
Durham E-Theses

Synthesis, structure and electrochemistry of
organometallic compounds bearing C(_n)N ligands

Cordiner, Richard L.

How to cite:

Cordiner, Richard L. (2005) Synthesis, structure and electrochemistry of organometallic compounds bearing
C(_n)N ligands, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3007/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3007/
 http://etheses.dur.ac.uk/3007/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


- ---

University of Durham 

A thesis entitled: 

"Synthesis, Structure and Electrochemistry 
of Organometallic Compounds Bearing 

CnN Ligands" 

By 

Richard L. Cordiner 
(Trevelyan College) 

Chemistry Department, 
South Road Laboratories, 

South Road, 
Durham, 
DH13LE 

A candidate for the degree of Doctor of Philosophy 

August 2005 
A copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without his prior written consent 
and information derived from it 
should be acknowledged. 

0 4 NOV 2005 



Abstract 

In this thesis, the synthesis of the organic cyanoacetylenes NCC=CC6Hs and 

NCC=CC6H4-4-NMe2 and the metal cyanoacetylides Ru(C=CC=N)(PPh3)2Cp, 

Ru(C=CC=N)(dppe)Cp* and Fe(C=CC=N)(dppe)Cp is presented and their 

coordination chemistry is explored. The structure and electrochemical behaviour of 

these novel cyano-carbon complexes is investigated and spectra-electrochemical 

methods are used to investigate the electronic structure of the cyanoacetylide 

compounds. In addition, in order to gain a greater understanding of the metal/ligand 

bonding interaction in these systems, the synthesis, structure and electrochemical 

behaviour of a series of metal nitriles [Ru(N=CC6~X)(PPh3)2Cp][PF6] (X= N02, 

NMe2, CN) and [M(N=CC6H4X)L2Cp'][PF6] (M = Ru, L = PPh3, Cp' = Cp; M = Ru, 

L2 = dppe, Cp' = Cp*; M =Fe, L2 = dppe, Cp' = Cp) were investigated, as were the 

complexes [ {Ru(PPh3)2Cp}2{J.!-M(CN)4}] (M = Ni, Pd, Pt) and [ {Ru(dppe)Cp*}2{J.!­

M(CN)4}] (M = Ni, Pd, Pt), which feature a group 10 tetracyanometallate as a 

bridging moiety. 
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Chapter 1 -introduction 

Introduction 

Understanding electron transfer processes is vital to understanding a wide variety of 

subjects such as biological photosynthetic pathways, catalytic reaction cycles and the 

design of light-emitting devices through to the nascent fields of molecular electronics 

and nanotechnology. The understanding of inter- and intra-molecular charge transfer 

between remote sites is fundamental to the design of materials for these applications. 

Possibly the most historically important example of a complex that displays charge­

transfer between two metal sites is the cyanide-bridged di-iron complex Prussian Blue 

(KFe[Fe(CN)6]). Although known for some 300 years (its discovery is credited to a 

Berlin painter named Diesbach, in 1704) it is only relatively recently that the physical 

properties of this material have been studied with regards to its charge transfer 

behaviour. 1 The intense blue ·colour ofPrussian Blue arises from the metal-metal 

charge transfer (MMCT) interaction between the two iron centres, one of which is 

formally Feu, the other being formally Fem. Being a material that contains two metal 

centres in differing oxidation states, Prussian Blue is also the first example of a 

"mixed valence" complex. 

Mixed valence complexes can arise either from compounds where the two metal 

centres are in different oxidations states as a result of the synthetic method employed 

(as in the case ofPrussian Blue), or can be generated from bimetallic precursors by 

electrochemical or chemical redox processes. The degree of interaction between the 

metal centres in mixed valence compounds can be classified using the system devised 

by Robin and Day. 2 Broadly speaking, those mixed-valence compounds for which 
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there is no interaction between the metal centres are referred to as Class 1 compounds. 

Where there is such a high degree of delocalisation across the complex that only an 

average valence can be detennined for the metal centres the material comes under the 

Class 3 heading. All other complexes are referred to as Class 2 (or "valence trapped") 

species. Common features of mixed-valence complexes include the observation of 

distinct oxidation potentials for each redox site by cyclic voltammetry and the 

appearance of absorption bands in the near infra-red (NIR) region of the material's 

electronic absorption spectrum. The NIR bands correspond to optically-induced 

charge transfer from one metal centre to another and are referred to as "metal-metal 

charge transfer" (MMCT) or "inter-valence charge transfer" (IVCT) bands. In Class 3 

complexes these IVCT bands tend to be narrower than those observed for Class 2 

complexes (see Chapter 4- Tetracyanometallate Complexes). There have been 

numerous reviews of inter-valence electron transfer discussing various theoretical 

aspects of these processes and further discussion will not be made here. 3-
6 

Many mixed-valence materials of contemporary interest are derived from a common 

[LxM]-B-[MLx] structure, in which two (redox-active) metal fragments MLx, featuring 

a metal centre in oxidation state n, are linked by some bridging ligand, B. The mixed 

valence state is generated by one-electron oxidation (or reduction) of the assembly. 

One of the earliest, and most thoroughly studied examples of such a bimetallic 

bridged species is the ruthenium-based mixed valence complex [ { (NH3) 5Ru }2pyr t+ (n 

= 5) (Figure 1.1), also known as the "Creutz-Taube Ion".7 

2 
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[ (H3N)5Ru-NC:}-Ru(NH3 )5 ] n+ 

Figure 1.1. The Creutz-Taube ion 

In the cases where n = 4 and 6, both the ruthenium centres are in the same oxidation 

states (Ru11 and Rulli respectively). However, in the case where n = 5 the mixed 

valence (Ru11/Ruiii) complex is formed. There has been much debate as to whether the 

mixed-valence form of the Creutz-Taube ion falls into the Class 2 or Class 3 

grouping. The electronic absorption spectrum of the mixed-valence complex reveals 

a narrow, solvent-independent band in the NIR region and EPR data suggests that the 

odd-electron occupies an orbital that lies along this Ru-pyr-Ru axis, all of which is 

consistent with a Class 3 compound. ?-IO However, Moss bauer spectroscopy has been 

used to demonstrate that equal numbers ofRu11 and Rulli centres occur in the mixed­

valence species and the molecular structure obtained at 100 K for the tosylate salt has 

shown that slightly different geometries exist at either ruthenium centre which 

suggests Class 2 behaviour. 11
•
12 Whilst some recent theoretical work has concurred 

with the Class 2 designation of the mixed-valence complex, other results suggest 

Class 3. 13
•
14 The debate surrounding the Creutz-Taube ion has highlighted the 

somewhat "fuzzy" distinction between the Class 2/Class 3 divide and even led to the 

recent suggestion that such compounds should be given their own classification. 15 

The fascination with the Creutz-Taube ion has led to a host of studies of mixed­

valence compounds featuring various combinations of metals, supporting ligands and 

bridging moieties. Of particular interest to this research group are those compounds 

3 



Chapter 1 -Introduction 

bearing polycarbon (Cn) and cyano/nitrile (C=N) based bridging ligands. A general 

description of recent work in this area will follow for the remainder of this 

introduction whilst each following chapter will contain a specific discussion of 

elements related to the work therein. 

Cyanide Bridges 

The cyanide moiety -[C=N] has been used to bridge an extensive range of metal 

centres and the synthesis and electrochemistry of such compounds have been 

described in a large number of review articles, 17
-
21 although it is only relatively 

recently that similar investigations ofyndiyl cc}-) bridged complexes have been 

undertaken in detail. 22 Chapter 4 contains a discussion of the electrochemical and 

mixed-valence nature of cyanide-bridged compounds but some general features of 

cyanide bridges in comparison to acetylenic bridges should be made at this point. 

The simple substitution of one atom for another between the cyano and alkynyl 

moieties is fundamental to the differences between the [C=Nr and [C=Ct ligands. 

The presence of the nitrogen centre in cyanide generates a net dipole in the fragment 

and means that it is no longer a symmetrical ligand in contrast to the alkyne dianion 

[C=Ct (the point group ofthe cyano moiety is Ccov, whilst that of the acetylene 

fragment is Dcoh). This inherent dipole moment, combined with the differing bonding 

characteristics of the carbon and nitrogen centres (see below) opens up the possibility 

of differing properties between bridging isomers of the same material. 

4 
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The two ends of the ambidentate cyanide ion coordinate to metal centres in different 

manners. The carbon centre coordinates to a metal centre via a a-interaction with a 

metal orbital of a-symmetry as well as an-type back-bonding interaction from the 

metal d-orbitals into then* anti-bonding orbitals of the cyano moiety. In contrast, the 

interaction between the nitrogen atom and a metal centre is predominantly a a-

interaction between the a* orbital of the cyano moiety (formally located at the lone 

pair on the nitrogen atom) and a a-symmetry metal orbita1.23 This results in the carbon 

end of the cyanide bridge behaving as a strong-field ligand with an affinity for more 

electron-rich metal centres whilst the nitrogen end acts as a medium-field ligand with 

a preference for more electron-poor metal centres. Thus, for example, in the infinite 

network Prussian Blue structure, the carbon atom is always coordinated to the Fe 11 

h '1 h . . d. d h F III I 7 24 centre w 1 st t e mtrogen atom 1s coor mate to t e e centre. · 

Whilst the orientation of the CN moiety in Prussian Blue may be invariant (Fe 11-CN-

Fe111
), the structures of some of its analogues are not. Shriver and co-workers used a 

combination of spectroscopic, magnetic and X-ray methods to demonstrate thermal 

CN isomerism in Fe/Cr, Fe/Mn, and Co/Cr Prussian Blue analogues whilst the first 

pair of molecular compounds showing cyanide isomerism was the [ {Co(NH3)s}(11-

C=N) {Co(CN)s] and [ {Co(CN)s}(~-L-C=N) {Co(NH3)5] couple prepared by Haim and 

co-workers?5
-
29 Spontaneous isomerism of the cyanide bridge has also been 

observed. For example, both the reaction of[Ag(CN)2r with [MLnt and the reaction 

of AgCN with MLnCN (MLn = Ru(PPh3)2Cp, Fe(dppe)Cp) results in the fonnation of 

[ {MLnHil-C=N)Ag(CN)] (Figure 1.2). Reaction of the product with a second metal 

end cap results in the trimetallic system [ {ML11 }(~-L-C=N)Ag(ll-N=C){ML11 } t. 

5 



Chapter 1 - Introduction 

Irrespective of the cyanide coordination in the starting materials, the products have 

been shown to always contain silver-isocyanide coordination.30 

Figure 1.2. Isocyanide coordination to a silver centre. 

Vahrenkamp has investigated a series of bridging isomers of general type MLn(l-t-

C=N)M'Ln and these compounds clearly demonstrate the effect of cyanide isomerism 

on the physical properties of these materials. For example, the Fe-P bond lengths in 

the compound [{Fe( dppe )Cp} (~-t-C=N) { Cr(C0)5] (2.184( 1) and 2.187( 1) A) are 

significantly shorter than those in the bridging isomer [{Fe( dppe )Cp} (I-t-

N=C){Cr(C0)5] (2.200(1) and 2.204(1) A). In addition, the v(C=N) stretching 

frequencies were shown to differ depending on the orientation of the cyano moiety 

(Table 1.1) as well as the oxidation potentials (Table 1.2).31 

6 
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Table 1.1. IR stretching frequencies of cyano-bridged complexes and their bridging 

Isomers 

Metal Centre 1 Metal Centre 2 v(C=Nt (cm-1
) v(C=N)b (cm-1

) 

Cr(C0)5 Fe(CO)zCp 2132 2157 

Cr(CO)s Fe(dppe)Cp 2115 2103 

W(CO)s Fe(CO)zCp 2134 1251 

Fe(CO)zCp Mn(C0)2Cp 2147 2094 

Fe(dppe)Cp Mn(C0)2Cp 2105 2087 

a o. Denotes stretchmg frequency for complex With C-termmus bound to metal centre 1, Denotes 

stretching frequency for complex with C-tem1inus bound to metal centre 2. 
31 

Table 1.2. Oxidation potentials of cyano-bridged complexes and their bridging 

isomersa 

Metal Centre 1 Metal Centre 2 Eo/ (V) Eoxc (V) 

Cr(CO)s Fe(C0)2Cp +0.80 +0.68 

Cr(CO)s Fe(dppe)Cp +0.28, +0.97 +0.46, +0.91 

Fe(C0)2Cp Mn(C0)2Cp +0.02 +0.24 

Fe(dppe)Cp Mn(C0)2Cp +0.18, +0. 70 +0.00, +0.61 

b, Measured m CH2Ch vs. Ag/ AgCI, Denotes oxidatiOn potentials for complex with C-tennmus bound 

to metal centre I, cDenotes oxidation potentials for complex with C-tem1inus bound to metal centre 

7 



Chapter 1 -Introduction 

Transition Metal C11-Bridged Species 

There has been a great deal of interest in systems bridged by polyynylligands (C=C)n. 

A polyynylligand is perhaps one of the simplest fonns of a "molecular wire", being a 

chain of unsaturated carbon atoms Cn. Compounds bearing polyynyl bridging ligands 

have been extensively reviewed of late. 22 

By far the most common systems are those bridged by the diyndiyl dianion 

[C=CC=Ct (i.e. n =2 ), resulting in a range of bimetallic complexes bearing both 

identical (Table 1.3) and differing (Table 1.4) metal end-caps. Of particular interest to 

this research group are those systems bearing group 8 metal end-caps, and the 

electrochemistry of the group 8 diyndiyl-bridged systems is discussed in Chapter 7. 

8 
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Table 1.3. Diydiyl bridged systems bearing identical metal end-caps 

Metal end-cap Reference 
Mo(C0)3Cp 32 

Mo(C0)2Tp' 33 

W(C0)3Cp 32 

W(C0)2Tp' 33 

W(C0)3Cp* 34 

W(0)2Cp* 34 

Mn(dmpe)2l 35 

Mn(C=CH)( drupe )2 36 

Re(N 0 )(PPh3 )Cp * 37 

Re(NO)(P(tol)J)Cp* 38 

Re(NO)(P(C6H4-4-1Bu)3)Cp* 38 

Re(C0)3(bpy) 39 

Fe(C0)2CP 40 

Fe( dppe )Cp* 41 

Fe(dippe)Cp* 42 

Ru(PPh3)2Cp 43 

Ru(PPh3)(PMe3)Cp 44 

Ru(dppe)Cp 45 

Ru(dppm)Cp* 46 

Ru(dppe)Cp* 46 

cis-RuCl(bpy)2 47 

trans-Rh(CO)(PiPr3)2 48 

trans-RhH( =C=CHPh )(PiPr3 )4 48 

trans-RhH(C=CPh)(PiPr3)3 48 

trans-RhH Cl (PiPr3)2 49 

trans-RhHCl(py )(PiPr3)3 49 

trans-IrCl(CO)(NCMe)(PPh3)2 50 

Ni(CN)(NH3)3 51 

Ni(PPh3)Cp 40 

PdCl(PnBu3)2 52 

PtCl(PnBu3)2 53 

PtMe(cod) 54 

Pt(C6F s)(P(tol)3)2 55 

Au(PCy3) 56 

9 
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Table 1.4. Diyndiyl bridged systems bearing non-identical metal end-caps 

Metal end-cap (1) Metal end-cap (2) Ref 
W(CO)JCp Mo(C0)3Cp 57 

W(C0)3Cp Mn(CO)s 57 

W(C0)3Cp Ru(CO)zCp 57 

W(C0)3Cp Ru(PPhJ)zCp 57 

W(C0)3Cp Au(PPh3) 57 

W(C0)3Cp M(CO)(PPhJ)z; M = Rh, Ir 58 

Re(NO)(PPh3)Cp* trans-Rh( CO )(PPh3 )z 59 

Re(NO)(PPh3)Cp* trans-Pd(PEt3)zCl 59 

Fe(CO)(L)Cp; L =CO, M(C0)3Cp; M = W, Mo 60 

PPh3 
Fe(CO)zCp · Fe(CO)(PPh3)Cp 60 

Fe(dppe)Cp* Fe(CO)zCp* 61 

Fe(dppe)Cp* Fe(CO)z(ll) -CsPhs) 61 

Fe(dippe)Cp* Fe(C0)2Cp* 42 

Fe(dppe)Cp* Re(NO)(PPh3)Cp* 62 

Fe( dppe )Cp* Ru(dppe)Cp* 63 

Fe(dppe)Cp* Ru(PPhJ)zCp 63 

Cu(triphos) Au(P(tol)3) 64 

There are two general synthetic routes to the formation of these diyndiyl systems. 

Firstly the two metal centres may be added to a central diynyl "building block". This 

addition of two metal centres may be perfonned simultaneously (to form complexes 

bearing identical end-caps) or sequentially (for those complexes bearing differing 

metal end-caps). For example, due to the acidic nature of the acetylenic protons of 

butadiyne, the metal complex may be reacted with the diynyl dianion directly as 

shown below (Scheme 1.1 ). 

Scheme 1.1. Reaction of[Ru(thf)(PPh3)2Cp][PF6] with LiC=CC=CLi.43 

10 



Chapter 1 - Introduction 

In addition to the reaction with lithiated alkynes, metal complexes may be reacted 

with trialkyl-silyl reagents or with tetravalent tin butadiynes. For example, the di-

ruthenium complex in Scheme 1 has been synthesized from reaction of 

Me3SiC=CC=CSiMe3 with potassium fluoride in methanolic solution43 whilst Stille 

coupling of Me3SnC=CC=CSnMe3 with metal halides and using a Pd0 catalyst has 

also been reported for complexes bearing iron (Scheme 1.2), molybdenum and 

tungsten centres.65
'
66 

rt2/ 
Fe-1 

oc/; 
Fe-e c-c C-Fe 

oc/; \'co 
oc oc co 

Scheme 1.2. Coupling of Fel(C0)2Cp with Me3SnC=CC=CSnMe3. 
65 

Sequential addition of the metal termini may be achieved using the methods described 

above or by coupling of an "activated" butadiyne HC=CC=CSiMe3 with a metal 

complex followed by a second reaction. Naturally enough this is the main method for 

the fonnation of complexes with non-identical end-groups. 

The second general route for the formation of diyndiyl bridged bimetallic systems is 

by oxidative coupling of metal acetylides. Reaction of two equivalents of the metal 

acetylides M(C=CH)L2Cp (M = Ni, L = PPh3; M =Fe, L =CO) in the presence of 

copper chloride and oxygen (Hay conditions67
) resulted in the formation of the 

bimetallic products shown in Scheme 1.3 whilst coupling of the C=CH moieties in the 

11 
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rhenium acetylide Re(C=CH)(PPh3)(NO) using Cu(OAc)2 in pyridine solution has 

also been demonstrated.68 

rC/ 
M-C C-H 

t:"j 
L 

CuCI I 0 2 M-C C-C C-M 
t:"j \'L 

L L 

Scheme 1.3. Hay coupling ofM(C=CH)L2Cp (M = Ni, L = PPh3; M =Fe, L = C0).40 

Lapinte and co-workers demonstrated an alternate method for the coupling of metal 

acetylide complexes in 1995 with the formation of the iron butadiynyl complex 

[ {Fe(dppe)Cp*}2().l-C=CC=C)] via a two-step radical coupling procedure.41 The iron 

acetylide Fe(C=CH)(dppe)Cp* was oxidised with ferrrocinium hexafluorophosphate 

to give the 17-electron species [Fe(C=CH)(dppe)Cp*][PF6]. The steric crowding 

about the iron centre provided by the bulky supporting ligands prevents the metal 

centres from approaching close enough to allow the expected dimerisation. 69·70 

Instead coupling occurs via the tenninal carbon atoms of the acetylide ligand to give 

the bis-vinylidene complex [ {Fe(dppe)Cp*}=C=CHCH=C={Fe(dppe)Cp*} ][PF6]2 

(Scheme 1.4). Subsequent treatment with potassium tert-butoxide yields the 

butadienyl complex [ {Fe(dppe)Cp*}2().l-C=CC=C)]. 

12 
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[Fe(C5H5l2][PFs] 

KOBu1 
[PFsb 

Scheme 1.4. Synthesis of [ {Fe(dppe)Cp*h(~-t-C=CC=C)] 

Several systems have been isolated with chains longer than four carbon atoms, 

although these are much less common due to the difficulties presented in their 

synthesis. As with the diyndiyl compounds described above, copper catalysed 

coupling reactions have been used to couple M(C=CC=CH)L11Cp' materials to create 

materials with C8 bridges bearing the metal end-caps [W(C0)3Cp], [Fe(CO)zCp], 

[Re(NO)(PPh3)] and [Fe(dppe)Cp*].32
•
71

-
73 

Broadly speaking, the two successive oxidations in bimetallic bridged species can 

indicate electronic communication between the two metal centres and a greater 

separation between successive oxidations can be an indication ofthe strength ofthis 

interaction (see Chapter 4 for more detail). In investigations into the electrochemical 

behaviour of the compounds [ {Re(NO)(PPh3)}2(~-t-C8)] and [ {Fe(dppe)Cp*}2(~-t-C8)] 

two, successive one-electron oxidations were observed.72
.7

3 In both cases the 
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difference in potential between the first and second oxidations of the C8 complexes is 

lower than that found for the C4 analogues. Whilst the redox behaviour of the C8 

systems suggests that there is poorer communication between the metal end-caps via 

the longer carbon chain, it must be noted that electrochemical measurements alone are 

not sufficient to elucidate details of electronic structure. 

Gladysz et al. extended the study of Cn-bridged species to investigate longer carbon 

chains and managed to synthesise systems of type [ {Re(NO)(PPh3)}2(f.l-Cn)] with 

carbon bridges of up to 20 atoms in length.74 As with the materials above, it was 

observed that increasing the length of the carbon chain reduced the gap between the 

first and second oxidation potentials. In the case of the 20 carbon atom chain only a 

single, apparently two-electron oxidation was observed and this indicates the length at 

which the electronic communication between the remote rhenium centres ceased. 

Ferrocenyl Species C11-Bridged Species 

Ferrocene [Fe(T] 5-C5H5)2, FcH] behaves as a stable, one electron redox systems (and 

hence is often used as a reference in electrochemical measurements) and it is therefore 

unsurprising that it should be used as a metal end-cap in investigations of mixed­

valence compounds.75 The acetylide bridged species FcC=CFc 

( diferrrocenylacetylene, DF A) was first synthesised in 1966 and the electrochemical 

behaviour was probed by Cowan and co-workers eight years later. 76·77 DF A was 

found to undergo two, reversible one-electron oxidations with a separation of 130 m V 

between the two oxidation events indicating a moderate degree of interaction between 
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the two metal centres. As with the systems discussed above, increasing the length of 

the carbon chain was found to reduce the separation of the oxidation events, becoming 

a single oxidation event in the tetrayne species Fc(C=C)4Fc.78
•
79 

The electronic absorption spectra of the compounds [Fc(C=C)nFc]m+ (n = 1, 2; m = 0, 

1, 2) have also been obtained.78 Low intensity absorption bands that were found in the 

NIR region of the spectra for the mono-oxidised species, but were absent in both the 

neutral and di-oxidised materials, were assigned to IYCT transitions. It is notable that 

the energy ofthe IYCT bands increases with chain length (n = 1, Amax = 1560 nm; n= 

2, Amax = 1180 nm), reflecting the decrease in metal-metal communication with 

increasing chain length demonstrated by the electrochemical data. 

In addition to the singly bridged species, the doubly bridged material has also been 

isolated and electrochemically characterised (Figure 1.3).78 

Fe Fe Fe Fe 

Figure 1.3. Singly and doubly acetylene-bridged ferrocenes. 

The doubly bridged material shows a far greater separation of redox potentials than 

the singly bridged species (355 mY vs 130 mY respectively). In addition, the IYCT 

band associated with mono-oxidised version of the doubly bridged species was moved 
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to much lower energy (A.max = 1760 nm). Thus the addition of a second acetylene 

bridge between the end-caps strengthens the metal-metal interaction. 

Aromatic Spacer Groups 

In the case of acetylide-bridged ferrocene systems such as those described above, the 

introduction of an aromatic moiety into the acetylene chain to create a diethynyl 

aromatic bridge results in a large decrease in the separation of oxidation potentials. so-

85 The cyclic voltammograms of the diethynyl aromatic bridged ferrocenes display 

oxidation waves that arise either from single, two-electron processes or (in the case of 

voltammograms with large peak-peak separations) oxidation events that are very 

poorly separated. Interestingly, the 2,5-diethynlpyridine bridged ferrocene system 

(Figure 1.4) undergoes a single oxidation event unless the nitrogen centre of the 

pyridine moiety is methylated, in which case two oxidation events with a separation 

of 160 m V are observed. 86 

Q? 0 Q1 

Fe Fe 

Q? Q? 
Figure 1.4. 2,5-bis(ferrocenethynyl)pyridine 

Whilst addition of an aromatic moiety into the ethynyl bridge in these ferrocene­

capped compounds reduces the degree of interaction between the redox-active centres, 
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different behaviour is observed when those centres are incorporated directly into the 

rr-system of the bridging ligand. Whilst there have been many preparations reported 

of diethynyl aromatic-bridged metal complexes of general type MLn-C=C-Ar-C=C-

MLn, surprisingly few have been subjected to electrochemical study. There have been 

several studies of compounds bearing pseudo-octahedral metal end-caps and it has 

been shown that the degree of interaction between the metal centres in such systems is 

sensitive to the nature of the end-cap. 87
-
91 Thus the electron-rich di-iron complex 

[trans- {FeCI( dmpe )2 }2()..1.-1 ,4-C=CC6H4C=C)] undergoes two, one electron oxidation 

processes separated by 200 m V, whilst the his-bimetallic complex [ {Ru2(ap )4 }z()l-1 ,4-

C=CC6H4C=C)] (ap = 2-anilinopyridinate) undergoes a single, two-electron oxidation 

event. 87
'
92 

Figure 1.5. The di-iron complexes [ {Fe(dppe)Cp*}z()l-C=CC=C)] and 

The di-iron complex [ {Fe(dppe)Cp*}2()l-1,4-C=CC6H4C=C)] bears an obvious 

resemblance to the diyndiyl bridged system [ {Fe(dppe)Cp*}z()l-C=CC=C)] (Figure 

1.5) The diyndiyl complex undergoes two, reversible one-electron oxidation processes 

separated by 700 m V whilst the incorporation of the phenyl group into the bridging 

ligand reduces the separation of the oxidation events to 260 mV. Whilst the addition 

of the phenyl spacer has reduced the interaction between the two metal centres it is 

clear that the ligand is still capable of mediating a degree of electronic communication 
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between the two over a distance of 12 A.41
'
90 The use of a thiophene moiety as the 

aromatic spacer resulted in a potential separation of 340m V, larger than that observed 

for the phenyl spacer but still less than in the diyndiyl system.93 

Figure 1.6. diethynyl aromatic bridge between [Ru( dppf)Cp] centres (R = 0, 1,4-

benzenediyl, 1,4- naphthalenediyl, 9,1 0-anthracenediyl) 

Chen and co-workers have investigated a series of compounds of type 

[ {Ru( dppf)Cp }(Jl-C=C-R-C=C)] ( dppf = 1,1 '-bis( dphenylphosphino )ferrocene, R = 0, 

1 ,4-benzenediyl, 1,4- naphthalenediyl, 9,1 0-anthracenediyl) (Figure 1.6), synthesised 

by reaction of the metal chloride RuCl(dppf)Cp with the appropriate Me3SiC=C-R-

C=CSiMe3 ligand and KF. For each of these compounds, two one-electron oxidation 

processes corresponding to the stepwise oxidation of the ruthenium centres was 

observed. The separation of these oxidation events was greatest for the diynyl system 

(650 mY) whilst each ofthe compounds with the aromatic spacer in the bridging 

ligand showed smaller separations (260-290 m V). Each of the complexes 

[ {Ru(dppf)Cp }(Jl-C=C-R-C=C)], with the exception of that where R = 1,4-

benzenediyl, were chemically oxidised to the mono-cations and isolated as the [PF6r 
salts. The electronic absorption spectra of each mono-cation showed an IVCT 

transition in the NIR region of the spectrum. In the case of the diyndiyl-bridged 
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complex this transition was observed as a sharp absorption band at 906 nm and was 

assigned as arising from a Class 3 mixed-valence complex on the basis of the band's 

sharpness and the coupling constant derived from Hush-analysis. In the napthyl and 

anthryl complexes, IVCT bands were also observed, although the slight solvent 

dependence of these bands and the reduced coupling constant derived from them 

suggested that those materials with an aromatic spacer in the bridging ligand were 

Class 2 compounds. Thus the electronic absorption spectra are in agreement with the 

electrochemical data for these compounds and suggest that the diethynyl aromatic 

bridges are capable of mediating electronic communication between the metal end­

caps, albeit with a reduced effectiveness compared to the diethynyl bridged species.94 

Considering the similarities the cyanoacetylene (RC=CC=N) and cyanoacetylide C 

[C=CC=N]) ligands bear to both the cyanide and diyndiyl moieties it is somewhat 

surprising that these system remain relatively unexplored. Those materials that have 

been isolated and characterised are discussed in later chapters (see Chapters 5 and 6). 

Few deliberate syntheses of 11 1-coordinated cyanoacetylides have been reported and, 

prior to the work contained herein, no cyanoacetylide-bridged materials have been 

studied. 

In this study, a novel synthesis of the metal cyanoacetylides has been developed. 

Their coordination chemistry has been explored along with the physical and 

electrochemical behaviour of both the cyanoacetylide "metallo-ligand" and its 

coordination products. Prior to this, however, a systematic study of the coordination 

of: 1) a series of para-substituted benzonitrile ligands and 2) the cyanoacetylene 

ligands NCC=CC6H5 and NCC=CC6H4-4-NMe2 to metal centres was undertaken in 
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order to better understand the nature of the interaction between the C=N moiety and a 

metal centre. In addition, the use of group 10 tetracyanometallates as bridging ligands 

between two metal centres was studied in order to gain some understanding of role the 

individual metal centres and supporting ligands might play on any electronic 

interactions which might occur through the tetracyanometallate bridge. 
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Experimental Methods 

General Methods 

Mass Spectra were recorded on a Micromass LCT instrument running in positive-ion 

electrospray mode. NMR spectra were recorded on a Varian Unity-300 eH and 31P) 

or an !NOVA 500 MHz instrument e 3ceH} ). Unless otherwise stated, all spectra 

were recorded in CDCh at ambient temperature and all chemical shifts are reported in 

8 (ppm). 1H NMR spectra were referenced to residual protio impurity in the solvent 

(CHCh, 7.26 ppm). 13C spectra were referenced against the solvent resonance 

(CDCh, 77.0 ppm). The following abbreviations are used to describe multiplicities: s 

(singlet). d (doublet), t (triplet), m (multiplet), br (broad). Infra-red spectra (with the 

exception of the spectro-electrochemical studies described below) were recorded 

using a Nicolet Avatar 360 FT-IR controlled by a PC running OMNIC 5.1b. Spectra 

were recorded either as a Nujol mull between NaCl plates or in a solution cell bearing 

CaF2 windows. Elemental analysis was performed by the microanalytical service 

within the Department of Chemistry at the University of Durham. 

Crystallographic data collection and refinement were undertaken by Drs. Puschmann, 

Batsanov, Yufit, and Albesa-Jove of the Durham Crystallographic service. Their 

efforts and those of the group leader Prof. J. A. K. Howard are gratefully 

acknowledged. The description of the crystallographic methods provided by the 

crystallographers is as follows: X-ray diffraction data were collected on Broker 3-

circle diffractometers equipped with CCD area detectors SMART APEX, SMART 6K 

or SMART lK, using graphite-monochromated Mo-Ka radiation from a 60W 
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microfocus Bede Microsource® with glass polycapillary optics or a sealed tube. The 

crystals were cooled to 120 K using Cryostream (Oxford cryosystem) open flow N2 

cryostats. 

Reflection intensities were integrated using SAINT software' and corrected for 

absorption by numerical integration based on crystal face indexing or by semi­

empirical method2 based on Laue equivalents. The structures were solved by direct 

methods and refined by full matrix least-squares against F of all data using SHELXTL 

software.3 All non-hydrogen atoms where refined in anisotropic approximation 

(except minor positions of the disordered atoms) with hydrogen atoms treated in 

riding model (methyl groups as rigid bodies). 

Cyclic Voltammetry 

Cyclic voltammetry (CV) is a potential sweep method for studying electrode 

processes. A cyclic voltammogram is obtained by recording the current intensity 

observed at a working electrode as a function of the applied potential. The applied 

potential is scanned linearly as a function of time from a potential at which no 

electrode reaction occurs up to an arbitrary maximum beyond the potential of the 

electrode reaction. At this point the direction of the potential is reversed and swept 

linearly back to its original value. The initial sweep (to positive potential) records a 

cathodic reaction (positive current) by which heterogeneous electron transfer occurs 

at the interface between the solution (in which the species under study is dissolved) 

and the electrode surface. The reverse sweep records an anodic reaction of the 
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material back to the original state. A plot of potential vs. current for this process 

results in a cyclic voltammogram like the one shown below (Figure 2.1 ). 

Eox 

PotentlaU (V) 

Figure 2.1. A cyclic voltammogram for a single oxidation 

In the case shown above, an oxidation occurs as the potential is increased, resulting in 

an oxidative or anodic wave with a peak current ofla occurring at a potential Eox. On 

reversal of the potential sweep, a corresponding reductive or cathodic wave is 

observed with a peak current of Ic and a potential ERED· The standard redox potential 

(E1,2) of a reversible redox process is defined as the potential midway between Eox 

and ERED· The ratio of the peak currents for an electrochemically reversible event 

should be 1. These potentials are measured relative to a standard reference potential 

(see below). 

The sample under study is dissolved in solution using dry solvents which have been 

purged with dry nitrogen to remove oxygen (which would be apparent in the cyclic 

voltammogram). As electron transfer can only occur at the electrode/solution 
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interface, a zone of reacted material builds up around the electrode which is different 

from the bulk solution and increases as the reaction proceeds. Unreacted material 

must pass through this zone by diffusion in order to react at the electrode surface and 

hence this zone of reacted material is referred to as the diffusion layer. In order to 

ensure that current migrates through the diffusion layer and the bulk solution a 

supporting, redox-inactive electrolyte is added to the solution. This is added in large 

excess to ensure that the charge is transferred by the electrolyte and not by the species 

under study. In this thesis, the electrolytes used were tetra-n-butylammonium 

tetrafluoroborate (TBABF4) and hexafluorophosphate (TBAPF6). Both of these 

electrolytes are redox-inactive over a broad potential range. 

In order to complete the electrical circuit and allow current to pass requires a second 

electrode, called the counter electrode. A redox reaction also occurs at this electrode 

and is of an opposite nature to that at the working electrode. In an electrochemical 

experiment, only differences in potentials can be measured and in order to achieve 

this a third, independent electrode is required called the reference electrode. A 

reference electrode perfonns a known electrochemical process at a certain potential 

which is insensitive to small variations of temperature or the passage of a small 

current within the solution. Examples include the Saturated Calomel Electrode (SCE) 

in which the redox reaction occurs between Hg and HgCh or the Ag/ AgCl electrode. 

An alternative to the standard reference electrode, and one used in this thesis, is to use 

an internal reference instead. In this case the reference electrode is replaced by a 

pseudo-reference (platinum wire in this case) and a reference species is added to the 

solution being studied. This reference species is one for which the standard redox 

30 



Chapter 2 -Experimental Methods 

potential of that species under specific conditions (and relative to a known reference 

potential) is known. 

In this study cyclic voltammograms were recorded using an Eco Chemie PGStat 30 

controlled by a PC running GPES v4.9 for Windows. The electrochemical cell used 

was an EG & G PARC micro-cell fitted with a nitrogen feed for the bubbler and purge 

inlets (Figure 2.2). The working electrodes were EG & G P ARC millielectrodes with 

a 2 mm diameter electrode surface. Counter and pseudo-reference electrodes were 

platinum wires. Solvents used were deoxygenated by bubbling through with nitrogen 

prior to taking the measurements and blanketed with nitrogen during the scans. 

Spectra-electrochemistry 

Pt wire counter and pseudo­
reference electrodes 

,__ ___ -;--Nitrogen feed 

Figure 2.2. Electrochemical cell 

Within this thesis, spectro-electrochemical methods are used in order to obtain infra-

red (IR) and electronic absorption spectra of oxidised species and thus study some of 
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the effects of oxidation upon the materials under investigation. By these methods 

oxidised species are generated in-situ and their spectra acquired. This technique 

requires that the probe light passes through a solution of the material under study 

whilst it is in close proximity to the working electrode. In order to achieve this, a 

metal minigrid is used as the working electrode. These minigrids consist of a fine 

mesh of a selected metal (platinum in the cases used herein although silver and gold 

are often used as well) which is inserted into a short pathlength cell along with 

accompanying reference and counter electrodes. This produces an optically 

transparent thin layer electrode (OTTLE) celJ.4
·
5 

The use of a small volume allows bulk electrolysis to be performed in a short space of 

time. Therefore, the spectrum of the species under study, X, is recorded at a potential 

where X is stable. The potential applied to the solution of X is then increased step­

wise and a new spectrum is acquired at each step after the current has dropped to zero 

(and thus the system is at electrochemical equilibrium). This provides sequential 

spectra of the oxidation of X to X+. In some cases electro-generated species, whilst 

electrochemically stable in a cyclic voltamrnogram are insufficiently stable over the 

longer time-period required for bulk electrolysis. In these circumstances, variable­

temperature apparatuses are required in order to reduce the temperature of the solution 

and hence stabilise the redox product. 

Iura-red spectra for spectra-electrochemical studies were collected at the Universiteit 

van Amsterdam (Uv A) using a BioRad FTS-7 spectrometer. Oxidised species were 

generated using a platinum minigrid working electrode (32 wires/em) with a platinum 

wire counter electrode and a silver wire pseudo-reference electrode. These were melt-
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sealed into a smooth polyethylene space sandwiched between two CaF2 windows 

within a thermostated Cu block to form the OTTLE cell. The working electrode 

surroundings were masked to avoid spectral interference from the non-electrolysed 

solution. The OTTLE cell itself fitted into double-walled nitrogen bath cryostat 

permitting the acquisition of spectra over a temperature range of 295-173 K (Figure 

2.3).6 The potential during these measurements was controlled by a PA4 (EKOM, 

Czech Republic) potentiostat. Details ofthe sample concentrations and supporting 

electrolyte are given in the text. 

Figure 2.3. Spectro-electrochemical apparatus for infra-red measurements 

UV-vis-NIR spectra for spectro-electrochemical studies were acquired using a Varian 

Cary-5 spectrophotometer. Oxidised species were generated using a platinum 

minigrid working electrode and platinum wire counter and pseudo-reference 

electrodes. The three-electrode system was contained within a 30 x 10 x 1 mm quartz 

cuvette (Figure 2.4). This in turn was held within a teflon mount which permitted 

cooling of the solution to sub-ambient temperatures (Figure 2.5). Cooling of the 

sample was achieved by the passing of dry nitrogen gas through a copper coil 

immersed in liquid nitrogen and the rate of flow of gas was used to control the 
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temperature. In order to prevent condensation on the cell windows, both the cell 

mount and sample compartment were purged with dry nitrogen prior to and during the 

acquisition of spectra. Details of the sample concentrations and supporting electrolyte 

are given in the text. 

Quartz 

Pt wire counter and pseudo­
reference electrodes 

Pt minigrid working electrode 

Figure 2.4. Electrochemical Cell for UV-vis-IR spectro-electrochemical 

measurements 

Electrochemical cell 

Coolant feed 

Figure 2.5. Spectro-electrochemical apparatus for UV-vis-NIR measurements 
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Chapter 3 -Nitrile Complexes 

Introduction 

Nitrile ligands, RC=N, offer a combination ofN localised a-orbitals and C=N 1t and 

1t* orbitals for bonding to metal centres and as such have been the subject of much 

study for their reaction and coordination chemistry, physical properties and biological 

roles. 14 Early examples of nitrile complexes to ruthenium and iron centres include 

the cationic iron complexes [Fe(NCMe)(C0)2Cpt and [Fe(NCMe)(CO)(PPh3)Cpt 

and the cationic ruthenium complex [Ru(NCMe)(PPh3)2Cpt (with a variety of 

counter-ions). 5
'
6 This was followed by the formation of the neutral boro-nitrile 

complex Ru(NCBX3)L2Cp (L = CO, PPh3; X= H, C6H5) which readily re-arranged to 

fonn the isonitrile material (Figure 3.1) and a series of nitrile complexes of type 

[Ru(NCR)(PPh3)2Cp tY 

[ 
~-N C-BX l + ......_.. ~,.. t_/'1 3 

L . 

Figure 3.1. Nitrile/isonitrile isomerism in Ru(NCBX3)L2Cp (L =CO, PPh3; X= H, 

In addition to these materials the iron-nitrile complex [Fe(NCMe)(dppe)Cp][BP14] 

and a series of osmium-nitrile complexes were also isolated at about the same time. 8•
9 

More recently, a rise in interest in materials with high second-order 

hyperpolarisabilities for non-linear-optics (NLO), together with the observation of 
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appreciable NLO behaviour in ferrocene derivatives, led to an increase in the study of 

numerous metal complexes featuring n-conjugated ligands, including nitriles. 10
-
15 

In benzonitrile complexes there is a a-interaction between the cr*-orbitals on the R-

C=N moiety and an empty orbital of appropriate symmetry on the metal centre. 

Furthermore, the nln* systems of the nitrile ligand are of the correct symmetries to 

interact with d-orbitals of the metal centre. Thus there is the possibility for a degree 

of charge-delocalisation across the metal-nitrile complex to a pendant donor/acceptor 

group. However, there has been some debate in the literature as to the exact nature of 

the interaction between a metal centre and a coordinated nitrile ligand. Early work 

suggested that there was a degree of 1t back bonding from the metal d-orbitals into the 

n* orbitals of the N=C moiety. For example, Dias and co-workers carried out a study 

of para-substituted benzonitrile complexes of type [Fe(N=C-C6Rt-R) { ( + )-DIOP} Cp t 

(R =Me, OMe, NH2, NMe2, Ph, F, N02, C6Rt-N02) (Figure 3.2) in order to 

determine their NLO responses. 12 

+ 

Figure 3.2. [Fe(N=C-C6H4-R){(+)-DIOP}Cpt (R =Me, OMe, NH2, NMe2, Ph, F, 
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The Dias group found that the electronic properties of the nitrile substituents resulted 

in several changes in the spectroscopic signatures of their complexes. In the NMR 

spectra they found that the 1 H and 13C resonances of the Cp moiety were shifted to 

higher frequency upon moving from the electron-donating NMe2 substituent to the 

electron-withdrawing N02 moiety. Further, whilst in most cases the v(C=N) band in 

the IR spectrum of these complexes remained relatively unchanged from that of the 

free ligand [i.e. ~ v(C=N) = v(C=N)free ligand - v(C=N)complex ::::: 0], in the case of R = 

N02 the v(C=N) band was found to move to lower wavenumbers [~v(C=N) = -35 

cm-1]. At the time, these observations were attributed to stabilisation of the ligand n* 

orbitals by the more electron-withdrawing group, leading to a greater degree of metal­

(dn) to N=C (n*) back bonding. Therefore, as the electron-withdrawing nature of the 

nitrile substituent increased more electron density was removed from the metal centre 

by back-bonding to the nitrile. In tum this would lead to greater donation from the Cp 

moiety to the metal centre, resulting in a de-shielding effect and the observed NMR 

response. 

Later work on the analogous ruthenium complexes [Ru(N=CC6Iit-4-N02){(+)­

DIOP}Cp][X] (X= cr, N03-, BF4-,p-CH3C6H3S03-, PF6-, Cl04-, CF3son found no 

change in the v(C=N) band in theIR spectrum, relative to the free ligand. This was 

attributed to the fact that the ruthenium centre was a poorer n-donor than Fe and 

hence there was a balance between the donation from the nitrile cr* orbital and back­

donation into then* orbital which resulted in no net change in the v(C=N) 

frequency. 13 
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This metal to ligand 1t back-bonding picture also provided an explanation for the 

variation in the degree ofNLO behaviour in coordinated benzonitrile complexes. 

Some ofthe compounds of type [M(N=C-C6H4-R)L2Cp't described above displayed 

large values for second harmonic generation (SHG). One of the criteria for NLO 

behaviour is that a material should consist of polarisable, dipolar molecules which 

offer a large difference in their ground and excited state dipoles. Hence, coordination 

of a benzonitrile ligand N=C-C6H4-R (where R is an electron-withdrawing group) to a 

metal centre should lead to a donor-acceptor system in which the metal centre is the 

donor and the electron-withdrawing R group is the acceptor. The [Fe(N=CC6~­

N02){(+)-DIOP}Cpt system showed an SHG signal that was 38 times that ofurea 

(i.e. a relative SHG value of38). and this was attributed to the [Fe{(+)-DIOP}Cpt 

fragment acting as a n-donor via d-n*(NC) orbitals towards the N02 group. 12 The 

analogous ruthenium complex [Ru(N=CC6H4-N02){(+)-DIOP}Cpt displayed a much 

smaller relative SHG value of2.7. This decrease was attributed to the poorer 

donating power of the [Ru{(+)-DIOP}Cpt fragment relative to the Fe analogue. 13 

Low-level extended Hi.ickel calculations seemed to support the possibility of a limited 

degree of metal nitrile back-bonding. 14·15 

However, more recent work has suggested another explanation of these effects. More 

detailed calculations have shown that, whilst there is a contribution from the 7t 

orbitals, the bonding interaction is, in fact, predominantly cr in character between the 

metal dz2 orbital and the cr* orbital on the nitrile moiety. The nitrile n* levels are too 

far removed in energy to take part in back-bonding interactions of great significance 

with the filled Md71 levels. 16-18 This is comparable with the leading model proposed 

for metal complexes featuring the isolobal and isoelectronic acetylide ligands. In the 
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case of metal acetylide complexes it has been shown that the primary bonding 

interaction between TC=C-R] and a metal centre occurs primarily though the cr-

orbitals of the acetyl ide and the metal di orbital. Although there is an interaction 

between the metal d-orbitals of 7t-symmetry and the acetylide 7t-system (Figure 3.3), 

in the case of low valent late metals of particular interest here, the bonding and anti-

bonding combinations are both fully occupied and so there is no net 7t-bonding. 19
•
20 

The very high energy of the acetylide 1t* system means that the degree of 1t back-

bonding between the metal and the acetylide fragment is negligible compared to the 

dominant influence of the cr-bonding interactions.21 

* 
Figure 3.3. Orbital Overlap Diagram for Metal/Ligand Interaction (X= N, C) 

In order to better understand the nature of the bonding interaction in metal complexes 

featuring cyanoacetylenes (R-C=C-C=N) (Chapter 5) or metal cyanoacetylides 

(L2Cp'M-C=C-C=N) (Chapter 6) as ligands, we undertook a systematic study of 
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complexes oftype [M(N=C R)L2Cp't featuringpara-substituted benzonitrile ligands 

and examined the effects of variation ofboth the metal and the nature of the para­

substituent in the structural, electrochemical and spectroscopic properties of. 

complexes of these systems. Since counter ion effects have previously been noted to 

influ~nce these properties in solid state samples 13 we chose to examine a consistent 

series of [PF6r salts. 
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Results 

Syntheses 

In methanolic solution, the M-Cl bond in compounds of type MClLxCp' (where L = 

phosphine ligand, Cp' = Cp or Cp*) is partially ionised, and can be readily replaced 

by a range of donor ligands. 6-8 The additional presence of a halide abstracting agent 

such as NH4PF6 assists this process by precipitating N~Cl and driving the 

equilibrium forwards (Scheme 3.1 ). 

MClLxCp' + D: ::::;::::=======~ [MDLxCp't + cr 

Scheme 3.1. 

In this study, metal complexes of type MClLzCp' (M = Ru, L = PPh3, Cp' = Cp; M = 

Ru, Lz = dppe, Cp' = Cp*; M =Fe, L2 = dppe, Cp' = Cp) were allowed to react with 

benzonitrile (NCC6Hs) in refluxing methanol in the presence ofN~PF6 . Subsequent 

work-up resulted in the isolation of the complex salts [Ru(N=CC6Hs)(PPh3)zCp][PF6] 

(1),8 [Ru(N=CC6Hs)(dppe)Cp*][PF6] (2), and [Fe(N=CC6H5)(dppe)Cp][PF6] (3). 

Similarly, reaction of RuCl(PPh3)zCp with the para-substituted benzonitriles 

N=CC6H4X resulted in the formation of the substituted ruthenium complexes 

[Ru(N=CC6H4X)(PPh3)zCp][PF6] [X= NOz (4), NMe2 (5), CN (6)] (Scheme 3.2). 

N=c-Q-x 

Scheme 3.2. 
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In addition to these mono-metallic compounds, nitrile ligands were used to obtain 

multi-metallic complexes. Reaction ofN=CC6H4C=N-4 with NH~F6 and two 

equivalents of RuCl(PPh3)2Cp in refluxing methanol resulted in the formation of the 

bi-metallic complex [ {Ru(PPh3)2Cp }z(J.t-1 ,4-N=CC6H4C=N)][PF6h (7). It was found 

that 7 could also be obtained from solutions of compound 6 after approximately 24 

hours. This observation is discussed in more detail later in this section. Reaction of 

RuCl(PPh3) 2Cp with one equivalent of the cluster-substituted nitrile Coz(Jl, 11 2
-

HC2C6H4C=N-4)(C0)4(dppm)22 under analogous conditions to those described above 

resulted in the formation of the heterometallic complex [Coi(J.t, 11 2 -HCzC6~C=N-

4){Ru(PPh3)zCp}(C0)4(dppm)](PF6) (8). 

Spectroscopic Characterisation 

The benzonitrile complex [Ru(NCC6H5)(PPh3)zCp]PF6 (1) was readily characterised 

from the associated spectroscopic data. In the 1 H NMR spectrum the PPh3 ligands 

gave the usual resonances in the region 7.09-7.57 ppm, which were overlapped with 

the signals from the phenyl protons of the benzonitrile moiety. The Cp protons gave 

rise to a singlet at 4.55 ppm, which is in good agreement with that previously reported 

(4.58 ppm).8 In the 13C{ 1H} NMR spectrum, the Cp ligand was characterised by a 

sharp, single resonance at 84.38 ppm while the carbon atoms of the aromatic rings 

were found within the usual range (136.02-128.67 ppm). The 31P NMR spectrum 

confirmed the presence of both the PPh3 ligand (42.89 ppm) and the PF6- counter ion 

(-142.97 ppm, }pF =713Hz). In theIR spectrum, the v(C=N) band was observed at 
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2233 cm-1
• The positive ion mass spectrum (ES(+)-MS) contained an isotopic 

envelope for the intact cation of the complex salt (m/z = 794) and for the fragment ion 

arising from the loss of the benzonitrile ligand (m/z = 691). 

The bright yellow complex salt [Ru(N=CC6Hs)( dppe )Cp*][PF 6] (2) was characterised 

in a similar fashion. The presence of the Cp* ligand was clearly visible in both the 1 H 

and 13CeH} NMR spectra with resonances at 1.51 ppm ctH NMR) and 93.18 (C5Mes) 

and 9.68 ppm (C5Me5) (
13CeH} NMR). Two broad signals in the 1H NMR at 2.46 

and 2.50 ppm revealed the presence of the dppe protons and the ligand was detected 

in the 13CeH} NMR spectrum as a multiplet in the range 28.41-28.77 ppm. 

Furthermore, it was possible to distinguish the ortho-protons of the benzonitrile ligand 

as a pseudo-doublet at 6.56 ppm with an apparent JHH = 8.40 Hz. The dppe and PF6 

moieties gave the expected resonances in the 31 P NMR spectrum (a sharp singlet at 

76.15 and a heptet at -143.42 ppm, Jpf =710Hz) and the v(C=N) band was observed 

at 2227 cm-1 in theIR spectrum. ES(+)-MS results showed the presence ofthe 

complex cation (m/z = 794) as well as a fragment resulting from the loss of the 

benzonitrile ligand (m/z = 635). Despite numerous attempts, the micro-analytical 

result for this compound returned consistently low in carbon which could not be 

accounted for by the presence of solvent molecules. 

The analogous iron-based complex [Fe(N=CC6Hs)(dppe)Cp][PF6] (3) was 

characterised by resonances in the 1H and 13CeH} NMR spectra corresponding to the 

Cp moiety [singlets at 4.45 ppm eH NMR) and 79.90 ppm (13C NMR)] and the dppe 

ligand (two unresolved multiplets at 2.45 and 2.63 ppm in the 1H spectrum and a 

multiplet at 28.13 ppm in the 13C e H} spectrum). As with compound 2, it was 
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possible to distinguish a signal arising from the two ortho-protons of the benzonitrile 

ligand which in this case were observed as a broad singlet at 6.46 ppm. The 31 P NMR 

showed the expected sharp singlet resonance for the dppe ligand at 98.32 ppm and a 

heptet corresponding to the [PF6r counter ion at -143.13 (JPF =713Hz). The v(C=N) 

band in theIR spectrum was observed at 2217 cm-1 and ES(+)-MS showed the cation 

of the complex salt (mlz = 622) and a fragment ion resulting from loss of the 

benzonitrile ligand (m/z = 519). 

In comparison with 1, the presence of the electron-withdrawing N02 group in 

[Ru(N=CC6H4N02-4)(PPh3)2Cp]PF6 (4) results in a shift of the Cp resonances in the 

NMR spectra to higher chemical shifts eH = 4.64 ppm, 13C = 84.98 ppm) relative to 

those in 1. In addition, the nitrile carbon and the associated ipso-carbon of the 

C6~N02 aromatic ring could be identified in the 13CeH} NMR spectrum (127.91 

ppm and 117.46 ppm respectively), as could the carbon adjacent to the N02 group 

(150.04 ppm) by comparison with the spectrum of5 (see below) and data reported 

previously from similar complexes.23-26 The PPh3 ligands and the [PF6r counter-ion 

gave the expected resonances (a sharp singlet at 42.97 and a heptet at -142.93 ppm, 

]pf =713Hz respectively), whilst the v (C=N) band was observed at 2228 cm-1 in the 

IR spectrum. Isotopic envelopes consistent with [Ru(N=CC6H4N02-4 )(PPh3)2Cp t 
(m/z = 839) and [Ru(PPh3)2Cp] (mlz = 691) were observed by ES(+)-MS. 

The spectroscopic properties of the yellow complex salt [Ru(NCC6~NMe2-

4)(PPh3)Cp]PF6 (5) shows the effect of the electron-donating NMe2 group on more 

remote parts of the metal fragment. The Cp resonances in the NMR spectra eH = 

4.42 ppm, 13C{ 1H} = 83.81 ppm) are moved to lower frequency relative to those in 
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compound L The methyl protons on the NMe2 moiety gave rise to a singlet 

resonance at 2.97 ppm. In the 13CeH} NMR spectrum, the corresponding methyl 

carbons gave a sharp resonance at 40.17 ppm. The ipso carbon of the benzonitrile 

phenyl ring was also identified in the 13CeH} NMR spectrum (95.61 ppm) as was the 

carbon adjacent to the NMe2 group (153.23 ppm). The PPh3 ligands and the PF6-

counter-ion gave the expected resonances (a sharp singlet at 42.82 and a heptet at-

143.04 ppm, ]pf =713Hz). The v(C=N) band was observed at 2221 em·' in theIR 

spectrum. The ES(+)-MS results contained an isotopic envelope consistent with the 

cationic portion of the compound (mlz = 837) and the fragment ion arising from the 

loss of the NCC6H4NMe2-4 ligand (m/z = 691). 

The solid isolated from the 1: 1 reaction of RuCl(PPh3)2Cp with terephtalonitrile ( 1,4 

-dicyanobenzene) was a mixture of two compounds, as evidenced by the observation 

of two chemically distinct Cp moieties in the 1H NMR spectrum at 4.57 and 4.62 

ppm. Neither of these species correspond to the starting material [RuCl(PPh3)zCp] for 

which the Cp signal appears at 4.03 ppm. Further experimentation using a 2:1 molar 

ratio of the ruthenium reagent:terephthalonitrile gave a single complex, identified as 

the di-ruthenium complex [ {Ru(PPh3)Cp}z(J..t-NCC6~CN-4)](PF6)2 (7) [ocp('H): 

4.57ppm]. A similar reaction with a ten-fold excess of the ligand afforded the 

monometallic complex [Ru(NCC6~CN-4 )(PPh3)Cp](PF6) (6) [8cp(1H): 4.62ppm]. 

In DCM solution, 6 disproportionates to 7 and free ligand over a 24 hour period. 

Hence the di-ruthenium complex 7 would appear to be the thermodynamic sink for the 

reaction. 
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In addition to the 1H NMR resonances discussed above, 31P NMR resonances for 6 

were observed arising from the PPh3 (singlet at 42.58 ppm) ligand and the [PF6r 
counter-ion (heptet at -142.93 ppm, ]pf =713Hz). A 13CeH} NMR spectrum of6 

could not be obtained due to the disproportionation problem described above. ES( + )­

MS results showed isotopic envelopes corresponding to [Ru(NCC6H4CN)(PPh3)2Cp t 
(mlz = 819) and [Ru(PPh3)Cpt (mlz = 691). There was only one v(C=N) band 

observed in theIR spectrum (2221 cm"1). 

The PPh3 and [PF6r ligands in 7 gave rise to singlet and heptet resonances in the 31P 

spectrum at 42.58 ppm and -142.84 ppm (JPF =713Hz) respectively. The v(C=N) 

band was observed at 2226 cm·1 in theIR spectrum and ES(+)-MS results show the 

complex cation [ {Ru2(NCC6~CN)(PPh3)4Cp2}[PF6]t (m/z = 1655) as well as 

isotopic envelopes arising from [Ru(NCC6~CN)(PPh3)2Cpt (mlz = 819) and 

[Ru(PPh3)Cpt (m/z = 691). 

The Cp resonances in the red-coloured complex salt [Co2(11, 11 2-HC2C6H4C=N-

4){Ru(PPh3)2Cp}(C0)4(dppm)](PF6) (8) were shifted to lower chemical shift relative 

to compound 1 ctH = 4.47 ppm, 13C{1H} = 83.95 ppm). Resonances from the dppm 

protons were observed as doublets of triplets centred at 3.06 ppm (JHP = 13Hz, JHH = 

10Hz) and 3.60 ppm (JHP =13Hz, JHH =10Hz). TheIR spectrum showed the v(CO) 

bands at 2021, 1993, 1973 and 1955 cm·1 but the v (C=N) band was not observed. The 

ES(+)-MS contained isotopic envelopes arising from the molecular ion for the 

cationic portion of the compound (mlz = 1432) and the fragment ion arising from 

[Ru(PPh3)2Cp t (m/z = 690). 
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Electronic Spectra 

With the exception of 6 (due to the disproportionation problems described above) and 

2 (which proved to be insoluble in THF) the electronic absorption spectra of 

compounds each compound were recorded as 0.1 mM solutions in both DCM and 

THF (Table 3.1 ). Each compound exhibited an absorption band with a Amax in the 

range 240-260 nm which displayed no solvatochromic behaviour and was assigned to 

the localised 1t/1t * transitions of the phosphine ligands. Similar assignments have been 

made previously for a series of closely related compounds. 27 In addition, each 

compound gave rise to a broad absorption envelope between 300-450 nm. This 

envelope contained two absorption bands, the relative positions and intensities of 

which varied between complexes. These were tentatively assigned as MLCT Rud11-Cp 

for the higher energy transition and MLCT Rud11-NC11• for the lower (see Discussion 

section). The marked solvatochromic effect seen for compound 4 (which bears the 

strongly electron-withdrawing N02 group) supports this assignment. However, in the 

case of compounds 1, 4 and 5 these bands overlapped to such an extent that it was 

impossible to establish the positions of the two separate band maxima and the only 

distinguishable band maximum is reported here. 

Table 3 .1. Electronic Absorption data for complexes 1-8 

Complex Amaxlnm (E I M"1 cm"1
) (CH2CI2) Amaxlnm (E I M"1 cm-1

) (THF) 
1 238 (52900), 307 (13600) 230 (70400), 307 (13500) 
2 249 (26900), 310 (8400), 346 ( 6600) n/a 
3 258 (17800), 328 (5600), 391 (2500) 260 (17100), 331 (5900), 391 (3200) 
4 237 (43200), 384 (6900) 229(51000),329(6900) 
5 230 (62700), 332 (55000) 234 (45400), 332 (45000) 
7 247 (85400), 363 (20900), 420 (17100) 225 (55600), 363 (10300), 420 (8300) 
8 270 (30800), 360 (15200), 550 (2400) 270 (55400), 360 (29500), 550 (1800) 
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Molecular Structures 

While attempts to obtain single crystals of [Ru(NCC6a.CN-4){PPh3)2Cp][PF6] (6) 

were complicated by disproportionation to [ {Ru{PPh3)2Cp} 2(J.L-l ,4-

NCC6H4CN)][PF6]z (7) and the free ligand commented upon earlier, it did prove 

possible to obtain single crystals of the other complexes 1-5, 7 and 8. The molecular 

structures for the complexes bearing the benzonitrile ligand (1-3) are shown in Figure 

3.4, with crystallographic details summarised in Table 3.2 and selected bond lengths 

and angles in Table 3.3. Compounds of type [Ru(N=CC6a.X)(PPh3)zCp][PF6] [X= 

NOz (4), NMe2 (5)] as well as the di-ruthenium complex [ {Ru(PPh3)Cp}z(J.L­

NCC6H4CN-4)][PF6]z (7) and the mixed-metal complex [Co2(J.L, 11 2-HC2C6a.C=N-

4){Ru(PPh3)2Cp}(C0)4(dppm)][PF6] (8) are shown in Figure 3.5, with 

crystallographic details summarised in Table 3.4 and selected bond lengths and angles 

in Table 3.5. 

In the case of compounds 4, 7, and 8 molecules of solvent (CHzCh) were found in the 

molecular structure. The solvent molecules are also accounted for in the micro­

analyses of these compounds (see Experimental section). Given the sensitivity of the 

details of the molecular structures to variations in electronic properties of the metal 

and the supporting ligands (e.g. phosphines and Cp') as well as those associated with 

the nitrile ligand of particular interest here, it is only illustrative to consider subtle 

variations within the series of most structurally comparable metal fragments. 
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1 
2 

3 

Figure 3.4. ORTEP plots ofbenzonitrile compounds 1-3 showing numbering scheme 
(in this and all subsequent figures, hydrogen atoms have been omitted for clarity). 

Table 3 .2. Crystallographic data for complexes 1-3 

Compound 1 2 3 
Formula C4s~oF6NP3Ru C43ll4~6NP3Ru C3sll3~6NP3Fe 

M 938.79 882.77 767.42 
a(A) 15.6383(4) 11.8209(6) 10.5129(5) 
b (A) 13.9146(3) 17.8172(9) 16.4328(8) 
c (A) 20.1345(5) 19.7578(10) 20.0776(10) 
a CO) 90 90 90 
p(o) 108.921(1) 92.623(2) 90 

rCO) 90 90 90 
v (A3

) 4144.5(2) 4156.9(4) 3468.5(3) 
p (M2/m3

) 1.505 1.411 1.470 
T(K) 120(2) 120(2) 120(2) 

Crystal system Monoclinic Monoclinic Orthorhombic 
Space Group P21/n P21/n p 212121 

z 4 4 4 
~ (mm"1

) 0.557 0.550 0.635 
Reflections collected 44123 38442 32697 

Independent 10287 [R(int) = 12677 [R(int) = 10550 [R(int) = 
reflections (Riot) 0.0171] 0.0452] 0.0375] 

Final R indices (all R1 = 0.0260, wR2 = R1 = 0.1184, wR2 = R1 = 0.0512, wR2 = 
data) 0.0602 0.3299 0.1037 
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Table 3.3. Selected bond lengths and angles for compounds 1-3. 

Compound M-N(l) N(l)-C(l) C(l)- M-P(l) M-y2) M-N(l)-C(l) N(l)-C(l)-
(A) (A) C(ipso) (A) (A) ( ) n C(ipso) e> 

1 2.037(1) 1.145(2) 1.440(2) 2.334(1) 2.335(1) 171.70(12) 177.84(16) 
2 2.027(5) 1.146(7) 1.438(7) 2.315(1) 2.315(1) 173.6(4) 174.9(6) 
3 1.892(2) 1.141(3) 1.444(3) 2.207(1) 2.206(1) 172.16(18) 174.5(2) 

[Fe(N=CC6~N02) 1.874(11) 1.129(14) 1.420(2) 2.210(4) 2.209(3) 176.6(11) 177.4(15) 
(dppe)(Cp*)][PF6] 

4 5 

Figure 3.5. ORTEP plots of substituted benzonitrile compounds 4, 5, 7, and 8 showing 
numbering scheme. 
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Table 3.4. Crystallographic data for complexes 4, 5, 7, and 8 

Compound 4 5 7 8 
Formula C4sH39F6N2P302Ru.CH2Ch CsoH4sF6N2P3Ru C9oH1oF 12N2P 6Ru2.2(CH2Ch) C79H62Co2Ru04PsNF6.CH2CI2 

M 1068.72 981.86 1969.32 
a(A) 13.4710(1 I) 11.4435(5) 17.9679(7) 13.6667(1 8) 
b(A) 18.9603(1 3) 13.8495(7) 16.5775(7) 16.392(2) 
c (A) 18.1940(14) 15.2404(7) 28.5453(12) 16.958(2) 
a(o) 90 87.187(2) 90 98.113(4) 
/3 (0) 95.816(4) 72.213(2) 90 105.243(4) 
y(o) 90 73.038(2) 90 97.515(4) 

v (A3
) 4623.1(6) 2197.76(18) 8502.6(6) 3572.1(8) 

p (Mg/m3
) 1.535 1.484 1.538 1.519 

T(K) 120(2) 120(2) 120(2) 120(2) 
Crystal system Monoclinic Triclinic Orthorhombic Triclinic 
Space Group P2(1)/n p -1 Pbca p -1 

z 4 2 4 2 
J,l(mm-1) 0.625 0.530 0.669 0.893 

Reflections 37877 31076 81098 42947 
collected 

Independent 11417 [R(int) = 0.0299] 13334 [R(int) = 9288 [R(int) = 0.0683] 17982 [R(int) = 0.0324] 
reflections (Riot) 0.0203] 
Final R indices R1 = 0.0396, wR2 = 0.0741 R1 = 0.0395, wR2 = R1 = 0.0551, wR2 = 0.0971 R1 = 0.0589, wR2 = 0.1147 

(all data) 0.0863 

Table 3.5. Selected bond lengths and angles for compounds 4, 5, 7, and 8 

Compound M-N(l) N(l)- C(l)- M-P(l) M-(P2) M-N(l)- N(l)- P(l)-M-
(A) C(l) C(ipso) (A) (A) C(l) CO) C(l)- (P(2) (0

) 

(A) (A) C(ipso) 
CO) 

4 2.023(2) 1.146(2) 1.442(3) 2.329(1) 2.330(1) 171.24(15) 177.8(2) 1 00.30(2) 
5 2.031(1) 1.149(2) 1.424(2) 2.325(1) 2.321(1) 173.52(14) 175.15(18) 104.24(2) 

[Ru(N=CC6~0Et)(PPh3)2Cp] [PF 6] 2.041(5) 1.152 1.405 2.352 2.337 175.6 175.1 100.6 
7 2.018(2) 1.146(3) 1.442(4) 2.348(1) 2.344(1) 166.9(2) 176.6(3) 102.89_(2) 
8 2.0383 1.138 1.443(3) 2.3498 2.3445 176.6 170.46(11) 102.6 

The geometries around the metal centres in the Ru(PPh3) 2Cp family of nitrile 

complexes 1, 4, 5, 7, 8 and the related complex [Ru(N=CC6H40Et)(PPh3) 2Cp][PF6]
28 

are similar. The Ru-P distances are essentially invariant, spanning a narrow range of 

values from 2.321(1)-2.350(1) A with a mean value of2.337 A. The N-C bond 

lengths are similarly unperturbed by the nature of the para-substituent of the 

benzonitrile ligand. The range of values found for N-C [1.142(4)-1.149(2) A] are 
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experimentally identical and fall within the range of values found for the free ligands 

(1.14-1.16 A)29•30, although relative imprecision ofthe ligand structures makes the 

worth of such direct comparisons questionable. 

Of more interest are the C( 1 )-C(ipso) bonds which display a trend towards shorter 

lengths in the case of the complexes [Ru(NCC6H4NMe2)(PPh3)2Cp][PF6] (5) and 

[Ru(N=CC6H40Et)(PPh3)2Cp ][PF6] which bear inductively electron-donating 

substituents [1.424(2) A and 1.405 A respectively vs. 1.440(2) A for compound 1]. In 

contrast, the shortest Ru-N bond length is associated with the substituted nitrile 

complexes [Ru(NCC6H4N02)(PPh3)2Cp][PF6] (4) and 7, although it must be noted 

that the difference in this parameter between 4 and 5 is on the borderline of statistical 

significance. 

The introduction of more electron-donating supporting ligands has a greater effect on 

these structural parameters. Therefore [Ru(NCC6H5)(dppe)Cp*][PF6] (2) exhibits 

significantly shorter Ru-P bond lengths [2.315(1) A] than the analogous compounds 

[Ru(NCC6H5)(PPh3) 2Cp][PF6] (1) [2.334(1) and 2.335(1) A] and 4 [2.329(1) and 

2.330(1) A], likely a consequence of the synergic cr-donatinght-back-bonding nature 

of the metal-phosphorus bond.31 The N-C and M-N bond lengths in these Ru 

complexes are, however, remarkably insensitive to the nature of the supporting ligand, 

albeit in the limited range of data available (see Table 3). 

Unsurprisingly, the smaller iron centre in [Fe(NCC6H5)(dppe)(Cp)][PF6] (3) and the 

N02-substituted analogue [Fe(N=CC6~N02)(dppe)(Cp*)][PF6] 15 gives rise to shorter 

M-L contacts than those in the ruthenium complexes described above. It is, however, 
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interesting to note that whilst the Fe-P, C(l)-C(ipso), and N-C bond distances in 3 and 

[Fe(N=CC6H4N02)(dppe)(Cp*)][PF6] are experimentally indistinguishable, there is a 

significant contraction of the Fe-N bond length (from 2.027 A in 3 to 1.874(11) A) 

brought about by the introduction of the electron-withdrawing N02 group. This 

observation is consistent with the trends noted above for the ruthenium species. 

Electrochemistry 

The electrochemical response of each of the compounds 1-8 was investigated by 

cyclic voltammetry (CV). These studies were performed using a platinum disc 

working electrode and platinum wire counter and pseudo-reference electrodes. 

Measurements were carried out in a O.lM [N(C4H9)4][BF4] solution in DCM. Internal 

decamethylferrocene [Fc*/Fc*+ = -0.02 V vs. SCE] or ferrocene [Fe/Fe+= +0.46 V vs. 

SCE] standards were used to give electrode potentials relative to SCE.32 

The electrochemical response of 1 at a platinum electrode was characterised by a 

single oxidation event at + 1.30 V vs. SCE, the reversibility of which was improved at 

sub-ambient temperatures ( -30 °C). Compounds 2 and 3 displayed oxidation waves 

(at+ 1.10 and +0.83 V respectively) which were reversible at room temperature. 

Compounds 4-8 displayed an irreversible, poorly defined oxidation event, the 

reversibility which could not be improved even at sub-ambient temperatures and 

faster scan rates(< 5 V/s). 
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Discussion 

The qualitative molecular orbital description of the metal-nitrile interaction described 

in the introduction to this chapter is consistent with the spectroscopic behaviour of the 

benzonitrile complexes in this study. TheIR data for the compounds 1-8 (Table 3.6) 

show the effect coordination of the nitrile ligand to a metal centre has on the v(C=N) 

band. The v(C=N) of the ligands are 2229 cm-1 (N=C-C6Hs), 2240 cm-1 (N=C-C6H4-

complexes bearing para-substituted benzonitrile ligands all have values of v(C=N) 

within a narrow range and most of these are within ca. 10 cm-1 of the free ligand 

value. 

Table 3.6. IR data for compounds 1-8 and free ligands 

Compound v(C=N) cm-1 

N:=CC6Hs 2229 
N=CC6H~02 2240 

N=CC6~NMe2 2210 
1 2233 

2 2227 
3 2217 
4 2228 

5 2221 
6 2221 

7 2226 
8 Not observed 

A variation of the metal fragment produces a more systematic variation in the v(C=N) 

frequencies [~v(C=N) = v(C=N)(complex)-v(C=N)(Iigand)] for the compounds 1 (~v(C=N) 
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= +4 cm-1
), 2 (L'w(C=N) = -2 cm-1

) and 3 (ilv(C=N) = -12 cm-1
). Whilst the ilv(C=N) 

values for 2 and 3 are quite small, and must be taken as within the limits of precision 

for the experiment, that of -12 cm-1 for the iron complex 3 is significant. In terms of a 

metal-ligand 1t interaction this could be explained on the basis of the enhanced back­

bonding from the better n- donating Fe centre towards the nitrile moiety. However, 

orbital polarisation as a result of the smaller iron centre could also account for this 

effect. 

The position of Cp resonances in 1 H and 13C { 1 H} NMR spectra of complexes of type 

MXLzCp is known to be sensitive to the electron density at the metal centre. In 

neutral complexes these 1 H NMR Cp resonances tend to appear near 4.1 ppm ( cf. 

RuCl(PPh3)2Cp at 4.10 ppm33 and RuH(PPh3)2Cp at 4.09 ppm34) whilst for cationic 

derivatives of the Ru(PPh3)2Cp fragment these usually appear in the range 4.5-5.0 

ppm. The Cp resonance in the 1H NMR spectrum of the nitrile complex 

[Ru(NCMe)(PPh3)2Cp][BP~], for example, is found at 4.46 ppm. 

The NMR spectra of the compounds in this study show that the Cp resonances show 

sensitivity to the nature of the benzonitrile substituent. The Cp resonances of 1 occur 

at 4.55 ppm and 84.38 ppm in the 1H and 13C spectra respectively. However when the 

para-substituent is changed from the H atom to the N02 moiety in 4 these resonances 

are moved to 4.64 ppm (1H) and 84.98 ppm (13C{ 1H}). The presence of the electron­

withdrawing N02 group results in a reduction of electron density at the nitrile moiety 

and hence the donating power of the NCC6H4N02 ligand is reduced with respect to 

that of the parent benzonitrile. More electron density is therefore drawn from Cp 

moiety which de-shields the Cp ligand and produces a shift in Cp resonances. 
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Compound 6, which similarly has an electron-withdrawing para-substituent, displays 

a Cp resonance in the 1H NMR spectrum at 4.62 ppm. Unfortunately the problems of 

disproportionation of 6 in solution described previously (see Results) prevented the 

acquisition of 13CeH} NMR data for comparison. 

Conversely, for compound 5, which bears the electron-donating NMe2 substituent, the 

reverse effect is seen. This substituent increases the electron density at the N=C 

moiety and hence improves the donor strength of the ligand. This in turn donates 

more electron density to the metal fragment resulting in greater shielding of the Cp 

moiety and a shift of the Cp resonances to 4.42 ppm eH) and 83.81 ppm (13CeH}). 

The crystal structures of these compounds show how the same donor strength 

variations affect the M-N bond lengths. This distance is 2.037(1) A for compound 1 

but is reduced to 2.023(2) A upon the addition of the electron-withdrawing N02 

moiety. This may be due to a degree of n-back-bonding from the metal into then* 

orbital of the CN moiety. Whilst there is no concomitant lengthening of the C=N 

bond observed in the molecular structure, X-ray diffraction may be insufficiently 

sensitive to observe this. When the para-substituent is the electron-donating NMe2 

group in compound 5, the donor strength of the ligand is increased. However theM­

N bond length [2.031(1) A] is virtually identical to that in 1. 

Whilst these variations in the M-N bond length could be explained in terms of 1t back­

bonding from the ruthenium centre to the nitrile n* orbitals this would not be 

consistent with the rest of the crystallographic data. The 1t back-bonding model 

would suggest that complex 4, bearing the N02 group would exhibit a greater degree 
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of back-bonding and hence shorten the Ru-N bond length and concomitantly lengthen 

the N-C bond whilst the reverse effect would be seen for the NMez-bearing complex 

5. However there is no evidence for this in the crystallographic results. All of the C­

N bond lengths for all the compounds 1-8 are identical within the limits of precision 

of the experiment. This argues against the possibility of a back-bonding influence in 

these compounds and suggests that the bonding occurs predominantly via the cr 

interaction. It is possible, however, that these structural parameters are an 

insufficiently sensitive probe of the subtle variations in electron density across the 

C=N moiety. 

A further effect of the electron-donating properties of the N=C-C6H4-4-NMe2 ligand 

is seen in the Ru-P bond lengths of compound 5. These bond lengths are 2.334(1) and 

2.335(1) A in compound 1 (and similar in 4) but decrease to 2.325(1) and 2.321(1) A 

in compound 5. The electron-donating NMe2 group increases the electron-density of 

the benzonitrile ligand and that this is transmitted via the cr-bonding interaction to the 

metal centre. This increases the electron-density at the metal centre allowing greater 

7t back-bonding between the metal and the phosphine ligands and hence the bond 

length is decreased. This use of the Ru-P bond lengths as a sensitive probe of electron 

density at a metal centre can be seen for the molecular structures of compounds 1-3 

where there is a shortening of these bonds as the donor strength of the metal fragment 

increased. This effect is, of course, exaggerated in the case of compound 3 where the 

smaller iron atom allows a closer approach of the phosphine ligand. 

An increase in electron density at the metal centre results in the metal fragment 

becoming a poorer acceptor of electron density from the benzonitrile ligand. This is 
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evident in the 1 H NMR spectrum as variations in the positions of resonances arising 

from the ortho-protons of the benzonitrile ligand. In the case of 1, these resonances 

are indistinguishable from those arising from the other phenyl protons. However, in 

the case of compound 2 the poorer acceptor qualities of the metal centre mean that 

less electron density is drawn from the ligand and so the ortho-protons are shielded to 

a greater degree than they are in 1 and are visible as a pseudo-doublet centred at about 

6.55 ppm. In compound 3, in which these protons are further shielded, these 

resonances are found as a broad singlet at 6.46 ppm. 

The electronic spectra of the compounds 1-8 not only confirm the increase in electron 

density at the metal centre for compounds 1-3 but also provide further evidence that 

the bonding interaction between the metal and the nitrile moiety is primarily cr in 

character. The electronic spectra of these compounds all have the same general 

features. They all have a transition with a Amax of about 240 nm (due to the nht * 

interaction in the phosphine ligands) and a set oflower energy absorption bands in the 

range 300-450 nm. 

A study of similar compounds was carried out by Agarwala et al in 1990.35 The 

reaction of 4-cyanopyridine, 1,4-dicyanobenzene and 1,4 dicyanobutene with both 

[RuClLzCp] (L = (PPh3)2, (AsPh3)2, dppe, dppm) and [RuHCl(CO)(EPh3)3] (E = P, 

As) afforded the corresponding mono- and di-metallic species. Some of these 

exhibited bands in the UV spectrum at 350 nm and 420 nm which were attributed to 

two MLCT transitions. The band at 350 nm was assigned to MLCT between the Ru 

centre and the Cp anti-bonding orbitals and the band at 420 nm was assigned to 
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MLCT between the Ru centre and the 1t* orbitals of the nitrile ligands. Furthermore 

they also observed a solvatochromic effect to support this assignment. 

The same arguments can be applied to the absorption spectra of the benzonitrile 

complexes in this study. Each compound exhibits two overlapping bands in the 300-

450 nm region comparable with those found by Agarawala and co-workers. In DCM 

solution the energy of these charge-transfer bands in compound 2 (310 and 346 nm) 

are of lower energy than those in 1 (Amax = 310 and 346 nm for 2 vs 307 nm for 1) and 

they move to even lower energy for compound 3 (328 and 391 nm). As the nature of 

the co-ordinating nitrile is invariant between these complexes, this effect is therefore 

due to an increase of electron density at the metal fragment in the order 3 > 2 > 1. 

This increase in electron density raises the energy of the metal d-orbitals such that the 

energy gap between those orbitals and the acceptors on the Cp and nitrile moieties is 

decreased and hence the transitions move to lower energy. 

The electronic spectra of the para-substituted benzonitriles displayed absorption bands 

similar to those seen for compounds 1-3, demonstrating further that the bonding 

interaction between the ligand and the metal fragment contains no contribution from 

the nitrile 1t-system. Complexes 7 and 8 displayed two distinct bands in the 300-550 

nm region (7 365, 410 nm; 8: 360, 550 nm). In the case of 4 and 5 these two bands 

overlapped to such an extent that only one maximum was clearly discemable. For 

compound 4 there is a strong solvatochromic effect on the position of this series of 

curves. The Amax for these bands moves from 329 nm to 386 nm indicating that the 

excited state is of higher energy in DCM solution. It may be possible, however, to 

move these two absorptions apart from each other and distinguish them more clearly 
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by changing the metal fragment in the manner demonstrated in compounds 1, 2 and 3 

and this is an area for further study. 

Whilst this work was in progress, other work in this laboratory resulted in the 

formation of [ {Ru(PPh3)2Cp }2(f.!-C=CC6~CN-4)][PF6] (7a) (Figure 3.6) which bears 

obvious comparisons to the terephthalonitrile complex [ {Ru(PPh3)2Cp h(f.!-

+ 

[PFsr 

Figure 3.6. [ {Ru(PPh3)2Cp }2(f.!-C=CC6~CN-4)][PF6] (7a) showing numbering 

scheme. 

The structure of the dicationic complex 7 has an inversion centre located at the mid-

point of the phenyl ring of the bridging ligand. The Ru-N and Ru-P bond lengths are 

shorter and longer respectively than those of the related monometallic complex 1. 

Recent calculations involving Re and Pt systems have shown a degree of polarisation 

in the M-N bond with a large portion of the electron density residing on the N atom. 16-

18 This leads to a strong electrostatic interaction between the ruthenium centre and the 

nitrile ligand, shortening the Ru-N bond in 7 relative to 1. The N-C and C-C(ipso) 

bonds in 7 are identical to those of 1, suggesting that there is no communication 

between the metal centres via the 7t-system. Compound 7a combines both metal-

acetylide and metal-nitrile bonding motifs in the bridging ligand. The N=C and C=C 
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bond lengths as well as the metal-bridging ligand contacts are essentially unchanged 

from the model complexes 1 and Ru(C=C-C6H5)(PPh3)zCp36
•
37 but there is an 

apparent degree of quinoidal character in the ring system of the bridging ligand as 

evidenced by the short C(2)-C(3) (1.419(7) A) and C(6)-C(9) (1.41S(7) A) bond 

lengths in 7a. A comparison of the Ru(l)-P(l, 2) bond lengths (2.290(1) and 2.305(1) 

A) of7a with the Ru-P bond lengths ofRu(C=C-C6H5)(PPh3) 2Cp (2.229(3) and 

2.228(3) A), and ofRu(2)-P(3, 4) (2.310(1) and 2.322(1) A) with those of 1 (2.334(1) 

and 2.335(1) A) reveals Ru(l)-P(l, 2) to be significantly longer than the 

corresponding bond lengths in the monometallic nitrile or acetylide complexes. 

Furthermore, the Ru(2)-P(3,4) bonds on the nitrile-coordinated metal centre are 

amongst the shortest Ru-P bond lengths reported for this class of complex. When 

taken as a whole, these structural parameters provide clear evidence for the donation 

of electron density from Ru( 1) to Ru(2) via the polarised cr-bond framework of the 

ethynylbenzonitrile bridge. 

In summary the experimental evidence presented in this chapter is in good agreement 

with recent DFT calculations which suggest limited M-N=C back-bonding in metal­

nitrile complexes. Furthermore, the v(C=N) frequencies have proven to be an 

insensitive probe as to the metal-nitrile bonding interaction and the M-P bond lengths 

of the compounds are much closer tracks of the electronic nature of the metal-ligand 

interaction. 
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Experimental 

The following numbering scheme is used in the assignment of 13C NMR resonances in 

the phenyl ring of the benzonitrile ligands: 

+ 

An oven-dried, two-necked Schlenk flask was fitted with a stirrer bar and cooled 

under nitrogen. The flask was charged with RuCl(PPh3)2Cp (250 mg, 0.345 mmol), 

C6HsCN (0.1 ml, 0.97 mmol), and N~PF 6 (200 mg, 1.22 mmol). The solids were 

suspended in MeOH (20 ml) and the mixture heated to reflux Under a nitrogen 

atmosphere. After 30 minutes the yellow solution that had formed was allowed to 

cool to room temperature and was then further cooled using an ice/water bath. The 

resulting yellow precipitate was collected by filtration and washed with cold methanol 

to give 1 as a yellow solid (146 mg, 0.156 mmol, 45 %). Crystals suitable for X-ray 

diffraction studies were obtained by slow diffusion of MeOH into a DCM solution of 

1. Found: C, 61.29; H, 4.30; N, 1.52. C4s~oP3F6NRu requires: C, 61.41; H, 4.29; N, 

1.49. 1H NMR (CDCh): 8 4.55 (s, 5H, Cp); 7.09-7.57 (m, 35H, Ph). 13CeH} NMR 

(CDCh): 8 135.9 (m, Jcp = 23.13 Hz, Cipso PPh3); 133.82 (s, C4); 133.49 (t, Jcp = 5.28 

Hz, Cortho PPh3); 132.73 (s, C2); 130.37 (s, Cpara); 129.49 (s, C3); 128.70 (t, Jcp = 4.78 
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Hz, Cmeta PPh3); 111.50 (s, C1); 84.38 (s, Cp). 31P{ 1H} NMR (CDCh): 8 42.89 (s, 

PPh3); -142.97 (ht, ]pp =713Hz PF6). ES(+)-MS (m/z): 794 

[Ru(NCC6Hs)(PPh3)2Cpt; 691 [Ru(PPh3)2Cpt IR (nujol mull): v(C=N) 2233 cm-1. 

[Ru(NCC6Hs)(dppe)Cp*][PF6] (2) 

In a manner similar to that described for the preparation of 1, a suspension of 

RuCl(dppe)Cp* (200 mg, 0.299 mmol), C6HsCN (0.1 ml, 0.97 mmol), and NH4PF6 

(195 mg, 1.20 mmol) in refluxing MeOH (10 ml) was allowed to react for 1 hr. The 

resulting yellow solution was cooled to room temperature and solvent removed. The 

yellow residue was dissolved in the minimum quantity of DCM, filtered and the 

product crystallised by slow diffusion of hexane into a DCM solution, affording 

yellow crystals of2 (207 mg, 0.235 mmol, 78 %). Found: C, 57.18; H, 4.91; N, 1.49. 

C43I1!4P3NF6Ru requires: C, 58.50; H, 5.02; N, 1.59. 1H NMR (CD2Ch): 8 1.51 (s, 

ISH, Cp*); 2.46, 2.50 (2 x br, 4H, dppe); 6.54, 6.57 (pseudo-d, 2Hortho, PhCN); 7.26-

7.62 (m, 23H, Ph). 13CeH} NMR (CD2Ch): 8 134.63-126.20 (m, Ph); 133.78 (s, C4); 

126.20 (s, C=N) 111.26 (s, C1); 93.18 (s, CsMes); 28.77-28.41 (m, dppe); 9.68 (s, 

CsMes). 31PeH} NMR (CD2Ch): 8 76.15 (s, dppe); -143.42 (ht, ]pp =710Hz PF6). 

ES(+)-MS (m/z): 794 [Ru(NCC6Hs)(dppe)Cp*t; 635 [Ru(dppe)Cp*t. IR (nujol 

mull): v(C=N) 2227 cm-1. 
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[Fe(NCC6Hs)(dppe)(Cp)][PF6] (3) 

An analogous procedure using FeCl(dppe)(Cp) (200 mg, 0.361 mmol), C6H5CN (0.1 

ml, 0.97 mmol) and NH4PF6 (235 mg, 1.44 mmol) followed by recrystallisation by 

diffusion ofMeOH into a DCM solution of3 resulted in the formation of red crystals 

of 3 (163 mg, 0.213 mmol, 59%). Found: C, 59.17; H, 4.43; N, 1.88. 

C3sH34P3NF6Fe requires: C, 59.47; H, 4.47; N, 1.83. 1H NMR (CDCh): o 4.45 (s, SH, 

Cp); 2.45, 2.63 (2 x br, 4H, dppe); 6.46 (s, 2Honho, PhCN); 7.16-7.86 (m, 23H, Ph). 

13C{ 1H} NMR (CD2Ch): o 136.74 (m, 2 x Cipso); 134.33 (s, C4), 133.36 (s, C2); 

133.00 (br, Conho); 132.04 (s, C3); 131.45 (br, Conho); 131.32 (s, Cpara); 130.93 (s, 

Cpara); 129.69 (br, Cmeta); 129.53 (br, Cmcta); 129.13 (s, CN); 111.41 (s, C1), 79.90 (s, 

Cp), 28.13 (m, dppe). 31PeH} NMR (CDCh): o 98.32 (s, dppe); -143.13 (ht, JPF = 

713Hz PF6). ES(+)-MS (m/z): 622 [Fe(NCC6Hs)(dppe)Cpt; 519 [Fe(dppe)Cpt, IR 

(nujol mull): v (C=N) 2217 cm-1. 

The reaction between RuCl(PPh3)2Cp (100 mg, 0.138 mmol), NCC6~N02 (20.4 mg, 

0.138 mmol), and NH~F6 (80 mg, 0.49 mmol) in refluxing MeOH (20 ml) afforded 

an orange solution after 30 minutes which was cooled (ice/water) to afford 4 as an 

orange precipitate (90 mg, 0.092 mmol, 66 %). Crystals suitable for X-ray 

diffraction studies were obtained from slow diffusion ofMeOH into a solution of 4 in 

DCM. Found: C, 54.57; H, 3.84; N, 2.66. C4sH39N2P3F602Ru.CH2Ch requires: C, 

55.07; H, 3.87; N, 2.62. 1H NMR (CDC13): o 4.64 (s, SH, Cp); 7.11-7.39 (m, 40H, 
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Ph). 13CCH} NMR (CDCh): 8 150.04 (s, C4) 135.64 (m, Jcp = 22.50 Hz, Cipso PPh3); 

134.21 (s, C3) 133.50 (t, Jcp = 4.78 Hz, Cortho PPh3); 130.50 (s, Cpara); 128.80 (t, Jcp = 

4.77 Hz, Cmeta PPh3); 127.91 (s, CN); 124.31 (s, C2); 117.46 (s, C1); 84.98 (s, Cp). 

31PCH} NMR (CDCh): 8 42.97 (s, PPh3); -142.93 (ht, hF =713Hz PF6). ES(+)-MS 

(m/z): 839 [Ru(NCC6H4N02)(PPh3)2Cpt; 691 [Ru(PPh3)Cpt, IR (nujol mull): 

v(C=N) 2228 cm-1. 

A procedure analogous to that described for 4 using RuCl(PPh3)2Cp (100 mg, 0.138 

mmol), NCC6~NMe2 (20 mg, 0.138 mmol), and N~PF6 (80 mg, 0.49 mmol) 

yielded 5 as a yellow solid (65 mg, 0.066 mmol, 48 %). Crystals suitable for X-Ray 

diffraction were obtained from slow diffusion ofhexane into a solution of5 in CHCb. 

Found: C, 60.69; H, 4.61; N, 2.84. RuC50~5N2P3F6 requires: C, 61.16; H, 4.62; N, 

2.85. 1H NMR (CDCh): 8 4.42 (s, 5H, Cp); 7.00-7.30 (m, 37H, Ph); 2.97 (s, 6H, 

N(CH3)2. 13CCH} NMR (CDCh): 8 153.23 (s, C4) 136.07 (m, Jcp = 22.63 Hz, Cipso 

PPh3); 133.84 (s, C2) 133.48 (t, Jcp = 5.15 Hz, Cortho PPh3); 130.31 (s, Cpara); 128.63 

(t, Jcp = 4.90 Hz, Cmeta PPh3); 111.77 (s, C3); 95.61 (s, C1); 83.81 (s, Cp); 40.17 (s, 

Me). 31PCH} NMR (CDCh): 8 42.82 (s, PPh3); -143.04 (ht, JpF =713Hz PF6)­

ES(+)-MS (m/z): 837 [Ru(NCC6H4NMe2)(PPh3)2Cpt; 691 [Ru(PPh3)Cpt, IR (nujol 

mull): v (C=N) 2221 cm-1. 
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A two-necked, nitrogen cooled, 50 ml Schlenk flask was charged with RuCl(PPh3)2Cp 

(1 00 mg, 0.138 mmol), NCC6H4CN (173 mg, 1.38 mmol), and N~PF6 (80 mg, 0.49 

mmol). MeOH (20 ml) was added and the suspension was heated to reflux under a 

nitrogen atmosphere. After 30 minutes the yellow solution was cooled and the solvent 

removed. The yellow residue was dissolved in the minimum quantity ofDCM, 

filtered and precipitated into Et20. The precipitate formed was collected and dried to 

obtain 6 as a pale yellow powder (100 mg, 0.104 mmol, 75 %). Found: C, 59.99; H, 

3.98; N, 2.82. RuC49H39N2P3F6 requires: C, 61.06; H, 4.08; N, 2.91. 1H NMR 

(CDCh): 8 4.62 (s, 5H, Cp); 6.98-7.37 (m, 74H, Ph). 31PeH} NMR (CDCh): 8 42.58 

(s, PPh3); -142.93 (ht, Jpp =713Hz, PF6). ES(+)-MS (m/z): 819 

[Ru(NCC6H4CN)(PPh3)2Cpt; 691 [Ru(PPh3)Cpt. IR (nujol mull): v(C=N) 2221 em-

The reaction ofRuCl(PPh3)2Cp (200 mg, 0.276 mmol), NCC6~CN (18 mg, 0.136 

mmol), and NH4PF6 (160 mg, 0.98 mmol) in the usual manner yielded 7 as a yellow 

solid (140mg, 0.078mmol, 57%). Recrystallisation by slow diffusion of methanol 

into a solution of7 in DCM afforded bright yellow crystals suitable for x-ray. Found: 

C, 56.03; H, 3.79; N, 1.40. Ru2C90H70N2P~12.2(CH2Ch) requires: C, 56.11; H, 3.99; 

N, 1.42. 1H NMR (CDCh): 8 4.57 (s, 10H, Cp); 6.98-7.37 (m, 74H, Ph). 31P{ 1H} 

NMR (CDCh): 8 42.58 (s, PPh3); -142.84 (ht, ]pp =713Hz PF6). ES(+)-MS (mlz): 
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1655 [Ru2(NCC6H4CN)(PPh3)4Cp2]PF/; 819 [Ru(NCC6H4CN)(PPh3)2Cpt; 691 

[Ru(PPh3)Cpt. IR (nujol mull): v(C=N) 2226 cm-1. 

In a procedure analogous to that described for 4, RuCl(PPh3)2Cp (97.9 mg, 0.135 

mmol), Co2(f..l, YJ 2-HC2C6~CN-4)(C0)4(dppm) (100 mg, 0.135 mmol), and NH4PF6 

(80 mg, 0.49 mmol), were allowed to react in refluxing MeOH (15 ml) and THF (5 

ml) for 2.5 hours after which the solvent was removed and the residue recrystallised 

by slow diffusion ofMeOH into a DCM solution to afford 8 as dark red crystals (141 

mg, 0.089 mmol, 66 %).'Found: C, 57.75; H, 3.77; N, 0.86. 

C79H662Co2Ru04PsNF6.CH2Ch requires: C, 57.81; H, 3.88; N, 0.84. 1H NMR 

(CDCi]): 8 3.06 (dt, lH, JHP =13Hz, JHH =9Hz, CHP2); 3.60 (dt, lH, JHP =13Hz, 

JHH =10Hz, CHP2); 4.47 (s, 5H, Cp); 5.80 (s, lH, JHP =7Hz, Co2C2H); 7.05-7.50 (m, 

54H, Ph). 13CeH} NMR (CDCh): 8 83.95 (s, Cp); 128.45-133.20 (m, Ph). 31PeH} 

NMR (CDCh): 8 42.76 (s, dppm); 43.84 (br, PPh3). ES(+)-MS (m/z): 1432 [Co2(f..l, 

YJ 2-HC2C6H4CN-4){Ru(PPh3)2Cp}(C0)4(dppm)t; 691 [Ru(PPh3)2Cpt. IR (nujol 

mull): v(CO) 2021, 1993, 1973 1955 cm-1. 
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Introduction 

The bidentate, but non-chelating, nature of the cyanide anion CC=N), together with its 

orthogonaln-systems, makes it a suitable ligand for bridging and promoting 

interactions between two metal centres. The anion can coordinate via the carbon atom 

in an 11 1(C) fashion as a combination of a-donation from the carbon ligand (from the 

lone pair of electrons resultant from the negative charge, located in the cyanide a* 

anti-bonding orbital) as well as a degree of 1t back-bonding from the metal centre into 

then* anti-bonding orbital of the C=N moiety. The coordinated CN moiety can also 

coordinate in an 11 1(N) fashion by donation of electron density from an orbital of a­

symmetry essentially localised on theN-atom (which may be formally regarded as the 

lone pair on the nitrogen atom of the N=C moiety) giving rise to a J.l.-11 1(C), 11 1(N) 

mode. Whilst there may be a degree of 1t back-donation from the metal centre to the 

C=N moiety via theN-atom this is much weaker than at the carbon end. As a result of 

the coordinative flexibility of the [CNr unit, a host of cyanide bridged metal species 

are known, and many have been studied in exquisite detail. 1
-
8 

Of particular historical importance is Prussian Blue, a mixed-valence Fe111m complex 

KFe[Fe(CN)6] with an infinite network structure.9 The interest in such CN bridged 

systems are the same as those highlighted earlier (see main introduction) for bridged 

bimetallic complexes in general, namely: molecular structure and thermal and photo­

induced electron transfer. 

In the late 1990's Vahrenkamp and co-workers carried out an extensive study of a 

range of dinuclear cyanide-bridged organometallic complexes. 10 The redox chemistry 
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and mixed-valence behaviour of a series of iron based complexes of type [ {MLn}(ll-

CN)[Fe(dppe)Cp} t+ (MLn = Cr(CO)s, Mo(CO)s, W(CO)s, Fe(C0)2Cp, 

Fe(CO)(CN)Cp, Ru(PPh3)2Cp), was of particular interest and each ofthese complexes 

were studied in at least two of the chemically accessible oxidation states. 

Figure 4.1. The cyanide-bridged bimetallic complex [ {Cr(CO)s}(ll-

CN)[Fe(dppe)Cp}] 

Comparison of the molecular structures of the neutral and oxidised forms of the 

iron/chromium complex [ {Cr(C0)5 }(~-t-CN)[Fe(dppe)Cp}] (Figure 4.1) showed 

elongation of the Fe-P and Fe-Cp bonds and contraction of the Fe-N bond upon 

oxidation, but little change (a decrease of0.02 A) in C-N bond length. This suggested 

that the oxidation was largely iron-centred and that the loss of electron density 

resulted in a reduction of back-bonding to the phosphi_ne and Cp ligand. The Fe-N 

bond is contracted, however, and this is not consistent with back-bonding from the 

iron to the C=N moiety. Instead, oxidation at the iron centre increases the coulombic 

interaction between the positively-charged iron centre and the electron pair at theN-

atom and reduces the distance between them. 

However, despite the relatively small change in CN bond length observed upon 

oxidation of [ {Cr(C0)5 }(~-t-CN)[Fe(dppe)Cp} ], each of the materials described above 

showed a decrease in the v(C=N) stretching frequency upon oxidation. Oxidation of 
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the iron centre creates a net flow of electron density from the C-bound metal centre 

towards theN-terminus, corresponding to increased back donation for the C-bound 

metal into then* anti-bonding orbitals of the CN moiety. This results in a weakening 

of the CN bond and hence a decrease in the v(C=N) stretching frequency. The degree 

to which the v(C=N) stretching frequency decreases upon oxidation is dependant on 

the donor-strength of the C-bound unit. Hence a greater decrease in v(C=N) was 

found following oxidation of the ruthenium/iron complex [ {Ru(PPh3)2Cp} (f.!­

CN)[Fe(dppe)Cp}] (-73 cm-1
) than for the di-iron complex [ {Fe(C0)2Cp}(f.!­

CN)[Fe(dppe)Cp}] (-25 cm-1
). These observations suggest that the CN bond length is 

a poor probe of the bonding interaction between the CN moiety and a metal centre. 

In addition to theIR data, electronic absorption spectra of the oxidised (35-electron) 

bimetallic complexes showed bands in the near-infra-red (NIR) region of the 

spectrum. These bands are indicative of charge-transfer between metal centres in 

bridged complexes and analysis of the band-shape suggested that the compounds 

belonged in the "valence-trapped" (Class 2) grouping (see following results and 

discussion section for a more detailed description of these "metal to metal" charge­

transfer bands). The coupling constants derived for the compounds (an indication of 

the degree of interaction between the two metal centres) showed stronger coupling for 

the compounds where the C-bound metal was a stronger donor, mirroring theIR data. 

Trimetallic cyanide-bridged complexes have been under study since Siebert's use of 

the cobalt cyanide complex [Co(NH3)5CN]2
+ to coordinate to silver and mercury 

centres. 11 Since then, the majority of trimetallic complexes have contained central 

Ru(bpy)2 units (or analogues thereof) in the interests of investigating photon-induced 
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electron-transfer.6 Until the late 1990's there had been few studies of bridging or 

cis/trans isomerism in trimetallic species, the majority of work focussing on 

spectroscopic trends and redox properties. 12
-

15 In addition, there were very few 

examples of unsymmetrical trinuclear complexes that had been isolated and fully 

characterised. 16
-
19 

A series of compounds of type [ {ML0 }(J..l-NC){Fe(CO)Cp }(f..l-CN){MLn} t (MLn = 

Fe(CO)zCp, Fe(dppe)Cp, Ru(PPh3)z) featuring a bent geometry about the central iron 

atom were obtained by Vahrenkamp and co-workers (Figure 4.2) from reactions of 

K[Fe(CN)z(CO)Cp] with [Fe(THF)(C0)2Cp][BF4], FeBr(dppe)Cp and 

RuCl(PPh3) 2Cp in methano1.20 

Figure 4.2. The bent geometry of [ {MLn}(f..l-NC){Fe(CO)Cp}(f..l-CN){MLn} t (MLn = 

Fe(CO)zCp, Fe(dppe)Cp, Ru(PPh3)z) 

In each case, coordination of the CN moieties via theN-atom to another metal centre 

caused an increase in the v(C=N) stretching frequencies in the same manner as found 

for the bimetallic complexes. This increase in v(C=N) values can be attributed partly 

to a kinematic effect as well as to the loss of electron density from the CN cr* orbital 

upon coordination. Interestingly, a greater increase in the v(C=N) stretching 

frequency was observed in the case where the metal end-cap was the more electron-
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withdrawing Fe(C0)2Cp centre. Curiously, cyclic voltammetry for the compound 

[ {Ru(PPh3)2}(f..l-NC) {Fe(CO)Cp }(f.!-CN) { Ru(PPh3)2} ][PF6] suggested some degree 

of electronic communication between the remote ruthenium centres and evidence for 

this was also seen in the electronic absorption spectra of the oxidised complex. This 

is unusual as electronic communication between remote tennini had previously been 

shown to be inhibited by a cis-configuration. 21 

In an extension of the work of Siebert, Connelly and co-workers have shown that the 

metal-cyanide complexes are good N-donor ligands toM+ and MCh centres. 12·22
•
23 

This led to an investigation of the physical properties of the compounds 

[{Fe(dppe)Cp}(f.!-CN)MCh(f.!-NC){Fe(dppe)Cp}] (M = Ni, Cu, Zni4 which allowed 

for comparisons of tetrahedral (Ni, Zn) and square planar (Cu) geometries as well as 

the effect of redox-active (Ni, Cu) and non-redox active (Zn) central metals on the 

interactions through the assembly. However, the only complex which showed any 

evidence of electronic communication between the remote iron centres was the zinc 

complex [ {Fe(dppe)Cp }(f.!-CN)ZnCh(f..l-NC){Fe(dppe)Cp}] (Figure 4.3) for which 

cyclic voltammetry showed separate oxidation waves for the two iron centres. 

Figure 4.3. [ {Fe(dppe)Cp}(f.!-CN)ZnCh(f.!-NC){Fe(dppe)Cp}] 
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Vahrenkamp and co-workers have studied a series oftrimetallic complexes bearing 

central platinum units coordinated to the metal fragments [Ru(PPh3) 2] and 

[Fe( dppe )Cp] via cyanide bridges. 25 This resulted in a series of compounds where the 

remote metal centres were arranged in cis and trans geometries and with bridging 

isomers apparent as well. Electrochemistry showed that each of the cis-compounds 

cis-[ {F e(Jl-CN)( dppe )Cp }2Pt(bpy) ][SbF 6]2, cis-[ {F e(Jl-

CN)(dppe)Cp}2Pt(phen)][SbF6h and cis-[ {Fe(Jl-NC)(dppe)Cp }2Pt(bpy)][SbF6h 

(Figure 4.4) underwent single two electron oxidation events The complexes with a 

trans geometry about the platinum centre, however underwent two, one-electron 

oxidation events which suggests that a trans-geometry is essential for metal-metal 

communication irrespective of the orientation of the cyanide bridge. Furthermore, it 

indicates that the remote metal-metal interaction is a through bond interaction via the 

7t-system of the trimetallic species. 

a b 

Figure 4.4. Square planar platinum cis-complexes (a: N-N = bpy, phen; b: N-N = bpy) 

The electrochemical response of the trimetallic, trans-configured tetracyanoplatinate 

complexes [{Fe( dppe )Cp} 2 {Jl-Pt(CN)4}] and [{Fe( dppe )Cp} {Jl-

Pt(CN)4} {Ru(PPh3)2Cp}] (Figure 4.5) revealed two, one-electron oxidations, the 
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separation of which indicated thermodynamic stability of the mono-oxidised form 

with respect to disproportionation. Chemical oxidation of the trimetallic complexes 

with ferrocinium hexafluorophosphate duly gave the mono-oxidised materials, 

isolated as [PF6r salts.25 

Figure 4.5. Trimetallic tetracyanoplatinate complexes 

Infra-red spectroscopy revealed an increase in the v(C=N) stretching frequencies of 

the coordinated CN moieties upon oxidation. The oxidation of one of metal terminus 

results in a flow of electron density across the complex from the remote metal 

terminus to the oxidised centre. This in turn leads to two competing effects: increased 

N~M a-donation which strengthens the CN bond and increased Pt~C back-bonding, 

which would weaken the CN bond. It is apparent from the resultant increase in 

v(C=N) upon oxidation that the effect of increased a-donation is more pronounced. 

The electronic absorption spectra of the oxidised materials showed IVCT bands in the 

NIR region of the spectrum corresponding to M11 ~ Mill charge transfer. In the case 

of the di-iron complex [ {Fe(dppe)Cp }2{f.l-Pt(CN)4} t the IVCT band was observed at 

6410 cm-1 but this was moved to higher energy in the mixed-metal complex 

[ {Fe(dppe)Cp} {f.l-Pt(CN)4} {Ru(PPh3)2Cp} t (13300 cm-1
). Assuming that the 

oxidation occurred at the iron centre then this shift ofiVCT energy to higher energy is 
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consistent with the poorer electron-donor ability of the [Ru(PPh3) 2Cp] end-cap 

relative to [Fe( dppe )Cp]. 

Coordination of a third metal centre to one of the pendant CN moieties of the di-iron 

complex resulted in the formation of the tetrametallic complexes shown below (Figure 

4.6).26 

+ + 

Figure 4.6. Tetrametallic tetracyanoplatinate complexes 

Cyclic voltammetry of the tri-iron complex revealed a one-electron oxidation event 

followed by a two-electron oxidation process. The iron-ruthenium complex, however, 

underwent three one-electron oxidations, the first two of which corresponded with 

those observed for [ {Fe(dppe)Cp }z {!J.-Pt(CN)4}] whilst the third, which was well 

separated from the first two (E2-E1 = 0.11 V, E3-Ez = 0.55 V) was characteristic of 

oxidation of a [Ru(PPh3) 2Cp t centre. The electronic absorption spectrum of the 

iron/ruthenium complex after oxidation was found to be very similar to that of the di-

iron complex [ {Fe(dppe)Cp }z {!J.-Pt(CN)4}]. Thus it seems that there is little 

communication between the cis tennini and that the trans interaction between the 

remote iron centres is relatively unaffected by coordination of a third metal centre. 
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The work ofVahrenkamp and co-workers has shown that the square planar 

tetracyanometallate dianions of Group 10 metals, [M(CN)4t, are rather useful, if 

relatively unexplored, cyanometallate ligands capable of bridging, in principle, up to 

four metal centres.25•26 Greater interest in these complexes has been driven the by the 

discovery of complexes such as Krogmann salts (K2[Pt(CN)4]), which form chain­

like, or pseudo one-dimensional, arrays of platinum centres.27-29 The various 

coordination modes which might be envisioned arising from the [M(CN)4t fragment, 

and those of the corresponding tetra(cyanoacetylide) dianions [M(C=CC=N)4t 

prepared by Miller,30 prompted us to consider a systematic investigation of complexes 

of the general form [M'L2Cp']2 {J..L-M(CN)4} and the role the nature of the individual 

metal centres and supporting ligands might play on the electronic interactions which 

might occur through the M(CN)4 bidentate metallo-ligand. 
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Results and Discussion 

Syntheses and Physical Properties 

The compounds 9-14 were prepared by reaction of the half-sandwich metal chlorides 

RuCl(PPh3)2Cp or RuCl( dppe )Cp* with one half-equivalent of the appropriate 

potassium tetracyanometallate (Scheme 4.1 ). The KCl by-product was removed by 

extraction and filtration and the pure trimetallic compounds were obtained as yellow 

crystalline solids in moderate to good yield after crystallisation. 

.,{ N 

1 

N 
Rs?e' 

Ill 
Rs?e' 

Ill ~Rs c c 
I I /Ru-CI N:=C-M-C:=N Ru-N:=C-M-C:=N-Ru 
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L c 
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Scheme 4.1. Synthesis of [ { Ru(PPh3)2Cp }2 {)l-M(CN)4}] {M = Ni (9), Pd (10), Pt 

(11)} and [ {Ru(dppe)Cp*}z {~t-M(CN)4}] {M = Ni (12), Pd (13), Pt (14)} 

In each case theIR spectrum clearly revealed two v(C=N) bands which were assigned 

to bridging (2136-2157 cm-1
) and non-bridging (2118-2130 cm-1

) CN moieties, the 

assignment being made by comparison with the spectra of the precursor K2[M(CN)4] 

species. These data are discussed in more detail below. 
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The Cp' ligands gave rise to the expected resonances in the 1 H NMR spectra in the 

narrow ranges 4.29-4.30 ppm (Cp, 9-11) and 1.45-1.48 ppm (Cp*, 12-14). Further, 

for compounds 12-14, resonances arising from the ethyl protons of the dppe ligand 

backbone were observed as multiplets in the range 2.00-2.64 ppm. Similarly, Cp' 

resonances were also observed in the 13C { 1 H} NMR spectra with Cp resonances 

falling in the narrow range 82.16-83.43 ppm (9-11) and Cp* resonances occurring in 

the nanow ranges 91.68-91.70 ppm (C5Me5, 12-14) and 10.08-10.13 ppm (C5Me5, 12-

14). The 31 P NMR spectra were also unremarkable, and simply served to confinn the 

presence of the phosphine ligands with singlet resonances occurring in the ranges 

43.12-43.40 ppm (PPh3, 9-11) and 71.71-75.79 ppm (dppe, 12-14). No Pt coupling 

was observed in the case of 11 or 14. With the exception of compound 10, positive­

ion electrospray mass spectrometry (ES(+)-MS) of each compound displayed isotopic 

envelopes arising from the [M+Ht (9, 11) or [M+Nat ions (12-14) as well as 

fragment ions corresponding to the [Ru(PPh3)2Cpt and [Ru(dppe)Cp*t fragments at 

m/z values of 691 and 635 respectively. Attempts to acquire a mass spectrum for 10 

were unsuccessful, with no identifiable fragment of 10 being observed. 

The bimetallic complex anion [Ru(dppe)Cp* {Pt(CN)4} r was obtained as its . 

potassium salt (15) which was isolated as a pure powder from a 1.5: 1 reaction of 

K2[Pt(CN)4] with RuCl(dppe)Cp* in refluxing methanol and subsequent work-up. 

The complex salt was characterised by the usual spectroscopic techniques, with 1H 

NMR spectroscopy revealing the presence of the Cp* ligand at 1.4 7 ppm. The dppe 

ligand gave two broad resonances at 2.08 and 2.64 ppm (C2H4) as well as multiple 

resonances in the range 7.20-7.68 ppm conesponding to the phenyl protons. The 

dppe ligand was also apparent in the 31 P NMR spectrum as a sharp singlet occurring at 

83 



Chapter 4- Tetracyanometallate Complexes 

75.67 ppm. Negative-ion electrospray mass spectrometry (ES(-)-MS) displayed 

isotopic envelopes at m/z = 932 ([Ru(dppe)Cp* {Pt(CN)4} D and 273 ([Pt(CN)JD 

whilst the fragment ion [Ru(dppe)Cp*f was visible in the ES(+)-MS as an intense 

isotopic envelope at m/z = 635. Infra-red spectroscopy revealed a single v(C=N) band 

at 2130 cm· 1
, corresponding to the non-bridging CN moieties by analogy with the 

complexes described above. The v(C=N) band of the bridging moiety was not 

observed. 

With a range of ruthenium complexes in hand, analogous species featuring the more 

electron-rich/ n-donating [Fe(dppe)Cpf fragment were also sought. Reaction of the 

iron complex FeCl(dppe)Cp with K2[Pt(CN)4] in refluxing methanol resulted in the 

fonnation of a red solution. After purification by column chromatography, and 

subsequent recrystallisation, [ {Fe(dppe )Cp }2 {Jl-Pt(CN)4}] (16) was obtained as a red 

crystalline solid in 43% isolated yield. The 1H NMR spectrum revealed a Cp 

resonance at 4.19 ppm as well as two broad resonances corresponding to the 

methylene protons of the dppe ligand at 2.08 and 2.63 ppm. Infra-red spectroscopy 

revealed v(C=N) bands at 2128 cm·1 (non-bridging CN) and 2149 cm· 1 (bridging CN). 

This synthesis represents a modification of that described previously by the 

Vahrenkamp group, which involved the reaction ofPPN2[Pt(CN)4] with 

FeCl(dppe)Cp in DCM for 3 days to afford 16 in 72% yield.25 The yield of the 

reaction used herein is lower, however this is counterbalanced by the greatly reduced 

reaction time and the conunercial availability of the potassium tetracyanoplatinate 

starting material. 
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Curiously, attempts to form complexes [ {Fe(dppe)Cp }2 {!l-M(CN)4}] (M = Pd, Ni) 

using similar conditions were not successful. Reaction ofF eCl( dppe )Cp with 

K2[Ni(CN)4] in refluxing methanol resulted in a red/orange solution from which 

orange crystals were obtained upon work-up. Spectroscopic analysis ofthis material 

revealed a single v(C=N) band in theIR spectrum at 2063 cm-1 as well as 1H NMR 

resonances at 4.31 ppm (Cp) and broad signals at 2.62 and 2.37 ppm (dppm). 

Comparison of these data with literature values, 31 together with a single-crystal 

structure study, revealed this compound to be Fe(CN)(dppe)Cp, fanned by cyanide 

ligand abstraction from the nickel precursor, and isolated in 48 %yield. 

Reaction ofFeCl(dppe)Cp with K2[Pd(CN)4] in refluxing methanol resulted in a 

red/orange powder. Analysis of the powder by IR spectroscopy revealed v(C=N) 

bands consistent with [ {Fe(dppe)Cp}2{~t-Pd(CN)4}] at 2134 and 2127 cm-1 as well as 

a band arising from Fe(CN)(dppe)Cp at 2063 cm- 1
• Attempts to separate this mixture 

have, as yet, been unsuccessful. 

Table 4.1. Selected spectroscopic data for compounds 9-16 

Compound (CN) bridging (em-') (CN) non-bridging (em- 1
) 

1H 8(Cp/Cp_*l 13C{ 1H} 8(Cp/Cp*) 
K2_[Ni(CN)4] 2124a 

K2[Pd(CN)4] 2136a 

K2[Pt(CN)4] 2133a 

9 2143 2119 4.29 83.43 
10 2157 2130 4.30 82.16 
11 2157 2129 4.30 83.43 
12 2136 2118 1.45 91.68/10.08 
13 2146 2129 1.48 91.68/10.13 
14 2150 2128 1.48 91.70/10.07 
15 not observed 2130 1.47 90.40/8.79 
16 2149 2128 4.19 not obtained 

a Literature value, recorded in aqueous solution as species insoluble in DCM32
• 
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In the case of [M(CN)4f anions, vibrational spectroscopy has been used to probe the 

M-C and C=N force constants and the nature of the M-C bond. The relative energies 

of the v(CN) bands in the series K2[M(CN)4] suggested that, whilst the a-acceptor 

strength of the metal increased in the order Ni < Pd < Pt, then back-bonding ability 

increased in the order Pd < Ni < Pt.32
'
33 To the best of our knowledge, the orbital 

interactions between the group 10 metal and the cyano moiety in these group 10 

tetracyanometallates have not yet been the subject of computational modelling 

studies. 

The differing a-acceptor/n-donor abilities of the group 10 metal can be seen in the 

v(C=N) values of the K2[M(CN)4] (M = Ni, Pd, Pt) starting materials (Table 4.1 ). 

The increase of 12 cm-1 upon exchanging Pd for Ni is explained as follows: as Pd is 

the stronger a-acceptor it draws more electron density from the a* orbital of the CN 

moiety and so the C=N bond strength is increased relative to the Ni complex. 

Platinum, whilst being the strongest a-acceptor of the three metals is also the 

strongest n-donor. The net result of these two competing effects is that the C=N bond 

strength, and hence the v(C=N) value, falls between those determined for the Ni and 

Pd complexes. 

TheIR data for the compounds 9-14 (Table 4.1) are of great use in beginning to 

understand the bonding interactions between the central [M(CN)4t units and the 

ruthenium end-caps. In the case of ~t,Y] 1 (C),Y] 1 (N) coordination of cyanide, interaction 

of the CN moiety to a second metal via the lone pair of the N atom removes electron 

density from the anti-bonding a* orbital, thereby increasing the bond strength and 
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hence the v(CN) frequency. With each of the trimetallic compounds 9-14, there is an 

increase in v(C=N) upon coordination of the CN moiety to the ruthenium or iron 

centres. Unsurprisingly, this increase is greatest for those compounds where the CN 

moiety is coordinated to the [Ru(PPh3)2Cp t fragment (9-H) and less significant in 

the case of complexes U-14, in which the ruthenium centre bears the more electron­

donating Cp*/dppe moieties. It is even less so in the case of the [Fe(dppe)Cpt 

complex 16 which features the most electron-rich Group 8 metal end-cap. 

Within the two groups of complexes 9-H and 12-14, in which the only variation is the 

nature ofthe central metal atom, some small variations in v(C=N) as a function of the 

central metal atom can be observed when, for example, the nickel complexes 9 and 12 

are used as a point for comparison. Upon substituting Pd for Ni there is an increase of 

about 10-15 cm-1 in v(C=N) of the bridging CN moiety (i.e. L1v(C=N) = + 10-15 cm-1
). 

Palladium, being described as the better cr-acceptor on the basis of the vibrational 

studies mentioned above, draws more electron density from the CN cr* orbital than Ni 

and so the CN bond strength is increased. Upon substituting Pt for the central metal, 

however, there is little or no increase in v(C=N) (L1v(C=N) for 10~11 = 0 cm-1
; 

L1v(C=N) for 13~14 = 4 cm-1
). Again, this may be due to the presence of the 

markedly more n-donating Pt centre resulting in a degree of population of the CN n* 

anti-bonding orbital and counteracting the increased cr-accepting nature of the metal. 

It must be stressed, however, that these variations in v(C=N) are small, and while the 

vibrational data can be related to the underlying electronic structure of these materials 

by a simple fragment approach, simple interpretations of the v(T] 1-CN) and v(f.-l,T] 1, r( 

CN) can be complicated by kinematic effects, and more extensive orbital mixing. 
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Interestingly, coordination of the half-sandwich metal fragments to the 

tetracyanometallate anions seems to have an effect on the non-bridging CN groups as 

well, reflecting the overall variation in electron density at the central atom. In each 

case there is a decrease of about 4-6 cm-1 in the v(C=N) associated with the 

uncoordinated cyano group relative to the v(CN) frequency in the appropriate 

K2[M(CN)4] starting material. While small, these deviations are within the limits of 

precision of the experiment (the Avatar IR spectrometer used in the study has a 

resolution of 2 cm-1
) and presumably arise from a small increase in the group 10 

metal-CN back-bonding interaction. 

Molecular Structures 

The molecular structure of the di-iron complex 16 has been reported by the 

Vahrenkamp group and will be discussed in comparison with the structures of the 

ruthenium complexes.25 Each of the ruthenium complexes 9-14 were subjected to X­

ray diffraction studies to confinn the trans geometry about the cyanometallate bridge 

and to investigate the series for systematic differences, which might be useful 

structural probes of the underlying electronic structure. The crystallographic data is 

summarised in Tables 4.2 (9-11) and 4.3 (12-14), whilst selected bond lengths, and 

bond angles are summarised in Tables 4.4 and 4.5 whilst Figures 4. 7 and 4.8 show 

representative molecular structures for compounds bearing [Ru(PPh3) 2Cp] and 

[Ru(dppe)Cp*] end-caps respectively. 
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Figure 4.7. ORTEP Plot of [ {Ru(PPh3)2Cp}2 {~-Pt(CN)4}] (11). 

Figure 4.8. ORTEP Plot of [ {Ru(dppe)Cp }2 {~-Pt(CN)4}] (14). 
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Table 4.2 Crystallographic details for compounds 9-H. 

Compound 9 10 H 
Formula Cs6H 7oN4P 4Ru2Ni.2CH2Ch Cs6H 7oN4P 4Ru2Pd.2( CH2Ch)+ 2(Me0 H) Cs6H 7oN 4P 4Ru2Pt.2( CH2Cl2)_+ 2(MeOH) 

M 1714.04 1825.82 1914.51 
a (A) 9.8590(3) 10.5596(10) 10.5697(5) 
b (A) 23.3226(7) 22.500(2) 22.5080(9) 
c (A) 17.7015(5) 17.1648(13) 17.1733(7) 
a e) 90 90 90 

Pe) 92.1780( 1 0) 99.559(6) 99.628(2) 

y CO) 90 90 90 
V(A3

) 4067.3(2) 4021.6(6) 4028.0(3) 
D (Mg/m3

) 1.400 1.508 1.578 
T(K) 120(2) 120(2) 120(2) 

Crystal system Monoclinic Monoclinic Monoclinic 
Space Group P21/n P2,/n P2 1/n 

z 2 2 2 
li.IL (mm-1

) 0.853 0.856 2.366 
Reflections collected 29274 45343 43801 

Independent reflections 10051 [R(int) = 0.0582] 10830 [R(int) = 0.0987] 12290 [R(int) = 0.0559] 
(Rint) 

Final R indices (all data) R1 = 0.1523, wR2 = 0.3129 R1 = 0.1167, wR2 = 0.1281 R1 = 0.0643, wR2 =_QJ 132 
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Table 4.3 Crystallographic details for compounds 12-].4. 

Com _pound 12 13 ]_4 

Formula C16H1sN4P 4Ru2Ni.2(CHCh) C16H nN4P 4Ru2Pd.2( C2HsO H) C16HnN4P 4Ru2Pt.2(C2HsOH) 
M 1551.5 1572 1661 

a (A) 11.3214(10) 8.5279(8) 8.5326(12) 
b (A) 12.3886(11) 24.917(2) 25.012(3) 
c (A) 14.3895(11) 19.1022(16) 20.777(3) 
a (o) 71.639(3) 90 90 
p (0) 75.692(4) 90.971(4) 113.577(5) 

r e> 78.916(4) 90 90 
v (A3

) 1841.6(3) 4058.5(6) 4064.0(10) 
D (Mg/m3

) 1.507 1.286 1.357 
T (K) 120(2) 120(2) 120(2) 

Crystal system Triclinic Monoclinic Monoclinic 
Space Group Pl P21/n P2/c 

z 1 2 2 
Jl (mm-1

) 1.009 0.710 2.207 
Reflections 22020 50442 28553 

collected 
linudependent 10996 (R(int) = 0.0276] 12325 (R(int) = 0.0281] 11443 [R(int) = 0.1 025] 

reflections (Riot) 
Final R indices R1 = 0.0669, wR2 = 0.1511 R1 = 0.0371, wR2 = 0.0800 R1 = 0.0669, wR2 = 0.1513 

(aH data) 
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Table 4.4. Selected bond lengths (A) for the complexes 9-14 and 16 

Compound M-N(2) N(2)-C(2) C(2)-M' C(2)-M' M'-C(1) M'-C(1) C(l)- M-P(1) M-P(2) 
(Normannsed) (Normalised) N(l) 

9 2.060(8) 1.144(13) 1.877(10) 1.387(10) 1.891(12) 1.401(12) 1.127(15) 2.317(3) 2.333(3) 

10 2.069(3) 1.141(5) 2.002(4) 1.362(4) 2.010(5) 1.370(5) 1.133(6) 2.3160(12) 2.3221(11) 

ll1 2.065(3) 1.150(5) 1.994( 4) 1.394(4) 1.991(4) 1.391(4) 1.149(5) 2.3183(9) 2.3231(9) 

12 2.037(3) 1.148(5) 1.854(4) 1.364( 4) 1.876(4) 1.386(4) 1.148(5) 2.2921(9) 2.3126(9) 

B 2.048(2) 1.149(2) 1.990(2) 1.350(2) 2.004(2) 1.364(2) 1.148(3) 2.2927(5) 2.2783(5) 

14 2.049(6) 1.139(9) 1.992(7) 1.392(7) 2.004(9) 1.404(9) 1.170(10) 2.293(2) 2.275(2) 

16a 1.914(5) 1.131(8) 1.993(6) 1.393(6) 1.990(8) 1.390(8) 1.153(10) Average= 2.207(4) 

-Literature values. 
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Table 4.5. Selected bond angles (0
) for the complexes 9-14 and 16 

Compound! M-N(2)-C(2) N(2)-C(2)-M' C(2)-M'-C(1) M'-C(])-N(1) JP(l)-M-P(2) 
9 169.4(8) 176.7(9) 92.7(4) 178.3(11) 101.11(10) 
10 171.3(4) 178.4(4) 88.49(17) 177.2(5) 100.74(4) 
H 171.0(3) 178.2(3) 88.65(14)_ 177.6(4) 100.68(3) 
ll2 169.2(3) 172.4(3) 87.96(15) 177.2(36) 82.65(3) 
].3 175.83(14) 174.60(16) 91.55(7) 177.8(2) 82.87(2) 
14 174.7(6) 175.9(7) 91.3(3) 177.1(7) 82.82(7) 
16a 168.5(5) 176.0(6) 178.8(7) 

a . Literature values. 25 

For each compound, the Group 10 metal centre was found residing on a centre of 

inversion in the molecule, and as such for any given complex the parameters at each 

Group 8 metal centre are identical. All but one were found to be monoclinic crystals 

of space group P2 1/n, the exception being compound 12, for which a triclinic crystal 

-

system of space group P 1 was found. The geometry about the ruthenium centres is 

not unusual, and is probably best described as a distorted octahedron with the Cp 

ligand occupying three of the coordination sites. The geometry about the central 

metal M (M = Ni, Pd, Pt) is essentially square planar with C(1)-M-C(2) angles falling 

in the range 87.96 (15) (12) to 92.74(4)0 (9). In each case, the sum of these angles 

about the group 10 metal is essentially 360°, confirming the square planar geometry 

of this site. 

It is difficult to compare the M-C (M = Ni, Pd, Pt) bond lengths directly as the 

experimentally determined bond length is usually defined as the distance from the 

centre of one atom to the centre of another. Thus, while in the case of atoms of 

similar size direct comparisons are appropriate, in the case of the compounds studied 

herein the marked difference in the effective ionic radii of the group 10 metals 

complicates this simple analysis. The effective ionic radii of square planar Ni2
+, Pd2

+ 
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and Pt2
+ are said to be 0.49 A, 0.64 A and 0.60 A respectively.34 Subtraction of these 

values from the experimentally determined M-C(1) and M-C(2) bond lengths results 

in their "nonnalisation" (Table 4.4), and in doing so it is apparent that there is no 

statistically significant variation in these nonnalised M-C bond lengths. 

The Ru-N(2) bond lengths for compounds 9-11 fall in the narrow range 2.060(8)-

2.069(3) A whilst for compounds 12-14 this range is 2.037(3)-2.049(2), revealing an 

apparent shortening of this bond upon increasing the electron density at the ruthenium 

centre. This is probably a consequence of increasing electrostatic factors. In the case 

of the bridging cyano moieties C(2)-N(2), the bond length is essentially the same 

across the series of compounds 9-14, with an average value of 1.146 A. Compounds 

9 and 10, which feature [Ru(PPh3)2Cpt end-caps with Ni and Pd metal centres 

respectively, have C(1)-N(l) bond lengths of 1.127(14) and 1.133(6) A respectively, 

whilst this value is 1.149 (5) A for the platinum compound 11. Similarly, 12 and 13 

have C(1)-N(l) bond lengths of 1.148(5) and 1.148(3) A respectively whilst that for 

14 is 1.170 (10) A. Whilst at first glance the pendant C(1)-N(1) bond lengths appear 

longer in the case of the platinum complexes (11 and 14) than either the nickel (9 and 

12) or palladium (10 and 13) examples, and the pendant C(1)-N(l) bond lengths 

appear elongated in the more electron-rich series based upon Ru(dppe)Cp* when 

compared with the Ru(PPh3)2Cp analogues, these distances are, again, experimentally 

indistinguishable and must be treated as such. 

The crystal structure of the iron/platinum complex 16 has been reported previously.25 

As with the ruthenium complexes this structure was found to be centrosymmetric 

about the [M(CN)4] moiety. The bond lengths of the bridging and non-bridging CN 
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CN units were 1.131(8) and 1.153(10) A respectively which is consistent with those in 

the ruthenium complexes 9-14, as are the corresponding Pt-C distances of 1.993(6) A 

[Pt-C(2)] and 1.990(8) A [Pt-C(l)]. The only notable differences in the structure of 

16 compared to its ruthenium analogues arise from the smaller size of the iron centre, 

which results in shortening of the Fe-N and Fe-P distances relative to the Ru-N and 

Ru-P distances in 11. For 16 these are 1.914(5) A and an average of2.207(4) 

respectively which compare with those ofll (Ru-N= 2.065(3) A, Ru-Paverage = 

2.3207(9)) and 14 (Ru-N= 2.042(7) A, Ru-Paverage = 2.2845(2)). 

In summary, the molecular structures of the compounds 9-14 and 16 are almost 

identical and hence show little evidence for the possible variation in cr/n-bonding 

effects. There is no variation in the C(2)-N(2) bond lengths as might be expected if 

there were varying degrees of back-bonding into then* anti-bonding orbital, nor is 

there any change in the C(2)-M' bond lengths with variation ofM' (M' = Ni, Pd, Pt). 

There is, however, an apparent increase in the C(l)-N(l) bond length brought about 

exchanging Pd for Pt. This is a very small change and approaches the limits of 

precision of the measurements. It is possible that this may be induced by back 

bonding from the Pt centre to then* orbital of the tenninal CN moiety. However, this 

would be expected to be accompanied by a concomitant shortening of the Pt-C(l) 

bond which is not observed here. It has been stated above that the observed patterns 

in v(C=N) are very small and it may be that the possible factors affecting their 

variations simply do not appear in the structural data. Similar observations have been 

made for bimetallic cyanide-bridged species. 10 

95 



Chapter 4 - Tetracyanometallate Complexes 

Electrochemistry 

The great interest in the properties of compounds in which redox active moieties are 

separated by some bridging moiety prompted an examination of the cyanometallate 

bridged complexes 9-16 by cyclic and differential pulse voltammetry (CV and DPV 

respectively). These electrochemical measurements were made using a platinum disc 

working electrode and platinum wire counter and pseudo-reference electrodes. 

Measurements were carried out in a 0.1M [N(C4H9) 4][BF4] solution in DCM solution 

for all complexes and also in THF solution for compounds 9-14. Internal 

decamethylferrocene [Fc*/Fc*+ = -0.02 V vs. SCE (DCM) or 0.13 V vs. SCE (THF)] 

or ferrocene [Fe/Fe+= +0.46 V vs. SCE (DCM) or +0.56 V vs. SCE (THF)] standards 

were used to give electrode potentials relative to SCE (Table 4.6).35 

Table 4.6. Electrochemical data 

Compound/solvent Eox(l) (V) Eox(2) (V) ~Eox(V) Kcc 
9a 0.95 1.06 0.11 190 
9b 1.11 1.20 0.09 75 
lOa 1.00 1.08 0.08 45 
10° 1.14 1.20 0.06 20 
11a 0.97 1.08 0.11 190 
110 1.08 1.20 0.12 310 
12a 0.69 0.82 0.13 155 
120 0.81 0.90 0.09 35 
13a 0.72 0.84 0.12 105 
130 0.82 0.90 0.08 20 
14a 0.71 0.85 0.14 230 
14b 0.82 0.92 0.10 50 
15a 0.74 n/a n/a n/a 
16a 0.34 0.45 0.11 70 

aDCM, bTHF, eKe= exp{~EoxFIRT} where F/RT = 47.76 V"1 at 243K (9-11) and 
38.92 v-' at 298 K (12-14) 
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For compounds 9-14 and 16, two oxidation events were observed at a platinum 

electrode. Whilst these events were fully chemically and electrochemically reversible 

at room temperature for compounds 12-14 and 16, sub-ambient temperatures (-30 oq 

were required to improve the reversibility of the oxidations of compounds 9-H. The 

small difference between the half-wave potentials, ~, necessitated that in some cases 

differential pulse voltammetry be used to determine accurately the oxidation 

potentials. The electrochemical response of the bimetallic anion 15 was characterised 

by a single reversible oxidation occurring at 0.74 V. 

For the compounds of type [ {Ru(PPh3) 2Cp}z{f.!-M(CN)4}] (M=Ni, Pd, Pt) (9-11) the 

oxidation potentials fall in the range 0.95-1.2 V. A variety of solvation factors and 

ion-paring phenomena can influence oxidation potentials, and this point has recently 

been highlighted by Keene as a potential complication in the determination of 

"electronic coupling" on the basis of electrochemical measurements alone. 36 The 

electrochemical responses of these systems were recorded in two different solvents in 

an effort to distinguish through-bond from through-space effects. The difference 

between the two oxidation potentials (~E112) is somewhat smaller in THF than DCM 

for 9 (from O.ll to 0.09 V) and 10 (from 0.08 to 0.06 V), with the decreased 

separation of the oxidation potentials arising from the greater relative shift of the first 

oxidation event to higher potentials. The value of ~E112 for compound 11 remains 

constant at 0.12 V upon changing solvent. Thus it would appear that there is some 

contribution to the thermodynamic stability of the one-electron oxidation products 

arising from solvation factors, with an underlying contribution from through-bond 

interactions. 
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Oxidation potentials of the compounds [ {Ru( dppe )Cp*} 2 {)l-M(CN)4 }] (M=Ni, Pd, Pt) 

(12-14) fall in the range 0.69-0.92 V and in each case changing the solvent from DCM 

to THF resulted in a shift of the oxidation potentials to higher potential with a 

corresponding decrease in the values of LiE112. As with the Ru(PPh3) 2Cp derived 

complexes [9t-[Ht, the thermodynamic stability of the one-electron oxidised 

species [12t, [13t, and [14t with respect to disproportionation was decreased in 

THF relative to DCM as evidenced by the smaller separation of the electrochemical 

events and consequently giving rise to lower values of the comproportionation 

constant, Kc. The redox behaviour of compound 16 has already been described by 

Vahrenkamp,25 with two successive oxidations at +0.34 V and +0.45 V vs. SCE being 

observed. 

The lower oxidation potentials of the compounds 12-14 relative to 9-11 can be 

attributed to the variations in the supporting ligands: the Cp* and dppe ligands in 12-

14 are more strongly electron donating than their PPh3 and Cp analogues in 9-11. 

Unsurprisingly, the very electron-rich iron end-caps in 16 further lower the oxidation 

potentials relative to the ruthenium based series. However, it is the occurrence of two 

oxidation waves for each trimetallic compound, and the fact that the first oxidation 

potential of [ {Ru(dppe)Cp*h {Pt(CN)4}] (14) is lower than the oxidation potential of 

the mono-ruthenium analogue K[Ru(dppe)Cp* {Pt(CN)4}] (15) (+0.71 V and +0.74 V 

respectively), that indicate metal/metal interactions throughout the assembly. Before 

attempting to quantify these interactions it is useful to introduce some of the 

elementary relationships used in the data analysis. 
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Consider a sequence of redox reactions: 

-e 
X (1) 

Which can also be expressed in terms of the half-equations: 

X (2) 

(3) 

Where Et and E2 are the oxidation potentials associated with each process. The 

stability of the first oxidation product can be gauged by the equilibrium constant for 

the comproportionation reaction, Kc. 

... 2X+ (4) 
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Electrochemical methods can be used to determine Kc via the Nernst equation (5) 

shown below. 

E=E"-[:;}nQ (5) 

n = no. of electrons, Q =reaction quotient, T =temperature in K, F = Faraday constant, R = Gas 

constant 

At equilibrium E = 0 and the reaction quotient (Q) becomes the constant of the 

equilibrium (Kc). Thus the Nernst equation becomes: 

which can be re-arranged to: 

InK = [nEoF] 
c RT (7) 

As equation (4) can also be written: 
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and since E0 
= E2-E1 (from 2, 3, and 6) then 7 becomes: 

The comproportionation constant, and hence a measure of the thermodynamic 

stability of the first oxidation product, can therefore be determined from measurement 

of the half-wave potentials of the sequential oxidation reactions shown in equations 1-

3. 

Whilst it is often true that metal-metal interactions across a bridged system lead to 

very stable odd-electron species (i.e. x+ in equation 4), and hence large values of Kc, 

it is important to stress that metal-metal interactions are not necessarily the sole factor 

involved in affecting the magnitude of ~E. Various solvent and salt effects can also 

influence the stability of the first oxidation product, and hence Kc. In the case of the 

cyanometallates in this study, there is a definite solvent effect on the stabilisation of 

the first oxidation product. In each case the separation between the two oxidation 

potentials of any one species (~E) is decreased upon reducing the polarity of the 

solvent. As with previously described trends within the groups 9-11 and 12-14, there 

seems to be a dependence of the stability of the first oxidation product of these 

materials upon the nature of the central metal. There is an apparent reduction in the 

value of ~ox upon substituting Pd for Ni followed by an increase upon substituting 

Pt for Pd. The comproportionation constants (Kc), calculated from the values of ~Eox 

naturally follow the same trend. This enhanced stability may be brought about by a 

greater degree of delocalisation in the case ofthe Ni and Pt complexes relative to the 
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Pd materials. However, this effect cannot be substantiated on the basis of this 

electrochemical data alone and the crystallographic data argues against differences in 

the degree of delocalisation in these complexes. 

Keene has recently reminded the community that the anion of the electrolyte used in 

potential measurements can have a drastic effect on the potentials, hence altering ~E 

and Kc for a material. 36 Therefore it is important to remember that, whilst a large Kc 

value can often be an indication of metal-metal communication, it is not, by itself, a 

definitive "litmus test" and it is important that other techniques such as vibrational 

and/or electronic spectroscopy be used in addition to potential measurements before 

claims of "electronic communication" in a bridged bimetallic assembly be made. 

Mixed- Valence Complexes 

When the electro-generated species X+ described above is derived from a bimetallic 

complex, that complex becomes a mixed-valence species. The notion of metal-metal 

communication in such systems has been thoroughly studied (with many electron­

transfer parameters being available from spectral data) and such species may be 

classified according to the Robin-Day classification system described previously (see 

Introduction).37 For compounds that fall into the valence-trapped Class 2 grouping, 

the transfer of the odd-electron from one metal centre to the other can be induced 

either by thermal or optical methods. Noel Hush, in 1967, predicted the occurrence 

of an inter-valence charge transfer (IVCT) band in the electronic spectra of these 

Class 2 complexes, occurring in the near infra-red (NIR) region of the spectrum. 
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Furthermore, a rationale was developed by which the physical properties of these 

mixed-valence complexes could be determined by careful analysis of the shape of this 

IVCT band.38 According to the treatment developed by Hush, the width of the IVCT 

band at half its maximum height (il v 112) should be related to the energy of the band 

maximum ( v max) by the relationship: 

~Vl/2 = ~2310(Vmax) (10) 

Whilst vibrational effects may result in a broadening of this band, it is generally found 

that Class 2 mixed valence systems give rise to IVCT bands with shapes in agreement 

with (10). Generally speaking, those complexes for which Ll v J/2(ohs) is significantly 

narrower than Ll v 112(calc) are considered to be Class 3. 

The strength of the interaction between the two metal centres in a mixed valence 

compound is determined by the coupling constant Vab (also termed Hab in some 

treatments). For Class 2 complexes this parameter is given by: 

(11) 

where E is the extinction coefficient of the IVCT band and r is is the electron-transfer 

distance (in Angstroms). In the case of Class 3 compounds Vab is given by: 
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Vmax 

2 (12) 

For a full description of the background theory underpinning these expression see the 

excellent reviews by Cruetz, Meyer and Launay.3941 

Based on the brief description above, the electronic spectra of the oxidised versions of 

the complexes in this study would be expected to show IVCT bands in those cases 

where metal-metal communication is suspected. Furthermore band shape analysis 

would be expected to reveal the extent of the communication between the metal 

centres and any trends that occur as a function of the central metal would become 

apparent. Rather than prepare each oxidised species chemically, spectra were 

obtained using spectro-electrochemical methods (see Experimental Methods chapter). 

The UV-Vis-NIR spectra were collected from DCM solutions approximately 0.1 

mmolar in analyte and containing O.lM TBABF4 as a supporting electrolyte. Whilst 

on the CV timescales {< 10 seconds) the oxidations of compounds 9-16 were fully 

reversible, the first oxidation states of9 and 10 were insufficiently reversible on the 

longer timeframe required for bulk electrolysis in the OTTLE cell (1-5 hours) for 

acquisition of meaningful spectra. Therefore, in the interests of obtaining a complete 

data set, only the Ru(dppe)Cp* derived complexes 12-16 were studied. However, 

even in these cases, only the first oxidation product could be obtained with complete 

reversibility and then only at sub-ambient temperatures. The experiments were 

performed at -30 oc in a 0.1 em quartz cuvette using an optically transparent thin­

layer electrode {OTTLE) similar to that described by Duff and Heath. 42 This 
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consisted of a platinum mesh as the working electrode as well as platinum wire 

counter and pseudo-reference electrodes. 

The neutral compounds 12-15 displayed two absorption bands in the UV (35,000-

20,000 cm-1
) region of the spectrum, the lower energy band appearing as a shoulder in 

the case of compounds 12-15. For example, in the case of 12 these two bands were 

observed at 32,680 and 25,900 cm-1
• Compound 16 displays an absorption band at 

29,850 cm-1 as well as a broader absorption envelope with apparent band maxima at 

21,740 and 19,690 cm-1 (Table 4.7). 

Table 4.7. Uv-vis data for compounds 12-16 

Compound v max /cm"1 and (s/mol"1dm3cm"1
) 

12 32,680 (12,280); 25,900 (3,900) 
13 31,250 (3,860); 27,250 (2,480) 
14 31,060 (14,540); 26,390 (3,920) 
15 31' 150 (2,680); 26,460 ( 1,3 70) 
16 29,850 (8,673); 21,740 (1,360); 19,690 (1,120) 

In the oxidised samples the bands described above each moved to slightly lower 

energy with the exception of compound 16 for which the reverse behaviour was seen. 

The bimetallic compound [1St displayed no features beyond 20,000 cm-1
, however 

oxidation of 15 to [1St did result iri the growth of a new absorption band at 20,330 

In addition to the bands already described, new features were seen in the UV-Vis-NIR 

spectra of the oxidised trimetallic compounds [12t, [13t and [14t. In each case, a 

new band of moderate intensity was formed in the 20,000-21,000 cm-1 region of the 

spectrum as well as an absorption band in the NIR region of the spectrum, the high 
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energy side of which was overlapped by the tails of bands from the higher energy end 

of the spectrum. An example spectrum below shows the oxidation of 

[{Ru(dppe)Cp*}2{Ni(CN)4}] (12) in the range 25,000-4,000 cm·1 (Figure 4.9). 

Critically, the NIR region of [15t remained transparent during oxidation and 

therefore the NIR absorption observed in [12t, [13t and [14t can be confidently 

assigned to a genuine Ru11/Rum IVCT transition. 
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Figure 4.9. Oxidation of 12 to [12t. 

1 

19000 

An important point must be made at this stage. The magnitude of the 

comproportionation constant (Kc) indicates that at equilibrium the solutions will 

24000 

contain neutral, mono-oxidised and di-oxidised species. Therefore, a correction must 

be made to the concentration of the solution to accurately assess the molar extinction 

coefficient ofthe mono-oxidised species. The proportion (P) of the mono-oxidised 
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complex in solution can be determined from the comproportionation constant Kc using 

equation 13.41 

P- JKc 
- 2+ffc (13) 

All of the extinction coefficients determined for the oxidised species in this chapter 

have been corrected to allow for this comproportionation equilibrium. 

The high energy side of the NIR band in [12t, [13t and [t4t was partially obscured 

by overlap with one of the higher energy transitions. Therefore, in order to better 

estimate v 112, it was necessary to subject the spectra to spectral deconvolution, with 

the experimental spectrum described as the sum of several Gaussian-shaped curves. 

An example of such a process for complex [13t is shown below (Figure 4.1 0). 
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Figure 4.1 0. Gaussian curve fitting for UV -vis-NIR spectrum of [13t with NIR band 

inset. 

In the case of the compounds [12t, [13]\ and [14t the NIR band observed for these 

weakly coupled systems is well approximated by a single Gaussian band (inset in 

Figure 4.10 above). In each case the value of~ V 112 calculated from (10) is narrower 

than that found by experiment. This suggests that each of the compounds falls into 

the Class 2 grouping. It should be noted, however, that this is not a definite basis for 

assignment and that investigations into solvent effects have yet to be made in order to 

confirm this. The band parameters, r distances (taken as the crystallographically 

determined Ru-Ru distance) and coupling constants are shown in Table 4.8 below. 

108 



Chapter 4- Tetracvanometallate Complexes 

Table 4.8. NlR data for [12t, [13t, and [14t 

Compound Vmax !!. V 112 (calc) !!. V 112 (found) E r (At Vab 

(em"1
) (em-1

) (em-1
) (mor1dm3em-1

) 

[12t 6380 3800 4800 730 10.38 300 
113t 6780 4000 4000 500 10.38 230 
rt4t 5680 3600 5100 535 10.38 250 

3This distance is taken as the point-to-point distance between ruthenium centres and is 
not the sum of the bond lengths. 

ln each case there is very little difference between the compounds, with the NIR band-

shape analysis consistent with assignment as a Class 2 system in each case. The 

absorption data, therefore, confinns the picture described by the spectroscopic 

properties and molecular structures of the neutral compounds as well as the 

electrochemistry. There is a very slight decrease in coupling constant upon changing 

the central metal from Ni to Pd as the Pd is a poorer 7t-donor and so the degree of 

delocalisation across the system is reduced. When the central metal is Pt, however, 

there is a very slight rise in the coupling constant again, consistent with the increased 

7t-donor ability of Pt relative to Pd. This pattem matches with that observed for the Kc 

values of these materials. 

In summary, the electronic structure of these materials seems to show little sensitivity 

to the nature of the central metal. When the results from the series of complexes 

[ {RuP2Cp'}2( {J-L-M(CN)4}] (M = Ni, Pd, Pt) are taken together with Vahrenkamp's 

work with [ {MP2Cp'}2( {J-L-Pt(CN)4} ]
25 it is clear that by far the greatest effects on the 

metal-metal coupling or "communication" in these systems are brought about by the 

nature of the metal end-caps rather than the central bridging moiety. 
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Experimental 

Genen-allProcedure- Preparation of [{RulL2Cp'h{J.l-M(CN4)}] (L = PPh3, Cp' = 

Cp; L 2 = dppe, Cp' = Cp*; M = Ni, Pd, Pt) 

A 50 ml, two-necked Schlenk flask was cooled under nitrogen and charged with 

K2[M(CN)4] (0.208 mmol) and RuClL2Cp' (0.415 mmol). The mixture was 

suspended in MeOH (30 ml) and heated at reflux for one hour. After this time a 

bright yellow suspension had formed. The solution was allowed to cool and the 

precipitate was collected and washed with cold methanol to afford [ {RulL2Cp'h{J.t­

M(CN4)}] as a bright yellow solid. Crystals of compounds 9-11 suitable for X-ray 

diffraction studies were obtained by slow diffusion ofMeOH into a DCM solution of 

[{Ru(PPh3) 2Cph{J.t-M(CN4)}]. Crystals ofcompounds 12 and 14 suitable for X-ray 

diffraction studies were obtained by slow diffusion of EtOH into a CHCh solution of 

[{Ru(dppe)Cp*h{J.t-M(CN4)}]. Crystals of compound 13 were obtained by slow 

diffusion ofEtOH into a DCM solution of [{Ru(dppe)Cp*h{J.t-Pd(CN4)}]. 

[{Ru(PPh3) 2Cp}2{Ni(CN)4}] (9) (0.149 mmol, 72 %). Found: C, 65.78; H, 4.52; N, 

3.59. Cs6H70P4N4Ru2Ni 0.5(CH2Ch) requires: C, 65.48; H, 4.51; N, 3.53. 1H NMR 

(CDCh): 8 4.29 (s, 10H, Cp); 7.30-7.25 (m, 72 H, PPh3). 13C eH} NMR (CDCh): 8 

137.41 (m, Jcp =22Hz, Cipso); 133.76 (t, Jcp = 5.28 Hz, Cortho); 129.30 (s, Cpara); 

128.28 (t, Jcp = 4.78 Hz, Cmeta); 83.43 (s, Cp). 31P eH} NMR (CDCh): 8 43.40 (s, 

PPh3). ES(+)-MS (m/z): 1568 [M+Nat, 691 [Ru(PPh3)2Cpt. IR (CH2Ch): v(C=N) 

2143,2119 cm·1. 
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[{Ru(PPh3)2Cp}2{Pd(CN)4}] (10) ( 0.100 mmol, 48 %). Found: e, 63.38; H, 4.39; N, 

3.57. es6H7oP4N4RuzPd.0.5eHzeh requires: e, 63.56; H, 4.38; N,3.43. 1H NMR 

(eDeh): o 4.30 (s, 10H, ep); 7.33-7.10 (m, 72 H, PPh3). 13e eH} NMR (eDeh): 8 

136.02 (m, Jcp =20Hz, eipso); 132.46 (t, Jcp = 5.28 Hz, eortho); 128.08 (s, epara); 

127.01 (t, Jcp = 4.78 Hz, emeta); 82.16 (s, ep). 31P eH} NMR (eDeb): 8 43.21 (s, 

PPh3). IR (eHzeh): v(e=N) 2157,2130 em-1. 

[{Ru(PPh3)2Cp}2{Pt(CN)4}] (11) (0.095 mmol, 46 %). Found e, 60.64; H, 4.12; N, 

3.37. es6H7oP4N4RuzPt 0.5(eHzeh) requires: e, 60.30; H, 4.15; N,3.25. 1H NMR 

(eDeh): 8 4.30 (s, lOH, ep); 7.30-7.26 (m, 72 H, PPh3). 13e {1H} NMR (eDeb): 8 

137.30 (m, Jcp =22Hz, eipso); 133.73 (t, Jcp = 5.28 Hz, eortho); 129.35 (s, epara); 

128.28 (t, Jcp = 4.27 Hz, emeta); 83.43 (s, ep). 31 P {1H} NMR (eDeb): 8 43.12 (s, 

PPh3). ES(+)-MS (m/z): 1705 [M+Nat; 691 [Ru(PPh3)zept. IR (eHzeh): v(e=N) 

2157,2129 em-1. 

[{Ru(dppe)Cp*h{Ni(CN)4}] (12) (0.129 mmol, 68 %). Found: e, 63.37; H, 5.45; N, 

3.97. e16H1sP4N4RuzNi requires: e, 63.74; H, 5.49; N,3.91. 1H NMR (eDeb): 8 

. 1.45 (s, 15H, ep*); 2.06, 2.62 (m, 4H, dppe); 7.15-7.70 (m, 20H, Ph). 13e {1H} NMR 

(eDeb): 8 142.95 (s, eN); 136.88 (m, Jcp =18Hz, eipso); 134.22 (m, Jcp =18Hz, 

eipso); 133.64 (m, 2 X eortho); 130.04 (s, eN); 129.87 (s, epara); 129.73 (s, epara); 

128.58 (t, Jcp = 4.78 Hz, emeta); 127.97 (t, Jcp = 4.78 Hz, emeta); 91.70 (s, C5Mes); 
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28.79-28.44 (m, dppe); 10.07 (s, CsMe5). 31 P NMR (CDCh): 8 71.71 (s, dppe). 

ES(+)-MS (m/z): 1433 [M + Ht; 635 [Ru(dppe)Cp*t. IR (CH2Ch): v(C=N) 2118, 

2136 cm-1
. 

[{Ru(dppe)Cp*}2{Pd(CN)4}] (13) (0.068 mmol, 37%). Found: C, 60.81; H, 5.25; N, 

3.70. C16H1sP4N4RuzPd.2(CzHsOH) requires: C, 61.21; H, 5.77; N,3.56. 1H NMR 

(CDCh): 8 1.48 (s, 15H, Cp*); 2.00, 2.57 (m, 4H, dppe); 7.10-7.70 (m, 20H, Ph). 13C 

eH} NMR (CDCh): 8 140.85 (s, CN); 136.72 (m, Jcp =20Hz, Cipso); 134.01 (m, Jcp 

=20Hz, Cipso); 133.64 (t, Jcp = 5.28 Hz, Conho); 133.53 (t, Jcp = 5.28 Hz, Conho); 

129.95 (s, Cpara); 129.78 (s, Cpara); 128.66 (t, Jcp = 4.90 Hz, Cmeta); 128.02 (t, Jcp = 

4.78 Hz, Cmeta); 127.22 (s, CN); 91.68 (s, C5Mes); 28.77-28.43 (m, dppe); 10.13 (s, 

CsMe5). 31P NMR (CDCh): 8 75.79 (s, dppe). ES(+)-MS (m/z): 1481 [M + Ht; 635 

[Ru(dppe)Cp*t IR (CHzCh): v(C=N) 2129, 2146 cm-1
. 

[{Ru(dppe)Cp*}2{Pt(CN)4}] (14) (1.08 mmol, 57%). Found: C, 58.16; H, 4.98; N, 

3.54. C16H18P4N4RuzPt requires: C, 58.19; H, 5.01; N, 3.57. 1H NMR (CDCh): 

8 1.48 (s, 15H, Cp*); 2.08, 2.63 (m, 4H, dppe), 7.15-7.75 (m, 20H, Ph). 13C eH} 

NMR (CDCh): 8 136.67 (m, Jcp = 19 Hz, Cipso); 134.00 (m, Jcp = 20 Hz, Cipso); 

133.66 (t, Jcp = 5.28 Hz, Conho); 133.56 (s, CN); 133.47 (t, Jcp = 5.28 Hz, Conho); 

129.95 (s, Cpara); 129.80 (s, Cpara); 128.73 (t, Jcp = 4.90 Hz, Cmeta); 128.02 (t, Jcp = 

4.27 Hz, Cmeta); 121.62 (s, CN); 91.68 (s, C5Mes); 28.80-28.45 (m, dppe); 10.08 (s, 
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C5Me5). 
31P NMR (CDCh): o 75.73 (s, dppe). ES(+)-MS (m/z): 1569 [M + Ht; 635 

[Ru(dppe)Cp*t IR (CHzCh): v(C=N) 2128,2150 cm-1
• 

K[Ru( dppe )Cp* {Pt(CN)4}] (15) 

A 50ml, two-necked schlenk flask was cooled under nitrogen and charged with 

K2[Pt(CN)4] (127 mg, 0.337 mmol) and RuCl(dppe)Cp* (150 mg, 0.224 mmol). The 

mixture was suspended in MeOH (1 0 ml) and heated at reflux for 1.5 hrs after which 

time the solution was cooled and the solvent removed. The yellow residue was 

dissolved in the minimum quantity of DCM and filtered. Removal of solvent afforded 

15 as a yellow powder (168mg. 0.172 mmol, 77 %). Found: C, 48.85; H, 4.07; N, 

5.28. C4oH39P2N4RuPtKrequires: C, 49.38; H, 4.04; N, 5.76. 1H NMR (CDCh): 

o 1.47 (s, 15H, Cp*); 2.08, 2.64 (m, 4H, dppe); 7.20-7.68 (m, 20H, Ph). 31P NMR 

(CDCh): 875.67 (s, dppe). ES(+)-MS (m/z): 635 [Ru(dppe)Cp*t ES(-)-MS (m/z): 

932 [Ru(dppe)Cp* {Pt(CN)4} L 273 [Pt(CN)3]". IR (CH2Ch): v(C=N) 2130 cm-1
. 

[{Fe(dppe)Cp}2{Pt(CN)4}] (16) 

A 50ml, two-necked schlenk flask was cooled under nitrogen and charged with 

K2[Pt(CN)4] (102 mg, 0.27 mmol) and FeCl(dppe)Cp (300 mg, 0.54 mmol). The 

mixture was suspended in MeOH (30 ml) and heated at reflux for 90 minutes after 

which time reaction was cooled and the solvent removed. The residue was then 

dissolved in a minimum volume of DCM, filtered, loaded onto a silica column and 
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eluted with 60:40 acetone:hexane solution. The resultant red band was collected and 

the solvent removed. Subsequent crystallisation from slow diffusion ofMeOH into a 

DCM solution resulted in the formation of 16 as red crystals (156 mg, 0.12 mmol, 43 

%). 1H NMR (CDCh): 8 2.08, 2.63 (2 x br, 4H, dppe); 4.19 (s, 5H, Cp); 7.20-7.79 

(m, 20H, Ph). 31P NMR (CDCh): 8100.34 (s, dppe). IR (CH2Ch): v(C=N) 2128, 

2149 cm-1
• 
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Chapter 5 - Cyanoacetylene complexes 

Introduction 

The cyanoacetylene moiety possesses a lone pair of electrons at theN-atom which can 

bond to metal centres in an 11 1(N) fashion. In addition to this it has an alkyne 1t-

system which is conjugated with the O=N moiety (allowing for delocalisation of 

electron density) and can also bond to metal centres itself. In addition to this, the 

extended 1t-system offered by the cyanoacetylene ligand should make it more 

polarisable than simple nitriles, which may be of particular utility in the design of 

complexes with significant non-linear optical responses. 1
•
2 

Early work on the coordination chemistry of cyanoacetylenes focussed on the co-

ordination of the alkyne moiety to metal centres in an 11 2 fashion. In 1968, Dickson 

and Yawney showed the possibility of incorporating the dicyanoacetylene moiety into 

metal complexes through coordination of the alkyne 1t-system in reaction with 

Co2(C0)8.
3 Infra-red data obtained from the reaction showed that v(C=C), the alkyne 

stretching frequency, disappeared upon formation of the product (from 2119 cm-1 in 

DCA), consistent with the formation of a four-atom Co2C2 cluster (Figure 5.1 ). 

NC, /CN 
cxc I , I 

OC-Co-Co-CO 
OC"'I \'CO 

oc co 

Figure 5.1. Proposed product from the reaction ofDCA with Co2(CO)s.3 
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Furthermore there was a marked decrease v(C=N) upon complexation from 2290 cm-1 

in DCA to 2198 cm-1 in the cobalt/carbon cluster. This results from a loss of electron 

density from the CN moieties upon forming the cluster and is also observed in the 

reaction of DCA with nickelocene to form the analogous nickel/carbon cluster 

Further T]
2 complexes of DCA were synthesised by McClure and Baddley with 

iridium, rhodium and palladium centres_5 DCA was reacted with the iridium 

complexes [IrX(CO)(EPh3)2] (E =As, X= Cl; E = P, X= Cl, Br, I, NCS), to give 

stable products of type [IrX(CO)(C4N2)(EPh3)2] for which the structure shown in 

Figure 5.2 was proposed. 

Figure 5.2. Suggested structure of [IrX(CO)(C4N2)(EPh3)2] 

The v(CO) stretching frequencies of the material [IrCl(CO)(C4N2)(PPh3)2] were 

compared with those of a series of compounds of type [IrCl(CO)(Ligand)(PPh3)2] as it 

has been suggested that the value of the v(CO) frequency correlates with the degree to 

which the ligand has removed electron density from the iridium centre on 

complexation.6 The study of McClure and Baddley put the electron withdrawing 

strength of the DCA ligand equal with that of 0 2 and S02 and much less than that of 

the strongly electrophilic tetracyanoethylene (TCNE) ligand.5 Interestingly, reaction 

of the dicarbonyl iridium hydride [IrH(C0)2(PPh3)2] with DCA resulted in the 
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formation oflr{C(CN)CCN}112-NCC2CN(CO)(PPh3)2 derived from coordination of 

one DCA ligand in 112 fashion and insertion of DCA into the Ir-H bond to give the 

dicyanovinylligand (Figure 5.3). The trans nature of the dicyanovinylligand was 

later established by crystallographic methods. 7 

Figure 5.3. Product of the two-fold addition of DCA to [IrH(C0)2(PPh3)2] 

Reaction of DCA with rhodium complexes RhCl(PPh3)3, [RhCl(PPh3)2]z, 

RhCl(CO)(PPh3)2, RhCl(C0)2(PPh3) and [RhCl(C0)2h gave only intractable tars 

rather than isolable, well-characterised metal-complexes. This was attributed to a 

combination of the high reactivity of the DCA ligand and the catalytic nature of the 

Rh1 centre.7 Reaction of DCA with Pt(PPh3)4 resulted in the 112 coordinated complex 

Pt(112-NCC2CN)(PPh3)2 which is discussed further in Chapter 6. 

Complexes exhibiting similar 11 2 -alkyne ligands have also been isolated following 

coordination of cyanoacetylene (HC=CC=N) to a tungsten centre. 8 This reaction was 

shown to proceed both in warm toluene (60 oc over a period of8 hours) and by 

photolysis (Scheme 5.1 ). 
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r\ &\FI/NMe2 + 
Nc-c=:c-H 

/
w-.......... 

F4 oc I co 
co 

hv/toluene (2hrs) 

or warm toluene (Shrs) 

Scheme 5.1. 11 2 co-ordination of cyanoacetylene to a tungsten centre. 

However such simple coordination reactions of cyanoacetylene are rare, with the 

metal chemistry of cyanoacetylene being instead dominated by the formation of cr-

vinyl complexes. In the early 1980's Scordia eta/. studied the insertion of mono- and 

di-cyanoacetylene into the M-H bonds of [(C5H5)2MH2] (M = Mo, W) to give 

[(Cp )2MH( cr-trans-C(CN)=CHCN)] and [(Cp )2MH( cr-C(CN)=CH2)].
9 This was 

followed by the investigation of insertion reactions of both cyanoacetylene and DCA 

into the M-H bond of[MH(C0)3Cp] (M = Mo, W) to give the complexes [M(cr-

CR=CHCN)(C0)3Cp] (M = Mo, W; R = H, CN) (Figure 5.4). 10 

d 
oc-;~yR 
oc co~R 

NC H 

Figure 5.4. Cyanoacetylene insertions into the M-H bond ofMH(C0)3Cp complexes 

(M=Mo R=CN· M=W R=H CN) ' ' ' ' . 

In each case the reaction resulted in the trans-product shown above, and in no cases 

were any 11 2 coordination products formed unlike those for acetylenes bearing other 

electron-withdrawing groups such as F3CC=CCF3.
11•12 This was taken as an 

indication that the cyanoacetylene ligands behave as stronger electrophiles than other 
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activated alkynes and that the electron densities at the Mo and W centres above were 

not sufficiently electron-rich to stabilise the n-coordination product. 

Examples of similar insertions into M-H bonds by cyanoacetylenes followed for 

similar compounds, including the iron species [FeH(CO)Cph(!J.-dppm)13 and the 

species Cp2MH (M=Re, Ta). 14·15 Furthermore, insertion reactions of mono- and di­

cyanoacetylenes into M-S bonds have been studied, showing that, for example, 

reaction of [W(SMe)(C0)3Cp] with HC=CCN will produce 

[W(CH=C(CN)SMe)(C0)3Cp]. 16 

Examples of 11 1-(N) bonded cyanoacetylenes are scarce, with only the complexes 

[Ru(NC=CC=R)(tpy)(bpy)](PF6)2 (tpy = 1,2':6':2'-terpyridine, bpy = 2,2'-bipyridine, 

R = H, Ph), which were characterised solely on the basis of electronic spectroscopy 

and elemental analysis, reported prior to the work in this thesis. 17 

The cyanoacetylene ligands HCC=CCN and NCC=CCN are both highly reactive and 

prone to polymerisation. However, Murray and Zweifel have described the synthesis 

of substituted cyanoacetylides from the parent acetylides RC=CH by removal of the 

acetylenic proton to form RC=C followed by reaction with phenyl cyanate (PhOCN) 

to form RC=CCN. 18 This simple procedure allows ready access to cyanoacetylene 

compounds which display increased stability due to the presence of bulky R-groups 

such as a phenyl moiety. In this chapter the coordination chemistry ofN=CC=CC6Hs 

and the para-substituted derivative N=CC=CC6H4-4-NMez is described. 
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Results 

Synthesis 

The organic cyanoacetylenes NCC=CC6H5
18 and NCC=CC6H4-4-NMe2 were prepared 

from the parent acetylenes by reaction with butyl lithium (BuLi) and phenyl cyanate 

(PhOCN) according to the general method described by Murray and Zweifel (Scheme 

5.2).18 

H-c=c-Q-x 
i) BuLi 

ii) PhOCN 

Scheme 5.2. Formation of cyanoacetylene ligand (X= H, NMe2) 

Treatment of a methanolic solution of RuCl(PPh3)2Cp with NCC=CC6H5 in the 

presence of NH4PF 6 led to the formation of a bright yellow suspension from which the 

complex salt [Ru(NCC=CC6Hs)(PPh3)2Cp][PF6] (17) could be isolated in good yield 

and crystallised to afford bright yellow crystals (Scheme 5.3). This compound was 

characterised by the usual spectroscopic techniques. The Cp ligand gave rise to 

singlet resonances in the NMR spectra at 4.52 ppm eH) and 84.90 ppm (13CeH}). 

Furthermore, resonances arising from the acetylenic carbon atoms of the 

cyanoacetylene ligand were apparent. as singlets in the 13CeH} spectrum at 116.63 

and 115.88 ppm. Resonances arising from the phenyl rings of the phosphine and 

cyanoacetylene ligands were found in the range 6.98-7.57 ppm eH) and 135.20-

128.43 ppm (13CeH} ). The 31P NMR spectrum showed the expected resonances 

arising from the PPh3 and [PF6r moieties as a singlet at 41.86 ppm and a heptet at -
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143.02 ppm (JpF = 713Hz), respectively. In theIR spectrum, a single absorption 

band was observed at 2141 cm-1 which compares with the free ligand vibration at 

2145 cm-1
. No absorption band in the region commonly associated with coordinated 

nitrites (ca. 2200 cm-1
, see Chapter 3) was observed. The ES(+)-MS displayed an 

intense isotopic envelope arising from the complex cation 

[Ru(NCC=CC6H5)(PPh3)2Cpt at mlz = 818, and a fragment corresponding to 

[Ru(PPh3)2Cp t was apparent at mlz = 691. 

N=c-c=c-Q-x 

[ ]

+ 

J -
l:"Ru-N=c-c=c-Q-x (PFsr 
J 

R = H, L = PPh3, X= H, 17 
R = Me, L2 = dppe, X= NMe2, 18 20 

Scheme 5.3. Synthesis of cyanoacetylene compounds 17- 20. 

A similar reaction using RuCI(dppe)Cp* and NCC=CC6H4-4-NMez resulted in the 

isolation of yellow, needle-like crystals of [Ru(NCC=CC6~-4-

NMe2)(dppe)2Cp*][PF6] (18) which had an almost metallic lustre. The Cp* ligand 
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was observed as a singlet resonance at 1.4 7 ppm in the 1 H NMR spectrum, while a 

singlet at 3.05 ppm corresponding to the methyl protons of the NMe2 substituent was 

also observed. The resonances arising from the alkyl protons of the dppe ligand were 

evident as an unresolved multiplet in the range 2.31-2.56 ppm. Whilst most of the 

phenyl protons were apparent as multiple resonances in the 7.23-7.54 ppm region of 

the spectrum, it was possible to distinguish a pseudo-doublet at 6.58 ppm (JHH =9Hz) 

arising from the ortho phenyl protons of the cyanoacetylene ligand. The presence of 

the Cp* ligand was confirmed in the 13C{1H} NMR spectrum with singlet resonances 

at 93.75 and 9.83 ppm arising from the ring and methyl carbon atoms respectively. 

Furthermore, the Cz~ carbon atoms of the dppe ligand were apparent as multiplets in 

the range 28.90-28.55 ppm, although Jcp was not resolved, and the NMez substituent 

of the cyanoacetylene ligand resulted in a singlet resonance at 40.20 ppm. A sharp 

singlet resonance at 75.10 ppm in the 31P NMR spectrum was assigned to the dppe 

ligand whilst a heptet at -143.21 ppm (hF =713Hz) corresponding to the [PF6T 

counter-ion was also observed. Absorption bands resulting from the C=N and C=C 

portions of the ligand were visible in theIR spectrum at 2216 and 2123 cm-1 

respectively, which compare with the free ligand bands at 2273 and 2145 cm-1
• 

Finally, ES(+)-MS showed the complex cation [Ru(NCC=CC~NMez)(dppe)Cp*t 

at mlz = 804, as well as the fragment ion [Ru(dppe)Cp*t at m/z = 635. 

Reaction of the cyanoacetylene ligand NCC=CC6H5 with the known alkyne 

sequestering agent Co2(C0)6(dppm) in refluxing benzene followed by removal of 

solvent and recrystallisation resulted in the formation of dark red crystals of 

[Coz(J..l,11 2-C6HsCzCN)(C0)4(J..1-dppm)] (19) (Scheme 5.3). The expected doublet of 

triplet resonances corresponding to the CH2 group of the dppm ligand in the 1 H NMR 
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spectrum were observed at 3.15 and 3.49 ppm. The same moiety was also evident in 

the 13CeH} NMR spectrum as a triplet at 36.58 ppm (Jcp =21Hz). Two broad 

resonances at 205.89 and 199.21 ppm were assigned to the CO ligands and the carbon 

atoms of the Co2C2 cluster core were apparent as triplets occurring at 123.55 ppm (Jcp 

= 3Hz) and 97.96 ppm (Jcp= 18Hz). A sharp resonance arising from the dppm 

ligand was found in the 31P NMR spectrum at 39.92 ppm. TheIR spectrum showed 

the CO stretches in the 1970-2037 cm-1 region with the C=N stretch apparent as a 

weaker band at 2167cm-1
• The ES(+)-MS spectrum displayed isotopic envelopes at 

m/z = 1504 ([2M+NaJ1 and 764 ([M+Nat). 

Having synthesised examples of the co-ordination ofthe cyanoacetylene ligand in 

both 11 1(N) and 11 2(alkyne) bonding modes, attempts were made to form a multi­

metallic compound through the simultaneous use of both bonding modes. Reaction of 

[Ru(NCC=CC6H5)(PPh3)2Cp][PF6] (17) with Co2(C0)6(dppm) in refluxing benzene 

resulted in a dark red solution from which only [Co2(J.1.,112-C6HsC2CN)(C0)4(J!­

dppm)] (19) could be isolated. However, reaction of 19 with RuCl(PPh3)2Cp in the 

presence ofNH~F6 produced a bright red solution from which [ {Co2(J!,112-

C6H5C2CN {Ru(PPh3) 2Cp} )(C0)4(J!-dppm)} ][PF6] (20) could be isolated as a brick­

red powder (Scheme 5.3). Careful crystallisation at low temperatures produced red, 

cubic crystals of20. Spectroscopic characterisation confirmed the formation of the 

heterometallic species. The presence of the Cp ligand was established by NMR 

resonances at 4.30 ( 1 H) and 100.01 ppm ( 13C { 1 H}) while the dppm ligand resulted in 

unresolved resonances at 3.28 eH), and 35.84 ppm (13CeH} ). The carbon atoms of 

the Co2C2 cluster core appeared as triplets at 123.56 ppm (Jcp =3Hz) and 97.96 ppm 

(Jcp =19Hz). The 31P NMR spectrum showed two singlets at 42.00 and 37.67 ppm 
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corresponding to the PPh3 and dppm ligands respectively. The [PF6r counter-ion 

gave the expected heptet at -142.96 ppm (JPF =711Hz). ES(+)-MS agreed with the 

suspected composition with the complex cation [ { Co2(J.!,112-

C6HsC2CN {Ru(PPh3)2Cp} )(C0)4(J.!-dppm)} t giving rise to an isotopic envelope at 

m/z = 1431. The fragment [Ru(PPh3)2Cpt was also observed at m/z = 691. 

Reactivity of [Ru(NCC=CCJ!s)(PPh3)2Cp] [PF6] 

In order to gain qualitative measure of the stability of the bond between the 

cyanoacetylene ligand and the metal centre, a sample of 17 in CDCh was treated with 

one equivalent ofMeCN and the reaction was monitored by 1H NMR spectroscopy. 

Over a period of 24 hours, the Cp resonance at 4.52 ppm arising from 17 slowly 

diminshed and a new resonance grew in at 4.44 ppm. This was assigned to the 

species [Ru(NCMe)(PPh3)2Cpt by comparison with an authentic sample (4.46 ppm). 

The reaction of 17 with tetracyanoethylene (TCNE) was also investigated. The 

organic species TCNE has been shown to react readily with metal acetylide, diynyl 

and polyyndiyl complexes under mild conditions to afford products derived from 

[2+2] cyclisation reactions. The initial cyclobutene products often ring-open to afford 

highly conjugated cyanocarbon ligands. 19"22 The TCNE ligand has also been used as a 

l'J 1{N) bonding ligand, and has been shown to react with oxidisable metal centres to 

give products derived from charge transfer processes with the ligand best formulated 

as a TCNE radical or dianion. 23"31 Reaction of 17 at room temperature in dry, distilled 

THF with one equivalent of TCNE resulted in the rapid formation of a dark 
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green/blue solution. Removal of solvent and subsequent work-up resulted in the 

formation of [ {Ru(PPh3)2Cp h(f.l-TCNE)][PF6h (21) as a blue/grey solid. The Cp 

resonance showed a shift in the 1H NMR with respect to 17 (4.58 ppm vs. 4.52 ppm 

respectively). Infra-red spectroscopy revealed absorption bands at 2139 cm-1 with a 

shoulder at 2164 cm-1
• Mass spectrometry [ES(+)-MS] showed an isotopic envelope 

arising from the cation [ {Ru(PPh3)2Cp}2(J.1.-TCNE)t at mlz = 818 as well as the 

cationic fragment [Ru(PPh3)2Cp t at m/z = 691. These data are inconclusive with 

regards to the formulation of21 as either the mononuclear compound 

[Ru(TCNE)(PPh3)2Cp][PF6] or the binuclear species, which can be obtained, at least 

in principle, as either cis or trans forms. Recrystallisation of21 from CHCh resulted 

in the formation of sapphire-blue crystals suitable for X-ray diffraction studies which 

conclusively identified the bimetallic nature and the connectivity of the compound 

(see below). 

Molecular Structures 

The molecular structures of 17 and 19-20 were determined. Crystallographic details 

are summarised in Table 5.1 with selected bond lengths and angles in Tables 5.2 (17, 

19 and 20) and 5.3 (21, see below). 
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Table 5 .1. Crystallographic Details. 

Compound 17 19 20 21 
Formula CsoH4oF6NP3Ru.0.1CH2CI2 C3sH27Co2N04P2 C1~2N04PsF6Co2Ru.2CH2CI2 CssH1oN2P 4Ru2 

FW 1022.26 741.41 1746.93 1019.09 
a(A) 10.3647(5) 16.95859(8) 11.7464(7) 10.0332(4) 
b (A) 35.1128(16) 10.8413(5) 17.3929(10) 20.3162(9) 
c(A) 12.9836(6) 18.4223(9) 21.8925(13) 20.6003{9) 
a (o) 90 90 71.121(3) 90 
p (0) 104.145(2) 95.558(1) 76.244(2) 101.21(2) 
)I (0) 90 90 73.405(2) 90 

V(A3
) 4581.9(4) 3297.0(3) 4003.4(4) 4118.9(3) 

T(K) 120(2) 110(2) 120(2) 120(2) 
Crystal System Monoclinic Monoclinic Triclinic Monoclinic 

Space group P21/n P21/n - P21/c 
P1 

z 4 4 2 4 
11 (mm"') 0.59 1.146 0.892 0.757 

Reflections 24223 25776 46232 35233 
collected 

Independent 918 1 [R(;n1) = 0.0465) 9562 [R(;n,) = 0.0373) 19669 [R(m,) = 0.0386] 10935 [R(inl) = 0.0709) 
reflections 

Final R indices R1- 0.0898, wR2= 0.13995 R1- 0.0706, wR2= 0.1486 R1- 0.0449, wR2 = 0.0815 R1- 0.1195, wR2- 0.2672 
(all data) 

Table 5.2. Selected bond lengths and angles for compounds 17, 19, and 20. 

Compound 17 19 20 
Ru-N (A) 2.002(4) n/a 2.036(3) 

N-C(2) (A) 1.162(7) 1.153(2) 1.162(4) 
C(2)-C(3) (A) 1.365(8) 1.412(2) 1.393(5) 
C(3)-C(4) (A) 1.208(8) 1.370(2) 1.382(5) 

C(4)-C(ipso) (A) 1.430(8) 1.465(2) 1.460(5) 
Co-Co (A) n/a 2.4651(3) 2.4846(7) 

Ru-P(1) (A) 2.355(2) n/a 2.3420(9) 
Ru-P(2) (A) 2.352(2) n/a 2.3343(9) 

P(1)-Ru-P(2) CO) 101.25(5) n/a 101.61(3) 

Ru-N-C(2) CO) 177.4(4) n/a 166.8(3) 

N-C(2)-C(3) CO) 177.6(6) 175.0(4) 175.0(4) 

C(2)-C(3)-C( 4) CO) 175.9(7) 137.4(3) 137.4(3) 

C(3)-C( 4)-C(ipso) CO) 176.5(6) 140.4(3) 140.4(3) 

The structure of 17 (Figure 5.5) is very similar to that of the benzonitrile complex 

[Ru(N=CC6H5)(PPh3) 2Cp][PF6] (1) (see Chapter 3). The Ru-P distances in 17 

(2.352(1) and 2.355(1) A) are slightly longer than those in 1 (2.334(1) and 2.335(1) A 

in 1) and the P(l)-Ru-P(2) angle is slightly larger (101.25(5t in 17 and 97.46(1)0 in 
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1). The Ru-N bond length in 17 is significantly shorter than that in 1 ( 2.002(4) A in 

17 vs. 2.037(1) A in 1). The N-C(1) bond length in 1 (1.145(2) A) appears shorter 

than the equivalent N-C(2) length in 17 (1.162(7) A) but these differences are within 

the limits of precision of the experiment. The C(2)-C(3), C(3)-C(4) and C(4)-C(ipso) 

bond lengths (1.365(8), 1.208(8) and 1.430(8) A) are much as would be expected and 

agree with the representation of the structure of the ligand as alternating single and 

triple bonds. The Ru-N(1)-C(2) and C(3)-C(4)-C(ipso) fragment in 17 is essentially 

linear (177.4(4)0
). 

Figure 5.5. ORTEP Plot of[Ru(NCC::CC6Hs)(PPh3)2Cp][PF6] (17). 
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The structure of 19 (Figure 5.6) clearly indicates the co-ordination of the alkyne 

moiety of the cyanoacetylene ligand to the dicobalt fragment in Jl,Y) 2 fashion. TheN­

C(2) bond length seems unaffected by the mode of co-ordination (1.153(2) A vs 

1.162(7) A in 17), as is the C( 4)-C(ipso) distance ( 1.465(2) A vs. 1.430(8) A in 17). 

There is a marked lengthening of the C(3)-C(4) bond on co-ordination (from 1.208(8) 

A in 17 to 1.3 70(2) A in 19) which is consistent with the loss of triple bond character 

upon formation of the Co2C2 cluster core. Also of note are the Co(1)-Co(2) and C(3)­

C(4) bond lengths (2.4651(3) A and 1.370(2) A respectively) which are at the shorter 

and longer ends of the range of bond lengths normally associated with [Co2(J..L,T) 2-

alkyne)(C0)4(dppm)] complexes respectively.32 Furthermore, the torsion angles 

C(6)-Co(1)-Co(2)-C(8) (-17.86(7)0
), C(7)-Co(1)-Co(2)-C(9) (-36.1(1)0

) and P(3)­

Co(1)-Co(2)-P(4) ( -11.13(2)0
) are unusually large when compared against a series of 

closely related structures [Co2(J..L,T) 2-RC2C6~X-4)(C0)4(dppm)] (X= H, N02, CN, 

NMe2).32 
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Figure 5. 7. 0 R TEP Plot of [ { Co2().l, 112 -C6HsC2CN {Ru(PPh3)2Cp} )(CO )4().l­

dppm)}][PF6] (20) 

The molecular structure of 20 (Figure 5. 7) clearly indicates the ability of the 

cyanoacetylene ligand to display both 11 1-(N) and 112-(alkyne) co-ordination modes 

simultaneously. The structure is similar to the combined structures of 17 and 19. 

There is no statistically significant change in the bond lengths associated with the 

cyanoacetylene ligand upon co-ordination of the [Ru(PPh3)2Cp] fragment to the NC 

moiety with respect to 19, although the Ru-N distance (2.036(1) A) is longer than in 

17 (2.002(4) A). There is also some reduction in the distortion about the cobalt 

centres (C(7)-Co(1)-Co(2)-C(8) 5.0(2)0
; C(6)-Co(1)-Co(2)-C(9) 25.6(3)0

; P(3)-Co(1)­

Co(2)-P(4) 8.85(4)0
). 

The molecular structure of the TCNE-bridged complex 21 shows contains a 

crystallographic centre of inversion at the mid-point of the TCNE C(2)=C(2A) double 

bond (Figure 5.8). Although one N-C bond length in the structure of21 appears 

longer than the other (N(l)-C(l) = 1.151(7) A, N(2)-C(3) = 1.135(8) A), with the 

133 



------------

Chapter 5 - Cvanoacety/ene Complexes 

longer of the two being that coordinated to the ruthenium centre, these are both the 

same within the limits of precision of the measurement. The C(l)-C(2)-C(3) angle is 

119.3(5)0 and the C(1)-C(2)-C(2A) angle is 121.3(6)0
). 

Figure 5.8. ORTEP Plot of [ {Ru(PPh3)2Cp}2(~-TCNE)][PF6]2 (21) (Hydrogen atoms 

have been omitted for clarity) 

Table 5.3. Selected bond lengths and angles for compound 21. 
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Electrochemistry 

Measurements were carried out in a 0.1M [N(C4H9)4][BF4] solution in DCM. Internal 

decamethylferrocene [Fc*/Fc*+ = -0.02 V vs. SCE] or ferrocene [Fe/Fe+= +0.46 V vs. 

SCE] standards were used to give electrode potentials relative to SCE.33 

The electrochemical response of 17 at a platinum electrode was characterised by a 

single, irreversible oxidation (Epa = + 1.4 7 V) which contrasts with the reversible 

oxidation seen at lower potential for the analogous benzonitrile compound 1 (E0 = 

+ 1.30 V). In contrast to this, 18 displayed a single oxidation event at+ 1.04 V, the 

reversibility of which was improved at sub-ambient temperatures (-30 °C). 

The electrochemical response at a glassy-carbon electrode of the cobalt-carbon cluster 

compound 19 was characterised by both a single reduction and an oxidation wave. 

These were poorly reversible at room temperature but their reversibility improved 

upon cooling to -30°C (Ered0 = -1.40 V, Eox0 = 0.98 V). These potentials may be 

compared with those of the closely related species [Co2(J..L-HC2Ph)(C0)4(dppm)] (E0 rcd 

=-1.73 V;E0
0 x = +0.79 V). 

Coordination of the ruthenium fragment to the NC moiety to form compound 20 

resulted in a shift in the cobalt-carbon cluster based reduction potential to -1.23 V and 

the chemical reversibility of the reduction product was increased. However, the 
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oxidation of 20 became almost totally chemically irreversible (Epa=+ 1.06 V). The 

TCNE-bridged bimetallic dication 21 underwent a single irreversible oxidation (Epa 

+ 1.42 V). Evidently, there is little electronic interaction between the formally Ru(II) 

centres through the TCNE bridge. 
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Discussion 

The cyanoacetylene ligand N=CC=CR is isolobal and isoelectronic with the diynyl 

anion [RC=CC=CT and bears an obvious structural relationship with benzonitrile and 

related nitrile ligands. It follows that the spectroscopic and structural parameters of 

the cyanoacetylene complex [Ru(NCC=CC6H5)(PPh3)2Cp][PF6] (17), which has been 

prepared in a similar fashion to the simple benzonitrile complex 

[Ru(N=CC6H5)(PPh3)2Cp][PF6] (1) (see Chapter 3), may be compared to both 1 and 

the analogous diynyl complex Ru(C=CC=CC6H5)(PPh3)zCp.34 

Spectroscopically, there are marked differences between 17 and the analogous diynyl 

compounds. Resonances arising from the Cp moiety in the NMR spectra of 17 were 

found at 4.52 ppm eH) and 84.90 ppm (13CeH}) whilst in the diynyl complex these 

appear at 4.35 ppm eH) and 85.71 ppm (13CeH} ). These NMR resonances are 

consistent with the more cationic ruthenium centre present in 17 and compare closely 

with those found for the Cp moiety of the benzonitrile complex 1 (4.55 ppm and 84.38 

ppm for 1H and 13C respectively). Further, there are two clearly distinguishable 

v(C=C) bands in theIR spectrum of the diynyl complex (2162 and 2025 cm-1
) 

whereas in 17 only the acetylenic moiety is visible (2141 cm-1
). In contrast to the 

simple nitrile complexes described earlier in this thesis (see Chapter 3) the co­

ordinated C=N moiety is not observed in the IR spectrum of 17. 

Reaction of 17 under mild conditions with one equivalent of MeCN led to the 

substitution of the cyanoacetylene ligand by MeCN over a period of 24 hours. This 

was not observed in the case of [Ru(NCC=CC6H4-4-NMez)(dppe)zCp*][PF6] (18) and 
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is in good agreement with the electrochemical data. Complex 17 displays an 

irreversible oxidation at + 1.4 7 V. This indicates a much more electron-poor metal 

centre than in the case of [Ru(N=CC6Hs)(PPh3)2Cp] [PF 6] (1) in which a reversible 

oxidation at + 1.30 V is seen. Although the electrochemical response of 18 at room 

temperature was not chemically reversible, the reversibility of the oxidation was 

markedly improved at sub-ambient temperatures. At -30 oc a reversible oxidation at 

a platinum electrode with an oxidation potential of+ 1.04 V vs SCE was observed. 

Assuming that the relative oxidation potentials of the complexes reflect the net donor 

properties of the RCN ligands it may be concluded that there is a relative order of 

donor strength N::CC=CC6Hs < NCPh < N=CC::CC6lLt-4-NMez. 

The molecular structure of 17 may be compared to both the corresponding diynyl 

complex Ru(C=CC=CC6H5)(PPh3)2Cp and the analogous benzonitrile compound 

[Ru(N=CC6H5)(PPh3)2Cp][PF6] (1).34 The Ru-X bond (where X= Nor C) varies 

considerably between the three compounds, ranging from 1.994(4) A in 

Ru(C=CC::CC6H5)(PPh3)zCp to 2.037(1) A in 1. The Ru-N bond length in compound 

17 (2.002(4) A) is therefore identical (within the limits of precision of the 

measurement) to that of the diynyl equivalent and significantly shorter than that in the 

benzonitrile complex 1. The N-C bond of 17 is 1.162(7) A which is similar to the 

benzonitrile analogue (1.145(2) A) but shorter than that of the diynyl complex 

(1.206(5) A). The bond lengths of the rest of the carbon chain in the cyanoacetylene 

ligand (C(l)-C(2) = 1.365(8) A, C(2)-C(3) = 1.208(8) A, C(3)-C(ispo) = 1.430(8) A) 

are comparable to those in the diynyl complex (C(1)-C(2) = 1.389(6) A, C(2)-C(3) = 

1.200(6) A, C(3)-C(ispo) = 1.416(6) A). Although there is some degree ofn back­

bonding between the ligand and the metal centre in the diynyl complexes this is very 
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small and by far the strongest interaction is a a-bonding interaction between the lone 

pair of the diynyl anion and the d/ orbital of the metal fragment. An examination of 

the charge distribution in the diynyl complex Ru[(C=C)nR](PPh3)2Cp shows a 

substantial amount of negative charge on the alkyne moiety adjacent to the metal 

centre, the degree of which increases with n. 35 This leads to a coulombic attraction 

between the negative alkyne moiety and the positive metal centre which also increases 

with n. By analogy, the cyanoacetylene would be expected to have a greater degree of 

electron density at the N=C moiety than the benzonitrile ligand. Hence there is a 

greater coulombic attraction between the N atom and the metal centre in 17 than in 1 

and this results in 17 having a shorter Ru-N distance whilst the N-C bond length is 

unaffected. The bond angles at the phenyl end of the Ru-XC3Ph chain are almost 

linear in 17 and the diynyl analogue. 

It is worth noting that the orientation of the phenyl ring ofthe cyanoacetylene is 

approximately orthogonal to that in the benzonitrile complex. A similar phenomenon 

is seen in the behaviour of the phenyl acetylene and diynyl analogues 

Ru(C=CC6Hs)(PPh3)2Cp and Ru(C=CC=CC6Hs)(PPh3)Cp.34·36·37 The C=C and C=N 

moieties posses two orthogonal sets of 1t orbitals which can interact with the d-orbitals 

of the metal centre. There are then two possible, orthogonal orientations that the 

aromatic ring system can adopt and maintain conjugation with the C=C, or C=N, 

moiety. In the cases where there are only two atoms between the phenyl group of the 

ligand (C=N or C=C) and the metal centre, steric interactions between the phenyl ring 

and the phosphine moieties force the ligand to adopt a geometry with the aromatic 

ring sitting in the plane of the Ru-Cp(centroid) vector. In the case of the cyanoacetylene 

and diynylligands, the additional C=C spacer increases the distance of the phenyl ring 
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from the phosphine moieties such that the ring can now adopt a position with its plane 

perpendicular to the Ru-Cp(centroid) vector. 

The cyanoacetylene ligand can also co-ordinate in an '11 2 fashion by reaction with the 

known alkyne sequestering agent Co2(C0)6(dppm) to give [Co2(.u,l"J 2-

C6HsC2CN)(C0)4(!-l-dppm)] (19). A large number of similar complexes are known 

and the v(CO) frequencies have been shown to be sensitive to the electronic 

properties of the aryl substituent.32 The v(CO) bands in the unsubstituted complex 

[Co2(!-l,l"J 2-HC2C6H5)(C0)4(dppm)] occur in the range 2027-1956 cm-1 whilst for 

compound 19 these are found in the range 2037-1970 cm-1
. Hence the electron­

withdrawing CN moiety of the coordinated cyanoacetylene ligand draws electron 

density away from the cluster core resulting in less back-bonding with the 1t* orbitals 

of the CO ligands and higher stretching frequencies. By comparison, the v(CO) bands 

ofthe complex [Co2(!-l,l"J2-HC2C6H4-4-CN)(C0)4(dppm)] (an isomer of19) are found 

in the range 203 0-1961 em -I. The fact that these v( CO) bands fall in between those 

found for 19 and the unsubstitued complex shows that the electron-withdrawing effect 

of the CN moiety is diminished when separated from the cluster core by the phenyl 

spacer. 

The effect of the electron-withdrawing CN ligand is also seen the electrochemical 

response of 19. The withdrawal of electron-density from the cluster core relative to 

[Co2(!-l,l"J2 -HC2C6H5)(C0)4( dppm)] facilitates the reduction of 19 and hence it has a 

lower reduction potential ( -1.41 V vs. SCE) than the unsubstituted complex ( -1.83 V 

vs. SCE). The same inductive electron-withdrawing makes the oxidation of 19 less 
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thermodynamically favourable than for the unsubstituted complex ( +0.98 V vs SCE 

for 19 vs. +0.69 V vs SCE for [Co2{f.l,T]2-HC2C6Hs)(C0)4(dppm)]). 

As has been stated earlier (see Results) there is very little change in either the N-C(1) 

or the C(3)-C(ipso) bond lengths of 19 (relative to 17) upon coordination to form the 

cobalt-carbon cluster. Furthermore, the increase in the carbon-carbon bond length 

associated with the alkyne portion of the ligand can be accounted for by the change in 

hybridisation of the carbon atoms C(2) and C(3) from sp hybridisation in 17 to sp3 in 

19. The C(2)-C(3) bond length in 19 is slightly "long" (1.370(2) A) when compared 

to the analagous compounds [Co2(f.l,T] 2-HC2C6fuX-4)(C0)4(dppm)] (X= H, NMe2, 

N02, CN) in which the C(2)-C(3) bond length averages 1.348(2) A. Also, the Co-Co 

bond in compound 19 (2.4651(3) A) is at the short end ofthe range found in the 

acetylenes which fall in the range 2.4657(4) A to 2.4950(4) A. 

An important point to note about the geometry of complex 19 is the torsion angles 

C( 6)-Co( 1 )-Co(2)-C(8) ( -17 .86(7)0
) and C(7)-Co( 1 )-Co(2)-C(9) ( -36.1 ( 1 )0

). These 

are large when compared to the analogous compounds mentioned above. Thorn and 

Hoffman have described the main bonding interactions in [M2(C0)6{f.l-RC2R)] (M = 

Fe, Co), a similar scheme being used for both complexes.38 In their description the 

HOMO orbital for the Co complex (a2) arises from an anti-bonding (1t*) M-M/C-C 

interaction (Figure 5.9). 

141 



Chapter 5 - Cyanoacetylene Complexes 

,- a2 iii!!! 
I 
I 

I 

/,-b1 ~ I I 

2a1 ------, ,' ,' 
1 I I 

b2 ----"\~ / / 
I I I 
1 I I 
1 I I 
I I I 
1 I I 
I ' I 
1 I 1 

I I ' 
1 I I 
1 I 1 
1 I 1 

1 I ' 
1 I I 
1 I 1 
1 I 1 

\ ,' ,' 

+ \ // 
a2 ... '. ,' ,' 

........ \.. a2 ,' ,' 
II----- +,' : '. ......... , ,' 

I I 

b* \'. */ 1 • \
1
1 : 8 

-----\\ _,- II 1 

... ,, ...... ' '\\·< +: 
1a1 _lL// \\ . 

I ~ \\ b1 
II 
II 
II 
I I 
II 
1 I 
1 I 
1 I 
II 
1 I 
I I 

\\ ~I If 
\ \ 'ir a1 (J.J 

\\+-~3--,-~<~~+ 
I ~ . b2 tl9 
I ' 

\ ~I . / llr,' 

Figure 5.9. Frontier orbitals formed upon interaction ofC2H2 with M2(C0)6 to form 

M2/C2 cluster core. Orbital occupancy for M = Co illustrated?8 

Oxidation of the Co2 complex depopulates the a2 orbital and increases the bonding 

nature of the M-M/C-C interaction, decreasing the M-M distance. This leaves a low-

lying empty orbital, which leads to a second-order Jahn-Teller distortion ofthe 

structure in order to raise the energy of that orbital (Figure 5.1 0) 
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Figure 5.10. Jahn-Teller distortion of frontier orbital in M2(C0)6(C2H2).
38 

Structural distortion can occur in one of two ways. Firstly, there can be a rotation on 

the C-C axis relative to the M-M bond. This twisting has been observed by Connelly 

et al in the solid state structures of [Co2(CO)z(J.L-RC2R)(J.L-dppm)2t+ (R =Me, Ph, 

COzMe).39 It was shown that in the neutral species the M-M/C-C vectors were 

essentially perpendicular. Oxidation of these compounds by reaction with [Fc]PF6 

depopulated the a2 orbital and the resultant Jahn-Teller distortion led to a twisting of 

the C-C vector, relative to theM-Maxis (Figure 5.11). 

I~ c 
M-1-M 
\__\ 

Figure 5.11. Twisting of C-C vector relative toM-Maxis 
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A second way to achieve this Jahn-Teller distortion is for there to be a twisting about 

theM-Maxis itself, rotating one M(C0)3 fragment relative to the other to adopt a 

staggered conformation. This has been observed for the compound Fe2(C0)6{f.l­

tBuC2tBu) (OC-Fe-Fe-CO torsion angle=± 45°).40 Each iron centre has one less 

electron than the comparable cobalt centre and thus electronic structure of the di-iron 

complex is the same as that of the di-oxidised di-cobalt analogue. 

In compound 19 the alkyne and Co-Co axes are essentially perpendicular to one 

another (91.3°) but there is significant rotation about the Co-Co bond, as evidenced by 

the C( 6)-Co( 1 )-Co(2)-C(8) and C(7)-Co( 1 )-Co(2)-C(9) torsion angles. The dppm 

ligand would, however, prevent the material from adopting a perfectly staggered 

conformation. This rotation would seem to indicate, therefore, that there is some de­

population of the a2 orbital in this compound. This may be due to the presence of the 

CN moiety which provides n-type orbitals that can conjugate with the HOMO of the 

Co2C2 cluster and hence allows for delocalisation of electron density across the 

structure. This is consistent with the effect of the CN ligand on the v(CO) bands and 

the electrochemical response of 19 as described above. 

Coordination of the electron-deficient [Ru(PPh3) 2Cp t fragment to the nitrile moiety 

of 19 results in the formation of the heterometallic complex 20. Attempts to make 

this compound by reaction ofthe cobalt complex Co2(C0)6(dppm) with 17 resulted 

only in the formation of 19. This is a further indication of the lability of the 11 1(N) 

coordinated cyanoacetylene ligand and its poor cr-donor strength. 
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The addition of the ruthenium fragment has a perceptible effect on the 

electrochemical response of the material. The reduction of the cluster compound is 

further facilitated as the electron-deficient metal end-cap draws more electron density 

from the cluster core, making the addition of an electron easier. Hence 20 has a 

reduction potential of -1.23 V vs SCE compared to that of -1.40 V vs SCE for 19. 

This reduction event is also far more stable in the case of 20, being reversible at room 

temperature. Furthermore, the oxidation potential of20 (+ 1.06 V vs SCE) is raised 

relative to that of 19 ( +0.98 V vs SCE) and is now totally irreversible. This effect 

consistent with the further removal of electron density from the Co, however it must 

be noted that the complex 20 is a cation and hence there will be a coulombic effect 

here as well. 

The crystallographically determined structure of 20 can be thought of as a 

superposition ofthe structures of17 and 19 with a few notable distinctions. Firstly, 

the Ru-N bond length in 20 (2.036 A) is longer than that in 17 (2.002(4) A) and more 

of the order of those in the benzonitrile complexes 1, 4, 5, 7 and 8. A possible reason 

for this is that coordination of the cobalt complex to the acetylenic moiety of the 

cyanoacetylene ligand effectively destroys the cyanoacetylene character of the 

bonding orbitals. Hence a picture of a cluster-bound nitrile coordinating to the 

ruthenium fragment is more appropriate than one of a cyanoacetylene ligand. As 

discussed in Chapter 3, nitrile ligands are poor n-acceptors and so there is no back 

bonding from the ruthenium centre to the NC moiety in 20 and the bond is lengthened 

relative to 17. The NC bond length in compounds 17 and 20 is identical and the 

curvature across the NC3 linkage is the same in 19 and 20. There is some distortion of 

20 about the Co centres (C(7)-Co(l)-Co(2)-C(8) = 5.0(2)0 and C(6)-Co(l)-Co(2)-C(9) 
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= 25.6(3)0
). This rotation is not as great as in compound 19 but there is still some 

deviation from the norm. 

The TCNE-bridged complex [ {Ru(PPh3)2Cp}2(J.1.-TCNE)] (21) displays a single 

irreversible oxidation wave at + 1.42 V vs SCE. This is an indicator little or no 

electronic communication between the two metal centres. This lack of 

communication would seem to be borne out by the molecular structure of21. In a 

1992 study, Bock and Ruppert established crystallographic parameters for TCNE as 

the neutral organic molecule, as the radical anion and as the dianion.41 They showed 

that the bond lengths and angle were different in each case. In the neutral organic 

molecule, the C(2)-C(2a) bond length is 1.35 A which lengthens with successive 

reductions to 1.43 A in the radical anion and 1.4 7 A in the dianion. Whilst most of 

the other bond lengths and angles remain relatively unaffected (although there is a 

small contraction ofthe C(1)-C(2) bond length with successive oxidations this only 

spans a 1.43-1.39 A range), the dihedral angle C(1)-C(2)-C(2A)-C(3A) changes 

remarkably. In the neutral molecule this angle is oo and the molecule is essentially 

planar. However this angle varies in the range 0-20° for the radical anion and is about 

90° for the dianion. Examples of each type are to be found in the literature, with the 

neutral molecule coordinating via two or more N=C moieties to form polymers23 or 

extended sheets30 in which the dihedral angle is oo and the C(2)-C(2a) bond length 

averages about 1.33 A. However in the case of two Ir(PPh3)2CO centres bridged by 

the TCNE dianion,24 for example, the C(2)-C2(a) bond length is found to be longer 

(1.478(8) A) and the there is a much greater degree of twisting about the central axis 

(the dihedral angle C(1)-C(2)-C(2A)-C(3A) is 67.2°). There is no evident twisting of 

the two halves of the TCNE fragment in 21 (C(1)-C(2)-C(2A)-C(3A) 1.6°). 
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Compared to the parent organic molecule, there is a lengthening of the C=C bond 

upon co-ordination (from about 1.35 A to 1.393(11) A in 21). There also appears to 

be a slight lengthening of the co-ordinated N-C(l) bond in comparison to the 

uncoordinated bond but this is within the limits of precision of the experiment 

(1.151(7) A vs. 1.135(8) A). Hence, the geometry ofthe TCNE ligand is little 

changed from the neutral organic molecule suggesting a neutral bridge rather than a 

radical anion or dianionic ligand•. 

• Recent communication from Prof. J. S. Miller (Utah) suggests an alternative description of21 in 
terms of a Ruii!Ruiii(!l- TCNE'") mixed-valence species. Miller's query arises from the elongation of 
the C(2)~C(2a) bond length which falls between neutral and radical anion forms ofTCNE. A sample of 
21 has been supplied to the Utah group for variable temperature magnetic measurements to probe this 
alternate interpretation. 
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Experimental 

A 50 ml, two-necked Schlenk flask was cooled under nitrogen and charged with 

RuCl(PPh3)2Cp (247 mg, 0.345 mmol), C6HsC=CCN (122 mg, 0.961 mmol), and 

NILJ>F6 (212 mg, 1.30 mmol). The mixture was then suspended in MeOH (20 ml) 

and heated to reflux under a nitrogen atmosphere. After 30 minutes at reflux a yellow 

solution formed and the reaction was cooled (ice/water). The yellow precipitate 

formed was collected and washed with cold methanol to afford 17 as a yellow powder 

(211 mg, 0.219 mmol, 64 %). Crystals suitable for x-ray diffraction studies were 

obtained by slow diffusion ofMeOH into a DCM solution of17. Found: C, 61.90; H, 

4.13; N, 1.50. RuCso~oP3F6N requires: C, 62.37; H, 4.19; N, 1.45. 1H NMR 

(CDCh): 8 4.52 (s, 5H, Cp); 6.98-7.57 (m, 40H, Ph). 13CCH} NMR (CDCh): 8 

135.20-128.43 (m, Ph); 116.63, 115.88 (2 x s, C=C); 84.90 (s, Cp). 31PCH} NMR 

(CDCh): 8 41.86 (s, PPh3); -143.02 (ht, JpF =713Hz, [PF6]} ES(+)-MS (mlz): 818 

-I em. 

A 50 ml, two-necked Schlenk flask was cooled under nitrogen and charged with 

RuCl(dppe)Cp* (197 mg, 0.294 mmol), NCC::CC6H4-4-NMe2 (50 mg, 0.294 mmol), 

and NH4PF6 (192 mg, 1.18 mmol). The mixture was then suspended in MeOH (15 
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ml) and heated to reflux under a nitrogen atmosphere. After 1hr a brown/yellow 

solution formed. The reaction was allowed to cool to room temperature and the 

solvent was removed. The yellow/brown residue produced was dissolved in DCM 

and filtered. Slow diffusion of hexane into the DCM solution resulted in the 

formation of 18 as yellow, needle-like crystals (190 mg, 0.2mmol, 68 %). 1H NMR 

(CDCh): 8 1.47 (s, 15H, Cp*); 2.31-2.56 (m, 4H, dppe); 3.05 (s, 6H, NMe2); 6.58 

(pseudo-d, JHH =9Hz, 2Hortho, NCC=CC6~-4-NMe2) 7.23-7.54 (m, 22H; Ph). 

13CeH} NMR (CDCh): 8 152.54 (s, C-C3N); 135.86-129.00 (m, Ph); 93.75 (s, 

C5Mes); 40.20 (s, NMe2); 28.90-28.55 (m, dppe); 9.83 (s, CsMe5). 31PeH} NMR 

(CDCh): 8 75.10 (s, dppe); -143.21 (ht, Jpp =713Hz, [PF6]} ES(+)-MS (m/z): 804 

[Ru(NCC=CC6H4NMe2)(dppe)Cp*t; 635 [Ru(dppe)Cp*t. IR (CH2Ch): v(C=N) 

2216 cm-1; v (C=C) 2123 cm-1. 

A 50 ml, two-necked Schlenk flask was cooled under nitrogen and charged with 

Co2(C0)6(dppm) (100 mg, 0.150mmol) and C6H5C=CCN (18.9 mg, 0.147 mmol). 

The solids were dissolved in benzene (10 ml) and heated at reflux under a nitrogen 

atmosphere. After 2 hours the dark red solution that formed was allowed to cool to 

room temperature. The solvent was removed to give a dark red solid which was 

recrystallised by slow diffusion of MeOH into a DCM solution to afford 19 as dark 

red/black crystals (50 mg, 0.032 mmol, 22 %). Found: C, 60.17; H, 3.75; N, 2.08. 

C39H31Co20sP2N requires: C, 60.56; H, 3.67; N,1.89. 1H NMR (CDCh): 8 3.15 (dt, 

1H, CHP2); 3.49 (dt, lH, CHP2); 7.06-7.70 (m, 24H, Ph). 13CeH} NMR (CDCh): 8 
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205.89, 199.21 (2 x br, CO); 141.32-127.36 (m, Ph); 123.55 (t, Jcp = 3Hz, Co2C2); 

97.96 (t, Jcp= 18Hz, CozC2); 36.58 (t, Jcp =21Hz, PCHzP). 31PeH} NMR (CDCb): 

8 39.92 (s, dppm). ES(+)-MS (m/z): 1504 [2M+Nat; 764 [M+Nat IR (nujol mull): 

v(C=N) 2167cm-1, v(CO) 2037s, 2011s, 1982vs, 1970sh cm-1. 

A 50 ml, two-necked Schlenk flask was cooled under nitrogen and charged with 

Co2(,u,TJ 2-C6H5C=CCN)(C0)4(J.!-dppm) (100 mg, 0.135 mmol), RuCl(PPh3)2Cp (97 

mg, 0.135 mmol), and N~F6 (22 mg, 0.135 mmol). The solids were dissolved in 

MeOH (20 ml) and heated at reflux under a nitrogen atmosphere. After 2 hours the 

resultant red solution was allowed to cool and the solvent was removed. The 

red/brown residue was dissolved in the minimum amount of DCM and precipitated 

into hexane to give 20 as a red/brown solid (160 mg, 75 %). Crystals suitable for x­

ray diffraction studies were obtained by slow diffusion of MeOH into a DCM solution 

of20. Found: C, 60.13; H, 4.07; N, 0.99. C79H62PsF604Co2NRu requires: C, 60.16; 

H, 3.96; N, 0.89. 1H NMR (CDCb): 8 3.28 (m, 2H, PCHzP); 4.30 (s, 5H, Cp); 7.12-

7.25 (m, 62H, Ph). 13C NMR (CDCb): 8 205.89, 199.21 (2 x br, 2 x CO); 141.31-

128.36 (m, Ph); 123.56 (t, Jcp =3Hz, Co2C2); 100.01 (s, Cp); 97.96 (t, Jcp =19Hz, 

Co2C2); 36.58 (t, Jcp =21Hz, PCHzP). 31P NMR (CDCb): 8 42.00 (s, PPh3); 35.84 (s, 

dppm); -142.96 (heptet,hF =711Hz, [PF6]} ES(+)-MS (m/z): 1431 [Coz()l,1']2
-

C6HsCzCN){Ru(PPh3)2Cp}(C0)4(dppm)t; 691 [Ru(PPh3)2Cpt. IR (cyclohexane): 

v(CO) 2040s, 2017s, 1990sh cm-1. IR (nujol): v(CO) 2037m, 2011s, 1985s, 1967sh. 
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A 2-necked, 50 ml, Schlenk flask was cooled under nitrogen and charged with 

[Ru(NCC=CC6H5)(PPh3)2Cp](PF6) (150 mg, 0.156 mmol) in distilled THF (10 ml). 

To this stirred solution was added tetracyanoethylene (TCNE) (20 mg, 0.156 mmol). 

A dark green solution rapidly formed after 15 minutes stirring and the solvent was 

removed. The green residue produced was dissolved in the minimum of DCM and 

precipitated into Et20 to afford 21 as a blue/grey solid which was recrystallised from 

CHCh to give the product as sapphire-blue crystals (90 mg, 0.05 mmol, 64%). 

Found: C, 58.09; H, 3.86; N, 2.92. CssH7oN4P6F12Ru2 requires: C, 58.74; H, 3.92; 

N,3.11. 1H NMR (CDCh): 8 6.87-7.19 (m, 60H, Ph); 4.58 (s, lOH, Cp). 31PeH} 

NMR (CDCh): 8 41.87 (PPh3); -142.95 (ht, JPF =713Hz, PF6)- ES(+)-MS (m/z): 818 

[Ru( {C2(CN)4} )(PPh3)2Cpt; 691 [Ru(PPh3)2Cpt. IR (nujol mull): v(C=N) 2164(sh); 

2139 cm-1. 
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Chapter 6 - Cyanoacetylide Complexes 

Introduction 

There are few examples of11 1(C)-bonded cyanoacetylide ligands in the literature. The 

earliest example of an 11 1(C)-bonded cyanoacetylide was reported by Baddley in the 

early 1970's where a platinum dicyanoacetylene complex was found to isomerise 

upon exposure to UV radiation to form Pt(CN)(C=CC=N)(PPh3)2 (Scheme 6.1). 1 

Scheme 6.1. UV -catalysed isomerisation of Pt(PPh3)2(NC-C=C-CN) 

The infra-red spectrum of the cyanoacetylide complex contained three absorption 

bands at 2070, 2140 and 2235 cm·1 corresponding to v(C=C), v(C=N)(cyanoacetylide) 

and v(C=N)(cyanide) respectively. X-ray crystallography showed that the C=C and 

CC-CN bonds were respectively longer (1.24(5) A) and shorter (1.31(5) A) than 

would be expected for "triple" and "single" bonds. Furthermore, a lengthening of the 

Pt-P bonds relative to those in the comparable Pt(PPh3)z(Oz) and 

Pt(PPh3)z(NCCH=CHCN) complexes was also observed. At the time of the original 

report it was suggested that this indicated a degree of cumulenic character in the 

cyanoacetylide ligand, arising from then-accepting capacity of the cyanocarbon 

fragment and resulting in the canonical forms shown below (Figure 6.1 ). 
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Figure 6.1. Canonical Forms of Pt(CN)(C=CC=N)(PPh3)2 

The iron cyanoacetylide complex Fe(C=CC=N)(C0)2Cp was prepared by Kergoat 

following reaction of cyanoacetylene with a THF solution ofFe(C0)2(SCH3)Cp. The 

iron cyanoacetylide was one of four different products obtained from the reaction, but 

was isolated and crystallographically characterised (Scheme 6.2).2 Infra-red 

spectroscopy showed that this iron complex contained both a v(C=N) band, at 2200 

cm-1
, and a v(C=C) band at 2080 cm-1

• This stretching frequency was considered 

remarkably low for an alkyne system at the time, but it should be noted that this value 

is comparable with the absorption band at 2070 cm-1 found for 

Pt(CN)(C=CC=N)(PPh3) 2. These authors also suggested that this low value could be 

accounted for either by the electron-withdrawing effect of the CN moiety and a rc/rc or 

rc/rc* interaction with the metal centre. 

~ 
Fe-c:=c-c:::N 

oc'; 
oc 

30-35% 

~ 
_.,Fe-SCH3 + H-C:::c-c:::N 

oc 1 
oc 

25-35% <5% 5% 

Scheme 6.2. Reaction products from Fe(C0)2(SCH3)Cp reaction with cyanoacetylene 
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Condensation of HC=CC=N into a toluene solution of Co(PPh3)2Cp frozen in liquid 

nitrogen, allowing the temperature to rise over a period of 30 minutes and subsequent 

purification resulted in the formation of the cobalt cyanoacetylide complex 

Co(C=CC=N)(CH=CHCN)(PPh3)Cp (65 %) and the di-cyanoacetylide cobalt 

complex Co(C=CC=N)2(PPh3)Cp (20 %) (Scheme 3).3 When a longer reaction period 

was used (3 hours) two isomeric forms of the mono-cyanoacetylide complex were 

isolated and were proposed to be those shown in Scheme 6.3. 

t:7 
po, + H-c=c-c=N 

Ph3P PPh3 

+ 

20% 65% 

Scheme 6.3. Reaction products from Co(PPh3)2Cp reaction with cyanoacetylene 

Two v(C=N) stretches were observed for the trans-vinyl mono-cyanoacetylide 

complex (2230 and 2200 cm-1
) with the v(C=C) and v(C=C) absorptions observed at 

2145 cm-1 and 1570 cm-1 respectively. In the case ofthe di-cyanoacetylide complex, 

the v(C=N) and v(C=C) stretches were observed at 2200 cm-1 and 2040 cm-1 
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respectively. Crystallographic characterisation of the di-cyanoacetylide 

Co(C=CC=N)2(PPh3)Cp revealed a pseudo-octahedral geometry about the Co centre 

with Co-C bond lengths of 1.857(12) and 1.877(7) A and C=C bond lengths of 

1.192(14) and 1.198(10) A. 

The tetracyanoacetylide complexes [NEt4h[M(C=CC=N)4] (M = Ni, Pd, and Pt) have 

been synthesised and the crystal structure of [NE4h[Ni(C=CC=N)4] has been 

determined.4 The products were synthesised by reaction of the appropriate metal 

tetrachloride [NEt4]2[MCl4] (M = Ni, Pd, Pt) with Me3SnC=CC=N in N,N­

dimethylformamide over a period of 12 hours (Scheme 6.4). In the case of the 

platinum tetracyanoacetylide complex, an additional PdCh(NCMe)2 catalyst was 

required in the reaction as without it the reaction took several days. In each case the 

v(C=C) stretch was observed in the 2040-2050 cm-1 region and the Ni complex 

demonstrated a C=C bond length of 1.20 A, which indicated some degree of 

lengthening of the C=C bond brought about by rt/rt interactions between the metal 

centre and the cyanoacetylide ligand. The tetracyanoacetylide complexes 

[NE4h[M(C=CC=N)4] (M = Ni, Pd, and Pt) displayed two (Ni, Pd) or one (Pt) 

v(C=N) bands in the range 2170-2217 cm-1
• These v(C=N) values are moved to 

higher frequency than those in the analogous tetracyanometallates (v(C=N) = 2124-

2136 cm-1
). 
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-------- [NEt3b 

N 
Ill 
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c 
Ill 
N 

Scheme 6.4. Synthesis of [NEt4]2[M(C=CC=N)4] (M = Ni, Pd, and Pt) 

During the course of this study we have developed a novel synthesis of metal 

cyanoacetylides. Reaction of the appropriate half-sandwich metal acetylide with butyl 

or methyl lithium at low temperatures followed by treatment with phenyl cyanate and 

subsequent work-up has been shown to produce the metal cyanoacetylides 

' . 
Ru(C=CC=N)(PPh3)2Cp (22), Ru(C=CC=N)(dppe)Cp (23) and 

Fe(C=CC=N)(dppe)Cp (24) in good yield. These complexes are shown to be good 

"metallo-ligands", and have been used in the production of a range of bimetallic 

complexes featuring J.t-C=CC=N ligands. 
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Results 

Monometallic Cyanoacetylides 

The ruthenium acetylide species Ru(C=CH)L2Cp' (Cp' = Cp, L = PPh3; Cp' = Cp*, 

L2 = dppe) were deprotonated at low temperature in THF solution by reaction with 

butyl lithium (BuLi), and treated with phenyl cyanate (PhOCN) (Scheme 6.5). 

Subsequent purification by column chromatography followed by recrystallisation 

resulted in the formation of yellow crystals of the ruthenium cyanoacetylide species 

Ru(C=CC=N)(PPh3)2Cp (22) and Ru(C=CC=N)(dppe)Cp* (23) in good yield. 

R~ 
Ru-c_c-H 

~I 

i) Buli 

ii) PhOCN 

L 

Scheme 6.5. Synthesis of Ruthenium Cyanoacetylides 

(R = H, L = PPh3 (22); R =Me, L2 = dppe (23)) 

Both materials were readily characterised spectroscopically (Table 6.1). In the 1H 

NMR spectrum the expected resonances from the Cp' ligands at 4.37 ppm (Cp, 22) 

and 1.51 ppm (Cp*, 23) and the C2H4 backbone of the dppe ligand in 23, detected as 

two broad resonances at 2.14 ppm and 2.62 ppm, were evident. The 31P NMR 

spectrum revealed the presence of the PPh3 and dppe phosphorus ligands of 22 and 23 

as singlet resonances at 49.77 and 80.22 ppm respectively. The Cp ligand of22 was 

characterised in the 13CeH} NMR spectrum by a single sharp resonance at 86.68 ppm 

whilst the Cp* ligand of23 was evident as two singlet resonances occurring at 93.09 
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ppm (C5Mes) and 8.79 ppm (C5Me5). The carbon atoms ofthe cyanoacetylide ligand 

were also apparent, with signals from Ca, C=N, and C13 occurring at 121.64, 107.7 5 

and 83.08 ppm respectively (22) and 150.41, 107.35 and 77.05 ppm (23). Coupling of 

Ca to the phosphine ligands was observed for 23 (Jcp = 22.5 Hz) but could not be 

resolved for 22. The cyanoacetylide ligand was also observed in the IR spectrum with 

v(C=C) and v(C=N) bands apparent at 2000 and 2180 (22) and 1994 and 2176 (23) 

cm-1
. Finally, positive-ion electrospray mass spectrometry (ES(+)-MS) of22 

displayed isotopic envelopes corresponding to [M+Nat and [M+Ht at mlz = 764 

and 7 42 respectively as well as the fragment ion [Ru(PPh3)2Cp t at m/z = 691. 

Similarly, an isotopic envelope corresponding to [M+H]+ for 23 was observed at mlz 

= 686. 

The analogous reaction of the iron acetylide Fe(C=CSiMe3)(dppe)Cp with methyl 

lithium (MeLi) and PhOCN at low temperature, followed by chromatography and 

subsequent crystallisation, led to the formation of the iron cyanoacetylide 

Fe(C=CC=N)(dppe)Cp (24) in moderate yield. The Cp ligand was evident in the 1H 

NMR spectrum as a singlet resonance at 4.29 ppm and two broad resonances arising 

from the protons of the dppe backbone were observed at 2.32 and 2.60 ppm. The Cp 

and dppe ligands were also observed in the 13C{ 1H} NMR spectrum as a singlet at 

80.42 ppm and a multiplet in the range 27.88-28.35 ppm respectively. Furthermore, 

three resonances arising from the cyanoacetylide ligand were observed, two as 

singlets at 106.13 ppm (CN) and 87.02 (C13) and one as a triplet at 153.95 (Jcp= 37 

Hz, Ca). The 31P NMR spectrum confirmed the presence of the dppe ligand with a 

single sharp resonance at 104.91 ppm. The IR spectrum showed two absorption bands 
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at 2174 cm·1 (v(C=N)) and 1991 cm-1 (v(C=C)), while ES(+)-MS displayed an 

isotopic envelope at m/z = 570 corresponding to [M+Ht, 

Table 6.1. Selected spectroscopic data for 22-24. 

Compound 22 23 24 
oCpeHNMR) 4.37 1.51 4.29 

o Cp (13C{ 1H} NMR) 83.08 93.09/8.79 80.42 

o phosphine e1P NMR) 49.77 80.22 104.91 

v(C=N) 2180 2176 2174 

v(C=C) 2000 1994 1991 

Single crystals suitable for X-ray diffraction studies were obtained for 23 and 24. 

Crystallographic details for these complexes are summarised in Table 6.2 and selected 

bond lengths and angles are summarised in Table 6.3. Both structure determinations 

confirm the formation of the half-sandwich metal complexes with the expected 

connectivity in each case. The metal-ligand contacts of 24 are shorter than those for 

23, reflecting the effect of the smaller iron atom; consequently there is a smaller P( 1 )-

M-P(2) angle for 23 (82.12(2)0
) than 24 (86.27(2) 0

). The bond lengths and angles 

along the cyanoacetylide chain are essentially identical within the limits of precision 

of the measurements, and confirm the alternating short-long-short bond lengths 

consistent with the description of a cyanoacetylide moiety C=CC=N. The C( 1 )-C(2)-

C(3) angle in 23 (172.2(2)0
) shows a slightly greater deviation from linearity than 24 

(176.19(14)0
) but this minor deviation is probably a consequence of crystal packing 

effects rather than any underlying electronic factors. 
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Table 6.2. Crystallographic details of compounds 23 and 24 

Compound 23 24 
Formula c39Il39~2Flu C34fl39~zFe.CflzCiz 

M 684.72 653.45 
a (A) 19.121(3) 9.718(2) 
b (A) 17.516(5) 12.415(3) 
c (A) 19.594(4) 13.013(3) 
a (o) 90 87.444(4) 
p (0) 90 88.471(4) 
Jl (0) 90 76.206(4) 

v (AJ) 6562(3) 1523.1(5) 
D(MwmJ) 1.386 1.427 

T(K) 120(2) 120(2) 
Crystal system Orthorhombic Triclinic 

Space Group Pbca (No. 61) PI 
z 8 2 

J.1 (mm-1
) 0.604 1.427 

Reflections collected 72508 18007 
Independent reflections 7532 [R(int) = 0.0492] 9055 [R(int) = 0.0151] 

(Rint) 
Final R indices (all data) R1 = 0.0266, wR2 = 0.0616 R1 = 0.0356, wR2 = 0.0911 

Table 6.3. Selected bond lengths and angles for 23 and 24. 

Compound 23 24 
M-P(l) (A) 2.270(1) 2.174(1) 
M-P(2) (A) 2.264(1) 2.173(1) 
M-C(l) (A) 1.961(2) 1.852(1) 

C(l)-C(2) (A) 1.221(3) 1.228(2) 
C(2)-C(3) (A) 1.366(3) 1.367(2) 

C{3)-N (A) 1.153(3) 1.156(2) 
P(1)-M-P(2) (0

) 82.12(2) 86.27(2) 

M-C_(1)-C(2) (0
) 175.13(16) 176.00(10) 

C(l )-C(2)-C(3) (0
) 172.2(2) 176.19(14) 

C(2)-C(3)-N (0
) 178.8(2) 178.97(15) 
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Reactivity of the cyanoacetylide ligand 

The availability of the cyanoacetylide complexes 22-24 allowed, for the first time, an 

investigation of the organometallic and coordination chemistry of the unusual 

cyanocarbon fragment. In principle, the nitrogen lone pair and the 7t-systems of both 

the nitrile and alkyne moieties are available for further coordination to other metal 

systems and reaction with electrophiles. The reactivity profile of the ligand has been 

investigated and the results of the initial studies in this area form the subject of the 

report that follows. 

Coordination compounds of Ru(C=CC=N)(PPhJ) 2Cp 

Reaction of the ruthenium cyanoacetylide Ru(C=CC=N)(PPh3)2Cp (22) in refluxing 

methanol with MClL2Cp (M = Ru, L = PPh3, M =Fe, L2 = dppe) in the presence of 

NILtPF6 led to the formation of the bimetallic complex salts 

[ {Ru(PPh3)2Cp}(C=CC=N){Fe(dppe)Cp} ](PF6) (26) as bright yellow and brick red 

solids respectively in moderate yields (Scheme 6.6). 

+ 

[PFsr 

Scheme 6.6. Coordination Complexes ofRu(C=C-C=N)(PPh3)2Cp 

(M = Ru, L = PPh3 (25); M =Fe, L2 = dppe (26)) 
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The 1H NMR spectrum of25 revealed two sharp Cp resonances at 4.36 and 4.48 ppm, 

which were assigned to the ligands of the metal centres at the carbon and nitrogen 

ends of the C3N bridge respectively by comparison with the 1H NMR of22 (Cp 

resonance at DH 4.37 ppm) ~nd 17 (Cp resonance at DH 4.52 ppm). In the case of 

compound 26, two overlapping resonances arising from the Cp moieties were 

observed at 4.24 and 4.20 ppm. In both cases the resonances arising from phosphine 

ligands at each metal centre could be clearly distinguished in the 31 P NMR spectrum. 

The PPh3 resonances of compound 25 were observed at 48.92 and 42.16 ppm 

(corresponding to the carbon and nitrogen bonded metal fragments respectively by 

comparison with 22 and 17) and the phosphine ligands of 26 were apparent at 98.02 

ppm (dppe) and 48.76 ppm (PPh3). Furthermore in both cases the [PF6r counter-ion 

was observed as a heptet at -143.05 ppm (25) and -143.06 ppm (26). The 13CeH} 

NMR spectrum of25 showed singlet resonances arising from the Cp moieties at 87.55 

and 83.64 ppm as well as Cp and C=N resonances at 83.49 and 117.07 ppm 

respectively. In the case of the 13CeH} NMR spectrum of26, Cp resonances were 

observed at 79.16 and 87.22 ppm as well as resonances arising from Ca and Cp at 

121.60 and 84.12 ppm respectively. TheIR spectrum revealed v(C=N) and v(C=C) 

bands at 2197 and 1986 cm-1 (25) and 2194 and 1986 cm-1 (26). Comparison with the 

v(C=N) and v(C=C) bands of the monometallic metallo-ligand 22 (2180 and 2000 cm-

1 respectively) show that in both cases there is an increase of about 15 cm-1 in the 

v( C=N) frequency upon coordination and a corresponding decrease of about 15 em -I 

in the v(C=C) band. Finally, ES(+)-MS displayed isotopic envelopes arising from the 

cations [ {Ru(PPh3)2Cp}2(C=CC=N)t (25) and 

[ {Ru(PPh3)2Cp}(C=CC=N){Fe(dppe)Cp} t (26) at m/z = 1432 and m/z = 1260 
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respectively. Isotopic envelopes corresponding to the metal fragments 

[Ru(PPh3)2Cpt and [Fe(dppe)Cpt were also observed at m/z = 691 and 519 in the 

mass spectra of25 and 26 respectively. Selected spectroscopic data is summarised in 

Table 6.4. 

Table 6.4. Selected spectroscopic data for compounds 25 and 26. 

Compound 25 26 
oCpeHNMR) 4.36, 4.48 4.24, 4.20 

8Cp (13CeH} NMR) 87.55, 83.64 87.22, 79.16 

8 phosphine e1P NMRJ 48.92, 42.16 98.02, 48.76 

v(C=N) 2197 2194 

v(C=C) 1986 1986 

Both bimetallic compounds were subjected to X-ray crystallographic studies. Their 

crystallographic details are summarised in Table 6.5 and selected bond lengths and 

angles are summarised in Table 6.6. In each case the molecular structure showed the 

expected connectivity with the C3N bridge linking the two half-sandwich metal 

centres. In the case of 25, the two metal centres adopted a cis-aid geometry (Figure 

6.1). 

Figure 6.1. ORTEP plot of [ {Ru(PPh3)2Cp }2(C=CC=N)t (25). 
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The bond lengths and thermal ellipsoids about the positions labeled N and C( 4) were 

invariant with assignment and these positions were modeled as 50:50 C:N occupancy. 

The geometry about each ruthenium centre is essentially identical with Ru-P bond 

lengths of3.326(1) and 3.325(1) A (Ru(2)-P(1) and Ru(2)-P(2)) and 3.321(1) and 

3.323(1) A (Ru(1)-P(3) and Ru(1)-P(4)). The Ru(2)-C(4) and N-Ru(l) bond lengths 

are effectively identical (2.011(3) and 1.999(3) A respectively) and the remaining 

bond lengths across the C3N bridge show the expected triple-single-triple bonds 

pattern (C(4)-C(3) = 1.192(5) A, C(3)-C(2) = 1.359(5) A, C(2)-N = 1.198(5) A). The 

bridge itself is essentially linear, however there is a marked degree of curvature at 

either end with Ru(2)-C(4)-C(3) and C(2)-N-Ru(l) angles of 169.8(3)0 and 166.9(3)0 

respectively. This is, no doubt, a result of steric interactions between the bulky 

triphenylphosphine groups of the metal fragments. 

There are marked differences between the molecular structures of 25 and 26. The 

diffraction data showed a disorder at the Fe end of the C3N chain which showed two 

possible conformations of 26, a cis-oid and a trans-oid confonnation (see Figure 6.2). 

The conformation modelled made no difference to the overall packing of the complex 

and the structure was successfully modelled as 50% of each conformation. As a result 

of this there are two distinct Ru-C(4)-C(3) angles corresponding to the two modes: 

172.1(6)0 (trans-oid) and 157.1(8)0 (cis-oid). There is little variation in the rest of the 

bond lengths and angles between the two conformers with the exception of the C( 4 )­

C(3) bond which is markedly shorter in the trans-oid conformation. The Fe-ligand 

contacts are noticeably shorter than the corresponding Ru(l)-ligand contacts of 

compound 25, a result accounted for by the smaller iron atom. 
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~ ,, ,, 

Figure 6.2. Disorder about iron centre from cis and trans forms of 

[ {Ru(PPh3)2Cp}(C=CC=N){Fe(dppe)Cp} ][PF6] (26) 

Table 6.5. Crystallographic details of compounds 25 and 26 

Compound 25 26 
Formula CssH1oNP sF 6Ru2.3(CH2Ch) C7sH64PsF6NFeRu.0.5(CH2Ch) 

M 1831.19 1447.5 
a (A) 13.1761(5) 14.6968(4) 
b(A)_ 45.882(2) 23.7690(7) 
c (A) 14.4799(6) 19.6918(5) 
a CO) 90 90 
PCO) 112.92(1) 106.61(1) 
rCO) 90 90 

v (A3
) 8062.9(5) 6591.9(3) 

D (Mg/m3
) 1.509 1.459 

T(K) 120(2) 120(2) 
Crystal system Monoclinic Monoclinic 
Space Group P2tln P2t/C 

z 4 4 
~t(mm-•) 0.734 0.673 

Reflections collected 61477 59855 
Independent 16576 [R(int) = 0.0379] 15905 [R(int) = 0.0446] 

reflections (Rtnt) 
Final R indices (all 

data) R1 = 0.0582, wR2 = 0.1029 R1 = 0.0900, wR2 = 0.1769 
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Table 6.6. Selected bond lengths and angles for compounds 25 and 26. 

Compound 25 26 
M-P(3) (A) 2.326(1) 2.309(1) 
M-P(4) (A) 2.325(1) 2.309(1) 
M-C(4) (A) 2.011(3) 1.971(5) 

C(4)-C(3) (A) 1.192(5) 1.226(9)/1.318( 16) a 

C(3)-C(2) (A) 1.359(5) 1.374{10)/1.36(2) a 

C(2)-N (A) 1.198(5) 1.161 {9)/1.16{2) a 

N-M' (A) 1.999(3) 1.904{6)11.916{3) a 

M'-P(1) (A) 2.321(1) 2.131(2) 
M'-P{2) (A) 2.323(1) 2.147(2) 

P(3)-M-P(4) CO) 100.73(3) 104.61(5) 

M-C(4)-C(3) (0
) 169.8(3) 172.1{6)/157.1(8) a 

C(4)-C(3)-C(2) (0
) 176.4(4) 173.0(8)/168.6(16) a 

C(3)-C(2)-N (0
) 176.0(4) 178.4(8)176. 7(17) a 

C(2)-N-M'_(0
) 166.9(3) 172.8(6)/175.9{13) a 

P(l)-M'-P(2) (0
) 99.20(3) 88.56(7) 

• denotes trans-md!cis-md conformatiOns 

Coordination compounds of Ru(C=CC=N)(dppe)Cp * 

In a manner similar to that described above, reaction ofRu(C=CC=N)(dppe)Cp* with 

MClL2Cp' (M = Ru, Cp' = Cp, L = PPh3, Cp' = Cp*, L2 = dppe; M =Fe, Cp' = Cp, 

L2 = dppe) resulted in the formation of 

[ {Ru(dppe)Cp*}(C=CC=N){Ru(PPh3)2Cp} ](PF6) (27) and 

[ {Ru(dppe)Cp*}2(C=CC=N)](PF6) (28) as yellow powders and 

[{Ru(dppe)Cp*}(C=CC=N){Fe(dppe)Cp} ](PF6) (29) as a red solid in good yields 

(Scheme 6.7). 
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+ 

[PF5]" 

Scheme 6.7. Coordination Complexes ofRu(C=CC=N)(dppe)Cp* (M = Ru, R = H, L 

= PPh3 (27); M = Ru, R =Me, L2 = dppe (28); M =Fe, R =H, L2 = dppe (29)). 

The compounds were readily characterised by the usual spectroscopic techniques, and 

data are summarised in Table 6. 7. Resonances arising from the Cp* moieties were 

observed in the 1H NMR spectrum in the range 1.37-1.51 ppm with the Cp ligands of 

27 and 29 observed at 4.25 ppm and 4.17 ppm respectively. The 31P NMR spectrum 

showed resonances arising from the dppe moiety of the coordinated 

Ru(C=CC=N)(dppe)Cp* metallo-ligand in the narrow range 77.36-79.58 ppm (by 

comparison with the monometallic precursor 23). The phosphine ligands attached to 

theN-bound metal centre were observed at 42.12 ppm (PPh3, 27) 75.64 ppm (dppe, 

28) and 98.59 (dppe, 29). Furthermore, the [PF6r counter-ion was observed in each 

case as a heptet in the narrow range -143.17--143.21 ppm, which indicates little ion 

pairing in the CDCh solvent. The 13CeH} NMR spectra of27- 29 revealed 

resonances arising from the Cp* ligands at 95.10 and 10.03 ppm (27), 94.78 and 92.12 

ppm (CsMes, 28) and 10.02 and 9.79 ppm (CsMes, 28), and 94.81 (CsMes) and 10.05 

(C 5Me5) ppm (29). The Cp and dppe resonances for 27 were observed at 83.44 ppm 

and 29.80-29.43 ppm respectively. The dppe resonances of 28 were observed at 

29.51-29.15 ppm and 28.64-28.28 ppm. The Cp and dppe resonances for 29 were 

observed at 78.78 ppm (Cp) and 29.31 and 27.66 ppm (dppe). Infra-red spectroscopy 

revealed the presence ofv(C=N) and v(C=C) bands in the ranges 2190-2195 cm-1 

(v(C=N)) and 1980-1987 cm-1 (v(C=C)). As with compounds 25 and 26, there is an 
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increase in v(C=N) and a decrease in v(C=C) upon coordination of the metallo-ligand. 

In each case, ES(+)-MS revealed isotopic envelopes corresponding to the complex 

cations at m/z = 1376 (27), 1319 (28) and 1204 (29). 

A sample ofW(C0)6 in THF was irradiated with a medium pressure Hg lamp for 90 

minutes to generate W(C0)5(THF)5 and the resulting deep yellow solution treated 

with Ru(C=CC=N)(dppe)Cp*. Subsequent purification by preparative thin-layer 

chromatography followed by recrystallisation led to the isolation of 

[ {Ru(dppe)Cp*}(C=CC=N){W(CO)s}] (30) as bright, yellow crystals (Scheme 6.8). 

uv 

Me~ en... 
~ 1~0 

/Ru-C_C-C N-W-CO 
PhzP I oc/ I 
~PPhz CO 

W(C0)6 

Scheme 6.8. Coordination ofRu(C=CC=N)(dppe)Cp* to W(C0)6 

For this complex, 1 H NMR spectroscopy showed a single sharp resonance arising 

from the Cp* ligand at 1.53 ppm as well as resonances from the ethyl protons of the 

dppe back-bone at 2.64 and 2.16 ppm. A single, sharp resonance was observed at 

79.68 ppm in the 31P NMR spectrum, corresponding to the dppe moiety. The 13CeH} 

NMR spectrum revealed resonances arising from the carbonyl ligands at 200.67 and 

197.21 ppm. The former signal was assigned to the carbonyl ligand trans to the 

cyanoacetylide moiety and the latter to the four cis carbonyls on the basis of relative 

intensities, assuming that the carbon nuclei of the carbonyl ligands relax at 

approximately the same rate. The Cp* moiety was observed as two singlet resonances 

at 95.06 ppm (C5Mes) and 10.12 ppm (CsMes). Furthermore, resonances 
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corresponding to the carbon atoms of the C2H4 backbone of the dppe ligand were 

observed as a an unresolved multiplet in the range 29.78-29.40 ppm. Infra-red 

spectroscopy in DCM solution revealed v(C=N) and v(C=C) bands at 2192 cm-1 and 

2071 cm-1 respectively whilst bands arising from the carbonyl ligands were observed 

at 1977, 1929 and 1882 cm-1
• Finally, ES( + )-MS displayed isotopic envelopes 

corresponding to [M+Ht and [Ru(C3N)(dppe)Cp*+Ht at m/z = 1010 and 686 

respectively. 

Finally, reaction of Ru(C=CC=N)( dppe )Cp* with one-half equivalent of RuCh( dppe )2 

in refluxing methanol in the presence ofN~PF6 resulted in the formation of 

[ { Ru( C=CC=N)( dppe )Cp *} 2 { Ru( dppe )2}] [PF 6h (31) as a bright yellow powder in 

good yield (Scheme 6.9). 

2+ 

[PFsb 

Scheme 6.9. Formation oftrimetallic complex 

[ {Ru(C=CC=N)(dppe)Cp*}2 {Ru(dppe)2} ][PF6h (31) 

Characterisation by the usual spectroscopic techniques confirmed the trimetallic 

nature of the product (31) and single-crystal X-ray diffraction studies showed the 
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cyanoacetylide metallo-ligands to have adopted a cis geometry about the central 

ruthenium atom. Two Cp* resonances were observed in the 1 H NMR spectrum at 

1.54 and 1.57 ppm and these were also visible in the 13CeH} NMR spectrum at 97.10 

and 95.93 ppm (C5Mes) and 10.18 and 10.01 ppm (CsMe5). In addition, three 

resonances in the 31P NMR confirmed the presence of the dppe ligands. The 

Ru(dppe)2 fragment gave rise to two signals in the 31P NMR spectrum, a "roofed" 

doublet of doublets at 78.17 ppm CJPP(trans) = 316 Hz, JpP(cis) = 15 Hz) corresponding to 

the two cis phosphorous atoms, and a poorly resolved doublet of triplets at 46.46 

corresponding to the two trans phosphorous atoms, and a sharp singlet at 32.48 ppm 

arising from the Ru(C=C-C=N)( dppe )Cp* moieties. Electrospray mass spectrometry 

(ES(+)-MS) displayed isotopic envelopes consistent with 

[[ {Ru(C=CC=N)(dppe)Cp*}z {Ru(dppe)z} ][PF6]t and 

[ {Ru(C=CC=N)(dppe)Cp*}z {Ru(dppe)2} f+ at m/z = 2411 and 1135 respectively. 

Finally, v(C=N) and v(C=C) bands were observed in theIR spectrum at 2178 and 

1966 cm-1 respectively. A shoulder to the v(C=C) band was also observed at 1994 

-I em. 

Table 6.7. Selected spectroscopic data for compounds 27-31 

Compound 27 28 29 30 
8Cp* eHNMR) 1.51 1.45, 1.37 1.38 1.53 

8 Cp* (13CeH} NMR) 95.10, 94.78, 92.12, 94.81, 95.06, 10.12 
10.03 10.02, 9.79 10.05 

v(C=N) (cm-1
) 2194 2195 2190 2192 

v(C=C) (cm-1
) 1980 1987 1982 2071 

v(CO) (cm-1
) n/a nla nla 1977, 1929, 

1882 

31 
1.57, 1.54 

97.10, 95.93, 
10.18, 10.01 

2178 
1994, 1966 

nla 

Of the bimetallic complexes, single crystals suitable for X-ray diffraction studies 

could be obtained for 27, 28 and 30. As described above for compound 25, 
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compound 28 was modelled with a 50:50 C:N occupancy at the C(3) and N sites. 

Crystallographic details are summarised in Table 6.8 and selected bond lengths and 

angles for these complexes are presented Table 6.9, along with those for the metallo­

ligand precursor 23 (which has been described in more detail above) for convenience. 

Each structure confirmed the expected connectivity and structure. In each case there 

is a lengthening of the Ru-P bond lengths at the carbon-end of the C3N chain, with 

these lengths falling in the range 2.277(2)-2.292(1) A compared to 2.270(1) and 

2.264(1) A for 23. This is consistent with a withdrawal of electron density from this 

metal centre upon coordination, and consequently a reduced contribution to the Ru-P 

back-bonding interaction. Along with this, there is an decrease in the Ru-C(1) bond 

length upon coordination in the case of the unsymmetrical species 27 and 30. This 

length was found to be 1.961(2) A in 23 but drops upon coordination to 1.935(6) A 

for 27 and 1.946(3) A for 30. In the case of the symmetrical compound 28, the 50:50 

occupancy of the C(3) and N sites mean that only the average of the two occupancies 

are seen, resulting in an apparent lengthening of the Ru-C(1) and C(3)-N bonds (1.996 

and 1.184 (5) A) and a contraction ofthe C(1)-C(2) bond (1.221(3) A). 

Figure 6.3. ORTEP plot of [ {Ru(dppe)Cp*}(C=CC=N){W(C0)5}] (30) 
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In addition to the features described above, the complex 

[ {Ru(dppe)Cp*}(C=CC=N){W(C0)5}] (30) (Figure 6.3) shows some variation in the 

CO parameters. The W -C bond lengths corresponding to those CO groups cis to the 

coordinated cyanoacetylide fall in the range 2.018(5)-2.049(3) A whilst the W-C bond 

length for the trans carbonyl group is markedly shorter than this at 1.967(4) A. The 

corresponding C-0 bond length for this carbonyl group is 1.158(5) A. Whilst this 

does fall in the range ofbond lengths spanned by the cis carbonyl groups (1.127(4)-

1.159(6) A) it is worth noting that it falls at the extreme "long" end of that range. 

The trimetallic compound [ {Ru( C=CC=N)( dppe )Cp*} 2 {Ru( dppe )2}] [PF 6]2 (31) also 

produced crystals suitable for x-ray diffraction studies (see Table 6.8 for 

crystallographic details). The molecular structure confirmed the expected half­

sandwich geometry of the metallo-ligand and showed that the cyanoacetylide ligands 

had adopted a cis geometry about the octahedral ruthenium centre. There is slight 

distortion of the angles about the central atom from 90° but this is most likely due to 

steric crowding of the bulky phosphine ligands. The bond lengths and angles across 

the two cyanoacetylide ligands are effectively identical and match closely with those 

of the parent monometallic cyanoacetylide. The exceptions are the Ru-P and Ru-C(1) 

bond lengths of the metallo-ligand. The Ru-P bond lengths fall in the narrow range 

2.2776(13)-2.2886(13) A and, whilst being longer than those of the uncoordinated 

complex (2.173(1) and 2.174(1) A). are markedly shorter than those of the Ru(dppe)2 

fragment (Ru(3)-P(X) = 2.3544(11)-2.3996(12) A). Interestingly, the two Ru(3)-P 

bonds which are trans to the cyanoacetylide ligand are shorter than the two which are 

trans to each other (2.3544(11) and 2.3550(12) A vs. 2.3822(12) and 2.3996(12) A 
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respectively). The Ru-C(1) bonds of the coordinated cyanoacetylide, as with the 

coordinated complexes described above, are longer (1.942(4) and 1.948(4) A) than 

that of the uncoordinated complex (1.852(1) A). 

Table 6.8. Crystallographic details of compounds 27, 28, 30 and 31 

Compound 27 28 30 31 
Formula CsoH 74F 6NP 5Ru2 C76H?8F6NP5Ru2.CHCh C44H39N05P2Ru W Ct3oHt26N2Ptoft2Ru3.7(MeOH) 

M 1520.39 1587.97 1008.62 2781.53 
a (A) 13.342(2) 13.9837(16) 22.727_(2)_ 17.505(1) 
b_1Al 43.508(8) 15.4545_(18) 11.7465(11) 17.590(1) 
c (A) 14.392(3) 17.815(2) 30.664(3) 23.514(1) 
a e) 90 87.352(2) 90 104.21(1) 
Pe) 104.273(3) 71.544(2) 90 99.48(1) 
r e) 90 83.487(2) 90 95.29(1) 

v (A3
) 8096(3) 3628.2(7) 8185.9(14) 6856.3(6) 

D (Mglm3
) 1.247 1.453 1.637 1.347 

1I' (K) 120(2) 120(2) 120(2) 200(2} 
Crystal Monoclinic Triclinic Orthorhombic Triclinic 
system 
Space P2tln P1 Pbca P-1 (2) 
Group 

z 4 2 8 2 
J.l(mm-1

) 0.525 0.695 3.301 0.51 
Reflections 42496 42065 70053 70291 

collected 
Independent 17386 [R(int) = 19680 [R(int) = 0.0544] 12480 [R(int) = 32578 [R(int) = 0.0390] 

reflections 0.0420] 0.0625] 
(Riot) 

lFinal R R1 = 0.0990, R1 = 0.0931, wR2 = R1 = 0.0712, wR2 R1 = 0.054, wR2 = 0.181 
indices (all wR2 = 0.2791 0.1163 = 0.0851 

data} 
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Table 6.9. Selected bond lengths and angles of23, 27, 28, and 30 

Compound 23 27 28 30 
M-P(l) (A) 2.270(1) 2.277(2) 2.289(1) 2.287(1) 
M-P(2) (A) 2.264(1) 2.285(2) 2.289(1) 2.292(1) 
M-C(l) (A) 1.961(2) 1.935(6) 1.996(3) 1.946(3) 

C(l)-C(2) (A) 1.221(3) 1.228(9) 1.187(5) 1.232(5) 
C(2)-C(3) (A) 1.366(3) 1.370(8) 1.355(5) 1.343(5) 

C(3)-N (A) 1.153(3) 1.163(7) 1.184(5) 1.162(5) 
N-M' (A) n!a 2.030(5) 2.003(3) 2.169(3) 

M'-P(3) (A) n!a 2.318(2) 2.288(1_) n/a 
M'-P(4) (A) nla 2.329(2) 2.302(1) nla 

P(l)-M-P(l) (0
) 82.12(2) 83.40(6) 83.46(4) 83.86(4) 

M-C(l)-C(2) (0
) 175.13(16) 177.4(6) 172.6(3) 178.0(4) 

C(l)-C(2)-C(3) (0
) 172.2(2) 175.4(6) 174.1(4) 168.3(4) 

C(2)-C(3)-N (0
) 178.8(2) 178.9(6) 178.4(4) 177.8(5) 

C(3)-N-M' (0
) nla 174.8(5) 168.7(3) 166.9(3) 

P(3)-M'-P(4) CO) n/a 100.63(5) 84.19(4) nla 

In addition to the nitrile moiety, then-system of the alkyne moiety of the 

cyanoacetylide ligand should be susceptible to attack by electrophiles. As has been 

stated previously (see cyanoacetylenes chapter), the organic species 

tetracyanoethylene (TCNE) will react readily with metal acetylide complexes to form 

both [2+ 2] cyclisation products as well as highly conjugated cyanocarbon species as a 

result of subsequent ring-opening, the reaction product being function of the metal 

substituent ofthe acetylide (Scheme 6.10).6
-
15 
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TeNE 
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Scheme 6.10. Products of reaction ofTCNE with metal centre determined by nature 

of metal centre. 

To our knowledge, the only previous examples of coordination of the electron-poor 

TCNE species to a metal cyanoacetylide are its reactions with the iron complexes 

Fe(C=CC=N)(C0)2Cp and Fe(C=CC=N)(CO)(PPh3)Cp to give green [2+2] 

cyclisation products as shown below (Scheme 6.11 ). 2 

TCNE r9/ 
Fe-C=C-C_N oc( U 
Nc1 \'eN 

NC CN 

Scheme 6.11. Reaction of Fe(C=CC=N)(CO)(L)Cp with TCNE (L =CO, PPh3). 
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The ruthenium cyanoacetylide Ru(C=CC=N)(dppe)Cp* (23) reacted rapidly with 

TCNE in DCM solution to form a dark green solution. Subsequent recrystallisation 

resulted in the formation of dark blue crystals of the resultant adduct in good yield. 

ES( + )-MS confirmed the presence of a 1:1 adduct with an isotopic envelope 

corresponding to [M+Ht at m/z = 814. IR spectroscopy displayed absorption bands 

arising from the C=N and C=C moieties at 2213 cm-1 and 1608 cm-1 respectively. 1H 

NMR spectroscopy showed resonances arising from the ethyl protons of the dppe 

ligand as a multiplet in the range 2.83-5.58 ppm, and the Cp* moiety was observed as 

a singlet resonance at 1.47 ppm. 31 P NMR revealed two doublets at 76.90 and 56.91 

ppm (Jpp = 15Hz), comparable with those found for the analogous phenyl complex 

Ru[C{C(CN)2}C{C(CN)2}Ph](dppe)Cp* (48.47 and 77.30 ppm, ]pp = 13 Hz). 16 

Whilst spectroscopic data could not confirm the formation of either the ring-open or 

ring-closed adduct, single crystal X-ray diffraction studies revealed the adduct to be 

the ring-opened product, or the ruthenium pentacyanobutadienide 

Ru[C{C(CN)2}C{C(CN)2}CN](dppe)Cp* (35) as represented below (Scheme 6.12). 

TCNE 

Scheme 6.12. Reaction product ofRu(C=CC=N)(dppe)Cp* with TCNE. 
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The molecular structure of 35 shows the expected half-sandwich geometry about the 

ruthenium centre although there is a marked increase in the lengths of the Ru-P bonds 

in 35 (2.362(1) and 2.333(1) A) relative to the precursor 23 (2.270(1) and 2.264(1) A) 

as well as the Ru-C(1) distance (2.060(2) A in 35 vs. 1.961(2) A in 23). The C(1)­

C(2) and C(2)-C(3) bonds are effectively identical (1.471(3) and 1.473(3) A 

respectively), as are the formally "double" bonds at 1.368(3) and 1.354(3) A. The 

remaining CN bond lengths fall in the narrow range 1.138(3)-1.143(3) A and the =C-

C(CNh bond lengths fall in the range 1.430(3)-1.449(3) A. This values are slightly 

smaller than might be expected and may indicate some degree of conjugation with the 

-C=C- moieties. The bonds about the C(1) and C(2) sites adopt a distorted trigonal 

planar geometry, which may be due to steric interactions between the cyanocarbon 

and phosphine ligands. The crystallographic details for compound 35 are shown in 

Table 6.10 below. 

Table 6.1 0. Crystallographic details of compound 35. 

Compound 35 
Formula C4sH39NsPzRu 

M 812.82 
a (A) 13.657(2) 
b (A) 12.626(2) 
c (A) 21.838_(3) 
a CO) 90 
IW) 93.32(1) 
y(o) 90 

v (A?) 3759(1) 
D (Mg/m3

) 1.436 
T(K) 120(2) 

Crystal system Monoclinic 
Space Group P21/c (14) 

z 4 
DJ,(mm-1

) 0.54 
Reflections collected 28618 

nndependent reflections (R1ntl 11362 [R(int) = 0.0270] 
Final R indices (all data) R1 = 0.037, wR2 = 0.09 
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Coordination compounds of Fe(C=CC=N)(dppe)Cp 

Reaction of the iron cyanoacetylide Fe(C=CC=N)(dppe)Cp in refluxing methanol 

with MCIL2Cp (M = Ru, L = PPh3, M =Fe, Lz = dppe) in the presence ofNH4PF6Ied 

to the formation of [{Fe( dppe )Cp} (C=CC=N) {Ru(PPhJ)zCp} ](PF 6) (32), 

[ {Fe(dppe)Cp}(C=CC=N){Ru(dppe)Cp*} ](PF6) (33) and 

[ {Fe(dppe)Cp}z(C=CC=N)](PF6) (34) as red/brown solids in good yield (Scheme 

6.13). 

+ 

[PF6l 

Scheme 6.13. Coordination Complexes ofFe(C=CC=N)(dppe)Cp (M = Ru, R = H, L 

= PPh3 (32); M = Ru, R =Me, Lz = dppe (33); M =Fe, R =H, L2 = dppe (34)). 

Whilst the acquisition of a 13C NMR spectrum for compound 32 proved difficult with 

complications arising from paramagnetic impurities in the samples, no other problems 

were found in this regard. The 1 H NMR spectra revealed resonances arising from the 

Cp moieties at 4.35 and 4.21 ppm (32), 4.25 ppm (33), and 4.20 and 4.13 ppm (34) 

The Cp* moiety of 33 was observed as a singlet resonance at 1.31 ppm. The Cp' 

moieties of33 and 34 were also observed in the 13CeH} NMR spectra. The Cp and 

Cp* moieties of33 were found at 81.46 ppm (Cp) and 91.87 (Cp*, CsMes) and 9.45 

(Cp*, CsMe5). In the case of 34 the two Cp moieties were observed at 81.30 and 

78.80 ppm. Whilst the CN carbon of the cyanoacetylide bridge could be observed for 
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both complexes (occurring at 107.36 and 119.73 ppm for 33 and 34 respectively), the 

ell was only observed in the spectrum of34, occurring at 89.06 ppm. The 31P NMR 

spectra of 32 - 34 displayed the expected resonances arising from ~he phosphine 

ligands at 103.91 and 42.20 ppm (dppe and PPh3 respectively, 32), 103.42 and 75.52 

ppm (dppe, 33), and 123.66 and 76.90 ppm (dppe, 34). In each case ES(+)-MS 

revealed isotopic envelopes consistent with the cations 

[ {Fe(dppe)Cp}(C=CC=N){Ru(PPh3)2Cp} t (m/z = 1260), 

[ {Fe(dppe)Cp}(C=CC=N){Ru(dppe)Cp*} t (m/z = 1204) and 

[ {Fe(dppe)Cp }2(C=CC=N)t (mlz = 1088). In theIR spectra v(C=N) and v(C=C) 

bands were observed for all three compounds with v(C=N) bands falling in the range 

2192-2186 cm-1 and v(C=C) bands in the range 1976-1983 cm-1. As with the 

coordination complexes described above, there is an increase of v(C=N) and a 

decrease of v(C=C) relative to Fe(C=CC=N)(dppe)Cp (24) upon coordination. 
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Discussion 

Monometallic compounds 

The monometallic cyanoacetylides in this study all show similar behaviour to each 

other and to those complexes described in the introduction. The v(C=C) stretches of 

Ru(C=CC=N)(PPh3) 2Cp (22), Ru(C=CC=N)(dppe)Cp* (23) and 

Fe(C=CC=N)(dppe)Cp (24) all fall in the narrow range 1991-2000 cm-1
, a lower 

frequency than those already described. This suggests a greater reduction of electron 

density within with the 1t system of the cyanoacetylide moiety in 22-24 than in the 

examples described above. As the ruthenium and iron fragments used herein are more 

electron-rich than those in the previously described examples this is consistent with a 

nln or nln* interaction between the metal fragment and the cyanoacetylide ligand. 

Indeed, within the samples 22-24 there is some variation in v(C=C) that can be 

accounted for by the same explanation. The v(C=C) frequency for 23 (1994 cm-1
) is 

lowered relative to 22 (2000 cm-1
) due to the greater electron-donating ability of the 

Cp*/dppe ligands of23. This is seen to a greater extent in 24 which bears the even 

more electron rich [Fe(dppe)Cpt end-cap (v(C=C) = 1991 cm-1
). Furthermore, the 

v(C=N) frequencies of the samples 22-24 also appear to be sensitive to the nature of 

the metal end-cap, being observed at 2180 cm-1 (22), 2176 cm-1 (23) and 2174 cm-1 

(24). That this progression follows the same pattern as that observed for v(C=C) 

suggests that the n-system of the CN moiety is influenced to an extent by the nature of 

the metal centre in a similar manner to that of the C=C fragment, albeit to a lesser 

extent. 
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As with the tetracyanoacetylide compounds of Miller described above, the v(C=N) 

frequencies of the compounds 22 and 24 are higher than those of their cyanide 

equivalents (Ru(C=N)(PPh3) 2Cp = 2070 cm-1
, Fe(C=N)(dppe)Cp = 2060 cm-1

).
17 The 

cyanide moiety is a good n-acceptor and so electron density is drawn from the metal 

centre into then* anti-bonding orbitals of the cyano ligand, resulting in a low 

v(C=N). In the case of the cyanoacetylide complexes 22 and 24 the higher v(C=N) 

value suggests a weaker interaction with the metal centre brought about by the C=C 

spacer unit. It is, however, impossible to determine the nature of the metal/ligand 

interaction on the basis of the IR data alone. 

The molecular structures of the compounds 23 and 24 show little variation. The bond 

lengths along the C3N chain are identical in both cases but there are slight differences 

between these bond lengths and those of the organic cyanoacetylene HC=CC=N .18 

The C=C bond length in cyanoacetylene is 1.18 A which is slightly shorter than that 

observed in 23 and 24 (1.221(3) and 1.228(2) A respectively), as is the C=N bond 

length (1.14 A vs. 1.153(3) A (23) and 1.156(2) A). There is also a slight shortening 

of the CC-CN bond in the metal cyanoacetylides (1.366(3) and 1.367(2) A for 23 and 

24 respectively) relative to cyanoacetylene (1.38 A). Given that there is such a small 

change in bond lengths upon coordination of a metal fragment to the carbon end of the 

C3N chain it is, perhaps, unsurprising that the effects of varying the nature of that 

metal fragment will have little effect on the molecular structure. These structural data 

are, therefore, an insufficiently sensitive probe of the bonding interactions across 

these mono-metallic cyanoacetylides, a conclusion which has been reached in many 

other studies of the interactions between metal centres and conjugated ligands as well 

as elsewhere within this work. 
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The metal cyanoacetylides may be thought of as metal acetylide complexes bearing 

strong electron-withdrawing substituents. There have been several computational 

studies of metal-acetylide interactions in order to determine the factors that influence 

the nature the metal/ligand bonding. 19
"
22 It was determined that, although the primary 

interaction between the metal and the alkyne system was a cr interaction between the 

cr* anti-bonding orbital of the alkyne fragment and the dz2 orbital of the metal centre, 

the HOMO consisted of filled/filled interactions between the 1t orbitals of the 

acetyl ide fragment and the relevant d-orbitals of the metal centre. There is little 

evidence for 1t back-bonding between the metal centre and the acetylide ligand. 

Although there may be a small degree of involvement of the 1t* anti-bonding orbitals 

of the acetylide fragment in the HOMO of the complex, especially in those cases 

where there is a strongly electron-withdrawing substituent on the acetylide moiety, 

this contribution is extremely small, with the nature of the metal/acetylide interaction 

being dominated by the cr and filled/filled 1t interactions.20
-
22 

This model accounts for the infra-red data found for compounds 22-24. The dominant 

interaction between the cyanoacetylide ligand and the metal centre is a a-interaction 

between the cr* orbitals of the CN moiety and the dz2 orbitals of the metal centre. 

There is also, however, a filled/filled 1t interaction between the metal centre and the 7t­

bonding orbitals of the cyanoacetylide ligand. This draws electron-density out of the 

7t-bonding orbitals of the cyanoacetylide ligand and hence the v(C=C) and v(C=N) 

stretching frequencies are reduced. The contribution of the cyanoacetylide fragment 

to the HOMO is greater in the more electron-rich examples and so there is a greater 

reduction in stretching frequencies in those cases. That this effect is seen in the CN 
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portion of the cyanoacetylide moiety indicates that the HOMO is delocalised across 

the entirety of the M-C=C-C=N chain as suggested above. 

The n-system of the cyanoacetylide moiety is available for reaction with electron-

deficient species such as tetracyanoethylene (TCNE). Reaction of metal alkynes with 

TCNE can lead to a variety of products such as the ring-closed and ring open 

structures already described in the results section of this chapter. 

The reaction of a metal acetylide with TCNE was first examined by Davidson and 

Solar who found that reaction ofFe(C=CPh)(C0)2Cp with TCNE in DCM led to the 

ring-closed product shown below (Scheme 6.14).6 

TCNE ~ 
Fe-C=C-Ph 

ocj U 
oc Nc1 \'eN 

NC CN 

Scheme 6.14. Reaction ofFe(C=CPh)(C0)2Cp with TCNE 

Bruce and co-workers demonstrated that the tungsten complex W(C=CPh)(C0)3Cp 

also gave the ring-closed product on reaction with TCNE but if it were left to stand in 

DCM solution for a period of 24 hours the product would then ring would open to 

give the butadienyl product.7 Reaction ofTCNE with the more electron-rich metal 

centres of the ruthenium complex Ru(C=CPh)(PPh3)2Cp, however, resulted in the 

formation of the allylic product shown below (Scheme 6.15).8 
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TCNE 
--------------~ 

Scheme 6.15. Reaction ofRu(C=CPh)(PPh3)3Cp with TCNE 

It was suggested that the reaction of Ru(C=CPh)(PPh3)2Cp with TCNE rapidly 

proceeded through the [2+2] cyclo-addition ofTCNE to give the ring-closed product 

which rapidly opened and re-arranged to give the allyl compounds shown above. In 

contrast, reaction of the ruthenium-based compounds Ru(C=CPh)L2Cp (L2 = 

(PPh3)(CO), (PPh3)(P(OMe)3), dppe) gave the ring-closed products which ring-

opened more or less quickly to give the butadienyl products. 8 

In order to determine the effect of substitution at the coordinating organic fragment, 

Bruce and co-workers examined the reaction of Ru(C=CPh)L2Cp (L2 = (PPh3)(CO), 

(PPh3)2, dppe) with a series of substituted ethylene compounds of type 

acetylides were found to react with the (NC)2C=C(H)C6Iit-4-NMe2 fragment and it 

was deemed to be too electron-rich to act as an alkyne-sequestering agent. The 

complex Ru(C=CPh)(PPh3) 2Cp in reaction with the other substituted ethylene 

compounds always gave the allylic product and the Ru(C=CPh)(dppe)Cp compound 

always gave the ring-closed material The Ru(C=CPh)(PPh3)(CO)Cp complex gave 

the ring-closed product in reaction with (NC)2C=C(H)C6Hs but reaction with the less-

electron-rich (NC)2C=C(H)C6H4-4-N02 compound resulted in the ring-closed 

complex which rapidly ring-opened. This suggested that the resultant product from 
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reaction of the metal phenylacetylide complexes was determined predominantly by 

the degree of electron-density at the metal centre. The more electron-poor metal 

complexes gave the ring-closed products but those with greater electron-density at the 

metal centre resulted in ring-opened systems. The allylic product was observed only 

in the reaction with the Ru(C=CPh)(PPh3) 2Cp complex and not the 

Ru(C=CPh)(dppe)Cp material as the dppe ligand was insufficiently labile to allow for 

re-arrangement of the butadienylligand.9 Similarly, reaction of the ruthenium 

phosphite complex Ru(C=CPh)(P(OPh)3)zCp with TCNE resulted in the formation of 

the ring-opened material, the stronger Ru-P bonds to the phosphite ligands preventing 

the formation of the allylic material. 12 

As with the metal phenylacetylide complexes described above, the product of the 

reaction of metal-cyanoacetylide complexes seems to be determined by the degree of 

electron density at the metal centre, despite the substitution of the more electron­

withdrawing CN moiety for the phenyl ring. Reaction of the iron complexes Fe(C=C­

C=N)(C0)2Cp and Fe(C=C-C=N)(CO)(PPh3)Cp gave the green, ring closed [2+2] 

cyclisation products.2 Reaction of the more electron-rich ruthenium cyanoacetylide 

Ru(C=CC=N)(dppe)Cp* (23) with TCNE, however, resulted in the formation of the 

ring-opened ruthenium pentacyanobutadienide complex 

Ru[C{C(CN)2}C{C(CN)z}CN](dppe)Cp* (35) (Scheme 6.16). 
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TCNE 

Scheme 6.16. Reaction product ofRu(C=CC=N)(dppe)Cp* with TCNE. 

The spectral properties of 35 may be compared with that of the reaction product of 

Ru(C=C-Ph)(dppe)Cp• with TCNE which also formed the ring-opened butadienyl 

derivative. 16 The 31 P NMR of the product displayed a pair of coupled doublet 

resonances (Jpp =13Hz) at 48.47 and 77.30 ppm which are comparable with those 

found for 35 (Jpp = 15.3 Hz, resonances at 56.91 and 76.90 ppm). 

Bimetallic compounds 

As has been stated in the results section of this chapter, the cyanoacetylide ligand 

should, in principle, be able to co-ordinate to another metal centre via the lone pair on 

the nitrogen atom and then-system of the nitrile and alkyne moieties. However, the 

precise nature of the coordination interaction is uncertain. Nitrites have been shown 

to coordinate to a metal centre exclusively via the cr-set with little or no 1t back-

bonding evident (see Nitriles chapter). The cyanide anion, however, will pennit back-

bonding from the metal d-orbitals into then* anti-bonding orbitals of the C=N 

moiety. It is also possible to draw comparisons between the cyanoacetylide anion-

[C=C-C=N] and the isoelectronic and isolobal diynyl anion [C=C-C=Ct. In this case 

the metal/ligand interaction is predominantly a a-interaction between the cr* orbitals 

of the diyndiylligand and the dz2 orbitals of the metal centre whilst the HOMO 
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consists of a filled/filled interaction between the n-bonding orbitals of the diyndiyl 

ligand and the d-orbitals of the metal. 

Coordination of the cyanoacetylide "metallo-ligand" Ru(C=C-C=N)(PPhJ)2Cp to the 

metal fragments [Ru(PPh3)2Cpt and [Fe(dppe)Cpt resulted in the formation of the 

cyanoacetylide-bridged, bimetallic compounds [ {Ru(PPh3)2Cp} 2(J..1.-C=CC=N) ](PF 6) 

(25) and [ {Ru(PPh3)2Cp}(J..1.-C=CC=N){Fe(dppe)Cp} ](PF6) (26). Infra-red 

spectroscopy of the products showed that in each case there was a marked change in 

the stretching frequencies associated with the cyanoacetylide ligand upon 

coordination at theN-terminus. In the case of these compounds (and indeed all of the 

cyanoacetylide coordination compounds), two IR absorptions were observed. 

Without in-depth vibrational studies, however, it is impossible to determine whether 

these are two, independent vibrational modes corresponding to the C=C and C=N 

fragments or are, in fact, coupled vibrational modes of the combined cyanoacetylide 

moiety and both happen to be IR active. For the purposes of this study we have 

assumed that the higher frequency absorption corresponds to the CN moiety and the 

lower frequency absorption corresponds to the C=C moiety. 

In both cases coordination resulted in an increase in the v(C=N) stretching frequencies 

from 2180 cm·1 in the parent metallo-ligand 22 to values of2197 cm-1 (25) and 2194 

cm-1 (26). This increase would be consistent expectations as the lone pair of electrons 

on theN-atom of the bridging ligand is formally located at the a* anti-bonding orbital 

of the CN. Hence coordination of the metallo-ligand removes electron density from 

this anti-bonding orbital, the bond is strengthened and v(C=N) is increased. 
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There is, however a change on the v(C=C) frequencies as well. Coordination of the 

metallo-ligand results in these stretching frequencies decreasing from 2000 cm-1 in 

the parent compound 22 to 1986 cm-1 in both 25 and 26. This may be brought about 

by the loss of electron density from a bonding orbital or an increase of electron 

density to an anti-bonding orbital. This behaviour suggests that the bonding between 

theN-terminus of the cyanoacetylide ligand and a second metal centre may be similar 

to that for di-acetylide bridged complexes. 

The same behaviour may be seen in the coordination products of the cyanoacetylide 

metallo-ligands Ru(C=CC=N)(dppe)Cp* (23) and Fe(C=CC=N)(dppe)Cp (24). There 

is an increase in v(C=N) and a concomitant decrease in v(C=C) upon coordination to 

the metal centres [Ru(PPh3)2Cpt, [Ru(dppe)Cp*)t and [Fe(dppe)Cpt, It is 

reasonable to suppose, therefore, that the same processes are occurring upon 

coordination in these species as for the coordination of 22. 

Several computational, electrochemical and spectro-electrochernical studies have 

shown that the interaction between the diyndiyl (C=C-C=C) bridge and the metal 

centre consists of a cr interaction between the metal d-orbitals and the cr* orbital of the 

diynyl anion as well as a filled/filled n-interaction between the metal and the diynyl 

n-system. 23-26 This results in a HOMO de localized via the n-system over 6 atoms 

along the M-C3X-M' chain (X= C, N). In forming such a system, there would be a 

loss of electron density from the n-bonding orbitals of the cyanoacetylide metallo­

ligand, weakening the C=C and C=N bonds and so reducing their IR absorption 

frequencies relative to the monometallic precursors. In the case of the C=N portion of 

the ligand, this effect is counterbalanced by a simultaneous loss of electron density 
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from the cr* anti-bonding orbital and the net effect is a strengthening of the C=N bond 

and an increase in v(C=N). 

The molecular structures of the bimetallic compounds give further evidence for the 

bonding description used above. The "symmetrical" bridged species 

[ {Ru(PPh3)2Cp }2(f.l-C=CC=N)](PF6) (25), i.e. that with identical metal end-caps at 

either end of the C3N bridge is difficult to analyse. As a result of the 50:50 C:N 

modelling of the C(l) and N sites, the structure observed is a superposition of the two 

possible orientations of the C3N bridge. However, there is still some useful 

information to be gained. As has been stated earlier (see Nitriles section), the M-P 

bond lengths of a system are a very useful probe of electron density at a metal centre. 

Humphrey has determined the structure of the metal phenyl acetylides Ru(C=C­

C6Hs)(PPh3)2Cp (Ru-P = 2.229(3) and 2.228(3) A) and Ru(C=C-C6H4-4-

N02)(PPh3)2Cp (Ru-P = 2.297(2) and 2.301(2) A). 27 This demonstrates the sensitivity 

of the Ru-P bond lengths to the nature of the R-group in a Ru(C=C-R)(PPh3)zCp 

system. A strongly electron-withdrawing group such as the nitro-phenyl group draws 

electron density from the ruthenium centre. This in turn reduces the degree of back­

bonding between the metal and the phosphine ligand and so the Ru-P bond length is 

increased. In the case of compound 25, the Ru-P bond lengths are 2.326(1) and 

2.325(1) A, indicating a large loss of electron density from the metal centre upon 

coordination of a metal fragment to theN-terminus. 

Coordination of theN-terminus to the more electron-rich [Fe(dppe)Cpt fragment 

results the unsymmetrical species [ {Ru(PPh3)2Cp} (f.l-C=CC=N) {Fe( dppe )Cp} ](PF 6) 

(26). In this case the iron fragment is a stronger n-donor than the [Ru(PPh3)2Cp t 
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fragment and so has a greater contribution to the HOMO of the bimetallic complex. 

This is demonstrated by the shorter Ru-P bond lengths of26 relative to 25 (2.309(1) A 

vs. 2.326(1) and 2.325(1) A). The cyanoacetylide "metallo-ligand" donates less 

electron density to the filled/filled n-bonding interaction in 26 and so a greater degree 

of electron density is available at the ruthenium centre for back-bonding to the 

phosphine ligands, hence the Ru-P distances are shorter. In addition, the Ru-C(1) and 

C(1)-C(2) bonds in 26 are respectively shortened (1.971(5) A) and lengthened 

(1.318(16) A) relative to those in the "symmetrical" compound 25 (2.011(3) A and 

1.192(5) A respectively). This is, again, an effect of the increased contribution of the 

N-bound metal to the HOMO. This results in a HOMO with a greater degree of 

delocalisation across the 6-atom M-C3N-M system, increasing the bond order at the 

C-terminus and reducing the bond order of the C=C bond and respectively contracting 

and lengthening the bonds. 

Similar behaviour is seen in the compounds bearing the Ru(C=C-C=N)( dppe )Cp* 

metallo-ligand (23). In that case the Ru-P bond-lengths (2.270(1) and 2.264(1) A) are 

lengthened slightly upon coordination at theN-terminus. In the case of the species 

[ {Ru( dppe )Cp* }(~-C=CC=N){Ru(PPh3)2Cp}] (27) and [ {Ru( dppe )Cp* }(~­

C::CC=N){W(CO)s}] (30) where theN-terminus is a more electron-deficient species 

than the C-terminus, this lengthening of the Ru-P bonds is matched by respective 

shortening and lengthening of the Ru-C and C=C bonds relative to both the metallo­

ligand and the symmetrical species. This, as with 25 and 26 above, shows that there is 

a greater degree of delocalisation across the M-C3N-M' system in the unsymmetrical 

systems than the symmetrical ones regardless of the orientation of the C3N bridging 

ligand. This is comparable to the heterometallic C4-bridged materials, for which there 
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is a shortening of the M-C bonds and a lengthening of the C=C bonds in the 

heterometallic examples, furthering the analogy between cyanoacetylide and diynyl 

bridging ligands.25
•
28 This effect may be less apparent at the nitrogen end of the C3N 

chain due to the varying a-acceptor properties of the different N-termini masking the 

effect of the changes in the n-system. 

The Trimetallic Complex [{Ru(C=CC=N)(dppe)Cp*h{Ru(dppe)2}][PF6] 2 

Both the IR data and the molecular structure of the trimetallic compound 

[ {Ru(C=CC=N)(dppe)Cp*h {Ru(dppe)2} ][PF6h (31) are very similar to that of the 

uncoordinated metallo-ligand. There is little change in the v(C=N) stretching 

frequency upon coordination and the bond-lengths and angles change little between 

the coordinated and uncoordinated species. The geometry about the central metal is 

of note, however, as it gives an idea ofboth the trans effect and the trans irifluence of 

the cyanoacetylide metallo-ligand, relative to the phosphine moieties. 

The trans effect is a kinetic effect whereby a ligand coordinated to a metal centre (T) 

affects the lability of a ligand trans to it (X). If the ligand T is a strong, polarisable a 

donor or 1t acceptor then it will draw electron density away from the metal centre and 

from the position trans toT. This results in a lowering of the activation energy of the 

substitution (in the case of a a-donor trans effect) or a stabilization of the transition 

state (in the case of an-acceptor trans effect). 
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The trans influence is a thermodynamic factor whereby a coordinated ligand (T) 

affects the properties of a coordinated species trans to itself (X) such as M-X bond 

lengths. This trans influence, which can be the result of a good, polarisable a-donor 

or n-acceptor can be used to account for the variations in the phosphine bond-lengths 

about the central ruthenium atom. A good polarisable a-donor or n-acceptor will 

draw electron density at the metal centre away from the ligand trans to itself, as with 

the trans effect. 

The geometry about the central ruthenium atom is unusual when compared to the 

Ru(dppe)2(C=C-R)2 complexes. These compounds tend to adopt a trans-orientation 

about the ruthenium centre in order to minimise steric crowding. In the case of 31, 

however, a less sterically-favourable cis-geometry is observed. This is likely a case 

where the electronic effect of the trans-influence has a greater effect on the adopted 

conformation than the steric factors. The increased length of the cyanoacetylide 

bridging ligand relative to the acetylide means that the bulky ligands are held further 

away from the central Ru( dppe )2 moiety and so the steric factors are reduced. This 

enables the ligands about the central ruthenium atom to act to reduce the unfavourable 

trans-phosphine interactions. The cis-conformation results in a system whereby two 

of the phosphine centres are trans to the cyanoacetylide moiety (which has a weaker 

trans-influence) and there is only one trans-phosphine interaction. The trans­

conformation would result in two trans-phosphine interactions. Electronically, a 

system where the phosphine moieties are trans to a species with a weaker trans­

influence is more stable than one where they are trans to themselves. Thus the cis 

geometry is the more electronically stable conformer. Whilst in the case of the 

acetylides the steric factors outweigh the electronic ones, the length of the 
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cyanoacetylide ligand reduce these factors and allow the electronic influences to come 

to the fore. The lengthening ofthe Ru-P bonds of the metallo-ligand, relative to the 

uncoordinated complex, indicates a loss of electron density from the metal centre. 

This is usually the case upon complexation of the metallo-ligand as described above. 

This, combined with the trans influence suggests that the cyanoacetylide metallo­

ligand is a strong a-donor. 
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Experimental 

Monometallic Compounds 

An 50ml, two-necked Schlenk flask was cooled under nitrogen, charged with 

Ru(C=CH)(PPh3)2Cp (390 mg, 0.55 mmol) in dry, distilled THF (30 ml) and cooled 

to -70°C (dry ice/acetone). To this yellow solution was added 0.4 ml of a 1.6M 

solution of BuLi in hexane. This was added at such a rate as to prevent the 

temperature from exceeding -60 °C. The solution was stirred for ten minutes at this 

temperature. It was then brought to -20 oc and cooled back down again. To the 

cooled solution was added PhOCN (0.4 ml, 3.5 mmol, 6.5 equivalents) and the 

solution was stirred for a further half hour before being allowed to come to room 

temperature. The solvent was then removed using a rotary evaporator to leave a dark­

brown residue. This was then dissolved in the minimum amount of dichloromethane 

and micro-filtered into hexane. The resulting yellow/green solid was collected, 

dissolved in DCM, loaded onto a silica column and eluted with 30:70 acetone:hexane 

solution. A yellow band was collected and the solvent removed. Subsequent 

recrystallisation by slow diffusion of hexane into a solution in DCM resulted in the 

formation ofyellow, block-like crystals of22 (252 mg, 0.341mmol, 62 %). Found: C, 

68.64; H, 4.63; N, 1.93. C44H35P2NRu.0.5CH2Ch requires: C, 68.24; H, 4.63; N, 

1.78. 1H NMR (CDCh): o 4.37 (s, 5H, Cp); 7.11-7.51 (m, 35H, Ph). 13C{H} NMR 

(CDCh): o 137.86-137.36 (m, Cipso, PPh3); 133.79 (t, Jcc = 5.09Hz, Cortho, PPh3); 

129.33 (s, Cpara, PPH3); 127.87 (t, Jcc = 4.84Hz, Cmeta, PPH3); 121.64 (s, Ca); 107.75 
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(s, C=N); 86.68 (s, Cp); 83.08 (s, C13). 
31P{H} NMR (CDCh): 8 49.77 (s, PPh3). 

ES(+)-MS (mlz) 764.1 [M+Nat; 742.1 [M+Ht; 691 [Ru(PPh3)2Cpt, IR (CH2Ch): 

v(C=N) 2180 cm-1; v(C=C) 2000 cm-1. 

Ru(C=CC=N)(dppe)Cp * (23) 

An analogous procedure using Ru(C=CH)( dppe )(Cp *) (1.22g, 1.85 mmol), BuLi ( 1.4 

ml of 1.6M solution), and PhOCN (0.26 ml, 2.22 mmol), followed by 

recrystallisation from slow evaporation of a DCM/MeOH solution afforded yellow 

crystals of23 (890 mg, 1.3 mmol, 70%). Found: C, 67.97; H, 5.71; N, 2.03. 

C39H39P2NRu requires: C, 68.40; H, 5.74; N, 2.05. 1H NMR (CDCh): 8 1.51 (m, 

15H, Cp"); 2.14 (m, 2H, dppe); 2.62 (m, 2H, dppe); 7.61-7.16 (m, 20H, Ph). 13C{H} 

NMR (CDCh): 8 150.41 (t, lcp= 22.49Hz, Cx); 126.67-136.14 (m, Ph); 107.35 (s, 

CN), 93.09 (s, C5Me5); 77.05 (s, C13); 28.06-28.43 (m, dppe); 8.79 (s, C5Me5). 
31P{H} 

NMR (CDCh): 8 80.22 (s, dppe). ES(+)-MS (m/z) 686.2 [M+Ht. IR (CH2Ch): 

v(C=N) 2176 cm-1; v(C=C) 1994 cm-1. 

Fe(C=CC=N)(dppe)Cp (24) 

A 50ml, 2-necked Schlenk flask was cooled under nitrogen and charged with 

Fe(C2TMS)(dppe)Cp (567 mg, 0.92 mmol) in dry THF (20 ml). The red solution was 

cooled (dry ice/acetone) and MeLi (0.85 ml of 1.6M solution in EhO) was added at 

such a rate as to prevent the temperature exceeding -50 °C. After stirring for 40 
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minutes the solution was warmed to -20 oc before being cooled again. To the dark 

solution was added PhOCN (0.2 ml, 0.18 mmol) and the solution was then allowed to 

come slowly to room temperature before the solvent was removed. The dark 

red/brown residue was dissolved in DCM and precipitated into hexane. The resultant 

pale grey/brown solid was collected, dissolved in DCM and loaded onto a silica 

column and eluted with 30:70 acetone:hexane solution. A red/brown band was 

collected and the solvent removed. Subsequent recrystallisation by slow diffusion of 

Et20 into a solution of the residue in DCM resulted in the formation of red crystals of 

24 (212 mg, 0.37 mmol, 41 %). Found C, 70.55; H, 5.24; N, 3.11. C34H29P2NFe 

requires: C, 71.72; H, 5.13; N, 2.50. 1H NMR (CDCh): 8 2.32 (m, 2H, dppe); 2.60 

(m, 2H, dppe); 4.29 (s, 5H, Cp); 7.74-6.85 (m, 20H, Ph). 13C{H} NMR (CDCb): 8 

153.95 (t, Jcp= 37Hz, Ca); 127.66-140.21.14 (m, Ph); 106.13 (s, CN), 87.02 (s, C13); 

80.42 (s, Cp), 27.88-28.35 (m, dppe). 31 P{H} NMR (CDCb): 8 104.91 (s, dppe). 

ES(+)-MS (m/z) 570.1 [M+Ht. IR (CH2Ch): v(C=N) 2174 cm-1; v(C=C) 1991 cm-1. 

[{Ru(PPhJ)2Cph(C=CC=N)](PF6) (25) 

An oven-dried, two-necked Schlenk flask was cooled under nitrogen and charged with 

RuCl(PPh3)2Cp (100 mg, 0.138 mmol), Ru(C=CC=N)(PPh3)2Cp (102 mg, 0.138 

mmol) and NH4PF6 (90 mg, 0.55 mmol). The mixture was suspended in methanol (20 

ml) and heated to reflux. After 90 minutes at reflux a bright yellow suspension had 

formed. The reaction was then cooled and the precipitate was collected and washed 

with cold methanol to give 25 as a bright yellow (141 mg, 0.090 mmol, 65%). 

Crystals suitable for x-ray diffraction studies were obtained by slow diffusion of 
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MeOH into a DCM solution of25. Found: C, 63.93; H, 4.58; N, 1.08. 

CssH1oPsF6NRu2.0.5CH2Ch requires: C, 63.56; H, 4.40; N, 0.86. 1H NMR (CDCh): 8 

4.36 (s, 5H, Cp); 4.48 (s, 5H,Cp); 7.08-7.29 (rn, 67H, Ph). 13C{H} NMR (CDCh): 8 

137.69-137.09 (rn, Cipso, PPh3); 136.83-136.17 (rn, Cipso, PPh3); 133.69 (t, lee= 5.03 

Hz, Cortho, PPh3); 133.42 (t, lee= 5.03 Hz, Cortho, PPh3); 130.02 (s, Cpara, PPH3); 

129.66 (s, Cpara, PPH3); 128.39 (t, lee= 4.78 Hz, Cmeta, PPH3); 127.96 (t, Icc= 

4.78Hz, Cmeta, PPH3); 117.07 (s, C=N), 87.55 (s, Cp); 83.64 (s, Cp); 83.49 (s, C13). 

31 P{H} NMR (CDCh): 48.92 (s, PPh3); 42.16 (s, PPh3); -143.05 (ht, lrF =712Hz, 

PF6). ES(+)-MS (mlz) 1432 [ {Ru(PPh3)2Cp}2(C=CC=N)t; 691. [Ru(PPh3)2Cpt IR 

(CH2Ch): v(C=N) 2197 crn-1, v(C=C) 1986 crn-1. 

[ {Ru(PPh3)2Cp }(C=CC=N){Fe( dppe )Cp} ](PF 6) (26) 

An analogous procedure using FeCl(dppe)Cp (75 rng, 0.135 rnrnol), 

Ru(C=CC=N)(PPh3)2Cp (100 rng, 0.135 rnrnol) and NH4PF6 (88 rng, 0.54 rnrnol) 

resulted in the formation of26 as a brick red solid (84 rng, 0.0598 rnrnol, 44%). 

Crystals suitable for x-ray diffraction studies were obtained by slow diffusion of 

MeOH into a DCM solution of26. Found: C, 62.27; H, 4.52; N, 1.10. 

C1sH64PsF6NRuFe.0.5CH2Ch requires: C, 62.64; H, 4.52; N, 0.97. 1H NMR (CDCh): 

8 7.31-7.00 (rn, 52H, Ph); 4.24, 4.20 (unresolved, 10H, Cp). 13C{H} NMR (CDCh): 8 

137.45-137.09 (rn, Cipso, PPh3); 133.69 (t, lee= 5.28Hz, Cortho, PPh3); 133.12 (t, 

unresolved, Cortbo, dppe); 131.84 (t, unresolved, Cortho, dppe); 130.80 (s, Cpara, dppe); 

130.60 (s, Cpara, dppe); 129.67 (s, Cpara, PPH3); 129.12 (t, unresolved, Cmeta, dppe); 

128.96 (t, unresolved, Cmeta, dppe); 127.92 (t, lee= 4.78Hz, Cmeta, PPH3); 121.60 (s, 
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Ca); 87.22 (s, Cp); 79.16 (s, Cp); 84.12 (s, C13); 28.02 (t, lcp = 21.62Hz, CH2, dppe). 

31 P{H} NMR (CDCh): 98.02 (s, dppe); 48.76 (s, PPh3); -143.06 (ht, }pf =712Hz, 

PF6). ES(+)-MS (m/z) 1260 [{Ru(PPh3)2Cp}(C=CC=N){Fe(dppe)Cp}t; 519 

[Fe(dppe)Cpt. IR (CH2Ch): v(C=N) 2194 cm-1, v(C=C) 1986 cm-1. 

[ {Ru( dppe )Cp *}(C=CC::N){Ru(PPh3)2Cp} ](PF 6) (27) 

A two-necked, 50 ml Schlenk flask was cooled under nitrogen and charged with 

Ru(C=CC=N)(dppe)(Cp*) (100 mg, 0.146 mmol), RuCl(PPh3)2Cp (106 mg, 0.146 

mmol) and NHJ>F6 (95 mg, 0.583 mmol). The mixture was suspended in dry MeOH 

( 10 ml) and heated to reflux. After one hour at reflux a clear yellow solution had 

formed. This was allowed to cool and the solvent was removed. The yellow residue 

was then dissolved in the minimum quantity of DCM, filtered and the solvent was 

removed to afford 27 as a yellow powder (209 mg, 0.138 mmol, 94%). Crystals 

suitable for X-ray diffraction studies were obtained by slow diffusion of hexane into a 

DCM solution of27. Found: C, 63.03; H, 4.91; N, 0.95. CsoH1J>sF6NRu2 requires: 

C, 63.20; H, 4.91; N, 0.92. 1H NMR (CDCh): 8 1.51 (s, 15H, Cp*); 2.54, 2.18 (2 x 

m. 4H, dppe); 4.25 (s, 5H, Cp); 7.02-7.50 (m, SOH, Ph). 13C{H} NMR (CDCh): 8 

136.69-127.93 (m, Ph); 95.10 (s, C5Me5), 83.44 (s, Cp); 29.80-29.43 (m, dppe); 10.03 

(s, C5Me5). 
31P{H} NMR (CDCh): 8 79.34 (s, dppe); 42.12 (s, PPh3); -143.20 (ht, }pf 

=713Hz [PF6]} ES(+)-MS (m/z) 1376 [ {Ru(dppe)Cp*}(C=CC=N){Ru(PPh3)2Cp} t. 
IR (CH2Ch): v(C=N) 2194 cm-1, v(C=C) 1980 cm-1. 
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[{Ru(dppe)Cp*}2(C=CC=N)](PF6) (28) 

An analogous procedure using Ru(C=CC=N)(dppe)(Cp*) (100 mg, 0.146 mmol), 

RuCl(dppe)Cp* (98 mg, 0.146 mmol) and N~PF6 (95 mg, 0.583 mmol) afforded 28 

as a bright, canary yellow solid (157 mg, 0.107 mmol, 74%). Crystals suitable for X­

ray diffraction studies were obtained by slow diffusion ofMeOH into a CHCb 

solution of28. Found: C, 60.51; H, 5.35; N, 1.00. C7sH78PsF6NRu2.0.25CHCb 

requires: C, 60.80; H, 5.24; N, 0.93. 1H NMR (CDCb): 8 1.45, 1.37 (2 x s, 30H, 2 x 

Cp*); 2.23, 2.17 (2 x br, 8H, 2 x dppe); 7.48-7.07 (m, 40H, Ph). 13C{H} NMR 

(CDCb): 8 136.41-127.78 (m, Ph); 113.85 (s, CN); 94.78 (s, CsMes), 92.12 (CsMes), 

78.84 (s, C13); 29.51-29.15 (m, dppe); 28.64-28.28 (m, dppe); 10.02 (s, CsMes); 9.79 

(s, C5Me5). 
31P{H} NMR (CDCb): 8 79.58 (s, dppe); 75.64 (s, dppe); -143.21 (ht, 

JPF =713Hz, [PF6]} ES(+)-MS (m!z) 1319 [ {Ru(dppe)Cp*}2(C=CC=N)t; 635 

[Ru(dppe)Cp*t. IR (CH2Ch): v(C=N) 2195 cm-1
, v(C=C) 1987 cm-1

• 

[ {Ru( dppe )Cp*}(C=CC=N){Fe( dppe )Cp }](PF 6) (29) 

An analogous procedure using Ru(C=CC=N)(dppe)(Cp*) (100 mg, 0.146 mmol), 

FeCl(dppe)Cp (81 mg, 0.146 mmol) and NH4PF6 (95 mg, 0.583 mmol) afforded 29 

as a red solid (184 mg, 0.138 mmol, 94%). 1H NMR (CDCb): 8 1.38 (s, 15H, Cp*); 

2.40, 1.99 (2 x br, 8H, dppe); 4.17 (s, 5H, Cp); 7.06-7.63 (m, 40H, Ph). 13C{H} NMR 

(CDCb): 8 133.31-127.78 (m, Ph); 94.81 (s, CsMes); 78.78 (s, Cp); 29.31 (m, dppe); 

27.66 (m, dppe); 10.05 (s, C5Me5). 
31P{H} NMR (CDCh): 8 98.59 (s, dppe); 77.36 (s, 
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dppe); -143.17 (ht, Jpp =713Hz [PF6]} ES(+)-MS (mlz) 1204 

[ {Ru(dppe)Cp*}(C=CC=N){Fe(dppe)Cp} t. IR (CH2Ch): v(C=N) 2190 cm-1, 

v(C=C) 1982 cm-1. 

[ {Ru(dppe)Cp*}(C=CC=N){W(C0)5}] (30) 

An oven-dried Schlenk tube was cooled under nitrogen and charged with W(C0)6 (51 

mg, 0.146 mmol) in dry THF (30 ml). The solution was irradiated for 90 minutes 

with a medium pressure Hg lamp during which time it became a deep yellow colour. 

Ru(C=CC=N)(dppe)Cp* was added (100 mg, 0.146 mmol) and the solution was 

stirred for a further 10 minutes before the solvent was removed. The yellow residue 

was then eluted up a preparative TLC plate using 3:7 acetone:hexane. The upper 

yellow band was collected, dried and recrystallised from slow diffusion of methanol 

into a DCM solution to give bright yellow crystals. (52 mg, 0.052 mmol, 35%). 1H 

NMR (CDCh): 8 1.53 (s, 15H, Cp*); 2.16 (m, 2H, dppe); 2.64 (m, 2H, dppe); 7.17-

7.58 (m, 20H, Ph). 13C NMR (CDCh): 8 200.67 (s, trans-CO); 197.21 (s, cis-CO), 

165.32 (br, Ca); 136.84-128.14 (m, Ph); 112.08 (s, CN); 95.06 (s, C5Me5); 77.72 (s, 

Cp); 29.78-29.40 (m, dppe); 10.12 (s, C5Me5). 
31 P NMR (CDCh): 79.68 (dppe). 

ES(+)-MS (mlz): 1010 [M+Ht; 686 [Ru(C3N)(dppe)Cp*+Ht. IR (CH2Ch): v (C=N) 

2192(m) cm-1, v(C=C) 2071(m) cm-1, v(CO) 1977(m), 1929(s), 1882(m) cm-1. IR 

( cyclohexane ): v(C=N) 2197(w) cm-1, v(C=C) 2069(w) cm·1, v(CO) 1990(w), 

1932(s), 1904(m) cm·1 
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[ {Ru( C=CC=N)( dppe )Cp * h {Ru( dppe )2}] [PF 6]2 (31) 

A two-necked, 50 ml Schlenk flask was cooled under nitrogen and charged with 

Ru(C=CC=N)(dppe)Cp* (104 mg, 0.152 mmol), RuCh(dppe)2 (74 mg, 0.076 mmol) 

and NH4PF6 (99 mg, 0.607 mmol). The mixture was suspended in dry MeOH (15 ml) 

and heated to reflux. After two hours at reflux a pale yellow suspension had formed. 

The reaction was allowed to cool and the solvent was removed. The resulting yellow 

residue was dissolved in DCM and filtered. The solvent was then removed to afford 

34 as a pale yellow powder (143 mg, 0.056 mmol, 74 %). Crystals suitable for X-ray 

diffraction studies were obtained by slow diffusion of methanol into a DCM solution. 

1H NMR (CDCh): 8 1.54 (s, 15H, Cp*); 1.57 (s, 15H, Cp*); 6.15-8.05 (m, 80H, Ph). 

13C NMR (CDCh): 8 134.11-127.23 (m, Ph); 97.10 (s, C5Mes); 95.93 (s, C5Mes); 

30.28-29.14 (m, dppe); 10.18 (s, C5Me5); 10.01 (s, C5Me5). 
31P NMR (CDCh): 78.17 

( dd, JPP(trans) = 316 Hz, }pP(cis) = 15 Hz, Ru( dppe )2); 46.16 ( dt, Ru( dppe )2), 32.48 (s, 

dppe), -143.01 (ht, JPF =713Hz, [PF6]} ES(+)-MS (mlz): 2411 [M+PF6-t 1135 

[M]2+; 686 [Ru(C3N)(dppe)Cp*+Ht IR (CH2Ch): v(C=N) 2178 cm-1, v(C=C) 

1994(sh), 1966 cm-1. 

[{Fe( dppe )Cp }(C=CC=N){Ru(PPh3) 2Cp} ](PF 6) (32) 

A two-necked, 50 ml Schlenk flask was cooled under nitrogen and charged with 

Fe(C=CC=N)(dppe)(Cp) (75 mg, 0.132 mmol), RuCl(PPh3)2Cp (966 mg, 0.132 

mmol) and N~F6 (86 mg, 0.528 mmol). The mixture was suspended in dry MeOH 
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(15 ml) and heated to reflux. After one hour at reflux a dark red/brown solution had 

formed. This was allowed to cool and the solvent was removed. The red/brown 

residue was then dissolved in the minimum quantity of DCM and precipitated into 

hexane. The precipitate was then collected and washed with cold hexane to afford 30 

as a pale brown solid (105 mg, 0.075mol, 57%). 1H NMR (CDCh): 8 1.62 (br, 8H, 

dppe); 4.35, 4.21 (2 x s, 10H, 2 x Cp); 6.97-7.64 (m, 40H, Ph). 31P{H} NMR 

(CDCh): 8 103.91 (s, dppe); 42.20 (s, PPh3); -143.11 (ht, ]pf = 711 Hz [PF6]} ES(+)­

MS (mlz) 1260 [{Fe(dppe)Cp}(C=CC=N){Ru(PPh3)zCp}t; 691 [Ru(PPh3)zCpt IR 

(CH2Ch): v(C=N) 2192 em·', v(C=C) 1977 cm-1. 

[{Fe( dppe )Cp }(C=CC=N){Ru( dppe)Cp*} ](PF 6) (33) 

An analogous procedure using Fe(C=CC=N)(dppe)(Cp) (75 mg, 0.132 mrnol), 

RuCl(dppe)Cp* (88 mg, 0.132 mmol) and NILtPF6 (86 mg, 0.528 mrnol) afforded 31 

as a red/brown solid (98 mg, 0.073 mrnol, 55%). Found C, 61.73; H, 5.04; N, 1.12. 

C1oH6sPsF6NRuFe requires: C, 62.32; H, 5.08; N, 1.04. 1H NMR (CDCh): 8 1.31 (s, 

15H, Cp*); 2.25 (m, dppe); 2.07 (m, dppe); 4.25 (s, 5 H, Cp); 7.16-7.56 ppm (m, 40H, 

Ph). 13C{H} NMR (CDCh): 8 138.08-128.18 (m, Ph); 107.36 (s, CN); 91.87 (s, 

C5Me5); 81.46 (s, Cp); 27.75 (m, unresolved, CHz dppe); 27.11 {m, unresolved, CHz 

dppe); 9.45 (s, C5Me5). 
31P{H} NMR (CDCh): 8 103.42 (s, dppe); 75.52 (s, dppe);-

143.18 (ht, ]pp =713Hz [PF6)"). ES(+)-MS (m/z) 1204 

[ {Fe(dppe)Cp}(C=CC=N){Ru(dppe)Cp*} t; 635 [Ru(dppe)Cp*t IR (CHzCh): 

v(C=N) 2192 cm-1
, v(C=C) 1983 cm-1

• 
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[{Fe(dppe)Cp}2(C=:CC=N)](PF6) (34) 

An analogous procedure using Fe(C=CC=N)(dppe)(Cp) (75 mg, 0.132 mmol), 

FeCl(dppe)Cp (73 mg, 0.132 mmol) and NH4PF6 (86 mg, 0.528 mmol) afforded 32 

as a red/brown solid (130 mg, 0.105 mmol, 78%). Found: C, 62.84; H, 4.70; N, 1.10. 

C65H58P5F6NFe2 requires: C, 63.28; H, 4.74; N, 1.14. 1H NMR (CDCh): 8 1.62 (br, 

8H, dppe); 4.20, 4.13 (2 x s, lOH, 2 x Cp); 7.08-7.56 (m, 40H, Ph). 13C{H} NMR 

(CDCh): 8 139.67-128.16 (m, Ph); 119.73 (s, CN); 89.06 (s, C13); 81.30 (s, Cp); 78.80 

(s, Cp); 28.45-28.28 (m, dppe); 27.45-27.29 (m, dppe). 31P{H} NMR (CDCh): 8 

103.42 (s, dppe); 75.52 (s, dppe); -143.18 (ht, JPF =713Hz [PF6D· ES(+)-MS (m/z) 

1088 [ {Fe(dppe)Cp }(C=CC=N){ Fe(dppe)Cp } t; 519 [Fe(dppe)Cpt. IR (CH2Ch): 

v(C=N) 2186 cm-1
, v(C=C) 1976 cm-1

• 

Ru(C=CC=N)(dppe)Cp* + TCNE (35) 

A two-necked, 50 ml Schlenk flask was cooled under nitrogen and charged with dry 

DCM (10 ml). This was degassed and to it was added Ru(C=CC=N)(dppe)(Cp*) (100 

mg, 0.146 mmol) resulting in a yellow solution. To this was added TCNE (19 mg, 

0.146 mmol) upon which the solution rapidly became a dark green colour. The 

reaction was followed by solution IR and when the band corresponding to the C=C 

stretch of the parent cyanoacetylide had disappeared the solvent was removed. The 
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resultant dark blue/green residue was crystallised by slow diffusion of methanol into a 

DCM solution to afford 35 as dark blue crystals (72 mg, 0.092 mmol, 63%). 1H NMR 

(CD2Ch): 8 1.22 (s, 15H, Cp*); 1.47 (s, 15H, Cp*); 2.83-5.58 (m, 4 H, dppe); 6.56-

7.96 (m, 20H, Ph). 31 P NMR (CDCh): 123.66 (s, dppe); 76.90 (d, Jpp = 15.3 Hz, 

dppe); 56.91 (d, Jpp = 15.3 Hz, dppe). ES(+)-MS (m/z): 814 [M+Ht, IR (CH2Ch): 

v(C=N) 2213 cm-1
, v(C=C) 1608 cm-1

• 
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Introduction 

Diyndiyl Systems Bearing Identical Termini 

As has been indicated several times in this thesis, there is a great deal of interest in 

bimetallic complexes featuring conjugated bridging ligands. One of the simplest 

examples of a bridge between two metal centres is a chain of unsaturated carbon 

atoms to give compounds of type MLx-(C=C)n-MLx. The earliest examples of 

diyndiyl systems (n = 2) are the nickel complexes [ {Ni(CN)(NH3) 3}z(J..L-C=CC=C)] 

and [ {Ni(PPh3)Cp }z(J..L-C=CC=C)] and the iron complex [ {Fe(C0)2Cp }z(J..L­

C=CC=C)].1'2 However, the majority of work in this are has been in the last 15 years 

with several groups using specific metal centres, of which the most relevant to this 

thesis are the group 8 half-sandwich metal centres [RuLzCp't and [FeL2Cp't (Cp' = 

Cp, L =phosphine ligand, Cp' = Cp*, L = chelating bisphosphine). The rhenium 

centre [Re(NO)(PPh3)Cp*] is included here for comparative purposes.3
-
8 These 

homometallic complexes and their observed oxidation potentials are summarised in 

Table 7.1 below. 
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Table 7 .1. Homometallic bridged diyndiyl complexes 

MLx Observed Oxidation Potentials vs. SCE (V) Ref. 

Fe(dppe)Cp* (Fe.l) -0.69, +0.03, +0.95 3 

Fe(dippe)Cp* (Fe.2) -0.97, -0.18, +0.81 4 

Ru(PPh3)2Cp (Ru.l) -0.23, +0.41, +1.03, +1.68a 9 

Ru(PPh3)(PMe3)Cp (Ru.2) -0.26, +0.33, +0.97, + 1.46a 9 

Ru( dppe )Cp* (Ru.3) -0.43, +0.23, + 1.02, + 1.5a 7 

Ru(dppm)Cp* (Ru.4) -0.48, +0.15, + 1.04, + 1.4a 7 

Ru( dppf)Cp (Ru.S) -0.22, +0.43, +0.74b, +1.28a 10 

Re(NO)(PPh3)Cp* (Re.l) +0.01, +0.54 8 

a b, Irreversible oxidatiOn, Quasi-reversible oxidatiOn 

As has been stated previously, cyclic voltammetry is a convenient probe of the 

electrochemical behaviour of these diyndiyl-bridged systems and allows the 

determination of the potentials required to oxidise the compounds relative to a known 

reference potential. The di-iron complex [ {Fe(dppe)Cp*}z(~-C=CC=C)] (Fe.l) 

displays three reversible, one-electron oxidation processes at -0.69, +0.03 and +0.95 

V vs. SCE.3 Whilst the neutral, mono- and di-oxidised species Fe.l, [Fe.tt, and 

[Fe.tf+ could be isolated by chemical oxidations, attempts to isolate the tri-cation 

were unsuccessful. In order to reduce the oxidation potential of the third oxidation 

and hence stabilise the tri-cation, the more strongly electron-donating dippe ligand 

was substituted for the dppe 1igand4 (Fe.2). The oxidation potentials of the resulting 

complex were found to be -0.97, -0.18 and +0.81 V vs. SCE. These oxidations in 

Fe.2 are not only moved to lower potential relative to Fe.l but there is also an 

increase in the separation of the potentials in the dippe system, an indication of greater 
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thermodynamic stability of the mono-oxidised material. In addition, changes in the 

structure of the complex were observed upon oxidation (see below). By comparison, 

the di-ruthenium complex [ {Ru(PPh3)2Cp}2(f..l-C=CC=C)] (Ru.l) undergoes three, 

reversible, one-electron oxidations (at -0.23, +0.41 and+ 1.03 V vs. SCE) followed by 

a single, irreversible multi-electron redox process at+ 1.68 V.9 The increased 

oxidation potentials of the ruthenium complex versus Fe.l and Fe.2 are a result of the 

less electron-rich ruthenium centres. The tetra-cation generated at the electrode 

surface apparently undergoes a rapid chemical transformation into a new species 

which, at the applied potential, undergoes further oxidative processes. As with the 

iron complexes, substitution of more strongly electron-donating supporting ligands at 

the ruthenium centre leads to the reduction of the oxidation potentials. The 

complexes [ {Ru(PPh3)(PMe3)Cp }z(f..l-C=CC=C)] (Ru.2) and [ {Ru( dppe )Cp* }2(f..l­

C=CC=C)] (Ru.3) undergo four oxidation processes at -0.26, +0.33, +0.97 and+ 1.46 

V and -0.43, +0.23, + 1.02, and+ 1.51. 7'
9 The fourth oxidation is irreversible in both 

cases. 

The large separation of the sequential oxidation events for the complexes discussed 

above leads to large values of Kc (Kc values for the complexes discussed here fall in 

the range 9.5x1010
- 2.3 x 1013

). By comparison, the Kc values found for the Creutz­

Taube ion are 106
·
6 (aqueous solution) and 1073 (acetonitrile solution). 11

'
12 The Kc 

values for the homometallic, diyndiyl bridged species therefore demonstrate a high 

degree of thermodynamic stability with respect to disproportionation. 

Spectra-electrochemical methods revealed that upon successive oxidations, the 

v(C~C) frequencies of the di-ruthenium complex [ {Ru(PPh3)2Cp }z(f..l-C=CC=C)] 
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(Ru.l) move to progressively lower wavenumbers (Table 7.2).9 The fact that 

stretching frequency of the mono-oxidised species (1855 cm-1
) is mid-way between 

that of the neutral (1971 cm-1
) and di-oxidised species (1767 cm-1) suggests that the 

unpaired electron is de localised over the molecule on the time-scale of the IR 

measurements (~10- 13 seconds). After the second oxidation, the stretching frequency 

has moved to a region more associated with a carbon-carbon double bond stretching 

frequency and suggests a more cumulenic nature to the material. In addition, an 

IVCT transition was observed in the NIR region of the electronic absorption spectrum 

(11, 400 cm-1
) of the mono-oxidised complex which disappeared on progression to the 

di-oxidised material. 

Similar spectro-electrochemical behaviour was observed for the analogous complex 

[ {Ru(dppe)Cp*}2(f..!-C=CC=C)] (Ru.3) with IR stretching frequencies observed at 

1963 cm-1 (neutral), 1860 cm-1 (mono-oxidised), and 1770 cm-1 (di-oxidised.) (Table 

7.2).7 In addition, chemical oxidation ofRu.3 with [FeCp2][PF6] allowed the 

isolation of the mono- and di-oxidised species and their crystallographic 

characterisation. In the neutral complex, the Ru-C bond lengths (2.001(3) and 

2.003(3) A), the central C-C bond of the bridging ligand (1.382(4) A) and the C=C 

bond lengths (1.223(4) and 1.218 (4) A) are consistent with the alternating 

single/triple bond structure expected for the diyndiyl system. Oxidation results in a 

slight lengthening of the "triple" bonds (1.248(3) A) and a contraction of the Ru-C 

and C-C bonds (1.931(2) and 1.338(3) A respectively). Upon reaching the di-oxidised 

complex, all of the carbon-carbon bonds fall in the narrow range 1.269(7) - 1.294(7) 

A and are very similar to those of the butatriene complex H2C=C=C=CH2 (1.283(5)-
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1.318(5) A). 13 Thus it is possible to suggest the valence bond structures shown below 

for these complexes (Scheme 7.1). 

+ 

2+ 

RG;?/ ~R 
/Ru=c=c==c=c==Ru 

l I \'L 
L L 

Scheme 7.1. Valence bond structures of di-ruthenium complexes 

(R = H, L = PPh3; R =Me, L2 = dppe). 

Table 7.2. IR data for [ {MLx}C=CC=C{MLx} ]"+ (cm-1
). 

MLx n=O n=1 n=2 Ref 

Ru(PPh3)2Cp 1971 1855 1767 9 

Ru( dppe )Cp* 1963 1860 1770 7 

Re(NO)(PPh3)Cp* 1964 1872 a 8 

Fe(dppe)Cp* 1955, 1880 1973, 1880 2160, 1050 3 

3Not observed. 
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The rhenium complex [ {Re(NO)(PPh3)Cp}z{J.!-C=CC=C)] is of interest in these 

studies as it bears the NO ligand which acts as a "reporting group" at the Re centre. 

The di-rhenium complex undergoes two, reversible oxidation processes at +0.01 and 

+0.54 V vs. SCE.8 As with the ruthenium complexes discussed above, oxidation of 

this complex results in a decrease in the v(C=C) stretching frequency (from 1963 cm·1 

in the neutral complex to 1872 cm-1 in the mono-oxidised material) as well as a 

contraction of the "single" bonds (neutral: Re-C = 2.037(5) A. C-C = 1.389 (5) A; di­

oxidised: Re-C = 1.909/1.916(7) A. C-C = 1.305 (10) A) and lengthening of the 

"triple" bonds (neutral: 1.202(7) A; di-oxidised, 1.263/1.260(10) A). However, the 

rhenium centre also bears the NO ligand for which there is an increase in the v(NO) 

stretching frequency with each successive oxidation (n = 0, 1623; n = 1, 1665; n = 2, 

1719 cm-1
). This is due to the removal of electron density from the rhenium centre 

reducing the degree ofback-bonding from theRe d-orbitals into then* anti-bonding 

orbitals of the NO moiety. Thus the NO fragment is a "reporting group" in that its 

physical properties are affected by the oxidation of the complex despite the fact that it 

is not directly involved in the oxidation. The NIR region of the electronic absorption 

spectrum showed an IVCT band at ~7600 cm·1 and the complex was assigned as a 

Class 3 system. 

The di-iron complex [ {Fe(dppe)Cp*}z(J.!-C=CC=C)] (Fe.l) shows somewhat different 

behaviour upon oxidation. Whilst there is a slight change in the bond lengths between 

the neutral and mono-oxidised species (with the "single" bonds contracting and the 

"triple" bonds lengthening), the IR absorptions move to higher frequency rather than 

to lower frequency as observed for the ruthenium and rhenium complexes. 3 This 

indicates that there is less of a contribution from the n-system of the bridging ligand 
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to the HOMO in the di-iron complex. The NIR region of the electronic absorption 

spectrum of [Fe.l t showed an IVCT band at~ 7600 cm-1
, with band shape analysis 

giving a high coupling constant suggestive of a Class 3 system. Further oxidation to 

the di-oxidised species resulted in the disappearance of the IVCT band from the 

electronic absorption spectrum and a further increase in the IR stretching frequencies 

of the bridging moiety. 

To gain an insight into the exact nature of metal/bridge interaction in the 

homometallic diyndiyl-bridged complexes, several theoretical studies have been 

carried out.7
•
9

•
14

•
15 These Density Functional Theory (DFT) and Extended Hiickel 

(EH) studies have shown that, in these compounds, the interaction between the two 

metal centres across the diyndiyl bridge results in an HOMO with some degree of 

delocalisation across the 6-atom M-C4-M chain. Thus, any oxidation process, which 

involves loss of electrons from these orbitals, will not be exclusively metal-centred. 

Comparison of models with different supporting ligands suggests that molecules 

containing strong electron-donating ligands should be more readily oxidised. 

Diyndiyl Systems Bearing Differing Termini 

Whilst diyndiyl complexes bearing identical termini have been under study for some 

time, the detailed study of complexes bearing termini of differing electron density is a 

relatively recent development. Modifications to one iron end-cap in the 

[ {Fe(dppe)Cp*}2(~t-C=CC=C)] (Fe.l) complex have been made to produce 

[{Fe( dppe )Cp*} (~-C=CC=C) {Fe(C0)2Cp*] (Fe.3). 16 Complex Fe.3 undergoes two 
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oxidation processes which, at -0.36 and +0.74 V, the latter being poorly chemically 

reversible, are markedly different from those of the monometallic model complexes 

Fe(C=CC=CSiMe3)(dppe)Cp* (0.00 V) and Fe(C=CC=CSiMe3)(C0)2Cp* (+ 1.15 V, 

irreversible). The differences in electrochemical response of the bimetallic compound 

Fe.3 and the model monometallic systems provide an indication of electronic 

communication between the two metal centres in Fe.3, with a marked increase in the 

thermodynamic stability of the mono-oxidised complex relative to 

Fe(C=CC::CSiMe3)( dppe )Cp*. 

A more significant change to the bimetallic complex is made when one iron end-cap 

is replaced by the [Re(NO)(PPh3)Cp*] centre to form [ {Re(NO)(PPh3)Cp*}().!­

C=CC=C){Fe(dppe)Cp*] (ReFe.1). 15 This mixed iron/rhenium complex undergoes 

three oxidation events at -0.50, +0.23, and+ 1.33 V vs. SCE, the latter of which 

appears just at the edge of the observable window provided by the DCM solvent. 

Comparison of these potentials with those of the Fe.1 (-0.69, +0.03, and +0.95V) and 

Re.l (+0.01 and +0.54 V) analogues suggest that the first oxidation potential of the 

heterometallic complex is predominantly iron in character with the increase in 

potential from -0.69 V to -0.50 V brought about by the rhenium end-cap drawing 

electron density away from the iron centre. The same effect reduces the second 

oxidation potential of the heterometallic complex relative to that of the di-rhenium 

analogue. The electronic absorption spectrum of the mono-oxidised species 

(ReFe.lt revealed a broad, weak absorption band in the NIR region of the spectrum 

which was absent in both the neutral and di-oxidised species and was therefore 

assigned as an IVCT band. The coupling constant derived from this band was much 

lower than those found for the di-iron and di-rhenium analogues and the complex was 
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assigned as a Class 2 system. This indicates a diminished interaction between the 

metal centres in the heterometallic diyndiyl systems when compared with the 

homometallic analogues. 

Only recently have the iron/ruthenium complexes [ {Fe(dppe)Cp*}(J.l­

C=CC=C){Ru(dppe)Cp*] (FeRu.l) and [ {Fe(dppe)Cp*}(J.l-C=CC=C){Ru(PPh3)2Cp] 

(FeRu.2) been isolated. 17 The complex [ {Fe(dppe)Cp*}(J.l-C=CC=C){Ru(dppe)Cp*] 

is of particular interest as it differs from the homometallic materials 

[ {Fe(dppe)Cp*}z(J.l-C=CC=C)] (Fe.l) and [ {Ru(dppe)Cp*}z(J.l-C=CC=C)] (Ru.3) 

solely in the substitution of a single Ru atom for Fe (or vice versa). The 

electrochemical data for these materials are summarised in Table 7.3. 

Table 7.3. Oxidation potentials of heterometallic diyndiyl complexes and their 

homometallic analogues. 

Compound E1 (V) E2 {V) E3 (V) 

[ {Re(NO)(PPh3)Cp*}(J.l-C=CC=C){Fe(dppe)Cp*] (ReFe.l) -0.50 +0.23 +1.33 

[{Fe( dppe )Cp* }(J.l-C=CC=C) {Ru( dppe )Cp*] (FeRu.l) -0.59 +0.18 +0.99 

[{Fe( dppe )Cp*} (J.l-C=CC=C) {Ru(PPh3)2Cp] (FeRu.2) -0.51 +0.30 1.00 

[ {Fe(dppe)Cp*}z(J.l-C=CC=C)] (Fe.l) -0.69 +0.03 +0.95 

[ {Ru(dppe)Cp*}z(J.l-C=CC=C)] (Ru.3) -0.43 +0.23 +1.02 

[ {Re(NO)(PPh3)Cp*}z(J.l-C=CC=C)] (Re.l) +0.01 +0.54 

alrreversible 
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The first oxidation potentials of the heterometallic complexes FeRu.l (-0.59 V) and 

FeRu.2 ( -0.51 V) are markedly less favourable than that in the di-iron complex Fe.1 

( -0.69 V) which suggests that the substitution of a ruthenium centre for an iron centre 

results in a stabilisation of the HOMO, making the removal of an electron less 

thermodynamically favourable. 

It was noted above that for homometallic diyndiyl-bridged species the HOMO was 

delocalised over the six atom M-C=CC=C-M chain in the di-ruthenium complexes 

Ru.l-3 whilst in the di-iron complex Fe.l there was a greater degree of metal 

character in the HOMO. Recently, a Mulliken atomic orbital population analysis has 

been performed on these compounds as well as the heterometallic complexes FeRu.l 

and FeRu.2.17 These calculations were used to determine the metal vs. diyndiyl 

weighting of the HOMO orbital. It was found that the metal/diyndiyl weightings for 

the homometallic complexes were 41 %metal and 46% diyndiyl for the di-iron 

complex, and 26 % metal and 69 % diyndiyl for the di-ruthenium analogue. 

Substitution of one metal for another led to the heterometallic complex where the 

diyndiyl weighting is 57 % whilst the metal weighting is distributed unevenly 

between the iron and ruthenium centres (18 and 12% respectively). 

The IR stretching frequencies of the oxidised materials seem to confirm the 

distribution of the HOMO as described above. Oxidation ofFe.Rul and Fe.Ru2 

leads to a change in the v(C=C) stretching frequencies to lower wavenumbers, 

consistent with the removal of a significant degree of electron density from theM­

C=CC=C-M 1t* anti-bonding orbital. Furthermore, whilst only a single v(C=C) band 

is observed in the neutral materials, this was found to split upon oxidation into two 
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bands. This spitting of the bands implies a reduction in the symmetry of the HOMO 

orbital, consistent with uneven removal of electron density from the metal centres. 

Spectro-electrochemical studies of the heterometallic complex revealed intense 

absorptions in the NIR region of the spectrum for compounds FeRu.l and FeRu.2 at 

9,900 cm-1 and 10,300 cm-1 respectively assigned as IVCT bands. Also found were 

very weak bands oflower energy (~7,400 cm-1
). Analysis of the IVCT bands found 

coupling constants for the heterometallic complexes that were consistent with Class 2 

complexes, albeit at the higher end of the range. These observations are consistent 

with those for the iron/rhenium complex [ {Re(NO)(PPh3)Cp*}(J..l­

C=CC=C){Fe(dppe)Cp*] and suggest that the degree of interaction between the metal 

centres in the heterometallic iron/ruthenium diyndiyl complex is less than that in the 

homometallic analogues. 

It has been noted that the cyanoacetylide ligand [C=CC=Nr is both isolobal and 

isoelectronic with the diyndiyl dianion [C=CC=Ct. Coordination of the 

cyanoacetylide moiety to metal centres as a bridging ligand would then be expected to 

occur in a similar manner to the diyndiyl analogues, resulting in similar orbitals. 

However, the cyanoacetylide ligand is polarised, in contrast to the symmetrical 

C=CC=C bridge. To investigate the effect of this novel bridging moiety, 

electrochemical and spectro-electrochemical studies were performed on the 

monometallic and bimetallic cyanoacetylides discussed in the previous chapter. 
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Results and Discussion 

Clues to the electronic structures of the monometallic cyanoacetylides and their 

coordination complexes are presented by their molecular structures and physical 

properties especially their vibrational spectra. In order to probe the underlying 

electronic structure of these materials, electrochemical and spectro-electrochemical 

studies were performed on the cyanoacetylide compounds described in Chapter 6. 

Electrochemistry- Monometallic Compounds 

Electrochemical studies utilising cyclic voltammetry (CV) were performed on each of 

the compounds 22-34, using a platinum disc working electrode and platinum wire 

counter and pseudo-reference electrodes. Measurements were carried out in a O.lM 

solution of [N(C4H9)4][BF4] in DCM. Electrode potentials are reported against an 

internal ferrocene (Fe/Fe+= 0.46 V vs. SCE) or decamethylferrocene (Fe* /Fe*+=-

0.02V vs. SCE) standard. 18 

The CVs of the monometallic compounds 22-24 each displayed a single oxidation 

event at a platinum electrode (Table 7.4). Whilst for the ruthenium complexes 

Ru(C=CC=N)(PPh3)2Cp (22) and Ru(C=CC=N)(dppe)Cp* (23) this oxidation was 

poorly chemically reversible at room temperature, a consequence of the reactivity of 

the electro-generated product, a chemically and electrochemically reversible wave 
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was observed upon cooling the solution to -30 °C. In the case of the iron 

cyanoacetylide Fe(C=CC=N)(dppe)Cp (24) the oxidation was fully reversible at room 

temperature. For the mono-ruthenium complex Ru(C=CC=N)(PPh3)2Cp (22) the 

oxidation event occurred at +0.92 V. In the case of the compounds 

Ru(C=CC=N)(dppe)Cp* (23) and Fe(C=CC=N)(dppe)Cp (24) the oxidation events 

were observed at +0.69 and +0.53 V respectively. Not surprisingly, the ease of 

oxidation reflects the increased degree of electron-richness at the metal centres. 

These potentials also reflect the influence of the electron-withdrawing CN moiety 

when compared to other substituted acetylides. The oxidation potentials of the 

phenylacetylide compounds Ru(C=CC6Hs)(PPh3)2Cp and Ru(C=CC6H4-4-

N02)(PPh3)2Cp, for example, are +0.58 and +0. 76 V vs. SCE respectively. 19 The 

presence of the electron-withdrawing N02 group draws electron density away from 

the ruthenium centre an makes it harder to oxidise, thus increasing the oxidation 

potential. When the phenylacetylide moiety C6~-R (R = H, N02) is replaced by the 

CN substituent the oxidation potential is increased by almost 300 mV to +0.92 V. 

The same behaviour is seen in complexes bearing the [Fe(dppe)Cpt end-cap. For 

example, the oxidation potential ofFe(C=C-C6~-4-N02)(PPh3)2Cp is +0.21 V vs. 

SCE which rises to +0.53 V in 24. 

Furthermore, the diynyl complex Ru(C=CC=CH)(PPh3)2Cp undergoes an irreversible 

oxidation at +0.52 V.20 Similarly, the diynyl complex Ru(C=CC=CH)(dppe)Cp* 

undergoes an irreversible oxidation at +0.44 V.20 In each case the oxidation potential 

of the diynyl complex is lower than that of the analogous cyanoacetylide complex, 

implying that substitution at the extreme end of the 5-atom Ru-C=C-C=X chain has a 
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direct effect on the electron density at the metal centre. This is consistent with 

suggestions in the previous chapter that the HOMOs of the monometallic 

cyanoacetylide compounds are delocalised across the M-C3N chain (see Chapter 6). 

Electrochemistry- Group 8 Bimetallic Compounds 

In the previous chapter it was suggested (on the basis of molecular structures and 

vibrational spectra) that the degree of delocalisation of the HOMO in the group 8 

bimetallic compounds was dependant on the nature of the metal end-cap (see 

Cyanoacetylides synthesis chapter). It was postulated that the HOMO was similar to 

that of the diyndiyl-bridged species M-C=CC=C-M' as illustrated below (Figure 7.1). 

Figure 7 .1. HOMO of bridged species (X = C, N) 

It was suggested that there was a greater degree of delocalisation across the HOMO in 

the case where the two metal end-caps were not identical (an "unsymmetrical" 

species). In the case where the metal end-caps were identical (the "symmetrical" case) 

then the degree of orbital interaction across the 6-atom M-C=CC=N-M' chain would 

be reduced. 
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The cyclic voltammograms of the group 8 bimetallic species 25-29 and 32-34 each 

display two oxidation waves in their cyclic voltammograms (Table 7.4). Whilst there 

at first appears to be a correlation between the oxidation potentials of the homo­

bimetallic complexes and their mono-metallic components (for example the two 

oxidation potentials for 25 [ +0.91 and+ 1.43 V] are very similar to those of the 

Ru(C=CC=N)(PPh3)2Cp metallo-ligand (22) [+0.92 V] and the cyanoacetylene 

complex [Ru(NCC=CC6Hs)(PPh3)2Cp](PF6) (17) [+ 1.47 V]) this is unlikely to 

actually be the case. The bimetallic complexes differ by one charge unit from the 

cyanoacetylide metallo-ligands and hence their electrochemical responses are not 

directly comparable to each other. The similarity in oxidation potentials between the 

homo-bimetallic complexes and their mono-metallic components is most likely a 

matter of coincidence. 
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Table 7 .4. Oxidation potentials of bimetallic compounds and their monometallic 

models. 

Compound I ' 1 Oxidation Potential (V) 2"0 Oxidation Potential (V) 

[ {Ru (PPh3)zCp}2(C=CC=N)](PF6) (25) +0.91 +1.43 

[ {Ru(PPh3)2Cp }(C=C-C=N){Fe(dppe)Cp} ](PF6) (26) +0.62 +1.22 

[ {Ru( dppe )Cp* }(C=CC=N){Ru(PPh3)zCp} ](PF 6) (27) +0.79 +1.37 

[ {Ru(dppe)Cp*}2(C=CC=N)](PF6) (28) +0.71 +1.17 

[ {Ru(dppe)Cp*}(C=CC=N){Fe(dppe)Cp} ](PF6) (29) +0.58 +1.03 

[{Fe( dppe )Cp }(C=CC=N){Ru(PPh3)zCp} ](PF 6) (32) +0.66 +1.34 

[ {Fe(dppe)Cp}(C=CC=N){Ru(dppe)Cp*} ](PF6) (33) +0.63 +1.22 

[ {Fe(dppe)Cph(C=CC=N)](PF6) (34) +0.55 +0.96 

[Ru(NCC.,H5)(dppe)Cp*](PF6) (2) +1.10 n!a 

[Ru(NCC=CC6Hs)(PPh3)zCp ](PF6) (17) +1.47 nla 

[Fe(NCC.,H5)(dppe)Cp](PF6) (3) +0.83 n!a 

Ru(C=CC=N)(PPh3)zCp (22) +0.92 n!a 

Ru(C=CC=N)(dppe)Cp* (23) +0.69 n!a 

Fe(C=CC=N)(dppe)Cp (24) +0.53 n!a 

The oxidation potentials of the bridging isomeric pairs 26/32 and 29/33, however, 

display some interesting behaviour. Firstly, the first oxidation potentials of the 

heterometallic complexes are lower than those of any of the appropriate monometallic 

components. Indeed, the first oxidation potentials of 26 and 29 are almost identical 

and the range spanned by the first oxidation potentials across the four complexes 

(+0.58 V- +0.66 V) is appreciably smaller than the range spanned by the second 

oxidation potentials(+ 1.03 V- + 1.34 V). Secondly, the oxidation potentials of the 

Fe-C bound bridging isomers are higher than those of their N-Fe bound analogues. 

Furthermore, the oxidation potentials of the complexes bearing the [Ru( dppe )Cp*t 
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end-cap are lower than those with the [Ru(PPh3)2Cpt end-cap, no doubt a 

consequence of the greater electron-donating strength of the Cp*/dppe ligands over 

their PPh3/Cp analogues. These trends show that the substitution of the metal centre 

at either end of the C3N chain to form a heterometallic complex results in a substantial 

change in the degree of delocalisation across the bridge. In addition, the near­

identical values of the first oxidation potentials of the bridging isomers suggest that 

the redox-active orbital is relatively insensitive to the orientation of the 

cyanoacetylide bridge. In order to better understand the nature of the metal-metal 

interactions in the group 8 bimetallic compounds it is necessary to investigate the 

changes in the vibrational and electronic spectra that occur upon the oxidation of these 

species (see spectro-electrochemical discussions below). 

Electrochemistry- Trimetallic Compound 

The trimetallic complex [ {Ru(C=CC=N)( dppe )Cp* }2 {Ru( dppe )2} ][PF 6h (31) 

displayed a single, reversible oxidation event at +0.96 V. This suggests that both the 

ruthenium centres of the metallo-ligands are being oxidised simultaneously and that 

there is little or no communication between them. This in tum indicates that the 

communication between remote metal centres is via the 7t-system. In this cis-complex 

the 7t-system of the two metallo-ligands do not interact with each other and hence 

there is no communication between the two. 
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Infra-Red Spectra-electrochemistry -Monometallic Compounds 

As has been stated previously (see cyanoacetylides synthesis chapter) the two 

absorptions observed in the IR spectrum may be either independent vibrational modes 

corresponding to the C=C and C=N fragments or coupled vibrational modes of the 

combined cyanoacetylide moiety. For the purposes of the description that follows we 

have assumed that the higher frequency absorption corresponds to the CN moiety and 

the lower frequency absorption corresponds to the C=C moiety. The data obtained is 

summarised in Table 7.6 below. 

Table 7.6. IR data for neutral and oxidised samples of22-24 

Observed IR absorptions Observed IR absorptions vCN/vCC 

Compound (neutral) (em"1
) (oxidised) (em"1

) 

Ru(C=CC=N)(PPh3)2Cp (22) 2180/201111997 2214/2180/2048/2010/1995/197 5 

Ru(C=CC=N)(dppe)Cp* (23) 2176/2010/1994 2188/2162/207011963 

Fe(C=CC=N)(dppe)Cp (24) 2174/1991 220 1/not observed 

In an effort to gather more information about the nature of the oxidation products, 

infra-red spectra-electrochemical studies were performed on a series of these 

compounds. Whilst the mono-ruthenium complexes 22 and 23 displayed reversible 

oxidations in the cyclic voltammogram at -30 oc the redox processes were 

insufficiently chemically stable on the time-scale required for bulk electrolysis in the 

cell at this temperature. Hence the spectro-electrochemcial measurements were 

performed at -90 oc in butyronitrile solution using TBAPF6 electrolyte. At this low 

temperature there are slight changes in the IR spectra of the neutral complexes. In 
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each case, the v(C=N) frequency is unchanged but two absorptions are apparent in the 

v(C!!:C) region at 2011 and 1997 cm-1 (22) and 2010 and 1994 cm-1 (23). This may be 

due to some degree of vibronic coupling between the CC and CN moieties which is 

not observed at room temperature but becomes apparent at low temperatures. 

Oxidation of these materials leads to the formation of a new series of bands, with two 

absorptions being observed in the 2160-2220 cm- 1 region in either case as well as a 

series of absorptions in the 2070-1960 cm-1 region. Whilst the patterns are not 

identical in both cases they are similar (Figures 7.2 and 7.3). 
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Figure 7.2. Oxidation ofRu(C=CC=N)(PPh3)2Cp (22) 
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Figure 7.3. Oxidation ofRu(C=CC=N)(dppe)Cp* (23) 

Given that the only variations between the complexes 22 and 23 are the nature of the 

supporting ligands then it is likely that the bonding interactions between the metal 

centres and the cyanoacetylide ligand are similar in each case. This, not surprisingly, 

results in similar IR stretching frequencies being observed in both the neutral and 

oxidised forms . In both the neutral and oxidised cases, the observed IR frequencies 

are moved to lower energy in the case of23 which bears the more strongly electron-

donating metal centre. 

In the case of the iron cyanoacetylide Fe(C=CC=N)(dppe)Cp (24), oxidation led to an 

increase of the v(C=N) stretching frequency from 2174 cm·1 to 2201 cm·1
• The 

v(C=C) band at 1991 cm·1 from the parent complex was not observed in the oxidised 

material but no corresponding absorption band was seen. Back reduction led to the 

recovery of the original spectrum. The fact that there is only a small shift in the 

v(C=N) frequency upon oxidation (~vC=N = -26 cm-1
) indicates that the oxidation in 
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this complex is predominantly metal centred and has little effect on the 

cyanoacetylide moiety. This in tum suggests a poorer interaction between the orbitals 

of the metal and the cyanoacetylide ligand in the iron complex than the ruthenium 

examples. 

Infra-Red Spectra-electrochemistry- Bimetallic Compounds 

In addition to the monometallic compounds discussed above, infra-red spectra­

electrochemical studies were also performed on the bimetallic complexes 25-29 and 

32-34. These spectra-electrochemical studies were performed at -30 oc in DCM 

solution as, again, a lower temperature was required in order to improve the chemical 

stability of the oxidation products. However, even at this temperature, only the first 

oxidation product was found to be reversible and so only that product is discussed 

herein. In each case, the absorption bands arising from the C=N and C=C moieties 

were moved to lower wavenumbers upon oxidation. Furthermore, the relative 

intensities of these two absorption bands changed from being of nearly equal intensity 

to result in the band of higher wavenumber becoming the more intense (Figure 7.4). 
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Figure 7.4. Oxidation of[ {Ru(PPh3)2Cp }(J,l-C=CC=N){Fe(dppe)Cp} ][PF6] 

Although the v(C=N) and v(C=C) bands are very similar for all of the parent species 

22-24, with the variation in v(C=N) and v(C=C) modes falling within a range of about 

10 cm-1
, it is interesting to note that there is a greater degree of variation within the 

bimetallic oxidation products (see Table 7.7 below). 
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Table 7. 7. IR data for neutral and oxidised samples of 25-29 and 32-34 

Compound vCN/vCC vCN/vCC AvCN/AvCC 

(neutral) (cm-1
) (oxidised) (cm-1

) 

[ {Ru (PPh3)2Cp}2(C=CC=N)](PF6) (25) 2197/1986 2062/1868 -135/-118 

[ {Ru(PPh3)2Cp }(C=CC=N){Fe( dppe)Cp} ](PF6) (26) 2189/1984 212111946 -68/-38 

[ {Ru(dppe)Cp*}(C=CC=N){Ru(PPh3)2Cp} ](PF6) (27) 2196/1982 2072/1868 -124/-114 

[ {Ru(dppe)Cp*h(C=CC=N)](PF6) (28) 2196/1987 20561185611573 -140/-131 

[ {Ru(dppe)Cp*}(C=CC=N){Fe(dppe)Cp} ](PF6) (29) 2194/1985 211611942 -78/-43 

[ {Fe(dppe)Cp}(C=CC=N){Ru(PPh3)2Cp} ](PF6) (32) 219111976 213611932 -55/-44 

[ {Fe(dppe)Cp }(C=CC=N){Ru(dppe)Cp*} ](PF6) (33) 2195/1985 2084/1884 -111/-101 

[ {Fe(dppe)Cp}2(C=CC=N)](PF6) (34) 2190/1984 2188/2065/1862 -125/-122 

The ftrst point of note is that in no cases do the changes in v(C=CC=N) frequencies 

for any of the bimetallic compounds match with those of the cyanoacetylide metallo­

ligands. The largest shifts in stretching frequencies upon oxidation appear to occur in 

the homometallic complexes. In these case the f1v(C=N)/ f1v(C=C) are of the order of 

-120--140 em·'. In the heterometallic complexes, however, these shifts tend to fall in 

the range -40 - -80 em·'. This would seem to indicate a greater degree of ligand 

involvement in the HOMO of the homometallic complexes. 

The IR spectra of the bridging isomers 26/32 and 29/33 are distinct. The shifts in 

stretching frequency are lower for the isomers bearing the [Ru(PPh3) 2Cp t end-cap 

than those with the [Ru(dppe)Cp*t end-cap, irrespective of the orientation of the 

bridging ligand. This may suggest that the difference in electron-richness between the 

two metal centres in the isomers 26/32 increases the metal-metal interaction and leads 

235 



Chapter 7- Cyanoacetylide Electrochemistry 

to a greater degree of delocalisation across the six-atom M-C=C-C=N-M' chain than 

in the case of the 29/33 pair, and thus the electronic structure is sensitive to the 

orientation of the bridging ligand. Indeed, if a reduced shift in stretching frequency is 

taken as an indicator of a greater degree of de localisation then the [Ru(PPh3) 2Cp t 
complexes are more delocalised with anN-bound ruthenium centre whilst the 

[Ru(dppe)Cp*t complexes favour the [Fe(dppe)Cpt centre at theN-terminus. It is, 

however, impossible to determine on the basis of the IR and electrochemical data 

alone the degree of orbital delocalisation in these systems. Mossbauer spectroscopy 

could be used to determine to what extent, if at all, the oxidation process is localised 

at the iron centre in the mixed-metal complexes, although attempts to obtain solid 

samples of the oxidised forms have, as yet, been unsuccessful. However, UV-vis-NIR 

spectra of the oxidised complexes should show absorptions arising from both 

intervalence charge transfer as well as d-d transitions within an oxidised metal centre. 

In addition to those changes described above, the spectra of the oxidation products of 

the homometallic complexes [ {Ru(dppe)Cp*}2(C=CC=N)](PF6) (28) and 

[ {Fe(dppe)Cp}2(C=CC=N)](PF6) (34) each revealed a new absorption band at 1573 

and 2188 cm-1 respectively. The assignment of these bands is not clear at present. 

UV-vis-NIR spectra-electrochemistry 

The samples 22-29 and 32-34 were subjected to UV-vis-NIR spectro-electrochemical 

studies. These were performed at room temperature in DCM solution utilising 

TBABF 4 as an electrolyte and with a 0.1 mM sample concentration. All of the 

samples showed changes in the 30,000-15,000 cm-1 region of the spectrum upon 
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oxidation with two absorption bands forming at about 25,000 cm-1 and about 18,000 

cm-1 (Figure 7.5). Upon back-reduction ofthe sample the original spectra were 

recovered, demonstrating the chemical reversibility of the redox cycle. 

Wavenumber (cm-4) 

Figure 7.5. Oxidation of[{Fe(dppe)Cp}2(~-C=C-C=N)][PF6] 

There were, however, major differences in the near infra-red (NIR) region ofthe 

electronic absorption spectrum between the monometallic samples (22-24) and the 

bimetallic samples. In the case of the monometallic materials no absorption bands 

were observed in this region upon oxidation. The bimetallic samples, however, 

showed an intense absorption envelope in the 11,000-6,000 cm-1 region of the 

spectrum. Close inspection showed this envelope to consist of three overlapping 

absorption bands, and this band envelope was deconvoluted. The data resulting from 

the Gaussian-shaped bands is summarised in Table 7.8 and an example is shown in 

Figure 7.6. 
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Table 7.8. NIR absorption data for compounds [25t-[29t and (32t-(34t 

Compound v max (cm-1
) (& (mor1dm3cm-1

)) 

[{Ru (PPhJ)2Cp}2(C=CC=N)f+ [25t 5,680 (88); 7,400 (3,600); 10,110 (810) 

[ {Ru(PPh3)2Cp }(CaCC•N){Fe( dppe )Cp} ]2+ [26t 5,980 (190); 9,300 (4,800); 11,070 (1,664) 

[ {Ru( dppe )Cp* }(C=CC::N){Ru(PPh1)2Cp} f+ [27t 6,300 (1,800); 7,900 (3,500); 8,740 (3,020) 

[{Ru(dppe)Cp*h(C=CC=N)] 2+ [28t 6,600 (2,600); 8,700 (1,400); 10,320 (840) 

[ {Ru( dppe )Cp* }(C=CC=N){Fe( dppe )Cp }]2+ [29t 6,355 (500), 8,400 (1,300); 10,720 (1,130) 

[ {Fe(dppe )Cp }(C=CC.N){Ru(PPh3)2Cp} f+ [32t 5260 (140); 9,200 (2000); 11,190 (840) 

[ {Fe(dppe)Cp }(C=CC=N){Ru(dppe)Cp*} ]2+ [33t 4,800 (260); 7,600 (900); 10, 350 (460) 

[{Fe(dppe)Cph(C=CC=N)]2+ [34t 5,400 (630), 7,000 (2,900); 9,400 (330) 
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Figure 7.6. Three Gaussian-shaped bands of[{Ru(PPh3) 2Cp}(J.J.-C=C-

C=N) {Fe( dppe )Cp}] [PF 6] 
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The origin of these three bands in bimetallic mixed-valence complexes have been 

discussed in some detail by Meyer, with the conceptual treatment beginning from the 

premise that the oxidation processes may be regarded as being purely metal centred.21 

Meyer suggested that each of the three bands arises from inter-valence charge transfer 

(IVCT) from one M" (d6
) metal to the other Mm (d5

) centre. As two of these 

transitions are formally symmetry forbidden, Meyer suggests that the low symmetry 

of these complexes, along with spin-orbit coupling and extensive overlap between the 

metal orbitals and those of the bridging ligand allows mixing of the dxy, dxz and dyz 

orbitals of the donor M" centre with the hole at the Mm centre. Thus there are three 

possible IVCT transitions and hence three bands observed in the NIR region of the 

electronic absorption spectrum (see Figure 7.7). The lowest energy transition is 

designated IVCT(l) and the two higher energy transitions as IVCT(2) and IVCT (3). 

IVCT d-d 

-tt-
2 

-tt-
Figure 7. 7. IVCT and d-d transitions for bimetallic mixed-valence complexes 

In the case of the Ru!Fe based systems under study here there is unlikely to be a 

significant degree of spin-orbit coupling. Instead, the low symmetry of the metal 
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centres and extensive orbital-mixing allows the mixing of some M 11 character into the 

M111 centre, resulting in the allowance of two d-d transitions at the M111 centre which 

are normally LaPorte forbidden (see Figure 7.7). The energy ofthese d-d transitions 

is approximated by the difference in energy between the IVCT transitions. Thus the 

lowest energy d-d transition (d-d(l)) is given by the difference in energies IVCT{2)­

IVCT{l) and the higher energy transition (d-d(2)) is given by IVCT(3)-IVCT{l).21 

These compounds as described by Meyer sit on the borderline between Class 2 

(valence trapped) and Class 3 mixed-valence compounds. However, the appearance 

of 'pseudo-d-d' transitions suggests some degree of charge localisation at a metal 

centre and hence a Class 2 coupling model will be used in the discussion of the NIR 

data presented in this chapter. The NIR data, along with coupling constants and 

theoretical band-width at halfheight (based on a Hush-type analysis of the band 

shapes) for the bimetallic complexes is presented in Table 7.9. For a description of 

the derivation of these parameters, see Chapter 4. 
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Table 7.9. Near-IR data and coupling constant for homometallic compounds. 

Compound Band V max (em-1
) !J. V 112 (calc) !J. V 112 (found) E r(A) v~ CaRctnllated d-d energies (em-1) 

(em-1) (em-1) (mor1dm3em-1
) 

[25t IVCT(l) 5678 3620 1698 88 7.64 78 

[2sr IVCT(2) 7395 4130 2586 3590 7.64 703 d-d( I) = 1717 

[2sr IVCT(3) 10107 4830 3040 810 7.64 423 d-d (2) = 4429 

[26t IVCT(l) 5982 3715 1184 190 7.62 99 

[26t IVCT(2) 9310 4635 2458 4780 7.62 890 d-d(l) = 3328 

[26t IVCT(3) 11070 5055 3810 1665 7.62 713 d-d (2) = 5088 

[27r IVCT(1) 6147 3770 1072 872 7.71 202 

[27f IVCT(2) 7994 4300 1710 3196 7.71 556 d-d(l) = 1847 

[27r IVCT(3) 8331 4385 3998 3005 7.71 841 d-d (2) = 2184 

[28t IVCT(1) 6609 3905 3630 2602 7.68 667 

[28f IVCT(2) 8711 4485 1808 1433 7.68 401 d-d(l) = 2102 

--- ------ -
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Table 7.9 (continued). 

Compound Band V max (cm-1
) fl. V 112 (calc) fl. V 112 (found) E r(A) Vab Calcunated d-d energies (cm-1) 

(cm-1) (cm-1
) (mor1dm3cm-1

) 

r2sr IVCT(3) 10322 4885 2746 820 7.68 407 d-d (2) = 3713 

r29r IVCT(1) 6355 3830 2532 498 7.63 241 

(29r IVCT{2) 8449 4420 2042 1285 7.63 400 d-d(1) = 2090 

(29r IVCT(3) 10720 4975 5180 1127 7.63 670 d-d (2) = 4365 

[32r IVCT{1) 5258 3485 1532 135 7.62 89 

[32r IVCT{2) 9170 4600 2646 1989 7.62 590 d-d(1) = 3912 

(32r IVCT{3) 11185 5085 4546 841 7.62 555 d-d (2) = 5927 

[33r IVCT(1) 4778 3320 1524 263 7.63 118 

[33r IVCT{2) 7586 4185 2280 901 7.63 335 d-d(1) = 2810 

[33r IVCT(3) 10345 4890 6654 457 7.63 477 d-d (2) = 5564 

[34r IVCT(1) 5387 3530 1136 627 7.49 170 

[34r IVCT(2) 6998 4020 2356 2853 7.49 593 d-d(1) = 1611 

[34r IVCT(3) 9398 4660 1674 326 7.49 196 d-d (2) = 4011 
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An important point needs to be raised at this juncture. The coupling constants calculated 

for these compounds are derived from the formula: 

r 

The value r in this formula is the charge transfer distance and for the purposes of this 

discussion that is assumed to be the point-to-point distance between the metal centres. 

However, the IR data for these oxidised complexes has shown that there is some degree 

of ligand character in the redox active orbital and hence the real charge transfer distance 

will be less than that used. This means that the coupling constants derived above are an 

approximation and at best correspond to a lower limit. 

Perhaps of more interest in these compounds are the calculated d-d transitions energies. 

Whilst any absorption bands arising from the d-d transitions are, in most cases, hidden 

under other absorptions such as those arising from IVCT transitions, the calculated 

energies of the d-d transitions for [[Ru(dppe)Cp*}(J..l-C=CC=N)[Ru(PPh3)zCp]2
+ ([27t) 

are 1847 and 2184 cm-1 and as such should be visible in theIR spectrum of the oxidised 

product. Close inspection of the IR spectrum reveals shoulders to the v(C=N) and 

v(C=C) bands at 2111 and 1826 cm-1 which may correspond to these pseudo d-d 

transitions (see Figure 7.8 below). 
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Figure 7 .8. IR spectrum of [[Ru( dppe )Cp* }(J.L-C=CC=N)[Ru(PPh3)2Cp ]2
+ ([27t) 

showing d-d transitions. 

As stated above, the coupling constants for these complexes represent a lower limit to the 

value as the charge transfer distance is likely to be much less than the point-to-point 

distance between metal centres, especially as the electrochemical and IR data suggest a 

greater degree of orbital mixing in these complexes as compared to the homometallic 

examples. However, there is a trend towards higher coupling constants and lower IVCT 

energies in the heterometallic complexes which seems to concur with the idea of stronger 

coupling between metal centres in these cases. Interestingly the NIR data seems to 

indicate that the metal-metal interaction in these bridging isomers is stronger in the cases 

where the iron centre is at the carbon end of the C3N chain regardless of the supporting 
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ligands at the ruthenium centre. This is in contrast to the IR data for which it was 

suggested that the reverse was true for the [Ru(dppe)Cp*f complexes. 

Furthermore, there is a trend towards a greater metal-metal interaction in those materials 

where the difference in electron density between metal end-caps is greatest, i.e. 

[ {Ru(PPh3)2Cp}(J.!-C=CC=N){Fe(dppe)Cp} ]2
+ and [ {Fe(dppe)Cp}(J.!-

C=CC=N) {Ru(PPh3) 2Cp} ]2
+. This observation matches well with the electrochemical 

and spectro-electrochemical observations in this chapter as well as conclusion drawn 

from the physical properties and molecular structures of these compounds in the previous 

chapter. 

In summary, the work presented herein shows that the cyanoacetylide ligand represents a 

novel bridging ligand to allow metal-metal interactions between two metal centres. The 

studies suggest that the strength of this interaction is dependent on the nature of the metal 

end-caps and will be stronger where there is a difference in electron-density between the 

metal centres. However, whilst suggestions have been made as to the nature of these 

metal-metal interactions, these are by no means definitive. The demonstrated stability of 

the mono-oxidised species means that the oxidation products should be isolable and thus 

allow for crystallographic characterisation. These studies, along with Mossbauer and 

Stark spectroscopy techniques should be of help in determining the oxidations states of 

the metals under study. Further to these studies, computational modelling of these 

systems is under way at the present time and the results of these studies, along with 

rationalisation, should further our understanding of these systems. 
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