
Durham E-Theses

Implementation and application of advanced density

functionals

Gibson, Michael Christopher

How to cite:

Gibson, Michael Christopher (2006) Implementation and application of advanced density functionals,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2938/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2938/
 http://etheses.dur.ac.uk/2938/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Implementation and Application of 

Advanced Density Functionals 

Michael Christopher Gibson 

The c:opyrlght of this thesis rests with the 
author or the university to whlc:h It was 
submitted. No quotation from it, or 
Information derived from It may be published 
without the prior written c:onsent of the author 
or university, and any information derived 
from It should be sc:knowledged. 

A thesis submitted for the degree of 

Doctor of Philosophy 

Department of Physics 

University of Durham 

2006 

1 1 OCT 2006 



Implementation and Application of Advanced Density Functionals 

Michael Christopher Gibson 

Abstract 

Density functional theory (DFT) is a method of effectively solving the many-electron 

Schrodinger equation, enabling the properties of condensed matter systems to be cal

culated from first principles. With the commonly used local density approximation 

(LDA), and generalised gradient approximations (GGAs), to the exchange correla

tion functional, it is currently possible to perform calculations on systems containing 

several hundred atoms. The accuracy of such calculations depends on the system 

under study and on which particular properties one wishes to calculate. The use of 

more advanced functionals has the potential to improve accuracy, at the expense of 

greater computational demand. In this work we use the LDA to calculate certain 

properties of GaN, such as geometry, band structure, and surface properties, includ

ing the reconstruction of GaN surfaces under the presence of hydrogen. We then 

describe our computational implementation of advanced density functionals, includ

ing screened exchange (sX-LDA), Hartree-Fock (HF), and exact exchange (EXX), 

within an efficient, fully parallel, plane wave code. The implementation of sX-LDA 

and HF is used to calculate band structure properties of Si, GaN, and other sim

ple semiconductors, and it is found that sX-LDA can improve results significantly 

beyond the LDA. We also derive and implement the theory that allows one to cal

culate directly the contribution to the stress tensor from exchange and correlation 

when using these functionals, and demonstrate this with some simple test cases. Fi

nally, we introduce some new theoretical ideas that may pave the way for yet more 

accurate density functionals in the future. 
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Chapter 1 

Introduction 

In this chapter we outline the theoretical framework that underpins the bulk of this 

work. We begin with a brief introduction to the concept of first principles calcu

lations, and explain how the physics of condensed matter can be described by the 

many-electron Schrodinger equation. We then discuss how density functional the

ory (DFT) 1 represents, in principle, an alternative route to many-electron quantum 

mechanics for performing such calculations. We describe the Kohn-Sham method 

of dealing with DFT, and how this can be implemented efficiently with a plane 

wave basis set, using appropriate approximations (a more detailed account of these 

methods may be found in references [1, 2, 3]). We then discuss in more detail the 

issue of exchange and correlation in DFT. We also include a brief description of the 

CASTEP code, which we use to run all of the calculations in this work. Finally, after 

summarising this introductory chapter, we provide a chapter by chapter overview of 

the rest of the thesis. 
1See Appendix A for a list of symbols and abbreviations used throughout this work. 

1 



CHAPTER 1. INTRODUCTION 2 

1.1 Physics from First Principles 

1.1.1 What are First Principles Calculations? 

The world around us is made of condensed matter, i.e. matter whose energy is low 

enough that it has condensed to form stable systems of atoms and molecules, usually 

in solid or liquid phases. The large variety of ways in which these systems can take 

form leads to a rich diversity of physical phenomena that is practically endless in 

scope. 

Because of this, approaching the field of condensed matter physics from a theoretical 

or computational angle can be a very challenging task to undertake. For the most 

part, the way this is done is to pick a particular macroscopic phenomenon, which 

has been well studied experimentally, and to build empirical, or semi-empirical, 

models to describe the experimentally observed results. This often provides a good 

understanding of the physics of the system under study, and it is often possible to 

interpolate or extrapolate these models in order to predict the behaviour of systems 

under conditions not yet tested experimentally. However, due to the complexity 

of condensed matter systems, and the difficulty in building accurate models, the 

predictive power of such an approach can be severely limited. 

The first principles approach to condensed matter theory is entirely different from 

this. It starts from what we know about all condensed matter systems - that they 

are made of atoms, which in turn are made of a positively charged nucleus, and 

a number of negatively charged electrons. The interactions between atoms, such 

as chemical and molecular bonding, are determined by the interactions of their 

constituent electrons and nuclei. All of the physics of condensed matter systems 

arises ultimately from these basic interactions. If we can model these interactions 

accurately, then all of the complex physical phenomena that arise from them should 

emerge naturally in our calculations. 

The physics that describes the interaction of electrons and nuclei that is relevant to 

most problems in condensed matter is actually relatively simple. There are only two 

different types of particle involved, and the behaviour of these particles is mostly 
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governed by basic quantum mechanics. What makes first principles calculations 

difficult is not so much the complexity of the physics, but rather the size of the 

problem in terms of a numerical formulation. The development of accurate and 

efficient theoretical and computational techniques for dealing with so many particles 

is therefore central to the ongoing research in this field. 

1.1.2 The Many-Electron Schrodinger Equation 

As we have discussed, condensed matter is made of positively charged nuclei and 

negatively charged electrons. Electrons behave as point-like particles and, to a very 

good approximation, the nuclei can be considered to be point-like particles also. 

The complete system of N electrons, and N1 nuclei2 , is described by the many-body 

Schrodinger equation34 : 

(1.1) 

where WMB is the many-body wavefunction, and T and V are the many-body kinetic 

energy and potential energy operators respectively. The many-body wavefunction 

contains the quantum probability amplitude for every possible configuration of elec

trons and nuclei, i.e. 

(1.2) 

where the rn are the coordinates of the electrons and the R 1n are the coordinates of 

the nuclei. The coordinates rn and R 1n include spin degrees of freedom as well as 

position (see Appendix C). This is not especially important at this stage because 

spin does not enter the Hamiltonian, but will become more important later, in 1.2.2, 

when the issue will be discussed in more detail. 

The many-body kinetic energy operator operates on the wavefunction as follows: 

~ 1 ('"' 2 '"' v~~ ) TwMB = -2 ~ v rn + ~ M n WMB, 
n n In _ 

(1.3) 

2The subscript I stands for "ion", as opposed to the more obvious "nucleus". The reason for 

this will become clear later in the context of pseudopotentials. 
3In atomic units. For an explanation of the units used in this work see Appendix B 
4This does not account for relativistic effects. In certain situations, relativistic effects must be 

included [4, 5, 6), but this will not be directly relevant to this work. 
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where the M 1n are the masses of the nuclei. The operator, v;n, is the Laplacian 

operator for the spatial coordinates of the nth electron, i.e. 

(1.4) 

The many-body potential energy operator operates on the wavefunction as follows: 

(1.5) 

where the Z1n are the charges of the nuclei. 

Because the inverse masses of the nuclei are very small ( rv 5.4 x 10-4m;1 in the case 

of hydrogen), we can use the Born-Oppenheimer, or adiabatic, approximation[7, 8], 

and treat the nuclei as classical particles that move on a time scale much longer 

than that of the electrons. This means that, as far as calculations on the electrons 

are concerned, the nuclei can be considered to be fixed in space. 

The many-body problem is therefore reduced to the smaller problem of a system 

of electrons moving in some external potential, i.e. the potential created by the 

positively charged nuclei. The Schrodinger equation for this system is then 

A A d'I! 
T'I! + Vii! = -i

dt ' 
(1.6) 

where 'I! is the many-electron wavefunction. This is the central object in electronic 

structure calculations, as it contains all the information about the system of elec

trons. It gives the probability amplitude for finding the system of electrons in a 

given configuration, i.e. 

(1.7) 

where the rn are the coordinates of the electrons. Again, spin is included in the 

coordinates, rn, so that r = (x, y, z, a), where a is the spin coordinate, and can take 

the values oft (spin-up) or-!- (spin-down). 

Tis now the many-electron kinetic energy operator, acting on 'I! as 

(1.8) 
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V is the many-electron potential operator, which acts on 'II as 

(1.9) 

where Vext is the external potential in which the electrons are moving. For the system 

of electrons and nuclei this given by 

(1.10) 

Solutions of the many-electron Schrodinger equation must satisfy the constraints of 

normalisation and exchange anti-symmetry. Normalisation simply ensures that the 

total probability for every possible configuration of electrons is equal to 1, i.e. 

(1.11) 

while exchange anti-symmetry ensures that the wavefunction is anti-symmetric with 

respect to the exchange of any two electrons' coordinates (including spin), which 

must be the case for any system of identical fermions, i.e. 

W(rl r2 • · ·r • · ·r • · ·rN) = -W(rl r2 · · ·r · · ·r · · ·rN) ' ' n' m, ' ' m' n' · 
(1.12) 

For most purposes, we are only actually interested in the ground state of the elec

tronic system. This is the lowest energy solution of the time-independent many

electron Schrodinger equation, 

(1.13) 

where E is the ground state energy of the system of electrons. Calculations involving 

solution of this equation are known as electronic structure calculations. 

Of course, we must not forget about the nuclei. Even though we are treating them 

as being fixed in space from the point of view of the electrons, we may well wish to 

study the evolution ofa system on the longer time scales over which nuclear motion 

takes place. Also, we may wish to find the configuration of nuclei that gives the 

lowest total energy for the complete system, as this is the configuration that a real 

system will naturally tend to adopt at low temperature. 
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Assuming that we can solve the many-electron Schrodinger equation for a given 

external potential in order to obtain the electronic ground state energy, E, then we 

can consider this energy to be a function of the nuclear coordinates, i.e. 

(1.14) 

This energy includes the internal energy of the electrons and the energy due to the 

interaction of the electrons with the nuclei, but it does not include the energy due 

to the interactions of the nuclei with each other. This is the potential energy due 

to the mutual repulsion of the positively charged nuclei, and is given by 

(1.15) 

The total energy of the system is therefore 

Eror = E +VI-I· (1.16) 

This total energy is a function of the nuclear coordinates and governs the motion of 

the nuclei. So, within the Born-Oppenheimer approximation, and at temperatures 

for which the electrons can be considered to remain in their ground state, solution of 

the many-electron Schrodinger equation allows us, in principle, to predict the motion 

of the atoms of any condensed matter system, and also to calculate its lowest energy 

structure. 

1.1.3 Extracting Quantities from the Many-Electron Wave

function 

We will now look at some important quantities that are stored in the many-electron 

wavefunction that will be of use in later sections. The first, and most important in 

the context of this work, is the electron density, p(r), given by: 

p(r) = N L I dr2 ···I drN\lf*(r, r2, · · · rN )\lf(r, r2, · · · rN ). 
IT 

(1.17) 
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This gives the probability density for finding an electron at position r5 . As well as 

this, we have the electron pair density, p(r, r'), given by: 

p(r, r') = N(N- 1) L I dra ···I drN'II*(r, r', ra, · · · rN )'li(r, r', ra, · · · rN ), {1.18) 
uu' 

which is the probability density for simultaneously finding one electron at position 

rand another electron at position r'. We also have the kinetic energy, T, given by 

{1.19) 

and the potential energy, V, given by 

v = (wiVIw), {1.20) 

which can be separated into two parts, the external potential energy, which is the 

potential energy due to the external potential, given by 

{1.21) 

= I drvext(r)p(r), {1.22) 

and the internal potential energy, which is the potential energy due to the electron

electron repulsion, given by 

{1.23) 

so that we have 

(1.24) 

5The sum over spin coordinates takes account of the fact that r only includes spin on the right 

hand side of this equation. 
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We can also define the internal electronic energy, F, as the sum of the kinetic energy 

and internal potential energy: 

= T + ltint· (1.25) 

As we will see in the next section, it is the evaluation of the internal energy, F, that 

presents the main challenge in electronic structure calculations. 

1.2 Basics of Density Functional Theory 

Analytical solution of the the many-electron Schrodinger equation is not possible, 

and numerical solution, while perfectly possible in theory, is effectively impossible 

in practice for more than a handful of electrons due to the finite speed and memory 

of computers. In this section we introduce density functional theory (DFT) as a 

means of circumventing solution of the many-electron Schrodinger equation when 

calculating the ground state energy. This can, with appropriate approximations, 

lead to methods that are computationally feasible. Alternative methods also exist 

to DFT, some of which are more accurate than present DFT formulations, but 

at the expense of greater computational demand. These include quantum Monte

Carlo (QMC) [9, 10, 11] and configuration interaction (CI) methods [12]. However, 

the balance that present DFT methods strike between accuracy and computational 

efficiency mean that D FT is currently the most popular method of performing first 

principles calculations on extended systems. 

1.2.1 The Hohenberg-Kohn Theorem 

Density functional theory (DFT) is founded on the Hohenberg-Kohn 

theorem[13]. This comes in two parts, the first of which states that the ground 
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state energy of a system of electrons is a unique functional of the ground state 

density: 

Eas = E[pas]. (1.26) 

In fact all properties of the system, including excited state properties, are, in prin

ciple, exact functionals of the ground state density. The reason for this, as was 

proven by Hohenberg and Kohn, is that there is a one-to-one mapping between the 

ground state density and the external potential. If we happen to know the ground 

state density, then, in principle, we know the external potential, and if we know the 

external potential we can, again in principle, solve the many-electron Schrodinger 

equation and know everything about the system. Of course, this is not yet of any 

practical use, because the whole point of using DFT is so that we can avoid having 

to deal with the many-electron Schrodinger equation. Nevertheless, we are provided, 

at least in principle, with a means of finding the ground state energy for a given 

external potential. The internal electronic energy, F, of a system in its ground state 

can be expressed as 

F = E- Vext, (1.27) 

where Vext is the external potential energy, given by 

Vext =I drvext(r)p(r). (1.28) 

Since E and Vext are functionals of the density, it follows that F is also a functional 

of the density. 

Supposing we now have an external potential and a ground state density, which 

may or may not be the ground state density corresponding to that potential, we can 

define the variational energy, Evar, as 

Evar[Vext! p] = F[p] +I drvext(r)p(r). (1.29) 

The true ground state density for Vext(r) is the density that minimises this energy

this is the second part of the Hohenberg-Kohn theorem. If we were able to calculate 

F[p] for any given density, then we could perform a search to find the ground state 

density for any given external potential. 
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Such a search may be complicated by the fact that we have so far only defined the 

functional F[p] for densities that correspond to the ground state of some external 

potential; such densities are described as being V -representable. It may be the case 

that, during a search, we would encounter densities that did not correspond to the 

ground state of any external potential. This problem can be overcome by extending 

the definition of F[p] to include such densities, so long as Evar is still minimised 

by the correct ground state density. We now define F[p] as the minimum internal 

electronic energy of any electronic wavefunction, ground state or otherwise, whose 

corresponding density is equal to p, i.e. 

F[p] = min(\IIIFI\11). 
W-+p 

(1.30) 

Essentially all densities, p(r), that integrate to N, correspond to some N-electron 

wavefunction [14]; this property is described as N -representability. At this stage 

we are still no nearer to a practical method because exact evaluation of F[p] would 

require us to solve the many-body Schrodinger equation. But, supposing we have 

a functional that is a good approximation to F[p], but that can be evaluated in 

a practical manner, then a search should lead us to a good approximation to the 

ground state energy and density. This is the fundamental principle upon which all 

practical DFT calculation are founded. 

1.2.2 The Kohn-Sham Method 

The Kohn-Sham method [15] is a formulation of DFT that lends itself to finding 

good approximations to F. Essentially what it does is define a set of component 

energies that sum to give F, each of which has a clear physical origin, and some of 

which can be evaluated very easily. Only those components that cannot be easily 

evaluated are subject to approximation. 

·Gentralto'the Kohn..;Sham method istheintroauetionof a'fictitiotisauxiliarY"systein, 

which is intended in some way to mimic the true many-electron system that we 

are dealing with. This fictitious system is a set of particles whose properties are 

identical to those of electrons, except that the electron-electron repulsive interaction 
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is switched off. The particles move in some fictitious external potential, J.LKs(r), 

known as the Kohn-Sham potential, which is defined such that the system's ground 

state density equals p(r) - the same density as the electronic system for which we 

want to evaluate F[p]. This assumes that the true ground state density actually is 

also the ground state density of a non-interacting system, a property described as 

non- interacting J.L-representability, and while no proof exists that this is true of all 

true ground state densities, no examples exist to the contrary and the assumption 

is generally accepted as being reasonable. 

Because there are no interactions between the particles, the ground state wave

function of this system is far less complicated that of the true, interacting, system. 

In fact, we can write the ground state wavefunction explicitly in terms of simple 

single-particle wavefunctions. The only complication is that the full wavefunction, 

'It 8 , must still satisfy exchange anti-symmetry, and this can be achieved by placing 

single-particle wavefunctions in a Slater determinant [16), as follows: 

(1.31) 

where the '1/J;(r) are the lowest N eigenstates satisfying the following Schrodinger-like 

equation: 

(1.32) 

These single-particle wavefunctions are known as the Kohn-Sham orbitals. Exchange 

anti-symmetry is ensured by the property of determinants that swapping any pair 

of rows or columns simply causes the value of the determinant to switch sign. 

The Kohn-Sham Slater determinant can be written in a more compact way by 

introducing a permutation operator, Pn(i), where each n labels a different one of the 

N! permutations of the numbers 1 to N. The particular order of the permutations is 

essenti<illy arbitrary~ but for convenience we'defin{i"i{ 8s'tlie numb~r8ir{ increaSing 

order, i.e. P1(i) = i, and require that each permutation can be generated from 

the previous one by swapping a pair of numbers. We can then write the Slater 



CHAPTER 1. INTRODUCTION 12 

determinant as follows: 

1 N! N 
'lis= - 1 :L(-1t-l IJ '1/Ji(rPn(i))· 

.JNf n=l i=l 

(1.33) 

At this stage, r implicitly contains both the position and spin coordinates of a 

particle. Within the standard Kohn-Sham theory, there is always a degeneracy 

between spin-up states and spin-down states. This means we can require, without 

loss of generality, that each Kohn-Sham orbital is an eigenstate of the Bz operator. 

We then have a set of spin-up orbitals and a set of spin-down orbitals. For each 

spin-up orbital there is a corresponding spin-down orbital with the same spatial 

wavefunction and eigenvalue (except in the case of odd N where the highest orbital 

will be unpaired). 

Because of this spin-degeneracy, it is often convenient to deal only with the spatial 

components of the Kohn-Sham orbitals. We will use the notation ¢i(r) to represent 

the spatial component of the i'th spin-degenerate pair of Kohn-Sham orbitals. Hence 

for anN-particle system there will be either N/2 (for even N) or N/2 + 1 (for odd 

N) spatial-only Kohn-Sham orbitals, ¢i(r). Including spin explicitly now for clarity, 

the '1/Ji(r, a), are related to the ¢i(r) by 

'I/J2i-l (r, t) 

'I/J2i-1(r, .J..) 0, 

0, 

(1.34) 

Now, by adopting the convention of having implicit factors of 2 where appropriate 

in summations, as detailed in Appendix C, most formulas expressed in terms of 

the ¢i(r) will actually appear to be identical to the equivalent formula expressed in 

term of the '1/Ji(r). For this reason, there is little point in repeating every formula in 

both ways. The spatial-only form will prove the more useful later in computational 

contexts, and for this reason we will choose to use this form exclusively in most of 

this work. 
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For example, the total density, p(r), is given in terms of the orbitals, '1/Ji(r), by 

(1.35) 

or, in terms of the spatial-only orbitals, ¢i(r), by 

p(r) = L ¢;(r)¢;(r), (1.36) 
i 

as shown in Appendix D. 

Because the Kohn-Sham Slater determinant is a many-body wavefunction satisfying 

exchange anti-symmetry, and produces the same density as the true many-electron 

wavefunction, it might be considered as a reasonable starting point for extracting 

physical properties that contribute to F. For the true many-electron wavefunction, 

we can obtain F by taking the expectation value of its associated operator: 

(1.37) 

We could therefore obtain a first guess at F by taking the expectation value of its 

operator for the Kohn-Sham Slater determinant: 

Fs = (w siFI'll s) 

- (S) 
- Ts +\tint· (1.38) 

Here, T8 , is the non-interacting kinetic energy and Vj~) is the non-interacting inter

nal potential energy. Derivations of the following formulas for these terms are given 

in Appendix D; here we will simply quote them. 

The- riorf.:interactirig kinetiC energy, Ts, is given in terms of the Kohn~Sliam Orbita1s 

by 

(1.39) 
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The non-interacting internal potential energy, V:~), is given by 

v;Cs) = ~~drjdr'p(r)p(r')- ~ "'/dr/dr'¢>;(r)¢>i(r')¢>j(r')¢>i(r). 
mt 2 I r - r'l 2 7j I r - r'l 

(1.40) 

This is usually separated into the Hartree energy, Vu, and exchange energy, Vx, so 

that we have 
(S) V:nt = Vu + Vx, (1.41) 

where 

V. = ~ jdrjdr'p(r)p(r') 
H 2 lr- r'l ' 

(1.42) 

and 

V = -~ "'/d Jd ,¢>;(r)¢>i(r')¢>j(r')¢>j(r) 
x 2 L...,. r r I - 'I . 

ij r r 
(1.43) 

The Hartree energy, Vu, is equal to the Coulombic self-energy of a stationary, non

quantised, distribution of electric charge of density p(r). The name comes from 

Hartree theory, which is a predecessor of DFT [17]. 

The exchange energy, Vx, then accounts for the quantised nature of the charge, and 

the fact that the wavefunction is anti-symmetric with respect to the exchange of 

any two particles' coordinates. 

The difference between Fs and the true internal energy, F, is called the correlation 

energy, Ec: 

Ec = F-Fs. (1.44} 

This accounts for the fact that in the interacting system the electrons will tend to 

avoid each other due to their mutual repulsion. To understand how the mutual repul

sion of the electrons changes the energy, we can imagine taking the non-interacting 

system and then switching on the mutual repulsion, while keeping the density fixed 

and keeping the system in its ground state. The physical effect of the repulsion is 

that the electrons will tend to avoid each other at close range more than they would 

ilrthe' non:: interacting system. In terms of erietgy; this has two effecls: · 

1. Because any given pair of electrons are less likely to be found near to each 

other, the internal potential energy is reduced. 
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2. Because the wavefunction must change in order to describe this greater mutual 

avoidance, the kinetic energy is increased. 

Hence, the correlation energy has both a potential and a kinetic component: 

Ec =Tc+ Vc, (1.45) 

where 

Tc = T-Ts, (1.46) 

and 

Vc = Vint- VH- Vx. (1.47) 

Correlation properties can be described as purely many-body properties and they 

can only be calculated exactly if we solve the many-body Schrodinger equation. 

In practical calculations, therefore, the correlation energy is always approximated 

to some degree. Also, while easily accessible in principle, the exchange energy is 

considerably more expensive to evaluate computationally than the Hartree and 

non-interacting kinetic energies. It is therefore very common to approximate the 

exchange energy as well as the correlation energy. This leads to the usual group

ing together of the exchange and correlation energies into the exchange-correlation 

energy, Exc, given by 

Exc Vx+Ec (1.48) 

= F-Ts- VH. (1.49) 

The standard exact expression for F within the Kohn-Sham framework is thus 

F = Ts + VH + Exc, (1.50) 

and the variational energy for a given external potential and density is 

Evar[Vext, p] = j drvext(r)p(r) + Ts[P] + VH[P] + Exc[p]. (1.51) 

Practical Kohn-Sham calculations involve searching for the density that minimises 

this functionaL 

It should be noted that, although the explicit formulas for T8 and Vx are written in 

terms of the Kohn-Sham orbitals, they are still functionals of the density because 

the Kohn-Sham orbitals are themselves functionals of the density. 
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1.2.3 Approximations for Exc 

As we have mentioned, the correlation energy is always approximated in practical 

calculations and the exchange energy, while obtainable exactly, is usually approx

imated also. Several approximations exist for the exchange-correlation functional, 

Exc[p], of varying accuracy and computational cost. Some of these approximations 

are so-called "empirical", or "semi-empirical", functionals, such as B3LYP [18], in 

which some of the information used to define them is derived from experimental 

results on particular materials or chemicals. Other approximations fall into the cat

egory of "non-empirical" functionals, which are defined purely from the results of 

first principles calculations. 

While popular within the organic chemistry community, empirical, or semi-empirical, 

functionals tend only to out-perform non-empirical functionals of similar cost for 

the particular class of organic chemicals for which they are defined. If an element 

is present that was not present in the "training set", such functionals can perform 

very poorly [19). 

Functionals that are derived from first principles tend to be much more versatile. 

Much of the motivation for doing first principles calculations is in the ability to 

predict the results of experiments on complex materials, often in extreme conditions, 

without access to any experimental data other than the values of the fundamental 

constants. As soon as one introduces empirical or semi-empirical functionals, the 

calculations can no longer be considered to be "first principles", and are unlikely to 

possess the same degree of predictive power. In this work we will only be dealing 

with pure, non-empirical, functionals. 

The simplest, and most commonly used, exchange-correlation functional is the local 

density approximation (LDA)[15). The LDA, like most functionals, involves defin

ing the exchange-correlation energy per electron, cxc(r). The precise definition of 

-i~ar)'~ ail<fftscontribu"tii{g comp~lu~nt~,,~ll(b~~(Hsc-~s~ed -biter i~ (f6; fo;~~c;:;-;:e 

simply need to know that the total exchange-correlation energy can be obtained via 

Exc = J drcxc(r)p(r). (1.52) 
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The exact value of cxc(r) is a functional of the density at every point in space. 

The LDA makes the apparently drastic approximation that the value of cxc(r) is 

simply a function of the density at the same point, r. Any function could in principle 

be chosen here, but the one that is most clearly justified from first principles is as 

follows: 

{1.53) 

where c~~0 (p) is the exchange-correlation energy of a homogeneous electron gas 

(HEG) of density p. An HEG is a system of electrons of uniform density in its 

ground state; such a system can be uniquely specified by its density. Defining the 

LDA in this way means that the approximation becomes exact in the limit of very 

slowly varying densities. 

Of course, if we are to use the LDA in practical calculations, we need to know the 

actual numerical value of cf~0(p) for all densities. As there is no exact analytical 

form for this, we have to rely on interpolation of known numerical results from 

quantum Monte Carlo (QMC) calculations, such as those performed by Ceperley 

and Alder [20]. These were used by Perdew et. al. to parameterise numerical 

formulas for cxc(p) [21, 22] that are accurate for a wide range of values of p. 

Another group of simple approximations for Exc[P] are generalised gradient approx

imations (GGAs) [23, 21, 22, 24, 25]. These can be thought of as an extension to 

the idea of the LDA, in which not only the local density, p(r), but also the local 

density gradient, IVp(r)l, is used as input to a function for cxc(r), i.e. 

E~fA>[p] = J drp(r)c~gA> (p(r), IV p(r)l). {1.54) 

Unlike cCfgA>(p), the function c~gA>(p) lacks a uniquely justifiable form. Often the 

form is chosen to satisfy various physical constraints, however it is not possible to 

satisfy every constraint simultaneously and so the form is often chosen according to 

. the nature of the system under study [26]. Within the condensed matter physics 

community, the most commonly used GGAs are PW91 and PBE [22, 25, 27]. 

Other, more advanced, functionals beyond the LDA and GG As also exist, and will 

be discussed in Chapter 3. 



CHAPTER 1. INTRODUCTION 18 

1.2.4 Physical Meaning of J-LKs(r) 

So far, all we have said about the Kohn-Sham potential J.lKs(r) is that it is the local 

potential which causes the non-interacting system to adopt a ground state density of 

p(r). We will now show how it can also be defined in terms of functional derivatives, 

separated into various components of different physical origin, in a similar way to 

how the variational energy, Evar' is separated in Equation (1.51). We start by 

noting that, since the ground state density, p(r), is the density that minimises the 

variational energy, this energy must be stationary with respect to small changes in 

the density, i.e. 

6Evar = O. 
6p(r) 

(1.55) 

Here, the change in density, 6p(r), is restricted so as to be charge-conserving, i.e. 

I dr6p(r) = 0, (1.56) 

so that the total number of particles, N, remains fixed. 

Now, we note that p(r) is also the ground state density of the non-interacting system, 

and must therefore minimise some fictitious energy, E fie, given by 

Efic[P] = Ts[P] +I drJ.LKs(r)p(r). (1.57) 

This fictitious energy must also be stationary with respect to small, charge-conserving 

changes in the density, i.e. 

6Efic 
6p(r) 

6Ts 
::::} 6p(r) + J.lKs(r) 

::::} J.lKs(r) 

0 (1.58) 

0 

(1.59) 
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If we now take Equation (1.55), and substitute the form for Evar of Equation (1.51), 

we have 

c5p~r) (/ dr'vext(r')p(r') + Ts[P] + VH[P] + Exc[PJ) 0, 

c5Ts c5VH c5Exc 
=> Vext(r) + c5p(r) + c5p(r) + c5p(r) 0, 

c5VH c5Exc 
=> Vext(r) + c5p(r) + c5p(r) (1.60) 

Comparing this with Equation (1.59), we arrive at 

c5VH c5Exc 
J.LKs(r) = Vext(r) + c5p(r) + c5p(r), (1.61) 

which defines the Kohn-Sham potential in terms of functional derivatives of the 

various contributions to the total energy. We can also write this as 

J.LKs(r) = Vext(r) + J.LH(r) + J.Lxc(r), 

where J.LH(r) is the Hartree potential, given by 

c5VH 
J.LH(r) = c5p(r) 

_c5_ (!I dr' I dr"p(r')p(r")) 
c5p(r) 2 lr'- r"l 

= I dr' p(r') ' 
lr- r'l 

and J.Lxc(r) is the exchange-correlation potential, given by 

c5Exc 
J.Lxc(r) = c5p(r). 

(1.62) 

(1.63) 

(1.64) 

(1.65) 

How we evaluate this functional derivative for J.Lxc(r) depends entirely on the choice 

of approximation for Exc[p]. For advanced functionals, as we will see later, it is 

often the most challenging task associated with a DFT calculation. For simple 

functionals, however, things are relatively simple; in the LDA, for example, we have 

J.L~gA)(r) = c5p~r) (I dr'c~~G (p(r'))p(r')) 

(1.66) 
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Forms for dc:§~G jdp were derived by Perdew et. al. that correspond to the forms 

for c§~G(p) [21, 22]. 

1.2.5 Minimisation within the Kohn-Sham Method 

The second part of the Hohenberg-Kohn theorem tells us that, for a given external 

potential, we can obtain the ground state energy and density by minimising the 

variational energy of Equation {1.29). In principle, if we had a practical means 

of directly evaluating Evar[Vext, p] and its gradient with respect to the density, this 

would be a matter of a simple search. In practice, however, this is not the case, 

mainly due to the fact that, even if we have a simple approximation for Exc[p], the 

non-interacting kinetic energy, T8 [p], is not a direct functional of the density. There 

are several ways in which one can minimise the energy in a practical manner. The 

simplest way is just to perform an iterative cycle, which we will now describe. 

We have a direct relationship between the ground state density, p(r), and the Kahn

Sham potential, J-LKs(r), as given by Equation (1.61). Because this relationship 

rests on the total energy being stationary with respect to the density, it only holds 

true for the ground state density. However it still allows us to associate some local 

potential, J-lloc(r) with any given density, p(r), and, for simple exchange-correlation 

functionals at least, evaluate that potential directly from the density in a practical 

manner. We can represent this procedure as follows: 

p(r) ---+ /-Lioc(r). (1.67) 

As well as this, for any given Kohn-Sham potential, we can, in principle, solve 

Equation {1.32) to obtain an associated set of orbitals, { cPi(r)}. From these orbitals, 

we can then evaluate the associated density via Equation {1.36). Hence, assuming we 

can solve Equation (1.32), we also have a practical means of evaluating an associated 

density from a given local potential, which we can represent as follows: 
- ., -,,-.:- • .,- -- -·~·"· <-- .-~--. • - • • -. ~- : •• -,:. •• - • •• < ;;. ··- • '·---~- ·--~--- ~-- _ ...... 

J-lloc(r) ---+ p(r). (1.68) 

With the two procedures above, we could take a density, use it to evaluate a po

tential, and then use that potential to re-evaluate a density. If this re-evaluated 



CHAPTER 1. INTRODUCTION 21 

density is equal to the original density, then it must be the ground state density of 

the system, because this is only the density for which the potential generated is the 

correct Kohn-Sham potential. This property of the ground state density is called 

self-consistency. We can cycle around an iterative loop, in which an initial "trial 

density" is iteratively processed via (1.67) and (1.68) until it becomes self-consistent. 

Performing such a calculation requires us to be able to solve Equation (1.32) for a 

given local potential. This potential will have been generated from a density via 

Equation (1.61), so the set of orbitals, { ¢>i(r)}, are the solutions of 

(1.69) 

which are known as the K ohn-Sham equations. In minimising the electronic energy, 

we are seeking the self-consistent solution of these equations. The simple iterative 

procedure just described is one way of doing this. More efficient procedures exist 

that involve minimising the energy directly with respect to the orbitals, under the 

constraint of orthonormalisation. This requires us to be able to calculate the gradient 

of the energy with respect to the orbitals, i.e. 

8(E- Ts) 8Ts 
8¢>ik(r) + 8¢>ik(r) 

I d 
,8(E- Ts) 8p(r') 8Ts 

r +---
8p(r') 8¢>ik(r) 8¢>ik(r) 

(1. 70) . 

where the factor of 2 in the last line arises from the implicit factor of 2 in the sum

mations (see Appendix C). We will discuss the minimisation procedure in greater 

detail in the context of the reciprocal space representation. 
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1.2.6 The Exchange-Correlation Hole 

Within the Kohn-Sham framework, the exchange-correlation energy may be ex

pressed as 

Exc[P] = F[p]- (Ts[p) + Vn[p]). (1.71) 

So we can view Exc as the difference between the true internal electronic energy, F, 

and an approximation to it in which the kinetic energy is that of a non-interacting 

system, and the potential energy is that of a non-quantised distribution of charge. A 

deeper understanding of the meaning of exchange and correlation can be achieved by 

examining in more detail how the true system differs from this approximate picture. 

Firstly, let us separate Exc into its various components, and then re-group them as 

follows: 

Exc Vx +Ec 

Vx +Tc+ Vc 

= Vxc+Tc. (1.72) 

So we have now defined the exchange-correlation potential energy, Vxc, which can 

also be expressed as 

Vxc = Vint- Vn. (1.73) 

We already know that Vint can be obtained by taking the expectation value of "Cint 

for the many-electron wavefunction, and that Vn can be obtained by essentially 

taking a double integral of the density as in Equation (1.42). With reference to that 

equation, the Hartree energy can be expressed as follows: 

Vn = J drvn(r)p(r), 

where vn(r) is the Hartree energy per electron, given by 

1/ , p(r') 
vn(r) = 2 dr lr- r'l. 

(1.74) 

(1.75) 

This is also equal to half the Hartree potential, i.e. vn(r) = ~J.Ln(r) . If an electron 

is found at position r, within a non-quantised charge distribution, it can be con

sidered to have a potential energy of vn(r) due to its interaction with that charge 
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distribution. This is consistent with the Hartree energy being equal to the integral 

of vH(r) times the density. 

We can look to define a similar quantity associated with the true internal potential 

energy, Vint, such that 

Vint =I drvint(r)p(r), (1.76) 

where Vint(r) is the internal potential energy per electron. Again, this can be consid

ered to arise from the interaction of an electron at r with a distribution of charge, 

but now matters are complicated because, in the real system, an electron at r will 

"see" a distribution of charge that is affected by the fact that this electron is at r. 

That is, for every position in space, r, there is a conditional density, p(r'lr), that will 

be seen by an electron at r. The internal potential energy per electron is therefore 

given by 
1 I , p(r'lr) 

Vint(r) = - dr I 
1

. 
2 r- r' 

(1.77) 

The conditional density is related to the electron pair density, p(r, r'), which was 

defined in Section 1.1; we have 

( 'I ) _ p(r,r') 
p r r - p(r) . (1.78) 

Now, since Vxc is simply the difference between Vint and VH we can define the 

exchange-correlation potential energy per electron, vxc(r), as follows: 

vxc(r) = Vint(r) - vH(r). (1.79) 

Substituting the above equations for Vint(r) and vH(r), we have 

vxc(r) = ! I dr' p(r'lr) - ! J dr' p(r') 
2 lr- r'l 2 lr- r'l 

! I dr'p(r'lr) - p(r'). 
2 lr- r'l 

{1.80) 

Examining this equation we see that this has a similar integral form to the equations 

for Vint(r) and vH(r), where the numerator of the integrand is now the exchange

correlation hole, hxc(r'lr), given by 

hxc(r'lr) = p(r'lr) - p(r'). (1.81) 
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This is the change in the electron density caused by the presence of an electron 

at r. Every electron in the system is effectively surrounded by such an exchange

correlation hole, which results in a reduction in its potential energy. 

The exchange-correlation hole can be considered to be the sum of an exchange hole, 

hx(r'lr), and a correlation hole, hc(r'lr}, which are components of hxc(r'lr) that 

can be ascribed to exchange and correlation respectively. The exchange hole can be 

defined purely in terms of the non-interacting system, i.e. 

hx(r'lr) = Ps(r'lr) - p(r'), (1.82} 

where Ps(r'lr) is the conditional density of the non-interacting system, given by 

(1.83} 

(see Appendix D), and the correlation hole is then simply given by 

hc(r'lr) = hxc(r'lr) - hx(r'lr). (1.84} 

We can also define the exchange energy per electron, and the correlation potential 

energy per electron, respectively as 

( ) _ ~ J d ,hx(r'lr) 
vx r - 2 r lr- r'l ' (1.85) 

and 

( ) _ ~ Jd ,hc(r'lr) 
vc r - r I 'I . 2 r-r 

(1.86) 

Up to this point the non-interacting system and the true, interacting, many-electron 

system have been thought of as being entirely separate objects, connected only by 

the fact that they have the same density. But, it is actually possible to view both 

systems simply as particular instances of a continuous set of systems, each defined 

by a single parameter, .A, which is the electron-electron coupling constant. Each 

system is described by a many-electron wavefl!_n"ctio11, 'II .x, w)J.ich" is th~_ gr9.1.\I}~,s~at~ 
.... -. ~-'-·,·:·-· • .-,~--~ --,0:.--->-:<··<: "'-:--:"'" -··· -·- -~ -- :-- •• - • .-: .-. - _, ~~-,--_ -.-- - . ---. ..,. --~--- • ~-- ---- ' . -· 

of the following many-electron Schrodinger equation: 

(1.87} 
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where V.x[P] is a modified version of the standard potential operator, defined such 

that the electron-electron repulsive interaction is proportional to .A, so that we have 

(1.88) 

and where J.t.x[p](r) is a fictitious external potential defined such that the ground 

state density is equal to p(r) for all values of .A. Of particular interest are those 

values of .A in the range 0 :::; .A :::; 1 as these generate a continuous range of systems 

going from the non-interacting system (.A= 0) to the true interacting system (.A= 1). 

This continuous path between the two systems is called the adiabatic connection. 

The adiabatic connection allows us to relate the correlation kinetic energy, T c, to 

the correlation hole, hc(r'lr). Because the ground state wavefunction minimises 

the total electronic energy with respect to all degrees of freedom that are not con

strained (by normalisation, exchange anti-symmetry, etc.), a small change in any 

wavefunction-related quantity, at fixed .A, can produce no first order change in the 

energy, so long as it preserves the constraints. The correlation hole is directly related 

to the wavefunction, and hence a small change in the correlation hole will not change 

the total energy. Consider a small change, 8hc(r'lr), in the correlation hole that 

does not change the density, and that is made without changing the value of .A. The 

resulting change in the total energy is zero, and, because we have required that the 

density remains fixed, there is no change in the external, Hartree, non-interacting 

kinetic, or exchange energy. We thus have 

d(Vc+Tc) = 0 

=> dTc = -dVc. (1.89) 

This immediately provides a link between the kinetic and potential parts of the 

correlation energy. We can now define the correlation kinetic energy per electron, 

tc(r), such"tliat ·' 

8tc(r) = -8vc(r), (1.90) 

for small changes in the correlation hole, 8hc(r'lr), at fixed .A, that do not change the 

total density, p(r). Now consider a small step, d.A, along the adiabatic connection. 
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This results in a change in the correlation potential energy per electron that has 

two components - a component due to the increased numerator in the Coulomb 

potential, and a component due to the change in shape of the correlation hole, i.e. 

1: ( ) _ d)..jd ,h~)(r'lr) )..jd ,8h~)(r'lr) uvc r - - r + - r . 
2 lr- r'l 2 lr- r'l 

{1.91) 

The second term is a change in the correlation potential energy per electron at fixed 

>.., and hence we can use Equation (1.90) to write 

J: ( ) d)..jd ,h~)(r'lr) _ J: ( ) 
uvc r = 2 r lr _ r'l utc r , 

d)..j ,h~)(r'jr) 
=> &c(r) = 2 dr lr- r'l ' {1.92) 

where Ec(r) is the total correlation energy per electron. Integrating this between 

the limits of ).. = 0 and ).. = 1 yields 

Ec(r) = .\j=ld)..! j dr'h~)(r'lr) 
2 lr- r'l 

.\=0 

(1.93) 

! j dr' hc(r'lr) 
2 lr- r'l' 

{1.94) 

where hc(r'jr) is the coupling constant averaged correlation hole. This is essentially 

a modified version of the correlation hole that yields the total correlation energy per 

electron, rather than just the potential part. Also, since the exchange hole does not 

depend on >.., we can also define the coupling constant averaged exchange-correlation 

hole, hxc(r'lr), as 
.\=1 

hxc(r'lr) = j d)..h~b(r'lr), 
.\=0 

which yields the total exchange-correlation energy per electron via 

( ) _! jd ,hxc(r'lr) 
Exc r - 2 r lr- r'l . 

{1.95) 

(1.96) 

This coupling-constant averaged exchange-correlation hole, while physically less 
'·c.- -~ ..... ; ' •.o' ·~ 

meaningful, is often more useful when examining exchange and correlation effects, 

and when defining new exchange-correlation functionals. The concept of the exchange

correlation hole will be revisited later, particularly in our discussion of directions for 

future research in Chapter 7. 



CHAPTER 1. INTRODUCTION 27 

1.3 The Plane Wave Pseudopotential Approach 

In order to use DFT for practical calculations on real systems, we need to solve the 

Kohn-Sham equations numerically with a computer, which means that the problem 

must be cast in a finite manner. Furthermore, it is advantageous to cast the problem 

in a way that is computationally efficient, and that allows the numerical accuracy 

to be controlled in a sensible way. 

In all of the calculations in this work we will use the plane wave pseudopotential 

approach to solving the Kohn-Sham equations. This involves using a plane wave 

basis set to represent the orbitals, and pseudopotentials to represent the nuclei and 

core electrons. In this section, we will describe this plane wave pseudopotential 

approach. 

Alternative approaches to the plane wave pseudopotential exist. These involve using 

basis functions that are localised around individual atoms [28, 29, 30]. While cheaper 

computationally, they suffer from the problem that the basis set is incomplete and 

so it is often unclear whether or not a given calculation is truly converged with 

respect to the basis. 

1.3.1 Periodic Boundary Conditions 

A plane wave basis set must be used in conjunction with periodic boundary condi

tions. This requires that the external potential, and hence the ground state density, 

be periodic in space, i.e. 

Vext(r + R) = Vext(r), (1.97) 

and 

p(r + R) = p(r), (1.98) 

where R is any real lattice vector, defined by 

R = la + mb + nc, (1.99) 

where l, m, and n can each take any integer value, and a, b, and c are vectors 

defining 3 edges of the parallelepiped that forms the unit cell. In a similar way to 
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the real lattice vectors, the reciprocal lattice vectors are defined by 

G = la* + mb* + nc*, 

where the vectors a*, b*, and c* are related to a, b, and c by 

b * = 2 c x a 
7r n , 

and n is the volume of the cell, given by 

n = Ia. (b X c)j. 

28 

(1.100) 

(1.101) 

(1.102) 

(1.103) 

(1.104) 

1.3.2 Removing Infinities with Periodic Boundary Condi

tions 

The use of periodic boundaries appears to present a number of problems associated 

with the now infinite size of the system. For example, we have previously said that 

the total number of electrons, N, is equal to the integral of the density, p(r), over 

all space, i.e. 

N = J drp(r). (1.105) 

Clearly, this would integrate to infinity under periodic boundary conditions. How

ever, we can avoid such problems by adopting the following two conventions: 

1. Any integral in which the integrand is cell-periodic is taken over the extent of 

one unit cell only. 

2. Any integral in which the integrand is not cell periodic is taken over all space. 

In the case of the Hartree energy, we have a further problem because while one 

of the integrals has a periodic integrand, the other does not due to the 1/lr - r'l 
Coulomb factor. The integral of this term over all space diverges, which would still 
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lead to the Hartree energy being infinite. If we consider the electronic system alone, 

each electron is effectively interacting with an infinitely large distribution of negative 

charge, leading to an infinite energy. However, we also know that there is an equal 

amount of positive charge per unit cell due to the atomic nuclei, making the system 

charge neutral on average. Hence the average negative charge of the electrons is 

cancelled by the average positive charge of the nuclei - we only need to consider 

differences in the local charge density relative to the average. When using periodic 

boundary conditions, therefore, the correct equation for the Hartree energy is 

~ = ! j dr j dr'p(r)(p(r') - (p)) 
H 2 lr- r'l ' 

(1.106) 

where (p) is the average density of the system. This term is usually not explicitly 

written down, but should always be taken to be present. 

A similar problem arises when evaluating the external potential from the nuclear 

charges and when evaluating the contribution of nuclear-nuclear repulsive interaction 

to the total energy. Again, only differences from the average charge density need to 

be considered. The means by which the nuclear-nuclear repulsive interaction ~-I 

is dealt with is described in reference [2]. 

1.3.3 Kohn-Sham Orbitals with Periodic Boundary Condi-

tions 

While the potential and ground state density of a periodic system satisfy periodic 

boundary conditions, the Kohn-Sham orbitals do not necessarily have to. However, 

the contribution to the density from a given orbital, given by ¢(r)*¢(r), does have 

to satisfy periodic boundary conditions and so the orbital must have some degree 

of periodicity. In order to produce the periodic density contribution, its magnitude, 

l¢(r)l, must be periodic. Further, in order to satisfy the Kohn-Sham equations for 

~aperiodic Kolin~Sharri potential; we must'have 

¢(r + R) = ¢(r)eik·R, (1.107) 
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where R is any real lattice vector and k is a vector that is constant for a given 

orbital. This leads to Bloch's theorem for Kohn-Sham orbitals [31] 

¢(r) = u(r)eik·r, (1.108) 

where u is a periodic function satisfying 

u(r + R) = u(r). (1.109) 

Now, the Bloch wave vector, k, is not uniquely defined for a particular orbital 

because we can always make the transformation 

u(r) ---+ u(r)e-iG·r, (1.110) 

and 

k---+ k + G, (1.111) 

where G is any reciprocal lattice vector, without changing the periodicity of u(r), 

and without changing the value of ¢(r) at any point. However, we can always require 

that k lies within the Brillouin zone, i.e. 

1 < k, < 1 
-2 +2, 

1 < km < 1 
-2 +2, (1.112) 

1 < kn < 1 
-2 +2, 

where 

(1.113) 

This ensures that there is only one value of k for any given orbital, ¢(r). 

Now, we define the normalisation condition for a Kohn-Sham orbital such that 

J dr¢*(r)¢(r) = 1. (1.114) 

The Bloch wave vector, k, of a given orbital could lie anywhere within the Brillouin 

zone. For a general system, there should, in principle be a set orbitals for every 

possible value of k. In practice, we only ever deal with a finite set of k-points, 
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usually distributed evenly throughout the Brillouin zone according to a Monkhorst

Pack scheme [32] (see 1.3.8). When using periodic boundary conditions, we index 

the orbitals by k, as well as i. There will be, on average, N orbitals perk-point. 

Supposing there are Nk such k-points, then each k-point is given a "weighting" of 

1/ Nk. This means that we still have the correct normalisation with a complete set 

of orbitals for each k-point, so, for example, the density is given by 

p(r) = L L ifJik(r)ifJik(r), (1.115) 
k i 

where there is an implicit prefactor of 1/ Nk before the summation, as discussed in 

Appendix C. 

Whereas before, the Kohn-Sham orbitals were defined as the N eigenstates of the 

Kohn-Sham equations of lowest eigenvalue, they must now be defined as the eigen

states of lowest eigenvalue such that the total density integrates to N over 1 cell. 

There can therefore be different numbers of orbitals on different k-points if this re

sults in the lowest set of eigenvalues. Also, while there must be an integer number 

of orbitals on each k-point, the average number of electrons per cell, N, can, m 

principle, be fractional. 

1.3.4 Plane Waves and Reciprocal Space 

Any continuous periodic orbital, ¢Jik(r), with Bloch wave vector k, may be written 

as 

_1_ '"'c· (G)ei(k+G)·r 
JO~ 1k ' 

(1.116) 

(1.117) 

where the cik(G) are a set of complex coefficients that constitute the reciprocal space 

repre~:~entatioi1 of the orbital, and the<G are.reciprocalJattice .. vectors .. The . .functions 

ei(k+G)·r are plane waves, and are the basis functions in this representation. The 

pre-factor of 1/VO preserves the normalisation of the wavefunction, so we have 

(1.118) 
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and 

L c;k(G)Cik(G) = 1. {1.119) 
G 

Equation (1.116) is an inverse Fourier transform of an orbital from reciprocal to real 

space. The corresponding Fourier transform, that transforms from real to reciprocal 

space, is: 

{1.120) 

{1.121) 

As well as representing the Kohn-Sham orbitals in reciprocal space, it is also often 

useful to represent other quantities, such as densities and potentials, in this way 

also. We define the reciprocal representation of the density, p( G), as follows: 

and 

p(r) = ~ L p(G)eiG·r, 
G 

p(G) = J drp(r)e-iG·r. 

{1.122) 

(1.123) 

Again, there is a combined prefactor of 1/n between the Fourier transform and its 

inverse. The choice of where this factor is placed is essentially arbitrary, but placing 

it in this way means that the reciprocal space coefficients, p(G), are constant with 

respect to a charge-conserving scaling of space. This is very convenient when, for 

example, evaluating contributions to the stress tensor as we will see later. 

The Fourier transforms of Equations (1.122) and (1.123) apply to electron densities. 

Throughout this work the same relations will apply to all scalar fields, such as 

potentials, unless otherwise stated. 

1.3.5 Evaluating Quantities in Reciprocal Space 

Within the Kohn-Sham framework, the non-interacting kinetic energy, Ts, the 

Hartree energy, Ey, and Hartree potential, J.LH(r), are more easily evaluated in 

reciprocal space rather than real space. If we write an orbital as a sum of plane 
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waves and apply the single-particle kinetic energy operator, we have 

(1.124) 

The effect of the kinetic energy operator in reciprocal space is thus to multiply each 

plane wave coefficient by ~ times the square of its wave vector. This leads to a 

simple expression for the non-interacting kinetic energy: 

Ts = -
2

1 
LLc;k(G)e;k(G)(k + G)2

. 

ik G 

(1.125) 

The Hartree potential can be related to the density via Poisson's equation: 

(1.126) 

Writing the Hartree potential and the density in their reciprocal space representa

tions this becomes 

-\72 (..!._ L J.LH(G)eiG·r) = (..!._ L p(G)eiG·r) . 
nG~ nG~ 

(1.127) 

Note that the subtraction of the average density in Equation (1.126) is accounted 

for by the exclusion of the G = 0 term in the reciprocal representation. We now 

apply the \72 operator to J.LH(G) and equate exponential coefficients as follows: 

p(G), 

=> J.LH(G) = p~~). (1.128) 

This is the expression for the Hartree potential in reciprocal space. It excludes the 

G = 0 term, which can be set to zero as it exactly cancels the equivalent term from 

the positive nuclear charge in a neutral system. 

The Hartree energy in real space is given by 

VH = ~I drJ.LH(r)p(r) 

~I drJ.L~(r)p(r), (1.129) 
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where the conjugate on MH-(r) has no effect since it is a real field. Writing each term 

in its reciprocal space representation gives 

Vn = ! I dr (_!_ L 1-l~(G)e-iG·r) (_!_ L p(G')eiG'·r) 
2 0 GfO 0 G'i:O 

~ L 1-l~(G)p(G') I drei(G'-G)·r 
20 G,G' 

= 2~ L 1-l~(G)p(G). 
G 

(1.130) 

If we then substitute 1-ln(G) for its form as given in Equation (1.128), we obtain 

Vn = 2~ L p*(G)p(G), 
G 

(1.131) 

which gives the Hartree energy in reciprocal space. 

1.3.6 Operators in Reciprocal Space 

Any single-particle quantum operator, 6, can be represented in reciprocal space as 

a matrix, O(G, G'), which acts on an orbital represented by the coefficients, cik(G), 

as follows: 

OCik(G) = L O(G, G')cik(G'). (1.132) 
G' 

We have just seen that the kinetic energy operator, T, has the effect of multiplying 

each coefficient by ~lk + Gj2 , and so its matrix representation is 

(1.133) 

For a local potential operator, M(r), such as the Hartree potential, we require that 

L f.l(G, G')cik(G') 
G' 

-Jn I drf.l(r)4Jik(r)e-i(k+G)·r. (1.134) 
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Substituting the reciprocal space representations of J.L(r) and ¢ik(r), we have 

L J.L(G, G')Cik(G') 
G' 

_1_ I dr_!_ L J.L(G")eiG"·r 
Jfi n G" 

X _1_ L Cik(G"')ei(k+G"')·r e-i(k+G)·r 
V0 G"' 

~2 L J.L(G")cik(G"') I drei(G"+G"'-G)·r 
~~ G"G"' 

= _!_ L J.L(G- G"')Cik(G"'). 
n G"' 

(1.135) 

Hence, by comparing terms, we see that the matrix representation of a local potential 

is 

J.L(G, G') = ~J.L(G- G'). (1.136) 

1.3.7 Convergence of the Plane Wave Basis Set 

The complete set of reciprocal lattice vectors, G, is infinite, which means that 

evaluation of a sum over all such vectors would take infinitely long to compute. For

tunately, in realistic systems, the orbitals and densities tend to become smoothly 

varying at small scales - meaning that their plane wave components become neg

ligible for large G-vectors. We can take advantage of this fact by truncating the 

set of G-vectors so that we exclude those with magnitudes larger than some cut-off 

radius. 

The cut-off radius for Kohn-Sham orbitals, Gcut, is usually defined in terms of its 

corresponding kinetic energy, Ecut= 

Gcut = V2Ecut· (1.137) 

The cut-off radius for densities and potentials shol!ld be double that for orbitals. 

The cut-off energy that is appropriate for a given calculation is not usually known in 

advance, as it depends very much on the system in question, and on which quantities 

one wishes to calculate. However, establishing what the appropriate cut-off energy is 
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essentially just a matter of increasing it until the result stops changing - a procedure 

known as a convergence test. This feature of a plane wave basis set - i.e. that its 

accuracy can be controlled by a single parameter - is a major advantage over, for 

example, localised basis sets [28, 29, 30]. 

One can usually be quite confident, once a result is converged with respect to the 

cut-off energy, that there is no unrepresented Hilbert space that would significantly 

affect that result. It is however, important to bear in mind that quantities related 

to derivatives of the energy, such as force and stress, may require a slightly higher 

cut off energy than the energy itself, depending on the desired accuracy. 

1.3.8 Monkhorst-Pack Grids 

As mentioned previously, in practical calculations, we only ever use a finite number 

of k-points to sample the Brillouin zone. This is in order that the calculation 

remains finite, and is justified so long as the orbitals vary smoothly with respect to 

k. A Monkhorst-Pack grid [32] is an unbiased method of choosing a set of k-points 

for sampling the Brillouin zone. In fractional coordinates, it is a rectangular grid 

of points of dimensions Mx x My x Mz, spaced evenly throughout the Brillouin 

zone. The larger the dimensions of the grid, the finer and more accurate will be 

the sampling. Much like the cut-off energy, the size of grid required depends on 

the system under study, but the appropriate size can be established by means of a 

convergence test. 

1.3.9 Introduction to Pseudopotentials 

One of the main advantages of using a plane wave basis set is that its accuracy can 

be easily controlled. This is related to the fact that, when using such a basis set, 

we are making no assumptions about the final shape of the orbitals, other than that · · 

there is some scale below which they become smoothly varying. However, this also 

leads to a major disadvantage of using a plane wave basis set, which is that the 

size of the basis set required for a given system is often far larger than would be 
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required with a localised basis set. This is because, in condensed matter systems, 

the orbitals tend to oscillate very rapidly in the vicinity of atomic nuclei, and are 

much more smoothly varying elsewhere. In order to describe this rapid oscillation 

we must set a very large cut-off energy, so that we include plane waves with very 

short wavelengths. But, since most of the space in the cell does not contain rapidly 

oscillating orbitals, most of the computational expense associated with all these 

plane waves effectively goes to waste. A localised basis set can be tailored such that 

the basis functions themselves are rapidly oscillating in the vicinity of atomic nuclei 

and more smoothly oscillating elsewhere, so that the total number of basis functions 

required for the system is far smaller. 

The use of pseudopotentials [33, 34, 35], in conjunction with plane waves, can dra

matically reduce the magnitude of this problem. To understand what a pseudopo

tential does, we note the following two facts about orbitals in condensed matter 

systems: 

1. Lower energy orbitals can often be considered represent core electrons. These 

are electrons that are well localised around an atomic nucleus and whose prop

erties do not change significantly with the atom's "chemical environment". 

2. Orbitals representing electrons that are not core electrons oscillate very rapidly 

in the vicinity of atomic nuclei, but most of this oscillation can be put down 

to the fact that they have to be orthogonal to the core electrons. 

A pseudopotential essentially changes part of what the outer, or valence, electrons 

"see". The core electrons, and the potential due to the bare nuclear charge, are 

replaced by a fictitious potential that is defined such that the behaviour of the 

valence electrons is not affected outside of some cut-off radius from the nucleus. So 

long as this radius is not so large that it overlaps regions of space that are involved in 

chemical, bonding;: the pseudopotential approximation should" not, significantly alter 

the inter-atomic interactions that govern the behaviour of condensed matter. 

Using pseudopotentials reduces the computational cost of a calculation in three 

ways: 
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1. By effectively removing core electrons from the calculation, the number of 

Kohn-Sham orbitals is reduced. This reduces the memory required to store 

the orbitals, the time required to evaluate orbital-dependant quantities, and 

the time required to orthonormalise a set of orbitals. 

2. Because there are no core-electrons to which valence electrons must be or-

thogonal, there is less oscillation of the corresponding orbitals in the vicinity 

of the nucleus. This means that a lower cut-off energy can be used to represent 

the orbitals, resulting in lower memory requirements and greater speed. This 

lowering of the cut-off energy is typically a few orders of magnitude resulting 

in massive gains in efficiency. 

3. Because the pseudopotential is not uniquely defined for a particular element, 

we can optimise the shape of the potential so as to give as low a required 

cut-off energy as possible. Again, this reduces memory and increases speed. 

Because we only explicitly treat the valence electrons in a calculation when using 

pseudopotentials, we tend to think of the system as being made of electrons and 

ions rather that electrons and nuclei. This, incidentally, is why we used the more 

general subscript of I rather that N when referring to nuclei in Section 1.1. 

1.3.10 Basic Pseudopotential Theory 

Consider a single isolated atom, with atomic number Z. There are N (= Z) elec

trons, moving in an external potential given by 

z 
Vext(r) = -. 

r 
(1.138) 

Applying Kohn-Sham DFT to this system will result in a set of N Kohn-Sham 

orbitals, '1/Ji(r), a corresponding density, p(r), and a Kohn-Sham potential, f..LKs(r). 

-~- '• ' .· .. 

In order to create a pseudopotential for this atom, we must first specify which 

orbitals are to be considered core, and which are to be considered valence, and also 

specify the cut-off radius, rc. In most cases, all the electrons that are in "closed 

shells" are considered core, while the remainder are considered valence. In general, 
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the pseudopotential Vps is non-local, in that there is a separate local potential, 

v~k(r), acting on each angular momentum component, l, of a given orbital. 

If we apply Kohn-Sham DFT to the atom, with the external potential, Vext(r), now 

replaced with the pseudopotential, Vps, and with only valence electrons present, the 

resulting pseudo-orbitals, '1/Jps(r), must satisfy the following requirements: 

1. Each pseudo-orbital, '1/Jps(r), must equal the corresponding orbital from the 

all-electron calculation, '1/JAE(r), for all points r that lie outside the cut-off 

radius. 

2. The eigenvalue of each pseudo-orbital must equal the eigenvalue of the corre

sponding all-electron orbital. 

3. The first and second derivatives of each '1/Jps(r) must equal those of the corre

sponding '1/JAE(r) at the cut-off radius. 

4. There must be no radial nodes of the pseudo-orbitals inside the cut-off radius. 

Implicit in (1) above is the requirement that the total electronic charge of the va

lence electrons inside the cut-off radius is equal for both the pseudo- and all-electron 

orbitals. This is because in standard Kohn-Sham theory, each orbital is normalised 

to 1. Pseudopotentials in which this condition is respected are referred to as norm

conserving pseudopotentials. A class of pseudopotentials, called ultrasoft pseudopo

tentials [36], also exist in which this condition is relaxed, allowing a lower plane 

wave cut-off energy, but such potentials will not be used in this work. Now, any 

pseudopotential can be chosen so long as it satisfies the above conditions, and the 

particular form is usually chosen so as to make the pseudo-orbitals as smooth as 

possible to minimise the required plane wave cut-off energy. In the basic non-local 

form described above, in which there is a separate local potential for each angular 

momentum component, the pseudopotential acts on an orbital as follows: 

Vps'I/J(r) = L v~k(r)Yim(O, ¢)(Yimi'I/J(r)), (1.139) 
lm 

where the Ylm(O, ¢)are spherical harmonics. When implemented within a plane wave 

basis, applying such a pseudopotential would require a double-loop over G-vectors 
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of the general form 

(1.140) 
G' 

which would lead to unfavourable scaling with system size. This problem can be 

overcome by using Kleinman-Rylander pseudopotentials [37), in which each angular 

component of the pseudopotential is separated into a local and a non-local compo

nent as follows: 

v(l) (r) - vL°C(r) + 8v(l) (r) 
PS - PS PS · (1.141) 

The non-local component, 8v~k, is then approximated as 

tSv(l) (r) = l8v~k(r),Pf(r))(,Pf(r)8v~k(r)l 
PS (,Pf(r)l8v~k(r),Pf(r)) ' 

(1.142) 

where the ,Pf(r) are the pseudo-orbitals for the atomic system. Constructing the 

pseudopotentials in this way reduces the computational costs so this part of the 

calculation scales linearly with the number of plane waves. 

1.3.11 Disadvantages of Pseudopotentials 

Although providing enormous benefits in terms of speed and memory, the use of 

pseudopotentials is not without its drawbacks. 

The most serious drawback of using pseudopotentials is that we are almost invariably 

drawn away from the safe ground of purely first principles calculations. This is 

because while, in theory, the shape of the pseudopotential should not affect the 

chemical behaviour of a system, this is only actually the case if the cut-off radius for 

the potential is sufficiently small. Often, larger cut-off radii are chosen, as this allows 

us to use a lower plane wave cut-off energy. The shape of the pseudopotential is then 

chosen so as to still give "good" results. The problem is that what is often meant 

by "good results" is actually "results that are in good agreement with experiment". 

As soon as one makes a choice of pseudopotential that is in any way based on 

· experimental· results then· the· calculation-cannot·· be ·descri be<l ·as 'being purely~ fir8t · 

principles. 

Within the bounds of first principles calculations, results may be considered to be 

"good" if they are in close agreement with all-electron calculations, i.e. calculations 
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not involving pseudopotentials. However, even pseudopotentials that are optimised 

in this way tend only to perform well when the atoms are in a similar "chemical 

environment" to the one for which they were tailored. The "transferability" of a 

pseudopotential, i.e. how well it performs in differing chemical environments, can 

only be reliably improved by reducing its cut-off radius. It should also be noted that 

ultrasoft pseudopotentials tend to be more transferable that norm-conserving ones 

[36]. 

There are many other issues related to pseudopotentials, which may or may not be 

of importance depending on the system under study, and on which properties one 

wishes to calculate. For example, deciding which electrons to treat as 'core' and 

which to treat as 'valence', or whether or not relativistic effects should be included. 

In the end, there is such a multitude of adjustable parameters and degrees of freedom 

available in the generation of pseudopotentials that even the detailed study of one 

pseudopotential for one individual element could be a work in its own right. For 

this reason, we are often forced simply to accept that the use of pseudopotentials 

may incur a loss of accuracy of a similar order of magnitude to that incurred, for 

example, by using the LDA to treat exchange and correlation, and that further, 

the results of calculations in which different pseudopotentials have been used should 

not necessarily be expected to agree with each other. The gains in efficiency that 

pseudopotentials afford simply make them a necessary evil. 

1.4 Solving the Kohn-Sham Equations 

Using the matrix representations of operators in reciprocal space, the Kohn-Sham 

equations (1.69} can be written as 

~ (~(k + G)2
6GG' + Vext(G- G') + 1-Ln(G- G') + /-Lxc(G- G')) Cik(G') 

= c;kCik(G). (1.143) 

With a finite basis set, this is a numerically solvable matrix eigenproblem, with 

the bracketed terms forming the matrix elements, and the plane wave coefficients 
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forming the vector elements. However, due to the very large number of plane waves 

we are dealing with ("' 105 in a typical calculation), direct matrix diagonalisation is 

very expensive. It is also very wasteful, because we end up with as many eigenstates 

as there are plane waves, when we only actually require the lowest "' N /2 eigenstates. 

In general, the solution obtained will not be self-consistent, and we would have to 

perform several iterative cycles in order to minimise the energy. 

An alternative approach to the simple iterative loop combined with matrix diago

nalisation is to minimise the energy directly with respect to the Kohn-Sham orbitals 

themselves. To do this efficiently requires us to be able to calculate the gradient 

of the energy with respect to the orbitals, discussed in Section 1.2.5. In reciprocal 

space, Equation (1. 70) becomes 
8E 

8cjk(G) 

2 ~ (~(k + G) 2
8GG' + Vext(G- G') + J.ty(G- G') + J.txc(G- G')) Cik(G'), 

(1.144) 

i.e. we can obtain the gradient by applying the Kohn-Sham Hamiltonian to the or

bitals. This allows us to use methods such as steepest descents or conjugate gradients 

[38] to minimise the energy and obtain a self-consistent solution of the Kohn-Sham 

equations. 

1.5 The Kohn-Sham Band Structure 

Supposing we have a self-consistent solution of the Kohn-Sham equations, then we 

have "' N /2 orbitals for each of the Nk k-points used to sample the Brillouin zone. 

These orbitals are solutions of a single-particle Schrodinger-like equation in which 

the local potential is the Kohn-Sham potential, J.tKs(r). Now, having obtained 

a self-consistent solution, we can also solve this equation for k-points other than 

those·incthe·original· set; and· look forsolutions···other thanjust··thelowest~rv~N/2 

eigenstates. The complete set of eigenvalues for each k-point in the Brillouin zone 

forms the K ohn-Sham band structure. This band structure is often assumed to 

approximate the true band structure of the interacting system. However, there is 
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no reason to believe that it would exactly equal the true band structure, even if 

we had an exact exchange-correlation functional. How closely the Kohn-Sham band 

structure approximates the true band structure, and how this depends on the choice 

of functional, will be the subject of discussion in later chapters. 

1.6 Extensions of Kohn-Sham Theory 

We have outlined the essential aspects of the standard Kohn-Sham formalism, how

ever a number of extensions of this formalism exist that improve the description 

of some systems. The two most common extensions are fractional occupancies and 

spin-dependent DFT, which we will now briefly describe. 

1.6.1 Fractional Occupancies 

In standard Kohn-Sham theory the orbitals are essentially defined as the lowest 

eigenstates of the self-consistent Kohn-Sham Hamiltonian. Higher eigenstates may 

be calculated as part of a band structure calculation, but are otherwise not involved 

in the calculation of ground state properties. However, it is possible to re-define 

the set of orbitals to include all eigenstates of the Hamiltonian, with each orbital 

assigned an occupancy, Jik, of between 0 and 1. Standard Kohn-Sham theory is then 

the special case in which original, lowest, orbitals have an occupancy of 1 and all 

higher orbitals have an occupancy of 0. When evaluating quantities in terms of a 

sum over orbital functionals, each term is now weighted by the occupancy of the 

orbital, e.g. the density is now given by 

p(r) = L hk¢;k(r)¢ik(r). (1.145) 
ik 

1;6;2 -Spin-Dependent flFT 

While an exact DFT calculation is guaranteed to return the correct ground state 

and energy of any system, it would not necessarily tell us anything about the spin of 
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the electrons. In standard Kohn-Sham theory, because there is no spin component 

in the Kohn-Sham potential, the numbers of spin-up and spin-down orbitals never 

differ by more than one. Therefore, even if the system is highly spin-polarised, the 

Kohn-Sham orbitals do not reflect this fact. Spin-dependent DFT is a generalisation 

of the standard Kohn-Sham formalism that allows us to deal more sensibly with 

systems that have collinear spin polarisation. This involves adding a spin-index to 

both the density and the Kohn-Sham potential, one for spin-up electrons and one 

for spin-down electrons, i.e. 

p(r) ----* p(r, a), (1.146) 

and, 

J.LKs(r) ----* J.LKs(r, a), (1.147) 

with the density now related to the Kohn-Sham orbitals via 

p(r, a) = L !ik,ucPik(r)c/Jik(r). (1.148) 
ik 

The spin polarisation of a system emerges via the exchange-correlation functional, 

for example, the LDA can be extended to the local spin density approximation 

(LSDA) [15]. 

1. 7 The CASTEP Code 

Much of this work has involved the computational implementation of non-local 

exchange-correlation functionals. This implementation has been built into the ex

isting CASTEP code [3, 39], which is one of the leading codes in the field of elec

tronic structure calculations. All DFT calculations in this work were performed 

using CASTEP. In order to describe the implementation of the non-local function

als in later chapters, it is necessary first to explain some of the features of the basic 

CASTEP implementation. 
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1. 7.1 Algorithms and Tools 

A range of computational tools are available that aid in the implementation of 

different functionalities. They include lists of physical constants, basic numerical 

algorithms, and file-handling capabilities for the input and output of data. Of 

particular importance for computationally intensive work are fast Fourier transforms 

(FFTs). Implementations of the FFT algorithm [38] are in place for transforming 

data between real space and reciprocal space representations. This is one of the 

most commonly applied, and most computationally intensive operations that is used 

in these calculations and as such, the implementation of the algorithm has been 

designed to be as efficient as possible. Tools are also available for performing efficient 

calculations in parallel on several processors; this is discussed further in 1.7.6. 

1.7.2 Elements of a DFT Calculation 

Numerical representations are defined of physical objects that are used in DFT 

calculations, i.e. the unit cell, potentials, wavefunctions, and electron densities. 

Also defined numerically are the plane wave basis set, and the reciprocal and real 

space grids on which data associated with potentials, wavefunctions, and densities 

is represented. 

Data associated with the unit cell includes the real- and reciprocal-space lattice 

vectors, the positions of the atoms within the cell and the set of k-points used for 

Brillouin zone integration. 

Most data associated with the plane wave basis set involves defining mappings be

tween the logical indices, used internally by the computer, and the physical coor

dinates that have meaning in terms of the real system that is being modelled. For 

example, if a field is defined on the real space grid, it will be stored in a simple 

1-dimensional arrarand a mapping array· is· defined-that· translates the'indices of 

that array into coordinates in real space. 

The three basic types of field that we deal with in a calculation are densities, po

tentials, and orbitals. Common operations involving these objects include applying 
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a potential to a set of orbitals, calculating a density from a set of orbitals, and 

calculating a potential from a given density. For efficient implementation of such 

operations data is often Fourier transformed between real and reciprocal space. 

1. 7. 3 Functionality 

The primary functionality of any DFT implementation is the ability to minimise 

the energy in order to obtain the electronic ground state of the system. The imple

mentation of this functionality is based largely on the methods discussed in Section 

1.4. 

Other important functionality, which we will be using throughout this work are 

the calculation of geometries and band structures. Geometry optimisation is the 

process of searching for the configuration of atomic positions that minimises the 

total energy. This is important as it represents the atomic geometry the system 

would be expected to adopt naturally at zero temperature. In order to perform 

a geometry optimisation efficiently it is necessary to calculate the forces acting on 

each atom when the system in a given configuration. Although it is always possible 

to do this by calculating finite differences, this is expensive as it would require"' 3N 

calculations of the total energy. In order to avoid having to do this we can use the 

Hellmann-Feynman theorem [40, 41]. This essentially says that the derivative of 

the electronic energy with respect to some external parameter, such as an atomic 

position, is equal to the corresponding partial derivative in which the electronic 

wavefunction is held constant. This means that we can calculate the forces on the 

atoms without recalculating the electronic structure. With the forces known, we 

can move the atoms in a "downhill" direction closer to the local energy minimum. 

Successive iterations of this process will result in the system arriving at a geometry 

at which the forces are zero, and the energy is minimised. For extended systems, we 

also have to calculate the stress on the-unit cell~, and adjust, the lattice-parameters 

accordingly in a similar way to how we move the atoms in response to the forces in 

order to find the energy minimum. 

6the way this is done is described later in Chapter 6. 
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Band structure calculations are carried out after a self-consistent (SCF) solution 

of the Kohn-Sham equations has been obtained. The Kohn-Sham potential is cal

culated from the ground state density, and then the corresponding eigenstates and 

eigenvalues, including conduction bands, are calculated for the set of band structure 

k-points. In general these will be different to the SCF k-points and so the band 

structure calculation is rarely fully self-consistent. It is also possible to calculate the 

band structure using a different exchange-correlation functional to the one used in 

the SCF stage of the calculation; this will be discussed further in Chapters 4 and 5. 

1. 7.4 Cell Symmetry 

If there are geometric symmetries in the structure of the unit cell then this can be 

utilised in order to reduce computational requirements. We can take advantage of 

the fact that if two k-points are related by a symmetry operation, then the orbitals 

on those k-points are also related. Any symmetry operation, S, can be described 

by a rotation followed by a translation; for a point in real space we have 

Sr = Mr+t, (1.149) 

where M is a matrix representing the rotational component of S, and t is a vector 

representing the translational component. For an orbital, ¢ik(r), we have 

(1.150) 

If the orbital is represented in reciprocal space, we therefore have 

_1_ "c· (G)ei(k+G)·(M- 1 (r))ei(k+G)·(M- 1 (-t)) 
vTI ~ lk 

(1.151) 

Comparing coefficients, this leads to 

(1.152) 
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Hence two k points are related by the operation, S, if they are mapped to and from 

each other by M and M-1 . The reciprocal space coefficients are then the same, 

except for a phase factor. Because of this, it is possible to perform calculations 

using a reduced set of k-points, defined such that no two k-points are related by 

symmetry. Calculation of orbital dependent quantities then requires a weighting to 

be associated with each k-point proportional to the number of related points in full 

set. 

1.7.5 Time-Reversal Symmetry 

Even in systems that have no geometric symmetries, the size of the k-point set can 

still, in general, be reduced by rv ~due to the "time-reversal symmetry" inherent in 

the Kohn-Sham equations. For any solution, ¢ik(r), which by Bloch's theorem we 

can write as 

(1.153) 

we can take the complex conjugate and obtain another solution, c/>i-k(r), 

A. ( ) * ( ) -ik·r 'f'i-k r = uik r e . (1.154) 

As this has the same contribution to the density as ¢ik(r), in practice we only need 

to treat one of these k-points explicitly and hence we can reduce the size of the 

k-point set. Of course this does not apply to the r -point, i.e. k = 0, and so the 

reduction is size is not necessarily exactly ~· 

1. 7. 6 Parallelism 

Running in parallel generally increases the speed of a given calculation because the 

work is distributed between processors and so each processor has a smaller amount 

of work 'to do. "It a.lso generally 'reduces the memory 'requirements per processor 

for the same reason. It is rarely the case, however, that the speed-up is simply 

proportional to the number of processors. This is because there are "overheads" 

involved whenever data is transferred between processors. How close we get to the 
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limit of linear scaling with number of processors depends on how often this inter

processor communication has to take place. 

Parallelisation can involve distribution of k-points, G-vectors, or both. The k

points and/or G-vectors are divided roughly evenly into groups, with each processor 

belonging to precisely 1 k-point group and 1 G-vector group. Where possible, 

distribution by k-points is preferable to distribution by G-vectors as there is less 

"interaction" between k-points, requiring less communication between processors. 

1.8 Summary and Outline of Chapters 

In summary, we have described the basic theory and methods that will be used in 

most of this work. We have seen how the Kohn-Sham formulation of DFT can be 

realised in practice by using a plane wave basis set, pseudopotentials, and simple 

approximations to the exchange-correlation functionals. The concept of the recipro

cal space representation will be of particular importance in later chapters when we 

describe the theory and implementation of more advanced exchange-correlation func

tionals. We have also described briefly the structure and workings of the CASTEP 

code, a basic understanding of which will be useful later, particularly in Chapter 

4, when we describe the computational implementation of new exchange-correlation 

functionals within this code. 

Having described the basic methods that are used for our calculations, we proceed 

in Chapter 2 to calculate various properties of GaN from first principles, including 

geometric and energetic properties, band structures, and surface reconstructions. 

It is found that some of the calculated properties are in good agreement with ex

periment, but certain properties, most notably the electronic band gap, disagree 

with experiment quite markedly. The problem stems mainly from the use of the 

LDA to describe.exchange and correlation effects, and this motivates" us to.consider 

using alternative, more advanced, exchange correlation functionals. In Chapter 3, 

we describe a number of such functionals, focusing in particular on screened ex

change (sX-LDA), Hartree-Fock (HF), and exact exchange(EXX). Then in Chapter 
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4 we describe how we have implemented these functionals within CASTEP, and 

in Chapter 5 we present the results of band structure calculations on a number of 

semiconductors using sX-LDA and HF. We also discuss in some detail the reasons 

for the performance of the various functionals in calculating the electronic band gap. 

Aside from band structure calculations, another potential application of advanced 

exchange correlation functionals is in the calculation of geometries and molecular 

dynamics where the size of the unit cell may vary; this requires the calculation of 

the stress tensor. In Chapter 6 we derive and implement the theory that allows us to 

calculate the stress tensor when using the exchange-correlation functionals sX-LDA, 

HF, and EXX, and verify the theory and implementation by performing simple tests 

on silicon. Finally in Chapter 7 we summarise the work and its major conclusions, 

and discuss some possible directions for future work in this area. 



Chapter 2 

LDA Calculations on GaN and 

GaN Surfaces 

In this chapter we briefly review the history of GaN and the wide range of tech

nological applications for which it is used today. We also discuss modern growth 

techniques that are used to produce the material and some of the methods used to 

model this growth theoretically. More detailed accounts of these subjects may be 

found in references [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53). We then describe in 

detail a series of LOA calculations on the bulk material, including calculations of its 

geometry, formation energy, and band structure. After this, we discuss the theory 

of surface energetics, which allows us to compare surfaces with differing numbers of 

atoms, and which can be used to predict the surface reconstructions that will be 

present under various growth conditions. We then apply this theory to the calcula

tion of reconstructions of GaN surfaces in the presence of hydrogen. We conclude 

by discussing the success or otherwise of the LOA in these calculations, in particular 

with regard to its underestimation of the band-gap. 

51 
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2.1 About GaN 

2.1.1 GaN and GaN-based Technology 

Gallium nitride (GaN) is binary semiconductor compound. Its natural structure 

under standard conditions is the hexagonal wurtzite structure, but can also be pro

duced with a cubic zinc blende structure. Both of these structures are described 

in more detail in 2.2.1. GaN was first produced in the 1930s, but was not able to 

be produced in large enough crystals for technological applications. The develop

ment of vapour phase epitaxy {VPE) (42, 43, 44) techniques led to an increase in 

quality of production from the 1960s onward. With modern growth techniques, dis

cussed in 2.1.2, GaN based devices are now routinely manufactured for technological 

applications. 

GaN, and GaN alloys, have several useful properties in terms of technological appli

cations. The most important property of GaN is wide electronic band gap (rv 3.5eV 

(54]), which means it can be used to make short-wavelength opto-electronic devices 

such as light-emitting diodes (LEDs), laser diodes {LDs), and photo-detectors. An

other important property is its high melting point ("" 1700°C (44]), which along 

with the wide band gap, make it a candidate for use in high temperature electronic 

applications. 

2.1.2 Modern Growth Techniques 

The growth of GaN is an area of ongoing development, and can involve a wide range 

of complicated techniques and processes. Most modern techniques, however, involve 

either metal-organic vapour phase epitaxy {MOVPE) or molecular beam epitaxy 

(MBE) (42, 43, 44). In both of these methods, the material is built up layer by layer 

from a substrate, ·Such as sapphire,· usually separated with a ·buffer layer ·Of AlN to .. 

rectify the lattice mismatch. 

In MOVPE, chemical compounds in vapour phase are passed over the hot surface, 

where they react to form the bulk GaN plus waste products in vapour phase. In 
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order for the reaction to occur it is necessary to heat the surface to around 1000°C. 

Typical sources for Ga and N are trimethylgallium (TMGa) and ammonia (NH3). 

In MBE, beams of atoms and molecules are directed at the surface where again they 

react to form the bulk material. The source of Ga atoms is now bulk Ga, while the 

source of N is, again, ammonia. 

2.1.3 Modelling Growth Conditions 

An important factor influencing the growth of GaN and other semiconducting ma

terials is the atomic structure of the surface. This can, for example, affect the 

mobility of atoms on the surface, which can in turn affect the quality of the crystals 

produced. It can also affect the ease with which dopant atoms can become incor

porated into the material. While in-situ experimental techniques such as reflection 

high energy electron diffraction (RHEED) can give some indication as to the sur

face structure during growth, it has been found that theoretical studies can provide 

much more detailed information as to the precise atomic configurations under dif

ferent growth conditions. A number of such studies can be found in the references 

[46, 47, 48, 49, 50, 51, 52, 53]. In terms of first principles calculations using the 

density functional methods described in Chapter 1, the basic procedure is to set up 

a surface supercell, and perform geometry optimisation calculations to obtain the 

relative energies of the different possible reconstructions of the surface under study. 

The detailed procedure for these calculations will be explained further in sections 

2.3 and 2.4 when we carry out calculations of surface reconstructions in the presence 

of H. 

2.2 Calculations on Bulk GaN 

2.2.1 The Unit Cell 

The primitive GaN unit cell contains 4 atoms, in the case of the wurtzite structure 

(space group P63mc), and 2 atoms, in the case of the zinc blende structure (space 
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group F43m). There are several equivalent ways to define the unit cells. For the 

purposes of these initial calculations we will define the structures as follows: 

The shape of the wurtzite cell is a vertically oriented prism, with the base defined by 

the primitive lattice vectors, a, and b, which are of equal length and are separated 

by an angle of 60°; a and b both lie in the horizontal xy-plane. The height of the 

cell is defined by the vector, c, which is oriented vertically at 90° to both a and b. In 

the "ideal" wurtzite structure c is related to a by c = 2/Ia; this is not necessarily 

the case in the real structure, as we will discuss in a moment. 

To specify the positions of atoms within the cell we usually use fractional coordinates 

for convenience. If a point in space, r, has Cartesian coordinates, (x, y, z), then its 

fractional coordinates, [x', y', z'], are defined such that 

r = x' a + y'b + z' c. (2.1) 

Note that we write fractional coordinates in square brackets to distinguish them 

from Cartesian coordinates. 

The Ga atoms are positioned such that one is at the origin, [0, 0, 0), and the other is 

at [~, ~' ~). The N atoms are positioned directly above the Ga atoms. In the "ideal" 

wurtzite structure, these are at [0, 0, ~] and [~, ~'~],so that the length of each Ga-N 

bond is the same if c = 2/Ia; a graphical representation of the ideal wurtzite cell 

is shown in Figure 2.1. 

However, in terms of cell symmetry, the vertical Ga-N bonds are not related to 

the diagonally oriented Ga-N bonds. Because of this, there is no a priory reason 

to expect these two sets of bonds to be the same length. There are therefore two 

extra degrees of freedom compared to the ideal structure - the length of the lattice 

vector, c, relative to a and b, and the vertical position of the N-atoms, relative to 

the Ga-atoms. 

The deviation of the atomic coordinates from the ideal structure can be described 

in terms of a parameter, d, such that the positions of the N-atoms are given by 

[0, 0, ~ + d] and [~, ~' ~ + d]. 
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Figure 2.1: Primitive unit cell of wurtzite GaN. Ga atoms are represented by large grey 
spheres, and N atoms by smaller green spheres. 
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Figure 2.2: 8-atom cubic cell of zinc blende GaN. Ga atoms are represented by large grey 
spheres, and N atoms by smaller green spheres. 
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The shape of the primitive 2-atom zinc blende cell is an equal-sided parallelepiped 

that can be most easily visualised with reference to a larger, 8-atom cubic cell, as 

shown graphically in Figure 2.2. This cubic cell has Ga-atoms at the origin and 

in the centre of each of the three faces that touch the origin. For each Ga-atom, 

there is a N-atom at a displacement of [~, i, ~] away from it. The lattice vectors 

defining the primitive cell are the three vectors going from the origin to the centre 

of .the three faces where the Ga-atoms are. These vectors are of equal length and 

are separated from each other by angles of 60°. The three Ga-atoms on the faces of 

the cube are not in the primitive cell as they are simply the periodic repetitions of 

the atom at the origin. The primitive cell thus contains a Ga-atom at [0, 0, 0] and a 

N-atom at [~, ~' ~]. 

2.2.2 Choice of Pseudopotentials 

We have found from our own tests, as has also been noted by others [46, 47, 48, 49, 

50, 51, 52, 53], that for the GaN surface calculations covered in this work, we need 

to use norm-conserving pseudopotentials, and include the Ga d-electrons as valence. 

The ultrasoft pseudopotentials that we have tested fail to adequately describe the 

N=N triple bond in the N2 molecule, which we need to model in order to compare 

surfaces with different numbers of N-atoms. For all the calculations in this work 

we use the norm-conserving pseudopotentials from the standard set available with 

CASTEP, generated by Lee [55, 56]. 

2.2.3 Convergence of the Plane Wave Basis Set 

With a given structure and set of pseudopotentials in place, the first task in any 

plane wave calculation should be to choose an appropriate cut-off energy for the 

basis set. This is done by means of a convergence test, in which we perform a series 

of calculations, using increasing cut.:off energy, and fuonitor the C<:mvergerice of a 

given quantity (usually the total energy) towards its large cut-off limit. 

For these purposes, we only need to use 1 k-point to sample the Brillouin zone. This 

is because we are only seeking to determine a suitable cut-off energy for convergence 
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rather than a final result. However, we choose to give the k-point an offset of[!,!, !J 

as this is known to give a more accurate answer at no extra computational expense 

(as is found later in 2.2.4 and is also noted in references [57, 58]). We set up the 

wurtzite and zinc blende cells with the atoms positioned in the ideal structure, as 

described earlier, and the lattice parameters set near to the experimental values 

[54]. Note that this is done simply for the purposes of the convergence test - it does 

not result in a semi-empirical calculation as both the atomic coordinates and lattice 

vectors will be allowed to vary later. 

We run a series of total energy calculations using CASTEP, for a range of cut-off 

energies, the results of which are plotted in Figure 2.3; we find that the calculated 

value of E converges towards a value of around -3935.198eV. As a general rule in 

electronic structure, we would like to know energies to an accuracy of within O.OleV 

per atom, which in this case is safely reached with a cut-off of around 1200eV. 

What we have established here is an appropriate cut-off energy for use in calculations 

in which we want to know the total energy of the system as an absolute quantity. 

However, in almost all problems in physics, what is important is not the absolute 

energy, but rather the difference in energy between alternative configurations. In our 

study of GaN, we are looking to determine properties that are essentially chemical in 

nature. Chemical properties are mostly determined by the electronic structure in the 

regions of space between the atoms, rather than in the space within the atomic cores. 

This fact has already been made use of in the pseudopotential approximation, and, 

as we will now see, can also allow us to use a lower cut-off energy than is suggested 

by this first convergence test. 

We now perform a second convergence test, which looks at the convergence of the 

difference in energy between bulk GaN and a system in which the atoms are in a 

very different chemical environment. A sensible choice for such a system is the case 

of isolated atoms, because this is a very different chemical environment to anything 

involving bonding. To calculate the energy of the isolated atoms, we place them 

in a 4A cubic cell (possibly not large enough to completely eliminate interactions 

between neighbouring cells, but adequate for the present purposes). Since isolated 

atoms tend to be spin polarised, we treat them using spin-dependent DFT, with 
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Figure 2.3: Convergence of the total energy, E, per 4-atom cell, with respect to the plane 
wave cut-off energy, Ecut, in wurtzite GaN, using a single k -point to sample the Brillouin 
zone. The two graphs display the same data at different scales of magnification. 
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the spin configuration determined by Hund's rules. The results of this convergence 

test are plotted in Figure 2.4. We now see that the energy difference converges to 

within the acceptable tolerance of O.OleV per atom far more rapidly than did the 

total energy. For the calculations we will be doing, a cut-off energy of 800eV ought 

to be more than sufficient. 

2.2.4 Convergence of the k-point Set 

Now that we have established the cut-off energy, using a single k-point, we must 

perform a similar test to determine the appropriate number of k-points to use. 

Again, we perform a series of calculations, monitoring the convergence of the total 

energy, this time as we increase the density of the k-point grid, keeping the cut-off 

energy fixed at 800e V. 

For convenience, we start with the ZB structure only, as this has reciprocal lattice 

vectors all of equal length, meaning that we can set Mx = My = Mz and thus control 

the k-point density with only 1 free parameter. For each k-point density, we will 

consider two types of offset- on-origin, in which the central k-point is located on the 

origin, and off-origin, in which the grid is offset such that the origin is exactly in the 

centre of the cube formed by the 8 k-points nearest to it (in fractional coordinates). 

The results of this convergence test are shown in Figure 2.5; we see that, for off

origin grids, the k-point set is converged to within an acceptable tolerance when it 

has dimensions of 3 x 3 x 3. This is not the case for on-origin grids, which appear 

to converge less rapidly, suggesting that one should avoid choosing such grids where 

possible. By default, in CASTEP, grids with odd dimensions are on-origin, while 

grids with even dimensions are off-origin. This can lead to a zig-zagging of the 

convergence plot, which may lead inexperienced users to doubt whether even a 

4 x 4 x 4 grid is really converged, when a 5 x 5 x 5 grid, by default, gives a very 

different result. By plotting both the on-origin and off-origin results, as we have 

done, it becomes clear that a 3 x 3 x 3 grid is actually quite adequate, so long as it 

is off-origin. This issue is discussed in greater detail in references [57, 58]. 

We now consider the WZ structure, in which c* is shorter than a* and b*, by 
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Figure 2.4: Convergence of the difference in energy, E- Eatoms, per 4-atom cell, between 
wurtzite GaN and its constituent atoms, with respect to the plane wave cut-off energy, 
Ecut, using a single k-point to sample the Brillouin zone. The two graphs display the same 
data at different scales of magnification. 
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Figure 2.5: Convergence of the total energy, E , per 2-atom cell, in zinc blende GaN, as 
the size of the Monkhorst-Pack k-point grid is increased. The blue line represents grids 
that are on-origin, while the red line represents grids that are off-origin. The black line 
represents the CASTEP default, which is on-origin for odd grids and off-origin for even 
grids. 
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a factor of ~/I ~ 0.612 in the ideal structure. This means that for a roughly 

even distribution of k-points, we might be able to set Mz to less than Mx and 

My. Because the base of the Brillouin zone is not rectangular we should not simply 

set Mz ~ ~/IMx. We have to consider the 2-dimensional density of k-points in 

the horizontal plane; the area of the base is Ia* x b* I = r,J and hence the k

point density in the horizontal plane is 2MJt. For an equal effective !-dimensional 

sampling density in each of the 3 Cartesian directions, this would be the square of 

of that sampling density. Because the c*-direction is normal to the horizontal plane, 

we thus require 

J3' 

(2.2) 

To test for convergence, we set a real target value, mx, as the control parameter, and 

then select the nearest integer to mx as the value for Mx, and the nearest integer to 

-¥mx as the value for Mz. This ensures that the k-point grid will remain roughly 

evenly distributed. The issue of origin offsets is also complicated now, because it 

is possible for the grid to be, for example, off-origin in the horizontal plane but 

on-origin in the vertical direction, or vice versa. For clarity, for each set of grid 

dimensions, we consider the fully on-origin case, the fully off-origin case, and the 

the two mixed cases. The results are plotted in Figure 2.2.4. 

For the wurtzite GaN structure, we see that the energy is adequately converged with 

a 4 x 4 x 3 Monkhorst-Pack grid, with the CASTEP default offsets, i.e. off-origin 

in the horizontal plane and on-origin in the vertical direction. 
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Figure 2.6: Convergence of the total energy, E, per 4-atom cell, in wurtzite GaN, as the 
size of the Monkhorst-Pack k-point grid is increased. The blue line represents grids that 
are fully on-origin, the red line represents grids that are fully off-origin, the green line 
represents grids that are on-origin in the horizontal plane but off-origin in the vertical 
direction, while the yellow line represents grids that are off-origin in the horizontal plane 
but on-origin in the vertical direction. The black line represents the CASTEP default, 
which is on-origin for odd grids and off-origin for even grids. 
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2.2.5 Geometry Optimisation 

As mentioned earlier, the geometries of the cells have only been defined approx

imately. For the two structures, we must now find the geometry that minimises 

the total energy by performing a geometry optimisation calculation as described in 

1.7.3. We specify tolerances for iterative convergence of the geometry such that the 

atomic positions are converged to within"' 0.001A. For each total energy calculation 

we use an 800eV plane wave cut-off and the Monkhorst-Pack grids as determined in 

the convergence tests. We obtain geometric parameters for wurtzite of a = 3.18A, 

c = 5.18A, d = 3.03 x 10-4 , and for zinc blende of a = 4.50A. 

2.2.6 Energetics 

We now have the correct geometry forGaN (when using the LDA with these pseu

dopotentials). We also have the total energy of the system per unit cell. However, 

the total energy by itself is not a particularly important quantity. What is more 

important is difference in energy between the GaN structure and other possible con

figurations of the same atoms. For example, the cohesive energy of the structure 

is the energy that would be required to pull the structure apart into its individual 

atoms. This essentially tells us how well bound the structure is, and is related to the 

material's strength, and melting/boiling points. To calculate the cohesive energy 

we must calculate the energy of an isolated Ga atom and an isolated N atom, using 

spin-dependent DFT to describe the spin-polarised nature of these systems. This 

requires us to use a large enough unit cell that the atom does not interact with 

the atoms in the neighbouring cells. Again, this can be done by means of conver

gence tests. For the Ga atom, we use a 12A cubic cell, which gives an energy of 

-1701.05e V, and for the N atom we use a 7 A cubic cell, which gives and energy of 

-265.17eV. 

Now that we have 'estabHslied the energy of isolated Ga and N atoms, we can calcu

late the cohesive energy of GaN. We will define this as the cohesive energy per GaN 

dimer: 

EB = EaaN- Eaa-atom- EN-atom, (2.3) 
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The energy per dimer of the wurtzite structure is -1976.67eV, while the energy per 

dimer of the zinc blende structure is -1976.65eV. This gives a cohesive energy of 

10.46eV for the wurtzite structure and 10.43eV for the zinc blende structure. The 

experimental value may be in a certain amount of doubt, as we will discuss in a 

moment in the context of the formation energy, but the tabulated value for the 

wurtzite structure is 8.96eV [59]. This is much less than the value we have just 

calculated with the LDA. The LDA is therefore overbinding the structure, which is 

a systematic failing of this functional [60]. 

Another important energetic quantity is the formation energy. This is the change in 

energy when the structure is formed from its constituent elements in their natural 

state. That is metallic gallium (a-Ga), and nitrogen gas {N2 ). The formation energy 

per GaN dimer is given by 

{2.4) 

Again, to calculate this quantity, we must perform separate calculations on a-Ga 

and N2 , including convergence tests fork-points and cell size. We obtain an energy 

of -1704.52eV per atom of a-Ga and an energy of -540.90eV for the N2 molecule. 

This gives a formation energy for wurtzite GaN of -1.70eV and for zinc blende GaN 

of -1.68eV. 

While quoted experimental values vary, commonly quoted values are generally in the 

region of -1.2eV [61]. This appears to suggest that the LDA is overestimating the 

formation energy. However, more recent experiments have put the value at around 

-1.6eV [62]. Much LDA work in the literature employs pseudopotentials that give 

values in the region of -1.2eV, despite the fact that all-electron calculations have 

shown that the correct LDA value is actually around -1.56eV [63]. It is likely that 

pseudopotentials were selected in order to reproduce what were believed to be the 

correct experimental results, rather than all-electron results. Our calculated value 

of-i.toeV~is'much..doser-to all-eiectnm results, and. also to~e~~nt-~xperim-~nts [62], 

than that used in in most other work. 
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2.2. 7 Band Structure Calculations 

We now calculate the Kohn-Sham band structure with the LDA, as described in 

1. 7.3, for both the wurtzite and zinc blende GaN structures. The shape of the first 

Brillouin zone for these structures is shown in Figures 2. 7 and 2.8. The full band 

structure is a 3-dimensional function, which is difficult to represent graphically (and 

expensive to calculate in high resolution). The usual way to present band structures 

is as a function of a !-dimensional path through reciprocal space made up of straight 

lines connecting points of high symmetry. These points are marked on Figures 2. 7 

and 2.8. 

The calculated band structures are shown in Figures 2.9 and 2.10. The important 

features of the band structures can be summarised by tabulating the eigenvalues of 

the highest valence and lowest conduction band eigenvalues at the symmetry points, 

relative to the valence band maximum; these are shown in Tables 2.1 and 2.2. 

According to these LDA calculations, wurtzite GaN has a direct band gap of 1.86eV, 

and zinc blende GaN has a slightly lower direct band gap of 1.70eV. These values 

are significantly lower than the experimentally measured value for wurtzite GaN of 

rv 3.5eV [54] (The gap for zinc blende GaN has not been reliably measured but is 

believed to be in the order of a few tenths of an e V lower than that of the wurtzite 

structure at around 3.3eV [64]). This is an example of the "band gap problem", 

which is a general property of the LDA functional and can only be rectified in a 

credible manner by using more advanced exchange-correlation functionals. This 

issue is dealt with in the remaining chapters of this work. 

2.3 Theory of Surface Energetics 

In performing first principles calculations on GaN surfaces, our aim is to com-
. •• • • ,, " -- c . ..; ·- . ..., - • '_, -·~ .. -

pare surfaces with different reconstructions, to see which is energetically the most 

favourable in different conditions. A surface reconstruction is any atomic configu

ration of the surface that is different to what we would get if we were to imagine 
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• M 

Figure 2.7: Brillouin zone for hexagonal lattices, such as the wurtzite structure, 
with the points of high symmetry labelled. 
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Figure 2.8: Brillouin zone for face centred cubic lattices, such as the zinc blende 
structure, with the points of high symmetry labelled. 
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Figure 2.9: Kohn-Sham band structure of wurtzite GaN calculated using the LDA. 
Black lines indicate occupied valence bands, while red lines indicate unoccupied 
conduction bands. 

Symmetry Point V.B. Max. I eV C.B. Min. I eV 

A -0.61 4.10 

L -2.11 4.26 

M -1.12 4.96 

r 0.00 1.86 

H -1.70 6.31 

K -2.95 5.04 

Table 2.1: Eigenvalues of the highest valence band and lowest conduction band at the 
symmetry points in wurtzite GaN, calculated with the LDA. 
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Figure 2.10: Kohn-Sham band structure of zinc blende GaN calculated using the 
LDA. Black lines indicate occupied valence bands, while red lines indicate unoccu
pied conduction bands. 

Symmetry Point V.B. Max. I eV C.B. Min. I e V 

L -1.02 4.49 

r 0.00 1.70 

X -2.99 3.28 

U,K -2.42 4.98 

Table 2.2: Eigenvalues of the highest valence band and lowest conduction band at the 
symmetry points in zinc blende GaN, calculated with the LDA. 
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simply cleaving the bulk material. In experimental growth situations, various pa

rameters can be adjusted, each of which can change the energetic favourability of 

different surfaces. This means that the phase diagram representing the particular 

reconstruction that is energetically favourable in a particular set of conditions is, in 

principle, a multi-dimensional object. However, Van de Walle and Neugebauer have 

shown [52) that the temperature and the various partial pressures can effectively be 

collapsed onto a smaller set of chemical potentials, the definition of which we discuss 

in a moment. 

In most first principles calculations, we are effectively studying a system at zero 

temperature because we are not considering the kinetic energy of the atoms. For 

systems with a fixed number of atoms of each species, therefore, we obtain the 

atomic configuration simply by minimising the total energy. However, if we want to 

compare systems with different numbers of atoms, we must instead define some free 

energy, F, that is to be minimised. This free energy includes terms related to the 

number of atoms of each species, i.e. 

F = Eror- L J-txnx, 
X 

(2.5) 

where nx is the number of atoms in the system of species X, and J-tx is the chemical 

potential for atoms of that species. The chemical potential is related to external 

environmental conditions, such as the temperature, pressure, and concentration of 

atomic or molecular species containing X. It cannot be determined from first prin

ciples calculations - all we can obtain from first principles calculations is the free 

energy of a system as a function of the chemical potential. However, we can use phys

ical arguments to determine the range of chemical potential over which a surface 

could ever be stable. 

For example, consider the case of a GaN surface that is in thermal equilibrium with 

its environment. Thermal equilibrium requires that the addition of a complete extra 

layer of GaN to this surface cannot change its free energy - if it did then- the surface 

would either grow or retract. This restriction can be expressed mathematically as 

EaaN - /-lGa - /-lN = 0, (2.6) 
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1.e. for a GaN surface in thermal equilibrium with its environment, the sum of the 

Ga and N chemical potentials must equal the total energy per GaN dimer in the 

bulk material. This means, if there are no other atomic species present, the number 

of free environmental parameters affecting the surface can be reduced from 2 to 1, 

as J-LN is directly related to J-taa, and vice versa, i.e. 

/-LN = EaaN - /-LGa· (2.7) 

We will choose to use /-LGa as our variable parameter. There is a limited range of 

values that J-taa can actually take- outside of this range the system would become 

unstable as it would be energetically favourable to form either bulk a-Ga or N2 

molecules. In order for these substances not to form we must have 

(2.8) 

and 

Eo:-Ga - /-LGa > 0. (2.9) 

Using the relationship between J-taa and J-LN, these can be written as 

(2.10) 

which defines the allowed range of values for /-LGa· Note that the size of this range is 

equal to the formation energy of GaN, so the value of this quantity is of significance 

here. 

2.4 GaN Surface Calculations 

2.4.1 Surface Supercells 

In order to perform calculations on surfaces within a plane wave periodic framework, 

we need~ to 'define a surface supercell. This-is because a surface, altho~gh it may be 

periodic in the horizontal direction, is not periodic in the vertical. We have to define 

a periodic system that emulates the non-periodic system that we wish to study. This 

is done by using a "slab" of material that is thick enough that its surface behaves 
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in the same way as the surface of an infinitely thick slab. The slab is separated 

from its periodic repetitions by a region of vacuum. This vacuum region must again 

be sufficiently large that the surface behaves in the same way as it would with an 

infinitely large vacuum region. This is illustrated in Figure 2.11 

The calculations on this work are on the (0001) surface (labelled according to the 

crystallographic index system [65]) as this is the surface most commonly used for 

growth. The clean surface is created by cleaving the crystal along a plane lying 

perpendicular to the c-direction, passing through the vertically oriented Ga-N bonds. 

In creating a surface in a periodic cell, we inevitably create a second surface on 

the other side of the slab. We usually want this second surface to have as little 

interaction as possible with the "active" surface that we wish to study. To this 

end the dangling bonds on this second surface are usually "passivated" by attaching 

hydrogen atoms to them. Also, it is common practice to fix the positions of atoms to 

their positions in bulk material a certain depth into the surface. This is to prevent 

relaxation of atoms near to the other surface, which could have an undesired affect 

on the surface under study, and also speeds up the geometry optimisation process 

by having fewer degrees of freedom. 

In order to determine the appropriate slab thickness and vacuum region size it is 

necessary to perform convergence tests of the energy with respect to these parame

ters. In order to obtain energy differences between different surface reconstructions 

that are converged with an accuracy of"' 0.01eV per atom, we use a slab thickness 

of 6 GaN bilayers, a vacuum region of"' 14A (for the clean surface), and we fix 

atoms lying below the highest two bilayers of material. 

Surface reconstructions may alter the periodicity of the surface. A clean, unrelaxed, 

surface, i.e. one in which the atoms are in the same positions as they would be in 

the bulk material, is defined to have 1 x 1 periodicity. Reconstructions may increase 

the size of the primitive unit~cell that can be used to define the periodk surface 

structure. The shape of the new unit cell can usually be defined in terms of the 

1 x 1 cell. For example, most of the reconstructions we will consider have 2 x 2 

periodicity- i.e. a 2 x 2 repetition of the shape of the 1 x 1 cell. 
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Figure 2.11: 2x2 Surface supercell for a clean wurtzite GaN (0001) surface. 
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2.4.2 Reconstructions in the Presence of Hydrogen 

Following the work of reference [52], we consider eight different reconstructions which 

may occur in the presence of hydrogen, as shown in Figure 2.12. Seven of these have 

2 x 2 periodicity, while one has v'3 x v'3 periodicity. Most of these reconstructions 

involve the additions of combinations of adatoms and chemical groups onto the clean 

surface. The v'3 x v'3 reconstruction involves the addition of a bilayer of Ga, which 

represents the laterally contracted bilayer model [50], that is believed to describe 

the surface under Ga-rich conditions. 

2.4.3 Results: Phase Diagram 

We have performed geometry optimisation on all of the reconstructions under con

sideration, obtaining the total energy of the relaxed structure in each case. Using 

Equation (2.5}, we obtain the phase diagram shown in Figure 2.13. 

This phase diagram is 2-dimensional, reflecting the fact that we effectively have 

two free parameters, which are the chemical potentials, J-LH and J.lGa· The higher 

the chemical potential for a given element, the more "rich" the environment is said 

to be in that element. Hence, as we move up towards the top of the diagram, the 

environment is becoming more H-rich, while as we move downward, the environment 

is becoming H-poor. Likewise, the environment becomes more Ga-rich as we move 

towards the right of the diagram, and Ga-poor as we move to the left. Because 

of the relationship between J-LN and J-taa, Ga-rich conditions correspond to N-poor 

conditions and vice versa, hence the left of the diagram represents N-rich conditions, 

while the right represents N-poor conditions. 

This explains the locations various reconstructions in the phase diagram. The top 

half is dominated by the NH3 + 3NH2 reconstruction; this is the reconstruction that 

contains the largest amount of hydrogen, corresponding to the H-rich conditions 

in this region. As we move downward towards more H-poor conditions, the recon

structions tend to contain fewer H atoms, with the reconstructions that contain no 

hydrogen at all occurring at the bottom. In a similar way, as we move left towards 



CHAPTER 2. GaN CALCULATIONS WITH THE LDA 77 

NHa + 3Ga-H 
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Figure 2.12: Reconstructions of the GaN (0001) surface in the presence of H. Ga 
atoms are represented by large grey spheres, N atoms by green spheres, and H atoms 
by small white spheres. 
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Figure 2.13: Surface phase diagram for reconstructions of the (0001) surface of 
wurtzite GaN in the presence of hydrogen, calculated using the LDA, as a function 
of the Ga and H chemical potentials. 
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more N-rich conditions we tend to encounter reconstructions with larger numbers 

of N-atoms, while as we move right towards Ga-rich conditions we encounter recon

structions with larger numbers of Ga atoms. 

The boundaries of the diagram are determined by the allowed ranges of chemical 

potentials, as discussed earlier. At left-hand boundary, the conditions become soN

rich that N2 molecules would spontaneously form, while at the right hand boundary 

the conditions become so Ga-rich that bulk a-Ga would form. The beginnings of 

this can be seen in the presence of the Ga-bilayer reconstruction, which is like a 

thin layer of metallic Ga. At the upper boundary, conditions become so H-rich 

that H2 molecules would spontaneously form, however there is no lower limit to the 

H chemical potential (the lower boundary of the diagram is set arbitrarily). The 

bottom of the diagram essentially corresponds to conditions in which no hydrogen 

is present. 

In terms of comparison with experiment, it is believed [52] that the transition be

tween the Nad-H + Ga-H and 3Ga-H reconstructions corresponds to a transition 

observed in growth experiments [66]. This is an example of how the combination of 

experiment and first principles calculations have been able to establish the details 

of atomic structures of different surface reconstructions during growth. 

2.5 Summary and Conclusions 

In this chapter we have described some of the background motivation for studying 

GaN, and carried out a series of calculations on this material. We established the 

appropriate basis set parameters for such calculations via a series of convergence 

tests, and calculated the LDA geometry of both the wurtzite and zinc blende GaN 

structures. The full LDA band structure was then calculated and compared to 

_().yailable_exp~rimental data .. Rwas found thaLthe LDA. severely underestimates

the band gap; this is a general property of the LDA, and so in order to obtain 

improved results from Kohn-Sham DFT we must consider using more advanced 

functionals. 
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As well as the bulk geometry and band structure, we also carried out calculations 

of surface reconstructions in the presence of hydrogen. This allowed us to produce 

a phase diagram for the different reconstructions as a function of the chemical po

tentials. This showed how the reconstructions may change depending on growth 

conditions, which may ultimately affect how the crystal grows in terms of the qual

ity of the material produced. The phase diagram agrees closely with the work of 

other groups [52], however the range of the chemical potential is much wider in our 

results due to the larger energy of formation of GaN that we calculate. Our value for 

the formation energy seems to agree more closely with both all-electron calculations 

[63] and recent experiments [62]. 

In general, the LDA performs well in terms of geometric properties, but less well in 

terms of binding energies, and band structures. While the successes of the LDA can 

largely be ascribed to the fact that it satisfies the sum rule [67], its failures lie in the 

fact that the self-interaction correction in the Hartree energy is not fully corrected 

and that it does not describe the discontinuity in the exchange-correlation potential. 

These issues are discussed in more detail later in Section 5.3. 

The inability of the LDA to predict band structures correctly provides the main mo

tivation for the remainder of this work, which is concerned with the implementation 

and application of advanced functionals beyond the LDA. 



Chapter 3 

Theory of Non-Local Functionals 

All the calculations we have performed so far have used the LDA to treat exchange 

and correlation. While the LDA was found to perform well in the calculation of geo

metric properties, and certain energetic properties, it failed to give an adequate de

scription of the band structure, underestimating the band gap of GaN quite severely. 

In general, the LDA is known to systematically underestimate band-gaps, underes

timate bond-lengths and lattice constants, and overestimate binding energies. Use 

of GGAs, while improving results in certain cases, does not perform much better 

than the LDA overall [26]. Band gaps are still systematically underestimated, while 

bond lengths and lattice constants are now overestimated, and binding energies un

derestimated. The reasons for these problems stem mostly from the local nature 

of the functionals, as will be discussed later in Section 5.3, and the only way to 

fix them, within a DFT approach, is therefore to use more advanced functionals 

that incorporate non-local information. In this chapter we describe a number of 

such non-local exchange-correlation functionals, paying particular attention to the 

three functionals we have implemented computationally (see Chapter 4), namely 

screened exchange (sX-LDA), Hartree-Fock (HF), and exact exchange (EXX), but 

also descriJJing :briefly_ some ,othl:)rfun~tionals"_thJtt ~~-also growing in popularity. 

81 
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3.1 sX-LDA and HF 

Screened exchange (sX-LDA) and Hartree-Fock (HF) are closely related function

als (68, 69, 70, 71]. HF was originally developed before DFT [72, 16], and is in 

widespread use in the organic chemistry community. In the context of this work, it 

can be considered to be an implicit density functional within a generalised Kahn

Sham (GKS) framework. Both HF and sX-LDA involve a generalisation of the basic 

Kohn-Sham formalism so that the exchange-correlation potential is a non-local op

erator. This means that the GKS orbitals are no longer eigenstates of a Hamiltonian 

with a purely local potential. 

The standard Kohn-Sham orbitals are the lowest eigenvalue solutions of an equation 

of the form, 

(3.1) 

where the local potential, J.L1oc(r), is defined such that the orbitals generate the 

correct ground state density, p(r). The GKS orbitals are the lowest eigenvalue 

solutions of an equation of the form 

where VNL(r, r') is a non-local integral operator, and, importantly is a direct func

tional of the orbitals. The local potential, J.Lioc(r), is again defined such that the 

orbitals generate the correct ground state density, p(r). How VNL(r, r') is calcu

lated from the orbitals depends on whether we are using HF or sX-LDA, as we shall 

see in a moment. 

3.1.1 Definition of the Energy and Potential 

We begin with the original definition of the exchange energy in terms of the Kahn

Sham orbitals, i.e. 

Vx = _! L I I drdr'4>;k(r)4>ik(r')4>j~(r')</>jq(r)' 
2 ikjq lr- r I 

(3.3) 

where j and q label bands and k-points in the same way that i and k do. In HF, this 

is used to calculate the exchange energy, with the orbitals now being GKS orbitals 
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rather than KS orbitals. There is no treatment of correlation within standard HF 

so the total energy is given by 

E!J%T = Ts + Vn + Vext +VI-I+ Vx, (3.4) 

where Ts is now calculated from the GKS orbitals. 

While HF essentially treats exchange exactly, but does not treat correlation at all, 

sX-LDA attempts to incorporate some of the effects of correlation into Equation 

(3.3). One of the effects of correlation is effectively to screen the effect of exchange 

at long range. This can be achieved in a simple manner by multiplying the integrand 

of the exchange energy by a factor that decays exponentially with increasing electron

electron separation [69], i.e. 

E NL = _! ""II d d ,¢ik(r)¢ik(r')¢jq(r')¢jq(r) -k.lr-r'l 
xc 2 L....- r r I - 'I e . ikjq r r 

(3.5) 

Where k8 is the reciprocal screening length. The details of how the value k8 can be 

determined from first principles will be discussed later in 3.1.3. 

In sX-LDA, there is also a local contribution to the exchange-correlation energy, in 

the spirit of the LDA, where the local exchange-correlation energy per electron is 

now given by 

E~c(r) = E~~G (p(r))- c:~:JEG (p(r)), (3.6) 

where c:jff§EG(p) is the non-local exchange-correlation energy per electron evaluated 

in an homogeneous electron gas of density p. The calculation of this function will 

be discussed later. The total energy functional for screened exchange is: 

E SX-LDA T l/ l/ l/ ENL ELOC 
TOT = S + Y H + Y ext + Y I -I + XC + XC · (3.7) 

HF can almost be viewed as a special case of sX-LDA, i.e. the case of ks = 0, except 

that we don't include correlation. For this reason we will focus most of this section 

onthescreened·exchange functional, as-everythingwe·say·about·sX.:IJDAwill apply 

equally to HF. 

Now, as we have mentioned, the GKS orbitals are eigenstates of a Hamiltonian 

for which there is a non-local integral operator component in the potential. This 
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potential operator is defined such that the sum of its expectation values yields the 

non-local exchange-correlation energy, Ef~, i.e. 

E:~ - L(ikiV.fJiik) 
ik 

~I dr¢;k(r) I dr'V.fJ(r, r')¢ik(r'). (3.8) 

Comparing this with Equation (3.5) we see that the potential is given by 

VNL( ') __ !'"' </>jq(r)</>jq(r') -kslr-r'l 
xc r, r - 2 7': lr- r'l e . (3.9) 

3.1.2 Minimisation within the GKS Framework 

Minimisation of the total energy in HF or sX-LDA calculations proceeds in much 

the same way as in the standard Kohn-Sham framework. A self-consistent cycle can 

still be defined, the only difference being that part of the potential now depends 

directly on the orbitals, rather than on the density, i.e. we are looking for solutions 

of 

- ~ \72</>i(r) + Vext(r)¢i(r) + vH[p](r)¢i(r) +I dr'V.fJ(r, r')¢i(r') 

+J.ti~f[p](r)¢i(r) = ci</>i(r), (3.10) 

which are the GKS equations. There is a slight complication here in that the non

local potential, V.fJ(r, r'), depends on the orbitals, but it is not clear whether these 

should remain as the orbitals prior to solution of (3.10) within one cycle, or whether 

a solution should be sought in which V.fJ(r, r') is consistent with the final set of 

orbitals in that cycle. Of course, we will still end up with the same self-consistent 

solution either way, but which way we choose may well affect how many cycles are 

needed before we reach self-consistency. This issue will be discussed further in the 

context of the reciprocal space representation of these functionals in 3.1.4 . 

. =-·-. 

3.1.3 Screening Constants and the HEG 

The screening constant, k8 , determines the effective range of the non-local exchange 

interaction, and can, in principle, be set anywhere in the range [0, oo). A value of 
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0 is equivalent to using HF with LDA treatment of correlation, while a value of 

infinity is equivalent to using the LDA alone. Ideally we would like to establish a 

value of ks to use from first principles, and this can be done by using its relation to 

the density in the Thomas-Fermi model [73, 74, 75], i.e. 

ks = 2/¥-
2 2 1 

y'?r(3rr p)6. (3.11) 

For an efficient implementation, the value of ks must be constant for a given calcu

lation, although it may be allowed to depend on, for example, the average density 

of the system under study. Alternatively, we can set a universal value for ks by 

relating it to the "natural" density of the homogeneous electron gas, i.e. the density 

that minimises the total energy per electron. Using Perdew's parameterisation of 

the correlation energy [22], this gives a numerical value of ks of about 0.764Bohr-1 . 

The homogeneous electron gas is also used to parameterise the local exchange

correlation energy per electron, EJc~:f(p). This is given by 

(3.12) 

the total exchange-correlation energy per electron, E~~0(p), is the same as in the 

LDA. The non-local part, E~~,HEG(p), is the non-local exchange-correlation energy 

per electron we would have if we were to apply Equation (3.5) to the HEG. This 

related to the pure exchange energy per electron, vJ!E0 (p), by 

(3.13) 

where "f(p) = k8 /kF(p), and F('Y) is given by [76] 

F('Y)=1-~"(arctan(~)- ~
2 

[1- (:
2 

+3)ln(1+ ~)]· (3.14) 

3.1.4 HF and sX-LDA in Reciprocal Space 

As with the standard Kohn-Sham minimisation procedure, the GKS procedure can 

be performed in reciprocal space, leading to gains in computational efficiency. The 
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GKS equations in reciprocal space read 

(3.15) 

where Vkjlc(G, G') is the reciprocal space representation of the non-local potential 

operator. This can be obtained from the real space representation as follows: 

~I dre-i(k+G)·r I dr'Vfc§'(r, r')ei(k+G')·r' 

1 .,/,.* ( ') -k.lr-r'l 
--'"'ldre-i(k+G)·rr/J· (r)ldr''Pjq r e ei(k+G')·r'. 
20~ Jq lr-r'l 

(3.16) 

Taking the second integral, and substituting the reciprocal space representation of 

r/Jjq(r'), we have 

"'* (r') -k.lr-r' I 

I d , 'Pjq e i(k+G')·r' _ 
r I 'I e -r-r 

1 -k.lr-r'l -I d I""' ~ (G") -i(q+G")·r' e i(k+G')·r' 
tn r ~ c3q e I 'I e 

VH G" r-r 

1 -k.lr-r'l 
- ""'c~ ( G") I dr' e ei(k-q+G' -G")·r' 
vTI ~ Jq lr - r'l 

_ 47r ""' cjq(G") i(k-q+G'-G")·r (3.17) 
- vTI~Ik-q+G'-G"I2 +k~e ' 

I 
e-klrl+iK·r _ 47r 

dr lrl = IKI2 + k2" 
(3.18) 
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Putting (3.17) back into Equation (3.16), we have 

vk'~lc(G, G') = - ~: L I dre-i(k+G}·r</>jq(r) 
~£2 JQ 

X '"' cjq ( G") ei(k-q+G' -G")·r 
~ lk - q + G' - G"l2 + k~ 

xI dr</>jq(r)e-i(q+G-G'+G"). 
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(3.19) 

Recognising the integral here as being essentially the Fourier transform of ¢1q(r), 

we have 

VkVc(G, G') 
_ 21r '"''"' cjq(G")c1q(G- G' + G") 

0 ~ L..... lk- q + G'- G"l2 + k2 
JQ G" s 

which is the standard expression for v&Lc(G, G') in reciprocal space. 

(3.20) 

Since the non-local part of the exchange-correlation energy, Ef~, is the expectation 

value of this operator, we can obtain an expression for Ef~ in reciprocal space as 

follows: 

E~~ 2::(ikiV%Jiik) 
ik 

L L c;k(G) 2":V:'fc(G, G')Cik(G') 
ik G G' 

-
21r '"' '"' cik(G)Cik(G')cjq(G' + G")cjq(G + G") 

L..... L..... (3.21) n ikjq aa'G" lq- k + G"l2 + k~ ' 

which js. the. standard, expression. for Ef~- in reciprocaL space. __ 

Solution of the GKS equations can be carried out in a similar way to the solution of 

the standard Kohn-Sham equations, i.e. by either diagonalising the matrix directly, 

or by minimising the expectation values with respect to the orbital coefficients. 
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If we were to diagonalise the matrix, then we would have to construct the entire 

matrix, with each element including a component from Vk'l-~(G, G'). So, effectively 

we would be calculating the entire non-local exchange-correlation operator. As can 

be seen, if we were to calculate this object following Equation (3.20), we would 

require a triple-loop over G-vectors for each band and k-point in the system. Hence 

we would expect the calculation to scale as N;NbNk, which would put severe limits 

on the size of system we could reasonably expect to deal with. Fortunately there does 

exist a more efficient formulation for solving the GKS equations, and calculating the 

energy, as we will now describe. 

3.1.5 Efficient Procedure for HF and sX-LDA 

The following method is based on the work of Chawla and Voth [71], however we 

have extended it to include multiple k-points, and screening. We start with the 

standard expression for E~~ in reciprocal space, as given by Equation (3.21), and 

note that it can be re-written in the following form: 

NL __ 27r """""" EG c;k(G)cjq(G + G") EG' Cik(G')cjq(G' + G") 
Exc- n L..... L..... I k + G"l2 + k2 . ikjq G" q- s 

(3.22) 

We then define the correlation function, Cjqik(G), as 

Cjqik(G) = L c;k(G')cjq(G + G'), (3.23) 
G' 

which allows us to write Equation (3.22) as 

(3.24) 

Now, if we take Equation (3.23) and substitute in the real space representations of 

c;k(G') and Cjq(G + G'), we have 
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Cjqik(G) 

{3.25) 

which is essentially just the Fourier transform of a product of orbitals, i.e. 

(3.26) 

This means that in order to evaluate Cjqik(G) for given a set of orbitals in reciprocal 

space, Cik(G), we inverse-Fourier transform the orbitals to real space, multiply each 

orbital with every other orbital, and Fourier-transform these products back to recip

rocal space according to Equation {3.26). We then insert the Cjqik(G) into Equation 

{3.24) to calculate E~h· By making use of fast Fourier transforms (FFTs), each 

Fourier transform scales as Nvlog(Nv), rather than N;, which increases the speed 

of the calculation significantly. The most expensive part of the process is Fourier 

transforming the products; and we need to perform Nf Nl Fourier transforms, so 

the overall scaling for the calculation of E~h is Nv log(Nv)NfNl. 

So we now have an efficient method of calculating the non-local exchange-correlation 

energy, but in order to solve the GKS equations, we also need either to evalu

ate and diagonalise the full Hamiltonian matrix, including the contribution from 

VfJ(G, G'), or minimise the eigenvalue sum by evaluating its gradient with respect 

to the orbital coefficients, including the contribution from E~h· If we wish to avoid 

the unfavourable scaling involved in calculating VfJ(G, G') we must look to the 

latter approach. We will start by considering the gradient in real space, i.e. 

fJ:j~; -~ o~;~(r) •• ~.if:. ~:.~:.~:c~·); ..• ,f~~w;;l¢;~(r') e -•¥ -•"I 

-" ,~,.. { ) jd ,¢ik(r')¢jq{r') -k.lr-r'l 
~ 'PJq r r I _ 'I e . jq r r 

{3.27) 
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Taking the integral, and substituting the reciprocal space representations of cPik(r') 

and cPjq(r'), we have 

I d 
,cPik(r')cPjq(r') -k.lr-r'l _ 

r I 'I e -r-r 

_!_I dr'""' C· (G)ei(k+G)·r' ""'c~ (G')e-i(q+G')·r' e-k.lr-r'l 
n L... 1k L... JQ -~---,-~ 
~' G G' r r 

1 

1 
-k.jr-r'l 

- ""' ,.., (G)c~ (G') dr'e ei(k-q+G-G')·r' 
n L... "Jk JQ I - 'I , 
~'GG' r r 

which, using the identity of Equation (3.18), becomes 

47r _1 [ c;qik(G) ] ( ) 
yTIFT lq- k + Gl2 + k~ = f;qik r ' 

(3.28) 

which defines a set of real space functions, f;qik(r). Putting this back into Equation 

(3.27), we have 
6ENL 

6cP'! (c) = - ~ cPiq(r)f;qik(r). 
1k r 1q 

(3.29) 

Finally, we transform this into reciprocal space to obtain 

(3.30) 

This means that in order to calculate the gradient of E~~ with respect to the orbital 

coefficients in reciprocal space, we basically have to inverse-Fourier transform each 

Cjqik(G), multiply by an orbital in real space, and then Fourier-transform back. 

The most expensive part of this procedure is the inverse-Fourier transform, which 

----------
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must be done Nl N'f times. Hence, as was the case in the calculation of E~b, the 

calculation of its gradient also scales as Np log(Np)N~ Nf. 

We therefore see that by formulating the theory in this way it should be possible 

to implement these functionals in a much more efficient manner than we might first 

suppose. 

3.2 Exact Exchange 

We will now describe the exact exchange (EXX) functional [77, 78, 79]. A common 

misconception amongst non-specialists is that HF and EXX are the same thing. It is 

true, of course, that both functionals treat exchange "exactly" in the sense that the 

exchange energy is given in terms of the orbitals by Equation (3.3). The difference 

arises from the fact the orbitals themselves are different - in EXX the orbitals are 

eigenstates of a Hamiltonian with a local potential, while in HF they are eigenstates 

of a Hamiltonian with a non-local potential. This leads to very different results, 

notably in the calculation of band structures, where, as we will see in Chapter 4, HF 

performs disastrously while EXX performs very well indeed [79]. EXX also includes 

treatment of correlation in the style of the LDA, which is not the case in standard 

HF. Although LDA correlation can be added to HF, this does not improve the band 

structure problem, the reason for which will become clear in the discussion in Section 

5.3. 

3.2.1 Definition of the Exact Exchange Potential 

EXX is essentially standard Kohn-Sham theory, in which the exchange energy is 

defined exactly in terms of the Kohn-Sham orbitals. In standard Kohn-Sham theory 

the exchange potential is defined as 

c5Vx 
J.Lx(r) = c5p(r)" (3.31) 

In the LDA or GGA, for example, Vx is a direct functional of the density, making 

evaluation of this functional derivative relatively straightforward. In EXX, however, 
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this is not the case. While Vx is still certainly a functional of the the density, 

because there is a one-to-one mapping between the density and the orbitals, there is 

no simple mathematical expression that gives the orbitals, and hence Vx, in terms 

of the density. 

The procedure for calculating the exact exchange potential is a rather recent devel

opment [77, 78, 79]. It is based on the chain rule for functional derivatives, which 

leads to the following expression for J.tx(r) in real space: 

8Vx "'I , I , ( 8Vx 8¢vk(r') ) 8J.tKs(r") 
J.tx(r) = 8p(r) = ~ dr dr 8¢vk(r') 8J.tKs(r") + c.c. 8p(r) · (3.32) 

Note that we are now using the subscript v to index the orbitals to distinguish them 

as valence band orbitals as opposed to conduction band orbitals, which we will also 

have to consider in a moment. There are three different functional derivatives on the 

right-hand side. The first one is quite straightforward, as it is simply the derivative 

of the exchange energy with respect to the orbitals, i.e. 

1 8 I I ¢* (r"')¢ (r"")¢* (r"")¢ (r"') "' d 111 d 1111 vk vk uq uq 
- 2 -8 -~.-(-:-r--:-') L.-t r r I r"' - r"" I 'l"vk vkuq 

(3.33) 

The second one is the functional derivative of each orbital with respect to the Kahn

Sham potential. This is essentially the first order response of the orbitals, 8¢vk(r'), 

caused by a small change in the potential 8J.tKs(r"), and hence we can employ first 

order perturbation theory. This involves an expansion of 8¢vk(r') in terms of the 

complete set of eigenstates of the Kohn-Sham Hamiltonian, i.e. 

1:-1. ( ') _ "' -~. ( ')J dr"¢~'k'(r")8J.tKs(r")¢vk(r") U<pvk r - L.-, 'l"n'k' r l 

n'k':;i:vk Cvk - Cn'k' 
(3.34) 

where the sum over n' includes all eigenstates of the Kohn-Sham Hamiltonian, i.e. 

b9th v~l~~c;e f!.J!li. C91l<!!lc1iJ~I!_Jl.al,l{i~. Ihe equ_~tiql,l_fgr A<Pvk(~~)/8J!.Ks(r") i~ _tpljs_ 

8¢vk(r') _ "' -~. ( ') ¢~'k' (r")¢vk(r") 
- L.-, 'l"n'k' r ' 

8j.tKs(r") n'k':;i:vk C"vk - Cn'k' 
(3.35) 
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Combining the first two functional derivatives, we have 

I dr' t5Vx t5c/Jvk(r') = 
t5c/Jvk(r') l5J-tKs(r") 

(3.36) 

-We now insert this into Equation (3.32). Due to the fact that we are summing over 

v and k, and adding the complex conjugate, the presence of the factor 1/ (cvk- En'k') 

means that all terms in which n', k' is a valence band cancel with the corresponding 

term in which these indices swapped with v and k. Hence the sum over n' can 

be replaced with a sum over conduction bands, c, only. Equation (3.32) therefore 

becomes 

(3.37) 

The third and final functional derivative is the change in the Kohn-Sham potential 

resulting from a small change in the density. It is best dealt with by considering its 

inverse, which is the linear response matrix for non-interacting particles, xo(r, r'), 

i.e. 
' £5p(r) 

Xo(r,r)=£5 (')" 
/-tKS r 

(3.38) 

Again using first order perturbation theory, this is given in terms of the Kohn-Sham 

orbitals by, 

( ') "c/J:k(r)c/Jck(r)t/>~k(r')c/Jvk(r') + c.c. 
xor,r =2L., . 

vck Evk- Cck 
(3.39) 

There is, however, a problem inverting xo in order to use Equation (3.37), because a 

rigid shift in J-tKs(r) has no effect on the orbitals and hence the density, meaning that 

the matrix is singular and therefore has no inverse. This problem can be avoided 

by transforming the equations into reciprocal space. We can then simply exclude 

the G = 0 components of J-tKs(G) from the theory, as these do not affect either the 
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energy or the density. Using the definition of the functions, Cjqik(G) in terms of 

the Fourier transform of a product of orbitals, given in Equation (3.26), we have 

xo(G, G') = ± L Cckvk(G)c;kvk(G'). 
!1 vck E'vk - E'ck 

(3.40) 

The matrix .Xo(G, G') is then defined as the sub-matrix of xo(G, G') that excludes 

the row and column corresponding to G = 0 and G' = 0 respectively. Now trans

forming Equation (3.37) we arrive at 

J.Lx(G) = 2 L: [E(G') + E*( -G')].X0
1(G, G'), (3.41) 

G';t:O 

where the function, E(G), is given by 

E(G) = _1_ L(vkjVfLick) Cvkck(G) 
Jn vck E'vk - E'ck 

(3.42) 

These equations allow us, in principle, to calculate the exact exchange potential for 

a given set of Kohn-Sham orbitals and eigenvalues. However it should be mentioned 

that this method assumes that the occupancy of each orbital is fixed with respect 

to small changes in the Kohn-Sham potential, which may cause problems when 

applying this method to metallic systems. 

3.2.2 The OEP Method 

Originally developed for the treatment of spherically symmetric systems [80, 81], the 

optimised effective potential (OEP) method involves performing Kohn-Sham DFT 

calculations with a strictly local exchange-correlation potential, when the exchange

correlation energy is defined explicitly in terms of the orbitals. Combining the OEP 

with Equation (3.3) for the exact exchange energy provides a practical means of 

implementing EXX. 

For the purposes of treating extended systems, the OEP method essentially involves 
"- '"''-~-o·. ··~"'~'""" .. '~':::'- .. -···· . • - ~·- -- -~.--.-. , .. -,..,.,_. ' ~. ""-'"'-.' ,.,..-.,-;.__,·.-'~-~-.--- ~""""...: .· 

minimising the total electronic energy with respect to the Kohn-Sham potential, 

J.LKs(r), rather than the Kohn-Sham orbitals as is done in standard calculations, or 

sX-LDA/HF calculations. As with these calculations, the effect of the procedure is 

still effectively to minimise the energy with respect to the density. 
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Explicit minimisation with respect to the potential can proceed either by employing 

an iterative self-consistent loop, or a standard numerical minimisation procedure 

such as conjugate gradients [38]. In the former case, all that is required beyond 

an LDA calculation is the calculation of the exchange potential in terms of the 

orbitals as discussed previously. In the latter case, however, we need to be able 

to calculate the gradient of the energy with respect to the potential, rather than 

the density, and this applies both to orbital based components (e.g. Vx, T8 ), and 

density based components (e.g. VH, Vc). For all quantities, Q, associated with any 

of the functionals used in this work, we are already able to calculate at least one of 

the derivatives 

or 
oQ 

op(r). 

For orbital derivatives, these can be converted into potential derivatives by analogy 

with the theory of exact exchange of the previous section. There, we saw that 

the derivative of the exchange energy with respect to the Kohn-Sham potential, 

oVx foi-LKs(r), can be expressed in reciprocal space as 

(3.43) 

The procedure used to arrive at this equation is applicable for any physical operator, 

Q, i.e. the derivative oQ/0/-LKs(r) can be expressed in reciprocal space as 

oQ = _1 L(vk!Qick) Cvkck(G). 
0/-LKs(G) V0 vck cvk- cck 

(3.44) 

So, if we have oQfoc;k(G), which is the conjugate of (vk!QI, then all the ingredients 

are in place to calculate oQ/0/-LKs(r), which is needed for an OEP minimisation. 

For density derivatives, we can apply the chain rule to obtain 

·'""(5Q~··· 

0/-LKs(r) 

I I 0Q ( I ) 
dr op(r1 ) Xo r , r . (3.45) 
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In reciprocal space we therefore have 

bQ bQ 1 

bJlKs(G) = ~ bp(G')Xo(G 'G), (3.46) 

so that now, if we have bQjbp(r), then we have all the ingredients in place to 

calculate bQ/bJlKs(r), which is also needed for an OEP minimisation. 

Together, the ability to evaluate bQ/bJlKs(r) given either bQjbcik(G) or bQjbp(r) 

mean that we can calculate the derivative with respect to the Kohn-Sham potential 

for any quantity in the Kohn-Sham framework. It is therefore possible to implement 

the OEP method using minimisation schemes such as conjugate gradients. 

3.3 Improving Brillouin Zone Integration 

The use of a relatively coarse grid for Brillouin zone sampling in practical calculations 

is justified when the integrands contributing towards the total energy are smoothly 

varying as a function of k. In the case of sX-LDA, HF, and EXX, however, we also 

have an integration over q that is not necessarily as smoothly varying as the other 

integrands involved in a standard calculation. In particular, when no screening 

is present, there is a singularity where q = k and G = 0. In general, the form 

1/lq- k + Gl2 is likely to require finer sampling in the region where lq- kl is small. 

We will now discuss two possible approaches to tackling this problem, the first of 

which was introduced by Gygi and Baldereschi [68], and is aimed at removing the 

singularity from the summation, and the second of which has been developed by 

ourselves, and involves integrating the 1/lq-k + Gl2 part on a much finer grid than 

the orbital-dependant part. 

3.3.1 The Divergence Correction 

The equation for the exchange energy in reciprocal space contains a singularity where 

q = k and G = 0, and the summand for the Brillouin zone sampling diverges as 

q --+ k when G = 0. This means that the assumption that the summand is smoothly 

varying, which we use to justify the coarse sampling in standard calculations, is no 
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longer valid. Without correction, this would force us to use much finer k-point 

sampling for HF and EXX calculations. 

However, a method exists of correcting this problem following the work of Gygi 

and Baldereschi [68], that involves accurate numerical integration of the divergent 

component of the integrand. We start with the equation for the exchange energy as 

used in efficient implementations, i.e. 

(3.47) 

If we were sampling the Brillouin zone with arbitrarily fine precision, because the 

wavefunction coefficients are smoothly varying with k, we would expect the sum

mand, in the case of G = 0, to tend towards 

L ICjkik(O) 12 

ij lq- kl2 

= L: l6ijl
2 

ij lq- kl2 

N(k) 
lq -kl2' 

as q ~ k (where N(k) is the number of orbitals on each k-point). This approximate 

non-dependence of Cjqik(O) on q in the region near q = k means that we can correct 

for the divergence by adding an extra term to our expression for the exchange energy 

so that we have 

(3.48) 

Where F(p) is a Brillouin zone periodic function that has the same divergence as 

the original equation for Ex, i.e. F(p) ~ 1/p2 asp~ 0, and is smoothly varying 

~~~Y i~~~ th;, ~i~gul~rii;:<, Th; ';ddi ti~~al t~~~, in"Eq~~tio~~ ( 3.48) 'i~<~s;e~ti~liy 'iKe 
difference between summing the divergent function on a discrete grid and integrating 

it. The term therefore tends to zero in the limit of an infinitely fine grid. By including 

the term in our expression for Vx we effectively remove the overall divergence of the 
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summations, which allows us to use a relatively coarse grid to sample the Brillouin 

zone. 

Other than having the properties just mentioned, the choice of form for F(p) is 

essentially arbitrary. One possible choice is 

F( ) =" S(IP- Gl) 
P ~ IP-GI2 ' 

where S is a sinusoidal envelope function of the following form: 

S(x)lxl~w 
1 7rX 

2(cos(-:;;) + 1), 

S(x)lxl>w = 0. 

(3.49) 

(3.50) 

The larger the width of this envelope, w, the smoother F is away from the singularity; 

w should therefore be set substantially larger than the typical separation of the k

points. The advantage of choosing this form for F(p) is that there is only a small 

number of non-zero terms in the sum over G-vectors. 

Because we have changed our expression for Ex, we should now consider the effect 

this has on quantities that are derived from Ex, specifically the functional derivative 

of the exchange energy with respect to the orbital coefficients, r5Ex/r5ci,k(G), as used 

in HF, and the local exchange potential, J.Lx(r), as used in EXX. Inspecting its form 

we see that, so long as the normalisation of the orbitals is preserved, the correction 

does not depend on the orbital coefficients. However there is still a contribution to 

r5Exfr5cik(G) that is proportional to the function ci,k(G), i.e. 
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27r 8 "' "' ( ') * ( ') * ( ") ( ") n i'" * (G)~ ~ Ci'k' G ci'k' G ci'k' G Ci'k' G 
~' ucik i'k' G'G" 

~ L: Cik(G')c;k(G')Cik(G) (L: F(q- k) - n I dqF(q- k)) 
G' q B.Z. 

= ~ cik(G) (L: F(q- k)- n I dqF(q- k)) . 
q B.Z. 

(3.51) 

This does not alter the search direction but does ensure that the inner product 

of 8Ex/8cik(G) and cik(G) yields the corrected eigenvalues. Because of this non

dependence of the correction on the orbitals, the ground state orbitals and density 

are not affected. Similarly, in EXX calculations, the correction alters the total 

energy but not the exchange potential. 

3.3.2 Parallelepiped Integration 

An alternative way of dealing with the 1/lq- k + Gl 2 factor in the equation for 

the exchange energy is to integrate this term over an extended region of space 

surrounding each q-point. Because each q-point can be considered to represent 

a parallelepiped of reciprocal space, the simplest way to do this is to replace the 

1/lq-k+GI2 with the average value of this term over the extent of the parallelepiped 

surrounding q, so that we have 

where 

Vx = -·27r.L L ICjqik(G)YT(k- q +G),~ 
n ikjq G 

1 I 1 
I(P) = v; PD dP IPI2' 

p PPD(P) 

(3.53) 
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and where VPPD is the volume of each parallelepiped in reciprocal space. In doing this 

we are effectively assuming that the orbital coefficients do not change significantly 

over the extent of one parallelepiped. This is reasonable so long as the k-point 

density is adequately converged. 

3.4 Other Non-Local Functionals 

A number of other non-local functionals also exist, both semi-empirical and non

empirical. Here we will briefly describe some other non-empirical functionals that 

are growing in use. This is by no means an exhaustive list, but is intended to give a 

flavour of some alternative directions that are being pursued other than the orbital 

functional approach that we focus on in this work. 

3.4.1 WDA 

The weighted density approximation (WDA) [82, 83, 84] is an exchange-correlation 

functional that involves estimating the shape of the coupling constant averaged 

exchange-correlation hole, hxc(rlr'). It is based on the assumption that the hole 

surrounding an electron at r' can be written as the product of the density at rand 

some radial function, aw DA, centred on r'. In its most general form, the hole is 

given by 

hxc(rlr') = p(r)GWDA (lr- r'l, ,O(r')), (3.54) 

where ,O(r') is the "weighted density", and is defined such that the hole integrates to 

exactly -1. With the hole shape determined for every r, r', the exchange correlation 

energy is obtained via Equation (1.96). 

For reasons of efficiency, it is convenient to require aw DA to have the general form 

(3.55) 

which means that it essentially always has the same basic shape, determined by the 

pair correlation function, f, just scaled either horizontally or vertically according to 



CHAPTER 3. THEORY OF NON-LOCAL FUNCTIONALS 101 

the weighted density at r. The parameters a and f3 are determined such so that the 

sum rule is satisfied and the exact exchange-correlation energy density is obtained 

for a homogeneous electron gas. 

It has been found that the WDA can give good structural parameters and band 

gaps [26, 85], but that the band gaps obtained depend strongly on the choice of 

pair correlation function. There is no obvious way of defining a unique form for f 

from first principles, although it can be required to obey known physical limits [26], 

and it is currently unclear whether the good band gaps obtained are a result of the 

inherent quality of the WDA method itself, or simply a result of choosing a pair 

correlation functional that is not physically justified. It should of course be noted 

that the exact Kohn-Sham band gap is not necessarily close to the experimental 

one, and so a failure of a WDA to replicate the experimental band gap does not 

necessarily mean that the functional itself is inaccurate. 

3.4.2 Meta-GGA and Hyper-GGA 

The "meta-GGA" (MGGA) [86, 87, 88] it is essentially an extension of the GGA in 

which the non-interacting kinetic energy density is used as input to the functional 

as well as the electron density and its gradient. The spin-independent form of this 

functional is thus 

EfgcA[p] = J drp(r)cxc(p(r), Y' p(r), rs(r)), (3.56) 

where r 8 (r) is the non-interacting kinetic energy density defined, at least for these 

purposes1 , as 

(3.57) 

Implementation of such a functional is likely to be expensive however, as calculation 

of the exchange-correlation potential will require the evaluation of the functional 

derivative, 
c5rs(r') 
c5p(r) ' 

1This is not the only way to define the kinetic energy density - for a good discussion of this 

issue see [89]. 
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which would require methods related to those used in EXX. 

Perdew et. al. also propose a "hyper-GGA" in which the exact exchange energy 

density is also included as an ingredient to the functional. This is intended to provide 

an accurate treatment of correlation, beyond the LDA or GGA, when using EXX 

to treat exchange. 

3.5 Summary 

In summary, in this chapter we have described a number of exchange-correlation 

functionals that go beyond either the LDA or GGAs in the sense that they incor

porate non-local information. We described the functionals sX-LDA and HF, and 

how they can be cast in an manner that will facilitate efficient computational im

plementation. We also described the EXX functional, and the OEP procedure that 

is required in order to perform self-consistent calculations with EXX. In the next 

chapter, we describe how these functionals have been implemented computationally. 



Chapter 4 

Computational Implementation of 

HF, sX-LDA, and EXX 

In this chapter we describe our computational implementation of HF, sX-LDA, and 

EXX within the CASTEP code. We start with a brief introduction explaining the 

motivation for carrying out this implementation, and an overview of its functional

ity. We then describe the implementation details of the new functionality required 

for calculations using non-local functionals. We describe how both symmetry and 

parallelisation are used, and how we deal with spin-dependent DFT, and calcula

tions involving fractional band occupancies. We also present results of performance 

tests assessing the efficiency of the code, and its scaling properties with respect to 

basis-size, number of k-points, and number of parallel processors. 

4.1 Introduction 

As with all practical electronic structure methods, the non-local exchange correlation 

functionals described in the previous chapter must be implemented in a computer 

code'b,efore th~y cail'ietu~lly.be-~~~d. '\;\fhil~ ~th~r ,i.mpl~~~~t~ti~~~ d~· ~lready -~~ist, 

implementation within an advanced code such as CASTEP has several advantages, 

including 

103 
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• Well tested and optimised code is already in place at a lower-level in a modular 

structure, which can be accessed and used by the new code. This saves a lot 

of development time. 

• A wide range of functionality exists at a higher level in the modular structure, 

which can be readily combined with the non-local functionals. 

• Adherence to good programming practises must be kept, which makes for more 

stable and reliable code in the long run. Also, the large user-base, and regular 

testing by the distributors [90], mean bugs can be quickly identified and fixed. 

Our implementation allows calculations to be run in parallel, with distribution of 

both k-points and/or G-vectors across multiple processors with distributed memory. 

It can make use of crystal symmetries to reduce the size of calculations, and can 

deal with spin-polarised systems, and systems with variable band-occupancies. 

The description of the code given here is intended to give the reader a basic idea 

of the algorithms implemented in relation to non-local functionals, rather than to 

provide a detailed account of every part of the implementation. We have avoided 

listing actual computer code, preferring to describe what is happening algorithmi

cally, with reference to data structures and parallel distribution. Some references 

are also made to other parts of the CASTEP code, which was described in Chapter 

1. The implementation is complicated by symmetry, parallelisation, and other fea

tures, but we first give an account of the basic code without discussing these aspects 

in detail. The changes to the code that these features involve are then described 

later. 

4.2 Preparation of Basis Set Data 

Data related to the plane wave basis set a:nd ·grids needs to be generated· and stored 

at the beginning of a calculation, so that it can be used by other parts of the 

implementation later. A large amount of this data is of a general nature, and some 

of it is already available in the existing implementation of local functionals. Other 
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data relates more specifically to sX-LDA and HF calculations, in which we effectively 

have to implement the double-sum over k-points in Equations (3.24) and (3.30). 

Because they contain terms involving q - k, these equations in general break the 

symmetries between different k-points, meaning one of the summations should be 

over the full set, while the other summation can still exploit symmetries. For this 

reason, in the context of the computational implementation, we consider these two 

summations separately and label the full set, that is not symmetry-reduced, as q

points, and the set that may be reduced by symmetry ask-points. Note that even if 

there are no crystal symmetries present, the size of the k-point set can still generally 

be reduced by a factor of ~ due to time-reversal symmetry. 

This distinction between k-points and q-points becomes particularly important in 

band structure calculations, where the k-points for which the band structure is to 

be calculated may be entirely unrelated to the q-points from which the potential is 

defined. 

4.2.1 Initialisation of Basis Data 

Initialisation, i.e. allocation and generation, of the basis-related data is separated 

into four successive stages. The main reason for this is that certain items of data may 

need to be processed by other modules before the generation of other items of data 

can proceed. Another reason is so that certain items of data can be re-initialised 

without the need to re-initialise everything. 

The first part of the initialisation procedure deals with data related to the plane 

wave basis set for the k-points alone, that are not stored in standard local functional 

calculations. This include an array that maps a plane wave's reciprocal space grid 

coordinate to its logical index in the basis set. This complements the mapping from 

index to coordinate that is alre~<iY part. of the_ existi~g imel~Wt)1lt,e:ttigiJ,_ ~ox:)o~a! . 
:.-• ._._>'" "i~•,::~::.!'- ,> -F,-_~-~ .::";': • •"':"•~v-~~'""'> • ~· "•;' 0 .>, :-~ ;• 

0 
•:....• '2'~ •, ' • ,._,, O~ • :•'- .,...., ,,., • •" o.j •-', • "•" ; , .___'f- - ,• .~· •. ~ ,-• , --- _,- _ 0 , '•, ' _- , ,', • _ _ , , _ '""-• _, "< _, ••~ 

functionals. 

The second part of the initialisation procedure deals with q-points. Most of the 

data that is generated is related to the plane wave basis for orbitals stored on the 
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q-points. For example, we already store the reciprocal space coordinates of each 

basis function - this must also be done for the q-point basis. Also, as is done for 

the k-points in the first part of the initialisation procedure, extra arrays need to be 

generated, for example, that map a coordinate to an array index. We also generate 

look-up arrays that store the index of the k-point (in a self-consistent calculation) 

that corresponds to each q-point, along with the phase factor that may be needed 

as discussed shortly in the context of symmetry. 

The third part of the initialisation procedure deals with the relationship between the 

k-points and the q-points. In all of the equations related to the non-local functionals 

in this work, k-points and q-points appear together as the difference (q- k). We 

therefore define a set of "q-k" points, i.e. the set of all points that can be expressed 

as the difference between a q-point and a k-point. This set is generated and stored, 

along with a look-up array that stores the index of the q- k point corresponding 

to every possible pair of q-points and k-points. 

The fourth part of the initialisation procedure involves calculating the reciprocal 

Coulomb factor, 1/(lq- k + Gl2 + k;), that appears in Equation (3.24), for every 

possible value of (q- k) and G. If we are not using the divergence correction or 

parallelepiped integration then this is simply a case of evaluating each factor in turn. 

If we are using parallelepiped integration then we perform an accurate numerical 

integration of the Coulomb factor over the parallelepiped surrounding each point 

q- k +G. If instead we are using the divergence correction, then we evaluate the 

Coulomb factor for each point, and also evaluate the divergence correction for each 

k-point. 

4.3 Elements of Non-Local Functional Calculations 

We now explain how we calculate the non-' local· exchange-correlation' energy, B~h, 

for a given set of orbitals, and how we apply the non-local exchange-correlation 

potential operator, VfJ, to a set of orbitals to obtain the functional derivative of 

E~h with respect to the orbital coefficients. 

... ·: 
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4.3.1 Preparing the Data 

Firstly, we take a set of orbitals corresponding to the set of k-points and generate 

a set of orbitals corresponding to the q-points in both reciprocal and real space. 

This is complicated when we are exploiting crystal symmetries, as will be discussed 

later, but for a normal calculation it is relatively straight forward. Essentially the 

orbitals are just directly copied, and then Fourier transformed to real space band 

by band. The only complication is that the q-points may include points in the 

negative hemisphere (i.e. points that are not in the k-point set due to time-reversal 

symmetry) - for these points we must take the conjugate of each coefficient, which 

effectively applies the time-reversal operation to the orbital. 

Secondly, if required, we calculate the non-local exchange energy of the system. 

This involves calculating the expectation values of the non-local operator, which are 

essentially the individual terms in the summation over k-points, q-points and bands 

in Equation 3.24, as we will describe shortly, and then summing them to obtain the 

total non-local energy. 

This step is not always necessary because sometimes we are only aiming to calcu

late the derivative of the energy with respect to the orbitals. The q-point orbitals 

still have to be generated though, so some preparation is always necessary before 

proceeding with the calculation. 

4.3.2 Expectation Values of the Non-Local Operator 

Given a set of orbitals, we evaluate the expectation value of the non-local exchange

correlation operator VfJ for each orbital. From Equation (3.24), we see that the 

expectation value c~Lxc is given by 

.. (4.~). 

This, of course, requires us to calculate the functions Cjqik(G), which in turn requires 

us to transform the orbitals into real space. For each band and k-point the procedure 

is essentially as follows: 
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1. Transform the coefficients Cik(G) into the real space function ¢ik(r). 

2. Loop over bands and q-points. 

3. Following Equation (3.26), multiply the conjugate of ¢ik(r) by </Jjq(r), and 

transform to reciprocal space to obtain Cjqik(G). 

4. Sum the product of ICjqik(G)I2 with the reciprocal Coulomb factors, 

1/(lq- k + Gl2 + k;) to obtain the contribution to the expectation value 

from this band and q-point. 

This completes the basic calculation of the expectation values. However, if we are 

using the divergence correction, then, with reference to Equation (3.48), we must 

also add a term to each expectation value of 

~ ( ~ F(q- k) - Oi dqF(q- k)) . 

Note prefactor of 27r /0 does not need to be included until the end of the routine, 

as including it in inner loops would only slow down the calculation. 

4.3.3 Applying the Non-Local Operator 

We take a set of orbitals and apply the the non-local exchange-correlation operator 

VfJ to each orbital. The result of applying this operator is also equal to the 

functional derivative of the non-local exchange-correlation energy, Efh, with respect 

to the orbital coefficients. From Equation (3.30) we see that this is given by 

(4.2) 

where the functions, fiqik(r), are given by 

( ) 47r -1 [ c;qik(G) ] 
fiqik r = yTIFT lq- k + Gl2 + k; . (4.3) 

So, in order to perform this operation, we start in essentially the same way as 

when calculating the expectation values up to the point at which we have calcu

lated Cjqik(G). We then multiply the conjugate of this with the Coulomb factor, 
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1/(lq- k + Gl 2 + k;), and transform to real space to obtain /jqik(r). This is then 

multiplied by ¢Jjq(r) and added to a running sum over bands and q-points. 

After all the bands and q-points have been looped over, the sum is transformed into 

reciprocal space to obtain 6Ef~/6cik(G) for the current band and k-point. 

If we are using the divergence correction, then there is also a component proportional 

to Cik(G) that also needs to be added, i.e. 

~ Cik(G) ( ~F{q- k}- f!
8

l dqF(q- k}). (4.4) 

4.4 Additional Considerations 

4.4.1 Defining q-points 

The set of q-points is generated in a similar way to the k-points in a standard 

calculation with local functionals. We assume that a Monkhorst-Pack grid is being 

used to define the k-points, and, for a self-consistent calculation, the same grid must 

be used to define the q-points. Depending on how the calculation has been set up, we 

may not know explicitly what the dimensions and offset of the Monkhorst-Pack grid 

are - we may simply have a symmetry reduced set of k-points. We have therefore 

devised an algorithm that can "detect" whether a given set of points correspond to 

a Monkhorst-Pack grid, and, if so, what the size and offset of the grid is. 

With the size and offset of the grid established, the q-point is generated. As well as 

this set of points, arrays are also needed that map each q-point to its corresponding 

k-point. The k-point set is almost always reduced by time-reversal symmetry, and 

so some q-points are related to their corresponding k-points via a time-reversal 

operation. If this is the case, then the conjugate must be taken when copying 

wavefunctions, 0 so, we ,create _a logical array _that . indicates _whether th~~ i~ ~rue .. for 

each q-point. 



CHAPTER 4. COMPUTATIONAL IMPLEMENTATION 110 

4.4.2 Electronic Minimisation and Band Structure 

Application of the non-local exchange-correlation potential, and calculation of its 

expectation values, must now be included where necessary in the electronic minimi

sation algorithms. This is also the case when performing band structure calculations. 

In these calculations the various components of the Kohn-Sham potential are applied 

in turn. According to whether or not a calculation involving non-local functionals 

is being performed, we may now also calculate and apply the non-local exchange 

potential. Other than adding an extra component to both the energy and search 

direction, the electronic minimisation and band structure algorithms are essentially 

unchanged. 

In band structure calculations the situation can be complicated by the fact that a 

different exchange-correlation functional may be being used for the band structure 

from that used for the preceding self-consistent calculation. For example, as we will 

discuss in greater detail in Chapter 5, an sX-LDA band structure calculation is often 

performed following a self-consistent LDA calculation. Matters are further compli

cated by the fact that the k-point set for the band structure may be completely 

unrelated to that for the self-consistent calculation. This means that the q-points, 

which come from the self-consistent calculation, are different to the k-points, which 

define the band structure path. 

4.5 Parallelisation, Symmetry, and Other Issues 

Up to this point, we have kept the description of the implementation relatively sim

ple, deliberately omitting aspects related to parallelisation, the use of symmetry, 

and issues such as spin-polarisation and fractional occupancies. While the spin

polarisation and fractional occupancies are rather trivial, parallelisation and sym

metry'are cnidal both to th'E(structure ""6f tlie code,· and to itsapplicability to large· 

systems. We now describe the methods used in extending the implementation to 

deal with these issues. 
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4.5.1 Symmetry 

We will deal with symmetry first, as there are parts of the discussion on paralleli

sation that refer to symmetry-related issues. In a standard calculation, the use of 

symmetry has two main advantages. Firstly, it reduces the number of k-points that 

need to be explicitly dealt with by the computer, resulting in increased speed and 

reduced memory requirements. Secondly, in certain situations, it causes the effective 

k-point set to be larger than the original Monkhorst-Pack grid, which may improve 

convergence, and ensures that symmetry-related degeneracies are exactly satisfied. 

In an NLXC calculation, with the present implementation, use of symmetry has the 

first advantage but not the second. This is because, unlike in a standard calcula

tion, we have a q-point set that is not symmetry reduced. Expansion of this set 

by symmetry would actually cause the calculation to be slower and require more 

memory. Nevertheless, reduction of the k-point set can still be highly beneficial in 

terms of performance for self-consistent calculations. 

The use of symmetry is based on relationships between orbitals on symmetry related 

k-points, as described in 1.7.4. Essentially, if two k-points are related by a symmetry 

operation then any orbitals on those k-points are also related by the same operation. 

If the operation includes a translational component in real space, this becomes 

a phase factor in reciprocal space according to Equation (1.152). The symmetry 

reduced k-point set only includes points that are not related by symmetry. Each 

q-point must be related to one of the k-points by at least one symmetry operation. 

As described previously the q-point basis is generated with reference to the k-point 

basis. In order to do this with a symmetry reduced k-point set, we must make use of 

the symmetry operations relating k-points and q-points. Applying the appropriate 

symmetry operation to the reciprocal coordinate of a plane wave in the k-point 

basis will yield the coordinate of the corresponding plane wave in the q-point basis. 

Doing" this for each plane wave and' q-'point will generate the q-point basis and ,an 

array mapping plane waves in the q-point basis to corresponding plane waves in 

the k-point basis. Also, for symmetry operations with translational components, 

we calculate and store the phase factor that will be needed when mapping orbital 
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coefficients between k-point and q-points. 

Symmetry only directly affects the preparation stage for applying VfJ where orbital 

data is mapped from k-points onto q-points. The mapping between plane waves in 

the k-point basis and plane waves in the q-point basis is used, along with the phase 

factor for translational symmetries. Again, if the time-reversal operation is involved, 

the conjugate of the data is taken. 

4.5.2 Parallelisation 

The ability to run in parallel, with distribution by k-points and/or G-vectors, is 

probably the most important feature of the implementation. From a developer's 

point of view, it is also the most complicated, both in terms of writing code and in 

de-bugging. In Chapter 1 we outlined the essential strategy of parallelisation in a 

plane wave code such as CASTEP. The k-points are shared between k-point groups 

of processors, and the G-vectors are shared between G-vector groups of processors; 

each processor is a member of one k-point group and one G-vector group. Data 

is exchanged between processors, and the code is structured so as to minimise the 

required number of such calls due the associated cost of latency and data transfer. 

Many of the arrays that are generated have to deal with the possibility of the data 

being distributed over several processors. Also, many of the arrays that are already 

generated by the existing implementation for local functionals module need to be 

"gathered" onto each node for an efficient parallel implementation of the NLXC 

functionals to be possible. For example, the array that stores the reciprocal space 

coordinates of each of the plane waves in the basis set is distributed across processors. 

We need to generate a version of that array that contains all the information from 

every G-vector group; this is done by gathering the data onto an array that has 

an extra index to indicate the G-vector group on which the data is stored in the 
:··-""':,_,'--· 

distributed array. The inverse of this mapping now needs to include not only the 

logical index corresponding to each coordinate, but also the G-vector group on 

which that point is stored. Similarly, the mapping between q-points and equivalent 

k-points needs to include the k-point group of the k-point as well as its index. 
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Arrays such as the one that stores Cjqik(G) can be distributed by G-vectors and/or 

k-points. This means that they take up less memory per processor, and loops over 

k-points and G-vectors only have to deal with those points that are on the local 

processor, which means that they take less time to complete. If the purpose of a 

loop is to evaluate a sum, then each processor only has part of the sum at the end 

of the loop. We complete the sum by adding together the components from each 

processor, and sharing the result between all processors. Fourier transforms are also 

faster when running with G-vector parallelisation, and these can be handled by the 

existing implementation for local functionals. 

The q-point data is not distributed. This because it all needs to be accessed rapidly 

by each processor in inner-loops. While distribution would have been possible in 

principle, it would not have been practical in terms of efficiency; instead, we accept 

the need to use more memory for a non-local functional calculation that a standard 

calculation. 

4.5.3 Spin-Polarised Systems and Fractional Occupancies 

Extension of the code to be able to treat systems with collinear spin polarisation, 

using spin-dependant DFT, and systems with fractional occupancies is relatively 

straightforward. Because there is zero exchange interaction between unlike spins, 

the calculation of expectation values, and application of the potential, for the spin-up 

orbitals are independent of the same procedures for the spin-down orbitals. Hence, 

the extension to spin-polarised systems essentially involves simply placing these pro

cedures within an outer loop over spin indices. We also have to consider the possi

bility of having a spin-dependent screening constant. This means that the Coulomb 

factors need to have an extra spin dimension. As discussed in 1.6.1, when dealing 

with systems with fractional occupancies, the calculation of orbital dependent quan

tities must "include-a weighting' for ·each orbital" according to -its occupancy.·. These

extensions of the theory can be expressed, for example, by re-writing Equation (3.24) 

as follows, 

ENL 21!"""'""' ""'f J ICjqik,u(G)I
2 

XC= -0 ~ -~ ~ ik,u jq,u I - k + Gl2 + k2 ' 
u 1k3q G q su 

(4.5) 
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where a is the spin index, and the Jik,u are the fractional occupancies of the orbitals. 

4.6 Performance Tests 

Having described the computational implementation in terms of the algorithmic 

procedures, we now demonstrate some of the features of the code, including the 

scaling properties with respect to basis size, and the ability of parallelisation and 

harnessing of symmetry to reduce the computational cost of a calculation. 

4.6.1 Scaling With Basis Size 

We first investigate the performance of the code as a function of the size of the plane 

wave basis set used. We perform a series of total energy calculations, using sX-LDA, 

on a 2-atom primitive cell of silicon, using a single k-point at [0.5,0.5,0.5] to sample 

the Brillouin zone (although this means the calculation is not converged with respect 

to k-point sampling, this is not important when simply evaluating scaling properties 

of the implementation). The plane wave cut-off energy is varied between 200e V and 

2800e V in steps of 200e V. The speed of the calculation is determined in terms of 

the average time for one conjugate gradients line search during the total energy 

minimisation. The results are shown in Figure 4.1. As discussed earlier in 3.1.5, we 

would expect this calculation to scale as NP log(Np)· By fitting the results to the 
~ 

equivalent form as a function of cut-off energy, i.e. E:fut log(Ecut) we see that the 

calculation does indeed scale roughly as expected, however the time per SCF cycle 

seems to go up in large jumps rather than increasing smoothly with cut-off energy. 

This can be explained in terms of the size of the full grid used for the FFTs, which, 

due to the nature of the FFT algorithm, increases in relatively large steps. Also 

shown in the figure are LDA results for comparison. For calculations of this size, 

an LDA calculation also scales roughly as Np log(Np), but the prefactor is about an 

order of magnitude smaller. 
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Figure 4.1: Average time per SCF cycle in a typical sX-LDA calculation as a function of 
the plane wave cut-off energy, Ecut (black crosses), and best fit curve of the predicted form 

3 

of"' E!ut log(Ecut) (red line) . Also shown (in green) are the results from an equivalent 
calculation using the LDA. 
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4.6.2 Scaling with k-points and Symmetry 

We now look at the performance of the code as a function of the number of k

points used to sample the Brillouin zone. Again we perform a series of total energy 

calculations on a 2-atom primitive cell of silicon, this time fixing the cut-off energy 

at 350eV. The number of k-points is varied by using off-origin Monkhorst-Pack 

grids of dimesionalities between 1 x 1 x 1 and 5 x 5 x 5, which, taking into account 

time-reversal symmetry, result in k-point set sizes of 1, 4, 14, 32, and 63. We 

also perform the same calculations but harnessing crystal symmetries to reduce 

the number of k-points. With symmetry present the sizes of the reduced k-point 

sets are 1, 2, 6, 10, and 19, which should result in a speed-up proportional to this 

reduction. The results of these calculations are shown in Figure 4.2. As discussed in 

3.1.5, without symmetry we expect the calculation to scale roughly as N'f, which we 

confirm by fitting the results to a function of this form. With symmetry harnessed, 

we also observe approximately the expected speed-up, i.e. proportional to the ratio 

of unsymmetrised to symmetrised k-points. 

4.6.3 Parallelisation by k-points 

The ability to run code in parallel is one of the main features of this implementation, 

so it is essential to check that the parallel aspects of the code actually result in 

significant increases in speed. We first look at parallelisation by k-points. We use 

a primitive silicon cell with a 4 x 4 x 4 Monkhorst-Pack grid and a 350eV cut-off. 

Taking into account time-reversal symmetry we have 32 k-points, which can be 

distributed over a maximum of 32 processors. We run the calculation first using a 

single processor, then repeat it with the k-points distributed across 2, 4, 8, 16, and 

32 processors. We determine the speed of the calculation in terms of the average 

number of SCF cycles per second during the main part of the calculation. The 
~ ·-, __ ~,.; ···' . ·-" -~'- --:-_·~-.-_--,. - ., --.· ' 

results are shown in Figure 4.3. We see that the calculation scales almost linearly 

with the number of processors, which shows that the parallelisation is working very 

effectively. 
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Figure 4.2: Average processor time per SCF cycle in a typical sX-LDA calculation as a 
function of the number of k-points (black crosses), and best fit curve of the predicted form 
of""' N'/;,. Also shown are the times when symmetry is harnessed (blue crosses), along with 
the predicted times based on the best fit curve and the ratio of reduced to full k-points 
(orange dots). 
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Figure 4.3: Average number of SCF cycles per second in a typical sX-LDA calculation as 
a function of the number of processors over which k-points are distributed. 
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4.6.4 Parallelisation by G-vectors 

We now carry out a similar test for parallelisation by G-vectors. G-vector paral

lelisation is likely to be most effective for larger calculations so for this test we use 

an 8-atom cubic silicon cell and set the cut-off energy to 2000eV. A single k-point 

at [0.5,0.5,0.5] is used to sample the Brillouin zone. Again, we run the calculation 

on a single processor, and then choose to repeat it with the G-vectors distributed 

across 2, 4, 8, 16, and 32 processors {although we are not actually restricted to 

factors of 32 in this case). The results are shown in Figure 4.4. We see that a 

significant increase in speed can be achieved by such a parallelisation strategy, but 

it is not linear as it was in the case of k-points. Of particular note is the fact 

that the speed actually decreases as we go from 1 to 2 processors. The reason that 

parallelisation by G-vectors is not as good as parallelisation by k-points is that it 

requires much more inter-processor communication due to the Fourier transforms, 

and hence incurs many more latency and data transfer related overheads~ For this 

reason, k-point parallelisation should always be chosen over G-vector parallelisation 

when the option is available. 

4.7 EXX and the OEP Method 

Implementation of EXX involves a certain amount of extra development beyond the 

non-local functional implementation described so far. This includes the calculation 

of the functional derivatives described in 3.2.2, and the implementation of the basic 

OEP procedure itself. 

4. 7.1 Calculating Functional Derivatives 

In Section 3.2, we discussed the theory oft he localEXX potential, and the.functional . 

derivatives of quantities with respect to the Kohn-Sham potential required for the 

OEP method. The calculation of the local EXX potential involves calculation of 

the functional derivative of the exchange energy, with respect to the density, but 
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Figure 4.4: Average number of SCF cycles per second in a typical sX-LDA calculation as 
a function of the number of processors over which G-vectors are distributed. 
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the procedure can be applied to any operator. In order to implement EXX and the 

OEP method, we need to implement procedures for carrying out the following three 

tasks for a given operator, Q, pertaining to a physical quantity, Q: 

• Given a set of Kohn-Sham orbitals, { ¢ik(r)}, associated eigenvalues, { Cik}, and 

the result of applying the operator, Q, to those orbitals, i.e. { Q l¢ik ( r))}, cal

culate the functional derivative of Q with respect to the density, i.e. 6Qf6p(r). 

• Given a set of Kohn-Sham orbitals, { ¢ik(r) }, associated eigenvalues, { Cik}, and 

the result of applying the operator, Q, to those orbitals, i.e. {QI¢ik(r))}, cal

culate the functional derivative of Q with respect to the Kohn-Sham potential, 

i.e. 6Q/bJJKs(r). 

• Given a set of Kohn-Sham orbitals, { ¢ik(r)}, associated eigenvalues, { C"ik}, and 

the functional derivative of Q with respect to the density, 6Qf8p(r), calculate 

the functional derivative of Q with respect to the Kohn-Sham potential, i.e. 

To calculate 6Qf6p(r), we essentially follow the procedure for calculating the local 

EXX potential, as described in 3.2, except that the non-local exact exchange opera

tor, VfL(r, r'), is replaced by the general operator, Q, and the exchange energy, Vx, 

is replaced by the general physical quantity, Q. The reason for this generalisation is 

to facilitate the implementation of new functionals in the future that may need to 

make use of this type of procedure, such as the meta-GGA, described in 3.4.2. The 

orbitals, eigenvalues, and {QI¢ik(r))} data, are calculated in reciprocal space; the 

orbitals and eigenvalues must include the full set of valence and conduction bands, 

but the {QI¢ik(r))} data only needs to include the valence bands. This is impor

tant in terms of efficiency, as the calculation of the {QI¢ik(r))} may be expensive. 

The main purpose of this algorithm is essentially to solve Equation (3.41), which 

riiearis-we~must compu£ethe linearcresponse matrix, 'x0 (G,-'G'),' aii"d-die derivatives-

6Q/6JJKs(G). Solution of this equation is very expensive, and we are forced to con

sider ways of maximising the efficiency of the procedure. By using a reduced grid of 

points, lying within a sphere of limited radius, rather than the full grid, to represent 
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xo(G, G'), and fJQ/flJ.LKs(G), we can increase the efficiency dramatically. From our 

preliminary tests, and also from the work of others [79], it seems that using a radius 

equal to the plane wave cut-off radius does not significantly affect the accuracy of 

the calculation. The functions Cvkck (G) are calculated using the same efficient pro

cedure described in 3.1.5, and then transformed onto the reduced grid to calculate 

Xo(G, G'), and fJQ/flJ.LKs(G). A numerical routine is used to solve Equation (3.41), 

and the resulting functional derivative is then transformed back onto the full grid. 

Finally, the derivative is Fourier transformed to real space as required. 

We have implemented Equation (3.46) by calculating the linear response matrix, 

xo(G, G'), and applying it to the Fourier transform of the input derivative, 6Q/6p(r). 

The calculation of xo(G, G') is done in the same way as it is in the procedure for 

calculating fJQ /6 p( r), and again, this is more efficient if we use a reduced grid. After 

applying the matrix the resulting derivative, fJQ/flJ.LKs(G), is Fourier transformed 

to real space as required. 

4.7.2 Minimisation with the OEP Method 

In calculations involving the EXX functional, the minimisation of the electronic 

energy must proceed via the 0 EP method rather than the existing electronic min

imisation algorithms for local functionals. It is therefore necessary to implement the 

OEP method, described in 3.2.2, for using the Kohn-Sham potential, rather than the 

Kohn-Sham orbitals, as the object with respect to which the energy is minimised. 

As discussed in 3.2.2, there are two different ways of solving the Kohn-Sham equa

tions with the OEP method. The first is a basic self-consistent iterative cycle in 

which a trial potential is used to generate orbitals and a density, which are used 

to calculate a new potential, and so on. The second is a more sophisticated search 

in which the energy is minimised with respect to the Kohn-Sham potential using 

a· nu-merical aigorltiiffi such as ~onjugate gra<fient"s. Wehave lm"plem-ei{fe(Cboth~·or 

these approaches. The conjugate gradients method requires many evaluations of the 

total energy during the line minimisation stages, but these are relatively cheap as 

they do not require the functional derivative to be evaluated more than once per 
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line search. Also, when calculating search directions, it is only necessary to calculate 

derivatives with respect to the potential, rather than the density, which is a more 

expensive operation. The basic iterative approach requires only a small number of 

calculations of the total energy, but each one involves diagonalisation of the full 

Kohn-Sham Hamiltonian in order to obtain the full set of valence and conduction 

bands; in addition to this, 6Qf6p(r) needs to be calculated at each iterative step, 

which is expensive. At the present stage of development, it is not clear which of 

the two approaches is the most efficient, and this may well depend on the size and 

nature of the system under study, but the simple iterative approach has proven to be 

the more stable close to the minimum. It may be that the best approach would be 

to use the conjugate gradients method to get close to the minimum and then use the 

iterative procedure for the last few steps. Once the minimisation procedure is com

plete, we calculate the local exchange potential, as described in Section 3.2. This 

allows the local potential to be used in, for example, band structure calculations 

that may follow this self-consistent minimisation stage. 

In band structure calculations we may wish to perform the calculation non-self

consistently, using a local functional such as the LDA for the self-consistent energy 

minimisation, and EXX for the band structure. In such circumstances we can evalu

ate the exact local exchange potential simply given the ground state density from the 

self-consistent calculation. The orbitals and eigenvalues that are used in Equations 

(3.41) and (3.42) are those corresponding to the Kohn-Sham potential calculated 

with the local functional. We cannot simply use the values obtained at the end of 

the self-consistent calculation, however, because we now need the complete set of 

valence and conduction bands. The full set of orbitals thus have to be obtained 

by this by calculating the Kohn-Sham potential with the local functional and then 

diagonalising the full Hamiltonian. With the local exchange potential evaluated, it 

can then be used to replace the exchange potential from the local functional, and 

the .band structure_ can be ,calculated using the existing. implementation .. for local . 

functionals. 
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4.8 Summary and Conclusions 

In summary, in this chapter we have described the computational implementation 

of non-local exchange-correlation functionals sX-LDA and HF, using the efficient 

formulation described in Chapter 3. This included a description of how the imple

mentation can make use of cell symmetry and be run in parallel on multiple computer 

processors. We tested the scaling properties of the implementation as a function of 

cut-off energy, number of k-points, and number of parallel processors. The results 

of these tests agreed with the prediction that the speed of a calculation should scale 

as NP log(Np)N'fNl. This means that in terms of the size of a system, measured by 

the number of atoms present, Na, we would expect an sX-LDA or HF calculation 

to scale as N! log(Na)· This compares to an LDA calculation, which ultimately 

scales as N! in a standard plane wave based implementation. We also found that 

by making use of symmetry we can increase the speed of a calculation, as expected, 

in proportion to the ratio of the size of the symmetry-reduced k-point set to the 

size of the unreduced set. When running in parallel, we found that distribution of 

k-points increased the speed of a calculation approximately linearly as a function of 

the number of processors. Distribution of G-vectors can also result in a significant 

speed-up, but the scaling is not as favourable as it is in the case of k-points. This 

is due to the much greater amount of inter-processor communication involved when 

distributing G-vectors. Finally, we discussed the implementation of EXX via the 

OEP method as described in Chapter 3. While the implementation is essentially 

complete, further optimisation will be necessary before using this implementation 

for practical calculations. 

With the implementation of sX-LDA and HF fully working and tested, in the next 

chapter we proceed to use this implementation to calculate the band structures of 

semiconductors with these functionals. 



Chapter 5 

Semiconductor Band Structures 

from Non-Local Functionals 

Band structures are an important property of semiconductor materials as they ul

timately determine most of the electronic and optical properties that make these 

materials technologically useful. In this chapter we use the sX-LDA and HF func

tionals implemented in Chapter 4 to calculate the band structure of a number of 

semiconducting materials. We begin with the calculation of complete band struc

tures for Si and GaN, and compare the performance of the functionals against both 

LDA results and to experiment. We then calculate the band structure at the main 

symmetry points of a large number of group IV and III-V semiconductors, again 

comparing with LDA and experiment. Finally we conclude with a discussion of the 

reasons for the variation in performance of the different functionals. 

5.1 Full Band Structures for Silicon and GaN 

5.1.1 }>reliminarie~. 

In Chapter 2, we established the appropriate cut-off energy and k-point grid for GaN 

and calculated the LDA geometry of both the wurtzite and zinc blende structures. 

For the band structure calculations in this chapter, we will use the same parameters 

125 
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and the same LDA geometry irrespective of the functional used. This is currently 

common practice for such calculations due to the extra computational expense of 

calculating the geometry with non-local functionals. For calculations on Si, we follow 

a similar procedure to that of Chapter 2 to establish the appropriate parameters 

and LDA geometry. Using a primitive 2-atom cell, we find that energy differences 

are converged to within O.OleV per atom with a cut-off energy of 350eV and a 

3 x 3 x 3 off-origin Monkhorst-Pack grid. Running a geometry optimisation we 

obtain a lattice parameter of 5.39A, which is close to the experimentally measured 

value of 5.43A[54]. 

5.1.2 Silicon 

We begin by calculating the band structure of silicon using, sX-LDA and HF, and 

comparing with LDA results. The calculated band structures are shown in Figures 

5.1, and 5.2. In the non-local calculations we calculate the band structure after both 

an LDA self-consistent minimisation, and a self-consistent minimisation with the 

same functional as used to calculate the band structure. From the data we find that 

for the sX-LDA calculations, we can perform the SCF part of the calculation with 

the LDA without significantly altering the results. Because of the gain in efficiency 

afforded by doing this, all sX-LDA band structures in this work will performed in 

the same way. Unfortunately this does not work so well when using HF so all HF 

calculations are performed fully self-consistently. 

We see that Si has an indirect band gap, with the conduction band minimum about 

~ of the way along the r - X line. The LDA gives a value for this band gap of 

0.48eV, while sX-LDA gives 0.97eV, and HF gives a value of 4.78eV. The experi

mentally measured value for this band gap is 1.12eV [54]. We see, therefore, that 

the LDA underestimates the gap, while HF grossly overestimates it. sX-LDA, on 

-the··other hand~ ogives a·result'reasonably·close to· experiment: 'Fhe reasons 'for this 

are discussed in some detail in Section 5.3 

Closely related to the band structure of a material is the density of states (DOS). 

This is an important quantity, particularly in terms of optical properties, as it affects 
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Figure 5.1: Kohn-Sham band structure of silicon calculated using sX-LDA. Black 
lines indicate occupied valence bands, while red lines indicate unoccupied conduction 
bands. Dashed lines show results calculated with the LDA with all eigenvalues 
shifted such that the valence band maximum equals that of the sX-LDA calculation. 
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Figure 5.2: Kohn-Sham band structure of silicon calculated using HF. Black lines 
indicate occupied valence bands, while red lines indicate unoccupied conduction 
bands. Dashed lines show results calculated with the LDA with all eigenvalues 
shifted such that the valence band maximum equals that of the sX-LDA calculation. 
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the rate of absorption or emission of photons of a given energy. In terms of a Kahn

Sham DFT picture, the density of states, D(c), essentially tells us how many orbitals 

there are of eigenvalue c; it is defined as follows, 

D(c) = 2: c5(cik- c), (5.1) 
nk 

where the index n runs over both valence and conduction bands. We have calculated 

the DOS in Si for each of the functionals LDA, sX-LDA, and HF. In these calcula

tions we must perform a full 3D band structure calculation, sampling the whole of 

the Brillouin zone. Because of the finite sampling, the resulting DOS results tend to 

appear spikey, even when using very fine grids. We use an off-origin Monkhorst-Pack 

grid of dimension 8 x 8 x 8, much finer than the grid used for the self-consistent 

total energy calculation. We also choose to smear each of the c5-functions in 5.1 

with a Gaussian function of width 0.4eV. The calculated DOS for Si using the LDA, 

sX-LDA, and HF are shown in Figures 5.3, 5.4, and 5.5 respectively. The Gaussian 

smearing has the effect of masking the precise locations band edges, however the 

band gaps, of varying widths depending on the functional, are still clearly identifi

able. We also note that the use of the different functionals has little effect on the 

overall shape of the DOS, however, particularly in the case of HF we see that the 

DOS is stretched over a wider range of eigenvalues that the LDA. 

We have also calculated 2-dimensional plots of charge densities for the highest va

lence and lowest conduction orbitals on the r -point, when using each of the non-local 

functionals sX-LDA and HF, and compared them to LDA results. These are shown 

in Figures 5.6 and 5.7. From these plots we see that the main differences lie in the 

shape of the conduction band orbitals, rather than the valence band orbitals. This 

suggests that the differences in eigenvalue arise more from the change in the shape 

of the conduction bands than the valence band. However, we know from the fact 

that we cannot use the LDA self-consistent ground state for a HF calculation, that 

there must still· be some important differences in the valence bands also. 
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Figure 5.3: Electronic density of states (DOS) in Si, calculated using the LDA (the 
Brillouin zone is sampled with an 8 x 8 x 8 MP grid and the graph is smoothed by 
Gaussian smearing of width 0.4eV). 
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Figure 5.4: Electronic density of states (DOS) in Si, calculated using sX-LDA (the 
Brillouin zone is sampled with an 8 x 8 x 8 MP grid and the graph is smoothed by 
Gaussian smearing of width 0.4e V) . 
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Figure 5.5: Electronic density of states (DOS) in Si, calculated using HF (the Bril
louin zone is sampled with an 8 x 8 x 8 MP grid and the graph is smoothed by 
Gaussian smearing of width 0.4e V). 
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Figure 5.6: Plot of the electron density of the highest valence bands (blue regions) 
and lowest conduction bands (red regions) on the f -point in Si, calculated with the 
LDA. 

Figure 5.7: Plot of the electron density of the highest valence bands (blue regions) 
and lowest conduction bands (red regions) on the f-point in Si, calculated with 
sX-LDA. 

Figure 5.8: Plot of the electron density of the highest valence bands (blue regions) 
and lowest conduction bands (red regions) on the f-point in Si, calculated with HF. 
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5.1.3 GaN 

As part of the study on GaN in Chapter 2, we calculated the band structure of both 

the wurtzite and zinc blende structures using the LDA, and found that the band 

gap was underestimated compared to experiment. We now perform band structure 

calculations using sX-LDA and HF, the results of which are shown in Figures 5.9 

and 5.11. Both GaN structures have direct band gaps at r, with the calculated 

values being 2.66eV (WZ), 2.33eV (ZB) with sX-LDA and 9.66eV (WZ), 9.02eV 

(ZB) with HF. This compares with values of 1.86eV (WZ), 1.69eV (ZB), calculated 

in Chapter 2 with the LDA. The experimentally measured value for the wurtzite 

structure is around 3.5eV [54), and for the zinc blende structure the gap is believed 

to be in the region of 3.3eV [64]. Again, we see that the LDA underestimates the 

gap, while HF grossly overestimates it. In this case sX-LDA gives the closest result 

to experiment of the three functionals, but it is not as successful as it was in the 

case of silicon. 

5.2 Other Group IV and III-V Semiconductors 

In this section extend the range of materials studied to include most of the other 

group IV and III-V semiconductors; C (diamond), SiC, Ge, AlN, AlP, AlAs, AlSb, 

GaP, GaAs, GaSh, InN, InP, InAs, InS b. C and Ge have a cubic diamond structure, 

while AlN and InN have a wurtzite structure; all the other compounds studied have 

a zinc blende structure. As well as these materials, for completeness, we also include 

the results already established previously for Si and the two GaN structures. 

5.2.1 Preliminaries 

As with Si in the previous section, for each of the semiconducting materials stud

ied'hefe we must' first' establish appropriate cut..:offenergies'aii<:rl<~point grids and 

then calculate the LDA geometries. The parameters and geometries for the dia

mond and zinc blende structures are shown in Table 5.1, while those for the wurtzite 



CHAPTER 5. BAND STRUCTURE CALCULATIONS 135 

-------------- -------- ----··====:::: ::::===· ----------------- -------- -------··===::::: 

-2ot====t=~s~±:::==t=t=~ 
'A LM rA HK r 

k-Point Path 

Figure 5.9: Kohn-Sham band structure of wurtzite GaN calculated using sX-LDA. 
Black lines indicate occupied valence bands, while red lines indicate unoccupied 
conduction bands. Dashed lines show results calculated with the LDA with all 
eigenvalues shifted such that the valence band maximum equals that of the sX-LDA 
calculation. 
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Figure 5.10: Kohn-Sham band structure of zinc blende GaN calculated using sX
LDA. Black lines indicate occupied valence bands, while red lines indicate unoccu
pied conduction bands. Dashed lines show results calculated with the LDA with all 
eigenvalues shifted such that the valence band maximum equals that of the sX-LDA 
calculation. 
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Figure 5.11: Kohn-Sham band structure ofwurtzite GaN calculated using HF. Black 
lines indicate occupied valence bands, while red lines indicate unoccupied conduction 
bands. Dashed lines show results calculated with the LDA with all eigenvalues 
shifted such that the valence band maximum equals that of the sX-LDA calculation. 
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Figure 5.12: Kohn-Sham band structure of zinc blende GaN calculated using HF. 
Black lines indicate occupied valence bands, while red lines indicate unoccupied 
conduction bands. Dashed lines show results calculated with the LDA with all 
eigenvalues shifted such that the valence band maximum equals that of the sX-LDA 
calculation. 
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Material EcutfeV MP Grid a/A(LDA) a/A(Exp.) 

c 650 3x3x3 3.53 3.56 

Si 350 3x3x3 5.39 5.43 

Ge 750 4x4x4 5.59 5.66 

SiC 600 3x3x3 4.32 4.36 

AlP 500 3x3x3 5.43 5.46 

AlAs 300 3x3x3 5.62 5.66 

AlSb 300 3x3x3 6.05 6.14 

GaN (ZB) 800 3x3x3 4.50 4.50 

GaP 800 3x3x3 5.40 5.45 

GaAs 700 3x3x3 5.58 5.65 

GaSh 700 3x3x3 5.92 6.10 

InP 500 3x3x3 5.92 5.87 

In As 300 3x3x3 6.10 6.06 

InSb 300 3x3x3 6.44 6.48 

Table 5.1: Parameters for calculations on semiconductors with diamond or zinc blende 
structures. All MP grids are off-origin. All experimental data from reference [54], except 
ZB GaN [64]. 

Material EcutfeV MP Grid a,c/A(LDA) a, c/ A(Exp.) 

AlN 600 4x4x3 3.08 4.96 3.11 4.98 

GaN (WZ) 800 4x4x3 3.18 5.18 3.19 5.19 

InN 600 4x4x3 3.36 5.40 3.54 5.70 

Table 5.2: Parameters for calculations on semiconductors with wurtzite structures. All 
MP grids are off-origin in the horizontal plane and on-origin in the vertical direction. All 
experiment11-l data from reference [54]. 
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Species Valence Electrons 

c 2s, 2p 

N 2s, 2p 

Al 3s, 3p 

Si 3s, 3p 

p 3s, 3p 

Ga 4s, 3d, 4p 

Ge 4s, 3d, 4p 

As 4s, 4p 

In 5s, 4d, 5p 

Sb 5s, 5p 

Table 5.3: Electrons treated as valence for the pseudopotentials of each atomic species 
used in this work. 

structures are shown in Table 5.2. The experimentally measured lattice constants 

are also shown for comparison. For the Ge and In pseudopotentials, we find that 

the band structures are very sensitive to whether the d-electrons are treated as core 

or valence, and so we treat these d-electrons as valence in all of our calculations. A 

summary of which electrons are treated as valence for each atomic species is given 

in Table 5.3. 

5.2.2 Tabulated Eigenvalues 

With the calculation parameters established for each material we proceed to calcu

late the Kohn-Sham eigenvalue spectrum at the main symmetry points. For cubic 

and zinc blende structures these are L, r, X, and U /K, while for wurtzite structures 

these are A, L, M, r, H, and K. To present the results in a sensible manner, we 

.tabulate thEl_ highest yal~nce ban<J eigenvalue and lowest c:onduction band eigenvalue: .. 

at each point relative to the valence band maximum. The results for the zinc blende 

structures are shown in table 5.4, while those for the wurtzite structures are shown 

in table 5.5. We see that, as was the case in Si and GaN, the general trend is that 
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as we go from the LDA, to sX-LDA, to HF, the eigenvalues of the valence bands are 

lowered, while those of the conduction band are raised. Again, the reasons for this 

will be discussed in Section 5.3. 

5.2.3 Band Gaps 

In most cases, the band gap of each of the materials studied can be read off from 

Tables 5.4 and 5.5. This is not the case for materials in which the conduction band 

minimum does not lie on a point of symmetry. In these cases we must perform a 

continuous band structure calculation along the path on which the minimum lies. 

Table 5.6 shows the band gaps for all of the materials studied in this work, calculated 

with the functionals LDA, sX-LDA, and HF, as well as the experimentally measured 

values (from reference [54], except zinc blende GaN [64] and InN [91]). 

To visualise the performance of the various functionals more clearly, and to compare 

with experiment, we now plot the calculated gaps as a function of the experimentally 

measured values. The deviation of the calculated gaps from experiment can then be 

readily seen in terms of their distance from the y = x line; this graph is shown in 

Figure 5.13. 

Inspecting this graph we see very clearly how the calculated gaps depend on the 

choice of functional. In almost all cases, the LDA underestimates the gap substan

tially, while HF overestimates the gap massively. In most cases sX-LDA is much 

closer to the experimental results than the LDA, but still tends to underestimate 

the gap somewhat. The reasons for these general patterns are discussed in Section 

5.3. 

There are one or two exceptions to these general patterns, however. Notably, the 

antimony compounds GaSh and InSb display overestimated gaps, even when using 

tq~. ~PA;_ ~x;-L.P~ overe~ti.rnJtte<i t~f!iJ: gaps furfhi:l! s~m~ _T_hjs_IJl().Y)?~ elY~ _t()_,the 

fact that we have not included d-electrons as valence in the Sb pseudopotential, but 

an Sb pseudopotential including d-electrons is not currently available to us. 
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LDA Results sX-LDA Results HF Results 
Sym. 

Material V.B. Max. C.B. Min. V.B. Max. C.B. Min. V.B. Max. C.B. Min. 
Pt. 

1 eV I eV I eV I eV I eV I eV 

L -2.85 8.53 -3.49 10.41 -5.07 18.13 

r 0.00 5.64 0.00 7.19 0.00 14.05 
c 

X -6.43 4.75 -7.32 5.84 -8.79 12.51 

K -5.47 5.67 -6.41 7.01 -8.28 14.30 

L -1.21 1.58 -1.50 2.22 -2.66 7.82 

r 0.00 2.57 0.00 3.19 0.00 8.52 
Si 

X -2.91 0.61 -3.18 1.07 -4.11 5.87 

K -2.47 1.12 -2.82 1.72 -4.16 7.07 

L -1.63 0.40 -1.84 0.98 -2.73 6.46 

r 0.00 0.40 0.00 0.78 0.00 6.45 
Ge 

X -3.72 1.64 -1.75 1.07 -4.85 6.76 

K -2.98 1.32 -3.26 2.11 -4.43 7.47 

L -1.06 5.58 -1.45 6.77 -2.45 13.87 

r 0.00 6.58 0.00 7.79 0.00 14.89 
SiC 

X -3.24 1.27 -3.69 2.12 -4.54 8.26 

K -2.63 3.05 -3.16 4.07 -4.38 10.66 

L -0.91 2.63 -1.12 3.44 -2.02 9.32 

r 0.00 3.04 0.00 3.85 0.00 9.76 
AlP 

X -2.37 1.44 -2.56 2.12 -3.35 7.39 

K -1.97 2.32 -2.22 3.08 -3.29 8.70 

L -0.95 2.13 -1.15 2.78 -2.15 8.23 

r 0.00 2.19 0.00 2.83 0.00 8.21 
AlAs 

X -2.40 1.38 -2.59 1.94 -3.44 6.85 

K -2.01 2.20 -2.25 2.82 -3.41 8.08 
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.... table continued from previous page 

LDA Results sX-LDA Results HF Results 
Sym. 

Material V.B. Max. C.B. Min. V.B. Max. C.B. Min. V.B. Max. C.B. Min. 
Pt. 

I eV I eV I eV I eV I eV I eV 

L -1.02 1.81 -1.20 2.32 -2.19 7.43 

r 0.00 2.57 0.00 3.16 0.00 8.27 
AlSb 

X -2.41 1.42 -2.59 1.84 -3.45 6.30 

K -2.04 1.85 -2.25 2.33 -3.42 7.22 

L -1.11 4.49 -1.60 5.54 -2.61 12.66 

r 0.00 1.70 0.00 2.33 0.00 9.02 
GaN 

X -2.99 3.28 -3.62 4.35 -4.71 10.70 

K -2.42 4.98 -3.09 6.19 -4.34 12.92 

L -1.26 1.61 -1.64 2.19 -2.84 7.90 

r 0.00 1.81 0.00 2.33 0.00 7.99 
GaP 

X -2.95 1.48 -3.37 2.02 -4.49 7.09 

K -2.49 2.07 -2.97 2.70 -4.38 8.21 

L -1.29 1.13 -1.65 1.58 -2.95 6.85 

r 0.00 0.97 0.00 1.32 0.00 6.42 
GaAs 

X -2.97 1.37 -3.35 1.80 -4.53 6.46 

K -2.51 1.91 -2.96 2.41 -4.46 7.54 

L -1.38 1.06 -1.67 1.48 -2.91 6.56 

r 0.00 1.50 0.00 1.91 0.00 7.01 
GaSh 

X -3.01 0.90 -3.34 1.27 -4.48 5.77 

K -2.57 1.52 -2.94 1.96 -4.40 6.82 

L -0.95 1.58 -1.26 2.08 -2.30 7.51 

r 0.00 0.73 0.00 1.10 0.00 6.34 
InP 

X -2.28 1.60 -2.63 2.07 -3.66 6.p4 
... c- - ., •·"'·. ··:c-· ;,_..- ~.-'_;:,-.,. ·- - ,;, - -. ·t. ~·: -~ .. , - . 

K -1.90 2.31 -2.30 2.86 -3.54 8.10 

table continues next page .... 
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.... table continued from previous page 

LDA Results sX-LDA Results HF Results 
Sym. 

Material V.B. Max. C.B. Min. V.B. Max. C.B.Min. V.B. Max. C.B. Min. 
Pt. 

I eV I eV I eV I eV I eV I eV 

L -0.96 1.19 -1.26 1.57 -2.40 6.58 

r 0.00 0.15 0.00 0.42 0.00 5.10 
In As 

X -2.27 1.49 -2.59 1.86 -3.68 6.36 

K -1.90 2.14 -2.27 2.59 -3.60 7.47 

L -1.02 1.22 -1.26 1.57 -2.33 6.48 

r 0.00 1.09 0.00 1.41 0.00 6.33 
InSb 

X -2.30 1.53 -2.58 1.86 -3.61 6.20 

K -1.95 1.88 -2.26 2.25 -3.52 6.98 

Table 5.4: Kohn-Sham eigenvalues of the highest valence band and lowest conduction 
bands (relative to the valence band maximum) at the main symmetry points of some dia
mond/zinc blende semiconductors, calculated with the LDA, sX-LDA, and HF functionals. 

Another interesting result is the case of InN, a material whose band gap has been the 

subject of substantial revision in recent years [91]. Including d-electrons as valence 

results in a gap of zero when using the LDA, whereas using sX-LDA raises this to 

around 0.4eV. This is still somewhat lower than the experimental value, however. 

Our results are consistent with those other groups such as the all-electron calcula

tions of Asahi et. al. [92] and Geller et. al. [93]. 



CHAPTER 5. BAND STRUCTURE CALCULATIONS 145 

LDA Results sX-LDA Results HF Results 
Sym. 

Material V.B. Max. C.B. Min. V.B. Max. C.B. Min. V.B. Max. C.B. Min. 

Pt. 
I eV I eV I eV I eV I eV I eV 

A -0.46 6.28 -0.48 8.07 -0.61 15.76 

L -1.59 5.23 -1.70 7.04 -2.13 14.27 

M -0.72 5.82 -0.76 7.68 -0.97 14.86 
AlN 

r 0.00 4.11 0.00 5.66 0.00 13.19 

H -1.03 7.61 -1.12 9.62 -1.44 17.21 

K -2.64 4.94 -2.79 6.81 -3.46 13.86 

A -0.61 4.10 -0.75 5.15 -1.00 12.29 

L -2.11 4.26 -2.53 5.45 -3.25 12.27 

M -1.12 4.96 -1.40 6.26 -1.86 13.07 
GaN 

r 0.00 1.86 0.00 2.66 0.00 9.66 

H -1.70 6.31 -2.12 7.65 -2.78 14.83 

K -2.95 5.04 -3.37 6.43 -4.28 13.08 

A -0.44 2.37 -0.55 3.10 -0.83 9.44 

L -1.55 3.31 -1.88 4.29 -2.58 10.52 

M -0.81 3.87 -1.03 4.85 -1.50 11.45 
InN 

r 0.00 0.00 0.00 0.40 0.00 6.49 

H -1.25 5.18 -1.58 6.29 -2.24 12.86 

K -2.07 4.60 -2.37 5.82 -3.23 11.93 

Table 5.5: Kohn-Sham eigenvalues of the highest valence band and lowest conduction 
bands (relative to the valence band maximum) at the main symmetry points of some 
wurtzite semiconductors, calculated with the LDA, sX-LDA, and HF functionals. 
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Band Gaps 
Material 

LDA sX-LDA HF Exp. 

c 4.15 5.27 12.07 5.50 

Si 0.48 0.97 4.78 1.12 

Ge 0.40 0.78 6.45 0.66 

SiC 1.27 2.12 8.26 2.42 

AlN 4.11 5.66 13.19 6.2 

AlP 1.44 2.12 7.39 2.51 

AlAs 1.38 1.94 6.85 2.15 

AlSb 1.33 1.74 6.26 1.62 

GaN(WZ) 1.86 2.66 9.66 3.5 

GaN(ZB) 1.70 2.33 9.02 3.3 

GaP 1.43 1.96 7.04 2.27 

GaAs 0.97 1.32 6.42 1.42 

GaSh 0.90 1.27 5.77 0.75 

InN 0.00 0.40 6.49 0.7 

InP 0.73 1.10 6.34 1.34 

In As 0.15 0.42 5.10 0.35 

InSb 1.09 1.41 6.20 0.23 

Table 5.6: Band gaps of a range of group IV and III-V semiconductors calculated with the 
LDA, sX-LDA, and HF functionals. Experimental data is also tabulated for comparison 
(from reference [54] except zinc blende GaN (64] and InN (91]). 



CHAPTER 5. BAND STRUCTURE CALCULATIONS 147 

14r---------------------------------------------~ 

13 

12 

II 

10 

9 

8 

> v 
....... 

~ 7 c:> 

"" § , 
C:Q . . 

6 

5 

4 

3 

Figure 5.13: Band gaps of a range of group IV and III-V semiconductors calculated with 
the LDA (black crosses), sX-LDA (red dots), and HF (green squares). Experimental data 
is represented by the blue line (from reference [54] except zinc blende GaN [64) and InN 
[91]). 



CHAPTER 5. BAND STRUCTURE CALCULATIONS 148 

5.3 Discussion of Results 

We have seen that, in terms of band structure calculations, the LDA tends to un

derestimate band gaps, HF always overestimates band gaps, while sX-LDA tends 

to underestimate gaps somewhat, but to a far lesser extent than the LDA. We will 

now discuss some of the reasons for the variation in performance of these different 

functionals. 

We should begin with the actual definition of the band gap, so we can understand 

what it is that we are actually aiming for. The band gap, E9 , is the minimum energy 

of an electronic excitation in which there is no interaction between the promoted 

electron and the hole that it leaves behind. E9 can thus be defined in terms of an 

N + 1 electron system and a separate N - 1 electron system as follows 

E9 = [E(N + 1)- E(N)] + [E(N- 1) - E(N)] 

E(N + 1) + E(N- 1)- 2E(N). (5.2) 

In terms of the Kohn-Sham description of the system, the band gap is usually taken 

to be the difference between the eigenvalues of the conduction band minimum and 

the valence band maximum. This is based on the interpretation of the Kohn-Sham 

eigenvalues as the functional derivative of the energy with respect to the occupancy 

of the corresponding orbitals. This would be the case if (E[p] - T8 [p]) was a well 

behaved functional of the density, but unfortunately, as was discussed for example by 

Sham and Schluter [94, 95], there are discontinuities in its first derivative at integer 

values of N for changes in p(r) that do not conserve charge. It is the size of the 

discontinuity that determines the difference between the "exact" Kohn-Sham band 

gap (i.e. the gap we would obtain from an exact exchange-correlation functional), 

and the true band gap as defined in Equation (5.2). It would, in principle, be 

possible to calculate the true band gap with an exact exchange-correlation functional 

by performing·. three separate·· ground' state''energy · calculations ·ori '(N ""'·1 ); · N, ··and 

( N + 1) electron systems. This would then tell us precisely the size of the error in 

interpreting the Kohn-Sham band gap as the true band gap. 

We will now discuss the failure of LDA calculations to give the correct band gap. 
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Supposing we were to perform a series of total energy calculations with the LDA on 

(N -1), N, and (N +1) electron systems, we could use Equation (5.2) to calculate the 

"true" band gap for the LDA. But, if we look at the functional (E[p]- T8 [p]) for the 

LDA we see that it it does not have the discontinuities that are present in the exact 

functional, and that therefore the "true" LDA gap must be the same as the Kolin

Sham LDA gap. This means that the underestimation of the band gap with the LDA 

is not simply due to the incorrect interpretation of the Kohn-Sham eigenvalues, but 

is actually a problem with the way the LDA treats exchange and correlation. The 

functional Ei£.A[p], being a direct, well behaved, functional of the density, is not 

sensitive to particle number and hence does not deal correctly with issues such as the 

self-interaction of electrons that is present in the Hartree energy. While approximate 

methods exist of correcting the sefl-interaction in the LDA [96], these tend to require 

a localised basis set and a somewhat artificial distinction between orbitals localised 

mostly same atom and those localised mostly on different atoms. 

The Hartree-Fock method can be viewed as an improved way of dealing with ex

change and correlation in the sense that, by using the exact definition of the ex

change energy in terms of the orbitals, the self-interaction of the electrons in the 

Hartree energy is fully removed. However, this is only true for valence band orbitals 

- the self-interaction for conduction band orbitals is completely uncorrected. This 

explains the very large band gaps obtained from HF calculations; the energy of the 

valence electrons is lowered by the removal of the self-interaction energy, but the 

energy of the conduction bands is increased, relative to the LDA, as there is no 

correction whatsoever to their self-interaction energy. 

Screened exchange can be viewed, in a sense, as a compromise between the LDA 

and HF approaches. Some of the improved treatment of exchange and correlation 

in the HF method is included, i.e. there is effectively non-local information about 

the density in the functional. Correlation is also incorporated into the non-local 

part By screening· the excha.rige interaction at long· range:- This means- tliaCtlie ·non::. 
local exchange-correlation energy is much lower that the exchange energy in HF, so 

the problem of the lack of self-interaction correction for conduction bands suffered 

by HF is much less pronounced in sX-LDA. Also, any self-interaction corrections 
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present in the local component of the exchange-correlation potential apply equally 

to both valence and conduction bands, as they should. One problem that seems to 

be suffered by screened exchange is related to the lattice parameters that are used. 

In some of our earlier calculations [97] in which the, usually larger, experimentally 

measured lattice parameters are used, the band gaps tended to be somewhat wider, 

and closer to experiment than the ones obtained in this work using LDA lattice 

parameters. This problem is unlikely to be fixed by using sX-LDA lattice parame

ters either, since, as we will see in the next chapter, sX-LDA seems to give lattice 

parameters even lower than the LDA. 
., 

If we look at the actual eigenvalues calculated with the various functionals the 

general trend is that, as we go from the LDA to sX-LDA to HF, the valence band 

eigenvalues are lowered, while the conduction band eigenvalues are raised. This can 

be understood in terms of the above discussion about the self-interaction energy. 

It raises the question though of what happens to the energies of defect states that 

lie somewhere within the band gap. When using local functionals, it is possible to 

artificially add a rigid shift to conduction band eigenvalues, but the question of what 

to do with defect sates is unclear. Our implementation of sX-LDA has recently been 

used to calculate the energies of defect states in Hf02 , where it was found to give 

good results for the positioning of defect levels within the gap [98] unlike treatments 

that simply combine the LDA with a rigid shift. 

Although we have not performed EXX calculations ourselves, this functional has 

been reported to give band gaps in very good agreement with experiment [79]. This 

can be attributed to the fact that EXX correctly cancels the self-interaction for both 

valence and conduction bands. 

In conclusion, we have shown that our implementation of the functionals sX-LDA 

and HF can be used to calculate the band structures of semiconductors. The general 

pattern is that the LDA underestimates band gaps, HF overestimates band gaps sub

stantially, and sX-LDA underestimates gaps somewhat, but tlie results are usuaily 

much closer to experiment than the LDA. These patterns can be explained in terms 

of the discontinuity in the derivative of the exchange-correlation functional, and the 

extent to which the self-interaction energy is corrected with the various functionals. 



Chapter 6 

Calculating Stress with Non-Local 

Functionals 

The main application of non-local functionals so far, at least in the context of con

densed matter physics in extended systems, has been the calculation of semicon

ductor band structures. However, the applications of DFT in general are far wider 

than this. A very important application, as we saw for example in Chapter 2, is 

the calculation of cell geometries. Related to this is molecular dynamics in which 

DFT is combined with Newtonian mechanics to model the motion of the atoms. 

In both of these applications, we usually need to consider changes not only in the 

atomic positions, but also in the size and shape of the unit cell. In particular, we 

need to know how such changes affect the total energy of the system, and this re

quires us to calculate the stress tensor, a0 p. This tensor can always be evaluated 

numerically by taking finite differences, but this would require several evaluations of 

the total energy. Far more efficient methods already exist for evaluating a0 p when 

using simple exchange-correlation functionals such as the LDA, but, to the author's 

knowledge, no work has been done so far on the calculation of stress when using 

non-locaLfunctionals suchc as- sX-LI>A, HF, -and-·EXX. In-this chapter wee introduce 

the theory, derived by ourselves [99], which allows us to calculate the contribution 

to a0 p from non-local exchange and correlation effects when using sX-LDA, HF, and 

EXX. We also describe how this has been implemented as an addition to the code 
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described in Chapter 4, and apply it to a number of test cases. 

6.1 Theory 

6.1.1 The Stress Tensor 

In the context of a cell periodic system, stress and strain are properties related to 

changes in the size and shape of the unit cell. The unsymmetrised strain tensor, tath 

is defined in terms of a scaling of space, i.e. 

ra -+ L(t5afJ + fatJ)rtJ, (6.1) 
afJ 

where r is any position vector in real space. Under such a transformation, the lattice 

vectors of the unit cell will change, as will the positions of the atoms, however the 

fractional coordinates of the atoms will remain fixed. In reciprocal space, the scaling 

is given by 

Ka -+ L(t5afJ- fatJ)KtJ, 
afJ 

for a general reciprocal space vector, K. 

(6.2) 

If the structure is under stress, then there will be a first order change in its internal 

energy in response to a first order change in the strain tensor. The stress tensor, 

a afJ, is defined as 

(6.3) 

Hence, in order to calculate the stress tensor we essentially need to be able to 

differentiate the total energy per cell with respect to either the real or reciprocal 

space lattice vectors. 

6.1.2 Stress in the Kohn-Sham Framework 

Th(ttlieory~fstress;cwrtliin tne :K<>hn=shamft-a:lrrewori<; when· tl'sifig"IO'car functioiials~ 

is well established [100, 101, 102]; here, we briefly describe it. In the standard Kohn

Sham framework, the total energy, Eror, is given by 

Eror = Ts +"ext+ Vn + Exc +VI-I, (6.4) 
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as described in Chapter 1. The stress tensor can therefore be expressed as 

CJa{J = 
1 a 
n -a (Ts + Vext + Vn + Exc +VI-I) 
~ £ EafJ 
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The terms Ts, Vext, Vn, and Exc all depend, either explicitly or implicitly, on the 

orbital coefficients, { Cik (G)}. A first order change in the strain tensor, EafJ does 

in general result in a first order change in the coefficients, and there is a resulting 

compon~nt of the change in Ts, Vextl Vn, and Exc that can be ascribed to changes 

in these coefficients. However, the sum of these four terms is the total electronic 

energy, E, which is minimised in the ground state and is therefore stationary with 

respect to the coefficients. We can therefore ignore changes in Ts, Vext, Vn, and Exc 

due to the changing coefficients, because they will sum to zero. This simplifies the 

expressions for the different contributions to the stress. We are effectively treating 

the coefficients as being constant with respect to small changes in the size and shape 

of the unit cell. This will only work, however, if we have the correct normalisation 

conditions on Cik(G) and p(G) so that normalisation is preserved when the volume 

of the cell changes. This has been achieved with the appropriate positioning of the 

reciprocal volume factors in the definitions of the Fourier transforms in Equations 

(1.116), (1.120), and (1.122) of Chapter 1. 

6.1.3 Non-Local Functionals 

As we have just discussed, the contribution to the stress tensor from a given term in 

the Kohn-Sham energy sum can be obtained by taking the partial derivative of that 

term with respect to the strain tensor. In order to do this for the non-local exchange

correlation energy in sX-LDA, HF, and EXX, we make use of two important results, 

which~ are 

(6.6) 

and 

aJ(IKI) = _ /'(IKI) KaKfJ. 
aEafJ IKI 

(6.7) 
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Applying these to the non-local exchange-correlation energy we thus have 

(
2(q- k + G)o(q- k + G)p _ 

6 
) 

X lq-k+GI2+k; o/1' (6.8) 

which is the contribution to the stress from the non-local exchange correlation energy 

(where ks is zero in the case of HF and EXX). 

In practical applications, we may be using the divergence correction or parallelepiped 

integration to deal with the singularity, as discussed in Section 3.3. As this changes 

the expression for the energy, it will also affect the calculation of the stress tensor. 

In the case of parallelepiped integration the integrals simply replace the values of 

1/(lq- k + Gl2). However, if we are using the divergence correction then we must 

consider derivatives of the extra term in the energy with respect to the strain tensor, 

i.e. there will be an extra contribution to the stress of 

~a: [~ L:kN(k) (L:F(q- k)- n 1 dqF(q- k))] 
o/1 q B.Z. 

21r a ( 1 I ) - L:N(k)- -(L:F(q- k)- 0 dqF(q- k) . 
0 k af0 p 0 q 

B.Z. 

Assuming we are using the form for F given in Equation (3.49), and that the width 

of the envelope, w, is constant, then the integral is constant with respect to the 

lattice vectors and therefore makes no contribution to the stress. The sum can be 

differentiated-as--follows: 



CHAPTER 6. CALCULATING STRESS 

__!___ (~ L F(q- k)) = __!___ (! L L S(lq- k- C:D) 
8EafJ n q 8EafJ n q G lq- k- Gl 

Olq-~1- Gl2 ~ ~ ( S(lq- k- Gl)c5afJ 

+S'(Iq _ k _ Gl) (q- k- G)a(q- k- G)p 
lq-k-GI 
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-S(Iq- k- Gl) 2(q- k- G)a(q- k- G)p). (6.9) 
lq- k- Gl2 

This requires us to be able to differentiate the envelope function, S(x). In the case 

of the simple form of Equation (3.50), we have 

S'(x)lxlsw 7r . (7rX) --sm-, 
w w 

(6.10) 

S'(x)lxl>w 0. 

6.2 Implementation and Tests 

6.2.1 Implementation in CASTEP 

The calculation of a:;xc has been implemented in CASTEP along with the main 

NLXC code described in Chapter 4. The implementation follows the same procedure 

described in Chapter 4 for evaluating the functions Cjqik(G), and making use of 

the list of values of 1/(lq- k + Gl2 + k;) stored in memory. The computational 

cost of calculating the stress is similar to a single evaluation of the total energy. 

However, the stress only needs to be calculated once, after the completion of the 

electronic minimisation procedure, so the additional cost of calculating the stress is 

insignificant. 

If we are using parallelepiped integration to deal with the singularity then we must 

replace the values of 1/(lq- k + Gl2) with the appropriate integral from Equation 
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(3.53). If we are using the divergence correction then we need to calculate the cor

rection to the stress tensor as well as the correction to the eigenvalues, as described 

in the previous section. 

6.2.2 Tests on Silicon 

As a test of the implementation, we set up an 8-atom cubic silicon cell, and apply 

both hydrostatic and shear strain to the structure. 

This is done by performing a series of sX-LDA total energy calculations with varying 

lattice vectors, using a 350e V plane wave cut-off energy, and a 4 x 4 x 4 Monkhorst

Pack grid. 

In the case of hydrostatic strain, all three lattice vectors remain equal to each other 

in length, i.e. (a= b =c), with the lattice constant, a, varying between 5.19A and 

5.47 A in steps of 0.02A. 

At each value of a, we calculate both the total energy, the total stress, and the 

non-local exchange-correlation contribution to the stress. The results of these calcu

lations are shown in Figure 6.1. We would expect that, if the theory and implemen

tation are working correctly, the diagonal components of the total total stress should 

equal zero at the point where the total energy is minimised. We see from the figure 

that this is the case1 , and, since the non-local exchange-correlation contribution is 

significant, we can conclude that the calculation of the stress is consistent with the 

calculation of the total energy. 

In the case of shear strain we vary the x-component of the lattice vector b, while 

keeping a and c fixed. The shear strain, !l.xjy, is varied between -0.35 and +0.35. 

At each value of !l.xjy, we again calculate both the total energy, the total stress, and 

the non-local exchange-correlation contribution to the stress. The results of these 

calcUlations artn:ihowifin Figure 6:2; This timetwe·expect the,off-diagonal,compo- < 

nent of the stress tensor corresponding to the applied shear strain to equal zero at 

1The small discrepancy can be attributed to the finite basis set, and is of a similar magnitude 

to that found when using the LDA 
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Figure 6.1: Total energy per 8-atom unit cell, calculated using screened exchange, rel
ative to the energy at equilibrium lattice constant (black line), along with the diagonal 
component of the total stress tensor, axx (red line), and the contribution to this stress 
component from the non-local screened exchange term, a:XLXC (blue line), as a function 
of the lattice parameter a ( = b = c) under hydrostatic strain. 
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Figure 6.2: Total energy per 8-atom unit cell, calculated using screened exchange, relative 
to the energy at equilibrium lattice constant (black line), along with the off-diagonal 
component of the total stress tensor, axy (red line), and the contribution to this stress 
component from the non-local screened exchange term, a~LXC (blue line), as a function 
of the shear strain, b..xjy. 
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the point at which the total energy is minimised, although this result is rather trivial 

due to symmetry. We do observe, however, that the non-local exchange-correlation 

contribution to the stress is very small for these off-diagonal components, but is not 

zero. This differs from the case of the LDA in which off-diagonal contributions are 

always zero. 

6.3 Summary and Conclusions 

We have successfully derived and implemented the theory for calculating stress when 

using non-local orbital-based functionals such as sX-LDA, HF, and EXX, which will 

allow efficient geometry optimisation and variable-cell molecular dynamics when 

using these functionals. The computational expense of the method is insignificant 

compared to the cost of a self-consistent total energy calculation. 

It is worth noting that the lattice parameter obtained for silicon using sX-LDA is 

lower than both the LDA and experimental values [54]. This may be a property of 

the functional itself, after all sX-LDA has not been extensively tested as to its accu

racy when calculating geometries. It may also be due to the fact that we are using 

LDA pseudopotentials which may not be appropriate for screened exchange calcu

lations. However the question of how best to define a pseudopotential appropriate 

for screened exchange remains open. 

It is likely that most, if not all, major developments in exchange-correlation func

tionals in the future will use EXX to treat exchange. Any such calculations involving 

efficient geometry optimisation, or variable-cell molecular dynamics, will require cal

culation of the exchange contribution to the stress tensor. The future scope of this 

work should therefore be extensive. 



---------------------- --------

Chapter 7 

Conclusions and Avenues for 

Further Work 

In this chapter we summarise the conclusions of the previous chapters. We then ex

plore some possible avenues for further work related to the general area of exchange

correlation functionals in DFT. 

7.1 Summary of Conclusions 

This work has centred on the problem of treating exchange and correlation in DFT 

calculations. In Chapter 1 we outlined the basic theory of Kohn-Sham DFT as a 

means of effectively solving the many-electron Schrodinger equation that describes 

most of the physics of condensed matter. We then described how this theory can be 

implemented with a plane wave pseudopotential approach, using as an example the 

CASTEP code, which we have used for all the calculations in this work. The issue 

of exchange and correlation was discussed in some detail, although at this stage the 

only exchange-correlation functionals mentioned were the basic local functionals, 
0"•--:-:u.r·- ··"'·---~--·-:--·-:-~_.,...;.-_, __ --~ -·- --~-·'~.--.,, __ ,,_,". .,. 

namely the LDA and GGAs. 

In Chapter 2, we applied this theory, using the LDA, to calculate a number of 

properties of GaN. These included bulk geometric and energetic properties, surface 
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reconstructions in the presence of hydrogen, and electronic band structures. It 

was found that the performance of the LDA depended on which properties were 

being calculated. While the calculated geometric properties were very accurate, the 

functional performed very poorly in the calculation of band structures in particular. 

This provided the motivation for us to consider using more advanced, non-local, 

exchange-correlation functionals, which were to be the subject of the remainder of 

the work. 

We began this in Chapter 3 by describing the non-local functionals sX-LDA and HF. 

These functionals are more advanced than the LDA because they incorporate non

local information by treating exchange effects explicitly in terms of the Kohn-Sham 

orbitals. They involve the re-definition of the Kohn-Sham potential to include a non

local operator component in the exchange-correlation potential. After describing the 

basic theory of these functionals, we proceeded to show how the theory can be cast in 

a manner that lends itself to efficient computational implementation. We also then 

described the EXX functional, which, like HF, defines the exchange energy exactly 

in terms of the orbitals, but maintains the strictly local nature of the potential in the 

standard Kohn-Sham framework. As well as describing the definition of the EXX 

functional, we also described the OEP method that is required in order to perform 

EXX calculations. 

Having explained the theory of the non-local functionals, we proceeded in Chapter 

4 to describe our computational implementation of sX-LDA and HF, and also of 

EXX via the OEP method. This included a description of how cell symmetry and 

multi-processor parallelisation have been utilised in order to improve the efficiency 

of the calculations. We presented the results of performance tests that confirmed 

that sX-LDA and HF calculations scaled as expected with respect to cut-off energy 

and number of k-points, and also that the utilisation of cell symmetry and paral

lelisation increases the speed of calculations significantly. We found that distribu-

.. Hoii"'<Jr· 1(-:J>oinfs resuits =iii' approxiffiat.ei:Y' Hliea:J: ·:scalilii"with ··nu:ffi1Jer·'of l>ro~essors, 

whereas distribution of G-vectors is less favourable due to the larger amount of 

inter-processor communication entailed, but can still result in significant increases 

in speed. We described the implementation of EXX via the OEP method; while 
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this implementation is essentially complete, further optimisation will be necessary 

before it can be used for practical calculations. 

With the implementation of sX-LDA and HF in place, we applied these functionals 

to the calculation of semiconductor band structures. Beginning with Si and GaN, we 

calculated the band structures along continuous paths between points of symmetry 

in the Brillouin zone. We found that, while the LDA underestimated the band gap 

significantly, sX-LDA gave gaps significantly closer to experimentally measured val

ues; HF performed very badly, overestimating the band gaps severely. As well as the 

band structure, we also calculated the density of states of Si and examined 2D plots 

or orbital charge densities when using these non-local functionals and compared 

them to LDA results. We found that the density of states was similar in appearance 

for all three functionals, but displaying the larger gaps from the non-local function

als, and, in the case of HF, stretched over a larger range of energy. The orbital 

charge density for the highest valence band is not visibly different from the LDA 

for either of the non-local functionals, but there is a clear difference for the lowest 

conduction band, particularly in the case of HF. To widen the range of materials 

studied, we proceeded to calculate the band structures of most of the other group 

IV and III-V compounds. From the results we established the general trend that the 

LDA significantly underestimates band gaps, while HF severely overestimates them; 

sX-LDA tends to give results much closer to experiment than the LDA, but still 

seems to underestimate band gaps to some extent. We concluded Chapter 5 with a 

discussion of the reasons for the successes and failures of the different functionals in 

predicting band structures. 

Aside from the calculation of band structures, which is currently the most com

mon application of non-local functionals, a very important application of DFT is 

in the calculation of geometries and molecular dynamics. In calculations in which 

the unit cell is allowed to vary, this requires calculation of the stress tensor. In 

Chapter 6, we -derive-d the theory that -allows us -to calc-ulate~ the contribution to 

the stress tensor from non-local functionals such as sX-LDA, HF, and EXX, which 

will allow variable-cell geometry optimisation and molecular dynamics calculations 

to be preformed when using these functionals. We also described how this has been 
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implemented as an extension to the work described in Chapter 4. As a test of this 

theory, we calculated the stress on a Si crystal as both hydrostatic and shear strains 

were applied. We found that our calculation of the stress tensor was consistent with 

the variation of the total energy with lattice parameter, which confirmed that the 

calculation of the stress tensor had been successful. This work will become increas

ingly important as the use of non-local functionals becomes more popular, and the 

calculation of stress is routinely performed. 

We have now summarised the work and conclusions of this thesis. Our overall 

conclusion is that the use of non-local exchange-correlation functionals can result in 

improvements local functionals, but that there certainly remains room for further 

advancement in this area. For the remainder of this chapter, therefore, we will 

discuss some novel ideas concerning possible future advancements in the field of 

non-local exchange correlation functionals. 

7.2 Simple Correlation Functionals 

7.2.1 Combinations of Input 

In Section 3.4.2 we discussed the meta-GGA, and Perdew's proposed hyper-GGA, 

both of which involve extra input to the exchange-correlation functional beyond 

the local density and gradient. We propose a direction of investigation involving 

various combinations of input, that do not necessarily involve the density or gradient. 

These are intended to be combined with EXX treatment of exchange will hence be 

referred to simply as "correlation functionals" rather than "exchange-correlation 

functionals" . 

In the standard formulation of EXX, correlation is treated by means of the LDA, 

in,_ which the)nput is .. the_l~caLd~p.sity, ;:tnd _th_e ,cqrrel«ttion e11,ergy _per.E:!l~ctron ts 

derived from exact results for the homogeneous electron gas (HEG). But why use the 

local density as input? Why not use exchange energy per electron instead? After all, 

the exchange energy density is readily available in an EXX calculation, and contains 
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non-local information about the density. Further, the standard HEG data can easily 

be manipulated to produce an unambiguous parameterisation of such a functional. 

That is, for a given value of ex, there is a corresponding HEG density p, and for a 

given p there a corresponding HEG correlation energy per electron, ec. This simple 

functional can be written as follows: 

Ec[P] =I drp(r)e~EG (PHEG (cx(r))). (7.1) 

In fact, any readily available local quantity could, in principle, be used as input to 

such a functional. The only conditions are that there is a one-to-one relationship 

between the quantity and the density in a HEG, and that for every value of the 

quantity in the system under study, there exists a corresponding HEG density. 

The advantage of having only a single local quantity as input is that the functional 

is unambiguously parameterised by HEG data. Of course, by having several inputs, 

more information is available, and a better functional should result, depending on the 

parameterisation. For Perdew's hyper-GGA, the density, gradient, non-interacting 

kinetic energy density, and exchange energy density are all used as input. A simpler 

version of this would exclude the density gradient, producing a functional of the 

form 

Ec[P] =I drp(r)ec(p, ts, ex). (7.2) 

The problem with such functionals is parameterisation. Different parameterisations 

can always be chosen in order to satisfy different sets of physical constraints. In the 

next section we describe a possible method of parameterisation ideal for functionals 

with three local inputs. 

7 .2.2 Parameterisation from Sinusoidal Electron Gas 

We can view the LDA as being defined such that exact results must be obtained-for 

-the ;i~pl~st-~xt~~de~lsyst~iri imagimibl~,Te. "'the homogeneous electron.gas:" For-, .. ~-- -~-

functionals with more than one quantity as input, we could extend this requirement 

so that the results have to be exact for what is arguably the second simplest extended 

system imaginable - a system with a sinusoidally varying density. A sinusoidal 



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 165 

density is defined by three independent parameters, namely the average density, 

p0 , the spatial frequency of the density oscillation, k, and the amplitude of the 

oscillation, A, i.e. 

p(x) =Po+ Asin(kx). (7.3) 

It may therefore be possible to define a correlation functional with three local inputs 

that is exact for all sinusoidal densities. 

However, if we are ever to use such a functional in actual calculations we would 

require accurate QMC data for sinusoidal densities. QMC work has been done [103] 

on systems with sinusoidally varying external potentials, but there is no simple 

way of knowing what the external potential is that corresponds to a sinusoidal 

density. The only way this can be determined is via a search, which may prove 

expensive. However, such calculations would only ever have to be performed once, 

so the computational cost may be justifiable in the long run. 

As well as obtaining exact results for the interacting system, we would also need 

to know the Kohn-Sham orbitals corresponding to a given sinusoidal density. This 

could be achieved quite easily via an OEP style search, in which we minimise the 

deviation of the density from the sinusoidal target. 

7.3 Variational Correlation Holes 

7.3.1 Introduction 

Earlier, we discussed the physical meaning of the correlation hole and the correlation 

kinetic and potential energies. This understanding of the physics of correlation can 

be used to justify a possible method of treating correlation in DFT calculations that 

involves using the correlation hole itself as a variational object. 

7 .3.2 Definition of the Functional 

Supposing we have a given density, p( r), and a corresponding set of Kohn-Sham 

orbitals { c/>i(r)}, then we can directly evaluate every term contributing to the energy 
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in the Kohn-Sham framework except for the correlation energy. The reason we 

cannot evaluate the correlation energy exactly is that it is a many-electron property, 

and therefore not directly related to the non-interacting Kohn-Sham system defined 

by the orbitals. 

However, if the correlation hole hc(r'lr) is known, then the correlation potential 

energy, Vc, can be directly evaluated simply by calculating the Coulomb interaction 

between the hole and an electron at r. Also, while there is no direct means of 

evaluating the correlation kinetic energy, Tc, we know that it must be related to the 

shape of the correlation hole. 

If we could fix the shape of the correlation hole, as well as the orbitals and the 

density, then the only energy term free to vary would be Tc. The many-body wave

function would therefore be the function that minimised Tc subject to the necessary 

constraints. For example, if we fixed the correlation hole to be zero everywhere, then 

the lowest energy wavefunction would equal that of the non-interacting system and 

T c would equal zero. Any non-zero shape for correlation hole forces the wavefunction 

to distort away from this non-interacting case, resulting in a positive Tc. Loosely 

speaking, the larger the deviation of the correlation hole from zero, the more the 

wavefunction has to distort, and the larger the value of Tc. 

The shape of the correlation hole that will naturally be adopted by a system will 

be the shape that minimises the total correlation energy, subject to constraints. 

The constraints on the correlation hole ensure that it corresponds to an exchange 

anti-symmetric many-electron wavefunction of density p(r). One specific constraint 

is that the correlation hole around any point must integrate to zero. By becoming 

negative at short-range, and positive at long range, the correlation potential energy 

is lowered, while the correlation kinetic energy is increased. Minimisation of the 

correlation energy can therefore be viewed as a balance between reduced potential 

energy and increased kinetic energy. 
~ J ~ .... " -- ,; - ;_,., ..... 

Tc and Vc can be viewed as a functionals of the correlation hole shape. Also, the 

corresponding energies per electron, tc(r), and vc(r), can be viewed as functionals 

of the correlation hole surrounding the point r. While vc(r) is readily evaluated 
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from the shape of the hole via 

( ) _! ld ,hc(r'lr) 
vc r - 2 r lr - r'l ' (7.4) 

there is no such explicit expression for tc(r). Nevertheless, if a good approximate 

expression could be found for tc[hc], then we would have a method of evaluating 

the correlation energy involving minimisation with respect to the correlation hole. 

That is, our correlation functional would be of the form: 

where 

Ec =I dr (tc(r) + vc(r)) p(r), 

tc(r) = min tc[hc]. 
hc(r'lr) 

(7.5) 

(7.6) 

A possible means of approximating tc[hc] would be to assume that it can be obtained 

by integrating some local function of the hole, Tc i.e. 

tc(r)[hc] =I dr'rc (hc(r'lr)). (7.7) 

It makes more sense however to allow this function, Tc, to depend on other quantities 

as well, such as the distance, lr- r'l, and the density at r', or perhaps the exchange 

hole, hx(r'lr), or derivatives of he, so we may have a functional of the form 

tc(r)[hc] =I dr'rc (hc(r'lr), lr- r'l, p(r'), · · ·). (7.8) 

In order to parameterise such a functional we could make use of QMC studies of 

the homogeneous electron gas. While data on the shape of the correlation hole is 

available in the literature [104], more detailed information about the wavefunction 

is harder to come across. A quantity of particular interest would be a two-particle 

correlation kinetic energy density, tc(r, r'), as this could be directly related to Tc. 

Even more useful in fact would be QMC studies in which the correlation hole was 

fixed to be some shape other than its natural one. This would provide very detailed 

information on the relationship between hc(r'lr) and Tc. 

7 .3.3 Spin Dependence 

An important consideration when developing functionals such as this is the spin

dependence of the correlation hole. This is relevant even for systems that are not 
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spin-polarised. Because the exchange interaction only causes particles to avoid each 

other if they have like spins, the exchange hole is always spin-polarised, irrespective 

of the average polarisation of the system. This means that if we are thinking about 

the shape of the correlation hole, we must bear in mind that particles of like-spin are 

already likely to be well separated due to the exchange interaction. The correlation 

interaction should therefore affect unlike spins much more than it affects like spins, 

and the correlation holes for like and unlike spins may be very different. For this 

reason it may make more sense to formulate the variational hole method in terms 

of spin-dependent quantities. 

7.3.4 Minimisation Procedures 

We envisage that minimisation of the correlation energy with respect to the shape of 

the correlation hole could proceed via standard numerical methods such as conjugate 

gradients [38]. Of course this would require us to be able to differentiate whatever 

form we have chosen for tc[hc], which may complicate matters. We also have to 

be careful to impose certain constraints on hc(r'lr). For example, the sum rule 

implies that the integral of the correlation hole must equal zero. Also, exchange 

anti-symmetry means that the exchange-correlation hole must satisfy the following 

constraint, 
hxc(r'lr) 
hxc(rlr') 

p(r') 
p(r)' 

(7.9) 

which, if enforced, would mean that the minimisations of the holes surrounding 

each electron coordinate, r, would have to proceed simultaneously. Other restric

tions must also exist that may be more difficult to enforce efficiently, one such re

striction being that the correlation hole actually corresponds to some many-electron 

wavefunction. It may be the case, however, that some restrictions could be relaxed 

without altering the results severely. 

7 .3.5 Potential Drawbacks 

While potentially very promising as an idea, the variational hole method is admit

tedly a long way from practical realisation. Attempts to develop of the method 
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towards a computationally feasible implementation are likely to encounter a num

ber of problems, and we ought to mention some of the potential problems that we 

already foresee. 

Firstly, the computational cost is likely to be very high indeed. We would be ma

nipulating objects that are at least "' N; in size. Further, for each step in the 

self-consistent DFT calculation, we would have to do a separate optimisation of the 

correlation hole for every point on the grid. Having said that, it may be possible to 

combine the minimisations in some way to speed the process up. 

It is possible that sampling of the correlation hole would require a finer grid that in 

a standard calculation, which would increase computational demand. On the other 

hand, for large systems, it may be possible to set a cut-off radius beyond which the 

hole can be assumed to be zero, which would ultimately lead to linear scaling. This 

would, however, depend on the nature of the particular system under study. 

7.4 Final Remarks 

This work has demonstrated some of the capabilities of DFT-based techniques in 

predicting properties of condensed matter from first principles. At present the major 

challenges for future development of DFT techniques are improving accuracy and 

improving efficiency, particularly in relation to scaling with system size. We have 

shown in this work some of the present methods that exist in relation to improv

ing accuracy, mostly concerning the calculation of electronic band structures. We 

have also, in this final chapter, discussed some possible directions for greater im

provements in accuracy in the future, through the further development of advanced 

exchange-correlation functionals. Much work is underway in at present in develop

ing implementations of DFT that scale linearly with system size [105, 106). This 

should,. with the continuing~advances in computer,c.power, .extend .. the scope oLfirst. 

principles calculations towards systems of much greater size and complexity than are 

currently possible. However, there are currently problems in applying these meth

ods to metallic systems. Most of the present work however is based around local 
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functionals, which, as we have discussed in this work, have limited accuracy. In our 

view, therefore, the ultimate goal of future DFT development should be to combine 

linear scaling techniques with advanced exchange-correlation functionals. 



Appendix A 

Commonly Used Symbols and 

Abbreviations 

In this appendix we list some symbols and abbreviations that are commonly used 

throughout this work, with a brief description of their meaning. 

A.l Variables 

A.l.l Integer Variables 

N number of electrons 

N1 number of ions or nuclei 

Z atomic number 

Nk number of k-points 

Nb number of occupied bands 

NP number of plane waves in basis 

n, m, i, j electron or orbital index 

v ~valence orbHaniioex 
c conduction orbital index 
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A.1.2 Real Scalar Variables 

t time 

n unit cell volume 

Eror total energy 

VI-I Ewald energy 

E total electronic energy 

T kinetic energy 

V potential energy 

Vext potential energy of electrons due to external potential 

Vint potential energy from electron-electron repulsion 

F internal electronic energy 

Fs non-interacting electronic energy 

Ts non-interacting kinetic energy 

Vi~~) non-interacting internal potential energy 

V H Hartree energy 

Exc exchange-correlation energy 

Vx exchange energy 

Ec correlation energy 

T c correlation kinetic energy 

Vc correlation potential energy 

..\ electron-electron coupling constant 

Ecut plane-wave cut-off energy 

f occupancy of a band 

k8 Thomas-Fermi screening constant 
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A.1.3 Vector Variables 

r position vector (may include spin) 

R 1 position vector of ion or nucleus (may include spin) 

R real lattice vector 

a first unit cell vector 

b second unit cell vector 

c third unit cell vector 

k,q Bloch wave vector 

G reciprocal lattice vector 

K general reciprocal space vector 

a* first reciprocal unit cell vector 

b* second reciprocal unit cell vector 

c* third reciprocal unit cell vector 

A.1.4 Tensor Variables 

f.ofJ unsymmetrised strain tensor 

a o/3 stress tensor 

A.1.5 Other Variables 

a spin coordinate 
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A.2 Fields 

A.2.1 Real 3D Scalar Fields 

p electron density 

Vext external potential 

c energy per electron 

J.1Ks Kohn-Sham potential 

t kinetic energy per electron 

v potential energy per electron 

t 8 non-interacting kinetic energy per electron 

v H Hartree energy per electron 

J.1H Hartree potential 

Exc exchange-correlation energy per electron 

J..txc exchange-correlation potential 

v x exchange energy per electron 

J..tx exchange potential 

Ec correlation energy per electron 

J..tc correlation potential 

vc correlation potential energy per electron 

tc correlation kinetic energy per electron 

A.2.2 Complex 3D Scalar Fields 

1/J Kohn-Sham orbital, including spin 

¢ Kohn-Sham orbital, spatial part only 

c spatial-only Kohn-Sham orbital in reciprocal space 
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A.2.3 

p(r,r') 

Ps(r, r') 

p(rlr') 

Ps(rlr') 

hxc(rlr') 

hx(rlr') 

hc(rlr') 

hxc(rlr') 

hc(rlr') 

A.2.4 

2-Particle Objects 

electron pair density 

pair density of non-interacting system 

conditional electron density 

conditional density of non-interacting system 

exchange-correlation hole 

exchange hole 

correlation hole 

coupling constant averaged exchange-correlation hole 

coupling constant averaged correlation hole 

Many-Particle Objects 

many-body wavefunction of electrons and nuclei 

many-electron wavefunction 

wavefunction of non-interacting system 
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A.3 

DFT 

EXX 

FT 

FFT 

GGA 

HF 

LDA 

Abbreviations 

density functional theory 

exact exchange 

Fourier transform 

fast Fourier transform 

generalised gradient approximation 

Hartree-Fock 

local density approximation 

LSDA local spin density approximation 

MGGA meta-generalised gradient approximation 

MP Monkhorst-Pack 

PPD parallelepiped 

QMC quantum Monte-Carlo 

sX-LDA screened exchange 

WZ wurtzite 

ZB zinc blende 
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Units and Physical Constants 

Due to the small scale of the systems to which electronic structure calculations are 

applied, the use of S.l. units is somewhat inconvenient. For this reason, throughout 

most of this work, we generally use units that are more appropriate for these calcula

tions. All equations, expressions, and formulas should be taken to be in atomic units 

unless otherwise stated. Masses and charges are usually quoted in atomic units (me 

and e respectively), lengths are be quoted in either atomic units (bohr) or Angstroms 

(A), and energy will be quoted in either atomic units (Ha) or electron-volts (eV). 

To enable the reader easily to convert the units used in this work into S.l. units, 

if so desired, in this appendix we include a table of relevant physical constants, 

and a table of conversion factors in terms of those constants. Data on fundamental 

constants is from NIST [107]. 
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B.l Physical Constants 

Name Symbol Value (S.I. units) 

Planck Constant/27r 1i 1.054 571 68{18) X 10-34 Js 

Speed of Light c 2.99 792 458(exact) x 108 ms-1 

Fine Structure Constant a 7.297 352 568{24) x 10-3 

Elementary Charge e 1.602 176 53(14) x 10-19 c 
Electron Mass me 9.109 3826{16) x 10-31 kg 

B.2 Atomic - S.I. Conversion Factors 

Quantity Atomic Unit Conversion Atomic ---t S.I. 

Length 1 Bohr h = 5.291 772 108{18) X 10-ll m - meca 

Mass 1 me me = 9.109 3826(16) x10-31 kg 

Time 1 aut h = 2.418 884 326 505(16) x 10-17 s - c2o2me 

Charge 1 e - e = 1.602 176 53(14) x 10-19 c 
Energy 1 Ha a 2mec2 = 4.359 744 17(75) x 10-18 J 

B.3 Other Units 

Unit Value in S.I. Units Value in Atomic Units 

A 10-10 m 1.889 726 1249{64) Bohr 

eV 1.602 176 53(14) x 10-19 J 3.674 932 45(31) x 10-2 Ha 

GPa 109 Pa 3.398 9135(58) X 10-5 Ha Bohc3 



Appendix C 

Implicit Mathematical Elements 

For convenience and tidiness, within many equations and formulas throughout this 

work, there may be extra elements that are not explicitly written down but should 

be taken to be present unless clearly stated otherwise. In this appendix, we list all 

of the situations in which these implicit mathematical elements are present. 

C.l Extra Variables 

C.l.l Spin Degrees of Freedom 

Often we write the coordinates of an electron simply as r, when in fact there should 

also be a spin coordinate, a, included. In such cases, the spin coordinate should be 

considered to be included in r even though it is not explicitly written down, i.e. 

r = (r, a). (C.l) 

Integrals over electronic coordinates should also be considered to include a summa

tion over spin coordinates, i.e. 

··· /drf(r}=,~J"drf(r,a}. 
u 

Of course, r often means just the spatial coordinates, so the above formulas should 

not be taken to apply in general. It should always be clear from the context whether 

or not spin is being included or not. 
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The information in this section also applies to the spin degrees of freedom of nuclei, 

which should be considered to be included in the coordinates, R 1. 

C.2 Implicit Factors in Summations 

C.2.1 Summing over Kohn-Sham Orbitals 

When summing over Kohn-Sham orbitals, using the spatial-part only functions, 

tPik(r), or, in reciprocal space, Cik(G), there should be a factor of 2 before each term 

to account for the 2 spin states. The exception to this is when N is odd, in which 

case there is no implicit factor of 2 in the final term. 

C.2.2 Summing over k-points 

When summing over k-points, there should always be a factor of 1/Nk before the 

summation sign. This is usually omitted from formulas, but should still be taken to 

be present, so we have 

(C.3) 



Appendix D 

Derivation of Non-Interacting 

Quantities 

The derivations of equations for quantities related to the Kohn-Sham Slater determi

nant are rather cumbersome and are therefore included here as an appendix rather 

than in the main text. 

D.l The Particle Density 

The particle density, p(r), is the probability density for finding any particle at 

position r. Since all the particles are identical, this must be N times the probability 

density for finding a particular particle at r, i.e. 

p(r) =NL/ dr2···J drN'Iis{r,r2,···rN)'Iis{r,r2,···rN). (D.1) 
q 

Now, substituting the expression for 'II s of Eq. {1.33), we have 

X (f. ( -1 )m~ 1 fJ v\;(r Pm(i))) · (D.2) 

Any terms in which the first permutation, {Pn(i)}, differs from the second permu-

tation, { P m ( i)}, must equal zero, since they will involve at least one integration of 
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a product of orthogonal orbitals. We thus have 

Integrals over all coordinates, ri, are effectively just integrals of products of orbitals, 

'1/Ji(ri)'l/Ji(ri), which simply return factors of 1. We therefore have 

(D.4) 

where P;1(i) is the inverse permutation of Pn(i). For each of the N possible sub

scripts P;1(1) there are (N- 1)! permutations, hence we can write this as 

p(r) = (N ~ 1)! (N- 1)! ~ ~ '1/J;(r)'l/Ji(r) 

N 

2: '1/J;(r)'l/Ji(r), (D.5) 

which is the equation for the density in terms of the Kohn-Sham orbitals. This looks 

the essentially the same in terms of the spatial-only orbitals, </>i(r), except that the 

spin summation is no longer necessary: 

N 

p(r) = 2: <t>;(r)</>i(r). (D.6) 
i 

D.2 The Pair-Density and Related Quantities 

In analogy with Equation (1.18), the pair-density of the non-interacting system is 

defined as 

Ps(r, r') = N(N- 1) 2: j dr3 · · · j drN'Its(r, r', r3, · · · rN )'It s(r, r', r3, · · · rN ). 
uu' 

(D.7) 

Now substituting the expression for 'Its of Equation (1.33), we have 

(D.8) 
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Most terms in which the first permutation, {Pn(i)}, differs from the second per

mutation, {Pm(j)}, will equal zero, since they will involve integration of a product 

of orthogonal orbitals. The only terms for which this is not the case are those in 

which the second permutation can be generated from the first by simply swapping 

the positions of indices 1 and 2, since these are not integrated over. This means 

we can group the terms into those in which the permutations are the same, with a 

positive prefactor, and those in which the permutations differ by exchange of these 

indices, with a negative prefactor, as follows: 

(D.9) 

where R12 is a permutation operator that swaps the positions of the numbers 1 and 

2. 

Each integral is now effectively some prefactor times an integral over products of 

orbitals, which simply return factors of 1. We can thus integrate out all coordinates 

except for r 1 and r 2 : 

1 ( N! ) 
- (N _ 

2
)! {;

2 

~ 1/J~.;t(l}(rt)1/Jp,;l(l}(r2)1/J~,;t(2)(r2 )1/Jp,;l(2)(rt) , (0.10) 

where P;1(i) is the inverse permutation of Pn(i). 

For each of the N(N - 1) possible pairs of subscripts, P;1(1), P;1(2), there are 

(N- 2)! permutations, hence we can write this as 

Ps(r, r') = L L 1/J;(r)'I/Ji(r)'I/Jj(r')'I/Ji(r') 
uu' ij 

-_ b:~ _1/J;.(r)1/Ji(r')¢j,(r')1/Ji-(r) 
uu' ij 

p(r)p(r')- L ~~ 1/J;(r)1/Ji(r')l
2

, 
uu' 1 

(D.ll) 
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which is the equation for the pair density of the non-interacting system in terms 

of the Kohn-Sham orbitals. This looks the essentially the same in terms of the 

spatial-only orbitals, <Pi(r), except that the spin summation is no longer necessary: 

2 

Ps(r, r') = p(r)p(r') - L <P;(r)<Pi(r') . (D.l2) 
i 

This is related to the conditional density of the non-interacting system, and also to 

the exchange hole, which are given respectively by: 

Ps(r'jr) 
Ps(r, r') 

-
p(r) 

p(r') - IL:i <P;(r)<Pi(r')l 2 

(D.l3) 
p(r) ' 

and 

hx(r'lr) Ps(r'lr) - p(r') 

IL:i <Pi(r)<Pi(r')l
2 

(D.l4) 
p(r) 

D.3 The Non-Interacting Kinetic Energy 

We begin with the definition of Ts as the expectation value of the kinetic energy 

operator, T, in the Kohn-Sham Slater determinant: 

-~ J dr1 · · · J drNws ~ v;; w s-
' 

(D.l5) 

Now substituting the expression for \II s of Equation (1.33), we have 

(D.16) 
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Any terms in which the first permutation, {Pn(i)}, differs from the second permu

tation, { P m ( i)}, must equal zero, since they will involve at least one integration of 

a product of orthogonal orbitals. We thus have 

(D.17) 

The operator, \7~., only operates on orbitals for which Pn(i) = j. Therefore integrals 
J 

over all coordinates, rk, where k =I= j are effectively just integrals of products of 

orbitals, '1/Ji(rk)'l/Ji(rk), which simply return factors of 1. So for each term we can 

integrate out all the coordinates except rj, which is associated with the \7~; operator: 

(D.l8) 

where P;1(i) is the inverse permutation of Pn(i). Now, from here we can see that 

the subscript on the rj is no longer meaningful and that the summation can be 

reordered to read 

Ts 

= -~~I dr,P;(r)\72'1/Ji(r), 
' 

(D.19) 

which is the standard equation for the non-interacting kinetic energy. This equation 

looks the same in terms of the spatial-only orbitals, ¢i(r): 

= -~~I dr¢;(r)V2¢i(r), 
' 

(D.20) 

where there is an implicit factor of 2 where appropriate (see Appendix C). 
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D.4 The Non-Interacting Internal Potential En-

ergy 

We begin with the definition of Vi~) as the expectation value of the internal potential 

energy operator, ~nt, in the Kohn-Sham Slater determinant: 

(D.21) 

Now substituting the expression for 'Its of Equation (1.33), we have 

(D.22) 

Most terms in which the first permutation, {Pn(i)}, differs from the second per

mutation, {Pm(l)}, will equal zero, since they will involve integration of a product 

of orthogonal orbitals. The only terms for which this is not the case are those in 

which the second permutation can be generated from the first by simply swapping 

the positions of indices j and k. This means we can group the terms into those in 

which the permutations are the same, with a positive prefactor, and those in which 

the permutations differ by exchange of these indices, with a negative prefactor, as 

follows: 

V:(S) 
int 

1 "'I d I d ~ fiN '1/J;(rPn(i))'I/Ji(rn;~c(Pn(i))) 
--L.....t r1··· rN L.....t , 

2N! i# n=l i=t lri- rki 

(D.23) 

where R;k'( i) is a permutation operator that swaps the positions ofthe numbers j 

and k. 

The Coulomb term, 1/lri - rkl, can be considered to be a multiplicative operator 

that operates only on orbitals for which the subscript on r is equal to either j or 
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k. Integrals over all coordinates, r, where l =J: j, k are effectively just integrals of 

products of orbitals, wi(r1)'f/;i(rl), which simply return factors of 1. So for each term 

we can integrate out all the coordinates except rj and rk, which are associated with 

the 1/lri - rkl factor: 

_(s) __ 1_ ""I . I ~ W~;;l(j)(rj)Wp;;l(j)(rj)W~;;l(k)(rk)Wp;;l(k)(rk) 
Vint - 2N' ~ dr, drk ~ I . - I . j::f.k n r, rk 

1 ""I I ~ W~;;l(j)(rj)Wp;;I(j)(rk)W~;;t(k)(rk)Wp;;l(k)(rj) 
--~ dr· drk~ 

2N! i::f.k 
3 

n lri- rkl ' 
(D.24) 

where P;1(i) is the inverse permutation of Pn(i). Now, from here we can see that the 

subscripts on the rj and rk are no longer meaningful, other than in distinguishing 

one from the other, and that the summation can be reordered to read 

Vi~) = ~ L:ldrldr'~ w;(r)'f/;i(r)'f/;j~r')'f/;j(r') 
2N. ij n lr - r I 

__ 1_ L I dr I dr' ~ wi(r)'f/;i(r')wj(r')'f/;j(r) 
2N! ii n lr- r'l 

(D.25) 

Noting that each integral contains an implicit sum over spin states, we see that this 

equation looks the same in terms of the spatial-only orbitals, </>i(r): 

_!""I d I d ,¢;(r)¢i(r')¢j(r')</>j(r) 
2 ~ r r I - 'I ' ij r r 

(0.26) 

where there is an implicit factor of 2 where appropriate (see Appendix C). Now, 

with reference to Equation (D.5) we· see that the part with positive prefactor can be 

re-written in terms of the density so that we have 

v;(s) = ! I dr I dr'p(r)p(r') -!""I dr I dr'¢;(r)¢i(r')¢j(r')¢i(r). (D.27) 
mt 2 lr- r'l 2 'tr lr- r'l 
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This internal potential energy is usually separated into the Hartree energy, Vn, and 

exchange energy, Vx, so that 

(S) V'int = Vn + Vx, (D.28) 

where 

~ = !ldrldr'p(r)p(r') 
H 2 lr- r'l ' 

(D.29) 

and 

V = _!"'I d I d ,4>';(r)4>i(r')4>j(r')4>j(r) 
x 2 L... r r I - 'I . ij r r 

(D.30) 
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