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ABSTRACT 

This thesis describes the production of three populations of transgenic rice 

plants using particle bombardment method altered in two main traits: ( 1) polyamine 

content and (2) insect pest resistance. The expression of antisense heterologous oat 

arginine decarboxylase (ADC) eDNA in transgenic rice plants suppressed endogenous 

ADC enzyme activity, and decreased putrescine and spermidine levels in a tissue/organ 

dependent manner, with no concomitant changes in the expression of other polyamine 

biosynthetic genes. The second population of transgenic rice plants engineered with a 

homologous spermidine synthase (SpdSyn) transgene, and observed through two 

generations, showed increased expression of both endogenous and transgene mRNAs. 

However, no significant accumulation of spermidine level in transgenic rice plants 

when compared to wild type control plants was observed. Putrescine levels were 

significantly increased in these transgenic plants. The study suggested the possible 

presence of an inter-conversion process from spermidine to putrescine in transgenic 

plants, triggered by over-expression of SpdSyn mRNAs. Novel insect resistance gene 

constructs encoding fusion proteins, including (1) rice thioredoxin h fused with 

snowdrop lectin-GNA (TRX-GNA), (2) the first domain of Bt toxin gene-Cry lAc fused 

with GNA (Ac-GNA) and (3) CrylAc fused with ricin B chain-RTB (Ac-RTB) were 

assembled. When expressed in transgenic plant, these fusion proteins displayed an 

additive effect as insect toxins by maintaining the functional properties of the individual 

proteins. Artificial diet bioassays against insect pests showed that using these fusion 

proteins could enhance toxicity, insecticidal spectrum and possibly durability of 

resistance to insect pests. Our results clearly showed that transgenic rice plants 

expressing these fusion protein genes are resistant to brown planthopper, an important 

insect pest in tropical rice growing areas. These rice plants behave as horizontally 

resistant cultivars that are suitable for integrated pest management (IPM) networks. 
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Chapter 1 General Introduction 

Chapter 1 

GENERAL INTRODUCTION 

1. Rice (Oryza sativa L) as a crop 

1.1 Origin, dispersal, variation and cultivation. 

Like wheat, maize, rye, oat and barley, rice belongs to the Poaceae (formerly 

Gramineae) or grass family. The genus Oryza, to which cultivated rice belongs, 

probably originated at least 130 million years ago and spread as a wild grass in 

Gondwana land, the super continent that eventually broke up and drifted apart to 

become Asia, Africa, the Americas, Australia and Antarctica (Chang, 1976). There are 

two cultivated species of rice: 0. sativa (Asian rice) and 0. glaberrima (African rice); 

and twenty-one wild species in the genus Oryza. Most rice species, including the 

cultivated ones, are diploid (2n=24), but nine of the wild species are tetraploid. The 

Asian cultivated rice, 0. sativa, is grown all over the world, whereas the African 

cultivated rice; 0. glaberrima is grown only on a small scale in West Africa. These two 

cultivated species are thought to be an example of parallel evolution in crop plants. The 

wild progenitor of 0. sativa is 0. rufipogon, which shows a range of variation from 

perennial to annual types. In a parallel evolution path, 0. glaberrima was domesticated 

from annual 0. breviligulata, which in turn evolved from 0. longistaminata (Figure 1.1, 

Khush, 1997) 

0. sativa is a tremendously variable species and has worldwide distribution. 

Through long-term domestication, two subspecies termed japonica and indica were 

formed. The indica rices were probably domesticated in the foothills of Himalayas in 

Eastern India, and dispersed throughout the tropics and subtropics from India. The 

japonica rices, domesticated somewhere in Southern China, moved northward and 

became the temperate ecotype. They also moved southward to Southeast Asia, and from 

there to West Africa and Brazil and became tropical japonica (javanica). The Africa 

cultivars, 0. glaberrima, originated in Niger river-delta, are cultivated only in Africa 

(Khush, 1997). Domesticated rice now grows under diverse growing conditions such as 
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Chapter 1 General Introduction 

irrigated, rainfed lowland, rainfed upland and flood-prone ecosystems. The extreme 

variability and adaptability of rice to different geographic locations, soil types, and 

environments make it the world's most versatile crop. 

Common Ancestor 

South and Southeast Asia West Africa 

Wild perennial 0. rufipogon 0. longistaminata 

Wild annual 0. nivara 0. breviligulata 

Cultivated 0. sativa 0. sativa 0. glaberrima 

indica japonica 

~ 
Temperate Tropical 

Japomca Javamca 

Figure 1.1: Evolutionary pathway of two cultivated species of rice. (Khush, 1997) 

1.2 Economic importance 

Rice is one of the most important crops for mankind. It is the basic food of more 

than 3 billion people and it accounts for 50 to 80% of their daily calorie intake. More 

than 90% of all rice is grown and consumed in Asia where 60% of the world's 

population lives. Rice is also a staple food in Latin America, parts of Middle East and 

Africa. In Europe and North America, rice is developing a new market as both a staple 

and gourmet food. Over 150 million hectares are planted annually and the world 

production is close to 600 million tons. In Asia, on average, the demand for rice should 

increase by 25% by 2010 which means the current average yield of 5 tons per hectare 

will have to increase to 8 tons per hectare under cultivation conditions which are far 
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Chapter 1 General Introduction 

from optimal, if food shortages are to be avoided. Moreover, these changes will need to 

take place against a reduction in agricultural land as a result of urban growth (Fisher et 

al, 2000). Globally, rice provides 23% per capita energy and 16% per capita protein in 

human diets. Rice protein ranks high in nutritional quality among the cereals, though 

the protein content is modest. Unmilled rice (brown rice) provides 4.3-18.2 % protein, 

averaging 9.5%, based on 17,587 cultivars in the International Rice Research Institute 

germplasm bank (Datta, 1999). It contains all of the amino acids essential for human 

nutrition, but is limiting in lysine, which is present in low content. Rice also provides 

minerals, vitamins and fibre. Even though rice is low in proteins, minerals and vitamins, 

it has distinct nutritional advantages: its carbohydrates are easily digested, and this 

improves protein efficiency; the net protein values for rice, maize and wheat are 63, 36 

and 49, respectively (Chandler, 1979). 

1.3 Need for genetic engineering to accelerate rice improvement. 

Major increases in rice production have occurred during the last 25 years 

because of the large-scale adoption of high-yielding semi-dwarf varieties and improved 

management practices. World rice production doubled in a 25-year period, from 256 

million tons in 1966 to 520 million tons in 1990. During this period, rice production 

increased at a slightly higher rate than the population. However, the rate of increase of 

rice production is now lower (1.5% per year) than the rate of increase in population 

(1.8% per year). If this trend is not reversed, severe food shortages will occur in the 

next century. It is estimated that the demand for rice will exceed production by the early 

part of the 21st century (Pinstrup-Anderson et al., 1999). In addition, there are no 

additional lands available for rice cultivation. In fact, the area planted to rice is going 

down in several countries due to pressures of urbanization. To address this issue, 

researchers in China and at the International Rice Research Institute (IRRI) have 

adopted hybrid rice technology. Using hybrids will theoretically raise the yield by about 

15 to 20 percent more than the best of the semi-dwarf inbred varieties upon which the 

rice crop of tropical Asia depends. However, the commercial viability of hybrid rice 

relies totally upon a technically complex process for producing fresh hybrid seed stocks 

each year. This is a major obstacle to the adoption of hybrid genotypes by rice growing 
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Chapter 1 General Introduction 

communities worldwide, except China. However, the recent success of a conventional 

breeding program to produce a new plant type with improved architecture and fewer 

tillers (the result of work at IRRI during the last 20 years) could potentially increase rice 

yields of conventional varieties under optimum conditions, by at least 20% and as much 

as 30% (to nearly 15 tonnes per hectare) if it is combined with hybrid-variety 

development. These new rice types are expected to be ready for farmers by 2005 

(Khush, 1995). However, a lack of novel genetic variation in breeding populations and 

the inaccuracy in selecting plants by their appearance are probably the reasons for slow 

progress in breaking the rice yield ceiling. Furthermore, many scientists believe that 

pests are becoming increasing difficult to control, and water and other resources are 

becoming scare. Recent breakthroughs in plant biotechnology research, which include 

genetic engineering and the transfer of genes from unrelated plants and micro

organisms, have offered powerful tools for rice improvement. Transformation 

techniques allow us to generate the genetically modified pro-vitamin A-enriched 

"golden rice" (Ye et al., 2000), enhanced pest resistant rice plants e.g. introduction of 

Bt gene (Datta eta/., 1998), GNA gene (Rao et al., 1998), Xa21 gene (Song et al., 

1995), salt tolerant genotypes (Sajio et al., 2000) and genes conferring water, cold and 

salt stress responses (Liming Xiong et al., 2002). It might be possible to redesign the 

rice plant's inefficient c3 photosynthetic pathway to that of the more efficient c4 
pathway that exists in maize and sorghum (Sheehy et a/., 2000). Achieving this would 

allow the rice plant reach a yield potential unattainable by even the new plant type. Ku 

et al. (1999) introduced maize phosphoenolpyruvate carboxylase (PEPC) - which 

catalyses the initial fixation of atmosphere C02 in C4 plants - into rice plants. Most 

transgenic rice plants exhibited reduced 0 2 inhibition of photosynthesis. The results 

demonstrated a successful strategy for installing the key biochemical component of the 

C4 pathway of photosynthesis into rice. As up to one-half of the world's population 

lives in a water-scarce environment, it is now realistic to think of developing high

yielding "aerobic" rice plants, which will not need standing water in order to grow and 

produce high yield. It will mark a fundamental change to rice cultivation and create 

huge additional productivity in the coming decades. Importantly, achieving this will 

17 



Chapter 1 General Introduction 

have an impact on the livelihoods of the poorest rice farmers and consumers m 

developing countries worldwide. 

2. Rice transformation technology. 

Among the four major cereals, rice has so far been the easiest to manipulate in 

terms of initiation and establishment of dedifferentiated callus and suspension cultures 

from many different explants. Such plasticity enabled many laboratories to launch 

extensive programmes focusing on gene transfer in rice 

2.1 Marker genes used in cereal transformation. 

A prerequisite for the recovery of transgenic plants is a method for the effective 

selection of transformed cells. Selectable markers such as antibiotic or herbicide 

resistance genes increase the chance of recovering the rare transformed cells from the 

non-transformed cells. The nptll gene was used in many of the early cereal 

transformation experiments to confer resistance to the antibiotic kanamycin or geneticin 

(G418) (Fromm et al., 1986). However, cell cultures of many cereal and grass species 

possess natural tolerance to kanamycin and effective selection of transformed cells is 

not always achieved (Hauptmann et al., 1988). An alternative selectable marker gene is 

hygromycin phosphotransferase (hpt), which confers resistance to the aminoglycoside 

antibiotic hygromycin B, allows good discrimination between transformed and non

transformed cells and does not cause abnormalities in regenerated plants. Herbicide 

resistance genes such as phosphinothricin acety I transferase (PAT) encoded by the bar 

gene from Streptomyces hygroscopicus (De Block et al., 1987), have also been widely 

used for rice transformation. Transgenic rice expressing the bar gene are tolerant or 

completely resistant to the herbicide BASTA (glufosinate ammonia, bialaphos), a useful 

trait for weed control (Vasil, 1994). 

In transient or stable transgene expression experiments, the E. coli gene 

encoding B-glucuronidase (GUS) is definitely the most frequently used reporter gene. 

Its expression is easily detected by histochemical methods or fluorimetric enzyme assay 

(Jefferson et al., 1987). However, gusA gene expression assays are destructive. The 

luciferase gene of the firefly (Photinus pyralis) that can be assayed non-destructively is 
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limited by expensive detection equipment and low penetration of the luciferin substrate 

in whole plant material (Wilmink & Dons, 1993). More recently, the gene for green 

fluorescent protein (GFP) from the jellyfish Aequorea victoria has become an important 

reporter gene in plant transformation (Chalfie et al., 1994). When expressed in cells and 

illuminated with blue or ultraviolet (UV) light, GFP yields stable bright-green 

fluorescence, allowing direct imaging of the fluorescent gene product in living cells 

without the need for prolonged and lethal histochemical staining procedures. GFP has 

been used to monitor protein targeting to nucleus, cytoplasm, and plastids from nuclear 

genes (Sheen et al., 1995; Chiu et al., 1996: Kohler et al., 1997), to follow virus 

movement in plants (Epel et al., 1996) and to detect transient gene expression in 

plastids (Khan & Maliga, 1999). 

Ebinuma et al. (1997) used an agrobacterium transformation vector containing 

isopentenyl pyrophosphate transferase (ipt) gene that permits identification of 

transgenic plants in the absence of a selective agent in tobacco transformation. The ipt 

gene affects cytokinin metabolism, enhancing the regeneration ability of the 

transformed cells, so transformed plants are recognized by a shooty phenotype. 

However, the ipt-shooty transformation system is not suitable for plant species that 

depend on embryogenesis for regeneration, like rice. Recently, they developed a 

successful single-step transformation for generating transgenic rice using the ipt-type 

MAT vector system. This technique allows generation of transgenic rice plants through 

embryogenic tissues without forming the ipt-shooty phenotype (Endo et al., 2002). 

2.2 Promoters for expression of foreign genes in transgenic cereals. 

Promoter strength is critical to allow high-level transcription of the selected 

coding sequences in plant cells. Some promoters confer constitutive expression, such as 

the cauliflower mosaic virus (CaMV 35S) (Rhodes et al., 1988), maize alcohol 

dehydrogenase (1-Emu) (Last et al., 1991), rice actin (Act1) (McElroy et al., 1990), 

maize ubiquitin (Ubi I) (Christensen et al., 1992), while others may be tissue specific 

like rice glutelin and globulin- endosperm-specific promoters (Hwang et al., 2002), the 

rice sucrose synthase I (Rss I), phloem cell expression promoter (Wang et at., 1992), 

maize pepcarboxylase (PEPCP), the green tissue specific promoter (Datta et al., 1998). 
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Other promoters confer environmentally inducible expression, e.g. the tobacco PR 1-1 

promoter (Beilmann eta/., 1991), which is inducible by tetracycline. The CaMV 35S 

promoter has been used extensively in plant transformation, showing relatively low 

levels of transient expression in cereals (Hauptmann et al., 1987). Li et al. (1997) 

compared expression of GUS under the control of Ubil, Emu and CaMV35S promoters 

in rice transformation. They reported that the Ubil promoter gave the strongest 

expression of the transgene, followed by Emu and CaMV35S, respectively. Park et al. 

(1996) transformed rice with the bar gene under the control of CaMV35S and Act1 

promoters. They obtained only transgenic rice with Act-bar construct. No plants were 

selected after CaMV35S-bar transformation. The possible explanation was that the 

expression driven by CaMV35S was not sufficient to give a viable level of herbicide 

resistance. Huang et al. (2001) reported the use of a rice beta-glucanase promoter 

(Gns9) to target the expression of the hpt gene to rice callus, but not in leaves, roots or 

seeds. Therefore, the Gns9 promoter can be effectively used to eliminate the 

accumulation of the product of the antibiotic marker gene in leaf or seed of transgenic 

rice plants, making the crop safer for consumption by people and animals. 

2.3 Nuclear gene transfer methods. 

Rice transformation technology has seen remarkable progress in the past few 

years. The transformation of the rice genome was first demonstrated by electroporation 

of protoplasts (Zhang et al., 1988) and polyethylene glycol (PEG)-mediated 

transformation (Zhang & Wu, 1988). Subsequently, many attempts have been made to 

improve important agronomic traits in rice by genetic engineering. Presently, the 

introduction of foreign genes into rice cells can be achieved routinely, either by the 

direct gene transfer method using bombardment (Christou et al., 1991) or by 

Agrobacterium mediated transformation (Hiei et al., 1994). 

Agrobacterium-mediated transformation offers the potential to generate 

transgenic plants at high efficiency in dicotylendonous plants. It is based on the ability 

of Agrobacterium to infect plant cells and transfer its T-DNA into the genome of plant 

cells by conjugation. The T-DNA is a discrete section of the Ti plasmid bounded by 25 

bp imperfect repeats termed the right (RB) and the left borders (LB). The processing of 
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the T-DNA and its transfer to the host plant cell nucleus is achieved primarily by the 

concerted action of about 20 virulence (vir) gene products that are encoded within the 

vir region of the Ti-phasmid (reviewed in Christie, 1997 & Das, 1998). T-DNA 

integration can occur in any chromosome (Robin et al., 1995) and involves illegitimate 

recombination (Matsumoto et al., 1990) In binary Ti- vector systems, the T-DNA and 

the vir region reside on separate plasmids. The vir gene functions are normally provided 

by the disarmed Ti-plasmids resident in the Agrobacterium strain. The T-DNA, within 

which are the gene(s) to be transferred, is provided on a smaller binary vector, which 

has a broad host range and can be engineered in E. coli prior to transfer to 

Agrobacterium tumefaciens. Early attempts to generate transgenic rice plants by 

Agrobacterium-mediated transformation were less successful (Raineri et al., 1990; 

Chan et al., 1992). Recently, the development of improved strains with modified 

virulence, wider host range, and new effective binary Ti-vectors has expanded the use 

of Agrobacterium in rice transformation. Strain A281 (or its modified strains like 

EHA101, EHA105, AGL1) is a super-virulent strain, with transformation efficiency 

higher than that of ordinary strains. This characteristic is due to the Ti plasmid 

pTiBo542, which has a virG region that acts as a super-activator of the transcription of 

all of the vir genes (Hood et al., 1986). The DNA fragment included virB, virC, and 

virG from the virulent region of pTiBo542 has been introduced into a small T-DNA 

plasmid, creating a new vector system: the super-binary vector (Komari, 1990). Hiei et 

al. (1994) compared two commonly used strains of Agrobacterium: LBA4404 (ordinary 

strain) and EHA 101 and two systems of vectors: binary (p1G121Hm) and super-binary 

vectors (pTOK233) in establishing the ability of Agrobacterium to transform rice. They 

found that all bacteria/vector combinations were successful in transformation 

experiments, however the most effective was LBA4404 /pTOK233. They also set out 

several requirements for successful transformation, such as the use of acetosyringone at 

100 ~-tM and a temperature of 22-28°C during co-cultivation. Following this report, 

several laboratories have reported similar results in rice transformation (Datta et al., 

1996; Toki, 1997; Cheng et al., 1998). Ke et al. (200 1) reported a significant increase in 

the efficiency of Agrobacterium-mediated transformation in rice using a double-mutant 

plasmid that contained a vir gene constitutive mutant virGN54D and a mutant gene that 
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increased plasmid copy number in A. tumefaciens. This double- mutant plasmid allowed 

a constitutive, very high level of vir gene expression in the infecting bacteria, which led 

to very high level of rice transformation. Hamilton ( 1997) reported the development of 

a binary bacterial artificial chromosome (BIBAC) vector system for Agrobacterium 

mediated transformation of large DNA fragments (up to at least of 150kb) into plants. 

Microprojectile-mediated transformation or particle bombardment is currently 

one of the most effective approaches to produce transgenic plants. The method is based 

on high velocity bombardment of plant cells with DNA-coated microprojectiles 

(tungsten or gold) accelerated by either pressurised helium or an electric current. An 

advantage of the particle gun is that it can be used on almost any tissue, including 

immature embryos (Christou et al., 1991), embryo slices (Cao et al., 1991), mature 

seed-derived callus (Sudhakar et al., 1998) and even any tissue or organ that can be 

made accessible to the gene gun (Elina Helenius et al., 2000). It is a versatile technique 

that can be used both for transient expression studies e.g. promoter analysis, and for 

creating stable trans formants (Christou, 1994 ). Due to the physical nature of the 

process, there is no biological limitation to the actual DNA delivery process, thus 

genotype is not a limiting factor. All major cereals and many other plant species have 

been transformed using particle bombardment (Dubey et al., 1997). The routine 

generation of transgenic plants using particle bombardment involves delivery of metal 

particles coated with supercoiled plasmid DNA, and causes integration of vector 

backbone sequences into the genome along with the transgene(s). It has been observed 

that vector backbone sequences may exert undesirable negative effects in transgene 

expression level due to transgene rearrangement and multiple copies integration (Kohli 

et al., 1998; Salomon and Puchta, 1998). Recently, an improved technique that employs 

"clean DNA" has been reported in rice transformation (Fu et al, 2000; Breitler et al., 

2002; Loc et al., 2002). Rice tissue was bombarded with minimal transgene expression 

cassettes comprising promoter, target gene coding sequence and te1minator, but lacking 

vector bacbone sequence. Transformation with such constructs resulted in the 

production of transgenic plants with low copy numbers for foreign genes (frequently a 

single copy only), and a low frequency of transgene rearrangement (Fu et al., 2000). 
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The process was claimed to lead to higher transgene expression levels (Loc et al., 

2002). 

As most agronomic traits are polygenic, that is, they result from the action of 

several genes; the modification of such traits requires the introduction of multiple genes 

into plant genome. Integrating multiple genes by repetitive insertion of single genes is 

impractical, due to the time and effort required for the recovery of transgenic plants, and 

also the need to utilise new selectable markers for each new gene. The transfer of 

multiple genes via Agrobacterium becomes problematic as the size of the T-DNA 

increases. It was found that particle bombardment allowed the selectable marker gene 

and the desired gene to be co-transformed into plant genomes with high efficiency, even 

when the two genes were not present on the same plasmid. This strategy has been 

extended, and particle bombardment is the method of choice to co-transform a mixture 

of multiple genes, which may be carried on separate plasmids, each containing a single 

gene construct for expression in plants, into the target tissue. In this manner, many 

genes can be transferred simultaneously using a single selectable marker (Chen et al., 

1998; Maqbool and Christou, 1999). 

2.4 Transgene expression in host plants 

With the successful development of procedures for transformation, transgenic 

plants and their progeny have been studied for continued expression of the foreign gene 

through several generations. These studies have revealed that how strongly a transgene 

is expressed in a transformed plant resulting from a single transformation event is 

characteristically unpredictable, and depends on many factors. These include the 

position of integration; the location at which a gene is inserted on a chromosome, and 

on which chromosome (Topping et al., 1991); the number of transgene copies (Martzke 

et al., 1994); methylation of promoter and/or coding regions of the target genes 

(Ingelbrecht et al., 1994); the structural integrity of transgene and interactions between 

the transgene and endogenous genes (reviewed by Flavell, 1994; Martzke eta!., 1994; 

Starn et a!., 1997). Some of these effects involve epigenetic changes to DNA, which 

result in the expression of trans genes changing in progeny of primary transformants. 
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Kohli et al., ( 1998) showed that trans gene integration in plants using particle 

bombardment involves a two-phase mechanism. In the pre-integration phase, 

transforming plasmid molecules, either intact or fragmented, are spliced together and 

give rise to rearranged transgenic sequences, which upon integration do not contain any 

interspersed plant genomic sequences. Subsequently, integration of transgenic DNA 

into the host genome is initiated. Their results suggested that the original site of 

integration acts as a "hot spot" facilitating subsequent integration of successive 

transgenic molecules at the same locus. 

The introduction into plants of heterologous genes from other plant species, 

which determine a specific phenotype, usually results in that phenotype is being 

enhanced in transformants (Zhu et a!., 1997; Sakamoto et al., 1998; Fu et al., 2001). 

However, in some instances, introduction of a transgene into plants drastically reduces 

or abolishes expression of both endogenous and introduced gene(s). This is termed gene 

silencing. There are several causes of gene silencing and these seem to reply on 

homology either between different transgenes or between transgenes and endogenous 

genes (homology-dependent gene silencing). Currently, there are two models to explain 

gene silencing (reviewed by Starn et al., 1997). Firstly, transcriptional gene silencing 

results from promoter inactivation by DNA methylation and/or heterochromatinization 

(Matzke & Matzke, 1995). Secondly, post-transcriptional gene silencing occurs when 

promoter is active but the rnRNA fails to translate into protein. Many examples of gene 

silencing in plants by re-introducing homologous sequences into the host have been 

reported (Jorgensen et al., 1996; Starn et al., 1998; Klahre et al., 2002). This type of 

gene silencing has been termed co- or sense-suppression. A number of hypotheses have 

been proposed to explain the mechanism behind the post-transcriptional gene-silencing 

phenomenon. Most of the hypotheses invoke the possible involvement of antisense 

RNA, which forms a duplex with target RNA and leads to its degradation by double 

strand specific ribonuclease (Baulcombe et al., 1996; Wassenegger & Pelissier, 1998). 

Fire et al., (1998) suggested that double stranded RNA (dsRNA) might be the key 

trigger of gene silencing. Indeed, they show that dsRNA was a much more potent 

silencing trigger than either sense or antisense single stranded RNA alone. Direct 

introduction of dsRNA into single epidermal cells of cereal by particle bombardment 
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has been shown to be effective in interference with gene functions (Schweizer et al., 

2000). This phenomenon was named RNA interference (RNAi), distinguishing it 

mechanistically from classical antisense-mediated suppression. Denli & Hannon (2003) 

reviewed the current model for mRNA degradation mediated through RNAi. Long 

dsRNAs are cleaved by anti-parallel dicer dimmers-an enzyme of RNase III family-to 

form small interfering RNAs (siRNAs). The siRNA, normally observed as 21-25 

nucleotide sequences, is incorporated into a nuclease complex, called the RNA-induced 

silencing complex (RISC) and functions as a specificity subunit to direct a multi

component nuclease towards destruction of homologous mRNA. 

The involvement of dsRNA in "gene silencing" effects in transgenic plants may 

result from transgene loci containing inverted repeats that can form hairpin RNAs on 

read-through transcription to produce dsRNA. An alternative origin of dsRNAs could 

lie in the production of copy RNA (cRNA) in which RNA directed RNA polymerases 

use sense "aberrant" RNAs from transgene(s) as templates for the synthesis of antisense 

cRNAs (Wassenegger & Pelissier, 1998). 

As a result of increased knowledge of the causes of transgene variable 

expression and silencing, recent efforts have been made to control factors that influence 

transgene expression. The use of matrix attachment regions (MARs) to minimize 

transgene silencing and increase transgene expression has been reported as an effective 

approach in controlling gene expression in transgenic plants (Vain et al., 1999; Ulker et 

al., 1999; Allen et al., 2000). Matrix attachment regions are chromosomal DNA regions 

that attach to the nuclear matrix and often flank actively expressed genes. A MAR 

flanking a transgene can ensure transgene expression, perhaps by maintaining the 

chromosomal region in an open configuration to facilitate communication between an 

enhancer and a promoter and, as a result, increase transgene expression levels in 

proportion to copy number. Alternative proposed approaches, which still remain to be 

fully achieved, are: (1) to control trans gene integration into a predetermined site in plant 

genome by homologous recombination to avoid position effects; (2) increase the 

number of single-copy integration events to eliminate gene silencing caused by 

transgene loci containing inverted repeats (reviewed by Kumar & Fladung, 2001). 
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2.5 Plastid transformation 

In nuclear gene transformation, the expression level of an introduced gene can 

vary greatly from one transformed plant to another. Consequently, many transformants 

with the same gene usually need to be produced and tested to identify a strongly 

expressing transfomred line suitable for further research or for commercialization. The 

consequences of variable expression are compounded if more than one gene needs to be 

introduced. Besides these challenges in nuclear gene transformation, there are negative 

perceptions and environmental concerns about genetically modified crops. Gene flow 

from nuclear transgenic plants to related weeds or crops through pollen or seed 

dispersal has been a major concern (Daniell, 1999). The introduction of genes through 

chloroplast genetic engineering was recently advanced as a potential solution to this 

problem. Plastid transformation is an environmentally and friendly approach to plant 

genetic engineering that minimizes out-crossing of transgenes to related weeds or crops 

(Daniell et al., 1998). Because the plastid genome is highly polyploid, plastid 

transformation permits the presence of thousands of copies of transgenes in plant cell, 

and generates extraordinarily high levels of transgene protein. Exceptionally high 

accumulation (upto 46% of total soluble protein) of Bt Cry2Aa2 protein, the distal gene 

of a three-gene operon, has been reported for transgenic tobacco chloroplasts. This 

study was also the first demonstration of bacterial operon expression in transgenic 

plants (De Cosa et al., 2001). Chloroplast transformation vectors use two targeting 

sequences that flank the foreign genes and insert them, through homologous 

recombination, at a precise, predetermined location in chloroplast genome. This results 

in uniform transgene expression among transgenic lines and eliminates the position 

effect often observed in nuclear transgenic plants. Interestingly, gene silencing has not 

been observed in genetically engineered chloroplasts (Reviewed by Daniell et al., 

2002). Furthermore, foreign proteins observed to be toxic in the cytosol are non-toxic 

when accumulated within the transgenic chloroplast (Daniell et al., 2001 ). Although 

plastid transformation has been successful in: tobacco (Svab et al., 1990), potato 

(Sidorov et al., 1999), and tomato (Ruf et al., 2001), plastid transformation for cereal 

crops is still a great challenge. Khan and Maliga (1999) could recover transplastomic 

rice plants from embryogenic cells using particle bombardment method. Unfortunately, 
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regenerated plants were heteroplastomic and sterile. The current approach to obtaining 

homoplasmic plants is repeated selection from transformed tissues in culture, followed 

by regenerating plants when homoplasmy state is reached. However, repeated cell 

culture puts a further restraint on the kinds of plant material that can be used for 

regeneration. 

2.6 Marker-free transgenic plants. 

A major challenge in the generation of transgenic plants is to distinguish rare 

transformation events against a background of a large number of non-transformed cells. 

Therefore, most transformation techniques co-introduce a gene that confers antibiotic 

resistance (or sometimes herbicide tolerance), along with the gene of interest and 

regenerate transformed cells in antibiotic or herbicide containing growth media to 

permit selection of only those cells expressing the marker gene. Such antibiotic-based 

selection is known to inhibit growth and regeneration of transformed cells, and thereby 

decreases transformation frequency. In addition, there are public concerns over the use 

of such marker genes, particularly in the medical implications of consuming genetically 

modified food and in environmental safety (Daniell, 1999). Considering these issues, 

several approaches have been developed to remove selectable marker genes from 

transgenic plants. These include: (1) excision of selectable marker genes via Crellox 

recombination; (2) AciDs transposable element system; and (3) co-transformation of 

plants with 2 T-DNA vectors through the Agrobacterium-mediated method (reviewed 

by Ebinuma et al., 2001 ). Besides these "marker removal" methods, recent studies have 

demonstrated that plant regeneration-promoting factors or genes are not only useful for 

explant regeneration, but can also be used for generating marker-free transgenic plants 

without using a selectable marker gene. By appropriate manipulation of a regeneration

promoting gene, only transformed cells can regenerate in the absence of key growth 

regulators. Under the same conditions, non-transformed cells will be unable to 

regenerate (reviewed by Zuo et al., 2002). One example for marker-free transformation 

method is the development of a successful single-step transformation to generate 

transgenic rice using the ipt-type MAT vector system (Endo et al., 2002). 
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3. Polyamines. 

Polyamines and their biosynthetic enzymes are probably ubiquitous in plant 

cells. Recent studies have shown the existence of links between polyamines and abiotic 

stress responses in plants (Richards et al., 1952; Capell et al., 2004), polyamines and 

plant morphogenesis (reviewed in Kakkar et al., 2000), and even between polyamine 

content in food and tumour growth (Bachrach and Wang, 2002). These studies suggest 

that polyamines could do something interesting and important in crop improvement and 

cancer therapy. With this in mind, manipulation of the polyamine biosynthetic pathway 

may deserve closer attention from a biotechnological point of view. The study of plants 

transformed carrying genes involved in polyamine biosynthesis with low or high 

polyamine levels may shed light on how the polyamine pathways are regulated at the 

transcription level, translational and post-transcriptional levels. The outcome from these 

studies could help the development of transgenic crops or foods with increased their 

tolerance to emvironmental stress or nutrient and health values. 

3.1 Chemical structure and cellular function. 

Polyamines represent a group of low molecular mass, polycationic compounds. 

The most common polyamines are the diamine putrescine, the triamine spermidine and 

the tetramine spermine (Figure 1.2). A variety of other related compounds have been 

found in plants, including cadaverine. In plants, polyamines localize in the vacuole, 

mitochondria, chloroplasts (Slocum, 1991), and in thylakoid membranes (Kotzabasis et 

al., 1993). Polyamines often occur as free bases, but can be associated with phenolic 

acids and various macromolecules including proteins (Martin-Tanguy, 1997). 

Polyamines are involved in many cellular functions including the cell cycle, cell 

division, tissue growth and differentiation. Polyamines have also been implicated in a 

wide range of biochemical processes including DNA replication, transcription, protein 

synthesis, membrane stabilization and RNA and protein turnover (Evans & Malmberg, 

1989). 

In higher plants, polyamines play an important role in a variety of growth and 

development. Polyamines have been reported to retard leaf senescence and chlorophyll 
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loss (Sawhney & Galtson, 1979), and have been linked with a wide range of stress 

response, plant hormone response, ethylene biosynthesis (Sawhney & Galtson, 1990) 

Figure 1 .1 : Chemical struture of the three main polyamines 
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3.2 The polyamine metabolic pathway. 

The polyamine pathway in mammals and fungi has only one route via ornithine 

decarboxylase (ODC) leading to putrescine formation, whereas in bacteria and plants, 

the polyamine biosynthesis pathway consists of two different branches (Figure 1.3). 

One branch starts from ornithine, which is decarboxylated by ornithine decarboxylase to 

yield putrescine. The other branch starts from the amino acid arginine using arginine 

decarboxylase (ADC) to yield agmatine. Agmatine is then further converted to 

putrescine by agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. 

The biosynthesis of spermidine (SPD) and spermine (SPM) involve the addition of an 

aminopropyl moiety from decarboxylated S-adenosylmethionine (dcSAM), which is 

produced by the action of S-adenosylmethionine decarboxylase (SAMDC) on S

adenosylmethionine (SAM), to one or both primary amino groups of putrescine, by the 

enzymes spermidine synthase (Spd Syn) and spermine synthase (Spm Syn), respectively 

(Smith, 1985). Polyamines and ethylene synthesis are linked through a common 

precursor (SAM) (Figure 1.3). Two further enzymes, diamine oxidase (DAO) and 

polyamine oxidase (PAO), play a key part in polyamine oxidation and degradation. 

It has been known for a long time that a conversion of spermine into spermidine 

and of spermidine into putrescine can occur in mammals. The polyamine inter

conversion pathway consists of two steps; first an acetylation of the aminopropyl group 

of Spermidine and spermine and then an oxidation giving rise to 3-acetamidopropanal, 

together with putrescine or spermidine, respectively, by the combined actions of two 

enzymes: spermidine/spermine-N'-acetyltransferase (SAT) and polyamine oxidase 

(PAO) (Tiburcio et al., 1997). Spermidine/spermine N'-acetyltransferase catalyses the 

conversion of spermine into N1-acetylspermine which is then degraded by PAO to form 

spermidine and 3-acetamidopropanal. Similarly, spermidine is a substrate for SAT 

which forms N'-acetylspermidine and this is split by PAO to form putrescine and 3-

acetamidopropanal (figure 1.3). SAT is highly induced in response to a wide range of 

hormones and toxic stimuli, by administration of polyamines and their synthetic 

analogues. One possible hypothesis would be that SAT is induced whenever the 

concentration of free polyamines in the cell exceeds a certain critical level, and that its 

function is to reduce this level by acetylation of the excess. In higher plants, recent data 
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have shown the existence of inter-conversion pathways for putrescine from spermidine 

(Caffaro et al., 1993; De Agazio et al., 1995). 

3.3 Manipulation of the polyamine pathway through genetic engineering. 

With the availability of key genes involved in the polyamine biosynthetic 

pathway, it has become possible to manipulate polyamine metabolism using a 

transgenic approach. This technique has several advantages over approaches using 

metabolic inhibitors, since results are highly specific to the targeted gene(s), providing a 

means of relating changes the biosynthetic flux to changes in gene expression. This is 

not generally possible in inhibitor-based experiments. 

Studies in transgenic expression of heterologous genes for polyamine 

biosynthetic enzymes have shown that flux through the polyamine pathway can be 

manipulated. For example, the yeast ODC has been expressed in Nicotiana rustica to 

demonstrate that the levels of putrescine and nicotine could be increased in transgenic 

lines (Hamill et al., 1990). The mouse ODC gene was over-expressed in transgenic 

carrot, leading to an increased putrescine level, and this was correlated with the 

induction of a high degree of somatic embryogenesis under in vitro conditions (Noh & 

Minocha. 1994). Masgrau et al., (1997) generated transgenic tobacco plants carrying the 

oat adc eDNA under the control of a tetracycline-inducible promoter. Inducible

overexpression of oat ADC led to increased ADC activity, and changes in polyamine 

levels. However, transformed plants displayed aberrant phenotypes associated with 

growth inhibition, such as inter-veinal necrosis and chlorosis, wrinkled young leaves 

and shortened roots. Kumar et al., (1996) generated transgenic potatoes with either 

sense or antisense homologous SAMDC constructs, using both the 35S constitutive 

promoter and the tetracycline- inducible promoter. A reduction in the level of SAMDC 

transcript in the antisense plants was observed. Additionally, modulation of the 

expression of the SAMDC gene affects not only the biosynthesis of polyamines, but 

also the biosynthesis of the plant growth regulator ethylene. Recent studies also showed 

the existence of links between polyamine content in foods and tumour growth 

(Bachrach & Wang, 2002). Therefore, the development of transgenic food plants with 

high or low polyamine levels might increase their nutritional and health values. 
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Figure1.3: Pathway for biosynthesis and inter-conversion of polyamines 

32 



Chapter 1 General Introduction 

4. Genetic engineering of insect resistance genes. 

4.1 Bacillus thuringiensis toxins 

Bacillus thuringiensis (known as "Bt") is a soil bacterium used for more than 50 

years as a biological insecticide. B. thuringiensis strains produce two types of toxin. The 

main types are the Cry (crystal) toxins, encoded by different cry genes. The second 

types are the Cyt (cyolytic) toxins. The insecticidal activity resides in crystalline 

inclusion bodies that are produced during sporulation of the bacteria. In the case of Bt 

toxins specific for lepidopteran insects, the crystal protein (protoxin) is a large protein 

(usually about 130-140kDa) and highly insoluble in normal conditions, so it is entirely 

safe to humans, higher animals and most insects. However, it is solubilised in reducing 

conditions of high pH (above about pH 9.5); the conditions commonly found in the 

mid-gut of lepidopteran larvae. Once it has been solubilised in the insect gut, the 

protoxin is cleaved by a gut protease to produce an active toxin of about 60-70 kD 

(Hofte and White, 1989). This toxin is termed delta-endotoxin. Under natural 

conditions, it binds to the midgut epithelial cells, creating pores in the cell membranes 

and leading to equilibration of ions. As a result, the gut is rapidly immobilised, the 

epithelial cells lyse, the larva stops feeding, and the gut pH is lowered by equilibration 

with the blood pH. This lower pH enables the bacterial spores to geminate, and the 

bacteria can then invade the host, causing a lethal septicaemia (Gill et al., 1992). 

Studies on the delta-endotoxin structure show that it has three domains. Domain I (N

terminal) is a bundle of 7 alpha helices, some or all of which can insert into the gut cell 

membrane, creating a pore. Domain II consists of three anti-parallel beta-sheets and is 

responsible for binding to the "receptor" glycoprotein(s) on the gut surface, appearing 

to be necessary for effective pore formation to take place. Domain III is a tighly packed 

beta-sandwich which is thought to protect the exposed end (C-terminal) of the active 

toxin, preventing further cleavage by gut pro teases (Figure 1.4) (Li et al., 1991; 

Grochulski et al., 1995). The cry genes have been transferred into some crop plants to 

make them insect-resistant. Expression of Bt toxin genes containing complete protoxin 

coding sequences in planta was very low, but modified genes encoding the truncated 
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delta endotoxins could be expressed at insecticidal levels (>0.1% of total soluble 

protein). Fujimoto et al., (1993) reported that a modified cry1Ab gene was highly 

expressed in transgenic japonica rice plants and their progeny for at least two 

generations, and that resultant transgenic plants were resistant to two lepidopteran rice 

insects; the rice leaf folder and the rice stem borer. Maqbool et al., ( 1998) reported that 

two indica rice varieties (Basmati370 and M7) carrying the cry2A gene, were resistant 

to yellow stem borer and leaf folder. Cheng et al., ( 1998) transformed rice plants with 

fully modified (plant codon optimized) versions of two synthetic of cry1Ab and cry1Ac 

genes. They observed high accumulation of cry1Ab and cry1Ac, up to 3% of soluble 

proteins in Ro plants. Bioassay with R1 transgenic plants indicated that the transgenic 

plants were highly toxic to striped stem borer and yellow stem borer, with mortalities of 

97-100% within 5 days after infection. 

4.2 GNA- a plant-derived insect resistance gene. 

Most transgenic insect-resistant rice plants produced to date rely on the 

expression of insecticidal Bt endotoxins. However, this strategy has not been successful 

to date against Homoptera (sap-sucking insects), as Bt toxins with high levels of activity 

against these insects are not available. However, certain plant lectins, including 

snowdrop lectin (Galathus nivalis agglutinin; GNA), are toxic to homopteran insects 

(Powell et al., 1995) as well as lepidopteran and coleopteran lavae (Gatehouse et al., 

1995). GNA is member of a family of monocot mannose-binding lectins. It is a 

homotetramer composed of four identical subunits, each containing a polypeptide of 

109 residues ( 12 kDa) with three potential carbohydrate-binding sites. The insecticidal 

activity of GNA has been demonstrated by bioassays in which the protein has been fed 

to insects in artificial diets. Under these conditions, it has shown activity against 

Homoptera such as aphids (Stoger et al., 1999) and rice brown plant hopper (Sudhakar 

et al., 1998), Coleoptera such as bruchid beetles, and also Lepidoptera such as tomato 

moth (Gatehouse eta!., 1997). The mechanism of lectin toxicity is not clear, although 

GNA has been shown to bind to the gut surface in rice brown plant hopper (Powell et 

al., 1995) and to the peritrophic membrane (Eisemann et al., 1994). The gene encoding 

snowdrop lectin (gna) has been introduced into different crops including tobacco, 
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potato, rice, oilseed rape, wheat, sweet potato, producing resistance against different 

target insects (Gatehouse, 1999). Rao et al. (1998) firstly reported transgenic indica lice 

plants carrying the gna gene in constructs where its expression was driven by a phloem

specific promoter (from the lice sucrose synthase gene RSs1) and by a 

Figure 1 .4. The structure of Bacillus thuringiensis delta- endotoxin 

constitutive promoter (from the maize ubiquitin ubi1 gene). Transgenic lice containing 

an RSsl-GNA construct accumulated GNA in vascular and epidermal tissue, and 

decreased survival of rice brown plant hoppers by up to 60%. Expression of GNA from 

some transgenic rice plants harbouring an ubil-GNA construct resulted in upto 2% total 

protein, and led to retarded insect development and a deterrent effect on feeding. 

35 



Chapter 1 General Introduction 

Similar results were also obtained by Tinjuangjun et al. (2000). The expression of GNA 

in transgenic rice plants was also found to confer resistance to rice green leafhopper 

(Foissac et al., 2000), and to rice small brown plant hopper (Wu et al., 2002). 

5. Other Goal for Rice Genetic Engineering: Golden Rice 

Rice feeds nearly one-half of the world's population, but it is a poor source of 

many essential rnicronutrients. As a consequence, and due to poverty and limited access 

to more diversified foods, deficiencies of iron, zinc, iodine and vitamin A are common 

among the populations in rice-consuming developing countries. Naturally occurring 

vitamin A derives entirely from carotenoids with provitamin A activity, with beta

carotene the most important provitamin A for mammals. Recently, engineering high 

levels of beta-carotene in the endosperm of "golden rice" is a major breakthrough in the 

intention of combating vitamin A deficiency (Ye et al., 2000). Agrobaeterium-mediated 

transformation was used to introduce genes encoding the entire beta-carotene 

biosynthesis pathway into rice endosperm, based on the finding that rice endosperm is 

capable of synthesizing geranylgeranyldiphosphate, a precusor in carotenoid 

metabolism. Therefore, theoretically four novel enzymes are required for beta-carotene 

synthesis in this tissue: phytoene synthase (psy), phytoene desaturase, carotene 

desaturase and lycopene beta-cyclase (ley) (for review, see Giuliano et al., 2000). 

However, in the "Golden rice" experiment, they used only 3 genes: two of these genes 

were psy and ley, both originating from daffodil and driven by the rice endosperm

specific glutelin promoter. The third gene was the bacterial phytoene desaturase ( ertl) 

from Erwinia uredovora, which is able to substitute for the two plant desaturases. The 

resulting "Golden rice" grains contain up to 200pg beta-carotene per 100 g of rice. 

Further experiments showed that the use of only two transgenes, psy and ertl was able 

to reconstitute the entire carotenoid pathway, including the formation of alpha- and 

beta-carotene and derived xanthophylls (Ye et al., 2000; Hoa et al., 2003). These novel 

lines are highly valuable because they are expected to receive approval for follow-up 

studies such as nutritional and risk assessments more readily and to be more amenable 

to breeding approaches leading to development of local-adapted varieties. 
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6. 'fhe production of antibodies in transgenic plants: the pllantibody approach. 

Transgenic plants can be generated for a multitude of reasons, including using 

the plants as bioreactors for the production of foreign proteins, mammalian hormones, 

oils, specialized carbohydrates and biodegradable plastics (Godijin and Pen, 1995; 

Miele, 1997; Fischer and Emans, 2000). Of all the proteins that have been produced in 

plants, perhaps the most intriguing are complete recombinant antibodies (rAbs) and 

antibody fragments such as one antigen-binding fragment (Fab), two antigen-binding 

fragment (F(ab')2) and single-chain variable fragment (scFv). One scFv antibody 

consists of variable light chain and variable heavy chain domains of an antibody 

molecule fused by a flexible peptide linker so it retains full antigen-binding activity but 

lacks specific assembly requirements. Antibodies were first expressed in transgenic 

plants in 1989 (Hiatt et al., 1989). Since then, many different antibodies have been 

produced in different plant species, in different tissues and different sub-cellular 

compartments for different purposes (Fischer and Emans, 2000; Stoger et al., 2002). 

Enzymes and antibodies produced in seed exhibit remarkable stability if they are 

properly stored at refrigerator temperature. Recently, success was reported using 

tropical plants, such as cassava (Manihot esculenta Crantz) (Zhang et al., 2000) and 

banana (Schenk et al., 1999). This opens up the possibility of delivering oral vaccines 

and recombinant pharmaceuticals directly to consumers in developing countries. 

Antibodies or antibody fragments produced in plants are often referred to as " 

plantibodies" and they can be exploited for ex- and in-planta applications. Many of the 

antibodies currently produced in plant-based expression systems for pharmaceutical use, 

in particular antibodies directed against an antigen from Streptococcus mutants, the 

bacteria that causes tooth decay, thereby reducing cavities. These antibodies are now in 

clinical trials (Larrick et al., 1998). Another plantibody that is likely to result in a 

product for human medical applications is a humanised antibody against herpes simplex 

virus (HSV) glycoprotein B. this antibody was expressed in soybean and shown to be 

effective in a model study using mice (Zeitlin et al., 1998). Recently, agroinfiltration of 

tobacco was used to produce a diabody against carcinoembryonic antigen (CEA) 

expressed in colon cancer (Vaquero eta!., 2002). In addition, there is also a growing 
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interest for in planta applications. A technique called immunomodulation, in which 

antibodies or antibody fragments are produced in plants to modulate the function of a 

corresponding antigen, offers the opportunity to study the function of the antigen in 

plants, to alter plant metabolism or to immunize the plant against pathogen infection 

(De Jaeger et al., 2000). Transgenic tobacco that accumulated high levels of an anti

gibberellin A 19/24 scFv fragment in the endoplasmid reticulum showed a dwarf 

phenotype and lower gibberellin AI levels than wild type (Shimada et al., 1999). The 

results suggest that scFv antibodies reduced the concentration of bioactive gibberellins 

by trapping and inhibiting the metabolism of the bioacti ve gibberellin precursors A 19 

and A24. Artsaenko et a! (1999) point out an important advantage of 

immunomodulation versus the use of existing mutants or antisense technology to study 

hormone action namely that antibody binding can inactivate an end product of a 

hormone biosynthetic pathway without affecting the function of any precursors. 

Antibody-mediated virus resistance has been demonstrated by the production of 

transgenic tobacco plants that produce antibodies directed against a viral coat protein. 

These plants exhibit resistance to artichoke mottled crinkle virus (Tavladoraki et al., 

1993) and tobacco mosaic virus (Voss et al., 1995). Plantibody-mediated resistance 

against complex eukaryotic, multicellular pathogens, such as nematodes, fungi and 

insects, remains a major challenge (De Jaeger et al., 2000). Attempts to make tobacco 

resistant against root-knot nematodes has been tested upon the accumulation of the IgM 

antibody 604 in transgenic plants (Baum et al., 1996; Rosso et al., 1996). For insects, 

preliminary results suggest that plantibody approach would also work against insects 

(East et al., 1993; Ben-Yakir & Shochat, 1996). 

7. Genetically modified crops and public perception. 

There are certain limitations on the commercialisation of genetically modified 

(GM) crops. One important constraint that should be dealt with carefully is the public 

perception of GM food and environmental risk assessment of products derived from 

recombinant DNA technology. There is yet no substantial evidence that GM products of 

plant biotechnology are inherently more dangerous than products derived from 
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conventional breeding just because they have been produced using novel techniques. 

However, several environmental concerns have led to wariness and a lack of public 

acceptance of GM crops around the world including: (1) the presence of antibiotic 

marker in transgenic plants/food, (2) transgenic plants becoming weeds themselves, (3) 

conduits for transfer of new genes to the wild, ( 4) a source of new viruses or toxic 

substances for consumer and (5) a risk to ecosystem (Daniell, 1999). These problems 

can be minimised or avoided by using some novel strategies such as plastid 

transformation, elimination of antibiotic genes, tissue specific expression of the 

transgenes, and follow the standard bio-safety guidelines in producing transgenic plants. 

In addition, because risk is a quantifiable measure and virtually everything we do has a 

risk, the risk of GM crops should be considered in this way and compared to the risks 

posed by conventional practices. Anti- GM biotechnology activists argue that genetic 

engineering is so new that its effects on the environment cannot be predicted. This 

could be misleading. In fact, for hundreds of years virtually all food has been improved 

genetically by natural mutation, hybridization and selection or by the work of plant 

breeders. Therefore, almost all our crops under cultivation today are the result of 

mutation and shuffled genes. Presently, 80% of the world's population live in the 

developing countries and this will represent between 8 and 10 billion persons by the 

year 2050 (Fedoroff et al., 1999). It is estimated that global food production must 

increase by 40% in the next 20 years to meet the goal of a better and more varied diet 

for a world population of some 8 billion people (Bailey, 2001). Traditionally, increased 

crop production has been achieved by bringing more land under cultivation. Such 

activity is unsustainable, as the practice is already resulting in severe depletion of the 

world's natural ecosystems. It is clearly that significant increases in production from the 

agricultural systems employed in developing countries can be obtained, largely from the 

land already under cultivation and by applying agro-biotechnology along with 

conventional methods. GM cotton, corn and soybean seeds became available in the 

USA in 1996, and by the year of 1999, more than one-third of all US-grown soybean 

and one-fourth corn were genetically modified. The number of acres devoted to GM 

crops in Argentina, Canada, Mexico and Australia increased tenfold between 1996 and 

1997 (Carter, 1998). To date, over 30 million hectares of transgenic crops have been 
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grown with no human health problems associated with the ingestion of transgenic crops 

or their products yet identified (Bailey, 2001). 

8. Aims and Objectives of the Present Study. 

The research described in this thesis was made possible by the award of a PhD 

Fellowship funded by the Rockefeller Foundation as part of their Rice Biotechnology 

programme. The primary aim of the work was to develop expertise in rice 

transformation technology in order to be able to develop the production of transgenic 

rice with characteristics valuable to local agriculture in Vietnam. Within this overall 

aim two specific objectives were defined to allow research suitable for a PhD 

programme to be carried out. 

The first objective of the work was to unravel the fundamental mechanisms and 

principles associated with the regulation of the polyamine biosynthetic pathway in rice 

using a transgenic approach. By expression of antisense or sense gene constructs, the 

programme aimed to study how the suppression or over-expression of endogenous 

enzyme activity in the polyamine biosynthetic pathway affected free polyamine content, 

and expression of the natural existing polyamine biosynthesis genes. Furthermore, the 

generation of these transgenic rice plants offered an opportunity to investigate how 

metabolite flux through the polyamine pathway is controlled and regulated. 

The second objective of my present study was to produce and test the efficacy of 

transgenic rice plants expressing fusion protein(s) conferring resistance to insect pests. 

The design of these fusions aimed to enhance insecticidal activity of an insect resistant 

gene product by directing the transport of its product to its site of action (GNA) or to 

broaden the toxicity (Bt) by adding additional domains with binding or potential 

pesticidal properties. The resulting insect resistant transgenic rice lines could be used as 

a valuable source for breeding efforts to develop locally adapted insect-resistant rice 

varieties in VietNam. 
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Chapter 2 

MATERIALS AND METHODS 

This chapter describes the general materials, reagents and protocols applicable 

to this thesis. General molecular biological techniques, unless stated, follow Sambrook 

and Russel (200 1 ). 

a. Plant materials. 

Two rice cultivars: EYI 105 and ITA 212 (Japonica type) have been used for 

transformation. Transgenic rice plants were grown in peat-based compost, either in 

glasshouses maintained at 25°C (± 5 °C) with supplementary lighting using 400W 

sodium lamps to give a 16-h photoperiod/day, or in plant growth chambers maintained 

at 28°C, with a 12h photoperiod. 

b. Chemical reagents, molecular biology kits and enzymes. 

All chemicals were of analytical grade and purchased from Sigma or Merck 

(BDH) Ltd. unless otherwise stated. Restriction enzymes, molecular markers, enzymes 

and biochemical reagents were purchased from Roche, Promega, Amersham Pharmacia 

Biotech, Gibco BRL, New England Biolabs, Kramel Biotech, NBL Gene Sciences and 

Cambia companies. All primers for specific sequences were purchased from Sigma

Genosys Ltd. All chemicals and kits for Southern and Northern blot analyses were 

purchased from Roche. Plasmid extraction kits (miniprep), Reverse transcription (RT) 

kits, RT-PCR kits and RQ1 RNase-free DNase kits were purchased from Promega. 

Plasmid extraction kits, gel and PCR product purification kits were purchased from 

Promega and QIAGEN. 

Agarose; Gibco BKL Life Technologies Ltd, Paisley, Scotland. 

Bacto Agar; Difco Laboratories, Detroit, Michigan, U.S.A. 

Yeast extract; Umpath Ltd, Basingstoke, UK. 

3MM paper and glass fibre;Whatman Ltd, Maidstone,Kent,U.K. 

Reagents for SDS-PAGE were obtained from Gibco BRL, UK. 

X-ray film (Fuji-RX); Fuji Photo Film Ltd, UK. 

Sephadex G-50, Ficoll-400, Hitrap-Q I ml ion exchange columns; Pharmacia Fine 

Chemicals, Uppsaka, Sweden 

cx:32 P-dCTP was obtained from Amersham. 

41 



Chapter 2 Materials and Methods. 

All general stock solutions used in this thesis are listed in Table 2.1. 

c. Bactell'ian strains, vector constructs and JPCR primers. 

Bacterial strains, Dh 5a, TopolO (Invitrogen) and BL21 DE3 (Novagen), were 

used in bacterial transformation of the target gene construct vectors. Plasmid vectors 

used for cloning and transformation are listed in Table 2.2. Specific plasmids were 

constructed following protocols in Promega ( 1996) or Sam brook and Russel (200 1) and 

will be described below. 

1. Polyamine gene constructs. 

1.1. Oat ADC construct. 

The 2124bp oat arginine decarboxylase (ADC) eDNA (gene bank X56820, Bell 

and Malberg 1990) was excised as an EcoR I fragment and subcloned in the EcoR I site 

of vector pJIT 60 (Gurineau et al. 1992), which contains a CAMV 35S promoter with 

duplicated enhancer sequences and a CAMV transcriptional terminator (figure 2.1). 

The antisense orientation of the oat ADC eDNA in the plasmid vector pJIT 60 was 

confirmed using the restriction enzyme Sall and DNA sequencing. This plasmid was 

referred to as p35SOADC. 

1.2. Rice Spd.Syn construct. 

The 1.308kb full-length rice Spd.Syn.(spermidine synthase) eDNA (gene bank 

AJ251298) was excised as a Sall/Not I fragment from pBlueScript vector (Stratagene) 

background, blunt ended and subcloned into the EcoRV site of pAL 76 (Christensen, 

1992). The pAL 76 contains the maize Ubi-1 promoter fused with the first intron and a 

CAMV transcriptional terminator (figure 2.2). This plasmid was then referred to as 

pUbiRSpd.Syn. 

2. Insect resistance gene constructs. 

2.l.The JSf domain ofCry1Acfused with GNA construct. 

A 762-bp fragment coding for the first domain of the CrylAc protein that 

begins with the start codon was amplified by PCR from the plasmid pWJK20 (a gift 

from Prof. David Ellar, University of Cambridge) using a pair of primers with 

restriction site sequences of Ndei and Ncol incorporated respectively: (1) forward 

primer; 5 '-cgc gcg cgc cat atg gat aac aat ccg aac atc-3' ;(2) reverse primer; 5 '-cgc gee 

f!lg__gct cct cct ggt ctt eta eta tea taa ttc gg-3' (underline indicates the restriction enzyme 
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sites). The amplified products were cloned into plasmid pCR2.1 (TA cloning method, 

TOPO cloning kit- Invitrogen). For GNA, a coding sequence of 109 amino acids was 

amplified by PCR using a pair of primers harbouring restriction sites Ncol and BamHI 

respectively: (1) forward primer; 5'-ttg ccc cat ggacaa tat ttt gta etc egg tga ga-3'; (2) 

reverse primer; 5' -ctg agg ate etc agt ggt gat ggt gat gat gtc egg tgt gag ttc cag-3' (the 

reverse primer contains a short sequence coding for six histidine before a stop codon). 

The amplified products were cloned into plasmid PCR 2.1 using T A cloning method. 

These two cloned sequences, the first domain of Cry lAc and GNA, were then excised 

from PCR 2.1 vector by digestion with Ndel I Ncol for Cry1Ac domain I, and with 

Ncoi/BamHI for GNA, and subsequently ligated into vector pET 11a (Novagen) to 

create a fusion gene of Cry1Ac domain I and GNA (Du J., unpublished data). 

To express this fusion gene in transgenic plants, it was excised from pET 11a as 

a blunt-ended Ndel I Hindlll fragment and subcloned into the EcoRVIHindlll site of 

the plasmid pAL 76, which contains the maize 1 ubiquitin (Ubi 1) promoter and a 

nopaline synthase transcriptional terminator. This plasmid was then referred to as 

pUbi1st AcGNA. 

2.2. CrylAcfused with ricin B chain (RTB) construct. 

The full-length open reading frame of Cry 1 Ac beginning from the start codon 

(not including stop codon) was amplified from plasmid carrying Cry1Ac gene with 

plant codon optimised sequence by PCR using a pair of primers with added restriction 

sites of Nde I and Nhe I, respectively: (1) forward primer; 5 '-gga cat atg gac aac aac 

cca aac-3'; (2) reverse primer; 5'-gga get age tgt tgc agt aac tgg-3' (underline indicates 

the restriction enzyme sites). To obtain a DNA sequence encoding RTB, we used a pair 

of primers with added restriction sites for Nhe I and Sal I respectively: (1) forward 

primer: 5 '-gca get age aat get gat gtt tgt-3'; (2) reverse primer: 5 '-gca gtc gac aaa taa 

tgg taa cca-3'. The amplified products were then cloned into plasmid pCR2.1 (TA 

cloning method, TOPO cloning kit- Invitrogen). A characterised clone of the plasmid 

containing the RTB sequence was digested with Nhe I and Sail, and the insert was 

isolated by agarose gel electrophoresis, purified, and ligated into the plasmid that 

carried Cry1Ac gene, which had also been restricted with Nhei and Sail. The resulting 

recombinant plasmid contained a fusion gene Cry1Ac-RTB. The fusion gene was then 

excised from the cloning plasmid by restriction digestion with Ndel and Sal I, and 

subsequently cloned into plasmid pET24b vector for expression in bacteria E.coli. 
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To produce plants expressing this gene construct, the fusion gene was excised 

from pCR2.1 vector by digestion with restriction enzymes EcoR I (blunt-ended with T4 

polymerase) and Hind III and subcloned into the Smai/Hindiii site of the plasmid 

pAL76 (which contains the maize 1 ubiquitin (Ubil) promoter and a nopaline synthase 

transcriptional terminator. This plasmid was then referred to as pUbi AcGNA. 

2.3. Rice Thioredoxin hfused with GNA construct. 

A 366bp of coding sequence of rice thiorexin h (rTRX h) open reading frame 

(not containing stop codon) was amplified from its eDNA by PCR using a pair of 

primers: (1) forward primer; 5'-att aca tat ggc cgc ega gga ggg-3'; (2) reverse primer; 

5 '-att agg ate cgc aga age aga tca-3' (underlines indicate restriction enzyme sites Ndei 

and BamHI, respectively). The rTRX h fragment was then subcloned into pET 24b 

plasmid vector (Novagen) by digestion of both insert DNA and vector with restriction 

enzymes Ndei and BamHI. For GNA, a coding sequence of 109 amino acids was 

amplified by PCR using a pair of primers harbouring restriction sites BamHI and EcoR 

I respectively: (1) forward primer; 5 '-tct gcg gat ccg gac aat att ttg tac-3'; (2) reverse 

primer; 5 '-at tag aat tea tee ggt gtg agt tcc-3'. The amplified GNA sequence was then 

subcloned into the pET24b vector carrying rice Thioredoxin h by digestion of both the 

insert and vector with BamHI and EcoR I to make the fusion gene "rTRX h-GNA" 

(Raemaekers R., unpublished data) 

To express this fusion gene in transgenic plants, it was excised from pET 24b as 

a blunt-ended Ndei I EcoRI fragment and subcloned into the Smai!EcoRI site of the 

plasmid pAL76, which contains the maize 1 ubiquitin (Ubil) promoter and a nopalin 

synthase transcriptional terminator. This plasmid was then referred to as 

pUbiRTRXGNA. 

To confirm the presence of target genes inside plasmid vectors, DNA 

sequencing was carried out after each step of subcloning using the ABI Prism® 

BigDye™ Terminator Cycle Sequencing Ready Reaction Kit according to 

manufacturer's recommendations (PE Applied Biosystems). Maps of gene constructs 

used for rice transformation are shown in figure 2.3. A list of primers that were used in 

transgenic rice analyses was presented in table 2.4. 
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d. R.ice transformation. 

Rice transformation, selection and plant regeneration procedures were carried 

out as described previously in Sudhaka et al., (1998); Valdez et al., (1998). 

1. Preparation of DNA and gold particle coating. 

Large and small-scale plasmid DNA extractions were performed using the 

QIAGEN plasmid maxi, midi or mini prep kits according to manufacturer's instructions 

(QIAGEN). 

DNA-coated gold particles were prepared as described by Christou et al. 

(1991). Five mg of 0.71 !!m gold particles was mixed with 10 !!g DNA solution in 100 

!!1 Xho buffer (150 mM NaCl, 10 mM Tris-HCl, pH 8.0). The solution was vortexed 

gently for 10 seconds (sec), then 100 !!1 0.1M spermidine and 100 !!1 25 % PEG were 

added with continuous vortexing. Finally, 100 !!1 2.5 M CaC12 was added drop by drop 

while vortexing. The mixture was vortexed at room temperature (RT) for 10 minutes 

(min) then centrifuged at 13,000 g for I min. The supernatant was subsequently 

removed. This step was repeated to remove the excess chemicals. The DNA-coated 

gold pellet was re-suspended in 1 ml 100% v/v ethanol contained in a scintillation vial 

(10 ml total volume). After sonication, the resulting suspension was transferred to the 

scintillation vial containing 9 ml 100 % v/v ethanol and sonicated briefly once again 

before storing at -20°C. 

Just before bombardment, 163 !!1 of DNA-coated gold suspension was placed 

onto an 18x18 mm carrier sheet to give 0.05 mg of gold cm-2 and excess ethanol was 

removed by air-drying. For co-transformation experiments, a molar ratio 1 :3 of 

selectable marker gene (hpt) to non-selectable genes (genes of interested) was used, as 

this has been shown to provide the greatest likelihood of co-transformation and non

selectable transgene expression. 

2. Plant materials and tissue preparation. 

Rice varieties EYI 105 and ITA212 (japonica) were used for transformation 

experiments. Mature seed-derived callus was used as target material for particle 

bombardment. Matured rice seeds were sterilised and cultured as described by 

Sudhakar et al. (1998) and Valdez et al. (1998): De-husked seeds were sterilised in 70 

% v/v ethanol for a few seconds and then in 50% v/v sodium hypochloride for 30 min 

with agitation. They were rinsed three times with sterile distilled water and then plated 
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in 90 mm-petri dishes containing MSCI medium (Table 2.3). Seeds were incubated at 

27oC in the dark for 5-7 days. Expanding mature embryos were separated from the 

endosperm and formed the mature seed-derived callus. The isolated callus was placed 

on fresh MSCI medium. 

3. Particle bombardment. 

Target tissues were centred on 50 mm-petri dishes containing induction medium 

with osmoticum (MSCIO; Table 2.3) for 4 hours prior to bombardment. 

Bombardment using the Accell™ gun was performed according to Christou et 

a/. (1991). The carrier sheet with the gold beads and the DNA was loaded onto the 

particle accelerator, which uses the discharge of a high voltage capacitor through a 

small water droplet as the motive force. A 100 !Am-mesh retaining screen was placed 

between the sheet and the target tissue suspended above the accelerator. The assembly 

was then evacuated to 500 mm Hg to reduce aerodynamic drag. A discharge of 15 kV 

from a 0.2 !-tF capacitor through a I 0 !ll water droplet inside the expansion chamber 

then accelerated the carrier sheet against the retaining screen, permitting the 

DNA-coated gold particles to continue onward to impact the target tissues. 

4. Selection and generation of putatively transgenic tissues. 

Sixteen hours after bombardment, bombarded tissues were transferred to fresh 

callus induction medium (MSCI; Table 2.3) without selection and incubated in the dark 

at 27°C for 48 hours. Mature seed-derived callus was then transferred to selection 

medium (MSCIHg; Table 2.3) supplemented with 30 mg l- 1 hygromycin B. After 2 

weeks selection, the surviving callus was separated into small pieces and subcultured 

on the same selection medium for another two weeks. All cultures were incubated at 

27°C in the dark for 4 weeks in total. Proliferating callus was then transferred to 

regeneration medium (MSR; Table 2.3) supplemented with 30 mg t 1 hygromycin B. 

All cultures were incubated at 27°C with a 16-h photoperiod (photosynthetic photon 

flux of 55!-tmol M-2s- 1 cool white fluorescent tubes) and the regenerating callus was sub

cultured on the same medium every two weeks. Once plantlets were regenerated, they 

were transferred to rooting medium (MSRR; Table 2.3) and cultured under the same 

conditions as the regeneration step until plants were 8-10 em in height. Plants were first 

transferred to soil and grown for a month in controlled environment rooms before 

transfer to larger pots, and growth to maturity in the greenhouse. 
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e. DNA analysis. 

1. Plasmid DNA extraction ( miniprep ). 

Plasmid DNAs were extracted from overnight cultures in accordance with the 

protocol supplied with the Wizard miniprep plasmid isolation kit (Promega). This 

consisted of a lysis step followed by alkaline neutralisation. The cell debris was then 

separated from the DNA by centrifugation. The plasmid DNAs were isolated on the 

matrix of the spin columns, washed with an ethanol + salt solution and eluted using 100 

~-tl of nuclease free water. 

2. Plant genomic DNA extraction. 

DNA extraction was carried out essentially as described earlier. However 

certain modifications were required for rice as detailed below. For a large amount of 

genomic DNA, 1g of leaf sample were ground in liquid nitrogen to a fine powder. The 

sample was then homogenized with 20 ml of CT AB buffer (Table 2.1) and incubated at 

6SOC for 2 hours. Twenty milliliters of chloroform was added into the sample and 

shaken vigorously for 1 min. The supernatant was collected after centrifuging the 

sample at 1 ,600x g for 10 min at 4°C. The chloroform extraction step was repeated 

twice. DNA was precipitated by adding 20 ml of pre-chilled isopropanol to the 

supernatant and kept at -20°C for 30 min. After centrifugation at 1,600 g for 10 min at 

4°C, the DNA pellet was washed with 70 % ethanol, dried and dissolved in 200 ~-tl of 

distilled water. 

For a small amount of genomic DNA, 100 mg leaf sample was ground in liquid 

nitrogen. The sample was then homogenized with 400 ~-tl of DNA extraction buffer 

(Table 2.1) and incubated at 6SOC for 20 min. Four hundred ~-tl of bio-phenol was added 

to the sample and mixed well for 5 min. Following centrifugation of the sample at 

13,000 g for 10 min, the supernatant was collected. DNA was precipitated by adding 

400 ~-tl of pre-chilled isopropanol to the supernatant and kept at -20°C for 10 min. After 

centrifuging at 13,000 g for 5 min at 4°C, the DNA pellet was washed with 70 % v/v 

ethanol, dried and dissolved in 50 ~-tl of distilled water. 

3. Polymerase chain reaction (PCR). 

PCR amplifications were carried out in a total volume of 50 ~-tl containing 100 

ng genomic DNA or 100 pg of plasmids, 1x PCR buffer (10 mM Tris-HCl, 1.5 mM 
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MgC12, 50 mM KCl, pH 8.3), 200 mM each dNTP, 50 nM each primer and 2.5 units of 

Taq DNA Polymerase (Roche). The PCR cycling conditions were optimised for each 

template and primer pair as discussed for each gene in subsequent chapters. Primer 

sequences used in the thesis are listed in Table 2.4. PCR products were separated by 

0.8-1.2 % TBE agarose gel electrophoresis depending on product size. The gel was 

stained for 10 min with 0.5mg ml- 1 ethidium bromide before visualising on a UV 

transilluminator and photographed using a Mitsubishi Video Copy Processor with 

Quantity One Software (Bio-Rad). 

4. Southern blot hybridisation. 

Ten to fifteen micrograms of plant genomic DNA was digested with 10-20 units 

of appropriate restriction endonuclease(s) along with its 1x buffer in a final volume of 

50-100 ~-tl. The reaction was then incubated at 3rc for 10-16 hs. Digested DNA was 

fractionated by 0.8 % TBE agarose gel electrophoresis. The gel was washed with 

denaturation solution (Table 2.1) for 20 min and then with a neutralisation solution 

(Table 2.1) for 10 min, 3 times at RT with agitation. DNA was transferred to positively 

charged nylon (N+) membranes using 20xSSC buffer (Table 2.1) overnight before UV 

cross-linking. The membrane was then washed with 2xSSC buffer and allowed to air

dry. 

Two detection methods were used for DNA blots; with non-radioactive 

labelling and radioactive labelling. In the non-radioactive labelling method, the probe 

DNA was labelled with digoxigenin (DIG)-dUTP using the PCR DIG Probe Synthesis 

kit (Roche). Alkali-labile DIG-11-dUTP was incorporated into the probe in a final 

volume of 50 ~-tl containing 4 mM dATP, 4 mM dCTP, 4 mM dGTP, 3.2 mM dTTP, 

0.8 mM DIG-11-dUTP, 1 x Roche PCR buffer (50 mM KCl, 10 mM Tris-HCl pH 9.0, 

0.1% Triton X-100), 2.5 units of Taq DNA Polymerase, 0.1 mM each of the forward 

and reverse sequence primers and 100 pg of the plasmids. The reaction conditions were 

the same as for PCR conditions depending on specific primers and DNA sequences. 

The labelled probe was fractionated by agarose gel electrophoresis and purified using 

the QIA quick Gel Extraction Kit (QIAGEN). The probe was denatured at 68°C for 10 

min prior to use. The membrane was pre-hybridized with DIG Easy Hyb solution 

(Roche) for 1-2 hours and hybridized overnight at 42°C with DIG-labelled probe. The 

membrane was washed twice for 5 min in 2x SSC, 0.1% SDS at RT, and then twice for 

15 min in 0.5x SSC, 0.1 % SDS at 68°C with shaking. Detection was carried out 

48 



Chapter 2 Materials and Methods. 

according to the manufacturer's instructions using the DIG Luminescent Detection Kit 

(Roche). After washing, the membrane was incubated with CSPD<Rl Chemiluminescent 

Substrate (Roche) and subsequently exposed to X-ray film (Fuji Photofilm) for 30 min 

at 37°C. 

For the radioactive detection method, the DNA probe was labelled using the 

random hexamer method (Feinberg and Vogenstein, 1983). DNA in a volume of 31 ~--tl 

(25-50 ng) was denatured by boiling for 7 minutes and cooled on ice for three minutes. 

It was then labelled in a volume of 50 ~--tl containing: 10 ~--tl OLB buffer; 2 ~--tl of 10 

mg/ml BSA, 2 ~--tl of 2U/~--tl Klenow polymerase and 5 ~--tl of 32p-dCTP, 50 ~--tCi. This 

reaction mix was left for one hour or overnight at room temperature. The un

incorporated dNTPs were removed by gel filtration in a 10 ml glass pipette filled with 

Sephadex G50. For prehybridization, the filter was incubated at 65°C for 3 hours in 50 

ml of prehybridization solution (20 ml distilled water, 25 ml of lOx SSC, 5 ml of SOx 

Denhardt's solution and 1 ml of 10 mg/ml denatured salmon sperm DNA, added after 

the solution had been heated to 65°C). The prehybridisation solution was then replaced 

with a further 50 ml of solution, and the DNA probe added. Hybridization was 

performed for 20-24 hs at 65°C. The filter was then washed twice for 15 minutes with 

2xSSC, 0.5% SDS. This was followed by two washes of 15 minutes each with 

0.2xSSC, 0.5% SDS. The filter was blotted dry with Whatman paper and sealed in 

cling film. Hybridization signals were visualised by exposure to X ray film (Fuji RX) at 

-70°C for overnight, or longer as required. 

When membranes were to be re-hybridised with different probes, they were 

stripped as described by manufacturer's instructions (Roche). The membrane was 

washed in water for 1 min, and then incubated twice for 10 min at 37°C in alkaline 

probe-stripping solution (Table 2.1 ). The membrane was rinsed thoroughly in 2xSSC. 

Reprobing procedures commenced with the pre-hybridisation step. 

f. RNA analysis 

1. Total RNA extraction. 

For large amounts of total RNA, 1 g young leaf tissue sample was used for 

extraction using TRIZOL reagent according to the manufacturer's instructions (Gibco 

BRL). Plant tissue samples were ground in liquid nitrogen, then homogenized with 10 ml 

of TRIZOL reagent and incubated at RT for 5 min. Two millilitres of chloroform was 

added and the mixture was shaken vigorously for 1 min. After centrifuging the sample at 
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12,000 g for 30 min at 4°C, the aqueous phase was transferred to a fresh tube. To 

precipitate RNA, 5 ml isopropanol was added, mixed well and incubated at RT for 20 min. 

The RNA pellet was collected by centrifugation at 12,000 g for 20 min at 4°C, and then 

washed with 75 % v/v ethanol. After air-drying, the RNA pellet was dissolved in 200 !11 

RNase-free water. 

For small amounts, total RNA was extracted from 100 mg young leaf tissue 

samples using TRIZOL reagent. Plant tissue sample was ground in liquid nitrogen, 

homogenized with 1 ml of TRIZOL reagent and incubated at RT for 5 min. 200 !11 of 

chloroform was added and the mixture was shaken vigorously. The sample was 

centrifuged at 12,000 g for 15 min at 4°C. The aqueous phase was transferred to a fresh 

tube, 500 !11 isopropanol was added and incubated at RT for 15 min to precipitate the 

RNA. The RNA pellet was collected by centrifuging the sample at 12,000 g for 10 min 

at 4°C. The pellet was then washed with 75 %ethanol, air-dried, and dissolved in 50 !11 

RNase-free water. 

To ensure that the RNA was free of DNA contamination, DNase treatment was 

carried using RQ1 RNase-Free DNase (Promega). DNA digestion was carried out for 

30 min at 37°C, in 10 !AI final volume containing 5 !Ag total RNA, 1 unit of RQI DNase 

I and 1x reaction buffer (40 mM Tris-HCl, pH 8.0, 10 mM MgS04 , 1 mM CaCl2). The 

reaction was terminated by adding 1 !11 of stop solution (20 mM EGTA, pH 8.0) and 

incubated at 6SOC for 10 min. 

2. Reverse transcription PCR (RT-PCR). 

RT-PCR was carried out using the Access RT-PCR system (Promega) in 50 !11 

reaction volumes containing 100 ng of total RNA, 1x AMV/Tfl reaction buffer, 0.2 mM 

each dNTP, 1 mM MgS04, 1 !AM each primer, 5 units of Tfl DNA Polymerase and 5 

units of AMY Reverse Transcriptase. 

RT-PCR was carried out under the following conditions: reverse transcription at 

48°C for 45 min, denaturation at 94°C for 2 min, 40 amplification cycles with annealing 

temperature depending on specific primer pairs, and final extension at 68°C for 7 min. 

RT-PCR products were visualized by 1.0% TBE agarose gel electrophoresis. 

3. Northern blot hybridisation. 

Thirty mg of total rice RNA was used for each lane on northern blots. All 

solutions and equipment used for RNA were autoclaved or treated with RBS35 to 

ensure they were free of RNase. RNA was denatured by formamide and formaldehyde 
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at 6SOC for 15 min, and then fractionated on 1.2% agarose-formaldehyde gel using 1x 

MOPS buffer (Table 2.1 ). RNA on the gel was transferred onto an N+ membrane 

(Roche) and then fixed by UV cross-linking. All subsequent steps were carried out as 

described previously for Southern blots. 

When the membrane was to be re-hybridised with a different probe, it was 

stripped soon after the initial detection as described by Hloch et al. (200 1 ). The 

membrane was rinsed briefly in RNase-free water, and then incubated in northern 

stripping solution (Table 2.1) twice for 30-60 min at 80°C in a sealed bag in a pre

heated shaking water bath. The membrane was briefly rinsed in 2xSSC and stored wet 

in 4°C for subsequent experiments. 

g. Western blot analysis. 

Protein samples for western blot analysis were extracted from small leaf 

sections ground to a fine powder under liquid nitrogen. When the nitrogen had 

evaporated, 1 ml of protein extraction buffer (table 2.1) was added to the powder. The 

extract was incubated for 5 hours at 4 oc followed by centrifugation at 12,000 g for 10 

minutes at 4°C. Protein concentration was estimated using Bradford Reagent (Bio-Rad) 

by the dye binding method (Bradford, 1976). Proteins were electrophoresed on SDS

PAGE gels according to Laemmli (1971), and transferred onto nitro-cellulose 

membranes by semi-dry electro-blotting (Towbin et. al., 1979). Membranes were 

blocked by incubation in blocking buffer for 1 hour at room temperature. For proteins 

extracted from potentially insect resistant transgenic rice, either rabbit anti-Cry 1 A 

antiserum (Cry lAc proteins) or polyclonal rabbit anti-GNA antiserum (GNA proteins) 

was used as a primary antibody, with goat anti rabbit IgG (horseradish peroxidase

conjugated; Bio-Rad) as a second antibody at 1:10,000 dilution. Proteins were 

visualised by enhanced chemiluminescence (ECL; Amersham), processing and washing 

the membranes according to the instructions supplied with the ECL reagents. 

h. Expression and purification of recombinant proteins in E. coli. 

Total proteins were extracted from bacterial cells followed protocols described 

m pET system manual (Novagen). The following procedure was used for the 

expression of target proteins in 1000 ml culture. This can be scaled up as required. A 

single colony was picked, and grown up as a culture in 50 ml LB media with 

appropriate antibiotics added. The culture was shaken at 37°C for 4 hours. The bacteria 
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were harvested by centrifugation at 3,000 g for 30 minutes and then re-suspended in 

2 ml of LB media. Bacteria from the "starter" culture were then transferred to 1000 ml 

LB media with appropriate antibiotics, and grown at 3rC with shaking, monitoring the 

OD at 600 nm by spectrophotometry until it reached 0.6-0.7 (approximately 3 hours). 

When this value had been reached, IPTG was added at 0.4 mM final concentration. The 

culture was then shaken at 37°C for approximately 4 hours. After that, the culture was 

placed on ice for 5 minutes, and the cells were harvested by centrifugation at 9,000 g 

for 30 minutes. The cell pellet was resuspended in 0.25 culture volume of cold 50 mM 

Tris HCl pH 8.0; 2 mM EDTA. The centrifugation step was repeated and pellet was 

then resuspended in 1110 culture volume of cold 50 mM Tris HCl pH 8.0; 2 mM EDTA 

or stored at -20°C until purification. To prepare soluble and insoluble fractions, the cell 

culture in 1110 culture volume of cold 50 mM Tris HCl pH 8.0 was incubated with 

lysozyme at a concentration of 100 f..lg/ml and 1/10 volume of 1% Triton X-100. The 

sample was incubated at 30°C for 15 minutes, sonicated and then centrifuged at 12,000 

g for 15 minutes at 4°C. The supernatant that contained soluble proteins was collected 

for further analysis. The pellet that contained insoluble proteins was subjected to a 

denaturing and refolding step if required. The method of refolding of insoluble proteins 

employed urea or CAPS buffer in combination with N-lauroylsarcosine as denaturants 

(described in Protein refolding kit manual, Novagen). The proteins were then dialyzed 

in 10 mM Tris HCl for 3 to 4 times, at least 3 hours/each time at 4 °C. The purification 

of target proteins was performed using a Ni affinity or Q-Sepharose column (QIAGEN) 

following the manufacturer's instructions. 

i. Enzyme activity measurements. 

Leaf and root tissues were used for enzyme activity measurements. Samples 

were ground in enzyme extraction buffer (Table 2.1) at a ratio of 1 g leaf per 3 ml 

buffer. Polyvinylpyrrolidone (PVP; 100 mg) was added during grinding. Following 

centrifugation at 12,000 g for 20 min, the supernatant was used directly in enzyme 

activity assays. Tissue was processed immediately after harvest and all assays were 

performed using fresh extracts on ice. Enzyme assays were carried out as described in 

Lepri et al., (2001). 

Enzyme assays were carried out in 1.5 ml microcentrifuge tubes. A 6-mm 

diameter filter paper disc impregnated with 50 f.!l of 2N KOH and transfixed with a 3 

em needle was used to trap the 14C02 liberated during the reaction. 
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The reaction mixture for ADC activity contained 20 ~-tl of enzyme extraction 

buffer (pH 8.0), 160 ~-tl of crude enzyme and 20 ~-tl of the substrate mix [20 ~-tl of L-(U-

14C) arginine (specific activity 297 mCi mmot1, Amersham International plc) diluted 

with 20 ~-tl non-radioactive arginine (500 mM) and 60 ~-tl of distilled water] to give a 

final concentration of 10 mM arginine. 

Assays were carried out at 37°C for 45 min. Two hundred ~-tl of 10% (v/v) 

perchloric acid (PCA) has added to stop the reaction. After a further 45 min incubation, 

the filter paper was placed in scintillation mini-vials with 2 ml scintillation liquid 

(OptiPhase Hisafe II, Fisons Chemicals) and radioactivity was measured in a Wallac 

1219 Rackbeta liquid scintillation counter. One nKat of ADC activity was defined as 

the amount (~-tmol) of 14C02 released per min and per mg (nKat mg-1) of protein. The 

protein was measured using a standard Bradford assay (Bradford, 1976). 

j. Polyamine analysis. 

Crude extracts from leaves, roots and seeds were dansylated and separated by 

thin layer chromatography as described in Capell et al., (1998). 

1. Crude extraction 

Plant tissues (leaves, roots and seeds) were homogenized in 5% chilled 

perchloric acid (PCA) at a ratio of 1 g tissue per 3 ml buffer. The homogenates has 

centrifuged at 27,000 g for 20 min at 4oC and the supernatants were collected for 

dansylation. 

2. Dansylation 

Saturated sodium carbonate (100 ~J.l) was added to all samples and polyamine 

standards (100 ~J.l). 200 ~-tl of dansylchloride (5 mg mr1) in acetone was then added to 

the mixture. Dansylation was carried out overnight at RT in the dark. The reaction was 

stopped by adding 50 ~-tl of proline (100 mg/ml) and incubating 30 min in the dark. 

Dansyl-polyamines were extracted using 250 ~-tl of toluene and vortexed for 30 sec. The 

supernatants were collected for thin layer chromatography (TLC). 

3. Thin Layer Chromatography 

The dansyl-polyamines were separated on high-resolution silica gel TLC plates 

(Whatman LK6DF) for 90 min and developed using chloroform:triethylamine (4: 1 v/v). 
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The dansyl-polyamine bands were identified on the basis of their Rf values after 

visualisation under UV light (312 nm) and comparison to the dansylated polyamine 

standards. The image of the chromatogram was captured and analysed by Quantity One 

(Quantification Software; Bio-Rad). The relative amount of dansyl-polyamines in each 

sample was determined by calculating the integrated optical density of the bands 

compared to the integrated optical density of the appropriate dilution of the dansylated 

control samples. Results were expressed as nmol g- 1 fwt (nmol per gram of fresh 

weight). 

k. Insect bioassay analysis. 

The toxicity of recombinant proteins towards nee brown planthopper 

(Nilaparvata lugens) was assayed by feeding in a liquid artificial diet, as described by 

Powell et al., (1993). Briefly, recombinant proteins were incorporated into MMDl 

liquid diet at a concentration of 1 mg mt1
, and filter-sterilised. Insect feeding chambers 

were set up containing 10 third instar hoppers, and 100 ml of diet separated by a 

parafilm membrane; diet was changed every second day. Insect survival, in 

comparison to controls, containing diet with no added protein, was recorded daily. 

For BPH insect bioassay analysis on transgenic plants, insects were released 

onto 20-day-old rice plants (10 neonates per plant), individually confined within insect

proof fine-mesh nylon cages to prevent migration of insects between plants. Ten 

replicates were set up for each transgenic line and the non-transformed control plants. 

The number of live insects was monitored for 2 days after release onto the plants 

(recorded as day 0) and thereafter every two days throughout the trial period. 

I. Statistical analysis. 

For polyamine and enzyme analyses, all measurements were based on three 

replicate samples from six independent control plants (wild type, n=6) and six hpt

transformed transgenic plants (n=6). Hygromycin-resistant transformants and wild-type 

controls were not significantly different (P > 0.05) in terms of enzyme activity and 

polyamine levels in any of the tissues analyzed (Lepri et al. 2002). The data were 

analyzed by one way analysis of variance followed by t-test using the Residual Mean 

Square in the ANOVA as the estimate of variability. Toxicity of recombinant proteins 

in the insect bioassay and insect survival on rice plants were examined by survival 

analysis, using the Kaplan-Meier (logrank) method (Statview software). 
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Table 2.1: General solutions 

Stock Components 

2ox sse 3M NaCl, 0.3 M sodium citrate, pH 7.0 

20%SDS 20 g sodium dodecyl sulphate (SDS) in 100 ml water. 

lOX TBE 0.9 M Tris, 0.9 M boric acid, 0.02 M EDTA, pH 8,0 

5MMOPS 0.2 M 3-[N-morpholino]-2-hydroxypropanesulfonic acid 

(MOPS), 50 mM sodium acetate, 10 mM EDTA, pH 8.0 

CTAB buffer 20 g cetyltrimethyl-ammonium bromide (CTAB), 82 g 

NaCl, 20 mM EDTA, 0.1 M Tris-HCl, pH 8.0 in 1litre. 

DNA extraction buffer 20% SDS, 0.5 M NaCl, 50 mM EDTA, 0.1 M Tris-HCl, 

pH 8.0 

Denaturation solution 0.5 N NaOH, 1.5 M NaCl 

Neutralization sol. 0.5 M Tris-HCl (pH 7.5), 3M NaCl 

Alkaline probe-stripping 0.2 N NaOH, 0.1% SDS 

solution 

Northern stripping 50% formamide, 5% SDS, and 50 mM Tris-HCl, pH 7.5 

solution 

Enzyme extraction buffer 0.1 M Tris pH 7.5, 2 mM DTT 

6X DNA loading dye 0.25% bromophenol blue, 0.25% xylen cyanol FF, 30% 

glycerol in water. 

Protein extraction buffer 50 mM Tris HCl, pH 9.5+ 1% PMSF 

2X protein loading buffer 100 mM Tris HCl pH 6.8, 200 mM DTT, 4% SDS, 0.2% 

bromophenol blue 

SDS-PAGE buffer 25 mM Tris HCl, 250 mM Glycine, 0.1% SDS 

Semi-dry transfer buffer 25 mM Tris base, 150 mM glycine, 10% (v/v) methanol 

TBS-Tween buffer 20 mM Tris HCl, 500 mM NaCl, 0.05% (v/v) Tween 20 

pH 7.5 

Blocking buffer 5% non-fat dry milk in TBS-Tween buffer 

Coomassie staining 0.05% (w/v) Coomassie Brilliant Blue, 40% (v/v) ethanol, 

solution 10%(v/v) glacial acetic acid, 50% (v/v) water 

Destaining solution 40% v/v ethanol, 10% (v/v) glacial acetic acid, 50% water 

Ponceau S staining 0.5% (w/v) Ponceau S, 1% (v/v) glacial acetic acid 

solution 
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Table 2.1 (cont) 

OLB buffer Solution 0:1.25 M Tris HCl, 0.125 M MgC12 

Solution A: 1 ml of solution 0 + 18 !-tl 2-mercaptoethanol 

+ 5 !-tl ofO.lM dATP+5 !-tl 0.1 M dGTP+ 5 !-tl ofO.l M 

dTTP 

Solution B: 2M HEPES 

Solution C: Hexadeoxyribonucleotides in TE at 90 OD 

units/ml 

Mix A:B:C in the ratio of 100:250:150 to make OLB 

buffer 

IX Denhardt's solution 0.02% Ficoll 400, 0.02% PVP, 0.02% BSA 
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Table 2.2: Experimental plasmid vectors 

Experimental vector Discription 

PJIT 60 Cloning vector for plant transformation containing double 

35S promoters and the CaMV terminator. 

PAL 76 Cloning vector for plant transformation containing the 

maize ubiquitin-1 promoter and the no aline synthase (nos) 

terminator 

PCR 2.1 Commercial cloning vector containing Lac Z, Ampicillin 

and Kanamycin resistant genes 

PET lla Commercial cloning vector containing ampicillin resistant 

gene, product of Novagen. 

PET24b Commercial cloning vector containing kanamycin 

resistant gene, product of Novagen. 

PBlueScript( +1-) Commercial cloning vector containing ampicillin resistant 

gene, product of Stratagene. 

PWRG1515 Plant transformation vector carrying the hygromycin gene 

driven by the CaMV 35S promoter and terminated bythe 

nos sequence. 

p35SOADC pJIT60 based-plant transformation vector carries antisense 

oat ADCcDNA. 

PubiRSpdSyn pAL 76 based-plant transformation vector carries rice 

Spd.Syn eDNA. 

pUbilstAcGNA pAL 76 based-plant transformation vector carries fusion 

gene of the first domain Cry lAc and GNA. 

PUbiAcRTB pAL 76 based-plant transformation vector carries fusion 

gene of Cry lAc and ricin B chain. 

PUbiRTRXGNA pAL 76 based-plant transformation vector carries fusion 

gene of rice thioredoxin hand GNA. 
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Table 2.3: Plant tissue culture media 

Medium Components (per litre) Usage 

MSCI Msbasal medium, 30 g sucrose, 2.5 mg 2,4-D, Callus induction 

10 ml vitamin B5, 5 mg phytagel medium 

MSCIO MSCI added with 0.4 M mannitol and 0.4 M Osmotic medium 

sorbitol 

MSCIHg MSCI with 50 mg hygromycin-B Selection medium 

MSR MS basal medium, 30 g maltose, 10 ml Regeneration 

vitamin B5, 2 mg BAP, 0.5 mg NAA, 50 mg medium 

hygromycin, 5 g phytagel 

MSRR 1/2 MS basal medium, 10 g sucrose, 10 ml Rooting medium 

vitamin B5, 50 mg hygromycin, 2 g phytagel 

Vitamin B5 1 g thiamin HCl, 0.1 g pyridoxine HCl, 0.1 g Modified from 

(lOOX) nicotinic acid, 10 g myo-inositol, 0.2 g Gamborg et al.(l968) 

glycine, pH 5.8 

All media were adjusted to pH 5.8 using potassium hydroxide. MS basal and phytagel 

were added prior to autoclaving, but the vitamin B5, phytohormones and hygromycin 

were added when the medium was cool down after autoclave using sterile filters in 

sterilised tissue culture hood. 
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Table 2.4: list of primers 

Gene /gene Primer Primer sequence (5' to 3') 

fusion direction 

Rice actin 1 Forward ATGGCTGACGCAGAGGACAT 

Reverse AGGAGTGGTGACTGAGTAAC 

Oat ADC Forward CGGCGATGTGTACCATGTCGAGGG 

Reverse GCGGGTGCAGCGGCATCGTCTCGG 

Rice ADC Forward AGCGCGCTGGTGTGCGCACCA 

Reverse TGTCGCAGGTGAGGTCGGAG 

Rice ODC Forward GCGTTTTATGCGATTTGCGAACGG 

Reverse CCCAGTCTAAACAAGCCGGAACCG 

Rice Spd.Syn Forward GGATGGTTCTCCGAGATTAG 

Reverse GATCTAGTTGGCCTTGGATC 

Rice SAMDC Forward GGAGATCCAGCAAAGCCTGGCC 

Reverse CCCAGGGGAGAAGATTGCCCAG 

Maize ubiquitinl Forward GATTCCCCAAAGAGAAACAC 

Reverse TTGACAACAGGACTCTACAG 

The pt AcGNA Forward ATCCGAACATCAATGAATGC 

Reverse TTCCGTAGTTGAGAAATTCC 

AcRTB Forward TGTTTGTATGGATCCTGAGC 

Reverse TCTTGAACATCCATCGTTGG 

TRXGNA Forward GCAAAGTGGTCATAATTGAC 

Reverse TTCCGTAGTTGAGAAATTCC 
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Figure 2. 1 : Map of plant expression plasmid vector pJTT60 
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Figure 2.2: Map of plant expression plasmid vector pal 7o 
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Figure 2.3: Maps of gene constructs used in rice transformation 
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Chapter 3 

REDUCTION IN ENDOGENOUS ARGININE DECARBOXYLASE TRANSCRIPT 

LEVELS LEADS TO DEPLETION OF THE FREE POLYAMINE POOLS IN A 

TISSUE/ORGAN DEPENDENT MANNER, WITH NO CONCOMITANT 

CHANGES IN THE EXPRESSION OF OTHER POLY AMINE BIOSYNTHETIC 

GENES 

Recent progress in transgenic expression of heterologous genes for polyamine 

biosynthetic enzymes has provided a novel approach to confirm their developmental role in 

animal (Kauppinen and Alhonen, 1995). Parallel studies with transgenic plants have now 

been conducted in several laboratories. These studies aided in establishing specific roles 

for polyamines in plant development and stress responses, and also shed some light on the 

mechanisms of their action (Kumar and Minocha, 1998). A number of attempts have been 

made to manipulate the polyamine biosynthetic pathway in plants using the oat ADC 

eDNA. B urtin and Michael (1997) generated transgenic tobacco plants that constitutively 

expressed the oat ADC eDNA. These plants had 10 to 20-fold increases in ADC activity, 

20 to 65-fold increases in agmatine level. However, there was no significant change in 

polyamine levels. Masgrau et al. (1997) generated transgenic tobacco plants carrying the 

oat ADC eDNA under the control of a tetracycline-inducible promoter. Inducible over

expression of oat ADC in transgenic tobacco led to an accumulation of ADC mRNA, 

increased ADC activity and changes in polyamine levels. Transformed plants displayed 

aberrant phenotypes whose severity was roughly proportional to the putrescine content. 

This suggested that over-production of putrescine might be toxic to plant development. 

Bassie et al. (2000) and Noury et al. (2000) observed similar results of over-production of 

putrescine in transgenic rice plants that transformed with the oat ADC eDNA. Those above 

studies likely suggested that high ADC expression could lead to higher-level production of 

putrescine in transgenic plants and sometimes resulted in an increase in the concentration 

of spremidine. With this in mind, we wonder how down regulation of ADC enzyme by an 

antisense ADC eDNA could affect the endogenous ADC enzyme and other polyamine 

biosynthetic genes? And how flux through the polyamine pathway is controlled and 

regulated. 
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This chapter describes work in which a transgenic rice population engineered to 

express an oat arginine decarboxylase (ADC) eDNA in the antisense orientation was 

produced. It also describes biochemical assays to determine whether arginine 

decarboxylase activity was suppressed by expression of the antisense construct, and 

whether effects on this first committed step of polyamine metabolism were reflected in 

polyamine content, and expression of other polyamine biosynthesis genes. 

3.1. RESUJLTS 

3.1.1 Molecular characterization of the transgenic population 

Mature rice embryos (var. ITA212) were co-bombarded with plasmid p35SOADC, 

containing the oat arginine decarboxylase eDNA in an antisense orientation with respect to 

the CaMV 35S promoter, and plasmid pWRG 1515 containing the hygromycin 

phosphotransferase (hpt) gene as a selectable marker. Following tissue culture, selection 

and regeneration, 12 independent primary transformant rice plants (RO) were obtained. 

DNA was extracted from each of these plants and subjected to Southern blotting, using 

diagnostic restriction enzymes. Genomic DNAs were digested with Hind III that cut one 

site in the vector p35SOADC. This gave an estimated numbers of oat ADC integration 

sites in transgenic rice genome. Blots were probed with coding sequence for ADC, and the 

resulting band patterns showed that each of the primary transformants had a distinct 

integration pattern for the transgene (Figure 3.1). DNA samples from all transgenic plants 

contained a 1.5 kb Hind III fragment derived from the endogenous adc gene (Figure 3.1 

and 3.12), but in no case was this the only fragment observed. All plants contained 

multiple fragments hybridising to the probe, some of which appeared to be present in 

multiple copies on the basis of hybridisation intensity. DNA from control wild type plants, 

and plants transformed with hpt only, showed no hybridisation under the conditions used 

(high stringency wash). 

R1 seeds from 8 fertile RO transgenic plants were collected for further analysis. 20 

progeny plants from each of 8 RO transgenic plants were analysed for the segregation 

pattern of the transgene(s) using a PCR method. Amplification of a fragment using primers 

specific for oat ADC was taken as evidence for transgene presence, whereas failure to 

amplify a band was indicative of no trans gene present. In all lines, the trans gene segregated 
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in a ratio of approximately 3: 1, indicating a single trans gene locus (table 3.1 and figure 

3.2). Three lines, 82; 88 and 97, had an extra PCR band of smaller size when amplified 

with the set of primers oat ADC 1 and ADC2. This lower molecular weight PCR band was 

purified from gel and subjected to Tag I and BamHI enzyme digestions, which cut at 

several different sites inside the amplified fragment of oat ADC eDNA. This analysis 

showed that a deletion of approximately 400bp had taken place at the 5' end of oat ADC 

eDNA in the integrated transgene from which this smaller PCR band had been amplified 

(data not shown). However, all three lines contained the expected "correct" PCR fragment, 

and must also have contained inserted adc transgenes with no deletion. 

A genomic DNA gel blot analysis of 4 Rl siblings from each lineage is shown in 

figure 3.3. Enzyme digestions were performed using EcoRI that released a 2.lkb fragment 

comprising the entire coding sequence of the oat ADC eDNA. The EcoRI digest 

demonstrated that 6 out of the 8 lines contained an intact 2.lkb oat ADC eDNA fragment. 

Some lines showed lower molecular weight hybridizing bands, suggesting some kinds of 

internal rearrangement. Four of the lines showed extensive and complex patterns of 

hybridising bands, suggesting multiple insertions of the transgene, which had undergone 

extensive rearrangements. 

3.1.2 Expression of the oat ADC transgene in Rl plants 

The presence of the antisense oat ADC RNA in total RNA from transgenic rice 

plants was analysed by RT-PCR using the set of primers ADCl and ADC2 (figure 3.4). 

The antisense RNA could be detected in all the Rl lines but two. These two lines, 93 and 

95, either did not express the construct, or had very low expression levels of the antisense 

oat ADC RNA, since no bands gould be detected on RT-PCR (figure 3.4). Three lines, 82; 

88 and 97, expressed a second transcript with a lower molecular weight resulting from a 

truncated copy of the integrated transgene (see above). To quantitatively compare the 

expression level of the antisense oat ADC RNA between Rl transgenic rice lines, we 

performed RT-PCR reactions containing 2 sets of primers, one set for the oat ADC gene 

(primers ADCI and ADC2) and other set of primers to amplify rice actin 1 mRNA, which 

is constitutively expressed (Actin1 and Actin2). The amplification reaction was done for 

10 cycles. Amplified samples were then run on 0.8% agarose gel, blotted and hybridized 

with corresponding probes. Oat ADC transcripts could now be detected in lines 93 and 95, 
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albeit at low level. Three lines, 82' 88 and 96 showed relatively high expression levels of 

the antisense oat ADC RNA in the transgenic plants (figure 3.5). A northern blot analysis 

of total RNAs from R1 oat ADC transgenic plants showed detectable bands of antisense 

oat ADC transcript in only 3 lines: 82, 88 and 96 (figure 3.6). This was consistent with the 

result obtained from the quantitative RT-PCR analysis, as these 3 lines showed relatively 

high oat ADC transcript expression. 

3 .1.3. Expression of oat antisense ADC transcript results in reduction of ADC activity in 

transgenic plants. 

Four R1 plants expressing the antisense oat ADC RNA were selected from each 

line for ADC activity measurements. A single tiller from each plant was separated and 

grown hydroponically in Yoshida's solution (Yoshida et al. 1976) to induce root growth 

after leaf samples had been taken for assay. Roots were harvested 2 weeks later to measure 

ADC activity. 

The assays showed that, in leaf tissues, 50% of the lines ( 4 out of 8) showed up to 

about 30% reduction in ADC activity as compared to controls (Figure 3.7). Unexpectedly, 

lines 95, 97 and 93, which had low levels of expression of the antisense transgene, 

exhibited the most reduction in ADC activity (0.0241±0.003 nKat, 0.243±0.005 nKat and 

0.0254±0.002 nKat, P< 0.005, respectively). On the other hand, lines 82 and 88, that 

showed ADC transcript bands in northern blot analysis, exhibited less reduction of ADC 

activity in leaves. When ADC activity was measured in roots, a significant reduction (P < 

0.001) was detected in all of the lines analyzed (Figure 3.7). Approximately 50% reduction 

in ADC activity was detected in lines 82, 88, 93 and 96 (0.016±0.0004 nKat, 0.015±0.0009 

nKat, 0.014±0.0006 nKat, 0.014±0.0001 nKat respectively). We also measured ornithine 

decarboxylase activity simultaneously with ADC and no significant variation in this 

activity was detected in any of the lines, compared to appropriate controls (data was not 

shown). 

3.1.4. Levels of polyamine accumulation in R1 transgenic rice plants vary in a tissue/organ 

dependent manner 

Determination of free polyamines in leaves and roots was carried out at the same 

time on the same 4 selected plants as ADC activity measurements in leaves and roots. For 
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seeds, polyamine measurement was carried out after drying of mature seeds for three days. 

Free polyamines levels were found to be variable within different lines and different 

tissues/organs. In leaves, we observed only 4 lines (93, 95, 96 and 97) that showed a 

reduction in putrescine content as compared to wild type plant, with reductions up to 30% 

observed (284.62±38.03 nmol g-1fwt; 314.33±28.48 nmol g-1fwt; 346.09±45.11 nmol 

g- 1 fwt and 322.31±25.67 nmol g-1fgw, P< 0.001 as compared to wild-type plant 

423.38±18.43 nmol g-1fwt). The reduction of putrescine level also affected spermidine 

accumulation in leaves, with a reduction of upto 60% observed in line 93 (138.59±7.77 

nmol g-1fwt) as compared to wild-type plant (372.12±12.88 nmol g-1fwt). However, there 

was no significant variation in spermine levels observed in these transgenic rice lines 

(Figure 3.8). 

In roots, putrescine level was reduced in all the transgenic rice lines, with up to 

approx. 55% reduction in line 93 (133.67±12.55 nmol g-1fwt, P< 0.001) as compared to 

wild-type control (301.58±3.10 nmol g-1fwt). Five lines, 88; 93; 95, 96 and 97, showed 

reduction in spermidine and spermine levels. A maximum reduction in spermidine (approx. 

70%) was observed in line 93 (53.44±0.98 nmol g-1fwt, P< 0.001) and a minimum 

reduction (approx. 35%) in line 84 (120.36±9.22 nmol g-1fwt, P< 0.001) compared to wild

type plants (185.25±5.40 nmol g-1fwt). Line 93 showed maximum reduction (approx. 55%) 

in spermine (64.11±1.56 nmol g-1fwt, P< 0.001) as compared to wild-type plant (138.08± 

7.06 nmol g-1fwt) (Figure 3.9). 

In seeds, we observed 5 lines having reduced putrescine contents, with up to 50% 

reduction in putrescine levels in lines 96 and 93 (57.37±2.81 nmol g-1fwt and 64.51±2.85 

nmol t 1fwt, P< 0.001 respectively as compared to wild-type plant, 109.47±5.33 nmol g-

1fwt) (Figure 3.10). Four lines, 92, 93, 95 and 96: showed reduction in spermidine levels. 

However, no significant reduction in spermine levels between oat ADC transgenic rice and 

wild-type plants was observed. 

3.1.5. Expression of the oat ADC antisense transcript in rice only affects expression of its 

rice homologue 

The expression of endogenous rice genes involved in polyamine biosynthesis in 

transgenic rice plants containing the antisense oat ADC construct was assayed by northern 

blotting. A rice ADC sequence of 200 bp (accession no. C99671) was used as a probe to 
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investigate expression of the endogenous rice ADC gene. Similarly, expression of 

ornithine decarboxylase (ODC) was assayed using a 288 bp rice ODC probe based on the 

published rice ODC EST sequence (BE040058), and probes derived from the rice 

spermidine synthase (Spd. Syn; AJ251298) and rice S-adenosylmethionine decarboxylase 

(SAMDC; Y07766) were used to detect corresponding rice mRNAs expressed in 

transgenic and wild-type plants. An equal amount of 50 fAg of total RNAs for all samples 

was loaded on each RNA gel and the membranes were re-probed one time with different 

probes. Levels of rice ADC transcripts were reduced in all transgenic rice lines relative to 

wild type plant (Figure 3.11). Significant reduction was seen in lines 93, 96 and 95. The 

levels of rice ODC, SAMDC and Spd.Syn transcripts in oat ADC transgenic plants 

remained unchanged as compared to wild-type plants (Figure 3.11). 

To confirm that the antisense effect that down-regulated the endogenous ADC 

transcript levels in rice was due to the homology between oat and rice ADC sequences, 

genomic DNAs from oat and non-transformed rice were digested with EcoR I and Hind III, 

and hybridised at moderate stringency to the 1.5 Kb DIG-labelled oat ADC probe (section 

3.1.1). The blot showed visible hybridizing bands in EcoR I and Hind III digested rice 

genomes, showing that the oat ADC probe had hybridised to the endogenous rice gene(s) 

under these conditions (Figure 3.12). 

3.2. DISCUSSION 

3.2.1. Integration of the oat antisense ADC eDNA in rice genome results in a reduction of 

the steady state rice ADC mRNA with no concomitant changes in the expression of other 

polyamine genes 

Molecular analysis of the transformed plants (Figure 3.1 and 3.3) showed that the 

oat ADC was stably integrated into the rice genome and was transmitted to progeny as a 

dominant Mendelian trait, consistent with its integration in a single genetic locus. RT-PCR 

analysis showed oat antisense mRNA expression in all the eight lines we analyzed (Figure 

3.5). A considerable variation in the degree of oat ADC expression was observed among 

lines. We could only visualize oat ADC mRNA bands in lines 93 and 95 by quantitative 

RT-PCR (Figure 3.4 and 3.5). Three lines 82, 88 and 97 that contained a truncated oat 

ADC copy expressed two mRNA transcripts, one of which was shorter than the expected 

size. This RNA profile was detected in roots and tillers as well (data not shown). In plants, 

68 



Chapter 3 Reduction in the endogenous Arginine decarboxylase ... 

gene silencing by antisense and sense methods have been widely used to elucidate gene 

function, to enhance the quality of plant products, alter flower colour, create new novel 

traits, viral disease resistance (reviewed by Senior and Dale, 1996). Kumar et al., (1996) 

modulated enzymes involved in the polyamine pathway by down-regulating a potato 

S-adenosylmethionine decarboxylase (SAMDC) gene using a homologous transgene in 

antisense orientation. Engineered potato plants exhibited an abnormal phenotype that was 

correlated with altered levels of the SAMDC transcript, SAMDC activity and polyamine 

content. However, the authors did not measure whether or not transgene expression could 

affect the expression of other genes involving in polyamine pathways. In the current 

investigation, we down-regulated the expression of rice ADC gene by using its full-length 

oat ortholog in antisense orientation (Figure 3.11). The alignment of the oat ADC sequence 

(X56820) to the rice putative ADC (C99671), rice ODC EST (BE040058), rice Spd.Syn 

(AJ251298), rice SAMDC (Y07766) sequences showed that the oat and rice ADCs share a 

high sequence homology of 71% identity, but not to the other polyamine genes 

(http://www2.ebi.ac.uk/clustalW, data not shown) as confirmed by the southern blot 

analysis (Figure 3.12). Genomic DNAs of two different genotypes: EYI and ITA, when 

probed with oat ADC probe and washed with less stringency (65°C), showed up the 

hybridized band of about 1.5 kb. This provides adequate levels of homology between the 

two species for the antisense effect to occur in the antisense oat ADC transgenic rices. In 

general, we found that all the transgenic rice plants had a reduction in the rice ADC mRNA 

levels in leaves as compared to wild type control plants (Figure 3.11). However, there is no 

tight negative correlation between the expression levels of oat antisense mRNAs and the 

steady state levels of rice ADC mRNAs. Lines 93 and 95, that showed very low levels of 

oat ADC antisense RNA, had a large reduction in rice ADC transcripts, whereas line 82, 

which had a high level of oat ADC antisense RNA, showed only a small reduction in rice 

ADC levels (Figures 3.5 and 3.11). The reduction in ADC enzyme activity (Figure 3.7) 

showed a better correlation with the levels of rice ADC mRNAs (Figure 3.11). 

A goal of this investigation was to evaluate whether rice ODC, SAMDC or 

Spd.Syn transcripts were influenced by the size of the free polyamine pool in transgenic 

rice plants. The results showed that the steady-state mRNAs for the other endogenous 

polyamine genes remained unaffected by the presence of the oat ADC antisense RNA 

(Figure 3.11 ). This suggests that feedback regulation of the expression of the genes by 
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polyamines is not a major regulatory mechanism. Thu Hang et al. (2002) observed no 

changes in the endogenous SAMDC and Spd.Syn mRNAs in the transgenic rice plants 

with a 2.5-fold increase in foliar spermidine as a result of expression of the Datura 

SAMDC transgene. These results indicate that tight regulation at the level of mRNA 

expression of the genes involved in the polyamine pathway is not overcome by alteration 

of the size of the free polyamine pool. 

3.2 .2. Levels of ADC activity and free polyamines in the transgenic population vary in a 

tissue/organ-dependent manner. 

The cauliflower mosaic virus (CaMV) 35S promoter has been shown to be highly 

active in most plant organs and during most stages of development when integrated into 

the genome of transgenic plants (Odell et al., 1985; Jeffeson et al., 1987). Battraw and Hall 

(1990) measured GUS activity driven by CaMV 35S promoter in rice transgenic plants. 

They detected GUS activity in the embryo and endosperm of seed, in leaf epidermis, 

mesophyll and vascular bundle, and in the cortex and vascular cylinder of the root. To our 

knowledge, there is no study has been reported on the degree of tissue specific activity of 

CaMV 35S promoter in various tissues/organs of plant due to limitations caused by 

differences in cell size, metabolic activity and substrate accessibility to various cell types 

between different plant tissues/organs. Therefore, we assumed the use of constitutive 

CaMV 35S promoter did not target expression of antisense ADC gene in any specific 

tissues/organs, leading to biased interpretations on transgene expression and regulation. 

In leaf tissues only four out of eight transgenic lines showed reduction in ADC 

activity greater than 30% relative to control untransformed plants. However, a significant 

reduction in ADC activity in roots was detected in all eight lines (Figure 3.7). Reduction in 

ADC activity resulted in lower levels of free polyamine pool in leaves, roots and seeds of 

Rl transgenic rice population. Levels of putrescine and spermidine were reduced only in 

four lines but no variation in spermine level was observed (Figure 3.8). Levels of 

putrescine and spermidine in roots were reduced in all eight lines (Figure 3.9). Lines 93 

and 97 had also a significant reduction in spermine levels in roots. In seeds, reduction of 

putrescine, spermidine and spermine levels were also detectable (Figure 3.1 0). 

Chattopadhyay et al., (1997), who investigated the role of polyamines in abiotic-stress 

tolerance in plants, showed that the regulation of ADC in root tissue is not as tight as in 
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leaves. Watson et al., (1998) described an Arabidopsis thaliana mutant that exhibited 

lower ADC activity in leaves and roots, with putrescine concentration decreased only in 

roots. Lepri et al., (2001) transformed human ODC eDNA that was under the control of 

maize ubiquitin promoter into rice plant. They reported a hierarchical accumulation of 

ODC enzyme activity and polyamines in different tissues/organs in transgenic rices, and 

suggested that the pathway is regulated in a tissue- specific manner. As a different 

constitutive promoter has been used and similar results observed, we strongly believed that 

a tissue-specific regulation of ADC enzyme activity and polyamine levels in transgenic 

plants is not biased by the use of CaMV 35S, a constitutive promoter, that controlling 

antisense ADC gene. Therefore, the data presented here, and also the studies of 

Chattopadhyay et al., (1997), Watson et al., (1998) and Lepri et al. (2001) strongly suggest 

that regulation of ADC activity and the free polyamine pool differs between different 

tissues/organs. This means root and seed tissues showed a lot more plasticity in terms of 

polyamine changes as a result of altered expression of polyamine genes in transgenic 

plants. It is interesting that spermine levels remained unchanged in leaves of all transgenic 

plants, despite declines in the levels of putrescine and spermidine. Two possible 

explanations for this result are: (1) a highly metabolically active tissue (eg leaf tissue) 

requires tighter regulation of cellular spermine metabolism; or (2) the depletion of 

putrescine or particularly of spermidine is not serious enough to cause a decrease in 

spermine level, which is low in leaf tissues as compared to putrescine or spermidine levels. 

This finding is consistent with the results obtained by Bassie et al., (2000) and Noury et 

al., (2000). 
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wt 82 84 88 89 90 91 92 93 hpt 95 96 97 98 

... 

...._ 1.5 kb 

Figure 3.1: Southern blot analysis of RO oat antisense 

ADC transgenic rice plants, digested with Hindiii, and blot 

was hybridized with oat ADC probe (DIG labelled probe). 
Bands at 1.5kb are endogenous rice ADC gene that cross

hybridized with the oat ADC probe .. 
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Table 3.1: Inheritance analysis of R1 plants of oat antisense ADC 

transgenic rices using PCR method. 

No. 
1 
2 
3 
4 
5 
6 
7 
8 

Clone 
82 
84 
88 
92 
93 
95 
96 
97 

PCR positive/total 
11120 
12/18 
11115 
14/20 
12/19 
14/20 
13/20 
14/20 

expected ratio 
3 :1 
3 :1 
3 :1 
3 :1 
3 :1 
3 :1 
3 :1 
3 :1 

PCR band 
2 
1 
2 
1 
1 
1 
1 
2 

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

" 

Figure 3.2: PCR analysis of R1 oat antisense ADC transgenic rice 
plants, clone No. 92. 

M: 1Kb DNA ladder marker 
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97 96 wt hpt 92 82 

(A) 

95 93 88 84 

10 kt 

5 kb 

(B) 

2kb 

Figure 3.3 : Southern blot analysis of Rl oat antisense transgenic 

rice plants, digested with EcoRI and hybridized with oat ADC probe. 

(A): siblings of lines 82, 92, 96, 97, hpt (hygromycin resistant plant) 

and wt (wild type plant). (B) : siblings of lines 84, 88, 93 and 95 

74 



Chapter 3 Reduction of endogenous Arginine decarboxylase .. . 

M 82 84 88 92 93 95 96 97 wt 

Figure 3.4: RT -PCR analysis for the expression of oat antisense 

ADC eDNA in selected Rl PCR positive transgenic rice plants. 

(M): 1 kb DNA ladder marker 

(wt): wild type control plant 
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82 84 88 92 93 95 96 97 wt 

+-- 1.5 kb 

l.O kb 

Figure 3.5: Relative quantitative RT -PCR analysis of oat antisense 

ADC transcripts expressed in Rl transgenic rice plants. The upper 

panel showed oat ADC expression. The lower panel showed 

constitutive expression of rice actin 1 transcript as a possitive 

control 
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82 84 88 92 93 95 96 97 wt 

Figure 3.6 : Northern blot analysis of total RNAs of Rl oat antisense 

ADC transgenic rice plants. The upper panel was rRNAs bands . . 

The lower panel was RNA blot hybridized with oat ADC probe 
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Figure 3.7: ADC enzyme activity measurement in leaf and root tissues of 

Rl oat antisense ADC transgenic rice plants. 

hpt: hygromycin resistant plant 

wt : wild type plant 

1 nKat = lnmol s-1 g -I fwt 
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Figure 3.8: Polyamine levels in leaves of R 1 oat antisense ADC 

transgenic rice plants. 

(wt) : wild type plant. 

nmol g-I fwt : nmol per gram of fresh weight 
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Figure 3.9: Polyamine levels in roots of R 1 oat antisense ADC 

transgenic rice plants. 

(wt) : wild type plant. 

nmol g -lfwt : nmol per gram of fresh weight 
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Figure 3.10: Polyamine levels in seeds of Rl oat antisense ADC 

transgenic rice plants. 

(wt) : wild type plant. 

nmol g-lfwt= nmol per gram of fresh weight 
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wt 82 84 88 92 93 95 96 97 

(A) 

(B) 

(C) 

(D) 

(E) 

Figure 3.11: Northern blot analysis for total RNAs of Rl oat 

antisense ADC transgenic rice plants, hybridized with : (B) rice 

ADC probe; (C) rice ODC probe; (D) rice SAMDC probe and (E) 

rice SpdSyn probe. The panel (A) showed bands of rRNAs 
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EcoR I Hind Ill 

OAT EYI ITA OAT EYI ITA 

... 

. )"" .;_:· : 

.. 

Figure 3.12: Southern blot analysis of EcoR I and Hind III -

digested genomic rice ( Oryza sativa, genotypes IT A and ElY) and 

oat (Avena sativa) DNAs. The blot was probed with 1.5 kb oat ADC 

probe. 
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Chapter 4 

REDUCTION OF SPERMIDINE LEVEL IN TRANSGENIC RICE BY 

INTRODUCTION OF A HOMOLOGOUS GENE CONSTRUCT. 

Our experiment in the chapter three and results from some other publications 

(Himill, et al. 1990; Descenzo and Minocha, 1993; Burtin and Michael, 1997; Masgrau et 

al. 1997; Capell et al. 1998; Noury et al. 2000; Bhatnager et al. 2001; lepri et al. 2001) 

collectively demonstrate that the tight regulation of the polyamine pathway at putrescine 

biosynthetic step can be manipulated by over-expressing or down-regulating key enzymes 

involved in the ADC and/or ODC pathways. In some cases, this is accompanied by a 

relatively small increase in spermidine concentration (Bassie et al. 2000; Lepri et al. 

2001). Such findings suggest that the levels of spermidine and spermine are under strict 

homeostatic regulation (Bhatnager et al. 2001 ). Noh and Minocha (1994) generated 

transgenic containing the human SAMDC eDNA under the control of the CaMV35S 

promoter. Transgenic plants showed a 2-4-fold increase in SAMDC activity and 2-3 times 

of spermidine content higher than in control plants. Kumar et al. (1996) generated 

transgenic potato plants that constitutively expressed homologous SAMDC gene in either 

sense or antisense orientations. They observed reduction in the level of free polyamines, 

SAMDC transcript and enzyme activity in the antisense transgenic plants. However, all 

attempts to produce transgenic plants with sense constructs were unsuccessful. Using the 

above results as a stepping stone, we wished to elucidate the role of enzymes involved in 

later parts of the pathway, particularly that of spermidine synthase (Spd. Syn). This chapter 

describes experiments in which the rice genome was transformed by introduction of the 

homologous rice Spermidine Synthase (Spd.Syn) gene. The generation of this germplasm 

offers an opportunity to study how over-expression or down-regulation of a homologous 

Spd.Syn transgene affects the expression of the already existing polyamine genes, free 

polyamine levels, and how the change in spermidine level could affect to the accumulation 

of spermine which is very rarely change as the result of over-expression of ADC or ODC 

transgenes in transgenic plants. 
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4.1 Results 

4.1 .1 Generation and molecular analysis of primary transgenic rice plants 

A mini-gene cassette (linear DNA fragment) containing the maize Ubiquitin1 

promoter, rice Spd.Syn eDNA and nos terminator was excised as a Xho 1/Not I fragment 

from the plasmid pUbiRSpdSyn and used for rice transformation by the particle 

bombardment method, as described by Fu et al., (2000). After tissue culture, selection and 

regeneration, seven independent transgenic rice plants (RO) were obtained. Southern blot 

analysis of DNA extracted from these primary transformants confirmed the presence of 

additional rice Spd.Syn genes, besides the endogenous gene present in the parental line, in 

all of the transgenic plants except one (Figure 4.1). The plant containing no introduced 

Spd.Syn gene was not analysed further. The enzyme used for restriction digestion (EcoR I) 

cut only once in the mini-gene cassette, permitting an estimation of the number of 

integrated transgene copies. The majority of transgene integration patterns were simple, 

corresponding to one additional copy of the Spd.Syn gene per haploid genome in four 

plants (i.e. one extra hybridising band of equal intensity to the endogenous gene). 

Transformants 14 and 61 contains four or five additional copies of the transgene, as 

estimated by additional hybridising DNA fragments. 

4.1 .2 Expression of Spd.Syn and other polyamine biosynthesis genes in transgenic rice 

plants 

Since the introduced Spd.Syn gene(s) were identical to the endogenous rice 

Spd.Syn gene, analysis of RNA transcribed from transgenes would also detect RNA 

transcribed from the endogenous gene. Total RNA was extracted from leaves of the 

transgenic rice plants, separated by agarose gel electrophoresis and analysed by northern 

blotting, using the rice Spd.Syn eDNA as a probe (Figure 4.2). When the strength of the 

hybridisation signal was compared with that of RNA from wild type and transgenic 

hygromycin only (i.e. transformed only with the hygR gene) control plants, 4 plants (14, 33, 

61 and 146) showed increased levels of Spd.Syn steady state accumulated transcripts. 

Estimates from exposures of the blots suggested that mRNA levels were increased by at 

least 5-fold, and were >10-fold for plants 14, 61 and 146.The other two plants, 12 and 68, 

showed hybridization signals of similar intensity to that exhibited by control plants. The 
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northern blot analysis also showed that both the control and transgenic rice plants produced 

2 Spd.Syn transcripts of different sizes, with both bands of approximately equal intensity. 

The reason for this is not known, but the two products may result from different processing 

of a primary transcript. To evaluate whether the introduction of the homologous Spd.Syn 

transgene into the rice genome affected expression of other genes involved in the 

polyamine pathway, northern blots of total RNA from leaves of the primary transformants 

were hybridized or re-hybridized with rice ADC, ODC and SAMDC probes. These blots 

showed that steady-state accumulated levels of rice ADC, ODC and SAMDC transcripts 

were little changed (estimated less than 2-fold change) in transgenic plants when compared 

to control plants (Figure 4.2). 

4.1.3. Polyamine levels in transgenic rice plants 

Free polyamine concentrations in leaves from six primary transgenic rice plants 

were measured using the assay techniques described in "method section". Two plants, 12 

and 68, had putrescine, spermidine and spermine levels not significantly different from 

control plants (Figure. 4.3). The other four plants, 14, 33, 61 and 146, exhibited a 

maximum of 45% reduction (plant 33; 246.59± 24.73 nmol g-1fwt, P< 0.005) and a 

minimum of 15% reduction (plant 61; 317.04±15.10 nmol g- 1fwt, P< 0.005) in spermidine 

when compared to the average of wild type and hygromycin control plants (372 nmol 

g- 1fwt). Interestingly, these plants showed an increased accumulation of putrescine levels 

(up to 37% increase of putrescine in plant 61: 727.51±21.97 nmol g-1fwt). No significant 

variation was observed in the levels of spermine in any of these plants in leaves or seed as 

compared with wild type plants (Figure 4.3). Levels of putrescine, spermidine and 

spermine accumulations observed in R1 seeds had the same tendency as in leaf tissues. 

Two plants, 12 and 68, showed no significant variation in putrescine, spermidine and 

spermine levels compared to control plants. Four plants 14, 33, 61 and 146 had significant 

reduction in spermidine levels, a maximum of 50% reduction observed in plant 146 and 61 

(48.29 nmol g-1fwt ± 3.7, P< 0.005 and 48.88±10.3 nmol g- 1fwt, P< 0.005, respectively). 

Putrescine accumulation in seeds of these four plants was 1.4 - 2.2 fold-increased as 

compared to a wild type plant (plant 14: 200.0± 23.65 nmol g- 1fwt; plant 61: 311.94± 23.91 
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nmol g·1fwt, wild type plant: 132.98 ±14.06 nmol g·1fwt). Spermine levels in seeds of all 

transgenic rice remained unchanged. 

4.1.4 Molecular analysis of Rl transgenic rice population 

Seeds derived from self-fertilisation of the RO transgenic rice plants containing 

extra copies of the Spd.Syn gene were germinated, and screened against hygromycin 

antibiotic. Two hygromycin resistant R1 plants for each line were chosen randomly for 

further analysis. In search of an explanation why primary transgenic rice plants 12 and 68 

appeared not to express the transgene at all, DNA extracted from these R1 plants was 

restricted and separated by agarose gel electrophoresis, and used to prepare Southern blots. 

The blots were probed with both labelled Spd.Syn coding sequence, and Ubi promoter 

sequence probes. Randomly selected R1 transgenic plants had the band pattern on 

Southern blots as their respective primary transformants when genomic DNAs were 

digested with EcoRI enzyme and the blot was hybridized with Spd Syn probe (Figure 4.4). 

This indicates that transgene copies were stably inherited to the R1 generation. When this 

blot was reprobed with labelled Ubi promoter sequence, we did not detect hybridization 

signals in transgenic lines 12 and 68, indicating that these two lines contained a truncated 

mini-gene cassette with a deletion at the promoter end. Figure 4.5 shows the result of a 

Southern blotting experiment which confirmed the presence of intact transgene coding 

sequence in all transgenic lines; in this blot genomic DNAs were digested with both EcoR 

I and Hind III that released the full length of Spd.Syn eDNA from its mini-gene cassette 

(about 1.3kb in size). In both these Southern blots bands due to endogenous genes were 

visualised by both probes (these bands are not present in Figure. 4.4 B due to "trimming" 

the gel image), 

A northern blot of total RNAs extracted from leaves of R1 plants showed an 

increased level of Spd Syn transcript expression in 4 transgenic lines 14, 33, 61 and 146 

(Figure 4.6). This was consistent with the result we obtained in the primary transgenic rice 

generation, although the increase in mRNA level did not appear to be as great. Free 

polyamine contents in leaves of R1 plants were also analysed. Four transgenic lines, 14, 

33, 61 and 168, exhibited significant reductions (P< 0.001) in spermidine levels, up to 

about 50% reduction in line 61 as compared to control wild type (line 61: 166.76±13.55 
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nmol g-'fwt, wild type plant: 365,72±14.50 nmol g-'fwt) These four lines exhibited 

significantly higher accumulation of putrescine in leaf tissues. Spermine levels remained 

unchanged in all the transgenic lines as compared to control plants. ADC enzyme activity 

in leaf tissues of R1 transgenic plants was also assayed, but no significant variation was 

observed between transgenic and control plants (Figure 4.8). 

4.2 Discussion 

In particle bombardment-mediated transformation, plasmids are often used to 

deliver the target gene in its expression cassette into plant genomes. When integrated into 

plant DNA, excess bacterial vector backbone sequences often spontaneously acquire dense 

methylation (Jakowitsch et al., 1999), and contribute to de-stabilising gene expression 

resulting in gene silencing (Iglesias et al., 1997; Kumpatla et al., 1997). Transgene 

rearrangement can also take place as a result of the presence of multiple copies of plasmid 

backbones. Fu et al., (2000) and Breitler et al., (2002) have recently investigated the use of 

isolated minimal gene cassettes for successfully transforming rice. They both agreed that 

transformation of rice using gene cassettes is possible without significantly reducing 

transformation efficiency, potentially leading to less gene silencing events. However, they 

obtained contrasting results regarding transgene integration pattern and inheritance. In our 

experiment, we obtained a simple transgene integration pattern in five out of seven primary 

transgenic rice plants (Figure 4.1 ), stable inheritance to the next generation (Figure 4.4) 

and stability of expression of the combination of transgene and endogenous Spd Syn gene 

in R1 transgenic plants (Figure 4.6). Two lines, 12 and 68 did not express mRNA of the 

transgene, this was not due to a transgene silencing event, but due to the loss of ubiquitin 

promoter sequence that completely abolished the expression of Spd Syn gene in the mini

gene cassette. The success of using linear DNA fragments for transforming plant cells is 

unexpected; it was anticipated that the wound created by micro-projectile penetration in the 

cell would lead not only to activation of the DNA repair mechanism, but also to activation 

of exogenous DNA degradation system (Hunold et al., 1994). Consequently, linear DNA 

as minimal gene cassette introduced into the cell nucleus would be rapidly degraded from 

its ends by nucleases before integration into plant genome. This might be the case in our 
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rice transformation since minimal gene cassettes gave rise to integrated transgenes lacking 

the ubiquitin promoter sequence. 

Initial studies in plant transformation concentrated on seeking to enhance the 

phenotype or to create novel traits by introduction of a heterologous gene (reviewed by 

Christou, 1994 ). However, the introduction of additional copies of an endogenous gene as 

a transgene, in some instances, did not lead to over-expression of the combination of 

introduced and endogenous genes, but drastically reduced expression of both the 

endogenous and the introduced genes (VanDer Krol et al., 1990). The phenomenon of 

coordinate silencing of a transgene and a homologous endogenous gene is often referred to 

as co-suppression. In most cases, co-suppression was due to the overproduction of 

transgene and homologous endogenous RNAs above a putative threshold level that triggers 

the irreversible degradation of RNA (reviewed by Depicker and Van Montagu, 1997; Starn 

et al., 1997). In the experiments described in this chapter, the maize ubiquitin promoter, a 

strong constitutive promoter, was used to drive the expression of rice Spd Syn eDNA as a 

transgene in rice genome. The transgenic rice plants, which were obtained and were 

analyzed through two generations, did not show co-suppression, but a coordinate elevation 

of the steady state pool of Spd.Syn mRNAs resulting from the expression of the 

transgene(s) and, presumably, the endogenous gene (Figure 4.2 and 4.6). Paradoxically, 

transgenic plants with increased Spd.Syn transcript levels displayed reduction in free 

spermidine level in leaf tissues (Figure 4.3 and 4. 7), coupled with an increased 

accumulation of putrescine. The increased putrescine level could not be explained by an 

increase in ADC and ODC enzyme activity, as mRNA levels of these two enzymes 

remained essentially unchanged. Analysis of the activity of ADC enzyme confirmed that 

increased synthesis of the enzyme could not explain the increased putrescine levels (Figure 

4.2). Additionally, as putrescine level contributes a major portion of the free polyamine 

pool in rice leaf tissues, and spermidine levels are relatively low, the maximum of 2-fold 

reduction in spermidine could not account for a 2-fold increase in putrescine accumulation. 

To date, there are only a few published papers on the regulation of spermidine biosynthesis 

in plants. De Agazio et al., ( 1995) treated maize roots with spermidine, and observed 

putrescine accumulation as a consequence. The authors showed evidence of an 

interconversion from spermidine to putrescine in plants. Tassoni et al., (2000) showed that 
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Arabidopsis plants, when treated with both free spermidine and N-acetyl spermidine, had 

successive increases of putrescine, predominantly in the free form, and suggested the 

presence of an interconversion of acetylspermidine to putrescine via a putative polyamine 

oxidase. They also found that spermidine-treated plants showed an increased ODC 

activity, but no significant changes in ADC activity could be observed in response to 

spermidine treatment. However, Hanfrey et al., (2001) reported that ODC enzyme was not 

present, and that the synthesis of putrescine is solely reliant on ADC activity in 

Arabidopsis plants. Kumar et al., (1996) studied the expression of a homologous sense 

SAMDC transgene under the control of a tetracycline-inducible promoter in transgenic 

potato plants. They obtained transgenic plants with an increase in both the steady state 

transcript level of SAMDC and polyamine (putrescine and spermidine) levels after 

tetracycline induction. However, attempts to generate transgenic plants that constitutively 

over-expressed the homologous sense SAMDC were unsuccessful. They explained that 

constitutive expression of SAMDC might cause death to transformed cells because too 

much spermidine might be cytotoxic. As the results with transgenic rice plants could not be 

explained by a co-suppression event, we suggest the presence of an inter-conversion from 

spermidine to putrescine in rice plant. It is possible that the introduction of rice sense 

Spd.Syn eDNA as a transgene into the rice genome leads to high expression level of 

Spd.Syn mRNAs, and consequently this event triggers an elevated inter-conversion 

process from spermidine to putrescine in transgenic rice plants. Unfortunately, Spd.Syn 

enzyme activity analysis or further confirmatory studies could not be carried out. 

Therefore, it is not possible to give a definitive answer to the question why free spermidine 

levels in these transgenic rice plants were lower compared to control wild type plants. As 

the previous transgenic rice experiment with antisense oat ADC indicated the likelihood of 

a tight regulation that controls spermidine and spermine levels in leaves, and since too 

much spermidine accumulation might be cytotoxic to transformed plant cells (Kumar et 

al., 1996), it is possible that the recovery of viable plants from the transformation 

experiments is a limiting factor. When transformation of rice cells with homologous sense 

Spd.Syn gene occurs, only transgenic plants with small (or no) changes in spermidine level 

can be recovered, because large changes are lethal. 
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146 wt 61 33 14 12 5 68 M 

2.0 kb 

Figure 4.1: Southern blot analysis of RO rSpd.Syn transgenic rice 

DNAs digested with EcoR I , hybridized with rice Spd.Syn probe. 

(M): lkb DNA ladder marker, (wt): wild type control plant. 
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Hpt 12 14 33 61 68 146 wt 
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rRNA 

Figure 4.2: Northern blot analysis of leaf total RNA samples from 

six primary rSpd.Syn transgenic rice plants, hybridized with rice 

Spd.Syn, rice ADC, rice ODC and rice SAMDC probes, (wt): wild 

type plant and (hpt): transgenic plant contained only hygromycin 

trans gene. 
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Figure 4.3: Polyamine analyses in leaves and seeds of six 

primary transgenic rice plants. (hpt): transgenic plant contains 

only hygromycin transgene, (wt): wild type plant. 

nmolg-1 fwt= nmol per gram of fresh weight.. 
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146 68 61 33 14 12 hpt wt 

5.0 kb 
(A} 

3.0 kb 

146 68 61 33 14 12 hpt wt 

(B) 

Figure 4.4: Southern blot analyses of Rl rSpd.Syn transgenic rice 

plants. The genomic DNAs were digested with EcoR I, (A): the blot 

was hybridized with rice Spd.Syn probe, (B): the blot was re

hybridized with Ubi promoter probe, (wt): wild type plant and (hpt) : 

transgenic plant contained only hygromycin transgene. 
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wt hpt 12 33 61 68 

1.5 kb 

(A) 

(8) 

Figure 4.5: Southern blot analyses of Rl rSpd.Syn transgenic 

rice plants. The genomic DNAs were digested with EcoR I and 

Hind III, (A): the blot was hybridized with rice Spd.Syn probe, 

(B): the blot was rehybridized with Ubi promoter probe, (wt): wild 

type plant and (hpt): transgenic plant contained only hygromycin 

trans gene. 
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Figure 4.6: Northern blot analysis of leaf total RNA samples from six 

Rl rSpd.Syn transgenic rice lines (2 plants/each line), the blot was 

hybridized with rice Spd.Syn probe,. (wt): wild type plant 
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Figure 4.7: Polyamine analysis in leaves of six Rl rSpd.Syn 

transgenic rice lines, (wt): wild type plant. 

nmol g-lfwt= nmol per gram of fresh weight. 
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Figure 4.8: ADC enzyme activity measurement in leaf tissues of Rl 

Spd.Syn transgenic rice lines. Four positive PCR transgenic plants for 

the transgene were used as replicates for each transgenic lines 

hpt: hygromycin resistant plant 

wt : wild type plant 

1 nKat = lnmol s- lg- 1 of fresh weight 
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Chapter 5 

PRODUCTION OF TRANSGENIC RICE PLANTS WITH WIDE-SPECTRUM 

RESISTANCE TO INSECT PESTS. 

The use of gene transfer technology to introduce insect-resistance genes into 

crop plants provides an economical and environmentally sustainable alternative to the 

extensive use of chemicals for the control of insect pests. For example, commercial 

cultivation of Bt crops (potato, cotton and corn) has created direct environmental 

benefits by reducing the amount of insecticide used to control pests and by reducing the 

use of highly toxic and non-specific insecticides. However, the success of insect

resistance crops will depend on whether target pests develop resistance to them. Insects 

have developed resistance to almost all control measures that have so far been applied. 

A number of resistance management strategies have been used or proposed to delay or 

prevent such an outcome, including the use of tissue-specific or inducible promoter, the 

simultaneous introduction into the same plant of several resistance genes with different 

action against the same pest (de Maagd et al., 1999; Maqbool et al., 2001), and the 

artificial broadening of toxin activity by producing recombinant toxins with additional 

binding domains. Bohorova et al., (2001) reported the development of transgenic 

tropical maize carrying the cry1B-cry1Ab translational fusion that confers resistance to 

southwestern com borer (Diatraea grandiosella), sugarcane borer (Diatraea sacchralis) 

and fall armyworm (Spodoptera frugiperda). The success of this strategy to broaden 

insect resistance of transgenic plants requires determination of binding domains in both 

toxins and target insects. Recently, certain neurotoxin polypeptides, like Manduca sexta 

allatostatin (Manse-AS) and Segestria florentina toxin 1 (SFI 1 ), have been known as 

potential insecticides and have no toxin effects to mammal (Masler et al., 1993; Lipkin 

et al., 2002). However, insect neurotoxin polypeptides are unlikely to be rapid absorbed 

through the insect cuticle and would be prone to proteolysis and rapid degradation in the 

environment and within the insect gut. Attempts to exploit new pesticidal genes for 

tackling the imminent problem of insect resistance have been investigated (Fitches et 

al., 2002; Fitches et al., 2004 (a) and (b)). Their study based on the ability of snowdrop 
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lectin GNA to resist gut proteolysis and to act as a carrier to deliver fused peptides to 

the circulatory system of target insects (Raemaekers, 2000; Fitches et al., 2001 ). They 

demonstrated that GNA delivers fused insect neuropeptide, Manse-AS and SFI 1, to the 

haemolymph of lepidopteran larvae following oral administration and the fusion 

proteins toxic to target insects. 

This chapter describes experiments in which genes encoding fusion proteins 

were constructed and expressed in E. coli, and introduced into transgenic rice plants 

using the particle bombardment method. The design of these fusions aimed to enhance 

insecticidal activity of insect resistance gene(s) by directing the transport of its product 

to the site of action (thioredoxin-GNA fusion) or to broaden the toxicity by adding a 

binding domain (Bt toxin -lectin fusions). 

5.1 Results: 

5.1.1. Expression of fusion proteins in E. coli and protein purification. 

Constructs to express three fusion proteins as recombinant proteins in E. coli 

were assembled in the pET expression vector system. Expression of sequences cloned 

in the pET vector is under control of the strong T7 bacteriophage promoter when 

induced in E. coli host strain BL21 (DE3) pLysS cells. Expression of the system is 

strongly repressed unless induced by adding IPTG. The fusion protein expression 

constructs were assembled by joining DNA fragments encoding the required protein 

domains. DNA fragments were prepared by PCR, using primers incorporating suitable 

restriction sites to allow construct assembly, and checked by DNA sequencing to 

confirm absence of PCR errors. The fusion protein constructs were as follows: 

(i) Cry lAc domain 1 + GNA (Ac-GNA); this construct encoded the pore 

forming domain from the Cryl Ac Bt toxin joined to theN-terminus of the 

snowdrop lectin (GNA) mature polypeptide; 

(ii) Thioredoxin-GNA (TRX-GNA); this construct encoded the entire coding 

sequence of rice thioredoxin joined N-terminally to the snowdrop lectin 

(GNA) mature polypeptide; 
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(iii) Cry lAc + RTB (Ac-RTB); this construct encoded the entire active Bt toxin 

Cry lAc joined N-terminally to the carbohydrate binding domain from the 

castor bean ribosome inactivating protein ricin. 

The fusions incorporated C-terminal (his)6 tags to allow the recombinant proteins to be 

affinity-purified. Constructs were transformed into the E. coli host strain for expression, 

grown and induced. 

Expression of the Ac-GNA fusion polypeptide is shown in Figure 5.l(A). When 

a Western blot of proteins extracted from bacteria after varying times of induction with 

IPTG was probed with polyclonal rabbit anti-GNA antiserum, a band reacting with the 

antibody was observed, confirming the presence of the fusion protein, of approximate 

molecular weight 41.15 kDa. No expression of the Ac-GNA fusion was observed in an 

uninduced bacterial sample. However, most of the first domain Ac-GNA fusion was 

expressed in the form of insoluble inclusion bodies in the host cells, when soluble and 

insoluble fractions were analysed by SDS-PAGE (figure not shown). To isolate soluble 

and functional recombinant protein, the inclusion bodies were solubilized by treatment 

with 6 M urea solubilization buffer. The solubilized protein was then affinity-purified 

on an NT A immobilised nickel column (QIAGEN). Fractions eluted in high imidazole 

concentration, after washing the column, contained purified Ac-GNA fusion protein. 

They were pooled and dialysed against refolding buffer, and concentrated to approx. 

lmg/ml using an ultracentrifugation tube (Centreprep, Vivascience). The purified fusion 

protein was estimated to be >90% pure as assessed by SDS-PAGE gel (Figure 5.l(B)). 

Expression of the TRX-GNA fusion polypeptide in E. coli is shown in Figure 

5.2. Western blotting of proteins extracted from cells after induction of expression 

showed that more than 90% of TRX-GNA protein was expressed in the form of 

insoluble inclusion bodies (Figure 5.2(A)). When the blot was probed with anti-GNA 

antibody the expected band for TRX-GNA, migrating at molecular weight of approx. 

25.9 kDa, was present in both soluble and insoluble fractions, but was present in much 

greater amount in the insoluble fraction. Some binding to bands of other molecular 

weights was present in the insoluble fraction, possibly due to incomplete denaturation 

of the fusion polypeptide. Soluble TRX-GNA fusion was recovered from the inclusion 

bodies using a protein refolding method using CAPS buffer in combination with N-
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lauroylsarcosine as denaturants (described in protein refolding kit manual, Novagen). 

The solubilised proteins were then dialyzed against 10 mM Tris HCJ at 4°C for 

refolding. The refolded protein was purified by ion exchange chromatography on a Q

Sepharose column. The eluted fractions were pooled and assessed by SDS-PAGE using 

a 12% acrylamide gel. An estimated purity of more than 90% TRX-GNA protein in 

eluted sample was obtained (Figure 5.2 (B)). The TRX-GNA protein sample was 

concentrated to 1 mg/ml using an ultracentrifugal concentrator. 

Expression of the Ac-RTB fusion protein in E. coli is shown in figure 5.3 (A). 

After induction of expression, soluble and insoluble protein fractions from the cells 

were analysed by SDS-PAGE and Western blotting. When the blot was probed with 

with an anti-Cry1Ab antibody, a band migrating at the expected molecular weight of 98 

kDa was present. The protein was mainly expressed in the form of insoluble inclusion 

bodies. The aggregates were solubilized in a buffer containing 6M urea, filtered through 

a 0.2 !AID membrane, and affinity-purified on a Ni-Agarose column. The fractions eluted 

at high imidazole concentration after washing the column were pooled and refolded by 

dialysis with gradual dilution, to final dialysis buffer of 10 mM Tris-HCI. The refolded 

Ac-RTB protein sample was run on SDS-PAGE 12% acrylamide gel. The Ac-RTB 

protein was estimated to be >80% pure as assessed by staining of the SDS-PAGE gel 

(Figure 5.3(B)). The protein sample was concentrated to 1 mg/ml using an 

ultracentrifugation tube. 

5 .1.2. Bioassays of fusion proteins against insect pests. 

The purified Ac-GNA fusion protein was tested for toxicity towards the 

homopteran pest Nilaparvata lugens (rice brown planthopper) and the lepidopteran 

Lacanobia oleracea (tomato moth, a noctuid lepidopteran herbivore) in artificial diet 

bioassays. Figure 5.4 shows a BPH diet bioassay of the Ac-GNA fusion protein 

compared to GNA, each at two different concentrations of 0.05 and 0.1 mg/ml. Survival 

on control diet was higher than 80% over 8 days in this assay. Survival curves for both 

Ac-GNA fusion protein and GNA treatments at both concentrations used were 

significantly different from the control diet after feeding for five days. GNA treatments 

showed a greater effect on survival of N. lugens nymphs when compared to first domain 
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Ac-GNA treatments. By day 9, there was less than 10% BPH survival on diets 

containing GNA, whereas BPH survival on diets containing the Ac-GNA fusion protein 

was approx. 40%. The survival curves of BPH nymphs at two concentrations, 0.05 and 

0.1 mg/ml, did not differ significantly for either GNA or Ac-GNA fusion protein. To 

investigate the possibility that this fusion protein could be toxic to a wider spectrum of 

insect pests, an artificial diet bioassay was carried out against larvae of tomato moth ( L. 

oleracea). Figure 5.5 illustrates the impact of first domain Ac-GNA upon the survival 

and development of tomato moth larvae. By day 9, about 50% larva mortality was 

recorded for first domain Ac-GNA feeding treatment, significantly different from both 

parental toxic proteins and diet control. The survival was not much affected by feeding 

larvae artificial diet containing CrylAb, Cry1Ac or GNA as compared with the diet 

control. Larvae fed on first domain Ac-GNA diet did not show a significant lower mean 

weight as compared with larvae that fed on Bt parental toxins or on diet control 

measured at day 9. However, first domain Ac-GNA showed a significant lower mean 

larval weight as compared to GNA feeding control. 

Recombinant TRX-GNA, at added protein level of 0.05%, was tested for 

toxicity towards third instar BPH nymphs in an artificial diet bioassay (Figure 5.6). The 

TRX-GNA fusion protein started showing a significant reduction in BPH nymph from 

day 3 onwards when compared to control diet. By day 8, survival of BPH nymphs on 

diet containing TRX-GNA is about 20-30% whereas 70-80% nymphs survived on 

control diet, indicating a substantial toxic effect of TRX-GNA against BPH. This 

protein is comparable to GNA in toxicity towards N. lugens when compared on a molar 

basis (data not presented). 

Recombinant Ac-RTB protein was tested for toxicity towards Lacanobia 

oleracea (tomato moth, in an artificial diet bioassay.). Figure 5.7 illustrates the impact 

of Ac-RTB upon the survival and development of tomato moth larvae. By day 9, about 

30-40% larva mortality was recorded for recombinant Ac-RTB feeding treatment, 

slightly different from Bt toxic proteins (10-20% mortality) and significantly different 

from diet control (less than 10% mortality). However, larvae fed on Ac-RTB diet did 

not show a significant lower mean weight as compared with larvae that fed on Bt 

parental toxins or on diet control measured at day 9. 
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5.1.3. Generation and molecular analysis of RO transgenic plants 

Plasmids containing fusion gene constructs encoding Ac-GNA, TRX-GNA and 

Ac-RTB were delivered separately into rice by bombardment of mature embryos. The 

gene constructs contained the coding sequences expressed in E. coli (section 5.1.1) 

under the control of the maize ubiquitin promoter Ubil that has been shown to give 

high-level expression of transgene(s) in monocotyledonous plants (Christensen & Quail, 

1996). Rice transformation and regeneration was carried out as described previously 

(Method section). 

A southern blot analysis of 5 regenerated Ac-GNA primary transgenic rice 

plants is shown in Figure 5.8. This blot showed that each of the selected plants 

contained integrated DNA from the transforming plasmid, and that transgene 

integration patterns differed between plants, with the exception of plant 5, which gave a 

transgene integration pattern similar to that of plant 2. These two individuals must come 

from an identical transformation event. Therefore, plant numbered 5 was discarded 

from subsequent analyses. The enzyme used for restriction, EcoRI, was expected to cut 

once inside the transforming vector, permitting an estimation of the number of 

integrated transgene copies. The complexity of integration ranged from three to nine 

estimated copies of the gene per haploid genome. 

Southern blot analysis of TRX-GNA primary transformants (RO) confirmed the 

presence of the target gene in 6 regenerated rice plants (Figure 5.9). Rice genomic DNA 

was digested with EcoR that cuts the plasmid once. Hybridization with random probe(s) 

for the coding TRX-GNA sequence revealed complex integration patterns of the gene in 

the genomes of three rice plants numbered 2, 4 and 5. Plants numbered 1, 3 and 6 have 

an estimated transgene copies ranging from two to four per haploid genome. 

A Southern blot analysis of eight regenerated RO rice plants from the 

transformation with the Ac-RTB gene construct are shown in Figure 5.10. Genomic 

DNA was digested with restriction enzyme EcoRI, which was expected to release a 

hybridizing fragment of about 2.2 kb when hybridized with random probe(s) for the 

coding sequence of Ac-RTB fusion gene. The blot revealed the presence of the target 

gene in four out of eight plants. The transgene integration patterns were clearly unique 
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for each Ac-RTB transgenic line. Two plants, numbered 3 and 4, contained truncated 

versions of the transgene copies as they showed some hybridizing bands smaller than 

2.2 kb in size. 

5.1.4. Expression of fusion genes in transgenic rice plants. 

Expression of the gene constructs introduced into transgenic rice plants was 

studied both at the level of mRNA, and in terms of protein accumulated in leaf tissue. 

Unless stated otherwise, all assays were carried out on leaf tissue from RO plants. Total 

RNAs samples were treated with RQ 1 Rnase-free Dnase (promega) before carrying out 

RT-PCR reaction (see Method section). 

mRNA encoding the Ac-GNA fusion protein was detected in total RNA 

extracted from transgenic plants by RT-PCR. RT-PCR was carried out using a pair of 

primers that spanned both the Cry and GNA domains, and amplified a product of 820 

bp in size. Results are shown in Figure 5.11. All four independent RO transgenic plants 

showed steady-state Ac-GNA rnRNA expression in leaf tissues. Subsequently, 50 mg of 

total soluble protein extracted from leaf tissue of these transgenic plants was subjected 

to SDS-PAGE and western blotting (Figure 5.12). When probed with anti-GNA 

antibodies, the blot showed a band at approximately 39 kDa (expected size is 41.15 

kDa), which is more intense than background binding bands observed from hygromycin 

and wild type control plants. The background binding bands could be a result of cross

reaction between anti GNA antibody with rice lectin proteins. On the basis of band 

intensity, the level of the Ac-GNA fusion protein accumulated in transgenic rice plants 

was low (less than 0.01% of total soluble protein). This is apparent in Figure 5.12 if the 

intensity of the band due to the Ac-GNA fusion protein is compared to the band 

produced by 50 ng of GNA. 

RT-PCR analysis of total RNA from leaf tissues of TRX-GNA transgenic plants 

is shown in Figure 5.13. The expected RT-PCR product (350 bp in size) was detected in 

all six TRX-GNA plants. Total protein, extracted from young leaves of these plants, 

were fractionated by 12% SDS-PAGE and then subjected to immunoblotting against 

anti-GNA antibodies (Figure 5.14). A faint band that migrated at approx. 25 kDa 

appeared in all transgenic plants, but not in hygromycin and wild type control lanes. 
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This faint band is expected to be TRX-GNA fusion protein with predicted size of 25.9 

kDa. Expression of TRX-GNA fusion proteins in transgenic plants was somewhat 

variable, with relatively more fusion protein present in TRX-GNA transgenic plants 

numbered 1, 2 and 3 compared to TRX-GNA plants 4, 5, and 6. However, the level of 

TRX-GNA fusion protein expressed in all transgenic plants was very low, and was 

estimated at less than 0.01% of total soluble protein. A background-binding band that 

migrated slightly slower than that of stained GNA band was observed in both transgenic 

and control plants. 

The presence of Ac-RTB mRNA in all four transgenic plants was confirmed by 

RT-PCR analysis using a pair of primers that amplifies a 654 bp product from the 

coding sequence of RTB gene (Figure 5.15). Initial analysis of leaf extracts by SDS

PAGE followed by immunoblotting with anti-Cry1Ab antibody (that cross-reacts with 

Cry1Ac protein), using 50 mg of total protein for each transgenic plant, failed to reveal 

a detectable band of Ac-RTB fusion protein (expected size is 97 kDa). When 100 mg of 

total protein for each transgenic plant was loaded, two plants numbered 2 and 4 

displayed a detectable band (Figure 5.16). This band migrated at approximately 95 kDa 

(indicated from sizes of protein marker standards), as expected for Ac-RTB fusion 

protein. Two remaining plants, 1 and 3, did not show any detectable band at the 

expected size of the Ac-RTB protein indicating the possibility of very low expression at 

mRNA transcription or translation of Ac-RTB fusion protein in these transgenic plants. 

5.1.5. Insect bioassays of Rl transgenic plants 

All RO transgenic rice plants developed normally until the point of setting seed, 

when they proved to show a high level of self-sterility. The four Ac-RTB transgenic 

plants did not produce any seeds, and thus could not be subjected to insect bioassays. 

For those transformants that did produce seeds, insect bioassays were carried out on R1 

plants. 

It has been shown that multiple genes of various transforming plasmids being 

delivered into rice genome by bombardment method preferentially integrate at a single 

locus, so that they function as, and are inherited as, a single genetic unit (Register et al., 

1994; Kohli et al., 1998; Kexuan Tang et al., 1999). We assumed that co-transferred 
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plasmids containing hygromycin and insect resistance genes in our experiment, 

delivered into the rice genome by bombardment transformation method, should 

integrate together at one locus and pass down to the R 1 generation as linked genes. 

Therefore, to select R 1 rice plants for insect bioassays, hygromycin screening 

experiments were carried out to identify R1 hygromycin-resistance plants instead of 

testing for insect resistance genes. Figure 5.17 shows representative photos of R1 rice 

seedlings of Ac-GNA4, TRX-GNA1 and wild type plants germinated in 1/10 MS 

medium solution containing 50mg/l Hygromycin. We observed that hygromycin gene 

segregated in a ratio of approximately 3:1, indicating a single transgene locus in 

transgenic rice genome (Table 5.1 ). Genomic DNAs of some randomly selected 

hygromycin-resistance plants were subjected to PCR to confirm the presence of the 

insect resistance genes (Figure 5 .18). 

For bioassay of transgenic rice plants against brown plant hopper, ten first- or 

second-instar BPH nymphs per plant were set up for ten 20 days-old rice seedlings of 

Ac-GNA or TRX-GNA transgenic plant lines. Insects were able to move over 

individual plants, but were confined with fine-mesh nylon cages to prevent movement 

between plants. 

Bioassay results for R1 Ac-GNA plants against brown plant hopper are shown in 

Figure 5.19. The variation between different R1 Ac-GNA transgenic rice lines in term 

of toxicity against BPH nymphs is presented in Figure 5.19 (A). Survival on control 

plants was > 80% up to day 16, but declined rapidly thereafter due to the plants 

becoming desiccated and moribund. From day 6 to day 16, survival on the plants 

expressing Ac-GNA was consistently poorer than on control plants, By day 8, 

percentage of BPH survival on Ac-GNA transgenic rice lines ranged from 70% (Ac

GNA4) to 80% (AC-GNA3). By day 16, it is from 40% (Ac-GNA4) to 60% (Ac

GNA3) and by day 24, a variation between 20 to 25% of BPH survival observed on 

different AC-GNA transgenic rice lines. This small difference in toxicity against BPH 

insect displayed by different Ac-GNA transgenic progenies was consistent with the 

western blot analysis of RO transgenic plants showing similar expression level of Ac

GNA fusion proteins. Figure 5.19 (B) presents pooled data of Ac-GNA transgenic rice 

and wild type plants. At day 4 insect survival was nearly the same on both transgenic 
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and control plants, but from day 6 onwards, insect survival on transgenic rice started 

declined compared to control. By day 16 it was significantly reduced (55% BPH 

survival) compared to that on wild type control (80% BPH survival; p< 0.01). From day 

18, wild type control plants began to wilt or die and the number was increasing to 100% 

dead by day 24. This led to the survival of insects recorded on control plants reduced 

rapidly from day 16 to day 24. The survival of BPH insects on transgenic plants was 

steadily reducing and by day 24, about only 25% insect survival was recorded on 

transgenic rice. All Ac-GNA transgenic rice plants survived to the end of the trial. 

Insect bioassay results for R1 TRX-GNA transgenic plants against brown plant 

hopper are summarised in Figure 5.20. Once again, survival of insects on control plants 

was > 80% until day 16 of the trial. The variation between different R1 TRX-GNA 

transgenic rice lines in term of toxicity against BPH insects is presented in Figure 5.20 

(A). By day 8, the range of insect survival on TRX-GNA transgenic rice lines was from 

65% (TRX-GNA2) to 75% (TRX-GNA5). However, differences between lines 

increased with time, and by day 16, percentage of insect survival on transgenic rice 

plants ranged from 30% (TRX-GNA1) to 55% (TRX-GNA5). By day 24, BPH survival 

was 5% on TRX-GNA1, about 25% on TRX-GNA2 and TRX-GNA3 and 40% BPH 

survival observed on TRX-GNA4, TRX-GNA5 and TRX-GNA6 plants. Therefore, the 

level of toxicity displayed by different TRX-GNA R1 transgenic plants seemed to be 

consistent with the western blot analysis of RO TRX-GNA transgenic plants, that 

showed a relatively higher expression level of fusion proteins in TRX-GNA plants 

numbered 1, 2 and 3 as compared to that of TRX-GNA plants numbered 4, 5 and 6. 

This also indicates that expression of fusion protein in transgenic plant was stably 

transmitted to the next generation. Figure 5.20 (B) presents pooled data of TRX-GNA 

transgenic rice and wild type plants. As expected, the transgenic rice lines expressing 

TRX-GNA fusion showed toxicity to BPH nymphs as early as by day 4 (85% insect 

survival on TRX-GNA transgenic plants, compared to 95% survival on control plants). 

By day 16, only 40% insect survival was recorded on transgenic plants, significantly 

different as compared to that on wild type control plants (about 80% BPH survival; 

p < 0.01). As was observed in the insect bioassay of Ac-GNA R1 transgenic rice plants, 

wild type control plants began to wilt or die from day 16 and all the control plants had 
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died by day 24. This led to the survival of insects recorded on control plants reducing 

rapidly from day 16 to day 24. The survival of BPH insects on transgenic plants 

declined steadily and by day 24, only 30% insect survival was recorded. All the TRX

GNA transgenic rice plants remained alive by the end of experiment. 

5.2. Discussion 

5.2 .1. Enhancing toxicity and insecticidal spectrum of toxin proteins by protein fusion. 

Transgenic crops expressing individual Bacillus thuringiensis (Bt) endotoxin 

genes to enhance the resistance of the plant to insect pests have been in commercial use 

for several years. Other insecticidal genes, such as the gene encoding the snowdrop 

lectin GNA (Gatehouse et al., 1997; Rao et al., 1998; Xavier Foissac et al., 2000; Wu et 

al., 2002; Lac et al., 2002) have been shown to be effective in small-scale trials, and are 

currently awaiting commercial development. However, the unrestricted and commercial 

use of insect-resistance transgenic crops is likely to lead to the emergence of resistance 

in target insect pests unless measures are used to delay or halt its development. Besides 

the use of different field management strategies to delay the onset of resistance (Mallet 

et al., 1992; Liu et al., 1997; Cohen, 2000) several molecular approaches have been 

tested including the restricted expression of toxin products in certain plant tissues (Rao 

et al., 1998), simultaneous expression of multiple insecticidal genes in the same 

transgenic plants (Maqbool et al., 2001) and the production of hybrid toxins (Naimov, 

S. et al., 2003). 

The goal of this study was to determine whether our novel fusion proteins, based 

on insecticidal Bt and GNA genes, could combine the functional properties of the 

individual proteins and therefore acquire a wider insecticidal spectrum. The lectin-based 

chimeric protein Ac-GNA, consisting of peptide sequence of the domain I of Cry1Ac 

toxin fused to theN-terminus of GNA protein, was expressed successfully in E. coli and 

tissues of transgenic rice rice plants as an uncleaved protein of 41.15 kDa (Figures 5.1 

and 5.12). Artificial diet bioassays of purified E. coli-expressed Ac-GNA fusion 

proteins against BPH and tomato moth (L. oleracea) insects showed "additive 

insecticidal effects" attributable the to individual property of each linked protein 
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(Figures 5.4 and 5.5). An earlier study by Pitches et al., (1997) in which larvae were fed 

artificial diet containing GNA, showed that GNA has little effect on larval survival in 

tomato moth. A similar result was obtained in this work. However, the Ac-GNA fusion 

caused 50% larvae mortality, that was significantly higher than that caused by the 

parental toxins (GNA and CrylAc) or diet control. The Ac-GNA fusion protein 

therefore showed evidence of enhanced toxicity in tomato moth. In contrast to the 

insecticidal effect on the survival of tomato moth, the presence of fusion protein in 

artificial diet showed less reduction in BPH survival than that displayed by GNA 

protein, although survival was decreased compared to control diet. Similarly, when 

BPH insects were feeding directly on Ac-GNA-expressing transgenic plants (Figure 

5.19), the survival of BPH insects was decreased on transgenic plants compared to 

controls. This is in broad agreement with previous studies on transgenic rice expressing 

GNA that reduced insect survival by 40- 50% by day 20 (Rao et al., 1998; Tinjuangjun 

et al., 2000, Loc et al., 2002), but the effects on this insect caused by the fusion are 

similar to, or less than the effects of GNA alone. Comparison of the effect of Ac-GNA 

against BPH insects between artificial diet and transgenic plant bioassays with that of 

GNA itself suggests that the lower activity of the fusion protein is due to the Cry lAc 

domain having no effect on BPH, even when fused to GNA. There is then a dosage 

effect due to the presence of the first domain Cry1Ac in the fusion protein that increases 

the protein size up to 3-fold. On a weight for weight basis the fusion protein contains 

less GNA than the pure protein. It is also possible that the protein produced in E. coli is 

not fully functional, especially as the refolding of GNA itself produced in E. coli is 

inefficient. In this case the fusion has not produced a novel toxicity towards BPH. 

The second lectin-based chimeric gene, encoding the TRX-GNA fusion that 

consists of rice thioredoxin protein fused to N-terminus of GNA, expressed as an 

uncleaved protein in E. coli and tissues of transgenic rice plants (Figures 5.2 and 5.14). 

Bioassays against BPH nymphs in artificial diet confirmed the insecticidal activity of 

TRX-GNA fusion protein towards this insect (Figure 5.6), but did not show that it was 

more toxic than GNA itself (compare Figures 5.4 and 5.6). Given the very low levels of 

accumulation of this protein in transgenic rice plants (Figure 5.14), the enhanced 

resistance of the plants towards BPH (Figure 5.20) is surprising. As thioredoxin h has 
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been identified as a major protein in rice phloem sap (Ishiwatari et al., 1995) and it has 

the capacity to move itself around the plant via the translocation stream through 

plasmodesmata (Ishiwatari et al., 1998), fusing with the gene encoding thioredoxin h 

could increase the accumulation of GNA-based fusion protein in the rice phloem sap 

and therefore increasing the resistance of transgenic rice plants to BPH, a homopteran 

insect that feeds on phloem sap to obtain necessary nutrients for survival. There is an 

early and significant reduction of BPH survival on TRX-GNA transgenic plants, by day 

4 of testing, when compared to Ac-GNA plants. This is possibly due to TRX-GNA 

being more available in rice phloem sap than Ac-GNA, even though the level of TRX

GNA protein expressed in transgenic plants, as shown by western blots, was lower than 

that of Ac-GN A protein (Figures 5.12 and 5.14). However, this hypothesis remains to 

be established in further studies. 

The aim of making the chimeric Ac-RTB gene was simply to make more 

potential receptor binding sites for Bt toxins available in the target insect. The non-toxin 

B chain of Ricin toxin (RTB) was found to bind strongly to galactose and 

acetylgalactosamine terminated residues on the cell surface of insect mitgut (Frigerio 

and Roberts, 1998). Transgenic rice plants expressing Ac-RTB fusion protein might 

possess enhanced toxicity towards different insect pests or merely function to prevent 

development of resistance to Bt toxins by the insect. This is because development of 

resistance to the resulting transgenic plants may require several mutations to occur 

simultaneously in the same insect or at least the combination of several independent 

mutations through sexual crossing in the susceptible insect population (Maqbool et al., 

200 1). We obtained preliminary results indicating that Ac-RTB fusion gene expressed 

in transgenic rice as an uncleaved 97kDa fusion protein. Artificial bioassay against 

tomato moth (Figure 5.7) showed a slightly reduced survival of tomato moth larva fed 

on Ac-RTB transgenic rice plants as compared to the survival of larvae that fed on a 

diet containing the parental Bt toxin. This could imply that the RTB protein domain is 

only playing a role in increasing receptor-binding sites, and is not as a result increasing 

the toxicity of the fusion protein. However, further confirmatory experiments including 

artificial bioassays and a trial of transgenic plants expressing this fusion protein against 

different insect pests need to be done to fully assess the biological activity of Ac-RTB 
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In summary, our results demonstrated that it is possible to increase toxicity, 

insecticidal spectrum and probably the durability of insect resistance genes against 

insect pests by the chimeric gene approach, and that individual proteins in fusions 

remain functional in an "additive effect" manner. 

5.2.2. Transgenic rice plants expressing low level of GNA fusion proteins display 

"horizontal resistance" to brown plant hopper. 

Although development of strongly pest-resistant rice cultivars is always a high 

priority, these cultivars are threatened by "resistance breakdowns", notable examples 

including loss of resistance to the brown planthopper (Heinrichs, 1986) and the Asian 

rice gall midge (Bennett et al., 2000). The implementation of integrated pest 

management (IPM) in irrigated rice areas for the past few decades has proved it as a 

significant pest management strategy for preventing insect pest problems (Matteson, 

2000). This strategy employs the use rice cultivars with "moderate resistance" (also 

termed as "horizontal" or "field resistance"). These moderate-resistance rice plants do 

not necessarily kill all insects, but render a tolerant trait to rice plants to survive under 

the attack of insect pest. Cohen (2000) described the "high-dose/refuse" resistance 

management strategy for the sustainable use of Bt transgenic rice, in which the author 

recommended the use of transgenic rice with high level of Bt expression (up to 0.2% of 

soluble leaf protein) in combination with non-Bt plants (refuge plants) serve to maintain 

susceptible insects in the population. However none of the transgenic rices produced so 

far meet this requirement for resistance to BPH, and Bt-rice shows no resistance at all to 

this pest. Therefore, in our view, horizontal resistance rice cultivars still prove their 

benefit for rice farmers for some coming years. 

In our bioassays, transgenic rice plants expressing GNA-based fusion proteins 

gave a significant reduction in survival of brown planthoppers that fed on them. By day 

24, only 20-30% of insects survived on these transgenic plants (Figures 5.19 and 5 .20). 

Further, although wild type control plants began to die from day 18 of these bioassays 

and reached 100% dead by day 24, all transgenic plants survived with little damage. To 

confirm the resistance of these transgenic plants against BPH, a feeding preference 
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experiment was carried out. The Rl seeds of transgenic plants expressing Ac-GNA and 

TRX-GNA fusion proteins were germinated in hygromycin 1/10 MS solution and then 

transplanting in seed trays, along with wild type control and TN1 plants (BPH 

susceptible rice cultivar, often used as susceptible check) following the procedure of the 

Intenational Rice Testing Programme (IRRI, 1985). After seven days of transplanting, 

BPH nymphs of 1st instar were released on to rice plants to be tested at an estimated 

density of about 10 insects per plant. By day 6 after BPH infestation, all wild type 

control plants were recorded as dead. By day 9, all TN1 plants were dead but all 

transgenic lines of Ac-GNA and TRX-GNA were scored between 5 and 7(between 

moderate resistant to susceptible, in scale of 0 to 9) (figure 5.21 ). Interestingly, we also 

observed that BPH nymphs preferred feeding on susceptible (wild type and TN1) plants 

rather than transgenic plants, and continued to show this preference until the control 

plants showed severe damage and became stunted, forcing more insects to feed on 

transgenic plants. Xavier Foissac et al., (2000) suggested that GNA expression in rice 

plant tissues could interfere with plant physiology in such a way that reduces the quality 

or quantity of sap nutrients, making it a suboptimal or unbalanced diet for the hoppers. 

This could explain why hoppers avoided feeding on transgenic plants expressing GNA 

fusions as their first choice. 

Our data demonstrated that transgenic rice plants expressing low level of GNA 

fusion proteins show moderate resistance to BPH and could tolerate the attack of insect 

pests, a character that is displayed by horizontal resistance rice cultivars. In conclusion 

we believe that, until researchers could find the way to produce transgenic rice plants 

with a high level of resistance to this pest, which is likely to require high expression 

levels of insect resistance genes, up to 0.2% of total soluble protein or more, these 

GNA-fusion genes would be good candidates for insect resistance breeding programs in 

developing elite rice plants suitable for local demands. 
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Figure 5.1: Expression of the first domain Ac-GNA fusion protein in E. Coli 

and protein purification. 

(A): western blot of total protein samples ( I H: sample taken at 1 hour after 

induction; 2H, 3H, 4H: 2, 3, 4 hours after induction) run on SDS-PAGE 

protein gel ( 12% acrylamide), probed with anti-GNA antibody. UI: Un

induced sample, GNA: Purified GNA standard. 

(B): SDS-PAGE protein gel of purified (P) sample using an affinity Ni

column. Proteins were detected by Coomassie blue staining. 

(__..):the first domain Ac-GNA fus ion protein, approximately 41,15 kDa. 
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Figure 5.2. : Expression of TRX-GNA fusion protein in E.coli and protein 

purification. 

(A): western blot of insoluble (IS) and soluble (S) fractions run on SDS

PAGE protein gel ( 12% acrylamide), probed with anti-GNA antibody, GNA: 

Purified GNA standard. 

(B): SDS-PAGE protein gel of unpurified (UP) sample from solubilised IS 

fraction and purified (P) sample using Q-sepharose column. Proteins were 

detected by Coomassie blue staining. 

(__..): TRX-GNA fusion protein, approximately 25,9 kDa 
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Figure 5.3: Expression of Ac-RTB fusion protein in E.coli and protein 

purification. 

(A): western blot of soluble (S) and insoluble (IS) samples of Ac

RTB fusion proteins run on SDS-PAGE protein gel ( 12% 

acrylamide), probed with anti-CrylAb antibody which cross-reacts 

with the CrylAc protein 

(B): SDS-PAGE protein gel (12% acrinamide gel) of purified Ac

RTB protein sample eluted from Ni-affinity column. Proteins were 

detected by Coornassie blue staining. 

( .....W. Ac-RTB fusion protein, expected size is about 97 kDa 
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Figure 5.4: An artificial diet bioassay of the purified first domain Ac-GNA 

fusion protein and GNA, each at concentrations of 0.05 mg/ml and 0.1 mglml 

in diet medium. Controls include (1) no diet, (2) water and (3) diet medium 

without added purified first domain Ac-GNA protein. Five of second or third 

instar BPH nymphs were used in each dish, ten replicates for each treatment. 

Error bars: ± 1 standard errors. 
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Figure 5.5: An artificial bioassay of the first domain Ac-GNA against Lacanobia 

oleracea. (A): Larval survival analysis. Neonate first instar larvae were placed 

individually on diet treatments containing toxin proteins (either CrylAb, Cry l Ac, 

first domain Ac-GNA or GNA) or adding only casein instead (control treatment) at 

the concentration of 2% (w/w). Each treatment was replicated for 30 times. (B): 

Larval development; individual wet weights ( +1- 0.1 mg) were recorded. 
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Figure 5.6: Artificial diet bioassay of the purified TRX-GNA fusion protein at the 

concentration of 0.05 mg/ml in diet medium. Control diet is without added purified 

TRX-GNA protein. Five of second or third instar BPH nymphs were used in each 

dish, ten replications for each treatment. Error bars : ± 1 standard errors. 
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Figure 5.7: Artificial bioassay of Ac-RTB against Lacanobia oleracea. (A): 

Larval survival analysis. Neonate first instar larvae were placed individually on 

diet treatments containing toxin proteins (either CrylAb, Cry lAc or Ac-RTB) or 

adding only casein instead (control treatment) at the concentration of 2% (w/w). 

Each treatment was replicated for 30 times. (B): Larval development; individual 

wet weights ( +1- O.lmg) were recorded. 
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Figure 5.8 : Southern blot analysis of genomic DNAs from leaves of 

RO first domain Ac-GNA transgenic rice plants. The DNAs were 

digested with EcoRl, which cut the transforming plasmid once, and 

hybridised with random labelled probes from the coding sequence of 

first domain Ac-GNA fusion. (fC): Hygromycin transgenic plant. 

(WT): Wild type EYI105. (Mr): lkb molecular marker. 
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Figure 5.9 : Southern blot analysis of genomic DNA from 

leaves of RO TRX-GNA transgenic rice plants. The DNAs 

were digested with EcoRl, which cut the transforming plasmid 

once, and hybridised with random labelled probes from the 

coding sequence of TRX-GNA. 

WT: Wild type EYI105 

Mr: lkb molecular marker 
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Figure 5.10: Southern blot analysis of genomic DNA from 

leaves of RO Ac-RTB transgenjc rice plants. The DNAs 

were digested with EcoRl, whlch cut the transforming 

plasmid twice (one inside the Ac-RTB gene and the other at 

the cloning site of pAL 76 vector), and hybridised with 

random labelled probes from the coding sequence of Ac

RTB. (TC): Hygromycin transgenic plant. (WT): Wild type 

EYI105. (Mr): lkb molecular marker. 

123 



Chapter 5 Production of transgenic rice plants with wide-spectrum 
resistance to insect pests. 

(Kb) 

3.0 

2.0 
1.5 
1.0 

0.5 

4 Wt 

Figure 5.11: RT-PCR analysis of RO first domain Ac-GNA 

transgenic rice plants. The amplified product is 820 bp in size. 

Total RNAs were treated with DNase before RT-PCR analysis. 

Lane 1-4: RO first domain Ac-GNA transgenic plants 
WT: wild type EYI105. 

M: lkb DNA ladder marker 
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Figure 5.12: Western blot analysis of RO first domain Ac-GNA 

rice transgenic plants. An amount of 50ug of total protein was 

loaded on SDS-PAGE protein gel (12% acrylarnide), probed with 
anti-GNA antibody. 

Lane 1-4: RO first domain Ac-GNA transgenic plants 
Wt: wild type EYIIOS 

GNA: purified GNA protein, SOng loaded per lane. 

(_.): first domain Ac-GNA fusion protein, expected size is 41,15 
kDa. 
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Figure 5.13: RT-PCR analysis of RO TRX-GNA transgenic 

rice plants. The amplified product is 350 bp in size. Total 

RNAs were treated with DNase before RT-PCR analysis .. 
WT: wild type EYI105 

C: control transforming plasmid of TRX-GNA construct. 
M: lkb DNA ladder marker 
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Figure 5.14: Western blot analysis of RO TRX-GNA rice 

transgenic plants. 50ug of total protein was loaded on SDS

PAGE protein gel (12% acrylamide), probed with anti-GNA 

antibody. 

Lane 1-6: RO TRX-GNA transgen ic plants 

wt: wild type EYI105 

GNA: purified GNA protein, SOng loaded per lane. 

( ~ ): TRX-GNA protein , expected size is 25.9 kDa. 
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Figure 5.15: RT -PCR analysis of RO Ac-RTB transgenic rice 

plants. The amplified product is 654 bp in size. Total RNAs were 
treated with DNase before RT-PCR analysis. 

Lane 1-4: RO Ac-RTB transgenic plants 
WT: wild type EYI105. 

M: lkb DNA ladder marker 
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Figure 5.16: Western blot of RO transgenic rice plants expressing 
Ac-RTB fusion protein; blot probed with anti-cryiAb antibody, 
which cross-linked with CrylAc protein. Wt : non-transformed 
control; TC : transformed control, negative for Ac-RTB trans gene 
by PCR. Mol. wt. scale from NEB prestained protein marker 
standards (P7708). SDS-PAGE carried out on 5% acrylamide gel. 

( __. ): Ac-RTB fusion protein, expected size is 97kDa. 
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Figure 5.17: Selection of hygromycin-resistant plants of Rl 

progenies of TRX-GNA and first domain Ac-GNA transgenic rice 

lines. Seeds obtained from RO transgenic and wild type plants were 

germinated in 1110 MS medium nutrient solution containing 50mg/l 

hygromycin. Representative photos of screened AcGNA4 , 

TRXGNA 1 and wild type seeds were shown (1 week after 
germination). 
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Table 5.1 : Inheritance analysis of Rl transgenic rice progenies for hygromycin 

resistance gene. 

Construct Clone total seeds resistant susceptible Expected 
germinated seedlings germinated Ratio 

seeds 

1 50 39 11 3: 1 

2 36 25 1 1 3: 1 
First domain 

Ac-GNA 3 33 24 9 3: 1 

4 50 37 13 3: 1 

1 50 39 1 1 3: 1 

2 50 38 12 3: 1 

3 13 10 3 3: 1 
TRX-GNA 

4 20 16 4 3: 1 

5 14 9 4 3: 1 

6 15 10 5 3: 1 
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Figure 5.18: PCR analysis for the presence of TRX
GNA (A) and Ac-GNA genes (B) in R1 transgenic rice 
plants. 
(--) : negative control (water). 
(+) :positive control (plasmids containing target genes) 
M: Marker, 1 kb marker 
lane 1 - 10: R1 transgenic rice plants 
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Figure:5.19: Bioassay of Rl first domain Ac-GNA transgenic rice plants against 

brown plant hopper. (A): Assays were carried out with first- or second-instar 

nymphs, Ten nymphs were inoculated onto 20 days-old rice seedling plants and 

were set up for 10 replicates of each transgenic line. Wild type EYI105 plants were 

used as controls. Error bars: ± 1 standard errors. (B): Mean value (%survivors) of 

survival BPH nymphs from pooled R1 Ac-GNA transgenic and wild type data 

during the time course of bioassay. 
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Figure 5.20: Bioassay of Rl TRX-GNA transgenic rice plants against brown 

plant hopper. (A): Assays were carried out with first- or second-instar nymphs, 

Ten nymphs were inoculated onto 20days-old rice seedling plants and were set up 

for 10 replicates of each transgenic line. Wild type EYI 105 was used as a control. 

Error bars: ± 1 standard errors (B): Mean value (% survivors) of survival BPH 

nymphs from pooled Rl TRX-GNA transgenic and wild type data during the time 
course of bioassay. 
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Figure 5 .. 21: screening R1 TRX-GNA transgenic plants against 
brown planthopper (BPH) insect. (A): two days after BPH 
infectation. (8): nine days after BPH infectation. 
TN1 : BPH susceptible control plants 
TRXGNA: R1 transgenic rice plants 
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Chapter 6 

GENERAL CONCLUSION§ 

This work has aimed at applying plant genetic engineering methods to 

understand the bases of, and to improve, some agronomic characteristics of rice. Recent 

advances in molecular genetics and biology have greatly increased our understanding 

and capacity to modify and produce crop plants with desirable characteristics that would 

be impossible to achieve with conventional, non-molecular-based breeding alone. The 

success of this study would have an impact, at least, on the sustainability of rice 

production in VietNam where rice production has been a remarkable achievement in 

term of productivity and export recently. 

This thesis describes the production of transgenic rice plants with alterations to 

two main traits: 

(1) Polyamine content in the rice plant, as an agronomic-related physiological trait that 

affects the ability of rice to tolerate environmental stresses (Sawhney and Galtson, 

1979). An understanding of how the polyamine pathway is controlled and regulated will 

benefit our planning for the production of polyamine modified rice cultivars for 

environmental stress areas. 

(2) Resistance of the rice plant to attack by insect pests plays an important in sustaining 

food productivity. The rice crop is vulnerable to a wide range of insect herbivores 

which both feed on the plant and act as vectors for transmission of viral pathogens. 

Therefore the continuing enhancement of insect resistance traits in rice, in terms of 

toxicity, insecticidal spectrum and durability, is a priority for rice researchers. 

I have demonstrated that the level of putrescine in rice plants can be modified 

according to need by using transgenic approaches. The expression of antisense 

heterologous oat arginine decarboxylase eDNA in rice plants can suppress endogenous 

enzyme activity, and decrease end product level in a tissue dependent manner. The 

expression level of oat antisense ADC vs endogenous rice ADC transcripts, rice ADC 

transcript vs ADC enzyme activity in transgenic rice plant did not tighly correlated. 

Malmberg et al. (1992) and Watson and Malmberg (1996) reported that precursor ADC 

polypeptide was post-translationally processed in oat and Arabidopsis species to give 
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rise two active polypeptides. Therefore, the less- or un-correlation between oat ADC 

and rice ADC transcripts, between rice ADC transcript and ADC enzyme activity 

indicated that the activity of ADC enzyme is post-transcriptional regulated. For a 

hierarchical accumulation of polyamines in different tissues/organs, it is reasonable to 

assume that in highly metabolically active tissues/organs such as leaf, plant employs 

some kinds of regulation mechanism to maintain steady-state pools of key vital 

metabilites. Therefore, it is possibly that the differentiate accumulation of polyamines in 

leaf (metabolically active) and in seed or root (less metabolically tissues) is due to the 

translocation of polyamines from one to another parts of the plant. Thus the 

translocation of polyamines might be one of regulatory mechanisms that plant cells use 

to control polyamine pathway and its products. Our results also showed that the steady

state mRNAs for the other endogenous polyamine genes remained unaffected by the 

presence of the oat ADC antisense ADC. This indicated that the tight regulation at the 

level of mRNA expression of the genes involved in the polyamine pathway is not 

overcomed by the alteration of the size of the free polyamine pool. 

To extend the results obtained with putrescine synthesis, I have demonstrated 

that the over-expression of a homologous spermidine synthase transgene in rice plants 

increases the expression of both endogenous and transgene mRNAs. Transgenic rice 

plants were observed over-expressed spermidin synthase mRNAs and possibly resulted 

in higher level of spermidine synthase enzyme. Paradoxically, the accumulation of 

spermidine was not significantly changed when compared to that of non-transformed 

wild type plants. It was noted, however, that putrescine levels in these transgenic rice 

plants were significantly higher accumulated without changes in ADC and ODC at 

mRNAs levels. The phenomenon suggests the possible presence of an inter-conversion 

process from spermidine to putrescine in transgenic plants. This may be one of 

regulatory mechanisms through which plants adjust their metabolism to maintain 

steady-state pools of key metabolites. David et al. (1992) have proposed that animal 

cells, although able to tolerate high concentrations of putrescine, are unable to tolerate 

high concentrations of spermidine and spermine. Woon-Noh et al., (1994) generated 

transgenic tobacco plants which over-expressed a human SAMDC gene under the 

control of 35S promoter. They obtained abnormal morphological transgenic plants with 
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significantly increased level of SAMDC activity, putrescine level was significant 

reduced, spermidine was 2-3 times higher than the control, while spermidine content 

was either increased or remained unchanged. Kumar et al. ( 1996) generated transgenic 

potato plants with either sense or antisense SAMDC. They observed that transgenic 

plants with constitutively expressing sense SAMDC failed to survive after the micro 

callus stage and suggested that large increase in the level of spermidine could be 

cytotoxic to transformed cells. In our study, transgenic plants that over-expressed 

spermidine synthase mRNAs displayed normal phenotype development as similar as 

that of control wild type and hygromycin transformed plants. It is possible that the 

process of selection of transformed cells might have recovered only transgenic plants 

with small or moderately changes in spermidine synthase enzyme activity and with an 

elevated inter-conversion process as indicated by normal phenotype development of the 

transgenic rice plants. Those transformed cells with over-expressed spermidine synthase 

enzyme that caused large increase in spermidine became lethal. Furthermore, this study 

also suggests that the step from putrescine to spermidine which catalysed by spermidine 

synthase enzyme is regulated at post-transcriptional levels. 

In summary, our results along with other publications clearly showed that: (1) 

although putrescine levels in plant cells can fluctuate widely, little or no changes in 

either spermidine or spermine was observed. (2) The likelihood of a tight metabolic 

regulation that controls polyamine levels in leaf (or stem) is probably achieved by some 

regulatory mechanisms likely (a) transcription, translational and post translational 

modifications, (b) translocation of polyamines from one to other parts of the plant, (c) 

inter-conversion process. It is possible that some of these regulatory mechanisms may 

be important in controlling minor fluctuations in polyamine levels, while others only 

become involved under large changes of polyamine pools. Our results also imply that 

attempts to alter polyamine metabolism might be nullified by regulatory mechanisms 

present in the plant that are not fully understood at present. 

I have demonstrated that toxicity, insecticidal spectrum and possibly durability 

of toxins resistant to insect pests can be enhanced by using gene constructs encoding 

fusion proteins. The fusion between the first domain of crylAc with GNA (AcGNA) 

showed toxic to both tomato moth (Lacanobia oleracea; Lepidoptera) and brown 
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planthopper ( Nilaparvata lugens; homoptera) insect pests as demonstrated by artificial 

insect bioassays of purified proteins and plant-insect bioassay (Fig. 5.4; 5.5; and 5.19). 

The fusion between cry1Ac with ricin B chain (RTB) showed a slightly reduced 

survival of tomato moth larva fed on Ac-RTB transgenic rice plants as compared to the 

survival of larvae that fed on a diet containing the parental Bt toxins: cry1Ac or cry1Ab 

(Fig. 5.7). This could imply that the RTB protein domain is only playing a role in 

increasing receptor-binding sites, and is not as a result increasing the toxicity of the 

fusion protein. However, further confirmatory experiments including artificial bioassays 

and a trial of transgenic plants expressing this fusion protein against different insect 

pests need to be done to fully assess the biological activity of Ac-RTB fusion protein. 

The level of resistance seen in plants containing the TRX-GNA fusion gene (Fig.5.20 

and 5.21), despite very low levels of expression of the protein (Fig. 5.14) suggested that 

the fusion of TRX gene with GNA might help targetting GNA present in phloem cells 

much efficiency than plants that expressed GNA alone. In summary, these fusion 

proteins have been shown to display an additive effect as insect toxins by maintaining 

the functional properties of the individual proteins. Our study along with the results 

published by Fitches et al. (1997; 2002; 2004 (a) and (b)) demonstrated that fusion 

between different translational peptides could generate novel insecticidal toxin genes 

possessing novel traits according to our needs. 

Our results clearly showed that transgenic rice plants expressing these fusion 

protein genes are moderately resistant to brown planthopper, an important insect pest in 

tropical rice growing areas. We suggest that optimisation of expression of Ac-GNA and 

TRX-GNA constructs could result in rice plants that were highly resistant to the pest. I 

have developed transgenic rice plants that could be used as valuable breeding resources 

for an insect-resistance breeding program. These rice plants behave as horizontally 

resistant cultivars that are suitable for integrated pest management (IPM) networks. 
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Appendix 

APPENDIX 

ARTIFICIAL DIET COMPOSITION 

Ingredient 
K2HP04 
MgS04.1H20 
Sucrose 
L-alanine 
L-arginine hydrochloride 
L-asparagine 
L-aspartic acid 
L-cysteine 
L-glutamic acid 
L-glutamine 
Glycine 
L-histidine 
L-isoleucine 
L-leucine 
L-lysine hydrochloride 
L-methionine 
L-phenylalanine 
L-proline 
DL-serine 
L-threonine 
L-tryptophan 
L-tyrosine 
L-valine 
Thiamine hydrochloride 
Riboflavin 
Nicotinic acid 
Pyridoxine hydrochloride 
Folic acid 
Calcium pantothenate 
Meso-inositol 
Choline chloride 
Biotin 
Sodium ascorbate 
FeCl3.6H20 
CuC12.2H20 
MnC12.4H20 
ZnCl2 
CaCl2.2H20 

pH (with KOH) 

Store below -2ooc 

mgll 
7500 

1230 
50000 
1000 
2700 
5500 
1400 
400 
1400 
1500 
800 
800 
800 
800 
1200 
800 
400 
800 
800 
1400 
800 
400 
800 
25 
5 
100 
25 

5 
50 
500 
500 
1 
1000 
22.28 
2.68 
7.93 
11.88 
31.15 

6.5 

Dissolve tyrosine in small volume 1N HCl 
Dissolve riboflavin by gentle heating in distilled water prior to adding to stock 

(ref: Mitsuhashi ( 197 5)) 
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Abstract We investigated whether down-regulation of 
arginine decarboxylase (ADC) activity and concomitant 
changes in polyamine levels result in changes in the 
expression of downstream genes in the polyamine 
pathway. We generated transgenic rice (Oryza sativa L.) 
plants in which the rice adc gene was down-regulated by 
expression of its antisense oat (Avena sativa L.) ortho
log. Plants expressed the oat mRNA adc transcript at 
different levels. The endogenous transcript was down
regulated in five out of eight plant lineages we studied in 
detail. Reduction in the steady-state rice adc mRNA 
levels resulted in a concomitant decrease in ADC 
activity. The putrescine and spermidine pool was sig
nificantly reduced in plants with lower ADC activity. 
Expression of the rice ornithine decarboxylase (ode), 
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S-adenosylmethionine decarboxylase (samdc) and sper
midine synthase (spd syn) transcripts was not affected. 
We demonstrate that even though levels of the key 
metabolites in the pathway were compromised, this did 
not influence steady-state transcription levels of the 
other genes involved in the pathway. Our results provide 
an insight into the different regulatory mechanisms that 
control gene expression in the polyamine biosynthetic 
pathway in plants by demonstrating that the endoge
nous pathway is uncoupled from manipulations that 
modulate polyamine levels by expression of orthologous 
transgenes. 

Keywords Antisense · Arginine decarboxylase · 
Oryza · Polyamine 

Abbreviations ADC (adc): argmme decarboxylase 
protein (gene) · DIG: digoxigenin · ODC (ode): orni
thine decarboxylase protein (gene) · SAMDC (samdc): 
adenosylmethionine decarboxylase protein (gene) · SPD 
SYN (spd syn): spermidine synthase protein 
(gene)· RT-PCR: reverse transcription-polymerase 
chain reaction 

Introduction 

Manipulation of metabolic pathways in plants through 
molecular genetic approaches is now possible as a result 
of a significant increase in our knowledge base in terms 
of how such, often complex, networks are controlled and 
regulated. An important step forward in our ability to 
understand and modulate plant biosynthetic pathways is 
the availability of cloned genes encoding key enzymes 
involved in the pathway. This, together with the identi
fication of useful mutant phenotypes and advances in 
gene transfer technology make it possible to pose 
important biochemical questions that need to be 
addressed before we embark on useful strategies to 
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engineer complex pathways in plants. Sophisticated 
genomic tools, availability of transcription factors that 
influence metabolism in a holistic manner and a better 
understanding of how the biochemistry of a given 
pathway may be controlled spatially and/or temporally 
provide additional means of manipulating plant 
metabolism. 

Transgenic manipulation of polyamine metabolism 
has become a valuable tool for studying their physio
logical roles in plants (for review, see Kumar and 
Minocha 1998; Bhatnagar et al. 2002). Cellular content 
of polyamines has been modulated by over-expression or 
down-regulation of arginine decarboxylase (adc), orni
thine decarboxylase (ode) and S-adenosylmethionine 
decarboxylase (samdc; for review, see Kumar and 
Minocha 1998; Bhatnagar et al. 2002). Over-expression 
of heterologous adc or ode eDNA generally causes the 
production of high levels of putrescine (DeScenzo and 
Minocha 1993; Bastola and Minocha 1995; Burtin and 
Michael 1997; Capell et al. 1998). In most cases, a 
relatively small increase in spermidine and spermine has 
been observed despite significantly large increases in 
putrescine levels in transgenic cells (Bassie et al. 2000; 
Lepri et al. 2001; Sivamani et al. 2001). This observa
tion, combined with the fact that under stress conditions 
mostly putrescine levels appear to fluctuate without 
major changes in spermidine or spermine levels, suggests 
that the levels of spermidine and spermine are under a 
tight homeostatic regulation (Bhatnagar et al. 2002). 

Among the regulatory mechanisms controlling ADC, 
ODC and SAMDC activities, feedback control by 
polyamines has been described in different systems. In 
osmotically stressed oat leaves, spermidine inhibits post
translational processing of the ADC precursor with a 
subsequent decrease in mature ADC (Borrell et al. 
1995). Exogenously added polyamines suppressed ADC 
activity in tobacco cell cultures, also suggesting the 
existence of a feedback regulatory mechanism for ADC 
(Hiatt et al. 1986). With regard to the feedback control 
of plant ODC by polyamines, the sensitivity of ODC 
activity to these molecules suggests that polyamine 
synthesis via ODC may be regulated, at least in part, by 
simple end-product accumulation (Slocum and Rich
ardson 1991). However, the data obtained by Hiatt et al. 
(1986) suggest that this may not be a general mechanism 
since exogenously added polyamines did not suppress 
ODC activity in tobacco cell cultures. In contrast to the 
mammalian or yeast enzymes, the plant SAMDC 
enzyme is not stimulated by putrescine, and it appears 
that the accumulation of cellular polyamines inhibits 
SAMDC activity (Hiatt et al. 1986). In tobacco cell 
cultures, treatment with 1 mM spermidine resulted in a 
rapid decrease in SAMDC activity by blocking the 
synthesis of the enzyme (Hiatt et al. 1986). This sug
gested that there might be different mechanisms involved 
in regulating ADC, ODC and SAMDC activities 
(Tiburcio et al. 1997). 

For the past several years we have been investigating 
molecular and biochemical aspects of the polyamine 

biosynthetic pathway in plants, using rice as a model. In 
the course of these studies we generated transgenic 
plants expressing different polyamine biosynthetic genes, 
including adc, ode and samdc (Capell et al. 1998; Noury 
et al. 2000; Lepri et al. 2001; Thu-Hang et al. 2002). We 
have demonstrated that by over-expressing the Datura 
samdc eDNA, rice leaf tissue can accumulate 2-fold 
higher putrescine and 2.5-fold higher spermidine levels 
when compared to wild type, with a concomitant 
increase in ADC and ODC activity. No changes in 
samdc and spermidine synthase (spd syn) transcripts were 
observed (Thu-Hang et al. 2002). We subsequently 
wished to investigate whether down-regulation of the 
rice adc gene would result in depletion of the polyamine 
pool and whether this would influence expression of 
other genes in the pathway. We used transgenic rice 
plants in which the rice adc gene was down-regulated by 
expression of its antisense oat ortholog. Transcript 
accumulation of the rice ode, samdc and spd syn was not 
affected. Reduction in the steady-state rice adc mRNA 
levels resulted in a concomitant decrease in ADC 
activity. We demonstrated that even though levels of the 
key metabolites in the pathway were compromised, this 
did not influence steady-state transcript levels of the 
other genes involved in the pathway. Our results indicate 
that even though the endogenous polyamine pool in 
these plants is altered substantially, this does not have 
any effect on the steady-state mRNA of the other 
downstream genes in the polyamine pathway. 

Materials and methods 

Plasmids, transformation and plant regeneration 

The 2.124-kb oat adc eDNA (Bell and Malberg 1990) was excised 
as an EcoRI fragment from pAMC2 (Burtin and Michael 1997) 
and subcloned into the EcoRI site of pJIT60 (Gurineau et al. 1992) 
which contains a 35S CaMV promoter with duplicated enhancer 
sequences and a nos termination region. Using the restriction 
enzyme Sail, we confirmed the antisense orientation of the oat adc 
eDNA. This plasmid was subsequently referred to as 35S:adca. 
Bombardment, selection and regeneration of transgenic material 
were as described previously (Sudhakar et al. 1998; Capell et al. 
2000). 

Polymerase chain reaction (PCR) and reverse transcription
polymerase chain reaction (RT-PCR) 

Genomic DNA was extracted from leaf tissue according to the 
method of Edwards et al. (1991). Genomic PCR amplifications were 
carried out in a total volume of 50 111, comprising 100 ng genomic 
DNA, lx Roche PCR buffer [50 mM KCI, 10 mM Tris-HCI 
(pH 9.0), 1.5 mM MgCI2, 0.1% Triton X-100), 400 11M each de
oxynucleoside triphosphate, 100 nM of each primer and 2.5 units of 
Taq DNA polymerase (Roche). The accession number for the oat adc 
sequence, primer sequences and the predicted amplification product 
size are indicated in Table I. For the oat adc eDNA we carried out 35 
amplification cycles: denaturation (96 °C, 40 s), annealing (70 °C, 
30 s) and extension (72 oc, 2 min 30 s). The product was visualized 
on a I% Tris-borate buffer (TBE) agarose gel. 

Total RNA was extracted from 2-month-old leaves and tillers of 
transgenic plants and wild type using the RNeasy Plant Mini Kit 
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Table 1 Primers used in PCR, 
RT-PCR analysis and probes. 
PCR product sizes: pRadc-3, 
pRadc-4=400 bp; pOatadc-1, 
pOatadc-5 = 1.5 kb; pRodc-1, 
pRodc-2 = 700 bp; 

Accession Primer Nucleotide position Sequence 
number name in the EST (E) 

or ORF (0) 

C99671 pRadc-3" I (E) 5' -AGCGCGCTGGTGTGCGCACCA-3' 
pRadc-4b (rice adc) 5'-TGTCGCAGGTGAGGTCGGAG-3' pRsamdc-1, pRsamdc-

2 = 700 bp; pRspdsyn-1, 
pRspdsyn-2 = 900 bp; pAct-!, 
pAct-2 = 600 bp.EST Expressed 
sequence tag, ORF open 
reading frame 

X56820 pOatadc-1" I (0) 5' -CGGCGA TGTGT ACCATGTCGAGGG-3' 
p0atadc-5b (oat adc) 5' -GCGGGTGCAGCGGCA TCGTCTCGG-3' 

BE040058 pRodc-3" 60 (E) 5'-GCGTTTTATGCGA TTTGCGAACGG-3' 
pRodc-4b (rice ode) 5' -CCCAGTCT AAACAAGCCGGAACCG-3' 

Y07766 pRsamdc-1" 1023 (0) 5'-GGAGATCCAGCAAAGCCTGGCC-3' 
pRsamdc-2h (rice samdc) 5' -CCCAGGGGAGAAGA TTGCCCAG-3' 

AJ251298 pRspdsyn-1 a 196 (0) 5' -GGATGGTTCTCCGAGA IT AG-3' 
pRspdsyn-2b (rice spd syn) 5' -GA TCT AGTTGGCCTTGGATC-3' 

"Forward primer 
bReverse primer 

Xl6280 pAct-!" 
pAct-2b 

I (0) 5'-ATGGCTGACGCCGAGGATAT-3' 
(rice actin-I) 

(Qiagen). A single tiller from each plant was separated and grown 
hydroponically in Yoshida's solution (Yoshida et al. 1972) to induce 
root growth. Roots were harvested 2 weeks later and RNA analyses 
were carried out using the same kit as before. Aliquots of 200 ng 
total RNA were used in each RT-PCR reaction. Reverse tran
scription was performed using the Access RT -PCR System (Pro
mega). The resulting oat adc eDNA was amplified as described 
above, using the same primers and cycling conditions. As a negative 
control, particular RNAs without RT were also subjected to RT
PCR. Products from 25 cycles after separation in a I% TBE agarose 
gel were capillary-blotted on positively charged nitrocellulose 
membranes (Roche). Blots were hybridized with the oat adc probe 
(Table I) under the same conditions used for DNA gel blot analysis 
(as described subsequently). Exposure time was 10 min. For each 
plant, rice actin- I transcripts also were amplified as constitutive 
expression controls as described in Fu et al. (2001). Re-hybridiza
tion of the blot with the rice actin-] probe (Table I) was carried out 
as described in Hloch et al. (2001). Exposure time was 20 min. 

DNA and RNA gel blot analysis 

Rice (Oryza sativa L.) DNA, RNA and oat (Avena sativa L.) DNA 
was isolated from leaf and root tissue according to the procedure of 
Creissen and Mullineaux (1995). Tissue from plants grown exactly 
under the same conditions as described for PCR analysis was used. 
Following Hindiii or EcoRI digestion and electrophoresis on a I% 
TBE agarose gel (Sambrook et al. 1989), DNA (15 1-1g) was trans
ferred to a positively charged nylon membrane (Roche). Nucleic 
acids were fixed by baking at 80 oc for 2 h. Filters were washed in 
2xSSC for 30 min and then pre-hybridized at 42 ac for 2 h using 
the digoxigenin (DIG)-easy hybridization solution (Roche). The 
primer sequences used to make the oat adc probe and the predicted 
amplification product size are indicated in Table I. The probe was 
labeled using the PCR DIG probe synthesis kit (Roche). Alkali
labile DIG-11-dUTP was incorporated into the probe in a final 
volume of 50 1-11 comprising 4 1-1M dATP, 4 1-1M dCTP, 4 1-1M 
dGTP, 3.2 1-1M dTTP, 0.8 1-1M DIG-11-dUTP, Ix Roche PCR 
buffer [50 mM KCI, 10 mM Tris-HCI (pH 9.0), 0.1% Triton X-
100], 2.5 units of Taq DNA polymerase (Roche), 0.1 mM each of 
the forward and reverse sequence primers and 200 pg of the plas
mid. We carried out 35 amplification cycles: denaturation (96 ac, 
10 s), annealing (70 °C, 10 s), and extension (72 °C, I min 30 s). 
Labeled oat adc probe was purified using the QIAquick Gel 
Extraction Kit (Qiagen) and denatured at 68 ac for 10 min prior to 
use. Hybridization was performed at 42 ac overnight. The mem
branes were washed twice for 5 min in 2xSSC, 0.1% SDS at room 
temperature, and then twice (15 min) in 0.5xSSC, 0.1% SDS at 
68 ac. Genomic £caRl-digested rice and oat DNA (5 1-1g) from 
wild-type plants was probed with the oat adc DIG-labeled probe 
and washed twice (15 min) in 2xSSC, 0.1% SDS at 68 °C. 
Chemiluminescence detection was carried out according to 
the manufacturer's instructions using the DIG Luminescence 

5' -AGGAGTGGTGACTGAGT AAC-3' 

Detection Kit. After washing, the membranes were incubated with 
CSPD(R) Chemiluminescent Substrate (Roche) and subsequently 
exposed to X-ray film (Fuji Photofilm Co., Kanawa, Japan) for 
30 min at 37 ac. 

Denatured RNA (30 l!g) from leaf tissue and roots was sub
jected to electrophoresis on a 1.2% agarose-formaldehyde gel using 
lxMops buffer (Sambrook et al. 1989). Hybridization of the RNA 
gel blots from leaf tissue and roots with the oat adc probe was as 
described above for DNA procedures. Membranes were exposed to 
X-ray film for I 0 min at 37 °C. Hybridization of the RNA gel blot 
with the rice probes was carried out as described subsequently. 
Accession numbers, primer sequences used to make the rice adc, 
rice ode, rice samdc and rice spd syn probes and the predicted 
amplification product sizes are indicated in Table I. Probes were 
labeled using the PCR DIG probe synthesis kit (Roche). We carried 
out 35 amplification cycles: denaturation (96 °C, 10 s), annealing 
[64 oc (rice adc), 65 oc (rice ode), 65 oc (rice samdc), 60 ac (rice 
spd syn), 10 s], and extension (72 °C, I min). Labeled probes were 
purified using the QIAquick Gel Extraction Kit (Qiagen) and 
denatured at 68 ac for 10 min prior to use. Transfer and hybrid
ization were carried out as described above for DNA procedures. 
Re-probing of the membranes was performed as described in Hloch 
et al. (2001). Membranes were exposed at 37 octo X-ray film for 
30 min for adc, 50 min for ode, 30 min for samdc, and I h for spd 
syn. 

All RNA experiments were repeated at least twice from 
independent RNA isolations. Oat and rice adc steady-state mRNA 
hybridization signals were quantified using Quantity One (Quan
tification Software; Bio-Rad) and the resulting values were 
normalized using values obtained from RNA loading levels. 

Determination of ADC activity 

Leaf tissue from 2 month-old plants at the same stage as described 
for molecular analysis were used for ADC activity measurements. 
Tissue was extracted in buffer (0.1 M Tris, pH 7.6, and 2 mM 
DTT) at a ratio of 300 mg ml- 1 buffer. Polyvinylpyrrolidone 
(100 mg) was added during grinding. Following centrifugation at 
12,000 g for 20 min, the supernatant was used directly in enzyme 
activity assays. Tissue was always processed immediately after 
harvest and all assays were performed using fresh extracts. Enzyme 
assays were carried out in 1.5-ml Eppendorf tubes. A 6-mm
diameter filter paper disc impregnated with 50 1-11 of 2 N KOH and 
transfixed with a 3-cm needle was used to trap the 14C02 liberated 
during the reaction. The reaction mixture for ADC activity con
tained 20 1-11 of extraction buffer (pH 7.6), 160 1-11 of crude enzyme 
and 20 1-11 of the substrate mix [20 1-11 of L-[U- 14C]-arginine (specific 
activity II GBq mmol- 1

, radioactive concentration 1,850 kBq 
ml- 1

; Amersham International) diluted with 20 1-11 non-radioactive 
arginine (500 mM) and 60 1-11 of distilled water] to give a final 
concentration of 10 mM arginine. Two hundred microliters of 10% 
(vfv) perchloric acid was added to stop the reaction. After further 
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incubation for 45 min the filter paper was placed in scintillation 
minivials with 2 ml scintillation liquid (OptiPhase Hisafe II; 
Fisons Chemicals) and radioactivity was measured in a Wallac 
1219 Rackbeta liquid scintillation counter. Protein determination 
was carried out as described in Bradford (1976), using bovine 
serum albumin as a standard. One nkat of ADC activity was 
defined as the amount (J.unol) of 14C02 released per min and per mg 
protein. 

Polyamine analysis 

Crude extracts from leaves from 2-month-old plants and seeds were 
dansylated and separated by TLC (thin-layer chromatography) as 
described earlier (Bassie et al. 2000). The dansyl-polyamine bands 
were identified on the basis of their Rf values after visualisation 
under UV light (312 nm) and comparison to dansylated polyamine 
standards. The image of the chromatogram was captured and 
analysed by Quantity One (Quantification Software; Bio-Rad). The 
relative amount of dansyl-polyamines in each sample was deter
mined by calculating the integrated optical density of the bands 
compared to the integrated optical density of the appropriate 
dilution of the dansylated control samples. Results were expressed 
as nmol g- 1 fresh weight (fw). 

Statistical analysis 

As control values for biochemical analyses (enzyme activity and 
polyamine content) we used hpt-transformed plants in addition to 
wild-type controls (average of three samples each from six inde
pendent lines; n = 36). Hygromycin-resistant transformants and 
wild-type control values were not significantly different (P > 0.05) 
in terms of enzyme activity and polyamine levels (Lepri et al. 2002). 
For biochemical analyses of transgenic material (enzyme activity 
and polyamine content) we used the average value of three samples 
from each sibling (n = 3) and each measurement was repeated twice. 
The data were analyzed by two-way analysis of variance followed 
by a t-test using the Residual Mean Square in the ANOVA as the 
estimate of variability. 

Results 

The 1.5-kb oat adc probe, detects the rice adc gene 

To confirm that the antisense effect was due to the 
homology between sequences, we digested rice and oat 
genomic DNA with EcoRI and hybridised at low strin
gency to the 1.5-kb DIG-labelled region of the oat adc 
eDNA. EcoRI digests of rice and oat DNA yielded one 
fragment at ::::;12 kb that hybridised strongly to the adc 
probe in both species. In oat, a second genomic fragment 
of ::::;7 kb was also detected (Fig. 1). 

Molecular characterization 
of the transgenic population 

The transformation vector containing the oat antisense 
adc eDNA was constructed as described in Materials 
and methods. Gene transfer and recovery of primary 
transformants were carried out as described in Capell et 
al. (2000). We analyzed 12 independent transgenic rice 
plant lineages and we confirmed integration of the 
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Fig. 1 Gel blot analysis of £caRl-digested genomic rice (Oryza 
sativa, genotypes ITA and EYT) and oat (Avena sativa) DNA. The 
blot was probed with the 1.5-kb DIG-labelled PCR product from 
35S:adca at low stringency. Exposure time 30 min. L Molecular 
size marker (1-kb DNA ladder; Invitrogen) 

35S:adca by genomic DNA gel blot analyses (Capell 
et al. 2000). Twenty fertile phenotypically normal plants 
(R1) from each of eight randomly selected primary 
transformants (RO) were analysed for the presence of the 
transgene. Segregation analysis was performed by PCR 
using the set of primers pOatadc-1 and pOatadc-5 
(Table 1). We observed that in all lines the 35S:adca 
trans gene segregated in a ratio of approximately 3:1 
(results not shown) and confirm that single or multiple 
copies of the transgene was/were integrated in a single 
genetic locus. These results are consistent with previous 
reports describing the genomic organisation of multiple 
integrated transgenes in rice (Kohli eta!. 1998; Fu et a!. 
2000). Genomic DNA gel blot analysis of representative 
samples from each lineage (up to four siblings) is shown 
in Fig. 2 (adc DIG-labelled probe) . Digests were carried 
out using either Hindiii, which cuts once within the 
transgene (Fig. 2a) or with EcoRI, which releases a 
2.1-kb diagnostic fragment comprising the entire coding 
sequence of the oat adc eDNA (Fig. 2b, c). In the 
Hindlll digest, each line showed a unique integration 
pattern, confirming that plants originated from inde
pendent transformation events (Fig. 2a). Rl progeny 
had rather simple integration patterns and these were 
identical with those of the corresponding primary 
transformant(s). The EcoRI digest demonstrated that six 
out of the eight lines contained an intact 2.1-kb fragment 
corresponding to the oat adc eDNA coding sequence 
(lines N82, N84, N92, N93, N96 and N97; Fig. 2b, c). In 
several lineages, additional fragments were seen, indi
cating the existence of multiple rearranged copies of the 
35S:adca and also lower molecular weight species 
representing integration of truncated copies of the 
transgene. Lineages N88 and N95 showed hybridization 
signals higher than the expected 2.1 kb (Fig. 2c), most 
likely resulting from the loss of one EcoRI site during 
the integration process. 
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Fig. 2a-c DNA gel blot analysis of Rl progeny from wild-type (wt) 
rice and plants harbouring 35S:adca. Fifteen micrograms of 
genomic DNA was digested with Hinc/III (a) or EcoRI (b, c) and 
blots were probed with the 1.5-kb DIG-labelled PCR product from 
35S:adca at high stringency. Exposure time 30 min. Expected size 
of eDNA fragment, :;::j2. 1 kb is shown on the left-hand side of the 
panel (arrow in b and c). L Molecular size marker (1-kb DNA 
ladder; Invitrogen). Numbers above gels represent siblings (lower 
number) from the same parental line (upper number) 

The oat ade transcript is expressed 
in all primary transgenic plants and progeny 

We extracted total RNA from leaves, tillers and roots 
from all 32 plants representing the 8 lineages and we 
analysed oat ade antisense expression by RT- PCR 
(Fig. 3a, b and c, respectively). Out of the eight lines 
analysed, six showed mRNA expression in all four 
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siblings in leaves (Fig. 3a), tillers (Fig. 3b) and roots 
(Fig. 3c; N84-l , 5, 7, 8; N88-I , 6, 12, 13; N92-5, 8, 9, 19; 
and N96-4, 10, 12, 13). When RNA samples were sub
jected to RT-PCR analysis in the absence of reverse 
transcriptase, no amplification products were obtained. 
Thirty micrograms of total RNA from leaves and roots 
was used for RNA gel blot analysis . Leaves and roots 
from lines N82-7, N88-l and N96-4 accumulated the oat 
ade transcript, with roots showing substantially higher 
levels of expression compared to leaves (Fig. 4b, d) . The 
remaining two lineages (N93- l and N95-16) which ap
peared not to express the transcript were subsequently 
shown to contain low but detectable levels of the oat ade 
mRNA following blotting and probing the RT- PCR 
product from leaf tissue with the oat ade DIG-labelled 
probe (Fig. 4e). When RT was not included in the 
reaction mixture no amplification bands were obtained 
(data not shown). All RT- PCR experiments were 
repeated at least twice from independent RNA isolations 
and produced the same results . 

This three-stage analysis confirmed constitutive 
expression of the antisense oat ade transcript in all lin
eages, albeit at varying levels . Two lineages (N82 and 
N97) expressed a second transcript with a lower 
molecular weight, most likely resulting from expression 
of an additional truncated copy of the integrated 
transgene (Fig. 3a-c) . 

Expression of the oat antisense ade transcript 
only affects expression of its rice ortholog 

A rice ade 400-bp sequence (Table l) was used as a 
probe to investigate expression of the rice ade in plants 
shown to express the introduced 35S:adea. Levels of rice 
ade steady-state transcript were reduced in five of the 
eight lines analysed. Representative siblings from each 
line (N88-I, N92-9, N95-16, N96-4 and N97-20) are 
shown (Fig. 5b). Line N95 hardly exhibited any 
expression of the rice ade (Fig. 5b ). Levels of the 
endogenous rice ade gene remained unaffected in three 
lines (representative siblings, e.g. N82-7, N84-8 and 
N93-l are shown in Fig. 5b). The membranes were 
re-probed sequentially with a 700-bp DIG-labelled 
probe from the rice ode sequence, a 700-bp probe from 
the rice samde sequence and a 900-bp probe from the 
rice spd syn sequence (Table 1). Rice ode, samde and spd 
syn steady-state transcript accumulation remained 
unchanged compared to wild type (Fig. 5c, d and e, 
respectively). 

Transgenic rice plants with reduced levels of the ade 
transcript also show reduction in ADC activity 

Multiple tissue segments (3-4 em in length) from the 
central section of leaves from Rl progeny were har
vested from greenhouse-grown plants at the same 
developmental stage. ADC activity was measured in 
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Fig. 3a-c RT- PCR analysis of 
35S :adca transcript levels from 
R 1 progeny of rice. Samples 
were prepared from total RNA 
extracted from leaf (a), tillers 
(b) and roots (c) . Specific 
primers amplifying a 1.5-kb 
fragment from the oat adc 
eDNA were used as described 
in Materials and methods and 
Table 1. wt Wild type, L 
molecular size marker (1-kb 
DNA ladder; Invi trogen) . In 
b and c, '- ' indicates the 
negative control (water) . 
Numbers a bove gels represent 
siblings (lower number) from the 
same parental line (upper 
number) 
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randomly selected siblings from all eight lineages. We 
also included samples from negative segregants, wild 
type and hpt controls. We measured significant reduc
tions in ADC activity in leaves in three of the eight 
lineages (N92, N95 and N97). A 60% reduction in 
ADC activity was measured in leaves from these plants 
(1.11±0.32nkat mg- 1 protein; P < O.Ol) while the 
remaining plants exhibited no significant variation 
in ADC activity (2.82±0.5 nkat mg- 1 protein, P > 0.05) 
when compared to the control population (3 .5 ± 
0.72 nka t mg- 1 protein; Fig. 6a). 

A single tiller from each plant was separated and 
grown hydroponically in Yoshida's solution (Yoshida et 
al. 1972) to induce root growth after leaf samples were 
taken, as described earlier for molecular analyses. Roots 
were harvested 2 weeks later and ADC activity and 
polyamine content were determined. T he three lines 
(N92, N95 and N97) that had shown significant reduc
tions in activity in leaves (Fig. 6a) also showed signifi
cant reduction in ADC activity in roots (Fig. 6c). The 
minimum and maximum statistically significant reduc
tions in activities were detected in plants N97-20 
(2.5 ± 0.09 nkat mg- 1 protein, P < 0.05) and N82-7 
(1.46±0.02 nkat mg- 1 protein, P < O.Ol) representing a 
10 and 50% reduction, respectively compared to con
tro ls (2.77 ± 0.08 nkat mg- 1 protein, Fig. 6c). 

Putrescine and spermidine pools are reduced 
in transgenic plants in which the adc transcript 
and ADC activity are reduced 

To determine whether down-regulation of ADC 
enzyme activity had a quantitative effect on the titers 

of putrescine, spermidine, and spermine, we measured 
free-po lyamine concentrations in leaf tissue in progeny 
from the eight different lineages. Determination of free 
polyamines was carried out at the same time as ADC 
activity measurements for all tissues. Plants N92-9, 
N95-16 and N97-20 exhibited a maximum of 50% 
(N97-20, 217.50±21 nmol g- 1 fw, P < O.OI) and a 
minimum of 30% (N95-16, 284.22 ± 14 nmol g- 1fw, 
P < 0.05) reduction in putrescine concentration when 
compared to controls (426.74±32 nmol g- 1 fw; rep
resentative examples are shown in Fig. 6b). All the 
above plants also had a significant reduction in sper
midine levels in leaves. Up to 60% reduction in 
spermidine content was measured in plant N92-9 
(159.11±28 nmol g- 1 fw, P < O.OOI) when compared 
to control levels (408.28±42nmol g- 1 fw). No 
significant variation (P > 0.05) was observed in the 
levels of spermine in any of these lines in leaf tissues 
(representative examples are shown in Fig. 6b). 

All eight lines had a significant reduction in 
putrescine levels in roots. A maximum 64% reduction 
in plant N95-16 (137.4± 13 nmol g- 1 fw, P < O.Ol) was 
measured compared to control levels (385.8 ± 36 nmol 
g- 1 fw) . Spermidine levels were reduced significantly in 
all lines that had exhibited significant reduction 
in putrescine levels. A maximum of 71% reduction in 
spermidine levels was measured in plant N95-16 
(51.65±9 nmol g- 1 fw, P < O.OOI) when compared to 
control levels (180.12 ± 8 nmol g- 1 fw) . Out of the eight 
lines that had a concomitant reduction in putrescine 
and spermidine levels in roots, only two lines had a 
significant reduction in spermine. Plant N95-16 had a 
60% reduction (63 .21 ± 19 nmol g- 1 fw, P < O.Ol ) and 
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Fig. 4a-f RNA gel blots of total RNA extracted from wild-type 
(wt) rice and Rl progeny containing 35S:adca. Numbers above gels 
represent one sibling from each line. b, c, d Blots were probed with 
the oat adc eDNA 1.5-kb DIG-labelled PCR product. a Ethidium 
bromide gel demonstrat ing equal loading of total RNA extracted 
from leaves. bOat antisense adc expression in leaf tissue. Exposure 
time was 10 min. c Ethidium bromide gel demonstrating equal 
loading of total RNA extracted from roots. d Oat antisense adc 
expression in roots. Exposure time was 10 min. e RT-PCR analysis 
of 35S:adca transcripts from leaf tissue. Set of primers, RT -PCR 
conditions, hybridisation and blotting, as described in Materials 
and methods. Exposure time was 15 min . f RT -PCR amplification 
of rice actin-! after 25 cycles (internal control). RT -PCR and 
re-probing of the blot were carried out as described in Materials 
and methods. Exposure time was 20 min 

plant N97-20 a 50% reduction (89.98 ± 18 nmol g- 1 fw, 
P<O.OS) when compared to control levels (162.15± 
10 nmol g- 1 fw, representative examples are shown in 
Fig. 6d). 

Discussion 

In plants, co-suppression and antisense inhibition have 
been widely used to elucidate gene function, to enhance 
the quality of essential oils through metabolic engi
neering, to alter flower color, etc. (Wang and Wagner 
2003). One goal of expressing constitutively the oat adc 
eDNA in antisense orientation in rice was to determine 
whether this could influence the cellu lar free polyamine 
content through down-regulating the rice ADC enzyme. 
Prior to this investigation only one report on the mod
ulation of enzymes involved in the polyamine pathway 
by down-regulating a potato samdc gene using a 
homologous transgene in antisense orientation was de
scribed. Engineered potato plants exhibited an abnormal 
phenotype that was correlated with altered levels of the 
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Fig. Sa~ RNA gel blots of total RNA extracted from leaf tissue of 
wild-type (wt) rice and Rl progeny containing 35S:adca. Numbers 
above gels represent one sibling from each line. a Ethidium 
bromide gel demonstrating equal loading of RNA extracted from 
leaves. b Membrane probed with the rice adc 200 bp DIG-labelled 
PCR product. Exposure time 30 min. c Membrane re-probed with 
the rice ode 289 bp DIG-labelled PCR product. Exposure time 
50 min. d Membrane re-probed with the rice samdc 0.7-kb DIG
labelled PCR product. Exposure time 30 min. e Membrane 
re-probed with the rice spd syn 0.9-kb DIG-labelled PCR product. 
Exposure time I h. Re-probing of the membrane, cycling condi
tions for DIG-labelling of the probes, primers used and sequences 
are described in Materials and methods 

samdc transcript, SAMDC activity and polyamine con
tent (Kumar et a!. 1996). In the current investigation, we 
down-regulated the rice adc gene by using its full-length 
oat ortholog in antisense orientation. The oat and the 
rice adc cDNAs share a high sequence homology 
(Fig. 1). The alignment of the oat adc eDNA sequence 
(X56820) to the rice putative adc eDNA (G16006369 
from GI6006355) indicates a 71% identity, reflecting a 
close evolutionary relationship between them (http:// 
www2.ebi.ac.ukfclustalw). This provides adequate levels 
of homology between the two species for the antisense 
effect to occur and results from genomic DNA gel blot 
analysis between the two orthologous genes confirm this 
(Fig. 1). 

Molecular analysis of the transformed plants (Fig. 2) 
showed that the oat transgene was stably integrated into 
the rice genome and was transmitted to progeny as a 
Mendelian trait, consistent with its integration in a 
single genetic locus (Kohli et a!. 1998; Fu et a!. 2000). 
R T - PCR analysis showed mRNA expression in six of 
the eight lines we analyzed (Fig. 3). Five of these con
tained an intact copy of the transgene, whereas the 
remaining expressing line, N88 contained a rearranged 
copy (Fig. 2b, c). Interestingly, lines N82 and N97 that 
contained the intact coding region of the transgene 
expressed two mRNA species, one of which was shorter 
than the expected size. The aberrant RNAs in these lines 
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Fig. 6a-d Biochemical characterisation of Rl progeny of rice 
expressing 35S:adca. Values are mean ± SE for control lines 
(n = 36) and mean ± SE in transgenic lines (n = 3). Significance of 
data is as follows: ***: P < O.OOl ; **: 0.01 > P > O.OOl; *: 
0.05 > P > 0.01. C-htp Control harboring the htp selectable marker 
gene. a ADC enzyme activity in leaves from different transgenic 
lines and wild type. b Cellular polyamine content in leaf tissue. 
c ADC enzyme activity in roots. d Cellular polyamine content in 
roots. 

presumably resulted from a truncated copy (inside the 
open reading frame) of the transgene. This RNA profile 
was detected in leaves, roots and tillers in both lines 
(Fig. 3). 

After comparing the normalized hybridization signals 
from the RNA gel blots for leaves and roots we observed 
that the intensity of the transcript signal from the 
transgene in root tissue was higher compared to leaves 
(Fig. 4b, d). Transgene expression resulted in a reduc
tion of the steady-state rice adc mRNA in leaves 
(Fig. 5b ). In one of these lines (N95), steady-state rice 
adc mRNA was not detectable. Some of the down
regulated antisense plants had a significant reduction in 
ADC activity in leaves. A maximum of 60% reduction in 

activity was detected in plant N95-16 (Fig. 6a). Inter
estingly a significant reduction in ADC activity in roots 
was detected in all eight lines (Fig. 6c). Plants with re
duced levels of ADC activity were indistinguishable 
from wild type at all stages of development. Even plant 
N95-16, which had a 60% reduction in ADC activity in 
leaves and a 50% reduction in roots, was indistin
guishable from the rest of the plants, exhibiting normal 
phenotype and fertility (Fig. 6a, c). Watson eta!. (1998) 
isolated mutants of Arabidopsis thaliana that were defi
cient in ADC activity. From a population of 15,000 
EMS M2 plants they identified 9 independently isolated 
alleles with low ADC activity. The most striking phe
notypes of the individual mutants were in root devel
opment, where decreased ADC activity was correlated 
with increased lateral root branching and growth. None 
of the individual mutant alleles (spel-l and spe2-J) 
abolished ADC activity completely, and even the 
strongest double mutant (spel-l spe2-J) decreased 
polyamine levels by only 10-20%. Chattopadhyay eta!. 
(1997) investigated the role of polyamines in abiotic
stress tolerance in plants. Firstly, they measured ADC 
activity in shoots and roots from salt-sensitive and salt
tolerant rice. When salinity stress was applied, a signif
icant increase in ADC activity was observed in shoots 
and roots, but roots showed a much higher induction, 
with most dramatic increases observed in the salt
sensitive cultivar. Our data and also the studies of 
Watson et a!. (1998) and Chattopadhyay et a!. (1997), 
indicate that the regulation of ADC in root tissue is not 
as tight as it is in leaves. Feirer et a!. (1984), by using 
o:-difluoromethylarginine (DFMA, a specific inhibitor of 
ADC activity), reported an 88% reduction in ADC 
activity in wild-type carrot cells . This resulted in a sig
nificant reduction in putrescine and spermidine content. 
Embryogenic capacity of these cells was compromised 
by 50% . Thus, it is apparent that none of the three 
strategies, mutants, inhibitors or molecular approaches 
involving transgenic plants, designed to shut down ADC 
enzyme activity completely resulted in null plants for the 
ADC phenotype. It is likely that a null mutation in ADC 
activity may be lethal. This suggests that ADC may play 
a role in plant development. 

Reduction in ADC activity (Fig. 6a) resulted in lower 
levels of putrescine and spermidine in leaves (Fig. 6b) . 
Levels of putrescine and spermidine in roots were re
duced in all eight lines (Fig. 6d). Two of these lines had 
also a significant reduction in spermine levels in roots 
(Fig. 6d). When polyamine levels were measured in 
mutants that had the lowest enzyme activity (spel-l and 
spe2-l) or in double mutants (spel-l spe2-l) no signifi
cant variation was found in the aerial parts of the plant 
(Watson eta!. 1998). Putrescine levels were only reduced 
in roots of the double mutants (spel-l spe2-J). Roots in 
these mutants had an altered morphology. Thus results 
from Arabidopsis and rice indicate that polyamine pools 
are altered more dramatically in roots than in leaves. It 
is interesting, however, that Arabidopsis and rice behave 
very differently in terms of phenotype when polyamine 



levels are decreased. This may reflect evolutionary dif
ferences between the two species; however, it is not clear 
why Arabidopsis with two different adc genes (Watson et 
al. 1997) will behave in this manner compared to rice 
which only has one copy of the gene (Chattopadhyay 
et al. 1997). 

A second goal of this investigation was to evaluate 
whether the rice ode, samdc or spd syn steady-state 
transcripts were influenced by the size of the free poly
amine pool in the plants we generated. Our results 
indicate that steady-state mRNAs for the endogenous 
genes remain unaffected in the adc antisense transfor
mants. This suggests that feedback regulation of the 
expression of the genes by polyamines is not a major 
regulatory mechanism. Thu-Hang et al. (2002) studied 
expression of the rice samdc and spd syn genes in rice 
plants transformed with a Datura samdc eDNA. Plants 
with a 2.5-fold increase in foliar spermidine as a result of 
expression of the introduced samdc transgene showed no 
variation in the rice samdc and the spd syn (Thu-Hang et 
al. 2002). White et al. (1990) reported an 18.8-fold in
crease in SAMDC activity in Swiss 3T3 cells that had 
depleted cellular polyamines by using the ODC inhibitor 
difluoromethylornithine (DFMO). The magnitude of the 
increase in SAMDC activity in these cells could not be 
accounted for by either the elevation of mRNA level or 
an increase in enzyme stability, suggesting increased 
efficiency of translation of the samdc message. These 
results indicate that the tight regulation at the level of 
mRNA expression of the genes involved in the poly
amine pathway is not overcome by alteration of the size 
of the free polyamine pool. 

Conclusions 

By studying transgenic rice plants expressing the 
35S:adca, we have demonstrated that significant reduc
tion in enzyme activity results in reduction in putrescine 
and spermidine content in leaf tissue, and putrescine, 
spermidine and spermine in roots. Expression of the 
transgene affected expression of its rice ortholog; how
ever, expression of other endogenous genes involved in 
the pathway was not affected even though the size of the 
pool of the free polyamines was significantly reduced. By 
investigating all components in the polyamine pathway 
biosynthetic machinery, i.e. transgene integration, tran
scription and translation, and also how these affect end
product profiles in a range of lineages, we show that the 
pathway is tightly regulated. It appears that alteration of 
the size of the endogenous free polyamine pool does not 
act as a signal to induce changes in the transcription of 
other genes in the pathway. Such studies can now be 
extended to more complex pathways to unravel addi
tional elements that control accumulation of end prod
ucts in plants. 
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