 28-29 wi% for the primary magma. The
samples analysed for this study span a continuous range of MgO from 15-45wt%.
Within this range, samples known from petrography to have large modal proportions of
olivine (including xenocrysts) typically have MgO in excess of ~34wt%, e.g. Grizzly,
Mark, Arnie. Samples known to contain significant contributions from crustal
contamination generally have MgO of less than ~25wt% (e.g. Fox). Clear petrographic
evidence of fractionation in the Lac de Gras samples has been harder to identify

(Appendix B), but any fractionation of olivine will also reduce MgO content.
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As an initial estimate for this model, the ‘primary’ magma prior to fractionation is
assumed to have 30wt% MgO. This approximately corresponds with samples that have
minimal evident contributions from crustal or lithospheric contamination (e.g.
Anaconda, Rattler), and is also in broad agreement with the estimates of Le Roex et al.
(2003). Plotting regression lines through the LDG data for MgO vs other elements
provides estimates of other ‘primary’ abundances, corresponding to 30wt% MgO.
These are, 30wt% Si0,, 8.5wt% Fe,0s3 1, 0.8wWt% TiO,, 2.5wt% Al,Os, 1200ppm Ni
and 1500ppm Cr. The identification and interpretation of fractionation trends in the
LDG kimberlites is clearly highly dependent on the values chosen to represent the
compositions of both the parental magma and the end-member fractionating phases.

The discussion that follows is based on the values selected above.

Figure 5.4 indicates that olivine fractionation provides the best fit to the compositional
variation observed in the LDG kimberlites. Despite this, the substantial MgO contents
(34.9 to 39.3 wt%) of samples from Grizzly and several other kimberlites from LDG
strongly implies that compositional variation in these samples cannot be the product of
fractionation alone, as the parental magma would require an MgO content in excess of
40 wt% to yield appropriate residual liquid compositions during olivine fractionation.
The high MgO of these samples is almost certainly due to the addition of xenocrystal
olivine into the magma. This process increases the abundance of elements such as Mg,
Fe, Si, Ni and Cr in the magma, whereas olivine fractionation will deplete the residual
liquid of these elements. The effects of assimilation of lithospheric mantle into
kimberlite magmas are discussed in more detail in section 5.5. In both high and low
MgO samples, contamination by crust may also be responsible for some of the

observed variation towards higher SiO; and Al,O;, and lower Fe,O; 1, TiO,, Cr and Ni.
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Figure 5.4 LDG hypabyssal kimberlite variation in selected major and trace elements and
compositional control lines indicating evolution of residual liquid during fractional
crystallisation of olivine, phlogopite, Cr-spinel, perovskite and ilmenite from a ‘primary’
kimberlite magma with 30wt% MgO, 30wt% SiO,, 8.5wt% Fe,0, ,, 2.5wt% Al,0,, 0.8wt%
TiO,, 1500ppm Cr, 1200ppm Ni. Representative phenocryst compositions from Mitchell

(1986).
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For samples with <30wt% MgO, fractionation of olivine is able to account for some of
the variation in all elements shown in Figure 5.4, with the exception of Cr. Fe,O; 1, Cr
and Ni variations are broadly consistent with some degree of compositional control by
phlogopite, but this is not the case for TiO, and Al,O;. Phlogopite is rich in both of
these components relative to kimberlites, so fractionation of phlogopite from a magma
should result in obvious TiO, and Al,O; compositional trends in the residual liquid.
Since this is not observed in the LDG kimberlites analysed, it seems unlikely that
phlogopite fractionation can have been an important process in the evolution of these
rocks. This is consistent with the generally phlogopite-poor nature of the LDG

kimberlites.

The greater scatter of data around the olivine fractionation vector in samples with
<30wt% MgO could be explained by small amounts of fractionation of any of the other
phases under consideration. Cr-spinel in particular could account for some of the
limited observed variation in Fe,0; 1, TiO; and Al,O;. As previously noted, there is
little petrographic evidence for the presence of ilmenite or perovskite as phenocryst
phases in the rocks studied. Cr-spinel is thus the most likely phase to influence the
kimberlite compositions by early-stage crystallisation, in association with olivine, from

the magma.

5.3.5 Summary
There is no consistent evidence in the major or trace element data from LDG
kimberlites to support fractionation of phlogopite from a parental magma as a principal

means of generating observed chemical variations. Olivine or olivine + Cr-spinel
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control lines do appear capable of reproducing the broadly linear major and trace
element compositional trends observed in kimberlites with MgO contents lower than
that of the parental magma (here assumed to be 30wt%). Clearly, if the magma
originally has a lower MgO content (e.g. 20wt%) then the same trends could be
explained by olivine or olivine + Cr-spinel addition. Removal of olivine + Cr-spinel by
fractionation can also occur in more MgO-rich (>30wt%) magmas, but these have
almost certainly experienced assimilation of olivine from lithospheric peridotites,

which tends to obscure trends in olivine fractionation.

5.4 CONTAMINATION BY CRUSTAL MATERIAL

S.4.1 Nature of crustal contamination

Xenoliths of continental crust are routinely entrained by kimberlites during their ascent
and emplacement. All levels of the crust through which the kimberlite passes may be
sampled in this way, rather than just the country rocks in immediate contact with the
kimberlite diatreme. This is borne out by the presence of both lower and upper crustal

xenoliths in kimberlites (Nixon, 1973).

The quantity and type of material incorporated by the kimberlite can vary widely both
between and within intrusions. The hypabyssal facies typically contains few crustal
xenoliths (Mitchell, 1986), but diatreme facies rocks may contain large proportions of
visible, macroscopic crustal fragments, e.g. the Premier and Koffiefontein-Ebenhaezer
intrusions of South Africa studied by Fesq et al. (1975). The Koffiefontein diatreme
contains mostly xenoliths of shale, whereas at Bellsbank the principal crustal
contaminant is sedimentary carbonate (Kable ef al., 1975). The Premier kimberlite is

composed of multiple intrusive bodies with very variable bulk chemistries: the heavily

136



contaminated Premier Grey body contains 43% crustal material, which is dominantly
quartzite, whereas the Premier Brown intrusion contains 28% crust, most of which is
basic igneous material derived from the Bushveld intrusion into which the kimberlite

was emplaced (Fesq et al., 1975).

A similar range of contamination types and extents could be present in the LDG
kimberlites, which intrude through a variety of basement gneisses, metasedimentary
rocks and associated granitoids. Any effect that crustal contamination has on the bulk
geochemistry of the kimberlite, and comparisons between contaminated kimberlites,

are likely to be influenced by this variability in quantity and nature of the contaminants.

S5.4.2 Existing methods for quantifying crustal contamination

Various attempts have been made to quantify the extent of crustal contamination within
kimberlites. These schemes are based mostly around the concept that crustal rocks
generally have higher SiO, and lower MgO contents than kimberlites. In their
extensive major element study of over 600 Siberian kimberlites Ilupin and Lutz (1971)
proposed that Si/Mg > 0.88 and Mg/(Mg + Fe) < 0.85 could be used as criteria for
recognising crustal contamination. Fesq ef al. (1975) further suggested that since the
highest Si/Mg ratio of any mineral crystallising from kimberlite magmas should be that
of phlogopite (Si/Mg ~1.2), then ratios higher than this threshold probably indicated
contamination. The most commonly used measure at the present time is the

Contamination Index (CI) proposed by Clement (1982). This is calculated as:

CI = (SiO, + ALO; + Na,0) / (MgO + 2K,0)
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The numerator of this expression represents the elements likely to be enriched by
incorporation of crustal material and the products of weathering and other alteration
processes, 1.e. clay minerals, while the denominator represents the original olivine and
phlogopite considered to constitute the bulk of a ‘typical’ unaltered, uncontaminated

kimberlite.

Group I kimberlites uncontaminated by crust should have a CI of around unity. Group
I kimberlites normally contain greater modal abundances of phlogopite and
consequently the CI for an uncontaminated example should be <1.5 (Mitchell, 1995).
Exceptions to these criteria do exist. Clement (1982) reports that some Group I
kimberlites which, on the basis of petrography, are fresh and uncontaminated have a CI
of up to 1.5; similarly, supposedly uncontaminated Group I rocks analysed by Dawson
(1987) have CIs between 1.5 and 2.6, and Clement (1982) found others with CIs of up

to 5.

Although it has been almost universally adopted as a convenient expression of crustal
contamination, the CI has a number of limitations. The most serious of these is its
sensitivity to variation in MgO and SiO,, which dominate the CI due to their abundance
relative to Al,Os3, Na,O and K,0. Consequently, modal abundance of olivine, which
consists almost entirely of MgO and SiO,, is by far the most important control on the
CL Given the potential for variation of modal mineralogy and thus bulk composition
on both an inter- and intra-kimberlite scale, inconsistencies can easily occur between

the Cls of samples that are contaminated to the same degree.
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Sensitivity analysis (Figure 5.5) demonstrates the responsiveness of the CI to changes
in each of its component variables. The starting composition used in this model is an
aphanitic hypabyssal sample from Wesselton, South Africa (Shee, 1986; Edgar ef al.,
1988). It is assumed that the major elements and volatiles constitute the entirety of the
sample (i.e. trace elements are ignored), and that as one component is increased or
decreased, the others decrease/increase in proportion to their abundance to retain the
original sum total. This simple model clearly shows that the CI is extremely sensitive
to variations in MgO and SiO, content, and comparatively insensitive to variations in

Al,Os, Na,0 and K;O.

In reality the situation is more complex, because addition (by lithospheric
contamination) or removal (by fractionation) of olivine will affect all five components
of the index simultaneously. Olivine is not only very enriched in MgO and SiO,
relative to a typical primary whole rock kimberlite composition, but also deficient in
AlO;, NayO and K;0O. Figure 5.6 illustrates the effects of mixing peridotitic mantle
olivine with the Wesselton aphanitic composition. It is important to note that both
MgO and S10; content increases on addition of olivine, but the net effect is a reduction
in the CI. Using SiO; in isolation as an indicator of crustal contamination is therefore

inadvisable.
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Figure 5.5 Effect on contamination index (CI: Clement, 1982) of independent variations in its five

component major element oxide abundances. Starting composition (at 0%) is Wesselton aphanitic
kimberlite (Edgaret al., 1988).
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Figure 5.6 Effect on MgO, SiO, and contamination index (CI: Clement, 1982) of mixing a
hypothetical ‘primary’ kimberlite magma composition (Wesselton aphanitic: Edgar ez al., 1988) with
average composition of peridotitic olivine from the Slave mantle xenoliths (Pearsoner al., 1999).
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In this model the CI tends to that of peridotitic olivine (~0.80) at 100% olivine
addition; several LDG kimberlites known to have high modal olivine contents (e.g.
Leslie, Grizzly, Mark) have CIs in the range of 0.80-0.90, which corresponds to a
minimum of 40% olivine entrainment. This, of course, is subject to how closely the
Wesselton composition corresponds to that of primary magmas at LDG, and similarly
whether the olivine composition used here corresponds to that entrained by LDG
kimberlites. Regardless, it is clear that entrainment of olivine has a significant effect
on the CI that is not normally taken into account. Moreover, the tendency of olivine
addition to lower the CI could easily offset any increase in the CI through assimilation

of crustal material.

Another limitation of the CI is that it does not clearly discriminate between crustal
contamination and the effects of post-emplacement alteration. Both of these processes
will tend to increase the SiO,/MgO ratio and Al,Os content of the bulk rock. The Na,O
content of crustal rocks is usually much greater than that of the clays typically
produced by weathering of olivine and phlogopite, but as previously demonstrated very
large increases in Na,O are required to produce significant increases in the CI. Some
of the altered samples analysed by Spriggs (1988) actually have CIs that are
comparable to or lower than those of the fresh hypabyssal rocks from the same study.
The average CI of 14 highly weathered volcaniclastic kimberlites from Liberia (Taylor
et al., 1994) is 1.04, in comparison to an average of 1.03 for 13 relatively fresh
hypabyssal samples from Sierra Leone. Although most Group I kimberlites do not
contain large modal abundances of phlogopite, this mineral can have a misleading

effect on the CI. The fresh and altered kimberlites of Spriggs (1988) with the highest
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ClIs are particularly micaceous, although none of these rocks can be classed as Group II

from an isotopic perspective.

A third problem with the CI is that different contaminant materials produce different
degrees of change in the index. The composition of continental crust is well known to
be extremely variable, both between and within crustal rock types (Taylor and
McLennan, 1985). Figure 5.7 shows the effect on CI of mixing a variety of different
crustal end-members with the Wesselton aphanitic kimberlite composition. While the
majority of these end-members produce similar effects on the CI at up to 10-20%
mixing, admixtures containing 20% or more crust exhibit distinct effects. In the case of
some end-members, such as felsic volcanics and carbonates there is a clear difference
in the effect on CI. Because chemical sediments lack high concentrations of many or
all of the CI components, mixing with these materials can produce severe dilution
effects and depression of the CI. Accurate placement of constraints on the extent of
crustal contamination therefore requires some knowledge of the nature of the

contaminant.

Finally, it should be noted that all these simple mixing models assume complete

assimilation of all entrained material into the bulk chemistry. In reality, several studies

have indicated that crustal xenoliths appear largely undigested by the kimberlite
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Figure 5.7 Effect on contamination index (CI: Clement, 1982) of mixing a hypothetical ‘primary’
kimberlite magma composition (Wesselton aphanitic: Edgar et al., 1988) with average composition of
various components of Slave continental crust (Yamashita ez al., 2000; this study).

magma, although reaction rims around xenoliths are quite common (Fesq et al., 1975;
Spriggs, 1988, Tainton, 1992).  Fesq et al. (1975) suggested that higher Si/Mg ratios
but lower abundance of extant crustal material in the Premier Brown kimberlite
compared to the Premier Grey intrusion phase could be due to higher emplacement
temperatures and greater degrees of assimilation in the Premier Brown phase.
Dissolution is not, however, the only mechanism of contamination: crustal material
may be finely comminuted and disseminated by attrition and other physical processes
in the rapidly ascending magma. It is common practice in geochemical studies of

kimberlites to remove by hand as much material of obvious crustal origin as possible,

143



in order to obtain an analysis that is as representative as possible of the uncontaminated
magma. Nevertheless, it is inevitable that some finely disaggregated material will

remain in the sample.

S.4.3 An alternative major element quantification scheme

Variation in major element content and contamination index across a range of fresh,
altered and contaminated kimberlites from southern Africa (Gurney and Ebrahim,
1973; Fesq et al., 1975) is shown in Figure 5.8. This clearly demonstrates that the CI
cannot unequivocally distinguish between altered and contaminated material.
Furthermore, altered samples may take a range of CI values and as a result the
attribution of some samples as ‘fresh’ may be questionable. MgO, Al,O; and Na,O
provide the clearest distinction between fresh and contaminated material in terms of
major oxides. This is not surprising since these components form the basis of the CI.
The distinction between ‘fresh’ and ‘contaminated’ in terms of SiQ, and KO is,
however, much less obvious — there is a large degree of overlap of these oxide
abundances between fresh, altered and contaminated samples. In the case of K,O this
is almost certainly controlled by variable phlogopite content, even though all of these
kimberlites are isotopically classified as Group I. The overlap in SiO; is largely due to
the altered samples, while for the most part fresh kimberlites have lower SiO, contents

than contaminated samples.

Given the limitations of the contamination index of Clement (1982) and the lack of
discrimination provided by Fe,O; 1, CaO, TiO,, MnO and P,Os, it would seem most
sensible to attempt to base a major element discriminator of crustal contamination on

Al,O; and Na,O alone.
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Figure 5.8 Varation of major oxide content of fresh, altered and contaminated southern African
kimberlites with contamination index, CI (Clement, 1982). Data from Gurney and Ebrahim (1973)
andFesqetal. (1975).
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Experimentation with data from LDG and southern Africa (Gurney and Ebrahim, 1973;
Fesq et al., 1975), using different combinations of major element log-ratio pairs,
suggests that the variation of Al,O3/MnO with Na,O/P,0s (or the equivalent elemental
ratios, Al/Mn-Na/P) best separates the fresh and altered material from contaminated
material (Figure 5.9). Mn and P are utilised here as denominators on the basis of their
apparent lack of sensitivity to contamination or alteration. A crustal contamination
trend is evident towards higher values of Al/Mn and Na/P in both data sets. This trend
corresponds to progressive contamination in the southern African data (Figure 5.9a),
from the uncontaminated, aphanitic kimberlite from Wesselton (Edgar et al., 1988),
through the minimally contaminated Premier Black kimberlite to the samples from the
Brown and Grey intrusions at Premier, which are known to be the most contaminated
(Fesq er al., 1975). Altered samples from Lemphane define a broadly parallel trend
that is offset to higher Al/Mn and lower Na/P values. The altered and contaminated
kimberlites from Koffiefontein and Ebenhaezer (Fesq et al., 1975) are situated towards
the upper end of this trend. This indicates that contaminated samples may be moved
towards, or on to, the alteration trend by a net increase in Al/Na, which is consistent
with the development of clay minerals during alteration. In the LDG data (Figure 5.9b)
there are similar trends towards elevated Al/Mn and Na/P, consistent with the average
compositions of typical crustal materials from the area. Volcaniclastic kimberlites
from LDG, which are likely to have experienced more crustal assimilation on average
than the hypabyssal facies rocks, also form clear trends towards higher Al/Mn and Na/P
(not shown). The sample from the Fox kimberlite is known from visual examination to
be highly contaminated, and this corresponds with Al/Mn and Na/P that is much higher

than any of the other LDG kimberlites.

146



3)8_

6..

O Wesselton

@® Premier Black
@ Premier Brown
@ Premeir Grey

. Norite
) Pyroxenite.
4 i M quartzite
g -l Harzburgite [l - —
&
Z 2
-
ot %
0 ]
| @)
-2 i <> & Altered samples
— & Alterered/contaminated samples
B Average SA crustal end-member
-4 T T T T T T T —
0 2 4 6 8

8_

In (Al/Mn)

O Lac de Gras hypabyssal
O Lac de Gras volcaniclastic

_| M Average Lac de Gras crustal end-member

Non-micaceous granitoid

Greywacke . . .
© Fox-1 Micaceous granitoid
O
| © O
T T T T ! : . |
0 2 4 . .
In (A/Mn)

Figure 5.9 In (Al/Mn) and In (Na/P) variation in fresh, altered and contaminated kimberlites: a)
southern Africa (Premier, Ebenhaezer, Koffiefontein); b) Lac de Gras. Data for SA samples from
Gurney and Ebrahim (1973), Fesq et al. (1975), Cox et al. (1979), Wronkiewicz and Condie (1990),
Eales and Cawthorn (1996).

147



S.4.4 Trace element signatures of crustal contamination

There is some uncertainty over the extent to which continental crust is capable of
modifying the trace element geochemistry of kimberlites. Unlike most other
mantle-derived magmas, kimberlites are enriched in both compatible and incompatible
trace elements. Crustal materials tend to be poor in compatible and enriched in
incompatible elements, but not — in most cases — enriched to equal or greater
concentrations than those observed in kimberlites. Based on a consideration of
elemental ratios (e.g. Zr/Y, Nb/Y Ta/Yb) as well as abundances, Fraser (1987) and
Tainton (1992) concluded from their studies of South African Group II kimberlites that
crustal contamination could not explain the observed trends in trace element
enrichment or compositional scatter. Kable e al. (1975) previously suggested that the
effect of crustal assimilation would be either negligible or a means of diluting, rather

than enriching, trace element abundances in kimberlite magmas.

Figure 5.10 shows typical relative abundances of minor and trace elements between
kimberlites and average crust from LDG. The kimberlite selected as a reference point
in this analysis is sample RTL-1 from the Rattler body. This sample has similar MgO,
Si0, and Al,O; abundances to the hypothetical primary composition utilised in section
5.3. The natural logarithm of the ratio of average elemental abundance between
kimberlite and crust is positive when an element is more abundant in the kimberlite and
negative when more abundant in the crust. The majority of trace elements thus appear
to be more abundant in LDG kimberlites than in the crust. Elements for which the
difference in abundance is largest (e.g. Na, Lu, Ni, Cr) are likely to be most sensitive to

crustal assimilation.
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Figure 5.10 Relative abundance of minor and trace elements between Lac de Gras kimberlite
representative of ‘primary’ composition (Rattler, sample RTL-1) and average composition of crustal
material (greywackes and granitoids) from Lac de Gras region. All data from this study.
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Table 5.2 summarises the differences in kimberlite-crust relative average abundances
for different categories of trace elements. Kimberlite is enriched to some degree in
almost all compatible and high field strength elements relative to LDG crust; only Sc,
U, Hf and Ga are depleted relative to the LDG crustal components, and then only
weakly. These kimberlites similarly show strong enrichment in the LREESs, and weak
to moderate enrichment in the MREEs. Only the HREEs are more abundant in the
LDG crust. The LILE are the only group of incompatible elements that show any
consistent depletion in the LDG kimberlite relative to crust. The exceptions to this are
Ba and Pb, which show strong relative enrichment in the kimberlites, and Sr, which

does so to a lesser extent.

The analysis presented so far is based on averages of trace element abundances in the
crust. These abundances can be extremely variable, both between and within different
types of crustal material (Figure 5.11), but the general trends in enrichment/depletion
relative to kimberlite identified in Figure 5.10 and Table 5.2 are still supported. The
greatest variability is seen between the members of the Yellowknife Supergroup
(YKSG). The basement tonalities and granitoids of the Lac de Gras area are depleted
in most trace elements except LILESs, relative to the YKSG lithologies. Na (not shown)
is the only element in which the granitoids are notably enriched relative to the YKSG
greywackes. Although only biotite granites are shown in Figure 5.11, a number of
trends are evident within the granitoids themselves. Where any variability in elemental
concentrations exist it is generally the trondjhemites and hornblende tonalites that are
more enriched than the micaceous granites, e.g. Cs, Sr, Zr, Cu and Zn; the micaceous
granites are, unsurprisingly, more enriched in Rb and, in the case of the biotite granite,

K.
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Status in COMPATIBLE INCOMPATIBLE
kimberlite

relative to First transition  High field strength Large ion lithephile Rare earth
crust series elements elements elements elements
Ni Y Ba La
Moderate to Cr Nb Ce
strong Co Ta Pr
enrichment Cu Nd
Mn
A" Th Pb Eu
Ti P Sr Sm
enrichment/ ' y
depletion Hf Ho
Ga Er
Yb
Tm
Moderate to Cs Lu
strong Na
depletion

Table 5.2 Summary of average enrichment and depletion of minor and trace elements between
Jericho aphanitic kimberlite and crustal material from Lac de Gras. Moderate to strong
enrichment defined as In (kimberlite/crust) > 1.0; moderate to strong depletion defined as In
(kimberlite/crust) < -1.0. Distinction between high field strength and low field strength (large
ion lithophile) elements defined as ionic potential > 2.0 for HFSE, where ionic potential = ionic
charge/ionic radius (A).

REEs are also useful trace elements for assessing the contribution of crust to the
chemical composition of a kimberlite. Crustal materials are typically enriched in
HREEs and depleted in LREEs relative to kimberlites.  Progressive crustal
contamination thus tends to reduce La/Yb ratios in kimberlite, and can produce a
‘flattening’ effect on the sloping chondrite-normalised REE patterns characteristic of
kimberlite. This flattening is usually particularly pronounced in the MREEs to HREES,
and consequently ratios such as Sm/Yb are efficient indicators of crustal assimilation
(Figure 5.12). REE patterns are almost parallel for samples from Rattler and Mark,
which have variable macrocrystal olivine contents but are crustally uncontaminated.

The pattern for the volcaniclastic sample from Fox is relatively flat in the HREEs, and

the Sm/Yb ratio of this sample is much lower.
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S5.4.5 Summary

All kimberlites come into contact with crustal materials during their ascent and
emplacement, and incorporate this material to varying extents. It is important to be
able to assess the amount of crust that a sample has assimilated if the composition of
the primary kimberlite magma is to be successfully identified. Although the major
element contamination index of Clement (1982) is a useful guide to the amount of crust
incorporated by a kimberlite magma, there are a number of problems with its current
formulation. Trace elements can be used in conjunction with major element data to
help detect input from crustal contamination in the LDG kimberlites. Al/Mn, Na/P and
Sm/Yb are useful indiactors of relative levels of crustal contamination in kimberlite
samples. Other parameters are introduced in the next section, where crustal
contamination is considered in association with assimilation of lithospheric material by

the kimberlite magma.

3.5 CONTAMINATION BY LITHOSPHERIC MANTLE MATERIAL

S.5.1 Entrainment and assimilation of lithospheric mantle material

Xenoliths of mantle origin and macrocrystal olivine grains are common constituents of
kimberlites.  Although there are difficulties associated with discrimination of
xenocrystal from cognate olivine on a petrographic basis (the ‘olivine macrocryst
problem’ of Mitchell, 1986), there can be little doubt that a large proportion of the
macrocrystal olivine grains observed in thin section are derived by disaggregation of

entrained mantle peridotites.

The incorporation of material from mantle xenoliths can modify the chemistry of the

kimberlite magma in a variety of ways. Olivine is the predominant component phase in
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most mantle materials; consequently, addition of peridotitic material will produce
enrichment in MgO and compatible elements such as Ni and Cr. There will also be a
‘dilution’ effect on other elements in which the peridotite is depleted relative to
kimberlite. A distinction should be made between entrainment of xenoliths (i.e. the
physical addition of mantle material into the magma body) and their assimilation (the
digestion of solid material by the magma, with consequent changes to the magma
chemistry defined as contamination). Resolving how much modification of a magma is
due to chemical assimilation of peridotite, and how much is simple physical
entrainment 1s problematic. This is because in practice it is very difficult to remove all
— or even a significant proportion — of material derived by disaggregation of mantle
xenoliths from the crushed sample, as it is similar in appearance to the kimberlite
groundmass. Consequently, major and trace element analyses of the kimberlite whole
rock will reflect the input of all incorporated peridotitic material, rather than merely the
fraction that has been assimilated. The amount of entrained material in a sample may
still be a useful measure of the amount of lithosphere with which the kimberlite has
interacted during its ascent, although xenocrysts may be fractionated from the magma
by processes such as flow differentiation in dykes, which could render samples

unrepresentative of the kimberlite magma as a whole.

Theoretical studies of the effects on magmas of assimilated wallrock material dating
back to the work of Bowen (1928) suggest that the capacity of magma to chemically
incorporate such material is actually very limited. This is due to the large latent heat of
melting that must be overcome to assimilate xenolithic material that is much cooler
than the magma itself, compared to the limited amount of thermal energy that the

magma can provide. This assumes that the magma is not a superheated liquid,
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following the arguments of Bowen (1928). During assimilation of lithospheric mantle
by a kimberlite magma, however, the temperature gradient between the magma and the
contaminant is likely to be smaller than in the case of crustal assimilation. This,
together with the considerable volatile contents of a typical kimberlite magma, may

make it much more capable of assimilating its wallrocks.

Petrographic evidence of entrainment of lithospheric material is found in the vast
majority of kimberlites. Olivine is ubiquitous as a xenocrystal phase. Additional
minerals typical of mantle material, such as Cr-diopside and Cr-pyrope garnet are also
commonly found, but enstatite, which constitutes up to 40% of both fertile and depleted
lithospheric mantle, is very rarely observed (e.g. Mitchell, 1986; Arndt, 2003). Unless
this orthopyroxene is selectively excluded from the magma in an extremely efficient
manner, it appears that it is selectively and comprehensively assimilated. Some support
for this is provided by experimental studies of phase equilibria in volatile-rich synthetic
kimberlite systems (e.g. Eggler and Wendlandt, 1979), which indicate that across a
range of pressures orthopyroxene will melt prior to olivine or clinopyroxene. A further
observation of interest from these studies is that garnet will melt well before

orthopyroxene, except at very high pressures (> 55 kbar).

5.5.2 Identification of a primary magma composition

As previously noted in section 5.3.4, in order to properly assess the extent of any
compositional modification of kimberlite magmas by entrained lithospheric mantle, it is
first necessary to place some constraints on the likely initial chemistry of the magma.
Estimates of this can be made by reference to aphanitic kimberlites such as those from

Wesselton in South Africa (Edgar er a/, 1988), These macrocryst-free rocks are
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believed to be the closest available approximation to the kimberlite magmatic liquid,
but are rare and may have been subject to crystal fractionation. Le Roex er al. (2003)
use inflections between aphanitic and macrocrystal samples on binary element variation
diagrams to constrain the composition of magmas parental to kimberlites from the
Kimberley region of South Africa. A comparison of some key major and minor
element data from Edgar er al. (1988) and Le Roex et al. (2003) are shown in Table

5.3.

lnfen‘i:é(vlr i)rnmalry 7

Wesselton aphanitic magma of Le Roex ef
al. (2003)
Si02 (wt%) 25.6 27-28
MgO (wt%) 272 28-29
ARRO3 (wt%) 3.31 ~2
Ca0 (wt%) 15.3
Ni (ppm) 810 ~1100
Cr (ppm) 2410

Table 5.3 A comparison of selected major and minor element abundances in the aphanitic
kimberlite from Wesselton, Kaapvaal craton, SA (Edgar e al, 1988) and inferred primary
magma characteristics from the study of aphanitic and macrocrystal kimberlites from
Kimberley, Kaapvaal craton, SA (Le Roex et al., 2003).

The 28-29wt% MgO estimate of Le Roex ef al. (2003) is slightly higher than that of the
Wesselton aphanitic kimberlite, but is in broad agreement with the 30wt% estimate
made in section 5.3.4 for the MgO content of a hypothetical ‘primary’ kimberlite
composition for fractionation modelling. This value, and the associated values of
30wt% SiO,, 8.5wt% Fe;Os 1, 15wt% CaO, 2.5wt% Al,Os, 1200ppm Ni and 1500ppm

Cr are retained for the following discussion of lithospheric contamination.
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S.5.3 Relative composition of kimberlite and lithospheric peridotite

The relative abundances of selected major and minor elements in a hypothetical
primary kimberlite magma and common xenocryst mineral phases from LDG (Figure
5.13) demonstrate several important themes of compositional control by lithosphere.
Admixing with any of the featured xenocryst phases will increase the SiO; content of
the magma, but only olivine and orthopyroxene are able to enrich the magma to any
extent in MgO; addition of clinopyroxene or garnet from peridotites or eclogites results
in dilution of MgO in the magma. Fe,O; 7 is largely insensitive to addition of olivine
or garnet, whereas addition of pyroxene produces dilution of this oxide. Clinopyroxene
is the only potential contaminant which could produce even marginal enrichment in
CaO, whereas Cr-pyrope garnet and, in particular, olivine and orthopyroxene addition
results in significant dilution of CaO. Olivine and orthopyroxene also produce
substantial dilution of Al,Os;, while peridotitic/eclogitic gamet and eclogitic
clinopyroxene may enrich the magma in Al,O;. The overall major element signature of
eclogite assimilation is broadly similar to that of mixing with continental crust, e.g.
Si0, and Al,Os3 enrichment, MgO and Ni dilution. An important observation from
Figure 5.10 is that orthopyroxene is the only xenocryst phase that can enrich the
magma simultaneously in MgO and Cr; while peridotitic clinopyroxene and garnet are
much more Cr-rich, they are depleted in MgO relative to the hypothetical primary
magma. Any enrichment in Ni must be entirely due to incorporation of olivine; this
will, however, produce dilution of Cr. Addition of Cr-spinel can rapidly increase the

Cr content of the magma.
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If substantial quantities of lithospheric mantle are entrained and assimilated by
kimberlite magmas then this should have a measurable effect on the bulk chemistry of
the kimberlite. By comparing the major and minor element chemistry of hypabyssal
kimberlites from LDG with the mantle xenoliths recovered from them, it is possible to
determine whether lithospheric contamination exerts any control on the bulk

composition (Figure 5.14).

Several major element oxides (TiO,, MnO, Na,O, K,0, P,0s — not shown) display a
large degree of scatter when plotted against MgO, and thus do not provide conclusive
evidence for compositional control by any of the phases present in the mantle xenocryst
suite. In the case of some elements, though, the LDG kimberlites do form well-defined
arrays, which could be interpreted as resulting from compositional control by specific
phases (Figure 5.14). Where such trends exist, they are in most cases oriented, with
increasing MgO, towards compositions that are strongly influenced by peridotitic
olivine, such as the ‘whole rock’ peridotite compositions calculated from average
mineral separate compositions and modal abundances. Cr is the only element shown in
Figure 5.14 that does not demonstrate a significant degree of compositional control by
peridotitic olivine in isolation, mixing with orthopyroxene or a combination of olivine
and Cr-spinel can more easily account for the Cr content of LDG kimberlites with high
MgO. Overall, mixing with olivine + orthopyroxene + Cr-spinel can account for a
large amount of the observed variation of the LDG kimberlites with >30wt% MgO, in
MgO-Si0,, MgO-CaO, MgO-Ni and MgO-Cr space. This is strong evidence for
material with a dunitic to harzburgitic composition exerting a control on the major and

trace element composition of the kimberlite magma.

160



60 - €cl cpx pdt cpx 50
e F 7) opx

50

ecl grt B o
ol T . ol
QO 0 9 4 OQQ o")%g Gt dun o"’
Q 4 B o TR 25 i
(/)] O gTode " <

20 -

Fe,O,,

OpX Gt hz
Honp, 44 AGHdun
ey

InCr
Ni (/1000)

4

© LDG hypabyssal
= Hypothetical primary magma

@ Wesselton aphanitic

A Calculated peridotite ‘whole rocks’

Figure 5.14 Location of Lac de Gras hypabyssal kimberlites relative to component phases of
common LDG mantle xenoliths on major/minor element binary variation diagrams. Note
different scales for Cr and Ni. Mineral data from Pearson ef al. (1999), Mackenzie and Canil
(1999). Modal abundances used to calculate ‘whole rock” peridotite compositions: grt dunite
=95% ol, 5% grt; grt lherz =70% ol, 20% opx, 5% cpx, 5% grt; grt harz=75% ol, 22% opx;
3% grt.

161



Other phases present in the xenolith suite, such as garnet and Cr-spinel from peridotites
or eclogites, may exert small degrees of compositional control on the magma and cause
minor deviations from the main, olivine-orthopyroxene control trends. Small amounts
of crustal contamination may also contribute towards scatter around these trends.
Extension of the kimberlite array to MgO values well below the 30wt% of the
hypothetical primary magma may be explained either in terms of MgO dilution by
crustal addition (section 5.3), or by fractionation of olivine + Cr-spinel from the magma
(section 5.4). Samples with low MgO but high SiO; and Al,Os strongly indicate the

presence of crust.

S.5.4 Models of kimberlite-xenocryst mixing

Figure 5.15 shows models of binary mixing between the hypothetical LDG primary
kimberlite magma composition and various xenocryst phases characteristically found in
peridotite xenoliths. In addition, mixing trends are shown between the ‘primary’
kimberlite composition and ‘whole rock’ peridotite compositions based on typical
modal abundances in peridotites recovered from LDG kimberlites (Pearson el al.,
1999). Actual whole rock compositions are commonly subject to infiltration and

contamination by the host kimberlite liquid.

The model trends support peridotitic olivine as being a principal compositional control
on LDG kimberlites that have experienced minimal or no crustal contamination. This
relationship is most clearly seen in MgO-Ni space, where the amount of scatter in the

data is minimal. Where deviations from the olivine-orthopyroxene control trend occur,
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they can mostly be accounted for by incorporation of clinopyroxene, garnet, Cr-spinel

or some combination of these phases.

As previously observed, Cr is the only element displaying compositional variation that
cannot be modelled in terms of olivine control. In MgO-Cr space the general trend of
increasing Cr with MgO is parallel to the mixing line between the hypothetical primary
magma and orthopyroxene. Addition of olivine on this diagram could explain the
cluster of analyses at high MgO which appear to have constant or slightly declining Cr

contents.

Since orthopyroxene seems to be an important compositional control in addition to
olivine in kimberlite magmas, an explanation is required for why orthopyroxene is
invariably absent from the macrocryst assemblage. The most likely reason, as
suggested by Arndt (2003), is that all of the orthopyroxene is fully assimilated into the
kimberlite magma, while disaggregated olivine grains are more refractory and are able
to remain within the magma in a largely unresorbed state. In some very MgO-rich
kimberlites, where olivine control appears to be particularly strong (e.g. Mark, Aaron,
Leslie) it is possible that the lithospheric material being incorporated is dunitic in
nature and thus deficient in orthopyroxene. Microxenoliths of garnet dunite are
common in the Mark and Arnie kimberlites, and depleted dunitic layers within the
mantle have been advocated as a potential source of highly diamondiferous layers

within the mantle (e.g. Griitter ef al., 1999).
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5.5.5 Models of kimberlite-lithosphere-crust mixing

The major and minor elements used in Figures 5.13-5.15 as indicators of lithospheric
input can be combined to form a variety of ratios, such as Mg/Al, Mg/Fe, Ni/Cr, Al/Ni,
which can be used to discriminate between the effects of contaminating kimberlite
magmas with different types of lithospheric mantle and crust. The most powerful
framework for analysing the relative effects of contamination by crust and lithosphere

is provided by the parameters Si/Al and Mg/Yb.

It was noted in section 5.4.2 above that use of variables such as SiO, in isolation is an
unsatisfactory means of detecting input of crust into a kimberlite, because other
processes, such as addition of olivine, will also increase the SiO, content. The Si/Al
ratio is a more appropriate variable, because it tends to decrease on addition of silicate
crust, but increases on addition of olivine-rich, peridotitic mantle material. It can
therefore form the basis of a model that characterises admixing of both crust and
lithospheric mantle into a kimberlite magma. The distribution of the parameter /n
(Si/Al) in the hypabyssal LDG kimberlites has a distinct first order bimodality (Figure
5.16). Since there is essentially a continuous range in Si content in these samples, the
hiatus in /n (Si/4l) between approximately 2.1 and 2.3 must correspond to a subdivision
of the data into a low-Al and a high-Al groups. This probably represents Al addition by
crustal assimilation, Al dilution by entrainment of peridotitic material, or a combination

of both processes.
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Figure 5.16 Histogram of /n (Si/Al) in hypabyssal facies kimberlites from Lac de Gras. The
data is clearly divided into two separate high-Al (low Si/Al) and low Al (high Si/Al) groups.
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Figure 5.17 Al-Yb variation diagram for hypabyssal facies Lac de Gras kimberlites. Scatter
of'data increases at high Al, high Yb values.
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Figure 5.17 demonstrates that there is a positive correlation between Al,O; and Yb
abundance, both within the LDG data as a whole, and within the low-Al and high-Al
sub-groups (Figure 5.17). The increased scatter in the data at high Al,O; and high Yb
values could reflect compositional control exerted by a random process, such as the
entrainment and assimilation of crust into the kimberlite magma. Mg/Yb and Ni/Yb
ratios can be used to discriminate between contamination by crust and peridotitic
material in a similar manner to Si/Al; although only Mg/Yb is illustrated in the

following analysis the behaviour of these two variables is completely analogous.

Figure 5.18a demonstrates the sub-division of the LDG hypabyssal kimberlites in
Si/Al-Mg/YDb space, into a low In (Si’4l) group dominated by addition of crust, and a
high /n (Si/4]) group, dominated by addition of lithospheric peridotite. In this diagram
the initial composition of the magma is assumed to have the hypothetical primary
magma composition used in previous models, i.e. 30wt% MgO, 30wt% SiO,, 2.5wt%
AlyO3 and 0.25ppm Yb. Clearly the position of these mixing trajectories depends on
the location of the primary magma composition that is selected. In Figure 5.18 a range
of likely compositions is indicated, based on analysis of this data and the conclusions of
other recent reviews of kimberlite major element geochemistry (Arndt, 2003; Le Roex,
2003). The range shown corresponds to 25-30wt% MgO, 27-30wt% SiO,, 2-3wt%

Al,Os3 and 0.2-0.3ppm Yb.
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Figure 5.18 Variation of /n (Si’Al) and In (Mg/Yh) in LDG kimberlites, and control lines for
mixing with crustal and lithospheric end-members, and fractionation of olivine from a
hypothetical primary magma composition: a) hypabyssal kimberlites; b) hypabyssal and
volcaniclastic kimberlites. Composition for garnet harzburgite calculated from data of
Pearsonet al. (1999). Annotations to lines indicate increments of mixing and fractionation.
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5.5.5.1 Fractionation trends

It was shown in section 5.3 that trends in kimberlites with MgO contents lower than
that envisaged for the parental magma (e.g. <25-30wt% MgO) can be at least partially
explained by fractionation of olivine + small amounts Cr-spinel. The effects of olivine
fractionation on Si/Al-Mg/Yb variations must, therefore, be taken into account. A
possible trend representing the evolution of a residual liquid during fractionation of
olivine is shown in Figure 5.18. This trend is based on typical Kp values for Mg, Al
and Yb for basaltic systems (e.g. Henderson, 1982; Rollinson, 1993), and assuming a
Kpof'1 for Siin olivine. The orientation of this fractionation trend is broadly similar to
that of crustal contamination, but rapidly evolves to very low /n (Mg/Yh); kimberlites
with low /n (Si/Al) and moderate /n (Mg/Yh) are thus more likely to be recording
signatures of crustal contamination, rather than olivine fractionation. Conversely, very
low In (Mg/Yb) without very low In (Si/Al) could indicate evolution of the magma by

fractionation either before, during or after contamination by lithopshere and crust.

5.5.5.2 Crustal contamination trends

Mixing lines to basement tonalities and Yellowkife Supergroup (YKSG)
metasediments (greywackes) bracket the compositional range of low /n (Si/Al)
kimberlites from the LDG area. On this basis, almost all low /n (Si/4l) kimberlites
have >10% crustal contamination, and some have up to 60%. These samples
correspond almost exactly to the highly contaminated kimberlites identified on the

basis of Al/Mn, Na/P and Sm/YD ratios (section 5.4).

Volcaniclastic facies kimberlites from LDG, including the sample from the Fox pipe,

which is known to be heavily contaminated with crust, plot along similar contamination
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vectors to those defined in Figure 5.18b, over a range of /n (Si’4/). The hypabyssal
facies samples from the T-146 pipe, which are also known to be heavily contaminated,
have the lowest /n (Si/Al), and some of the lowest /n (Mg/Yb) values recorded in the

entire dataset. This provides a useful check on the general validity of the model.

It is difficult to make accurate quantitative estimates of the amount of crust that may
have been assimilated by a kimberlite without knowing what types of material, and in
what proportions, have been entrained. This would require a detailed study of samples
of a kimberlite and its xenoliths from diamond drill core, but would provide a more
robust test of the model presented in Figure 5.18. A further complication may arise if
partial melting of country rocks produces incongruent melt compositions, making the
contaminant end-members very difficult to define. It is, nevertheless, important to
attempt to establish whether these samples can really assimilate 20-40%, or in some
cases more, crust and yet still appear largely uncontaminated during petrographic
examination. If this is genuinely the case it implies that the majority of assimilated
material must be extremely finely disseminated and/or entirely chemically digested
within the ascending magma. Clearly, these model estimates of crustal assimilation are
also dependent on the composition assumed for the primary magma. If the Mg/Yb and
Si/Al ratios of the magma are initially lower than suggested here, then the values
indicated above are overestimates. In addition, the tendency for olivine fractionation to
produce similar trends to assimilation of crustal material could also result in the amount
of crustal contamination being overestimated. The values presented here should,

therefore, be treated as maximum estimates.
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5.5.5.3 Lithospheric mantle contamination trends

Mixing with a calculated garnet harzburgite ‘whole rock’ composition broadly defines
the upper limit of variation within the LDG kimberlite data at high /n (Si/4l). Using
calculated garnet dunite and garnet lherzolite ‘whole rock’ compositions as end-
members produces peridotite mixing lines of very similar length and orientation.
Mixing with typical eclogitic compositions produces a very different trend, similar to
that of crustal contamination (not shown in Figure 5.18); eclogite xenoliths are,
however, rare relative to peridotites in LDG kimberlites (B. A. Kjarsgaard, pers.
comm.), although E-type diamonds have been recovered from some bodies. It seems
probable that any lithospheric contamination effects will be dominated by assimilation

of peridotite, rather than eclogite.

On the basis of mixing with peridotite alone, most of the high /n (Si’4l) compositions
can be explained by assimilation of 10-50% material with a harzburgitic composition.
These values agree closely with estimates based on Os isotopé studies on Slave
kimberlites (Pearson et al., 2003). The kimberlite with the highes;[ In (Si/Al)
corresponds to ~70% peridotite incorporation; this sample is from the Mark kimberlite,
which is known to contain abundant peridotite micro-xenoliths. The majority of the
high /n (Si/4l) samples are located below the garnet harzburgite mixing line, with
variable /n (Mg/Yh). These offsets could be explained by small amounts of crustal
contamination taking place after assimilation of lithospheric material into a kimberlite.
In most cases this requires <<10% crust, and thus these samples can be considered to

be minimally contaminated by crust.
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5.5.6 Identification of crustal and lithospheric signatures in LDG kimberlites

Figure 5.19 shows the variation in /n (Si/4l) and In (Mg/Yb) for all Canadian
hypabyssal kimberlites analysed during this study. Nine of the fourteen samples
analysed from Grizzly cluster together close to the mixing line between the ‘primary’
magma composition and the calculated garet harzburgite lithospheric end-member.
The location of these points corresponds to 20-40% mixing between these components.
This is again in agreement with estimates based on Os isotopes (Pearson ef al., 2003).
The other five samples from Grizzly have lower /n (Mg/Yb) across a range of In (Si/Al).
Those situated further away from the garnet harzburgite mixing line may have
assimilated some crustal material, or could have experienced more fractionation of
olivine than the majority of the Grizzly samples. This provides an indication of the
amount of compositional variability that can be introduced by fractionation and

contamination acting to variable extents on samples from a common parental magma.

Other kimberlites located in the immediate vicinity of Grizzly display a wide range of
inter-kimberlite variation in /n (Si/Al) and In (Mg/Yh), with more limited intra-
kimberlite variation in these parameters. Samples from Roger, Koala West and Pigeon
have compositions indicative of crustal contamination and/or olivine fractionation.
Those from Leslie, Rat, Aaron, Mark and Amie have signatures that appear to be
dominated by lithospheric contamination, with variable amounts of fractionation/crustal

contamination.

173



A

(rv/1s) w
[4 Sl b

g'e

4

| 1 QF

- b

- ¢l

(qA/BW) uy

- €1

- vl

90740 LSV ANV HINOS
‘2dNoY9 | ¢y

(rv/is) uj

esjodiod m
opey @
epuooeuy [

Z1H) uog @
(LK) Aeurd @
(04H) euuy O

90740 HIYON S¥3HLO
‘GdNoY¥9 | g

'€

(98ed 1xou uo penunuo)))

(v/1S) u
£ qc A Sl %

e 1 1 1 1 °F

swy o
e <

uoley B ose] @
my @ isemuEoy O
uoebig [ seboy O - —‘F

G¢

- ¢l

(QABW) uj

- €1

- vl

SUNOGHOIIN, ATZZIHO
Y dNoY¥9 L g

(tvs) up
€ 4 [4 Sl b

Ll

- ¢l

(QA/BW) uf

- €1

- vl

ATZZI¥9
Y dNod9 | g

174



‘1 391dey) ur paynuapi sdnoid paseq
-Aeoryder309e3 ojur papialp are sajdweg -ooeds (q1/3py) uj
~(1p/1§) uj w1 so[dures uerpeue)) [[€ JO UOUBIOT G]°§ 3ANBLY

(Tv/s) u
G'€ € 4 [4 Sl 3
L 1 1 1 1
Z00Z '1@ j@ #BIeqPIWYOS, OF
Aprs siyy,
Gujweysjwil @ ejuupuey @
o pump [ pueis| jesiowos @
exysidemeny [ pue[s| jesiouwiog O - —.v
FONINO¥d FONIAQYd
HORIIINS TUHIENHO ) =
- ¢l 2
° - 81 €
- vl
JAVIS-NON
‘4dNoYy9 L Sl

(rv/1s) u

RS € 4 4 Sl 3
L ] 1 1 1 °F
xoysnyy < zear m
eg-ar oxedeus ©
ozi-aNy B 1-ar [ oye Apeuuey O - FF
A
2
©
gL 3
- vl
JAVIS ¥3H10
‘3dNoY9 | Gl
(rv/1s) w
G'e € G'c c Sl l
L 1 1 ! 1 oL
ovi-L H Aeg seioyoN @
6c-a [ sed kiesiy ©
[0l o Lzoa)oudmwsinL O Kiesiy O - LI
" taz
3
L. nP ~—
- vi
9d7T43HIO0
‘ddnoyo

- Sb

175



A similar range of compositions is evident in other kimberlites from the north side of
Lac de Gras: those from Finlay and Porpoise have low I/n (Si’4Al) and In (Mg/Yb)
suggesting predominant control by crustal contamination; samples from Anne and Don,
and in particular Anaconda and Rattler, have signatures of variable (10-50%)

lithospheric contamination and minimal (0-5%) crustal contamination.

All kimberlites analysed from the group located south and east of Lac de Gras display
strong signatures of crustal contamination, plotting at a range of low /n (Si/Al) and In
(Mg/Yb) between the two bounding mixing lines to tonalite and greywacke
compositions. On the basis of the model parameters presented here, T-21 is the least
contaminated of this group, incorporating 20-30% crust, while the others (T-19, T-34,
T-35, T-36 and T-237) contain 40-60% crust. These values may appear high,
considering that there is little visible contamination, but can only be overestimates if, as
noted earlier, the true composition of the magma prior to contamination has lower /n
(Si/Al) and In (Mg/Yb) than used in this model, or has been subject to olivine

fractionation.

The remaining LDG hypabyssal kimberlites are also divided between signatures of
crustal contamination/olivine fractionation and lithospheric assimilation. The two
samples from T-146 have the lowest /n (Si/4l) in the entire dataset and appear to be
dominated by crustal material. DO-27 (Tli Kwi Cho) and Nicholas Bay are also
significantly affected by crust. Misery, Misery East and DD-39 record 0-70%

lithospheric assimilation, based on the hypothetical primary composition, and ~0-10%
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crustal contamination. Both Misery and Misery East display considerable intra-

kimberlite variation.

Beyond Lac de Gras, samples from the Contwoyto field in the northern Slave Province,
plus those from the Churchill and Superior provinces, have a similar range of /n (Si/Al)
to the LDG kimberlites, but in general have lower /n (Mg/Yh) values. If the primary
magmas in these regions were similar to those at LDG, then this would suggest that
these kimberlites have assimilated up to 60% lithospheric peridotite, and subsequently
up to 40% crust. Alternatively, the composition of the primary magma may have been

different in these regions, so that the initial /n (Mg/Yb) value of the magma was lower.

Many of the kimberlites from these regions have elevated CaO contents, which in some
instances are coupled with MgO that is much lower than the LDG average. This is not
true in all cases, but Yb contents are almost without exception comparable to those of
the crustally dominated low /n (4//Si) group from LDG. The low /n (Mg/Yb) therefore
appears to be due to high Yb, rather than low Mg. Unlike at LDG, this elevated Yb
does not in general correlate with high Al. As a result, the kimberlites from the north
Slave, Churchill and Superior provinces have In (Si/4l) that is comparable to LDG
‘lithosphere dominated’ samples, but have /n (Mg/Yb) that is more like LDG ‘crust

dominated’ samples.

The consistently high Yb contents of these kimberlites, without associated high Al,
may indicate that the lower /n (Mg/Yh) values reflect a different composition in the
primary magma, rather than modification by extensive assimilation of crust. A more

extensive geochemical study of samples from these regions, ideally coupled with
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petrography and information on olivine populations, would help to resolve whether
these kimberlites could be fitted satisfactorily into the LDG model. Kimberlites from
South Africa, Finland and China also tend towards lower /n (Mg/Yh), largely as a result
of high Yb levels relative to many LDG samples; unless kimberlites from these regions
are consistently more contaminated than LDG samples, this would appear to support

variations in Mg/Yb of the primary magma between kimberlite fields and provinces.

5.5.7 Summary

There is clear evidence for the major and trace element content of kimberlites being
influenced by the addition of lithospheric mantle material into the magma. It is
difficult to determine how much of this signature is due to material that has been fully
assimilated into the magma, and how much results from physically entrained material
that remains visible as xenoliths and xenocrysts. Olivine is probably more refractory
and resistant to assimilation than phases such as orthopyroxene and garnet. In addition,
olivine has the lowest Si activity of silicate phases occurring in peridotite xenoliths, and
consequently will be least reactive with the SiO,-poor kimberlite magma. Olivine and
orthopyroxene are the most dominant xenocryst phases in terms of modifiying the
composition of the magma, but other phases such as Cr-spinel, clinopyroxene and
garnet may be responsible for some of the small deviations observed from olivine-

orthopyroxene control trends.

Variations in Si/Al-Mg/Yb space are very useful for resolving the relative inputs of
lithospheric mantle and crustal contamination in the LDG hypabyssal kimberlites.
High Si/Al samples have a signature that is controlled by assimilation of lithospheric

peridotite, with small deviations in Mg/Yb indicating variable subsequent input from
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crustal components. Low Si/Al samples are controlled primarily by crustal
assimilation, and appear to have experienced minimal addition, or even net removal, of
macrocrystal olivine. The effects of mixing a hypothetical primary magma with
peridotite or eclogite are very different on such a diagram; eclogite is capable of
modifying the magma chemistry in a similar way to continental crust, and may be
responsible for some of the low /n (Si/Al) signatures previously attributed solely to
crustal control. The bulk of lithospheric material incorporated by LDG kimberlites is,
however, likely to be peridotitic. Most or all of the LDG samples have some
detectable, though often minimal, component of crustal contamination. Olivine
fractionation may also produce detectable variations in Si/Al-Mg/Yb space from trends
of lithospheric or crustal contamination. On the basis of the Si/Al-Mg/Yb model
presented here, approximately half of the LDG hypabyssal kimberlites have
compositions that are significantly influenced by crustal contamination. This signature

1s particularly prevalent in the kimberlites from the southern side of LDG.

Canadian kimberlites from beyond the LDG field do not appear to be directly
comparable with the LDG dataset on these Si/Al-Mg/Yb diagrams. This is largely due
to lower Mg/Yb values, which result primarily from much higher Yb content than is
typical for LDG samples. This may reflect compositional differences between primary
kimberlite magmas in different fields, rather than consistently higher degrees of crustal
contamination in non-LDG kimberlites. Samples from southern Africa also plot
consistently at lower Mg/Yb than LDG samples on these diagrams, across a range of

Si/Al
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While the model proposed here is subject to some of the same limitations as the
contamination index, it offers some distinct advantages. Firstly, the separate influences
of crustal and peridotitic mantle material are directly addressed and can be
discriminated. Secondly, the graphical presentation of the model provides better
visualisation of relative contamination between samples. Thirdly, binary mixing
trajectories to constrain the amount of contamination may easily be constructed using
the model parameters, provided that reasonable estimates of the primary magma and
contaminant compositions are available. Conversely, a detailed study of the modal
abundance and composition of different contaminants within a kimberlite body could
be used in conjunction with the model to constrain the composition of the primary
kimberlite magma. The ability to obtain realistic estimates of the amount of
contamination in a kimberlite is essential to the construction of isotopic and other

petrogenetic models presented in chapter 6 and 7.
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Chapter 6

Isotope geochemistry

6.1 CHAPTER OVERVIEW

This chapter provides a description of the isotopic data acquired for kimberlites from
Lac de Gras and other Canadian localities during this study, and investigates the
processes that may be responsible for generating the observed variation in Hf, Nd and
Sr 1sotope signatures. The isotopic character of kimberlites from the Slave craton and
elsewhere in Canada is compared throughout with the well-characterised Group I and II
kimberlites from southern Africa. The possible effects of crustal contamination on
isotopic compositions is carefully examined, in association with trace element
constraints from Chapter 5, to ensure that all subsequent consideration of kimberlite
petrogenesis (Chapter 7) is based on uncontaminated material that is representative of

mantle sources and/or processes.

6.2 INTRODUCTION

6.2.1 Previous studies of kimberlite isotope geochemistry

6.2.1.1 Early work

The vast majority of studies concerning the isotopic character of kimberlites have
concentrated on the Rb-Sr, Sm-Nd and U-Th-Pb systems due to contemporary
limitations on analytical techniques. It is only during the last decade that the Lu-Hf and
Re-Os isotope systems have become viable as tools for investigating kimberlite
petrogenesis. In the 1970s isotopic work on kimberlites focussed on explaining the

large observed variations in *’Sr/*Sr ratios. It was realised (Mitchell and Crockett,
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1971; Barrett and Berg, 1975) that, due to the high abundance of Sr in kimberlites, very
large quantitites of crustal assimilation would be required for contamination to be a
plausible cause of high *’Sr/*Sr values. Berg and Allsopp (1972) and Barrett and Berg
(1975) concluded that values in excess of ~0.704 were indicative of post-emplacement
alteration. Results of Sr isotope determinations on kimberlites from India (Paul, 1979)
and Central Africa (Demaiffe and Fieremans, 1981) were at odds with this conclusion
and Mitchell (1986) has cast doubt on the criteria used to judge ‘freshness’ of material

in these early studies.

6.2.1.2 The Group I/Group Il classification

The work of Smith (1983) provided a new paradigm for kimberlite geochemistry.
Building on work by Kramers (1977), Basu and Tatsumoto (1980) and Kramers et al.
(1981), this study demonstrated that kimberlites from southern Africa could be
subdivided into two groups on the basis of their Nd and Sr isotope composition. These
Group I and Group II kimberlites are defined solely on the basis of their isotopic
character, although there are also broad elemental and mineralogical distinctions
between the groups. The conventional interpretation of this subdivision is that Group I
and Group Il magmas are derived from different sources within the mantle and are thus
petrogenetically distinct.  These sources are considered to be the convecting
asthenospheric mantle and metasomatically-enriched sub-continental lithospheric
mantle, respectively. This interpretation prevails up to the present day, although
alternative models — mainly invoking mixing of magmas from the asthenosphere into
the depleted lithosphere — have been proposed (Anderson, 1982; McCulloch et al.,

1983; Vollmer et al., 1984).
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During the last 25 years Nd, Sr and Pb isotopic data have been obtained on kimberlites
from many other cratonic regions, such as Greenland (Nelson, 1989), West Africa
(Taylor et al., 1994), Siberia (Agashev et al., 2000; 2001a), Arkhangelsk (Mahotkin ef
al., 2000), Finland (O’Brien and Tyni, 1999), Brazil (Bizzi et al., 1994; Araujo et al.,
2001), China (Tompkins et al., 1999) and Australia (Edwards ef a/., 1992). To date no
kimberlites with Group II isotopic signatures have been found outside South Africa.
Detailed studies of the South African occurrences (Fraser, 1987; Tainton, 1992) support
the hypothesis of discrete mantle sources for Group I and Group II rocks. The only
exceptions to the Group I/Group II model are a small number of kimberlites from the
marginal region of the Kaapvaal craton, and some kimberlites from Brazil (Bizzi ef al.,
1994) and Arkhangelsk (Mahotkin er al., 2000), which have Sr and Nd isotope
signatures that are transitional between Group I and Group II (Skinner et al., 1994).
The elemental geochemistry of these samples was also found to be transitional in some

respects, but with more overall similarity to Group II than Group I kimberlites.

6.2.1.3 Hf isotope studies

Until recently, difficulties with chemical pre-concentration of Hf from kimberlites, as
discussed in Chapter 2, have prevented extensive investigations of their Hf isotope
composition. The first such detailed study (Nowell ef al., 1999; in press) demonstrated
that a set of kimberlites from South Africa, including many of the samples originally
analysed for Nd and Sr by Smith (1983), have very unusual Hf isotope characteristics.
Lamproites, which are also derived from depth within the mantle, are the only other
magmatic rocks in which these kinds of signatures have so far been observed (Nowell

et al, 1998b). The Lu-Hf system offers the additional advantage of particular
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sensitivity to processes that take place in the presence of garnet, e¢.g. formation of

magmas by melting at depth in the mantle, within the garnet stability zone.

Improvements to the Hf separation chemistry made during the course of this study have
enabled a much larger number of kimberlites from Canada to be analysed for Hf, in
addition to other isotopes. Consequently, the isotopic database presented here is an
excellent basis for both further testing of the Group I/Group II paradigm, and
investigation of anomalous Hf isotope signatures in kimberlites from beyond South

Africa.

6.2.2 Features of the current study

For this study new, high-precision Sr, Nd and Hf isotope analyses have been made on
123 kimberlite samples. These are primarily hypabyssal facies rocks obtained from the
recently discovered LDG kimberlite field (Carlson et al., 1999) and other localities
within the Slave province of northern Canada. All are well characterised for major and
trace elements (Chapters 4 and 5). To our knowledge it is the largest and
best-characterised isotopic database for a single kimberlite province, and is the most

comprehensive collection of Hf isotope variations in kimberlites.

A subset of 14 analyses of separate samples from the Grizzly pipe is used to investigate
intra-kimberlite variations, to attempt to further understand the processes affecting the
isotopic compositions of kimberlites. Previously, the only kimberlite to have been
analysed this extensively is the Finsch intrusion of South Africa (Fraser, 1987).
Samples from a further 25 individual hypabyssal bodies provide constraints on inter-

kimberlite isotopic variations within the LDG field. These isotopic characteristics are
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then compared to those of kimberlites from other fields within the Slave province, and
other kimberlite provinces beyond the Slave, including the Kaapvaal province of

southern Africa.

In addition to its size, the dataset is also notable for the freshness of the samples. This
is in contrast to the levels of alteration found in samples typical of the Kaapvaal
kimberlites.  Samples have been screened for visible signs of alteration and
contamination, both before and after crushing. It is therefore an ideal basis for
investigating the isotopic composition of an unmodified, ‘primary’ kimberlite magma
and also that of the mantle source. The freshness of these samples is also beneficial to
the investigation of unusual Hf-Nd isotope characteristics, as identified by Nowell et al.

(in press) for South African kimberlites, in these rocks.

6.2.3 Parameters used for isotopic modelling

Throughout this chapter isotopic data is presented in terms of initial ratios and epsilon
notation (Papanastassiou and Wasserburg, 1970; DePaolo and Wasserburg, 1976). This
notation expresses isotopic signatures in terms of enrichment or depletion relative to
the composition of Bulk Silicate Earth (BSE). It also enables comparison between
samples of different age, and accounts for the various mass bias corrections applied to
measured data during instrumental determinations by different laboratories. The
parameters used in these calculations for the Rb-Sr, Sm-Nd and Lu-Hf systems are
shown in Table 6.1. Unless otherwise stated, all epsilon values are calculated from

initial isotopic ratios. These values are represented by the notation €g;;, £xg; and eyg;.
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6.3 DATA REPRESENTATION

6.3.1 Framework for representing Hf-Nd and Nd-Sr variations

6.3.1.1 Hf-Nd-Sr isotope variations and the mantle array

Observed variations in the Hf and Nd isotope compositions of most terrestrial rocks
constitute a broad array relative to BSE, as summarised by Vervoort et al. (1999). This
absence of large-scale decoupling, especially for mantle samples, is surprising given
the strong potential for various minerals, such as garnet or perovskite, to fractionate
parent and daughter elements to varying extents in the Lu-Hf and Sm-Nd systems. The
few exceptions to this behaviour so far identified are magmas that originate from deep
within the mantle, such as kimberlites (Nowell ez al., 1999; in press) and lamproites

(Nowell et al., 1998b), and some carbonatites (Bizimis, 2001).

The coherency of Hf and Nd isotope variations was first identified, and remains most
striking, among oceanic basalts (Patchett and Tatsumoto, 1980), as shown in Figure
6.1a. The field of N-MORB is located entirely within the top right quadrant of the
diagram (positive &ur i, positive eng i), indicating derivation of these basalts from a
source that 1s depleted relative to BSE (i.e. Lw/Hf and Sm/Nd higher in magma source
than in BSE). The range of OIB compositions extends from the MORB field into the
opposite, enriched quadrant (negative eqri, negative ena;). OIB magmas may therefore
be variably enriched or depleted relative to BSE, depending on the exact nature of their
source. HIMU (high 2*U/%Pb) OIB, which is characteristic of a small number of
ocean islands (e.g. St Helena, Tubaii), is located at the lower margin of the mantle

array, with positive gyr; and eng;.
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Similar diagrams can be constructed for Nd-Sr and Hf-Sr isotope variations in these
oceanic basalts (Figures 6.1b-c). In both projections the range of OIB extends from the
‘depleted’ field of MORB (positive engi, negative gg;) into the ‘enriched’ field
characterised by negative eng;, positive €s,;. This range in Hf-Sr isotope composition is
likely to extend further, to more radiogenic Sr and unradiogenic Hf than that shown in
Figure 6.1c, which is based only on samples for which both Hf and Sr isotope data are
available. Consequently, the array is biased in favour of Hawaii in relation to islands
with more enriched signatures, such as Kerguelen. Variations in Sr isotope
composition within the mantle array are in general negatively correlated with variations

in Hf and Nd isotope composition.

6.3.1.2 Quantifying deviations from the mantle array

The location of any sample relative to the mantle array on a €ug-€ng; isotope diagram
can be expressed by the parameter Aey; (Johnson and Beard, 1993). This quantity is
simply the difference between the actual eyg of the sample and the value predicted from
a regression line through the Hf-Nd mantle array, based on the eng; of the sample. It is,
therefore, a measure of the displacement of a sample above or below the mantle array.

In this study, the equation of the regression line through the mantle array,

eun = 1.33 gng; + 3.19

from Vervoort et al. (1999), is used to calculate the expected value of eys:

Agpg = ey — (1.33 engi + 3.19).
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Samples located above the mantle array regression line have positive Agyy, while those
located below the regression line have negative Asyg. The location of the MORB, OIB
and HIMU fields in terms of Aeyg are shown in Figure 6.1d. The range of MORB and
OIB variations scatter both above and below the abscissa, while HIMU OIB is located

exclusively at negative Aeyy values.

It should be noted that the extent of the MORB/OIB variation around the mantle array
regression line is quite broad; values of up to 5 Agyg (indicated by dashed lines in
Figure 6.1d) are still within the range of the mantle array. Kimberlites and lamproites
are the only terrestrial magmatic rocks in which Aeyg signatures significantly more
negative than this have been measured consistently to date (Nowell ef al., 1998b, 1999,
in press). A major aim of the current study is to attempt to identify, quantify and
interpret the presence or absence of this signature within the well-characterised dataset

of kimberlites from the Slave province.

6.3.2 Location of South African kimberlites in Hf-Nd-Sr space

6.3.2.1 Hf-Nd isotope characteristics

The location of Group I, Group 1l and Transitional kimberlites from South Africa,
relative to the Hf-Nd mantle array is shown in Figure 6.2a. Each of these three groups
has a range of eng; values that is distinct from the others (Group I =-0.2 to +4.6, mean
=+2.5; Transiﬁonal =-49to -2.6, mean = -3.7;, Group I =-11.4 to -6.2, mean = -8.3).

This is in agreement with the observations of Smith (1983) and Skinner ef al. (1994).

The same degree of distinction is not observed in &g, although Group I values (-5.2 to

+3.7, mean = -0.7) are generally more radiogenic than those of Group II (-14.6 to -3.8,
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mean = -8.0). The range of eyr; (-10.3 to -17.9, mean = -14.1) for Transitional
kimberlites, although based on only two analyses, is mostly coincident with that of
Group II and clearly displaced to less radiogenic values than Group I. This suggests
that, in terms of Hf isotope composition, Transitional kimberlites have a greater affinity
with Group II kimberlites than Group I. This agrees with the conclusions drawn by
Skinner ef al. (1994) from major and trace element data. Alternatively, it could be
argued that the range of Hf-Nd isotope compositions displayed by Transitional
kimberlites is part of an extension of the Group I field to more unradiogenic Hf and Nd

compositions (Nowell et al., in press).

This latter interpretation is to some extent supported by the range of Aepg across the
three groups (Figure 6.2b). Transitional values (-14.6 to -10.1, mean - -12.3) are
clearly closer to those of Group I (-10.4 to -2.2, mean = -6.7) than Group II (-3.2 to
+2.5, mean = -0.1). Large negative deviations in Agy; below the mantle array
regression line are, therefore, characteristic of South African Group I and Transitional
magmas. The South African Group II kimberlites analysed by Nowell et al. (in press)
do not demonstrate deviations in Aeyy; from the mantle array regression beyond the
range of those observed in OIB. If magmas representative of each of these groups are
sampling the same source of the negative Aeyy; signature, then either Group I magmas
sample it to a lesser extent than Group I/Transitional magmas, or the source component
becomes more diluted in Group II samples as a result of differential magmatic
evolution. Alternatively, Group II kimberlites may be derived from, or are dominated

by a different source that does not contain the negative Agyg signature.
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6.3.2.2 Nd-Sr and Hf-Sr isotope characteristics

Group I and II kimberlites are also distinct in terms of Sr isotopes. The ‘tail’ of sg;
values in excess of +20 within the Group I field on Nd-Sr and Hf-Sr isotope diagrams
(Figures 6.2c-d), which produces an overlap with Transitional kimberlites, may be
indicative of samples that have experienced some alteration or crustal contamination.

esn values for Group I kimberlites typically lie within the range characteristic of OIB.

Variability in Nd-Sr isotope composition for the majority of all kimberlites is contained
within the boundaries of the mantle array or, in the case of Group II kimberlites, an
extrapolation of the array to suitably radiogenic values of €s;. The average €s; value
for Group I samples is close to that of BSE, insofar as an accurate value for BSE is
known. This is consistent with the BSE-like signature observed in the Hf, and to some
extent Nd, isotope composition of Group I kimberlites. The location of Group II
kimberlites at more radiogenic es; values is similarly consistent with the less
radiogenic Hf and Nd isotope composition of Group II kimberlites; this is a signature
that 1s representative of an enriched mantle source. The field of Group I kimberlites
only partially overlaps the Hf-Sr isotope variability of the mantle array, due to their
tendency towards more unradiogenic ey, Group II kimberlites are again coincident

with an extension of the mantle array.

The chondritic to slightly depleted character of South African Group I kimberlites is
typically interpreted (Smith, 1983) as evidence of derivation from a source such as the
asthenospheric mantle. The clearly enriched nature of South African Group II samples
1s considered to represent a magma that either originated from, or extensively interacted

with, an enriched reservoir such as metasomatised lithospheric mantle.
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6.3.2.3 Analyses of southern African kimberlites for this study

The chemical procedure for pre-concentration of Hf used in this project (Chapter 2)
differs from that used in Nowell er al. (1999). To ensure that this modified chemistry
produced data that was comparable to that obtained by Nowell er al. (1999; in press),
five new Hf-Nd-Sr analyses of kimberlites from South Africa and Lesotho were
acquired at the beginning of the current project. This sample set consisted of three
Group I kimberlites (Lighobong, Pipe 200 and Gansfontein), one Group II kimberlite
(Roberts Victor) and one Transitional kimberlite (Melton Wold). All samples were
unaltered hypabyssal facies material, and displayed minimal evidence of crustal
contamination. The Hf-Nd-Sr isotope compositions of these samples are shown on
Figure 6.2, superimposed on the established fields of Group I, Group II and
Transitional kimberlites;, each sample plots within or adjacent to its appropriate field.
This both supports the functionality of the modified pre-concentration chemistry and,
together with the data of Nowell er al. (1999; in press), extends the compositional
ranges for Group I, Group II and Transitional kimberlites defined by Smith (1983) and

Skinner et al. (1994).

6.3.3 Data from LDG and other Canadian kimberlites

For the purposes of representing the large volume of isotopic data from the LDG
kimberlite field, the dataset is first considered as a single entity and then sub-divided
into the geographically based groupings introduced in Chapter 1 and used for
describing major and trace element variations in Chapter 4. As in Chapter 4, no genetic
association between kimberlites in each group is assumed. This is of particular

importance in groups E and F, where the greater age range and geographic separation
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between samples suggests a smaller likelihood of individual magmas sharing a

common source.

6.3.3.1 Relative composition of kimberlites from LDG and South Africa
68 hypabyssal samples from LDG, which on the basis of visual and petrographic
inspection and trace element characterisation (Section 5.2) appear to be unaltered, form

well-defined arrays in terms of both Hf-Nd and Nd-Sr isotope variations (Figure 6.3).

a) Hf-Nd isotopes The range of eng; values (-4.2 to 0.1, mean = -1.9) falls between the
ranges of Group I and Group II kimberlites from South Africa, but is very similar to
that observed in the three Transitional samples that have been analysed (Figure 6.3a).
The range 1n ey of the LDG kimberlites (-10.2 to +10.5, mean = -1.1) extends to both
more positive and more negative values than those observed in South African Group I
kimberlites, but 1s similarly centred close to the BSE composition of gus = 0. This
range also partially overlaps that of South African Group II kimberlites. The large
(20.7 unit) range in ey over a small (4.3 unit) corresponding range in gyq imparts a
sub-vertical trend to the LDG data, which is highly inclined to the mantle array
regression line (Figure 6.3a). The field of South African Transitional kimberlites is

situated directly on the trend of the LDG data.

The orientation of the LDG Hf-Nd isotope array is also very steep on a engi~Aeus
diagram (Figure 6.3b), and again is coincident with the trend of the three South African
Transitional data points. Some care is required in the interpretation of this array,
because a sample set with any variation in gy over a narrow range in gyg will form a

steep array in engi-Aens space. Nevertheless, the range in Agyg exhibited by the LDG
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samples spans the entire combined range of the South African Group I and 1I data. In
summary, the Hf isotope character of the LDG encompasses both Group 1 and II
signatures, while the Nd isotope signature is intermediate between that of Group I and
Group II. Consequently, it is not possible to unequivocally attribute either a Group I or

Group II character to the LDG samples.

b) Nd-Sr isotopes The initial Sr isotope composition of the unaltered LDG kimberlites
(€sn = -1.5 to 28.4, mean = 6.4) falls within the range of South African Group I
kimberlites (Figure 6.3c). There are no examples among the unaltered samples of the
more radiogenic values characteristic of South African Group II kimberlites. Three
samples, from the Pigeon and Tli Kwi Cho (DO-27) kimberlites, have €g5 values that
are comparable to those of South African Transitional kimberlites; these samples also

have the three most negative values of i and Agpg.

It should be noted that the unaltered LDG rocks featured here include both the low /n
(Si/Al) group, which is potentially affected by continental crust, and mantle dominated
high /n (Si/Al) samples identified in section 5.5. Some of the variation observed in Sr,
and indeed Hf and Nd isotope compositions, may therefore be due to differential
content of crustal and lithospheric mantle contamination. This is explored more fully

in section 6.4 and Chapter 7.

¢) Hf-Sr isotopes The range of Hf-Sr isotope variation in the LDG data defines a broad
sub-vertical array (Figure 6.3d) that bisects the field of South African Group I
kimberlites. The apparent shape of this array is largely artificial due to the scale of the

diagram. The ~25 unit range in eus of the LDG samples is, in fact, comparable to the
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range of €s;. The three samples from Pigeon and Tli Kwi Cho in this projection are

again situated within error of the Transitional kimberlite field.

6.3.3.2 Group Al: Intra-kimberlite variation in Grizzly

a) Hf-Nd isotopes Variation in Hf-Nd isotope composition of the 14 samples from the
Grizzly kimberlite is very limited (eugs: -4.7 to 0.1, mean = -1.6; exgi: -2.1 to -0.9, mean
= -1.6); it forms a cluster with a small ‘tail’ to less radiogenic eus. The centre of the
cluster is situated at a composition that is slightly enriched relative to chondritic values.
The total range in eus of 4.8 units, with an associated range in eng of just 1.2 units,
suggests that the intra-kimberlite Hf-Nd isotope variation at Grizzly strongly resembles
the inter-kimberlite variability of the LDG dataset as a whole. This implies that the
processes affecting the isotopic composition of a single kimberlite are the same as those

affecting kimberlites throughout the LDG field.

engi-Aeng variations (Figure 6.4b) emphasise this similarity: the Grizzly data defines an
array that starts just below the mantle array regression line (Aeys = -0.8) and trends
steeply towards more negative Agps (minimum = -6.0, mean = -2.6). The trend of the
data based on these 14 samples extrapolates to positive eng; values, however, while the

overall data trend is oriented to negative eng; at increasingly negative Agyg.

b) Nd-Sr isotopes The Grizzly data displays a very narrow range in initial Sr isotope
composition (gs; = 2.1 to 4.0, mean = 2.9) compared to the dataset as a whole, and
consequently the data cluster tightly on a Nd-Sr isotope diagram (Figure 6.4c). These
slightly radiogenic values correspond well with the moderately unradiogenic ey and

enai data. The range in Nd and Sr isotope composition displayed by Grizzly is much
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smaller than that seen in a similar study of intra-kimberlite variation at Finsch (Fraser,
1987). 17 samples from Finsch show a range in eng; (-6.1 to -9.6, mean = -7.4) and &g
(+48.5 to +77.7, mean = +64.0). Finsch is known to consist of several different phases

of kimberlite intrusion and this may explain the greater range in isotopic values.

Although there is also evidence for multiple phases of kimberlite emplacement in many
of the pipes on the northern side of LDG (D. Dyck, pers. comm.), all of the Grizzly
samples analysed here were obtained from a single diamond drill core. It is possible,
therefore, that the full extent of compositional variation in hypabyssal kimberlite from
Grizzly has not been analysed. This is, of course, true for all other kimberlites

considered in this study.

¢) Hf-Sr isotopes Like the LDG data as a whole, the samples from Grizzly appear to
form a sub-vertical array on a Hf-Sr isotope diagram (Figure 6.4d), due to the unequal
scales on either axis. Nevertheless, the range in gyr; is over double that of gg5. All of
the Grizzly samples are situated within the field of South African Group I kimberlites

in this projection.

6.3.3.3 Group A2: Neighbouring kimberlites (o Grizzly

a) Hf-Nd isolopes None of the eight kimberlites that are located in the immediate
vicinity of the Grizzly pipe have Hf isotope signatures that are coincident with Grizzly
(Figure 6.5a). The two samples from Pigeon have very negative gyg that locates them
at the least radiogenic end of the entire LDG array. These samples also have less
radiogenic eng than other kimberlites in this group. All other samples have positive gyg

values which locate them above the Grizzly samples on the Hf-Nd isotope diagram.
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The single analysis from the Mark kimberlite has the highest eug; of all those recorded
in this study. This kimberlite, along with the adjacent Arnie and Aaron bodies, are
known to contain abundant microxenoliths of garnet dunite (B. A. Kjarsgaard, pers.
comm.). Four samples from the Leslie kimberlite have a range in g5 of +1.1 to +4.4
with a narrow associated range in gyg; (-1.3 to —1.6). This again defines a sub-vertical
trend on the Hf-Nd diagram as observed at Grizzly and in the LDG dataset as a whole.
A similar trend is also apparent in samples from the Roger kimberlite; these points are
largely obscured in Figures 6.5a-b due to almost exact coincidence with data from
Leslie. All of these trends are also reflected in the variation of Aeyg values (Figure

6.5b).

b) Nd-Sr isotopes With the exception of the data from Pigeon, the variation in Nd-Sr
isotope composition displayed by these samples is within the range of the Grizzly
kimberlite (Figure 6.5c). The olivine-rich samples from Mark and Leslie display some
of the lowest €g;; values in this group. The highest gs; values among these samples are
seen in Koala West, which has a trace element signature indicative of compositional

control predominantly by eclogite or crust, rather than peridotite.

¢) Hf-Sr isotopes Most samples in this group are located at, or within error of, the
upper (more radiogenic) limit of the Group I kimberlite field on the Hf-Sr isotope
diagram (Figure 6.5d). Notable exceptions are Mark, which has very radiogenic Hf,
and Pigeon, which has a near Transitional signature. Samples from Roger, Koala West

and Leslie display a considerable range in gy; over a very narrow range in sy
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6.3.3.4 Group B: Other kimberlites north of LDG

a) Hf-Nd isotopes As a group, these kimberlites demonstrate a much greater range in
enfi, to both positive and negative values, than observed in Grizzly or its immediate
neighbours (Figure 6.6a). Both the Rattler and Porpoise bodies again demonstrate a
large intra-kimberlite range in €y (up to 2.9 units) over a small (0.3 unit) range in eng;,
resulting in near vertical arrays that are sub-parallel to the trend of the LDG data. This
is the same trend as observed in the majority of pipes where multiple analyses have

been acquired.

The older (71Ma) kimberlites from Hardy Lake (Anne, Finlay and Don) have a smaller
range of ey than the younger (53-60Ma) kimberlites from Porpoise and Rattler. The
range of engi across all samples is again very narrow (-3.5 to -1.8, mean = -2.7) and is
on average less radiogenic than observed in the vicinity of Grizzly. The analyses from
Don and Porpoise are located in a position that is almost exactly intermediate to South

African Group I and II Nd isotope compositions.

b) Nd-Sr isotopes The group as a whole describes a large range in Sr isotope
composition (Figure 6.6¢c) compared to the analyses from Grizzly and its neighbouring
kimberlites. Coupled with the very limited range in enq; shown by these samples, this
produces an array that trends parallel to the x-axis and the overall variation in Nd-Sr
isotope composition seen at LDG. The most radiogenic values of gy, are from Finlay,

Don and Porpoise.

¢) Hf-Sr isotopes The range of intra-kimberlite Hf-Sr isotope variation of some

kimberlites from this group again parallels that of the entire dataset. This is clearly
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demonstrated in Porpoise, where three samples define a trend of increasingly more
radiogenic Sr with progressively less radiogenic Hf. This trend is not so evident in the

kimberlites from Hardy Lake (Anne, Finlay and Don).

6.3.3.5 Group C: Kimberlites south and east of LDG

a) Hf-Nd isotopes The six kimberlites from the central part of the region between
LDG and Aylmer Lake display a large range in eug and eng as a group, but again there
is a considerable degree of intra-kimberlite isotopic homogeneity (Figure 6.7a).
Samples from the T-19, T-21 and T-36 bodies cluster together, at close to chondritic
values of euys. T-34 and T-25 plot close together at less radiogenic eys and eng; values.
In engi-Aens space (Figure 6.7b) T-237 is located close to the mantle array reference
line, with slightly positive Aeygs, while the other samples plot below the mantle array to
varying degrees (Aeyg = -2.5 to -6.2). The near bulk Earth Nd isotope composition of
T-19 locates it just within the field of South African Group I kimberlites, but all other
samples in this group have unradiogenic Nd, which is uncharacteristic of South African

Group I kimberlites.

b) Nd-Sr isotopes Variations in Nd-Sr isotope composition (Figure 6.7c) define the
same two broad groupings as observed above. T-34 and T-35 behave anomalously by
having the most unradiogenic Sr as well as the most unradiogenic Nd and Hf
compositions. All of the samples in this group have trace element signatures indicative
of small to moderate amounts of crustal contamination. Considering this, their Sr
isotope compositions are not excessively radiogenic (gs; = -1.5 to +11) and are well

within the range of South African Group I kimberlites.
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6.3.3.6 Group D: Other LDG kimberlites

a) Hf-Nd isotopes These samples show less consistent inter- and intra-kimberlite
variations in Hf-Nd isotope character (Figure 6.8a) than are observed in other groups
within the LDG field. Samples from Misery are distinct from those of its satellite,
Misery East, in terms of engi. On average, the two samples from Misery East also have
less radiogenic Hf than Misery, indicating a more enriched character in general. The
single sample from Nicholas Bay, which is the most easterly-situated kimberlite in this
study, has the least radiogenic engi of this group and of the dataset as a whole. It also
has one of the least radiogenic Hf isotope signatures in the entire dataset, placing it at
the most enriched edge of the LDG field on the Hf-Nd isotope diagram. DD-39 is the
only kimberlite in this group to have positive gug, and this is only the case for one

sample from this body.

Pairs of analyses from individual intrusions again display variation in Hf isotope
composition with virtually no associated variation in eyg; (Figure 6.8b). Although this
observation is based on only two analyses for the kimberlites in this group, it agrees
with the style of variation observed in other bodies with larger numbers of analyses,
such as Leslie and, in particular, Grizzly. This orientation of variation in Hf-Nd isotope
composition at an oblique angle to the mantle array appears to be very characteristic of

most samples from the LDG field.
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b)  Nd-Sr isotopes  Samples from each body show greater consistency of
intra-kimberlite Nd-Sr isotope character (Figure 6.8c). Trace element modelling
indicates that Nicholas Bay, DO-27, T-146 and TR-107 contain significant components
of crustal contamination. In T-146 the contamination is visually discernable (B. A.
Kjarsgard, pers. comm.). Despite this, the only sample that has very radiogenic Sr is
DO-27; this sample has a contamination index (Clement, 1982) of just 1.08, compared
to ~1.25 at T-146. This kimberlite has a typical SA Group I Sr isotope signature.

Trace element evidence suggests that the sample from DO-27 is as unaltered as most

of the other LDG kimberlites analysed.

6.3.3.7 Group E: Slave kimberlites outside the LDG area

a) Hf-Nd isotopes Kimberlites from further north and south within the Slave province
appear to have very different Hf-Nd isotope characteristics to those found at LDG
(Figure 6.9a). A sample from the Cambrian Kennady Lake body, situated south of
LDG, has unradiogenic eng; similar to that characteristic of LDG. All other samples
analysed from this group have positive, radiogenic exg that places them within the
range of South African Group I kimberlites. The Cambrian kimberlite from Snap Lake
has a near chondritic Hf-Nd isotope composition that places it within the South African

Group 1 field, and is isotopically unlike the sample from Kennady Lake.

The other kimberlite bodies in this group are Jurassic in age (172Ma: Heaman et al.,
1997) and are located north of LDG in the vicinity of Contwoyto Lake. All samples
from the Jericho kimberlite (JD-51, JD-69, JD-82 and RND-120) have radiogenic Nd
and Hf isotope compositions located at, and just beyond, the upper end of the South

African Group I field. The Muskox kimberlite also falls within this field, at its lower
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edge, having unradiogenic Hf and slightly radiogenic Nd. Overall, the Slave
kimberlites studied from beyond LDG are much more akin to South African Group I
kimberlites in terms of Hf-Nd isotope composition. All kimberlites in this group have
negative Aeyg signatures (Figure 6.9b), although most of the samples from Jericho are

within 5 Aeyg units of the mantle array regression line.

b) Nd-Sr isotopes The unradiogenic eng; signature of the sample from Kennady Lake
causes it to plot within the range of LDG kimberlites on a Nd-Sr isotope diagram
(Figure 6.9c). All other samples in this group plot within the range of South African
Group I kimberlites, although samples from Snap Lake and Muskox are marginal to the
field of LDG kimberlites. One sample from the RND-120 body at Jericho has very
radiogenic €s; of +58.9. This particular body was intruded into granite and may have
incorporated a considerable amount of radiogenic Sr from this source. If this is the

case, then the effect in the other RND-120 sample is much less pronounced.

c) Hf-Sr isotopes Some of the kimberlites from the South-East Slave and Contwoyto
fields (Snap Lake, Muskox, JD-51 and one sample from each of JD-69 and JD-82) are
located within the range of Hf-Sr isotope variations in LDG kimberlites. In JD-69, JD-

82 and RND-120 there is a very large range in gs; Over a narrow range in epg.

6.3.3.8 Group F: Canadian kimberlites beyond the Slave Province
a) Hf-Nd isotopes Samples from the Churchill and Superior provinces of Canada
diaplay a wide range of Hf-Nd isotope variation (Figure 6.10a). Four samples from

Somerset Island analysed during this study have radiogenic Hf (+1.7 to +3.9, mean =

209



2.9) and Nd (+0.7 to +2.0, mean = +1.2) which locate them at the upper edge of the

South African Group I field and just beyond the range of the LDG data.

Also shown are four samples from the Nikos intrusion on Somerset Island analysed by
Schmidberger er al. (2002). A very large range in ;5 (21.1 units) is observed over a
small range in eng; (0.5 units) in these samples. This amount of Hf isotope variation has
not been recorded in any other kimberlite to date, and it is difficult to explain how
it arises in this instance. It is highly probable that Nikos is synonymous with the JP
South intruston, which has been analysed during this study, and one of these four Nikos
analyses is situated within error of the JP South analysis on both Hf-Nd and Nd-Sr
1sotope diagrams. Since one sample is in close agreement, it seems possible that the
two higher eys values obtained for Nikos are spurious, possibly as a result of Yb
interferences which have not been fully corrected during the analysis. Although these
two samples lie on an extension of the LDG Hf-Nd isotope array, they are not
considered with the rest of the data until repeat analyses are available to confirm their

accuracy.

A single analysis from Rankin Inlet has more radiogenic Nd and slightly more
radiogenic Hf than the Somerset Island samples of this study, and in terms of Nd
isotope character is more akin to the Cambrian samples from TR-107. The Rankin
Inlet kimberlite (~200Ma: Heaman and Kjarsgaard, 2000) is older than those from
Somerset Island (~100Ma: Smith er al., 1989) and is situated approximately 1200km
further south. This may provide some indication of temporal and/or geographic
provinciality among kimberlites, although further analyses would be desirable to test

this hypothesis.
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The Guigues and Peddie kimberlites of the Timiskaming field have very similar Nd
1sotope characteristics to Rankin Inlet. These are also closer in age (Guigues ~142Ma
and Peddie ~154Ma: Heaman and Kjarsgaard, 2000) to Rankin Inlet despite being
situated approximately 2000km to the SE. Two other samples from the Superior
Province, taken from the Attawapiskat and Kirkland Lake fields, have slightly
unradiogenic engi. Despite the apparent disparity in Nd isotope composition of these
samples, all are located within or marginal to the range observed in South African
Group I kimberlites. The Hf isotope characteristics of these samples are also broadly
consistent with Group I characteristics, with only Timiskaming and Rankin Inlet being

more radiogenic, and Attawapiskat more unradiogenic.

The Hf-Nd isotope variation demonstrated by the majority of these samples is within
the range of the mantle array, (Figure 6.10b). Ignoring the extremely radiogenic values
from Nikos, only the sample from Attawapiskat plots significantly off the mantle array,

with a Aeyg value of -10.8.

b) Nd-Sr isotopes Most of the samples in this group have Nd-Sr isotope variations that
are located within or at the margins of the range of South African Group I compositions
(Figure 6.10c). The only exception to this is the sample from Attawapiskat, which has
a slightly unradiogenic Nd and very radiogenic Sr placing it just beyond the range of
the fields of South African Group I and LDG data. Individual kimberlites and sub-
groups do not show the same internal consistency as observed with Hf-Nd variations.
The samples from Rankin Inlet and Timiskaming, for example, span a range in gy; from
—11.5 to +10.2. The value from Rankin Inlet is much less radiogenic than any value

recorded in the LDG field. In general, the isotopic characteristics of kimberlites from
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outside the Slave province are generally consistent with those of South African Group I

kimberlites.

c¢) Hf-Sr isotopes The kimberlites in this group have a very wide range of both Hf and
Sr isotope compositions. The four analyses of Somerset Island kimberlites conducted
during this study range across ~20 units in gg4, with relatively little associated variation
in eys. A similar, smaller offset is seen between two kimberlites from the Timiskaming
field of the Superior province. The actual values of es,; in this latter case are much less
radiogenic and are thus less likely to result from alteration or crustal contamination.

The effects of such processes on the isotopic composition of kimberlites are

investigated in the following sections.

6.3.4 Summary of the isotopic character of Canadian kimberlites

The Hf-Nd-Sr isotope characteristics of kimberlites from LDG and other Canadian
localitites analysed during this study are conveniently summarised in Table 6.2. The
range of isotopic signatures from each group is compared to that of an aphanitic
kimberlite from Wesselton, South Africa, which should be representative of unaltered,

minimally contaminated, hypabyssal facies Group I kimberlite.

In all cases the kimberlites from LDG have unradiogenic Nd isotope signatures, in
comparison to the slightly positive eng; of the Wesselton sample. This corresponds to a
lower time integrated Sm/Nd ratio in the LDG kimberlites, which is indicative of a
more enriched character to their mantle source. This characteristic is less pronounced
in other Canadian kimberlites from beyond LDG, both within the Slave and other

provinces. The kimberlites from the Contwoyto field (north Slave) and Somerset
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Island (Churchill) have Nd isotope signatures that are more closely comparable to that
of Wesselton. The kimberlites from Rankin Inlet (Churchill) and Timiskaming
(Superior) have Nd isotope signatures that are clearly more radiogenic than Wesselton,

indicating a higher time integrated Sm/Nd ratio in their source.

The range of Hf isotope compositions from each kimberlite field and sub-grouping
within the Slave province extends to both more radiogenic and less radiogenic values
than the ey for Wesselton. This corresponds to both higher and lower time integrated
LwHf{ ratios in the LDG magmas than at Wesselton. This very wide range in €5 over a
Very narrow range in eng produces a pronounced sub-vertical array in Hf-Nd isotope
space that is strongly suggestive of mixing between two (or possibly more) mantle
sources with distinct isotopic characteristics. In almost all other Canadian fields from
which kimberlites have been analysed, the time integrated Lu/Hf ratio of the source
must have been higher than at Wesselton, producing a more depleted signature. The

only exception to this is the single analysis from Attawapiskat.

Sr isotope compositions in almost all Canadian kimberlites are more radiogenic than
that of Wesselton, which has one of the least radiogenic values of gs; known in South
African Group I kimberlites. Only Rankin Inlet has a lower time integrated Rb/Sr ratio
and thus more depleted signature. The Rb-Sr isotope system is typically considered to
be the most sensitive to the effects of modification by crustal contamination and post-
emplacement alteration. It is important to characterise these effects on Hf and Nd, as
well as Sr, isotope signatures, before we can begin to interpret the kimberlite data in

terms of recognising and  quantifying different mantle  processes.
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6.4 ISOTOPIC EFFECTS OF CRUSTAL CONTAMINATION

20 samples of volcaniclastic kimberlite, including 16 from the LDG field, have been
analysed for Hf, Nd and Sr isotope composition during the course of this study.
Volcaniclastic kimberlites are much more commonly affected by crustal contamination
than hypabyssal facies rocks, due to the nature of the kimberlite eruption process. This
is confirmed by the abundance of macroscopic fragments of crustal material found in
volcaniclastic samples. Consequently, these samples provide an opportunity to study
the characteristic effects of crustal contamination on trace element and isotope

systematics.

Combined major and trace element models (Figure 6.11) indicate that the volcaniclastic
kimberlites contain a significant contribution from crustal signatures, comparable to or
in excess of that seen in crustally contaminated hypabyssal kimberlites. The general
characteristics that indicate the presence of contamination in these rocks are high Al
and Yb, low Mg/Yb and variable Si/Al. Samples with high /n (Si’/Al) but low In
(Mg/Yb) are likely to have incorporated significant lithospheric mantle material prior to
interacting with crust. Al/NDb is used in Figure 6.11 as a proxy variable for Al, to

account for the effects of variable volatile content in the volcaniclastic samples.

The range in Hf-Nd-Sr isotope composition shown by the 16 volcaniclastic kimberlites
from Lac de Gras (Figure 6.12) demonstrates that these samples plot within and beyond
the fields of ‘crustally dominated’, low /n (Si/Al) hypabyssal kimberlites. In all cases
the volcaniclastic kimberlites appear to trend towards more isotopically enriched

compositions.
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Samples of both hypabyssal and volcaniclastic kimberlite have been analysed from the
Rat and DO-27 (Tli Kwi Cho) bodies. In both cases the volcaniclastic samples have
more radiogenic Sr and less radiogenic Hf and Nd, causing them to plot well outside
the range of high /n (Si/A/) hypabyssal kimberlites (Figure 6.13). These relationships
are consistent with trends of crustal assimilation in simple isotopic mixing models

(Figure 6.14).

Despite careful visual screening of samples for potential crustal contamination, major
and trace element models (Figure 6.11) indicate that many of the hypabyssal
kimberlites from LDG have incorporated significant amounts of crustal material.
Although there is a considerable amount of overlap between the range of Hf-Nd-Sr
isotope for the low /n (Si’Al) and high /n (Si/Al) groups, the ‘crustally dominated’, low
In (Si/Al) group is offset to less radiogenic Hf and more radiogenic Sr isotope
signatures. The volcaniclastic kimberlites and low /n (Si/Al) hypabyssal kimberlites
from LDG thus have very similar major/trace element aNd isotope characteristics, and
together define the most ‘enriched’ ends of observed Hf-Nd-Sr isotope arrays (Figure

6.12).

These general isotopic trends identified for volcaniclastic kimberlites and low /n (Si/Al)
hypabyssal kimberlites are oriented sub-parallel to the trend in Hf-Nd-Sr isotope
variation observed for the high /n (Si/4l) group. This raises the question of whether the
consistent slope of the low and high /n (Si/4l) arrays could be a function of crustal

contamination. Several lines of evidence indicate that this is not, in fact, the case.

Firstly, the Si/Al-Mg/Yb model of lithospheric and crustal assimilation (Figure 6.11a)

shows that while samples with high /n (Si’4l) may have assimilated some crust, this is
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in almost all cases <<10% and minimal compared to the amounts of crust evident in
low In (Si/Al) hypabyssal and volcaniclastic kimberlites. Consequently, Si/Al and
Mg/Yb are highly correlated in the high /n (Si/Al) samples, and correspond closely to a

mixing trend between model ‘primary” kimberlite magma and lithospheric peridotite.

Secondly, to generate the observed range of Hf-Nd-Sr isotope variation in the high /n
(Si/Al) hypabyssal kimberlites, simple isotopic mixing models (Figure 6.14) require a
minimum of 20-30% with any of the variety of different crustal end-member
components found in the LDG area. This estimate is well in excess of the amount of
possible crustal assimilation supported by major and trace element evidence. It also
requires that the parental composition is located at the most radiogenic Hf and Nd
compositions and least radiogenic Sr compositions of those observed. Even if the
uncontaminated parental composition were located closer to the centre of the observed
kimberlite arrays, a similar amount of crustal assimilation would be required. It would
then also be difficult to envisage how crustal contamination could account for the
development of more isotopically depleted compositions within the kimberlite array,

since all crustal end-members are located at more isotopically enriched compositions.
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Figure 6.11 Discrimination of LDG volcaniclastic and hypabyssal kimberlites using major and trace
element parameters of crustal contamination, a) In (Si/Al) and In (Mg/Yb); b) AI/Nb and Sm/Yb. All data
from this study..

222



- T
(0 *3-"3 (q :™3-"3 (& :20vds ad010ST IS-PN-JH UI SA}TIOqUUTY
essAqedAy jo sdnoiS (7p/1g) u; mo] pue Y3Im 0] dANE[RI
‘Sa)IIaqUINy JNSB[OIURI[0A DT JO UOTEOOT ZI'9 N3y

08 09 (1] (114 0 0¢-
1 l 1 | le
- 02-
o

=1
) & - 0b-

[s) -

5] o - ”

(1v/1s) uj moy \
Ppajeulwop bojoaasniy, B m
- 0l
(1v/s) uf uby

[pRjRUIWIOp 3}j0pLR - Sb

S3}Iaquup D1ISE|OIUEDIOA BAT © - 02
*14

HSq

08 09 oy 0e 0 0e-
| 1 ] e—.l
s]
.vo:m_q_‘n\wu:ﬁw,”__sa. - &
) ) - 9-
M
0 -V 2
o =
= Nl
(1v/1s) uj mo)
[pajeulwiop ajBoja/IsNIY, 0

SajIRqUIN| DBSEIOIUEDIOA DAT ©

z (q

§Z 02 S 0L § 0 & 0l G 02 sc

| 1 1 1 L 1 1 1 le

L 02Z-

L G-

- 0L~

- G- m

(1v/1s) up moy
pajeuiwop ajbooagsni),

~N

(vns) uf ybiy - 0L
.P3jEULIOP S)1j0PLIRd, L GL

S3pIRqIN| DYSEIIUEDIOA DA ©

223



#5533 (5 3-Mg (q Ma-Tg
(& :20uds 2dojost IS-pN-JH Ut seypaquiry [essAqedAy jyo dnoid

(1¥/1S) U] YSTY O} dADBJRI “SANIQUIN] DT [ENPIAPUI WOL
sajduues [essAqed Ay pue O1ISB[ITURO[OA JO UOTEIOT €]°9 JINSLY

(onsepiuesion) 1z-00 § (ousejoiuedion) ey @

(lessAqedAy) 1z-oa (resskqedAy) yey O

11§
73

08 09 oy 0z 0 oe-

(l ! 1 m Nl

(1v1s) uf uBy
PRjRUILIOP }IOPLIAd] - Sl

08 09 oy 0z 0 0¢-
1 1 1 °—.l
- 8-
- 9-
M
- Z
o
O/zv AV [ -
d 0
(1v/is) uf ubiy /
(PRjEUILIOP 3})j0pLIBd,
z (q
I czw
¢ 0¢ s oL ¢ 0 ¢S O Sl 02- sz
1 1 1 1 1 ] 1 1 le
- 0Z-
L m—.l
L. O—-l
L G- o0
0 T
-5
4 [ 3
(1v/1s) uy yBiy - 01
PRJBUILIOP 9}110p|19d, L gl
- 02
14

224



Thirdly, within the high /n (Si/Al) group of hypabyssal kimberlites, no correlation is
observed between isotopic parameters, such as gus and &gy, and elemental parameters of
crustal contamination, such as Al and Yb content, or La/Yb and Sm/Yb ratios (Figurc
6.15). If the kimberlite array were generated by assimilation of large quantities of
crust, then these isotopic and elemental parameters should be much more strongly

correlated.

Finally, the trend in Hf-Nd isotope variation displayed by the LDG data (towards
negative Aeyy values, with an array oriented at a high angle to the Hf-Nd ‘mantle array
regression’) is very similar to that observed in South African kimberlites by Nowell ef
al. (1999; in press). These authors have also analysed members of the low-Cr
megacryst suite (e.g. garnet, clinopyroxene, ilmenite) that is commonly found in
association with kimberlites in southern Africa. Megacrysts crystallise at depth within
the lithospheric mantle and thus remain unaftected by crustal contamination as they
ascend in the rising kimberlite magma. Consequently their isotopic signatures cannot
be a function of crustal interaction, and must instead by derived from the mantle. The
ranges of Hf and Nd isotope compositions observed in low-Cr megacrysts define
elongate arrays, parallel to and overlapping exactly the Hf-Nd isotope variation in their
host kimberlites (Nowell ef al., in press). This provides strong support for the isotope
composition of carefully selected kimberlites being derived from sources and/or
processes below the continental crust. These compositions should thus faithfully

reflect those of the kimberlite source within the mantle.
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6.5 CAUSES OF VARIABILITY IN Hf-Nd-Sr ISOTOPE COMPOSITIONS OF
LDG KIMBERLITES

6.5.1 Constraints on possible mantle components

In the following discussion, the subset of minimally contaminated LDG kimberlites,
with high /n (Si/4]), is used to identify isotopic components within the mantle that
could interact to generate the observed LDG kimberlite array. It is possible that all the
isotopic variation observed in the array could be derived from a single, heterogeneous
mantle source, melting to produce magmas that do not undergo further modification en
route to the surface. The orientation and linear nature of the array is, however, strongly
suggestive of mixing between two components. Consequently, this analysis

concentrates on identifying possible two-component mixing scenarios.

The orientation of the LDG kimberlite Hf-Nd-Sr isotope array provides some
immediate constraints on the possible location of mixing end-members (Figure 6.16).
The thick black line in each cartoon represents the approximate trend through the LDG
kimberlite data, to which some portion of any mixing line is required to fit. In Figure

6.16a the positive gradient of the array requires that mixing end-members must be
offset to more radiogenic Nd at increasingly positive €us, and less radiogenic Nd at
increasingly negative gy ;, as indicated by the shaded regions on Figure 6.16a. Similar
relationships for variations in Nd-Sr and Hf-Sr isotope composition are shown in

Figures 6.16b-c.
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The mixing line between the two end-members can have a range of geometries, from a
straight line, to a curve that approaches a right angle at its point of inflection. The
bounding lines to the shaded areas in Figure 6.16 represent these extreme cases. The

curvature of the Hf-Nd isotope mixing line is controlled by the ratio:

(Hf/Nd)componem A / (Hf/Nd)component B

Another important constraint is the position of hypothetical mixing components relative
to the Hf-Nd isotope mantle array regression line. It is evident from the shaded fields
in Figure 6.16 that either component may be situated above, below, or on the mantle
array regression. Because the LDG kimberlite array is oriented at an oblique angle to
the mantle array, however, it is not possible for bots# components to be situated on the
mantle array in the same mixing scenario. No mixing line between two such
components would be able to generate the kimberlite data array, regardless of the
relative Hf/Nd ratios. This is important, because it rules out mixing between two
obvious mantle components — the depleted MORB reservoir and the relatively enriched

OIB reservoir — as a means of generating the observed isotopic variation in kimberlites.

6.5.2 Possible mixing end-members
Six mantle reservoirs/components that could contribute to the generation of the array
defined by LDG hypabyssal kimberlites, and possible mixing relationships between

them, are identified in Figure 6.17. These are:

Reservoirs:

1) Depleted sub-continental lithospheric mantle (SCLM)
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2) MORB magma
3) EMI OIB magma

4) Metasomatised SCLM

Components:
5) Lamproitic magma

6) Enriched mantle component with negative Agyy signature

The key isotopic and elemental characteristics of these reservoirs and components
required for modelling their interactions are listed in Table 6.3. Variably depleted
sub-continental lithospheric mantle (SCLM), represented by xenoliths of harzburgite
and lherzolite, is located almost exclusively above the Hf-Nd isotope mantle array
regression line (Ionov and Weiss, 2002; Schmidberger ef al., 2002; Simon et al., 2002;
Nowell ef al., in press) and is the most likely source of a mixing end-member with
positive ey, which is required by the LDG data (Figure 6.17a). A source of
unradiogenic Hf and Nd isotope compositions could correspond either to enriched
SCLM material, such as phlogopite peridotites (PPs) or phlogopite/K-richterite
peridotites (PKPs) (Harte et al., 1987, Grégoire et al., 2002), or to some as yet
unidentified component within the mantle having an OIB-like Nd isotope character, but
unradiogenic Hf and a distinctive negative Agpg signature. Since almost all lithospheric
mantle material analysed to date is located on or above the mantle array (Figure 7.2), it
is most likely that such a reservoir would have to reside somewhere within the
convecting mantle (Nowell ef al., in press). This unusual signature would require time
to develop, and it has been suggested that a negative Aey; component could reside in

relative isolation from the convecting mantle at some boundary layer (e.g. the 670km
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discontinuity or the D’* layer, as suggested by Nowell ef al., 1999). Nowell et al.
(1999; in press) also suggest that this component could correspond to subducted E-
MORB (or a combination of N-MORB and sediment), and hence elemental abundances

typical of E-MORB (Sun and McDonough, 1989) are used in Table 6.3.

All possible binary Hf-Nd isotope mixing interactions between these six possible
components are shown in Figure 6.17b. Several combinations can be immediately
discounted because mixing lines between them either do not intersect the LDG
kimberlite array, or intersect it but do not replicate the orientation of the array. Binary
combinations involving reservoir 3 (the EMI OIB composition) can only generate half
of the observed array, either to more or less radiogenic compositions, because this
reservoir is situated within the LDG kimberlite array, near its mid-point. A two-

component mixing line can only be fitted to the array in four scenarios:

A) Reservoir 2 (MORB magma) and component 6 (isotopically enriched mantle
with negative Agyy; signature)

B) Reservoir 1 (depleted SCLM) and reservoir 4 (metasomatised SCLM)

C) Reservoir 1 and component 5 (lamproitic magma)

D) Reservoir 1 and component 6
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6.5.3 Testing Hf-Nd isotope mixing scenarios
Mixing lines between the mantle components identified in the four scenarios above are

shown in Figure 6.18, and discussed below.

A) MORB magma and component with negative Agyy,;

Because the initial model Hf/Nd ratios in both components are very similar, the mixing
trajectory produced is a near-straight line, which touches but does not pass through the
LDG kimberlite array. The trajectory can, however, be modified by adjusting the
H{/Nd ratio in one or both components. Hf-Nd isotope and elemental parameters are
well constrained in MORB to the values shown in Table 6.3. It is, therefore, more
appropriate to vary the Hf/Nd ratio in the negative Aey; component, the characteristics
of which are relatively unknown. To produce a mixing line that passes through the
LDG kimberlite array, Hf/Nd in this component would have to be between 0.22 and
~0.02, as shown by the ‘alternative’ mixing line. This alternative Hf/Nd ratio is an
order of magnitude lower than Hf/Nd typical of an E-MORB composition. If the
composition of this component is at all like that of an oceanic basaltic magma, then

such a Hf/Nd ratio seems unlikely.

B) Depleted SCLM and metasomatised SCLM
In this scenario, a mixing line can only be successfully fitted through the LDG
kimberlite Hf-Nd array if the isotopic signatures of the two components are carefully

chosen. Because the Nd isotope composition of the metasomatised SCLM is less
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radiogenic than the range typical of the kimberlite array, the curvature of any mixing
line fitting the array dictates that the depleted SCLM component must have a near
chondritic eng; signature. Nevertheless, since this should be an isotopically depleted
reservoir, it scems likely that its Nd isotope signature will be slightly radiogenic. The
metasomatised SCLM reservoir has been assigned a Hf-Nd isotope composition typical
of SA Group II kimberlites, because Group II magmas are often envisaged as being
derived from such a reservoir (e.g. Smith, 1983). The eyg signature of the
metasomatised SCLM must, however, be less radiogenic than the most isotopically
enriched end of the array, which rules out some SA Group II-like compositions. The
mixing line generated using the initial model parameters does not pass through the

LDG kimberlite array.

Mixing lines between the two reservoirs will pass through at least some part of the
array, if Hf/Nd of the metasomatised SCLM is ~0.2-3.0 for initial depleted SCLM
values, or if the depleted SCLM has Hf/Nd of 0.005-0.06 for initial metasomatised
SCLM values. Although some SCLM lithologies may correspond with these criteria,
the tightly clustered and linear nature of the Hf-Nd isotope array for LDG kimberlites
indicates that both SCLM end-members would have to be isotopically very
homogeneous. This seems unlikely considering the isotopic analyses of these materials
that have been conducted to date (e.g. Ionov and Weiss, 2002; Schmidberger e/ al.,

2002; Simon et al., 2002).

C) Depleted SCLM and lamproitic magma
A magma with a lamproitic composition has extremely unradiogenic eng; and €y, but

also has extremely high abundances of Hf, Nd and Sr. Consequently, the mixing
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relationship with depleted SCLM is totally dominated by the lamproitic composition.
H{/Nd ratios are similar in both components, so the mixing line generated from the
initial model parameters is straight, and does not intersect the LDG kimberlite array.
Any mixing line passing through the array must have very extreme curvature, which
requires that either Hf/Nd is unreasonably high (>>1) in the lamproitic component, or

very low (<<0.1) in the depleted SCLM. Neither of these possibilities is realistic.

D) Depleted SCLM and component with negative Agyy

Initial model parameters for these components produce a mixing line that is consistent
with the orientation of the LDG kimberlite array. This fit can be improved further by
small adjustments to either the isotopic composition or the Hf/Nd ratios in either end-
member. A major advantage of this model is that there is much more scope for
variation of the mixing parameters, while still being able to replicate the orientation of
the kimberlite array. Consequently, heterogeneity in either the depleted SCLM

reservoir or the negative Agys component can be accommodated.

The Nd-Sr and Hf-Sr isotope mixing lines based on initial parameters do not fit quite as
well as the Hf-Nd mixing line to the LDG kimberlite array. The agreement between
mixing lines and the observed Nd-Sr and Hf-Sr isotope variation can be improved by

increasing Sr abundance in the depleted SCLM to Sppm, so that Nd/Sr = 0.06 and Hf/Sr
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Figure 6.19 Model Hf-Nd, Nd-Sr and Hf-Sr isotopic mixing trajectories between depleted
SCLM reservoir and mantle component with negative Ag,;.
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The LDG kimberlite array can also be successfully modelled by mixing a depleted
SCLM component with more radiogenic exq;, and the negative Aeys component. This
requires a Hf/Nd>1, and Hf and Nd abundances that are >1ppm. The Sr abundance
must also be increased such that Nd/Sr and Hf/Sr are an order of magnitude lower than
their initial values in Table 6.3. Alternatively, if the depleted SCLM elemental
abundances are kept at more realistic values, then the concentration of Hf and Nd in the
negative Aepys component must be reduced to around an order of magnitude lower than

values that are typical of OIB or E-MORB.

6.5.4 Summary

The isotopic compositions of the LDG kimberlites differ from those of South African
Group I and II kimberlites. The main difference is observed in their Nd isotope
signatures, which are intermediate between those characteristic of South African Group
I and Group 1II rocks, and correspond most closely with the Nd isotope composition of
the few ‘transitional’ kimberlites from South Africa that have been analysed. Canadian
kimberlites from beyond Lac de Gras (e.g. Contwoyto, Timiskaming) do, however,
have Nd isotope signatures similar to those of South Group I kimberlites. The range of
Hf isotope compositions observed in the Lac de Gras kimberlites spans the range of
both Group I and Group II compositions. Consequently, these analyses constitute a
trend of Hf-Nd isotope variation that extends well below, and also to some extent
above, the mantle array. This provides further evidence of the existence of a negative

Aegyy signature within kimberlites beyond southern Africa.

Hf-Nd, Nd-Sr and Hf-Sr isotope mixing lines can be constructed between various

mantle reservoirs to replicate the LDG kimberlite array, by adjustment of Hf/Nd, Nd/Sr
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and Hf/Sr values from the initial values shown in Table 6.3. In most cases, however,
the elemental parameters required to force mixing lines through the kimberlite array are
unrealistic for the mantle component or reservoir to which they refer. The most
geologically plausible combination that fits the data involves mixing between depleted
SCLM and some as yet unidentified component within the mantle having a moderately
enriched elemental (e.g. similar to E-MORB), and isotopic composition, but with a
distinctive negative Aeys signature, i.e. a time-integrated Lu/Hf ratio that is lower than

that of Bulk Silicate Earth.

Analyses of depleted SCLM material made to date (lonov and Weiss, 2002;
Schmidberger et al., 2002; Simon ef al., 2002) indicate that this component could have
a range of eus (0 to +160) and eng (<10 to >>+50) compositions. SCLM with a near
chondritic Nd isotope composition is most easy to accommodate within the models
presented here. The nature of this mixing could be assimilation or physical
incorporation of depleted lithosphere into an ascending magma derived from sub-
lithospheric depth; trace element models (Chapter 4) and field/petrographic studies do
not, however, tend to support such large amounts of incorporation of SCLM. Chapter 7
attempts to further constrain the role of these components/reservoirs in the genesis of
the Lac de Gras kimberlites, on the basis of isotopic mass balances and elemental

correlations.
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Chapter 7

Petrogenetic summary and conclusions

7.1 CONTAMINATION OF KIMBERLITE MAGMAS

7.1.1 Major/trace element evidence

It was shown in chapter 5 that assimilation of both crust and lithospheric mantle could
modify the major and trace element composition of kimberlite magma. The crustal
contamination index (CI) introduced by Clement (1982) is commonly used to assess
input of silica-rich crustal lithologies within kimberlites, but is unable to satisfactorily
resolve the competing effects of crustal and lithospheric mantle incorporation on
magma composition. Consequently, over-reliance on this parameter can result in

misidentification of contaminated samples and misinterpretation of data.

While a variety of major and trace element parameters (e.g. Al/Mn, Na/P, Sm/Yb) can
be used to identify relative levels of crustal contamination in the LDG .hypabyssal
kimberlites, the most effective means of discriminating the effects of both crustal and
lithospheric peridotite assimilation into the kimberlite is using /n (Si’4Al) and In
(Mg/Yb). Models based on these two parameters indicate that the LDG hypabyssal
kimberlites have experienced a range of contamination by crust and lithospheric
peridotite. The samples can be divided into two groups: one with signatures of
‘significant crustal contamination’, characterised by /n (Si/Al) <2.1, and a ‘minimal
crustal contamination’ group, with /n (Si/Al) >2.3. Within the high /n (Si/Al) group
there is a range of compositions that correspond to progressive incorporation of

peridotitic material. In addition, variation in /n (Mg/Yb) within this group suggests that
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many of these samples do contain small (<10%) contributions from crustal material. It
appears, therefore, that very few of the samples analysed remain completely unaffected
by crustal contamination. This seems plausible given the thickness of crust that all

kimberlite magmas must traverse in cratonic regions such as the Slave province.

7.1.2 Possible primary composition of Lac de Gras kimberlite magma

A principal aim of this study has been to constrain the elemental and isotopic signatures
of the magmas parental to the LDG kimberlites. The primary magma composition is a
major control on the geometry of mixing trends between magma and crustal or
lithospheric peridotite end-members in contamination models. Conversely, the primary
magma composition can be inferred by fitting mixing trends to the observed scatter of
the LDG kimberlite data in such models. In the LDG hypabyssal kimberlite data, there
is a break in the otherwise near-continuous distribution of the variable /n (Si/4l). This
could correspond to the composition of kimberlite magma with no crust or peridotite
incorporated. This ‘compositional gap’ spans a range in /n (Si/Al) of ~2.2-2.4, and is
defined primarily by an absence of samples with 2.5-3wt% Al,Os;. The high and low /n
(Si/Al) groups display a considerable amount of overlap in SiO; content, and by varying
AlLO; contents the ‘compositional gap® of 2.2-2.4 can be generated with a relatively
constant SiO, content of ~30wt%. Similarly, these values equate to MgO of

~30-32wt% and Yb of ~0.30-0.35.

These values for elemental abundances in the primary magma are compared with
similar estimates from other studies in Table 7.1. Values reported for kimberlites from
Wesselton (Edgar ef al., 1988) and Jericho (Price et al., 2000) are based on analyses of

aphanitic hypabyssal kimberlite, which is considered to be most representative of any
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primary kimberlite liquid, whereas the values of Le Roex ef al. (2003) are based on
points of inflection between aphanitic and macrocrystal kimberlite compositional
trends. The two samples from Jericho represent the range of compositions reported for
several aphanitic samples by Price et al. (2000). With the exception of JD-51, all of the
compositions in Table 7.1 agree to within 4-5wt% MgO or SiO;, and 1-2wt% Al,O;.
JD-51 is relatively poor in MgO and SiO», and it is difficult to see how both JD-51 and
JD-82-3 could be representative of primary magmas in the same kimberlite locality;
they may, instead, have experienced olivine fractionation or crustal contamination
relative to each other. The estimates for MgO and SiO, content of the primary magma
in this study are higher than, but still broadly similar to, those determined by Edgar et
al. (1988) and Le Roex et al. (2003). This may reflect mineralogical differences, such
as modal abundance of microphenocrystal olivine, between kimberlite magmas from

different regions.

Wesselton Jericho Jericho Kimberley This study

aphanitic’  JD-51% JD-82-3? pool’®
MgO (wt%) 27.2 16.7 25.1 28-29 30-32
SiO; (Wt%) 25.6 20.8 30.3 27-28 ~30
ALO;3 (Wt%) 3.3 1.8 1.8 ~2.0 2.5-3.0
Yb (ppm) - 0.64 0.43 - 0.30-0.35

Table 7.1 Comparison of estimates for abundance of selected elements in primary kimberlite
magmas from this study and: (1) Edgar et al. (1988); (2) Price et al. (2000); (3) Le Roex et al.
(2003).

The composition selected for the uncontaminated, ‘primary’ magma will clearly also
influence any quantitative estimates of the amount of crust or lithospheric peridotite

incorporated in contamination models. Using a hypothetical, ‘primary’ composition of
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30wt% MgO, 30wt% SiO,, 2.5wt% Al,O; and 0.3ppm Yb, the majority of high in
(Si/Al) samples record between 10-50% incorporation of peridotite with a harzburgitic
composition. This is in close agreement with the estimates of Pearson et al. (2003)
based on Os isotopes. One sample from the Mark kimberlite, which is known to
contain well in excess of 50% peridotite micro-xenoliths, records a signature of ~70%
harzburgite incorporation on the basis of the /n (Si/4l)-In (Mg/Yb) model. The majority
of the low /n (Si/A4l) samples record between 10-50% assimilation of crustal material of
varying composition, with a small number of samples being indicative of >50% crustal
contamination. This may appear difficult to reconcile with the low-contamination
character of these samples suggested by petrographic studies, but it is quite possible
that during disaggregation and assimilation of country rock xenoliths, much of this
contaminant material becomes ﬁnély disseminated throughout the kimberlite matrix. In
addition, these estimates of crustal contamination are likely to be maximum figures,
because any incorporation of eclogitic material or fractionation of olivine will produce

similar compositional trends to those of crustal assimilation.

Quantitative estimates of crustal and lithospheric peridotite contamination will be
affected if the primary kimberlite magma has lower SiO; and MgO contents than those
suggested above. For example, if the primary magma contained 25wt% SiO, and
25wt% MgO, then this primary composition would be located closer to those of the
crustally contaminated samples in In (Si/Al)-In (Mg/Yh) space. At higher degrees of
mixing, however, the location of points on mixing trajectories are more strongly
controlled by the composition of the crustal/lithospheric end-member, and
consequently are less sensitive to variation in the primary composition. As a result, the

majority of high /n (Si/Al) LDG kimberlites still have signatures characteristic of
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10-50% addition of lithospheric peridotite. The majority of low In (Si‘4l) samples
correspond to a slightly narrower range of 10-40% addition of crustal material when

using lower estimates of SiO, and MgO for the primary magma.

7.1.3 Group I-Group II-Transitional characteristics

In chapter 4 it was noted that the Canadian kimberlite dataset, which is dominated by
the samples from Lac de Gras, has several elemental characteristics that are transitional
to, or unlike those of South African Group I and II kimberlites. Some of these
characteristics, such as their location in K,O-TiO, and SiO,-Pb space (after Smith er
al., 1985a), and La/Nb-Ba/Nb space (after Le Roex, 1986), can now be re-evaluated
with the benefit of information from contamination modelling. Figure 7.1 shows the
relative locations of high In (Si’/Al) and low /n (Si/Al) samples according to the
constructions of Smith er a/. (1985) and Le Roex (1986), and also indicates the
orientation of mixing trends between a minimally contaminated LDG kimberlite
(ANA-1) and average compositions of crustal greywackes and granitoids from the
vicinity of Lac de Gras. This analysis suggests that indicates that some of the more
‘transitional’ or ‘Group II-like’ characteristics, such as elevated K,O and Ba/Nb in the
overall LDG dataset, could be explained by progressive addition of crust into low /n
(Si/Al) samples. Contamination of this nature cannot, however, account for the
elevated, ‘Group Il-like’ Pb content displayed by some of the low /n (Si/Al) samples.
Transitional to Group II signatures are not, therefore, directly synonymous with ‘Group
I plus crustal contamination’. Some, but not all, of the tendency for LDG kimberlites
to have pseudo-‘Transitional’ signatures can be attributed to such contamination.
Samples with and without crustal signatures are in some cases coincident in Figure 7.1a

and 7.1b, and all LDG samples are located within the SA Group I range of La/Nb in
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Figure 7.1c. The predominant elemental character of the LDG hypabyssal kimberlites

is thus most consistent with SA Group 1.

7.1.4 Isotopic evidence

It was demonstrated in chapter 6 that contamination by crustal material does not
significantly modify the isotopic composition of the kimberlite magma until levels of
assimilation become very high, e.g. >50-60%. In the case of most of the LDG
hypabyssal kimberlites this exceeds the maximum estimates of crustal incorporation in
the samples studied. The effect on isotope characteristics is, therefore, negligible in

samples known from major and trace elements to be minimally contaminated by crust.

The high In (Si/Al) group of LDG kimberlites containing minimal contributions from
crust is consistently offset to slightly higher values of ey5, and does not show the same
extension to very radiogenic e, that is evident among the more highly contaminated,
low /n (Si/Al) group. These LDG kimberlites also extend to consistently higher values
of enr than is observed in South African Group I kimberlites (Nowell et al., 1999; in
press). Depleted SCLM is the only terrestrial reservoir that consistently has highly
radiogenic Hf 1sotope compositions (Figure 7.2), and hence it seems possible that
interaction of kimberlite magmas with this reservoir could produce the extension
towards radiogenic eqr observed in the LDG kimberlites. This is investigated using the

binary mixing model shown in Figure 7.3.
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The lithospheric end-member compositions utilised are based on material from
peridotite xenoliths obtained from kimberlites from Somerset Island in then Churchill
province (Schmidberger et al., 2002). The age of the Churchill lithosphere beneath
Somerset Island (2.7Ga) is slightly younger than the 3.1Ga Slave lithosphere (Irvine,
2002), but is the closest analogue with available Hf data. Mineral separate, rather than
whole rock, isotopic data is used to represent lithospheric compositions, because of the
likelihood of infiltration and contamination of xenolith samples by the host kimberlite
liquid. Olivine is the modally dominant phase in the majority of mantle peridotites, but
the contribution it makes to the Sr-Nd-Hf isotope composition of the whole rock is
negligible, because typical abundances of these elements in olivine are Sr <0.1ppm, Nd
<0.01ppm and Hf <0.01ppm (Pearson et al., 2003). Orthopyroxene is approximately an
order of magnitude richer in Nd and Hf than olivine (Pearson ef al., 2003). Garnet and
clinopyroxene are one to three orders of magnitude richer in Sr, Nd and Hf, than olivine
or orthopyroxene, and consequently exert the main control on the budget of these
elements and their isotopic characteristics within peridotites. The model of the isotopic
effect of lithospheric material on kimberlites presented here is based on garnet alone,
due to a comparative lack of isotopic data on clinopyroxene separates within the
literature. Clearly the model must take account of the typical modal abundance of
garnet in peridotite. In the scenarios presented here the modal abundance of garnet in

the assimilated peridotite is assumed to be 10%.

Calculated mixing lines between a representative LDG hypabyssal kimberlite (ANA-2,
Anaconda) and ‘garnet peridotite’ compositions in Hf-Nd isotope space (Figure 7.3)
indicate that contamination by lithospheric material has very little effect on the isotopic

composition of the kimberlite until very high degrees of mixing are reached.

249



320 Cratonic peridotite xenolith
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Figure 7.2 Range of Hf and Nd isotope compositions measured in garnet and
clinopyroxene from lithospheric mantle peridotites. Kaapvaal peridotite data (grt + cpx)
from Simon et al. (2002). Slave peridotite data (grt) from Schmidberger et al. (2002).
Siberian and Mongolian peridotite field from Ionov and Weiss (2002). Beni Bousera
peridotite data from Pearson (unpubl.).
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In Figure 7.3a, 80% admixing of a lithospheric peridotite composition from Somerset
Island produces an offset of only 9 units in g5, with no associated offset in eng. This
is due to the Nd content of the mixture being dominated by the kimberlite
(Ndimb/Ndgamet ~ 1500), whereas the Hf content of the garnet forms a larger part of the
total Hf budget for a given degree of mixing (Hfiimy/Hfgamer ~65). Unless the isotopic
composition of the garnet is very extreme, or its Nd content is unusually high, mixing
with a kimberlite composition will not produce significant offsets in eyg; until the
degree of mixing is well in excess of 90%. The Sr isotope composition of the
kimberlite is even less sensitive to contamination by garnet of lithospheric origin in this
manner (not shown). Consequently, the offset in Hf isotopic composition on mixing is

far greater than the offset in Nd or Sr isotopic composition.

The modelled vertical Hf-Nd isotopic mixing trend for lithospheric contamination
corresponds well to the sub-vertical trend of the LDG kimberlite array (Figure 7.3a),
although it is clear that very large degrees of lithospheric contamination by peridotitic
material are required to produce even a small proportion of the total range in ey
exhibited by the high /n (Si/Al) kimberlites. It therefore seems unlikely that
contamination by lithospheric peridotite can, in isolation, be a primary control on the
orientation of the kimberlite array. Differential contamination of kimberlite magmas
by peridotitic material may, however, be able to account for some of the
intra-kimberlite isotopic variation that is observed within the LDG dataset, as shown in
Figure 7.3b tor kimberlites trom which three or more samples have been analysed

during this study.
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Figure 7.3 Mixing lines in Hf-Nd space between a typical Lac de Gras hypabyssal kimberlite
(ANA-2) and representative and hypothetical lithospheric end-members. A = mixing with material
containing 10% garnet having composition from Schmidberger ef al. (2002), i.e. 0.027ppm Lu,
0.016ppm Hf, ""Hf/""Hf = 0.287403 (g, ~160); 0.04ppm Sm, 0.05ppm Nd, '“*Nd/"‘Nd = 0.513049
(eys ~6). B, C = hypothetical mixing lines towards less and more radiogenic Nd isotope
compositions. There isno distortion of scale between (a) and its enlargement, (b).
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There is a general absence of strong correlations between isotopic and major/trace
element indicators of lithospheric contamination in the LDG kimberlite dataset.
Despite the general lack of clear trace element indicators of lithospheric input,
individual cases do support the hypothesis that Hf isotope compositions of LDG
hypabyssal kimberlites can be modified by interaction
with SCLM. The Mark kimberlite, for example, has the highest values of /n (Si/4/) and
In (Mg/Yb), high Mg/Nb and Ni/Nb, and low La/Nb and Yb/Nb. These are all
indicators of SCLM peridotite input, and this kimberlite has the most radiogenic Hf
isotope composition within the entire dataset. In general, however, trace elements do
not support levels of peridotite assimilation in excess of 80% as a means of generating

the variation in ey within the LDG kimberlite array.

Although the high /n (Si/A]) LDG kimberlites, with minimal contributions from crustal
contamination, show some tendency to extend above the Hf-Nd mantle array, they also
extend to negative Aeys values, below the mantle array, as observed in the South
African Group I kimberlites (Nowell er al., 1999; in press). This indicates that, like the
South African kimberlites, they could contain a signature that is derived from an

unusual, rarely sampled source within the mantle.

7.2 TWO-COMPONENT MIXING SCENARIOS

In chapter 6 a detailed analysis was presented of possible binary mixing interactions
between known isotopic reservoirs (e.g. depleted and enriched SCLM) and postulated
isotopic components (e.g. a negative Aey; component) within the mantle that could

generate the observed trend of the minimally contaminated LDG kimberlites in [Hf-Nd-
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Sr isotope space. It was concluded that the kimberlite array could be most satisfactorily
replicated by mixing between depleted SCLM (with radiogenic Hf and a range of
possible Nd isotope compositions) and a component with elemental and Nd-Sr isotope
characteristics comparable to those of an OIB-type source, but also a pronounced
negative Aepg character. This could correspond to rising kimberlite magma with OIB
affinities, originating below the lithosphere in a source region having a negative Aeys
character, which has its isotopic composition progressively modified by assimilation of

garnet-bearing peridotite.

The modelling presented in Figure 7.3, however, strongly suggests that very large
(>80-90%) amounts of SCLM peridotite assimilation would be required to produce
offsets in ey on the scale of the LDG kimberlite array. Major/trace element and Os
isotope evidence does not support such large amounts of SCLM peridotite assimilation
taking place in the LDG kimberlites, instead indicating that 10-50% incorporation of
this type of material is more commonplace. The model of Figure 7.3 indicates that
these levels of assimilation will not produce significant offsets in €5 on the scale of the
LDG kimberlite array. In addition, the well-constrained, linear nature of the LDG
kimberlite Hf-Nd array is also difficult to explain if it is generated by large amounts of
interaction with, or even sourced from, depleted SCLM, which is a reservoir known to

be isotopically very heterogeneous (Figure 7.2).

7.3 SINGLE COMPONENT ORIGIN FOR LDG KIMBERLITES
7.3.1 Extent of the negative Aguq signature
The linear nature of the LDG kimberlite Hf-Nd array strongly suggests that it results

from variable mixing between two isotopically distinct reservoirs or components within
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the mantle. Despite this, no two-component mixing scenario appears able to
adequately account for both the orientation and extent of the LDG kimberlite array. An
alternative explanation is that the observed Hf-Nd-Sr isotopic variation is characteristic
of a single kimberlite mantle source region. The isotopic heterogeneity of such a
sourcc would dominate any subsequent contributions from small amounts of
contamination by crust or lithospheric mantle peridotite. In this scenario, assimilation
of crust or SCLM could only result in significant modification of kimberlite isotopic
compositions, over and above the variation inherited from the source, if levels of
assimilation are extremely high (i.e. >50-60% crust, >80-90% peridotite). This may
account for the most extreme Hf-Nd isotope signatures observed in the LDG dataset,
such as Mark, which has the most radiogenic eys and trace element signatures
indicative of the most extreme peridotite assimilation, and certain volcaniclastic
kimberlites, which are known to have incorporated large amounts of crustal material,

and are observed to have the least radiogenic Hf and Nd isotope compositions.

Figure 7.4 demonstrates that over half (58%) of the high /n (Si’/Al) LDG hypabyssal
kimberlites have Aeyg signatures that are within the range of the majority of measured
OIB compositions (-3 to +3). 16% have Aeys in excess of +3, and 26% have Aeyy
lower than -3, placing them beyond the range of the majority of OIB analyses forming
the Hf-Nd mantle array. This is a very different situation to the South African Group I
kimberlites shown in Figure 7.4d, where over 90% of samples have Aeyy; lower than -3.

This 1s more comparable to the distribution of HIMU OIB shown in Figure 7.4b.
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Nevertheless, there is a clear negative Agy;; character in the LDG kimberlites (63%
have negative Aeyy; signatures), which must be a characteristic of the source, since it is
unlikely to be derived from the SCLM (>80% of samples analysed so far have gy¢ > 0),
or the crust. A possible candidate for the source could thus be an OIB-like component,
with a (possibly HIMU-like) negative Agyg character, which interacts variably with

SCLM to produce kimberlite magmas that are located on and below the Hf-Nd mantle

array.

7.3.2 Origins of the negative Aeyy; signature and kimberlite source regions

The analysis presented so far in chapters 6 and 7 indicates that it is unlikely that either
the crust or the lithospheric mantle are a possible source of the negative Aeyy; signature
observed in kimberlites from the Kaapvaal and Slave provinces. It seems most likely,
therefore, that this signature must originate from some component located within the
sub-lithospheric mantle. Nowell ef al. (in press) propose two possible mechanisms for
generating negative Aeyy characteristics: fractionation of Mg-perovskite and recycling

of subducted oceanic crust within the mantle.

A Mg-perovskite bearing lithology, envisaged to be either a melt residue (Blichert-Toft
and Albaréde, 1997) or a cumulate crystallised from a primordial magma ocean (Salters
and White, 1998), will evolve to very unradiogenic gu; but very radiogenic eng;
compositions over time (Nowell ef «l., in press). Consequently, it is impossible for
such a component to be the source of the negative Agyg signature observed in the LDG
kimberlites, because the orientation of the LDG kimberlite Hf-Nd array requires that
the negative Aenyr component must have unradiogenic Hf and Nd. While this

mechanism is more tenable as a source of negative Agyy; in the southern African Group
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[ kimberlites, which do have radiogenic enq;, Nowell et al. (in press) do not consider it
to be a likely explanation, on the grounds of Bulk Earth Lu-Hf isotope systematics not
supporting Mg-perovskite fractionation in the early Earth (Blichert-Toft and Albaréde,

1997).

The fractionation of Lw/Hf and Sm/Nd during generation of basaltic oceanic crust by
melting of garnet-bearing peridotite, and subsequent isotopic evolution over long
timescales (e.g. >1Gyr), results in negative Aeyr signatures in the melt product (i.e.
MORB), as demonstrated by Chauvel et al. (1994), Salters and Zindler (1995), and
Ballentine er al. (1997). Conversely, the solid residuum of this melting process evolves
isotopically over time to have positive Aeys characteristics, as demonstrated by
lithospheric mantle (Nowell ef al., in press). On subduction, it is likely that Lw/Hf and
Sm/Nd become fractionated, to some unknown extent. The model of Nowell ef a/. (in
press) acknowledges this, but for simplicity assumes that Lu/Hf and Sm/Nd in MORB
compositions retain their sub-chondritic or supra-chondritic character during the
subduction process.  Consequently, N-MORB, which at the present day has
sub-chondritic Lu/Hf and supra-chondritic Sm/Nd, evolves to negative Ay with a
radiogenic eng composition. E-MORB, which has present day sub-chondritic LwHf
and Sm/Nd, evolves to negative Aeyr with an unradiogenic eng composition.
Incorporation of ancient, isotopically evolved N-MORB into the kimberlite source
region can thus account for the Hf-Nd isotopic signatures observed in southern African
kimberlites (Nowell et al., in press), while incorporation of E-MORB into the source of

the LDG kimberlites could explain their Hf-Nd isotope compositions.
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A problem with this argument is that E-MORB is scarce relative to N-MORB in
present-day settings. It is possible, though difficult to test, that E-MORB was more
common in the early part of earth history, when oceanic basalts would have been
generated from a less depleted mantle source. Consequently, a larger proportion of
oceanic crust being subducted during the Precambrian could have been E-MORB rather
than N-MORB, compared to the present day.  Alternatively, E-MORB-like
compositions could be recycled into the mantle by subduction of N-MORB with its

accompanying cover of pelagic sediment.

Because the negative Aeyy signature is not generally observed in other mantle-derived
magmas — with the exception of HIMU OIB (e.g. Chauvel et al., 1992; Ballentine et al.,
1997) — 1t has been suggested (Nowell e al., 1999; in press) that the source of the
signature, such as subducted oceanic crust, must remain isolated from the
homogenising effects of mantle convection at some sub-lithospheric boundary layer.
This material is then periodically entrained into upwellings within the mantle, such as
plume-related activity, and rapidly transported to the base of the lithosphere, from
where its chemical composition may begin to be modified by interaction with SCLM
and crust. This mechanism is consistent with the connections between kimberlites and
mantle plumes advocated by Le Roex (1986) and Heaman and Kjarsgaard (2000), and
the association with hotspot volcanism is supported by the close agreement in Os
isotope compositions between uncontaminated kimberlites and OIB compositions (e.g.

Pearson et al., 1995; 2003), in samples from both the Kaapvaal and Slave provinces.

In summary, subduction of ancient N-MORB and E-MORB/N-MORB + sediment and

subsequent storage for >1Ga time periods in isolation within the sub-lithospheric
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mantle could produce a source region that, when periodically melted at low degrees,
generates small-volume liquids with negative Asprand a range of eyg signatures that
overlap those observed in southern African Group I and LDG kimberlites. These melts
are probably separated from the source and transported upwards through the mantle in a
similar manner to OIB magmas, i.e. in association with plume/hotspot volcanism.
Subsequent interaction of the ascending magma with SCLM peridotite and crustal
lithologies can modify its elemental chemistry but has little effect on its isotopic
composition unless the amount of contaminant being assimilated is very large. In these
circumstances, incorporation of depleted SCLM can produce offsets towards more
radiogenic eyy; at essentially constant eng and s, while assimilation of crust tends to

produce offsets towards less radiogenic ey and eng;, and more radiogenic €g;;.

7.3.3 Integration with existing petrogenetic models

The interpretation presented above is in agreement with aspects of several existing
models of kimberlite petrogenesis. Many authors during the last two decades have
favoured a sub-lithospheric origin for the primary kimberlite magma, including Le
Roex (1986), Haggerty (1989), Nelson (1989), Ringwood ef al. (1992), Taylor et al.
(1994), Mabhotkin et al. (2000), Price et al. (2000) and Janney et al. (2002). The
majority of studies that propose a lithospheric origin for kimberlite magmas are those
that are partly or wholly concerned with Group II rocks as encountered in South Africa
(e.g. Fraser, 1987; Tainton, 1992; Mitchell, 1996). Some models, such as those of Le
Roex (1986) and Haggerty (1989), suggest that all kimberlite magmas originate below
the SCLM. On the basis of data acquired to date from peridotites, Hf isotopes indicate
that a lithospheric origin is unlikely for any magma that consistently exhibits negative

Agyy; signatures.
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The concept of ancient subducted basaltic oceanic crust at great depth within the mantle
as a major contributor to the source of kimberlite magmas has several parallels with the
transition zone melting geodynamic models of Ringwood ef al. (1992) and Taylor et al.
(1994), and also the conclusions of the experimental study on natural kimberlite of
Edgar and Charbonneau (1993). The notion that a range of relative enrichment in these
magmas (such as a possible continuum between Group I- and II-like magmas with a
common source), may relate to differences in the exact nature of the subducted material
being sampled, and/or to subsequent interaction with chemically and isotopically
heterogeneous SCLM, agrees with many of the arguments proposed by Le Roex (1986)
and Haggerty (1989), respectively. The conclusions of this multi-isotopic and
elemental study of the Lac de Gras kimberlites are thus consistent with several of the

central existing themes within research into kimberlite petrogenesis.

7.4 CONCLUSIONS

¢ The elemental geochemistry of LDG hypabyssal kimberlites has characteristics
similar to both South African Group I and II rocks, and in some respects is
transitional to both. Some, but not all, aspects of this transitional character (e.g. Pb

content) are attributable to crustal contamination.

e Despite their apparent contamination-free nature on the basis of petrography, the
LDG hypabyssal kimberlites have elemental signatures indicative of variable (in
most cases 0-50%) assimilation of lithospheric mantle peridotite and crustal
material. Fractionation of olivine + Cr-spinel may also act to modify the kimberlite

magma chemistry, producing similar compositional trends to crustal contamination.
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The location of the LDG hypabyssal kimberlites in /n (Si/Al)-In (Mg/Yb) space
relative to crustal and lithospheric contamination vectors suggests that an
appropriate ‘primary’, uncontaminated magma to these samples would contain

30-32wt% MgO, ~30wt% SiO,, 2.5-3.0wt% Al1,0; and 0.30-0.35ppm Yb.

Contamination of the kimberlite magma with crustal or lithospheric mantle material
has a minimal effect on its Hf-Nd isotope composition, until very high levels of
incorporation are reached (>50-60% for crust, >80-90% for lithospheric
peridotites). Sr isotope compositions are more sensitive to crustal input, but are

highly insensitive to addition of peridotitic material.

Although the highly linear nature of the Hf-Nd isotope array formed by minimally
contaminated LDG hypabyssal kimberlites suggests that the magmas are generated
by two-component mixing within the mantle, the only combination of mantle
isotopic reservoirs and components that can plausibly explain the orientation of the
array is depleted sub-continental lithospheric mantle and an isotopically enriched
component with an OIB-like Nd-Sr isotope composition and a distinctive negative

Agyy; signature.

In a scenario where a rising magma from below the lithosphere with negative Agyy;
interacts with depleted SCLM peridotites, the amount of peridotitic material that
would have to be assimilated to generate the range of the Hf-Nd LDG kimberlite
array is preclusively high (>>90%). A more likely scenario is that the majority of

the observed Hf-Nd isotopic variation in the LDG kimberlites is a characteristic of a
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single, heterogencous mantle source. Only the most radiogenic Hf isotope
compositions observed in kimberlites located well above the Hf-Nd mantle array
are likely to record any additional interaction with large (>>50%) amounts of

SCLM material.

The difference in Nd isotope composition between South African Group I and LDG
kimberlites can be explained by differences in the nature of the subducted oceanic
crust that is sampled in the kimberlite magma. N-MORB compositions will evolve

over time to radiogenic eng; (as seen in SA Group I kimberlites), whereas E-MORB

or N-MORB + sediment will evolve over time to unradiogenic eng ; (LDG

kimberlites).

Storage of the negative Agjyr; source at a deep boundary layer within the mantle
could explain its absence from the majority of mantle-derived magmas. Periodic
sampling of this component during deep-mantle upwellings, possibly in association
with plume/hotspot activity, and subsequent transmission as an OIB-like magma
through the sub-continental lithosphere and crust, produces a rock with the
elemental and isotopic signatures observed in both South African Group I and LDG

kimberlites.
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Appendix A

Data catalogue

CONTENTS OF THE CATALOGUE

This appendix lists all the samples for which new major, trace and isotopic analyses
have been acquired as part of this study. Most samples are Canadian kimberlites, but
some additional analyses of South African and Siberian samples were undertaken.

Table A.1 shows the breakdown of these analyses by country and region.

. On/Off Number of
Country Region
craton samples

Canada Slave On 98
Churchill On 5
Superior On 4
Trans Hudson Off 2
United States Yapavai Off 3
South Africa Kaapvaal On 7
Russia Siberia On 4

Total 123

Table A.1 Division of new analyses by country and region.

The information contained in this sample listing is as follows:
Country — within which the kimberlite is located.

Region — usually equivalent to the setting — cratonic or otherwise — setting of the
body.

Field — the kimberlite field within which the body is situated.

On/Off craton — tectonic setting.
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Locality — name of kimberlite body.
Sample IID — as assigned during this study, and as reported in Appendix D and F.
Alternative [D — other ID (e.g. company ID) by which sample may be known.

Age — quoted with 2¢ error and source where a documented age refers specifically to
the body in question. Where specific documented age is not available for Canadian
kimberlites, age quoted (shown in italics) is the average of known ages on
geographically proximal kimberlites (e.g. 53Ma for the central LDG cluster).

Non-specific ages for South African and Siberian kimberlites are allocated by close
association with the following dated bodies: (a) Uintjesberg (Smith er al., 1985b); (b)
Monastery (Allsopp and Barrett, 1975); (c) median of emplacement age range for major
Siberian diamondiferous kimberlites (Kinny ef al., 1997).

All ages listed are used throughout this study for calculation of initial isotope ratios,
epsilon values, etc.

Age ref — reference for age, where documented age exists, including details of
method where known (Table A.2).

E?igﬁgﬁe Reference Method
1 Heaman et al. (2002) Rb-Sr phl
2 Creaser et al. (2003) Rb-Sr phl
3 Davis and Kjarsgaard (1997) Rb-Sr phl
4 Scott Smith and McKinlay (2002) Ar-Ar phl
5 Berg and Carlson (1998) Rb-Sr phl
6 Graham et al. (1999) Rb-Sr phl
7 Heaman et al. (2003) U-Pb pvk, zrc
8 Agashev et al. (2001b) Rb-Sr phl
9 Heaman and Kjarsgaard (2000) U-Pb pvk
10 Smith et al. (1985b) Rb-Sr phl
11 Allsopp and Barrett (1975) Rb-Sr phl
12 Skinner et al. (1994) U-Pb pvk
13 Smith et al. (1994) U-Pb pvk

Table A.2 Kimberlite age references. Phl = phlogopite; pvk = perovskite; zrc = zircon.

Facies — HYP -~ hypabyssal facies; VOLC = volcaniclastic (diatreme or crater
facies).
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Appendix B

Kimberlite petrography

Table B.1 provides a summary of the mineralogical characteristics of selected
kimberlites from the Lac de Gras field, based on the work of Armstrong et al. (in press)

and B. A. Kjarsgaard (unpublished).

The general nature of each kimberlite is described in terms of descriptive phases,
following the system introduced by Skinner and Clement (1979), whereby kimberlites
are classified according to their modally dominant minerals. Note that olivine content

1s not taken into account by this classification.
Legend for Table B.1 is as follows:

X = phase present in minor quantities

X = phase common throughout

% - phase present in abundance

Mineral name abbreviations: ol = olivine; phl = phlogopite; ksh = kinoshitalite; spl =

spinel; mont = monticellite; pvk = perovskite; ap = apatite

Other abbreviations: carb = carbonate; silc = silicate; phenos = phenocrysts; gmass =

groundmass
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Lac de Gras samples (petrography after Masun, 1999)

DD39

Minimally altered macrocrystal olivine; minor serpentinisation along cracks and
fractures.

Microphenocrytal olivine is variably altered to serpophite.

Groundmass contains abundant spinel, apatite and magnetite; perovskite and
phlogopite common.

Calcite-serpentine segregations common throughout groundmass.

Mesostasis calcite, serpentine and barian phlogopite.

Microxenoliths of lherzolite and lithic fragments are present but very rare.

r-19

Olivine macrocrysts completely replaced by calcite, mantled by serpentine.

Most olivine occurs as microphenocrysts, also replaced by calcite and serpentine.
Spinel, apatite and magnetite common in groundmass of calcite, serpentine and
phlogopite; perovskite rare.

Calcite segregations common in groundmass.

T-34

Rare olivine macrocrysts, altered to serpentine only at margins.

Most olivine occurs as variable alteration to serpentine, serpophite; calcite confined
to cracks.

Groundmass consists of abundant spinel, magnetite; apatite, phlogopite, serpentine,
calcite, dolomite; perovskite is common.

Calcite segregations are common within groundmass.

7-35

e Rare calcite and serpophite pseudomorphs after macrocrystal olivine.

o Majority of olivine occured as microphenocrysts, now completely altered to calcite.
e Spinel, magnetite, perovskite and apatite common throughout groundmass.

o Calcite segregations common throughout groundmass.

e Mesostasis of calcite, serpentine and phlogopite.

T-36

Generally fresh, fractured olivine macrocrysts; partially altered along cracks and
margins to serpophite.

Chloritised serpophite pseudomorphs after microphenocrystal olivine.

Spinel and apatite common in groundmass.
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Mesostasis of calcite, serpentine and phlogopite with scattered discrete apatite
crystals.
Altered, partially resorbed xenoliths of country rock are present but rare.

T-237

General lack of macrocrystal olivine; may appear locally aphanitic.

Abundant, mostly fresh microphenocrystal olivine; flow alignment of olivine
crystals commonly observed.

Spinel, magnetite and apatite common within groundmass.

Calcite-serpentine segregations are common throughout groundmass.

Mesostasis of calcite, serpentine, fresh-altered monticellite, and partially altered
barian phlogopite.

Lac de Gras samples (unpublished petrography by B. H. Scott Smith)

Anne

e Very fresh macrocrystal olivine.

e Spinel and monticellite most common groundmass phases.
e Groundmass carbonate rare to absent.

e Xenolith-poor.

Finlay

e Very fresh macrocrystal olivine.

e Monticellite predominant in groundmass.

e Carbonate segregations common in samples from this kimberlite.
e Variable amounts of xenoliths present.

Don

Rare macrocrysts; olivine is generally fresh, only minor serpentinisation.
Groundmass consists of spinel, perovskite, monticellite, carbonate.
Some small, partially-resorbed xenoliths of country rock.
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Sample preparation procedures

Appendix C

C.1 PREPARATION OF WHOLE-ROCK POWDERS

C.1.1 Powders produced at Durham University

All kimberlites obtained for this study were received as powders from Dr B. A.

Kjarsgaard (Geological Survey of Canada) and Dr M. G. Kopylova (University of

British Columbia), with the exception of the samples listed in Table C.1, which were

received as hand specimens and powdered at Durham University.

Country Region Field Locality Sample
Canada Slave Lac de Gras Anaconda ANA-3
Fox FOX-1
Grizzly GRZ-2
Rat RAT-2
Wolverine WOL-1
South-West Slave Drybones DRY-1
South-East Slave Kennady Lake KDY-1
KDY-2
Snap Lake SNP-2
Churchill Somerset Island JP South JPS-1
Batty Bay BAT-1
Elwin Bay ELB-1
Jos JOS-1
Rankin Inlet Rankin Inlet RNK-1
Superior Attawapiskat James Bay Lowlands JBL-1
Kirkland Lake Upper Canada Mine UCM-1
Timiskaming Guigues GUI-1
(continued) Peddie PED-1
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Country Region Field Locality Sample

Canada Trans Hudson Fort ala Come Fort a la Corne FLC-1

Sturgeon Lake STL-1

United States Yapavai State Line Chicken Park CHK-1

Nix NIX-1

Sloan SLN-1

South Africa Kaapvaal Barkly West Frank Smith FSM-1
Robert Victor ROVIC-1

Central Cape Gansfontein GNS-1

Melton Wold MW-3

North Lesotho Lighobong LQ-7
LQ-SAT

Pipe 200 P200

Table C.1 Samples powdered using Durham University procedures.

C.1.2 Powdering procedure

Wherever specimen size permitted, external surfaces were removed using a Clipper
rock saw. Saw marks were removed from the sawn faces using a diamond lap, and the
specimens were thoroughly cleaned with de-ionised water. The specimen was then
crushed to a maximum chip size of ~10mm using a Fritsch stainless steel jaw crusher.
The crusher was cleaned thoroughly after processing each specimen. Rock chips were
washed several times with de-ionised water to float off the majority of the adherent

rock dust and then dried in an oven.

Each sample crush was picked through by hand to remove any visible xenolithic or
xenocrystic material (e.g. fragments of crustal material or megacrysts). In reality it is
impossible to remove all contamination in this way, as some foreign material will be

too fine-grained to distinguish from the kimberlite groundmass. Fresh macrocrysts of
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olivine and phlogopite were for these purposes treated as part of the kimberlite magma
itself, although many olivine macrocrysts are in fact likely to be derived from peridotite

xenoliths (Mitchell, 1986).

An ideal powder for chemical analysis should be sufficiently fine that it can be
considered to be homogeneous. This ensures that any aliquot taken from this powder
should be, within analytical error, chemically the same as any other; thus no bias is
introduced by sampling of the powder. Kleeman (1967) recommends comminution of
powders to less than 120 mesh to ensure homogeneity is attained. Grinding to this kind
of flour-like consistency can take 20-30 minutes, depending on the hardness of the
minerals in the sample, although Fitton and Gill (1970) showed that considerable
oxidation of Fe** to Fe** can take place if samples are mechanically ground for longer
than about 1 minute. Clearly, this is not sufficient time to adequately powder the
material, so the FeO and Fe,O; analyses of the samples should be viewed with the
effects of oxidation during grinding in mind. Specific consideration of relative FeO

and Fe;O3 content of kimberlites does not form a part of this study.

A Fritsch rotary agate ball mill was used to grind the rock chips to a powder. Each
agate mill was cleaned thoroughly between each sample by washing with de-ionised
water, running the mill with clean, high-purity silica sand, and then re-rinsing in de-
ionised water. Excess moisture was removed from the ground powders by drying in an
oven at 110°C for 24 to 48 hours. The powder is then ready for chemical pre-treatment

prior to analysis.
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C.2 MAJOR ELEMENT PROCEDURES

All major element analyses were obtained courtesy of the Geological Survey of Canada
(GSC), through Dr B. A. Kjarsgaard. Analyses were performed at the GSC (Ottawa),
and also by Lakefield Research Ltd (Lakefield, Ontario) and Acme Analytical
Laboratories Ltd (Vancouver, British Columbia). All major element data was obtained
by X-ray fluorescence (XRF) techniques on fused discs of sample material. Ni and Cr
concentration data obtained by XRF was also used in preference to ICP-MS data. H,O,
CO; and S were determined by infrared spectroscopy on combusted samples, using a
LECO C-O-N-S analyser. Where only loss on ignition is recorded, this was measured

by gravimetric analysis at 900°C.

C.3 TRACE ELEMENT PROCEDURES

C.3.1 Intreduction

All trace element data for this study, with the exception of Ni and Cr, were obtained
using the Perkin-Elmer Sciex Elan 6000 quadrupole inductively coupled plasma mass
spectrometer (ICP-MS) at Durham University. A detailed description of pre-
concentration chemistry, instrument operating conditions and data reduction
considerations for this technique is contained in Ottley ef al. (2003). A summary is

provided below.

C.3.2 Sample digestion, spiking and dilution

Samples are usually processed in batches of 20-30, including 3-4 blanks in each batch.
All acids used are SpA grade or equivalent. 0.1 + 0.001g of each sample powder are
weighed into a 15mL or 22mL Savillex PFA beaker. 1mL of 16N HNO; is carefully

added to each beaker, allowing any reaction with carbonate which may evolve CO, to
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go to completion. The beaker is gently agitated by hand to produce a slurry, ensuring
the powder is fully wetted. 4mL of 29N is added to each beaker. The beakers are
sealed and placed on a hotplate and allowed to reflux at ~150°C for 48 hours. After
this initial digestion step, the samples are dried down to a moist residue in a clean-air
environment. It is important to ensure that the samples do not dry out completely, at
which point they will start to oxidise. A further ImL of 16N HNOs is then added to
each beaker and allowed to dry down on the hotplate. This procedure is repeated a
second time, to ensure that all HF has been driven off. 2.5mL of 16N HNO; is then
added to each beaker, diluted to approximately 10mL with 18.2MQ de-ionised water.

The beakers are sealed and returned to the hotplate for a few hours at 100-120°C.

Once cool, each beaker is spiked with ImL of a 1ppm Re-1ppm Rh solution. The
sample is then diluted to SOmL in 18.2MQ MQ, using a volumetric flask. 1mL of this
sample solution is then further diluted into a polypropylene test-tube at a 1:10 ratio, to

produce a convenient 11mL volume for analysis.

C.3.3 Instrumental parameters

The sample solution is introduced into the plasma using a cross-flow nebuliser
assembly and a Scott double-pass spray chamber. Nebuliser argon flow rate is
typically set at 0.8-0.9L per minute to optimise signal intensity. A daily check solution
is run before each analysis session to ensure that instrument sensitivity and molecular
interferences are at acceptable levels. During each analysis session the response of the
instrument is calibrated using a set of solutions prepared from international rock

standards.
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The typical solution uptake rate is ~1mL per minute, with analysis for a full suite of
trace elements requiring ~3 minutes for completion. Data is acquired by peak hopping,
with a dwell time of approximately 10-60ms, depending on individual elemental
detection limits (Ottley et al., 2003). The mass spectrum is swept 25 times for each
reading, and two replicate readings are obtained for each analysis. Each sample is
allowed to wash in for 50 seconds prior to the analysis commencing, and the instrument

is allowed to aspirate a 3% HNO; wash solution for 3 minutes between samples.

C.3.4 Checks on data quality
The quality of the trace element analyses produced using this procedure is monitored in

a number of ways:

1. Analysis of total procedural blanks provides a check on levels of contamination
introduced into the sample during the chemical procedure.

2. Inclusion of the Re-Rh internal standard allows sample loss during dilution and
variability in instrument sensitivity during analysis to be corrected for.

3. Use of international rock standards during the analysis session permits accurate
calibration of the machine response during each individual session.

4. Multiple analyses of blanks and standards during a session (e.g. at start, mid-way,
and end of run) allow any drift in the instrument calibration to be detected.
Reproducibility of elemental concentrations in standards run in this manner is
almost always better than 5% (relative standard deviation), and often <3% (Ottley,

2003).
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C.4 FUSION PROCEDURE FOR SAMPLE DIGESTION

Ci4.1 Introduction

Certain mineral phases, such as zircon, are resistant to digestion by conventional
acid-attack procedures, such as those described in Chapter 2. Because zircon is a major
host for Hf, failure to properly dissolve this phase could result in inaccurate
determinations of Hf isotope compositions. This factor becomes more significant when
dealing with samples containing large amounts of zircon, such as sandstones or
granites. Consequently, the LDG crustal rock powders analysed during this project
were fused prior to dissolution, to break down the refractory phases. Two sets of
isotopic determinations were then made on the crustal rocks: one based on dissolutions
of the fused powders, and one based on a conventional acid-attack dissolution without
prior fusion. This enabled comparison to be made between results obtained by either
technique, and ensured that good data could be acquired for Sr, which can become

contaminated by the flux used in the fusion procedure.

C.4.2 Fusion procedure

0.45g of sample powder and 2.25g of lithium tetraborate flux (+ 0.001g) are weighed
out, giving a sample:flux ratio of 1:5. The combined powder is mixed thoroughly in an
agate ball mill, and then transferred to a platinum crucible. Samples are fused in an
oven at 1050°C for 20 minutes. Immediately after removal from the oven, the molten
sample is poured into cylindrical graphite moulds that are kept on a hotplate to reduce
the temperature gradient. After pouring the molten sample is then compressed within
the mould using an aluminium piston. Samples are left to cool slowly on the hotplate.

On removal from the mould, the sample is in the form of a glass disc, which can be
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ground to a powder using an agate pestle and mortar. This powder dissolves easily

using the procedure described in Chapter 2.
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Appendix D

Whole rock major and trace element data

CONTENTS OF THE MAJOR/TRACE ELEMENT DATABASE

The following pages contain details of all major and trace element analyses of whole

rock kimberlites and Lac de Gras crustal material obtained during the course of this

study. Sources of data are as follows:

All major element data was obtained by XRF analysis courtesy of Dr B. A.
Kjarsgaard and the Geological Survey of Canada, with the exception of data for
Jericho kimberlites (JD-51, JD-69-1, JD-69-3, JD-82-1 and JD-82-3), which is
taken from Price et al. (2000).

All kimberlite trace element data was obtained by ICP-MS at Durham
University (see Appendix C for details of procedures and instrumentation), with
the exception of Cr and Ni analyses marked with asterisks (* = XRF data, ** =
ICP-OES data), which are taken from data of Dr B. A. Kjarsgaard.
Comparisons between XRF and ICP-MS determinations for Ni and Cr are
shown in Figure D.1, for samples with both datasets are available. For both Ni
and Cr the XRF and ICP-MS data correlate strongly, although ICP-MS
consistently measures a higher abundance of the element of interest.

All trace elements for Lac de Gras crustal rocks are taken from the data of Dr B.
A. Kjarsgaard. All of this data was obtained by ICP-MS with the exception of

U, Yb, Luand Y (INAA), and Sc, Cr, Ni, Cu, Zn (ICP-OES).
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Figure D.1 Comparison between trace element determinations by XRF and ICP-MS methods on
Canadian kimberlites: a) Ni; b) Cr. XRF data acquired by Geological Survey of Canada, courtesy of
DrB. A. Kjarsgaard; ICP-MS acquired using Perkin-Elmer ELAN 6000 at Durham University, for

this study.
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Appendix E

Additional elemental abundance variation
diagrams

This appendix contains box-plots and histograms of selected elemental abundances in
kimberlites from Canada, southern Africa and other cratonic areas worldwide, to
complement those presented for the principal major and trace elements in Chapter 4.
As previously noted, samples from Greenland (Scott, 1979) have been reclassified as

ultramafic lamprophyres, but are included here for comparative purposes.

Sources of data are as listed in Table E.1 below:

Region References
Canada This study
Smith et al. (1985);
Fraser (1987);
Southern Africa Spriggs (1989);
Tainton (1992);

Nowell (unpublished data)

West Africa Taylor et al. (1994)

O’Brien and Tyni (1999);
Mabhotkin et al. (2000)

Greenland Scott (1979)

East European Platform

China Tompkins et al. (1999)

Table E.1 Sources of data used for compilation of elemental abundance diagrams in
presented in Appendix E.
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Figure E.1 Dispersion and distribution of Fe,0, T in selected global hypabyssal kimberlite occurrences.
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Figure E.18 Chondrite-normalised rare earth element patterns for kimberlites in the vicinity of
Grizzly, compared to Lac de Gras median.
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Figure E.19 Chondrite-normalised compatible element patterns for kimberlites in the vicinity

of Grizzly, compared to Lac de Gras median.
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Figure E.20 Chondrite-normalised incompatible element patterns for kimberlites in the vicinity
of Grizzly, compared Lac de Gras median.
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Figure E.22 Chondrite-normalised rare earth element patterns for kimberlites on north side of
Lac de Gras, compared to Lac de Gras median.
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Figure E.23 Chondrite-normalised compatible element patterns for kimberlites on north side of
Lac de Gras, compared to Lac de Gras median.
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Figure E.24 Chondrite-normalised incompatible element patterns for kimberlites on north side

of Lac de Gras, compared to Lac de Gras median.
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Figure E.26 Chondrite-normalised rare earth element patterns for kimberlites south and east of
Lac de Gras, compared to Lac de Gras median.
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Figure E.27 Chondrite-normalised compatible element patterns for kimberlites south and east
Lac de Gras, compared to Lac de Gras median.
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Figure E.28 Chondrite-normalised incompatible element patterns for kimberlites south and
east of Lac de Gras, compared to Lac de Gras median.
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Figure E.30 Chondrite-normalised rare earth element patterns for kimberlites situated south of
Lac de Gras, compared to Lac de Gras median.
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Figure E.31 Chondrite-normalised compatible element patterns for kimberlites situated south
ofLac de Gras, compared to Lac de Gras median.
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Figure E.32 Chondrite-normalised incompatible element patterns for kimberlites situated
south of Lac de Gras, compared to JD-51 (Contwoyto) and Lac de Gras median.
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Figure E.34 Chondrite-normalised rare earth element patterns for Slave kimberlites beyond Lac
de Gras, compared to Lac de Gras median.
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Figure E.35 Chondrite-normalised compatible element patterns for Slave kimberlites beyond

Lac de Gras, compared to Lac de Gras median.
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Figure E.36 Chondrite-normalised incompatible element patterns for Slave kimberlites beyond
Lac de Gras, compared to Lac de Gras median.
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Figure E.38 Chondrite-normalised rare earth element patterns for Canadian kimberlites beyond
the Slave province, compared to Lac de Gras median. a = Somerset Island (this study); b =

Somers

et Island (Schmidbergerer al.,2002).
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Figure E.39 Chondrite-normalised compatible element patterns for Canadian kimberlites
beyond the Slave province, compared to Lac de Gras median. a = Somerset Island (this study);
insufficient data available for Somerset Island kimberlites from Schmidberger e al. (2002).
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Figure E.40 Chondrite-normalised incompatible element patterns for Canadian kimberlites
beyond the Slave province, compared to Lac de Gras median. a= Somerset [sland (this study); b

= Somerset [sland (Schmidbergerer al., 2002).
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Appendix F

Whole rock isotope data

CONTENTS OF THE ISOTOPIC DATABASE

The following pages contain details of all Sr, Nd and Hf isotopic analyses of whole
rock kimberlites and Lac de Gras crustal material obtained during the course of this
study. The data was acquired in 35 analytical sessions between April 2000 and January
2003. A summary of the standard data for each of these sessions is presented in

Appendix G.

For each isotopic system, elemental concentrations of parent and daughter elements
(i.e. Rb, Sr, Sm, Nd, Lu and Hf) were determined by quadrupole ICP-MS (Appendix
D). Parent-daughter isotopic ratios (*Rb/*°Sr, '“’Sm/"**Nd and "L/ ""HS) were
calculated from the elemental ratios (Rb/Sr, Sm/Nd and Lu/Hf) using the relationship

(example for Rb/Sr):

Rb/*°Sr = Rb/Sr x (I4¥'Rb x AWSr) / (14%Sr x AWRD)
__ J
v

‘conversion factor’

where 74*’Rb and /4*°Sr are the isotopic abundances of *’Rb and **Sr, and AWRb and
AWSr are the atomic weights of Rb and Sr (Table F.1). A constant value of the
‘conversion factor’ for each isotopic system, calculated from the International Union of
Pure and Applied Chemistry (IUPAC) accepted values for isotopic abundances and

atomic weights (Rosman and Taylor, 1998; Vocke, 1999) has been applied to each
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sample. This is an approximation, because the relative abundance of isotopes, and thus

the atomic weights of elements, will vary slightly between samples (Faure, 1986).

Rb-Sr Sm-Nd Lu-Hf

Isotopic abundances (IA) — as proportions (10% = 0.1)
8Rb 0.2783 +2 4Sm 0.1499 + 18 78y 0.0259 +2
86gr 0.0986 + 1 INd 0.238+3 THf 0.1860 +2

Atomic weights (AW)

Rb 85.4678 £3 Sm 15036+ 3 Lu 174.967 £ 1
Sr 87.62+1 Nd 14424 +3 Hf 178.49 +2
Conversion factors
Rb/Sr = Sm/Nd LwHf =
Bij/gGSr - 2.893(67 +21 147sm/1f4§d ) 9.6042 + 7?? 176L,u/177Hf 0.1421 11

Table F.1 Conversion factors for determining parent-daughter isotopic ratios from
parent-daughter elemental ratios. Isotopic abundances from Rosman and Taylor
(1998); atomic weights from Vocke (1999).

The other isotopic data reported in this section (again using Rb-Sr as an example) are:

¥Sr/*Srn:  The measured isotopic ratio, normalised to the accepted value for the
standard (see Appendix G). Errors are expressed as + 2 standard errors of the mean
(£2SE).

3Sr/A°Sr;:  The initial 1sotopic ratios, calculated from the normalised measured ratio,
the parent-daughter isotopic ratio, the sample age (t) and the parent daughter decay
constant (A):

Y81/%8r = ¥Sr/®Sny - ¥Rb/ASr x (eM-1)
esr i The initial epsilon value, calculated from the initial isotopic ratio of the sample
and the corresponding isotopic composition of the chondritic uniform reservoir

(CHUR), back-corrected to the age of the sample:

gsri = 10,000 x ((U'St/*Sr; + ¥Sr/*Srepurgy) - 1)
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Corresponding isotopic parameters for Nd and Hf are calculated in the same manner.
In the case of Hf, the parameter. Aeye; (see section 6.3.1.2) is also calculated according
to the relationship:

Aeyri = €uri — (1.33 endi +3.19).
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Appendix G

Summary of isotope standard data

The tables presented below summarise all isotopic standard data obtained during the

course of this study. Accepted values for the isotopic standards used are listed in Table

2.11.

G.1 Sr STANDARD DATA

Date Instrument Standard :tI((l)s Average g ltill:jra
run S (ppm)
8 Apr 00 TIMS - 262 NBS-987 3 0.710243 £ 05 7.0
220D Tims - 262 NBS-987 7 0.710263+38 53.5
24 Jul01  PIMMS - Neptune  200ppb NBS-987 ! 0.710273 £ 16 225
25 Jul 01 PIMMS - Neptune 200ppb NBS-987 8 0.710282 + 10 14.1
18 Oct 01 ~ PIMMS - Neptune  200ppb NBS-987 11 0.710261 + 13 18.3
23 0ct 01  PIMMS - Neptune  200ppb NBS-987 15 0.710256 + 25 35.2
5 Jun 02 PIMMS - Neptune 1ppm NBS-987 5 0.710268 £ 11 15.5
6 Jun 02 PIMMS - Neptune Ippm NBS-987 16 0.710272 £ 09 12.7
22 Sept 02 PIMMS - Neptune  750ppb NBS-987 14 0.710268 + 12 16.9
300ct 02  PIMMS - Neptune  750ppb NBS-987 11 0.710254 £ 20 282
10Jan 03 ~ PIMMS - Neptune  750ppb NBS-987 14 0.710285+ 13 183
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G.2 Nd STANDARD DATA

No. .
Date Instrument Standard stds Ave;:ig;:)i 20 Eﬂ-ozrﬁ
run (ppm)
15 Apr 00 TIMS - 262 1&M 3 0.511164 £ 16 31.3
2520 TiMs - 262 NIGL La Jolla 8 051193019 371
19 Jul01  PIMMS - Neptune 200ppb J&M 18 0.511100 + 14 27.4
26 Oct 01  PIMMS - Neptune 200ppb J&M 11 0511118 15 293
270ct 01  PIMMS - Neptune 200ppb J&M 17 0.511112+ 14 274
205‘24” PIMMS - Neptune 200 ppb J&M 19 0511097+ 18 352
8Jun02  PIMMS - Neptune 200ppb J&M 14 0511104 % 18 35.2
17Jul02  PIMMS - Neptune 200ppb J&M 22 0.511109 + 18 35.2
31 0ct 02 PIMMS - Neptune 140ppb J&M 12 0.511109 + 12 23.5
11Jan 03  PIMMS - Neptune 200ppb J&M 14 0.511103 £ 15 29.3
G.3 Hf STANDARD DATA
Date Instrument Standard gg; Average £ 26 I:itolrc
run (abs) (ppm)
15Apr00  PIMMS - P54 100ppb JMC-475 6 0.282154 + 09 31.9
16 Apro0  PIMMS — P54 100ppb JMC-475 7 0282161 % 11 39.0
25 2(()30Dec PIMMS - P54 100ppb IMC-475 12 0282178+ 12 425
6 Jun 01 PIMMS - P54 100ppb JMC-475 6 0.282218 + 10 35.4
7 Jun 01 PIMMS — P54 100ppb JIMC-475 8 0.282213 + 09 31.9
24 0ct 01 PIMMS - Neptune  200ppb JMC-475 15 0.282160 % 10 354
250ct 01 PIMMS - Neptune  200ppb JMC-475 8 0.282156 + 05 17.7
12Jun02  PIMMS - Neptune  200ppb JMC-475 i1 0.282156 + 09 319
14Jun 02  PIMMS - Neptune  200ppb JIMC-475 11 0.282152 £ 09 319
18 Jul02  PIMMS - Neptune  200ppb JMC-475 12 0.282156 % 10 35.4
(cont/d) -
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No. Rel. 26
Average + 26 *
Date Instrument Standard stds g error
(abs)
run (ppm)
19Jul 02 PIMMS — Neptune  200ppb IMC-475 11 0.282153 + 11 39.0
18 Dec 02 PIMMS — Neptune  200ppb JMC-475* 12 0.282163 = 05 17.7
19 Dec 02 PIMMS - Neptune  200ppb JMC-475* 12 0.282158 + 12 425
9Dec03  PIMMS - Neptune  200ppb IMC-475* 7 0.282144 £ 03 10.6

*Using Cetac Aridus desolvating nebuliser.
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