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Abstract 

In complexes where the energy difference between the high and low spin state of the metal 

is of the order of kbT, temperature can be used to induce a spin crossover transition 

(SC). In some cases, at very low temperatures, irradiation can induce excitation to a 

meta-stable high spin state. At low temperatures, this Light-Induced Excited Spin-State 

1lapped (LIESST) state is generally long lived, enabling structural examination. 

The results presented herein refer to a wide range of iron(II) spin crossover materials 

which have been structurally studied in both thermal and light induced states. These fall 

into three categories; mononuclear, dinuclear and polymeric. The mononuclear complexes 

studied include FeL[H2B(Pz)2]2 L = 2,21-bipyridine (1) and 1,10-phenanthroline (2), of 

which 2 was found to undergo a change in symmetry in addition to the change in spin 

state, leading to a novel light induced polymorphism that has not been previously seen. 

Two dinuclear compounds with step transitions have been examined. While 

{[N(CN)2J(FeBpl)2}(PF6 )3 undergoes a gradual transition, the transitions in 

[Fe(Btz)(NCS)2]2Bpmd are abrupt and the latter also undergoes LIESST but with 

a rapid relaxation that has not been observed previously with any other technique. While 

the origin of this relaxation is uncertain, the structure of this excited state has been 

studied under constant irradiation. 

The largest structural study of three dimensional SC materials has been carried out, in

cluding bimetallic polymers with [Au(CN)2]-, [Ag(CN)2]-, [Ag2(CN)3]- and [Pd(CN)4]2-

bridging ligands. These anionic bridges have been shown to enhance cooperativity be

tween iron centres leading to abrupt transitions and hysteresis. These materials have been 

shown to undergo LIESST, crystalline state allosterism, and thermo-chromism. Such 

multi-property materials have a high potential for technological applications. 
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Chapter 1 

Structure Property Correlations 

and Spin Crossover 

1.1 Structure Property Correlations 

Structural studies and in particular crystallographic studies are vitally important to the 

area of materials science as they are the only way to tmequivocally 'see' the atomic arrange

ment within a material. This 'vision' leads to an tmderstanding of a material's properties 

and behaviour, without which we cannot make improvements and/or predictions. One 

of the key areas of materials science where this approach is indispensable, is the study 

of materials that tmdergo some sort of change when influenced by an external stimulus. 

Such changes are known as phase transitions. 

1.1.1 Phase Transitions 

Many materials undergo phase transitions and a considerable amount of time is dedicated 

to their study and their potential technological applications. Possible uses include key 

components of electronic displays, batteries, switches, information storage systems etc .. 

Phase transitions can either be structural in nature or involve a change in physical prop

ertiPs. However, the most interesting phase transitions are those where a change in the 

physical properties is accompanied by a structural change. The study of these transforma

tions can give useful insight into the mechanism of the transition and also into the nature 

of the physical property. Understanding the behaviour of a material and the mechanism 

2 
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P, T 

Figure 1.1: Graphite and diamond. The hexagons that make up the graphite sheets are 

shown (left) together with the continuous array of tetrahedra in diamond (right). To 

convert graphite to diamond high temperatures and pressures are required. 

for a phase change is the first step towards the design of new materials possessing enhanced 

properties. 

Characteristics of Phase Transitions 

There are two major types of structural phase transition: Displacive and Reconstructive. 

Displacive transitions have low activation energies and involve only small structmal distor

tions. In contrast, reconstructive transitions involve bonds breaking and reforming. These 

often require extreme conditions as they have higher activation energies. For example, 

there are two structures (or allotropes) of carbon that are stable at room temperatme: 

graphite and diamond. In order to induce a transition between these two states, very high 

pressure and temperature is required as the transition is highly reconstructive (Figme 1.1). 

These transitions are also often slow and there is no inherent symmetry or structural re

lationship between the two phases. In contrast, spin transitions are generally displacive 

in nature (see below). 

First and Second Order Transitions 

Transitions can also be classified by considering the behaviom of thermodynamic quantities 

on passing from one polymorph (or phase) to another. At the equilibrium temperature or 

pressure, the Gibbs free energies of the two phases are equal, therefore 6.G = 0 ( therfore 

6.H = T 6.8, from equation 1.1). AI though there is no discontinuity or change in the free 

energy on passing between two phases, there may be a discontinuity in a derivative of the 
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free energy. 3 

The first derivatives of the free energy with respect to pressure (P) and temperature (T) 

correspond to volume (V) and entropy (S, equations 1.1 to 1.4). These can be measured 

using dilatometry and differential scanning calorimetry (DSC) respectively. Dilatometry is 

generally used to measure a change in volume, though this can sometimes be seen visually 

e.g. when a crystal shatters as a result of a sudden increase in the rate expansion or 

contraction. In crystalline materials however, expansion or contraction rates can also be 

measured using diffraction, where cell parameters recorded as a function of temperature 

can be used to identify phase transitions. 

DSC on the other hand, involves taking a small quantity of sample and heating it, 

simultaneously comparing its enthalpy with that of a known reference. Although this is 

probably the easiest way to test for a phase transition, not all transitions are visible with 

DSC. In some transitions there is no change in the first differential, only in the second 

differential. These second order transitions are more difficult to see as the changes involved 

are usually much smaller, but they can be characterised by changes in the heat capacity 

Cp, thermal expansion o:, and compressibility (3 (equations 1.5 to 1.7). 

tlG = tlH- TtlS (1.1) 

H= U+PV (1.2) 

fJG = V 
fJP 

(1.3) 

fJG = -S 
fJT 

(1.4) 

fJ2G as Cp 
(1.5) fJT2 -

--
p fJTp T 

fJ2G f)V 
fJPfJT = fJTp = Vo: (1.6) 

fJ2G = fJV = -V(J 
fJP:j. fJPr 

(1. 7) 
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Figure 1.2: Schematic of octahedral splitting in transition metals. 

1.2 The Spin Crossover Phenomenon 

5 

An important area of phase transition research is that of Spin Crossover (SC). These 

materials undergo an electronic transition in response to a number of stimuli, including 

temperature, pressure and light. 4 These transitions are generally displacive in nature 

and tend to result in a small structural change around a metal atom, usually a change 

in bond lengths and angles, but can also include more dramatic structural changes, for 

example, loss of symmetry. SC is usually most apparent in magnetic susceptibility data, 

but can often also be seen with many other techniques including Mi:issbauer spectroscopy, 

crystallography, light absorption spectroscopy, differential scanning calorimetry and X

ray absorption spectroscopy. In addition, there is sometimes a colour change, making 

these materials a particular target for data display technology, but they have many other 

potential uses including data storage. 

1.2.1 High Spin and Low Spin 

When a transition metal is ligated, the energy of the five d-orbitals is no longer the same. 

This loss of degeneracy or splitting, depends on the field caused by the ligands and the 

metal centre, resulting in either a tetrahedral or an octal1edral geometry. vVhere there is 

octahedral coordination, the dx2-y2 and dz2 orbitals have a higher energy than the dxy, dxz 

and dyz orbitals (Figure 1.2). In tetrahedral coordination, this arrangement is reversed. 



1.2. The Spin Crossover Phenomenon 6 

a) 

+++ 
Figure 1.3: Schematic of low spin and high spin Fe2+ (a and b respectively). 

Crystal Field Theory ( CFT) 

Crystal Field Theory is used to explain the loss of degeneracy in the d orbitals of a metal 

complex. 

In an octahedral complex, the energy separation between the e9 and t29 energy levels 

is known as ~oct. ~0 or lODq and it depends on a number of factors including the metal 

and its oxidation state as well as the type, geometry and number of ligands. It is possible 

to list both the ligands and the metals in order of increasing field strength, i.e. the order 

that increases ~oct. which is called the spectrochemical series:5• 6 

Low ~oct 

< Pyd, NH3 < Bpyd, Phen < ON2 - < eN - < CO High ~oct 

Low ~oct High ~oct 

Electronic Configurations in Octahedral Complexes 

For transition metals which have between four and seven electrons in the d-shell there are 

two possible electronic configurations. For example, Fe2+ has six electrons in the d-shell, 

which can be arranged in two ways: low spin and high spin (Figure 1.3). 

Which one of these spin states is preferable depends on the overall energy, which comes 

down to a balance between unfavourable 'Pairing Energy' of the electrons and the benefit 

of the lower energy t29 orbital. 

Increasing the octahedral splitting ~oct, increases the energy difference between the 

t 29 and the e9 levels which means more energy is saved by using the lower, t29 level. 

This splitting depends on the metal and the ligands and hence the spectrochemical series. 

The first three electrons singly fill each of the three t29 orbitals, but the energy gained 
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from putting the next electron into the lower level is opposed by the unfavourable Pairing 

Energy. Thus the electronic configuration depends on this energy balance ( t~9 e~ versus 

t~9 e~). 
The Pairing Energy is made up of two components; the Coulombic Repulsion and the 

Exchange Energy. The Coulombic Repulsion is caused by pushing two electrons together 

into the same orbital. Heavier metals have more diffuse orbitals, so this term gets smaller. 

Consequently, second and third row transition metals, where this term is very small are 

almost always low spin. The Exchange Energy is proportional to the munber of parallel 

electrons i.e. those with their spin in the same direction. The greater this is, the more 

difficult it is to pair electrons. Consequently, d5 compounds (for example Fe3+ and Mn3+) 

are mostly high spin. 

Structural Differences 

Crystallographically, high spin materials can be distinguished from low spin using diffrac

tion techniques, by comparison of bond lengths. In iron(II) complexes, the metal to ligand 

distances are usually about 0.2 A longer for high spin structures than low spin materials.4 

This is because electrons are removed from the anti-bonding e9 orbital and placed in the 

bonding t9 orbital. This leads to a strengthening of the metal-ligand bonds which is man

ifested in a shortening of the bond in the low spin state and an associated change in the 

vibrational frequencies. 

A search of the Cambridge Structural Database1 clearly shows the bimodal distribution 

for iron-nitrogen ligands (Figure 1.4). However, in contrast to the nitrogen ligands most 

iron-oxygen ligand complexes are clearly high spin (Figure 1.5).* Tllis is because the 

oxygen bound ligands generally confer a much weaker ligand field than nitrogen bound 

ligands. For example, iron(II) hexahydrate salts are generally high spin compared with 

iron(II) hexacyanate salts which are low spin. 7 For intermediate strength ligand fields, the 

*Searches were carried out for Fe-N fragments and Fe-0 fragments and in both cases the search criteria 

specified that the iron was six-coordinate. Polymeric and disordered structures were excluded and only 

structures with no errors and R-factors < 10% were accepted. 
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Figure 1.4: Histogram of Fe-N bond lengths. 

energy difference between the two states is of the order of kbTt and a change in pressure 

or temperature can induce a transition between the two states. This is known as a spin 

transition or spin crossover (SC). 

Spin Transitions 

So, in complexes where the difference in energy between the high spin and low spin states 

is of the order of kbT, temperature can be used to induce a transition between the spin 

states. Thus cooling a high spin sample can result in the low spin species and vice versa. 

Since there is a change in volume associated with spin crossover, transitions can also be 

pressure induced with high pressure generally favouring the low spin state and in general 

increasing the temperature of the transition. One example of this is the triazole derivative 

[Fe(Htrz)J]Cbs2.H20 which has a sharp transition at about 180 K with a 5 K hysteresis.8 

Applying a pressure of 5.9 kbar increases the transition temperature to 324 K. In some 

cases irradiating with light also induces a transition, which is known as the LIESST effect 

t kb is the Boltzmann constant, and Tis the temperature (K). 
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Figure 1.5: Histogram of Fe-0 bond lengths. 

(see Section 1.2.3). In all these cases, the communication between molecules is critical to 

the way the transition is passed from one SC centre to the next. 

1.2.2 Cooperativity 

The concept of cooperativity is an important one when discussing SC and it refers to the 

way that SC centres 'communicate' through a material. This 'communication' is important 

as it explains how the transition spreads throughout the structure, and indeed cooperative 

effects constitute the basic mechanism for the spin crossover transition. 

Weak Interactions in the Solid State 

In the solid state, a molecule interacts with the surrounding molecules. As such, molecules 

cooperate all the time in the solid state through weak interactions like hydrogen-bonding 

and 1r- 1r interactions. Hence, these types of interactions are critical in spin crossover 

as they provide a path for cooperativity. A key example is the series of compounds 

based on Fe(L)2(NCS)2 where L can be one of three different bidentate ligands, 2,2'-bi-

4,5-dihydrothiazine (Bta), 1,10-phenanthroline (Phen) and dipyrido[3,2-a:2'3'-c]phenazine 

(Dpp) (Figure 1.6).9- 11 From the crystal packing diagrams it is clear that the Dpp ligands 
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overlap allowing a considerable 7r-7r stacking interaction. This can be compared with the 

minimal overlap of the Bta ligands and the intermediate overlap of the Phen ligands. Thus, 

the ligand overlap and therefore the 7r-7r stacking interactions make a vast difference to 

the cooperativity, which is most obvious in the natme of the transition (Figure 1.6). 

Abrupt Transitions and Hysteresis 

In the Bta compound, the transition takes place over a large temperature range because 

there is little cooperativity. The increased cooperativity in the Phen compound means 

that the transition takes place over a much smaller temperature range and is therefore 

described as abrupt. This is one of the key ways of identifying cooperative systems - by 

the sharpness of the transition. Sharp transitions are caused by increased cooperativity 

which allows the spin transition to be communicated rapidly through the structure over 

a small temperature range. SC transitions take place as a result of coupling between 

the metal centres and crystal lattice, which takes place through the metal-ligand bond 

vibrations. Consequently, the transition proceeds though the formation of domains of 

molecules with the same spin and these in turn spread throughout the sample. The 

stronger the metal-lattice coupling, the faster the domains spread and the more abrupt 

the transition. Since the metal-ligand vibrations depend upon the bond length, larger 

metal-ligand contractions generally give sharper transitions. 

Increasing the ligand overlap by substituting the Phen ligand with the Dpp ligand 

leads to increased cooperativity which is apparent in the abrupt transition which takes 

place with hysteresis. Hysteresis is where the transition occurs at a lower temperature 

when cooling than when heating. This is caused by a kind of inertia, where the system 

opposes the transition as long as possible until all the molecules can make the transition 

at almost the same time. All these effects are most easily seen by looking at magnetic 

susceptibility data (see pages 15-18). 

Dilute and Solution Based Systems 

In contrast, spin crossover systems in solution are much more gradual, following the predic

tion of the Boltzmann distribution between two vibronic manifolds. Similarly, in systems 

where the spin crossover centre has been "diluted" by doping with a different metal centre 
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Figure 1.6: Ligand overlap in Bta, Phen and Dpp complexes (top, middle and bottom 

respectively).9-11 The increased ligand overlap (circled) leads to increased 1r-1r stack

ing interactions and therefore cooperativity, which can be seen initially in the increased 

abruptness in the Phen complex and in the hysteresis in the Dpp complex as shown by 

the magnetic susceptibility data. 
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(iron is often diluted with zinc as they have a similar volume), the cooperativity is reduced 

and the transition becomes less abrupt. Interestingly, the increased cooperativit.y seen in 

pure or neat spin crossover compounds leads to a strongly accelerated relaxation of any 

meta-stable excited state. 12 

1.2.3 Light-Induced Excited Spin-State Trapping (LIESST) 

In the course of their work on the [Fe(Rtz)6](X)2 series of compounds (see page 26), 

Gutlich and co-workers studied [Fe(Ptz)5](BF4)2 and discovered an hitherto unreported 

phenomenon, now known as LIESST. 13 

In 1984 Decurtins et al. reported that by using a xenon arc lamp to irradiate the low 

temperature low spin [Fe(Ptz)6](BF 4)2, the high spin state could be repopulated, a process 

which they followed using Mossbauer spectroscopy. 13 

Initially, they cooled the sample below the transition temperature (which takes place 

at approximately 135 K), where the sample contained only low spin Fe2+. The sample 

was then irradiated at 15 K yielding the pure high spin state with spectra comparable 

to those recorded at room temperature. They then warmed the sample to approximately 

50 K and then cooled it back to 15 K, yielding the spectra of an HS/LS mixture. From the 

integrated areas, they found that this mix was 46% low spin and 54% high spin. However, 

repeating the warming to 50 K and cooling back to 15 K process, increased the amount of 

HS in the sample to 70%. Finally raising the temperature to 97 K, the Mossbauer spectra 

indicated that the sample was pure LS and on warming through the transition at 135 K 

the sample returned to the original pure HS state. 

They called the formation of this meta-stable high spin state Light-Induced Excited 

Spin-State Trapping or LIESST. 

Following this excitation of a low spin state to give the meta-stable high spin species, 

Decurtins et al. also tried the reverse experiment. 14 A single crystal of [Fe(Ptz)5](BF4)2 

was trapped in the meta-stable high spin state then irradiated with infrared light 

(.-\ > 700 nm). This led to the regeneration of the low spin species which was char

acterised using absorption spectroscopy. They called this process "Reverse-LIESST". 
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Figure 1. 7: A schematic of the mechanism of the LIESST process in Fe11 complexes. 

Irracliation of the low spin 1 A19 leads to the formation of the 1T19 state, which then 

relaxes via intersystem crossing (ISC) to the meta-stable high spin 5T2g state (shown in 

red) . Irradiation of the high spin 5T 29 state followed by ISC is also shown (blue). 15 
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Theory 

F\rrther to their experimental work, Decurtins et al. proposed a mechanism for the LIESST 

process (Figure 1.7). 14 They proposed that during excitation with green light, the complex 

is excited from its low spin 1 A19 state to a 1T 19 state which is spin allowed. The 1T 19 

state typically possesses a lifetime of a few nanoseconds and relaxation takes place through 

intersystem crossing (ISC) via the 3T 19 to the meta-stable high spin 5T29 state. If the 

temperature is sufficiently low this meta-stable state is trapped and has an effectively 

infinite lifetime that is progressively reduced on warming. An alternative LS-tHS route 

is sometimes possible by irradiating with infrared light (>. = 980 nm), which leads to 

excitation from the 1 A19 state to the 3T 19 state followed by ISC to the HS 5T29 state. 15 

The reverse-LIESST process occurs on irradiating the high spin 5T29 state with infrared 

radiation (>. ~ 820 nm), leading to excitation into the 5E9 band followed by ISC. 

1.2.4 Technological Applications of Spin Crossover Materials 

Cooperativity is vital if these materials are to be used in technological devices such as 

molecular switches or temperature sensors. For a material to be used in these ways, the 

transition must be sharp. Another potential use is in memory or data storage devices. 

In this case, cooperativity is vital, but is not the only consideration. In addition to a 

large hysteresis and a sharp phase transition, the transition should take place as close 

as possible to room temperature, ideally with the centre of the hysteresis at ambient 

conditions. Where the material is highly coloured it is also possible to differentiate between 

two samples at room temperature, one of which has been heated and one cooled, since 

the sample that has been heated will be high spin, while the sample that has been cooled 

will be low spin and their colours different. This ability to tell what has happened to the 

sample is known as the memory effect. 

It is also possible to use materials with a dramatic colour change in electronic dis

plays.16· 17 The spin crossover material can be dispersed within a resin and layered on top 

of an alumina plate that contains resistive dots and conductive electrodes. When a current 

is applied to the resistive dots, they heat up causing a spin transition in the material in 

the resin above and a corresponding colour change. The system can then be cooled down 

to reverse the spin transition. This heating and cooling can be induced using a system of 
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Peltier elements. 18 

More recently work has been performed on spin crossover materials as potential 'In

telligent Contrast Agents' for Magnetic Resonance Imaging (MRI). MRI is based on the 

same phenomenon that is widely used for chemical analysis, Nuclear Magnetic Resonance 

(NMR). In 1971 Raymond Damadian showed that the nuclear magnetic relaxation times 

of tissues and tumors differed, 19 thus motivating scientists to consider magnetic resonance 

imaging for the detection of disease. In iron(II) spin crossover materials the MRI (or 

NMR) signal is dominated by the paramagnetism when the material is high spin, leading 

to a broadening of the signal. One idea is that this effect could be used in monitoring a 

tumor during hypothermia treatment. 20 

1.2.5 Characterisation Techniques 

A wide range of techniques and equipment has been used to study the spin crossover phe

nomenon. However, none give a complete picture of the process and in order to characterise 

the transitions fully, a combination of techniques are needed. 

Magnetism 

Ions with unpaired electrons (paramagnetic ions) have a net magnetic moment, while those 

with paired electrons (diamagnetic ions), have none. Since the spin crossover phenomenon 

involves a change in the number of unpaired electrons, there is a corresponding change in 

the magnetic susceptibility which can be measured using a number of different pieces of 

equipment, including Faraday Balances,t Vibrating Sample Magnetometers (VSMs) and 

Superconducting Quantum Interference Devices (SQUIDs). The use of these instruments 

can give vital information on the nature and temperature of electronic transitions. 

Types of Transition 

There are a number of different characteristics that can be inferred from variable temper

ature magnetic susceptibility data. If there is a slow change in the magnetic susceptibility 

1 Also known as Thermal Magnetization Analyzers (TMAs). 
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Temperature Temperature 

Figure 1.8: Schematic of a gradual transition (left) and an abrupt transition with hysteresis 

(right). The cooling curve is shown in blue with warming curve in red. 

with respect to temperature then the transition is described as gradual or smooth. On the 

other hand, if there is a rapid change the transition is described as abrupt (Figure 1.8). 

This is an important characteristic as more abrupt transitions indicate strong coopera

tivity which is vital for potential applications. Strongly cooperative materials also have 

a hysteresis where the transition does not follow the same path on heating and cooling 

(Section 1.2.2). TI·ansitions with a hysteresis are also described as discontinuous. 

Not all SC transitions go to completion and in some cases there is residual low spin 

at high temperature. This occurs because the spin crossover phenomenon is statistical in 

nature and although the ligand field is strong, it is not strong enough to enable complete 

conversion, leaving a small percentage of residual high spin. Transitions where there is 

residual low spin at high temperature (or vice versa) are known as incomplete transitions. 

Step Transitions 

Another feature that is sometimes seen in magnetic susceptibility data is a step or plateau, 

where there is an intermediate species that is exists, usually half way between the two 

extreme states. Sometimes this is because there is more than one iron centre and the 

intermediate has half the iron centres in the high spin configuration and half in the low 

spin configuration. However, often it is because the high and low spin centres are averaged 
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out over the structure. In such cases, it is possible that there is long range ordering, but 

usually the super lattice reflections are so weak that they are impossible to see under 

laboratory conditions. The first material where super lattice reflections have been observed 

that are solely due to HS/LS ordering is [Fe(Pic)3]Cl2.EtOH.22 

[Fe(Pic)3]Ch.Et0H 

The iron(II) picolylamine (Pic) complexes are one of the oldest series of spin crossover 

complexes, first reported by Renovitch and Baker in 1967 (Section 1.3.3).23 One of these 

complexes, [Fe(Pic)3]Cl2.EtOH, undergoes an abrupt spin transition at approximately 

120 K on cooling. In addition, optical and magnetic susceptibility data together with unit 

cell parameters, indicate that there is an intermediate phase between 114 K and 122 K.24 

Initial structural studies of this iron complex confirmed that the intermediate phase 

together with the high and low spin phases has a single iron atom in the asymmetric 

unit. 25 All three phases were found to be isostructmal except for minor changes in the 

disorder and location of the chloride counter ions and ethanol solvent. However, more 

recently, single crystal diffraction data have been collected using BM1A (Swiss-Norwegian 

Beamline) at the ESRF where additional Bragg reflections were found, indicating the 

presence of a superstructure caused by the separation of the single iron centre into two.22 

The percentage of high spin iron atoms on each site was refined to 85% on one and 13% 

on the other. 

Hexadentate Salicylaldehyde Iron(II) Derivative 

Another complex that undergoes a step transition is an iron(II) centre caged by a ligand 

formed through the condensation of nitrosalicylaldehyde with tetraazadecane (Sal).26' 27 

Unusually, Fe(Sal) is a monomeric iron centre bound by four nitrogen and two oxygen 

atoms of the Sal ligand which form a complex cage (Figure 1.9). Like [Fe(Pic)3]Cl2.EtOH, 

the compound undergoes a two step spin crossover that occurs concurrently with two 

crystallographic phase changes. During the first step, the structure remains monoclinic, 

but looses a c-glide plane, changing from P2/ c with half a molecule in the asymmetric unit 

at 292 K to P2 at 153 K, where there are two crystallographically unique half molecules. 

The second step involves a fmther change in space group at 103 K apparently to P1 
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Figure 1.9: The monomeric Fe( Sal) consisting of a single iron centre bound by four nitrogen 

and two oxygen atoms of the Sal ligand which forms a complex cage. 

where there are two entire unique molecules, though the refinement was destabilised by 

a large degree of correlation and a shortage of data. In this case however, the bond 

lengths for the intermediate structure indicate that both iron centres are between high 

and low spin, suggesting that in this case at least, the intermediate phase is truly HS/LS 

disordered. The possibility remains however, that this picture is incomplete and without 

further investigation it is not possible to ascertain whether or not there is HS/LS ordering 

in the intermediate phase. 

Spectroscopic Methods and Other Useful Techniques 

A number of spectroscopic methods have been used to characterise the SC phenomenon, 

some commonly available, some more unusual. 

In infrared spectroscopy for example, a shift of 150 cm- 1 from about 250 cm- 1 for 

high spin iron complexes to approximately 400 em - 1 for comparable low spin species is 

typically seen (an approximate energy change of 0.02 eV).28 Changes in spin state can 

also induce a smaller shift in the frequency modes seen within the ligands. For example, 

cyanide frequency modes have been shown to shift 40 cm- 1 in iron thiocyanate and iron 

selenocyanate complexes. 29 

The information obtained from Raman spectroscopy is similar in nature to that ob-
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Figure 1.10: Raman spectra for Fe(Phen)2(NCS)2 at 300 K and 100 K.30 

tained from infrared spectroscopy. In terms of spin crossover, the transition can be followed 

by observing the characteristic peaks due to the different spin states (Figure 1.10).30 A 

general shift to higher frequency can be seen as the metal atom changes from high spin 

to low spin. This is in keeping with infrared spectroscopy where there is a similar shift 

caused by the shortening and strengthening of the Fe-N bonds. 

One of the most useful techniques used in the study of spin crossover is Mossbauer 

spectroscopy. As the majority of spin crossover materials are iron compmmds and the 

most commonly used nuclei for Mossbauer Spectroscopy is 57Fe, the two are ideally 

suited. Changing the spin state leads to small changes in the absorption energies, which 

can easily be seen with Mossbauer spectroscopy. For example, the high spin spectra of 

[Fe(Ptz)6] (BF 4 )2 has two bands while the low spin spectra consists of one band only (Fig

ure L 11). 7 The integrated intensity of the bands seen with Moss bauer spectroscopy are 

proportional to the fraction of molecules in the spin state, which makes variable temper

ature Mossbauer spectroscopy an important characterisation technique. However, while 

iron(II) compounds give sharp, well defined spectra, iron(III) spectra are much broader 

making data analysis more difficult. 

Since bond length is a key indicator of spin state, Extended X-ray Absorption Fine 
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Figure 1.11: Temperature dependent 57Fe Mossbauer spectra for [Fe(Ptz)6]((BF4)2).7 

While the complex is high spin at 155 K and low spin at 98 K, both states are present at 

136 K. 

Structure (EXAFS) and X-ray Absorption Near Edge Spectroscopy (XANES) are also 

used to characterise SC materials. The main advantage of both XANES and EXAFS over 

diffraction methods is that since they do not rely on long range order, they can be used on 

amorphous materials or where crystallinity is poor and even on liquids and gases. However, 

little or no information can be derived for anything further than three or four angstroms 

away from the metal centre, which means X-ray absorption spectroscopy cannot be used 

to see the 'bigger picture'. Thus it is not possible to see other structural features (like 

solvent or counter ion disorder, hydrogen bonding or 1r-1r interactions) making it more 

difficult to correlate structural changes with physical properties. In addition, if there is 

more than one distinct type of iron centre within a sample, the spectra are considerably 

more complicated hence obtaining information is more difficult. 

Finding a phase transition can often be a problem as many of the methods detailed 

above are time consuming or expensive. So efficient methods like Dilatometry,§ Differential 

§Dilatometry is also known as Thermomechanical Analysis. 
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Figure 1.12: The iron environment in a h::em unit. The substituents of the porphyrin and 

part of the histidine are omitted for clarity. 

Scanning Calorimetry (DSC),'If and Thermogravimetric Analysis (TGA) are invaluable for 

diagnosing the presence and location of a phase transition. 

1.3 Some Important Spin Crossover Materials 

A wide variety of materials undergo spin crossover, from proteins to small molecules. 

Understanding the mechanism of these processes is often key to understanding why SC 

occurs. So, studying the structures of these materials and correlating them with their 

properties is vital in aiding this understanding. 

1.3.1 Spin Crossover in Nature 

Iron is abundant in nature and is probably most important in oxygen transport and storage 

in mammal circulation systems, in which SC plays a crucial role. 

Myoglobin and Hrem Units 

Myoglobin is a protein, consisting of one h::em unit and 153 amino acid residues, that is 

found in muscle tissue where it is used to store oxygen. The h::em unit is where the active 

site resides and consists of a five coordinate iron(II) centre ligated by four nitrogen atoms 

from a porphyrin ring system and the nitrogen atom from a histidine amino acid group from 

another part of the protein (Figure 1.12). This iron centre binds reversibly with oxygen, 

,Differential Scanning Calorimetry is also known as Differential Thermal Analysis (DTA). 



1.3. Some Important Spin Crossover Materials 22 

0 
I 

-N-Fe-N-

1 ,a. .. 
o----H,A 

~N 

Figure 1.13: Schematic of oxygen binding to a haom unit. The iron moves from the out 

of plane position to the centre of the plane with a corresponding shortening of the Fe-N 

bond lengths and undergoes spin crossover. 

changing from high spin to low spin. This spin crossover causes a change in geometry 

round the iron atom. Thus, the distorted square pyramidal type arrangement changes 

to an octahedral geometry with the oxygen binding to the iron at an angle. Initially, in 

the deoxygenated form, the porphyrin is slightly domed with the iron sitting slightly out 

of the plane in the histidine direction. When the oxygen binds, the Fe-N bond lengths 

shorten allowing the porphyrin to flatten out and the iron to move into the centre of the 

porphyrin plane, pulling the histidine amino acid about 0.5-G.6 A closer to the porphyrin. 

The oxygen binds to the iron at an angle, in the bent ry 1 mode and forms hydrogen bonds 

with another histidine on the other side of the porphyrin ring (Figure 1.13).31 

Cooperativity in Hremoglobin 

Haomoglobin, the protein used to transport oxygen round the body, also contains haom 

units like myoglobin. However, while myoglobin consists of a single chain of runino acids 

with one haom unit, haomoglobin has four chains each with their own haom unit. These 

chains are of two different types known as a and (3 and there are two of each type. 32 

While the binding of oxygen to myoglobin is a. relatively simple bimolecular process, 

in haomoglobin the coordination of oxygen is a cooperative process, with the a and (3 

chains involved in changing the shape of the overall protein by adjusting the access to 

the iron centres. Tllis cooperative behaviour aids rapid respiratory transport of oxygen 
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in mammals. The uptake and release of oxygen takes place over the relatively narrow 

partial pressure range, thus absorption and desorption take place according to the slight 

difference in pressure between the lungs and muscle tissue.32 

1.3.2 Spin Crossover - Discovery and History 

Although spin crossover has always existed, it was only discovered in the 1930s. 

Cambi and co-workers33- 35 were studying the magnetism of derivatives of iron(III) tris

dithiocarbamat.es (which have since been studied structurally by Leipoldt and Cop

pens).36,37 Cambi and co-workers observed electronic states whose population was strongly 

dependant on temperature, an anomaly they assigned to a rearrangement of the elec

trons in the d-orbitals as the temperature was decreased. Despite this discovery, it took 

another thirty years before the thermal spin crossover complexes, [Fe(Phen)2(NCS)2], 

[Fe(Phen)2(NCSe)2] and [Fe(Bpyd)2(NCS)2] were first reported by Baker and Bobonich 

in 1964.38 

[Fe(Phen)2(NCS)2] 

Baker and Bobonich studied the magnetic moments at different temperatures of a series of 

1,10-phenanthroline complexes of the form [Fe(Phen)2X 2] where X = Cl-, Br-, 1-, N3, 

Ncs- and NCSe- together with the related bipyridine complex [Fe(Bpyd)2(NCS)2].38 

They found that while the magnetic moment was slightly lower than expected, it was es

sentially independent of temperature for the chloride, bromide, iodide and azide complexes. 

However, in the case of the Ncs- and NCSe- compounds, between room temperature and 

100 K there was a dramatic decrease from approximately 5 BM to about 1.4 BM. Konig 

and Madeja explained that two magnetically different [Fe(Phen)2X 2] complexes could be 

prepared, dependant on the ligand field strength of X.39 They concluded that the effect 

seen in the thiocyanate and selenocyanate complexes where the ligand strength is close to 

the crossover point, was that of a spin state equilibrium. 

Since 1964, [Fe(Phen)2(NCS)2] has become one of the most widely studied SC com

plexes, with a wide range of techniques employed. These include infrared spectroscopy,28,40 

Mossbauer spectroscopy,41 Raman spectroscopy,30 NMR,42 ESR,41 calorimetry,43 and 

muon spin resonance44 as well as structural studies.9 
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293 K 130 K 293 K, 1.0 GPa 30 K, Irr. 

Fe-Nl 2.199(3) A 2.014(4) A 2.003(7) A 2.177(4) A 

Fe-N2 2.213(3) A 2.005(4) A 1.97.5(8) A 2.184(4) A 

Fe-N20 2.057(4) A 1.958(4) A 1.954(7) A 2.006(5) A 

Table 1.1: Fe-N bond lengths for [Fe(Phen)z(NCS)z] under different conditions. N1 and 

N2 are part of the Phen ligand, while N20 is part of the thiocyanate. 

One of the most interesting things about this compound is the fact that exhaustive 

studies have shown that it not only undergoes thermally induced spin crossover, but also 

light and pressure induced transitions, all of which have been studied crystallographi

cally. 9, 45,46 

The SC transition takes place at around 176 K and the sharp transition that takes 

place over a temperature range of only 5 K indicates that it is cooperative in nature, 

although any hysteresis is small, less than 1 K in magnitude (Figure 1.6, Section 1.2.2). 

The structure is orthorhombic (P ben) with one half molecule in the asymmetric unit, with 

the iron centre sitting on a two-fold rotation a.xis (Figure 1.14). Structural studies carried 

out by Gallois et al. on [Fe(Phen)z(NCS)z] above and below the transition (at 293 K and 

130 K respectively), show that while there is no change in symmetry, the FeN0 octahedron 

becomes more regular for the LS state and the Fe-N bond lengths are between 0.1 A and 

0.2 A shorter (Table 1.1).9 It is interesting to note that the shortest Fe-N bond length 

is to the thiocyanate ligand which also undergoes the least contraction. This reduced 

contraction is thought to be because thiocyanate is a weaker 1r-electron acceptor than 

Phen, so the Fe-N bond shortens less in the low spin state.9 

Spin crossover is also seen on the application of pressure to the sample at 293 K, in

dicating that the temperature of the transition is increased by at least 115 K at 1.0 GPa 

pressure. 45 A similar degree of shortening is seen in the pressure induced LS state com-

pared to that under seen on cooling (Table 1.1). 

[Fe(Phen)z(NCS)2 ] also undergoes Light-Induced Excited Spin-State Trapping 

(LIESST) and the structure of the meta-stable high spin state was presented in 2002 

by Marchivie et al .. 46 It is noticeable however, that all three Fe-N bond lengths are 

shorter than those seen at room temperature (Table 1.1). 
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Figme 1.14: [Fe(Phen)2(NCS)2] viewed down the two-fold rotation, with the symmetry 

equivalents primed. 
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Polymorphism is a phenomenon that has also been seen in [Fe(Phen)2(NCS)2]. The 

second polymorph has one molecule in the asynm1etric unit and a cell of approximately 

double that of the first. 9•47 EXAFS data indicate that the average change in bond length 

for this polymorph is 0.24 A compared with 0.16 A (Table 1.1). This larger change in 

bond lengths leads to a larger increase in the frequency of the vibration of the Fe-N bonds, 

which leads to stronger iron-lattice coupling. This is reflected in the spin transition, which 

is sharper for the second polymorph, than for the first polymorph. 

Thiocyanate Ligands 

It is interesting to note, that while [Fe(Phen)2(NCS)2] undergoes spin crossover, 

[Fe(Phen)3]X 2 is low spin irrespective of the anion.37 While this may be partly due to 

the cationic nature of the complex, the thiocyanate ligand clearly has a large effect. Con

sequently, a considerable portion of the literature has focussed on the use of thiocyanate 

ligands as they cause a marked weakening of the ligand field allowing SC transitions to take 

place that otherwise would not be possible. Thus thiocyanate ligands have been used in the 

design of a number of other SC materials of the type [Fe(L)2(NCS)2]. The bidentate ligands 

used include 2,2'-bipyridine (Bpyd), 48·49 2,2'-bis-4,5-dihydrothiazine (Bta), 10•50 2,2'-bis-2-

thiazoline (Btz)51 and the more complex biphenyl-4-yl[l-pyridin-2-yl-methylidine]-amine 

(Bppm)52 amongst many others (Figure 1.15). 

1.3.3 Notable Spin Crossover Complexes 

Although spin crossover has been seen in all first row transition metals that have the 

appropriate electronic configurations, it is most common in iron and cobalt. 

Tetrazole, Triazole and Oxazole 

A fertile area of spin crossover research has been centred around complexes of the form 

[Fe(L)6](X)2 where the ligands are cyclopentene derivatives, like tetrazole,55 triazole56 

and oxazole. 57 By far the most widely studied of these materials is the tetrazole based, 

[Fe(Rtz)6](X)2 series of complexes awl consequently it includes a number of particularly 

interesting examples. 
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Figure 1.15: A selection of the bidentate ligands used in [Fe(L)2(NCS)2] spin crossover 

complexes. 

Figure 1.16: The first manganese and chromium spin crossover complexes.53, 54 
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Figure 1.17: Low spin [Fe(Ptz)6](PF6)2 at 130 K showing the ordered PF(l counter ions. 58 

[Fe(Ptz)6](PF6)2 is one of the first of these complexes, with a cooperative, highly abrupt 

transition at approximately 74 K and no appreciable hysteresis. This transition tempera

ture has been studied as a function of pressure and found to increase to 102 Kat 1 kbar. 58 

Structural studies of the high and low spin complexes indicate that there is no change in 

symmetry, with both structures triclinic (PI) and the iron atom on an inversion centre. 

The PF(l ion is ordered at low temperature and modelled as rotationally disordered over 

three positions at room temperature, suggesting that the counter ion is tumbling due to 

thermal effect. This type of counter ion disorder-order transition is not uncommon in 

these types of system and the solvent and counter ions often make a huge difference to 

the nature or indeed presence of a transition. 

Another extensively studied compound in this series is [Fe(Ptz)6](BF4)2. In contrast with 

many spin crossover complexes, the spin transition is coupled with a crystallographic phase 

change from rhombohedral (R3) to triclinic (believed to be PI) .59•60 The transition takes 

place at approximately 130 K with a 7 K hysteresis. 55 Interestingly, the high temperature 
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structure can be trapped by super-cooling, but the spin crossover is retained. The fact 

that this quench trapped low spin state has no hysteresis suggests that the hysteresis is 

due to the presence of the crystallographic phase change. Studies on [Fe(Ptz )6] (BF4)2 

doped with the isostructural [Zn(Ptz)5](BF4)2 support the conclusion that eloping reduces 

the cooperativity, with the transition becoming more gradual. 61- 63 

In addition to this, [Fe(Ptz)6](BF4)2 was also the first compound shown to undergo 

both LIESST and reverse-LIESST (see page 12)1 and the light induced transitions have 

also been found in samples diluted with [Zn(Ptz)6](BF 4 )2. 64 These show a gradual decrease 

in the abruptness of the transition as the dilution is increased. 

[Fe(Mtz)5](BF4)2 

Crystallographic data collected at 157 K and 113 K indicate that the structure of 

[Fe(Mtz)5](BF 4)2 is monoclinic with two crystallographically independent iron centres 

related to each other by a pseudo mirror plane. 60 Although the geometries around the 

iron centres are nearly identical, there is a clear distinction in the anisotropic thermal 

displacement parameters. Mossbauer spectroscopy confirms that the two iron sites are 

indistinguishable above the transition (approximately 160 K), but behave differently.65 

One site (FeA) undergoes SC, while the other remains high spin down to at least 4.2 K 

(FeB). Irradiating with a xenon arc lamp (350 nm < .X < 650 nm) or a green argon ion 

laser (.X = 514 nm) at 20 K, leads to the light induced trapping of FeA in a meta-stable 

high spin state of practically infinite lifetime below 40 K. More unusually, irradiating with 

a red light (.X > 700 nm) or a diode laser (.X = 820 nm) at 20 K, leads to the light induced 

trapping of FeB in a meta-stable low spin state from which relaxation to the high spin 

state occurs only above approximately 50 K. This behaviour is of particular consequence 

as the meta-stable low spin state is not reachable thermally. 66 

In most Fe(II) SC complexes, the minimum energy of the low spin 1 A19 state lies 

approximately 500 em - 1 below that of the high spin 5T 29 level (Figure 1. 7), thus there 

is a temperature where the low spin state is thermodynamically favourable. Where the 

energy difference is considerably less than 500 cm- 1, the compound prefers to remain high 

spin. This is because a transition to the low spin state is only energetically favourable 

at much lower temperatures and at such low temperatures there is not enough thermal 
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energy in the system to overcome the energy barrier between the states. Similarly, if the 

energy potential of the high spin 5T 29 lies below that of the low spin 1 A19 potential, then 

the complex will remain high spin at all temperatures and the low spin will be thermally 

inaccessible. Hauser first suggested that it may be possible to trap the meta-stable low 

spin state in a process that corresponds with the original LIESST effect. Thus, irradiating 

the high spin ground state of FeB in compound [Fe(Mtz)6](BF4)2 leads to a process that 

is analogous to the 'normal' LIESST that occurs for FeA. 

Picolylamine Complexes 

Picolylamine (Pic) is a pyridine derivative, consisting of an aromatic ring with a pendent 

methylamine group. As a bidentate ligand, it forms the basis of another of the most 

studied series of spin crossover compounds, [Fe(Pic)J]X 2· Y (where X = counterion and 

Y = uncoordinated solvent). [Fe(Pic)J]X 2.EtOH was reported first by Renovitch and 

Baker in 1967, who investigated the chloride, bromide and iodide using both Mossbauer 

spectroscopy and magnetic moment measurements. 23 Renovitch and Baker showed that 

while the transitions in the chloride and bromide salts are incomplete, iodide salt has 

no transition and is a mixture of HS and LS at both room temperature and at 4.2 K. 

However, the magnetic data suggest that there may be a transition just above 300 K. 

Further examination of the bromide and chloride by Giitlich and co-workers, indicated that 

they both undergo step transitions, but the bromide transition has a much less pronounced 

plateau and the HS-Intermediate step also has a marked hysteresis. 24·67 Crystallographic 

studies of the chloride and bromide salts indicate that there are no synunetry changes 

with the spin transitions.25·67 In the chloride however, there is clear rotational disorder 

in the ethanol solvent molecule in the high spin state that is not present in the low spin 

state, nor seen at all in the bromide salt. This comparison of the picolylamine halide salts 

demonstrates the importance to the nature of the transition, of uncoordinated counter 

ions and solvent, some distance from a spin crossover centre. This can be rationalised as 

due to cooperative interactions. 

Over the last thirty-five years [Fe(Pic)J]Cl2.EtOH together with the hydrate, dihydrate 

and methanol solvate have all been studied extensively, including a comparison of the 

compounds which was carried out by Sorai et al. using Mossbauer spectroscopy.37·68 They 
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Figme 1.18: mer-[Fe(Pic)3j2+ (left) and jac-[Fe(Pic)3]2+ (right). 

showed that the solvent is also important to the natme of the transition, with the ethanol 

and methanol adducts behaving in a very different manner to the hydrate (which has a 90 K 

hysteresis) and the dihydrate (which is low spin). The reason for some of this difference 

probably stems from the ligand arrangement around the iron centre.25·67·69-71 Both the 

ethanol and methanol solvates have the ligands arranged in a meridonal arrangement, 

whereas the dihydrate is facial (Figme 1.18). 

Irradiation of [Fe(Pic)J]Ch.EtOH crystals below a temperatme of approximately 25 K, 

yields a change in colour, a result consistent with the LIESST effect. 14 Further to this, 

[Fe(Pic)3]Cl2.EtOH has also been examined using proton NMR42 and ESR. 41 

[FeL2] X n Complexes 

These complexes consist of a single iron centre bound by two heterocyclic tridentate lig

ands, L. The first of this type of ligand is [2,2' ;6' ,2"Jterpyridine, which together with its 

derivatives have been shown to complex a variety of metals leading to the formation of 

materials with a range of potential biological, photochemical and magnetic properties. 72 

The ligand consists of three pyridine rings positioned such that a small distortion allows 

easy terdentate binding to a metal centre (Figme 1.19). 

Although Fe(Terpy )~+ compounds are generally low spin, 73 both iron and cobalt com

plexes of terpyridine derived ligands have been shown to exhibit SC behaviour.7• 74• 75 
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Figure 1.19: The distortion of the terminal rings of terpyridine on forming a complex. The 

C- C- N angle (B) typically decreases from approximately 117° in the free ligand to 114° 

in the complex. 72 

Figure 1.20: 2,6-dipyrazol-1-yl-pyra.zine. 

Other chelating ligands include 2,6-dipyrazol-1-yl-pyrazine ligands which are closely 

related to the terpyridine ligands, where the pendent pyridine groups are replaced with 

pyrazole groups leading to a slight increase in the natural bite angle (Figure 1.20). 

Wide ranging studies of iron(II) dipyrazolylpyridine derivatives have demonstrated 

how minor changes to the ligand together with changes to the counter ion, can have an 

enormous effect on the magnetic properties. 76- 78 This effect has also been seen in iron(II) 

complexes of the bidentate 2-(2'-pyridyl)benzimidazole where a range of compounds were 

studied including BPh4, BF4, PF6, N03, Br- , r- and Cl04 salts together with the 

neutral species (caused by deprotonation of the imidazole). 79-82 This ligand has also been 

extended to give the tridentate 2,6-bis(benzimidazole-2'-yl)pyridine which has been used 

to form iron(II) complexes.81 •83 

The key problem with [Fefr.l]X n compounds is that since the tridentate ligands form 

such stable ML~+ complexes, it is not possible to generate a range of materials by simple 

ligand substitution. However, functionalisation of the ligands has proven to be a fertile 
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Figure 1.21: [Fe(Dppen)2]Ch.2Me2CO at 130 K.84 The hydrogen atoms and solvent are 

omitted for clarity. 

field of research, as has changing the counter ion. 

Iron Phosphine Complexes 

Almost all the complexes discussed so far have involved nitrogen bound ligands, but this 

is not a requirement for spin crossover in iron(II) complexes. An example of this is 

[Fe(Dppen)]2Ch.2Me2CO, which has two phosphorus binding bidentate ligands and two 

chloride ligands. From magnetic susceptibility measurements, XRPD data and Mossbauer 

spectroscopy, the spin transition has been found to be centred around 240 K , but is gradual 

with a range of approximately 60 K.84•85 

Structural studies both above and below the spin transition (room temperature and 

130 K) show that it is not coupled with a crystallographic change.84 The iron atom 

resides on an inversion centre which means the iron and Dppen ligands are rigorously 

co-planar with the chloride ligands in a trans geometry (Figure 1.21). Interestingly, while 

some of the largest Fe-L bond length changes are seen to take place in the average Fe-P 

distance (0.284(8) A), the Fe-CI changes by only 0.034(8) A, which is possibly statistically 

indistinguishable from the HS ~tate. 
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Figure 1.22: The proposed structure of a thiolate bridged, dinuclear iron(III) spin crossover 

complex.86 

Dinuclear Spin Crossover Complexes 

Dinuclear compounds are complexes that have two spin crossover active centres and are 

surprisingly rare. One example of this is the thiolate bridged dinuclear iron(III) com

plex discussed by Kersting et al. in 1998.86 Although the complex has not been char

acterised structurally, strong antiferromagnetic coupling between the iron centres means 

the compound is diamagnetic at room temperature and has been studied using 1 H NMR 

spectroscopy leading to a proposed structure (Figure 1.22). 57Fe Mi::issbauer spectroscopy 

indicates the transition is gradual, but otherwise the data is inconclusive. 

The reason for particular interest in these materials is the fact that they often show 

interesting magnetic properties like step transitions, giving an insight into the cooperative 

mechanisms behind the spin crossover process. 

Bipyrimidine Bridged Complexes 

Bipyrimidine bridged complexes of the form [Fe(Bpmd)(NCX)2b(Bpmd) (where 

X = S or Se), have been investigated by Real and co-workers, although only the sulphide 

has been characterised structurally and then only at room temperature (Figure 1.23).87
•
88 

Under ambient conditions and on cooling, [Fe(Bpmd)(NCS)2]2(Bpmd) remains HS down 

to at least 4 K, but the selenide undergoes a single SC transition at approximately 120 K. 
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Figure 1.23: The dinuclear compound [Fe(Bpmd)(NCS)2]2(Bpmd). 

Thus, the sulphide is paramagnetic with intramolecular antiferromagnetic coupling. This 

behaviour remains when pressure up to 3.8 kbar is applied.88 Increasing the applied pres

sure to 6.3 kbar induces a 50% spin crossover transition at approximately 100 K with a 

thermal hysteresis of 5 K. Magnetic susceptibility data collected during slow cooling, indi

cates that the antiferromagnetic coupling between the remaining HS centres is retained at 

6.3 kbar. Increasing the pressure to 8.9 kbar not only raises the transition temperature to 

approximately 150 K, but also leads to the loss of the antiferromagnetic coupling. 11 kbar 

increases the transition temperature further, to 200 K. 

In contrast, the application of a pressure of 5.8 kbar to the spin transition in the 

selenide, starts the development of a secondary transition.88 This second step of the tran

sition becomes more pronounced on increasing the pressure until 10.3 kbar. At 10.3 kbar 

the intermediate plateau begins to smear out suggesting the transition is being converted 

into a single step transition. Thus, the application of pressure in both the thiocyanate and 

the selenocyanate, has been shown to induce and modify the nature of the SC transition. 

The related compound [Fe(Dpa)(NCS)2]2(Bpym) is believed to adopt a similar molecu

lar structure to the Bpmd analogue (although it has not been characterised structurally).89 

Magnetic and Mossbauer data indicate that there is a gradual, single step transition cen

tred at approximately 245 K, without the application of pressure. It is possible that this 

is due to the presence of hydrogen bonding between the Dpa ligand and the thiocyanate 

ligands, but without structural data it is not possible to draw any definite conclusions. 
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Ligand Counter Ion Solvent Spin State 

4 H20 4 CIO.j High Spin 

4 H20 2 s2o~- 4 H20 High Spin 

2 N2 4 CIO.j High Spin 

30CW l CIO.j High Spin 

2 Ncs- & 2 seN- Spin Crossover 

2 MeCN 4 CIO.j Spin Crossover 

2 Cl- 4 CIO.j Low Spin 

Table 1.2: Cobalt macrocyclic compmmds. 

Cobalt Macrocycles 

In 2002, Brooker et al. reported an interesting structural and magnetic study of a range 

of dinuclear macrocyclic cobalt complexes.9° The series was based on an octadentate 

pyridazine-containing Schiff-base macrocycle with two natural binding sites (Pdzm). Seven 

complexes were studied, each possessing different subsidiary axial donor ligands, counter 

ions and solvent, and which exhibited a range of magnetic properties from high spin, to low 

spin to spin crossover (Table 1.2). In most of these complexes, the Pdzm ligand occupies 

a pseudo square planar geometry with the subsidiary ligands occupying the axial site. 

The only exceptions to this are the chloride complex for which the structure has not been 

determined and the isocyanate complex where the ring occupies a buckled conformation 

caused by the bridging isocyanate ligand (Figure 1.24). One of the most interesting things 

about these materials is that weak antiferromagnetic exchange via the pyridazine bridges 

is seen in all the compounds, but is considerably weakened in the isocyanate complex due 

to reduced overlap between the Co(II) dx2-y2 orbital and the pyridazine p-orbital. Also, 

the thiocyanate and acetonitrile compounds were the first dicobalt complexes to exhibit 

spin crossover and exchange coupling. 91 

Mixed Compounds 

The mixed mononuclear/dinuclear spin crossover compound [Fe2(Trzt)5(NCS)4]2-

[Fe(Trzt)2(NCS)2(H20)2] consists of two iron centres bridged by three triazole ligands in 

a 1,2-arrangement (Figure 1.25).92 These dinuclear units are connected together through 

the mononuclear centre by hydrogen bonding interactions. Magnetic susceptibility data 
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Figure 1.24: Two dinuclear cobalt macrocyles showing the different conformations occu

pied by the Pdzm ligand in the water complex (top) and the isocyanate complex (bottom) . 
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and Mossbauer spectroscopy indicate that the transition takes place from three high spin 

centres to two LS and one HS at about 111 K. The transition is sharp, indicating a high 

degree of cooperativity, but with no appreciable hysteresis. 

Although similar dimeric triazole-bridged, species have been known, 93,94 this mononu

clear/dinuclear compound has the Trzt units in a trans arrangement. This allows the 

formation of the hitherto unknown pentanuclear motif which is the first species of this 

type known to undergo spin crossover. The concept of one centre remaining high spin 

is not uncommon and the effect can be viewed as similar to that of doping with a 

metal that does not undergo a transition. Doping in this way has been carried out 

by formal, partial replacement of iron with zinc (see pages 10 & 28), but has also 

been carried out in other cases. For example, the dinuclear iron(II)-chromium(III) 

spin crossover complex, (bis(pyridinyl)pyrazolate )-(bis(pyridylmethyl)ethane-diamine )

(nitrilotriacetato )-chromimn(III)-iron(II) tetraftuoroborate (Figure 1.26) has a very grad

ual spin transition.95 Since dilution generally decreases cooperativity, considering this 

system in terms of an iron complex 50% doped with chromium, leads to the conclusion 

that if both nuclei were iron(II) and tmderwent SC, the transition might become more 

abrupt. 

A Binuclear Iron Helicate 

There are many solution based spin crossover complexes, but since the transitions essen

tially take place in isolation, there is little interaction between the individual molecules 

and cooperativity effects are minimal. Telfer et al. have reported a novel binuclear helicate 

(Figure 1.27) which undergoes SC.96, 97 The transition is gradual as would be expected in a 

solution based system since the transition is essentially a thermal Boltzmann distribution 

of all the vibrational energy levels of both states. However, in the case of this dinuclear 

species, a single equilibrium constant could not be fitted suggesting that it, like many of 

the solid state dinuclear complexes, undergoes a step transition. 

Trinuclear Spin Crossover 

Building on triazole complexes, [Fe(Etrz)2(H20)2]3(Trf)6 is a linear trinuclear unit with 

bridging triazole ligands (Figure 1.28).98,99 Structural studies above and below the tran-
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Figure 1. 25: An unusual mixed mononuclear/ dinuclear spin crossover complex, 

[Fe2(Trzt)5(NCS)4]2-[Fe(Trzt)2(NCS)2(H20)2]. The dinuclear unit is shown (top) together 

with the unusual pentanuclear motif (bottom). 



1.3. Some Important Spin Crossover Materials 40 

Figure 1.26: A heterometallic dinuclear iron(II)-chromium(III) complex. 

Figure 1.27: A binuclear spin crossover iron(II) helicate. A schematic of the structure is 

shown (left) together with the ligand (right) The ligand is tetradentate, binding twice to 

both iron centres (shown with broken lines) . Three ligands, each binding in a bidentate 

arrangement round the two iron centres, combine to make the helical complex. 
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Figure 1.28: [Fe(Etrz)2(H20)2]~-. Note the eclipsing interactions of neighbouring Etrz 

ligands, which cause the triazole ligands to slightly change orientation when changing 

from HS to LS.98•99 

sition (room temperature and 105 K) show that the central iron(II) atom undergoes SC 

while the outer atoms remain high spin. This result is supported by magnetic suscep

tibility and Mossbauer data, which show the compound undergoes a gradual transition 

between 230 K and 190 K. Due to the shortening of the Fe-N distances caused by the SC 

transition, the triazole ligands undergo a subtle change in orientation. 

Tetranuclear Spin Crossover 

Self assembly synthetic techniques have yielded another solution based complex of partic

ular note. In this case, the spin crossover transition also takes place in the solid state. 100 

Structure determination shows that the complex consists of a 2 x 2 iron(II) grid together 

with eight perchlorate counter ions and several disordered solvent molecules of acetonitrile 

and water (Figure 1.29). However, magnetic measurements reveal that the transition is 

extremely gradual suggesting that it is virtually non-cooperative. Single crystal data at 

293 K and 100 K show how the transition proceeds, with three high spin centres and 

one intermediate spin centre at room temperature, changing to one high spin and three 



1.3. Some Important Spin Crossover Materials 42 

Figure 1.29: The formation of a spin crossover 2 x 2 iron(II) grid. 

intermediate centres at low temperature. The nature of the intermediate centres has not 

been explored, but it is possible that they result from HS/LS static disorder. 

1.3.4 Coordination Polymers 

"Coordination polymer" is a term used to describe metal-organic framework compounds 

that extend in one, two or three dimensions through strong covalent bonds forming infi

nite chains or networks. They contain metal centres which are connected through bridging 

organic ligands. The bridging ligands allow a large diversity of networks leading to a wide 

range of structures and physical properties. Coordination polymers have been investigated 

as possible luminescent, non-linear optical and conductive materials. 101 In addition, the 

porous nature of many of these compounds also makes them ideal candidates for catalysis. 

Despite the obvious interest in these compounds in their disparate fields, considerably 

fewer spin crossover coordination polymers have been studied than monomeric SC com-

pounds. 

Triazole and Tetrazole Bridged Polymers 

One of the first one dimensional (lD) polymers that exhibit.Prl SC was the iron(II) 

[Fe(Trz)3](X)2.xH20 system, which was first reported by Lavrenova et al. in 1986. 102 

The structure was studied using EXAFS and is thought to consist of chains of iron atoms 

each connected by three bridging triazole ligands, very similar in nature to the trinuclear 
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Figure 1.30: The [Fe(Trzh]oo polymer chain. 

species [Fe(Etrz)2(H20)2]3(Trf)6, reported in 1984 by Vos et al. (Figure 1.30). 17•98•99 

A large number of this family of materials have been explored by varying the sub

stituent on the free nitrogen of the triazole ring (Trz), changing the counter ion and 

modifying the uncoordinated solvent. 103-105 These changes dramatically alter the nature 

of the spin transition, resulting in a range of types, including very abrupt transitions and 

continuous transitions. For example, [Fe(Trz-NH2)3](N03)2 has a very sharp transition, 

with a 35 K hysteresis (Tc = 313 K on cooling and 348 K on warming), whilst [Fe(Trz

NH2)3](BF4)2.H20 has a more gradual transition that takes place at 255 K with a hystere

sis of only 7 K. 103 In contrast, the spin crossover behaviour of [Fe(Trz-NH2hl (Tos)2.2H20 

is coupled with a dehydration-rehydration process. 104 As the sample is heated, the un

coordinated water is lost, followed by an extremely abrupt transition at 361 K from the 

meta-stable low spin [Fe(Trz-NH2)3](Tos)2, to the high spin state. The transitions in 

this dehydrated compound following the dehydration-SC are more gradual and take place 

at a much lower temperature (Tc = 279 K on cooling and 296 K on warming). In this 

case, the dehydrated phase is hygroscopic and reabsorbs water under normal atmospheric 

conditions, however in some cases, the complexes are air stable. 

The first polymer to be fully characterised structurally was [Fe(Btrzp )3] ( Cl04)2 which 

is hexagonal (P3c1) with iron chains running along the c-axis forming channels in which 

the ClO 4 counter ions reside (Figure 1.31) . 106 The transition is gradual and incomplete, 

taking place over a temperature range of over 100 K centred at approximately 150 K. 

Structural data recorded at 100 K and 200 K indicate a shortening of the Fe-N distances 

from 2.164(4) A to 2.038(4) A, coupled with a shortening of the Fe· ·· Fe distance along 
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Figure 1.31: [Fe(Btrzp)3](Cl04 )2 at 100 K. The chain structure is clearly shown (top) 

along with the channels (bottom, hydrogen atoms are omitted for clarity). 

the chain from 7.422(3) A to 7.273(3) A. 

Following the triazole polymers, a number of bis-tetrazole bridged polymers were 

studied including the linear, 1,2-bis(tetrazol-1-yl)propane bridged, iron(III) SC com

plex.107 This structure is also hexagonal with iron chains similar to those seen in 

[Fe(Btrzp)3](C104 )2 and the transition (centred at approximately 140 K), is also grad

ual and incomplete, though the residual high spin is only 7%. Structural data have been 

recorded at 150 K and 200 K as well as above the transition and below the transition, at 

296 K and 100 K. The Fe-N distances clearly show the change from HS to LS , coupled 

with a shortening of the Fe··· Fe distance along the chain from 7.477 A, to 7.461 A at 

200 K, 7.376 A at 150 K and 7.293 A at 100 K. 

The gradual nature of the transitions in these compounds is thought to be caused by 

the flexibility in the ligand because the central unit acts like a kind of shock-absorber, 
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Figme 1.32: The chiral polymer [Fe(Bpmd)(NCS)2] 00 • 

preventing the transmission of elastic interactions along the iron chains. 108 

A Bipyrimidine Bridged Polymer 

Based on the bipyrimidine bridged dinuclear complexes, De Munno et al. developed the 

polymer [Fe(Bpmd)(NCS)2] 00 •
109 This polymer crystallises in the tetragonal space groups 

P41 and P43, forming chiral chains of iron(II) centres successively bridged by Bpmd 

ligands (Figme 1.32). Similar to the dinuclear complex, under ambient conditions and on 

cooling to as low as 4 K, there is antiferromagnetic coupling between the high spin iron 

centres. Also like its dinuclear counterpart, under a pressme of 11.8 kbar, the polymer 

undergoes spin crossover which takes place between 100 K and 150 K to around 4Q-50% 

completion. 88 

A Bipyridine Bridged Polymer 

A much more recent example of a polymeric spin crossover material is the bipyridine 

(Bpyn) bridged polymer [Fe(Pyim)2(Bpyn)](Cl04)2.2C2H50H which was reported by Ma

touzenko et al. in 2003. 110 Magnetic and Moss bauer data indicate that the compound has 

an abrupt transition at approximately 205 K with no noticeable hysteresis. It consists of 

iron(II) centres which are ligated by two bidentate pyridyl-imidazole ligands and also by 

two different Bpyn molecules in a cts conformation. The former come together with the 

Bpyn ligands forming a bridge between iron centres leading to chains which adopt a zig-zag 

arrangement (Figme 1.33). In addition to the iron centre (which sits on a two-fold rotation 
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Figure 1.33: The unusual zig-zag chains in the spin crossover polymer 

[Fe(Pyim)2(Bpyn)](Cl04)2.2C2H50H. 

Figure 1.34: The disordered perchlorate in [Fe(Pyim)2(Bpyn)](Cl04)2.2C2H50H showing 

the disorder in the high spin and low spin states (left and right respectively). 

axis), there are also a perchlorate counter ion and ethanol solvent. At room temperature 

the ethanol is well ordered, but the perchlorate ion is disordered and was modelled with 

two components rotationally disordered about the chlorine centre. At 173 K, the disorder 

over the two sites is retained, but the two tetrahedra now occupy positions where one 

face (and therefore three of the oxygen atoms) are coincident (Figure 1.34). Interestingly, 

while the ethanol is ordered in the high spin state, it is disordered below the transition 

and is modelled with a minor component of 30%. This material is a good example of how 

the counter ion and solvent are very important to the nature of transition. This effect is 

not uncommon, but clearly demonstrates that cooperativity can take place through weak 

intermolecular interactions, in this case involving C- H· · · 0 hydrogen bonding between the 

ligands and the perchlorate counter ion. 



---------
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Despite these interesting results, there are still relatively few one dimensional com·dina

tion polymers to date and attention has focused on materials with higher dimensionality. 

Two Dimensional Layered Materials 

Moving from one dimensional to two dimensional SC materials has had a profound effect 

on the field of spin crossover research, leading to the development of bimetallic polymers 

as SC materials. 

Bimetallic polymers use metal containing anions as multidentate bridging ligands. His

torically, extensive work has been carried out on two dimensional coordination polymers 

of this type as they can form stable networks with high dimensionality_ll 1 In particu

lar, a considerable amount of work has been done on the square planar cyanometallates 

[Pt( CN)4]2- and [Ni( CN)4 j2- including the Hofmann clathrates. 112 However, despite all 

this, very little work has been carried out on two dimensional systems with spin crossover 

transitions and to date the research has been limited to a small number of two dimensional 

SC materials. 

The first two dimensional spin crossover material was reported in 1990 by Vreugdenhil 

et al. and was an extension of the triazole polymers. 113 

Water Controlled Cooperativity 

Using bis-triazole ligands (Btrz) enabled the formation of the 2D compound 

[Fe(Btrz)2(NCS)2].H20 (Figure 1.35), which has been studied using EPR and Mi:issbauer 

spectroscopy.113 It has been fotmd to have a very abrupt transition at approximately 

130 K with a 20 K hysteresis. On heating [Fe(Btrz)2(NCS)2].H20 to 240 oc the solvent 

water is lost. The resulting complex is high spin and does not undergo SC which suggests 

that the water is critical to the transition. Structural studies of the compound indicate 

that the water hydrogen-bonds to the non-coordinating nitrogen atom of the Btrz ligands 

forming a bridge between the [Fe(Btrz)2(NCS)2Jlayers. 

One of the most interesting aspects of the hydrated compound [Fe(Btrz)2(NCS)2].H20, 

is its unusual behaviour under pressure. 114 Initially, applying pressure to the compound 

leads to a broadening of the hysteresis, increasing the temperature of the warming mode. 

At 3.0 kbar the transition is noticeably more gradual, with a dramatic increase in the 
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• 

Figure 1.35: A sheet of [Fe(Btrz)2(NCS)2J.H20. 

amount of residual high spin as the pressure is increased to 6. 7 kbar. By 10.5 kbar, 

the transition is no-longer visible with the high spin state stabilised throughout the tem

perature range. After releasing the pressure, the shift in the transition temperature is 

partially maintained and remains 7 K below that under normal, ambient conditions. The 

hysteresis also remains enlarged at 32 K and the transition remains incomplete, though 

after approximately 175 hr the amount of residual high spin relaxes to about 30%. Al

though unconfirmed, this unusual behaviour is thought to result from a pressme induced 

structmal transition. 

Other two dimensional materials of this type have been studied by Real and co-workers, 

using 1,2-bis( 4-pyridyl)ethylene and 1,4-bis( 4-pyridyl)butadiyne to link the iron(II) centres 

into continuous sheets. 115• 116 

Hofmann Type Networks 

The first of the Hofmann clathrates, {[Ni(CN)2]NH3.C6H6} , was accidentally discovered 

in 1897, when the German chemist Hofmann treated a nickel hydroxide solution with 

laboratory fuel (coal) gas. 112 Deli berate synthesis of this and related compounds followed 

by mixing ammonia solutions of nickel cyanide with benzene, thiophene, pyrrole and furan. 

It was over fifty years later however, that Powell and Rayner solved the structure of the 
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Figure 1.36: The benzene Hofmann clathrate. 119 The square planar nickel centres form 

sheets (left, viewed down the c-axis). The sheets stack directly above each other and 

provide layers between which the benzene guest molecules sit. 

benzene Hofmann clathrate as a continuous array of square planar [Ni(CN)4] 2- ions with 

a central nickel(II) ion coordinated by the carbon end of the cyanide ligands. 11 7• 118 These 

[Ni(CN)4] 2- ions form bridges between six coordinate nickel(II) centres which are ligated in 

a square planar manner by the four nitrogen atoms of the [Ni(CN)4] 2- ions and capped by 

two ammonia ligands (Figure 1.36). These sheets stack directly above each other forming 

channels between the four coordinate nickel atoms and additional cavities between the 

ammonia ligands which guest molecules (in this case benzene) can occupy. 

These Hofmann clathrates have a low stability, with solvent loss a key problem and 

in the presence of water, they are readily hydrated. However, they led the way to a 

whole family of modified Hofmann-type clathrates, including the first two dimensional SC 

material (although its spin crossover transition was not recognised until much later). 120 

{Fe(Pyd)2[M(CN)4]} 

Replacing the octahedral nickel with iron gives the Hofmann-type clathrate 

{Fe(NHa)2[Ni(CN)4].2C6H6} which is high spin. 120 However, replacing the ammo

nia with pyridine gives a new Hofmann-related, spin crossover material. Although 

{Fe(Pyd)2[Ni(CN)4]} was first reported in 1973,121 its spin crossover nature wasn't discov-
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Figure 1.37: The structure of Fe(Pyd)2[Ni(CN)4] (left), the Pyd- Pyd distance is approx

imately 3.7 A. The effect on the spin transition of isotopic substitution (right) includes 

unsubstituted data (• ), the deuterated species (.t-.) and the 15N data (o). The temperature 

dependence of the Mossbauer ratio and the magnetic susceptibilities are shown (top and 

bottom respectively). 122 

ered until1996 when it was studied using Mossbauer spectroscopy which showed that the 

iron(II) centres undergo a highly cooperative transition just below 200 K with a 15 K hys

teresis.120 The structure which is related to the Hofmann clathrates, has slipped layers so 

that the pyridine rings from adjacent layers interdigitate, leading to weak 1r- 1r interactions 

(Figure 1.37). 

One of the most interesting aspects of this material was reported more recently by 

Kitazawa and co-workers, who investigated the effects of isotopic substitution on the SC 

transition. 122 Kitazawa and co-workers compared the magnetic behaviour on deuteration 

of the Pyd ring and replacement of the cyanide nitrogen atoms with 15N. Previous iso

topic studies on [Fe(Pic)J]Cl2.EtOD, [Fe(Pic)J]Cb.MeOD and FeSal generally indicated 

stabilisation of the low spin state i.e. the transition temperature was increased, although 

the overall shape of the transition curves were retained.37· 123· 124 These isotope effects 

were interpreted as causing an increase in the energy gap between the two states due to 

modifications in the ligand field caused by changes in the hydrogen bonding network and 

the mass effect on the zero-point vibrational energies. 

{Fe(Pyd)2[Ni(CN)4]} is very different to the previously studied materials as there is 

no hydrogen bonding network and instead it consists of a true two dimensional polymeric 

structure. On isotopic replacement there is a marked decrease in the transition tern-
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Compound 

{Fe(Pyd)[Ni(CN)4]} 

{Fe(Pyd)[Pd(CN)4]} 

{Fe(Pyd)[Pt( CN)4]} 

Tc (Cooling) 

186 K 

208 K 

208 K 

Tc (Warming) 

195 K 

213 K 

216 K 

Hysteresis 

llK 

5K 

8K 

Table 1.3: Transition temperatures for {Fe(Pyd)2[M(CN)4]}. 
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perature and Mossbauer spectroscopy has revealed additional low frequency vibrational 

modes that decrease on substitution. This effect has been put down to the vibrational 

contribution to the entropy. 122 

{Fe(Pyd)[Pt(CN)4]} and {Fe(Pyd)[Pd(CN)4 ]} have also been reported and show sim

ilar characteristics when compared with the parent bimetallic nickel complex. The tran

sitions are similarly sharp, taking place at a slightly higher temperature with a slightly 

reduced hysteresis (Table 1.3). 125 

Expanding 2D to 3D 

The advent of the three dimensional, spin crossover, coordination polymer is very 

recent with the first reported example in 1999 by Garda et al .. 126 This first 

material, [Fe(Btrz)3](C104 )2, is derived from the two dimensional network material 

[Fe(Btrz)2(NCS)2].H20 by replacing the two anionic thiocyanate ligands with another 

bridging bis-triazole ligand. This transforms the polymer from a two dimensional system 

to a three dimensional cationic network that is charge-balanced by the perchlorate anions 

(Figure 1.38). 126 

This polymeric system has a two-step spin transition, the reason for which is the 

existence of two crystallographically inequivalent iron(II) sites. These are thought to have 

a slightly different ligand field strength and, consequently, different critical temperatures 

leading to two transitions approximately 40 K apart. 126 

In a similar manner, Konisbruggen et al. 127 generated the three dimensional network 

[Fe(Bttzb )3] ( Cl04 )2 from the related two-dimensional polymeric material. 
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Figure 1.38: A section of the first three dimensional spin crossover network, 

[Fe(Btrz)J](C104)2 at 260 K. 126 The alternating iron centres can be clearly seen with 

the bridging Btrz ligands. The perchlorate counter ions are omitted for clarity. 

Hofmann-Type Bimetallic 3D Networks 

Likewise, extending the same ideas to the two dimensional Hofmarm-type networks 

{Fe(Pyd) [ M ( CN)4]}, three dimensional materials have been designed. In this case, replac

ing the pyridine ring with a pyrazine ring (Pyz) , led to a cross-linking of the layers forming 

the three-dimensional clathrate-type network {Fe(Pyz)[M(CN)4].2H20} (Figure 1.39). 125 

In these materials, the [ M ( CN)4j2- anions ligate iron(II) centres in a square planar ar

rangement forming sheets. These sheets are connected by pyrazine (Pyz) which ligates 

two otherwise independent iron centres at the apical site, thus bridging the gap between 

the layers. In contrast to the two dimensional materials, these layers lie directly above 

each other with their positions fixed by the Pyz bridging rings. 

These compounds have a noticeably larger hysteresis and higher transition tempera

tures than their two dimensional analogues. This effect has not been put down to ligand 

field effects since Pyd is stronger than Pyz. Instead it has been explained in terms of 

increased internal pressure caused by the more rigid three dimensional structure giving a 

stronger effective field at the iron centre. 

Raman studies of these compounds have shown that at room temperature the 
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Figure 1.39: Fe(Pyz)[Pt(CN)4].2H20 showing the Fe-[Pt(CN)4]layers. The Pyz ligands 

that link the layers are disordered, but only one component is displayed here for clarity. 

Iron is shown in red with platinum in purple. 
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transitions can be induced by the application of pressure. 128 Indeed, although the 

transition does not go to completion, the application of 1.35(5) kbar induces SC in 

{Fe(Pyz)[Ni(CN)4].2H20} that is not reversed until the pressure is reduced to below 

0.65(5) kbar, making this the first example of piezo-hysteresis. In contrast, the palla

dium analogue also undergoes pressure induced SC, but the pressure required is higher 

(1.80(5) bar) and the transition is more gradual so the presence of a hysteresis could 

not be confirmed. Considerably higher pressure is required to induce a transition in 

{Fe(Pyz)[Pt(CN)4].2H20}, but due to the equipment used, the exact pressure could not 

be determined and in both the palladium and platinum complexes, it is possible that the 

SC is competing with an additional structural change. 

1.4 Conclusion 

A wide range of spin crossover complexes have been reviewed, but while this introduction 

covers the majority of the most important and relevant materials, it only touches the 

tip of the iceberg and there are a considerable number of materials that have not been 

included. Like the original [Fe(Phen)2(NCS)2] and the picolylamine complexes, some of 

the materials discussed here have been exhaustively studied. Others have been developed 

much more recently and therefore have been studied to a lesser degree. Perhaps some of 

the most interesting materials are the relatively new polymeric compounds, which due to 

their often high degree of cooperativity, strong thermochromism and tunability, appear 

to have many potential technological applications making this an exciting new and novel 

area for further research. 

In all the cases discussed however, studying the structure has given a key insight 

into why the materials behave the way they do. For exan1ple, in the case of the mixed 

[Fe2(Trzt)5(NCS) 4]2-[Fe(Trzt)2(NCS)2(H20)2] complex it would not have been possible to 

discover which iron atom remains low spin below the transition.92 Without structural 

studies, it would not have been possible to discover that the difference between the facial 

and meridonal organisation of the ligands in the picolylamine solvates makes the dihydrate 

low spin.25·67·69- 71 The literature contains many such examples and it is clear that this 

valuable tool has furthered material development, giving an insight into how and why spin 

crossover transitions take place. 



Chapter 2 

Experimental 

2.1 Introduction 

X-ray diffraction is a very powerful technique used to discover and study the atomic ar

rangement in crystalline solids. This is possible because a periodic array of atoms behaves 

like a diffraction grating, the wavelength of X-rays being comparable to the interatomic 

spacings. Single crystal diffraction is the key structure solution technique in use today. In 

this context, a single crystal is a continuous, periodic array of repeat units. These repeat 

units are known as unit cells, each of which consists of one or more asymmetric units which 

are related to each other by symmetry. These symmetry operations combine to form one 

of 230 space groups (SG). 

Single crystals are different from a crystalline powder, which is a collection of randomly 

oriented, "continuous, periodic arrays of milt cells". Each array is called a domain. Most 

of the characterisation was carried out by X-Ray Diffraction (XRD). Two techniques 

were used - Single Crystal X-Ray Diffraction (XRSXD) and Powder X-Ray Diffraction 

(XRPD). 

2.2 X-ray Single Crystal Diffraction (XRSXD) 

Early in the twentieth century, Lawrence Bragg suggested that a crystal could be thought 

of as containing an infinite amount of imaginary parallel planes, which behave like rnirrors. 

This gave rise to "Bragg Reflections" and "Bragg's Law" (Figure 2.1), which explains that 

55 
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Figure 2.1: Schematic showing Bragg's Law. 

56 

each series of planes only diffracts when the scattered beams combine to give constructive 

interference i.e. when the path-length difference is an integer number of wavelengths. This 

is dependent on the wavelength of the beam ( >.) and on the angle of incidence ( 0). This 

means that by moving the detector and the crystal it is possible to measure a wide range 

of reflections. 

2.2.1 Crystal Selection and Mounting 

The crystals used were carefully selected such that they were 0.1- 0.5 mm in all dimensions 

and were centred by eye using a microscope, so that the X-ray beam would hit the sample in 

the middle and bathe the whole of the crystal . This is important as the absorption varies 

with the amount of sample in the beam. The nature of the material also significantly 

affects the absorption as heavy atoms absorb more than lighter atoms. 

In general, the crystals that were chosen were well shaped and free from growths and 

inclusions (Figure 2.2) . Single crystals that were clear were also tested for extinction under 

polarised light, as a method of confirming crystallinity. 

At room temperature, atoms have much increased thermal motion (with respect to low 

temperature) and sometimes tend to disorder. So in general, the majority of data were 
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Figme 2.2: Good quality crystals and poor quality crystals. The sample on the left consists 

of well shaped crystals free from intergrowths and inclusions. The sample on the right has 

no clear faces and may contain a nmnber of crystalline components. 129 

Figure 2.3: Mounting crystals using the 'oil drop' method. 132 

recorded at as low a temperatme as possible. In such cases, crystals were bathed in oil 

and frozen onto a hair (Figme 2.3). In addition to facilitating mounting, this method also 

helps to prevent chemical degradation in crystals that are air or moisture sensitive. The 

temperature was controlled using an Oxford Cryostream N2 low temperature device, 130 

which was used for routine data collections. An Oxford Cryosystems HeliX 131 could also 

be used if temperatmes below 90 K were required. Where data were required above 230 K, 

crystals were mounted either on a hair or a glass fibre with either epoxy glue or nail polish. 

Initially, a small set of frames were collected in order to find the unit cell parameters 

and assess the crystal quality (Figme 2.4) . This routine allows the software to establish 

the "orientation matrix", which can be used to relate the position of all the reflections 

with the angles of the diffractometer. Finally, before each collection, a "dark" frame was 

recorded which was used to subtract the background from the data collected. 
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2.2.2 Bruker SMART-CCD 1000 

The main instrument used was a 3-circle Bruker SMART -CCD 1000 diffractometer 

equipped with a molybdenum Kcx, fine-focus sealed X-ray tube and a graphite monochro

mator, A= 0.71073 A (Figure 2.5). The detector is a charge coupled device area detector 

( CCD) and in general, measurements were recorded using w scans at different ¢ settings. 

2.2.3 Bruker SMART-CCD 6000 

A similar instrument to the SMART-CCD 1000, the SMART-CCD 6000 is a more recent 

model and is also fitted with a molybdenum X-ray source. The main difference is the much 

larger area detector. In addition, the Bruker SMART-CCD 6000 has a digital video camera 

used to centre crystals. The camera was particularly useful with materials that undergo 

a colour change, making it possible to record crystal colours at various temperatures. 

2.2.4 Bruker Proteum M 

This instrument is a Bruker Proteum M diffractometer with an Apex detector. However, 

the source is a Bede Microsource® 133, 134 and is the first of its type to have a molybdenum 

target. 

The Microsource® is designed as a compact, low power, high brightness, microfocus 

X-ray source. X-rays are generated using an electron beam that is electromagnetically 

focused and positioned on the target. 133 In contrast with a conventional X-ray tube 

where the electron beam current is controlled by the current supply to the filament, in 

the Microsource® the beam current is controlled by a potential difference between the 

cathode and an intermediate electrode. This means the operating current is considerably 

lower (1.2 mA compared with 40 rnA), resulting in a much lower power (60 W compared 

with 2000 W). This is in huge contrast to the Fddd diffractometer which has a 15 kW 

rotating anode. 135 

The X-rays generated can be focused leading to a more intense beam at the sample. 

This is clone using either a Micromirror® optic 134 or a polycapillary optic (as in Durham). 

Despite the obvious differences, in practice, the Bruker Proteum M with Bede 

Microsource® is used in a very similar fashion to the conventional Bruker SMART-CCD 

diffractometers. 
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Figure 2.4: Frames of Bragg diffraction of varying quality. Poor diffraction is shown (left), 

where the reflections are split and smeared indicating poor crystallinity or diffraction from 

more than one crystal. Good diffraction is shown (right), where the reflections are well 

defined and continue to a high angle, indicating a high quality, single crystal. 

Figure 2.5: The Durham SMART-CCD 1000. 
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Figure 2.6: Schematic of the Oxford Cryosystems Cryostream. 

2.2.5 Temperature Control 
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Two low temperature devices were used, the Oxford Cryosystems Cryostream and the 

Oxford Cryosystems HeliX. 130 , 131 

Oxford Cryosystems Cryostream 

Two different versions of the Oxford Cryostream130 were used: 600 Series and 700 Series 

Cryostream Coolers. In essence, both function the same way. A diaphragm pump draws 

liquid nitrogen from a Dewar vessel into the cold head. Here the nitrogen is evaporated 

and the vapour flows along one path of the heat exchanger and through the temperature 

controller, the pump and a line drier. When it returns to the cold head, it is cooled further 

when it passes along the second path of the heat exchanger. The temperatme of tllis gas 

at the sample is controlled using a heater before it leaves the nozzle and comes into contact 

with the sample (Figure 2.6). 

There are two nlinor differences between the two systems. The 700 series has a slightly 

larger range, 80- 400 K (compared with 80- 360 K) and has a turbo setting, which increases 

the nitrogen flow at low temperatme, making it quicker to achieve lower temperatures. 

Two consequences of the increased flow however, are increased vibration at the sample 

and a less stable base temperature. Consequently, the turbo setting is not usually used 

during data collection. 
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The Oxford Cryosystems HeliX131 has a base temperature of 28 K with a stability of 0.3 K. 

It works by passing helium gas from a standard gas cylinder through heat exchangers 

mounted on a Closed Cycle Cryo-Refrigerator (CCR). The CCR is mounted within the 

HeliX and recycles compressed helium gas, which is water cooled. A Turbomolecular 

Pump (TMP) is used to maintain a vacuum space within the HeliX ( < 10-4 mbar), to 

minimise heat loss. 

2.2.6 Irradiation 

In some cases, samples could be excited to a different spin state using laser light. In 

these cases, the samples were mounted as described previously and cooled to 30 K using 

the HeliX. 131 The samples were then irradiated for between 2 and 10 mins with a laser. 

A number of lasers were available for use, including a diode near infrared laser (NIR) 

A = 830 nm (4 mW power output) , two red Heliun1-Neon lasers (ReNe) with A= 633 nm 

(25 mW and 15 mW) and a green Nd:YAG laser A = 532 nm (10 mW). The laser was 

directed using either mirrors or prisms or a combination of both, which were used to align 

the beam by eye on the sample (Figure 2.8). 
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Figure 2.8: Picture of the SMART-CCD 1000 with the red laser. The thin red line gives 

an idea of the beam path. 

2.2. 7 Data Collection, Analysis and Manipulation 

In general, all the data manipulation was performed using the Bruker SAINT-PLUS suite 

of prograrns136 and the SHELXTL V5.1 software. 137 Initially, a few frames were collected 

for indexing and the orientation matrix was obtained using the built-in auto-indexing 

routine in the SMART software. 138 

Given sensible cell parameters a full data collection was then recorded , using the 

SMART software. 138 In general, several series of narrow w scans (0.3°) were carried out at 

different ¢ settings in such a way as to collect a sphere of data to a maximum resolution 

between 0.70 and 0.77 A. Usually frames were collected for between 10 and 30 seconds per 

frame, depending on the size and diffraction of the crystal. A background (or dark) frame 

was recorded before the collection and automatically subtracted from each frame by the 

software. 

The cell parameters were then refined using strong reflections above a suitable threshold 

to get more accurate values. This done, the raw frame data were integrated using these 

cell parameters and the corresponding orientation matrix, using the SAINT software. 136 

File preparation was carried out using XPREP and the structure solved using XS. 137 
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Structure Solution and the Phase Problem 

Experimentally it is possible to measure the intensity of the reflections (I), but not the 

phase (Equation 2.1). In order to determine the electron density, we need both the am

plitudes, [F(h)[ and the phases, exp(i¢(h)) (Equation 2.2). Nature has been very cruel 

because the phases give more structural information than the intensity. However, it is 

possible to get information about the phases from the intensities using constraints. For 

example, using the fact that electron density cannot be negative and a structure is com

posed of discrete atoms leads to a series of inequalities. These make it possible to assign 

some starting phases, which can be used as a basis for structure refinement. This process 

is known as 'Direct Methods'. 

VI= F(h) = [F(h)[ x exp(i¢(h)) (2.1) 

1 
p(xyz) = V LF(hkl)exp[-21ri(hx+ky+lz)] (2.2) 

hkl 

Since one of the assumptions made is that all atoms are discrete, randomly dis

tributed and have equal scattering factors, in theory, this technique is not appropriate 

for organometallic compounds. However, in all cases, direct methods were used initially 

as modern software is often more tolerant. Where this was unsuccessful, the Patterson 

method was tried. 

The Patterson method was first discovered by A. L. Patterson in 1934. 139 It can be best 

explained by considering the scattering factors as complex numbers with the amplitude as 

the real part and the phase as the imaginary part. Multiplying the complex number by its 

complex conjugate gives a real number equivalent to the square of the real component with 

the imaginary parts cancelling out (Equation 2.3). This leads to something closely related 

to the electron density. Peaks in the Patterson map correspond to vectors between pairs 

of atoms in the structure. For each pair of atoms there are two peaks, because a Patterson 

map is inherently centrosymmetric. Given the number of peaks, there is considerable 

overlap, but the height of the peaks is proportional to the product of the number of 

electrons in the two atoms. For this reason, vectors between two heavy atoms stand out 
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clearly compared to vectors between smaller atoms. Thus, the Patterson solution method 

can only be used for structure solution where there are a few heavy atoms present. 

1 
P(uvw) = V 2.::: IF(hkl)l 2 cos[21r(hu + kv + lw)] (2.3) 

hkl 

Structure Refinement and Completion 

The structures were refined using full-matrix least squares on F 2 using XL 140 from the 

SHELXTL software. 137 The software includes a difference fourier synthesis routine which 

substitutes IFobsl - IFcalcl for the structure factor (in Equation 2.2) making the residual 

electron density peaks stand out. This was used to locate any atoms not fmmd at the 

solution stage. 

Once all the atoms had been located, the thermal parameters were fully refined until 

the structure refinement was satisfactory with any disorder modelled appropriately. The 

weighting scheme was then adjusted and the refinement continued until the maximum 

shift/esd was less than 0.005. 

Final solutions were viewed and checked using ATOMS V5.1, 141 XP, 137 ORTEP3, 142 

Mercury2 or similar and Crystallographic Information Files (CIFs) prepared and checked 

for publication using enCIFer143 and CheckCif. 144 

Absorption 

Absorption is an increased problem when working with heavy elements. Symptoms of 

absorption include poorly shaped thermal ellipsoids, high residual electron density and 

non-positive definite thermal paran1eters. However, it can be fairly straight forward to 

correct for absorption once the composition is known. 

In general, efforts were made to index the crystal faces as this enables a more accurate 

absorption correction. This involves indexing the crystal faces and measuring the distance 

from them to the centre of the crystal. 137 If this was not possible, an empirical absorption 

correction from multiple measurements of equivalent reflections was applied to the data 

using SADABS. 145 
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SADABS operates in three stages. Firstly, it determines scaling and absorption pa

rameters by fitting individual intensities (10 ) to the mean corrected intensities averaged 

over all equivalents (Equation 2.4). This is clone by alternately refining a scale factor for 

each frame (S(n)) and an absorption factor for the diffracted beam (P(u,v,w)). Sand 

Pare refined to minimise the l:[w(< Ic > -Ic)2
] + 2:[(~) 2 (SN- SN+t)] where< Ic > 

is the mean for a group of equivalents, a is the estimated standard deviation (esc!) and 

SN and SN+l are scale factors for adjacent frames. The values of scale factors in adjacent 

frames are related by linear interpolation (equations 2.5 and 2.6). 

Next, a small number of outliers are rejected, including those partially blocked by the 

beam stop or clipping the edge of the detector etc .. Finally an error model is generated 

for the remaining reflections by adjusting values for the scale factors k and g, so that x2 

is fitted to unity which puts a( I) onto an absolute scale (Equation 2. 7). 

lc = 10 S(n)P(u, v, w) (2.4) 

Sn = (1- x)SN + xSN+l (2.5) 

x = n- N (N integer, 0 < x < 1) (2.6) 

(2.7) 

SADABS assumes the crystal is isotropic, which is rarely entirely true. However, in 

general it is fairly effective, but does not always work with crystals that are thin plates or 

long needles or where there is a shortage of data. 

Twinning 

Some of the crystals studied were found to exhibit twinning. A twinned 'crystal' is one 

which is not truly single, but consists of two or more intergrown crystals whose orientations 

are related by some symmetry operation. Twinning most often occurs when the lattice 
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symmetry is higher than the crystal symmetry, for example in monoclinic crystals where {3 

is close to 90°. Twinned crystals can be divided into two categories: merohedral and non

merohedral. Non-merohedral twinning is usually identified when a well formed crystal 

that scatters strongly and cleanly either doesn't index or only indexes with a fraction 

of the reflections. Typically, it is then usually possible to index the rejected reflections 

with the same unit cell, but a different orientation matrix. Thus, when non-merohedral 

twinning is present, the reflections belonging to the different crystal orientations do not 

completely overlap (thought they may do so partially). Merohedral twins however, often 

index well, but either do not solve or refine badly. In this situation, reflections from 

the different orientations overlap, affecting the relative value of the intensities. In such 

cases, a matrix that relates the twin components can be included in the refinement and a 

twin ratio refined. In some cases, this twin matrix is apparent on considering the lattice 

symmetry, but where this is not obvious, software like ROT AX 146 is available to help 

determine twin laws (the symmetry operation(s) relating the twin components, written as 

a matrix). This method can also be used to refine structures where the crystal is a non

merohedral twin, but the partial overlap of reflections from the second twin component has 

been ignored. Ideally however, the second twin component in non-merohedrally twinned 

crystals should be included, by integrating all the data from all components using software 

like GEMINI. 147 

Data Quality Assessment 

The quality of the data and refinement were assessed in a number of ways. Before data 

collection, the matrix frames were examined visually to look for twinning and to check 

that the cell fitted the data well. The quality of the indexing was also used to assess 

the validity of the experiment. However, given the durability of modern techniques and 

software, poor data do not always lead to poor results, so substandard data wasn't always 

rejected out of hand if it indexed reasonably well. 

On the whole, the quality of the data therefore was assessed by the quality of the results, 

which were quantified in a number of ways. Firstly, the structure itself was examined and 

bond lengths and angles were checked to ensure they made chemical sense. Next, the 

difference map was studied. This was used to make sure there were no atoms missed 
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or incorrectly assigned. vVhere a metal was present, special care was taken as ripples in 

the fourier map were often visible. These are caused by data that isn't 100% complete. 

This effect is theoretically present for all atoms, but since the X-ray scattering factor is 

proportional to the number of electrons, the effect is much stronger for heavy metals than 

for lighter elements. 

Thermal parameters were also used as a key indicator of the quality of a structure. 

Initially, all thermal parameters were refined as isotropic, with one parameter describing 

the thermal motion as a sphere. The magnitude of this parameter was used to give 

an indication of thermal motion (for example in a PF(j counter ion) and whether atom 

assignment was correct. 

In most cases, in the final model, non-hydrogen thermal motion was described as 

an ellipse using six anisotropic displacement parameters. Not only did this give more 

information about the thermal motion, but it also gave a better idea of the quality of 

the model and the data. For example, elongated thermal ellipses for a CF3 group could 

indicate disorder, but where this could not be the case or where many atoms were affected, 

absorption could be causing a problem. 

In extreme cases, poor data, a poor model or disorder led to the situation where the 

ADPs no longer described an ellipse and one of the thermal parameters was non-positive 

definite. In such cases, the data was either rejected or efforts were made to solve the 

problem by applying or improving the absorption correction. Where absorption was not 

the problem, for example in the minor component of a disordered system, thermal motion 

was modelled as isotropic. 

Another important quality assessment tool used were the figures of merit generated 

by the software. There were a number of these used during the space group selection 

and structure solution processes, which were used to help choose a sensible model. More 

important than these are those used to assess the data (equations 2.8 and 2.9) and the 

final model (equations 2.10 to 2.12). These are generally based on the difference between 

the observed and calculated structure factors (Fobs and Peate) and in the case of GooF, the 

number of observations and parameters (nand p). The lower the value for these statistical 

measures, the better the data or the more reliable the model. However, these values are 

not wholly reliable, so were never used without the other assessment techniques detailed 
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R-Factor Guideline 

Rint <10% 

Rsigma <20% 

R1 <5% 

wR2 <12% 

GooF 0.95<8< 1.05 

Table 2.1: Guidelines for acceptability of figures of merit. 

previously. Despite this, guidelines of acceptability are often used (Table 2.1). 

The final stage of the refinement involved adjusting the weighting scheme (equation 

2.13). In general a two parameter weighting scheme was used. During the early stages 

of the refinement, a = 0.1, b = 0 was used, but once the structure was satisfactory, these 

values were effectively refined. One consequence of this is the artificial improvement of 

the 'goodness of fit' (GooF) and the weighted R-factor (wR2 ), so these values, like the 

other statistics, were never relied upon and only used as a guide. 

GooF= S = 

L:[w(FJbs - FzatJ2l 
L:w(FJ)2 

L [w(F~s- FzatcFJ 
n-p 

p = _2F--=!=tc'-+_A_1_a_x--'-( F_0=2b"'-s ,_0...:...) 

3 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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2.3 X-ray Powder Diffraction (XRPD) 

In a powder, the individual crystallites are randomly oriented, so compared with single 

crystal X-ray diffraction (XRSXD), in XRPD the individual reflections become a series of 

concentric intensity cones. This means there is increased peak overlap and a corresponding 

loss of information, making it very difficult (though not impossible) to solve molecular 

structures. However, powder diffraction data can still be used to refine a known structure 

and this is the primary use for XRPD. 

2.3.1 Siemens D5000 Diffractometer 

The Siemens D5000 Diffractometer is fitted with a copper fine-focus sealed tube source. 

The optical system employed includes 1 o fixed or variable divergence slits, antiscatter 

slits and a 0.2 mm fixed detector slit (Figure 2.9). The detector setup is a scintillation 

counter preceded by a graphite (001) diffracted beam monochromator Ka 1 .\ = 1.54060 A, 

Ko2 .\ = 1.54439 A and X = 1.5418 A. The machine was generally used with a sample 

changer, enabling many samples to be run without constant maintenance. The hardware 

was controlled by Bruker propriety software, DiffracPlus Edit.Job V.4.0 148 and the data 

were qualitatively exan1ined using EVA. 149 

2.3.2 Bruker D8 Advance 

Like the Siemens D5000 Diffractometer, the Bruker D8 Advance also has a copper sealed 

tube source, but is fitted with a germanium (111) primary beam monochromator, which 

eliminates Ko2 radiation giving a monochromatic wavelength of.\ = 1.540598 A. In gen

eral, a Braun Position Sensitive Detector (PSD) is used which enables enhanced data 

acquisition. The PSD is essentially an anodic wire with pulse generating electronics at 

each end which gives feedback to the controller. This allows the detector to scan a range 

of approximately 12°, effectively increasing the intensity by increasing the time spent at 

each 20 point. 

Not only can the Bruker D8 Advance be operated in capillary and flat plate modes, 

it also has facilities for environmental control. There are three environmental chambers: 

Anton Paar HTK1200, 150 Anton Paar TTK450151 and the Oxford Cryosystems PheniX. 152 
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Figure 2.9: Schematic of the Siemens D5000 Diffractometer, a powder diffractometer. 

Anton Paar HTK1200 

The Anton Paar HTK1200 is a furnace type environmental chamber (Figure 2.10). 150 

Temperature control is via heating elements and a thermocouple located w1derneath the 

sample which allows feedback to the temperature controller (Figure 2.11). This attachment 

allows temperature variation from room temperature to over 1000 °C. 

The sample holder is a sintered alumina (alsint) crucible, which can be used to hold 

samples in three ways. Most simply, it can be packed with powder, but with temperature 

changes and the corresponding sample expansion, this can result in the sample falling out. 

Secondly, pellets can be pressed and fitted into the holder. However, the most frequently 

used method was a sample mounted on a fused silica disc. This disc was lightly greased 

with vaseline and sprinkled with powdered sample using a fine mesh. 

Anton Paar TTK450 

In contrast to the HTK1200, the Anton Paar TTK450 cryofurnace is a conduction based 

system. 151 Using this attachment, a sample can be studied from 90 K to over 700 K. 

Liquid nitrogen is used to achieve temperatures below ambient. Since this is stored in 

a Dewar vessel inside the diffractometer cabinet, its size and the amount it can hold are 
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Figure 2.10: Picture of the Bruker D8 with the Anton Paar HTK1200 furnace attachment. 

The Braun position sensitive detector can be seen on the right hand side of the picture. 153 

Figure 2.11: Cutaway diagram of the Anton Paar HTK1200 furnace attachment for the 

Bruker D8. 154 
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Figure 2.12: Diagram of the TTK450 cryofurnace sample holder. 

limited, with the experimental time restricted accordingly. 
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The powdered samples are pressed into a stainless steel sample holder which slides 

into a socket within the attachment. Since the temperature is controlled via conduction, 

this connection is greased with conducting paste. However, it was found that the thermal 

conduction of most samples is poor, creating a thermal gradient thus giving erroneous 

results. So, rather than fill the stainless steel holder, an aluminium plate was made to fit 

the hole. The samples can be mounted on this in the same way as on the fused silica disc in 

the HTK1200 (Figure 2.12). The aluminium plate is set into the holder with the contacts 

greased with paste, which both aids conduction and helps to prevent the plate falling out 

of the holder at high angles. The disadvantage with this technique is the presence of 

aluminium peaks in the background. Since it is machined aluminium, it is no simple task 

to fit the peaks, though this can be done. In such cases, the aluminium can be considered 

as an internal standard and used to calibrate the temperature. 

All scans were run under vacuum, to prevent the build-up of condensation and ice in 

the chamber at low temperature. 

Oxford Cryosystems PheniX 

Like the Anton Paar TTK450, 151 the Oxford Cryosystems PheniX152 relies on conduction. 

Consequently, the aluminium sample plate was greased and sprinkled with sample in the 

same way as for the Anton Paar attachments. The sample plate is then screwed into the 

chamber and covered first with a heat shield, then with an outer cover. This cumbersome 
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Figure 2.13: The Oxford Cryosystems PheniX mounted on the Bruker D8 Advance with 

a closeup of the PheniX opened showing the heat shield (inset). 155 

layered feature could cause a problem with so called 'dead areas' where something either 

obscures the incident or the scattered beams. However, a really clever part of the PheniX 

design, is the way the whole chamber moves with the goniometer (and therefore also with 

the sample), preventing loss of data (Figure 2.13). 

There are two key advantages the Oxford Cryosystems PheniX has over the Anton Paar 

TTK450. Firstly, it has a closed cycle refrigerator (CCR), so it is far more efficient and 

there is no practical limit to the length of time taken to record data (low temperatures are 

achieved using liquid nitrogen with the TTK450, which is stored in a Dewar vessel inside 

the cabinet giving a maximum experiment time of about 16 ill:). Secondly, the PheniX 

reaches temperatures as low as 17 K, compared to 90 K with the TTK450. However, 

as the PheniX has no heating facility, the maximum temperature it can reach is room 

temperature. Like the TTK450, data collections are carried out tmder vacuum to prevent 

buildup of ice. 

2.3.3 Data Collection, Analysis and Manipulation 

Data were collected using e /20 coupled scans and the instruments were controlled by 

the proprietary Bruker software. 148 Scans were monitored using an online status display 

and on completion examined using EVA 149 where impurities could be identified using the 

integrated PDF-2 database. 156 Data were converted to a suitable format using the XCH 
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Figure 2.14: Schematic of powder diffraction. Single crystal diffraction leads to diffraction 

'spots', powders are like many tiny single crystals, so the diffraction is smeared into cones. 

software. 157 The General Structure Analysis System suite of programs (GSAS), 158 was 

used for Rietveld and Le Bail refinements. Both the UNIX® version and the Windows® 

version within the EXPGUI environment 159 were used, though this made little or no 

difference to the refinement results. 

Rietveld Refinements 

Rietveld refinement was developed by Hugo Rietveld in the late 1960s16o-162 and since 

then has been the primary tool in structure analysis using powder diffraction. The key 

problem with powder data is the loss of information in compressing individual reflections 

into cones of data (Figure 2.14). So, unlike single crystal diffraction, it is difficult to 

extract data in the form of hkl and intensity as there is considerable overlap. The idea 

Rietveld proposed was to compare calculated intensities (Yi(calc)) and observed intensities 

(Yi(obs)) at each data point, effectively fitting the data to the whole pattern instead of just 

to each individual reflection. Thus, the initial structure model is refined by least squares 

to produce a best fit model that minimises the residual, Sy. This residual is dependent 

on the 'weighting' ( w;) and the difference between the observed and calculated values 

(Equation 2.15). The function of the residual can be described as a three-dimensional 

hyper-surface with minima and maxima and the correct model is found at the lowest 

point. 
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Since many Bragg reflections contribute to the observed intensities of a powder pattern, 

this method avoids allocating intensities to particular Bragg reflections and the necessity 

of resolving overlapping peaks. Instead, the calculated intensity at any step, Yi(calc)' is 

predicted from the structural model. It is the quality of this model that the best-fit 

ultimately depends upon and it is important that the final result is the global minimum 

rather than a local or 'false' minimum. 

(2.15) 

In general, a background function is fitted first, as this is straight forward and relatively 

independent of the structure. The next set of variables refined, are those that govern 

the peak shape. Once the refinement is stable, more structure dependent variables are 

included; first the lattice parameters, then the atom positions and finally the temperature 

factors. 

The measures used to assess the reliability of the refinement are a set of "Figures 

of Merit" including the structure R-factor, RF; the Bragg R-factor, RBragg or RF2; the 

profile R-factor, Rp and the weighted R-factor, wflv (equations 2.16-2.19). However, in 

a similar way to single crystal data, these figures of merit can be misleading, so the best 

measure of the quality of a refinement is the fit. In the case of powder data this can be 

studied by eye, looking at both the fit and the difference curve. 

"Lwi((YiCalc)- (Yi))
2 

"Lwi(Yi) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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(2.20) 

where IK is the observed intensity of reflection K, 

lKca/c is the calculated intensity of reflection K, 

y; is the observed intensity at point i, 

y;calc is the calculated intensity at point i, 

Fobs is the observed structure factor, 

Fca/c is the calculated structure factor, 

n is the number of observations, 

and p is the number of parameters. 

In some cases, where the structure is unknown, it is desirable to refine cell parameters 

without structural information. There are two techniques available, the Pawley method 

and the Le Bail method. 

Pawley Fitting 

The Pawley method was first developed in 1981 when it was used to refine the cell pa-

rameters of decafluorocyclohexene, with the final intention of extracting intensities for 

structure solution and refinement. 163 

Since Pawley fitting refines the intensity for each hkl, it is computationally intensive 

and in the early years had a reputation for being unstable and relatively difficult to control. 

However, in more recent years, teclmiques have improved so that the Pawley method is 

once more a going concern, but most current software that utilise this technique are 

commercial in nature or have restricted access, correspondingly reducing the availability. 

Le Bail Fitting 

The idea behind the Le Bail method came during a "long and lonesome night experiment 

at ILL" in July 1987. 164 Armel Le Bail considered how, at the end of a Rietveld refinement, 
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the so called 'IFobsl' are extracted and used to calculate the Bragg R-Factor.* He realised 

that these 'observed structure factors' could be recycled back into the refinement and used 

for the next cycle. In this way, the refinement proceeds without any reliance on the model. 

Thus, in practice, this allows the refinement of lattice parameters, peak shapes and sample 

height while effectively fitting the intensities. 

Since the Le Bail method is computationally inexpensive and has been easy to integrate 

within Rietveld software, it has been incorporated into a lot of programs that are freely 

available to the academic community, such as GSAS and F\tllProf. 158• 166 As a result, the 

technique is widely used and although it was first used to extract observed peak intensities 

for the structure solution and refinement of LiSbvV06 , 167 it is now also a valuable tool for 

comparing powder data without having to complete a full structural refinement. 

Within GSAS, changing from a normal Rietveld refinement to Le Bail fitting is very 

straightforward as it is a function integrated into the program. GSAS also makes two 

options available at the start of the refinement. Not only is it possible to set the initial 

intensities as equal, in cases where the structure is known, the starting intensities can also 

be based on a model. 

Structure Solution by Simulated Annealing (SA) 

Simulated Annealing (SA) is a full profile fitting technique that can be used to solve powder 

structures. 168 Both Rietveld refinement and SA are used to probe a three dimensional 

hypersurface of potential solutions with the correct solution located at the global minimum. 

In addition to the global minimum there are many local or 'false' minima. Rietveld 

refinement is reliant on the starting structure being sufficiently close to the true structure 

that refinement will lead 'downhill' to the correct solution. 

SA on the other hand, searches the hypersurface by moving a molecular fragment 

within the unit cell space. In each case, the goodness of fit is recorded and models 

are accepted or rejected accordingly. However, the rejection criterion depends on the 

'temperature'. Initially, during structure solution by SA, a high temperature is used, which 

allows a large amount of 'uphill' movement. During the 'annealing', this 'temperature' is 

•The '[Fobs[' are biased according to the Fcalc, hence the quotes. 
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gradually reduced, which applies more stringent rejection criteria. In this way it is possible 

to search the hypersurface without getting stuck in a false minimum. 



Part II 

Spin Crossover in Mononuclear 

and Dinuclear Complexes 

79 



Chapter 3 

Thermal and Light Induced Spin 

Crossover Transitions in 

Di(hydro) bis(l-Pyrazolyl)Borate 

Iron Complexes 

3.1 Introduction 

Work carried out by Hutchinson et al. showed that the tridentate (hyclro)tris(1-

pyrazolyl)borate ligand ([HB(Pz)3]-) promotes spin crossover. 169- 171 Compounds 1 

and 2 contain two related bidentate clihydrobis(1-pyrazolyl)borate ligands ([H2B(Pz)2]

or Hbpz) together with one other bidentate ligand each, yielding two compounds of the 

type Fe(Hbpz)2L (Figure 3.1). The problem with [HB(Pz)3]- is that as a tridentate lig

and, it readily forms very stable octahedral iron complexes leaving no room for generating 

new compounds by ligand substitution. As a bidentate ligand [H2B(Pz)2]- is a better can

didate in this respect, and together with 2,2'-bipyridine (Bpyd) and 1,10-phenanthroline 

(Phen) makes two neutral mononuclear molecular complexes (compounds 1 and 2). 

80 
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Figure 3 .1: Three pyrazolyl-borate complexes Fe[HB(Pz)J]2 (left), 169 

Fe(Bpyd)[H2B(Pz)2]2 (compound 1, centre) and Fe(Phen)[H2B(Pz)2]2 (compound 2, 

right ). 172 

3.1.1 Magnetic Susceptibility Data 

SQUID magnetic susceptibility measurements indicate that both materials undergo a rea

sonably sharp spin crossover transition. Compound 2 exhibits an abrupt transition be

tween 165 K and 155 K with a thermal hysteresis of approximately 4 K. Compound 1 

behaves in a similar fashion, but the transition, which is centred around 160 K , is more 

gradual and there is no noticeable hysteresis (Figure 3.2). 172 

In addition, photomagnetic studies indicate that for both compounds, there is a com

plete conversion from low spin to high spin on irradiation at 10 K with a red laser 

(>. = 647.1 - 676.4 nm) . The critical LIESST temperatures are 52 K and 44 K for 

compounds 1 and 2 respectively (Figure 3.3) .173 

3.1.2 Spectroscopy 

Mossbauer spectroscopy has also been carried out on both compounds 1 and 2. These 

results suggest that there is almost complete spin conversion at low temperature, while 

at room temperature there is 9.5% and 15% residual low spin for compounds 1 and 2 

respectively. 173 In addition, Raman spectroscopy has been carried out on compound 2 

above and below the spin transition. 173 The Raman results indicate the signihcant changes 

in the position of several of the low frequency modes that are generally associated with 

spin crossover. 
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Figure 3.2: Magnetic susceptibility data for compounds 1 (left) and 2 (right). 173 Cooling 

and warming cycles show the 4 K hysteresis for compow1d 2 (V' and 6). Irradiation at 

10 K for one hour ( • ) was followed by warming at 0.3 K/min ( o ). 
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Figure 3.3: Time dependence of the high spin molar fraction generated by light irradiation 

for compounds 1 (left) and 2 (right). 173 
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3.2 Single Crystal Diffraction Experiments 

Samples of both compounds* were crystalline, consisting of crystals of vmying quality, but 

in both cases, there were crystals suitable for single crystal X-ray diffraction experiments. 

3.2.1 Data Collection 

Initially, the very abrupt transition in compound 2 caused considerable difficulties when 

attempting to collect data on the low spin state. Crystals of compound 2 suffered severe 

destructive strain, which was initially thought to result from the sudden nature of the 

change from high to low spin, causing cracking and loss of crystallinity. These effects were 

not seen in compound 1 however. 

Fe(Bpyd)[H2B(Pz)2)2 (Compound 1) 

A suitable red-brown crystal of compound 1 was selected, mounted in oil and quenched to 

200 K using the Oxford Cryosystems Cryostream 600 on the Bruker SMART-CCD 1000 

diffractometer. 

A matrix collection was recorded and indexed giving cell parameters in keeping with 

those for the room temperature structure given in the literature. 172 A hemisphere of 

data was collected at 200 K with 7 s/frame. The crystal was then cooled to 120 K at 

240 K/hr where a matrix collection indicated that the cell volume had contracted by over 

five percent, so a second hemisphere was collected, as at 200 K. On completion, the crystal 

was warmed to 200 K at 180 K/hr, then to 290 K at 360 K/hr and removed. 

The cryostream was replaced with the HeliX 131 and the crystal returned to the diffrac

tometer at 300 K and cooled in stages to 30 K (120 K/hr to 270 K, 240 K/hr to 200 K, 

180 K/hr to 120 K and 360 K/hr to 30 K). At 30 K a matrix collection indexed satis

factorily, so a short hemisphere dataset was collected with 0.9° frames and 10 s/frame. 

On completion, the crystal was irradiated for approximately 15 mins with the 25 m W red 

laser (>. = 633 nm), followed by a matrix collection which indicated an increase in cell 

*Crystals courtesy of Prof. Jose A. Real, Dr. M. Carmen Munoz and Ms. Ana G. Galet Domingo 

(Valencia). 
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volume. A further 15 mins of irradiation yielded little further change in volume, so data 

were collected as at 200 K and 120 K. 

Fe(Phen)[H2B(Pz)2]2 (Compound 2) 

Initially, cooling at 60 K/hr was attempted, but as the strain resulted in the crystal falling 

apart, cooling at 120 K/hr, 360 K/hr and quench cooling were tried. Although matrices 

collected at below the transition gave cell parameters that suggested the crystals had 

undergone spin crossover, cooling the crystal at 360 K/hr yielded the best data. 

Crystal mounting proved to be the largest problem however, with larger crystals 

mounted in oil, epoxy resin (Araldite® 5 min mix) and nail-polish, all suffering dam

age. In the most extreme cases this resulted in the crystal splitting into two or more 

fragments or completely disintegrating. The best result was obtained using a small crystal 

mounted using epoxy resin which wasn't allowed time to harden. Once cold and in a 

nitrogen or helium stream, the rate of reaction was slowed significantly, preventing fur

ther hardening, so that the adhesive retained its elastic properties. This was of particular 

use, as it allowed the crystal to undergo larger structural changes without introducing 

additional strain, thus preventing fracturing. 

Data were collected using a crystal (0.28 x 0.10 x 0.02 mm) mow1ted in this manner 

with the Oxford Cryosystems Cryostream130 on the SMART-CCD 6000 diffractometer. 

The crystal was quenched to 200 K where a matrix was collected followed by a hemisphere 

of data (1200 frames, 20 s/frame). The crystal was then cooled through the transition at 

360 K/hr to 100 K where a second matrix was followed by a data collection (1500 frames, 

20 s/frame). On completion, the crystal was warmed back to 200 K, where a repeat 

matrix was in keeping with that recorded previously at 200 K. A subtle colour change was 

observed between 170 K and 160 K on cooling, with the crystal becoming a deeper, darker 

shade of red (Figure 3.4). The effect was reversed on warming, with the transition taking 

place at a temperature a few degrees higher than on cooling. 

A second, slightly smaller crystal (0.15 x 0.12 x 0.08 mm) was selected and data were 

collected using the Bruker Proteum M diffractometer and the Oxford Cryosystems He

liX.131 The crystal was mounted in epoxy resin and quenched to 200 K where a matrix 

collection was followed by a short data collection of 180, 3° frames at 40 s/frame. The 
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Figure 3.4: A crystal of compound 2 at 200 K (left) and 100 K (right). 

crystal was then cooled at 360 K/hr to 100 K where a matrix was collected. This was fol

lowed by further cooling at 360 K/hr to 30 K where a matrix was followed by a hemisphere 

of data at 20 s/frame. On completion, the crystal was irradiated using a red laser (25m W, 

A = 633 nm) for approximately 90s while constantly rotating¢ for a more uniform irradi

ation. A matrix was collected and the data collection at 30 K was repeated. Severe icing 

was experienced throughout the low temperature part of the experiment, with problems 

increasing over time. No crystal colour change was observable at any stage, partly as a 

result of the icing, but also because the sample environment limits the amount of light at 

the sample, making the crystal much more difficult to see. 

3.2.2 Data Analysis 

Fe(Bpyd)[H2B(Pz)2)2 (Compound 1) 

The data generally indexed and integrated well , with the transitions making very little 

difference to the crystal quality. The structure was solved from the 200 K data in C2/ c 

and SADABS 145 was used to apply a linear absorption correction. 

Fe(Phen)[H2B(Pz)2]2 (Compound 2) 

The data collected at 200 K indexed with a monoclinic C-centred cell of a=17.3607(16) A, 

b=16.0397(14) A, c=10.5614(9) A, {3 = 121.617(3)0
, V = 2504.4(4) A3 (C2/c). At 

100 K however, the data indexed with a smaller primitive cell of a=ll.0458(13) A, 

b= l1.6730(13) A, c=10.5651(12) A, a = 109.777(3)0
, 13 = 69.520(3) 0

, 1 = 93.368(3) 0
, 

V = 1198.1(3) A3 , which is related to the monoclinic cell by the matrix: 
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c 

Figure 3.5: Schematic of the change from C-centred to primitive in compound 2 . The 

200 K, high spin cell is shown in bold, with the distorted equivalent cell in red and the 

primitive cell in blue. 
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Similarly, transforming the smaller 100 K primitive cell by the inverse matrix: 

gives the cell a=l6.5354(14) A, b=l5.5923(13) A, c=10.5651(12) A, a = 89.688(4) 0
, 

{3 = 118.202(3)0
, 1 = 93.168(3t, V = 2396.2(3) A 3 which deviates significantly from 

monoclinic symmetry, particularly in f. The two cells are related by a rotation around 

the c-axis (Figure 3.5). 

The 30 K data indexed with similar cells, both before and after irradiation (where the 

cell volume increased, but the distortion remained). All three sets of data were examined 

in C2/ c in case the change in angles was due to structural damage caused by the transition, 

but none solved and refinements of the 200 K structure gave very poorly shaped thermal 

ellipsoids, some of which were non-positive definite. Changing the symmetry to PI using 

the smaller primitive cell, resulted in a structure that not only solved, but also refined 

satisfactorily with sensible thermal parameters that were stable when refined as anisotropic 

ADPs. 
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Crystal faces had been indexed based on both the monoclinic and triclinic cells, so 

absorption corrections were carried out accordingly. 

3.2.3 Structure Refinement 

All the data discussed were of a generally high quality, which is reflected in the esds and 

statistics, resulting in reliable refinements. 

Fe(Bpyd)[H2B(Pz)2]2 (Compound 1) 

All non-hydrogen atoms were refined as anisotropic in all four structures including the 

short data collection at 30 K. The hydrogens were all located in the difference map and 

refined satisfactorily. 

Fe(Phen)[H2B(Pz)2]2 (Compound 2) 

Like compound 1, in general, all non-hydrogen atoms were refined as anisotropic and the 

hydrogens were located in the difference map and refined accordingly. 

In the case of the structure recorded at 100 K, the angles made by two of hydrogen 

atoms with the phenanthroline ring were unrealistic, so these were improved by the ad

dition of restraints. This, together with the slight deterioration in the figures of merit 

suggest that there may have been damage to the crystal during the transition, though the 

quality of the refinement indicates that this was small. 

The short data collection at 200 K gave satisfactory results consistent with those seen 

in the full data collection, apart from thermal ellipsoids that are slightly prolate and lower 

figures of merit - all problems that could result from the reduced quality of the data that 

were collected with wide frames.t Similarly, the 30 K results were in keeping with those 

at 100 K. The thermal parameters for the hydrogen atoms were not reliable however, so 

they were not refined. 

!The data mllf"Cted at 200 K with wide frames were recorded for nLrucLure confirmation and completion, 

but bond lengths, angles and other parameters discussed herein refer to the full dataset at 200 K collected 

with the Oxford Cryosystems Cryostream, 130 unless indicated otherwise. 
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The data collected after irradiation suffered from severe icing problems, so initially only 

the first nm was used for the refinement. The shortage of data meant the thermal ellipsoids 

were all very prolate, with a distinct directionality. This was considerably improved by the 

addition of part of the second run, but although the hydrogen atoms were clearly visible 

in the difference map, the refinement became unstable, so the hydrogen atoms were added 

geometrically and refined using a riding model. 

The program IVTON 174 was used to calculate the mean Fe-N bond lengths and the 

volumes for the iron octahedra in compounds 1 and 2. 

3.3 Discussion 

Chemically, compounds 1 and 2 are very similar, the only difference being in the extra 

two carbon atoms in the phenanthroline ligand. These two carbons are very significant 

however, as the increased aromaticity confers an additional rigidity on the ligand as well 

as potentially increasing the degree of 1r-1r overlap. 

3.3.1 Structural Analysis 

Structurally, compmmds 1 and 2 are very similar. At 200 K, both structures are monoclinic 

(C2/ c), with the two halves of the molecule related by symmetry (Figure 3.6). 

1r-1r Interactions in FeL[H2B(Pz)2]2 

The iron centre in both compounds sits on the two fold rotation axis which runs through 

the middle of the Bpyd and Phen ligands and the iron centre. As well as generating one 

half of the bipyridine/phenanthroline groups, it also relates the two [H(Pz)3]- ligands. 

Neither structures have any hydrogen bonding interactions between molecules, but 

there are 1r-1r stacking interactions in both complexes. In compound 1, these take place 

between the Bpyd ligands of adjacent molecules which lead to the formation of chains. 

These chains form a staircase motif, with the molecules alternating their direction (Fig

me~- 7). Similarly, in componnd 2, 1r-1r stacking interactions take place between symmet

rically equivalent Phen ligands, but the amount of overlap is increased, effectively from 

one phenyl ring to two, due to the extra aromatic ring. 
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Figure 3.6: The asymmetric units at 200 K for compounds 1 (left), a = 16.2215(15) 

A, b = 15.0254(15) A, c = 11.0397(11) A, f3 = 114.858(4)0
, v = 2441.5(4) A3 (C2/c) 

and 2 (right) a = 17.3607(16) A, b = 16.0397(14) A, c = 10.5614(9) A, {3 = 121.617(3)0 

v = 2504.4(4) A3 (C2/c). 

Compound 1 Compound 2 

a 16.2215(15) A 17.3607( 16) A 

b 15.0254(15) A 16.0397(14) A 

c 11.0397(11) A 10.5614(9) A 

{3 114.858(4)" 121.617(3) 0 

Volu me 2441.5(4) A3 2504.4(4) A3 

Table 3.1: Cell parameters for compounds 1 and 2. 

Although there is an increase in the number of overlapping rings in the Phen complex, 

the strength of the interaction is reduced, with the interplanar distance increasing from 

3.691(6) A in the Bpyd complex to 3.886(6) A. This is presumably due to the change 

in the nature of the 1r-1r interaction. In the case of the Phen complex, the overlapping 

ligands (and therefore the iron centres) are shifted away from each other and sideways 

slightly, increasing the Fe··· Fe distance from 8.8388(9) A (in compotmd 1) to 9.3293(9) A 

(in compound 2). This change is reflected in the cell parameters, which show that there 

is an increase in the a and b-axes and a contraction in the c-axis (Figure 3.8, Table 3.1). 
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Figure 3.7: The 1r- 1r stacking in compound 1 (top) and compound 2 (bottom) at 200 K. 

Both compounds are shown without perspective, so that the overlap can clearly be seen. 

Although there is a reduction in the 1r- 1r distance, compound 2 packs more tightly because 

the interdigitating stacks of molecules are closer together. This tighter packing is reflected 

in the density, which is 1.406 Mgjm3 for compound 2 compared wiLh 1.377 Mgjm3 for 

compound 1. 
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c 

Figure 3.8: Compound 2 showing the unit cell. Three molecules of a chain are shown 

viewed perpendicular to the Ph en ligands (left) and at 90°, down the b-axis (right). As 

the extra ring in the Phen ligands push the molecules apart, there is an increase in the 

length of the b-axis, while increasing interplanar ~L distances and a sideways shift, lead 

to an increase in a and a decrease in c. 
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Fe-N Distances 

From the iron-nitrogen distances, at 200 K both compounds 1 and 2 are high spin, with 

average Fe-N distances of2.183(1) A and 2.180(1) A respectively. The Fe-N distances are 

slightly shorter for the pyrazole rings than for the bipyridine and phenanthroline ligands 

(Table 3.2), which is probably due to steric effects. Both the bipyridine and phenanthroline 

ligands have a larger bite angle because they form a five membered ring when they ligate 

compared with the six membered rings formed by the Hbpz ligands. This results in a 

smaller N-Fe-N angle at the iron centre for the Bpyd and Phen ligands. 

It is interesting to note that all the Fe-N distances in compmmd 2 are shorter than 

those in compound 1, making the bite angles approximately 2° larger. This could explain 

why the transition takes place at a higher temperature, with the subtly stronger ligand 

field created by the Phen ligand reflected in the Fe-N distances and angles. However, 

the Mossbauer spectroscopic data indicate that there is 9.5% and 15% residual low spin 

at room temperature for compounds 1 and 2 respectively. 173 This would have the effect 

of reducing the apparent Fe-N distances, an effect that would be increased in the Phen 

complex, making the Fe-N distances shorter in a pme high spin Bpyd complex than in a 

pure HS Phen complex. 

3.3.2 Low Spin 

On cooling, both complexes clearly undergo a transition with a large unit cell contraction. 

The cell volume of compound 1 contracts from 2441.5(4) A3 at 200 K to 2334.5(2) A3 

at 120 K, a change of over 100 A 3 , which corresponds to a contraction of nearly 4.4%. 

Compound 2 undergoes an additional structural phase change from C-centred monoclinic 

to primitive triclinic with an associated halving of the unit cell volume. Taking into 

accmmt this change in cell volume, there is an additional contraction caused by the SC 

transition, which is comparable to that seen in compound 1. 

Fe-N Distances 

In both compounds, the contraction is caused by changes in ligand-metal bond lengths in 

the way that is usually associated with spin crossover materials. In the case of compounds 1 

and 2, the change is approximately 0.18 A. However, it is interesting to note that the Fe-N 
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Compound 1 Compound 2 

Temperature 200 K 120 K 200 K lOOK 

Fe-N1 2.2083(17) A 1.9762( 17) A 2.2052(17) A 1.977(3) A/1.976(3) A 

Fe-N2 2.1621(17) A 2.0195(18) A 2.1562(17) A 2.007(3) A/2.002(3) A 

Fe-N3 2.1811(17) A 2.0153(17) A 2.1798(17) A 2.024(3) A/2.003(:~) A 

Average 2.183(1) A 2.004(9) A 2.180(1) A 1.998(6) A 

Average Change 0.179(9) A 0.182(6) A 

Bpyd 73.62(9)" 81.22(1Qt 

Phen 75.01(9)" 82.38(12)" 

Hbpz 88.91(7)" 91.58(7)" 90.40(6)" 92.88( 11 )" /92.59( 11 )" 

Table 3.2: Fe-N distances and ligand bite-angles for compounds 1 and 2. 

bonds to the Bpyd and Phen ligands, which at 200 K were longer than those to the Hbpz 

ligands, are noticeably shorter in the low spin structures. Also, the average Fe-N distance 

at 100 K for compound 2 is shorter than for compound 1 at 120 K. 

Structural Changes in Compound 2 

The Phen complex undergoes a symmetry loss coupled with the spin transition. This loss 

of symmetry is clearly primarily due to the change in the "! angle from 90° to 93.368(3) 0
. 

A consequence of this is the loss of the C 2 molecular symmetry, resulting in a doubling 

of the number of atoms in the asymmetric unit. Overlaying a molecule rotated by 180° 

shows the loss of symmetry clearly (Figure 3.9). 

3.3.3 LIESST 

The photomagnetic data clearly indicate that both compounds should form a meta-stable 

light induced high spin excited state, so both compounds were irradiated using a red laser, 

which led to an increase in cell volume in both cases. 

Fe(Bpyd)[H2B(Pz}2)2 (Compound 1) 

An increase in the average Fe--N bond length from 2.007(8) A at 30 K to 2.187(2) A on 

irradiating, indicates that a light induced transition took place. The fact that the meta

stable state remained high spin for the duration of the data collection, indicates that, as 



3.3. Discussion 94 

Figure 3.9: Overlay showing the loss of C2 symmetry in compound 2 at 120 K, generated 

by mapping opposite halves of the phenanthroline ligands 

in other cases, at 30 K the lifetime is long. 

A comparison of parameters other than the Fe-N distances indicates that the excited 

state is comparable to the high spin state at 200 K, as with other known compounds. 

Fe(Phen)(H2B(Pz)2)2 (Compound 2) 

On irradiation, compound 2 undergoes an increase in cell volume from 1192.9(4) A3 to 

1231.0(13) A3 (3.2%) indicating that there is a light induced transition. However, con

verting the excited state cell to the monoclinic equivalent, indicates that the "t angle does 

not return to 90°. Structure solution confirms that the structure remains triclinic, but an 

average Fe-N distance of 2.171(8) A indicates that the structure is definitely high spin. 

So, unlike the Bpyd analogue, the light induced state is not equivalent to the high spin 

state at 200 K for the Phen complex. Presumably, the high spin monoclinic structure is 

energetically favourable, as that is the structure type that crystallises for both the Bpyd 

and Phen compounds under ambient conditions. Despite this however, the excitation 

with a red laser leads to a high spin state that retains the primitive triclinic structure. 

Although this effect has apparently not been recorded in the literature, on consideration, 

it is apparent why it occurs in this case. For a structure to undergo major changes, a 

considerable amount of energy is required. Clearly, sufficient thermal energy is available 

at 200 K, but at temperatures as low as 30 K there is not enough thermal energy for 

the structure to overcome the energy barrier and complete the structural change. On the 
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other hand, there is enough energy provided by the laser to enable the electronic transition 

from the low to high spin. Thus, the thermally induced transition consists of a structural 

transition coupled with an electronic transition, while the light induced transition is only 

electronic in natm·e. 

3.3.4 Spin Crossover Transitions 

So both compounds undergo thermal and light induced transitions, but only compound 2 

has a thermally induced transition that is associated with a symmetry change. 

Fe-N Distances, Octahedral Volumes and Distortion 

·while changes in the Fe-N distances give information on the presence of transitions, a 

better way of following changes in the spin state is to look at the octahedral volumes, 

where the changes in Fe-N distances are magnified (Table 3.3). 

Overlaying the structure of the low and high spin states of compmmd 1, shows that 

there is a reorganisation on spin crossover and the high spin core is more distorted than 

in the low spin structure (Figure 3.10). This result was first observed in compound 1 by 

Real et al., 172 but this is not a new phenomenon and was discussed in detail by Guionneau 

et al.. 175 Guionneau et al. discussed the distortion around the iron centre in terms of a 

parameter ~ (Equation 3.1) for which they give characteristic values of approximately 

85° and 50° for high and low spin structures respectively. The exception to this in the 

compounds they discuss is [Fe(Phen)2(NCS)2], where there is a smaller distortion, thought 

to result from rigidity conferred by the molecular symmetry. 

12 

~ = L 190- Oil (3.1) 
i=1 

In compounds 1 and 2, the N-Fe-N ligand bite-angles indicate that the octahedral 

centre is closer to regular in the low spin state. However, a comparison of ~ values 

indicates that the distortion in the HS state is not as great as that seen in the compounds 

studied by Guionneau et al. (Table 3.3). This effect could be because compounds 1 

and 2 are of the form Fe£3, whereas those discussed by Guionneau et al. are of the form 
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Compound/ Average Octahedral Ideal Distortion E 

Temperature/ Fe-N Volume Volume as a 

Conditions Percentage 

Compound 1 

200 K 2.183(1) A 13.67(2) A 3 13.87(5) A3 1.51% 48(1)" 

120 I< 2.004(9) A 10.65(2) A3 10.73(5) A3 0.79% 40( 1 )" 

30 I< 2.007(8) A 10.69(2) A3 10.78(5) A3 0.82% 40(1}" 

30 K- Irr. 2.187(2) A 13.74(2) A3 13.95(5) A 3 1.33% 47(1) 0 

Compound 2 

200 K 2.180(1) A 13.63(2) A3 13.81(5) A3 1.33% 42(1) 0 

1001< 1.998(6) A 10.56(2) A3 10.63(5) A 3 0.69% 32(1)" 

30 I< 1.996(9) A 10.53(2) A 3 10.63(5) A3 0.72% 38(1) 0 

30 I< - Irr. 2.171(8) A 13.44(3) A3 13.64(5) A 3 1.54% 42(1}" 

Table 3.3: Fe-N distances and angles for compounds 1 and 2. 

Figure 3.10: Overlay of compound 1 at 200 K and 120 K, showing the change in angle of 

the Hbpz ligands and the contraction of the Fe-N bond lengths. The low spin structure 

(120 K) is shown as a broken line and the iron and Bpyd nitrogen atoms were used to 

provide the fit. 



3.3. Discussion 97 

Figure 3.11: Schematic of the possible lever type effect in the compounds studied by 

Guionneau et al.. The arrows show how a small amount of packing force towards the end 

of the long ligands could lead to a distortion at the iron core. 

FeL2(NCS)2 (L is a bidentate ligand). It is possible that the Fe£3 complexes have less 

flexibility than the FeL2(NCS)2 complexes, as there are three bidentate ligands rather 

than two and bidentate ligands add restraints to the geometry. Another possibility is that 

the nature of the ligand L is important. The ligands used in the study by Guionneau et 

al. are generally long ligands consisting of three or more phenyl rings. Packing forces on 

the end of these ligands could be leading to a lever-type effect causing a distortion of the 

iron core (Figure 3.11). In fact, the true cause is probably a combination of both of these 

effects, although it is almost certain that this explanation is still incomplete. 

Another way of seeing the octahedral distortion is to compare the octahedral volumes 

(calculated using IVTON) 174 with the ideal volumes calculated from the average Fe-N 

distances.+ Any deviation from regularity should result in a reduction of the octahedral 

volume, with the smallest volumes for the most distorted octahedra. In the cases of 

compounds 1 and 2, there is clearly a considerable deviation in the high spin state, which 

is still present (though reduced by nearly half) in the low spin state (Table 3.3). It 

is interesting to note that the deviation from regular (assessed by comparing oct.al1edral 

!The volume of a regular octahedron can be defined as twice the volume of the component square based 

pyramid, thus \1 = 1r3
, where \1 is the volume and 7' is the average Fe-N distance. 



3.3. Discussion 98 

volumes or~ values) is larger for the Bpyd complex than for the Phen complex, suggesting 

that the irregularity does not contribute to the cooperativity in this system. 

Looking again at the octahedral volumes, it is clear that the values for compound 1 

in the low spin state are approximately 0.1 A 3 larger than those for compound 2. This 

is possibly clue to a small amount of residual high spin, but this was not seen in the 

Mossbauer spectroscopy or magnetic susceptibility measurements. 173 It could also be clue 

to a stronger ligand field created by the Phen ligand, but this would also be visible in 

the high spin state and the octahedral volumes are very similar at 200 K. The l'vlossbauer 

spectroscopy indicates the presence of a larger amount of residual low spin in compound 2 

than 1. Thus, it is probable that a theoretical 100% high spin compound 2 would have 

a larger octahedral volume than a theoretical 100% compound 1. This means that the 

change in Fe-N distances would have to be larger for the Phen complex than for the Bpyd 

complex. Since the cooperativity of a system is dependent on the coupling between the 

iron centre and the lattice vibrations via the metal-ligand bonds, larger Fe-N distance 

change compared with compound 1 is reflected in increased cooperativity for compound 2. 

1r-1r Stacking 

On conversion to the low spin state, the intermolecular 1r-1r stacking distance decreases 

in both compounds 1 and 2. At 200 K, the Bpyd-Bpyd distance is 3.691(6) A, which 

contracts to 3.560(6) A at 120 K and 3.549(7) A at 30 K. In the high spin state at 

200 K, the Phen-Phen distance is larger at 3.886(6) A, but the symmetry change leads to 

two distances in the low spin structure, 3.657(9) A and 3.528(9) A. The 30 K structure 

shows the expected thermal contraction to 3.640(7) A and 3.507(7) A. A comparison of 

the contractions shows that while compound 1 contracts by 0.14(1) A between 200 K 

and 30 K, compound 2 contracts by 0.25(1) A and 0.38(1) A over the same temperature 

range, an average of 0.31(1) A. This increased contraction possibly reflects the increased 

cooperativity caused by the increased overlap in the 1r system. 

Irradiating compound 1 leads to an increase in the Bpyd-Bpyd distance to 3.634(8) A, 

which although slightly smaller than that for the thermal HS structure, is consistent with 

the return to the high spin state as seen in the changes to the Fe-N distances and the octa

hedral volume. On irradiating compound 2, the splitting of the distances into two caused 
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by the loss of symmetry seen at 100 K and 30 K, is not only retained, but enhanced. 

Not only is there an increase in the average Phen~Phen distance (from 3.574(18) A to 

3.726(21) A), this increase is also noticeably larger than for compound 1 (0.15(1) A com

pared with 0.09(1) A). A comparison of the low spin n~n distances at 30 K with those 

when irradiated indicates that while one experiences no change (3.638(10) A compared 

with 3.640(7) A at 30 K) the second n~n distance increases by 0.31(1) A from 3.507(7) A 

to 3.813(11) A. Preswnably this is because while the preferred distance is that of the 

thermal HS state, this is not attainable due to the structural changes. 

Fe· · · Fe Distances 

In the high spin state, each iron centre in compounds 1 and 2 is surrounded by three pairs 

of symmetry related iron centres, 7 A to 10 A away (Figure 3.12). On cooling compound 1 

to the low spin state, these pairs are retained, but in compound 2, clue to the space group 

change, the symmetric relationship is lost and there are six independent distances. Since 

the low spin and LIESST structures are isostructural for both compounds, on excitation 

there are six independent distances for compound 2, but only three for compound 1. 

Comparing the Fe· · · Fe distances for the high spin and low spin compotmcl 1 shows 

that there is a contraction in distances 2 and 3, while distance 1 expands. The effect in 

compound 2, is different. The average of distance 1 contracts or remains the same (within 

error) while distances 2 and 3 show a marked split with one component contracting more. 

The behaviour of the Fe· · · Fe distance 2 reflects the difference between the Bpyd and 

Phen ligands and the decrease in the n~n distance associated with the spin transition. 

The behaviour of distances 1 and 3 between compotmds 1 and 2 is less easy to rationalise, 

but looking carefully at the view down the c-axis gives an indication of why this might 

be the case (Figure 3.12). There is a slight, but definite change in the orientation of the 

Hbpz ligands, that can be more clearly seen by looking at the overlay of the two molecules 

(Figure 3.13). This change reflects the way compound 2 is closer to ideal than compouncl1, 

which is probably related to the ligand field strengths and the different flexibilities of the 

Bpyd and Phen ligands. 
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Figure 3.12: Fe· · · Fe distances for compounds 1 and 2 at 200 K. Four distances are shown, 

2 x 1, 2 and 3 with the symmetric equivalents of 2 and 3 hidden behind 2 and 3. Viewed 

down the c-axis. 
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Temperature/ Conditions 1 2 

Compound 1 

200 K 7.6801(7) A 8.8388(9) A 

120 K 7.7167(4) A 8.5985(8) A 

30 K 7.6971(5) A 8.5997(10) A 

30 K - Irradiated 7.5963(4) A 8.8372(10) A 

Compound 2 

200 K 7.4252(7) A 9.3293(9) A 

120 K 7.3998(12) A/7.4524(12) A 9.0493(12) A/9.1478(12) A 

30 K 7.3853(12) A/7.4267(12) A 9.0346(13) A/9.1377(13) A 

30 K - Irradiated 7.3743(37) A/7.4369(39) A 8.9892(38) A/9.3709( 41) A 

Table 3.4: Fe· · ·Fe distances for compounds 1 and 2. 
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Figure 3.13: Overlay of compounds 1 and 2 at 200 K, showing the change in angle of the 

Hbpz ligands. The phenanthroline complex (compound 2) is shown as a broken line and 

the iron and Bpyd/Phen nitrogen atoms were used to provide the fit. 

3.4 Conclusion 

Weak intermolecular forces such as hydrogen bonds and 1r-1r interactions have been shown 

to be critical to cooperativity and these compounds corroborate this. Although there are 

no conventional hydrogen-bonds, there are weak 1r- 1r type stacking interactions. The 

extra two carbon atoms in the phenanthroline ligand introduce an additional aromatic 

ring which increases the amount of 1r- 1r overlap from effectively one ring to two. This 

increased interaction leads to increased cooperativity which can clearly be seen by the 

sharper, more abrupt transition in compound 2 than in compound 1, which takes place 

with hysteresis. 

In this pair of compounds however, things are not so simple. Crystals of the Bpyd 

complex (compound 1) undergo spin crossover with very little damage, the crystal lattice 

flexing to accommodate the changes in bond lengths around the iron centre. The transition 

in the Phen complex however , is potentially far more destructive, with the crystal structure 

suffering a major loss of symmetry. This symmetry change from monoclinic ( C2 /c) to a 

smaller triclinic cell (PI), caused major problems, with mounting methods and cooling 

rates exacerbating the crystal damage. In this case, these problems were largely eliminated 
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by rapid cooling and mounting in a flexible medium, which resulted in data of a high 

enough quality to locate and refine hydrogen atoms. 

The lowering of the Laue symmetry leads to a doubling of the asymmetric unit with 

a loss of the C 2 molecular symmetry as well as the loss of symmetry relating molecules. 

This affects the vital1r-7r stacking distances as well as the other intermolecular distances, 

including the distances between the iron centres. 

The size and quality of crystals can seriously affect the spin crossover properties, but 

assuming that the Mossbauer data is applicable to the samples studied here, the high spin 

Phen complex has more residual LS at room temperature than the Bpyd complex, while at 

low temperature both SC transitions are complete. This suggests that the change in Fe-N 

bond lengths around the iron centre for compound 1 is less than that for compound 2. 

Since the cooperativity is thought to rely on the transmission of the transition from the 

iron centre to the lattice phonon system through the Fe-N vibrations, this larger change 

would be expected to increase the cooperativity, explaining the sharper transition seen in 

the Phen complex. 

Both complexes can also be converted to a meta-stable HS state by irradiation with 

red light. While the Bpyd LIESST state is isostructural with the HS complex at 200 K, 

the Phen complex is not. Due to the symmetry change, when irradiated at 30 K a new 

HS structure is generated based on the triclinic low spin phase. It is thought that the 

structure is unable to change back to the monoclinic HS structure because there is not 

enough thermal energy available at 30 K. 

As has been shown previously, the high spin iron octahedra are highly distorted with 

respect to the low spin centres in compound 1. This distortion has been quantified by 

comparison with the idealised octahedral vohune, which has shown how the distortion 

in the thermal high spin octahedra is slightly more than that seen in the light induced 

structure. Further comparison with the Phen complex shows that the distortion is slightly 

less than that seen in the Bpyd compound, in all three states. 

The comparison of compounds 1 and 2 has given a key insight into why the magnetic 

susceptibilities are different. The increased 1r-1r overlap explains why the cooperativity 

is increased in the phenanthroline complex and the changes in Fe· · · Fe distances caused 

by the reduction in octahedral distortion, ultimately lead to subtle changes in the crystal 
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packing. 

The sudden structural change that is coupled with the SC transition indicates why 

collecting good quality data was initially so difficult. This transition leads to a splitting 

of the 1r-1r chains into pairs, an effect that is accentuated on irradiation, where the low 

symmetry is retained, giving rise to a new phase. This "light induced polymorphism" is 

an effect, that to our knowledge, has not been seen before in the literature. 



Chapter 4 

Cooperativity in 

[Fe(Bpyd)Pyd2(NCS)2]Pydo.225 

4.1 Introduction 

Since the discovery ofthe spin crossover materials [Fe(Phen)2(NCS)2], [Fe(Phen)2(NCSe)2] 

and [Fe(Bpyd)2(NCS)2] reported by Baker and Bobonich in 1964,38 there has been con

siderable interest in these and other thiocyanate and thioselenate complexes. 10• 
46

• 50-
52 

Compound 3 is a similar thiocyanate spin crossover complex, consisting of an octa

hedral iron(II) centre surrounded by one bidentate Bpyd ligand, two monodentate Pyd 

ligands and two anionic thiocyanate ligands. 

4.1.1 Magnetic Susceptibility Data 

From the SQUID magnetic susceptibility data, a very abrupt transition from the high spin 

to the low spin state can be seen at approximately 114 K (Figure 4.1). 176 In addition to 

the sharp transition, there is a clear hysteresis, indicating a high degree of cooperativity. 

Compmmd 3 is also thought to undergo Light-Induced Excited Spin-State Trapping on 

irradiation at 30 K. 176 

105 
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Figure 4.1: Magnetic susceptibility data for compound 3 .176 Cooling (~) and warming 

(A) are shown, so that the hysteresis can be seen. 

4.2 Single Crystal Diffraction Experiments 

Compound 3 forms metallic black crystals of monoclinic habit. Although the crystals* 

cannot be seen to extinguish because of their opacity, when viewed in reflection it is 

possible to see any flaws on their surface. This gives a good indication of the crystal 

quality, but has limitations as it does not give any indication of internal quality. 

4.2.1 Data Collection 

A characteristic crystal was mounted on a hair with oil on the SMART-CCD 1000 and 

quench cooled to 160 K where a matrix collection gave a tetragonal !-centred cell of 

a = 18.031(5) A, c = 28.984(2) A, v = 9423(2) A3 . 

·crystals courtesy of Prof. Jose A. Real, Dr. M. Carmen Munoz and Dr. Ana 8. Gaspar Pedr6s 177 

(Valencia). 
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Low Temperature Data 

The matrix data collection at 160 K was followed by a hemisphere data collection at 

10 s/frame. On completion, the crystal was cooled to 100 K where another matrix was 

recorded. This gave a similar cell with a reduced volume of 9039(4) A3 . This was followed 

by the same hemisphere data collection also at 10 s/frame, after which the crystal was 

warmed to 160 K at 120 K/hr. 

After six months, the crystal was returned to the SMART -CCD 1000 and a matrix was 

recorded at room temperature, after which another hemisphere was collected at 20 s/frame. 

On completion, a second matrix was collected after which the crystal was removed. 

Irradiation 

The crystal was retmned to the Bruker SMART-CCD 1000 with the Oxford Cryosystems 

HeliX131 and cooled at a rate of 120 K/hr to 30 K, where another matrix was collected 

before the sample was irradiated successively and repeatedly with the 25 m W red laser 

(,\ = 633 nm), the green laser (,\ = 532 nm) and the NIR laser (,\ = 830 nm). Matrices 

collected after each irradiation step indicated no appreciable change in unit cell volume. 

The only noticeable change appeared to be a reduction in the number of reflections yielded 

from the matrix collections, so data were not collected and the crystal was returned to 

room temperatme at 120 K/hr and removed. 

Irradiation During Data Acquisition 

It was thought that the first frame of the matrix collections after irradiation appeared 

to have spots in slightly different positions to those prior to irradiation, suggesting that 

either the sample was relaxing very rapidly, or relaxation was stimulated by the X-rays. 

In order to test this theory, a new laser mounting device was designed in order to irradiate 

the sample dming data collection (Figme 4.2). The device was mounted on the back of the 

detector, using a combination of mirrors and prisms mounted on the front of the detector 

to target the crystal. The approach angle of the laser beam means that the laser remains 

centred on the sample regardless of the crystal orientation. In addition, the equipment 

can remain in place as a permanent feature, so that minimal alignment is necessary before 

use. 
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Figure 4.2: Irradiating a crystal on the Bruker Proteum M diffractometer. The laser beam 

approaches the crystal from underneath the front of the detector. 

Figure 4.3: Irradiation of a crystal of compound 3 with green light. The video camera 

used for centering the crystal can also be used for aligning the laser. 

Although the original crystal indexed well at 210 K, the crystal was too weak to 

continue, so a new crystal with similar size and morphology to the first was selected 

and mounted in oil. This sample was mounted on the Bruker Proteum M fitted with 

the Oxford Cryosystems HeliX131 and quenched to 210 K. Matrix collections at 150 K, 

90 K and 30 K gave cells consistent with a transition at 114 K. Irradiating with a red 

laser for 5 mins at 30 K prior to a matrix collection and during a matrix collection gave 

cells with comparable volumes. Irradiating during collection with the green laser however 

(Figure 4.3), indicated a unit cell contraction from 8979(3) A3 at 30 K to 8932(11) A3 (a 

change >0.5%). A matrix collection started approximately 2 mins after the irradiation 

was terminated indicated that the crystal had returned to the state prior to irradiation 

with no noticeable contraction (V = 8978(3) A3 ). 
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4.2.2 Data Analysis 

The data indexed well at both 160 K and 100 K with the crystal clearly suffering little 

or no structural damage. The data were integrated according to usual procedures to a 

resolution of 0.73 A. The structure was solved using direct methods from the 160 K data. 

Since the faces were clean and had been indexed, absorption corrections were carried out 

accordingly. 

4.2.3 Structure Refinement 

It was clear that in addition to the complex, there is solvent of crystallisation present, 

sitting along the 41 screw axis. Given the location and nature of the solvent, it is clearly 

inherently disordered. 

At both 160 K and 100 K all non-hydrogen atoms in the complex were refined with 

anisotropic displacement parameters and the hydrogen atoms were located in the difference 

map. Refinement of hydrogen positions led to an unreliable model, so the hydrogen 

atoms were removed, added geometrically and refined using a riding model. The program 

IVTON 174 was used to calculate the mean Fe-N bond lengths and the volumes for the 

iron octahedra in compound 3. 

Disordered Pyridine Solvent 

From a study of the Fourier maps, it quickly became clear that there was solvent of crys

tallisation present in addition to the Fe(Bpyd)Pyd2(NCS)2 complex. Chemically, pyridine 

made most sense and crystallographically, disordered pyridine fitted the data. The disor

der was caused by the proximity of the 41 screw axis, which generated three additional 

atoms for every one located. For this reason, the occupancy was initially assigned as 25%. 

For the refinement to remain stable, it was necessary to apply constraints to fix the 

ring in a regular arrangement and hydrogens were added geometrically and refined using 

a riding model. In order to locate the position of the nitrogen atom, thermal parameters 

were studied and several positions were tried and the best selected. It is probable that 

there is some additional disorder in the location of the nitrogen, but only one position is 

used in the model given the complexity of the disorder. 
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Figure 4.4: Electron density Fourier maps for the disordered pyridine solvent in com

pound 3. An Fobs map with one symmetric equivalent of pyridine overlayed is shown 

(left), together with the Fobs- Fcatc map (right). In both cases, contours are drawn every 

0.2 e- between 0.2 e- and 1.2 e- and -0.2 e- and -0.8 e- with the negative electron 

density shown in broken lines. The symmetry related components of the disordered solvent 

are omitted for clarity. 

Initially, the thermal parameters were thought to be relatively large so the occu

pancy at 100 K was refined. This gave a value of 22.5%, which though not entirely 

reliable due to the correlation between the occupancy and thermal parameters, consid

erably improved the statistics. In order to avoid correlation during the refinement, the 

occupancy was fixed to 22.5%, which established the structural formula of compound 3 as 

[Fe(Bpyd)Pyd2(NCS)2]Pydo.22s· In the final refinement, the non-hydrogen thermal param

eters were modelled as isotropic and restrained as equal for stability. The final difference 

map shows how inclusion of the solvent considerably improves the refinement (Figure 4.4). 

Twinning 

A twin refinement was carried out using the matrix 

(
0 1 0) 
1 0 0 

0 0 -1 

but although it accounted for the very few systematic absence violations, the twin frac

tion refined to zero and there was no change to the statistics, indicating that any twin 

component present was very small. 
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Figure 4.5: The asymmetric unit for compound 3 at 160 K , a 

c = 28.9962(10) A, v = 9445.2(5) A3 (I4J/a). 

4.3 Discussion 

111 

b 18.0482(5) A, 

At 160 K , the structure is tetragonal, 141/a (Laue group 4/m) , with one molecule of 

complex and one molecule of solvent (22.5% occupied) in the asymmetric unit (Figure 4.5). 

4.3.1 Structural Analysis 

The two Ncs- ligands sit in the equatorial plane together with the bidentate bipyridine 

ligand (Bpyd) . The iron(II) octahedron is capped by two pyridine ligands sitting trans to 

each other, in a very slightly twisted conformation with an angle of 13.4(2)0 between the 

two rings (Figure 4.6). 

Fe-N Bond lengths 

At 160 K, the complex is clearly high spin with an average Fe--N bond length of 2.17(5) A. 

A comparison of the individual Fe--N bond lengths show that there is a larger range than 

that seen in many other complexes, for example compounds 1 and 2, where all the Fe--N 

distances fall within a range of 0.05 A. In the case of compound 3 the range is over 0.15 A, 

from 2.075(2) A to 2.229(2) A. On close inspection it becomes clear that the Fe- N bond 

lengths can be split into two categories: short and long. Fe1- N1 and Fe1- N2 (2.075(2) A 
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Figure 4.6: The Fe(Bpyd)Pyd2(NCS)2 complex at 160 K, showing the slight twist in the 

Pyd rings. 

and 2.095(2) A) fall into the category of short, while Fe1- N3, Fe1-N4, Fe1- N5 and Fe1-

N6 can all be classified as long (2.215(2) A, 2.219(2) A, 2.229(2) A and 2.217(2) A). The 

short Fe-N distances are to the thiocyanate ligands, which reflects the ionic nature of the 

ligands and are comparable in length to those for the related complex, [Fe(Phen)2(NCS)2], 

at 290 K.9 

C-H· · · S Interactions 

There are no conventional hydrogen bonding interactions and the most interesting short 

contacts are a number of C- H· · · S interactions between the Ncs- ligands and the Bpyd 

and Pyd ligands (Figure 4.7). Two of the six C- H- · · S interactions form a connec

tion between two molecules. Both sulphur atoms are involved, with separate C- H- · · S 

contacts to the same half of a Bpyd in a neighbouring molecule. Similar interactions 

from sulphur atoms of the neighbouring molecule lead to the formation of chains of 

Fe(Bpyd)Pyd2(NCS)2 complexes connected together by the C- H- · · S close contacts. 

4.3.2 Spin Crossover Transitions 

There is no change in symmetry on cooling from 160 K to 100 K, and like the 160 K 

structure, at 100 K the compound is still tetragonal (14!/ a) with one molecule of complex 

in the asymmetric unit ; a total of sixteen molecules in the unit cell. 
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Figure 4.7: C- H- · · S interactions for compound 3. 

Figure 4.8: Chains of Fe(Bpyd)Pyd2(NCS)2 complexes, connected by C- H· · · S close con

tacts. The Sl· · · H43 distance is the longer of the two at 3.023(7) A comparerl with 

2.757(7) A for the 82· · · H41 contact. 
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Fe-N distances, Octahedral Volumes and Octahedral Distortion 

Although there is no visible colour change on cooling, the change in unit cell volume and 

average Fe-N bond length fi·mn 2.17(5) A at 160 K to 1.98(3) A at 100 K indicate the 

presence of a spin transition. 

The contraction in the Fe-N distance for the thiocyanate ligand is considerably less 

than that for the Pyd and Bpyd ligands. This effect has been seen before in thio

cyanate SC complexes with a contraction of only 0.099(4) A for the Fe-NCS distances 

in [Fe(Phen)2(NCS)2] compared with 0.185(4) A and 0.208(4) A for the phenanthro

line ligands. 9 In the case of compound 3, all the contractions are larger than for 

[Fe(Phen)2(NCS)2] suggesting that there is increased coupling between the iron centres 

and the lattice vibrations increasing the cooperativity. 

At 160 K, the Fe-N bond lengths were grouped into two categories, short and long. At 

100 K, in addition to the contraction, the Fe-N bond lengths are split into three categories. 

In the high spin state, there are clearly two short Fe-N bonds and four long bonds. At 

100 K, the difference between the short thiocyanate Fe-N bond lengths and the others is 

reduced and the four Bpyd/Pyd Fe-N distances separate into two groups so that there is 

0.046 A between the longer Fe-Pyd bond lengths and the intermediate Fe-Bpyd distances 

(Table 4.1). Indeed, the Fe-Bpyd bond lengths are now closer to the shorter Fe-NCS 

distances (a difference of less than 0.02 A). This reflects the change from the distorted HS 

iron atom to the relatively regular LS iron(II). 

This distortion is roughly quantified by a comparison of the actual and ideal octahedral 

volumes (in the same way as for compounds 1 and 2). In the case of compound 3, although 

there is a slight increase in the angular distortion (compared with compounds 1 and 2), 

the distortion is largely due to the difference in Fe-N bond lengths. The largest deviation 

from 90° in compound 3 is in the N3-Fe1-N4 angle and is caused by the strain in the 

Bpyd ligand. This deviation is similar to that seen in the Bpyd and Phen ligands in 

compounds 1 and 2 (73.26(8) 0 compared with 73.62(9) 0 and 75.01(9) 0 for the Bpyd and 

Phen ligands in compounds 1 and 2 at 200 K). In compounds 1 and 2 there are three 

such bidentate ligands introducing considerable distortion. In contrast, compound 3 has 

four monodentate ligands, which have primarily steric interactions governing the N-Fe-N 

angles. However, the distortion is increased by the wide range of Fe-N bond lengths, and 
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160 K 100 K Difference 

Fe1-N1 2.075(2) A 1.950(2) A 0.125(4) A 

Fe1-N2 2.095(2) A 1.953(2) A 0.142(4) A 

Fe1-N3 2.215(2) A 1.970(2) A 0.245(4) A 

Fe1-N4 2.219(2) A 1.971 (2) A 0.248(4) A 

Fe1-N5 2.229(2) A 2.017(2) A 0.212(4) A 

Fe1-N6 2.217(2) A 2.015(2) A 0.202(4) A 

N1-Fe1-N2 103.49(9) 0 91.31(9t + 12.2(2) 0 

N3-Fe1-N4 73.21(8) 0 81.15(9t +7.9(2t 

N5-Fe1-N6 177.86(8t 178.57(9t +0.7(2t 

N1-Fe1-N4 9l.27(9t 93.56(9) 0 -2.3(2t 

N2-Fe1-N3 92.06(9) 0 94.02(9) 0 -2.0(2) 0 

N2-Fe1-N6 88.85(9t 88.02(9t -0.8(2) 0 

N3-Fe1-N6 93.37(8) 0 93.53(9t -0.2(2t 

Average Fe-N 2.17(5) A 1.98(3) A 0.19(4) A 

Octahedral Volume 13.44(4) A3 10.28(4) A3 3.16(4) A3 

Ideal Volume 13.62(8) A 3 10.33(8) A3 

Distortion 1.4% 0.5% 

~ 53(1t 33(1t 

Table 4.1: Fe-N bond lengths, selected N-Fe-N angles and octahedral volumes for com

pound 3. Where the change in angle brings the octahedron closer to regular on cooling to 

100 K, the sign is given as positive. 

the effect the bidentate Bpyd ligand has on the coplanar thiocyanate ligand angles. Thus, 

the LS FeN6 octahedron is considerably more regular than the HS FeN6 octahedron largely 

due to a reduction in the distribution of the Fe-N distances as well as changes in the Bpyd 

and thiocyanate angles (Figure 4.9, Table 4.1). 

C-H· · · S Interactions 

On cooling through the spin transition there is very little change in the six H- · · S distances 

(Table 4.2). However, it is noticeable that all H· · · 81 distances show a slight decrease on 

cooling while the H- · · 82 distances all increase or remain unchanged. Clearly, on cooling 

through the spin transition, if the structural change only involved the Fe-N distances, the 

H· · · S distances should increase. However, the contraction within the molecule leads to a 
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Figure 4.9: Overlay of the high spin and low spin states of compound 3. The named atoms 

were used for the overlay. 

160 K 100 K 

S1 H33 2.955(7) A 2.903(7) A 

H43 2 3.083(7) A 3.022(7) A 

H52 3 2.984(7) A 2.941(7) A 

S2 H31 4 2.900(7) A 2.957(7) A 

H41 5 2.725(7) A 2.757(7) A 

H62 6 2.774(7) A 2.771(7) A 

Table 4.2: H· · · S distances for the C- H· · · S close contacts in compound 3. 

contraction in the unit cell volumes, demonstrating how the transition affects more than 

just the iron core. Thus, the whole structure is modified, which is reflected in the changes 

in the C- H· · · S interactions. 

Solvent of Crystallisation 

In common with many examples of this type of material , there is solvent of crystallisation 

present, in this case pyridine. At 160 K the pyridine ring occupies a position with the 

four-fold screw axis running in the plane of the molecule, generating the other disordered 

components. These components consist of two pairs of rings at right angles to each other. 

On cooling through the transition however, the relative position of the components of the 

disordered solvent change. There is a reduction in the disorder reflected in the reduction 
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4-Fold Screw Axis 

Figure 4.10: Disordered solvent in compound 3. The pyridine is modelled as disordered 

arow1d the 41 screw axis, with a 22.5% occupancy in each of the fom positions. On cooling 

through the spin transition (from left to right), the disorder is reduced, with C1s moving 

closer to the 41 screw axis. 

of thermal motion, but this is coupled with a reduction in the separation of the pairs 

of rings together with a separation of the two components at right angles to each other 

(Figure 4.10). 

Fe· · · Fe Distances 

At 160 K there are nine Fe··· Fe distances that are less than 10.5 A, four pairs related by 

symmetry (1, 3, 4 and 5) and one unpaired (2, Table 4.3). All short Fe··· Fe distances 

are between molecules connected by C- H- · · S interactions, with the shortest distance 

connected through the two C- H- · · S interactions (2 & 5) via the Bpyd ligand, which 

forms chains (Table 4.3). Interestingly, the second shortest C- H- · · S interaction is 6 (after 

5), which also leads to the second shortest Fe··· Fe distance. There appears to be little or 

no further connection between the Fe··· Fe distance and C- H- · · S distance. 

The majority of the Fe· · · Fe distances undergo little or no change on SC. The excep

tions to this are distances 4, and to a lesser degree, 5 and 2 (Table 4.3). On SC, the 

change in distance 4 is a contraction of 0.4130(6) A, which is four times larger than the 
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160 K 100 K Difference C-H· · · S Interaction 

7.3053(2) A 7.3123(2) A +0.0070(2) A 2 & 5 

2 8.3685(6) A 8.3065(6) A -0.0620(6) A 6 

3 9.6026(7) A 9.6152(7) A +0.0126(7) A 4 

4 10.1147(6) A 9.7017(6) A -0.4130(6) A 

5 10.4502( 4) A 10.3497( 4) A -0.1005(4) A 3 

Table 4.3: Fe··· Fe distances for compound 3. 

second largest and up to seven times the magnitude of the remaining three. On close 

inspection, this distance is between iron centres around the Pyd solvent of crystallisation 

(Figure 4.11). It is possible that the change in position of the components of the disor

dered solvent could be responsible for the change in Fe··· Fe distance 4 (Figure 4.11 and 

Table 4.3). 

Irradiation 

Irradiating the crystal with red light did not induce excitation to the LIESST state in the 

crystal that were tried. However, although the esds were large, irradiating with green light 

led to a unit cell volume contraction of approximately 0.5%. Exactly why this happened 

is unclear, but it is possible that at 30 K there is a small amount of residual high spin 

present. If this is the case, it is possible that irradiation of the sample is inducing a 

process analogous to reverse-LIESST, converting the residual HS to LS. From the matrix 

collection after irradiation, it appears that the majority of the residual HS converted to 

LS reverts back to HS, but given the esds, this is largely conjecture. 

4.4 Conclusion 

Compound 3 has been shown to undergo spin crossover in accordance with the magnetic 

susceptibility data. Crystallographic studies detailed here show that the behaviour of the 

Fe-N bond lengths and N-Fe-N angles are in keeping with those for similar compounds 

in the literature and with those discussed in Chapter 3. 

In addition, in compound 3 there is disordered solvent pyridine. Although the high 

degree of disorder in the solvent makes it very difficult to draw concrete conclusions, it 
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Figure 4.11: Compound 3 with the disordered pyrimidine solvent. Fe··· Fe distance 4 is 

marked (Table 4.3). 
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is clear that there is a change in the relative positions of the different components. It 

is thought that on cooling the thermal motion of the solvent is reduced, leading to a 

reduction in the pyridine molecular volume. This contraction allows a slight shortening 

of one of the Fe· · ·Fe distances, which is shortened further by the contraction in the FeN6 

octahedra due to the spin transition. This contraction is coupled with a change in the size 

and shape of the solvent void and a change in the relative orientation of the disordered 

components. 

On irradiation, the unit cell volume contracts in a process that is presumed to be a 

reverse-LIESST type effect. This reverse-LIESST is thought to involve a small amount of 

residual high spin present in the sample at 30 K that is converted to low spin on irradiation. 

This is far from conclusive as the esds of the cell parameters are large. In addition, the new 

low spin state is far from stable, with an increased unit cell volume once the irradiation 

has been discontinued. Although further work is required to confirm the nature of this 

unstable state, the studies carried out here suggest that this could be a fertile area for 

further research. 



Chapter 5 

Spin Crossover in Bithiazoline 

Complexes 

5.1 Introduction 

A considerable amount of work has been done on Fe(Btz)2(NCS)2, including magnetic 

susceptibility measurements, lO, 50 infrared spectroscopy, 50· 51 X-ray powder diffraction, 51 

Electron Paramagnetic Resonance Spectroscopy (EPR), 178 calorimetry, 179 and Moss bauer 

spectroscopy, 51 All these techniques indicate that the SC transition takes place at approx

imately 175 K. The magnetic susceptibility data showed the transition to be very abrupt 

with a thermal hysteresis, i.e. Tc = 171.2 K on cooling and T~ = 180.9 K on warming 

(D.T = 9.7 K). Calorimetry proved that the SC transition is first order in nature. 

5.1.1 Polymorphism 

In 1988, Ozarowski et al. identified two crystal polymorphs of the compound 

Fe(Btz)2 (NCS)2, A and B. 178 Interestingly, only polymorph A undergoes SC, which al

lowed a study of the intermolecular interactions responsible for the SC phenomenon. In 

both cases, the thiocyanate ligands adopt a cisoid geometry around the iron centre (Fig

ure 5.1). 

Polymorph A was found to be triclinic with one molecule in the asymmetric unit, while 

polymorph B was found to be monoclinic (C2/ c) with the molecule astride the two-fold 

axis that passes through the iron atom. 180 

121 
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Figure 5.1: Fe(Btz)2(NCS)2 showing the cisoid conformation. 

Thiocyanate Ligands 

Polymorph A has shorter Fe-N bond lengths than B, an average of 2.158(10) A compared 

with 2.175(10) A. Compru·ing the thiocyanate ligand Fe-N distances shows that both 

distances in polymorph B ru·e comparable with one Fe-NCS distance in polymorph A. 

The second Fe-N thiocyanate distance in polymorph A is fractionally shorter, 2.061(7) A 

compared with 2.081(7) A for polymorph B. Although these distances are within three 

esds, there is a considerable associated linearity of the corresponding Fe- N- C angle 

(178.1(7) 0 compru·ed with 163.3(7)0 and 159.7(6)0
), suggesting that 1r-bonding is an im

portant factor in this shorter average bond length. This short Fe- N bond could indicate a 

subtle increase in the ligand field strength accounting for the presence of the spin transition 

in A that is absent in B. 178 

Crystal Packing 

Both polymorphs pack with the Btz rings stacking above each other leading to 1r-1r inter

actions, however there is an increased separation in polymorph B (3.8 A compared with 

4.0 A). This separation could be vital to the cooperativity which takes place through weak 

intermolecular electrostatic interactions like hydrogen bonds or 1r- 1r stacking interactions. 
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Figme 5.2: Overlay of the two polymorphs of Fe(Btz)2(NCS)2. Polymorph A is shown 

in red while polymorph B is shown in blue. The atoms labelled in red were used for the 

comparison, making the loss of planarity in the Btz ring in polymorph B clearly visible. 

The conformational differences and increased linearity of the thiocyanate ligand are also 

visible. 

Increased planarity in the Btz rings in polymorph A (Figme 5.2) could be responsible for 

the closer packing, leading to the high degree of cooperativity indicated by the abruptness 

of the transition and its corresponding hysteresis. 

5.1.2 A Dinuclear Spin Crossover Complex 

Building on this mononuclear species, a dinuclear complex was synthesised. 181 Like 

Fe(Btz)2(NCS)2, [Fe(Btz)(NCS)2]2Bpmd (compound 4) has iron(II) centres ligated by 

bidentate bithiazoline and thiocyanate ligands. However, in compound 4, one of the bithi

azoline ligands is replaced with a 2,2'-bipyrimidine ligand (Bpmd), which forms a bridge 

between two iron centres (Figure 5.3). 
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Figure 5.3: Schematic of the development of the dinuclear bithiazoline complex from the 

mononuclear species. The mononuclear complex (left) is extended by the addition of a 

bipyrimidine ligand to give a dinuclear complex (right), which necessitates the loss of two 

bithiazoline ligands. 

5.1.3 Magnetic Susceptibility Data 

SQUID magnetic susceptibility data for compotmd 4 indicate that the transition has a 

strange shape, which has been interpreted as a gradual transition centred around 197 K 

ending at a plateau between approximately 170 K and 180 K, followed by a second, more 

abrupt transition, centred around 163 K (Figure 5.4). 181 

The magnetic susceptibility of compound 4 has also been studied under pressure.88 

These experiments have shown that, in addition to making the transitions more gradual 

and increasing the transition temperature by about 50 K, the plateau is extended and 

enhanced by pressure. 

Photomagnetic Data 

This compound has been shown to undergo light-Induced Excited Spin-State Trapping 

at low temperature. 182 Photomagnetic data showing the time dependence of the high 

spin meta-stable state indicates that at temperatures below 40 K, the lifetime is enhanced 

(Figme 5.5). 
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Figure 5.4: Magnetic susceptibility data for compmmd 4 .182 The cooling curve is shown 

(•) together with irradiation at 10 K ( o ), and wru·ming from 4 K to 100 K after irradiation 

(D). 
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Figure 5.5: Time dependence of the high spin meta-stable state for compound 4. 182 Below 

40 K the lifetime is extended almost indefinitely. 
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Figure 5.6: Schematic of the small hexagonal twinned crystals of compound 4. 

5.1.4 Mossbauer Spectroscopy 

Mossbauer spectroscopy indicates that at 305 K there is already approximately 9% LS 

present. 181 , 183 It is unclear whether this is because the transition is genuinely incomplete, 

or whether the transition is already under way. Considering a plot of the mole fraction 

of HS present (nHs) suggests that the transition has reached a plateau by approximately 

250 K, indicating than in all probability the former is the case. At low temperature, there 

is approximately 4% residual HS and the plateau between the two steps was found to be 

very close to 50% HS / 50% LS. 

5.2 Single Crystal Diffraction Experiments 

The crystals* had the form of small black hexagonal plates. These were shown not to 

be single as they would not index and when viewed through a microscope using reflected 

light, the botmdaries between contact twins could be seen (Figure 5.6). This meant they 

could be cut to give wedges that were predominantly one single crystal. 

5.2.1 Data Collection 

A hexagonal plate was cut and the slice mounted in oil on a hair and quench cooled to 

240 K using the Oxford Cryosysterns Cryostream130 mounted on the SMART-CCD 1000. 

A matrix was collected, which indexed as a= 8.701(7) A, b = 9.409(8) A, c = 12.033(12) A, 

·crystals courtesy of Prof. Jose A. Real , Dr. M. Carmen Munoz and Dr. Ana B. Gaspar Pedr6s 177 

(Valencia). 
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o· = 72.91(7) 0
, /3 = 79.76(6) 0

, 1 = 67.05(6) 0
, V = 864.8(14) A3 . A full sphere of data was 

collected at 16 s/frame, after which the crystal was cooled to 175 K at 120 K/hr. 

Low Temperature Data 

The matrix collected at 175 K initially gave problems indexing, but data were collected 

as at 240 K and the data indexed retrospectively to give a cell comparable to that seen at 

240 K, but with a reduced volume of 838.4(19) A3 . 

On completion, the crystal was warmed to 245 K at 120K/hr, where another matrix 

yielded comparable results to those seen originally at 240 K. Therefore, the crystal was 

warmed to 285 Kat 120 K/hr, after which it was removed and the Cryostream was replaced 

with the Oxford Cryosystems HeliX. 131 The crystal was returned to the diffractometer 

and cooled to 240 K at 120 K/hr, where another matrix yielded results in keeping with 

the previous two collected at similar temperatures, so the crystal was cooled to 30 K at 

120 K/hr. A matrix at 30 K gave a comparable cell to that seen at 175 K, but reduced in 

volume still further to 804.5(6) A. Another sphere of data was collected, identical to those 

at 240 K and 175 K. 

At the end of the data collection, it was observed that the crystal was coated with 

what looked like ice, and a matrix collected after irradiating with the 15 m vV reel laser 

for about half an hour would not index. The crystal was then warmed up to 125 K at 

360 K/hr, and the "ice" was observed to disappear at approximately 70 K, suggesting it 

was not water, but some other contaminant.t The crystal was cooled back to 30 K, with 

irradiation started during cooling, at 65 K. Another matrix collected after the laser was 

switched off would not index and the crystal diffracted poorly with evidence of loss of 

crystallinity. This was thought to be due to the damage caused by the crystal trying to 

expand while coated in the solid "ice", causing cracking. However, given the robustness of 

modern software, another sphere of data was collected, using the same regime as before. 

1 Carbon monoxide would appear to be the most likely contaminant as it freezes at approximately 68 K, 

however other possibilities include nitrogen (which is more abundant) and oxygen, which freeze at 63 K 

and 55 K respectively. 
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Irradiation 

A new crystal fragment was mounted with glue on a hair and a matrix collected at 290 K 

using the SMART-CCD 1000, which indexed giving a comparable cell to the previous 

crystal. The crystal was then cooled to 30 K at 120 K/hr using the Oxford Cryosystems 

HeliX. 131 A matrix at 30 K indexed giving a similar cell to that seen for the first crystal at 

30 K, after which the crystal was irradiated with the 25 mW red laser for approximately 

4 mins. A matrix failed to index, but data were collected. However, indexing from the 

complete data gave a cell volume of 799.6(10) A 3 , indicating that the crystal was in its 

low spin state. 

The above process was repeated with a third crystal, irradiating this time with the 

infrared laser for 5 nuns, but again data after irradiating wouldn't index. The crystal was 

then warmed to 80 K at 360 K/hr to check the crystal quality and a matrix collected at 

80 K indexed to give the expected LS cell with a volume of 804.3(7) A 3 . On cooling back 

to 30 K and irradiating again, it was still not possible to get a sensible cell, but nonetheless 

data were collected at 30 s/frame. 

Comparing the first frame of matrix collections recorded before and after irradiation 

for these and previous matrix collections, suggested that there was some change, but 

this was not reflected in the cell parameters. It was thought that maybe the crystal 

was relaxing back to the low spin state, despite the magnetic susceptibility data which 

indicates that the lifetime of the meta-stable state at 30 K should be almost infinite. It was 

thought that this relaxation could be due to the difference between the poly-crystalline 

sample used for the magnetic susceptibility measurements and the single crystal used 

for structure determination. Another possibility is that the interaction with X-rays was 

causing relaxation, which would not be seen during SQUID measurements. Although the 

true cause was unknown, irradiating during the data collection could solve either problem. 

Since previous experiments using the red laser (A = 633 nm) had caused considerable 

damage to the crystals, the near-infrared laser was used instead (A = 830 nm). In order to 

irradiate during data collection, the laser was monnt.erl nsing a custom-built attachment 

similar to that used in Chapter 4 (Section 4.2.1). 

A fourth crystal was mounted in oil on a hair and quench cooled to 240 K where a 

matrix indexed giving the expected cell. The crystal was cooled to 30 K at 120 K/hr, 



5.2. Single Crystal Diffraction Experiments 129 

where a matrix indexed satisfactorily with a unit cell volume of 802.7(6) A3 , indicating 

that the crystal was low spin. This was followed by a short data collection with 3° frames 

at 40 s/frame. The crystal was then rotated and irradiated for approximately 3 mins, after 

which a matrix was collected \Vithout irradiation. Once again the matrix would not index. 

However, using reflections from the matrix collection to refine the cell from the matrix 

prior to excitation, gave a cell volume of 810.9(10) A3 (compared with 802.7(6) A3 before 

irradiation). One of the most marked observations about the matrix collection however, is 

that the number of reflections found by the auto-indexing software was reduced to about 

half, suggesting that the crystal had suffered serious distress, thought to be caused by the 

irradiation. 

Another matrix was collected, but the crystal was irradiated during data acquisition. 

Again indexing failed, however there was little further loss of intensity. Cell refinement 

using reflections from the matrix gave a cell of volume of 846(2) A 3 , but esds were very 

laTge so the cell needed further confirmation. The acquisition time was increased from 

15 s/frame to 40 s/frame, which gave a similar cell with a volume of 845.5(9) A 3 . As 

much data as time allowed were collected, with the laser on and with 40 s/frame. 

5.2.2 Data Analysis 

In general, though the data did not index well, the cell parameters refined reasonably well. 

The raw data was of varying quality throughout, with all the data collected during and 

after irradiation noticeably worse than that collected before excitation. This is reflected 

in the figures of merit, which whilst not good for any of the data, are considerably worse 

for the data collected on the excited state. The poor quality is probably partly due to 

the strain caused by cutting the samples, though there may be other problems (including 

a minority twin component), which are exacerbated by the phase transitions. Irradia

tion seems to make all these problems even worse, with final values for R;11 t above 15%. 

Cell parameters for all the data were consistent (allowing for the changes clue to the SC 

transitions). 

The data were integrated in the usual fashion to a resolution of 0. 73 A. The structure 

was solved in PI from the 240 K data using direct methods and refined accordingly. 

The crystal faces were not visible due to the cutting and they could not be indexed. 



5.2. Single Crystal Diffraction Experiments 130 

However, although the crystals had an irregular shape clue to the cutting process, they 

were reasonably isotropic in size, so the absorption corrections were carried out with 

SADABS only. 145 

The data at 175 K was scrutinised for the presence of super lattice reflections, but none 

were found. The structure was additionally solved in P1, but the figures of merit were no 

better than for the structure in PI and there were no structural differences observed aside 

from the poor thermal ellipsoids caused by correlation effects. 

5.2.3 Structure Refinement 

At 240 K, 175 K and 30 K all non-hydrogen atoms were refined with anisotropic displace

ment parameters and although the hydrogen atoms could be located in the difference map, 

refinement of hydrogen positions led to an unreliable model, so the hydrogen atoms were 

added geometrically and refined using a riding model. 

The short data collection on the fourth crystal at 30 K gave results consistent with 

those seen in the full data collection. However, the figures of merit were considerably 

worse, the esds were a lot larger and some of the thermal parameters were poorly defined, 

in the worst cases non-positive definite. All these difficulties could result from the wide 

fran1es, exacerbated by the inl1erent poor quality of the crystal and consequently only the 

iron and sulphur atoms were refined as anisotropic) 

Irradiation 

All the data collected after and during irradiation were of poor quality. The data for the 

third crystal gave very similar results to that for the first crystal, but were of a much lower 

quality, so were rejected. 

All the data collected during and after irradiation, gave structures where there was a 

large amount of residual electron density close to the iron and sulphur atoms. Anisotropic 

tThe data collected on the fourth crystal at 30 K with wide frames were recorded for structure confir

mation and completion and the results are generally in keeping with the previous data collected at 30 K, 

though thermal parameters are very poor. Bond lengths, angles and other parameters discussed therefore, 

refer to the full dataset collected on the first crystal unless indicated otherwise. 
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Mononuclear A Dinuclear 

a 8.521(8) A 8.727(4) A 

b 1!.063(9) A 9.380(4) A 

c 12 .. 598(6) A 12.096(5) A 

Q 96.83(5t 73.052( 10) 0 

(3 91.81(6)" 79.508( 11 )0 

I 106.24(6)" 66.572( 12)" 

Volume 1120.5(12) A3 866.6(7) A3 

Table 5.1: Cell parameters for the mononuclear complex (polymorph A) at room temper

ature178 and the dinuclear analogue, compound 4. 

refinement of the carbon and nitrogen atoms led to poorly formed thermal ellipsoids, that 

were non-positive definite in the worst cases, so only the iron and sulphur atoms were 

refined anisotropically. Despite this, the geometry of the five and six membered rings is 

consistent with that prior to irradiation and no restraints were necessary. As with the 

data collected before irradiation, hydrogen atoms were added geometrically and refined 

using a riding model. 

The program IVTON174 was used to calculate the mean Fe-N bond lengths and the 

volumes for the iron octahedra in compound 4. 

5.3 Discussion 

The dinuclear complex is chemically very different to the mononuclear analogue and would 

not be expected to have many structural features in common. However, there is a striking 

similarity between the unit cell parameters (Table 5.1) and this continues on a structural 

level. 

5.3.1 Structural Analysis 

Like polymorph A of the mononuclear complex, compound 4 is triclinic (PI). Prima 

facie, the structure appears very different, with only half the clinuclear molecule in the 

asymmetric unit (Figure 5. 7). However, on close inspection of the mononuclear structure, 

it becomes clear that the inversion centre that relates two molecules, relates the two halves 
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Figure 5.7: The asymmetric unit for compound 4 at 240 K, a= 8.727(4) A, b = 9.380(4) A, 

c = 12.096(5) A, a= 73.052(10) 0
, /3 = 79.508(11) 0

, 1 = 66.572(12) 0
, v = 866.6(7)A3 

(PI). 

of the molecule in compound 4. Thus, the dinuclear complex can be seen as a fusing of 

two mononuclear molecules, which is reflected in the cell parameters by a reduction in the 

cell volume. 

Fe-N Distances 

The thiocyanate Fe-N bond lengths are noticeably shorter than the other four Fe-N dis

tances (2.050(5) A and 2.066(5) A compared with 2.151(6) A, 2.217(4) A, 2.193(5) A 

and 2.223(5) A). This is a trend that has been seen before in other thiocyanate com

plexes including compound 3 (see Section 4.3.1). However, despite the short thiocyanate 

Fe- N distances, the average Fe-N bond length of 2.142(10) A indicates that at 240 K, 

compound 4 is high spin. 

Packing and Short Contacts 

Like compound 3, there are no conventional hydrogen bonds, but there are weak C- H- · · S 

interactions and, in this case, also S· · · S close contacts. 

The molecules pack together with Bpmd rings sitting in stacks along the a-axis (Fig-
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ure 5.8). There are no n~n interactions however, because the Bpmd rings are in fact, 

slightly staggered and two of the thiocyanate ligands intrude, increasing the Bpmd~Bpmd 

distance to over 8 A (Figure 5.8). The thiocyanate ligand points away from the iron centre 

towards the Bpmd ligand of the next molecule in the stack, so that the sulphur sits be

tween the two rings. In this way, the stacks contain Bpmd rings alternating with sulphur 

atoms. This sulphur atom (S4), experiences a C~H· · · S type interaction from one of the 

hydrogens on the Bpmd ligand in the adjacent stack, a relationship that is reciprocated 

(Figure 5.9). 

Viewed down the c-axis (Figure 5.10), an overlap between the bithiazoline ligands can 

also be seen. Since Btz is not an aromatic ligand, n~n type interactions are not possible, 

but the distance between the planes of the overlapping Btz ligands is only 3.93(1) A. This 

is probably caused by the weak S· · · S interaction between one of the Btz sulphur atoms 

and S2 of one of the thiocyanate ligands (Figure 5.11). 

5.3.2 Spin Crossover Transitions 

On cooling to 175 K, there is a unit cell volume contraction of 3.4%, from 866.6(7) A 3 to 

837.5(4) A3 , suggesting that there is a change in spin state. However, on cooling further 

to 30 K, there is a further contraction to 792.3( 4) A 3 which corresponds to an additional 

5.2% (based on the unit cell at 240 K). The average Fe-N distance at 30 K is 1.958(4) A 

indicating that the structure is clearly low spin. However, at 175 K the Fe~N average bond 

length of 2.052(11) A, is exactly half way between the high and low spin values, suggesting 

that there is an intermediate phase. 

Internnediate State 

At the plateau, the magnetic data indicate that the intermediate state is half way between 

the high and low spin states, which is in keeping with the results from the average bond 

length. What is less clear, is the nature of this intermediate state. It is possible that the 

intermediate state is genuinely disordered HS/LS with two types of iron randomly ordered 

throughout the structure. However, in theory, it is more likely that cooperativity would 

lead to the formation of domains of high and low spin. The presence of these domains 

would lead to increased strain and probably deterioration in the crystal quality, which is 
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8.05(4) A 

Figure 5.8: Packing and stacking in compound 4. The stacking can clearly be seen in the 

packing diagram viewed clown the a-axis (top), but the staggered nature of the stacking 

is better seen viewed from the side, where the Bpmcl planes can clearly be seen (bottom). 

The distance between the Bpycl mean planes is 8.05(4) A at 240 K. 
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Figure 5.9: C- H- · · S interactions between thiocyanate ligand and bipyrimidine group. At 

240 K the 84· · · H9' distance is 2.818(4) A. 

not seen. It is more likely therefore, that the HS and LS iron(II) centres are ordered in 

some way, similar to [Fe(Pic)J]Cb.EtOH as discussed by Chernyshovet al .. 22 However, in 

[Fe(Pic)J]Cb.EtOH the super lattice reflections due to the differences between the HS and 

LS centres, were only visible with synchrotron radiation. In the case of compound 4, only 

a laboratory X-ray SOUl"Ce was used and the crystals were of such poor quality that super 

lattice reflections would be almost impossible to see. Thus it is impossible here to draw 

any further conclusions on the nature of the intermediate phase. 

LIESST 

Irradiating the crystal at 30 K and then collecting data gives a unit cell volume increase 

of only 2.3% to 810. 7(3) A 3 . Irradiating for longer appears to make little difference to the 

unit cell volume, but collecting data while irradiating gives a considerable increase in the 

unit cell vollllne to 846.9(7) A (a total increase of 6.9%). Comparing the two structures 

shows that a. data collection after irradiation results in an increase in the average Fe-N 

distance to less than that of the intermediate state (2.009(8) A). In contrast, data collected 

while irradiating show an increase in the average Fe-N bond length to that of the high 
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Figure 5.10: Packing in compound 4 viewed down the b-axis (top) and c-axis (bottom). 

The stacking of the molecules can be seen in the packing diagram viewed down the b-axis, 

while the Btz overlap can be seen in the packing diagram viewed down the c-axis. 
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Figme 5.11: Bithiazoline ligand overlap (top, shown without perspective) and the S· · · S 

interactions in compound 4 (bottom). The perpendicular distance between adjacent Btz 

ligands is 3.93(1) A and the Sl· · · 82' distance is 3.570(3) A. 
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spin state, 2.145(5) A compared with 2.142(10) A at 240 K. 

There are two possible reasons for the smaller increase in Fe-N distance on irradiating 

before data collection. Since irradiating during data collection gives Fe-N bond lengths 

comparable with that for the high spin state, irradiation must excite the low spin state to 

a meta-stable high spin state comparable to that seen at 240 K, which must be followed 

by relaxation. It is possible that after stopping irradiation, the crystal relaxes back to 

the low spin state gradually during the course of the data collection. This would make 

the structure appear to be similar to the intermediate state. However, matrix collections 

before the data collection (without irradiation) gave a similar volume to that from the full 

dataset, suggesting that there is little or no relaxation during the data collection. So the 

relaxation must take place as soon as the laser is switched off, or during the first couple 

of frames of data collection. Thus, the relaxation could be caused by the nature of the 

sample or interaction with X-rays during the data collection. 

However, since the thermal transition takes place in two steps, it is possible that the 

relaxation also takes place in two steps. The first step of the relaxation could be rapid, and 

the lifetime of this intermediate state could be almost infinite at 30 K. If this were the case, 

it should be visible in the photo-magnetic data, but there is no evidence for a two step 

relaxation process. It is unclear therefore exactly what the cause of this relaxation is, but 

there are at least two more possibilities. Since the magnetic susceptibility data is collected 

on a micro crystalline powder, the relaxation could be a single crystal phenomenon, where 

the cooperativity within the crystal leads to rapid relaxation. Another possibility is that 

the X-rays could be stimulating a relaxation process. 

Fe-N Distances and Octahedral Volumes 

The individual Fe-N distances generally follow a similar pattern on cooling to that seen 

at 240 K, with the shortest Fe-N distance to the thiocyanate ligands (Table 5.2). 

It is interesting to note however, that Fel-N4 is the longest of the remaining four, 

while Fel-Nl is by far the shortest, a situation that generally remains at all temperatures 

and both after and during irradiation.§ Fel-N2 and Fel-N3 however, change their relative 

§The only exception is Fel-N3 on irradiation before data collection, where it is apparently shorter than 
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lengths with Fel-N2longer at 240 K, shorter at 30 K and Fel-N2 and Fel-N3 identical at 

175 K. In other words, at 240 K, Fel-Nl « Fel-N3 < Fel-N2 < Fe1-N4, while at 175 K 

Fel-Nl « Fel-N3 = Fel-N2 « Fe1-N4, which changes to Fel-N1 < Fel-N2 < Fe1-

N3 = Fel-N4 at 30 K, where the range is reduced. Thus Fel-N2 experiences the largest 

contraction followed by Fe1-N4. Given the connection between the cooperativity and 

changes in bond length, this could indicate that the cooperativity takes place primarily 

along the directions of N2 and N4. 

On irradiating, the esds are generally much larger making it more difficult to draw 

firm conclusions. However, the Fe-N bond length trends are generally the reverse of those 

seen on cooling, as would be expected. 

The average Fe-N distance clearly indicates that the structure is high spin at 240 K, 

low spin at 30 K and an intermediate state on the plateau at 175 K. This is also reflected 

in the changes in the octahedral volumes, which show that the intermediate state is almost 

exactly half way between high and low spin (Table 5.2). The average Fe-N distances for the 

light excited states however, appear to show that simultaneously irradiating and collecting 

data gives a high spin state, while irradiating followed by collecting data gives a state 

approximately analogous to the intermediate state. This is also reflected in the octahedral 

volumes, which indicate that both excited states have a larger octahedral volume than 

prior to irradiation. However, it is apparent that the Fe-N bond lengths and octahedral 

volume from the data collected after irradiation are considerably smaller than those for 

the intermediate state recorded at 175 K. It is therefore apparent that this excited state 

has a large amount of residual low spin (relative to the intermediate and high spin states). 

This could be due to the choice of wavelength, and the green laser (>. = 532 nm), but this 

seems unlikely as this state depends on the relaxation rather than excitation. 

Fe· · · Fe Distances 

The shortest Fe··· Fe distance is across the Bpmd ligand and at 240 K is 5.890(3) A. 

In addition to this, each iron centre is surrounded by a number of other iron centres, 

but at 240 K, the next shortest Fe· · ·Fe distance is connected through the C9-H9· · · 84 

Fel-Nl, but the large esds make this result suspect. 
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interaction. Following that, there are two more short distance (less than 8.5 A at 240 K), 

one connected through the Btz-Btz ligand overlap and the other is the distance between 

adjacent iron atoms in the stack along the c-axis (Figure 5.8, Table 5.3). 

The intramolecular Fe··· Fe distance behaves as would be expected, decreasing reg

ularly as the crystal is cooled and the structure becomes low spin. However, the other 

distances are not as predictable. The distance between molecules in the stack increases 

by 0.068(5) A on cooling from 240 K to 175 K, but undergoes almost no further change 

on cooling to 30 K. In contrast, the Btz Fe··· Fe distance changes less between 240 K 

and 175 K than during the second step, undergoing changes of 0.151(5) A and 0.228(5) A 

respectively. Meanwhile, the C-H- · · S Fe··· Fe distance changes by -0.113(5) A during 

the first step and -0.078(5) A between 175 K and 30 K. 

The Fe· · · Fe distances for the irradiated structures look out of place at first glance. 

However, on closer inspection it becomes apparent that irradiating before collecting data 

generally gives values between those at 30 K and 175 K, and irradiating during data 

collection gives values between those seen at 175 K and 240 K. The only exception is the 

intrastack distances, which appear to contract. This may be an anomaly, but it could 

reflect cooperative interactions. 

Thus, in general, the Fe··· Fe distances reflect the change in spin state divorced from 

the thermal contraction, but the data quality makes it difficult to draw firm conclusions. 

Intermolecular Interactions 

Clearly the weak intermolecular interactions have a large effect on the transitions and this 

can be seen in the intermolecular close contact distances. On cooling to 175 K, it can be 

seen that of the shortest C-H· · · S contacts, three contract and three expand (Table 5.4) 

On cooling further to 30 K, all distances contract, ending shorter than for the high spin 

structme at 240 K. 



240 K 175 K Contraction 1 30 K Contraction 2 30 K- Irr. 30 K - Irr. During Collection 

Fe1-N1 2.151(5) A 2.057(5) A 0.094(8) A 1.945(6) A 0.112(9) A 2.027(14) A 2.1:32(15) A 

Fel-N2 2.217( 4) A 2.087(4) A 0.1:30(7) A 1.96:3(7) A 0.124(9) A 2.050(15) A 2.2:39(16) A 

Fel-N3 2.19:3(5) A 2.089(4) A 0.104(8) A 1.978(6) A 0.111(8) A 2.007(14) A 2.18.5(14) A 

Fel-N4 2.223(5) A 2.106(4) A 0.117(8) A 1.975(6) A 0.131(8) A 2.042(14) A 2.227(15) A 

Fel-N5 2.050(5) A 1.981(5) A o.o7o(8) A t.9:35(6) A o.o46(9) A 1.956(16) A 2.077(16) A 

Fel-N6 2.066(5) A 2.011(5) A o.o55(8) A t.947(7) A 0.064(10) A 1.987(17) A 2.059(16) A 

Average Fe-N Distance 2.142(to) A 2.052(11) A 0.090(15) A t.958(4) A o.o94(12) A 2.009(8) A 2.145(5) A 

Octahedral Volume 12.80(4) A3 11.35(4) A3 1.45(6) A 3 9.93(4) A3 1.42(6) k 3 10.69(7) A3 12.81(7) A3 

Table 5.2: Fe-N distances and octahedral volumes for compound 4. 

240 K 175 K 30 K 30 K- Irr. 30 K - Irr. During Collection 

Intramolecular 5.890(3) A 5.638(2) A 5.3.55(2) A 5.465(6) A 5.860(6) A 

Intermolecular 

Intra.-sta.ck 8.573(3) A 8.641(3) A 8.632(3) A 8.598(6) A 8.524(6) A 

Btz-Btz Interaction 8.267(3) A 8.116(3) A 7.888(3) A 7.997(6) A 8.249(6) A 

C-H· · · S Interaction 8.069(3) A 8.182(2) A 8.260(3) A 8.246(5) A 8.122(6) A 

Table 5.3: Fe· · ·Fe distances for compound 4. 
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Ignoring the bonds between the pairs of rings, the structure can be considered to 

consist of iron atoms each ligated by two thiocyanate ligands, two pyrimidine rings and 

two thiazole rings (Figure 5.12). The C-H- · · 8 contacts that contract between 240 K and 

175 K are between the thiocyanate sulphur atom 82 and hydrogen atoms on the rings 

connected to N2, N4 and N3. In all cases except that of N3, the C-H· · · 8 interaction is 

in the same direction of the Fe--N bond. In the case of N3, the C-H- · · 8 interaction that 

contracts is ortho to the nitrogen. There is however, another C-H- · · 8 interaction which 

is pam to N3 and is approximately co-linear with the Fe-N bond, but this C9-H9· · · 84 

interaction extends slightly on cooling from 240 K to 175 K. The other C-H- · · 84 distance 

also expands slightly and is between 84 and H2A, which is connecting part of the ring 

containing Nl. The final C-H- · · 8 distance is between 82 and H2B and also expands, but 

is the only 82 interaction to do so. 

It is cleaJ· that the N2 and N4 rings and the 82 thiocyanate together with the weak 

intermoleculaJ· interactions between them, are critical to the transition. It is not surprising 

that this is the case, because the Fe-N distances for N2 and N4 contract the most. In 

addition, Fe1-N5 is consistently the shorter of the two thiocyanate Fe-N bonds and in the 

first step of the transition contracts more than Fe1-N6. 

The other C-H- · · 8 interactions are between the sulphur atoms in the two thiazole 

rings and the pyrimidine of the bridging Bpmd ring. 81, which is part of the N1 thiazole 

ring, participates in a C-H- · · 8 with H7. The C7-H7· · · 81 interaction expands between 

240 K and 175 K, but contracts by even more between 175 K and 30 K. In contrast, the 

short contact between the other thiazole sulphur atom 83 (part of the N2 ring), undergoes 

virtually no change on cooling through the first step, while it undergoes one of the largest 

expansions of all the short contacts between 175 K and 30 K. These changes are more 

difficult to understand, but appear to follow a similaJ· sort of pattern. Thus, the 81· · · H7 

interaction contracts more when the Fe1-N1 bond between the 81 ring and the central 

iron shortens most, which is in the second step. The 83 interaction on the other hand, 

expands during the second step, when the Fe1-N2 bond shows the least contraction. 

The 8· · · S interaction is even more difficult to understand, expanding slightly during 

the first step of the transition, then sharply contracting during the second step. The 

reason for this more complex behaviour is presumably due to the way it links the shorter 
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Figure 5.12: C- H· · · S interactions. The interactions labelled in red participate in bonds 

that contract between 240 K and 175 K. The thiocyanate nitrogen atoms are shown in 

green, N2 and N4 are shown in red to highlight their larger contraction and N1 and N3 

are shown in blue. 

Fe1- N5, thiocyanate ligand and the short Fe1- N1 thiazole ligand. 

The short contact distances for the LIESST structures don 't really fit into this pattern. 

This could be a reflection of the poor quality data, with the hydrogen positions riding 

on carbon atom positions that had to be refined as isotropic. However, the structure 

generated by irradiating before data collection has strikingly similar values for all the 

intermolecular contacts to those seen at 240 K. The data collected during irradiation give 

an even stranger result , with most distances longer than those at 240 K, suggesting that 

the structure is even higher spin than at 240 K. While the data are poor and it is not 

possible to draw any firm conclusions from these values, it is possible that there is another 

reason for these results, that could explain the unexpected relaxation of the LIESST state. 

However, without good quality data on both the LIESST states, further deductions are 

not possible. 
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240 K 175 K 30 K 30 K- Irr. 30 K- Irr. 

Thiocyanate 

S2·· ·H6A 2.861(4) A 2.840(3) A 2.830(3) A 2.861(6) A 2.774(6) A 
S2·· ·H2B 2.863(4) A 2.911(3) A 2.825(3) A 2.863(6) A 3.012(6) A 

S2· · ·H7 2.977(4) A 2.956(3) A 2.921(3) A 2.977(6) A 3.037(6) A 

S2· · ·H5A 3.049(4) A 3.026(3) A 2.998(3) A 3.049(6) A 3.117(6) A 

S4· · ·H9 2.758(4) A 2.779(3) A 2.748(3) A 2.758(6) A 2.775(6) A 

S4· · · H2A 2.934(4) A 2.955(3) A 2.912(3) A 2.924(6) A 2.874(6) A 

Bithiazoline 

S1· · · H7 2.863(4) A 2.912(3) A 2.836(3) A 2.863(6) A 2.901 (6) A 

S3·· ·H8 3.188(4) A 3.196(3) A 3.276(3) A 3.188(6) A 3.090(6) A 

Bithiazoline-Thiocyanate 

S1· · ·S2 3.504(7) A 3.564(3) A 3.494(3) A 3.504(7) A 3.480(7) A 

Table 5.4: Short intermolecular contact distances. 

5.4 Conclusion 

[Fe(Btz)(NCS)2]2Bpmd is the first dinuclear spin crossover complex with a step transition 

that undergoes Light-Induced Excited Spin-State trapping, to be studied structurally. In 

general, the structural results agree with the magnetic susceptibility data, which show 

that the material has a plateau between transitions, where the HS/LS ratio is 50%. The 

structural data not only agree with these results, but also give some indication of the 

weak intermolecular interactions governing the transition. It has not been possible to find 

super-lattice reflections and a refinement in Pl did not change the bond lengths arotmd 

the central iron atoms. However, it is possible that there is a super lattice, but the weak 

reflections were not visible because of their low intensity and the poor crystal quality. 

Indeed it is probable that there is HS/LS super-lattice order because without it the HS 

and LS atoms would be expected to form domains which would increase the internal strain 

in the crystal leading to crystal damage, but this is not seen. 

Photo-magnetic data indicate that the structure has a light induced excited state that 

can be trapped for extended periods of time at 30 K, however, irradiating the crystal with 

red or infrared light gives only a partially excited state, with an average of less than half 

the molecules converted to high spin. With the custom-built apparatus for irradiating 

and collecting data simultaneously, a LIESST structure with Fe-N bond lengths and an 
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octahedral volume close to that seen at 240 K, has been identified. The data for both these 

excited states are poor however, which could be due to damage caused by irradiation. It is 

also possible though, that when the crystal relaxes suddenly from the excited state, there 

is no HS/LS order. Instead there could be domains of HS and LS introducing strain and 

causing crystal damage. If this is the case it suggests that the intermediate state at 175 K 

is ordered and should good quality crystals become available, a synchrotron study could 

lead to the location of super-lattice reflections alluded to above. 



Chapter 6 

A Dicyanamide Bridged, 

Dinuclear, Spin Crossover System 

6.1 Introduction 

{[N(CN)2](FeBpl)2}(PF6 )3 (compmmd 5) is an unusual dinuclear system with a eli

cyanamide (N=C-N-C=N) bridge connecting the two iron centres. Each iron is encased 

in a novel pentadenta te N- benzy 1- N-pyridin-2-ylmethy 1-N 1- ( 2-pyridin-2-y 1-1-pyridin- 2-

ylmethyl-ethyl)-ethane-1,2-diamine (Bpi) cage (Figure 6.1). 

6.1.1 Magnetic Susceptibility Data 

SQUID magnetic susceptibility data indicate that compound 5 has two gradual transi

tions over ranges of approximately 100-230 K and 310-400 K, with a step in between 

(Figure 6.2). 184 

6.2 Single Crystal Diffraction Experiments 

At room temperature, the crystals* were small rectangular blocks that were red-orange 

in colour. This dichroic nature made it very difficult to see them extinguish and most 

*Crystals courtesy of Prof. Jose A. Real, Dr. lvl. Carmen Mui1oz, Prof. Rafael!VIoreno-Esparza and tvls. 

Norma Ortega Villar (Valencia and l\•lexico City). 

146 
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Figure 6.1: ~vlolecular diagram of [N(CN)2](FeBpl)~+ (compound 5). 
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Figure 6.2: Magnetic susceptibility data for l:ompound 5. Only the cooling curve is shown, 

but the compound has no appreciable hysteresis. 184 
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appeared to extinguish in parts suggesting the possibility of twinning. Initial attempts 

with these crystals resulted in high R-factors and extremely large residual electron density. 

GEMINI 147 clearly indicated that there was second component to the crystal, but all 

efforts to take this into account were unsuccessful. A twin law was determined using 

ROT AX, 146 but this refined to approximately 4 % and made very little difference to the 

overall refinement. 

6.2.1 Data Collection 

Eventually, a suitable crystal was found, and it was mounted on a hair with nail pol

ish. Data were collected using the Bruker Proteum M diffractometer with the Bede 

Microsource®. This machine was selected as the crystals were small and weakly diffract

ing <md the Bede Microsource® gives increased beam intensity compared with the conven

tional sealed tube X-ray sources. In addition, the instrument was fitted with the Series 700 

Cryostream which can reach 400 K (compared with 360 K for the Series 600). 130 

At 290 K, a matrix data collection indexed as a = 9.437(5) A, b = 16.502(8) A, 

c = 20.706(8) A, a= 104.82(3) 0
, (3 = 90.72(4) 0

, 1 = 97.61(4) 0
, V =3085(3) A3 and was 

followed by warming to 400 K at 120 K/hr with photos taken before and after heating. 

Data were collected at 400 K with 60 s/frame. The crystal was then cooled at 120 K/hr 

to 290 K where a full data collection was recorded at 40s/frame. 

The crystal was then cooled to 250 Kat 120 K/hr, where another dataset was collected 

(30 s/frame), before cooling through the second transition to 90 K, where data were 

collected at 20 s/frame. The data collection had to be aborted after 100 frames due to 

the formation of ice on the hair and crystal, so the crystal was warmed to 400 K where 

it remained for 20 mins before it was cooled to 350 K at 120 K/hr, where a dataset was 

collected (50s/frame). On completion, the crystal was cooled to 200 Kat 120 K/hr where 

another matrix and dataset was collected (25 s/frame). When completed, the crystal was 

cooled to 150 K where the data collection was repeated (30 s/frame), before cooling to 

90 K where another dataset was collected (30 s/frame). Finally, the crystal was warmed 

to 290 K and removed. 

The data at 400 K were poor clue to the inherent decrease in intensity caused by 

the thermal motion at high temperature. The crystal was returned to the diffractometer 
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therefore and heated to 400 K at 120 K/hr before a data collection was recorded with 

increased acquisition time (90s/frame). 

Variable Temperature Cell Parameters 

Another crystal was selected and mounted as before. Using the Bruker Proteum M diffrac

tometer, a matrix collection was recorded at 290 K, and the crystal was then warmed at 

120 K/hr to 400 K where it was left for 30 mins. A matrix collection was carried out at 

400 K, before cooling at 120 K/hr to 385 K, where a the cell determination was repeated. 

On completion, the crystal was cooled by a further 15 K (at 120 K/hr), where a matrix 

collection was recorded. Cells were determined in this fashion from 400 K to 100 K. The 

crystal was finally warmed to 290 K where another matrix collection was recorded. 

6.3 Data Analysis 

The final structures were all triclinic, PI. Initially however, the crystals chosen were 

twinned. With these crystals there were some indications that the cell was doubled along 

the b-axis on indexing. The structure solution however, suggested that the smaller cell 

was correct, with disorder present when the cell was doubled and when the structure was 

solved in Pl. Structure refinement gave high R-factors and extraneous peaks of residual 

electron density. The crystal from which the results are discussed here was better, but 

being smaller had other problems and it is probable that there was still a small component 

of twinning present. 

The data used indexed satisfactorily and were integrated in the usual manner. The 

faces were indexed, so numerical absorption corrections were carried out accordingly. 

6.3.1 Structure Refinement 

The initial data collection at 400 K was poor, because the intensity was reduced at high 

angle due to the high temperature. Consequently, SADABS145 was unable to perform 

additional absorption corrections and some anisotropic displacement parameters were non

positive definite. In order to improve the quality of the results, the data were recollected 

with a longer data acquisition time and only integrated to 0.9 A (instead of 0.7.5 A as 

at all the other temperatures). Although this reduced the number of reflections used, 
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the relative intensity of the high angle data was increased by the longer collection time. 

Thus, absorption corrections were possible giving better statistics and improved thermal 

parameters. Despite the reduced number of reflections, the data to parameter ratio was 

still greater than lO:l.t 

Disorder 

Non-hydrogen atoms were refined as anisotropic in almost all cases except where disorder 

was present. For example, where there was disorder in a PFfi counter ion, the minor 

component was sometimes modelled using isotropic thermal parameters. In these cases, 

initially all the isotropic thermal parameters were constrained to a common value and 

the fractional occupancy of each component refined. vVhen the refinement was stable, 

anisotropic thermal parameters were refined and the occupancies monitored. If the refine

ment was still stable, the occupancy was fixed to the refined value. Where the fractional 

occupancy for one component was very small, in most cases the refinement became un

stable or the thermal ellipsoids were ridiculously shaped, so the minor component was 

modelled with isotropic thermal parameters. 

There are three crystallographically inequivalent PFfi counter ions, Pl, P2 and P3, 

numbered according to the central phosphorus atom. vVhile the thermal motion is large 

at high temperature, Pl is modelled as ordered throughout, however P2 and P3 are both 

disordered. P2 is modelled with two orientations of equal occupancy at 400 K, decreasing 

fairly linearly to 85%/15% at 90 K (Figure 6.3). At room temperature and below, the 

minor component is modelled as isotropic. 

The disorder in P3, was modelled as a rotational disorder around the F36-P3-F35 axis. 

Therefore, the two apical atoms were refined anisotropically with 100% occupancy at all 

temperatures, while the equatorial atoms were modelled as disordered in two positions. 

At room temperature and above, these were modelled as equally occupied, but below 

room temperature the occupancy of one component decreased approximately linearly to 

75%/25% at 90 K. All P3 fluorine atoms were refined anisotropically except the minor 

component at 1.50 K and 90 K. 

!Results from the second data collection are used in the discussion unless otherwise specified. 
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F24A 

F22A 

Figure 6.3: Disordered PF6 c01mter ions at 90 K. P2 is above and P3 below. The minor 

component atoms (15% and 25% occupancy respectively) are refined as isotropic and 

shown here as spheres with open bonds. 



400 K 350 K 290 K 250 K 200 K 150 K 90 K 

s/frame 90 50 40 .'30 25 ::JO :30 

Independent Reflections 8986 14332 15057 14948 13667 14586 14396 

Central Nitrogen D(A) D(A) D(A) D(A) D(A) D(A) D(A) 

Carbons in Bridge O(A) O(A) D(I) D(I) D(I) D(I) D(A) 

% age Disorder in P2 50(A)/50(A) 55(A)/45(A) 60(A)/40(A) 6.5(A)/35(I) 70(A)/30(I) 80(A)/20(I) 85(A)/15(I) 

% age Disorder in P3 50(A)/50(A) 50(A)/50(A) 50(A)/.50(A) 55(A)/45(A) 60(A)/40(A) 70(A)/30(I) 75(A)/25(I) 

R;nt 0.1390 0.0643 0.0573 0.0580 0.0528 0.0636 0.0571 

R1 0.0992 0.0721 0.0694 0.0753 0.0683 0.0750 0.0663 

wR2 0.2315 0.1211 0.1181 0.1278 0.1230 0.1335 0.1244 

Goodness of Fit 0.820 0.908 0.913 0.948 0.9.'34 0.943 0.946 

Table 6.1: Summary of the data collection and structure refinement details for compound 5. 'D' indicates modelled as disordered, '0' 

indicates modelled as ordered, 'A' indicates refined as anisotropic and 'I' indicates refined as isotropic. 
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In all cases, restraints were necessary to maintain sensible octahedral geometries. These 

were usually restraining similar distances to be equal, for example, all P-F bonds in P2 

were restrained, as were those in P3. 

Dicyanamide Bridges 

At all temperatures, the dicyanamide groups occupy positions around inversion centres, 

which generates half of each of the disordered anionic bridges. This disorder was modelled 

differently at different temperatures. At 400 K, the central nitrogen of the N=C-N-C=N 

bridge was modelled as 50% occupied and split into two symmetry related positions. On 

cooling to 350 K however, the disorder appears to be spreading to the adjacent carbon 

atoms, as they refine with larger thermal ellipsoids. 

At 290 K and below, the bridge is modelled with two carbon positions each 50% 

occupied, with the second half of the dicyanamide group generated by symmetry. Since 

the two components of the disorder are so close together and in some cases overlapping, the 

anisotropic refinement is unstable. This results in poorly shaped thermal ellipsoids and in 

extreme cases, atoms that become non-positive definite. Thus the disordered carbon atoms 

are modelled isotropically until 90 K, where the thermal motion is sufficiently reduced to 

enable anisotropic refinement. 

Although many of the hydrogen atoms were visible in the difference map, refinement 

was unreliable, so they were added geometrically and refined using a riding model. The 

program IVTON 174 was used to calculate the mean Fe-N bond lengths and the volumes 

for the iron octahedra in compound 5. 

6.4 Discussion 

The structures were all triclinic (PI), with two half molecules in the asymmetric unit 

(Figure 6.4). 

6.4.1 Structural Analysis 

Both half molecules occupy a position such that an inversion centre in the middle of the 

dicyanamide bridge generates the other half of the molecule (Figure 6.5). Viewed down 

the c-axis, the molecules sit at 90° to each other and can be seen to cross at the bridge. 
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Figme 6.4: Part of the asymmetric unit for compound 5 at 290 K, a = 9.4161(7) A, 

b = 16.4923(13) A, c = 20.6515(15) A, Q = 104.691(2) 0
' {3 = 90. 747(2) 0

' I = 97.624(2) 0
' 

V =3071.1(4) A3 (PI). In the full asymmetric unit there is an additional half molecule 

and two extra PF(l counter ions. 
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Figure 6.5: A molecule of [N(CN)2](FeBpl)~+ at 400 K. 

Directly between the centre of the disordered bridges lies one of the PF6 counter ions 

(Figme 6.6). 

Fe-N Distances 

At 400 K the average Fe- N distances are 2.146(28) A and 2.143(9) A (for Fe1 and Fe2 

respectively), indicating that the compound is predominantly high spin. Despite the large 

esds, Fe1- 16 and Fe2- 26 are clearly the shortest. These are the two nitrogen atoms 

that join the iron centres to their symmetry equivalents through dicyanarnide bridges and 

are presumably shorter because of the anionic nature of the ligand. 

In contrast, Fe1- N14 and Fe2-N24 are clearly the longest Fe-N bonds. N14 and N24 

are two of four tertiary amide groups. The other tertiary a.mides' nitrogen atoms are N15 

and N25, and although the Fe-N15 and Fe- N25 bond lengths are not as long as those to 
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Figure 6.6: Two molecules of [N(CN)2](FeBpl)~+ at 400 K showing the crossing of the 

dicyanamide bridges with the PF(l between them. 
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• 
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Figme 6.7: Schematic showing the idealised packing in compound 5. The PF6 ions are 

shown as green spheres and the iron(II) cations are shown as grey dumbbells. 

N14 and N24, they are longer than the average. The increased Fe-N distance in these fom 

nitrogen atoms (N14, N15, N24 and N25) compared with the average, is probably due to 

steric effects. 

Packing 

The three PF6 counter ions lie between the two cations in staggered layers. One lies 

directly between the bridges, where they cross, forming a link between the molecules. 

The other two lie in the cavities formed by the cris-crossing of the two bulky molecules 

(Figme 6.7). 

There are no conventional hydrogen bonding interactions, but there are weak C-H· · · F 

interactions between each of the PF6 counter ions and the Bpl ligands (Figme 6.8). Al

though weak, this type of interaction is common in spin crossover materials and in many 

cases critical to the presence and type of transition. In this case, there is a plethora of 

H· · · F interactions between 2.5 A and 3.0 A, but there are six H- · · F contacts with dis

tances of less than 2.5 A. Of these, fom involve P2, with one H· · · F to each of the other 

anions. There are two particularly short contacts of 2.358(6) A and 2.315(6) A, involving 

F21 and F25 respectively. 

6.4.2 Spin Crossover Transitions 

There is a clear colom change between 400 K and 250 K, from yellow to dark orange, 

suggesting that there has been a spin transition. Although it is not as obvious, there is 
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Figure 6.8: Crystal packing in compound 5, viewed down the a-axis. Some of the C- H- · · F 

interactions can be seen (shown with broken lines). 
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Figure 6.9: A crystal of compound 5. At 400 K (left) the crystal is clear pale yellow, but 

on cooling to 250 K the colour darkens to a deep orange (centre) and cooling to 100 K 

gives a dark red colour (right). 

also a change between 250 K and 100 K, from red-orange to deep red, (Figure 6.9). 

Fe-N Distances 

In addition to the colour change, the average Fe-N bond length changes from 2.145(28) A 

at 400 K to 2.075(12) A at 250 K and 2.004(15) A at 90 K. This contraction is also seen in 

the octahedral volume which contracts from 12.80(6) A3 at 400 K to 10.62(4) A3 at 90 K 

indicating a transition from high to low spin. What is not immediately obvious is that the 

changes in the octahedral volumes follow the magnetic susceptibility curve, indicating the 

presence of a plateau in between 300 K and 200 K. At this plateau the molecules occupy 

an intermediate state half way between high and low spin (Figure 6.10). This was seen 

also in compound 3, where the plateau was between two transitions both more abrupt 

than in compmmd 5 (Chapter 5). 

It is important to note, that without Mi::issbauer spectroscopic data it is impossible to 

be certain that the spin transition in compound 5 is complete at either 400 K or 90 K. 

The octahedral volumes suggest there may be residual high spin at 90 K, but it is possible 

that this could be eliminated with further cooling. Similarly, there may be residual low 

spin at 400 K, which could be eliminated with additional heating, but the quality of a 

structure determined at 450 K would be very poor. 

The distribution of bond lengths at 400 K is more or less repeated at each temperature 

with Fe1- N16 and Fe2- N26 generally shorter and Fe1- N14 and Fe2- N24longer. However, 

what is not so clear from just looking at the raw data (Table 6.2) is that the step is also 

seen in the individual bond lengths. A plot showing the Fe-N bond lengths at the different 

temperatures clearly shows the plateau between 300 K and 200 K (Figure 6.11). On close 
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Figure 6.10: Plot of the octahedral volumes for compound 5. Fel is shown in blue, Fe2 

in red and the error bars show three estimated standard deviations. The plateau between 

200 K and 300 K can be seen in both iron octahedral volumes. 

inspection it can be seen that Nll to N15 and N21 to N25 all behave in the same way, with 

the step in the same place and comparable bond length changes. However, N16 and N26 

follow a similar trend at higher temperatures, but during the second step, contract a lot 

less and therefore move from being the shortest Fe- N bonds to being short-intermediate 

bond lengths. Interestingly, N16 and N26 are both part of the anionic eli cyanamide bridges. 

Cell Parameters and Fe· · · Fe Distances 

Comparing the cell parameters collected on cooling show that the cell contraction is very 

anisotropic. The majority of the contraction is in the a and b directions, with virtually 

no contribution from the c direction (Figure 6.12). The molecules run diagonally across 

the unit cell, almost entirely in the ab plane. However, the Fe··· Fe distances within the 

molecules indicate that there is little change in the distance between the iron centres below 

290 K. Between 290 K and 400 K , the Fe··· Fe distance changes do not follow any obvious 

pattern, though this could be due to the data quality at high temperature (Table 6.3). 
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Figure 6.11: Plot of the Fe-N bond lengths for compound 5. Felis shown in blue and Fe2 

in red, except for Fel- N16 and Fe2- 26 which are dark and light green respectively. 
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400 K 350 K 290 K >= 250 K 200 K 150 K 90 K 

I~· Fe1 Nll 2.143(6) A 2.127(5) A 2.073(4) A 2.058(5) A 2.052(5) A 2.008(5) A 1.98.5(4) A 
N12 2.104(6) A 2.112(.5) A 2.062(.5) A 2.047(.5) A 2.033(.5) A 1.992(.5) A 1.966(4) A 
N13 2.173(6) A 2.1.53(.5) A 2.092(4) A 2.085(5) A 2.074(5) A 2.028(4) A 1.996(4) A 
N14 2.263(10) A 2.203(5) A 2.1.56(4) A 2.143(.5) A 2.140(.5) A 2.105(5) A 2.082(4) A 
N15 2.152(10) A 2.169(.5) A 2.124(4) A 2.116(4) A 2.102(4) A 2.049(4) A 2.014(4) A 
N16 2.071(14) A 2.067(6) A 2.032(6) A 2.017(7) A 2.007(7) A 1.992(6) A 1.986(4) A 
Average 2.146(28) A 2.134(13) A 2.086(12) A 2.073(10) A 2.064(12) A 2.027(13) A 2.004(15) A 
Volume 12.84(6) A3 12.67(.5) A'3 11.89( .5) A'3 11.69(4) A3 11.63(4) A3 10.97( 4) A 3 10.61(4) k 3 

Fe2 N21 2.141(7) A 2.120(5) A 2.060(5) A 2.049(.5) A 2.048(.5) A 1.996(4) A 1.978(4) A 
N22 2.101(7) A 2.088(.5) A 2.0.53(4) A 2.043(.5) A 2.034(5) A 1.988(4) A 1.9.58( 4) A 
N23 2.167(7) A 2.154(5) A 2.097(4) A 2.086(.5) A 2.072(.5) A 2.019(4) A !.999(4) A 
N24 2.222(10) A 2.212(5) A 2.162(4) A 2.1.53(5) A 2.149(4) A 2.097(4) A 2.078(4) A 
N2.5 2.183(9) A 2.184(5) A 2.134(4) A 2.123(.5) A 2.111(4) A 2.039(4) A 2.021(4) A 
N26 2.076(12) A 2.090(7) A 2.046(7) A 2.026(8) A 2.023(7) A 2.010(5) A 1.997(.5) A 

Average 2.143(9) A 2.1:H(4) A 2.088(11) A 2.076(12) A 2.069(12) A 2.024(15) A 2.004(13) A 
Volume 12.76(6) A3 12.71(.5) A3 11.92(.5) A3 11.73(4) A3 11.55(4) A3 10.92(4) A3 10.63(4) A3 

Table 6.2: Iron-nitrogen bond lengths at different temperatures. 
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Distances 

Temperature Fel· · · Fel Fe2· · · Fe2 N16· · -N16 N26···N26 

400 J( 8.522(5) A 8.589(5) A 4.5:31(26) A 4.582(22) A 

350 I< 8.580(2) A 8.605(2) A 4.594(12) A 4.542( 13) A 

290 ]( 8.552(2) A 8.572(2) A 4.616(12) A 4.584(12) A 

250 K 8.550(2) A 8.566(2) A 4.644(13) A 4.615(15) A 

200 K 8.551(2) A 8.563(2) A 4.663(13) A 4.619(14) A 

150 K 8.559(2) A 8.572(2) A 4.677(10) A 4.640(10) A 

90 K 8.559(2) A 8.569(2) A 4.684(8) A 4.654(8) A 

Table 6.3: Dicyanamide bridge distances at different temperatures. 

Since the material undergoes SC from the high spin to the low spin state between 

400 K and 100 K, there should be a contraction corresponding to the 0.4 A from the 

shortening of the Fe-N bonds (0.2 A from each end of the bridge), but this is not seen. 

Comparing the N16-N16/N26-N26 distances belonging to the dicyanamide bridges at 

different temperatures explains this anomaly. The Fe· · · Fe distance remains constant, 

because while the Fe-N distance contracts (due to the spin transition), the dicyanamide 

bridges are stretched (Table 6.3). 

Disordered Dicyanamide Bridges 

At all temperatures, the dicyanamide bridges are modelled as disordered around the in

version centre at ~ ~ ~ (Figure 6.5). However, the level of this disorder is temperature 

dependant. At 350 K and 400 K the bridges are disordered with the central nitrogen atom 

split over two sites. On cooling, this disorder appears to spread to the adjacent carbon 

atoms which at 290 K and 250 K are also split over two sites. The electron density plots 

clearly show this separation of the two carbon sites (Figure 6.13 to 6.15). Cooling further, 

the two electron density peaks seem to coalesce again, and initially they were modelled as 

a single site at 90 K, but the thermal ellipsoids were still very elongated (Figure 6.16). A 

search of the CSD 1 suggests that the C-N-C expected angle in a dicyanamide ligand is 

generally close to 120° and the corresponding N-C-N angle approximates to linear (Fig

ure 6.17). These angles are best attained when the dicyanamicle carbons atoms are split 

over the two sites each with 50% occupancy, which was used for the final model. 
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Figure 6.12: Selected cell parameters plotted as a fraction of the initial 290 K values. 

The cell volume is shown in black, a in blue, b in red and c in green. The reason for the 

difference between the initial and final cell parameters at 290 K is unclear as the difference 

is larger than the estimated standard deviations (the largest error is in the cell volume at 

400 K and is shown). The magnetic data indicate that there is no hysteresis. 
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Figw-e 6.13: Observed electron density plots (left) and thermal ellipsoid plots (right) of 

the bridges between Fe1 and its symmetry equivalent. From the top to the bottom: 400 K, 

350 K and 290 K. The contours are at every 1 e I A 3 from 0 to 10 e I A 3 and every 10 e I A 3 

thereafter. Negative electron density at every 1 el A 3 is shown with a broken line. 
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Figure 6.14: Observed electron density plots (left) and thermal ellipsoid plots (right) of 

the bridges between Fe1 and its symmetry equivalent. Ftom the top to the bottom: 250 K, 

200 K and 150 K. The contours are at every 1 e/ A 3 from 0 to 10 e/ A 3 and every 10 e/ A 3 

thereafter. Negative electron density at every 1 e/ A 3 is shown with a broken line. 
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Figure 6.15: Observed electron density plots (left) and thermal ellipsoid plots (right) of 

the bridges between Fe1 and its symmetry equivalent at 90 K. The contours are at every 

1 e/ A 3 from 0 to 10 e/ A 3 and every 10 e/ A 3 thereafter. Negative electron density at every 

1 e/ A 3 is shown with a broken line. 

Figure 6.16: The dicyanamide bridge at 90 K with the carbon modelled as a single site 

with the suggested bonding overlayed in red (above). The bridge modelled with disordered 

carbon atoms is shown below. 
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Figme 6.17: CSD 1 results for the C- N- C (above) and N= C- N (below) angles in di

cyanamide bridges. The mean average values are 121.15 and 172.95 with standard devia

tions of 2.71 and 2.09 respectively. The outliers below 170° in the N=C- N histogram were 

all found to be disordered in the central nitrogen position of the dicyanamide bridge. 
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Distances 

Temperature N17···N17 N27· · ·N27 Average 

400 K 1.19(7) A 1.26(7) A 1.23(7) A 

350 K 1.47(3) A 1.51 (2) A 1.49(3) A 

290 K 1.65(3) A 1.74(3) A 1.70(3) A 

250 K 1.69(3) A 1.81(3) A 1. 75(3) A 

200 K 1.73(3) A 1.81(3) A 1.77(3) A 

150 K 1.62(3) A 1.61(3) A 1.62(3) A 

90 K 1.56(2) A 1.59(2) A 1..58(2) A 

Table 6.4: N-N distances at different temperatures. 

On heating, the electron density plots show the electron density trough between the two 

sites of the central nitrogen atom disappearing. There are several possible explanations for 

this. Since the intensity falloff with respect to sinO j .A is increased at higher temperature, 

there is reduced intensity at high angle, a problem exacerbated by integrating to 0.9 A. 

This reduced resolution has the effect of smearing the observed electron density which 

could account for the apparent merging of the two nitrogen sites. Another possibility 

is that the increased thermal energy leads to increased vibration along the dicyana:mide 

bridge and an increase in electron density between the two nitrogen sites. A comparison 

of the N17· · · N17 /N27· · · N27 distances between the two positions shows that it decreases 

on heating and it is possible that above 400 K it moves to occupy the inversion centre. 

This is certainly not the case at 400 K however, as refinement with N17 and N27 on the 

special positions not only leads to non-physical, huge thermal parameters, but also high 

R-indices. Refining the central nitrogen atoms away from the inversion centre at 400 K, 

gives prolate thermal ellipsoids, but viewing the situation along the bridge from the centre, 

suggests that the thermal motion is not trivial (Figure 6.18). The electron density maps 

suggest the central atom could be moving with a strange circular, toroidal motion, or 

librating to a huge degree, which could be caused by the large amount of thermal energy 

at 400 K. These are merely possibilities however, and concrete conclusions are not possible 

as the data collected at 400 K is of reduced quality, which could be artificially affecting 

the results. 
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Figure 6.18: Observed electron density map and thermal ellipsoid plot viewed from the 

centre of the bridge between Fe1 and the symmetry equivalent at 400 K viewed towards 

Fel. The contours are at every 1 e/ A3 from 0 to 3 e/ A3 . 

Atom U eq Atom U eq 

Nll 0.0432(11) N21 0.0454(11) 

N12 0.0412(11) N22 0.0444( 11) 

N13 0.0397(10) N23 0.0432(11) 

Nl4 0.0356(10) N24 0.0391 (10) 

N15 0.0364(10) N25 0.0370(10) 

N16 0.0693(15) N26 0.0726(16) 

Table 6.5: Thermal values for the nitrogen ligand atoms for compound 5 at 290 K. 

A comparison of the thermal parameters, Ueqt for the ligating nitrogen atoms at room 

temperature shows that for N16 and N26 (the nitrogen atoms ligating the anionic bridges 

to the iron centres), the ADPs are considerably larger than for the other nitrogen atoms 

surrounding the iron centre (Table 6.5). Looking at the other temperatures, this trend 

is also apparent in the other results, but the effect is smaller at 90 K. Plotting the Ueq 

values with respect to temperature shows a very interesting phenomenon. Under normal 

conditions, thermal motion should increase linearly with temperature. Clearly, for N16 and 

N26 this is not the case (Figure 6.19). Above 150 K, the thermal motion is approximately 

linear, but there is a step between 90 K and 200 K. 

tueq is defined as one third of the trace of the orthogonalised Uii tensor. 
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Figure 6.19: Variable temperature plot for the ligand nitrogen atoms. The Fel ligands are 

shown in blue and the Fe2 ligand atoms are shown in red. For clarity, errors are given for 

N26 only, but the other atoms are comparable or less. 

It is possible that this is because the multi-dentate Bpl ligand, made up of a number 

of rigid pyridine rings, restricts the amount of movement making the ligating thermal 

parameters smaller. However, that doesn 't explain the lack of linearity. It is more likely 

that the disorder in the dicyanamide bridges extends all the way along the bridge to 

include the ligand nitrogen atoms, N16 and N26, so that these are also disordered like 

the central nitrogen and carbon atoms. The fact that the two cyanide bond lengths are 

different and the nitrogen ellipsoids are slightly prolate supports this theory. On cooling, 

this disorder disappears indicating that it is dynamic in nature and it is probable that 

this corresponds to the completion of the spin transition. Refinement of the disorder at 

the higher temperatures was generally found to be unstable due to the extremely close 

proximity of the components and a corresponding large degree of overlap. 

Disordered PF(l 

Pl is relatively ordered throughout, though at higher temperatures the thermal parameters 

are very large and it iti clear Lhat there is a lot of thermal motion. P2 however, is clearly 

disordered throughout and is modelled with 50% occupancy in each orientation until the 

step, at which point the occupancy of one component gradually decreases. This suggests 

that the disorder is largely dynamic, with the less favourable orientation becoming less 
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Figure 6.20: Electron density maps for the clisorclerecl P3 PF6 ion at 400 K (left) and 

90 K (right) viewed clown the c-axis. The contours are at every 1 ejA3 from 0 to 10 ejA3 

and every 10 e/ A 3 thereafter. Negative electron density at every 1 e/ A 3 is shown with a 

broken line. 

occupied on cooling. 

P3 is also clisorclerecl, but the disorder is rotational in nature. P3 sits with four 

fluorine atoms in the ab plane. The rotation is around the F35- P3- F36 axis along the 

c-axis direction. This rotation is probably also dynamic, as the occupancy of the second 

component decreases on cooling through the transition from 50% at 400 K to 15% at 90 K 

(Figure 6.20). 

Despite the fact that the PF6 ions are modelled as disordered, looking at the thermal 

parameters it is clear that at 400 K, the P2 and probably P3 are fairly freely rotating 

as would be expected at such a high temperature. On cooling however, the stronger of 

the C- H· · · F interactions govern and P2 and P3 gradually become more ordered with a 

progressive reduction in the occupancy of the minor component. 

6.5 Conclusion 

At 400 K {[N(CN)2](FeBpl)2}(PF6)3 is high spin, while at 90 K it is low spin. However, 

in between these two temperatures, there are two gradual transitions with a plateau in 

between. The presence of this step transition seen in the magnetic data has been confirmed 

by comparison of octal1edral volumes and Fe-N bond lengths recorded approximately 

every 50 K. These comparisons have shown some interesting effects in the anionic bridging 
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ligands. They indicate that where the Bpi cage-like ligands remain fairly static, undergoing 

only the contractions and reorganisations caused by the contraction of the Fe-N bonds, the 

dicyanamide bridges behave very differently. The two nitrogen atoms in the dicyanamide 

bridges ligating the iron cores (N16 and N26) have been shown to have much larger thermal 

parameters than the other ligating nitrogen atoms above 90 K. This effect is believed to be 

caused by disorder extending out from the centre of the bridge. This disorder leads to an 

explanation for the presence of the step transition. It is possible that above the plateau, 

the disorder in the centre of the bridge is dynamic, involving considerable movement, 

which may even be toroidal or similar to that of a rope turned by two children so that 

a third can skip. On cooling, this disorder is reduced and it is reasonable that at the 

plateau, the disorder at the centre of the bridge is becoming static. However, the two 

ends of the dicyanamide bridges remain disordered, only becoming more ordered at 90 K, 

suggesting that there may be a longitudinal disorder that may remain dynamic until the 

transition is complete and the complex is low spin. 

A comparison of the Fe· · · Fe distances and the length of the dicyanamide bridges in

dicate that there is a considerable degree of flexibility in the dicyanamide group which 

absorbs much of the change caused by the spin transition. It is this flexibility that could 

be responsible for the gradual nature of the transitions in this compound, in a way analo

gous to that discussed by van Koningsbruggen et al. with respect to triazole and tetrazole 

bridged polymers. 108 Van Koningsbruggen et al. explained how connecting iron centres 

together with triazole ligands to form polymer chains increased the strength of the elastic 

interactions between the SC active centres, increasing the cooperativity and making the 

transitions more abrupt. However, making the linking groups more flexible means the 

elastic interaction is effectively absorbed by the bridging ligands. Van Koningsbruggen et 

al. referred to this as a "tug of war between the elastic interaction and a shock-absorber 

effect." Similarly, the flexibility in the dicyanamide anionic bridging ligand in compound 5 

could be acting as a kind of shock-absorber, preventing the transmission of elastic inter

actions along the bridge. This elastic flexibility is not present in the central ligand in 

compound 3, which has more abrupt steps to the transition. 



Part III 

Spin Crossover in Coordination 

Polymer Networks 

174 



Chapter 7 

Allosteric Reactions in Bistable 

Spin Crossover Networks 

7.1 Introduction 

The development of Hofmann type networks with spin crossover capability112 has led to 

the use of metal cyanide anionic ligands in the design of complex, rigid networks. 125, 185 

Two such compmmds use [M(CN)2]- ligands to form bridges between iron centres 

(M =Au, Ag). 

{Fe(Pmd)2Fe(H20)2[Au(CN)2]4}.H20 (compound 6) and its silver analogue 

{Fe(Pmd)2Fe(H20)2[Ag(CN)2]4}.H20 (compound 7) were synthesized by slow diffusion of 

two solutions containing stoichiometric amounts of FeCb/pyrimidine and K[M(CN)2] in 

an H-shaped vesseltmder argon, giving pale-yellow crystals. TGA data indicate three suc

cessive losses on heating, which correspond to water, pyrimidine and cyanide (Figure 7.1). 

7.1.1 Magnetic Susceptibility Data 

The materials have an abrupt spin transition (approximately 165 K and 218 K for com

pmmds 6 and 7 respectively), both with a clearly defined hysteresis (Figure 7.2). 186 Heat

ing to trap the dehydrated compound 6, yields a material that remains paramagnetic 

throughout the temperature range (compound 8). In contrast, on dehydrating compound 7 

to give compound 9, the spin transition is retained. The transition in the dehydrated com

pound 9 takes place at a lower temperature than in the hydrated material (approximately 

175 
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Figure 7.1: TGA data for compound 6 (left) and compmmd 7 (right) showing the loss of 

first water, then pyrimidine and finally cyanide on heating.l86 

125 K compared with 218 K for compound 7). 

7.2 Single Crystal Diffraction Experiments 

Both compounds 6 and 7 were crystalline,* although the sample of the silver complex 

consisted of crystals that were much larger and more abundant. However, both samples 

contained specimens that were suitable for single crystal diffraction. 

7.2.1 Data Collection 

Single crystal data were collected on compounds 6 and 7 using the Bruker 

SMART-CCD 6000 and temperature was controlled using an Oxford Cryosystems 

Cryostream 600. 130 

{Fe(Pmd}2Fe(H20}2[Au(CN)2)4}.H20 (Compound 6) 

The crystals for compound 6 were very small and many were intergrown. Consequently, a 

very small crystal of the gold compound was used (approximately 0.06 x 0.04 x 0.03 mm). 

The crystal was mounted in oil and quenched to 180 K. A matrix was collected at 180 K, 

*Samples courtesy of Prof. Jose A. Real, Dr. M. Carmen Munoz, Dr. Virginie Niel 187 and Ms. Ana G. 

Galet Domingo (Valencia). 
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Figme 7.2: Magnetic susceptibility data for compounds 6 to 9 .186 The SC transition in 

compound 6 takes place at approximately 165 K but on dehydration becomes paramag

netic (left) . In compound 1 the transition moves to a lower temperature on dehydration 

(right). Both the cooling and warming modes are shown in each case ( ~ and t.) except 

for compound 6 which does not have a spin transition ( o). 

Figme 7.3: Compound 6 at 175 K (left) and 150 K (right). 
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followed by a full sphere data collection with 20 s/frame. The crystal was then cooled at 

60 K/hr to 150 K, during which there was a dramatic colour change from yellow to red and 

where a matrix at 150 K indicated a sharp cell contraction. This was followed by cooling 

at 120 K/hr to 120 K where another matrix collection indicated the cell parameters were 

in keeping with those recorded at 150 K, so another full sphere of data was collected with 

20 s/frame. Photographs were taken at 175 K and 150 K on cooling (Figure 7.3) and the 

faces were indexed on completion. 

For the silver compotmd, the crystals were much less intergrown and a much larger speci

men was used (0.35 x 0.22 x 0.11 mm). Like compound 6, the crystals were pale yellow at 

room temperature. The crystal was mounted using glue and a matrix collected at 290 K. 

The sample was then cooled at 360 K/hr to 230 K, then at 120 K/hr to 225 K. A second 

matrix was recorded and, allowing for thermal contraction, the cell was comparable with 

that at 290 K. The faces were indexed and a full sphere dataset was collected at 225 K, 

with 8 s/frame. Another matrix was collected after the data collection, before the sample 

was cooled to 205 K at 60 K/hr. The crystal which had been pale yellow had changed to 

deep red, so a matrix was recorded at 205 K, which indicated a significant cell contraction. 

The sample was then cooled to 120 Kat 120 K/hr where another matrix was collected. 

The cell was consistent with results at 205 K and a sphere of data was collected at 120 K 

at 6 s/frame. On completion, the sample was warmed to 217 K at 120 K/hr where a 

matrix was collected giving the same cell as at 120 K. The sample was then warmed to 

225 K at 60 K/hr with pictures taken approximately every 0.5 K. By eye, a colour change 

was observed at approximately 220.7 K (Figure 7.4). A final matrix was collected at 225 K 

which indicated the same cell as at 290 K. 

7.3 Data Analysis 

In general, the data were of a high quality, and were treated in the usual manner. For 

both compound 6 and 7, no additional reflections or suggestions of a change in symmetry 

were observed on cooling. 
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Figure 7.4: Compound 7 on warming. Photos taken at approximately 219.5 K, 220.0 K, 

220.5 K, 220.7 K and 221.0 K (from left to right). 

The data indexed satisfactorily and, in general, the data were integrated in the usual way 

to a resolution of 0. 73 A. The structure was solved as normal and refined well. Despite the 

small size of the crystal, the faces were visible and could be indexed. Thus, the absorption 

correction was carried out accordingly, followed by an additional absorption correction 

using SADABS. 145 

{Fe{Pmd)2Fe(H20)2(Ag(CN)2)4}.H20 {Compound 7) 

Like compound 6, the data indexed well and integration was carried out accordingly. The 

structure solved without difficulty and refined well. The faces were clearly visible so the 

absorption corrections were carried out as for the gold analogue. 

7.3.1 Structure Refinement 

All four structures refined satisfactorily and the high quality of the data is reflected in the 

final R-indices. 

All non-hydrogen atoms were refined as anisotropic and the hydrogen atoms were located 

in the difference map. Full refinement led to unreasonable thermal parameters for some of 

the hydrogen atoms. For this reason, the thermal parameters were fixed, but the positions 

of the hydrogen atoms were allowed to refine freely. The water of crystallisation (including 

the hydrogen atoms) was visible in the difference map, but despite this, the refinements 

were unstable, hence the oxygen to hydrogen distances were restrained to a CSD average 
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value of 0.84 A. 1 

The program IVTON 174 was used to calculate the mean Fe-N bond lengths and the 

volumes for the iron octahedra in compound 6. 

All non-hydrogen atoms were fully refined whilst the hydrogen atoms were treated in the 

same way as those in compound 6. As for the gold sample, IVTON 174 was used to calculate 

average Fe-N bond lengths and volumes for the iron octahedra. 

7.4 Powder Diffraction Experiments 

On heating, both compounds 6 and 7 lose water (to become compounds 8 and 9) in a 

manner that is destructive to the crystals. However, whilst the crystal integrity is lost, 

the crystallinity of the sample is retained in both cases, as the single crystals become 

microcrystalline powders. Thus, due to the nature of the problem, powder diffraction 

techniques also had to be employed to examine these materials fully. 

In order to study the spin transition, variable temperature powder data were also 

collected on compound 9 using the Bruker D8 Advance with the Oxford Cryosystems 

PheniX attachrnent. 152 

7.4.1 Data Collection 

Both samples were studied using the Bruker D8 Advance and the Anton Paar HTK1200 

environmental chamber. 150 Loss of water takes place at around 100 oc, so the temperatures 

required are at the bottom of the temperature range for the HTK1200. This attachment 

was chosen over the TTK450 however, as there is no crystalline background and this is 

preferable for structure solution. 

Initially, four 1 hr scans (5-120" 2(), 0.5 s/step, 0.0144° 20 /step each), were collected at 

room temperature. The chamber was then evacuated and left for ! hr, before recording 

twelve 1 hr scans (as before). On completion, the sample was removed from the chan1ber 
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Step Number Temperature 

Room Temp. 

2 Room Temp. 

1 hr in air 

3 Room Temp. 

4 373 K 

1 hr in air 

5 Room Temp. 

No. of 1 hr Scans Vacuum 

4 

12 

4 

12 

4 

X 

Table 7.1: Powder diffraction scans for {Fe(Pmd)2Fe(H20)2[Au(CN)2]4}.H20. 

and left to stand in air for ~ hr, before repeating the first set of four 1 hr scans, again at 

room temperature. The sample was then heated inside the furnace to 373 K at a rate of 

0.05 K/s, where twelve 1 hr scans were recorded (5-120° 2(), 0.5 s/step, 0.0144° 2()/step 

as previously). Finally, the sample was removed from the furnace whilst hot and left to 

stand in air for 1 hr, before the four 1 hr scans were repeated (Table 7.1). 

In each case, the first scan was compared with the last and there was found to be no 

difference. The short, separate scans were then combined using EVA,149 to give five scans, 

suitable for structure refinement, one for each step (Table 7.1). EVA was also used to 

provide a peak list for indexing. 

{Fe(Pmd)2Fe(H20)2[Ag(CN)2)4}·H20 (Compound 9) 

Initial attempts at heating compound 7 resulted in samples that were very discoloured 

or had become amorphous and it was clear that the material was considerably more 

temperature sensitive than compound 7 (Figure 7.5). This was thought to result from 

temperature instability at the lower end of the temperature range of the HTK1200 and 

the relative readiness to loose pyrimidine compared with compound 6, as shown by the 

TGA data (Figure 7.1). 

In a similar fashion to the data collected on the gold sample, powder data were collected 

under vacuum using the Bruker D8 Advance with the HTK1200 furnace attachment, at 

room temperature. Initially, one 5 hr scan (5-120° 2(), 2.0 sf step, 0.0144° 2() /step) was 

collected at room temperature, under normal atmospheric conditions. On completion, the 

vacuum was switched on and after a 20 min wait, a series of five 5 hr scans (5-120° 2(), 
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Figure 7.5: Photographs of componnd 6 (left) and componnd 7 (right) viewed nnder a 

microscope after heating in the HTK1200. Both samples started pale yellow in colour. 

2.0 s/step, 0.0144° 28/step) were recorded followed by thirteen"' 1 hr scans (as for the 

longer scans, but 0.5 s/step). 

The sample was then removed from the vacuum chamber and left in air for approxi

mately ~ hr, before another 5 hr scan was recorded (as before). 

As for the gold sample, the scans nnder vacuum were compared to ensure the dehy

dration was complete and there was no time dependent change. The scans were then 

combined using EVA and a peak list was generated for indexing. 

Variable temperature powder data were also collected on the Bruker D8 Advance using 

the Oxford Cryosystems PheniX attachment. 152 The sample was placed in the chamber 

and after a quick test scan, it was evacuated to approximately 1 x 10-2 mbar. Once 

the pressure was reasonably stable, the sample was cooled to 200 K where a 4~ hr data 

collection was recorded (5-90° 28, 2.5 s/step, 0.0144° 28/step). 

On completion, the PheniX was programmed to cool at 5 K/hr to 17 K while a total of 

twenty-seven scans were collected (each 5- 60° 28, 1.2 s/step, 0.0144° 28/step). The scans 

were recorded approximately every 7.5 K, but the actual temperatures were recorded by 

the software. On reaching 17 K, another 4~ hr scan was collected (as at 200 K), followed 

by two ~ hr scans (0.3 s/step) . The last two scans were over the same 28 range and with 

the same step size as the previous scan so they could be combined for refinement. 

On completion, the PheniX was warmed to room temperature at 540 K/hr then left for 

a total of approximately 1 hr 20 mins for the system to warm up and reduce the vacuum. 

The sample was then removed and placed in air for approximately ~ hr to rehydrate, after 
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which another 4! hr scan was recorded (as before). 

7.4.2 Data Analysis 

Due to the fact that X-rays are scattered by electrons, heavy elements scatter considerably 

more than lighter elements. For this reason, the scattering in these materials is dominated 

by that of the gold or silver and to a lesser degree by the iron. Therefore, on the whole, 

these materials scattered well for molecular materials. In addition, the crystallinity of the 

gold sample was very good with peak widths of the order of 0.128°, a crystallinity that was 

retained when the sample was dehydrated. Compound 7 however, was not as crystalline, 

and the powder diffraction patterns were much noisier, requiring longer to get reasonable 

quality data. In addition, when the sample was dehydrated, the diffraction pattern was far 

more complicated than that for compound 8, suggesting the structure was more complex. 

Fe2(Pmd)2(Au(CN)2]4 (Compound 8) 

Comparison of the room temperature powder pattern recorded under vacuum with that 

recorded prior to dehydration for the hydrated structure, indicated that the largest peak 

(200) moved from 12.3° 2() to 14.5° 2() (Figure 7.6). This corresponds to an a-axis contrac

tion of approximately 2.5 A. Ab initio indexing using DICVOL91 188 within CrysFire, 189 

gave the monoclinic cell: a = 12.353 A, b = 13.663 A, c = 8.31 A, f3 = 94.14°. Exam

ination with CheckCell190 gave the most likely space-group as P21/ c - the same as the 

hydrated compound 6. This cell was then refined using Le Bail fitting within GSAS. 158• 159 

The cell parameters were also refined against the 373 K powder data, which gave simi

lar results. For comparison, the shorter scans at room temperature recorded before, in 

between and after the two dehydration processes, were used to refine the hydrated cell 

obtained at 180 K, using single crystal diffraction (Table 7.2). 

Fe2(Pmd)2(Ag(CN)2]4 (Compound 9) 

Studying the raw data indicated that there is a considerable change during dehydration 

from the hydrated compound 7 to the dehydrated compound 9. Although the overall 

appearance of the pattern is similar to that of compound 8, it is apparent that the pattern 

is more complex and on close inspection some of the key peaks show a clear splitting. For 
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Figure 7.6: Powder patterns of compound 9 showing the reversible dehydration/hydration. 

The data collected under vacuum is shown in blue, the 373 K data in red and the data 

collected under ambient conditions before, between and after the dehydration steps are 

shown in black. The 110 and 200 peaks are marked to show the dramatic cell contraction. 

Room Vacuum Room 373 K Room 

Temp. (1) Temp. (2) Temp. (3) 

a 14.5229(3) A 12.3829(3) A 14.5236(4) A 12.3728(3) A 14.5226(4) A 

b 13.4235(3) A 13.6746(3) A 13.4324(3) A 13.6791(3) A 13.4339(3) A 

c 7.2957(2) A 8.3317(2) A 7.2955(2) A 8.3374(2) A 7.2960(2) A 

{3 90.7821(2t 94.148(2t 90.772(2t 94 .148(2t 90.770(2 t 

v 1422.15(5) A3 1407.12(5) A 3 1423.13(6) A3 1407.40(5) A 3 1423.29(5) A3 

Rp 0.0463 0.0427 0.0470 0.0361 0.0457 

wRp 0.0568 0.0626 0.0566 0.0483 0.0553 

x2 1.515 2.231 1.251 1.966 1.245 

Table 7.2: Cell parameters of compound 6 during repeated dehydration and rehydration. 
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Figure 7. 7: Powder patterns of compounds 7 and 9 . From bottom to top, the scan at 

200 K is shown in black, 17 K in red and after rehydration in blue. The 200 peak moves 

from 12.2° under ambient conditions, to 14.6° under vacuum at 200 K and to 15.1° under 

vacuum at 17 K. 

example, what would have been the 110 at approximately 9° has a definite split that is 

visible both at 200 K and at 17 K (Figure 7.7). In the hydrated compound 8 , this peak 

is not split and is the 110 which is equivalent to the Friedel, ITO. As the structure of 

compound 8 is monoclinic, the 110/ITO is also equivalent to the IlO and the 110. Thus, 

splitting of this peak together with the appearance of systematic absences indicate that 

the symmetry of compound 9 is lower than that of compound 8 , suggesting a change from 

monoclinic to triclinic. 

Attempts to index the data with CrysFire were unsuccessful , so DICVOL188 within 

DASH191 was used. Although the DICVOL indexing routine is broadly speaking the same 

within CrysFire and DASH, CrysFire requires a pre-prepared peak list (obtained in this 

case from EVA 149) whereas DASH uses the raw data. Using the DASH version, the user 

selects a range in 2() that contains a peak. The software then fits the peak, which enables 

a better identification of peak positions. In the case of compound 9 however, although 
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a number of possible cells were identified, none had a sensible vohune and parameters 

similar to compound 7 or compound 8. 

The similarity between the powder data for compounds 8 and 9 however, suggest 

that the cells should be very similar. Using PowderCell, 192 the data for compound 9 

were compared with simulated powder patterns for compow1d 9 based on the structure of 

compound 8 (discussed below). Replacing the gold atoms with silver atoms and adjusting 

the cell parameters, moving a and 1 slightly away from 90°, led to a simulated pattern 

so similar to the data recorded under vacuum for compound 9, that it could not be 

coincidence. Given this likeness, a refinement was attempted using GSAS. 

The relative instability of Le Bail refinements meant Le Bail fitting was not possible 

without better cell parameters, so initially Rietveld refinement was used. The structure 

for compound 8 was used as the model, with the gold atoms replaced with silver atoms. 

In addition, it was necessary to generate one set of duplicate atoms to accommodate those 

that had been equivalent in P2I/ c, but were not in PI. Initially, the cell parameters and 

sample shift were adjusted and refined alternately until the unit cell parameters and unit 

cell volume were sensible and the intensities approximately fitted the overall appearance of 

the collected data. Although the fit was very poor, as a starting model it looked promising. 

The powder data collected before the vacuum was switched on, was used for aLe Bail 

refinement, which allowed reasonable identification of the sample height or "shift". This 

was then used together with the cell parameters from the starting model, enabling the 

Le Bail refinement of cell parameters and peak profile parameters. 

The cell parameters for the hydrated structure were also refined against the data 

collected after rehydration, using Le Bail fitting. The sample height was refined and gave 

a slightly different value, but this is not surprising as the sample had been removed to 

allow rehydration and then replaced, which could affect the sample height. 

Refining these cell parameters against the variable temperature powder data presented 

a severe correlation problem. Since the sample height and unit cell parameters are closely 

related, a refinement is not straight forward. In this case, a similar approach to that for 

the Le Bail fitting at room temperature was used. Since the rehydration had been carried 

out without removing the sample from the PheniX chamber, the sample position hadn't 

changed from start to finish. This meant that the sample height could be "calibrated" using 
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Single Crystal Ambient (1) Vacuum Ambient (2) 

a 14.646(5) A 14.6566(5) A 12.1g52(5) A 14.6857(8) A 

b 13.344(6) A 13.3474(4) A 13.7185(7) A 13.3565(6) A 

c 7.417(3) A 7.4207(3) A 8.5g44(6) A 7.4300(4) A 
Q goo goo 87.g40(4t goo 

{3 gl.43(3) 0 gl.441(3t g5.206(5t gl.467(4t 

I goo goo 88.429( 4) 0 goo 

v 1449.1(8) A 3 1451.24(10) A 3 1430.32( 10) A 3 1456.90( 15) A 3 

Rv 0.0525 0.0212 0.0488 

wRv 0.0676 0.0326 0.0631 

x2 1.283 2.805 1.183 

Table 7.3: Cell parameters of compound 7 during dehydration and rehydration. The 

data were taken from a single crystal matrix collection at room temperature and Le Bail 

refinements of powder data. 

a refinement based on the data, after rehydration. This sample height was then used for the 

Le Bail refinements carried out against powder data collected in the PheniX. However, 

the "calibration" is only approximate as any contraction/expansion due to changes in 

temperature, leads to changes in sample height. Thus, the sample height difficulties build 

in a large error, making the magnitude of the contraction impossible to quantify accurately, 

but the presence of a contraction is beyond doubt. 

The Le Bail refinements at 200 K and 17 K were reasonable considering the quality 

of the data available. An added complication however, was the aluminium background 

impurity from the sample holder. Initially, a second aluminium phase was included in 

the refinement which could then be used as an internal standard. However, there was 

considerable peak overlap and the amount of aluminium visible in the Le Bail fit was 

very small. For these reasons, the refinements were carried out with only the single phase 

(Table 7.4) and contaminated regions excluded. 

Le Bail refinements of the shorter scans between 200 K and 17 K were attempted, but 

the data were much noisier, leading to increased peak overlap. This, together with the 

sample height difficulties meant that the refinements were tmstable. 
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Rehydrated 200 K 17 K 

a 14.6725(7) A 12.3255(5) A 11.8922(8) A 

b 13.3550(4) A 13.8532(7) A 13.7431(10) A 

c 7.4310(3) A 8.3166(4) A 8.1098(6) A 

a 90° 86.571(4t 84.038(5) 0 

{3 91.369(3t 97.019(4t 96.682(5) 0 

"'! goo 88.455(4t 88.842(5) 0 

v 1455.70(12) A3 1406.01(11) A3 1308.6(12) A3 

Rp 0.0490 0.0598 0.0572 

wRp 0.0632 0.0858 0.0839 

x2 1.283 2.653 3.000 

Table 7.4: Cell parameters of compmmd 9 from PheniX data. 

7.4.3 Structure Solution and Refinement 

Given the quality and complexity of the data for compound 9, structure solution was not 

possible. The data for compound 8 was more approachable and given the success indexing 

the data collected under vacuun1, structure solution was attempted. 

Fez(Pmd)2(Au(CN)2]4 (Compound 8) 

Attempts were made to solve the structure with simulated annealing techniques using 

DASH. 168, 191 DICVOL188 within DASH was used to index the powder data independently 

and gave similar results to those obtained with CrysFire. 189 This cell was refined using the 

Pawley fitting routine within DASH. WebLab ViewerPro193 was used to generate a model 

based on the single crystal structure without water. This consisted of the one iron centre 

connected to two anionic bridges together with a Pmd ligand. The starting temperature 

used (To) was 1000 K (the highest possible) with a cooling rate of 0.001 K (the lowest 

possible) and N1 = Nz = 40. 

A sensible solution with this model was not found, so the fragments were rearranged, 

but results were still unconvincing. In order to give the program more freedom, two 

independent gold atoms and one iron atom were given as the model. The fit to the data 

was poor, but the solution was not entirely useless. The location of the gold atoms was 

very similar to those in the hydrated structure, i.e. approximately t ~0 and t ~ t. The iron 
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atom location did not correspond, but as the scattering power of gold is approximately 

twice that of iron, it is not surprising that the software struggled to locate it. Adding 

the iron atoms on the inversion centres at O-!-! and -!-!-! as in the hydrated structure, led 

to a considerably improved fit, so the hydrated structure was used to generate a model 

solution for the dehydrated structure. 

The powder data collected under vacuum was used for the structure refinement, which 

was carried out in stages. Initially, the gold atoms were freely refined. Since the X-ray 

scattering factor for gold is considerably larger than that for any other element present, 

and the next largest is fixed by symmetry (the iron atoms), this was considered reasonably 

reliable. This fit was used to define the centre for rigid bodies for the [Au(CN)2]- units. 

These were loosely modelled on the hydrated single crystal data, with the centre coincident 

with the atomic position of the gold atoms. Individually, the centres of these units were 

refined, then they were fixed while the rotations were refined. This had to be done in 

stages as refining the rigid body centre, at the same time as the rotations, resulted in the 

refinement becoming unstable. The Fe-N distances also had to be restrained and later, in 

order to improve the geometry, the N-N distances were also restrained, however, in each 

case these restraints resulted in subtle improvements to the figures of merit, suggesting 

that they improved the model. 

Once the bridges had been refined satisfactorily, a rigid body for the ring was generated 

(also based on that in the hydrated structure). This ring position was refined and it 

immediately moved towards the second iron atom. This position was fixed and the gold 

bridges refined again, separately but in the same sequence as before. Once the bridges had 

been refined and the process repeated several times for each bridge, attention reverted to 

the ring. This process of refining the bridges and then the ring was repeated many times 

to ensure that the best fit possible was obtained. Towards the end, the ring was refined, 

but with restraints on two of theN-Fe-N angles (to maintain them close to 90°) and on all 

the Fe-ring angles to ensure that they remained close to 120°. There are several problems 

with the final refinement. For example, the sample appears to suffer from a small degree 

of preferred orientation and the [Au( CN)2]- bridges are modelled as linear which is clearly 

not totally accurate (see page 205). However, the fit is reasonable and the statistics are 

good (Figure 7.8). 
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7.5 Solid State 1H Nuclear Magnetic Resonance Experi

ments 

A sample of compound 7 was submitted for analysis by the Solid State NMR Service.t 

Since these materials are paramagnetic, NMR is difficult. The magnetism of the iron 

overpowers the magnetic field provided by the nuclear moment causing extreme broadening 

and smearing of the signal. However, in some cases it is possible to get some information. 

7.5.1 Data Collection 

The sample was crushed gently and placed in a 4 mm rotor (outside diameter) and data 

were collected with a Varian MAS probe, referencing with respect to tetramethylsilane. 

A single signal at approximately 13 ppm could be seen. The sample was heated in 10 oc 
steps, each followed by data acquisition. Initially, the temperature was controlled by the 

rotation speed, but above about 60 oc the sample heater was used. At approximately 

383 K the signal disappeared and the sample was cooled back to room temperature where 

more data were acquired. The rotor was then removed and the sample left in air for 1 hr, 

after which more data were collected. The signal had reappeared, however the intensity 

was considerably reduced, so the sample was left overnight in air. FUrther data were 

collected the following morning and although there appeared to be a small increase in 

intensity, the starting intensity was never fully regained (Figure 7.9). 

7.5.2 Data Analysis 

Prior to dehydration there was one clear signal (Figure 7.9) and it was assigned to the 

aqueous protons. At no point was there any evidence of any other signal, however the 

peak broadening due to the presence of the high spin iron, could explain the absence of 

signals from the aromatic protons which could be so broad that they disappear into the 

background. 

twork carried out with Dr. David Apperley and the EPSRC Solid-State NMR Service at Durham. 



~ .., ... 

I 

..--rrr-r-r--r-rrr-rrr-.,,--,.,..,r-,--..--rrr---;ro-,-rrr--rTT--rrr T---.--T-r-•••- r T-,,--,--'1--.----.----.---. -1 -.---.----.-'T'-T ~ .-.--.--r-1"-~ -.-----.----.-1 

80 60 40 20 0 -20 -40 -60 -80 ppm 

Figure 7.9: NMR data collected on compound 7. The background from the rotor is shown in black and the initial room temperature 

data are shown in red with the peak at 13 ppm labelled. The extra peaks are spurious, as they depend on the data collection conditions. 

The data shown in green were collected at 383 K and the blue is room temperature after heating. The rehydrated data are shown in 

pink (after ~ hr) and cyan (approximately 20 hr later). 

--l 
0'1 

rn 
5?.. 
5: 
rn ..... 
Q:l ..... 
(!) 

-:I: 
z 
~ 
n 
iD e; 
~ 
Q:l 

OQ = (!) ..... 
(=i" 

::0 
(!) 
C/J 
0 = Q:l = n 
(!) 

trj 
>< 
'0 
(!) .., 
§" 
(!) 

a 
C/J 

..... 
~ 
~ 



7.6. Discussion 193 

Figure 7.10: The asymmetric unit for compound 6 at 180 K, a = 14.6157(5) A, 

b = 13.3075(5) A, c = 7.2272(3) A, f3 = 90.944(2) 0
, v = 1405.49(9) A3 (P2!/c). 

On heating to 383 K the signal at 13 ppm disappeared, but on removing the sample 

and leaving in air, the signal reappeared. This was consistent with the assignment of 

the peak to the hydrogen atoms for the water, however on rehydration, the intensity was 

considerably reduced. Despite leaving the sample in air overnight, there was no further 

increase in intensity suggesting that the rehydration process had ceased. 

7.6 Discussion 

The hydrated structures consist of two six co-ordinate iron centres linked together by 

[M(CN)2]- units. The asymmetric unit only contains 20 non-hydrogen atoms, but the 

two iron atoms occupy inversion centres so, by symmetry, a 3D network is generated 

(Figure 7.10 and 7.11). 

7.6.1 Structural Analysis of Compound 6 

Both iron atoms are ligated by cyanide groups in a square planar arrangement with the 

axial sites occupied by either pyrimidine or water (Fe1 and Fe2 respectively). Six of these 

iron centres connect to form a 2 x 3 rectangular motif (Figure 7.11). These rectangular 

motifs come together to form sheets which are connected together through [Au(CN)2]

bridges at X andY to give a three dimensional network. In the whole structure there are 

three such separate, interwoven networks. Viewed down the b-axis it is possible to see how 
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Figure 7.11: Schematic of the 3D networks, showing how the FeN6 and FeN402 units form 

a 2 x 3 iron motif bridged by [M(CN)2t ligands. 

these networks, separated by half a unit cell along the b-axis are interlaced (Figure 7.12) . 

These three networks are connected together through aurophilic interactions and hydrogen 

bonds. 

Hydrogen Bonding Networks 

The nitrogen donor in the Pmd ring forms strong hydrogen bonds with the coordinated 

water making chains of alternating Fe1 and Fe2 octahedra (Figure 7.13). In addition to 

the coordinated water and nitrogen donor in the ring, there is water of crystallisation 

present. This solvent water sits in the cavity between two coordinated water molecules on 

two different Fe2 octahedra. The hydrogen bonds between these water molecules result 

in ordered solvent of crystallisation, which forms chains with the ligand water running 

along the c-axis. Because there is strong hydrogen bonding between the ligands and the 

solvent, the water in the cavity is ordered even in the high spin structures (Figure 7.13). In 

addition to hydrogen bonding to the solvent water (02), the ligand water molecules (01) 

also form a bridge between the two iron centres through strong hydrogen bonds to the 

second Pmd nitrogen. As such, the ligand water molecules join the two sets of hydrogen 

bonding chains, leading to the formation of a three dimensional network. 

Dehydration of Compound 6 

When the gold sample is dehydrated by heating or placing under vacuum, there is a sig

nificant contraction of the a-axis, which brings the free nitrogen of the pyrimidine within 
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Figme 7.12: Three interpenetrating networks in compound 6, shown in black, green and 

pink, viewed down the b-axis. Fe1 atoms are shown in red, Fe2 atoms are shown in blue, 

the aurophilic bonds are shown with broken black lines and the unit cell outline is shown 

in blue. 

bonding distance of Fe2, thus maintaining the six-fold coordination sphere. Although 

this type of topochemical conversion is unusual, it is not unheard of. Ranford et al. re

ported similar behaviom in the dimeric hydrated species [{Zn(Sala)(H20)2}2].2H20 where 

H2(Sala) = N-(2-hydroxybenzyl)-L-alanine (salicylaldehyde). 194 They found that the zinc 

centre is a distorted square-pyramid, with the apical site occupied by a water molecule 

(Figure 7.14). The water forms strong hydrogen bonds with the salicylaldehyde of the 

next dimer unit. On heating, this water escapes through channels running through the 

structme and the free oxygen of the carboxylic acid moves to occupy the newly vacated 

site forming a rigid covalent network. In [{Zn(Sala)(H20)2}2].2H20 the dehydration is 

not reversible, and rehydration by displacing the ligating carboxylic acid oxygen does not 

occm. However, the irreversibility of the [{Zn(Sala)(H20)2}2].2H20 dehydration does not 

preclude the possibility of a similar reversible process in a different system. 

On dehydrating compound 6, the hydrogen bonding network is completely destroyed 

since not only is the solvent water lost, but also the vital bridging ligand water. This 

ligand is replaced by the nitrogen of the Pmd ring so while the hydrogen bonding network 

is lost, it is replaced by stronger covalent Fe--Pmd- Fe interactions. 

In contrast, the three dimensional networks remain relatively unaltered, becoming 

slightly more regular in shape. The aurophilic interactions also remain intact, so the 
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Figure 7.13: The hydrogen bonding compound 6 at 180 K. The ligand water molecules 

participate in both the hydrogen bonding chains with the solvent water (above) and form 

a bridge between the two iron centres (below). 
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Figure 7.14: [{Zn(Sala)(H20)2}2].2H20. 194 

structure retains its bridges between the three separate covalent networks. 

Compounds 8 and 9 

Since compounds 6 and 7 are isostructural, the interpenetrating networks held together 

by M - M interactions and hydrogen bonds are also seen. Where the two compounds 

significantly differ is in their behaviour upon dehydration. 

Like compound 6, the silver sample also appears to lose water on heating or under 

vacuum. However, while the structure retains its crystallinity, it appears to undergo a loss 

of symmetry, so that the dehydrated material (compound 9) is triclinic. The difference 

in the dehydrated structures must result from the difference between the gold and silver 

cyanide bridges and clearly is critical in explaining why compound 9 has a spin transition, 

but compound 8 does not. 

7.6.2 Spin Crossover Transitions 

The magnetic susceptibility data indicate that the degree of cooperativity is high in com

pounds 6 and 7 as they both undergo an abrupt transition with a clearly defined hysteresis. 

The dramatic colour change suggests that the transition is complete at 120 K in both com-
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Figure 7.15: Fe-L bond lengths in compounds 6 and 7. Compound 6 is shown in blue 

(Fe1) and green (Fe2) and compound 7 is shown in red (Fe1) and pink (Fe2). At 180 K 

(Compound 6) and 225 K (Compound 7) both iron centres are high spin. On cooling to 

120 K however, only Fe1 becomes low spin and the change in Fe-N distances can clearly 

be seen in both compounds. 

pounds. However, a close examination of the bond lengths and the SQUID data indicate 

that things are not as simple as that. 

Fe-L Bond Lengths and Octahedral Volumes 

A comparison of the bond lengths around the central iron atoms in compounds 6 and 7 

indicates that only one of the iron centres undergoes a spin transition (Figure 7.15). The 

average Fe-N distance for Fe1 changes from 2.171(5) A to 1.955(6) A in compound 6 and 

2.165(2) A to 1.952(2) A in compound 7. However, there is very little change for Fe2 

(less than 0.002 A in both cases), indicating that it remains high spin. 

Comparing the volumes of the octahedra clearly shows this effect (Table 7.5). Both 

iron atoms sit on inversion centres, so that the centres of the octahedra are coincident with 

the iron positions. The regularity of the network means the main octahedral distortions 
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Compound 6 Compound 7 

180 K 120 K 225 K 120 K 

Fe1-Nl 2.165(5) A 1.949(7) A 2.138(2) A 1.932(3) A 

Fe1-N2 2.150(5) A 1.930(6) A 2.133(2) A 1.930(3) A 

Fe1-N3 2.200(5) A 1.986(7) A 2.224(2) A 1.993(3) A 
Fe2-N5 2.210(6) A 2.197(7) A 2.177(2) A 2.176(3) A 

Fe2-N6 2.137(6) A 2.133(7) A 2.139(2) A 2.136(3) A 

Fe2-01 2.087(5) A 2.100(6) A 2.113(2) A 2.116(3) A 

Fe1 Mean Bond length 2.171(23) A 1.955(26) A 2.165(46) A 1.951(32) A 

Fe2 Mean Bond length 2.145(56) A 2.143(44) A 2.143(29) A 2.143(27) A 

Fe1 Volume 13.61(4) A3 9.95(4) A3 13.49(4) A3 9.90(4) A3 

Fe2 Volume 13.11(4) A3 13.09(4) A3 13.09(4) A3 13.09(4) A3 

Fe1 ~ 20(1)" 15(1)" 20(1)" 13(1)" 

Fe2 ~ 28(1)" 28(1 )" 22( 1 )" 21(1) 0 

Table 7.5: Octahedron volumes and other selected results for compounds 6 and 7 in the 

high spin and low spin states. 

are due to Jahn-Teller type effects. This can be seen in the extremely low values for E in 

both the high and low spin states (Table 7.5). The J ahn-Teller effects cause elongation in 

the Fel octahedra along the Pmd axis and compression along the water axis in the Fe2 

octahedra. 

The Fe2 centres are ligated by water which makes the ligand field weaker than that for 

the Pmd ligated Fel atoms. This prevents the Fe2 centres from undergoing spin crossover. 

This result agrees with the magnetic susceptibility data, which show that the transition 

is incomplete, with only half the iron centres participating in the spin transition. 

While for both compounds the transitions are abrupt, they occur at significantly differ

ent temperatures. This can be explained in a number of ways. Firstly, the spin transition 

phenomenon is essentially entropy driven and the critical temperature where the HS and 

LS molar fractions are equal is T1 (Equation 7.1). Calorimetric measurements show that 
2 

!:iS is smaller for compound 6 than for compound 7 which should mean that the transition 

in the gold sample is at a higher temperature than in the silver analogue. 195 However, 

/::iH experiments indicate that there is a dramatic increase in l::iH when the gold is re

placed with silver in compound 7. 195 This explains why T1 is lower for compound 6 than 
2 
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compound 7. 

D.H 
T~ = D.S 

200 

(7.1) 

Thus, the spin transition in the hydrated phase as well as the magnetic behaviour, 

structure and water loss in the dehydrated phase, depend on the M centre. 

Fe· · · Fe Distances 

Each interpenetrating network consists of a 2 x 3 rectangular motif of units. The dis

tance along the edge of this repeat unit changes with M and with spin state. There 

are two types of distance to be considered: the shorter Fel· · · Fe2 distance and the 

longer Fel· · · Fel/Fe2· · · Fe2 distances. A comparison of these distances indicates that 

the Fel· · · Fe2 distance contracts by the expected "' 0.2 A caused by the spin transition 

in both compmmds 6 and 7 (Table 7.6). However, the Fel· · · Fel/Fe2· · · Fe2 distances 

also contract by "'0.2 A, which is approximately half of what would be expected as the 

distance includes two Fel-N2 bonds that each contract by over 0.2 A in each case. This 

could be because the angle at which the cyanide groups ligate to Fel changes, becoming 

more linear on cooling in both compounds. 

Since the iron atoms occupy the inversion centres in compounds 6 and 7 the Fe· · · Fe 

distances are independent of the refinement, depending only on the unit cell parameters. 

Therefore, the Fe··· Fe distances can be determined not only for compmmd 8, but also 

making a few assumptions, compound 9. Compound 9 has been shown to be triclinic, 

so assuming the space group to be PI, the distance between the inversion centres and 

therefore the iron positions can be predicted. The space group is presumed to be PI 

because Pl is very rare, however it must be considered that Pl is a possibility. If the 

space group were Pl, the iron atoms would be unable to move far from the inversion centres 

because of the constraints caused by the network. Therefore, the Fe· · · Fe distances would 

remain si1nilar, but could only be considered as a rough approximation. 

The Fe· · · Fe distances in both compounds 8 and 9 are shorter than for their hydrated 

counterparts and the distances are shorter in compound 8 than compound 9. This is also 



7.6. Discussion 201 

Fel· · · Fe2 Fel· · · Fel Fel-N2-C2 

Compound 6 

180 K 10.5643(2) A 20.3860(6) A 152.0(5)" 

120 K 10.3731(2) A 20.1836(4) A 166.7(6)" 

Compound 7 

225 K 10.6417(2) A 20.5775(7) A 155.3(2)" 

120 K 10.4581(2) A 20.3115(4) A 169.1(3) 0 

Compound 8 

290 K 10.306(1) A 20.035(6) A 

Compound 9 

290 K 10.357(5) A 20.15(2) A 

Table 7.6: Fe··· Fe distances in compounds 6, 7, 8 and 9. 

seen in the hydrated materials, where the Fe··· Fe distances are 0.0774(4) A and 0.192(2) A 

shorter for the gold compound than the silver compound (Fe1· · · Fe2 and Fe1· · · Fe1 re

spectively, for the high spin structures). These differences appear to be smaller in the 

dehydrated materials (approximately 0.05(1) A and 0.12(3) A), but given the poor quality 

of the data for compound 9 it is not possible to be certain about the magnitude of the 

differences. However, the fact that the Fe··· Fe distances are shorter suggest that the 

Fe-N-C angles are more distorted, or the bridges are more bent, or the Fe-N distance is 

shorter or a combination of all three. 

Unit Cell Parameters 

A comparison of the unit cell parameters of these materials at 120 K shows that the tmit 

cell volume for compound 6 is less than that for compound 7 (Table 7.7). Initially, this 

would seem to be counterintuitive, as gold is below silver in the periodic table and therefore 

would normally be expected to give the larger volume. However, the electronegativity of 

gold according to the Pauling scale is 2.54 compared with 1.93 for silver, and comparisons 

of arsine complexes clearly show that the covalent radius for four coordinate Au(I) is 

approximately 6% shorter than that for four coordinate Ag(I). 196 Other work by the same 

group also supports this result197, 198 which can be explained by relativistic effects observed 

for heavy atoms. 199 

The increased electron affinity that gold has compared with silver means that the 
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Compound 6 Compound 7 

a 14.0194(4) A 14.2584(4) A (+1.70%) 

b 13.1770(3) A 13.0528(3) A (-0.94%) 

c 7.4306(2) A 7.4930(2) A (+0.84%) 

(3 91.3780(10t 92.0550(10t (+0.74%) 

v 1372.28(6) A3 1393.64(6) A 3 (+1.56%) 

Table 7.7: Cell parameters of compounds 6 and 7 at 120 K with the percentage increase 

for compolmd 7 given in parentheses. 

[Au(CN)2]- bridges in compound 6 are significantly shorter than the [Ag(CN)2]- bridges 

in compound 7. 

The difference in percentage change in the cell parameters suggests that there is some 

directionality to this contraction (Table 7.7). The majority of the expansion on replacing 

gold with silver is along the a-axis, with a smaller component in the c direction. There 

is also a contraction along the b-axis of a similar magnitude to the expansion in the c 

direction. 

While the [ M ( CN)2]- bridges have a component in all directions, the M-M interac

tions are almost entirely in the be plane (Figure 7.16). Comparing the M-M distances 

shows where the anisotropic contraction comes from. It would appear that there is an unit 

cell expansion on replacing gold with silver caused by the lengthening of the [ M ( CN)2]

bridges. This affects all directions, but there is also an opposing contraction caused by a 

shortening of the M-M interactions. Thus, the majority of the unit cell expansion seen 

takes place in the a direction. These changes can best be seen by comparing the length of 

the [M(CN)2]- bridges (N1· · · N5 and N2· · · N6) and the M1-M2 distances (Table 7.8). 

Closed-Shell Interactions 

For many years, gold(I) has been known to have a high affinity for itself, frequently 

forming bonds with itself, known as aurophilic or gold-gold interactions. These bonding 

interactions are of a similar strength to hydrogen bonds and as a result are now being used 

in crystal engineering.200 Such interactions have also been shown to lead to the formation 

of nano-clusters of up to forty gold atoms, in a chiral helical arrangement.201 

These interactions are not limited to gold however, and so called closed-shell or d 10-d10 
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Figure 7.16: Au- Au interactions in compound 6 , viewed down the a-axis. The Au- Au 

bonds are shown in black zig-zagging from left to right, in the direction of the c-axis. The 

hydrogen bonding network can also be seen. (Carbon atoms and Pmd hydrogen atoms are 

omitted for clarity, the [Au(CN)2]- bridges are shown with the Au- N as a broken line). 

Compound 6 C ompound 7 

180 K 120 K 225 K 120 K 

M1- C1 1.988(6) A 1.981(8) A 2.062(3) A 2.063(3) A 
M1- C7 1.995(6) A 2.000(8) A 2.061(3) A 2.060(3) A 
C1- M1- C7 179.6(3) 0 179.0(3t 178.6(1 t 178.0(2t 

N1 .. ·N5 6.26(1) A 6.28(1) A 6.397(5) A 6.412(6) A 
M2- C2 1.965(6) A 1.976(7) A 2.062(3) A 2.060(3) A 
M2- C8 1.995(6) A 1.976(7) A 2.061(3) A 2.064(3) A 
C2- M2- C8 171.9(3)0 171.1(3t 166.8(lt 164.9(2t 

N2 .. · N6 6.21(1) A 6.19(1) A 6.328(5) A 6.289(6) A 

M1- M2 
3.2545(4) A 3.3530(4) A 3.1676(3) A 3.1998(3) A 
3.3257(4) A 3.3380(4) A 3.1950(3) A 3.1606(3) A 

Table 7.8: Selected bond lengths and angles for compounds 6 and 7 at 120 K. 
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Figure 7.17: The eight membered ring of the methylenediphenylthiophosphinate silver 

complex occupies a chair type conformation. 204 

interactions have also been found in Cu(I) ( cuprophilic interactions) , Ag(I) (argentophilic 

interactions) and more recently mixed-metal heterometallic complexes have been shown 

to exhibit argento-aurophilic interactions.202 Despite this, there are relatively few studies 

on isostructural compounds comparing the interactions. However, one such pair of com

pounds are the methylenediphenylthiophosphinate gold and silver compounds.203•204 Both 

structures are in C2/ c with half a molecule in the asymmetric unit and an inversion centre 

generating the other half. The molecule consists of an eight membered ring constrained by 

a M - M interaction across the centre, so that it behaves like a six membered ring taking 

up a boat type conformation (Figure 7 .17). The M - M interactions that extend across the 

ring, also continue between adjacent molecules creating a one dimensional pseudo-polymer 

(Figure 7.18). 

In compounds 6 and 7, the metal centres interact through long M - M bonds zig

zagging their way through the structure in the direction of the c-axis. These M - M bonds 

form important bridges linking the three dimensional networks together. Given the sim

ilarity between these weak M - M interactions and hydrogen bonds and n- n interactions, 

it was thought that these aurophilic/argentoph.ilic bonds could play the same role in co

operativity. It is interesting to note that while the Au-C bonds are shorter than the 

Ag- C bonds, the Au- Au bonds are longer than the Ag- Ag. This mixture is also seen in 

the methylenediphenylthiophosph.inate complexes, where the interaction across the ring is 

shorter in the silver compound than in the gold compound. However, while 'intermolecu

lar ' bonds are longer than the 'intramolecular' bonds, the Ag- Ag and Au- Au bonds are 
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Figure 7.18: 'Pseudo-polymer' chains in a methylenediphenylthiophosphinate silver com

plex, caused by intermolecular interactions. The interactions across the ring (Au 3.040 A, 

Ag 2.990 A) are shorter than those between molecules (Au 3.222 A, Ag 3.226 A). 

approximately the same length. This suggests that aurophilic and argentophilic interac

tions are similar to hydrogen bonds in their variety of length and strength, which can 

depend largely on the environment. 

Non-linear Bridges 

[M(CN)2]- anions should be a completely linear building block.205•206 However, for both 

compound 6 and 7, one bridge deviates significantly from linearity. In both cases it is 

the same bridge and the N2- M2-N6 angles at 120 K are 166(1)0 and 160(1)0 (compared 

with 179(1)0 and 177(1)0
) for N1-M1-N5 for compounds 6 and 7 respectively. A close 

examination of the structure shows why this is the case. Viewed down the a-axis, the M 

M interactions form a zig-zag motif (Figure 7.16). This zig-zag pattern has two different 

types of M site- central (M1) and apical (M2). The central position interacts with two 

apical sites and vice-versa. However, the geometry around the two M atoms is different. 

The M atom that occupies the central site M1, approximates to square planar with 

the cyanide groups trans to each other. M2 on the other hand, has a seesaw (TeCl4) type 

geometry with the cyanide groups trans with the M - M occupying the 'equatorial' sites 

(Figure 7.19). For this reason, the interactions of the two apical M2 atoms on the central 

position are equal and opposing, making the central M1 bridge linear. The interaction 
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Figure 7.19: The two geometries for gold and silver found in compounds 6 and 7. 

206 

of the two central M1 atoms on the apical M2 bridge however, are in the same direction 

which pulls the bridge away from linearity. 

This non-linearity could also be used to explain the discrepancy in the length of the 

M-M interactions. The Ag-Ag bonds are noticeably and consistently shorter than the 

Au-Au bonds in both the high and low spin state (Table 7.8). According to the CSD,1 

the mean bond length for Ag-Ag interactions is 3.026(8) A, which is longer than that for 

Au-Au interactions (2.944(6) A).t In compound 7, the Ag-Ag bonds are shorter because 

the longer [Ag(CN)z]- bridges have more flexibility than their gold counterparts and can 

therefore can bend more. This makes the structure of compound 6 slightly more strained 

than that of compound 7. This is supported by the N-M-N and C-M-C angles which 

are closer to linear for the gold compound than the silver compound. The increased strain 

also explains why the iron cores in the gold complex are more distorted, as shown by the 

E values for compound 6 which are consistently higher than those for compound 7. 

On SC, both the Au-Au distances in compound 6 lengthen by approximately 0.1 A, 

but the Ag-Ag distances only change by approximately 0.03 A. These changes are in 

opposite directions, with the longer Ag-Ag distance contracting and the shorter Ag-Ag 

distance lengthening. This difference can be explained by the C-M-C angles, which for 

both the C-Au-C angles and the C1-Ag1-C7 angle undergo little change. The C2-Ag2-

C8 angle however, which is 166.8(1)0 at 225 K changes to 164.9(2)0 at 120 K. This bending 

movement results in the lengthening of one Ag-Ag interaction, while shortening the other. 

tBoth searches were carried out on version 5.24 of the CSD (November 2002), including only structures 

with no disorder, no errors and R-factors < 10%. 
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Compound 6 Compound 7 

180 K 120 K 225 K 120 K 

OLigand-H· · · Osolvent 2.689(3) A 2.694(4) A 2.692(2) A 2.692(2) A 

Osotvent-H· · · 0 Ligand 2.899(4) A 2.890(5) A 2.911(3) A 2.875(3) A 

OLigand-H· · · NPmd 2.762(5) A 2.762(6) A 2.805(3) A 2.793(4) A 

Table 7.9: 0· · · 0 and 0· · · N distances for compounds 6 and 7. 

Hydrogen Bonding 

There is a strong hydrogen bonding network, which takes the form of sheets of Fe2 atoms 

connected through the 0-H· · · 0 contacts between the solvent and ligand water molecules 

and chains of alternating Fel and Fe2 centres connected through 0-H· · · N interactions 

between the water and Pmd ligands (Figure 7.13). 

Although there is no significant change in the hydrogen bond lengths on cooling, the 

Oso!vent-H· · · OLigand and OLigand-H- · · NPmd hydrogen bonds are longer for compound 7 

than for compound 6 (Table 7.9). This could reflect the longer [Ag(CN)2]- bridges, which 

force the iron atoms to be further apart, stretching the hydrogen bonds. This means 

that the distance from the unbound nitrogen in the Pmd ring to the water site that 

coordinates to Fe2 on dehydration, is slightly further in compound 7 than in compound 6. 

It is probable that this minor difference together with the difference in the flexibility of 

the [ M ( CN)2]- bridges, causes the structure of compound 7 to undergo a more drastic 

structural change on dehydration to form compound 9, so that the Pmd can ligate to Fe2 

as well as Fel. This structural change could lead to subtly shorter Fe-Pmd distances in 

compound 9 compared with compound 8, making the ligand field slightly stronger in the 

silver network allowing the spin transition to take place. 

Transition Temperatures 

This also leads to another explanation for the difference in the temperatures of the spin 

transitions in compounds 6 and 7. The M-C distances are systematically shorter for the 

gold compound than the silver analogue (Table 7.8). This is because gold is more electron 

withdrawing than silver leading to a relative contraction along the [ M ( CN)2]-. This 

polarising makes [Ag(CN)2]- a better electron donor and therefore a better ligand than 
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[Au(CN)2]-. This means that the ligand field and Fe-N bonds are stronger in compound 7, 

stabilising the LS state with respect to the HS state, so that the transition takes place at 

a higher temperature in the silver compmmd than the gold compound. 

This effect can be seen in the difference between the octahedral volumes in com

pounds 6 and 7. In the silver compound, the high spin Fe1 octahedron is approximately 

0.1 A3 smaller than the gold analogue. This difference is still apparent below the transition 

in the low spin state. 

Since the donor capacity is reduced in the gold analogue (compound 6), the ligand 

field in the gold compound is comparatively weaker which is supported by the fact that 

the equatorial Fe-N bonds are longer by 0.026 A and 0.017 A than in compound 7. The 

weaker field results in a smaller energy difference between HS and LS for compound 6, 

leading to a lower transition temperature for compound 6 than for compound 7. 

Compounds 8 and 9 

According to the magnetic susceptibility data, the spin transition in the dehydrated silver 

compound takes place at 124 K on cooling and at 141 K on warming. By inspection, the 

powder data indicates that the transition takes place during the scan starting at 139.7 K 

(Figure 7.20). The transition is clearly sharp as this scan is comparable with those collected 

at higher temperatures apart from a slight residual peak at 14.6° 28 (corresponding to the 

200). The next scan was started at 132.2 K and overlaps well with the data recorded at 

lower temperatures (Figure 7.21). Since the transition must have taken place during the 

second half of the 139.7 K scan, most likely towards the end, this makes the transition 

temperature approximately 10 K higher than predicted by the magnetic susceptibility 

data. This difference could easily be due to differences in calibration between the two 

cooling devices. 

The transition takes place at a lower temperature in compound 9 than in the hydrate, 

compound 7. Recalling the differences in the Fe··· Fe distances, both dehydrated com

pmmds had shorter Fe· · · Fe distances than when hydrated, suggesting that the ligand field 

experienced by the iron centre is stronger in the anhydrate than in the hydrate. How

ever, a stronger ligand field increases the gap between the e9 and t29 levels increasing the 

difference between the HS and LS states, which should lead to an increase in the SC tran-
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sition temperature. As this does not happen, either the results obtained from the powder 

diffraction data are inaccurate,§ the octahedra undergo a distortion, or the [ M ( CN)2]

bridging ligands bend so that the Fe-N bond lengths increase while the Fe··· Fe distance 

decreases. It is probable that whatever happens affects the silver compound more than the 

gold compound as on dehydration compound 6 contracts by 0.258(2) A, while compound 7 

contracts by 0.285(7) A. It has been shown that the [Ag(CN)2]- bridges can bend more 

than [Au(CN)2]- ligands as they are longer, which could enable the Pmd ligand to adopt 

a subtly different geometry changing the ligand field. This bending could be what is seen 

in the Fe· · ·Fe distances. Given the poor quality of some of the powder diffraction data, 

a considerable amount of tllis discussion is conjecture, but it fits the facts well and until 

better data or more information is available, serves as a good working hypothesis. At

tempts are underway to collect higher quality data, possibly including synchrotron data, 

in order to confirm or refute the theories discussed here. 

Rehydration 

The Le Bail refinements for the powder data were carried out for the hydrated phase, 

(compound 6) before, between and after the dehydration steps, yielded very sinlilar cells 

in all three cases and the data look almost identical when overlaid. This suggests that 

the rehydration is complete within the half hour allowed. However, although the cell 

parameters for compound 7 before dehydration and after rehydration are very sinlilar, 

the intensities are slightly different. This intensity difference could be an artefact of the 

data caused by slight rearrangement of crystallites during the dehydration process leading 

to a change in the amount of preferred orientation~ or by some other peculiarity in the 

§The Fe·· ·Fe distance depends strongly on the cell parameters and the poor quality and complexity of 

the powder diffraction data for compound 9, mean that the cell parameters determined are not as reliable 

as those for compounds 6, 7 and 8. Thus, the reliability of this result could be in doubt. 

"Preferred orientation is caused by crystallites lining up on the sample holder. It has the effect that 

some peaks are artificially increased in intensity and others reduced. However, it is most common in 

samples that have been packed tightly or pressed and where the crystallites are either plate or needle like. 

Although the samples could not be ground very finely in order to maintain the integrity of the networks, 

the samples were sprinkled on greased glass to avoid this problem. 
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Intensity 

Figure 7.20: Three dimensional plot of powder diffraction data showing the spin crossover 

in compound 9. The data collected above the transition is shown in red with the data 

below the transition in blue. The discontinuity shows the position of the transition, and 

takes place at approximately 134 K. 
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collection. As the data is not of as high a quality as that collected for compound 6, it is 

not possible to be certain whether this is the case, however it is possible that there is also 

a structural explanation. 

On rehydration, the a cell parameter expands and the other axes return to their 

former size, so Fe2 must be no longer coordinated by Pmcl as the gap between the two 

iron centres is too large to bridged by a single Pmcl ligand. Chemically, a four coordinate 

iron is unlikely, so the remaining iron coordination sites must be filled by water molecules. 

When compotmcls 6 and 7 are clehyclratecl there is a volume change consistent with the 

loss of only one water. Hence, the solvent water could conceivably be missing, or partially 

occupied, which would lead to very little change in the crystal lattice (as the solvent water 

fits into a cavity), and the intensity changes would also be small. Therefore, a vacant or 

partially occupied solvent void could lead to a compound with similar cell parameters to 

the initial hydrate. Thus, it is possible that the rehydration process that converts the 

triclinic structure back to the monoclinic phase, makes it more difficult for the water to 

access the cavities, so that rehydration is only partial and the free solvent water either 

takes longer to return or the site remains incompletely occupied. 

Taking the XRPD data for the rehydration of compound 7 alone, the results are far 

from conclusive. However, although the NMR data are also far from reliable on their 

own, combined with the XRPD data the results are suggestive. Before dehydration the 

signal was approximately double that after rehydration. This change in the intensity could 

be put clown to the paramagnetic iron disrupting the signal, however it is also possible 

that the rehydration could be incomplete. Again, the results are far from conclusive, but 

coupled with the XRPD results they suggest it is possible that rehydration is slower for 

compound 7 than compound 6, or possibly only partial. 
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7. 7 Conclusion 

Although structural studies on these compounds have answered many questions about 

these materials, the result is a number of new, unanswered questions. 

In both compounds 6 and 7, only one iron centre tmdergoes SC, which can be seen as 

effectively 'diluting' the spin transition in a similar way to doping with another element, 

i.e. the spin crossover active centres are being moved apart leading to a 'dilution', so the 

interactions are considerably weaker than for the hypothetical 100% active species. This 

makes the high degree of cooperativity seen in these compounds quite remarkable since 

the SC centres are spread out considerably more than was first thought. 

While the compounds 6 and 7 are isostructural, compounds 8 and 9 are not. The 

difference between the electronegativity of the gold and silver centres holds the key to 

these differences. On dehydrating, compound 8 remains monoclinic and undergoes a 

sharp contraction in the a-axis to allow the free nitrogen of the Pmd ring to occupy the 

site vacated by the water ligand. Gold is more electronegative than silver, which makes the 

[Au(CN)2]- bridges in compound 6 shorter than the [Ag(CN)2]- bridges in compound 7. 

The longer bridges in compound 7 move the iron centres further apart making it harder for 

the Pmd ligand to bridge the gap between them, so the structure has to change to maintain 

iron as a six-coordinate centre. This change is made possible by the larger flexibility in 

the longer [Ag(CN)2]- bridges. 

In compounds 6 and 7, the difference in electronegativity affects the temperature of 

the phase transition. In compound 6, the larger electronegativity is pulling the electrons 

away from the iron centre. This reduces the ligand field and stabilises the high spin state, 

resulting in a lower SC temperature for compound 6. 

This not only affects the magnetic behaviour of the hydrated form, but also affects the 

magnetic behaviour and the structures of the dehydrated materials. The longer bridges 

in compound 9 mean the Pmd ligands can't bridge the gap between the two iron centres 

without major structural change. It also results in a slightly stronger ligand field at the 

iron centre, leading to a retention of the SC transition in compound 9, but at a lower 

temperature. This transition has a larger hysteresis suggesting increased cooperativity 

caused by the replacement of the weak hydrogen bonds by a stronger covalent network. 

We have been unable to carry out a full structure determination for compound 9 due 
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to relatively poor crystallinity and increased complexity. Thus, the structural conclusions 

are based on results for compotmd 8. In addition, there appears to be a possible difference 

between the hydrated and rehydrated powder diffraction patterns for compotmd 7. This 

could be a function of the experiment, however a similar result is also seen in the NMR 

data, suggesting that the rehydration process may be slow or incomplete. Further work is 

required to confirm whether this is correct. 

Although studies into counter ion and solvent replacement have indicated their impor

tance to the presence or nature of SC, dedicated studies of dehydration and rehydration are 

rare, especially in the case of nanoporous framework SC materials. One such study carried 

out recently by Halder et al. followed the uptake and release of different solvent molecules 

in an azopyridine cross-linked iron(II) network. 207 However, in this case the solvent was 

uncoordinated, and the allosteric loss of the coordinated water in addition to the solvent 

water observed in compounds 6 and 7, is believed to be unique. The reversibility of the 

allosterism, coupled with the retention of crystallinity, the strong thermo-chromism and 

the ability to control the spin transition, enhance the potential these nanoporous network 

materials may have in technological applications. 



Chapter 8 

Thermal and Light Induced Spin 

Transitions in a [Cu(CN)2]-

Bridged Coordination Polymer 

8.1 Introduction 

In a similar way to compounds 6 and 7 (Chapter 7), yellow crystals of 

{Fe(Pmd)2[Cu(CN)2b} (compound 10) were grown by slow diffusion of Fe(BF4)2.6H20 

in pyrimidine with ((C2H5 ) 4N)[Cu(CN)2] in methanol.208 However, compound 10 has a 

completely different structure to compounds 6 and 7, as there is no water present and the 

Pmd ligates both the iron centre and the copper centre. 

8.1.1 Magnetic Susceptibility Data 

SQUID magnetic susceptibility data indicate that compound 10 undergoes thermal and 

light induced transitions. The thermal transition occurs at 139 K on cooling with a 10 K 

hysteresis (Figure 8.1). On irradiating at 5 K, the compound undergoes Light-Induced 

Excited Spin-State Trapping (Figure 8.1) and magnetic studies on the decay of the meta

stable 5T2 state indicate that at 30 K the lifetime is long (Figure 8.2). 

215 
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Figure 8.1: Magnetic Susceptibility Data for compound 10.208 The data indicate that the 

transition takes place at 139 K on cooling (•) and 149 K on warming (l.), with the light 

induced meta-stable state (t.) starting to revert to low spin at approximately 50 K, thence 

following the warming curve. 
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Figure 8.2: Time dependence of the high spin meta-stable state for compmmd 10. By 

extrapolation, at 30 K the lifetime is extended indefinitely.208 
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Figure 8.3: The crystal of compound 10. There is a marked colour change associated with 

the spin transition and the crystal is pale yellow the high spin state (left) changing to dark 

red in the low spin state (right). 

8.2 Single Crystal Diffraction Experiments 

The crystals* were pale yellow-orange, but most did not extinguish light polarised under 

crossed polars. Since the quality of the crystals was generally so poor, it was thought that 

powder methods may be required, but after considerable searching a tiny triangular chip 

was broken off a larger lump. Despite the size of the fragment (0.06 x 0.05 x 0.03 mm) , 

it could be seen to extinguish polarised light and diffracted reasonably well . Because 

of the size and the fact that the crystals had to be cut, it was necessary to mount the 

sample on a hair using oil (Figure 8.3). This was not the preferred method as data at 

room temperature was desired, and an initial matrix collected at 290 K did not index. 

However, cooling to 210 K (at 120 K/hr) yielded a matrix comparable to that given in the 

literature.208 

8.2.1 Data Collection 

Since the crystal was so small, data were collected using the Bruker Proteum M diffrac

tometer (with the Bede Microsource®) fitted with the Series 700 Cryostream. 130 

*Crystals courtesy of Prof. Jose A. Real, Dr. M. Carmen Muiioz, Dr. Virginie Niel 187 and Ms. Ana G. 

Galet Domingo (Valencia). 
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Low Temperature Data 

The crystal was cooled further from 210 K to 180 Kat 120 K/hr where a full sphere of data 

were collected with 32 s/frame. On completion, a matrix data collection was recorded and 

the sample was cooled to 90 Kat 120 K/hr. Another matrix collection was recorded, which 

gave a unit cell contraction of approximately 20 A3 (approximately 5%), suggesting the 

presence of a transition from high to low spin. A full sphere of data, also with 32 s/frame, 

was collected at 90 K. On completion the crystal was warmed to 290 K at 120 K/hr and 

removed from the diffractometer. 

Light-Induced Excited Spin-State Trapping 

The crystal was returned to the Bruker Proteum M diffractometer with the HeliX131 in 

place. It was cooled to 210 K at 360 K/hr where a matrix collection yielded a similar unit 

cell to those collected previously. It was then cooled to 30 K at 120 K/hr where another 

matrix collection was in agreement with the low spin data collected at 90 K. There were 

already indications of a potential icing problem, so the sample was immediately irradiated 

for approximately 10 mins using the green laser (.A = 532 nm). Since the crystal was so 

tiny, it was rotated 90° every few minutes to ensure irradiation. 

The matrix collection following irradiation was very poor and indexed very badly, 

but this was largely due to the presence of ice. Although the esds were large, the cell 

parameters suggested there was an increase in cell volume suggesting a SC transition 

had occurred. Data were collected, but due to instrument problems however, the data 

collection was terminated prematurely when it was less than ~ complete. 

8.2.2 Data Analysis 

The data indexed very poorly, with up to one third of the reflections excluded from the 

unit cell refinement. However, the 180 K and 90 K data integrated well and the quality 

of the structure solution suggests that the rejected reflections came from a tiny secondary 

crystallite adhered to the primary crystal. Since the primary crystal was so small, this 

secondary crystallite would have been almost impossible to see. Since the larger of the 

crystals diffracted strongly for its size, it is understandable that diffraction from the tiny 

secondary crystallite was visible while the crystal was not. However, the data integrated, 
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solved and refined well, so it was assumed that there was little significant overlap between 

reflections from the two crystals. 

The data were integrated in the usual manner to a resolution of 0. 73 A. The struc

ture was solved in PI from the 90 K data using direct methods and refined accordingly. 

The crystal faces could not be indexed, so the absorption corrections were carried out 

with SADABS only. 145 Since the data collected at 30 K after irradiating contained so 

few reflections there were too few equivalents and SADABS could not be applied, so no 

absorption correction was carried out. Although the absorption coefficient for the sample 

(which contains copper and iron) is quite high, since the crystal was so very small and rel

atively isotropic in shape, it was felt that absorption effects would be minimal and would 

have a considerably smaller detrimental effect than some of the other problems. 

8.2.3 Structure Refinement 

At 180 K and 90 K all non-hydrogen atoms were refined with anisotropic displacement 

parameters and the hydrogen atoms were located in the difference map. Refinement of 

hydrogen positions led to an unrealistic model, so the hydrogens were added geometrically 

and refined using a riding model. 

At 30 K after irradiation, refinement of anisotropic displacement parameters led to 

poorly shaped ellipsoids and in some cases, non-positive definite atoms, so all thermal 

motion was refined as isotropic. Since the structures at 180 K and 90 K refined well be

fore absorption corrections had been applied, this was thought to result from the intrinsic 

quality of the data rather than an absorption effect, though it may also have been a con

tributing factor. Despite a relatively small amount of data (1939 unique reflections), only 

106 parameters were refined as the asymmetric unit contains only twelve non-hydrogen 

atoms (Figure 8.4). 

The program IVTON 174 was used to calculate the mean Fe-N bond lengths and the 

volumes for the iron octahedra in compound 10. 

8.3 Discussion 

Although compmmd 10 was synthesised in a similar way to compmmds 6 and 7, the 

crystal structure is totally different, with compounds 6 and 7 monoclinic (P21/ c) and 
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Figure 8.4: The asymmetric unit for compound 10 at 180 K, a = 6.7584(12) A, 

b = 8.0796(15) A, c = 7.9862(15) A, 0' = 110.102(3)0
, !3 = 108.500(4) 0

, I= 99.272(4)0
, 

v = 370.06(12) A3 (PI). 

compotmd 10 triclinic (PI) with a cell volume that is less than a quarter of that for 

the silver and gold compounds. These differences are reflected in the structure and in 

the magnetic properties, with all compounds undergoing thermally induced transitions, 

but only compound 10 forming a meta-stable light induced state on irradiation at low 

temperature. 

8.3.1 Structural Analysis 

The structure consists of an octahedral iron atom and a three coordinate copper which 

are connected through bridging cyanide groups and Pmd ligands, forming a continuous 

three dimensional network. 

Iron Environment 

The octahedral iron centre is ligated by four [Cu(CN)2]- ligands and two pyrimidine 

ligands (Pmd). The [Cu(CN)2]- groups are arranged in a square planar geometry capped 

by two Pmd ligands forming an octahedron. The central iron atom sits on an inversion 

centre at 0 0 0 and the Fe-NC bond lengths are considerably shorter than the Fe-Pmd 

distances, so the iron atom occupies the centre of an elongated octahedron. The iron 
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Figme 8.5: A two dimensional sheet of compound 10. 

centres together with the [Cu(CN)2]- ligands form two dimensional sheets similar to those 

seen in compounds 6 and 7 (Figme 8.5). However, the second nitrogen atom of the Pmd 

ligand coordinates to the copper atom which is three coordinate in a pseudo trigonal planar 

arrangement. 

Copper Atom Environment 

There are effectively two types of copper coordination, the inner region and the outer 

region. The inner region consists of the two carbons from the cyanide groups and the 

Pmd nitrogen atom. These ligate the central copper atom in a distorted trigonal planar 

geometry with the copper sitting 0.418(1) A out of the plane of the three coordinating 

atoms at 180 K. Thus the [Cu(CN)2] - anionic ligands are bent with a N-Cu- N angle of 

approximately 110(3)0
, dependant on the temperatme. 

This out of plane distortion is caused by secondary interactions between the copper 

atom and the atoms in the outer coordination region. A second [Cu(CN)2]- ligand related 

by an inversion centre, forms a strongly bonded dimer linked by Cu- C interactions and 

cuprophilic interactions (Figme 8.6). 

Cu· ·· Fe Layers 

The overall structme is made up of corrugated - [Cu(CN)2]- Fe-[Cu(CN)2]- layers which 

alternate with layers of Pmd ligands (Figure 8. 7). The Pmd ligands form bridges be-
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---- C2 

----
Figure 8.6: [Cu(CNht dimers showing the cuprophilic interaction with a dotted line 

and the Cu- C interaction as a broken line. At 180 K, this Cu- C distance is 2.334(4) A 

compared with 1.935(4) A, 1.975(4) A and 2.065(3) A for the inner region distances. The 

Cu-Cu distance is 2.5211(10) A. 
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Figure 8.7: Corrugated layers in compound 10. The cyanide ligands can be seen joining 

the iron and copper atoms (red and cyan respectively), leading to the formation of 'wavy' 

layers which are bridged by Pmd ligands. 

tween the - [Cu(CN)2]- Fe-[Cu(CN)2]- layers, forming short Cu- Pmd- Fe-Pmd-Cu chains. 

These short chains are connected together by the Cu- Cu dimeric interactions, resulting 

in continuous chains stretching throughout the structure. 

8.3.2 Spin Crossover Transitions 

Between 180 K and 90 K, there is a contraction in the cell volume of over 18 A 3 (nearly 5%), 

from 370.06(12) A3 to 352.00(11) A3 . This is coupled with a change in colour (Figure 8.3) 

and shortening of the Fe-N bond lengths leading to a contraction of the iron octahedron. 
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180 K 90 K 30 K (Irr) 

[Cu(CN)2]- Fe1-N1 2.116(4) A 1.954(5) A 2.127(26) A 

Fe1-N2 2.142(4) A 1.951(5) A 2.167(39) A 

Pmd Fe1-N3 2.256(4) A 2.035(4) A 2.260(28) A 
Average Fe-N 2.17(7) A 1.98(5) A 2.18(7) A 

Octahedral Volume 13.62(2) A3 10.34(2) A3 13.87(8) A3 

Table 8.1: Fe--N bond lengths for compound 10. Although the values obtained for the 

LIESST structure have much larger esds, they are clearly in keeping with those obtained 

for the high spin state at 180 K, indicating that it too is high spin. 

Bond Lengths and Octahedral Volumes 

There are two distinct types of iron bond length- short Fe--N to the anionic [Cu(CN)2]

ligands and long Fe--N to the neutral Pmd ligand. The longer Pmd bonds contract more 

than the [Cu(CN)2]- bonds, but it is clear that there is also more contraction in the Fe--N2 

bond than the Fe--N1 bond (Table 8.1). The octahedral volumes clearly reflect the change 

from high spin at 180 K to low spin at 90 K with a contraction of 3.3(4) A3 . 

LIE SST 

The data for the LIESST structure were very poor, compared with the data collected at 

180 K and 90 K. Consequently, the esds are very large, making it difficult to infer any 

concrete results. However, there is a change in cell volume back to the high spin state on 

irradiation (volume= 371(6) A3), which is coupled with a clear change in the Fe-N bond 

lengths to values consistent with those seen at 180 K, indicating that the high spin state 

has been trapped by irradiation with light (Table 8.1). 

Fe· · · Cu Distances 

There are three unique, short Fe· · · Cu distances, two through cyanide bridging groups 

and one through the Pmd ligand, which as would be expected, is the longest (Table 8.2). 

The two cyanide Fe··· Cu distances are noticeably separated by approximately 0.1 A, a 

difference that occurs at all temperatures. The shorter of these Fe· · · Cu distance is via N1 

and C1 (CN1). Close inspection of this ligand indicates that it is markedly more bent with 
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180 K 90 K 30 K, Irr. 

Fe···Cu CN1 5.078(1) A 4.974(1) A 5.10(6) A 

CN2 5.183(1) A 5.007(1) A 5.22(9) A 

Pmd 5.862(2) A 5.778(2) A 5.86(12) A 

Fe-N-Cu N1 158.3(2r 163.9(2) 0 157.5(7) 0 

N2 166.2(2) 0 165.5(2) 0 166.7(5r 

Table 8.2: Fe· · · Cu distances and angles for compound 10. Although the values obtained 

for the LIESST structure have much larger esds, they are clearly in keeping with those 

obtained for the high spin state at 180 K. 

an Fe1-N1-Cu1 angle of 158.27(15)0 compared with the Fe1-N2-Cu1 angle of 166.26{14)0
, 

a difference that explains the difference in Fe· · · Cu distances. 

Cooling through the spin transition leads to the expected shortening of all three 

Fe··· Cu distances. However, it is notable that the CN1 Fe··· Cu distance only shortens 

rv0.1 A, compared with the rv0.2 A for the CN2 Fe··· Cu distance, bringing the Fe··· Cu 

distances closer together (4.974(1) A and 5.007(1) A at 90 K). Comparing the Fe-N-Cu 

angles show that this is caused by a linearisation of the CN1 bridge, with the difference 

in angles reduced to only rvl.5° (compared with rv8.0° at 180 K). 

The Pmd Fe··· Cu distance also shortens less than the expected 0.2 A with the spin 

transition. This is not surprising however, when it is considered that the contraction 

is along the Fe-N3 bond and has a component at right angles to the Fe··· Cu direction 

(Figure 8.8). It is important to note however, that although the values for this and the 

Fe· · · Cu distances in the LIESST structure are clearly in keeping with those obtained 

for the high spin state at 180 K, the large esds mean it is not possible to infer anything 

further. 

Fe· · · Fe Distances 

There are four inequivalent Fe··· Fe distances within the structure - two that could be 

described as trans with respect to the copper, I:UH.l two that could be described as cis 

(Figure 8.9). The two trans distances are significantly longer than the two cis distances 

and trans A and cis A are longer than trans B and cis B (Table 8.3). Trans A contains 

two CN1 bridges while trans B contains two CN2 bridges. Although CN1 is shorter than 
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Figure 8.8: Fel- N3 bond length contraction. The Fel- N3 contraction is marked in red and 

the Fel· · · Cul distance in cyan. The contraction in the Fel- N3 bond of approximately 

0.2 A due to the spin transition, leads to a reduced contraction in the Fel· · · Cul distance 

because the Fel-N3 bond has a component perpendicular to the Fel· · · Cul direction. 

CN2, trans A is longer than trans B because trans B includes two copper atoms. On 

the other hand both cis A and cis B include CNl and CN2 moieties, so the difference in 

Fe· · · Fe distance is caused by the geometry around the central copper atoms. 

On cooling to the low spin state at 90 K, there is a shortening of rv0.2G-0.25 A in the 

trans Fe· · ·Fe distances. The contraction in trans B is less than in trans A because the 

CNl group becomes more linear in the low spin state. This effect is enhanced by the fact 

that the trans A distance includes two CNl groups. 

There is a much more marked contraction in the cis A Fe··· Fe distance (nearly 0.4 A), 

which is in contrast to the cis B Fe··· Fe distance which undergoes a very small expansion 

of rvO.l A. This difference is caused by a combination of effects. In the case of the cis A 

Fe··· Fe distance, the contraction is increased by a reduction in the Cl- Cul- C2A angle 

by nearly 3°. This change in the copper centre is subtle, but can probably be best seen 

by over laying the high and low spin copper dimers (Figure 8.10) . 
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Figure 8.9: Fe··· Fe distances. 

180 K 90 K 30 K, Irr. 

Fe···Cu Trans A 11.338(2) A 11 .075(2) A 11.35(12) A 

TransB 9.662(2) A 9.466(2) A 9.70(13) A 

Cis A 8.080(2) A 7.701(2) A 8.15(11) A 

Cis 8 6.758(2) A 6.843(2) A 6.71(3) A 

G-Cu1- C C1/C2A 118.6(2t 115.8(2) 0 119.1(10t 

C1/C28 102.0(2t 101.2(2t 100.9(10) 0 

Cu1- C2B 2.334(5) A 2.342(6) A 2.33(2) A 

Table 8.3: Fe··· Fe distances and C-Cu-C angles for compound 10. Although the values 

obtained for the LIESST structure have much larger esds, they are clearly in keeping with 

those obtained for the high spin state at 180 K. 
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Figure 8.10: Overlay of the copper dimer at 180 K and 90 K. The high spin, 180 K 

structure is shown with dotted open circles and bonds drawn with a broken line. A subtle 

change in the orientation of the [Cu(CNht groups can clearly be seen. 

8.4 Conclusion 

The structure of compound 10 is very different from the silver and gold counterparts 

(compounds 6 and 7) discussed previously. In this case, despite poor crystal quality and 

instrumentation problems, it has been clearly shown that the material undergoes spin 

crossover, under both thermal stimulus and on irradiation with green light , in keeping 

with the magnetic data reported. 208 

Structural changes that occur during the spin transition include a straightening of one 

cyanide group of the [Cu(CN)2]- ligand, together with changes in the central C- Cu- C 

angle. These affect both the bond lengths and the change in bond lengths around the iron 

atom. 

Given the difference between this compound and the silver and gold compounds, ob

viously the nature of the central atom in the [Cu(CN)2]- ligand is critical to both the 

structure and the magnetic properties. In this case, subtle changes around the copper 

atom are integral to the transition. 



Chapter 9 

Cooperativity in an Intricate 

Iron(II) Network 

9.1 Introduction 

{Fe(Pmd)[Ag(CN)2][Ag2(CN)3]} (compound 11) was isolated as small, pale yellow needles 

from the reaction mixture that produced compound 7. 

9.1.1 Magnetic, Calorimetric and Absorption Data 

Like compound 7, compound 11 also undergoes spin crossover,209 but magnetic, calori

metric and absorption data indicate that like the structure, the magnetic behaviour is 

more complex than that of compound 7. 

Magnetic Susceptibility Data 

SQUID magnetic susceptibility data collected on small single crystals (20-30 mg) indicate 

that the transition has a step (Figure 9.1).210 In addition to the step, photomagnetic 

studies indicate that the compound undergoes Light-Induced Excited Spin-State Trapping 

(LIESST). The sample was cooled to 10 K where it was irradiated with green light (550 nm) 

for 150 min, the time required to reach the saturation value of X M T = 1. 70 cm3K/mol. 

The sample was then cooled to 2 K and then increased up to 200 K at 0.5 K/min where 

the magnetic susceptibility was measured as a function of temperature on warming. 

229 
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Figure 9.1: Magnetic susceptibility data for compound 11.209 The data indicate that the 

transitions take place at 185 K and 146 K on cooling (Y). Irradiating with a xenon lamp 

( • ) yields the meta-stable high spin LIESST state which reverts to low spin by 60 K 

thence following the cooling curve ( • ) . 
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Figure 9.2: Time dependence of the high spin meta-stable state for compound 11.209 The 

relaxation is clearly a two step process with the first step more rapid than the second step. 

The lifetime of the meta-stable is considerably longer as the temperature is reduced. 
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From the magnetic susceptibility data, the relaxation temperature for the meta-stable 

state is between 50 K and 70 K after which there is a return to low spin. On further 

warming, the magnetic susceptibility data suggest the sample returns to the high spin 

state along the same path via the step. There is a narrow hysteresis loop (approximately 

1.5 K) for the low-temperature step and the critical temperatures are 146 K on cooling 

and 147.5 K on warming. However, there is no appreciable thermal hysteresis for the 

high-temperature step. 

Relaxation studies on the LIESST state show the occurrence of two relaxation pro

cesses, suggesting that there are two distinct iron(II) groups that relax at different rates 

and are characterized by different relaxation constants. 

Differential Scanning Calorimetry (DSC) 

Calorimetric measurements performed using a differential scanning calorimeter in the 120-

300 K temperature range indicate the occurrence of two peaks- one for each step (Tel= 

185.2 K and Tc2 = 147.7 K), which correspond with those obtained from the magnetic 

susceptibility data.210 The temperature dependence of the anomalous heat capacity shows 

the presence of these two peaks very clearly (Figure 9.3). The overall enthalpy and entropy 

variations D.H = 8.4 kJ mol- 1 and !::iS = 53 J K- 1 mol- 1, are within the experimental 

range observed for iron(II) SC compounds. 43 

Visible Absorption Spectroscopy 

Visible absorption spectra were recorded between 450-750 nm using a spectrometer 

equipped with a CCD camera and light from a 50 W tungsten halogen source on a 21 J.Lm 

thick crystal. The results indicate a band at approximately 525 nm that grows in inten

sity as the temperature is lowered. There is also an increase in the intensity just below 

,..,.,500 nm so that the increase in intensity at ,..,.,525 nm appears as a shoulder. Variable 

temperature spectra were recorded on cooling and warming (Figure 9.4) and the HS molar 

fraction, was determined from the relative intensity of the absorption band characteristic 

of the LS state (Figure 9.5). 
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Figure 9.3: Heat Capacity data for compound 11, showing the two peaks corresponding 

to the two steps of the transition, Tel = 185.2 K and Tc2 = 147.7 K. 209 The small peak 

at 218 K is due to a small degree of contamination caused by the presence of a minute 

quantity of compound 7. 
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Figure 9.4: Variable temperature visible absorption spectra.209 Data recorded on warming 

and cooling (left and right respectively), show the increase in intensity of the absorption 

bands at approximately 525 nm and below 500 nm indicative of the LS state. 
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Figure 9.5: Temperature dependence of the high spin molar fraction determined from 

visible absorption spectroscopy, using the relative intensity of the absorption band char

acteristic of the LS state. 209 The hysteresis in the more abrupt low temperature step can 

be seen clearly. 

9.2 Single Crystal Diffraction Experiments 

The crystals* were small, yellow, flattened needles, but were all non-merohedral twins and 

this is reflected in the R-indices, which are high because the structure was refined using 

data for the major component only. The changes in the Fe-N bond lengths and octahedral 

volumes are still clearly visible however, and the fascinating nature of the material means 

that the insight gained from even twinned data is extremely valuable. 

9.2.1 Data Collection 

Single crystal data were initially collected using the Bruker SMART-CCD 6000 with an 

Oxford Cryosystems Cryostream 600,130 but low temperature data were collected on the 

Bruker SMART-CCD 1000 with an Oxford Cryosystems HeliX.131 

'Crystals courtesy of Prof. Jose A. Real , Dr. M. Carmen Munoz, Dr. Virginie Niel 187 and Ms. Ana G. 

Galet Domingo (Valencia). 
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Variable Temperature Data 

A typical crystal (0.26 x 0.10 x 0.02 mm) was selected and mounted on the Bruker SMART

CCD 6000. A matrix collection at 290 K indexed with a monoclinic unit cell with a volume 

of 6263( 1) A 3 , so a full sphere of data were collected at 30 s/frame. On completion, the 

crystal was cooled at 120 K/hr to 220 K, where a matrix was collected. The crystal was 

then cooled to 170 K at 120 K/hr and a colour change from yellow to red was observed 

between 190 K and 180 K (Figure 9.6). At 170 K, a matrix indicated a contraction of over 

3.5% to 6033(1) A3 , so a full sphere of data was collected as at 290 K. 

On completion, the crystal was cooled to 90 K at 120 K/hr during which the colour 

appeared to have deepened to a subtly darker shade of red. A matrix collection indicated 

a cell of 5775(1) A3 , suggesting a further contraction of approximately 4% (based on the 

cell at 290 K). A sphere of data was recorded at 90 K as at the higher temperatures. 

On completion, the crystal was warmed to 220 K and monitored for colour change. At 

180 K the crystal was red, but by 190 K the crystal had changed back to yellow, with a 

pale red colour at 185 K. At 220 K, a matrix was collected that indicated a return to the 

high temperature state, where a fourth data collection was carried out (as before). After 

the data collection was complete, the crystal was warmed to 290 K, and removed from the 

instrument. 

Light-Induced Excited Spin-State Trapping 

The crystal was mounted on the Bruker SMART-CCD 1000 by flash cooling it to 230 K. 

It was then cooled at 100 K/hr to 30 K using the Oxford Cryosystems HeliX. 131 A matrix 

was collected at 30 K giving a unit cell volume of 5767(1) A3 . This was followed by 

a collection of a hemisphere of data (30 s/frame). Unfortunately, the data collection 

was stopped during the experiment to set up the laser and in the process the crystal was 

irradiated briefly. A matrix collection confirmed that the unit cell volume had increased, so 

the crystal was irradiated for a further 21 hr using a red He-Ne laser (15m W, >. = 633 nm). 

A matrix collection after irradiation indicated a return to the high temperature state with 

a unit cell volume of 6253(1) A3 , so a hemisphere of data was collected as before. 
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Figme 9.6: A crystal of compound 11 on cooling. The crystal is shown at 220 K (top 

left) , 170 K (top right and bottom left) and 90 K (bottom right). 
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9.3 Data Analysis 

\Vhile crystals of this compound are not very difficult to obtain they were apparently 

all twinned. The crystal used was also a non-merohedral twin, so the results are from 

structure refinements carried out against data from the main component with overlapping 

contamination of the second twin component in many of the reflections. Although efforts 

to use GEl'viiNI 147 indexed the second component satisfactorily, refinement results were 

considerably worse. For this reason, the R-indices are high, there are large residual peaks 

and the esds are larger than would normally be the case. However, the structural changes 

are still clearly visible. 

9.3.1 Structure Refinement 

Cell parameters were determined and refined and the raw frame data were integrated in the 

usual fashion. The structures were solved using direct methods and refined by full-matrix 

least squares on F 2 using SHELXTL software. 

Since the faces had been indexed, the data were corrected for absorption effects ac

cordingly. Except for the data collected at 30 K, all non-hydrogen atoms were refined 

with anisotropic atomic displacement parameters, and hydrogen atoms were positioned 

geometrically and refined using a riding model. 

Data collected at 30 K 

Due to the premature irradiation of the crystal during the 30 K data collection there was a 

shortage of data, so the structure was refined with anisotropic displacement parameters for 

only the silver atoms, which were constrained together. In addition, the isotropic thermal 

parameters for groups of atoms were constrained to a single value. For example, all the 

thermal parameters for the cyanide nitrogen atoms were constrained to a single value, as 

were the thermal parameters for the cyanide carbon atoms. 

The crystal quality deteriorated after irradiating the crystal, so only the metal atoms 

were refined with anisotropic displacement parameters. Thus, the carbon and nitrogen 

atoms were refined with isotropic displacement parameters, but further constraints were 

not necessary. For both 30 K structures, the hydrogen atoms were positioned geometrically 

and refined using a riding model. 
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The program IVTON 174 was used to calculate the mean Fe-N bond lengths and the 

volumes for the iron octahedra in compound 11. 

9.4 Discussion 

No change in symmetry was observed and at all temperatures the structure is monoclinic 

(P2I/ c), with five iron centres in the asymmetric unit (Figure 9. 7). Despite the poor 

quality of the data which increases the esds, the spin transitions are clearly visible from 

the crystal structure results. 

9.4.1 Structural Analysis 

Like compounds 6, 7, 8, 9 and10, the iron atoms are ligated by two apical pyrimidine rings 

and four equatorial cyanide ligands. Like compounds 7 and 9, the cyanide ligands form 

part of silver cyanide bridges, but in this material, compound 11, there are two different 

types. Both groups approximate to linear, but [Ag2 (CN)3]- units (£1) are approximately 

q times longer than the [Ag(CN)2]- units (L 8 ). The five different iron centres include 

four different chemical environments. One iron centre is ligated by three Lt and one L 8 

and one is ligated by one Lt and three L 8 . The other three iron centres are ligated by two 

of each, but one is in a cis conformation and the remaining two are in a trans conformation 

(Figure 9.8). 

The 3D Network 

The structure consists of iron layers and silver cyanide layers perpendicular to the x di

rection. Within the iron layers the iron centres are bridged by Pmd ligands, which lie flat 

within the iron planes forming chains within the layers. The silver cyanide groups form 

bridges between the iron centres in the different layers (Figure 9.9). 

The crystal structure forms an intricate three dimensional network, with knots that are 

defined by the five crystallographically inequivalent iron atoms, which lie at the center of 

strongly distorted [FeN6] coordination uuils. These five crysta.llographically inequivalent 

iron centres are interconnected in a very complex way. 
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Figure 9.7: The asymmetric unit for compound 11 at 290 K (Top), a = 6.7584(12) A, 

b = 8.0796(15) A, c = 7.9862(15) A, 0: = 110.102(3)0
, /3 = 108.500(4)0

, I= 99.272(4) 0
, 

V = 370.06(12) A3 (P21/c). Only selected atoms are labelled because the structure is so 

complex. Cyanide carbon atoms have generally been labelled with the same number as 

their neighbouring nitrogen atom and the Pmd carbon atoms ru·e labelled after the carbon 

atom between the two nitrogen atoms (bottom). Thus in this case, the rings are labelled 

after C5 (C51, C52 and C53), beginning at the side with the nitrogen atom with the lowest 

number (N5) . 
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Figure 9.8: The environment around the five different iron centres. 
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Figure 9.9: Layers within compound 11. Silver is shown in purple and iron in red. The 

alternating layers connected by cyanide ligands can be seen. 

Anionic [Ag(CN)2]- and (Ag2(CN)3t Ligands 

The anionic groups [Ag(CN)2]- and [Ag2(CN)J]-, are defined by twelve crystallographi

cally different silver atoms and all are close to linear. 

Through the [Ag(CN)2]- and [Ag2(CN)J]- groups (Ls and Lt), Fel connects to one 

equivalent of Fe3 via Ls and three equivalents of Fe2 (one via Ls and two via Lt). In 

turn: Fe2 connects once to Fe4 (Lt) and three times to Fel (one Ls and two Lt), Fe3 

connects once to each Fel and Fe4 (both through Ls) and twice to Fe5 (one Lt, one Ls); 

Fe4 connects twice to Fe2 (both Lt) and twice to Fe3 (both Ls) and lastly Fe5 connects 

solely to Fe3 (two viaLs and two via Lt). 

The equatorial bond lengths defined by the nitrogen atoms of the [Ag(CN)2]- and 

[Ag2(CN)J] - groups are shorter than those of the axial positions occupied by the nitrogen 

atoms of the Pmd groups, which act as bridging ligands between the layers. 
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-[Fe-Pmd-Fe]=- Chains 

The Pmd bridges and the iron atoms form -[Fe-Pmd-Fe] 00- chains running along the 

c-axis. There are three different types of these chains in the structure. One is formed by 

all Fe1 iron atoms (with Fe1· · · Fe1 = 6.150(1) A at 290 K), and the others are formed 

by pairs of inequivalent iron atoms alternating along the chain (Fe2· · · Fe3 = 6.177(2) A 

and 6.154(1) A and Fe4· · · Fe5 = 6.150(1) A, Figure 9.10). 

Fe1 and Fe4· · · Fe5 chains alternate along the b-axis, defining a two dimensional array 

of iron atoms lying in the be-plane. A similar 2D array of iron atoms is defined by the 

Fe2· · · Fe3 chains and these two different layers alternate along the a-axis (Figure 9.10). 

These layers formed by the different -[Fe-Pmd-Fe]=- chains are organised in such a 

way that chains in consecutive layers are shifted along the b-axis by approximately half 

of the inter-chain separation (around 3.55 A). The different iron layers are separated 

by layers of Ag atoms in which strong closed-shell argentophilic type interactions are 

observed. The shortest Ag· · · Ag distances between [Ag(CN)2t and [Ag2(CN)3]- are in 

the range 2.99-3.02 A (Tables 9.3 and 9.4) and are only slightly longer than in metallic 

silver (2.89(1) A). 211 

9.4.2 Spin Transitions 

Following the Fe-N bond lengths at different temperatures can give a key insight into 

cooperativity within the crystal. 

Fe-N Bond Lengths and Octahedral Volumes 

At 290 K, the shorter average equatorial Fe-N distances are all 2.14-2.15 A while the 

longer average axial distances are 2.21-2.23 A (Table 9.1). At 220 K, there is only a 0.4% 

decrease in the cell volume and the Fe-N distances change little. However, it is noticeable 

that while they are all still clearly high spin from the magnetic susceptibility data, both 

types of Fe-N distances are appreciably shorter for Fe5 than for the other four iron atoms. 

Cooling still further to 170 K gives a sharp contraction of the cell (around 3.3%) 

accompanied by a marked change in colour from pale yellow to red (Figure 9.6), indicating 

that a spin transition has taken place. This colour change corresponds with a shortening 

of the Fe-N bonds around Fe3 and Fe5, consistent with a transition to the low spin state 
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Figure 9.10: - [Fe-Pmd- Fe] 00- chains in compound 11. Three types of - [Fe-Prnd- Fe] 00 -

chains can be seen running along the c-axis. Fel is shown in green, Fe2 in red, Fe3 in 

blue, Fe4 in cyan and Fe5 in orange. The Pmd rings are omitted and the silver cyanide 

ligands are shown as a black line for clarity. An example of a - [Fe-Pmd- Fe] 00- chain is 

also shown. 
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for these iron atoms (i.e. approximately 0.2 A). 

Meanwhile, the Fe1 Fe-N distances are now intermediate. Since diffraction techniques 

see an average structure, this would seem to suggest that half of the Fe1 atoms change 

from high to low spin. If this change was ordered with alternating HS and LS iron centres 

super lattice peaks caused by a doubling of the c-axis should have been visible in the raw 

data. Although these were not seen, the raw data was not of the highest quality due to 

the presence of the non-merohedral twinning. In addition, the superstructure reflections 

arising from this doubling would be very weak and may not be visible, so the presence of 

an alternating chain of -HS-LS-HS- Fe1 ions cannot be discarded. However, a random 

distribution of half of these ions in different spin states within the crystal could produce 

strain which would lead to the deterioration in crystal quality, which was not observed. 

The presence of two high spin, two low spin and one split HS-LS is in keeping with 

the magnetic susceptibility data, which indicates that there is a total half-spin conversion 

in the sample at 170 K. 

On cooling to 90 K, there is a further contraction of 4.1% together with a corresponding 

darkening of the crystal colour indicating a further HS-+LS transition. This is confirmed 

by the changes in Fe-N bond lengths, which indicate that all five iron centres have now 

become low spin. 

Comparing the octahedral volumes for each iron centre at the different temperatures 

shows the same trend seen from following the bond lengths, but more clearly (Table 9.2). 

At first, the Fe5 octahedral volume decreases from 13.18(5) A 3 to form an intermediate 

centre (12.11(5) A3 ). Then at the plateau at 170 K, Fe5 and Fe3 are low spin with Fe1 in 

an intermediate state (9.84(5) A3 , 10.33(5) A3 and 11.56(5) A3 respectively). Finally, at 

90 K and 30 K all iron centres are low spin. 

On cooling from 90 K to 30 K, there is virtually no further change in the Fe-N distances 

or octal1edral volumes, indicating that the spin transition is complete at 90 K. After 

irradiation with red laser light, there is a change in the unit cell vohm1e of around 7.8% 

coupled with a colour change from red to yellow, indicating the presence of a low spin to 

high spin transition. This is also seen in Lhe Fe-N bond lengths, which indicate that Fe1 

to Fe4 are now high spin. Interestingly, Fe5 remains low spin (Table 9.1). 
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Fel Fe2 Fe3 Fe4 Fe5 

290 K Equatorial Fe-N 2.14(3) A 2.14(2) A 2.15(2) A 2.15(1) A 2.12(1) A 

Axial Fe-N 2.23(1) A 2.23(1) A 2.22(1) A 2.22(1) A 2.21(1) A 
220 K Equatorial Fe-N 2.14(1) A 2.14(2) A 2.14(2) A 2.14(2) A 2.0!i(l) A 

Axial Fe-N 2.21(1) A 2.23(1) A 2.20(1) A 2.24(1) A :.1.1 G( 1) :\ 

170 K Equatorial Fe-N :.1.01( :l) ,\ 2.13(2) A 1.96(2) A 2.12(2) A 1.93(2) A 
Axial Fe-N 2 09(:.!) \ 2.23(2) A 2.00(2) A 2.22(2) A 1.99(2) A 

90 K Equatorial Fe-N 1.95(1) A 1.94(1) A 1.94(2) A 1.94(2) A 1.92(1) A 
Axial Fe-N 2.oo(1) A 2.oo(1) A 1.98(2) A 2.o1(1) A 2.02(1) A 

30 K Equatorial Fe-N 1.94(3) A 1.95(2) A 1.94(2) A 1.95(2) A 1.93(1) A 

Axial Fe-N 2.00(2) A 1.99(2) A t.98(2) A 2.01(2) A 2.o2(1) A 
30 K Equatorial Fe-N 2.15(2) A 2.13(2) A 2.13(2) A 2.13(1) A 1.93(2) A 

(Irr.) Axial Fe-N 2.20(1) A 2.24(1) A 2.19(1) A 2.26(1) A 2.01(1) A 

Table 9.1: Average Fe-N bond lengths for the five iron centres. Low spin iron distances 

are shown in blue, with intermediate Fe-N distances highlighted in red. 

Fel Fe2 Fe3 Fe4 Fe5 

290 K 13.55(5) A 3 13.53(5) A3 13.54(5) A3 13.71(5) A3 13.18(5) A3 

220 K 13.43(5) A 3 13.51(5) A3 13.34(5) A 3 13.57(5) A3 l:.! . ll(G) :\'1 

170 K II.Gti('i) A3 13.41(5) A3 10.13(5) A3 13.26(5) A3 9.84(5) A3 

90 K 10.00(5) A3 10.02(5) A3 9.94(5) p 9.97(5) A3 9.81(5) A3 

30 K 10.07(5) A3 10.03(5) A3 9.88(5) A3 10.14(5) A3 9.98(5) A3 

30 K (Irr.) 13.47(5) A3 13.54(5) A3 13.25(5) A 3 13.67(5) A 3 lO.O:l(G) A3 

Table 9.2: Iron octahedral volumes. 
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-[Fe-Pmd-Fe] 00 - Chains 

There are three types of -[Fe-Pmd-Fe]00 - chains- Fel· · · Fe1, Fe2· · · Fe3 and Fe4· · · Fe5. 

At room temperature, the Fe··· Fe distances are very similar: Fe1· · · Fe1 = 6.150(1) A, 

Fe2· · · Fe3 = 6.177(2) A and 6.154(1) A and Fe4· · · Fe5 = 6.150(1) A. 

On cooling to 220 K, all Fe··· Fe distances shorten by approximately 0.2 A, but cooling 

further to the step at 170 K shows a difference in the behaviour of the Fe· · · Fe chains. 

At 170 K, the average Fe2· · · Fe3 distance (5.978(15) A) is longer than both the 

Fe1· · · Fe1 and Fe4· · · Fe5 distances (both 5.965(1) A). However, this is because one 

Fe2· · · Fe3 distance is 0.03 A longer (5.993(4) A), while the other is in keeping with those 

for Fe1· · · Fe1 and Fe4· · · Fe5 (5.963(4) A). On cooling to 90 K this distinction is lost, with 

all four chains within a range of 0.006 A (Fe1· · · Fe1 = 5.786(6) A, Fe2· · · Fe3 = 5.805(5) A 

and 5.780(5) A and Fe4· · · Fe5 = 5.784(6) A). 

Irradiating leads to a further change, with one longer Fe2· · · Fe3 distance 

(6.137(5) A) compared with the other Fe··· Fe distances (Fe1· · · Fe1 = 6.110(1) A 

Fe2· · · Fe3 = 6.117(5) A and Fe4· · · Fe5 = 6.109(1) A). 

9.4.3 Cooperativity 

At first glance it might be thought that cooperativity would take place along the -[Fe

Pmd-Fe]00- chains, but this is not the case. At 290 K, all five inequivalent iron atoms have 

a very similar octal1edral volume with a value characteristic of a high spin state (in this 

case an average of 13.5(2) A3 ). At 220 K, it is clear that Fe1 to Fe4 are still in this high 

spin state (with an average volume of 13.45(13) A3 ), but Fe5 already shows a tendency 

towards a low spin configuration, with its octahedral volume of 12.1(5) A3 . Clearly for 

some reason Fe5 has a lower energy barrier to the spin crossover than the other iron atoms. 

The Intermediate Plateau 

From the magnetic susceptibility measurements, the structural data collected at 170 K is 

coincident with the plateau between the two steps of the spin transitions, which is exactly 

halfway through the conversion. From the octahedral volumes, it is clear that both Fe2 

and Fe4 remain high spin (13.35(10) A3 ) while Fe3 and Fe5 have crossed over to low spin 

(9.95(20) A3 ) with a change in volume that corresponds with the characteristic change 
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of around 0.2 A in the Fe-N bond length. This means that in the two chains formed 

by inequivalent iron atoms (-Fe2-Pmd-Fe3-Pmd-Fe2- and -Fe4-Pmd-Fe5-Pmd-Fe4-), 

there is an alternating arrangement of -HS-LS-HS-LS- iron atoms (Figme 9.11). 

From the octahedral volume, Fe1 appears to be in an intermediate state half way 

between the high and low spin states. It is thought that this is because the Fe1 site is 

HS/LS disordered, so that the crystal structure gives the average structure. It is possible 

that the disorder is random in nature since there is no evidence of any symmetry change 

or super-lattice reflections. However, the data are poor and any symmetry change would 

be subtle and therefore very hard to see. If the disorder is random, this would be expected 

to lead to the creation of HS and LS domains, which would lead to strain in the crystal 

which should be visible by increased R-indices and possibly even crystal damage. This 

is not seen, suggesting that the disorder is ordered and as the other chains are HS /LS 

disordered, it seems likely that the same could be true for the Fe1 chain. 

Thus, studying the connectivity of the high and low spin ions at 170 K suggests that 

the cooperativity takes place, not through the Pmdligands, but through the anionic silver 

cyanide bridges. Indeed, it seems reasonable that the anionic bridging ligands may play 

an important role in the stabilisation of the unlike-spin species in the step. 

Ag-Ag Distances 

Within the asymmetric unit there are twelve silver atoms, each of which are connected 

to one or two other silver centres by argentophilic silver-silver interactions. These Ag

Ag interactions form three distinct chains - two containing three silver atoms and one 

containing six silver atoms. All the Ag-Ag distances within the chains fall into two groups, 

long (3.2-3.3 A) and short ( rv3.0 A) and there are two pairs of short interactions: Ag1-Ag8 

& Ag8-Ag-4 and Ag6-Ag10 & Ag10-Ag12 (Figure 9.12). 

Similar patterns to those seen in the iron centres can also be seen in these two pairs of 

short argentophilic distances (Table 9.3). At 290 K and 220 K, all four of these distances 

are between 2.98 A and 3.02 A. On cooling to 170 K however, one pair of distances (Ag6-

Ag10 and Ag10-Ag12) become noticeably shorter (2.96-2.97 A). Cooling still further to 

the low spin state results in a further shortening coupled with shortening of the second 

pair, Ag7-Ag1 and Ag1-Ag8, so that all of the short Ag-Ag contacts are of a comparable 
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Figrne 9.11: Alternating - HS- LS- HS- along the - [Fe-Pmd- Fe]00 - chains. HS is shown in 

green (Fe3 & Fe5), LS is shown in blue (Fe2 & Fe4) and the intermediate Fel is shown 

in red. The Pmd rings are omitted and the silver cyanide ligands are shown in black for 

clarity. 
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Agl~Ag8 Ag4~Ag8 Ag6~Ag10 AglO~Ag12 

290 K 2.989(2) A 3.014(2) A 2.996(2) A 2.992(2) A 

220 K 2.993(2) A 3.016(2) A 2.994(2) A 2.984(2) A 

170 K 2.991(3) A 3.015(3) A 2.96:3(3) A 2.970(3) A 

90 K 2.944(2) A 2.943(2) A 2.942(2) A 2.939(2) A 

30 K 2.947(3) A 2.942(3) A 2.942(3) A 2.940(3) A 

30 K (Irr.) 3.007(3) A 3.032(3) A 3.008(3) A 2.984(3) A 

Table 9.3: Short Ag~Ag bonds in compound 11. 

Agl~Ag7 Ag2~Ag3 Ag2~Ag9 Ag5~Ag7 Ag5~Ag11 

290 K 3.200(2) A 3.244(2) A 3.266(2) A 3.286(2) A 3.237(2) A 

220 K 3.183(2) A 3.228(2) A 3.259(2) A 3.261(2) A 3.217(2) A 

170 K 3.177(3) A 3.182(3) A 3.265(3) A 3.189(3) A 3.227(2) A 

90 K 3.150(2) A 3.095(2) A 3.258(2) A 3.108(2) A 3.159(2) A 

30 K 3.138(3) A 3.085(3) A 3.241(3) A 3.106(3) A 3.147(2) A 

30 K (Irr.) 3.152(3) A 3.173(3) A 3.224(3) A 3.208(3) A 3.174(2)A 

Table 9.4: Long Ag~Ag bonds in compound 11. 

length (approximately 2.94 A at 90 K). 

The long Ag~Ag bonds do not follow any similar trend, generally contracting on cool

ing. The only irregularities are Ag2~Ag9 and Ag5~Agll. These appear to be slightly 

longer at 170 K than 220 K, but since the data are poor, the esds are large so it is not 

possible to draw any conclusions. 

LIESST 

On irradiation, the structure clearly undergoes a spin transition, but not quite as expected. 

From the unit cell volume, it is clear that the LIESST phase is high spin and it would 

seem that the structure is completely high spin. This is supported by the change in crystal 

colour from red back to yellow. Despite this, although Fel to Fe4 have clearly returned to 

the HS state, Fe5 appears to remain LS. 

So, from the structural data at 30 K after irradiation, Fe5 appears to remain in a LS 

state, despite other indications that all iron atoms should be in a HS state (i.e. the colour 
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and uilit cell volume). This is explained by the time dependent magnetic susceptibility 

data which shows that there are two steps to the relaxation (Figure 9.2). The first section 

of the relaxation process lasts around 13 hr at 25 K 209· 210 and shows a faster process 

than the second section. The X-ray data collection of the LIESST structure took around 

13 hr, which means that there must have been some kind of relaxation during the data 

collection period. Since a diffraction experiment gives not only the structure averaged over 

the crystal, but also the structure averaged over time, it seems that what was measured 

was a time averaged structure of the first section of the relaxation process. Thus, Fe5 is 

thought to be relaxing faster than the time needed for a complete X-ray data collection. 

The photomagnetic data appears to indicate the involvement of half of the iron atoms, 

analogous to the thermally induced SC transition. Thus, the iron centres involved should 

also show some change, but this is not the case. The explanation for this is still unknown. 

Connectivity and Cooperativity 

It would seem that the Fe5 must have a larger energy difference between the HS and LS 

states and consequently a lower HS---?LS energy barrier than the other iron atoms. Since 

Fe3 is LS at the plateau at 170K (and is the next iron atom to change its spin state on 

cooling together with half of the Fe1 atoms), a similar reasoning could be applied. Thus 

Fe3 should also have a relatively low HS---?LS energy barrier. 

However, cooperativity must be playing an important role in the magnetic behaviour 

of this material so there must be a structural reason to account for this. The silver 

cyanide anions interlink all iron atoms in all directions, but with four different coordination 

environments. Analysing the connectivity of Fe5, it can be seen that it is the only iron 

atom which by symmetry, is connected through the silver cyanide fragments to only one 

other kind of iron atom. Through all four of its equatorial ligands, it is connected to Fe3 

where all other iron atoms are connected to either two or three other non-equivalent iron 

atoms. 

Comparing the connectivity of the silver centres involved in the four shorter Ag-Ag 

interactions, shows that the two low spin centres at 170 K (Fe5 and Fe3), are ligated by 

silver cyanide ligands containing Ag7, Ag8, Ag9, AglO and Ag12. Of these, only Ag7 and 

Ag9 are not connected by a short Ag-Ag interaction. Notably, Ag10-Ag12 is one of the 
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Figure 9.12: The silver chains in compound 11 with the long Ag- Ag interactions shown 

with a dotted line. Some of the connections between the iron atoms can also be seen. 

two Ag- Ag bonds that have been shown to shorten at the intermediate plateau at 170 K. 

The other short Ag- Ag interaction that contracts also involves Ag10 and is to Ag6. Ag6 is 

part of one of the Lt ligands that binds to Fe1 (the intermediate iron centre at 170 K) . This 

Lt ligand contains two silver atoms in the chain: Ag6 and Agl. Ag1 is one of the central 

silver atoms in the long argentophilic silver chain (Figure 9.12). On the other hand, the 

other two short Ag- Ag interactions (Ag1- Ag8 and Ag8- Ag4) connect Lt silver cyanide 

ligands from Fe2 to Fe4 and Fe2 to Fe1 and these do not shorten between 290 K and 170 K 

corresponding with the absence of SC in Fe2 and Fe4. All of this demonstrates how the 

spin crossover transitions are reflected in the argentophilic interactions, which may even 

be critical to the propagation of the transition through the structure and therefore integral 

to the cooperativity. 

Thus, it appears that Fe5 is the first iron to start changing its spin state and since it 

is communicating with Fe3 in a very efficient manner through the silver cyanide anions, 

it induces a transition in Fe3. This is followed by half of the Fe1 centres which yields the 

intermediate phase. All this suggests that the cooperativity takes place through the silver 

cyanide anions. The connectivity around the short Ag- Ag distances suggest that Fe2 may 

be next , though tllis is largely conjecture and there is no concrete evidence for this. 
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9. 5 Conclusion 

The structural data agree with the magnetic, calorimetric and absorption data, which 

shows the presence of two consecutive, thermally induced, spin crossover transitions. The 

structure, with five independent iron centres clearly undergoes a step transition, with two 

of the iron centres low spin for the intermediate phase, together with one iron centre 

which appears to be in an intermediate state, presumed to be half LS and half HS. On 

cooling, this and the remaining two iron centres become low spin forming a phase that 

can be used for Light-Induced Excited Spin-State Trapping. This meta-stable high spin 

state undergoes a multi-step relaxation process, which is thought to spread through the 

structure using similar cooperative mechanisms to the thermally induced transitions. The 

exact nature of this relaxation remains unknown, but further experiments are planned to 

follow the relaxation and associated structural changes. 

The connectivity of the iron centres indicates that the cooperativity takes place through 

the anionic bridging silver cyanide ligands rather than through the Pmd groups. Thus, 

this has further demonstrated how effective metal cyanide bridges can be in transmitting 

the electronic changes associated with spin crossover transitions. 



Chapter 10 

Thermal and Light Induced 

n-ansitions in an Iron-Silver Spin 

Crossover Network 

10.1 Introduction 

Niel et al. recently reported three new silver cyanide networks with pyrazine, 4,4'

bipyridine and bispyridylethylene bridges (Pyz, Bpyn and Bpe) .185 All three materials 

are related to the previously discussed Hofmann-type clathrates, but to a lesser or greater 

degree. {Fe(Pyz)[Ag(CN)2]2.Pyz} is closely related, forming a regular arrangement of flat 

layers bridged by Pyz ligands which form clathrates of the pyrazine solvent molecules. 

{Fe(Bpyn)2[Ag(CN)2]2} and {Fe(Bpe)2[Ag(CN)2]2} on the other hand have more puck

ered layers, but like {Fe(Pyz )[ Ag( CN)2]2 .Pyz}, the structures consist of two interpene

ti·ating networks (Figure 10.1). More interesting however, is the variation in the magnetic 

properties caused by the differences between the three compounds. 

10.1.1 Magnetic Susceptibility Data 

{Fe(Pyz)[Ag(CN)2]2.Pyz} and {Fe(Bpyn)2[Ag(CN)2]2} have been shown to be low and 

high spin respectively throughout the temperature range studied by Niel et al. (5 K 

to 300 K). 185 However, {Fe(Bpe)2[Ag(CN)2]2} (compound 12) undergoes a spin tran

sition that takes place between 150 K and 95 K on cooling. The transition levels off at 

252 



10.1. Introduction 253 

Figure 10.1: Three different three dimensional bimetallic networks with different mag

netic properties, {Fe(Pyz)[Ag(CN)2]2.Pyz} (left, with the disordered solvent omitted for 

clarity), {Fe(Bpyn)2[Ag(CN)2]2} (centre) and {Fe(Bpe)2[Ag(CN)2]2} (right). 185 The in-

terpenetrating nature of the Bpyn and Bpe networks can be seen. 

1.1 cm3K mol- 1 indicating an incomplete transition, with about 30% residual high spin 

at 30 K. 

Warming Modes 

On warming, there is a small singularity in the magnetic susceptibility data which occurs 

between 100 K and 150 K, but the magnetic susceptibility data do not indicate a return to 

high spin until approximately 220 K, a hysteresis of approximately 95 K. The singularity 

manifests as a slight decrease in X M T , followed by an abrupt increase and a slight wiggle 

back to a value comparable with that at 50 K (Figure 10.2). 

Studies to investigate the anomaly involving warming the low spin complex to 180 K, 

then cooling, show that the anomaly has a hysteresis of about 4 K which is coupled 

with a secondary spin transition involving approximately half the trapped high spin iron 

centres. Warming back to room temperature and repeating the cycle with the same 

sample leads to an increase in the amount of trapped high spin at 30 K, with XMT values 

of 1.8 cm3K mol- 1 , 2.4 cm3K mol- 1 and 3.3 cm3K mol- 1 for the second, third and fourth 

cycles respectively. 

Photomagnetic Studies 

Niel et al. also showed through photomagnetic studies, that compound 12 undergoes 

Light-Induced Excited Spin-State Trapping (Figure 10.3). The dynamics of the LIESST 

relaxation were investigated over a temperature range of 55 K to 67 K, by the fitting of 
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Figure 10.2: Magnetic data for compound 12. The large hysteresis can clearly be seen in 

the first, second, third and fourth cooling/warming cycles(+, o, • and o respectively), but 

there are changes to the anomaly and to the quantity of residual high spin. 185 

exponential curves relating the high spin molecular fraction ( nHs) to the relaxation rate 

k(T) (Equation 10.1). 

1lHS = e-k(T)t (10.1) 

10.2 Single Crystal Diffraction Experiments 

The red-orange crystals* were generally of good quality, being elongated blocks of a mon

oclinic habit, from approximately 0.2 x 0.1 x 0.1 mm in size and therefore highly suitable 

for single crystal X-ray diffraction. 

*Crystals courtesy of Prof. Jose A. Real, Dr. M. Carmen l'vluiioz, Dr. Virginie Niel 187 and Ms. Ana G. 

Galet Domingo (Valencia). 
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Figure 10.3: Photomagnetic data for compound 12. Magnetic data were recorded on 

cooling to 10 K ( o) where the sample was irradiated ( •) and then cooled to 4 K and 

warmed ( o). 185 

10.2.1 Data Collection 

A typical crystal (0.22 x 0.10 x 0.10 mm) was selected and mounted in oil and quench

cooled to 160 K using the Oxford Cryosystems Cryostream 600130 mounted on the Bruker 

S.MART-CCD 1000. 

Low Temperature Data 

A matrix collection at 160 K resulted in a cell of a = 9.443(2) A, b = 11.153(2) A, 

c = 13.302(4) A, f3 = 95.25(2) 0
, V = 1396.2(9) A3 which is compamble to that recorded 

in the literature. 185 A hemisphere of data was collected at 8 s/frame. On completion, the 

crystal was warmed at 360 K/hr to 260 K, where it was removed from the diffractometer. 

The cryostream was replaced with the Oxford Cryosystems HeliX and the crystal returned 

to the diffractometer, where it was cooled in stages to 30 K (300 K to 270 K at 120 K/hr, 

270 K to 160 K at 360 K/hr and 160 K to 30 K at 120 K/hr). 

A matrix collection at 30 K found a related, but different unit cell to that found at 

160 K, with double the volume (a = 15.396(4) A, b = 11.105(2) A, c = 16.693(4) A, 

f3 = 108.80(2)0
, V = 2702(1) A3 ). Rejecting approximately 10% of the reflections, the 
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data could also be indexed to give the 160 K cell with a volume approximately 45 A 3 

smaller than that seen at 160 K. Data were collected as at 160 K, but with 6 s/frame. Ice 

formation on the crystal led to background scattering in the form of weak powder rings. 

On completion, the crystal was irradiated with a red laser (15 mW, A = 633 nm) for 

a total of approximately 25 mins, which gave a cell comparable with that seen at 160 K, 

but with a voltm1e half way between those seen previously at 30 K and 160 K. Another 

dataset was collected at 30 K, as before. 

Quenching 

A second crystal of a similar size and shape to the first, was selected and mounted in oil 

on a hair. The Oxford Cryosystems HeliX131 on the Bruker SMART-CCD 1000 was set to 

30 K, but the cryostat was raised slightly so that the crystal could be mounted safely and 

the cryostat lowered as soon as possible, leading to extremely rapid cooling, or quenching. 

A matrix was recorded at 30 K, which resulted in a unit cell volume comparable to 

that at 160 K, so a hemisphere of data was collected at 10 s/frame. On completion, the 

crystal was irradiated using the infrared laser, but there was no observed change in the cell 

parameters, so the crystal was warmed to 75 K at 120 K/hr and a matrix collected. The 

cell volume showed a contraction, but no cell change, so the crystal was returned to 30 K 

at 120 K/hr where another matrix was collected. The unit cell volwne was comparable to 

that seen at 75 K, so another hemisphere of data was collected (16 s/frame). 

On completion, the crystal was irradiated using a reel laser (25 mW, A = 633 nm) 

for approximately 2 mins after which a matrix was collected. An increase in cell volume 

indicated a return to the high spin state, so another hemisphere of data was collected 

(10 s/frame). 

10.2.2 Data Analysis 

The data indexed well and were integrated in the usual manner. The crystal was well 

formed, so the faces were indexed and absorption corrections were carried out accordingly. 
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Figme 10.4: hOl zones above and below the transition in compound 12, with the high spin 

recorded at 130 K and the low spin recorded at 90 K on cooling (left and right respectively) . 

The pseudo-B-centering that gives rise to the super-cell can be seen at 90 K. 

30 K Data 

The 160 K cell parameters and space group (P2J/n) agreed with the published data. 

However on cooling through the spin transition, additional reflections were observed (Fig

ure 10.4). Indexing indicated that the unit cell was different from, but related to, the high 

spin cell. The cell volume clearly doubles from 130 K to 90 K, but the cell parameters 

indicate that the relationship is not as simple as the doubling of a single axis. Close 

inspection indicates that the matrix that converts the high spin primitive cell to the low 

spin pseudo-B-centred cell (Figure 10.5) and the inverse are: 

(
-1 0 1) (_.!. 0 .!.) 
0 - 1 0 and 0 

2 

- 1 ~ 
1 0 1 .!. 0 .!. 

2 2 

This change in cell leads to a change in the space group with the n-glide plane becoming 

a c-glide. 

10.2.3 Structure Refinement 

Since the data were generally of a reasonable quality, all non-hydrogen atoms were refined 

as anisotropic at all temperatures. For the 160 K data, initially the hydrogen atoms were 

located in the difference Fomier map and refined satisfactorily, however for consistency 
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Figme 10.5: A schematic of the crystallographic phase change from primitive to pseudo

B-centering in compound 12. The primitive high spin cell is shown in blue and the 

pseudo-B-centering low spin cell is shown in red. 

with the other data, in the final refinement the hydrogen atoms were added geometrically 

and refined using a riding model. 

30 K and LIESST Data 

The 30 K doubled cell clearly led to twice the number of atoms in the asymmetric unit and 

consequently correlation was a serious concern. However, since there was a considerable 

change in other aspects of the structure, correlation was not a big problem. Two of the 

carbon atom thermal ellipsoids were poorly shaped, the residual peaks were a little large 

and the figures of merit although acceptable, were considerably higher than for the high 

spin state. This was initially thought to result from some kind of twinning, but close 

examination of the data did not confirm this and it was concluded that it was caused by 

other difficulties like residual high spin and absorption. Similar problems were seen in the 

LIESST data, suggesting that the problems were either caused by the extreme temperature 

or damage to the crystal caused by the structmal changes or possibly the formation of ice 

on the crystal at 30 K. 

Quenching 

In contrast with the ' 120 K/hT cooled crystal' data, there were no problems with the 

refinement of the 'quenched' data, even after quench cooling, followed by two further spin 

transitions (relaxation to LS and irradiation back to HS) . This suggested that the problems 
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Figure 10.6: The asymmetric unit for compound 12 at 160 K , a = 9.4597(10) A, 

b = 11.1484(13) A, c = 13.3100(14) A, {3 = 95.149(5) 0
, v = 1398.0(3) A3 (P21/n) . 

experienced previously were related to the crystallographic phase change or the specific 

icing problems rather than the temperature. 

The program IVTON174 was used to calculate all the mean Fe-N bond lengths and 

volumes for the iron octahedra in compound 12. 

10.3 Discussion 

At first glance compound 12 has much in common with compounds 6- 11 (Chapters 7- 9), 

but in practice it is very different. 

10.3.1 Structural Analysis 

The high spin structure of compound 12 is monoclinic (P21/n) with half a formula unit in 

the asymmetric unit (Figure 10.6) and the iron atom Fel , sitting on the inversion centre 

1 1 1 
at 2 2 2· 

Fe[Ag(CN)2] Sheets 

Like compounds 7, 9 and 11, compound 12 is made up of iron(II) centres linked by 

[Ag(CN)2]- bridges. Unlike compounds 7, 9 and 11, compound 12 does not have ar

gentophilic interactions running through the structure and in this and other ways is very 

different. 

Like the {Fe(Pyz)[M(CN)4].2H20} compounds (M = Ni, Pd or Pt) , the iron centres 
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Figure 10.7: Schematic of the Fe-M nets in {Fe(Pyz)[M(CN)4].2H20} compared with 

those seen in compound 12. The loss of one iron centre on moving from a four coordinate, 

square planar M centre (left) to a two coordinate linear silver cyanide bridge (right) can 

be seen. 

are ligated in a square planar motif by metal cyanide bridging ligands, which form sheets. 

However, in contrast to the {Fe(Pyz)[M(CN)4].2H20} compounds where the M centre 

is four coordinate square-planar, the [Ag(CN)2]- ligands approximate to linear, reducing 

the degree of connectivity within the sheets (Figure 10. 7). Despite this, the magnetic 

susceptibility data indicate compound 12 has a very large hysteresis (70 K), suggesting 

that it is highly cooperative. 

Interpenetrating Networks 

Like the {Fe(Pyz)[M(CN)4].2H20} compounds, the Fe--[Ag(CN)2]- sheets are connected 

by bridging ligands, in this case Bpe ligands. The Bpe ligands occupy the axial sites around 

the iron atom with the nitrogen at the other end of the Bpe ligating the silver atom in 

the [Ag(CN)2]- bridge. This silver atom is three coordinate in aT-shaped geometry with 

the cyanide groups approximately linear and the Bpe ligand at right angles to them. 

There are two such, independent, interpenetrating networks within the structure. Re-

calling the comparison with the layers in the Fe(Pyz)[M(CN)4].2H20 compounds (Fig-

ure 10. 7), it can be seen that there is one missing iron centre caused by substituting the 

four coordinate M for silver. The second network passes through these holes with two of 

the Bpe ligands sitting inside the vacant sites. 
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Figure 10.8: Sheets of Fe-[Ag(CN)2]- linked together by Bpe ligands in compotmd 12. 

The iron atoms sit on the inversion centre (at ~ ~ ~ at 160 K) with the silver cyanide 

anion running along the diagonals from the centre to the corners of the unit cell. 
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Figure 10.9: Overlay of the two iron centres in compound 12, low spin A. The ligands 

joined to Fe1 are shown in red with bonds drawn with broken lines and the ligands joined 

to Fe2 are shown in blue with solid bonds. 

10.3.2 Low Spin 

From the magnetic susceptibility data, the transition takes place over a temperature range 

of approximately 55 K from 150 K to 95 K , becom.ing more gradual as it progresses 

(Figure 10.3). From the crystallographic data collected below the transition, there is a 

clear cell doubling coupled with the spin crossover (low spin structure A). 

Structural Changes 

The doubling of the cell volume is reflected in the contents of the asymmetric unit , which is 

also doubled, but there are other more subtle structural changes. The first most obvious 

difference is a change in bond lengths around the two now independent iron atoms (at 

0 ~ ~ and ~ 0 ~). The Fe-N average bond lengths for each of the two iron atoms at 30 K 

are 2.15(4) A and 2.00(3) A (Fe1 and Fe2 respectively). These compare with 2.17(4) A 

for the HS structure, indicating that while one iron (Fe2) converts almost entirely to low 

spin, Fe1 remains almost entirely high spin. 

There is also a slight change in the orientation of the bridging pyridine rings, which 

break the symmetry, with angles of 5.9(1) 0 and 4.4(1) 0 between the two previously sym

metrically equivalent rings (Figure 10.9). This is coupled with a slight lateral shift, which 

presumably reflects the slight change in the relative position of the layers. 
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10.3.3 Meta-Stable High Spin States 

On quench-cooling, the crystal clearly doesn't have time to undergo the crystallographic 

phase change or complete the spin transition as the cell volume is 1367.0(2) A 3 , compru·ed 

with 1398.0(3) A 3 at 160 K and 2713
/(G) = 1356.6(6) A 3 at 30 K cooled at 120 K/hr. 

This is confirmed comparing the average Fe-N bond length at 160 K (2.17(4) A) with that 

when quenched to 30 K (2.15(4) A). 

Relaxation 

Since the quench-cooled high spin state is essentially very similar in nature to a LIESST 

state, it was thought that it could be possible to access a low spin state by irradiation with 

infrared laser light or warming to a temperature where the relaxation rate was increased. 

Irradiation was unsuccessful, but wru·ming to 75 K gave a cell volume of 1353( 1) A 3 , indi

cating that relaxation had taken place, but without any crystallographic change leading 

to a new low spin structure, structure B. This was cooled to 30 K where a hemisphere of 

data indicated that the Fe-N average distance was indeed shorter (2.05(3) A 3 ), indicative 

of a transition. This is also supported by the octahedral contraction from 13.22(2) A3 to 

11.47(2) A3 which is between the volumes for the two iron centres for the other LS state 

structure A (13.27(2) A3 and10.73(2) A3 ). This suggests that there is probably still resid

ual high spin present, but in this case there is no distinction between the crystallographic 

sites. 

The relaxation of the meta-stable, quenched, high spin state to the corresponding low 

spin structure is coupled with a twisting of the Bpe ligand. As seen in the slower cooled 

structure, there is a different degree of twisting for the two rings of the Bpe ligand. In 

this case, the ring ligating the iron atom only twists by 1.9(2) 0
, while the ring ligating the 

silver atom twists by 5.0(2) 0 (Figure 10.10). 

This relaxation to the low spin structure B rather than structure A, is presumably 

related to the excitation effect seen in Chapter 3. In compound 2, the spin crossover is 

coupled with a structural change, leading to a lower symmetry low spin state. On ex

citation with a red light at 30 K, the structure undergoes a transition to a meta-stable 

high spin state, but retains the low spin structure. It is thought that while the laser 

provides sufficient energy for the spin transition, there is not enough energy for the struc-
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Figure 10.10: Overlay of the quenched low spin structure (A) with the high spin structure. 

The high spin structure is shown in red and the shortening of the Fe-N bonds can clearly 

be seen. On close inspection, the tilting of the Bpe rings can also be seen. 
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tural changes and at 30 K the temperature is too low for thermal energy to be available. 

Although the process is different, the effect is the same during the relaxation of the high 

spin compound 12, where there is insufficient energy for the structural changes. It is 

unclear whether there is order in the HS-LS centres, or whether they are truly randomly 

distributed. 

LIESST 

Irradiating the structure A low spin state, left no evidence of the super-cell. The cell 

volume had undergone a relative expansion from 271323
(
6

) = 1356.6(6) A 3 to 1375. 7( 4) A, 

which together with the change in Fe-N average bond length (to 2.17(4) A) indicated a 

return to the high spin state. 

Interestingly, irradiating the low spin structure B also led to an increase in cell vohune 

from 1339.5(2) A3 to 1378.1(2) A3 , a volume comparable with that of the LIESST state 

generated from the doubled cell, low spin structure. Overlaying the two indicates that 

there are no noticeable conformational differences between the two LIESST structures 

(Figme 10.11). Overlaying the quenched structme with the LIESST structme also shows 

that there is no observable difference between these two structures, indicating that all 

three routes lead to the same state. From this it can also be assumed that warming the 

meta-stable high-spin structure obtained via any of the three routes leads to the low spin 

structure B rather than the cell-doubled structure A. 

10.3.4 Spin Crossover Transitions 

So, a comparison of the Fe-N bond lengths and octahedral volumes for the six structmes, 

clearly shows that there are fom states (Table 10.1). These can be loosely described as 

high spin (160 K), low spin A (30 K), meta-stable high spin (quenched and LIESST) and 

low spin B (relaxed from the meta-stable high spin). 

Octahedral Volumes 

Low spin A has a doubled cell caused by the splitting of the iron centre into two, one high 

spin centre (Fe1) and an intermediate/low spin centre (Fe2). Comparing the octahedral 

volumes for Fe1 and Fe2 with those for the other structures, suggests that there may be a 
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Figure 10.11: Overlays of the LIESST and the quenched structures. In both cases the 

quenched/irradiated structure is shown in red and the LIESST structure generated from 

the low spin structure A (cooling at 120 K/hr) is shown in blue (top) and low spin 

structure B (the quench cooled structure) is shown in green (bottom). Clearly there is no 

significant change in the conformation of the Bpe rings indicating that the structures are 

generally the same, with any differences seen only in the Fe- N bond lengths. 
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Temperature Fe-N Distances Octahedral 

& Conditions Nl N2 N3 Average Volume 

l60K 2.171(2) A 2.129(2) A 2.215(2) A 2.17(4)A 13.63(2) 1P 

30 K, Cooled (Fe1) 2.144(7) A 2.114(7) A 2.202(6) A 2.15(4) A 13.27(2) jp 

30 K, Cooled (Fe2) 1.983(7) A 1.986(7) A 2.044(6) A 2.00(3) A 10.73(2) A3 

30 K, lrr. 2.157(6) A 2.1:34(6) A 2.21.3(5) A 2.17(4) A 13.56(2) A 3 

30 K, Quenched 2.148(2) A 2.111(2) A 2.191(2) A 2.15(4) A 13.22(2) A3 

30 K, Q/Warmed 2.049(2) A 2.016(2) A 2.089(2) A 2.05(3) A 11.47(2) A3 

30 K, Q/W /Irr. 2.170(3) A 2.131(3) A 2.21.5(3) A 2.17(4)A 13.63(2) A3 

Table 10.1: Fe-N distances in compound 12. 

very small amount of low spin on the HS Fe1 site, fitting in with the magnetic data, which 

indicates a total of only 30% residual high spin at 30 K. In contrast, the Fe2 octahedral 

volume clearly indicates that it is primarily low spin, but comparison with volumes for 

other iron centres (compounds 6 and 7 for example) suggests that there may also be a 

very small amount of residual high spin on the Fe2 site.t 

On further inspection, the octahedral volume for Fe1 is very similar to that found for 

the quenched high spin structure suggesting that there may be a small amount of low spin 

present in both. Comparing the octahedral volumes for 30 K structure B with that for the 

"LS" Fe2 in A on the other hand, indicates that the iron atom in structure B is clearly 

HS /LS disordered. 

Cyanide Groups 

Studying the Fe[Ag(CN)2]2 sheets, it becomes apparent that there are two very different 

cyanide groups in the [Ag(CN)2]- bridges. One ligates to the iron centre forming a linear 

bridge, while the other is distinctly bent (Figure 10.12). This is reflected in the Fe··· Ag 

distances which are 5.3581(5) A and 5.1809(4) A at 160 K (Table 10.2). The reason for 

this distortion of the grid is probably to allow two of the Bpe ligands to pass through the 

1The HS/LS disorder on both iron sites could be in part responsible for the large residual electron 

density and poor figures of merit. Certainly, such a situation would lead to increased strain within the 

crystal which could cause damage leading to loss of crystal integrity and problems with the refinement. 
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"vacant" iron site in the Fe[Ag(CN)2]2 sheets. Since the iron atom sits on an inversion 

centre, the trans cyanide groups are related by symmetry. Consequently, there are two 

different types of CN-Fe-NC groups: CNbent-Fe-NCbent and CNlinea,.-Fe-NClineczr· These 

two different groups alternate throughout the structure, linked by silver atoms, forming 

chains. 

In the case of the 30 K structure A, where there are two independent, alternating iron 

atoms, the alternating CN-Fe-NC groups coincide with the -LS-HS-LS- chains. Since 

all the iron centres are ligated by two CNbent and two CNunear in a trans configuration, 

in one direction the HS corresponds to the bent centre and the LS to the straight centre. 

In the chains running the other way however, this is reversed and the LS corresponds to 

the bent centre and the HS to the straight centre. 

On undergoing spin crossover, the two Fe2-Ag distances shorten by 0.130(1) A and 

0.114(1) A while the Fe1-Ag distances contract by 0.030(1) A and 0.013(1) A, reflecting 

the difference in the predominantly high spin Fe1 and low spin Fe2. As would be expected, 

intermediate values are seen for low spin B, illustrating the mixed HS/LS site. 

What is not so clear is why the Fe··· Fe distance via the [Ag(CN)2]- bridge is by far the 

shortest for low spin B. Since the iron centres in low spin A alternate -HS-LS-HS-LS- in 

all three directions, the Fe··· Fe distances are HS-LS, which might be expected to give an 

intermediate distance approximately 0.2 A shorter than the HS-HS distance (compared 

with a LS-LS distance which should be 0.4 A shorter than a HS-HS distance). This does 

not however, explain why the average HS-LS distance for low spin B is 0.050(1) A shorter 

than that for low spin A. It is possible that the relaxed low spin state (B) has a smaller 

amow1t of residual high spin than the cooled low spin state (A), which would account 

of the shorter Fe· · · Fe distance. Indeed, comparing the overall average of the octahedral 

volumes for low spin A (12.00(4) A3 ) with that of low spin B (11.47(2) A3 ) supports 

this, but this is far from conclusive. The Fe··· Ag distance (via the Bpe ligand) is also 

shorter for low spin B than for low spin A. This difference is probably caused by the 

conformational change in low spin A, leading to subtle changes in the Fe· · · Ag distance, 

but could also result from a smaller amount of residual high spin present in low spin B 

than in low spin A. 
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Figure 10.12: The Fe[Ag(CNhb sheets in compound 12 at 160 K. The linear and bent 

cyanide groups are labelled (top) and the Bpe ligands of the second network can be seen 

passing through the "vacant" site in the Fe[Ag(CN)2]2 sheets (bottom). At 160 K, there is 

an Ag· · · H contact of 3.034(9) A connecting the two interpenetrating networks, between 

Ag1 and H14A, shown with a dotted line. 
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Temperature Fe··· Ag Distances 

& Conditions (Nl) (N2) (N3) Fe···Fe 

160 K 5.1809(4) A 5.3581(5) A 14.0989(13) A 10.1677(7) A 
:30 K, Cooled (Fe1) 5.1678(7) A 5.3282(8) A 14.0627( 18) A 10.0386(9) A 
30 K, Cooled (Fe2) 5.0673(7) A 5.2286(8) A 13.9598(17) A 10.0386(9) A 
30 K, ItT. 5.1603(7) A 5.3579(8) A 14.0618(18) A 10.1325(11) A 

30 K, Quenched 5.1446(3) A 5.3404(3) A 14.0369(8) A 10.1034(5) A 
30 K, Q/Warmed 5.0889(4) A 5.2498(4) A 13.9568(8) A 9.9887(5) A 

30 K, Q/W jlrr. 5.1635(4) A 5.3637(4) A 14.0764(9) A 10.1391(5) A 

Table 10.2: Fe· · · Ag and Fe· · ·Fe distances in compound 12. 

Low Spin Networks and Cooperativity 

In low spin structure A, the high spin Fel centre is surrounded in a square planar ar

rangement by four Fe2, low spin centres. In the third direction, both Fel and Fe2 are 

ligated by Bpe ligands, which also ligate a silver atom. Although the silver atoms are 

also part of the next sheet, they are ligated in a T-shaped geometry and are "terminal" 

in the sense that there is no continuation in the same direction, so that they form short 

Ag-Bpe-Fe-Bpe-Ag chains. Since the iron atoms both sit on inversion centres, Fel is 

at the centre of an Agl-Bpe-Fel-Bpe-Agl chain and Fe2 is at the centre of a similar 

Ag2-Bpe-Fe2-Bpe-Ag2 chain. In addition to the Bpe ligands, both Agl and Ag2 are 

connected to one Fel and one Fe2 via cyanide groups, forming a bridge between the high 

and low spin centres. 

Since the [Ag(CN)2]- groups form bridges between the HS and LS centres, it is clear 

that in this compound cooperativity does not take place through the anionic ligands. There 

are two other possibilities, the first of which involves the Bpe ligands. It is conceivable 

that communication could take place through the linear side of the [Ag( CN)2]- ligands 

via the Bpe ligand (Figure 10.13). Since this is a very long communication pathway, this 

seems unlikely and it also fails to explain communication between the two interpenetrating 

networks. 

Another possible explanation also involves the Bpe ligands, but in a very different 

way. As explained earlier, pairs of the Bpe ligands occupy the "vacant" sites in the 

Fe[Ag(CN)2]2 sheets of the interpenetrating network. The bending of the cyanide ligands 
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Figme 10.13: Ag1-Bpe-Fe1-Bpe-Ag1 chains in compound 12. The carbon, nitrogen 

and hydrogen atoms are shown in black, Fe1 in blue and Fe2 in red for clarity. Similar 

Ag2- Bpe-Fe2- Bpe-Ag2 chains can also be seen. 

brings the silver atoms of the [Ag(CN)2]- anions into relatively close range of the ethylene 

part of the Bpe ligands, possibly close enough to allow a weak intermolecular interaction. 

Interestingly, the bent part of the [Ag(CN)2]- anions ligates an iron centre in the same 

state as that connected to the closest Bpe ligand in the second network (Figme 10.14). This 

could explain how the two networks communicate, but unfortunately, though plausible, 

the explanation cannot be considered unequivocal as there are many short contacts of 

similar lengths within the structme, although these are the shortest. 

10.4 Conclusion 

Magnetically, compound 12 is a fascinating material, and structmally it has fom distinct 

phases dependent on the physical treatment of the sample. These phases can be loosely 

described as high spin (160 K), low spin A (30 K), meta-stable high-spin (quenched and 

LIESST) and low spin B (relaxed from the meta-stable high spin). Low spin A is reached 

by cooling the high spin state through the spin transition at 120 K and is crystallograph

ically different to the high spin state, with one predominantly high spin iron centre and 

one low spin centre. 

In contrast, the meta-stable high spin state can be generated in a number of ways 

including quench cooling the high spin state and irradiating the low spin A with red light. 

Warming the meta-stable state appears to cause a relaxation to a different low spin state 

(B), which has a only one iron centre. This single site is believed to be HS/ LS disordered 
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Figme 10.14: The Fe[Ag(CN)2]2 sheets, showing the Bpe ligands of the interpenetrating 

network in compound 12 at 30 K. The carbon, nitrogen and hydrogen atoms are shown 

in black, Fel in blue and Fe2 in red for clarity. 
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(approximately 75% HS from the ratio of the octahedral volumes), but it is important 

to note that the two different sites in low spin A are probably only visible because of 

other changes in the structure including the movement of the silver atoms, making the 

super lattice more visible. In the case of low spin B there may also be super lattice 

reflections, but these would be very weak making it impossible to see them without a 

stronger radiation source. 22 

Two possible cooperative mechanisms based on the low spin B structure have been 

discussed. Both these explanations rely on the differences between the linear and bent 

cyanide ligands. In the case of the cooperative Bpe chains, the bent Fe-NC prevents 

cooperativity, while in the interpenetrating network explanation, the bent ligand is crit

ical to the communication. These descriptions are analogous to the "tug-of-war between 

elastic interactions and a shock-absorber effect" in the polymeric materials discussed by 

van Koningsbruggen et al .. 108 They describe how flexible linking groups within bridging 

ligands make transitions more gradual as they reduce the transmission of the vital elastic 

interactions through the structures. The elasticity of the bent Fe-NC group could be 

preventing the spread of the transition to the second site in the cooperative Bpe chain 

description. However, the bend in the Fe-NC ligand could lead to communication through 

the weak interactions between the networks. It is not clear which explanation is the most 

valid, but this study has given a valuable insight into this novel SC material. 



Chapter 11 

A Powder Diffraction Study of a 

Three Dimensional, Spin 

Crossover, Coordination Polymer 

11.1 Introduction 

One of the first Hofmann type spin crossover materials was Fe(Pyd)[Ni(CN)4], which 

was first discussed in 1996.120 Since then however, a number of related two and three 

dimensional materials have been synthesised and studied. Six such compounds have been 

compared, substituting the nickel atom in the centre of the anionic bridging ligands with 

palladium and platinum and replacing the pyrimidine ligand with pyrazine. 125 One of these 

compounds is the three dimensional spin crossover network {Fe(Pyz)[Pd(CN)4].2H20} 

(compound 13). This material consists of a three dimensional polymeric structure with 

iron octahedra connected through anionic bridges and pyrazine ligands (Pyz). 

11.1.1 Magnetic Susceptibility Data 

SQUID magnetic susceptibility data recorded for all of these materials generally show 

that converting a two dimensional material to a three dimensional network increases co

operativity and moves the spin transition to a higher temperature. 125 This can be seen 

by comparing compound 13 with its two dimensional counterpart, {Fe(Pyd)[Pd(CN),I]} 

(Figure 11.1). In this case, the two dimensional pyridine containing material undergoes an 

274 



11.2. Powder Diffraction Experiments 275 

4 

' 0 3 e 
~ .., 
e 2 
c:.J 

160 200 240 280 320 
Temperature I K 

Figure 11.1: Magnetic susceptibility data for compotmd 13. The transition in com

pound 13 takes place at approximately 220 K on cooling("~) and at 240 K on warming (A). 

In contrast, the two dimensional analogue has an incomplete transition with a reduced 

hysteresis and takes place at a lower temperature (Y' and 6). 125 

abrupt but incomplete transition centred around 208 K on cooling, with an 8 K hysteresis. 

Increasing the dimensionality from 2D to 3D by replacing the pyridine with a bridging 

pyrazine increases the HS to LS conversion. The temperature of the transition is also 

increased by approximately 18 K and the hysteresis is increased by about 8 K. However, 

the nature of the transition also appears to change from a single step transition to a two 

step transition, with a slightly more gradual first step, but no plateau. 

11.2 Powder Diffraction Experiments 

All these compounds are microcrystalline powders and compound 13 is no exception. 

Therefore data were collected on the Bruker D8 Advance powder diffractometer , using the 

Oxford Cryosystems PheniX device to control the temperature. 152 
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11.2.1 Data Collection 

The sample* was sprinkled onto the aluminium sample plate, but was very soft, clumping 

together and did not cover the disc well. Despite a second attempt, large aluminium 

peaks were visible in the pattern, so these regions were excluded from the refinements 

(approximately 37-39° 2(), 44-46° 2() and 81-84° 2B). 

The PheniX was programmed to cool at 17 K/hr to 17 K while data were collected. 

Each scan took approximately ~ hr, so a scan was recorded approximately every 10 K 

(8-65° 2(), 0.4 s/step, 0.0144° 2() /step). On reaching 17 K, a long scan was collected 

10-120° 2(), 1.5 s/step, 0.0144° 2() /step, total approximately 3~ hours. On completion, 

the PheniX was programmed to warm back to 300 K at 17 K/hr while more data were 

collected. This was followed by a long scan at 300 K (as at 17 K), for comparison. 

11.2.2 Data Analysis 

From inspection, there is a change in the patterns at around 260 K on cooling, with peaks 

moving to positive 2() (Figure 11.2). This effect is indicative of the unit cell contraction 

caused by SC transitions. In the region around the transition, the data indicate the 

presence of two separate phases, thought to correspond to the high and low spin structures. 

No additional reflections or peak splitting were visible, so it was thought that there was 

no change in symmetry on cooling from the HS state to the LS state. 

11.2.3 Structure Refinement 

Compound 13 was thought to be isostrudural with {Fe(Pyz)[Pt(CN)4].2H20} which is 

tetragonal (P4/m), with [Pd(CN)4 j2- ligands forming sheets in the ab plane. 125 These 

sheets are linked by Pyz rings, which are disordered around a 4-fold axis in the c-direction. 

In addition, one of the solvent water molecules occupies a position on the 4-fold axis and 

mirror plane between the platinum atoms at 0 0 ~' while the other occupies a position on 

the 2-fold axis and mirror plane between the Pyz rings at ~ 0 ~ (and 0 ~ ~). 

*Sample courtesy of Prof. Jose A. Real, Dr. l'v!. Carmen l'vluiioz, Dr. Virginie Niel 187 and Ms. Ana G. 

Galet Domingo (Valencia). 
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Given the differences in scattering power between pallaclimn, iron, oxygen, nitrogen 

and carbon, structure refinement was not thought to be reliable to identify Fe-N bond 

lengths. This was especially true given the quality of the data, which was collected in 

non-ideal conditions. However, in order to confirm the crystal structure, a refinement 

based on the structure of the known platinum analogue was refined against the 300 K long 

data collection. Since the data quality was less than ideal, restraints were requirecl.t 

As most of the atoms occupy special positions, the refinement involved only eight 

atomic positional parameters. As the refinement proceeded, the restraints were relaxed, 

the refinement of the atomic positional parameters was clamped and the statistics and fit 

steadily improved while the bond lengths remained sensible. Finally, the Pyz hydrogen 

atom was added geometrically and the refinement repeated to convergence. The hydrogen 

atom was not refined nor were any of the thermal parameters. 

Since data collection at 300 K was performed after cooling to 17 K, there was a second 

phase visible in the pattern, which was clue to residual low spin. This LS phase was present 

as a very small impurity, so it was modelled using a second phase containing only the iron 

and palladimn atoms. Since these metal atoms occupy special positions, it was presumed 

that positions would remain the same as in the LS state. 

The structure was also refined against the 17 K data, but again regions had to be 

excluded and constraints were necessary.+ However, low R-indices and x2 values support 

the conclusion that there is no symmetry change. 

Le Bail Fitting 

Since information can be obtained from unit cell parameters, variable temperature Le Bail 

refinements were also carried out. For all data except that recorded around the transition, 

the Le Bail refinements were carried out as follows. Firstly, the background was refined 

using Rietveld refinement, using the proposed structure. 125 This was necessary because 

tThe values used for the constraints were standard bond lengths or values from the CSD 1 and the 

average Fe-N distances for compound 6 in the high spin state at 180 K. 

1The values used for the constraints were standard bond lengths or values from the CSD 1 as before, 

but the average Fe-N distances for compound 6 in the low spin state at 120 K were used. 
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the background refinement with Le Bail fitting was unstable, so Rietveld refinement was 

used to give a good, reliable baseline. This background was used in the Le Bail refinements 

where variables were added successively starting with the sample height, then the unit cell 

parameters, and finally profile parameters, a total of seven refinement variables. 

Around the SC transition, the diffraction indicated the presence of a bi-phase material 

that clearly includes both the HS and LS states. Since the unit cell parameters for the 

HS and LS states are very different, the peak overlap in some of the strongest reflections 

was small enabling refinement of both phases in this temperature region (Figure 11.3). 

However, as Le Bail refinement effectively refines the structure factors, it is not possible 

to refine a scale factor. For this reason, a secondary Rietveld refinement was carried 

out with only the palladium and iron atoms included in each phase. This allowed the 

approximate determination of the phase fraction in the region around the transition, but 

only the background parameters, scale factors and phase fraction were refined in this way; 

the unit cell parameters were obtained from the Le Bail fit. 

On cooling, the refinements were carried out with two phases against data that were 

collected between 262 K and 236 K (inclusive). The bi-phase refinements for the 271 K 

and 227 K data were unstable, so the refinements were carried out with only the one 

appropriate phase. Similarly, the refinements for the data collected around the transition 

on warming were refined with two phases, i.e. data recorded at 269 K and above. 

11.3 Discussion 

There are only eight atoms in the asymmetric unit (Figure 11.4), but the unit cell is small 

and the symmetry high (tetragonal, P4/m), so a continuous network is generated. 

11.3.1 Structural Analysis 

These materials have been described as a type of clathrate or inclusion compound with 

water molecules residing in channels formed by the rigid networks (Figure 11.5). The 

channels are formed by [Pd(CN)4Fe] sheets which stack directly above each other, perpen

dicular to the c-axis. These [Pd(CN)4Fe] sheets are connected by rotationally disordered 

pyrazine ligands (Pyz), which lead to the formation of channels. These channels run along 

the a and b axes and contain water solvent (Figure 11.6). 
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11.3. Discussion 

Figme 11.4: The asymmetric unit for compound 13 at 300 K , a 

c = 7.2389(7) A, v =400.88(9) A3 (P4/m). 

H-Bonding and Pd· · · 0 Interactions 

281 

7.4417(6) A, 

The water molecules sit in the cavities made by the pyrazine rings, occupying special 

positions on the 2-fold and 4-fold axes and the mirror planes. The distance between 

the Pyz rings and the 01 water molecule (2.73(1) A at 300 K) suggests that there may 

be C- H- · · 0 interactions between them (Figme 11.7). The second water molecule (02) 

occupies a position between the square planar palladium atoms (Figme 11.8), at a distance 

equivalent to half the c cell dimension (3.619(1) A at 300 K). This short Pd· · · 0· · · Pd 

distance could be indicative of a weak Pd· · · H20· · · Pd interaction talcing place in the c 

direction. However, as it is not possible to locate the hydrogen atoms, it is not possible 

to draw any conclusions as to the nature of this interaction. Indeed, the location exactly 

between the two palladium centres suggests that both lone pairs and hydrogens would be 

directed towards the palladium atoms, so the presence of an interaction is unclear. 

11.3.2 Spin Crossover 

On cooling there is a very large unit cell contraction of approximately 50 A 3 from approxi

mately 400 A3 to 350 A3 (12.5%) at approximately 250 K (Figme 11.9). This is one of the 

largest contractions due to spin crossover effects discussed here, or indeed reported in the 

literatme. The contraction takes place over a range of approximately 20 K in agreement 

with the magnetic susceptibility data, however the temperatme recorded for the transi-

tion is much higher thru1 that determined from the SQUID data. It is possible that this 

is caused by a partial loss of water due to the vacuum necessary when using the PheniX 

(as seen with compounds 7- 9), however it is more likely that this results from calibration 



11.3. Discussion 282 

Figure 11.5: Compound 13 viewed down the a-axis showing the [Pd(CN)4Fe] sheets linked 

by disordered Pyz ligands. 
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Figure 11.6: Compmmd 13 viewed down the c-axis showing the channels occupied by 

solvent water. 

Figure 11.7: The Pyz· · · 0 hydrogen bonded chain. The C· · · 0 distance of 2.73(1) A at 

300 K suggests the presence of an interaction. 
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Figme 11.8: The Pd· · · 0 chain in compound 13. The Pd· · · 0 distance of 3.619(1) A at 

300 K suggests there may be an interaction. 

errors as there is no evidence of water loss in the powder data.§ According to the powder 

diffraction results, the transition on cooling begins between 271 K and 262 K (T1!) and is 

complete at 236 K (T2!)· On warming, the transition begins at between 260 K and 269 K 

(TIT) and is incomplete at 300 K. Thus, the data collected dming the transition has two 

phases; high spin and low spin. 

Cell Parameter Changes 

The data collected at 262 K on cooling is particularly interesting, because it contains both 

high and low spin states both in a large amount, enabling accurate determination of the 

cell parameters for both states at the same temperatme (Table 11.1). The same effect 

can also be seen at 295 K, but as this is right at the top of the temperatme range of the 

PheniX, the values could be less reliable. 

The contraction in the c direction at 262 K is 0.447(3) A, which corresponds with the 

contraction in the direction of the Pyz ligand. Since both the iron and nitrogen atom po

sitions are constrained by symmetry, and there are two Fe-Npyz distances per asymmetric 

§It is very difficult to prove the presence or absence of the solvent as the contribution to the diffraction 

from the water is very small compared with that of the iron and palladium atoms. Nevertheless, structure 

refinements carried out with the water molecules removed increased the R-indices, suggesting that either 

dehydration did not take place or was incomplete. 
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Figure 11.9: Unit cell volumes from powder diffraction data collected during cooling (blue) 

and warming compound 13 (red). It can be seen that the transitions on cooling and 

warming begin at the same temperature (T11 ~T1 • ), but that the transition takes place 

over approximately 20- 25 K (T11 -T21 ) which is approximately the size of the hysteresis 

seen in the magnetic susceptibility data. The temperature of the transition is high on 

both warming and cooling compared with that seen in the magnetic susceptibility data, 

but the magnitude of the hysteresis agrees well. This suggests that the difference may 

result from calibration errors, however it is possible that the vacuum has removed some 

or all of the solvent. 
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unit, this enabled accurate determination of the Fe-Pyz contraction as 0.224(3) A. The 

Fe-NC contraction is not quite so easy to quantify. The -Fe-NC-Pd-CN-Fe- chains run 

along the diagonal, but using trigonometry, the Fe-Pcl distances for the HS and LS phases 

at 262 K can be calculated as 5.262(3) A ancl5.008(3) A. Thus the difference is 0.254(4) A, 

which would appear to be a very large contraction for an Fe-N bond in a spin crossover 

material. However, the possibility must be considered that the [Pel( CN)4 ]2- ligand might 

not be planar or that the -Pcl-C-N-Fe- groups may not be linear. Indeed, it is quite 

likely that there is distortion arotmcl the iron core in the HS state. However, according 

to the CSD, the [Pcl(CN) 4 j2- ligand should be close to planar and the site symmetry of 

the palladium atom is 4/m with the symmetry of the [Pd(CN) 4 j2- moiety approximately 

D 4h. While it is possible that a loss of planarity breaks this symmetry (but could not be 

seen due to the poor quality data), it seems unlikely that this is the case. In addition, this 

would lead to a lengthening of the bonds rather than a shortening. 

Thus, non-linear -Pcl-C-N-Fe- groups seem more likely and recalling some of the 

[Au( CN)2]- and [Ag( CN)2]- ligands discussed previously, are quite possible. In the case 

of compound 13 however, steric repulsion suggests that the bending is more likely to be 

at the C-N-Fe angle than at the Pd-C-N angle. Typically, LS iron octahedra are more 

regular than HS octahedra, but bending of the C-N-Fe angle would not necessarily lead to 

change in the distortion. It is possible that the [Pd(CN)4j2- moiety could rotate slightly 

around the Pel centre on cooling to the LS state (Figure 11.10). This would make the 

unit cell contract more, effectively reducing the ammmt of shortening of the Fe-N bond 

necessary to produce the same effect. The octahedral distortion would not increase as it 

is constrained by symmetry. The Fe-Pyz contraction has been given as 0.224(3) A, which 

is in keeping with those seen in other materials, for example compounds 6 and 7. In these 

compounds, the anionic bridging ligands lead to a comparable contraction, suggesting that 

there may be some additional structural change causing the large cell contraction of 12.5%. 

If there were a rotation of the [Pd(CN)4 ]2- ligand, it would be nearly impossible to see 

with powder diffraction, but would be characterised by a change in the Fe-N-C angle. 
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Figure 11.10: Schematic of the suggested distortion in compound 13 on cooling to the 

low spin state. The unit cell is shown in bold, and the possible distortion from linear in 

broken lines. 

High Spin Low Spin Difference 

a 7.441(2) A 7.183(2) A 0.258(3) A 

c 7.230(2) A 6.783(2) A 0.447(3) A 

v 400.3(3) A3 349.9(2) A3 50.4(4) A3 

wRv 0.1226 

R, 0.0955 

x2 1.158 

Table 11.1: Cell parameters for the high and low spin states of compound 13 at 262 K , 

from data collected on cooling. 
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H-Bonding and Pd· · · 0 Interactions 

The location of the solvent water molecules means the spin crossover transition will shorten 

their interactions with the main network. In the case of the Pel··· 0 interaction, the 

distance will shorten by the same 0.224(1) A that the Fe-Pyz bond contracts by. This 

means the distance changes from 3.615(3) A to 3.392(3) A (from the cell parameters at 

262 K). It is harder to say how the C-H- · · 0 interactions change, as it is possible that the 

orientation of the ring changes. However, it is probable that this distance also changes. 

Given the importance of weak interactions on spin transitions, it is likely that the C

H· · · 0 and Pel· · · 0 interactions are important, but without more structural information, 

it is impossible to draw any further conclusions. 

11.4 Conclusion 

The spin crossover transition in compound 13 can be seen in both the raw powder data and 

in the change in unit cell parameters. Although there is very little thermal contraction, 

the contraction clue to the SC transition is tmusually large (""12.5%). This is primarily 

due to the high iron content in the sample, but may also be due to a change in orientation 

of the bridging [Pd(CN)4j2- ligands. 

Although powder X-ray diffraction is often considered to be the poor relation of single 

crystal diffraction, a considerable amount of information has been gained with a reasonable 

level of reliability, due to the high symmetry of the sample. 



Part IV 

Conclusion 

289 



Chapter 12 

Closing Remarks 

The results presented herein comprise one of the first comprehensive structural studies of 

spin crossover materials. It begins with mononuclear complexes and progresses onto the 

more unusual dinuclear complexes and novel bimetallic polymer networks. As such, it has 

brought to light a number of new phenomena. 

Mononuclear and Dinuclear SC Complexes 

Fe(Phen)[H2B(Pz)2]2 (compound 2) is thought to be the first example of a complex where 

the LIESST state is structurally different to the thermal HS state, as there is a symmetry 

change from C2/c to the smaller primitive cell, PI (Chapter 3). Although compounds 

where the transition has a hysteresis often have an associated structural change, to our 

knowledge, the LIESST state of such a material has not before been studied. The com

parison between compound 2 where there is a structural change and the Bpyd analogue 

compound 1, where the three states (HS, LS and LIESST) are isostructural, gives a fasci

nating insight into the difference that can be made by the addition of two carbon atoms. 

Dinuclear SC complexes are very rare, but the structures of two very unusual materials 

have been studied (Chapters 5 and 6). The first (compound 4), involves a bipyrimidine 

bridged complex, which has been shown to tmdergo both a cooperative step transition 

and Light-Induced Excited Spin-State Trapping. However, despite magnetic susceptibility 

data that suggest the contrary, at 30 K the LIESST state appears to relax rapidly; an 

effect that might be X-ray stimulated. Irradiating during data collection using custom

built apparatus proved that the crystal remained intact and allowed a full structural 

290 
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study, which to om knowledge, is the first such structure to be carried out under constant 

irradiation. In contrast, the second dinuclear complex ( compmmd 5) undergoes a more 

gradual step transition and does not undergo LIESST. The variable temperature structural 

study performed gives an indication of the causes for the separate steps of the transition. 

Bimetallic Spin Crossover Networks 

Structural studies of bimetallic polymeric SC compounds in the literature to date are 

few, as this is a relatively new field. However, Fe(Pmd)2Fe(H20)2[Au(CN)2]4 and 

Fe(Pmd)2 Fe(H2 0)2[Ag(CN)2]4 (compounds 6 and 7) are particularly interesting examples 

of this type of material (Chapter 7). The highly abrupt, cooperative transition accom

panied by a dramatic colour change makes these compounds suitable for technological 

applications (e.g. displays). In addition, the loss of water coupled with the change in 

magnetic properties while retaining crystallinity, makes this type of material paTticularly 

interesting scientifically, as well as enhancing their industrial potential. For example tllis 

type of material could be used in devices for sensing humidity, where the temperature or 

presence of a colour change, indicates whether or not there is water present. 

The copper analogue however (compound 10, Chapter 8), although made in a sim

ilar way has a very different structure and has very different physical properties. Like 

compmmds 6 and 7, compound 10 tmclergoes a sharp SC transition without a structural 

change. However, not only does the transition take place at a much lower temperature, 

but the material can also be excited into a meta-stable high spin state using green light. 

{Fe(Pmd)[Ag(CN)2][Ag2 (CN)3]} (compound 11, Chapter 9) was a hi-product of the 

reaction that gave compound 7, but has yet another different structure and behaviour. 

This compound has five crystallographically unique iron centres, thought to be the first 

spin crossover material with such a high number of crystallographlcally inequivalent SC 

active centres. In compound 11 the iron atoms are connected by Pmd ligands to form 

chains, and through silver cyanide bridges forming a complex network. Despite the poor 

quality of the crystals, it has been possible to follow the progress of the spin transition, 

including a step transition and a meta-stable light induced HS state, through the changes 

in the FeN6 octal1edral volume. From this it was possible to identify the iron atoms 

responsible for the change in magnetic properties. Like compound 10, compound 11 also 
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undergoes LIESST, but uniquely, the relaxation is a two step process. 

The last silver cyanide compound studied was {Fe(Bpe)[Ag(CN)2]2} (compound 12, 

Chapter 10), which consists of Fe[Ag(CN)2] sheets connected by bis-pyridylethylene lig

ands to form two interpenetrating networks. This compound is one of the most unusual 

studied. Like compound 2, it has a thermally induced structural transition coupled with 

the spin crossover. In the case of compound 12, the LS state reached on cooling has a 

doubled cell volume. However, in contrast to compound 2, irradiating at 30 K generates 

a high spin state with the same crystal structure as the thermal high spin state. This 

meta-stable HS structure can also be reached by quenching a single crystal to 30 K. On 

warming from this meta-stable high spin state though, a second low spin state, with a 

structure analogous to that of the high spin state is generated. This is another effect that 

has not been reported previously to our knowledge, and is related to the "light induced 

polymorphism" seen in compotmd 2. 

Thus, this is one of the first in depth, structural studies of thermal and light induced 

spin transitions and many of the light induced effects have not been seen in the literature. 

This includes the thermal and light induced polymorphism in compmmd 2, the rapidly 

relaxing LIESST state in the bipyrimidine bridged dinuclear compound 4, the unique two 

step relaxation seen in the complex iron-silver network of compound 11 and the unusual 

structural behaviour of compound 12, which has two structural low spin states. This is 

in addition to a number of other materials which also exhibit a range of interesting prop

erties including allosterism and thermo-chromism in addition to their notable magnetic 

properties. 

This work has only scratched the surface of a fascinating field, but has highlighted a 

number of new properties with potential for use in technological applications. 
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Part V 

Appendices 



Appendix A 

Crystallographic Information 

A-1 



A.l. Compound 1 

A.l Compound 1 

A.l.l Single Crystal Data 

200 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C22 H24 B2 Fe N10 

505.g8 

200(2) K 

0.71073 A 
1\tlonoclinic, C21 c 

a= 16.2215(15) A a= goo 

b = 15.0254(15) A /3 = 114.858(4)0 

c = 11.03g7(11) A 1 =goo 

Volume 2441.5(4) A3 

z 4 

Density (calculated) 1.377 l'v1glm3 

Absorption coefficient 0.650 mm- 1 

F(OOO) 1048 

Crystal size 0.20 x 0.10 x 0.07 mm 

Theta range for data collection 2.35 to 30.51° 

Index ranges -22 <= h >= 21, -21 <= k >= 1g, -15 <= l >= 11 

Reflections collected 8856 

Independent reflections 3510 [R(int) = 0.051g] 

Completeness to theta = 30.51° g3_ 7% 

Absorption correction None 

Max. and min. transmission o.g55g and 0.8810 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3510 I 0 I 207 

Goodness-of-fit on F 2 1.003 

Final R indices [I>2sigma(I)] R 1 = 0.0521, wR2 = 0.0777 

R indices (all data) R 1 = O.Og87, wR2 = 0.0886 

Extinction coefficient 0 

Largest dilf. peak and hole 0.300 and -0.274 e. A - 3 

A-2 



A.l. Compound 1 

120 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C22 I-124 82 Fe N10 

505.g8 

120(2) K 

0.71073 A 
!vlonoclinic, C2l c 

a = 16.1373(8) A 0' = goo 

b = 14.6208(8) A f3 = 113.775(2) 0 

c = 10.8120(6) A 1 = goo 

Volume 2334.5(2) A3 

z 4 

Density (calculated) 1.440 Mglm3 

Absorption coefficient 0.680 mm- 1 

F(OOO) 1048 

Crystal size 0.20 x 0.10 x 0.07 nun 

Theta range for data collection 2.41 to 30.4 7° 

Index ranges -22 <= h >= 21, -20 <= k >= 18, -15 <= l >= 11 

Reflections collected 8408 

Independent reflections 3351 [R( int) = 0.0567] 

Completeness to theta = 30.47° g3_g% 

Absorption correction None 

Max. and min. transmission o.g540 and 0.8760 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3351 I 0 I 207 

Goodness-of~fit on F 2 o_gg4 

Final R indices [l>2sigma(l)] R 1 = 0.0501, wR2 = 0.0857 

R indices (all data) R 1 = 0.0g51, wR2 = 0.0g52 

Extinction coefficient 0 

Largest cliff. peak and hole 0.37g and -0.503 e. A - 3 

A-3 



A.l. Compound 1 

30 K 

Empirical formula 

:Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.53° 

Absorption correction 

rviax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [l>2sigma(l)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C22 H24 B2 Fe N10 

505.g8 

30(2) K 

0.71073 A 

Monoclinic, C21 c 

a= 16.1106(11) A a= goo 

b = 14.5gog(10) A fJ = 113.8g5(3) 0 

c = 10.8281(8) A "Y =goo 

2327.2(3) A 3 

4 

1.444 Mglm3 

0.682 mm- 1 

1048 

0.20 X 0.10 X 0.07 mm 

3.23 to 28.53° 

-20 <= h >= 1g, -1g <= k >= 15, -14 <= l >= 11 

6333 

2662 [R(int) = 0.0606] 

8g.6% 

None 

o.g538 and 0.8757 

Full-matrix least-squares on F 2 

2662 1 o 1 201 

1.001 

R1 = 0.04g1, tuR2 = 0.0823 

R 1 = O.Og46, tuR2 = 0.0g35 

0 

0.360 and -0.510 e.A - 3 

A-4 



A.l. Compound 1 

30 K - Irradiated 

Empirica.l formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C22 H24 B2 Fe N10 

505.g8 

30(2) K 

0.71073 A 

JVlonoclinic, C2l c 

a = 16.0350 A a = goo 

b = 14.g~n7(9) A (3 = 114.g86(2) 0 

c = 11.0470(7) A 1 =goo 

23g8.4(2) A3 

z 4 

Density (calculated) 1.401 Mglm3 

Absorption coefficient 0.662 mm- 1 

F(OOO) 1048 

Crystal size 0.20 x 0.10 x 0.07 mm 

Theta range for data collection 3.22 to 28.32° 

Index ranges -20 <= h >= 1g8, -1g <= k >= 15, -14 <= l >= 11 

Reflections collected 6071 

Independent reflections 2700 [R(int) = 0.062g] 

Completeness to theta = 28.32° 8g.go/r, 

Absorption correction None 

Max. and min. transmission o.g551 a.ncl 0.87go 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 2700 I 0 I 207 

Goodness-of-fit on F 2 1.060 

Final R indices [1>2sigma(I)] R 1 = 0.0630, wR2 = 0.0g5g 

R indices (all data) R 1 = 0.1089, wR2 = 0.1073 

Extinction coefficient 0 

Largest cliff. peak and hole 0.734 and -0.484 e.A - 3 

A-5 



A.2. Compound 2 

A.2 Compound 2 

A.2.1 Single Crystal Data 

200 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C24 H24 B2 Fe NlO 

530.00 

200(2) K 

0.71073 A 

Monoclinic, C21 c 

a = 17.3607(16) A a = goo 

b = 16.o3g7(14) A f3 = 121.617(3) 0 

c = 10.5614(g) A 1 = goo 

2504.4(4) A3 

z 4 

Density (calculated) 1.406 Mglm3 

Absorption coefficient 0.637 mm- 1 

F(OOO) 10g6 

Crystal size 0.28 x 0.10 x 0.02 mm 

Theta range for data collection 1.87 to 2g.12° 

Index ranges -22 <= h >= 23, -21 <= k >= 17, -12 <= l >= 14 

Reflections collected 10201 

Independent reflections 3370 [R(int) = 0.0485] 

Completeness to theta = 2g.12° gg,g% 

Absorption correction Integration 

Max. and min. transmission o.g874 and 0.8417 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3370 I 0 I 216 

Goodness-of-fit on F 2 1.023 

Final R indices [1>2sigma(I)] R 1 = 0.0461, wR2 = 0.0888 

R indices (all data) R 1 = 0.0807, wR2 = 0.1003 

Extinction coefficient 0 

Largest cliff. peak and hole 0.271 and -0.259 e. A - 3 

A-6 



A.2. Compound 2 

200 K - Short Collection 

Empirical formula 

Formula weight 

Temperature 

\Vavelength 

Crystal system, space group 

Unit cell dimensions 

C24 H24 B2 Fe N10 

530.00 

200(2) K 

0.71073 A 

Monoclinic, C2l c 

a = 17.347(13) A o: =goo 

b = 16.021(12) A !3 = 121.641(8) 0 

c = 10.550(8) A 1 = goo 

Volume 24g6(3) A 3 

z 4 

Density (calculated) 1.410 Mglm3 

Absorption coefficient 0.63g 111111- 1 

F(OOO) 10g5 

Crystal size 0.15 x 0.12 x 0.08 mm 

Theta range for data collection 2.76 to 2g.10° 

Index ranges _g <= h >= g, -21 <= k >= 21, -13 <= l >= 14 

Reflections collected 8158 

Independent reflections 188g [R(int) = 0.1065] 

Completeness to theta= 2g.10° 56.4% 

Absorption correction Integration 

Max. and min. transmission o.g506 a.ncl o.g102 

Refinement method Full-matrix least-squares on F 2 

Data. I restraints I parameters 188g I 0 I 176 

Goodness-of-fit on F 2 o_ggo 

Final R indices [1>2sigma.(I)] R 1 = 0.0503, wR2 = 0.0787 

R indices (all data.) R 1 = 0.1116, wR2 = 0.0g54 

Extinction coefficient 0 

Largest cliff. peak and hole 0.271 and -0.246 e.A - 3 

A-7 



A.2. Compound 2 

100 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C24 H24 82 Fe N10 

530.00 

100(2) K 

0.71073 A 

Triclinic, PI 

a= 11.6730(13) A n = 69.520(3) 0 

b = 11.0458(13) A f3 = 109.777(3) 0 

c = 10.5651(12) A I= 93.368(3) 0 

1198.1(2) A3 

z 2 

Density (calculated) 1.469 rvlglm3 

Absorption coefficient 0.666 mm- 1 

F(OOO) 548 

Crystal size 0.28 x 0.10 x 0.02 nun 

Theta range for data collection 1.86 to 29.13° 

Index ranges -15 <= h >= 15, -15 <= k >= 15, -11 <=I>= 14 

Reflections collected 11984 

Independent reflections 6409 [R(int) = 0.0539] 

Completeness to theta= 29.13° 99.3% 

Absorption correction Integration 

Max. and min. transmission 0.9868 and 0.8354 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 6409 I 3 I 430 

Goodness-of-fit on F 2 1.033 

Final R indices [I>2sigma(I)] R 1 = 0.0628, wR2 = 0.1296 

R indices (all data) R 1 = 0.1135, wR2 = 0.1473 

Extinction coefficient 0 

Largest cliff. peak and hole 1.379 and -0.662 e.A - 3 

A-8 



A.2. Compound 2 

30 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C24 H24 B2 Fe N10 

530.00 

30(2) K 

0.71073 A 

Triclinic, PI 

a = 11.655(2) A a = 69.492(3) 0 

b = 11.0156(19) A f3 = 109.755(3) 0 

c = 10.5664(18) A I = 93.280(3t 

1192.9(4) A3 

z 2 

Density (calculated) 1.476 Mglm3 

Absorption coefficient 0.669 mm -I 

F(OOO) 548 

Crystal size 0.15 x 0.12 x 0.08 mm 

Theta range for data collection 2.38 to 29.13° 

Index ranges -15 <= h >= 15, -15 <= k >= 15, -14 <= l >= 12 

Reflections collected 8374 

Independent reflections 5832 [R(int) = 0.0546] 

Completeness to theta = 29.13° 90.8% 

Absorption correction Integration 

l'vlax. and min. transmission 0.9484 and 0.9063 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 5832 I 0 I 407 

Goodness-of-fit on F 2 0.915 

Final R indices [l>2sigma(I)] R 1 = 0.0545, wR2 = 0.0894 

R indices (all data) R 1 = 0.0924, wR2 = 0.0983 

Extinction coefficient 0 

Largest cliff. peak and hole 1.048 and -0.635 e. A - 3 

A-9 



A.2. Compound 2 

30 K - Irradiated 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefflcient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 29.27° 

Absorption correction 

l'vlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C24 H24 82 Fe NJO 

530.00 

30(2) K 

0.71073 A 

Triclinic, PT 

a = 10.727(7) A 
b = 12.415(8) A 

c = 10.712(6) A 
1231.0(13) A3 

2 

1.430 Mglm3 

0.648 111111-J 

548 

Q = 67.473(15) 0 

,8 = 110.377(15) 0 

"Y = 93.505(11) 0 

0.15 x 0.12 x 0.08 mm 

2.59 to 29.27° 

-14 <= h >= 8, -16 <= k >= 14, -12 <=I>= 14 

5599 

5369 [R(int) = 0.0302] 

79.9% 

Integration 

0.9500 and 0.9090 

Full-matrix least-squares on F 2 

5569 1 6 I 350 

1.014 

R 1 = 0.0798, wR2 = 0.1620 

R 1 = 0.1259, wR2 = 0.1818 

0 

1.152 and -0.999 e. A - 3 

A-10 



A.3. Compound 3 

A.3 Compound 3 

A.3.1 Single Crystal Data 

160 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C23.125 H19.125 Fe N6.225 S2 

504.19 

160(2) K 

0.71073 A 

Tetragonal, 14!/ a 

a= 18.0482(5) A o = 90° 

b = 18.0482(5) A (3 =goo 

c = 28_gg62(10) A "' = goo 

9445.2( 5) A 3 

z 16 

Density (calculated) 1.418 Mglm3 

Absorption coefficient 0.839 mm- 1 

F(OOO) 4151 

Crystal size 0.32 x 0.12 x 0.12 mm 

Theta range for data collection 2.13 to 2g.15° 

Index ranges -23 <= h >= 23, -24 <= k >= 14, -32 <= l >= 39 

Reflections collected 24 734 

Independent reflections 6354 [R(int) = 0.0427] 

Completeness to theta= 29.15° 99.7% 

Absorption correction Integration 

Max. and min. transmission 0.9060 and 0.7750 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 6354 I 0 I 287 

Goodness-of-fit on F 2 1.023 

Final R indices [I>2sigma(I)] R 1 = 0.0471, wR2 = 0.1187 

R indices (all data) R 1 = 0.0771, wR2 = 0.1358 

Extinction coefficient 0 

Largest JilT. peak aud hole 0.672 and -0.688 e. A - 3 

A-ll 



A.3. Compound 3 

100 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C2:3.125 HI9.125 Fe N6.225 S2 

504.19 

100(2) K 

o.no73 A 

Tetragonal, 141/ a 

a=17.6203(4)A o=90° 

b = 17.6203(4) A {3 =goo 

c = 29.1010(9) A 1 = 90° 

9035.1(4) A3 

z 16 

Density (calculated) 1.483 l'viglm3 

Absorption coefficient 0.877 mm- 1 

F(OOO) 4151 

Crystal size 0.32 x 0.12 x 0.12 nun 

Theta range for data collection 2.13 to 29.15° 

Index ranges -24 <= h >= 23, -24 <= k >= 14, -36 <= l >= 39 

Reflections collected 29798 

Independent reflections 6086 [R(int) = 0.0507] 

Completeness to theta= 29.15° 99.9% 

Absorption correction Integration 

Max. and min. transmission 0.9020 and 0. 7666 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 6086 I 0 I 287 

Goodness-of-fit on F 2 1.036 

Final R indices [1>2sigma(I)] R 1 = 0.0455, wR2 = 0.1098 

R indices (all data) R 1 = 0.0730, wR2 = 0.1270 

Extinction coefficient 0 

Largest cliff. peak and hole 0.870 and -0.887 e. A - 3 

A-12 



A.4. Compound 4 A-13 

A.4 Compound 4 

A.4.1 Single Crystal Data 

240 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 29.13° 

Absorption correction 

IV!ax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [l>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest. cliff. peak and hole 

C24 H22 Fe2 N12 88 

846.72 

240(2) K 

0.71073 A 
Triclinic, PI 

a= 8.727(4) A 
b = 9.380(4) A 

a= 73.052(10) 0 

(3 = 79.508(11) 0 

c = 12.096(5) A I= 66.572(12) 0 

866.6(7) A3 

1 

1.622 !V!glm3 

1.357 mm- 1 

430 

0.14 x 0.12 x 0.08 mm 

2.44 to 29.13° 

-11 <= h >= 11, -12 <= k >= 12, -15 <= l >= 16 

7449 

4366 [R(int) = 0.0454] 

93.6% 

Semi-empirical from equivalents l'vlax. and min. transmission 

0.8992 and 0.8327 

Full-matrix least-squares on F 2 

4366 1 o I 208 

1.031 

R 1 = 0.0687, wR2 = 0.1474 

R, = 0.1355, wR2 = 0.1735 

0 

0.460 and -0.546 e. A -:J 



A.4. Compound 4 

175 K 

Empirical formula 

Formula weight. 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 

C24 H22 Fe2 N 12 88 

846.72 

175(2) K 

0.71073 A 

Triclinic, PI 

a = 8.606(3) A a = 72.955(7) 0 

b = 9.271 (3) A !3 = 80.170(7) 0 

c = 11.950(4) A '~ = 67.038(8) 0 

837.5(4) A3 

Density (calculated) 1.679 l\·Iglm3 

Absorption coefficient 1.404 mm- 1 

F(OOO) 430 

Crystal size 0.14 x 0.12 x 0.08 mm 

Theta range for data collection 2.46 to 29.13° 

Index ranges -11 <= h >= 11, -12 <= k >= 12, -15 <= l >= 15 

Reflections collected 7173 

Independent reflections 4223 [R(int) = 0.0404] 

Completeness to theta = 29.13° 93.3% 

A-14 

Absorption correction Semi-empirical from equivalents Max. and min. transmission 

Max. and min. transmission 0.8960 and 0.8277 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 4223 I 0 I 208 

Goodness-of-fit on F 2 1.023 

Final R indices [1>2sigma(I)] R 1 = 0.0646, wR2 = 0.1366 

R indices (all data) R 1 = 0.1097, wR2 = 0.1514 

Extinction coefficient 0 

Largest cliff. peak and hole 0.737 and -0.493 e.A - 3 



A.4. Compound 4 

30 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.06° 

Absorption correction 

l'vlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C24 H22 Fe2 N12 S8 

846.72 

30(2) K 

0.71073 A 

Triclinic, PI 

a = 8.434(3) A 

b = 9.075(3) A 

c = 11.763(3) A 

792.3(4) A3 

1. 775 tvlgjm3 

1.484 mm- 1 

430 

Q = 72.338(5) 0 

(3 = 80.903(4) 0 

1 = 67.617(5) 0 

0.14 x 0.12 x 0.08 mm 

2.61 to 28.06° 

-10 <= h >= 9, -11 <= k >= 7, -12 <= l >= 15 

3234 

2749 [R(int) = 0.0241] 

71.5% 

A-15 

Semi-empirical from equivalents :tvlax. and min. transmission 

0.8905 and 0.8191 

Full-matrix least-squares on F 2 

2749 1 o 1 208 

1.070 

R1 = 0.0555, wR2 = 0.1275 

R1 = 0.0848, wR2 = 0.1377 

0 

0.622 and -0.598 e.A - 3 



A.4. Compound 4 

30 K - Short Collection 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.07° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C24 H22 Fe2 N12 S8 

846.72 

30(2) K 

0.71073 A 

Triclinic, PI 

a = 8.46(2) A 

b = 9.15(2) A 

c = 11.79(3) A 

802(3) A3 

1.754 Mglm3 

1.467 mm- 1 

430 

a = 72.32(2) 0 

/3 = 80.854( 18) 0 

1 = 67.42(2) 0 

0.12 X 0.10 X 0.10 111m 

2.61 to 28.07° 

-9 <= h >= 11, -9 <= k >= 11, -14 <= l >= 15 

5029 

3301 [R(int) = 0.1814] 

84.6% 

A-16 

Semi-empirical from equivalents IVIax. and min. transmission 

0.8672 and 0.8436 

Full-matrix least-squares on F 2 

3301 1 o I 118 

0.955 

R 1 = 0.1281, wR2 = 0.1599 

R 1 = 0.2955, wR2 = 0.2190 

0 

0.922 and -0.910 e.A - 3 



A.4. Compound 4 

30 K - Irradiated 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

C24 H22 Fe2 N12 88 

846.72 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 

30(2) K 

0.71073 A 

Triclinic, PT 

a = 8.4994(16) A 

b = 9.1551(19) A 

c = 11.849(2) A 

810.7(3) A3 

Density (calculated) 1. 734 l'vlglm3 

Absorption coefficient 1.451 111111- 1 

F(OOO) 430 

a = 72.406(7r 

(3 = 80.810(6) 0 

'Y = 67.443(7) 0 

Crystal size 0.14 x 0.12 x 0.08 mm 

Theta range for data collection 2.67 to 27.56° 

Index ranges -10 <= h >= 10, -11 <= k >= 8, -15 <= l >= 15 

Reflections collected 5181 

Independent reflections 3172 [R(int) = 0.0404] 

Completeness to theta = 27.56° 84.8% 

A-17 

Absorption correction Semi-empirical from equivalents Max. and min. transmission 

Max. and min. transmission 0.8928 and 0.8227 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3172 I 0 I 118 

Goodness-of-fit on F 2 1.258 

Final R indices [1>2sigma(l)] R1 = 0.1709, wR2 = 0.3253 

R indices (all data) R 1 = 0.2284, wR2 = 0.3498 

Extinction coefficient 0 

Largest cliff. peak and hole 1.346 and -1.120 e.A - 3 



A.4. Compound 4 

30 K - Irradiated During Collection 

Empirical formula 

Formula weight 

Temperature 

C24 H22 Fe2 Nl2 S8 

846.72 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

30(2) K 

0.71073 A 
Triclinic, PI 

a = 8.639(4) A 

b = 9.214(4) A 
Cl' = 73.726(10) 0 

(3 = 80.388(8) 0 

Volume 

c = 12.041(6) A I = 67.295(8t 

846.9(7) A3 

z 
Density (calculated) 1.660 Ivlglm3 

Absorption coefficient 1.389 mm- 1 

F(OOO) 430 

Crystal size 0.12 x 0.10 x 0.10 mm 

Theta range for data collection 2.46 to 29.13° 

Index ranges -11 <= h >= 11, -12 <= k >= 12, -15 <= l >= l.'i 

Reflections collected 3351 

Independent reflections 3008 [R(int) = 0.1149] 

Completeness to theta = 28.03° 73.3% 

A-18 

Absorption correction Semi-empirical from equivalents Max. and min. transmission 

ivlax. and min. transmission 0.8511 and 0.8736 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3008 I 0 I 118 

Goodness-ot~fit on F 2 1.092 

Final R indices [l>2sigma(I)] R 1 = 0.1703, wR2 = 0.3437 

R indices (all data) R 1 = 0.2780, wR2 = 0.3918 

Extinction coefficient 0 

Largest diff. peak and hole 1. 7 4 7 and -1.464 e.A - 3 



A.5. Compound 5 

A.5 Compound 5 

A.5.1 Single Crystal Data 

400 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflect.ions collected 

Independent reflections 

Completeness to theta = 23.43° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C56 H58 F18Fe2 N13 P:3 

14.59. 76 

400(2) K 

0.71073 A 

Triclinic, PI 

a = 9.544(5) A 

b = 16.632(9) A 
c = 20.702(11) A 
3155(3) A3 

2 

1.537 l'vlglm3 

0.639 mm- 1 

1488 

a = 104.381(12) 0 

f3 = 90.849(13) 0 

1 = 97.202(12) 0 

0.16 x 0.09 x 0.05 mm 

1.02 to 23.43° 

-6 <= h >= 10, -18 <= k >= 18, -23 <= l >= 22 

14809 

8986 [R(int) = 0.0.1390] 

96.9% 

Integration 

0.9688 and 0.9047 

Full-matrix least-squares on F 2 

8986 1 375 1 833 

0.820 

R 1 = 0.0992, wR2 = 0.2315 

R 1 = 0.2437, wR2 = 0.29.59 

0 

0.831 and -0.840 e. A - 3 
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A.5. Compound 5 

350 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C56 H58 F 18Fe2 N13 P3 

1459.76 

350(2) K 

0.71073 A 

Triclinic, PT 

a = 9.5126(9) A o: = 104.328(2) 0 

b = 16.6366(16) A /3 = 90.818(2) 0 

c = 20.6718(19) A I= 97.211(2) 0 

3141.1(5) A3 

z 2 

Density (calculated) 1.543 Mglm3 

Absorption coefficient 0.641 mm- 1 

F(OOO) 1488 

Crystal size 0.16 x 0.09 x 0.05 mm 

Theta range for data collection 1.02 to 27.50° 

Index ranges -6 <= h >= 12, -21 <= k >= 21, -26 <= l >= 26 

Reflections collected 214 77 

Independent reflections 14332 [R(int) = 0.0643] 

Completeness to theta= 27.50° 99.1% 

Absorption correction Integration 

Max. and min. transmission 0.9686 and 0.9043 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 14332 I 279 I 930 

Goodness-of-fit on F 2 0.908 

Final R indices [1>2sigma(I)] R 1 = 0.0721, wR2 = 0.1211 

R indices (all data) R1 = 0.2396, wR2 = 0.1716 

Extinction coefficient 0 

Largest cliff. peak and hole 0.334 and -0.243 e.A3 
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A.5. Compound 5 

290 K 

Empirical formula 

Formula weight 

Temperature 

\Vavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C56 H58 Fl8Fe2 N13 P3 

1459.76 

290(2) K 

0.71073 A 

Triclinic, PT 

a = 9.4161(7) A a = 104.691(2) 0 

b = 16.4923(13) A f3 = 90.747(2r 

c = 20.6515(15) A 'Y = 97.624(2) 0 

3071.1(4) A3 

z 2 

Density (calculated) 1.579 Mglm3 

Absorption coefficient 0.656 mm- 1 

F(OOO) 1488 

Crystal size 0.16 x 0.09 x 0.05 mm 

Theta range for data collection 1.02 to 28.27° 

Index ranges -6 <= h >= 12, -21 <= k >= 21, -27 <= l >= 26 

Reflections collected 22169 

Independent reflections 15057 [R(int) = 0.0573] 

Completeness to theta = 28.27° 98.8% 

Absorption correction Integration 

l'vlax. and min. transmission 0.9679 and 0.9023 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 15057 I 380 I 926 

Goodness-of-fit on F 2 0.913 

Final R indices [1>2sigma(I)] R 1 = 0.0694, wR2 = 0.1181 

R indices (all data) R 1 = 0.2109, wR2 = 0.1605 

Extinction coefficient 0 

Largest cliff. peak and hole 0.371 and -0.254 e.A3 
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A.5. Compound 5 

250 K 

Empirical formula 

Formula weight 

Temperature 

\Vavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C56 H58 F18Fe2 N13 P3 

1459.76 

250(2) K 

0.71073 A 

Triclinic, PT 

a = 9.3841(7) A a= 104.771(2) 0 

b = 16.4442(12) A ,B = 90.705(2) 0 

c = 20.6515(14) A I= 97.763(2) 0 

3049.6(4) A3 

z 2 

Density (calculated) 1.590 Mglm3 

Absorption coefficient 0.661 mm- 1 

F(OOO) 1488 

Crystal size 0.16 x 0.09 x 0.05 mm 

Theta range for data collection 1.02 to 28.28° 

Index ranges -7 <= h >= 12, -21 <= k >= 21, -27 <= l >= 26 

Reflections collected 21998 

Independent reflections 14948 [R(int) = 0.0580] 

Completeness to theta = 28.28° 98.7% 

Absorption correction Integration 

Max. and min. transmission 0.9677 and 0.9017 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 14948 I 456 I 896 

Goodness-of-fit on F 2 0.948 

Final R indices [I>2sigma(I)] R 1 = 0.0753, wR2 = 0.1278 

R indices (all data) R 1 = 0.2106, wR2 = 0.1721 

Extinction coefficient 0 

Largest cliff. peak and hole 0.479 and -0.382 e.A3 
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A.5. Compound 5 

200 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C56 H58 F18Fe2 Nl3 P3 

1459.76 

200(2) K 

0.71073 A 

Triclinic, PI 

a= 9.3569(7) A a= 104.744(2) 0 

b = 16.3681(12) A f3 = 90.772(2) 0 

c = 20.6038(14) A I = 97.872(2) 0 

Volume 3019.1(4) A3 

z 2 

Density (calculated) 1.606 l'vlglm3 

Absorption coefficient 0.667 mm- 1 

F(OOO) 1488 

Crystal size 0.16 x 0.09 x 0.05 rnm 

Theta range for data collection 1.02 to 27.49° 

Index ranges -4 <= h >= 12, -21 <= k >= 21, -26 <= l >= 26 

Reflections collected 19610 

Independent reflections 13667 [R(int.) = 0.0528] 

Completeness to theta = 27.49° 98.7% 

Absorption correction Integration 

Iviax. and min. transmission 0.9674 and 0.9008 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 13667 I 138 I 896 

Goodness-of-fit on F 2 0.934 

Final R indices [l>2sigma(l)] R 1 = 0.0683, wR2 = 0.1230 

R indices (all data) R 1 = 0.1730, wR2 = 0.1574 

Extinction coefficient 0 

Largest cliff. peak and hole 0.663 and -0.452 e.A 3 
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A.5. Compound 5 

150 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C56 H58 F18Fe2 Nl3 P3 

1459.76 

150(2) K 

0.71073 A 

Triclinic, PI 

a = 9.2824(7) A a = 104. 750(2t 

b = 16.2859(13) A /3 = 90.715(2) 0 

c = 20.5636(16) A I= 98.076(2) 0 

2972.6(4) A3 

z 2 

Density (calculated) 1.631 Ivlglm3 

Absorption coefficient 0.678 mm- 1 

F(OOO) 1488 

Crystal size 0.16 x 0.09 x 0.05 mm 

Theta range for data collection 1.03 to 28.28° 

Index ranges -6 <= h >= 12, -21 <= k >= 21, -27 <= l >= 26 

Reflections collected 21461 

Independent reflections 14586 [R(int) = 0.0636] 

Completeness to theta= 28.28° 98.7% 

Absorption correction Integration 

Max. and min. transmission 0.9669 and 0.8993 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 14586 I 87 I 876 

Goodness-of-fit on F 2 0.943 

Final R indices [I>2sigma(I)] R 1 = 0.0750, wR2 = 0.1335 

R indices (all data) R 1 = 0.1834, wR2 = 0.1717 

Extinction coefficient 0 

Largest cliff. peak and hole 0. 767 and -0 .. 529 e.A 3 
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A.5. Compound 5 

90 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.29° 

Absorption correction 

l'vlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [1>2sigma(l)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C56 H58 F18Fe2 N13 P3 

1459.76 

90(2) K 

0.71073 A 

Triclinic, PI 

a= 9.2331(7) A a= 104.748(2) 0 

b = 16.2139(12) A f3 = 90.739(2) 0 

c = 20.5275( 15) A I = 98.4 73(2) 0 

2935.3(4) A3 

2 

1.652 Ivlglm3 

0.686 mm- 1 

1488 

0.16 x 0.09 x 0.05 mm 

1.03 to 28.29° 

-6 <= h >= 12, -21 <= k >= 21, -27 <= l >= 26 

21187 

14396 [R(int) = 0.0571] 

98.7% 

Integration 

0.9665 and 0.8981 

Full-matrix least-squares on F 2 

14396 1 132 1 896 

0.946 

R 1 = 0.0663, wR2 = 0.1244 

R1 = 0.1460, wR2 = 0.1521 

0 

0.840 and -0.517 e.A 3 
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A.6. Compound 6 

A.6 Compound 6 

A.6.1 Single Crystal Data 

180 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C8 H8 Au2 Fe N6 02 

66g,gg 

180(2) K 

0.71073 A 

Monoclinic, P2J/ c 

a= 14.6157(5) A a= goo 

b = 13.3075(5) A 13 = go.g44(2) 0 

c = 7.2272(3) A ~1 = goo 

Volume 1405.4g(g) A 3 

Z, 4 

Density (calculated) 3.166 Mglm3 

Absorption coefficient 21.84g mm- 1 

F(OOO) 11g2 

Crystal size 0.06 x 0.04 x 0.03 mm3 

Theta range for data collection 1.3g to 27.02° 

Index ranges ~18 <= h <= 18, ~17 <= k <= 17, ~g <= l <= g 

Reflections collected 15805 

Independent reflections 3072 [R(int) = 0.0540] 

Completeness to theta = 27.02° 100.0% 

Absorption correction Integration 

l\hx. and min. transmission 0.5602 and 0.3539 

Refinement method Full-matrix least-squares on F 2 

Dat.a I restraints I parameters 3072 I 4 I 199 

Goodness-of-fit on F 2 o.g26 

Final R indices [1>2sigma(I)] R 1 = 0.0241, wRz = 0.0447 

R indices (all data) R1 = 0.0366, ·uill2 = 0.0474 

Extinction coefficient 0 

Largest cliff. peak and hole 1.4J:l :mel ~ 1.131 eA - 3 
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A.6. Compound 6 

120 K 

Empirical formula 

Formula weight 

Temperature 

V\1avelength 

Crystal system, space group 

Unit cell dimensions 

C8 H8 Au2 Fe N6 02 

66g.gg 

120(2) K 

0.71073 A 

i'vlonoclinic, P211 c 

a= 14.01g4(4) A a = goo 

b = 13.1770(3) A /J = gJ.3780(10) 0 

c = 7.4306(2) A 1 = goo 

Volume 1372.28(6) A3 

z 4 

Density (calculated) 3.243 Mglm3 

Absorption coefficient 22.377 mm- 1 

F(OOO) 11g2 

Crystal size 0.06 x 0.04 x 0.03 mm3 

Theta range for data collection 1.45 to 28.28° 

Index ranges -18 <= h <= 18, -17 <= k <= 17, _g <= l <= g 

Reflections collected 16756 

Independent reflections 3401 [R(int) = 0.1025] 

Completeness to theta = 28.28° gg.g% 

Absorption correction Integration 

Max. and min. transmission 0.5533 and 0.34 70 

Refinement method Full-matrix lea.<;t-squares on F 2 

Data I restraints I parameters 3401 I 4 11gg 

Goodness-of-fit on F 2 o.g5g 

Final R indices [1>2sigma(I)] R 1 = 0.0324, wR2 = 0.0734 

R indices (all data) R 1 = 0.0442, wR2 = 0.0767 

Extinction coefficient 0 

Largest cliff. peak and hole 3.756 and -2.651 eA - 3 
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A.6. Compound 6 

A.6.2 Powder Data 

Before Dehydration 

Empirical formula C8 I-18 Au2 Fe N6 02 

Formula weight 66g.gg 

Temperature 2g3(2) K 

\Vavelength 1.5405g8 A 

Crystal system, space group l'vionoc:linic, P2I/ c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

a= 14.522g(3) A a= goo 

b = 13.4235(3) A f3 = go. 782(2) 0 

c = 7.2g57(2) A 'Y = goo 

1422.15(5) A3 

4 

0 <= h <= 16, 0 <= k <= 15, -8 <= l <= 8 

2037 

Le Bail Refinement 

1.053 

uog 

R 1 = 0.0482 wR2 = 0.0611 

R 1 = 0.0463 wR2 = 0.0568 
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A.6. Compound 6 

Rehydrated After Dehydration by Vacuum 

Empirical formula C8 H8 Au2 Fe N6 02 

Formula weight 669.99 

Temperature 293(2) K 

Wavelength 1.540598 A 

Crystal system, space group Monoclinic, P2 1 / c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement. method 

Goodness-of-fit 

xz 
Final R indices 

R indices (- background) 

a= 14.5236(4) A a= 90° 

b = 13.4324(3) A f3 = 90.771(2) 0 

c = 7.2955(2) A 1 = 90° 

1423.13(7) A 3 

4 

0 <= h <= 16, 0 <= k <= 14, -8 <= l <= 8 

2032 

Le Bail Refinement 

1.118 

1.251 

R 1 = 0.0489 wR2 = 0.0622 

R 1 = 0.0470 wR2 = 0.0566 
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A.6. Compound 6 

Rehydrated After Dehydration by Heating 

Empirical formula C8 H8 Au2 Fe N6 02 

Formula weight 669.9g 

Temperature 2g3(2) K 

Wavelength 1.540598 A 
Crystal system, space group i'vlonoclinic, P2I/ c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

a= 14.5226(4) A a= goo 

b = 13.4339(3) A f3 = 90.770(2) 0 

c = 7.2960(2) A 1 = goo 

1423.29(7) A 3 

4 

0 <= h <= 17, 0 <= k <= 15, -8 <= l <= 8 

2041 

Le Bail Refinement 

1.116 

1.245 

R1 = 0.0481 wR2 = 0.0617 

R 1 = 0.0457 wR2 = 0.0553 
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A.7. Compound 7 

A.7 Compound 7 

A. 7.1 Single Crystal Data 

225 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 2g_l4° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

C8 H8 Ag2 Fe N6 02 

4gl. 7g 

225(2) K 

0.71073 A 

l'vlonoclinic, P21 I c 

a= 14.7035(5) A o: =goo 

b = 13.2g62(5) A f3 = gl.441(2) 0 

c = 7.3852(3) A 1 = goo 

1443.35(g) A3 

4 

2.263 Mglm3 

3.683 mm- 1 

g36 

0.35 x 0.22 x 0.11 mm3 

2.07 to 2g.14o 

-20 <= h <= 20, -18 <= k <= 18, -10 <= l <= 10 

1g016 

3867 [R(int) = 0.0245] 

gg_6% 

Integration 

0.6875 and 0.358g 

Full-matrix least-squares on F 2 

3867 1 4 1 1gg 

1.064 

R 1 = 0.021g, wR2 = 0.0517 

R 1 = 0.0264, wR2 = 0.0535 

0 

0.8og and -0.688 eA - 3 
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A.7. Compound 7 

120 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C8 H8 Ag2 Fe N6 02 

4gl. 7g 

120(2) K 

0.71073 A 

rvlonoclinic, P21 I c 

a= 14.2584(4) A n =goo 

b = 13.0528(3) A f3 = g2.0550(10) 0 

c = 7.4g30(2) A 1 = goo 

Volume l3g3.64(6) A3 

z 4 

Density (calculated) 2.344 Mglm3 

Absorption coefficient 3.814 mm- 1 

F(OOO) g35 

Crystal size 0.35 x 0.22 x 0.11 mm3 

Theta range for data collection 2.12 to 2g.13o 

Index ranges -1g <= h <= 1g, -17 <= k <= 17, -10 <=I<= 10 

Reflections collected 1 770g 

Independent reflections 3744 [R(int) = 0.02g7] 

Completeness to theta = 2g.13° gg, 7% 

Absorption correction Integration 

Max. and min. transmission 0.67go and 0.:3487 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3744 I 4 I 1gg 

Goodness-of-fit on F 2 1.050 

Final R indices [1>2sigma(I)] R 1 = 0.0278, wR2 = 0.0705 

R indices (all data) R 1 = 0.0327, wR2 = 0.0730 

Extinction coefficient 0 

Largest cliff. peak and hole 1.4 73 and -0.880 eA - 3 
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A.7. Compound 7 

A.7.2 Powder Data 

Room Temperature, Before Dehydration 

Empirical formula C8 H8 Ag2 Fe N6 02 

Formula weight 491.79 

Temperature 293(2) K 

Wavelength 1.540598 A 

Crystal system, space group lVIonoclinic, P2I/ c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

a= 14.6566(5) A ex= 90° 

b = 13.3474(4) A f3 = 91.441(3) 0 

c = 7.4207(3) A 1 = 90° 

1451.24(10) A3 

4 

0 <= h <= 16, 0 <= k <= 14, -8 <= l <= 8 

2082 

Le Bail Refinement 

1.133 

1.283 

R 1 = 0.0525 wR2 = 0.0676 

R 1 = 0.0661 wR2 = 0.1006 
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A. 7. Compound 7 

Rehydrated After Dehydration Under Vacuum 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

C8 H8 Ag2 Fe N6 02 

491.79 

293(2) K 

1.540598 A 

Crystal system, space group lV!onoclinic, P2 1 / c 

Unit cell dimensions a = 14.6857(8) A a = 90° 

Volume 

z 
Index ranges 

Reflections collected 

Refinement. method 

Goodness-of-fit 

x2 
Final R indices 

R indices(- background) 

b = 13.3565(6) A /3 = 91.4674(4) 0 

c = 7.4300(4) A 1 = 90° 

1456.89(15) A3 

4 

0 <= h <= 16, 0 <= k <= 14, -8 <= l <= 8 

2086 

Le Bail Refinement 

1.090 

1.183 

R 1 = 0.0488 wR2 = 0.0631 

R1 = 0.0519 wR2 = 0.0703 
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A.7. Compound 7 

Rehydrated After Dehydration Under Vacuum in PheniX 

Empirical formula C8 H8 Ag2 Fe N6 02 

Formula weight 491.79 

Temperature 293(2) K 

Wavelength 1.540598 A 

Crystal system, space group ivionoclinic, P2 1 / c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

a = 14.6725(7) A a = 90° 

b = 13.3550(4) A f3 = 91.369(3) 0 

c = 7.4310(3) A 1 = 90° 

1455.70(12) A3 

4 

0 <= h <= 12, 0 <= k <= 11, -6 <= l <= 6 

557 

Le Bail Refinement 

1.137 

1.283 

R1 = 0.0490 wR2 = 0.0632 

R 1 = 0.0494 wR2 = 0.0637 
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A.8. Compound 8 

A.8 Compound 8 

A.8.1 Powder Data 

Room Temperature, Under Vacuum 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C8 H4 Au2 Fe N6 

633.g1 

2g3(2) K 

1.54o5g8 A 

Monoclinic, P2t/ c 

a = 12.3853(6) A a = goo 

b = 13.6752(6) A f3 = g4.151 (3) 0 

c = 8.3347(4) A 'Y =goo 

Volume 1408(3) A3 

z 4 

Index ranges 0 <= h <= 13, 0 <= k <= 14, -8 <= l <= 8 

Reflections collected 1765 

Absorption correction None 

Refinement method Rietveld Refinement 

Data I restraints I parameters 1765 I 27 I 34 

Goodness-of-fit 2.518 

x2 6.341 

Final R indices R 1 = 0.0505 wR2 = 0.0718 

R. indices(- background) R 1 = 0.0808 wR2 = 0.1314 
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A.8. Compound 8 

Room Temperature, Under Vacuum 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

C8 I-14 Au2 Fe N6 

633.g1 

2g3(2) K 

1.54o5g8 A 

Crystal system, space group :Monoclinic, P2J/ c 

Unit cell dimensions a = 12.382g(3) A a = goo 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

b = 13.6746(3) A fJ = g4.148(2) 0 

c = 8.3317(2) A 'Y = goo 

1407.12(7) A 3 

4 

0 <= h <= 13, 0 <= k <= 15, _g <= l <= g 

2025 

Le Bail Refinement 

1.4g4 

2.231 

R1 = 0.0332 wR2 = 0.0456 

R 1 = 0.0427 wR2 = 0.0626 
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A.8. Compound 8 

373 K 

Empirical formula 

Formula weight. 

Temperature 

Wavelength 

C8 H4 Au2 Fe N6 

633.91 

373(2) K 

1.540598 A 

Crystal system, space group Monoclinic, P2J/ c 

Unit cell dimensions a = 12.3728(3) A a = 90° 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

b = 13.6791(3) A f3 = 94.148(2) 0 

c = 8.3374(2) A 1 = 90° 

1407.40(7) A 3 

4 

0 <= h <= 13, 0 <= k <= 15, -9 <= l <= 9 

2026 

Le Bail Refinement 

1.402 

1.966 

R 1 = 0.0326 wR2 = 0.0440 

R1 = 0.0361 wR2 = 0.0483 
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A.9. Compound 9 

A.9 Compound 9 

A.9.1 Powder Data 

Room Temperature, Under Vacuum 

Empirical formula C8 H4 Ag2 Fe N6 

Formula weight. 455.71 

Temperature 293(2) K 

Wavelength 1.540598 A 
Crystal system, space group l'l'lonoclinic, PI 

Unit cell dimensions 

Volume 

z 

a = 12.1952(5) A 
b = 13.7186(7) A 

c = 8.5944(6) A 
1430.32(10) A3 

4 

Q = 87.940(4) 0 

(J = 95.206(5) 0 

1 = 88.429(4) 0 

Index ranges 

Reflections collected 

0 <= h <= 13, -15 <= k <= 15, -9 <= l <= 9 

4119 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

Le Bail Refinement 

1.675 

2.805 

R 1 = 0.0212 wR2 = 0.0326 

R 1 = 0.0373 wR2 = 0.0705 
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A.9. Compound 9 

200 K, Under Vacuum 

Empirical formula C8 J-14 Ag2 Fe N6 

Formula weight 455.71 

Temperature 200(2) K 

Wavelength 1.540598 A 

Crystal system, space group !vlonoclinic, P2 J/ c 

Unit cell dimensions 

Volume 

z 

a = 12.3255(5) A 
b = 13.8532(7) A 
c = 8.3166(4) A 
1406.01(11) A3 

4 

a= 86.571(4) 0 

f3 = 97.019(4) 0 

1 = 88.455(4) 0 

Index ranges 

Reflections collected 

0 <= h <= 10, -11 <= k <= 11, -6 <= l <= 6 

1701 

Refinement method 

Goodness-of· fit 

x2 
Final R indices 

R indices(- background) 

Le Bail Refinement 

1.629 

2.653 

R1 = 0.0597 wR2 = 0.0858 

R 1 = 0.0607 wR2 = 0.0871 
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A.9. Compound 9 

17 K, Under Vacuum 

Empirical formula C8 1-14 Ag2 Fe N6 

Formula weight 455.71 

Temperature 17(2) K 

Wavelength 1.540598 A 

Crystal system, space group lVIonoclinic, P21 / c 

Unit cell dimensions 

Volume 

z 
Index ranges 

Reflections collected 

Refinement method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

a= 11.8922(8) A o: = 84.038(5) 0 

b = 13.7431(10) A /3 = 96.682(5) 0 

c = 8.1098(6) A 7 = 88.842(5) 0 

1308.6(12) A3 

4 

0 <= h <= 9, -II <= k <= 11, -6 <= l <= 6 

1588 

Le Bail Refinement 

1.732 

3.000 

R 1 = 0.0572 wR2 = 0.0839 

R 1 = 0.0664 wR2 = 0.1080 

A-41 



A.10. Compound 10 

A.lO Compound 10 

A.lO.l Single Crystal Data 

180 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 29.12° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-ol~fit on F 2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest diff. peak and hole 

C12 J-18 Cu2 Fe N8 

447.19 

180(2) K 

0.71073 A 

Triclinic, PT 

a= 6.7584(12) A 

b = 8.0796(15) A 

c = 7.9862(15) A 

370.06(12) A3 

2.007 Mglm3 

3.824 mm- 1 

220 

0' = 110.102(3) 0 

/3 = 108.500(4) 0 

1 = 99.272(4) 0 

0.06 x 0.05 x 0.03 mm 

2.82 to 29.12° 

-9 <= h >= 8, -11 <= k >= 11, -10 <= l >= 10 

3927 

1938 [R(int) = 0.0524] 

97.6% 

Semi-empirical from equivalents 

0.8939 and 0.8030 

Full-matrix least-squares on F 2 

1939 1 o 1 106 

0.964 

R 1 = 0.0401, wR2 = 0.0786 

R 1 = 0.0625, wR2 = 0.0829 

0 

0.654 and -0.4 70 e.A - 3 
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A.lO. Compound 10 

90 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coeflicient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 29.13° 

Absorption correction 

:tvlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit uu F 2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coeflicient. 

Largest. cliff. peak and hole 

C12 H8 Cu2 Fe N8 

447.19 

90(2) K 

0.71073 A 

Triclinic, PT 

a= 6.8434(13) A 

b = 7.7006(14) A 

c = 7.7696(15) A 

352.00(11) A3 

1 

2.110 Mglm3 

4.020 mm- 1 

220 

C\' = 109.077(4t 

(3 = 108.194(4) 0 

1 = 99.021(4) 0 

0.06 x 0.05 x 0.03 mm 

2.92 to 29.13° 

-9 <= h >= 8, -10 <= k >= 10, -10 <= l >= 10 

3761 

1864 [R(int) = 0.0320] 

98.0% 

Semi-empirical from equivalents 

0.8889 and 0.7945 

Full-matrix least-squares on F 2 

1864 1 o 1 106 

1.178 

R1 = 0.0471, wR2 = 0.1140 

R 1 = 0.0643, wR2 = 0.1197 

0 

1.160 and -0.653 e.A - 3 
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A.lO. Compound 10 

30 K - Irradiated 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 29.10° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C12 H8 Cu2 Fe N8 

447.19 

30(2) K 

o. 71073 A 

Triclinic, PI 

a= 6.71(4) A 
b = 8.15(11) A 

c = 7.98(7) A 

371(6) A3 

1 

2.004 Mglm3 

3.818 mm- 1 

220 

Q = 110.6(11) 0 

f] = 108.1(13) 0 

,. = 99.2(10) 0 

0.06 x 0.05 x 0.03 mm 

3.09 to 29.10° 

-8 <= h >= 9, -7 <= k >= 9, -10 <= l >= 2 

1259 

1259 [R(int) = 0.0000] 

63.6% 

Semi-empirical from equivalents 

0.8941 and 0.8033 

Full-matrix least-squares on F 2 

1259 1 o I 46 

0.983 

R1 = 0.0803, wR2 = 0.1784 

R1 = 0.1253, wR2 = 0.1945 

0 

1.734 and -2.154 e.A - 3 
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A.ll. Compound 11 

A.11 Compound 11 

A.ll.l Single Crystal Data 

290 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C9 I-I4 Ag3 Fe N7 

589.65 

290(2) K 

0.71073 A 
.l'vlonoclinic, P2J/ c 

a = 17.5595(6) A o = 90° 

b = 29.2286(10) A f3 = 97.410(2) 0 

c = 12.2993(4) A 1 = 90° 

Volume 6259.8(6) A3 

z 16 

Density (calculated) 2.501 Mglm3 

Absorption coefficient 4.601 mm- 1 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 1.17 to 28.28° 

Index ranges -28 <= h >= 28, -38 <= k >= 38, -16 <= l >= 16 

Reflections collected 77042 

Independent reflections 15546 [R(int) = 0.0748] 

Completeness to theta = 28.28° 99.9% 

Absorption correction Integration 

Max. and min. transmission 0.917 and 0.492 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 15546 I 0 I 724 

Goodness-of-fit on F 2 1.060 

Final R indices [1>2sigma(I)] R 1 = 0.0743, wR2 = 0.2047 

R indices (all data) R 1 = 0.1413, wR2 = 0.2403 

Extinction coefficient 0 

Largest cliff. peak and hole 2.611 and -1.063 e.A - 3 
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A.ll. Compound 11 

220 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C9 H4 Ag3 Fe N7 

58g.65 

220(2) K 

0.71073 A 

Monoclinic, P2J/ c 

a = 17.55g6(8) A a = goo 

b = 2g.2136( 13) A f3 = g7.300(2) 0 

c = 12.253g(6) A 1 = goo 

Volume 6235.1(8) A3 

z 16 

Density (calculated) 2.512 !Vlglm3 

Absorption coefficient 4.621 111111- 1 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 1.17 to 28.2go 

Index ranges -23 <= h >= 23, -38 <= k >= 38, -16 <= l >= 16 

Reflections collected 76323 

Independent reflections 1547g [R(int) = 0.06g1] 

Completeness to theta = 28.2go gg.8% 

Absorption correction Integration 

lVIax. and min. transmission o.g17 and 0.4g1 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 154 7g I 0 I 724 

Goodness-of-fit. on F 2 1.053 

Final R indices [1>2sigma(I)] R 1 = 0.0732, wR2 = 0.2011 

R indices (all data.) R1 = 0.1212, w R2 = 0.2271 

Extinction coefficient 0 

Largest cliff. peak and hole 3.436 and -1.081 e.A - 3 
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A.ll. Compound 11 

170 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

cg H4 Ag3 Fe N7 

58g.65 

170(2) K 

0.71073 A 

r..·Ionoclinic, P21 I c 

a= 17.2561(10) A a= goo 

b = 2g.5042(18) A f3 = g6.875(2) 0 

c = ll.g308(7) A 1 = goa 

Volume 6030.6(10) A3 

z 16 

Density (calculated) 2.5g7 Mglm3 

Absorption coefficient 4.777 mm- 1 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 1.1g to 28.2go 

Index ranges -23 <= h >= 23, -3g <= k >= 3g, -15 <= l >= 15 

Reflections collected 6g166 

Independent reflections 14g54 [R(int) = 0.1002] 

Completeness to theta = 28.2go gg,g% 

Absorption correction Integration 

Max. and min. transmission o.g13 and 0.4go 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 14g54 I 0 I 724 

Goodness-of-fit. on F 2 1.075 

Final H. indices [1>2sigma(I)] R 1 = 0.1012, wR2 = 0.3078 

H. indices (all data) R 1 = 0.156g, wR2 = 0.3333 

Extinction coefficient 0 

Largest. diff. peak and hole 5.343 and -2.022 e. A - 3 
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A.11. Compound 11 

90 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C9 H4 Ag3 Fe N7 

589.65 

90(2) K 

0.71073 A 

Monoclinic, P2J/ c 

a= 17.1761(10) A a= goo 

b = 29.2567(17) A f3 = 97.051(2t 

c = 11.5799(7) A 1 = 90° 

Volume 5775.1(10) A3 

z 16 

Density (calculated) 2. 712 l'vlglm3 

Absorption coefficient 4.990 mm- 1 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 1.19 to 28.28° 

Index ranges -22 <= h >= 22, -39 <= k >= 39, -15 <= l >= 15 

Reflections collected 62403 

Independent reflections 14290 [R( int) = 0.0775] 

Completeness to theta = 28.28° 99.8% 

Absorption correction Integration 

Max. and min. transmission 0.909 and 0.483 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 14290 I 0 I 724 

Goodness-of-fit on F 2 1.135 

Final R indices [1>2sigma(I)] R1 = 0.0834, wRz = 0.2152 

R indices (all data) R 1 = 0.1109, wR2 = 0.2278 

Extinction coefficient 0 

Largest cliff. peak and hole 4.427 and -2.231 e.A - 3 
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A.11. Compound 11 

30 K 

Empirical formula 

Formula weight 

Temperature 

vVavelength 

Crystal system, space group 

Unit cell dimensions 

C9 H4 Ag3 Fe N7 

589.65 

30(2) K 

0.71073 A 

Monoclinic, P21 I c 

a = 17.214(3) A a = 90° 

b = 29.252(5) A ,B = 97.015(4) 0 

c = 11.559(2) A 1 = 90° 

Volume 5777(3) A3 

z 16 

Density (calculated) 2.712 Mglm3 

Absorption coefficient 4.989 mm -I 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 2.65 to 28.12° 

Index ranges -17 <= h >= 19, -36 <= k >= 38, -15 <= l >= 4 

Reflections collected 17731 

Independent reflections 10368 [ R( i nt) = 0. 0884] 

Completeness to theta= 28.12° 73.5% 

Absorption correction Integration 

!vlax. and min. transmission 0.909 and 0.525 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 10368 I 0 I 260 

Goodness-of-fit on F 2 1.095 

Final R indices [I>2sigma(I)] R 1 = 0.1035, 'WR2 = 0.2177 

R indices (all data) R 1 = 0.1637, wR2 = 0.2390 

Extinction coefficient 0 

Largest cliff. peak and hole 4.005 and -2.723 e.A - 3 
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A.ll. Compound 11 

30 K - Irradiated 

Empirical formula 

Formula weight 

Temperature 

\Vavelength 

Crystal system, space group 

Unit cell dimensions 

cg H4 Ag3 Fe N7 

58g.65 

:30(2) K 

0.71073 A 

.Monoclinic, P21 I c 

a = 17.6506(1g) A Cl" = goo 

b = 2g.281(3) A f3 = g7.228(2° 

c = 12.2184(14) A "f = goo 

Volume 6264.7(12) A3 

z 16 

Density (calculated) 2.501 Mglm3 

Absorption coefficient 4.601mm- 1 

F(OOO) 4384 

Crystal size 0.084 x 0.070 x 0.020 mm 

Theta range for data collection 1.17 to 28.28° 

Index ranges -20 <= h >= 23, -37 <= k >= 38, _g <= l >= 16 

Reflections collected 33203 

Independent reflections 13630 [R(int) = 0.1124] 

Completeness to theta = 28.14° 88.8% 

Absorption correction Integration 

l'vlax. and min. transmission 0.g17 and 0.451 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 13630 I 0 I 404 

Goodness-of-fit on F 2 1.0g7 

Final R indices [I>2sigma(I)] R 1 = 0.1Q7g, wR2 = 0.2257 

R indices (all data) R 1 = 0.1704, wR2 = 0.24go 

Extinction coefficient 0 

Largest cliff. peak and hole 5.g52 and -2.8g4 e.A - 3 

A-50 



A.12. Compound 12 

A.12 Compound 12 

A.l2.1 Single Crystal Data 

160 K 

Empirical formula 

Formula weight 

Temper at ure 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C28 H20 Ag2 Fe N8 

740.11 

160(2) K 

0.71073 A 

Monoclinic, P2 1ln 
a = g.4597(10) A a =goo 

b = 11.1484(13) A f3 = g5.149(5) 0 

c = 13.3100(14) A 1 =goo 

13g8.0(3) A 3 

z 2 

Density (calculated) 1. 758 ivlglm3 

Absorption coefficient 1.g31 mm- 1 

F(OOO) 728 

Crystal size 0.22 x 0.10 x 0.10 mm 

Theta range for data collection 2.3g to 2g.14° 

Index ranges -12 <= h >= 8, -15 <= k >= 15, -18 <= l >= 18 

Reflections collected g714 

Independent reflections 3688 [R(int) = 0.0271] 

Completeness to theta= 2g.14o g8.1% 

Absorption correction Integration 

l'vlax. and min. transmission o.g680 and O.g024 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 3688 I 0 I 178 

Goodness-of-fit on F 2 1.02g 

Final R indices [l>2sigma(I)] R 1 = 0.0247, wR2 = 0.0563 

R indices (all data) R1 = 0.0336, wR2 = 0.0593 

Extinction coefficient 0 

Largest cliff. peak and hole 0.484 and -0.310 e.A - 3 
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A.12. Compound 12 

30 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C28 H20 Ag2 Fe N8 

740.11 

30(2) K 

0.71073 A 

l'vlonoclinic, P21 I c 

a = 16.730(2) A o = goo 

b = 11.ogg1(13) A f3 = 108.82g(2t 

c = 15.4382(1g) A 1 =goo 

2713.3(6) A3 

z 2 

Density (calculated) 1.812 Mglm3 

Absorption coefficient 1.ggo mm- 1 

F(OOO) 1456 

Crystal size 0.22 x 0.10 x 0.10 mm 

Theta range for data collection 2.41 to 28.12° 

Index ranges -1g <= h >= 21, -14 <= k >= 14, -13 <= l >= 20 

Reflections collected 130g7 

Independent reflections 5g24 [R(int) = 0.0477] 

Completeness to theta= 28.12° 8g.3% 

Absorption correction Integration 

Max. and min. transmission 0.8258 and 0.6686 

Refinement method Full-matrix least-squares on F 2 

Data I restraints I parameters 5g24 I 0 I 355 

Goodness-of-fit on F 2 1.086 

Final R indices [l>2sigma(I)] R 1 = 0.0621, wR2 = 0.1803 

R indices (all data) R 1 = 0.104g, wR2 = 0.2131 

Extinction coefficient 0 

Largest cliff. peak and hole 2.651 and -3.676 e.A -:l 
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A.12. Compound 12 

30 K - Irradiated 

Empirical formula 

Formula weight 

Temperature 

'vVavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta= 28.12° 

Absorption correction 

Max. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [I>2sigma(l)] 

R indices (all data) 

Extinction coeHicient 

Largest cliff. peak and hole 

C28 H20 Ag2 Fe N8 

740.11 

30(2) K 

0.71073 A 

.Monoclinic, P2J/n 

a = g,44g0(16) A a = goo 

b = 10.g580(1g) A f3 = g5.294(3t 

c = 13.343(2) A 1 = goo 

1375.7(4) A3 

2 

1. 787 !vlglm3 

1.963 mm- 1 

728 

0.22 X 0.10 X 0.10 mm 

2.41 to 28.05° 

-6 <= h >= 11, -14 <= k >= 14, -16 <= l >= 17 

6700 

3014 [R(int) = 0.033g] 

go.2% 

Integration 

0.827g and 0.6720 

Full-matrix least-squares on F 2 

3014101178 

1.206 

R 1 = 0.0554, wR2 = 0.1162 

R 1 = 0.0816, wR2 = 0.1366 

0 

3.924 and -1.4 72 e.A - 3 

A-53 



A.12. Compound 12 

30 K, Quenched 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.1go 

Absorption correction 

rvlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

Final R indices [1>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C28 I-120 Ag2 Fe N8 

740.11 

30(2) K 

0.71073 A 
l'vlonoclinic, P2I/ n 

a= g.4431(7) A o = goo 

b = 1o.g54g(8) A (3 = g5.270(1 )0 

c = 13.2707(g) A 'Y = goo 

1367.03(17) A3 

2 

1.7g8 Mglm3 

l.g75 mm- 1 

728 

0.22 X 0.10 X 0.10 mm 

2.41 to 28.1go 

-12 <= h >= 11, -8 <= k >= 14, -16 <= l >= 17 

7072 

2g8g [R(int) = 0.0185] 

88.5% 

Integration 

0.826g and 0.6704 

Full-matrix least-squares on F 2 

2g8g 1 o 1 178 

1.037 

R 1 = 0.0210, wR2 = 0.04g2 

R 1 = 0.0240, wR2 = 0.0507 

0 

0.7g8 and -0.770 e. A -J 
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A.12. Compound 12 

30 K, Quenched-Warmed-Cooled 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

C28 H20 Ag2 Fe N8 

740.11 

30(2) K 

0.71073 A 

Monoclinic, P2 1ln 

a = 9.3388(7) A a = 90° 

b = 11.0703(8) A f3 = 94.7920(10t 

c = 13.0018(10) A 1 = 90° 

Volume 1339.4 7( 17) A 3 

z 2 

Density (calculated) 1.835 l'vlglm3 

Absorption coefficient 2.016 mm- 1 

F(OOO) 728 

Crystal size 0.22 x 0.10 x 0.10 mm 

Theta range for data collection 2.42 to 28.31 o 

Index ranges -12 <= h >= 11, -9 <= k >= 14, -15 <= l >= 17 

Reflections collected 6979 

Inclepenclent reflections 2932 [R(int) = 0.0362] 

Completeness to theta= 28.31° 87.9% 

Absorption correction Integration 

Max. and min. transmission 0.8238 and 0.6654 

Refinement method Full-matrix least-squares on F 2 

Data I restraints / parameters 2932 I 0 I 178 

Gooclness-of~fit on F 2 1.017 

Final R indices [1>2sigma(I)] R 1 = 0.0330, wR2 = 0.0680 

R indices (all data) R 1 = 0.0512, wR2 = 0.0731 

Extinction coefficient 0 

Largest cliff. peak and hole 0.734 and -0.416 e.A - 3 
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A.12. Compound 12 

30 K, Quenched-Warmed-Cooled-Irradiated 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

z 
Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 28.ogo 

Absorption correction 

l'vlax. and min. transmission 

Refinement method 

Data I restraints I parameters 

Goodness-ol~fit on F 2 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Extinction coefficient 

Largest cliff. peak and hole 

C28 H20 Ag2 Fe N8 

740.11 

30(2) K 

0.71073 A 

l'vfonoclinic, P21 In 
a = g.4842(8) A o: = goo 

b = 1o.g423(g) A f3 = g5.3620( 10) 0 

c = 13.3373(10) A 1 = goo 

1378.07(1g) A3 

2 

1.784 l'vfgl1113 

l.g5g 111111-l 

728 

0.22 X 0.10 X 0.10 111111 

2.41 to 28.ogo 

-12 <= h >= 12, -8 <= k >= 14, -16 <=I>= 17 

7152 

3010 [R(int) = 0.0427] 

8g.3% 

Integration 

0.8282 and 0.6724 

Full-matrix least-squares on F 2 

3010101178 

1.028 

R1 = 0.0312, wR2 = 0.0705 

R 1 = 0.0457, wR2 = 0.0755 

0 

0.666 and -0.515 e.A - 3 
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A.13. Compound 13 

A.13 Compound 13 

A.13.1 Powder Data 

300 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

C8 H4 Fe N6 02 Pel 

:374.37 

300 K 

1.5405g8 A 

Tetragonal, P4lm 

Unit cell dimensions (High Spin) a = 7.4417(5) A a= goo 

b = 7.4417(5) A (3 = goo 

c = 7.238g(7) A 1 = goo 

Volume 400.88(g) A 3 

Unit cell dimensions (Low Spin) a = 7.2272(6) A a = goo 

b = 7.2272(6) A (3 = goo 

c = 6.774(7) A ~f =goo 

Volume 353.8(6) A 3 

z 
Index ranges 

Reflections collected 

Absorption correction 

Refinement method 

Data I restraints I parameters 

Goodness-of-fit on F 2 

x2 
Final R indices 

R indices (- background) 

1 

0 <= h >= 7, 0 <= k >= 7, 0 <= l >= 7 

371 

None 

Rietveld Refinement 

:371 I 18 1 2g 

1.3gg 

l.g58 

R1 = 0.062g, wR2 = 0.0815 

R1 = O.Og77, wR2 = 0.1:31g 
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17 K 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

Unit cell dimensions 

Volume 

C8 H4 Fe N6 02 Pel 

374.37 

17 K 

1.54o5g8 A 

Tetragonal, P4lm 

a = 7.176g(7) A a = goo 

b=7.176g(7)A fl=goo 

c = 6.7672(8) A 1 = goo 

348.6(1) A3 

z 1 

Index ranges 0 <= h >= 7, 0 <= k >= 7, 0 <= l >= 7 

Reflections collected 172 

Absorption correction None 

Refinement method Rietveld Refinement 

Data I restraints I parameters 172 I 18 I 25 

Goodness-of-fit on F 2 1.41g 

x2 2.013 

Final R indices R 1 = 0.0505, wR2 = 0.0718 

R indices(- background) R 1 = 0.1010, wR2 = 0.1408 
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262 K 

Empirical formu Ia 

Formula weight 

Temperature 

Wavelength 

Crystal system, space group 

C8 H4 Fe N6 02 Pel 

374.37 

262 K 

1.54o5g8 A 

Tetragonal, P4/m 

Unit cell dimensions (High Spin) a = 7.4405(13) A a =goo 

b = 7.4405(13) A j3 =goo 

c = 7.22g8(14) A "Y =goo 

Volume 400.3(3) A3 

Unit cell dimensions (Low Spin) a = 7.1828(13) A a= goo 

Volume 

z 
Index ranges 

Reflections collected 

Refinement. method 

Goodness-of-fit 

x2 
Final R indices 

R indices (- background) 

b = 7.1828(13) A j3 =goo 

c = 6.7828(14) A "Y =goo 

34g.g(2) A3 

0 <= h >= 7, 0 <= k >= 7, 0 <= I >= 7 

14g 

Le Bail Refinement 

1.076 

1.158 

R 1 = 0.0g55 wR2 = 0.1226 

R 1 = 0.1087 wR2 = 0.1350 
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B.l Conferences 

Conference 

British Crystallographic Associat,ion Autumn Meeting 2000 

British Crystallographic Association Spring l'vleeting 2001 

British Crystallographic Association Autumn l\·leeting 2001 

Details 

Glaxo-'vVellcome. Harlow, Essex. 161h 

November, 2000 

Reading University, Heading, UK, 7th_ 

10"' April, 2001 

Aston University, Birmingham, UK, 14th 

November, 2001 

Royal Society of Chemistry Farraday Division- General Dis- Hulme Hall, University of Manchester, 

cussion No. 122 UK, 25th -26th June, 2002 

XIX Congress of the International Union of Crystallography 

British Crystallographic Association Autumn Meeting 2002 

Exemplar Chem. 

British Crystallographic Association Spring Meeting 2003 

Palexpo, Geneva, Switzerland. August 

2002 

13th November, 2002 

Scientific Societies Lecture Theatre, New 

Burlington Place, London WI, UK, 29th 

November, 2002 

York University, 1-Ieslington, York, UK, 

15th_] 7th April 2003 
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B.2 Courses 

Course Title Organisers/Sponsors & Dates/Examinations 

Location 

Condensed Matter Physics: X-rays Dr. Thomas. P. A. Hase, October, 2000 

and Neutrons 

Condensed l'vlat.ter Physics: lvlodern 

lvlagnetic Resonance 

Diffraction & Scattering l'vlethods 

University of Durham, UK 

Prof. Robin K. Harris, November, 2000 

University of Dmham, UK 

Dr. Andres E. Goeta, Uni- January /February, 2001. Exam-

versity of Durham, UK ination 19th !vi arch, 91% (pass) 

Practical Electronic Structure Calcu- Dr. David J. Tozer, Uni- February, 2001. Examination 

15th r..·larch, 63% (pass) lations versity of Durham, UK 

gth BCA/CCG Intensive Course in 

X-ray Structure Analysis 

7th Oxford School on Neutron Scat-

tering 

Pupil Researcher Initiative Re-

British Crystallographic 3oth March - 6'" ApriL 2001 

Association, Trevelyan 

College, Durham, UK 

Mansfield College, Oxford, 27 11' August - 5th September, 

UK WOl 

Sheffield 

searcher in Residence Scheme versity, 

Hallam 

Sheffield. 

Uni- 22th September, 2001 

UK. 

Training 

ISIS Neutron Training Course 

Newcastle University, 

Newcastle-upon-Tyne, UK 

ISIS, Rutherford Appleton 

Laboratories, Didcot, Ox

fordshire, U I<. 

191h-281h October, 2002 

12111 Higher European Course for ILL/ESRF Grenoble. 17111 February - 28th March. 

Users of Large Experimental Systems France and LLB/LURE, 2002 

Magnetic Rietveld Course 

Paris, France 

Coseners House, Abing

don, UK 
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B.3 Departmental and Other Seminars 

Author 

Dr. Victor Cristau 

Prof. Vickie McKee 

Dr. Jonathan P. L. Cox 

Dr. Wayne Hayes 

Prof. Richard Compton 

Prof. Ashwini Nangia 

Dr. Andrew de Mello 

Dr. Paul Wright 

Dr. Sian T. Howard 

Dr. Nick Norman 

Dr. David Keen 

Prof. John Richards 

Prof. Christopher Viney 

Prof. David Sherrington 

Prof. Roland Boese 

Prof. Mike Heineky 

Dr. Sylvia Capelli 

Dr. Sergei Kozhuskov 

Dr. Wilhelm Huck 

Dr. Peter Hore 

Prof. Peter Day 

Dr. Helen Aspinall 

Prof. David Nesbitt 

Prof. J<ennPth Harris 

Title Date 

Recent Developments in OLEO Technology: Organolanthanide Phos- 11/10/00 

phors 

Controlling Assemblies and Communicating Restraints 31/10/00 

Cosmic: A Universal DNA- Language for Communication with Aliens 08/11/00 

and Other Intelligent Life-forms 

Synthesis of Novel Dendrimers and Hyperbranched Polymers 22/11/00 

Dual Activation Approaches to Electroanalysis 06/12/00 

A Cambridge Database Study of CH3/CF3 Exchange 07/12/00 

Chemical Integrated Circuits 24/01/01 

tl'laking Space for Molecules 31/01/01 

Analysis of Bonding Energy Distributions in Polyatomic Molecules 14/02/01 

Liquid Crystals of All Shapes and Sizes 21/02/01 

Probing Structural Disorder with Diffuse Neutron Scattering 14/03/01 

Proton Transfer in Water at Enzymes 28/03/01 

Silk and Slime: Successful Supramolecular Science 15/05/01 

Why Not Design Heterogeneous Catalysts Logically 01/06/01 

The Melting Point Alternation of n-Aikanes and Derivatives 06/06/01 

Structure and Dynamics of Transition 11-letal Hydrides 10/09/01 

Molecular Motion from Multi-Temperature ADPs 04/10/01 

Selected Chapter of Political Organic Chemistry: Fascinating Artificial 08/11/01 

Cyclopropane Architectures 

Control Over Polymeric Materials on a Nano Level 23/01/02 

Chemistry in a Spin - Effects of l'vlagnetic Fields on a Chemical Reac- 30/01/02 

tion 

Some Supramolecular Chemistry of Magnets and Superconductors 31/01/02 

Defining Effective Chiral Binding Sites at Lanthanides- Enantioselec- 13/02/02 

tivity 

Searching for Simplicity: Single Frequencies, Single Collisions, Single 24/04/02 

l\'lolecules (RSc Bourke Medal Lecture) 

Understanding the Properties of Molecular Solids: Structure, Dynamics 07/05/02 

and Applied Aspects 

Prof. Paul Madden "Covalent" Effects in "Ionic" Materials 08/05/02 

Prof. Vernon Gibson Designing Catalysts for Polymer Synthesis 31/05/02 

Dr. Gary Mcintyre Single Crystal Diffraction at the ILL: Science and Facilities 13/06/02 

Prof. Paul Raithby Adventures in Organometallic Polymer Chemistry 12/02/03 

Dr. Patrick !vi. Woodward Manipulating the Electronic Structure of Semiconducting Metal Oxides 21/03/03 
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Over the last few years there has been a marked increase in the number of struc
tural studies carried out on light induced excited states. Until now however, there 
has been no systematic approach to the irradiation of samples, which can make 
data collection difficult and results unreliable. Here we present a device for mount
ing a laser on a CCD diffractometer. which not only enables the collection of data 
without any constraints on the data collection strategy, but also simplifies align
ment of the laser and can be left in place permanently. 

1. Introduction 

With the increasing interest in structure-property relationships 
there has been an increase in the variety of sample environ
ments available. e.g. cryostats and pressure cells. In addition. 
the increase in the number of known materials that respond 
to light has led to considerable interest in studying the as
sociated structural changes. One example of this is the short 
lived photo-induced state of the luminescent rhenium carbene 
complex, [HNCH2CH2NHCRe(2.2' -bipyridine)(COh]Br (Cole 
et a/. 2003 ). Similarly, irmdiation can induce charge trans
fer (Gu et a/. 200 I) and structural studies have been carried 
out on the short lived laser- induced ferroelectric structure of 
tetrathiafulvalene-p-chloranil (Collet eta/. 2003). 

Examples of photo-switching involving more dramatic struc
tural changes, like the reorganisation of ligand coordination, 
have also been reported. Complexes where there are different 
coordination modes that can be switched using light, include 
NO ligands in sodium nitroprussides (Coppens et a/. 1998) 
and S02 ligands in ruthenium sulphur dioxide compounds (Ko
valevsky et a/. 2002). A furrher example of photo-induced 
structural changes, is sometimes to be found in iron(ll) spin 
crossover complexes (Marchivie eta/. 2002; Money eta/. 2003; 
Niel eta/. 2004; Thompson eta/. 2004). These materials un
dergo structural modifications coupled with changes to the op
tical, magnetic and physical properties, which can be stimulated 
by temperature or pressure changes and sometimes, at low tem
perature. by irmdiation with light (Light-Induced Excited Spin
State Trapping or LIESST, Decurtins eta/. 1985). 

To our knowledge, the structural study of light induced states 
has generally been a little haphazard. with a "point and fire" 
approach to irradiation. where the laser is pointed at the sam
ple and aligned by eye. There are two key problems with this 
method: It is not certain that the sample is being completely ir
radiated and it is difficult to study structures under continuous 
irradiation, as movements of the diffractometer circles poten
tially changes the alignment and may lead to obstruction of the 
laser beam. This latter necessity and the number of samples we 
are currently working on, has led us to design a laser stand that 
not only enables the continuous irradiation of samples d11ring 
data collection, but due to the robust nature of the appamtus, 
enables it to remain in siw as a pem1anent feature during rou-

j. A!'pl. Cryst. (20)4) x, fO.HUI, Submitted. 

tine experiments. Here we present the main characteristics of 
the apparatus that we are using to carry out structuml studies on 
metastable light induced states of spin crossover complexes. 

2. Design 
The key aspect of the design hinges on the mounting of the laser 
on the detector arrn, in such a way that the laser beam remains 
centred on the sample irrespective of movements of the diffrac
tometer circles. Thence, the intense, collimated light from the 
laser is directed towards the crystal using a combination of mir
rors and prisms. In the case of the work carried out in Durham. 
the requirement was for a device that could be used to continu
ously irradiate a single crystal at 30 K. Thus. the instrumenta
tion initially dictated certain aspects of the design and this de
vice was designed for an Oxford Cryosystems HeliX mounted 
on a three circle Bruker diffractometer. The nature of the HeliX 
means that the crystal resides inside a beryllium nozzle, so the 
laser must approach the sample from below. The only area that 
is never obstructed by the d> circle mount is the region in front 
of the detector, so the device consists of a series of mirrors and 
prisms mounted on a cradle attached to the front of the detector 
arrn (Figure I). Since it is a necessary requirement that the laser 
and mirrors move together, the laser is mounted venically on 
the tail of the detector arrn, behind the detector, pointing down. 
The mass of the lasers used is relatively low (less than 0.2 kg), 
so they place no significant extra load on the apparatus, leading 
to no damage to the instrument or introduction of any system
atic error. From behind the detector, the laser beam passes veni
cally down past the tail of the detector arrn and is reflected by a 
tilted mirror so that it passes alongside the detector (pamllel to 
the detector arrn). It then travels through a periscope made from 
two prisms, which deflect the beam to the front of the detector, 
so that it is travelling in the direction of the 20 axis. Finally, 
a mirror mounted in front of the detector reflects the beam up, 
striking the crystal from beneath, so that it avoids the beryllium 
nozzle from the HeliX cryostat (Figure 2). 

This laser device has been designed to fit both a Bruker 
SMART-I K and a Bruker APEX CCD area detector diffmc
tometers, however with minor modifications, it could proba
bly be adapted to fit almost any diffractometer. When using the 
older diffractometers, where the crystal is viewed using a mi
croscope. it is not possible to see the crystal during irmdiation 
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as focused laser light can cause serious damage to the eye. How
ever. like most modem diffractometers. the APEX is filled with 
a digilal camera for crystal alignment. Scauered laser light is 
visible using the camera and causes no damage to it, and thus 
can be used to facilitate accurate laser alignment. 

Within the described setup, the laser can be aligned before 
the sian of the experiment and even without a crystal. This in
creases the likelihood of success by avoiding having to do the 
alignment when a precious sample is already at very low tem
perarure and after having perfonned several multi-temperature 
dala collections. In addition, the use of area detectors has re
duced the data acquisition time, therefore reducing the cost of 
the experiment, panicularly when an expensive cryogen like he
lium is needed to achieve the required temperatures. Coupling 
this with the increased accuracy of the alignment due to the 
presence of the digital camera makes light induced structural 
studies much more feasible. 

3. Conclusion 

Here we have presented schematics of a device designed to sim
plify the collection of data on light induced excited Slates. It is 
not only cheap and easy to use, but the two adjustable mirrors 
make it easy to align the laser should it be necessary (e.g. after 
changing the laser for one of a different wavelength). The de
vice is also so slable and unobtrusive, that we have been able to 
leave it in place as a permanent feature and it is now common 
to carry out routine data collections with the laser mounted. 
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Figure 1 

L..er Stand -Mounted on • pbte on 
the WI of the ddector U"m 

C-3 

A schematic of t he laser moumtng and alignment llevtce vtewed tn profile (top) 
and from above (bottom), with the path of the laser shown as a broken red line: 
the laser beam travels vertically down, and is reflected by a mmor so thai it 
travels alongside the detector arm until two prisms redirect it to the fron1 of the 
detector where a second mirror d1rects the beam up towards the sample. Mmor 
adjustments to the alignmem of the beam can be carried out usmg smal l screws 
to modify the angle of the mmors. A photograph of a crystal on m3lhauon IS 
shown msel. 

Figure 2 
The laser mount and guidance system with the laser beam pruh added in red 
(top) toge1her with a close up of the goniomeler, with the laser beam approach· 
ing 1he crystal from below (bcxtom). A 633 nm HeNe laser IS shown. but S32 run 
CW-Nd:YAG and 830 nm diode lasers have also been used. For these lase" the 
typical power a1 the sample is ...... 2 mW, which should lead to a temperature m· 
crease at the sample of less than I K. This uKhcates that the effects seen when 
using this dev1ce are phOiophysical rather than photOihermal. 
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compounds 
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The spin crossover complexes {Fe1H1B(pz),J,L} ((H1B(pz),)" 
= dihydrobls(pyrazolyl)borate, L = 2.2'-bipyridine (I), bipy 
and 1,10-pbenanthroline, phen (2)) undergo both thermal 
and light induced spin crossover, but the structure of the low 
spin and light induced high spin states for 2 are different 
from that or the thermally induced high spin state and from 
those of I. 

The ability of spin crossover (SC) materials to change their 
magnetic, structural and optical propenies stimulated by pressure 
or temperature, has led to increasing interest in their potential 
use in technological applications such as molecular switches, 
data displays, data storage devices and more recently as 
intelligent contrast agents for Magnetic Resonance Imaging. 1 

The discovery that at low temperarure is sometimes possible to 
photo-excite SC materials into a metastable high spin state2 has 
enabled the study of high and low spin complexes without the 
added complication of thermal effects. This Light Induced 
Excited State Spin Trapping (LIESSD has also engendered 
significant interest in the optical properties ofthese materials. 

While strucrural studies of thennally induced high and low 
spin complexes (HS and LS) are increasingly common, structure 
detenninations of the metastable high spin state (MHS) are still 
very rare with only a handful reponed in the literature.1 In 
addition, to date, all structural studies on metastable light 
induced states have been carried out on materials where the LS, 
HS and MHS states are isostrucrural. Here we present the first 
structural srudy of a spin crossover complex, which exhibits 
thermal and light induced polymorphism. 

Both {Fe[H2B(pz),},bipy} (I) and {Fe[H1B(pz),)2phen} (2) 
undergo thennal induced SC (with characteristic temperatures of 
T 112 160 K as well as light-induced SC.4 The thennal 
transition in l is more cooperative than in I though. as shown by 
the more abrupt transition that takes place with hysteresis. 
Structural data have been reported previously for I above and 
below the SC transition, however, until now it had only been 
possible to collect data on l in the HS state as the crystal suffers 
structural damage on cooling through the transition. 

Single crystal diffraction datat have been recorded for I at 
200 K. I 20 K. 30 K and at 30 K after irradiation with a red laser 
(A= 633 nm). The crystal structure of the HS and LS states 
agree with the published data. where the structure is monoclinic 
(C2/c), with the molecule astride the tw(}-fold rotation axis, 
which passes through the centre of the iron atom and between 
the rings of the bipy ligand. On cooling through the transition, 
there is a decrease in the average Fe-N bond length and the 
volume of the FeN6 octahedron (Table I), which is consistent 
with those seen previously for this and other SC compounds. 
After irradiation, the unit cell volume, the average Fe-N distance 
and octahedral volume all increase indicating that the photo
excited MHS state has been trapped. 

Single crystal diffraction data: have also been recorded for 2 
at 200 K. I 00 K. JO K and at 30 K after irradiation. The crystal 

was found to be in the Cl/c monoclinic space group at 200 K 
(HS. same as in I), but to undergo a loss of symmetry to a 
related, primitive structure (P1 ), with unit cell volume 
approximately half that of the high spin stmcrure. This loss of 
lattice symmetry also leads to the loss of the c2 molecular 
symmetry and this dramatic struct\Jral change explains the 
structural damage that previously led to difficulties in collecting 
data. The Fe-N bond lengths for 2 at 200 K and 100 K, clearly 
indicate a spin crossover transition coupled with the structural 
change (Table I). 

There is no funher structural change on cooling 2 to 30 K. 
However, irradiation of 2 at 30 K leads to an increase in the unit 
cell volume from I 192.9(4) A' to 1231.0(13) A' (3.2%). and a 
corresponding increase in the octahedral volume from 
10.53(2) A' to 13.44(3) A'. Thus. the MHS state generated by 
irradiation with light has produced a second high spin 
polymorph, without the C1 symmetry seen in the first. An 
overlay of the two HS molecules shows the conformational 
difference between the two polymorphs (Figure 1). 

In addition to the loss of molecular symmetry, there is also a 
change in the crystal packing. The C2/c structures of I and 2 
fonn stacks held together with 7t-7t interactions berween the 
interdigitating bipy/phen ligands (Figure 2). At 200 K. the 
phen-phen distance is 3.886(6) A. which on cooling to I 00 K. 
splits into two shorter, non-equivalent distances (3.657(9) A and 
3.528(9) A). Between 100 K and 30 K. these distances contract 
(to 3.640(7) A and 3.507(7) A). While in I the bipy-bipy 
distance is 0.06 A shoner for the MHS state than for the thennal 
HS state, the light induced expansion in 2 is highly asymmetric. 
In 2. one phen-phen distance remains unchanged (3.638(10) A) 
and the second expands by approximately O.J A to J.81J(I I) A. 
This peculiar behaviour suggests that the light induced high spin 
polymorph is relatively unstable and only occurs because there is 
insufficient energy (supplied by the laser or aYailable as thermal 
energy) to enable the stmcture to undergo a symmetry change to 
the preferred C2/c structure. This also explains why the 
relaxation temperature, as observed from the magnetic data, for 

Table 1. Unit cell vo\wnes. average Fe-N distances and octahedral 
volumes for I and 2. 

Tempuature Uoll Cell 

200 K 
120 K 
30K 

30K-Irr' 
200 K 
lOOK 
JOK 

JOK-In' 

Votume 
2441.5(4) 
2334.5(2) A' 
2327.2(31 A' 
2398.4 2 A' 
2504.4(4) 
1198.lt2JA' 
1192.9(41 A' 

12Jl.O(I3)A' 

"' Calculated using IVTON.~ 
6 After irradiation at 30 K wilh red light (A-= 633 nm). 
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Fig. 1. Overlay of the two high spin polymorphs ofl, showing the loss 
of C2 molecular symmetry. The light induced state is shown with a 
broken line. 

Fig. 2. lt-1t interactions in 2 at 200 K, sho\\ing the overlapping ligands 
(left) and the stacking (right). 

lhe MHS Slales for I and 2 are 52 K and 44 K respcclively. This 
is unusual because the thermal transition for 2 on cooling begins 
at a slightly lower temperature than that for 1, and in general, 
higher lemperalure lhcnnal SC transilions yield lower 
lemperature rclaxalions for lhc LIESST slale. The lhennal HS 
state for 2 is marginally more stable than that for J, suggesting 
lhal lhe lighl induced MHS slale for 2 should also be more 
stable, and consequently the relaxation from lhe MHS state 
should lake place al a higher lemperature for 2 lhan for I. The 
lighl induced polymorphic behaviour of 2 explains why lhis is 
not the case, and in pmctice the C2/c MHS state of 1 is more 
slable lhan lhe uiclinic lighl induced high spin polymorph of 2. 
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Espai\ol de Ciencia y Tecnologia for financial assistance of the 
(MCM & JAR, projecl BQU 2001-2928). 

Notes and references 

t The crystals of I were synthesised as discussed previously in the 
literature.• A typical red crystal was chosen 0.20 x 0.10 x 0.07 mm, 
mounted in fluoropolyether oil on a hair and quench cooled to 200 K 
using an Oxford Cryosystems Cryostream 600 series open now N1 
cooling device.6 Using a Bruker SMART-CCD 1000 area detector 
diffractometer. with graphite-monochromated Mo-Ka radiation (A. = 
0.71073 A), several sets of (!).-scans (0.3°/frames) at different ¢1 settings 
were collected. On completion, the crystal was cooled to 120 K at 
240 Klhr, where the data collection was repeated. The crystal was then 
wanned to 200 Kat 180 Klhr then to 290 Kat 360 KJhr where the crystal 
was removed. The Cryostream was then replaced with an Oxford 
Cryosystems HeliX open flow helium cryostat, 1 and the crystal was 
cooled to 30 K in stages. At 30 K a hemisphere of data was collected 
(ro-scans, 0.9"/frames), after which the crystal was irradiated for 
approximately 30 mins with a 25 mW red laser (A.= 633 nm) after which 
data were collected as at 200 K and I 20 K. Cell parameters were 
determined and refined using the SMART software8 and raw frame data 
were integrated using the SAINT progn.m.~ The structures were solved 
by direct methods and refined by full-matrix least squares on P using 
SHELXTL soft\o\1ue 10 (crystal data are listed below). Reflection 
intensities were corrected for absorption effects by numerical integration 
based on measurements and indexing of the crystal faces (using 
SHELXTL software). Non-hydrogen a~oms were refined ani.waopically 

2 CHEAl_ COAfMUN_, 2002, 1-XX 

and hydrogen atoms were located in the difference map and refined with 
isotropic displacement parameters. Single Crystal Da1a: CuH~4B2FeN 10 , 

M,"505.98, monoclinic, C2Jc. 30K- a" 16.1106(ll)A, b" 
14.5909(10) A, c" 10.8281(8) A. p" 113.895(3}". v" 2327.2(3) A. 
Data/restraints/parameters - 2662101207, Rial = 0.0606, Final R1 = 
0.0491, wR, " 0.0823 (1>2 (!)). 30 K-Irr -a " 16.0350(9) A, b " 
14.9377(9) A. c " 11.0470(7) A. p " 114.986(2)0

, v " 2398.4(2) A. 
Data/restraints/parameters - 2700/0/207, ~ = 0.0629, Final R1 = 

0.0630, wR," 0.0969 (1>2 (1)). ~ • ....,..<=1 e.A' in all cases. 
! The crystals of 2 were synthesised as discussed previously in the 
literature.4 A typical red crystal was chosen (0.28 x0.10x0.02 mm), 
mounted in epoxy resin (Arnldite 1

) on a hair and quench cooled to 200 K 
using an Oxford Cryosystems Cryostream 600 series open flow N1 

cooling device.6 Using a Bruker SMART-CCD 6000 area detector 
diffiactometer, with graphite-monochromated Mo-Ka radiation (A. = 
0.71073 A), data were collected as for 1. On completion, the crystal was 
cooled to I 00 K at 360 Kfhr, where the data collection was repeated. A 
second red crystal (0.28 x 0. I 0 x 0.02 mm) was selected and quenched to 
200 K using an Oxford Cryosystems HeliX. 7 Cell parameters recorded 
using a Bruker ProteumM diffractometer with Bcde Microsour'Ce" (Mo
Ka n.diation, A. = 0.71073 A), agreed with those seen previously at 
200 K, so the crystal was cooled to 30 K at 360 KJhr, where a 
hemisphere was collected (as before). On completion, the crystal was 
irradiated for approximately 2 mins with a 25 mW red laser (A= 633 nm) 
after which another hemisphere was collected. The data treatment was 
carried out as for J. except that hydrogen atoms were positioned 
geometrically and refined using a riding model. Single Crystal Dola: 
C22 H2482FeN 1o. M.= 505.98. 200 K - monoclinic, C2Jc, a = 
17.3607(16)A,b" 16.0397(14)A.c" I0.5614(9)A,p" 121.617(4)0

, V 
= 2504.4(4) A. Data/restraints/paJllmetcrs - 3370/0/216, R_ = 0.:.0485. 
Final R1 = 0.0461. wR2 = 0.0888 (1>2 (1)). 100 K- triclinic, P1, a= 
1 1.6730(Il)A, b = 11.0458(13) A, c = 10.5651(12) A,«" 69.520(3t, p 
" 109.777(3)". Y" 93.368(3r. V" 1198.1(2) A, (lhe relaled larger cell: 
a " 16.5354(14)A, b = 15.5923(13)A, c " 10.5651(12)A, a" 
89.688(4)0

, p " 118.202(3)0
, r = 93.168(3)0

, v " 2396.2(3) Al 
Data/restraints/parameters - 6409101403, ~ = 9.0539, Final R1 = 
0.0628, wR, = 0.1296 (1>2 (I)). 30 K -hiclinic, P1, a" 16.655(2) A, b 
"I 1.0156(19) A. c" 10.5664(8) A,«" 69.492(3}", P= 109.755(3)0

, r 
93.280(3t. V " I 192.9(4) A, Dalalrestrainlslparameler.; - 583210/407, 
Rw = 0.0546, Final R, = 0.0545. wR, = 0.0894 (1>2 (1)). 30 K-lrr-
1nclinic, Pi. a" 10.727(7)A, b = 12.415(8)A, c = I0.712(6)A, a" 
67.473(15}", p" 110.377(15)", Y" 93.505(11)", V" 1231.0(13)A, 
Data/restraintslparameters - 5369/0/350, R..,. = 0.0302, Final R, = 

0.0798, wR1 = 0.1620 (1>2 (1)). 6p..,l:ll,,R&&~I.2 e.A3 in all cases. All 
structures have been deposited with the CCDC (Nos X-Y). See 
http://wv."\o\·.rsc.org/suppdata!cclbOibOOOOOOal for crystallographic data in 
CIF fonnat 
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A dinuclear pyridyl-bridged palladium complex, rrans-(P.N}-[PdBr(p-C5H4N-C1.N)(PPh3 )], I. was 
obtained from material isolated from the Suzuki cross-coupling reaction of 2·bromopyridine with 
2.4-diftuorophenylboronic acid in the presence of catal)1ic (PPh3)4 Pd. Complex I is an effective 
precatalyst for the Suzuki cross-coupling reactions of a variety organoboronic acids and aryl 
bromides, and represents a useful source of mono-ligated palladium(o). "(Ph,P)Pd(o)". 

Introduction 

Palladium-catalyzed C-C and C-X bond forming processes 
are amongst the most important reactions in organic synth
esis. 1 The Pd-catalyzed cross-coupling reaction of organa
halides with organoboronic acids. the Suzuki reaction, 
represents a key transformation in both academic and indus
trial sectors. 1 The catalyst of choice. particularly in natural 
product synthesis, is sri// (Ph3P)4Pd(o), even though a signifi
cant step change in the field has been recently observed in 
the development of highly active. electron rich Pd-catalysts. 
possessing increased catalytic lifetimes. 3 The nature of the 
'catalytically active· species, in particular, the number of 
phosphine ligands necessary to aid transmetallation, reductive 
elimination and to stabilize the Pd-eentre. has often been ques
tioned.4 Oassically it has been assumed that two phosphine 
ligands are required for catalyst activity, but studies with 
electron rich. bulky ligands, such as (r-Bu),P and (1-Bu),
(biphenyl)P, have demonstrated that it is very likely that 
only one ligand remains on Pd.5 It would be interesting to study 
Pd-precursors that allow for the generation of mono-ligated 
Pd-species in the absence of dibenzylideneacetone (dba)6 

Herein we describe the use of rrrrns-(P.N)-[PdBr(~>·C5H4N
C2,N)(PPh3)], I in the Suzuki reaction, which is expected to give 
"(Ph,P)Pd(o)". Our findings, suggesting I as a suitable 
precursor catalyst. are discussed. 

Results and discussion 

Our initial studies were concerned with a side-product 
obtained from the Suzuki reaction of 2-bromopyridine 2 
with 2,4-difluorophenylboronic acid 3 catalyzed by (Ph3P)4 Pd 
(Scheme I. eqn. (1]). The expected cross-coupled product 4 
was isolated in 82% yield; however. we were somewhat 
curious about the presence of a yellow component obtained 
from chromatography, which crystallized on evaporation to 
give pale brown diamond crystals in 0.11% yield. Suitable 
crystals for X-ray diffraction studies were chosen. which 

D· N & 
c\ 
VF 

BiOHb 
3 

~ 
{Ph3P)4Pd + (NJ.__Bt 

2 

1M NltzCOJ. THF (1::2. vlv) 

(P1'13PJ.Pd (2 mol%) 

{82%) 

9cf!C, totu&ne, 

4h 

{81%) 

06:' (0.11%) [11 

• 

t21 

Scheme I Eqn. [I), first isolation or I Suzuki reaction of 2 and 3. 
Eqn. [21 direct reaction of 2 with (Ph;P).-Pd to give I. 

revealed the component to be a co-crystal of 1 and 4 
(Fig. l).j 

Each palladium atom exhibits a square-planar geometry 
with the bromide and carbon bonds in a trans configuration. 
The Pd-Pd interatomic distance is 3.2338(4) A and is consis
tent with the structure reported' (3.194{2) A) and the chlorine 
analogue• (3.165(3) A), previously published. This suggests 
that the interaction may be weak: although a search of the 
Cambridge Structural Database10 (Version 1.5. November 
2002, 272066 entries) using ConQuest 11 shows that similar 
species occupy a range of2.543-3.315 A with a mean average 
of 2.795 A. The central ring of our structure possesses two pyr
idine rings bridging the palladium atoms with the nitrogen 
trans to triphenylphosphine and carbon lrans to bromine in 
both cases. These planes are inclined at an ang]e of8l.2° form
ing a six-membered ring in a boat conformation. The oxidative 

t Chemical formula: C-46H 311 Br2N~P2Pd2. 0.5(C11 H,7Nf2), 

.OJ,~ tt48.93. T ~ 120 K, triclinic (P]), a~ 10.4525(4) A, b ~ 
tl.09tH5> A. c ~ t7.7535t61 A. • ~ 8t.5t70(10J". p ~ 78.849121°, 
;o ~ 70.8180(10)'. V ~ 2241.84(t4) A'. Z ~ 2. p ~ 2.699 mm- 1, Dala/ 
restraints/parameters== I 1754/1/561, Ru,1 = 0.0418, Final R1 = 
0.043t "-R2 ~ 0.0898 [/ > 20'(1)). CCDC reference number 207524. 
See http:f jw\\w.rsc.org:,lsuppdata/nj/b4Jb401077a/ for crystallo
graphic data in .ctf or other electronic format. 

Th1s journal is •tl The Royal Society of Chemistry and the 
Centre National de Ia Recherche Scienrifique 2004 
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Fag. I Crystal structure of I with thennal ellipsoids at 50"/o. The 
structure of 2-(2,4-difluorophenyllpyridine, 4, with which I is co. 
crystallised. is also shown. The disorder is omitted for clarity. 

addition of 2-, 3- and 4-bromopyridines to (Ph,P).Pd results in 
the formation of dimeric metallated pyridine species, such as 
1.8 Complex I was thus synthesised by direct reaction of 
(Ph,P)4Pd with 2 to give I in 81% yield. possessing identical 
1H. 31 P NMR spectroscopic and ESI spectrometric data to 
the material isolated in the reaction of 2 and 3 (Scheme I, 
eqn. [2]). 

We questioned whether 1 represented an intermediate cata
lyst resting state in the reaction of 2 and 3, which led us to 
study 1 as a general precatalyst for the Suzuki cross-coupling 
reaction. 11 In the first reaction, I {0.2 mol%) was added to a 
mixture of 2 and phenylboronic acid 6a in THF-1 M Na,CO, 
at 80•c (Scheme 2. eqn. [I[). After 15 h the reaction was judged 
complete (TLC), with workup and purification by Hash 
chromatography, affording the cross-coupled product 4a in 
68% yield. 

Reaction of 6-methoxy-2-bromopyridine 2a with 6a under 
the same conditions gave the cross-coupled product 4b in 
77% yield ( Scheme 2, eqn. [I[). We subsequently found that 
the reaction of2 with 6a could be conducted at 60•C. proceed
ing in slightly higher yield (74%). Room temperature reactions 
with these substrates in the presence of 1 were sluggish, but 
encouraged by our results, we investigated the cross-coupling 
reactions of several aryl bromides and aryl boronic acids in 
the presence of I at 6(J•C (Table 1). 

u·0 N Br y 
B(OHn .. 

~ + .. 
MeOJlNJ-..81 

2a 

1M Na2C~, THF (1·2, vtv) 

(f'h,P~Pd (0 2 mol%), 

BO"c 

(68%) 
0-ol'l 

.. 
Me<l:?u 121 

Scheme 2 Eqn. [I), use of I as a precatalyst for reaction of2 and 6a. 
Eqn. (2), use of 1 as a precatalyst for reaction of 2a and 6a. 

Bromobenzene Sa reacts with 6a. 4-methylbenzeneboronic 
acid 6b, 4-formylbenzeneboronic acid 6c and 4-chlorobenzene
boronic acid 6d in yields between 62-75% (entries 1-4). The 
turnover numbers per hour for these reactions were good 
(206-250 TON h-t). 4-Bromoacetophenone 5b couples effec
tively with 6a-d in yields of 64--76% (entries 5~8). The turnover 
numbers per hour were lower than seen in reactions with 5a 
(107-127 TON h- 1). A similar observation is apparent with 
the activated substrate. 4-nitro-1-bromobenzene 5c (108-122 
TON h- 1

• entries 9-12). Methyl benzoate 5d couples satisfac
torily with 6a-<l (52-72% yields, entries 13-16). The less acti
vated substrate, 2-methyl-1-bromobenzene 5e couples well 
with 6a-<l (62-75% yields. entries 17-20). with surprisingly 
higher values observed for the turnover numbers per hour 
(207-250 TON h-t). Indeed, 2-methoxy-1-bromobenzene Sf 
couples equally well (74-81% yields, entries 21-24) in good 
turnover numbers (123-135 TON h- 1

). The sterically hin
dered, deactivated substrate 2,6-dimethyl-1-bromobenzene 5g 
(50-71% yields. entries 25-28) gave the lowest turnover num
bers per hour seen in this series (21-30 TON h- 1

). However. 
the fact that the unactivated substrates 5e and Sf couple more 
effectively than the more activated substrates 5b and 5c is an 
interesting observation. 

The effect of additional Ph.3P on the reaction rate was 
probed systematically (Table 2). We chose 2-bromopyridine 
2 as the substrate for reaction with phenylboronic acid 6a 
under identical conditions to those given in Table L All reac
tions were stopped after 3 h (~uenched by passing the mixture 
through a plug of silica gel). 3 The Ph,P ligand (1, 2 and 4 
equivalents of Ph3P were added per equivalent of 1: from a 
stock solution in dry THF) was added ~·ia microsyringe prior 
to addition of 1 to the reaction mixture. An obvious trend 
was seen in these reactions, where additional Ph3P clearly 
reduces the turnover numbers per hour (entries 1-4. Table 
2). In the absence of the additional Ph,P. the cross-coupled 
product 4a was produced in 74% after 3 h (entry I, 123 
TON h- 1 

). In the presence of I equivalent of Ph ,I' (0.5 equiva
lent per Pd). 4a was produced in 69% (entry 2. 115 TON h- 1

). 

On increasing to 2 equivalents of Ph,P (I equivalent per Pd). 
4a was produced in 62% (entry 3. 103 TON h-t). Finally. 
increasing the amount of Ph3P to 4 equivalents (2 equivalents 
per Pd). 4a was produced in 51% (entry 4, 85 TON h- 1

). A 
comparison of entries I, 3 and 4 formally allows us to co
rrelate the effect of mono-ligated palladium(o) (Ph,P-Pd(o)). 
his-ligated palladium(o) ((Ph3P),Pd(o)) and tris-ligated palla
dium(o) ((Ph,P),Pd(o)). Thus in these reactions. excess Ph,P 
slows down catalysis. 

Complex I has previously been employed as a precatalyst 
for the cross-coupling reaction of chloropyridine with methyl
magnesium bromide. 14 The occurrence of the reaction was 
rationalised generally by displacement of the bromide ligand 
from a monomeric species by an incoming nucleophile (Nu). 
to ~enerate [Pd(Nu)(Tt 1-CsH.N-C")(PPh,),[ (where n = 3 or 
4). 1 Reductive elimination provides Nu-C5H4N as the cross
coupled product and regenerates (Ph,PhPd as the active cata
lytic species. However. such a proposal would have to occur 
through disproportionation of Ph3P from the mono-phosphine 
palladium species to give the his-phosphine palladium and a 
naked palladium species, which presumably would aggregate 
and precipitate out of solution. In our reactions we do not 
observe the formation of palladium black." 

Given our results. we propose that a mono-ligated phos
phine species (Ph 3P-Pd(o)) is essential for higher turnover num
bers. A precatalytic cycle based on the classical mechanism is 
proposed from precatalyst I (Fig. 2)-" The dimeric precatalyst 
I is expected to be in equilibrium with a 14-electron mono
meric species 1'. 18 Transmetallation with an activated aryl
boronic acid will then occur through formal displacement of 
bromide to give Pd(u) intermediate I. Reductive elimination 
will then generate the cross-coupled product 4a and give the 
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Table I Suzuki cross-coupling of aryl bromides and aryl boronic acids catalysed by pyridyl complex 1 

Entry Aryl bromide Arylboronic acid Product Time/h Yield!%)~> TON h-I< 

Q-sr o-B(OH), o-o 7a 1.5 62 206 
5a 6a 

Sa --o-B(OH), o-o-R 1.5 63 210 
6b R=Me, 7b 

Sa OHC-D-B(OH)2 R ~ CHO. 7c 1.5 75 250 
- 6c 

Sa Cl-o-B(OH), R ~ Cl. 7d 1.5 74 247 
6d 

}-0-sr 6a R'0-0-R 64 107 
- 5b R'= 4-COCH,, R= H, 7e 

5b 6b R' ~ 4-COCH,. R ~ Me. 71 69 115 
Sb 6c R' = 4-COCH,. R = CHO. 7g 71 118 
Sb 6d R' = 4-COCH,. R = Cl. 7b 76 127 

o,N-o-Br 6a R' = 4-N02 , R =H. 7i 65 108 
- 5c 

10 5c 6b R' = 4-NO,. R ~Me. 7j 66 110 
II 5c 6c R' = 4-N02 • R = CHO. 7k 68 113 
12 5c 6d R' = 4-N02 • R = Cl. 71 73 122 

13 Qsr 6a R' = 2-CO,Me. R = H. 7m 62 78 

co2Me 5d 

14 5d 6b R' = 2-C02Me. R = Me. 7n 52 65 
15 5d 6c R' = 2-CO,Me, R = CHO. 7o 4 71 89 
16 5d 6d R' ~ 2-CO,Mc, R = Cl. 7p 4 72 90 

17 Qsr 6a R' = 2-Me. R ~ H. 7q 1.5 63 210 

Me 5e 

18 5c 6b R' = 2·Me. R = Me. 7r 1.5 62 207 
19 5c 6c R' = 2-Me. R ~ CHO. 7s 1.5 74 247 
20 5c 6d R' = 2-Me. R = Cl. 71 1.5 75 250 

21 Qsr 6a R' = 2-0Me. R = H. 7u 76 127 

OMe 51 

22 51 6b R' = 2-0Me. R = Me. 7v 81 135 
23 51 6c R' = 2-0Me. R = CHO. 7w 74 123 

24 51 6d R' = 2-0Me. R ~ Cl. 7x 77 128 

Me Me 

25 Q-sr 6a Q-o-R 12 63 26 

Me Me 5g R = H, 7y 

26 5g 6b R =Me. 7z 12 50 21 
27 5g 6c R = GIO. 7o' 12 61 25 
28 Sg 6d R = Cl. 7b' 12 71 30 

a Reaclio11 condiiions: aryl bromide (1.05 eq.), aryl boronic acid (1.0 cq.), 1 (0.2 mol%), I M Na2COr THF (I : 2 vjv). 60°C with magnetic stirring. 
t> Isolated yields after chromatography. r TON h- 1

: calculated by considering the number of moles of desired product produced per mole of 
catalyst used per hour. 

This journal is~ The Royal Sociery of Chemistry and rhe 
Cenrre National de Ia Recherche Sc1enrifique 2004 New. J. Chem .• 2004, 28, 000-000 3 
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Table 2 Effect of excess triphenylphosphine on Suzuki coupling 
of 2 with 5a using precatalyst 

1 (0.2 mol%), 6ifC 

1(}-B• ' o-B(OHb l~F (}--0 
6a .. 

Entry Additional Ph3P (%)!> 

0.1 
0.2 
0.4 

Time/h Yield(%)'" 

74 
69 
62 
51 

TONh-td 

123 
115 
!OJ 
85 

" Reactions performed with 0.2 mol% catalyst using the conditions 
and reagents described in Table I. b Ph 3P stock solutions were pre
pared using dry THF and the appropriate aliquot added to the reac
tion mixture at t = 0. '" Yields calculated from the 1H NMR spectra 
of the isolated material (crude). J TON h- 1

: calculated by considering 
the number of moles of desired product produced per mole of catalyst 
used per hour. 

mono-ligated species II. This species can now proceed into the 
standard catalytic cycle. Standard oxidative addition with the 
appropriate organohalide gives III. Transmetallation of III 
with the activated arylboronic acid affords IV, which then 
undergoes reductive elimination to reveal the cross-coupled 
product. regenerating the monomeric palladium(o) species ll 
as a consequence. 

Support for the precatalytic cycle comes by following the 
reaction of 4-nitrobromobenzene 5c with phenylboronic acid 
6a. in the presence of precatalyst I (5 mol%) at 60'C. by 
GC-MS analysis. The first turnover should produce 2-phenyl
pyridine 4a. After ca. I min of the reaction, 4a is produced, via 
the precatalyst cycle. The formation of7i and disappearance of 
5c is then observed (over 3 h). which is expected if mono
ligated palladium( c) species II then enters the standard cataly
tic cycle. 

To summarise. we have conducted the first Suzuki cross
coupling reactions employing precatalyst 1. A great advantage 

R'-Ph 

R' = aryl or heteroaryl 

of this complex is its stability under ambient conditions (air 
and moisture stable), unlike other commonly employed Pd(c) 
catalysts. e.g. (Ph,P)4 Pd. which are readily oxidised to Pd(ll) 
species in air. Complex I is easily synthesised in high yield 
and may be used at low catalyst loadings (0.2 mol%). under 
relatively mild conditions (60 oc). Investigations into the effect 
of additional phosphine on the rate of reaction demonstrated 
an interesting trend. Here it was shown that exL'ess phosphine 
( > I Ph_,P per Pd) slows downs catalysis. which is presumably 
associated with transmetallation and reductive elimination 
steps, key events that are ultimately dependant on ligand dis
sociation. Finally. this study demonstrates how important it 
is to isolate every component from a reaction mixture-by 
doing this we have ultimately been led to the identification 
of a new precatnlyst for the Suzuki reaction. 

Experimental 

THF was dried over sodium-benzophenone ketyl (distilled 
prior to use). All reactions were conducted under an inert 
atmosphere of Ar or N, on a Schlenk line. Pd(PPh,)4 was 
prepared by reduction of (Ph3P),PdCI, with hydrazine. 19 

(PPh,),PdCI, was prepared from PdCI, (provided by Johnson 
Matthey as a loan) in refluxing DMSO and PPh, (2 eq.) using 
a known procedure. 20 Melting points were recorded on an elec
trothermal IA9000 Digital Melting Point Apparatus and are 
uncorrected. TLC analysis was performed on Merck 5554 alu
minium backed silica gel plates and compounds visualized by 
ultraviolet light (254 nm). phosphomolybdic acid solution 
(5% in EtOH), or 1% ninhydrin in EtOH. 1H NMR spectra 
were recorded at 270 MHz using a JEOL EX270 spectrometer 
or at 400 MHz using a JEOL ECX400 spectrometer: "c NMR 
spectra at 67.9 or 100.5 MHz. Chemical shifts are reported in 
parts per million (b) downfield from an internal tetramethyl
silane reference. Coupling constants (J values) are reported in 
hertz (Hz). and spin multiplicities are indicated by the follow
ing symbols: s (singlet). d (doublet). t (triplet). q (quartet). qn 
(quintet). sx (sextet). m (multiplet), br (broad). 

The following compounds were characterized by 1 H. uc 
NMR and mass spectrometry and compared to the known 

0 
B(OH), 

Pre-catalytic cycle 

reductive elimination 

Fig. 2 The catalytic cycle employing precatalyst I m Suzuki cross-coupling reactions. 
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literature data: 4-acetylbiphenyl 7c, 21 biphenyl 7a," 4-nitrobi
phenyl 7i,23 2,6-dimethylbiphenyl 7y,24 2-methoxycarbonylbi
phenyl 7m, 25 2-methylbi~henyl 7q,26 2-methoxybiphenyl 7u,27 

4-methylbiphenyl 7b, '- 4-acetyl-4' -methylbiphenyl 7f, 28 

2.6-dimethyl-4'-methylbi~henyl 7z, 21 2-methoxycarbonyl-4'
methylbiphenyl 7n,2 2,4'-dimethylbiphenyl 7r,28 

2-methoxy-4' -methylbiphenyl 7v. 21 4' -formylbiphenyl 7c.26 

4-acetyl-4'-formylbiphenyl 7g;'0 2-methyl-4' -formylbiphenrl 
7s,'6 4'-chlorobiphenyl 7d,26 4-acetyl-4'-chlorobiphenyl 7h; 1 

4-nitro-4'-chlorobiphenyl 71,32 2,6-dimethyl-4'-chlorobiphenyl 
7b';" 2-methoxycarbonyl-4'-chlorobiphenyl 7p,32 2-methyl-
4'-chlorobiphenyl 7t,33 2-methoxy-4'-chlorobiphenyl 7x26 and 
2-methoxycarbonyl-4' -formylbiphenyl 7p. 34 

1-Phenyl-2-bromopyridine 4a 

t5H (300 MHz. CDCI3) 8.66 (IH, dt. J = 4.2 Hz, CH), 7.91 
(2H, m. 2 x CH). 7.70 (2H. m, 2 x CH), 7.42 (3H, m, 
3 x CH), 7.21 (IH, m, CH); MS (ES+): 156.1 (M +H)-. 

1-Phenyl-2-bromo-6-methox)l'Yridine 4b 

,jH (300 MHz, CD03) 8.09 (2H, d, J = 7.2 Hz, 2 x CH), 7.65 
(IH, t, J = 7.5 Hz, CH), 7.45 (4H, m, 4 x CH), 6.73 (IH, d, 
J = 8.1 Hz, CH), 4.08 (3H, s. CH3); MS (ES+): 186.1 
(M+H)-. 

4-N itro-4' -methylbiphenyl 7j 

<IH (400 MHz, CDC!,) 8.22 (2H. d, J = 7.9 Hz. CH). 7.66 (2H, 
d, J = 7.9 Hz, 2 x CH), 7.64 (2H. d, J = 8.1 Hz, CH), 7.24 
(2H, d, J = 8.1 Hz, 2 x CH), 2.35 (3H, s, CH3 ); be (100 
MHz, CDCI3) 149.05, 139.05, 135.91, 132.60, 129.88, 127.45, 
127.19, 124.07. 21.19; MS (Ell mj: 213 (M-, 100), 75, 152, 
115, 165, 183. 

4-Nitro-4' -formylbiphenyl 7k 

JH (400 MHz, CDCI3) 10.08 (IH. s, CHO), 8.10 (2H. d, 
J = 8.8 Hz, 2 x CH), 8.01 (2H, d, J = 8.8 Hz. 2 x CH), 7.98 
(2H. d. J = 8.5 Hz, 2 x CH). 7.66 (2H, d. J = 8.5 Hz, 
2 x CH); MS (El) mj: 227 (M-, 78), 152. 210, 76. 

2,6-Dimethyl-4' -formylbiphenyl 7a' 

bH (400 MHz, CD03) 9.98 (IH, s, CHO), 7.36 (2H, d, J = 6.7 
Hz, 2 x CH), 7.34 (I H, d, J = 7.1 Hz, CH), 7.33 (2H, m. 
2 x CH), 7.29 (2H, m, 2 x CH), 1.93 (6H, s, 2 x CH3). 

2-Methoxy-4' -formylbiphenyl 7w 

bH (400 MHz. CDCI3) J 10.00 (IH. s. CHO). 7.85 (2H. d, 
J = 8.2 Hz, 2 x CH), 7.42 (2H, d, J = 8.2 Hz, 2 x CH), 
7.23-7.13 (4H, m, 4 x CH), 2.208 (3H, s, OCH,); be (100 
MHz, CDC!,) 192.31, 148.70, 140.88, 135.19, 130.20, 129.27, 
128.34, 128.22, 127.57, 127.50, 56.38. 

Original isolation of traru-(P,N}-1Pd8r-(~-C5H4N-C2,N) 
(PPh,)lz (I) 

2,4-Diftuorophenylboronic acid 3 (5g, 32 mmol), 2-bromopyr
idine 2 (5.5 g, 3.3 mL, 35 mmol. 1.1 eq.), Na,C03 (I M aq., 50 
mL), THF (100 mL) and Pd(PPh3)4 (0.75 g, 0.6 mmol, 2 mol 
%) were heated overnight in a nitrogen atmosphere at 80 cc 
with continuous stirring. The reaction was cooled to room 
temperature and water (200 mL) was added. The resulting mix
ture was extracted with ethyl acetate (5 x 100 mL), dried 
(MgS04 ), filtered and evaporated in ••ucuo. Flash chromato
graphy afforded 2-(2,4-difluorophenyl)pyridine 4, as a pale yel
low liquid (5.0 g, 82%). Complex I was isolated from a fraction 
containi11g tlic: impurt product as pale brown diamond shaped 

crystals (20 mg, 1.1 x 10- 3%). bu (400 MHz, CDCI3) 8.58 (I H. 
m), 7.85 (6H, m), 7.36 (3H, m). 7.28 (6H, m), 6.61 (I H, m), 
6.49 (2H, m); bp (121 MHz, CDC!_,) 30.79. Electrospray mass 
spectrometry in acetonitrile gives similar resu1ts to those 
reported previously. 15 

Direct preparation of trans-(P,J\)-(Pd8r-(~-C5H,N-C2,N) 
(PPh3)lz(l) 

Tetrakistriphenylphosphine palladium(o) (600 mg, 0.48 mmol) 
was dissolved in toluene (40 mL) to produce a bright clear yel
low solution. 2-Bromopyridine (137 mg. 0.87 mmol. 1.8 eq.) 
was then added. The resulting mixture was heated to 90oC 
for 4 h, during which time the solution became cloudy and a 
pale green-yellow colour. The reaction mixture was cooled to 
room temperature and filtered. The green-yellow precipitate 
was collected and washed thoroughly with diethyl ether 
(5 x 10 mL) and subsequently dissolved in chloroform. The fil
trate was evaporated to dryness and the solid recrystallized 
from chloroform and n-hexane to give the pure product as a 
green-yellow crystalline solid (205 mg. 81%). JH and Jp data 
were identical to that given above. 

Typical Suzuki reaction 

Phenylboronic acid (50 mg, 0.41 mmol), 2-bromopyridine 
(71.3 mg, 0.45 mmol, 1.1 eq.), Na,C03 (I M (aq.), I ml), 
THF ( 1.5 mL) and Pd-dimer crystals (I mg, 0.95 ~moles, 
0.21 mol%) were degassed ria three 'freeze-pump--thaw' 
cycles. The resulting mixture was heated at 60 "C overnight 
during which the clear solution became bright yellow in colour. 
The reaction mixture was allowed to cool to room temperature 
after which water (10 mL) was added. The mixture was then 
extracted with dichloromethane (3 x 10 mL) and the organic 
extracts dried (MgS04), filtered and concentrated in vacuo. 
Purification by flash chromatogmphy gave the pure cross
coupled product, 2-phenylpyridine, as a pale yellow liquid 
(43 mg, 68%). 1H NMR 300 MHz (CDCI 3) J: 8.66 (IH, dt, 
J = 4.2 Hz), 7.91 (2H, m), 7.70 (2H. m), 7.42 (3H, m), 7.21 
(I H, m); MS (ES+ ): 156.1 (M +H)-. 

Crystal structure determination of traru-(P,N)
(PdBr(~-C5H4N-C2,N)(PPh,)lzt 

Single crystal X-ray diffraction experiments were carried out at 
120 K using gr•phite monochromated Mo K<:< radiation 
(i. = 0.71073 A) on a Bruker SMART-CCD IK area detector 
diffractometer. The temperature was controlled using a Cryo
stream N 2 open-flow cooling device. 35 Five series of narrow 
w-scans (0.3°) were performed at several ~.p-settings to cover 
a sphere of data to a maximum resolution of between 0. 70 
and 0. 77 A. Cell parameters were initially determined using 
the SMART software,36 and mw frame data were integrated 
and cell parameters refined using the SAINT program. The 
structure was solved by direct methods and refined by 
full-matrix least squares on F2 using the SHELXTL soft
ware.37 The reflection intensities were corrected by numerical 
integration based on measurements and indexing of the crystal 
faces (using SHELXTL software). The structure is of a co
crystal of I and 4. Both I and 4 have disorder which is 
modeled. For I, one of the phenyl rings from the each PPh_, 
ligand is disordered such that there are two positions. each 
with 50% occupancy. All non-hydrogen atoms were refined with 
anisotrpic displacement parameters. 4 occupies a possition on 
an inversion centre, which relates the two components. Aniso
tropic refinement of 4 is unstable. so all atoms were refined 
with isotropically. Hydrogen atoms for both I and 4 were 
refined using a riding model. 

This jou1nal is~ The Royal Society of Chemistry and the 
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Abstract 

In this communication, we repo11 the effect that doping Y 2BaCu05 with Dy has on its two-dimensional (2D) magnetic 
structure. Pure samples at both ends of the series, as well as samples doped with I, 5, I 0 and 25% dysprosium, have been 
characterised using X-ray diffraction, and AC susceptibility together with neutron diffraction studies on the I and 5% samples, 
which were used to measure the magnetic ordering at low temperatures. The results show that I% Dy is enough to disrupt the 
2D magnetic ordering turning it into a 3D array. The low dysprosium concentration indicates that the 3D ordering is achieved 
without the existence of a rare eanh magnetic sublattice. The change in the ordering temperature from 27 K for the pure 
Y 2BaCu05 to 16 K for the I and 5% Dy compounds, together with the parameters from the AC susceptibility fittings, reveal that 
the effect of the Dy doping affects the electronic structure of the Cu ions that become involved in the superexchange pathways. 
The discrepancy between the parameters obtained by the Curie- Weiss fittings of the real pan of the AC susceptibility and the 
neutron diffraction results, shows that the exchange mechanism deviates from the mean field model for all dysprosium 
concentrations. 
© 2004 Elsevier Ltd. All righL' reserved. 

PACS: 75.30.Cr; 75.30.Et 

Keywords: A. Magnetically ordered materials; D. Exchange and superexchange; E. Magnetic susceptibility; E. Neutron scattering 

I. Introduction 

Since the constituent clements of Y 2BaCu05 arc the 
same as those of the high T, superconducting cuprates, there 
is a great deal of interest in fully grasping the details of their 
magnetic behavior. This is enhanced by the fact that there is 
also a similarity between the electronic structures of the 
copper centre in the orthorhombic (Pnma) R2BaCu05 

(where R = Y or rare ea11h), and that of the copper in the 
Cu02 planes of the tetragonal YBa2Cu 30 7 high T, 
superconductor (also known as the I :2:3 phase) [ 1]. 

Although Y2BaCu05 (Pnma), has been studied for some 
time by different techniques [2,3], some doubts remain 
regarding iL' magnetic structure. Indeed, there is still some 
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dispute as to its true magnetic structure at low temperature 
[4]. Most DC susceptibility and neutron diffraction studies 
indicate that the array of magnetic pathways is two
dimensional (2D), however, some authors [5] believe that 
they may be one-dimensional (I D). The low temperature 
neutron diffraction studies have been unable to verify this 
unambiguously. Isomorphous Pmna R2BaCu05 compounds 
generally display an antiferromagnetic 3D array [6], 
however, in the series R2BaM05 (M = transition metal) 
diverse structures with 3D, 2D and ID magnetic orderings 
have been observed [6]. In panicular some I D R2BaM05 

materials have been shown to undergo magnetic excitations 
of the Haldane gap type [7]. 

The type of interactions that lead to the magnetic 
ordering is also not completely understood. Approximately 
I 0 years ago, when most of the series of compounds were 
synthesized [8-1 0], several publications claimed that the 
ordering of the M sublattice induces the ordering of the rare 
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earth sublattice [II, 12]. However, several examples have 
been found subsequently, where Cu was replaced by a non
magnetic metal, like Zn, and the 3D ordering still could be 
observed [ 13]. Nevertheless. to our knowledge, the detailed 
way that the interaction between the rare earth and the 
transition metal ions influence the ordering has not been 
determined to date. 

In order to obtain a better understanding of the role of the 
R- M interaction in the magnetic ordering of the Pmna 
series of green phases, we have doped the low-dimensional 
Y2BaCuO~ with I, 5, 10 and 25% Dy and studied its 
magnetic properties by AC susceptibility and neutron 
diffraction measurements. 

2. Experimental 

Six samples of Y 0 _,1Dy,BaCu05 were prepared with 
different concentrations of Dy, namely, 0, I, 5, 10, 25 and 
100% (calculated based on the molecular weight such that 
x = 0.02, 0.10, 0.20, 0.50 and 2.0). The method used was a 
solid-solid standard reaction starting from the stoichio
metric appropriate quantities of Y 20 3, CuO, BaC03, and 
Dy20 3. The compounds were ground in an agate mortar, 
heated to 600 C for 12 h before being left to cool to room 
temperature. On completion, the sample was pressed into 
pellets and successively annealed at 900 and 950 C for 
24 h, with grinding and repressing between the heating 
stages. The phases obtained were checked by X-ray 
diffraction. No impurities could be detected, but the AC 
susceptibility showed, through a kink in the x'(T) curve at 
92(1) K, the existence of small quantities of the high T, 
superconductor YBa2Cu30 7 5. This was removed by 
repeatedly annealing at 1000 C for 24 h. 

The AC susceptibility measurements were carried out in 
a LakeShore 7130 AC susceptometer with an excitation field 
of I Oe at a frequency of 825 Hz. Measurements taken at 
other excitation frequencies displayed the same thermal 
dependence for the susceptibility. The error in the real part 
of the susceptibility, x'. was typically of =3% and the 
temperature uncertainty was witbin :!: I K. 

The neutron diffraction experiments were performed on 
the I and 5% Dy samples, on station D20 at the lnstitut 
Laue- Langevin (Grenoble). Data were collected at 1.6, 10 
and 35 K with shorter scans recorded approximately every 
I K. 

3. Results and discussion 

Fig. I displays the thermal dependence of x'(T), the real 
part of the AC susceptibility, for pure Y 2BaCu05 together 
with its inverse, x' 1(T) (inset). The solid line is a Curie
Weiss fit to the experimental data. Fig. 2 shows x' 1(T) for 
the doped compounds at the concentrations indicated. 

4.8 
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Fig. I. The them1al dependence of the real part of the AC 
susceptibility for the pure Y 2BaCu05 compound. The inverse 
susceptibility data fined to a Curie-Weiss law (solid line) as 
described in the text is shown inset 

Because in the low temperature region the curve clearly 
cannot be fitted appropriately to a Curie-Weiss depen
dence, the fitting was performed from T = 2nx~,.,) for the 
pure, 1 and 5% Dy doped samples. 

A lithe data of the curves shown in Fig. 2 were also fitted 
to a Curie-Weiss law and the values of the Curie constant. 
C, and the Weiss temperature, Ow, are displayed in Table I. 
These values have been plotted versus the dysprosium 
concentration in Fig. 3. The Curie constant grows linearly 
with the concentration of dopant. which follows the increase 
in the number of magnetic atoms per unit volume in the 
sample. However, the Weiss temperature displays a 
different dependence in the high and the low concentration 
regions, indicating that when the concentration varies, the 
functional relationship of the susceptibility with the 
exchange integral (J) changes. This suggests that the 3D 

• 1%Dy 
5% Dy 
10%Dy 
25%Dy 

0 100% Dy 

Fig. 2. The thermal dependence of the inver>e uf Jhe real part of the 
AC susceptibility for the Dy-doped Y 2BaCu05 compounds at the 
concentrations indicated. 
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Table I 
Curie constant, C, and Weiss temperature, II.,, yielded after fining a 
Curie- Weiss law to tbe inverse AC susceptibility data for Dy
doped Y 2BaCu05 samples 

C (JK) 

llw (K) 

l%Dy 

0.8(6) 

37(1) 

5% Dy 

2.2(1) 
29(1) 

10% Dy 

3.3(9) 
11(1) 

25% Dy 

7.4(3) 
10.1(1) 

100% Dy 

28.0(1) 

9(1) 

character of the Curie-Weiss law does not seem to reflect 
the ordering mechanism in the Y(2_,py,BaCu05 system. 

To take into account the anisotropies shown in the above 
results, we have simulated the x'(T) curve using a planar 
(20) Heisenberg model. The fittings were performed using 
the Levenberg-Marquardt, non-linear, least-squares 
method, following the high temperatures series expansion 
described by Lines [14]. The fitting to the pure sample 
susceptibility shown as the solid line in Fig. 4, yielded a 
value J = 29(1) K. The 20 character of the magnetic array 
is confirmed when this value is fed into the expression: 
x:..,.T<x:n.,)lc, derived by de Jongh [15]. This test involves 
the maximum value of the susceptibility and the temperature 
at which it occurs. The series expansion was also used to 
simulate the x'(T) curve for the 1% Oy doped sample. If 
variations of 5% were allowed in the resulting series 
coefficients (to keep them within the convergence values of 
the series), it was possible to obtain a suitable fitting that 
yields J = 16(1) K. 

It was not possible to repeat this procedure for the other 
dysprosium concentrations without obtaining a divergence 
in the series. This indicates that the high temperature series 
is inappropriate to describe the thermal dependence of the 
susceptibility for any concentration but the lowest ones. 

The neutron diffraction data measured at 1.6 and 35 K 
for the I% Oy sample are shown in Fig. 5. The inset shows 
the detail of the magnetic peak at 16° (8.8 A, A = 2.4 A), as 

60 
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g 
a! 
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20 

20 

.. 
~15 
::!. 
u .. 
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40 Dy (%)60 60 100 

Fig. 3. The dependence uf the Curie constant, C, and Weiss 
temperature, llw on Dy-doping concentration, obtained after fining 
the data in Fig. 2 and shown in Table I to a Curie- Weiss law. 

100 150 200 250 300 

T/K 

Fig. 4. Thermal dependence of the real part of the AC susceptibility 
for the pure Y 2BaCu05 compound fitted to a series expansion using 
a planar Heisenberg Hamiltonian. 

previously observed in Y 2BaCu05 by Chattopadhyay et al. 
[2]. The intensity of the peak at 16° obtained from the 
neutron diffraction results as a function of the measurement 
temperature are shown in Fig. 6 and the inset shows the 
neutron diffraction data expanded around 16° for the 5% Oy
doped Y 2BaCu05 sample at the temperatures indicated. 
Both samples display an ordering temperature of about 
16K. 

These results indicate that doping with only I% of Oy is 
enough to change the ordering temperature of the 
Y2BaCu05 system from 27 to 16 K, although there is no 
possibility of finding a suitable Hamiltonian to obtain a good 
fit with a high-temperature series expansion. The fact that 
only I% Oy is also enough to change the magnetic 
dimensionality of the system, indicates that this change 
cannot be attributed to a rare earth magnetic sublattice, but 
that the rare earth dopant is influencing the electronic 
properties of the copper in such a way as to modify its 
behavior in the superexchange mechanism. 

20 60 
211(") 

120 

Fig. 5. The neutron diffraction data for the 1% Dy-doped Y2BaCu05 

sample, measured at 1.6 and 35 K. An expanded region at low 
angles shows the behavior of the magnetic peak at 16° in detail 
(inset). 
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Fig. 6. The dependence on the measurement temperature of the 
integrated intensity of the magnetic peak at 16° obtained from the 
neutron diffraction data. The points are joined by a line to guide 
the eye. The inset shows the expanded neutron diffraction data in the 
region around this magnetic peak for the 5% Dy-doped Y 2BaCu05 

sample at the temperatures indicated. 

Moreover, it has recently been reported that doping the 
Y 2BaCu05 system with small concentrations of magnetic 
ions (Er, Fe, or Gd) results in susceptibility curve peaks at 
roughly the same temperature of 16 K [16]. This agreement 
between the literature results and the TN obtained in the 
present study for the lowest concentrations of Dy. is a 
further support for the inHuence of the dopant on the 
electronic orbitals of Cu, making them change their 
interactions along the superexchange pathways responsible 
for the magnetic ordering. 

4. Conclusions 

We have demonstrated that the thermal dependence of 
the susceptibility of Y 2BaCu05 can be fitted to a planar 
Hamiltonian and that the high-temperature series coeffi
cients are good fitting parameters, confirming il~ 2D 
magnetic ordering. 

For the I% Dy doped sample, the same development 
could be used and the neutron diffraction data agreed with 
the Nee! temperature, TN. 

The 5% and higher Dy concentrations displayed 
orderings that could not be fitted in the same way as for 
the pure Y2BaCu05 and 1% Dy samples. 

Applying systematically the Curie-Weiss model to all 
the Dy concentrations shows a variation of the Weiss 
temperature, Ow, which does not agree with the TN found by 
neutron diffraction measurements. This also reveals that the 

Curie- Weiss model does not describe the magnetic 
behavior of the system even for low Dy concentrations. 

The coincidence of the Neel temperatures for different 
magnetic dopants at about 16 K evidences that the existence 
of a rare earth ion, even in small concentrations, modifies 
the electronic structure of the copper ions. 
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Several new boron compounds containing the 2,4,6-{CF1hC6H2 (t1uoromes = Ar), 2,6~(CF1hC6H 3 (Huoroxyl = Ar') 
or 2,4-(CF,),C,H, (Ar") ligands have been synthesised from reactions of ArLi, Ar'Li or Ar'Li with BCI,, and 
characterised by 19F and 11 B NMR spectroscopy. Chlorine/fluorine exchanges are evident in these reactions. The 
crystal and molecular structures of Ar,BF, Ar",B, Ar,B(OH), Ar'B(OH), and Mes,BF (Mes = 2,4,6-Me,C,H,) have 
been determined by single crystal X-ray diffraction. Ar" 1B represents the first example of a compound containing 
three Ar" ligands to be structurally characterised. Molecular geometries and GIAO·NMR shifts for several new 
boron compounds have been calculated at the HF/6-3JG•ievel of theory, and compared with the available 
experimental results. 

Introduction 

Although the chemistry of 2,4,6-(CF,),C,H, (fluoromes = Ar), 
2,6-(CF,),C,H, (ftuoroxyl = Ar') and 2,4-(CF,),C,H, (Ar") 
has been well-developed over the last 15 years,'"' liltle has been 
published about the ability of these ligands to stabilise group 13 
elements. Schluter el a/. described the syntheses of indium 
and gallium derivatives containing the 2,4,6-(CF,),C,H, (Ar) 
ligand.6.7 Bardaji ei al reported the formation of a thallium 
derivative, Ar,TI. 8 No syntheses of aluminium derivatives of 
these ligands have been reported to date. 

However, the most studied group 13 element involving the 
ligands Ar, Ar' or Ar" is boron. A preliminary conference 
report mentioned the formation of Ar8CI2 7 and Ar28CI 1 
from reaction of Arli with BCIJ, and the occurrence of 
CUF exchange.1 Ishihara et a/. explored the arylboronic acid 
ArB(OHh 12 as a catalyst for amidination of carboxylic acids, 
and the acid Ar•B(OHh 21 as a catalyst precursor in the asym· 
metric allylation of aldehydes with allyltrimethylsilanes. !J.Jo 
Gibson et a/. reported the preparation of Ar ,BO I from the 
reaction of ArLi with boron trichloride, and its hydrolysis to 
give the boronic acid Ar28(0H) 2, as shown in Scheme 1. 11 A 
lithium complex of type [Li08Ar2) 3 and a molybdenum com
plex 4 were synthesised from this acid 2. The synthesis of 
Ar,BN, 5 from Ar,BCI and Me,SiN, W'dS described by Fraenk 
et a/., and an X-ray structure of the partially hydrolysed 
product, a I : I Ar,BN,·Ar,B(OH)complex 6, was obtained'' 

Here we report in detail the separate reactions of ArLi and 
an Ar'LiJAr"Li mixture with BCI,. The numerous boron species 
formed have been characterised by 1~ and 11 8 NMR solution
state spectroscopy. These reactions clearly involve intriguing 
fluorine/chlorine exchanges. We show that compound Ar28CI1, 
reported as the major product 11

•
11 from the reaction of Arli 

and BCI,, is in fact the boro!l-fluorine compound Ar,BF 8. 
This has been confirmed by single crystal X-ray diffraction. The 
molecular structure of the known u dimesitylfluoroborane 
Mes,BF 22 (Mes = 2,4,6-Me,C,H,) has been similarly ascer
tained, to compare with that of8. The structures of Ar,B(OH) 

t Electronic supplementary information (ESI) available: rotatable 3-D 
molecular structure diagrams of experimental structures of 2, 8, 16, 17 
and 22 and of HF/6-3JG• optimised geomelries in CHIME formal and 
tables of da1a for 1he HF/6-3JG• optimized geometries. See hup:J/ 
www.rsc.org/suppdataldtlb3/bl09820fl 

2, Ar",B 16 and Ar'B(OH), 17 have also been determined by 
low-temperature X-ray crystallography. In addition, molecular 
geometries and GIAO-NMR shifts for several boron com
pounds have been calculated at the HF/6-31G' level of theory, 
and compared with the experimental results, where available. 

Results and discussion 

Synthesis and solution-state NMR spectroscopy 

Slow addition of Arli to a BCIJ·OEt2 solution in diethyl ether, 
keeping the boron reagent in excess (Scheme 2), gave rise to a 
mixture of ArBCI2 7 and Ar2BF 8, identified from their 19F and 
"B NMR spectroscopic data (Table 1). Ar,BF 8 was isolated 
and fully characterised by X-ray crystallography. In addition, 
boron trihalide-diethyl etherate adducts were observed in solu
tion (BFCI,·0Et,9, BF,CI·OEt, 10 and BF,·OEt, II, Table 1). 
Their NMR data are very similar to literature results.. 14 

When the reaction was carried out by addition of BCI1·0Et1 

to excess ArLi, the products observed were ArBF2·0Et1 13 and 
Ar,BF 8 (Scheme 3). "F and "B NMR data for 13 are included 
in Table I. Adducts 9-11 were not detected in this instance. 

Fluorine-19 NMR spectroscopy shows for the three com
pounds 7. 8 and 13 the characteristic signals of the Ar ligand: 
a resonance at around -57 ppm for the ortho-CF, grou~ 
and a singlet at about -64 ppm corresponding to the para-CF1 

group& (Table I) The couplings in the "F NMR spectra of a 
triplet (- 56.2 ppm, 'JF-F 15.4 Hz) and a doublet (-57 A ppm, 
'JF-F 14.3 Hz) for ArBF,·OEt, 13 and Ar,BF 8, respectively 
arise from the Huorines auached to the boron atoms. The Iauer 
signal has been confirmed as a doublet by recording the 19F 
spectrum at two frequencies (188.18 and 376.35 MHz). In both 
sets of 19F NMR data reported in the literature 11.u for the 
incorrectly charaderised compound I, the two peaks assigned 
to the oT/ho-CF1 groups are in fact a doublet, and this com
pound is really Ar,BF 8. 

For the diary! compound 8, a weak broad multiplet (arising 
from both spin-spin coupling and the quadrupolar nature of 
boron) is observed at -9.1 ppm, assigned to the boron-bound 
fluorine. A similar value of -14.5 ppm is found for the related 
dimesitylfluoroborane 22. The 19F signal for the fluorines 
bound to boron in ArBF2·0Et1 occurs at -145.9 ppm, at 
significantly lower frequency than those reported for other 
aryl boron difluorides. u This difference probably arises from the 

This journal 1s 0 The Royal Sooery of Chemisrry 2003 O•lton Tr•ns., 2003.4395-4405 l•~•s 
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BuU 1 

F,)~iCF, 
Li 

BCI3 0Et1 1 Buli~ THF 

F,C*CF, CF
3 H,O 

~ 

F,Cl<:~H 

Sd>o""' I 

electron-withdrawing nature of the Ar group, resulting in 
stronger coordination of Et10, as confirmed by the 11 8 NMR 
shift of- 2.4 ppm. For the similar compound (C,F,),BF·0Et1, 

a 19F signal at - I 50.0 ppm for the fluorine bound to boron and 
an 11 8 shift of 12.4 ppm have been reported. 16 Very recently, 
dimethyl(8-(difiuoroborolyl)naphthalen-1-yl]amine was found 
to show dear evidence for formation of an intramolecular 'ate'
complex by donation from N to 8 of the BF1 group, with an 11 8 
NMR shift of 10 ppm, and a "F shift of -149 ppm'' 

The presence of ArBF,-OEt1 13 and Ar1BF 8 (and also the 
adducts ~II) can be explained by chlorine/fluorine exchange 
while the reaction is taking place. This phenomenon has also 
been observed in the reaction of Arli with SiCI,.."·" The only 
source of fluorine atoms in the solution is the CF 1 groups in the 
Arli compound. No F/CI exchange between ArH and BCI, was 
found, even after reftuxing for 2 h, indicating that exchange 
does not take place until the aryl group is attached to Li or B. 
The driving force for this exchange may arise from the relative 
bond energies The sum of a C-F and a B-0 bond energy term 
(taken from data for the halides 19

) is -929 kJ mol·', while that 
for a B-F and a C-CI bond energy term is -963 kJ mol·'. It is 

thus energetically favourable for exchange to occur, by -34 kJ 
mol- 1

• A similar explanation has been proposed for the observ· 
ation of F/Cl exchange in Ar. Ar' and Ar" silicon derivatives, 
but not in their germanium or tin analogues. 111 This cannot be 
the full explanation, however, since similar thermodynamic 
considerations would apply to a reaction between ArH and 
BCI1, where no exchange was detected. It seems probable that a 
two·stage process is involved. Coordination of the aromatic 
group to boron brings at least one fluorine from a CF1 group 
into close proximity to B, as noted in the crystal structures 
described below, thus facilitating an intramolecular exchange 
between F on C and Cl on B. This exchange would generate a 
species with a -CF 1CI group in the ortho-position of the 
aromatic moiety, which is not observed in the isolated product. 
An intermolecular exchange is now possible, however, between 
Ar 18CI and the intramolecular exchange product. similar to 
that seen between BC11·0Et1 and BF1·0Et2• which is known to 
be facile, 14 thus allowing the formation of Ar1BF. 

The known 11
·
11 boronic acid Ar18(0H) 2 was obtained by 

slow hydrolysis of Ar1 BF 8. The structure of the hydroxy
compound 2 was ascertained by single·cryst~l X·ray ditfrac-
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Table 1 Experimental and computed fluorine and boron NMR data (ppm) for boron compounds in this study 

Ar1BOH 
ArBCI2 

Ar2BF 
BCI,·OEt, 
BFCI,·OEt, 
BF,CI·OEt, 
BF1·0Et1 
ArB(OH), 
Ar8f2·0Et1 

Ar'B0 1 

Ar' 1BF 
Ar",B 
Ar"B(OH), 
Ar' 1Bf·OH1 
Ar',BOH 
Ar"1BF·0Et1 
Mes,BF 

9 
10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
22 

0( 19Fl 

-56.2 I~ 12F. o-CF,), -63.8 (~ 6F,p-CF,) 
-56.4 (~ 6F, o-CF,). -64.0 (5, 3F,p-CF,l 
-57.4 (d. 'l,.v 14.3 Hz. 12F. o-CF,). -64.0 (~ 6F. p-CF,), -9.1 (m. IF. BFJ 

-114.3 (q. 111~." 57.6 Hz) 
-128.4 (q. 'J_, 30.0 Hz) 
-151.2 (s) 
-56.6 1~ o-CF,). -63.8 1~ p-CF,) 
-56.2 (t, '1,,.,,15.4 Hz, 6F. o-CF,), -63.81~ 3F,p-CF,). -145.9 (m. 2F. BF) 
-56.9(5) 
-57.2 (d. 'J,_, 14.7 Hz, 6F. CF,), -12.1 (m. IF. BF) 
-56.7(5, 9F, o-CF,). -63.9(5, 9F. p·CF,l 
-56.8 
-58.8id. '1,.1• 22.5 Hz, 6F, CF,). -189.9 (m. IF. BFI 
-56.3 
-58.4id. '1,_1, 24.6 Hz, 6F, o-CF1), -63.2 (5, 6F,p-CF,), -200.6 (m. IF, BF) 
-14.5 
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" ... 
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j?*~ 0 " _; - J1 
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6( 1"'F) (calc.)d,b 

-79 (o-CF,). -86 (p-CF,) 
-80 (o-CF,). -85 (p-CF,J 

.,...._._. ~ 

~ 

<C--

~ 
0 

-78(o-CF,). -86 (p-CF,). -21 (BF) 

-118 
-134 
-157 
-83 (o-CF,i. -85 (p-CF,J, 
-81 (o-CF1). -85 (p-CF,J. -144 (BFJ 
-77 
-79 (o-CF,).- 23 (BF) 
-77/-79'io-CF,), -88/-86'(p-CF.J 
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-78 (o-CF,). -145 (BF) 
-79 
-81 (o-CF,I. -85 (p-CF,). -153 (BF) 
-30 
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3.9 (t. 'JB-I' 29.0 Hz) 
0 

26.0 
-2.4 
57.5 
46.1 
73.6 
26.7 

5.7 
45.1 
8.2 

53.0 

"At the GIAO-HF/6-3!G•I/HF/6-3JG• level. "The computed fluorine shifts are averaged where applicable. r From conformation BJconformation A of optimised geometries. respectivc::ly. 

.,...._._. 
~ 

p 
~ 

ob-~ 
~ 

J( 11 8) (caJc.)~ 

40.7 
59.1 
43.6 
16.8 
10.8 
4.4 

-0.4 
26.1 
5.3 

59.3 
44.1 
68.1/67.2' 
26.4 
13.0 
41.2 
17.3 
49.1 

0 
01 

to 
0 .., 
0 = 
0 
0 s 
'0 
0 = = 0. 
rJJ 

0 
0 a 
~ s· s· 

1)\:l 

> .., 
> ..,_ 
~ 

> .., 
::: 

t"' &q· 
~ 

= 0. 
rJJ 

0 
I .... 

00 



C.5. Boron Compounds Containing Ar, Ar' & Ar" Ligands C-19 

•• " 16 

H,Ol 

F
1
C f) CF

1 

I F,C f) CF
1 l CJF 'I"' ·HF 

(Jc::BF.OH, ~ 

CF1 

~-~L' 

UN CF3 

17 18 

compounds ArBCI1 7 and Ar1BF 8, respectively. Another new 
compound Ar",B 16 and the known species BFCI,·OEt, 9, 
BF,CI·OEt, 10 and BF,·OEt, II (Table I) were also observed 
(Scheme 4). The new compounds 14-16 were separated by 
distillation under reduced pressure. 

With an excess of Ar'Li/Ar"Li, products 14, 15 and 16 were 
again identified in solution, together with the adduct Ar-1BF· 
OEt, :ZO (Scheme 5. Table I). The halogen-exchanged derivatives 
of BCI,·OEt, were not detected. Hydrolysis of Ar'BCJ, 14 in 
air gave rise to the formation of Ar'B(OH)1 17 crystals, which 
were studied by single-crystal X-ray dilfraction. Hydrolysis of 
Ar',BF with H,O in ether led eventually to Ar',B(OH) 19, via 
an intermediate 18 retaining a B-F bond according to the 
NMR spectra. Comparison of the 19F and 11 8 NMR shifts with 
theoretical calculations, as discussed below, suggests that this 
intermediate 18 is probably Ar',BF·(OH,), although the 
anionic species [Ar' 1BF(OHJr cannot be entirely discounted 
on the basis of the results. 

The 19F NMR spectrum of Ar\B 16 consisted of a singlet at 
-56.6 ppm (9F, o-CF,) and a singlet at -63.8 ppm (9F, p-CF1) 

ppm. In order to investigate the rotation of the ring with respect 
to the 8-C bond, 19F NMR spectra of Ar"\8 were recorded in 
toluene-d, between 90 and -80 oc (Fig. 1). No changes were 
observed until -40 °C, where a new set of signals staned to 
appear. The spectrum at -80 °C showed signals corresponding 
to two conformations of Ar~ 1B (Fig. 2), i.e. two singlets at- 56.6 
and -63.8 ppm, and two singlets at -56.2 and -62.2 ppm, in 
an overall 5.5: 1 ratio. At this temperature, by comparison wilh 
the variable temperature 19F NMR results for (2·CF1C6H5hB/1 

where two signals were only detected at -100 °C in a 0.7 : I 
ratio, it is clear that both conformations A and B exist in solu· 
tion, although one of these is dominant. The crystal structure 
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1"''1"''1''''1''''1'"'1'"'1''''1"''1' 
.6tJ ·57 -58 .sg -60 -81 -62 ~ -64 

"""' 
fl&. I Variable-temperature 19F NMR spectra of Ar"18 16 

determined at - 153 °C, discussed in more detail below, shows 
that the molecule is in conformation B, unlike (2·CF1C6H.),B 
which is in conformation A from single-crystal X·ray diffrac
tion at -80 °C.11 II is thus probable that B is the preferred 
conformation of 16 at -80 °C. Theoretical calculations 
described below indicate that there is only a very small energy 
difference between conformations A and 8, with B being 
slightly more stable in each case, thus providing a reasonable 
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Fig. 2 Different conformations for Ar"'JB 16 

explanation for the low-temperature result~ Unfonunalely, 
because of solvent limitation~ we were unable to extend these 
studies to lower temperatures, where further restriction of 
rotation would be expected. giving rise to two sets of signals in 
a 2 : I ratio from conformation B. 

X-Ray crystallography 

Sing)e-crystal X-ray diffraction studies were carried out at 
120 K for compounds Ar,B(OH) 2, Ar,BF 8, Ar",B 16, and 
Mes,BF 22, and at 100 K for Ar'B(OH), 17. Their molecular 
structures are illustrated sequentially in Figs. 3--7, respectively. 
Selected bond distances and angles are listed in Table 2. 
Rotational disorder was found for the para-CF, group in Ar,BF 

F"tg. J Molecular geometry of Ar18(0H) 2 (atomic displacement 
ellipsoids in this and the following Figures are dr.twn at the 50'% 
probability level). 

Fig. 4 Molecular geometry of Ar1BF 8. 

Fig. 5 Molecular geometry of Ar"'1B 16. 

and Ar,B(OH), as is often observed in compounds containing 
these ligands. J~.•ul 

The structure of Ar,B(OH) 2 at 200 K has been determined 
previously by Fraenk era/ in the I : I complex of Ar,BN, and 
Ar1BOH 6. u Their results are very similar to those obtained at 
120 K for 2 in the present work. The O(I}-B(I)-C(21) angle is 
I 12.65(13)" at 120 K, whereas 0(1}-8(1}-C(J I) is 121.62(14)". 
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Fig. 6 Molecular geometry of Ar'B(OH)2 17. The hydrogens of the 
-OH groups are disordered over two positions with ca. 50"/o occupancy. 

Fig. 7 Molecular geometry of Me~Bf 22 

An intramolecular OH · · · F bridge is found between the 
hydrogen atom of the OH group and one fluorine atom of a 
CF, group (fig. 3). The OH distance is 0.78(2) A, while the 
H(l) · • · f(l3) and H(l) · · · F(l2) distances are 2.184(24) and 
2.731(23) A, respectively. The ~distances in 2 and 8 are 
similar to those in the I . I Ar,BN,·Ar,B(OH) complex 
( 1.620(6) and 1.599(7) A for the two Ar,B components)." C-8-
C angles in 2 and 8 (125.73(13) and 128.5(2)", respectively) are 
similar to that found in Mes,B(OH)," and larger than the ones 
of 123.1(2)' in 2,6-(F,C,H,),BCI" and of 123.3(4)' in 
(C,F,),BCI." This is due to the presence of a bulky group such 
as CF1 orCH 1 in the ortho position. 

Comparison between Ar1BF 8 (Fig. 4) and Mes,BF 22 
(fig. 7) shows that the C-~ angles are similar. renecting 
similar steric bulk for Ar and Mes groups. The B-C distances, 
however, are approximately 0.02 A longer and the 8--F distance 
is ca. 0.03 A shorter in Ar 1BF than the corresponding bond 
lengths in Mes,BF. This is presumably due to reduction of the 
electron density on the boron atom by the electron-withdraw
ing Ar groups., thus increasing the n back-donation from the 
Huorine atom. 

A compound containing three Ar" ligands, Ar",B 16, has 
been structurally characterised for the first time (Fig. 5). Like 
(2-CF,C,H,),B," the triaryl compound Ar",B exists in a propel
ler-like geometry, with the three aryl groups twisted out of the 
plane defined by the three carbons attached to boron. The three 
rings are twisted by 46.7, 53.7 and 68.9" towards the reference 
plane made by the three carbons bonded to the boron atom, 
C(ll ), C(21) and C(31 ). These angles are larger than those 
observed in triphenylborane (28.3°)" and [(3,5-CF,),C,H,],B 
(33.:\-38.3')," but are similar to those in (2-CF,C,H,),B (40'-
55')11 and trimesitylborane Mes,B (40-60")," reflecting the 
steric size of the ortho-substituents. The molecular struc1ure of 
16 (Fig. 5) shows that it is in the more stable conformation 8 
(fig. 2), unlike (2-CF,C,H,),B which has conformation A. The 
C-~ angles in 16 are 117.6(2), 117.0(2) and 124.7(2)', 
respectively, for C( II )-II( I )-{:(21 ). 021 )-8(1 )-{:(31) and 

4400 D•lton TT•ns., 2003,4395-4405 

N 
N 

2~~ 
to as-.= 

.,..,., 
M!""".V'o ooo-

~~~ 

~~., 

M....-;N 
~>0>0 

~!:!;::i 

C-21 



C.5. Boron Compounds Containing Ar, Ar' & Ar" Ligands 

Table J Shon B · · · F contacts (A) 

B--f 
No. of contacts 
No. of urllw-lluorines 

Ar,B(OH) 2 

2.829--2.914 
4 

12 

C( I )--8( I )--C(31 ), a distorted trigonal planar geometry of the 
boron atom. The bond angles at C(ll ). C(21 ), and C(31) reveal 
a signilicant bending deformation, for example C(I2)--C( II)--
8(1) 126.7(2)" and C(I6)--C(II)--B(I) 116.8(2)". These signifi
cant values are due to close packing between two molecules of 
16 in the crystaL There is no such distortion in the reported 
X-ray structure of(2-CF,C,H,),B!' 

The B--0 distances in Ar'B(OH)2 17 (Fig. 6) are similar to 
those in the crystal structure of2,6-F,C,H,B(OH)2, with values 
of 1.355(2) and 1.360(2) A in 17, 1.341(4) and 1.351(4) A in the 
diftuoro compound," and 1.34{3) and 1.35(3) A in 3,5-(CF,)2-
C,H,B(OH)2, H-bonded in a complex with a carboxylate 
anion.28 The ang]es around boron are close to trigonal in both 
Ar'B(OH),, ranging from 118.15(14) to 121.03(14)", and 
2,6-F,C,H,B(OH), ( 118.1(2) to 122.5(2t).27 showing that the 
presence of just one Ar' group has little effect on the stereo
chemistry. The 8---(; distance of 1.597(2) A in Ar'B(OH), 17 is 
slightly longer than the B--C bond length of 1.578(4) A reported 
in 2,6-F,C,H,B(OH),," and that of 1.56(2) A in the 3,5-
(CF,),C,H,B(OH), complex." The hydrogens of the --OH 
groups appear to be disordered over two positions (Fig. 6), with 
approximately 50% occupancy of each site. Intermolecular 
hydrogen bonding in the crystal of Ar'B(OH)2 17 implies 
that, if a particular hydrogen occupies one such position, this 
fixes the positions of the three hydroxyl hydrogens forming a 
repeating unit, as shown by the dotted lines in Fig. 8. While 
the pattern is not necessarily the same in the next dotted rect
angle, there will be a preference for the same orientation, 
resulting from electrostatics, and giving a symmetrical repeating 
unit. The 0(1) .. • H · .. 0(1 '), 0(2) .. · H .. · 0(2') and 
0(1) · · · H · · · 0(2) (intermolecular) distances are 2.7508(25), 
2.7532(25) and 2.6801(16) A, respectively. Similar hydrogen 
bonding has been reported for the complex containing the 
boronic acid 3,5-{CF,),C,H,B(OH), and a carboxylate anion, 
with 0 · · · H • · · 0 distances of 2.67(2) and 2.64(2) A." 

Fig. 8 Repeating pauem }'ia hydrogen bonds in crystal of Ar'B
(OH), 17 

As often described for compounds containing Ar, Ar' or Ar" 
groups. 18

.l
1.ll short contacts between the central atom and some 

fluorine atoms of the o-CF, substituents are apparent (Table 3). 
These compare well with B · · · F contact distances of 2.845(3), 
2.816(4) and 2.763(3) A in (2-CF,C,H,),B, even with different 
conformatious of the compounds.21 The number of contacts 

Ar",B 16 Ar'll(OH)2 17 

2.763--2.796 
4 

2.800-2.815 
3 

2.622-2.634 

12 9 

depends on the number of trilluoromethyl groups in the ortho 
position. 8 • · · F contacts are shorter in compounds contain
ing only one aryl ring (Table 3). In Ar,B(OH) the range of 
values is somewhat broader, probably because of the F · · · H 
interaction mentioned above. 

Computations 

A series of ab initio calculations has been performed to provide 
optimised gas-phase structures and NMR shift data for the 
boron compounds made here. Use of the computationally 
intensive MP2/6-31G*Ievel of theory gave excellent agreements 
between observed and optimised geometries for Mes,BF (see 
Table Sl, ESJ t for details). Removal of the para-methyl group 
did not significantly affect the geometry around the boron atom 
or the calculated boron shifts. The lower level of theory. HF/ 
6-310._ gave reasonable agreements between observed and 
computational data for Mes,BF. Since there is little justification 
in using the MP2/6-3tG• level of theory here, calculations were 
carried out at the HF/6-3tG• level of theory for the com
pounds described. Selected par•meters for the optimised and 
experimental geometries of the compounds structurally charac
terised in this work are also listed in the ESI. The agreement 
between computed and optimised geometries is very good. As 
shown from X-ray crystallography, short B · · · F contacts are 
found. The optimised geometry of Ar'B(OH), also shows the 
presence of an inlramolecular F · · · H bridge. 

Both conformations (A and 8) of Ar",B were optimised at 
HF/6-310•, with B found to be lower in energy than A by ca. 4 
kJ mot·•_ This energy difference is substantially less than 15.5 
kJ mot·• reported" for the closely related (2-CF,C,H,),B using 
the AM I level of theory. The latter borane- a model for Ar",B 
- was computed at the HF/6-31 a• level of theory here to give 
more realistic energy values. Conformation 8 is 2 kJ mot-• 
lower in energy than A in (2-CF,C,H,),B and the rotational 
barrier between A and 8 is 28.9 kJ mot·' with respect to B. The 
rotational harrier between the two enantiomers of 8 is 16.8 kJ 
mol- 1

• All these calculated values at the ab initio level are in 
good agreement with the observed 19F NMR data at low tem
peratures for (2-CF,C,H,),B and Ar",B. It is therefore not 
surprising to find either conformation (A or B) in the solid-state 
for (2-CF,C,H,),B and Ar",B. considering the very similar 
energies computed for both conformations. 

Since good agreement is found between computed and 
experimental geometries., geometries for compounds not struc
turally determined in this work were also optimised at the HFI 
6-31G• level of theory. The boron environments in optimised 
geometries for ArB(OH),. Ar'2BF and Ar'2BOH are vinually 
identical to those in Ar'B(OH),. Ar,BF and Ar,BOH, respect
ively, showing the para-CF, group to have little effect on the 
environment surrounding the boron atom. The neutral chJor
ides, ArBCI2 and Ar'BCI,, have similar parameters to those 
found in ArB(OH), and Ar'B(OH),. 

Selected parameters from optimised geometries of the 
adducts, ArBF2·0Et2, Ar'2BF·OH2, Ar"2BF·0Et2 and BF,
CI,_,-0Et2 are shown in the ESI. t The adducts all have four
coordinate boron with similar boron environments. There are 
only two reported examples of arylborane ether adducts struc
turally characteried, namely Ph,B·THF 29 and Ph,BCI·THF." 
Since they are four-coordinate boron compounds. the accuracy 
of the HF/6-3tG• level of theory was examined by comparing 
the optimised geometry with the X-ray data for Ph,RCI·THF. It 
is clear from the results that the agreement is poor with respect 
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to the B--0 bond length. It is known that the geometries of 
boron adducts in the gas phase differ considerably from geom
etries in the solid state, particularly for the bond distances 
between the boron atom and the Lewis base. u The optimised 
geometries for the adducts made here are therefore expected 
in the gas-phase and in solution. A different level of theory 
such as the self-consistent reaction field would be needed for 
probable solid-state geometries of these adducts.u Reported 
optimised geometries of BF,·0Me2 and BCI1·0Me2 at ab initio 
)e,·els are in good agreement with BF1·0Et1 and BCI1·0Et1 
geometries here. n The B-0 bond distances shorten on going 
from BF,·OEt,, BF,O·OEt,, BFCI,·OEt, to BCI,·OEt, as 
expected from the ligand dose-packing theory.« Fig. 9 shows 
an optimised geometry for the adduct ArBF1·0Et1 at the HF/ 
6-31G*Ievel of theory. 

Fig. 9 Optimised molecular geometry for the adduct ArBF1·0Et2 13. 

Computed boron and fluorine NMR shifts generated from 
the optimized geometries for all compounds synthesised here 
are listed in Table I. These values are in acceptable agree
ment with observed shifts, apart from the B-F fluorine shins 
for Ar' 1BF·OH1 and Ar""1BF·OEt1. A related derivative (C,F,h
BF·0Et1 was subjected to computations, in order to see 
whether the presence of two aryl groups in an adduct would 
give poor computed 19F shirts. The calculated shifts were -149 
(o-CF), -154 (BF), -170 (p-CF), -186 ppm (m-CF) for "F 
and 13.0 ppm for 11 8, in good agreement with reported data 
(-134 (o-CF), -150(BF), -155(p-CF), -163 ppm (m-CF) for 
19F and 12.4 ppm for 11 8). 16 Selected parameters for the opti
mized geometry of (C,F,),BF·OEt, are also shown in Table S2 
(ESit). Possible alternatives to Ar',BF·OH, and Ar",BF·OEt, 
such as Ar' 1BFOH- anion and Ar"BC1F·OEt1, respectively, 
were also examined by computations., and neither gave signifi
cantly better agreement in the NMR shifts. At present, identifi
cation of Ar',BF·OH, and Ar",BF·OEt,, with the four groups 
attached to boron in these adducts collectively very bulky, is 
tentative. 

Experimental 

All manipulations., including NMR sample preparation, were 
carried out either under an inert atmosphere of dry nitrogen or 
;, mcrw, using standard Schlenk procedures or in a glovebox. 
Chemicals of the best available commercial grades were used, in 
general without further purification. 19F NMR spectra were 
recorded on Varian Mercury 200, Varian VXR 400, or Varian 
lnova 500 Fourier-transform spectrometers at 188.18, 376.35, 
and 470.26 MHz, respectively. 11 B NMR spectra were recorded 
on the Varian Mercury 300 or Varian I nova 500 spectrometers 
at 96.22 and 160.35 MHz, respectively. 'H and "C NMR 
spectra were recorded on the Varian VXR 400 instrument at 
400 and 100.57 MHz, respectively, for Ar",B only. Ambient· 
temperature NMR spectra were obtained using CDCI, as sol
vent for isolated compounds; the NMR spectra or reaction 
mixtures were recorded in the solvent(s) used for the reac· 
tion, with a Jinle CDC11 added to provide the deuterium lock. 
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Chemical shirts were measured relative to external CFC11 e9F) 
or BF1·Et20 (11 B), with the higher frequency direction taken as 
positive. Mass spectra for isolated samples were recorded on a 
VG Micromass 7070E instrument under EI conditions at 70 eV 
and for impure samples on a Fisons VG Trio 1000 mass 
spectrometer coupled directly to a Hewlett Packard 58':Xl Series 
II gas chromatograph (Column: HP-1; 25m; 0.25 mm I. D.; 0.32 
~m film thickness). Mes1BF was synthesised according to the 
literature.11 

Synthesis of ArBCI, 7 and Ar,BF 8. A solution of Arli was 
prepared by adding Buli (28 ml, 1.6 M in hexanes. 44.8 mmol) 
dropwise to a stirred solution of ArH (12.8 g, 45.4 mmol) in 100 
ml or Et10 at -78 oc and leaving the mixture to warm to room 
temperature for 5 h. Fluorine NMR spectroscopy on a sample 
or the solution revealed two peaks corresponding to ArLi at 
-62.6 (o-CF,) and -62.8 (p-CF,) ppm, and a small peak at 
-63.7 ppm assigned to ArH. To the yellow ArLi solution was 
added dropwise •·ia cannula a BCI, solution (100 ml, I M in 
heptane, 100 mmol) in diethyl ether (50 ml) at -78 •c. The 
reaction mixture was allowed to warm to room temperature for 
6 h with stirring, leaving a yellow solution and a white precipi
tate. The solution was then filtered and solvents were removed 
in vacuo, leaving a yellow oil and a white solid. This mixture was 
vacuum distilled at 60 oC/0.05 Torr to give a fraction containing 
ArBCI, 7 (0.8 g, 5% yield) and the adducts BF.CI,_,·OEt, 
(2.6 g}. The residue was then sublimed at 95 °C under vacuum 
to give a white solid identilied as Ar,BF 8 (3.2 g, 24% yield). 
Crystals of Ar 1BF were obtained by recrystallisation from 
dichloromethane. 

ArBCI,: 'H NMR: 8.o7 (s) ppm. "C NMR: 134.6 (q, 'J,_F 
35.1 Hz), 132.7 (q, 'Jc-F 32.7 Hz), 125.6 (septet, 'Ic-F 3.0 Hz. 
CH), 123.0 (q, 11c-F 273.8 Hz), 122.7 (q, 'le-F 274.2 Hz) ppm. 
GC-MS: mlz 362 (M, calc. for C9 H,F9BCI,: 362, with expected 
pattern at 361-364 from "B. "B. "CI and "CI isotopes), 327 
(M -CI). 

Ar,BF: 1H NMR: 8.17 (s) ppm. "C NMR: 137.2 (q, 
'Jc-F 38.0 Hz), 134.5 (q, 'Je-F 34.4 Hz), 134.1 (CB), 126.6 
(septet, 'lc.f 3.0 Hz, CH), 122.8 (q, 'Je-F 275.2 Hz), 122.3 (q, 
'Jc-F 273.0 Hz) ppm. EI·MS: ml=- (M, calc. for C 11H,F1.S 
592), 573 (M-F, pattern at 572-574 from "B. "Band "C). 505 
(M- CF, +H). 

Synthesis of Ar'BCI, 14, Ar' ,BF 15 and Ar" ,II 16. A solution 
of Ar'/Ar'Li was generated by adding BuLi (28 ml, 1.6 M in 
hexanes, 44.8 mmol) dropwise to a stirred solution of Ar'H 
( 10.5 g, 49.1 mmol) in 100 ml of Et,O at -78 T and left to 
warm to room temperature for 4 h. Fluorine NMR spectro
scopy on a sample of the solution revealed two peaks corre
sponding to Ar"Li at -61.9 (o-CF,) and -62.8 (p·CF,) ppm, a 
peak corresponding to Ar'Li at -62.1 ppm and a small peak at 
-63.7 ppm assigned to Ar'll. The 19F peak integrals indicate 
the solution to contain a Ar'Li : Ar""Li ratio of3: 4. To the dark 
brown solution of Ar' /Ar-'Li was added dropwise l'ill cannula, a 
solution of BCI, ( 100 ml, I M in heptane, 100 mmol) in Et,O 
(50 ml) at -78 oc_ The reaction mixture was allowed to warm to 
room temperature for 3 h, leaving a brown solution and a white 
precipitate. The solution was filtered and the solvents removed 
in racuo, leaving a brown oil, which was distilled under reduced 
pressure (0.05 Torr). A fraction containing Ar'BCI, 14 ( 1.8 g, 
14% yield) and the adducts BF,CI,_,.OEt, (3.2 g) was collected 
at 48 oc_ A second colourless fraction was collected at 92 oc and 
identified as Ar' ,BF 15 (0.5 g, 5% yield). The white solid 
remained in the flask was sublimed under vacuum at 120 oc. 
affording Ar',B 16as a white crystalline solid ( 1.6 g. 17% yield). 
A crystal of Ar" JB suitable for X-ray study was obtained by 
recrystallization from hexane. 

Ar'BCI,: 'H NMR: 7.88 (d, 11111 7.8 Hz, 2H), 7.73 (t, J,,. 
7.8 Hz, I H) ppm. "C NMR: 132.7 (q. 'Jc,F 33.0 Hz), 1:10.8 (~ 
CH), 129.5 (q, 'Jc-• 2.9 Hz. CH), 123.7 (q, 'Ic ,. 272.7 Hz) ppm. 
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Table 4 Crystal data and structure refinement parameters 

Ar',B(OH) 2 Ar1BF8 

Empirical fonnula C18H 5BF 180 C18H4BF,Q 
M, 590.03 592.02 
Crystal system Triclinic Monoclinic 
Space group pj P2 11n 
Crystal size/mm 0.38 X 0.24 X 0.18 0.20 X 0.20 X 0.05 
TIK 120(2) 120(2) 
alA 9.1587(31 8.9564(6) 
btA 10.1298(3) 9.4751(6) 
c1A 12.5200(4) 23.6514(15) 
af' 112.5700( 10) 90 
pr 99.9530(10) 98.494{ I I 
i'r 102.5760( 10) 90 
VIA' 1003.60(5) 1985.1(2) 
z 4 
Djgcm- 1 1.953 1.981 
p/mm- 1 0.234 0.241 
R,. 0.0274 0.0736 
Observed data[/> 2a(l)) 3844 2748 
R, index[/> 2a(/)) 0.0359 0.0469 
R 1 index (aJI data) 0.0447 0.0982 
.-R, index[/> 2a(IJ) 0.0914 0.0924 
wR2 index (all data) 0.0981 0.1113 
Goodness of fit (SJ 1.022 1.026 
No. of variables 386 381 

GC-MS: mlz 294 (M, calc. for C,H,F6BCI1 294), 259 (M - Cl, 
isotope pattern at 258-261 ). 

Ar',BF: 'H NMR: 7.97 (d, J,'" 8.0 Hz, 2H), 7.78 (t, 11111 8.0 
Hz, I H) ppm. "C NMR: 133.7 (q, 'Jc-F 34.5 Hz), 131.5 (s, CH), 
129.2 (q, 'Jc-F 3.0 Hz, CH), 123.3 (q, 'Je-F 275.2 Hz) ppm. 
El-MS: mlz 456 (M, calc. for C 16H6F.,B 456), 369 (M-CF, + 
H, isotope pattern at 368-370). 

Ar",B: 'H NMR: 8.00 (s, I H), 7.80 (d, 11111 7.6 Hz, I H), 7.41 
(d, 11111 7.6 Hz, 1H) ppm. "C NMR: 143.7 (CB), 135.4 (s, CH), 
133.6 (q, 'lu 34.3 Hz), 133.5 (q, 'Je-F 33.7 Hz), 127.3 (q, 'Jc-F 
3.6 Hz, CH) 123.1 (septet, 'lc-F 3.0 Hz, CH), 123.1 (q, 'lc-F 
274.5 Hz), 122.9 (q, 11c-F 273.0 Hz) ppm. El-MS: mlz 650 
(M, calc. for C,.H9 F 18B 650), 631 (M - F, isotope pattern at 
630-632), 436 (M - Ar" - H). 

Synthesis of Ar1BOH 2. Distilled water (5 ml) was added 
dropwise to a stirred solution of Ar,BF (0.5g, 0.85 mmo1) in 
ether (30 ml). The ether layer was separated and dried in mc11o 
to yield a white solid Ar,BOH 2 (0.4 g, 80%). This solid was 
recrystallized from dichloromethane to yield crystals suitable 
for X-ray crystallography. 

Ar,BOH: 'H NMR: 8.15 (CH, 4H, s), 7.87 (OH, 1H, s) ppm. 
"C NMR: 138.5 (CB), 136.8 (q, 'Je-F 35.2 Hz), 133.4 (q, 'Jc.1, 

34.4 Hz), 126.6 (septet, 'lc-F 3.0 Hz, CH), 123.0 (q, 'lc-F 275.2 
Hz), 122.4(q, 'lr-F273.1 Hz) ppm. 

Synthesis of Ar' ,BOH 19. The method for the synthesis of 
Ar2BOH was also used to convert Ar' 2BF into Ar' 2 BOJ-I in a 
similar yield. Fluorine and boron NMR spectra on an aliquot 
of the ether layer after JO min stirring revealed an intermediate, 
presumed to be Ar',BF·OH,. The NMR data for the inter
mediate were recorded from a CDCI1 solution of Ar' 2BF with a 
drop of water and two drops of ether added. 

Ar',BOH: 'H NMR: 7.94 (d, 11111 8.0 Hz, 2H), 7.69 (t, 11111 

8.0 Hz, 1H) ppm. "C NMR 132.5 (q, 'le-F 34.2 Hz), 130.5 (s, 
CH), 129.6(q, 'le-F 3.7 Hz, CH), 123.6 (q, 'ln 275.2 Hz) ppm. 

Syntheses of Ar'B(OH), 17 and ArB(OH), 12. A portion of 
the distilled fraction containing Ar'BCI, and the adducts 
BF,CI,_ .-OEt, in ether was left exposed to air. After two days, 
white crystals were formed and identified by X-ray crystallo
graphy as Ar'B(OH),. A solid w-ds obtained from slow exposure 
to air of a sample of ArBCI, and the adducts BF,CI,_,.OEt,. 
and tentatively identified by NMR as ArB(OH),. 

Ar" 1B 16 Ar'B(OH), 17 Mes,BF 22 

C24HJlfu C8H~BF601 C 18HnBF 
650.12 257.93 268.17 
Triclinic Orthorhombic Monoclinic 
pj P2,2,2 P2lc 
0.50 X 0.20 X 0.10 0.43 X 0.20 X 0.10 0.30 X 0.22 X 0.20 
120(2) 100(2) 120(2) 
10.1795(7) 14.0859( 14) 8.2080(5) 
11.0533(8) 14.4620( 14) 7.800](5) 
11.4719(8) 5.0028(51 24.089)( 161 
94. 9440( I 0) 90 90 
108.3620( 10) 90 90.3380( 10) 
94.5490( 10) 90 90 
1212.75(15) 1019.12(17) 1542.27( 17) 

4 4 
1.78 1.681 1.155 
0.200 0.187 0.072 
0.0365 0.0283 0.0388 
3840 2209 2719 
0.0528 0.0305 0.0528 
0.0741 0.0333 0.0795 
0.1255 0.0717 0.1274 
0.1362 0.0735 0.1418 
1.057 1.122 1.025 
388 169 269 

Reaction of BCI, with excess ArLI. A solution of Arli was 
made by adding Buli (28 mi. 1.6 M in hexanes, 44.8 mmol) 
dropwise to a stirred solulion of ArH (12.8 g, 45.4 mmol) in 100 
ml of Et 20 at -78 "C and left to warm to room temperature 
overnight. The light brown solution was slowly treated with 
BCI, (6 ml, 1 M in heptane. 6 mmol) at -78 oc, and left to 
warm to room temperature for 1 h. Fluorine and boron NMR 
spectra were obtained from a sample of the reaction mixture 
which showed ArBF1·0Et, to be the major product. Ar,BF and 
a substantial amount of unreacted ArLi were also present. To 
the reaction mixture was then added a further 6 ml of BCI, 
(I Min heptane, 6 mmol) at -78 oc_ After warming the mixture 
to room temperature, 19F and 11 8 NMR data on an aliquot of 
the solution gave Ar,BF as the major component and ArBF,· 
0Et1 as the only other significant compound. On removing the 
ether and heptane in vacuo, the residue contained a yellow oil 
and a while solid. NMR data on the yellow oil revealed Ar,BF 
but no ArBF,·OEt,. It is presumed the latter adduct dissociated 
into ArBF1 and Et10 on removing the ether in vacuo. Vacuum 
sublimation of the residue at 93 oc gave a white solid identified 
as Ar,BF (3.3 g, 46% yield). 

Reaction of BC1, with excess Ar'Ll. A solution of Ar'/Ar"Li 
was generated by adding Buli (28 ml, 1.6 M in hexanes, 44.8 
mmo)) dropwise to a stirred solution of Ar' H (1 0.5 g. 49.1 
mmol) in 100 ml of Et,O at -78 oc and left to warm to room 
temperature overnight. The brown solution was slowly treated 
with BCI,(6 ml, 1 Min heptane, 6 mmol) at -78 oc and left to 
warm to room temperature for I h. Fluorine and boron NMR 
spectra obtained from a sample of the reaction mixture 
revealed Ar",B to be the major product. Ar",BF·0Et1 and on
reacted Ar'Li were also present. The reaction mixture was then 
treated with a further 6 ml of BCI, (1 M in heptane, 6 mmol) 
at -78 oc. After warming the mixture to room temperature, 
19F and 11 8 NMR dala on an aliquot of the solution gave Ar",B 
and Ar',BF as the major components. Ar"1BF·0Et2 and 
Ar'BCI, were also observed. On removing the ether and hepta
ne i11 mcuo, the residue contained a yellow oil and a white solid. 
NMR data on the yellow oil revealed only Ar",B and Ar' ,BF. 
The fates of Ar",BF·OEt, and Ar'BCI, are not clear. 

Crystallogmphy. Sing]e crystal structure determinations were 
carried out from data collected at 100 or 120 K. using graphite 
monochromated Mo-Ku radiation (A= 0.71073 A) on a Bruker 
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SMART-CCD detector diffractometer equipped with a 
Cryostream N1 flow cooling device. u In each case, series of 
narrow w-scans (0.3°) were performed at several .;-settings in 
such a way as to cover a sphere of data to a maximum reso
lution between 0.70 and 0.77 A. Cell parameters were deter
mined and refined using the SMART software,u and raw frame 
data were integrated using the SAINT program. 11 The struc
tures were solved using direct methods and refined by full
matrix least squares on F 1 using SHELXTL.18 Relevant param
eters for data collection and structure solution are given in 
Table 4 

eeoc reference numbers 217588-217592. 
See http://www.rsc.org/suppdataldtlb3/b309820f/ for crystal

lographic data in CIF or other electronic format. 

Computational methods. All ab initio computations were 
carried out with the Gaussian 98 package. 19 All geometries dis
cussed here were optimised at the HF/6-JtG• level \\ith no 
symmetry constraints. Frequency calculations were computed 
on these optimised geometries at the HF/6-JtG• level for 
imaginary frequencies; none was found for geometries where 
the para CF1 group is absent. Theoreticai 11 B chemical shifts at 
the GIAO-HF/6-3IG•//HF/6-3IG• level have been referenced 
to B,H, (16.6 ppm) 40 and converted to the usual BF,·OEt, 
scale: J( 11 B) = 123.4 - a( 11 B). For Mes,BF, the HF/6-31G* 
optimised geometry in Table 4 was then optimised at the MP2/ 
6-31G* level of theory, and the 11 8 shift of 55.4 ppm was com
puted from the MP2 optimised geometry at the GIAO-B3LYP/ 
6-311G*level of theory with the scale: J( 11 B) = 102.84- a{ 11 B). 
Unlike the excellent agreements between observed and com
puted 11 8 NMR shifts of lluoroboranes, computed 19F NMR 
shifts have not been shown to be as accurate.'"·42 Here, calcu
lated "F chemical shifts at the GIAO-HF/6-31G*//HF/6-31G* 
level have been referenced to HF and converted to the usual 
CFCI, scale: J{"F) = {237.7- ni"F))/0.911. Computed NMR 
shifts {GIAO-HF/6-31G*//HF/6-31G*) for Ar"BFCI·OEt 2: "B 
12.0 ppm; "F -84 {o-CF,). -86 {p-CF,), -135 {BF) ppm; for 
Ar' ,BFOH·: 11 8 3.8 ppm; "F -78 (CF,), -158 {BF) ppm; for 
dimethyl(8-{difluoroborolyl)naphthalen-l-yl]amine: 11 B 9.9 
ppm; 19F ~ 146 ppm.11 Cartesian coordinates for the optimised 
geometries obtained are available in the ESI. t 
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Communications 

The three interpenetrated ind~ndent 30 spin-crossover networks in 
(F•(pdm)(H10lif•B(CN)J1JH10 transform ;n to o s;ngl• 30 notwork 
upon losing tM coordinated water molecules. This procns IS 

reversible and is accompani~ by drastic modifications of the spin· 
crossover switching properties. For more information see the following 
communication by J. A. Real and co-workers. 
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Communications 

HystereSIS in Fe-CN Ag/Au Networks - ~dJ} 

Crystalline-State Reaction with Allosteric Effect 
in Spin-Crossover, Interpenetrated Networks with 
Magnetic and Optical Bistability** 

Virginie Niel, Amber L. Thompson, M. Carmen Munoz, 
Ana Galet, Andres E. Goeta, and Jose A. Real* 

The versatility of metal-organic chemistry offers a unique 
opportunily to construct multifunctional materials based on 
the assembly of molecular building blocks. Such an approach 
can lead to the design of coordination polymers with specific 
network topologies and potentially interesting propenies.lll 
Incorporation of iron(tt) spin crossover (SCO) building blocks 
in such framework structures is particularly suitable for these 
purposes as the labile electronic configurations of the iron 
units may be switched between the high- (HS) and low-spin 
(LS) states. This switching leads to distinctive changes in 
magnetism, color, and structure, which may be induced by 
variation of temperature and/or pressure and by light irradi
ation.f21 Slrong signal generation and hysteresis (memory 
effect) may be achieved when rigid linkers, which allow 
communication between the SCO centers, propagate the 
structural changes cooperatively to the whole framework 
conferring a bistable character to the material.l>-~1 The con
struction of sensory and memory devices is the ultimate goal. 

Hofmann-likc open frame coordination polymers have 
been the subject of much research for many years.161 Never
theless, incorporation of iron(n) SCO building blocks in such 
systems is relatively recent. PI Following this strategy we have 
shown the suitability of cyano-metallate complexes as con
nectors between iron(n) SCO centers to build highly cooper
ative thermo-, piezo-, and photo-switchable two- and three
dimensional coordination polymcrs.t3--tol A further important 
aspect for developing multifunctional materials based on 
these polymers stems from their porous nature,ruJ which 
opens opportunities for investigaling lhe interplay between 
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inclusion chemistry and SCO signa) generation.ll:!.BI Herein 
we report on the incorporation or electronic SCO, molecular 
recognition, and crystalline-state rcactionll"l switching events 
and their cooperative interactions in (Fe(pmd)
(H20)(M(CN)2},]·H,O (I) (pmd=pyrimidine; M=Ag 
(lAg) or Au (!Au)). This is a cyanide-based bimetallic 
coordination polymer made up of triple interpenetrated, 4-
connected, three-dimensional, open-frame networks. 

Compound 1 is monoclinic (space group P21/c) whatever 
the spin state (the structural parameters reported below 
correspond to the HS state).11'1 Two distinct iron atoms, Fe( I) 
and Fc(2) (see Figure 2), which define the inversion center of 
an elongated lfe(l)N,J and a compressed {Fe(2)N,02) 
coordination octahedron, respectively, constitute the building 
blocks of the structure. The four equatorial positions are 
occupied by the cyanide nitrogen atoms of the [M(CN),t 
groups while the apical positions are occupied by two nitrogen 
atoms of two pmd ligands (Fe( I)) and by two water molecules 
(Fe(2)). The [M(CNht groups link the Fe( I) and Fe(2) atoms 
generating {Fe(! )-NC-M(l )-CN-Fe(2)-NC-M(2)-CN-J groups 
which connect to form rectangular motifs. These rectangles 
have edges Fe(l)···Fe(l) = 20.5775(7) (lAg), 20.3860(6) A 
(!Au) and Fe(l)···Fe(2)=10.6417(2) (lAg), 10.5643(2)A 
(I Au). The edge sharing rectangles define an infinite set of 
parallel layers pillared by (M(CNht groups. The resulting 4-
connected 3D network corresponds to the expanded version 
of the prototypical CdSO, net decorated by the coordinating 
water molecules and the pmd ligands (Figure I a).P~ 111 The 
much larger intraframework spaces are occupied by two other 
identical but independent networks. which interpenetrate the 
first network and each other (Figure I b). Communication 
between the three covalently bonded nets is through weaker 
metallophilic M···M interactions (average Ag···Ag and 
Au···Au distances 3.1813(3) and 3.2901(4) A, respectively) 
and hydrogen bonds between the coordinated water mole
cules and the uncoordinated nitrogen atom of the pmd ligands 
(N(pmd)···H20=2.805(3) A (lAg) and 2.762(6) A (I Au); 
(Figure 2a, b). This arrangement accounts for the close 
proximity of the Fe(2) atom and the uncoordinated nitrogen 
atom, Fe(2)-0H2···N(pmd), which provides favorable condi
tions for a topocbemical reaction to take place (Figure 2a). 

Complete and rapid loss of both ligated and nonbonded 
water molecules occurs simultaneously in the temperature 
range 345-399 K (lAg) and 323-382 K (lAu). X-ray powder 
diffraction spectra (XRPD) were recorded on 1 Au at 290 K 
and 373 K at ambient pressure and at 290 K under vacuum. 
The data obtained clearly confirms that at 290 K at ambient 
pressure the sample is in the hydrated state, in agreement with 
results obtained from single-crystal measurements. The X·ray 
spectra taken at 373 Kat ambient pressure and at 290 K under 
vacuum are essentially identical though different to the 
spectra of the hydrated sample. thus revealing the structural 
changes caused by the loss of the water molecules. Ab initio 
indexing of the powder pattern of the dehydrated sample 
clearly shows the massive cell-contraction (ca. 2.5 A) taking 
place along the a axis, previously assumed from the observed 
shift of the 200 reflection from 12.3(2)0 to 14.5(2)" (Support
ing Inronnation). This large and reversible structural mod
ification involving not only the loss of an unbound water 

376o 0 200} Wiley·VCH Verbs GmbH & Co. KGaA. Weinheim 001: 10, 1002/Bnle.20035'Bs3 Angew. Chern. lm. Ed. 200J, ,p, 3760-376} 
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b) 

FiFJn 1. a) Fragment of the 30 network of 1 dis~aying 
the upanded version of the CdS04 structure. b) Perspec· 
tive view of I he lhree interlocked networks. 

molecule but more importantly the loss of a 
coordinating water molecule, affects the integrity 
or the single crystals or 2 (they crack and become 
errectively a polycrystalline powder) precluding 
the in situ structure detennination from single
crystal dif(raclion techniques. The structure 
determination of 2Au was then carried out from 
a rigid-body Rietveld refinement or the hydrated 
model , excluding the water molecules, using the 
newly determined cell parameters.''~ No change 
in space group has been observed following the 
1-2 transfonnation. There are two crystallo
graphically distinct (FeN6) distorted octahedrons 
in l whose Fe( I) and Fe(2) sites can be unambig
uously identified with those corresponding lo 1. 
However, in contrast to 1, the pmd ligand now 
bridges direclly the Fe(l) and Fe(2) atoms defin
ing a system of infinite chains (-Fe(l )-pmd-Fe(2)) 
running parallel to the a axis (Fe(l)···Fe(2) = 
6.1927(4) A) in l . The [M(CN),)- groups of one 
chain link with the equatorial positions or the iron 
centers, connecting adjacent chains and defining a 
single 30 network (Figure 2c. d). These signifi
cant structural changes are a consequence of the 
cooperative topochemical ligand substitution, 
which involves the concerted loss or the bonded 
water generating double coordination unsatura
tion al the Fe(2) centers and the coordination of 
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the uncoordinated pmd nitrogen atom belonging to adjacent 
networks. A first example or topochemical conversion or a 
hydrogen-bonded into a covalent bonded supramolecular 
network was described for the binuclear [(Zn(sala)
(H20)2),]·2H20 compound (H,sala = N-(2-hydroxybenzyl)
L-alanine). but this process was irreversible.l191 In contrast, 
when 1 Au and 1 Ag are exposed to an atmosphere of H20. 
selective absorption of this vapor induces the inverse reaction 
at the Fe(2) sites, regenerating the three independent 30 
networks (Figure 2c, d). The system does not su[fer any 
noticeable fatigue afler repealing several 1 ~l cycles. 

X-ray powder diffraction spectra of 1 Ag have also been 
recorded and it can be clearly observed that the behavior is 
similar lo that described for the lAu compound In spite of 
this. there are clear differences between lAg and lAu, which 
point to either a different unil cell or a loss of symmetry from 
monoclinic to triclinic in 2Ag. Further work is in progress to 
establish the cell parameters and space group for lAg, with 
the aim of solving its crystal and molecular structure. 

Figure 3 shows the temperature dependence of the x..T 
product for 1 Ag and 1 Au, XM being the molar magnetic 
susceptibility and T the temperature. At room temperature, 

Fif-UN1 a) Unit cell of 1 showing fragments of three networks. Arrows on the uncoordinated 
nitrogen atoms (btue) and coordinated water molecules (green) indicate the dynamic event, 
which takes ~ace during the topochemtal solic:J..state readion. b) Perspective view.(OOl), of 
the three nets showing the N(pmd) ····H10 hydrogen-bond system. c} Unit cell oflAu display· 
ing the infinite chains defined by the bridging mode of the pmd ligand (striped bonds repre
sent the new coordination bonds aenerated after dehydration. d} Perspective view of the new 
30 network lAu. e) Photographs showing the color change of a 1 Aa single crystal around the 
critical region ~llow and deep red colors correspond to the hish- and low-spin stat~. respec· 
liY<Iy) . 
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Figure J. Magnetic susceptibility measurements displaying the first· 
order spin transition for a) 1 Agf2Ag and b) 1 Au{2Au. 

x.,.Tis 3.7 for lAg and 3.6 cm'Kmol- 1 for lAu. These values 
arc consistent with the iron(II) ion in the HS state. Upon 
cooling, x.,.Tremains almost constant up to 218 K (lAg) and 
165 K (lAu), below these temperatures the x..,.T value 
undergoes a sharp decrease that is characteristic of a first 
order SCO transition. The x.,. T value drops to 1.8 (1 Ag) and 
1.7 (lAu) cm3 Kmol- 1 al 213 K and 159 K, respectively. The 
warming mode reveals the occurrence of thermal hysteresis. 
The critical temperatures for the cooling (r:"""l and warming 
(7(') modes (215 and 223 K (lAg) and 163 and 171 K (lAu) 
respectively), indicate the occurrence of approximately 8 K 
wide hysteresis loops. At temperatures below T~. the X."' T 
value indicates lhat50% oft he iron(n) ions remains in the HS 
state for both compounds. As expected from their coordina
tion environments, Fe(!) undergoes the HS~LS transition 
while Fe(2) remains HS, which is in agreement with the 
structural data obtained at 120 K for both derivatives. 

The temperature dependence of X.\f Twas measured for the 
dehydrated ZAg and ZAu forms (Figure 3a,b).For ZAg x.~T 
is 3.6cm3 Kmol- 1 at room temperature and remains constant 
down to 125 K, which indicates thai the iron(n) ion is in the 
HS state in ZAg. The subsequent sharp decrease of x.,. T to a 
value of 1.9 cmJ K mol-1 is due to the occurrence of a spin 
transition. The warming mode reveals the occurrence of a 
17 K wide thermal hysteresis loop. The critical temperatures 
are r;~= 124 K and 7('= 141 K. Compound ZAg has a 
hysteresis loop twice the width of 1 Ag, which denotes the 
expected increase of cooperativity when replacing the hydro
gen-bonding internetwork interactions in 1 by stronger 
coordination bonds in the more rigid framework 2. Com
pound 2Au does not undergo a spin transition in the whole 
temperature range (XM T has a constant value of around 
3.8 cm3 Kmol- 1 between room temperature and 120 K). This 
difference in the behavior of ZAg and ZAu may be supported 

by the differences in the diffraction paltems observed for 
each of the compounds upon dehydration. sec above. The 
marked down shift ofT, in ZAg and disappearance of SCO in 
2Au indicate a decrease of the ligand-field strength at the 
Fe (I) site and may be ascribed to the bridging mode of the 
pmd ligand. Recovery of the original SCO behavior of lAg 
and tAu occurs when ZAg and ZAu are left in air 
atmosphere. 

Compounds 1 Ag. I Au. and ZAg undergo a dramatic 
change of color from pale yellow (HS stale) to deep red (LS 
stale) accompanying the SCO (Figure 2e). This thermochro
mic effect. observed in other 2D and 3D Fe11-M11 (M = Ni, Pd, 
Pt) Hofmann-like SCO compounds, is a consequence of the 
increase in intensity of the metal-to-ligand charge transfer 
(MLCI') band around 550 nm, associated with the electron 
delocalization from the t2! orbitals of the iron(u) ion to the 
,. orbitals of the ligands which is enhanced by the HS-LS 
spin change)81 

In summary. the coordination polymers l Au and 1 Ag 
undergo thermally induced first-order, spin-crossover tran
sitions with magnetic and chromatic bistability. They also 
participate in a controlled and fully reversible crystalline
state ligand substitution, involving coordination/uncoordina
tion of gaseous water and pmd. This induces expansion/ 
contraction of the nanoporous framework and the repeated 
allosteric transformation of the three interpenetrated nets 
into a single three-dimensional net (ZAg and ZAu) without 
affecting their crystallinity but altering their SCO behavior 
significantly. Such a cooperative combination, in the same 
lattice. of different molecular events, such as recognition, 
allosterism, and electronic bistability is of fundamental 
significance for the generation of new switchable, multi
property materials. 

Experimental Section 
1 Ag: was synthesized by slow diffusion, under an argon atmosphere. 
of two aqueous solutions containing stoichiometric amounts of 
Fe(BF,),-6H20 (0.185 mmol. 2 mL)/pyrimidine (0.374 mmol. 2 mL) 
in one side and K[Ag(CNhJ (0.374 mmol, 2 mL) in the other side of 
an H-shaped vessel. Pale yellow prismatic crystals were separated 
three weeks later. Yield approximately 50%. Elemental analysis(%) 
calcdforC,H,N.,Ag,02Fe: C 19.54, H 1.61. N 17.09; found:C20.05. H 
1.98, N 16.76. 

1 Au: to an aqueous solution containing FeCI2 (0.087 mmol, 
4 mL) and pyrimidine (0.173 mmol, 4 mL) was added a water solution 
of K[Au(CNhJ (0.173 mmol, 6 mL). The resulting solution was stirred 
for 10 min and left at room temperature to evaporate under an argon 
stream. Pale yellow crystals were separated one week later. Yield 
approximately 70%. Elemental analysis (%) calcd for 
C,H,N,Au20 2Fe: C 14.34, H 1.20. N 12.54; found: C 14.95, H 1.50, 
N 12.03. 

ZAg and 2Au: Dehydrated samples lAg and 2Au were prepared 
from tAg and 1 Au in the SQUID sample holder. Hydrated samples 
placed in sealed containeB in the SQUID sample holder and their 
magnetism checked. Small holes were then made in the lids of the 
sample containers and the samples left standing for 30 min at 380 K. 
dehydration under these conditions is confirmed by the thermogravi
metric analysis (see Supporting Information). 
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The synthesis and characterisation of some Group 14 compounds 
containing the 2,4,6-(CF3) 3C6H2, 2,6-(CF3) 2C6H3 or 2,4-(CF3) 2C6H3 

ligands 

Andrei S. Batsanov, Stephanie M. Cornet, Keith B. Dillon, • Andres E. Goeta, 
Amber L. Thompson and Bao Yo Xue 
Chemistry Department. University of Durham. Somh Road, Durham, UK Dill 3LE 

ReceiYed 5tlt March 2003, Auept~d 15th Apri/10()3 
Fint publisMd as an Advanu Article on the web 9th May 1003 

New (aryl),ECJ, and (aryi)ECJ, compounds [E = Si, Ge or Sn; aryl= 2,4,6-(CF,),C,H, (Ar), 2,6·(CF,),C6H, (Ar') 
and/or 2,4-(CF,),C,H, (Ar')] were prepared by reactions of ECI, with 2 equivalents of Arli or of a Ar'Li!Ar"Li 
mixture. The latter gives predominantly the less sterically hindered product Ar\ECI1 forE= Si or Ge, but Ar' 2SnCI2 

for the larger central atom. The products were characterised by elemental analysis, 19F and (where appropriate) 
"'Sn NMR spectroscopy, and single-crystal X· ray diffraction for Ar",SiCJ,, ArGeCJ,, Ar,GeCI,, Ar",GeCJ,, 
Ar ,SnCJ, and Ar' ,SnCI,. For E = Si the synthesis is complicated by CI/F exchange: besides Ar' ,SiCJ, and Ar",SiCJ,, 
19F NMR spectroscopy identified in solution Ar.1Sif1 and Ar' :SiF1• The Iauer was isolated and its X-ray structure 
determined. In all compounds, theE atom has a strongly distorted letrahedral coordination, supplemented by 
short intramolecular E · · · F contacts (secondary coordination) with o-CF1 group(s). 

Introduction 

The 'Huoromes' ligand 2,4,6-(CF,),C,H, (henceforth, Ar) is 
known for its stabilising influence in the comJX>Unds of trans
ition metals 1•

2 and main group 1 elements, including phos
phorus 4 and arsenic.5 This is due to the high electronegativity 
(compared with most aryl ligands) of this group, combined 
with some ability for M-tC n back donation and the steric 
demands of the two onho triftuoromethyl groups, which can 
hinder rotation of the ligands as well as favour low co
ordination numbers by protecting vacant coordination sites. 
The 'Huoroxyl' 2,6-(CF,),C,H, group (Ar'), possessing similar 
advantages, is used much less, 46./.6-• partly because lithiation 
of its precursor 1,3·bis(trifluoromethyl)benzene (Ar'H) can 
proceed in two different positions, leading to a mixture of Ar' 
and 2,4-(CF,),C,H, (Ar") derivatives. •P~ Recently we under· 
took a systematic study of a series of Group 15 compounds 
with Ar, Ar' and/or Ar•tigands. 1 The corresponding derivatives 
of tetravalent Group 14 elements (Si, Ge and Sn), remain 
comparatively unexplored, particularly simple halides and/or 
hydrides.. Attempts to prepare Ar2SiCI2 from reaction of ArLi 
with SiCI4, were frustrated by fluorine/chlorine exchange, 
yielding only Ar,SiF,.' Similarly, Ar,SiHF was obtained from 
reaction between HSiCI1 and Arli.10 Ar2GeH 2 was synthesised 
from the germanium( II) precursor Ar2Ge,11 while ArSnPh1 was 
similarly prepared from ArLi and Ph 3SnCIY Various other 
derivatives containing Ar groups, often produced by reaction 
between an E(n) precursor Ar2E (E = Ge or Sn) and oxidising 
agents, have been structurally characterised,w.n-lti but none 
containing Ar' or Ar" groups. although Ar'SnMe,," Ar"· 
SnMe1 ,. and Ar' 2Sn 17 have been prepared. X-Ray structures of 
these compounds consistently reveal intramolecular E · · · F 
separations shorter than the sums of the van der Waals radii, 
indicative of additional weak (''secondary") coordination, 
or attractive electrostatic interactions, which can play an 
important role in stabilisation of these molecules. 

In the present work we have synthesised a series of the Ar, 
Ar' and Ar" derivatives of Group 14 elements (i.e. Si, Ge and 
Sn), which have been characterised by elementcll analysis, 
19F and (where appropriate) 119Sn NMR solution-state spectra· 
scopy. X-Ray crystal structures of seven products have been 
determined at low temperatures. 

Results and discussion 

All the chloro-derivatives were prepared by reaction of the 
corresponding Group 14 tetrachloride ECI4, with 2 equivalents 
of Arli (from ArH), or with a mixture of Ar' Li and Ar"Li 
(to the total of 2 equivalents), obtained by lithiation of Ar'H 
(Scheme I). In agreement with earlier reports, 9•

10 the synthesis 
of Ar2SiCI2 (Ia) was frustrated by chlorine/fluorine exchange 
and the only product isolated was Ar,SiF, (2). For Ar' and Ar" 
derivatives. the CVF exchange was slower, and the compounds 
Ar',SiCJ, (3a), Ar",SiCI, (4a), Ar',SiF, (S) and Ar",SiF, (6) 
were all detected in solution by means of 19F NMR spectro
scopy (see Table I). Of the two isomeric chloride~ the less 
sterically hindered 4a was present in larger amount than Ja, but 
interestingly, the opposite was observed for the fluorides: S was 
more abundant than 6. Probably, 3a undergoes faster CVF 
exchange than 4a, with the overall order of exchange rates 

ArH = AILi ...::. E Ar,s;clt (1a) 

I 
Ar,.siF, (2) 

EO. hexane& 

.. ~, 
F,c E = Ge (b), Sn (e) 

Ar'H ~ Ar'l>. + ·~L,. ~ Ar' ECI + •~.eel 
Et-z(l - ~ l 2 """zo- 2 

(3) (4) 

E = Si (a), Ge (b), Sn (e) 

I 
Ar',SiF2 + Ar'",.siF, 

(5} (6) 

E = Si (only) 

Scheme I Synthetic reactions {all performed at - 78 "C). 
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Table I 1~ NMR spectra for Si(IV) compounds 

o-CF3 Si-F 
p-CF 1 

.lippm ~1..-_.fHz 6/ppm d/ppm 'JF-tiHZ 

-57.3 t (12F) 12.8 -64.2 s (6F) -124.5 m (2F) )2.8 
3a -58.9s(12F) 
4a -57.9 s (6f) -64.2 s (6F) 
5 -57.5t(l2f) 12.3 -125.5 m t2F) 12.5 
6 -59.2t (6f) 12.4 -64.1 s(6F) -133.0 septet (2f) 12.3 

decreasing in the sequence Ar1SiCI, > Ar',SiCI1 > Ar"1SiCI,. A 
possible mechanism for this exchange is presented in Scheme 2. 
Products 4a and S were isolated as colourless crystalline solids. 
and their X-ray structures were ascertained. 

(2) 

Scheme 2 Possible mechanism of CUF exchange in Si derivatives. 

No F/CI exchange was observed for the germanium and tin 
derivatives. This difference possibly arises because the bond 
energy terms are more favourable for exchange in the case of 
silicon. The sum of a C-CI and an Si-F bond energy term 
(taken from values in tetra halides 18

) is 912 kJ mol-'. whereas 
the sum of a C-F and an Si-CI term is 887 kJ mol- 1

• Thus the 
exchange should give a net energy gain of 25 kJ mol- 1

• The 
corresponding sums for germanium are 792 and 827 kJ mol- 1 

and for tin, 730 and 803 kJ mol-', respectively, giving in both 
cases a negative balance, -35 kJ mol- 1 forGe and -73 kJ 
mol-' for Sn. Although the actual bond energies can be some
what different in the present compounds because of different 
ligand environment, it is evident from the general trend that the 
CIIF exchange is energetically more profitable, the only source 
of nuorine in each instance being the dissociation of a C -F 
bond. 

The reaction of Arli with GeCI, yielded a mixture of 
Ar,GeCI, (lb) and ArGeCI, (7b) in a ca. 2 : I ratio. Both 
products were isolated and characterised by X-ray crystallo
graphy. The Ar'Li/Ar"Li mixture reacted similarly with GeCI, 
to give a solution containing predominantly Ar"1GeCI1 (4b). 
according to the ''F NMR spectra. This compound, too, was 
recrystallised and characterised by X-ray crystallography. 
A single ''F resonance at -53.8 ppm was tentatively assigned 
to the symmetrical disubstituted isomer Ar' ,GeCI1 (3b), 
particularly in view of the similarity of its shift to those of the 
fluorines in the o-CF, groups of lb (- 54.4 ppm) and 7b (- 52.9 
ppm). There were other small impurity peaks present, however, 
and the possibility that the signal at -53.8 ppm could arise 
from the monosubstituted precursor Ar'GeCJ,, which should 
also give a single 1'F resonance. cannot be entirely discounted. 

Reaction of Arli with SnCI, in a 2 : I molar ratio led to the 
isolation of mainly Ar,SnCI, lc. together with a small quantity 
of ArSnCI, 7c. Similar treatment of the Ar'Li/Ar"Li mixture 
with SnCJ, yielded a solution containing mainly the more 

Table 2 19F and ll~n NMR spectra (0/ppm) for Ge(rv) and Sn(IV) 
compounds 

lb 
3b 
4b 
7b 
lc 
3c 
4c 
7c 

-54.4 s (12f) 
-53.8 s (12F)' 
-58.7s(6f) 
-52.9 s (6f) 
-56.9s(l2f)' 
-56.7s(I2F)' 
-58.9s(6F)' 
-55.9 s (6f)' 

10.0 
10.0 

19.2 

p-CF, H"Sn 

-64.1 s (6Ft 

-64.1 s (6f) 
-63.5 s (3f) 
-63.9 5 (6f) -146.7 

-141.1 
-63.8 s (6F) -97.4 
-63.0 s (3F) -140.7 

"See Text. b (singlet) with Sn satellites. ' Weak signal. Sn satellites 
unobsen·ed. 

Table 3 Selected bond distances (A) and angles (0
) in 7b 

Ge-{:(1) 
Ge-{:1(1) 
Ge·-Cit2l 
Ge ... f(l) 

1.981(2) 
2.1277(4) 
2.1117(8) 
2.909(2) 

C( I )-{]<-CI( I) 
C( I )-(ie-CI(2) 
CI(I}-Ge-0(2) 
CI(I}-Ge-{:1(1') 
CI(I'}-Ge ... f(l) 

113.72(4) 
111.89(6) 
108.46(2) 
99.82(3) 

168.1(1) 

sterically hindered disubstituted product Ar' ,SnCI, (Jc), which 
has also been characterised crystallographically. The less 
hindered isomer Ar",SnCI, (4c) was identified in solution from 
its 19F and "'Sn NMR spectra. The larger size of the Sn atom 
relative to Si and Ge must reduce the steric hindrance between 
ligands in these '11-letrahedml structures. which probably 
explains the reversal in isomeric ratio between 3 and 4. 1'F and 
11~n NMR data for new Ge and Sn compounds are lisled in 
Table 2. 

Molecular structures studied by single-crystal X-ray crystal
lography are shown in figs. 1-4, while selected bond distances 
and angles are compared in Tables 3 and 4. It is noteworthy 

Fig. I Molecular structures of Ar"1SiCI2 (4a) and Ar"lGeCI 1 (4b). 
Henceforth atomic displacement ellipsoids are drawn at 50"'/" 
probability level. 
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Tablt4 Sele<-ted bond distances (A) and angles (0
) 

Compound 4a 
E Si Si 

E-C(II) 1.884{2) 1.899(2) 
E-C(21) 1.884{2) 1.895(2) 
E-CI(I) 2.050(1) 1.579(1)' 
E-Cii21 2.048{11 1.569(1)' 

C( II )-E-C(21) 117.47(8) 115.53(8) 
Ciii)-E-CI(I) 108.88(6) 113.17(8)' 
C( II )-E-CI(2) 108.22(7) 105.27(7)' 
C(21)-E-CI(I) 108.00(7) 104.65(7)' 
C(21 )-E-CI(2) 109.29(6) 113.76(71' 
Cl( I )-E-CI(2) 104.17(5) 104.06(6)' 

E ... F(ll) 2.901(2) 2.793(1) 
E .. · F(21) 2.882(2) 2.745{1) 
E ... F(l4) 
E ... F(l5) 3.054(1) 
E · .. F(25) 3.073(1) 

CI(I)-E .. · F(ll) 174.30(4) 172.60(6) 
CI(2)-E · · · F(21) 176.92(4) 173.14(5) 
C(ll )-E .. · F(25) 160.3(1) 
C(21)-E .. · F(l5) 160.5{1) 

~ F ligands instead of CJ. 

15) (3d 
Fig. 2 Molecular structures of Ar' 1SiF1 (5) and Ar' 1Sn01 (3c), 
showing the disorder of one o·Cf1 group in 3c. 

Fie.. 3 Molecular structures of Ar1Ge·CI1 (I b) and Ar1SnCI1 (I c), 
showing the disorder of one p-CF1 group. 

that compound 4a is crystallographically isostructural (iso
morphous) wilh 4b, and lb with kIn molecules lb and lc, the 
para-CF 1 group of one Ar ligand is rotationally disordered; 
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lb 4b I< 3c 
Ge Ge Sn Sn 

1.997(3) 1.958{2) 2.183(6) 2.177(21 
2.017(3) 1.957(2) 2.195{6) 2.183(2) 
2.1513(9) 2.1484{7) 2.326(2) 2.3266(7) 
2.1174(9) 2.1496(7) 2.298{2) 2.3372(7) 

120.07(12) 119.95{10) 120.3(2) 115.73(7) 
113.46(9) 107.77(7) 119.0(2) 120.66(6) 
103.34(9) 108.65(7) 96.1(2) 98.18(6) 
96.65(9) 108.26(7) 103.8(2) 100.96(6) 

118.17(91 108.21(7) 113.9(2) 121.53(6) 
104.3314) 102.64(3) 102.58(7) 100.11131 

2.757(2) 2.860(2) 2.720(4) 2.686(2) 
2.809(2) 2.848{2) 2.799(4) 2.768{1) 
3.379(2) 3.344(4) 
3.399(2) 3.382(4) 3.203(2) 
3.010(2) 2.979(3) 3.002(2) 

167.77(5) 172.45(5) 170.6(1) 168.26(5) 
169.32(5) 177.20(4) 170.3(1) 169.33(3) 
164.5{1) 164.6(2) 160.69(6) 
152.6(1) 154.1(2) 153.91(6) 

Flc. 4 Molecular structure of ArGe01 (7b). showing the disorder of 
the p-CF 1 group. Atoms generated by the mirror plane are primed. 

such disorder has been frequently observed for both Group 
14 10

·
1
4r and Group 15 k..,.a derivatives of Ar. In Jc, one ortho

CF1 group is rotationally disordered. 
Molecules of all 1he diaryl-dihalo compounds have no 

crystallographic symmetry and show a distorted tetrahedral 
coordination of the central atom (E), with the C-E-C bond 
angle the widest and the Cl-E-Cl angle (or F-E-F in 5) the 
smallest. This distortion can be explained by the steric 
repulsion between bulky aryl groups. However, the difference 
between these two angles is higher in 4b than in 4a, and in lc 
than in tb, i.e. the distortion increases with the increase of the 
E atom size, which should apparently relieve the steric over· 
crowding. It is also noteworthy that in M derivatives 4a and 
4b all four Cl-E-C angles are similar, while in Ar and Ar' deriv
atives lb,c and 3c two Cl-E-C angles are much wider than the 
other two. The F-E-C angles in 5 show a similar, but more 
regular, distortion. These distortions are obviously due to the 
fact that both Ar and Ar' ligands have two CF1 groups in ortho 
positions to E and thus cause more steric overcrowding than 
Ar", which has only one or1ho-CF1. Similar asymmetry has been 
observed earlier for Ar,EX(Y) compounds, where E = Si or Sn, 
X.:= For Cl, andY is a unidentate ligand.9

•
10

·
14 Thu~ in Ar1SiF1 

the F-Si-C angles vary from 102.8(2) to 112.8(2)',' and in 
Ar,SiHF from 105.9(1) lo 112.5(1)'. 10 Even larger variations 
O<CUr in Ar,Sn(Cl)(~,O)Sn(Cl)Ar, (Cl-Sn-C angles 99.1( I)-
119.7(1)")"• and in Ar,Sn(F)L, where L = N-(1-adamantyl)
[(pentaHuoro-2-propenyl)thio]amine, C,H,F,NS (C-Sn-F 
angles 90.1(2)-107. 7(2)'). 1

" 



C.7. Group 14 Compounds Containing Ar, Ar' & Ar" Ligands 

Molecule 7b lies on a crystallographic mirror plane normal to 
the benzene ring and passing through the Ge, Cl(2), C(l) and 
C(4) atoms. Here the Ge atom also has distorted tetrahedral 
coordination and the CF1 group in the para-position to the 
Ge is disordered between two orientations (related in this case 
by the mirror plane). 

The E-F and E-CI bonds in diaryldihalogenides are 0.03-
0.05 A longer than in the corresponding Group 14 tetra
halogenides, viz. SiF4 (1.540(1) AI,"" SiCI, (2.008(1) AI.'" 
GeCI.(2.096(2) A in the crystal," 2.113(3) A in the gas phase") 
and SnCI, (2.279(3) A). 22 The lengthening is obviously due to 
the replacement of the halogen by a less electronegative aryl 
ligand, and correspondingly the elfect is smaller in the 
monoaryltrichloride 7b (ca. 0.02 A) than in the diary! analogue 
lb. and it increases with decreasing number of electron-with
drawing CF, groups (compare lb with 4b, and lc with 3c). 

Structural studies of Group 14 compounds containing on/}' 
aryl and halogen ligands, are scarce, especially for Si and Ge. 
The Si-C bonds in Ph,SiCI ( 1.862 AI" are slightly shorter than 
in 4a ( 1.884(2) A), while still shorter Si-C bonds (ca. 1.84 A) 
were found in two compounds where Si atoms are incorporated 
into fused-ring systems, viz. 9,9,10,10-tetrachloro-9,10-disila-
9, I 0-dihydroanthracene" and 9,9-dichloro-9-sila-9-hydro
Huorene." The mean Si-C bond distance in 5 (1.897(2) A) can 
be compared with those in 2 (1.901(5) A),' Ar,SiHF (1.906(5) 
A),'0 and o-Toi,SiF (1.861 AI'' Finally, comparison can be 
made with tetraaryl derivdtives, e.g. SiPh," and Si(p-Tol),"' 
with Si-C distances 1.877 and 1.873(3) A, respectively. Thus 
halogeno ligands have no definite effect on the Si-C(aryl) 
bonds, while CF, substituents in the aryl ligands tend to weaken 
them, probably by diminishing the electron density on the 
benzene ring and hence the n back-donation. 

No compound with Ge-C(aryl) and Ge-CI bonds has been 
structurally characterised before, except I 0, I 0-dichloro-1 0-
germa-9-oxa-9,10-dihydroanthracene,"' where the Ge-C bonds 
of 1.890 A are incorporated into a fused-ring system. The 
Ge-C bonds in Ar derivative lbare0.05 A longer than in its Ar" 
analogue 4b. and in the latter nearly the same as in tetra-aryl 
compounds GePil.,. ( 1.957(4) A) and Ge(p-To I),"' ( 1.948(5) 
A). On the other hand, the Sn-C(Ar) bonds in lc are less than 
0.01 A longer than Sn-C(Ar') in Jc, and in both cases are 
substantially weaker than in Ph,SnCI, (2.113(5) A)," or 
(mes),SnCI,, a non-fluorinated analogue of lc (2.117 A)." Thus 
a CF, group in an ortho position affects an E-C bond much 
more than one in a para position, which can be attributed to 
higher steric overcrowding and direct CF J • • • E interactions 
(see below), rather than to mere electron withdrawing by 
this group. Indeed, bulkier nrtho-substituents cause similar 
Sn-C(aryl) bond lengths even in the absence of fluorination, 
e.g. in (2,4,6-P~1C,H,),SnCI, (2.147(4) A)" and (2,4,6-Bu',C6 -

H2),SnCI2 (2.198(4) A)." 
Indeed, a s.alient feature of all the compounds studied herein 

is short intramolecular E · · · F contacts with o-CF1 groups of 
the aryl ligands. Such contacts have been observed earlier in 
numerous Group 14 derivatives, Ja.9-t6 as well as in some Group 
15 compounds.' Although the van der Waals radii of Group 14 
elements are difficult to determine directly (because these atoms 
are seldom exposed sulliciently to participate in intramolecular 
contacts), a variety of indirect techniques gives consistent 
values of 2.1 A for Si and Ge and 2.25 A for Sn." Thus (assum
ing a radius of 1.5 A for F), each molecule contains 2 to 5 
E · · · F contacts well below the sum of the van der Waals radii, 
which are listed in Tables 3 and 4. These contacts can be 
compared also with the sums of "equilibrium" radii, the sums 
of which correspond to the minimum of the atom-atom poten
tial curve and hence the point of zero van der Waals force, 36 viz. 
2.26 A (Si), 2.32 A (Ge), 2.46 A (Sn) and 1.65 A (F)." Thus, 
insofar as van der Waals forces are concerned, the E · · · F 
interactions should be substantially repulsive. They, however, 
can be counterbalanced by dectrostatic attraction (E and F 

carrying opposite charges) and/or weak ('"secondary"") co
ordination, i.e. donation of lone electron pairs of F into the 
outer-shell orbitals of E. The latter interpretation agrees with 
relatively high chemical stability of the compounds. It is also 
noteworthy that the Ge · · · F distances in 4b are shorter by 0.04 
A than Si · · · F in the isostructural 4a, which contradicts the 
simple repulsive model (the Ge atom is larger than Si), but can 
be explained by a weakly-bonding model (the outer orbitals of 
Ge are more diffuse and hence more suitable for interaction 
with F). 

In the Ar" derivatives 4a and 4b, the coordination of Si and 
Ge is complemented to (4 + 2) by the F(ll) and F(21) atoms 
(belonging to different Ar" ligands), approximately in trans 
positions to the chloro ligands; there is no other E · · · F 
contact within 3.7 A. A similar pair of short E o o o F contacts 
exists in each of the bis-Ar and bis-Ar' derivatives also (which 
can be regarded as evidence of specific character of these inler
actions), but the presence of two more o-CF1 groups gives rise 
to additional, somewhat longer. E · · · F contact& In the Ar' 
derivatives 5 and Jc, these "additional" o-CF, groups con
tribute one contact each, viz. E · · · F(l5) and E · · · F(25), 
both approximately in trans positions to E-C bonds. The result
ing (4 + 4) coordination of E can be described as a tetrahedron 
capped on each face. The same description was applied pre
viously to the structures of Ar2SiF2

9 and Ar2SiHF. 10 In 5, the 
E · · · F(l5) and E · · · F(25) distances are almost equal, while 
in 3c they differ by 0.2 A. This non-equivalence is obviously 
connected with strongly asymmetric distortions of bond angles 
(between covalent bonds) at the Sn atom, the causes of which 
are unclear. In Ib and Ic, one of the n-CF, groups adopts a 
different orientation: instead of one F atom pointing roughly 
towards theE atom, there are two longer contacts, E · · · F( 14) 
and E · · · F(l5), theE atom lying close to the bisectral plane of 
the F( 14)C(I8)F( 15) angle. 

Molecule 7b contains two (symmetrically related) Ge · · · F(l) 
contacts in trans positions to Cl(l) and its eq_uivalent. It is 
noteworthy that the Ge-CI(I) bond is 0.016 A longer than 
Ge-CI(2), which suggests a certain (if small) covalent character 
of the Ge · · · f( I) interaction. 

Experimental 
All manipulations, including NMR sample preparation. were 
carried out either under an in en atmosphere of dry nitrogen or 
in vacuo, using standard Schlenk procedures or a glovebox. 
Chemicals of the best available commercial grades were used, in 
general without further purification. 19F NMR spectm were 
recorded on a Varian Mercury 200, Varian VXR 400, or Varian 
lnova 500 Fourier-transform spectrometer at 188.18, 376.35, 
and 470.26 MHz, respectively. "'Sn NMR spectra were 
recorded on the Varian !nova 500 spectrometer at 186.37 MHz. 
Chemical shifts were measured relative to external CFCI, ("F) 
or Me4Sn ("'Sn), with the higher frequency direction taken as 
positive. Microanalyses were performed by the microanalytical 
services of the Department of Chemistry, University of 
Durham. 

Syntheses 

Lithiation reactions were carried out as described pre
viously."-8·n WARNING: It is important in these reactions 
to keep a slight excess of the hydrocarbon (ArH or Ar'H) to,_ 
butyllithium at all times, to avoid any attack on a CF, group 
and the possible explosive formation of Lif. 

Ar,SiF, (2). A solution of ArLi (100 ml, 30 mmol) in diethyl 
ether was added dropwise to a solution of SiC I, (2.5 g, I. 72 ml, 
15 mmol) in hexanes at -78 •c. The solution was allowed to 
warm to room temperature and stirred for 5 h. A pnxipate 
formed. The solution was filtered and solvents were removed 
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under vacuum,leaving a yellow oiL This oil was distilled under 
reduced pressure {0.01 Torr), giving a yellow oil, bp 85 "C. Yield 
1.8 g (19% based on ArH). Anal. Calc. for C,.H,F,.,Si: C 34.41, 
H 0.64. Found: C 32.9, H 0.75%. 

Ar"1Si01 (4a). An Ar'Li/Ar"li (50 ml, 20 mmol) solution in 
diethyl ether was added dropwise to a solution of SiCI, (1.7 g, 
10 mmol) in pentane at -78 "C. The solution was allowed 
to warm to room temperature and stirred for 3 h. The pre
cipitated LiCJ was filtered off and the solvents and excess SiCI 4 

were removed under vacuum, leaving a yellow sticky oil which 
was distilled under reduced pressure (0.01 Torr). The fraction 
collected at 120 oc was recrystallised from pentane, yielding 
1.8 g (32.4%) of 4a. Anal. Calc. for C,.H,CJ,F,,Si: C 36.6, 
H 1.15. Found: C 36.8, H 1.24%. 

Ar',SiF, (5). An Ar'Li/Ar"Li (50 ml, 40 mmol) solution in 
diethyl ether was added dropwise to a solution ofSiCI, (3.39 g. 
2.3 ml, 20 mmol) in hexanes at -78 "C. The solution was 
allowed to warm to room temperature and stirred for 3 h. The 
precipitated LiCI was filtered off, and the solvents and excess 
SiCI4 were removed under vacuum, leaving a yellow oil (4a) and 
a white solid. The solid was washed three times with hexanes 
and purified by sublimation under vacuum, giving white 
crystals of5. Yield: 2.5 g 02.7%). Anal. Calc. for C,.H,F.,Si: 
C 39.04, H 1.23. Found: C 38.3, H 1.24%. 

Ar1Ge01 (I b) and ArGeCI3 (7b). An Arli (50 mi. 30 mmol) 
solution in diethyl ether was added dropwise to a GeCI4 

solution (3.2 g. 1.71 ml, 15 mmol) in hexanes at -78 OC. The 
solution was allowed to warm to room temperature and stirred 
for 4 h. A white precipitate of LiO appeared and was filtered 
off. The solvents and excess GeCI4 were removed under 
vacuum, leaving a yellow oil and a white solid. The oil was 
filtered and then distilled under reduced pressure (0.01 Torr), 
giving a colourless oil, bp 85 oc. Analysis showed that this was 
impure but contained mainly 7b. Yield: 2.6 g (19%). After one 
month, fine crystals of 7b formed. There was insufficient 
material for further analysis but a single-crystal X-ray structure 
determination was carried out The filtered--off solid was 
washed three times with hexanes, yielding 3.17 g (30%) of lb. 
Crystals were grown from dichloromethane. Anal. Calc. for 
C,.H,CJ,F.,Ge: C 30.64, H 0.57. Found C: 30.59, H 0.58% 

Ar"1GeCI1 (4b). A solution of Ar'Li/Ar"Li (60 ml, 40 mmol) 
in diethyl ether was added dropwise to a solution ofGeCI, (4.29 
g, 2.6 ml, 20 mmol) in diethyl ether at -78 oc. The solution was 
allowed to warm to room temperature and stirred for 2 h. 
A white precipitate of LiCI formed. The solution was filtered 
and the solvents were removed under vacuum, leaving a black 
oil. The oil was distilled under reduced pressure (0.01 Torr), 
and a fraction was collected at 80-90 oc. Yield: 5.8 g (51%). 
After one week. small crystals formed. Anal. Calc. for 
C,.H,CJ,F.,Ge: C 33.7, H 1.06, CJ 12.45. Found: C 32.4, H 
1.53, Cl I 2.8%. 

Ar,So01 (lc) and ArSoO, (7<). An Arli (50 ml, 30 mmol) 
solution in diethyl ether was added slowly to a solution of SnCI4 

(3.90 g, 2.75 ml, 15 mmol) in hexanes. The solution was then 
aiJowed to warm to room temperature and stirred for 5 h. A 
white precipitate of LiCl appeared. The solution was filtered 
and the solvents were removed under vacuum, leaving a brown 
oil and a solid. The oil was filtered and distilled under reduced 
pressure, giving a yellow oil of7c (bp 85 oq in a small quantity. 
The solid (It) was washed three times with hexanes, dried 
under vacuum and recrystallised from diethyl ether. Yield 3.8 g 
(51%). Anal. Calc. for C,.H,CI,F.,Sn: C 28.76, H 0.54. Found: 
C 28.60, H 0. 78%. 

Ar'1SoCI, (3c:) aod Ar"1SnCI,(4c). An Ar'Li!Ar"Li (250 ml, 
94 mmol) solution in diethyl ether was added dropwise to 
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a solution of SnCI, ( 12.24 g, 8.63 ml, 47 rnmol) at room tem
perature. The solution was stirred for 4 h. A white precipitate of 
LiCI appeared. The brown solution was filtered and solvents 
and excess SnC14 were removed under vacuum, leaving a brown 
sticky oil and a brown solid. The oil (4c) was filtered, the solid 
washed with pentane and dichloromethane and dried in vacuo, 
giving a beige solid (Jc), which was recrystallised from pentane 
and diethyl ether. Yield (Jc) 3.48 g (57%). AnaL Calc. for 
C 16H6CI,F 12Sn: C 31.21, H 0.98. Found C 29.7, H 1.26%. 

X-Ray crystallography 

Single crystal X-ray diffraction experiments were carried out at 
low temperature, 120 or 150 K, using graphite-monochromated 
Mo-Ku radiation().~ 0.71073 A) on a Bruker SMART (CCD 
I K area detector) diffractometer equipped with a Cryostream 
N1 open-How cooling device.18 Series of narrow w-scans (0.3°) 
were performed at several ¢»-settings in such a way as to cover 
a sphere of reciprocal space to a maximum resolution between 
0. 70 and 0. 77 A. Cell parameters were determined and refined 
using the SMART software,19 and raw frame data were inte
grated using the SAINT program ... The structures were solved 
by direct methods and refined by full-matrix least squares on F' 
using SHELXTL software." Crystal data and experimental 
details are listed in Table 5. For structure 4b, the reflection 
intensities were corrected by numerical integration based on 
measurements and indexing of the crystal faces (using 
SHELXTL software)'' For the remaining structures, the 
absorption corrections were carried out by the multi-scan 
method, based on multiple scans of identical and Laue 
equivalent reflections (using the SADABS software)." Non
hydrogen atoms were refined anisotropically, except for the 
disordered component of structure lb. For structures 4a,b and 
7b the hydrogen atoms were found in difference Fourier maps. 
For structures, Ib,c, 3c and 5 the hydrogen atoms were 
positioned geometrically and refined using a riding model. 

eeoc reference numbers 205552-205558. 
See http://www.rsc.org/suppdata/dt/b.l/b302544f/ for crystal

lographic data in CIF or other electronic format. 
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Several new P or As compounds containing the 2,4,6-(CF,),C,H, (Ar), 2,6-(CF,),C,H, (Ar') and/or 2,4-(CF,),C,H, 
(Ar") ligands have been synthesised, and characterised by multinuclear NMR spectroscopy and (for all isolated 
compounds) elemental analysis. The crystal and molecular structures of ArPBr1 1, Ar1PCI2, Ar"1PC13, Ar"1PBr 4, 
Ar' Ar"AsCI 5, Ar' Ar"AsBr 6 and Ar' Ar"AsH 7 have been determined by single-crystal X-ray dilfraction. A 
particularly interesting feature of these structures is close contacts between ortho~fluorines and the P or As atoms. as 
observed previously in Ar' Ar"PCI and Ar,AsCI. 

lntrodoction 

The ability of the 2,4,1>-(CF,),C,H, (ftuoromes ~ Ar) group to 
stabilise both main group and transition metal species is well
documented. H'!l Comparatively little has been published about 
the 2,1>-ICF,),C,H, (fluoroxyl ~ Ar') group as a substituent, 
however,6.l436

·Ja partly because there are complications in the 
chemistry of the precursor 1,3-bis(triHuoromethy))benzene, 
Ar'H.14.27.lll This can lithiate in two positions, giving rise to 
a mixture of 2,1>-(CF,),C,H, (Ar') and 2,4-(CF,),C,H, (At") 
derivatives. The latter ligand is unlikely to stabiJise low
coordinate species such as diphosphenes, because of only one 
bulky substituent in the ortho-position. In group 15. the 
hydrides and halides ArPH1,

1.l ArPCt,,•.J ArPCIF,' ArPF1,
1 

Ar'PHh16 Ar'PCh.16 Ar1PH,10 Ar1PCI,1 Ar'Ar'"PC1,24 

Ar'Ar"PF," Ar",PF," ArAsCI1," Ar,AsH,' Ar,AsCI," 
Ar1AsF,l ArSbCI1, 1 Ar1SbCI,'.JI.ll Ar1BiCI' and ArlBi 5 have 
been reported. Of these, only Ar'Ar"PCI." Ar,AsCI," Ar,
SbCI,11 Ar1 BiCJ'!I and Ar1Bi 5 have been characterised crystal
lographically. In a very recent paper we described the synthesis. 
X-ray crystal structure and a detailed multinuclear NMR study 
in both solid state and solution of Ar' Ar"PCI.14 In the present 
work, we repon the synthesis and characterisation of several 
new group 15 derivatives containing Ar, Ar' and/or Ar" sub
stituents. The X-ray crystal and molecular structures have been 
determined at low temperature for ArPBr1 1, Ar1PCI2, Ar"1PCI 
3, Ar",PBr4, Ar'Ar"AsCI5, Ar'Ar"AsBr 6 and Ar' Ar"AsH 7. 

Results and discussion 

The halogeno-derivatives were synthesised by reaction of the 
appropriate group 15 trihalide with the lithiated materials Arli 
(from ArH) or a mixture of Ar'Li/Ar"Li (from Ar'H), as shown 
in Schemes I and 2, respectively. Even when an excess of the 
halide was used, some of the twice-substituted derivative 
Ar,EX (except for Ar,PBr), Ar' Ar"EX or Ar",EX (E ~ P or As; 
X ~ Cl or Dr) was isolated, as described for Ar' Ar" AsCI ~ and 
Ar"1PCI3. No evidence was found in the Ar'LiJAr"Li reactions 
for the formation of the more sterically hindered second substi
tution product Ar' ,EX The compounds could he identified bY 
means of their 19F and (where appropriate) 11P NMR solution
state spectra (Experimental section). The hydrido-species 

4622 1 Cht'TTI. Soc., Dalton Tram., 2002, 4622-4628 
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·~-ct~, 
EX, 

CF, 

-liX 

Scheme 1 Reaction of Arli with EXJ (E =P or As; X= CJ or Dr). 

Ar'Ar"PH Sand Ar'Ar"AsH 7 were prepared by LiAIH, reduc
tion of the corresponding chlorides; the synthesis of Ar' Ar"'
PCI, and its X-ray crystal structure., have been described in a 
previous paper.14 

A mixture of the chloro-derivatives ArAr'PCI9 and ArAr"'
PCI 10 was also prepared by reaction of Ar'Li/Ar"Li with 
ArPCI1 in an overall 1: I molar ratio. Both compounds could be 
distinguished by their 19F and 31 P NMR solution spectra, but 
they could not be separated by distillation. 

A very notable feature of the room temperature 1~ NMR 
spectra for all compounds with one Ar" substituent and one Ar 
or Ar' substituent was the occurrence of a broad. unresolved 
resonance for the two ortho-CF, groups of the Ar or Ar' 
moiety. Similar observations have been reponed previously by 
us for Ar' Ar"PCJ,14 and in the literature for Ar' Ar"PF 17 and 
cp• ArPCl, 29 with •J,F not resolved, although interestingly a 
•J,.F value of 31.6 Hz was recorded for Cp•ArPH.!!I These 
results suggest strongly that there is a rotational barrier 
present in the more sterically hindered species. A detailed 19F 
NMR temperature-dependence study is in progress. together 
with theoretical calculations. and these results will be reported 
elsewhere when complete. JO 

Eight of the compounds have been isolated as solids. and 
low-temperature X-ray crystal structures have been determined 
for seven of these. The only failure was Ar' Ar"PH 8. for which 
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.ux 
CF, -78"C,E110 

F,C~Li 

E.:.PorN.;X=t1or8r 

CF, 

c(l CF, 

CF,~ 
CF, 

SdlftDf 2 Reaction of Ar'Li/Ar'"'Li with EX1 (E = P or As; X = CJ or 
Br). 

data were collected but the structure could not be solved, 
because of poor crystal quality. The crystal and molecular 
structures have been established for ArPBr2 1, Ar2PCI 2, 
Ar",PCI3, Ar",PBr 4, Ar' Ar" AsCI ~. Ar' Ar" AsBr 6 and Ar' Ar"
AsH 7; these are illustrated in Figs. 1-7, respectively. Selected 

Flg. I ~rmal ellipsoid drawing of ArPBr2 1, showing 50% prob
ability displacement ellipsoids for non-H atoms. and the disordu in the 
p-CF 1 group. 

bond distances and angles are listed in Table I for phosphorus 
compounds and in Table 2 for arsenic derivatives. It is note
worthy that the crystals of 3 and 4 are isomorphous, while ~ is 
isomorphous with 6. 

Compound 1 crystallises with two independent molecules 
in the asymmetric unit, as shown in Fig. I and Table I. The 
October 2001 release of the Cambridge Structural Database 
(Version 5.22) 31 contains only three structures of RPBr1 com. 
pounds, •·iz. Ph,P=C(Me)PBr,." Ph,P=C(SiMe,)PBr," and 

Fig. 2 Thermal ellipsoid drawing of Ar 2PO 2, showing 50% 
probability displacement ellipsoids for non-H atoms. 

Fig. 3 Thermal ellipsoid drawing of Ar"2PO J, sho"'ing 50% 
probability displacement ellipsoids for non-H atoms. 

Fig. 4 Thermal ellipsoid drawing of Ar"2P8r 4, showing W/o 
probability displacement ellipsoids for non-H atoms., and the disorder 
in one of the p-CF 1 groups. 

Flg. S Thermal eUipsoid drawing of Ar' Ar" AsO 5, sbCM-ing 50% 
probability displactrntnt dlipsoids for non- tl atoms. 

C5H(CHMe1),.P8r1.n The Br-P-Br angle in these compounds 
is smaller than in I, ranging from 93.5(1) to 96.06<7t;.ll it is 
noteworthy, however, that the sum of the bond angles around 
phosphorus is also larger in I (ca. 310") compared with the 
first two compounds above, where it varies from 295.8n lo 
305.-r,Jul reflecting the greater steric demands of the orthrr 
CF, groups. The P-Br bond lengths in I and 4 are slightly 
shorter than usually found in organophosphorus bromides (e.g. 
values between 2.268(2) and 2.489(3) AJ,"-" although shorter 
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Ftg. 6 Thermal ellipsoid drav.ing of Ar' Ar" AsBr 6, shO\ll-ing 50% 
probability displacement ellipsoids for non-H atoms. 

Fig. 7 Thermal ellipsoid drawing of Ar' Ar" AsH 7, showing 50%. 
probability displacement eUipsoids for non-H atoms; both independent 
molecules in the asymmetric unit are shown, because of the disorder in 
one As atom position. 

P-Br distances of 2.203(3)-.2.212(3) A have been observed in 
PBr, complexes with CnCO), ,._ .. and W(CO),." This parallels 
the observation of a fairly short P-CI bond in Ar' Ar"PCI of 
2.061(1) A, which was attributed to the electron-withdrawing 
properties of the CF, groups," and of 2.063(1) A in 2 and 
2.062(1) A in 3 (Table 1). 

One striking feature of the crystal structure of 2 is the very 
marked asymmetry in the C-P-CI bond angles. which differ by 
more than 10"'. Similar observations have been reported in the 
literature for Ar2AsCI (which exists in two different crystalline 
modifications. orthorhombic at 130 K and monoclinic at 296 K. 
with similar structures 11

), Ar2SbClu and Ar28iCI, 5 as shown in 
Table 3, although no comments thereon were included in these 
reports. This asymmetry probably arises as a consequence of 
secondary interactions between the group 15 element and Huor
ines of the orrho-CF3 groups, as discussed in more detail below. 
Only minor differences in the C-E-X (E = P or As; X = Cl or 
Rr) angles are apparent for the less sterically hindered com
pounds Ar'Ar"PCI." Ar",PCI3. Ar",PBr 4. Ar'Ar"AsCI3 and 
Ar'Ar"AsBr 6, with a ma,imum value of ca. 3.7° in 4, as shown 
in Tables I and 2. 

The As-CI bond length in 3 of 2.2074(5) A is similar to that 
in the orthorhombic modification of Ar,AsCI (2.1920(12) A)." 
and slightly shorter than in AsC11,

41 or other organa-derivatives 
with one As-CI bond."_.. The As-Br distance of2.3530(J) A in 
6 also appears normal, lying between the values of 2.31 A for 
AsBr/~ and 2.40(1) A for Ph1AsBr,46 and is similar to the 
corresponding bond length in Mes,AsBr of 2.34(2) A at low 
temperature and 2.3846(4) A at higher temperature. 41 In struc
ture 7, there are two distinct molecules in each asymmetric unit, 
one of which has the arsenic atom disordered over two almost 
equally-populated sites (55 and 45% oocupation. respectively). 
Data for the non-disordered As( I) atom are quoted in Table 2. 
The As-C distances are very similar in all instances. ranging 
from 1.980(4) to 2.007(6) A, but even for As( I) it is not possible 
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Table2 Selected bond distances lA) and angles('') for arsenic compounds 5-7 

Ar'Ar"AsCJ5 Ar'Ar"As8r6 

As(I)-CI(I) 2.2074{5) As(I)-Brtl) 
As(I}-C(I) 1.9880118) As(I}-C(II) 
As(I)-C(II) 2.0182117) As(I)-CI21) 

C(I)-As(I)-C(II) 102.98(7) C(II)-As(I)-C(21) 
C(l l-AsO )-CI(I) 100.08(6) Ctll )-As( I )-Br( I) 
C(ll l-Asil )-CIII) 98.84{5) Ci21)-As(I)-Br(l) 

• Data for As(l): S« text for further discussion. 

T1ble 3 Comparison of key bond distances (A) and angles (c) for 
Ar1ECI (E = P, As, Sb or Bi) 

Compound Ar1PCI Ar1AsCIQ Ar1SbCI Ar1BiCI 

E-0 2.0628(10) 2.1920(12) 2.358(11) 2.463(3) 
E-CII) 1.882(3) 2.02)(4) 2.22(3) 2.356{8) 
E-C(l) 1.885(3) 2.016{4) 2.25{)) 2.338(7) 

C(I)-E-Ci2) 109.87(12) 107.53(16) 107.0(12) 106.9(3) 
C(I)-E-CI 103.68(9) 100.57(12) 101.3(9) 99.5(2) 
C(2)-E-CI 92.95(9) 92.04(11) 88.4(9) 87.8(2) 
Reference This work 22 22 5 

• Data for the orthorhombic modification at 130 K. 

to be precise about distances or bond ang]es involving the H 
atom attached to As The results indicate 1.37(6) A for As(I)
H( II), and in the disordered molecule 1.42( 10) A for As(32)
H(32), and 1.63(12) A for As(JI)-H(31)_ These compare with 
1.484( 18) A in a primary organoarsine,41 a calculated value of 
1.519 A in AsH,," 1.520 A in [Cp•Mn(CO),]AsH," and 1.5(2) 
A in Cp1Nb(HAsEtJ(H 3BAsEtJ." 

Disorder was found for the paru·CF1 groups in ArPBr1 I and 
Ar"PBr 4. This is often observed in compounds with these sub
stituents, for example in Ar1AsCI,u Ar1SbCI,22 Ar1BiCJ! and 
Ar18i. 5 In all of the compounds studied there appear to be 
secondary interactions between the group 15 element and some 
of the fluorines of the orlho-CF 1 groups., as observed previously 
in Ar,AsCI (both forms),11 Ar,ShCI 11 and Ar'Ar"PCL" This is 
illustrated in Table 4, where the range of short E · · · F contacts 
(E = P, As or Sb), and number of such contacts. are listed. 
together with the number of fluorines in ortho-CF1 groups. 
(There are often further E · · · F contacts at only slightly 
longer distances.) At least three such interactions are found for 
six ftuorines in o-CF1 groups. four for nine Ouorines, and five for 
the only example studied here with twelve Huorines, i.e. Ar1PCI 
2. The distances are shorter in all instances than the sum of the 
empirical van der Waals radii ofP (1.91 A) and F (1.40 A)," as 
well as the theoretical ones (estimated as 2.05 and 1.42 A 
respectively H)_ Since the van der Waals radii of As and Sb are 
expected to be larger than that of P. this deduction applies 

Table 4 Short E-F contacts (E = P, As or Sb) 

Ar'Ar"AsH 7a 

2.3530(3) As(I)-H(II) See text 
1.9827(19) As(I)-C(II) 1.98()(5) 
2.0099(19) As(I}-Ct21) 1.995(5) 

103.15(8) C(II)-As(I)-C(21) 98.11(18) 
101.43(6) Ciii)-As(I)-H(II) ~etext 
98.91(5) Ci21)-As(I)-H(II) See text 

a fortiori to the heavier elements. These secondary interactions 
are expected to play a vital role in stabilising the structures, and 
almost certainly account for the large asymmetry in C-E--Cl 
bond ang]es in Ar1ECI, described above. Similar interactions of 
Ouorines from artho-CF3 groups in Ar ligands with the transi· 
tion metals V, 18 Cr 1935 and Mo 15 have also been reported. 

Experimental 

All manipulations.. including NMR sample preparation, were 
carried out either under an inert atmosphere of dry nitrogen or 
in mctw, using standard Schlenk procedures or a g]ovebox. 
Chemicals oft he best available commercial grades were used. in 
general without further purification. The 11P NMR spectra of 
phosphorus-containing starting materials were checked, to 
confirm the absence of any major impurities. 19F NMR spectra 
were recorded on a Varian Mercury 200, Varian VXR 400. or 
Varian Inova 500 Fourier-transform spectrometer at 188.18, 
376.35. and 470.26 MHz. respectively. 31 P NMR spectra were 
recorded on the same instruments at 80.96, 161.91 or 202.32 
MHz. Chemical shifts were measured relative to external CFCI1 

e'F) or 85% H 1P04 ('
1P), with the higher frequency direction 

taken as positive. Microanalyses were performed by the micro
analytical services of the Department of Chemistry, University 
of Durham. 

Solutions containing Arli or a mhture of Ar'Li/Ar"Li were 
prepared as described previousJy.2•~· 

Syotbesis of ArPBr2 I 

A solution of Arli (I 00 ml, 48 mmol) was added to a PBr, 
(2.25 ml, 24 mmol) solution in diethyl ether (100 ml) at -78 •c 
The solution was allowed to warm to room temperature and 
stirred for 2 h. A white precipitate of UBr appeared. The solu
tion was ftltered and the solvents and excess PBr J were removed 
in l'llCIUJ leaving an orange oil. This oil was distilled under 
reduced pressure (0.03 Torr) giving colourless crystals. Yield 
(based on ArH): 4.80 g (20.3%). 

Elemental analysis for C,H1Br1F,P (M = 472). Calc: C 22.88. 
H 0.4%. Found: C 22.76, H 0.45%. 

Compound Range tA) No. of contacts No. of fluorines Ref. 

ArPBr1 I P(l) 2.865-3.208 6 This work 
1'(2) 2.877-3.217 6 

Ar1P02 2.843-3.111 12 This work 
Ar'A.r"PCI 2.890-3.25 9 24 
Ar"'1PCIJ 2.874-l.l24 6 This work 
Ar"1PBr4 2.887-3.122 6 This work 
Ar,AsCI 130(2) K 2.991-3.012 12 22 

296{1) K 2.935-).110 12 22 
Ar" Ar" AsCI 5 2.701-3.292 9 This work 
Ar'Ar""As8r6 2.707-3.277 9 This work 
Ar'Ar""AsH 7 AS( I) 2.934-3.186 9 This work 

AS(JI) 2.859-l.326 9 
As()2) 2.880-).247 9 

Ar2SbCI 2.821-3.107 12 22 
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"P NMR (CDCI,): J 130.1 (septet, 'J,.F 62.3 Hz); "F NMR 
iCDCI,): J -5.1.1 id, 'J, .• 62.4 Hz. 6F. o-CF,l, -64.1 IS. 3F, 
p-CF,) 

Synthesis of Ar2PO 2 

A solution of ArLi (I 00 mi. 48 mmol) was added dropwise to a 
solution of PCI, (2.09 ml, 24 mmol) in diethyl ether at -78 oc 
The solution was allowed to warm to room temperature and 
stirred for 2 h. A white precipitate of LiCl appeared. The solu
tion was filtered and the solvents and excess PC I, were removed 
under vacuum leaving a yellow oil, which was distilled under 
reduced pressure (0.01 Torr). Fractions were collected at 60 oc 
IArPCI,; -65% of distillate) and IOOoC (Ar,PCI; -35% of distil
late). Crystals were grown by recrystallisation from dichloro
methane. 

Elemental analysis for C,.H,CIF,.P (M = 628.5). Calc.: C 
34.36, H 0.6%. Found: C 34.1, H 0.6%. 

"P NMR (CDC!,): J 74.9 (m, 'J, .• 41.9 Hz); "F NMR 
(CDCI,): J -54.4 (d, 'J, .• 41.2 Hz, 12F, o-CF,), -64.1 Is. 6F, 
p-CF,). 

Syntbesis of Ar",PO 3 

A solution of Ar'Li/Ar"Li (100 ml, 94 mmol) in diethyl ether 
was added dropwise over 20 min to a solution of PC11 (25.2 g, 
16 ml, 162 mmol) in diethyl ether (100 ml) at -78 oc_ This 
solution was allowed to warm to room temperature and stirred 
for 4 h. A white precipitate of LiCI appeared. The solution was 
filtered through a fine sinter, and solvent and PCI3 in excess 
were removed in mow giving a brown oil. The product was 
purified by distillation under vacuum (0.02 Torr) and two dif
ferent fractions were collected at 86 OC IAr'PCI,/Ar"PCI,; yield 
9.2 g, 31% based on Ar'H) and 140 oc (Ar",PCI). Crystals of 
Ar"'lPCI were obtained by recrystallisation from hexanes. Yield 
(based on Ar'H) 11.68 g (25%). 

Elemental analysis for C16H,CIF.,P IM = 492.5). Calc.: C 
38.97, H 1.22%. Found: C 38.96, H 1.35%. 

"P NMR iCDCI,) J 68.3 I septet, 'J,_F 65.5 Hz); "F NMR 
(CDCI,) J -573 (d, 'J,_F 65.8 Hz, 6F, o-CF,), -63.7 (s, 6F, 
p-CF,); "C NMR iC,D,) J 140.3 ld, 'J,.c 56.8 Hz), 133.1 (q, 
'J•c 33.9 Hz), 129.1 (s), 123.7 ibr s), 123.6 (d, 'J,.c 1.9 Hz), 
123.6 (q, 1JF-c 275.8 Hz), 123.4 (qd, 'J,.. 273.1 Hz, 'J,c 1.74 
Hz). 

Synthesis of Ar",PBr 4 

A solution of Ar'Li/Ar"Li 1100 ml, 94 mmol) was added slowly 
to a PBr, (8 ml, 85 mmol) solution in diethyl ether ( 100 ml) at 
-78 oc. The solution was allowed to warm to room temper
ature and stirred for 5 h. A white precipitate of LiBr appeared. 
The solution was filtered and the solvents and excess PBr 1 were 
removed in l'Ul'Uo leaving a brown oil. This oil was distilled 
under reduced pressure (0.01 Torr), fractions were collected 
at 60 oc (Ar'PBr,IAr"PBr,; -65% of distillate) and 120 oc 
(Ar",PBr; -35% of distillate). Yield (based on Ar'H): 4.52 g 
(9%). 

Elemental analysis for C,.,H,BrF.,P (M = 537). Calc.: C 
.15.78, H 1.13%. Found: C 35.69, H 1.15%. 

"P NMR (CDCI1): J 57.4 (septet, 'J,.F 65.8 Hz); "F NMR 
(CDC!,) J -57.7 (d, 'J,_, 65.8 Hz, 6F, <>-CF,), -63.7 (s, 6F, 
p-CF,). 

Synthesis of Ar' Ar" AsCI S 

A solution of Ar'Li/Ar"Li (100 ml, 94 mmol) in diethyl ether 
was added dropwise to a solution of AsCI, (13.5 ml, 160 mmol) 
in hexanes (100 ml) over a period of 20 min at -78 °C. The 
mixture was allowed to warm to room temperature and stirred 
for 4 h. A precipitate of LiCI fonned. This was filtered off and 
the solvents and excess AsCI, removed ill racuo, leaving a brown 
oil. This oil was distilled under reduced pressure (0.01 Torr), 
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and three different fractions were collected at 100 oc (Ar' AsCI]; 
-.10% of distillate), 115 oc IAr" AsCI,; -20% of distillate) and 
145 oc (Ar'Ar"AsCI; -50% of distillate). Ar'Ar"AsCI was puri
fied by recrystallisation from hexanes. Yield (based on Ar'H): 
4.5 g(9%) 

Elemental analysis for C,.H.,AsCIF., IM = 536.4). Calc.: C 
35.79, H 1.12%. Found: C 3533, H 1.10%. 

"F NMR (CDC!,): J -54.8 (br s, 6F, o-CF, in Ar'), -58.8 
(s, 3F, o-CF, in Ar"), -63.5 IS. JF. p-CF,); 'H NMR iCDCI,): 
J 8.1 (d, 'Ju.u 8Hz), 7.7 (s), 7.28 (d, 'Ju.u 8Hz), 7.26(d, 'JH-H 
7.6 Hz), 6.6 (t, 'Ju.u 7.6 Hz). 

Synthesis of Ar' Ar" AsBr 6 

An Ar'Li/Ar"Li (20 ml, 19 mmol) solution in diethyl ether was 
added dropwise to a solution of AsBr, 13.2 g, 10.2 mmol) in 
hexanes at room temperature. The solution was stirred for 4 h, 
giving a brown solution. Solvents were removed under vacuum 
leaving a brown oil which was distilled under reduced pressure 
(0.01 Torr). Fractions were collected at 81 oc (Ar'AsBr,/ 
Ar" AsBr,; -60% of distillate) and 110 oc (Ar' Ar" AsBr/ 
Ar",AsBr; -40% of distillate!. 

The Ar'Ar"' AsBr/Ar"'1AsBr mixture was dissolved in hexanes 
and left in the freezer. After one month colourless crystals of 
Ar' Ar" As Dr appeared. Yield 0.98 g (31 %). 

Elemental analysis for C,.H,AsBrF., IM = 581.03). Calc.: C 
33.08, H 1.04%; Found: C 33.46, H 1.04%. 

''F NMR (CDCI,): J -54.9 (br s, 6F, o-CF, in Ar'), -58.8 
(s, 3F, o-CF, in Ar"), -63.5 (s, 3F, p-CF,). 

Synthesis of Ar' Ar" AsH 7 

LiAIH, (0.2 ml, I M in diethyl ether, 0.2 mmol) was slowly 
added at 0 °C to an Ar' Ar" AsCI(0.2 g, 0.4 mmol) solution in 
hexanes. The solution was left to warm to room temperature 
and stirred for four days. Solvents were removed in l'OCIUJ and 
the resulting white solid washed three times with hexanes (3 x 
2 mL). Crystals were grown by sublimation under vacuum. 
Yield 0.15 g(71%). 

Elemental analysis for C16H7AsFu CM = 502.1). Calc.: C 
38.27, H 1.41%. Found: C 37.98, H 2.03% 

''F NMR iC,D,):J -58.2 (d, 'J •. 11 7.1 Hz, 6F, o-CF, in Ar'), 
-61.2 (s, 3F, o-CF, in Ar"), -63.8 Is, .lF, p-CF,); 'H NMR 
(C,D,): J 8.06 ld, 1111. 11 8Hz), 7.91s), 7.7 It, 1111•11 8Hz), 7.4 
(d, 'Ju. 11 8Hz), 6.9 (t, '111. 11 7.6 Hz), 5.99(br s, As-H). 

Synthesis of Ar' Ar"PH 8 

LiAIH, (0.09 ml, 1.0 M in diethyl ether, 0.09 mmol) was added 
to an Ar'Ar"PCI (0.08 g, 0.18 mmol) solution in diethyl ether 
(5 rnl). The solution was stirred for one day. A white precipitate 
of LiCI appeared; the solution was then filtered and solvents 
were removed under vacuum leaving a white solid, which was 
washed three times with diethyl ether (3 x 2 ml). Yield 0.05 g 
(60%). 

Elemental analysis for C,.H,PF., (M = 458.2). Calc.: C 41.90, 
H 1.54%. Found: C 39.95, H 2.12%. 

"FNMR (CDCI,):J -57.7 (brs, 6F,o-CF,in Ar'), -61.2(d, 
'J, .• 43.7 Hz, .lF, o-CF, in Ar"). -63.4 (s, 3F, p-CF,); "P{'H) 
NMR IC,D,): J -67.2 (m); "Pi'H coupled) NMR (C,D,): 
J -67.6 (dm, 'J,. 11 240.7 Hz); 1H NMR IC,D,): J 75-6.2 
(aromatic region), 5.7 (d, 1

JN1 240.4 Hz, P-H). 

Synthesis of Ar Ar' PO 9/Ar Ar"PCI I 0 

A solution of Ar'Li/Ar"Li (20 ml, 6.6 mmol) was added drop
wise to a solution of ArPCI, 12.52 g, 6.6 mmol) in diethyl ether. 
A precipitate of liCI immediately formed. The solution was 
filtered and distilled under reduced pressure (0.01 Torr) giving a 
yellow oil, bp 110 °C 

"F NMR (CDCI,): ArAr'PCI 9: J -54.1 (d, 'J,.F 42.1 Hz, 
6F, o-CF,), -54.3 id. 'J, .• 42.1 Hz, 6F, o-CF,), -64 Is, JF, 
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TabiC! 5 Crystal data and structure refinement parameters 

Empirical Formula 
M, 
Crystal system 
Spacr group 
Crystal size/mm 
TIK 
alA 
h!A 
ciA 
ar 
P" ,.,. 
VIA' 
/. 
DJgcm' 
1Jmm- 1 

R,. 
Observrd dattt (I>~!)} 
R.[l> 2<1{1)] 
R, (all data) 
wR1 [1> 2a({)J 
11'R1 (all data) 
Goodnrss of lit (S l 
No. of variables 

ArPBr2 1 

C-vH1Br1F"'P 
471.90 
Tridinic 
l'l 
0.42 )( 0.26 )( 0.22 
110121 
8.0110(11 
10.501111 
16.153121 
JOI.J911) 
98.4811) 
90.91(11 
1314.31)1 
4 
2.385 
6.385 
0.0247 
5691 
0.0287 
0.0385 
0.0727 
0.0755 
1.065 
399 

Ar1PCI2 

CIRH~CIFIIP 
628.63 
Monoclinic 
P2/n 
Q.JO X 0.08 X 0.01 
1211<21 
8.0347{61 
8.5325161 
29.833{21 
90.00 
94.572121 
90.00 
20)8.7131 
4 
2.048 
0.436 
0.0486 
3233 
0.0430 
0.0761 
0.0952 
0.1087 
1.044 
343 

Ar",PC\3 

C1r.H6Cif11 P 
492.63 
Monoclinic 
/]}a 

0.22 )( 0.16 )( 0.10 
100{2) 
18.734(61 
8.170(31 
23.559171 
90.00 
96.82015) 
90.00 
3580.2(191 
8 
1.828 
0.423 
0.0507 
3420 
0.0435 
0.0656 
0.1053 
0.1158 
1.037 
295 

Ar"1PBr4 Ar'Ar"AsC15 

C1oH"BrF 1,P C,6 H(,AsCIF 11 
537.09 536.4 
Monoclinic Monoclinic 
/]}a 1'2/c 
0.40 X 0.50 X 0.75 0.18 X 0.20 X 0.40 
103(2) 100(21 
19.0725(131 1].436131 
8.2148161 9.055{1) 
23.6350(151 14.644(31 
90.00 90.00 
97.447141 100.98111 
90.00 90.00 
36718141 1749.0161 
8 4 
1.943 2.043 
2.444 2.219 
0.0354 0.0303 
4504 .1749 
0.0294 0.0257 
0.0325 0.0326 
0.0713 0.0647 
0.0732 0.0687 
1.()4{) 1.048 
280 295 

Ar'Ar"AsBr6 

C1,HtAsBrF 12 

581.04 
Monoclinic 
P2 11c 
0.35 )( 0.30 )( 0.2 
1211<21 
13.7761181 
8.9308151 
14.6416181 
90.00 
99.65901101 
90.00 
1775.84(171 
4 
2.173 
4.285 
0.0324 
3532 
0.0220 
0.0294 
0.0472 
0.0494 
1.067 
271 

Ar'Ar"AsH 7 

Cu,I-I1Asf 11 
502.14 
Monoclinic 
1'21/t• 
Q.JQ X 0.\Q X 0.05 
120121 
8.13151101 
14.91591181 
28.27214) 
90.00 
96.3891210 
90.00 
3407.7171 
8 
1.957 
2.119 
0.0565 
5199 
0.0592 
0.0888 
0.1203 
0.1329 
J.m 
536 
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C.8. Group 15 Compounds Containing Ar, Ar' & Ar" Ligands 

p-CF,); ArAr"PCI 10: ,; -55.5 (br ~ 6F, o-CF, in Ar>. -58.6 
id.'ln 58.3 Hz. ]f. o-CF, in Ar"). -63.6 (s, JF. p-CF,), -64.1 
(~ 3F, p-CF,l; "P NMR iCDCI,): ArAr'PCI 9: J 76.6 
lm);ArAr"PCl 10: J 69.9 (m). 

X-Ray crJstallography 

Single crystal X-ray diffraction e.xperiments were carried out at 
low temperature. 100-120 K (see Table 5 ). using graphite mono
chroma ted Mo-Ka radiation U = 0.71073 A) on a Bruker 
SMART iCCD I K area detector) diffractometer equipped 
with a Cryostream N2 !low cooling device.5s Series of narrow 
w-scans <O.J") were performed at several ?-settings in such a 
way as to cover a sphere of data to a maximum resolution 
between 0. 70 and 0. 77 A. Cell parameters were determined and 
refined using the SMART software. 56 and raw frame data were 
integrated using the SAINT program.57 The structures were 
solved by direct methods and refined by full-matrix least 
squares on /·· 2 using SHELXTL software.~ Crystal data and 
structure refinement parameters are shown in Table 5. 

The reflection intensities were corrected by numerical inte
gration based on measurements and indexing of the crystal 
faces for 4 and S (using SHELXTL software).51 For the remain
ing structures, the absorption corrections were carried out by 
the multi-scan method, based on multiple scans of identical and 
Laue equivalent reflections (using the SADABS software).s9 

Non-hydrogen atoms were refined anisotropkally, except in 
some cases where there was disorder (see Results and discus
sion). For structures 1. 3 and S the hydrogen atoms were found 
in difference Fourier maps and in the case of I constrained 
accordingly. For structures 2. 4 and 6, the hydrogen atoms were 
positioned geometrically and refined using a riding model. In 
the special case of Ar'Ar"AsH 7, the hydrogen atoms were 
found in the Fourier difference map, one constrained and the 
other allowed to refine freely. The remaining hydrogen atoms 
were positioned geometrically and refined using a riding model. 

eeoc reference numbers 189700-189706. 
See http://www.rsc.org/suppdata/dtfb2/b207J27gl for crystal

lographic data in CIF or other electronic format. 

Acknowledgements 

We thank the EPSRC for the award of studentships (to S. M. C. 
and A. L T), and A. M. Kenwright and C. F. Heffernan for 
assistance in recording some of the NMR spectra. 

References 

1 K. 8. Dillon, H. P. Gooa....in, T. A. Straw and R. D. Chambers., 
Proc. Euchfm. PSI BLOCS Con(, Paris·P.c~laiseau, 1988. 

2M. Scholz, H. W Roesky, D. Sialke, K. Keller and F. T. Edelmann, 
1 Orga11omer. Chem., 1989,366, n. 

3 H. Grutzmacher, H. Pritzkow and F. T. Edelmann, Organometallics, 
1991, 10, 13. 

4 S. Brooker, J..K. Buijink and F. T Edelmann, Orgmrometallics, 1991, 
10, 15. 

5 K. H. Whitmire, D. Labahn, H. W Roesky, M. Noltemeyer and 
G. M. Sheldrick, J. Organomer. Chem., 1991,402, 55. 

6 M. Abe, K. Toyota and M. Yoshifuji, Chem. Lett., 1992, 2349. 
7 F. T Edelmann, Cummems /llorg. Clrem., 1992, 12,259. 
8 K. B. Dillon and H. P. Goodwin, 1 Orgatr0/11!'1. Chcnt, 1992, 429, 

169. 
9 R. D. Schluter, A. H. Cowley, D. A. Atwood, R. A. Jones, 

M. R. Bond and C. 1. Carrans. 1 Am. Chem. Soc., 1993, 115, 2070. 
10 R. D. Schluter, H. S. lsom, A. H. Cowley, D. A. Atwood. 

R. A. Jones, F. Olbrick, S. Corbelin and R. J Lagow, 
Organometal/ics, 1994, 13,4058. 

II K. B. Dillon and H. P. GoodY.·in, J Orga11ome1. Chem., 1994, 469, 
125. 

12 F. T. Edelmann, Jlain Group Mer. Llu•m., 1994, 17, 67. 
13 F. T. Edelmann, ACS Symp. Ser ( lnorg. Fluori11e Chem.), 1994,555, 

3{)9. 

14M. Belay and F. T. Edelmann, 1 Orgammrer. Chm1., 1994,479, C21. 

4628 1 Chem. Soc., Da/trlll Tra11s., 2002,4622-4628 

15 C. Bartolome. P. Espinet, J. Villafalle. S. Giesa. A. Martin and 
A. G. Orp!n, Organomnallics, 1996, 15, 2019. 

16 J.-T. Ahlemann, A. KUnze!, H. \\'. Roe~ky, M. Nohemeyer, 
L. Markonlii and H.-G. &itmidt, /uorg. Chem, 1996, 35, 6644. 

17 K. B. Dillon, V C. Gibson, J. A. K. Howard, L. J. Stqueira and 
J. \\'. Yao, Polrhedmn. 1996, 15, 417J 

18 V C. Gibson,·c. Redshaw. L. J. Sequeira, K. B. Dillon, W. Clegg and 
M. R. Elsegood, Chem. Comnum., 1996,2151. 

19 K. B. Dillon. V. C. Gibson, J. A. K. Hoy,~,ud, C. Redshaw. 
L. J. Sequeira and J. \\'. Yao.J. Orxa/10111•'1. Chern, 1997,528, 179. 

20 M. G. Davidson, K. B. Dillon, J. A. K. Howard, S. Lamb and 
M.D. Roden, 1. Orgonomt'l. Chfm .• 1998,550,481 

21 J.·K. Buijink, M. Noltemeyer and F T. Edelmann, J f7uorint• 
Chem., 1993,61,51. 

22 N. Burford, C. L. B. Macdonald, D. J. LeBlanc and T. S. Cameron, 
Organomnallin, 2000, 19. 152. 

13 P. Espinet, S. Martin-Barrios, J. Villafane, P. G. Jones and 
A. K. Fischer, Organomt>wllics, 2000, 19, 290. 

24 A. S. Batsanov, S. M. Cornet. L. A. CroY.e, K. B. Dillon, 
R. K. Harris. P. Hazendonk and M. D. Roden, E11r. 1 lnorg Chem., 
1001, 1719. 

25 A. S. Batsanov, K. B. Dillon, V. C. Gibson, J. A. K. Howdrd, 
L. J. Sequeira and J. W. Yao, 1. Or.~mwmel. Cht'IJr., 2001,631, 181. 

26 J. Escudie, C. Couret, H. Ranai,·onjatovo, M. Lazraq and J. Satge, 
Phosphonu S~tlfur, 1987,31, 27. 

27 L. Heuer, P. G. Jom-s and R. Schmutzler, J Fluorine Chent, 1990,46, 
243. 

28 H.-J. Kroth, H. Schumann, H G. Kui\ila, C. D. Schaeffer Jr. and 
J. J. Zuckerman, 1 Am. Chem. Soc., 1975,97, 1754. 

29 H. Voelker, D. Labahn, F. M. Bohnen, R. Herbst-lrmer, 
H. W Roesky, D. Stalke and F. T. Edelmann, Xt·~· J. Clmn, 1999, 
23,905. 

30 S.M. Cornet, K. B. Dillon, P. Hazendonk, in preparation. 
31 F. H. Atlen, Acto Crystallogr. .• \'eel. A, 1998,54,758. 
32 A. Schmidpeter, H. NOth, G. Jochem, H.-P SchrOdel and 

K. Karaghiosoff, Chem. Ber., 1995, 128,379. 
33 Y. Ehleiter, G. Wolmershauser, H. Sitzmann and R. Boese, 

Z. Anorg. Allgm. Chent, 1996,622, 923. 
34 N. Burford, A. I. Dipchand, B. \V. Royan and P. S. White, 

lnorg. Chen1., 1990,29,4938. 
35 A. N. Chemega, A. A. Korkin, N. E. Aksinenko, A. V. Ruban and 

V. D. Romanenko, J Gen. Che111. USSR, 1~. 60, 2201. 
36 G. Jochem, A. Schmidpeter, M. Thomann and H. NOth, 

Angew. Chem., 1111. Etl Engl., 1994, 33,663. 
37 H.-P. SchrOde~ A. Schmidpeter, H. NOth and M. Schmidt. 

Z. .\'awrforsch., Tell B, 1996,51, 1022. 
38 R. Pietschnig, J. Ebels, M. Nieger, N. Zoche. M. Jansen and 

E. Niecke, 81111. Soc. Chim Fr., 1997, 134, 1039. 
39 H. Jelinek· fink, E. N. Duesler and R. T. Paine, Acto Crysta/Jogr., 

Seer. C, 1987,43,635. 
40 M. S. Davies, M. J. Aroney, I. E. Buys, T. W. Hambley and 

J. L. Calvert,/twrg. Cht'm., 1995, .l4, 330. 
41 P. Kisluik and C. H. TO'A'Jles, 1. Chem. Phys., 1950, 18, I I 09. 
42 J. Trotter, Can. 1 Chon, 1962,40, 1590. 
43 A. Camerman and J. Trotter, J. Clrmt Soc., 1965, 730. 
44 J. E. Stuckey, A. W. Cordes, l. B. Handy, R. \V. Perry and C. K. Fair, 

ltrorg. Chmz., 1972, 11, 8. 
45 J. Trotter, Z. Kri.HalJogr., 1965, 122,230. 
46 J. Trotter, J. Chem. Soc., 1962, 2567. 
47 H. N6th and R. Waldh6r, Z. Nowrfi~rsch .. Teil 8, 1999, 54,603. 
48 B. Twamley, C.-S. Hwang, N. J. Hardman and P. P. Poy,er, 

1 Organomet. Chem., 2000, 609, 152. 
49 G. S. Ble\'ins. A.\\'. Jache and W. Gordy, Phys. Re•·., 1955, f¥7, 684. 
50 W. A. Hermann, B. Koumbouris, A. Schafer, T. Zahn and 

M.l. Ziegler, Chem. &r., 1985, 118,2472. 
51 G. I. Nikonov, A. J Blake, J. Lorberth, D. A. Lemonovskii and 

S. Wocadlo, J Organomcl. Chem., 1997,547,235. 
52 Yu. V. Ztfirov and P.M. ZorkH, Russ. Chent Rew., 1989,58,421. 
53 M. Franck, R. F. Hout Jr. and W. J. Hehre, JAm. Chrm. Soc., 1984, 

106, 563. 
54 G. E. Carr, R. D. Chambers. T. F. Holmes and D. G. Parker, 

1. Orga,omel. Chmz., 1987,325,13. 
55 J. Cosier and A.M. Glazer, 1 Appl. Cryllallogr., 1986, 19, 105. 
56 SMART-NT, I:Jdta Collection Software, version 5.0; Bruker 

Analytical X-ray Instruments Inc., Madison, WI, USA, 1999. 
57 SAINT-NT, Data Reduction Software, \"ersion 6.0; Bruker 

Analytical X-ray Instruments Inc., Madison, WI, USA, 1999. 
58 SHELXTL. \-ersion 5.1; Bruker Analyttcal X-ray Instruments Inc., 

Madison, WI, USA, 1999. 
59 G. M. Sheldrick, SADABS, Empirical Absorption Correction 

Program, University ofG6ttingen, Germany, 1998. 

C-45 



C.9. Structural Phase Transitions in CslnF 4 

C.9 

C.lO 

Structural Phase Transitions In CslnF4 

Acta Crysr. £2002). A58 (Supplement). C341 

STRUCTURAL PHASt: TRANSITIONS IN Cslnl<'4 
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In the past 20 years many studies ha,·e been devoted to the suucturul 
characterization of cubic perovskite compt"ltmds, of the form ABX3• This has 
heen mainly due to the wide variety of rx>teruially important technological 
propenies shown by these materials, e.g. Fmoelectricity. ionic conductivity. 
supercooductivity, e1c. Phase transititms on lhest materials are though! tn he 
caused by Lilts of rigid B~ octahedra. even in the case of large till angles. If 
rigid B~ octahedra are so imp:1nant fer undeJstanding the hehavioc of these 
materials, it is dear that the study of systems involving phase transitions with 
rigid ocuhedra forming only a 2-dimensional array, cnuld provide additional 
insight on the theory of phase transitions. Moreover. i( wJII help towards 
underst.anding issues like the displacive character of ferroelastic transitions, as 
it simplifies tbe problem. 2-DimtnSional arrays of uctahetlra like the ones 
mentioned previously are found, fc. example. in teualluurualuminates MA1F4 

(M=TI, Rh,K,NtL), where several phase transitions are observed. In this 
wmmunicat..ion we will he introducing CslnF4 , a new material of the AB~ 
family. CslnF~ appears to have a number of temperature lkpenderu phase 
transitions based on the tilting of the lnF6 octahedra. Dielectric measurements 
clearly show the jTtsence of four distim.1. phases with rransitions at 280 K, 380 
K and 415 K. In addition, lhe uansitions have he~n \"erified and further 
characterized by Differential Scanning Calorimetry (DSC), variatde 
temperature X-ray powder diffracti(m and single t,:rystal neulfon diffracti<m 
experiments. Results and conclusions drawn from these experiments will he 
presented 
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A NOVEL Fe(ll) FRAMEWORK !ITRUCTIJRE: CORRELATIONS TO 
ITS T!IERMAL AND

1 
UGJIT I~DU<:_F~ SPIN _TRA~SITJONS 

1 A.E. Goeta A.L. Thompson J.A. Real· V. Ntel- A.B. GaSJ'l'lf'" M.C. MunoL 
1
Department ofChemistty, University of Durham. DURHAM DH1 3LE, UK 

2
Depmament de Qui mica lnLKganicalln.\titut de Ciencia Mtllecular, Universitat 

de Valencia, DoctCY Moliner 50, E-461 DO Burjassot, Valencia, Spain 
JDefwtamentlk Fisk-a Aplicada, Universitat Politecnica de Valencia, Camino 
de Vera sin, E-46071, Valencia, Spain 

New opponunities f~ the development of novel electronic devices may arise 
from the ctmtrol. of the spin t.Tossover phenomenoo. Widely studied in iron(II} 
molecular complexes. it can be producal hy a change of temperature, pressure 
oc by ligtu inadiation. The lalter is a most promismg feature of the spin 
transition, with potential applicability in op:kal stocage devices. However. up 
to now. the LIESST effect (Light Induced Excite-d Spin State Trapping) has 
teen only observed at very low temperatures. It 1s then crucial, for usefUl 
applications. to dete£mine and Slut.ly tht moiet."Uiar fa<.1as that will predispose 
a material to undertake a phutocooversilm at ambient temperatures. In this 
l'Ontext, cooperativily appears to lle very important and considerable effort is 
cWTently heing devoted to underst.anding how the spin transition is propagated 
through a crystal. Strong cooperath·ity would be expected to be most likely. 
and indeaJ has heen observed, in (Xllymeric and 3D extent.led systems. We 
~esent here an iron(ll) complex, in which we have tried to enhance 
cooperativity through interactions via (Ag(CNhf anions. The resulted 
compnund was found to be Fe2 (pyrimidine) [A8.2(CNh]' (Ag(CN):.j" and it 
presents a tWo·Step (at 185 K and 150 K) spin transition 5howing also the 
LIESST effet.·t at temperatures helow 70 K. X-ray diffral·Lion data has been 
collected at 290 K. 220 K. 170 K. IJO K, 30 K and at 30 K after irradiating the 
cryslal with a 638 nm He-Ne laser. Fascinating stnM.·ture-property correlations 
have been obtained from a mola:ular structure that shows an unprecedented 
packing arrangement for a spin lTOSsover compound. 

Key"ords: LOW TEMPERATURE CRYST ALI.OGRAPHY, SPIN 
CROSSOVER, LIF$~'T EFFECT 
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COMMUNICATION 

Synthesis and characterisation of the new oxyselenide Bi2 Y04Cu2Se2t 

John S. 0. Evans,• Edward B. Brogden , Amber L. Thompson and Richard L. Cordiner 
Department of Chemistry, University of Durham. Science Site. Durham, UK DH I JL£. 
£-mail: john.evans@durlwm.ac.uk 

Reaivtd (in Cambridge, UK) 24th January 2002, Accepted 12th March 2002 

First published as an Advance Article on the web 16th March 2()()1 

In this communication we report the synthesis, structure and 
preliminary characterisation of Bi2Ln04Cu2Se2 (Ln = Y, 
Gd, Sm, Nd, La) phases; these materials are members of a 
new family of layered oxychalcogenides. 

The range of technologically imponant applications of mixed 
me!al oxides and mixed metal chalcogenides is vast They have 
been exploited (illler alia) for their conductivity, magnetic, 
catalytic, optical, energy storage and structural propenies. In 
contrast, the amount of work on oxychaicogenides, materials 
that contain both oxide and chaicogenide anions, is relatively 
sparse. This is, of course, panially due to the propensity of such 
materials to decompose to species containing oxyanions 
(SQ42 - , S032-, etc.) in which the chalcogen has been oxidised. 
There are, however, a number of such phases known ranging 
from simple species such as ZrOS' and natural minerals such as 
kermesite and sarabauite (Sb,OS2 and CaSb10So010);2.3 three
dimensional phases such as La2 Ta2S20 8

4 and LaCrOS2;' 

layered materials such as Na2Cu40Se2.• (La0)4Sn2S6
7 and 

Sr2Cu2CoO,S,8 and very recently Ruddiesden-Popper phases 
such as Ln2 Ti20 5S2 (Ln = Pr, Nd, Sm-Er, Y) and their alkali 
metal intercalates.•- •• Such phases are of interest in that they 
offer potential control of material propenies via the anion rather 
than the cation sublanice. 

In this communication we repon the synthesis and structural 
characterisation of a new family of layered oxyseienides of 
general formula Bi2 LnO.Cu2Se,. These phases were targeted 
using a simple ' building block ' suategyl2.13 and were antici
pated to contain the stable [Cu2Se,]• building block and oxide 
layers related to those in other oxide/mixed anion phases. 

Bi,Ln04Cu2Se, phases were prepared by heating a stoichio
metric mixture of Ln203. Bi,O,, Cu. Bi and Se in an evacuated 
sealed silica ampoule to a temperature of850 oc for 24 h. Lower 
temperatures resulted in the predominance of the stable 
BiOCuSe,••·" whilst higher temperatures or longer reaction 
times led to higher impurity levels (presumably due to side 
reactions with the silica ampoule) and sample decomposition. 

Initial inspection of laboratory powder X-ray diffraction data 
of Bi2 Y04Cu2Se, suggested !hat the material had the structure 
type anticipated. This was confirmed by Rietveld refinement of 
laboratory X-ray powder data and time of flight neutron 
diffraction data collected on the SEPD diffractometer at the 
Intense Pulsed Neutron Source (lPNS) at the Argonne National 
Laboratory, USA. Refinement results are shown in Fig. I and 
Table l.t The structure of Bi2 Y04Cu2Se, is shown in Fig. 2. It 
has space group 14/mmm with a = b = 3.864 A, c = 24.428 A 
and can be described as formally containing layers of [Cu2Se,] 
Cu centred edge sharing tetrahedra interspersed with [Bi2 Y04] • 

oxide layers. Similar [Cu2Se,]• blocks are found in materials 
such as TICu2Se,, BiOCuSe14.1> and others. We note that if one 

with a c/a ratio of the Y08 unit of 1.015. Bi adopts a 
coordination enviromnment typical of a lone pair cation with 
four shon bonds to oxygen (4 x 2.232 A) and four longer bonds 
to Se (4 x 3.43 1 A) of the Cu2Se2 layers. A similar oxide 
building block can be found in Bi,La04Ci." 

Other members of this family with Ln = Y. Gd, Sm. Nd and 
La have been prepared and characterised. Their unit ceil 

10 

20 .. 

15 20 
liimeol~(mMCI 

110 
2.--

25 

80 100 120 

Fig. I Resuhs of(a)neutron and (b) X-ray Rietveld refinements. Red poin1s 
show the observed data. blue line the calculated panem and lhe lower pink 
line the difference curve. Venical tK:k marks show positions of allowed 
reflections. Minor impurity regions have been excluded from neutron 
data. 

Table I Frac1ional atomic coordinares de1ennined by combined refinement 
of X-ray and neutron diffraction data" 

"' assumes fom1ai oxidation states ofCu 1• and Se2 there must be 
~ holes present in the valence band. 16 The oxide slabs contain Y 
.. in a pseudo-cubic coordination environment (8 x 0 at2.378 A) 

~ 

Atom 1/a y/b z/c 

Bi 0.5 0.5 0.89748(6) 0.87(3) 
Y 0.5 0.5 0.5 0.45(5) 

~ t Electronic supplemenlary infonmuion (ESI) available: fractional aromic 

5 coordinates from RieiVeld refmement of Bi2Ln"'O"'Cu..Se1 phases. See 
o hnpJ/www.r..:.org/suppdala/cclb21b200892k/ 

0 0.0 0.5 0.94322(8) 0.94(5) 
Cu 0.0 · 0.5 0.25 1.39(4) 
Se 0.5 0.5 0.31254(7) 1.24(4) 

• Space group t4/mnu11. 293 K. a = h = 3.86463(3). r = 24.428(4) A. 
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Fig. 2 Structure of Bi, YO,Cu 2Se2 in ball and stick and polyhedral 
representations. 

Table 2 Cell parameters of Bi2Ln04Cu2Se2 phases determined by X-ray 
diffraction data 

Atom a ViA• 

y 3.8631(5) 24.4227(5) 364.47(1 ) 
Gd 3.88631(8) 24.4535(6) 369.33(1) 
Sm 3.89976(7) 24.4620(6) 372.02(1) 
Nd 3.91795(10) 24.5001 (8) 376.09(2) 
La 3.95319(29) 24.6314(23) 384.93(5) 

parameters are included in Table 2§ and show the expected 
trends wi th Ln radius. 

Preliminary measurements of eleclrical resistivity were 
carried OUI on pellets of Biz vo.cu2Se2 using evaporated In 
comacts in a convemional four-probe arrangement. Currenl
voltage measurements confinned that the comacts were ohmic. 
Resistivily (p}-lemperature <D characterislics were measured 
under constant current conditions over the temperature range 
77-300 K using an Oxford Instruments DN 107 liquid nitrogen 
crysoslat conlrolled by an Oxford Instruments ITC4 conlroller. 
Room temperature values of resistivitiy were -2 x 10- 2 Q em 
and were found lo vary linearly wilh 1emperature, implying that 
conduclion was essentially melallic in character. The tem
peralure coefficient was - 4 X 10- 5 Q em K - I. 

Further studies on the properties and chemislry of this family 
of materials are in progress. 

We wish to thank J. D. Jorgensen and S. Short of Argonne 
National Laboratory for access to neutron diffraction facilities , 
Dr Andrew Brinkman for conductivity measurements and lhe 

EPSRC, Royal Society of Chemistry and University of Durham 
for funding. 

Notes and references 
t Neutron diffraction data were recorded on a 4.9 g sample on the SEPD 
diffractometer of the Intense Pulsed Neutron Source at Argonne National 
Laboratory. Data were collected and analysed over a time of flight range of 
J-.30 ms (d = 0.47-4.0t A). This sample comatned small impurities (nol 
present in smaller scale syntheses) whtch were excluded from the 
refinement. X-Ray diffraction data were collected from 10--1200 28 on a 
Siemens d5000 diffractometer equipped with a graphite diffracted beam 
monochromator. A step size of 0.02° and a time per step of I 0 s were used. 
To obtain high precision fractional coordinates a combined refinement of 
neutron and X·ray data was performed in the GSAS software suite. 18 A total 
of 33 variab les were refined (2 scale factors, 2 cell parameters, 3 fractional 
coordinates, 5 temperature factors. 8 profile coefficients, 6 background 
tenns per phase). Final agreement factors were X2 = 3.0, R(Fl) = 
9.78n.74%, wR, = t 1.09/8.23% (X-ray/neutron). Fig. I comains X-ray 
dara of a higher purity sample refined on the same structural model that gave 
X' = 2.0, R(F') = 8.69%, wR, = 9.85%. 
§ Cell parameters were determined by Rietveld refinement of data collected 
from 5- I 200 28 with a step size of 0.0~ and a collection time per step of 
9 s. Fractional coordinates derived from these refinements have been 
deposited as ESt.t 
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C.12 Poster Presentations 

Presented to The British Crystallographic Association, Spring 2003 
STRUCTURE-PROPERTY CORRELATIONS OF NOVEL SPIN 

CROSSOVER MATERIALS. A L Thomoson and A. E. Gaeta , Depanmcnt of 
Chemisny. University of Durham. UK; J. A. Real and V. Nicl, Dcpartamcnt de Quimica, 
Univcrsitat de Valencia , Spain; M. C. Mui\oz Dcpartament dC' Fisica Aplicada. Univenitat 
Politecnica de Valencia, Spain. 

Spin transition materials have a wide range of potential technologica l uses from 
molecular switches to data storage devices. [ 1 J 

llcre we wi ll be reponing two novel iron (II) coordination polymers showing sharp 
spin transitions with a pronounced hysteresis accompanied by a dramatic co lour change. 
All these are important characteristics indicative of a high degree of cooperativity within 
the systems, which is vital for technologica l applications. In add itio n, these new materia ls 
undergo a controlled, complete and fu lly revrrsible crystalline-state dehydration involving 
both ligated and non-bonded water molecules. This topochemica l conversion leads to 
fundamenta l changes in the structural networi:: and coord ination environment of the iron 
centres (shown below), directly affecting the magnetic properties of the materials. This 
rare combination of allosteric behaviour and electronic bistab ility achieved by the unique 
coexistence of nanoporosity and spin crossover could lead the way to a new generation of 
switching materials. 

Our studies of these materials both in the hydrated and dehydrated fonns, using a 
variety of tec hniques includ ing variable temperature single crystal and powder diffraction 
...,'i ll be presented. The results lead to an insight into the structural changes that occur 
during these fascinating phenomena. 

I. Kahn,Kr0ber&Jay( I992).Adv. Mater .. 4,No. I I.p7 18. 

~ Structure-Propeny Correlatmns of ~ V Novel Spm Crossover Materials V 
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HOW SMALL IS THE LABORATORY LIMITI Judith A.K. Howard. 
Andres E. Gocta, Andrei Batsanov. Amber L. Thompson, Department of Chemistry. 
Uni versity of Durham. Durham DH I 3LE; John Wall . Bcdc Scientifi c Instruments Ltd. 
Belmont Business Park, Belmont. Durham DHI ITW. 

Smaller and smaller crystals arc what the crystallographers arc getting from 
chemists. Faster and faster data collections are what the crystallographers and the 
chemists both would like to sec happening in the laboratory. The two demands have 
seemingly opposed each other for a very long time and more recently the problem has 
been addressed primarily by improving detector technology. ' Improving ' the source of 
X·rays is the other option and at Durham we have recently installed a new 
diffractometer equipped with a Brukcr·Nonius detector and a Bede molybdenum target 
Microsource® X·ray generator with glass polycapillary X-ray optics. The Microsource 
is a 60W microfocus X-ray generator which requires very low electrical power 
requirements and cooling water flow rate. This is in huge contrast to our Fddd cryogenic 
diffractometer [I ] running on a 15kW Mo rotating anode generator. 

We have been exploring just how small and how poor a crystal we can measure 
data from, now that we have the Mo Microsourcc working in the laboratory at Durham. 

We have recorded data from tiny crystals from a variety of molecular 
compounds. inorganic mixed metal oxides and large molecular weight supramolccular 
and co-ordination compounds, at room temperature and at low temperatures. The 
details of these data collections and the results of the molecular structures will be 
presented at the meeting in York. We have also recorded comparison studies between 
the new diffiactometer and the older in-house I K and 6K SMART diffrnctometen: . 

Below is just one example of the result from a tiny, twinned and disordered 
crystal in a pseudo-tetragonal space group with a unit cell volume of almost 6000AJ . 
The crystal size was - 0.0007 mmJ. 

I. R.C.B.Copley. A.E.Gocta. C.W.Lehmann, J.C.Cole. D.S.Yufit, J.A.K.Howard. 
J.A.Archer. (1997) J. Appi .Cryst. 30, 413-7 
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Presented to The Department of Chemistry, University of Durham, UK, Jan-

uary 2003 

Structural-Property Correlations of 
Novel Spin Crossover Materials 
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Presented to The 12th Higher European Course for Users of Large Experimen

tal Systems, 2002 
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Presented to The British Crystallographic Association, Spring 2001 

POLYMORPHISM IN LiNH,SO, , A. E. Gaeta and A. L. Thompson, 
Department of Chemistry, University of Durham. 

Phase transitions within the series of LiMAO. compounds (M=K, Na. Rb, Cs, 
NH. and A=S, Cr, Mo, W) lead to a series of very complex structural changes which 
give rise to interesting physical properties. For example, the most widely studied 
member of this group, LiKS04, is known to be ferroelectric, ferroelastic, pyroelectric, 
and a fast-ionic conductor in different phases. 

These compounds are based on either comer or edge-sharing LiO• and AO. 
tetrahedra and their observed phase changes are known to be a result of very subtle 
distortions in this flexible framework. 

LiNH.SO,. has two known polymorphs, both of which arc stable at room 
temperature. On one hand, P,.LiN~so. has a hexagonal arrangement of tetrahedra 
like LiKSO,. and LiNaso •• and has been well studied over the years. On the other 
hand, a-LiNH.so. has been Jess well studied. New results on the molecular and 
crystal struclure of lhree polytypes of the alpha fonn will be discussed in this 
presentation. 

The hexagonal nature of lhe LiMAO. materials is shown here with lithium in 
the centre of the pale grey tetrahedra, sulphur in the centre of the dark tetrahedra and 
the cations in the interstices. 
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C.13 Other Presentations and Reports 

Structure-Property Correlations in Novel Fe(II) Spin Crossover Networks 

Department of Chemistry Graduate Symposium, University of Dmham, UK, 9111 July 

2003. 

Electron Density Determination Of Hexafluorobenzene (C6F6) 

3rd European Charge Density 1vleeting, University of Aarhus, Sandbjerg, Denmark, 24th_ 

29th June 2003 (poster, presented by Dr. R. Goddard). 

Correlaciones Magneto-Estructurales en Complejos de Transicion de Spin 

National Atomic Energy Commission, Department of Solid State Materials, Buenos Aires, 

Argentina, April 2003 (presented by Dr. A. E. Goeta). 

Cyclic Triphosphenium Ions and Related Species 

University of Bremen, Germany, 30th October 2002; University of Braunschweig, Germany, 

30th October 2002 and the Technical University of Munich, Germany, 4th November 2002 

(presented by Dr. K. B. Dillon). 

Two Step Spin Transition in {Fe(Pmd)[Ag(CN)2](Ag2(CN)3]}, a Bewildering 

Complex 3D Network 

8 1h International Conference on Molecule-based Magnets, Valencia, Spain, 5th_ 10th Octo

ber 2002 (poster, presented by A. Galet). 

Synthesis, Structure and Magnetic Properties of New Dinuclear Iron(II) Com

pounds 

8th International Conference on Molecule-based Magnets, Valencia, Spain, 5th_10th Octo

ber 2002 (poster, presented by N. Ortega-Villar). 
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A Novel Fe(II) Framework Structure: Correlations to it's Thermal and Light 

Induced Spin Transitions 

19th Congress and General Assembly of the International Union of Crystallography, 

Geneva, Switzerland, 12th August, 2003 (presented by Dr. A. E. Goeta). 
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Experimental Report RB12910 (carried out at ISIS, September 2001) 

ISIS Experimental Report 
RB Number. 12910 

Rutherford Appleton Laboratory Date of Report: 4 june 2002 

Title of Experiment: Anharmonic thennal motion analysis based on the Local M. Gutmann 
Contact: single crystal structure of hexafluorobenzene 

Principal Proposer. Christian W. Lehmann Instrument: SXD 
Affiliation: Max-Planck-lnstitut fuer Kohlenforschung, Germany 

Experimental Teilm: A. Thompson (Durham Univ.), C. W. Lehmann Date of Experiment: Sept. 2001 

While the crystal structure of hexafluorobenzene has 
been first described in references [1) and [2), the 
charge distribution (experimental electron or 
deformation density) has not been reported 
previously. It is of particular interest in comparison 
to benzene and d6-benzene because of the reversed 
electronegativities of the ring carbons and the 
substituents. We have collected several high 
resolution X-ray diffraction data sets of 
hexafluorobenzene, using different area-detector 
diffractometers and data integration software 
packages. Data were collected from a single crystal 
of hexafluorobenzene grown under low temperature 
conditions from the melt ex-situ as well as from a 
single crystal of hexafluorobenzene grown in-situ on 
the diffractometer. All data sets were analysed using 
the multipole model of Coppens and Hansen [3) as 
implemented in the XD package [4). Despite the 
rather different data collection and integration 
approaches, virtually identical deformation density 
maps were obtained. However, these maps show 
rather asymmetric deformation density distributions 
around the fluorine atoms. 

In order to test the hypothesis that the asymmetric 
deformation densities around the fluorines originate 
from anharmonic thermal motion of these atoms in 
the crystal, a single crystal neutron diffraction 
experiment was carried out.- A simultaneous 
refinement, using X-ray data, of anharmonic 
displacement parameters expressed through a Gram
Charlier expansion in the multipole model and the 
refinement of spherical harmonics describing the 
atom centered electron density deformations is not 
possible, because both functions are highly 
correlated. Although anharmonic motion can in 
principle be deduced from multi-temperature X-ray 
diffraction studies [5), we made the observation that 
above 200 K diffuse scattering is rather strong, 
limiting the useful temperature in the laboratory to 
just 100 K. 

A single crystal of hexafluorobenzene was grown by 
careful annealing of liquid hexafluorobenzene just 
below the melting point in a cylindrical glass tube of 
5 mm diameter. The crystal was rapidly transferred 

into a pre-cooled vanadium can and mounted on the 
cold finger of a closed cycle helium refrigerator. 
After cooling to 100 K diffraction images revealed, 
that the crystal had disintegrated into three 
components. Bragg peaks belonging to the major 
component were indexed and a data set was 
obtained. The preliminary results of a conventional 
least-squares refinement are given below. A 
complete analysis of anharmonic displacement 
effects is still pending. 

Empirical formula 
Temperature 
Crystal system 
Space group 
Unit cell dimensions 

Volume 
z 
Independent reflections 
Parameters 
Goodness-of-fit on F2 
Final R indices [1>2 (I)] 
R indices (all data) 

C. F, 
lOOK 
monoclinic 
P2,jn, (no. 14) 
a = 5.88680(10) A. 
b = 9.0177(2) A 

= 93.%26(11)'. 
c = 16.7248(3) A. 
885. 72(3) iv 
6 
1696 
163 
1.058 
Rl = 0.0730 
wR2 = 0.1986 

1) N.Boden, P.P.Davis, C.H.Stam, G.A.Wesselink, 
Mol.Phys., 25, 81,1973 

2) M.D.Bertolucci, R.E.Marsh,).Appi.Crystallogr., 7, 
87, 1974 

3) N.K.Hansen, P.Coppens, Acta Cryst. A34, 909, 
1978 

4) T.Koritsanszky, S.T.Howard, Z.Su, P.R.Mallinson, 
T.Richter, N.K.Hansen, XD.Computer Program 
Package for Multipole Refinement and Analysis 
of Electron Density from Diffraction Data, Free 
University of Berlin, Germany, 1997 

5) R.Restori, D.Schwarzenbach, Acta Cryst A52, 
369,1996 
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Although Y 2BaCu05 (Pnma), ha~ been studied for some time by different techniques [I. 2], some doubts 
remain regarding its magnetic structure [3]. Most DC susceptibility and neutron diffmction studies indicate 
that the array of magnetic pathways is two-dimensional (20), however some authors believe that they may 
be one-dimensional (I D) [4]. The low temperature neutron diffmction studies have been unable to verify 
this unambiguously. Isomorphous Pnma R2 BaCuO.; (R =rare earth) compounds generally display an anti
ferromagnetic 30 array [5]. however in the series R2BaM05 (M =transition metal) diverse structures with 
30, 20 and I D magnetic orderings have been observed [6, 5]. In particular some I D R2BaM05 materials 
have been shown to undergo magnetic excitations of the Haldane gap type [7]. In order to understand the 
relevant parameters that lead to the 20 and 30 magnetic arrays, and to investigate in detail the nature of the 
R-M interactions in the Pnma-type compounds, we plan to dope the yttrium sites of theY 2 BaCu05 "green 
phase" with different magnetic ions, e.g. Dy, Eu, Sm, Ho, Tm, etc .. This repon covers an initial experiment 
that was accepted through the FAST access procedure in order to verify whether it was worth staning a long 
terrn project on the subject. Thus, the high flux 020 instrument was chosen to rapidly map the temperature 
dependent magnetic behaviour of two dysprosium doped Y 2 BaCu05 samples. 

From susceptibility studies, we found that I 0% Dy causes the destruction of the 20 arrays. Hence, we 
studied samples containing I% and 5% Dy. The purity of the samples was confirmed by powder X-ray 
diffraction mea~urements and susceptibility studies (4-300K). Neutron powder diffraction data were col
lected on 020 (.\ = 2.4 A) on both the I% and 5% Dy samples, at 2 K, I 0 K and 35 K together with shoner 
scans between these temperatures collected approximately every 1 K during warrning. The raw data showed 
the appearance of two magnetic peaks at approximately 16° and 28° (approximately 8.8 A and 5.0 A re
spectively), in keeping with the results reponed by Chattopadhyay eta/. (Figure 1) [ 1]. The intensity of 
the peak at 16° 20 a~ a function of temperature, clearly shows that the onset of the ordering takes place at 
around 16 K for both samples (Figure 2). 
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Figure I. Neutron powder diffraction data for I% Dy 
doped Y 2BaCu05 . The appearance of additional peaks 
due to the magnetism at 16° and 28° are marked with red 
arrows. 
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Figure 2. The temperature dependence of the 
integrated intensity of the magnetic peak at 16° 
together with this magnetic peak for the 5% Dy 
doped sample at different temperatures (inset). 

The results from the neutron diffraction data are in keeping with results obtained from AC susceptibil
ity measurements and shows that doping with I% is enough to change the ordering temperature of the 
Y 2BaCu05 system from 27 K to 16 K. 

Although magnetic structure refinements have not yet been completed, further work is under way and the 
experiment is considered to have been very successful. This work is the basis of further research and an 
article including these preliminary results has been submitted for publication to Solid State Communications 
[8]. 
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Work Published Elsewhere 

Other work has been included in the thesis of Stephanie Cornet including a number of 

novel platinum stabilised phosphine complexes.212 In addition, structural work has been 

carried out on a range of cyclometallated iridium complexes together with their separate 

ligands. These materials are for potential use in light emitting devices and have been 

included in Sylvia Bettington 's thesis. 213 A number of rigid rod type molecules have also 

been structurally characterised and will be included in Simon Rutter's thesis. 214 


